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ABSTRACT 

Populations of several Neotropical migratory bird species have experienced declines in the 

recent decades but long-distance migrant aerial insectivores seem to be declining at greater rates 

than any other group. The Barn Swallow (Hirundo rustica) is a long-distance migrant and an 

aerial insectivore whose breeding populations have declined drastically in northern regions of 

North America but remain stable in certain areas of the southern United States. However, reasons 

for differential population trends and whether factors on breeding and/or wintering grounds 

could be causing these declines remain unclear. The main objective of this study was to 

investigate causes of differential population dynamics experienced by Barn Swallows in North 

America by 1) studying patterns of migratory connectivity of populations using a three stable 

isotope approach (δ2H, δ13C and δ15N) and 2) evaluating evidence for factors on breeding and/or 

wintering grounds causing regional differences in population trends.   

Rectrix feathers (R1) of Barn Swallow grown on the wintering grounds were collected during 

breeding season in 2009, 2010 and 2011 across the breeding range of the species. Feathers were 

examined isotopically (δ2H, δ13C and δ15N) and used to determine the relative strength of 

migratory connectivity of populations and to identify approximate wintering regions in South 

America. Long-term mark-recapture data from two breeding colonies in Washington State and 

Ontario were compared to the Southern Oscillation Index (SOI) for breeding and wintering 

months as a measure of El Niño Southern Oscillation (ENSO) to study the fundamental effect of 

large-scale climatic conditions on annual survival rates. Similarly, long-term reproductive 

parameters (i.e. fledging success, total number of eggs laid, chicks per nest) of breeding 

individuals in Washington State and Manitoba were used to determine the effects of local 

weather variation on reproductive performance. Winter-grown feathers grouped according to 
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population trends were additionally analyzed for costicosterone (CORT) concentrations to test 

whether declining northern populations have higher exposure to stressors on their wintering 

grounds.   

Stable isotope (δ2H, δ13C and δ15N) analyses revealed evidence for a diverse pattern of 

migratory connectivity among breeding populations of Barn Swallow. Four isotopically distinct 

clusters corresponding to different wintering regions were identified and a progressive 

longitudinal shift in wintering grounds was detected. For stable and/or increasing populations in 

southern US, at least half of the entire population occupy areas in north-eastern South America. 

In contrast, a large proportion of individuals breeding in declining populations overwinter in 

western and central South America, suggesting that regions in north-eastern South America may 

be better quality habitats than those in western and central South America. This study found 

evidence for a differential effect of ENSO-related weather conditions on inter-annual 

survivorship of two different breeding populations of Barn Swallows in North America. Annual 

survivorship of Barn Swallows breeding in Washington State was strongly correlated to ENSO 

during breeding and wintering months, while no correlation was found for birds breeding in 

Ontario, potentially due to the geographical variation of the effect of ENSO on weather 

conditions across North America and South America and the differential degree of migratory 

connectivity of populations. The length of cold periods (total number of consecutive days (≥ 2 d 

periods) with maximum daily temperatures lower than 11ºC) was found to have also a strong 

effect on annual survival rates of birds breeding in Washington State but not in Ontario. Annual 

reproductive performance was significantly affected by environmental conditions early in the 

breeding season related to ambient temperature, while precipitation variables had little effect. 

However, no significant decrease in reproductive success over time was noted, suggesting that 
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population declines might not be related with a decrease in reproductive performance modelled 

based on weather conditions. Wintering ground stressors related to CORT seem to have no 

significant effect on population size changes, since feather-CORT levels from declining 

populations were similar to those from stable populations.  

This study is the first to provide information on wintering origins of North American Barn 

Swallows using stable isotopes and to identify factors occurring on breeding and/or wintering 

grounds that could have an effect on population trends of the species. Further work to understand 

the profound declines of Barn Swallows and of aerial insectivores should attempt to increase 

knowledge on winter habitat requirements of the species, as well as to study temporal patterns of 

change of weather conditions (i.e. La Niña events and extensive cold weather periods early in the 

spring) and the potential correlation of these changes with the existed patterns of decline.  
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CHAPTER 1 GENERAL INTRODUCTION 

Several populations of Neotropical migratory avian species have experienced dramatic 

declines in the last few decades in North America (Terborgh 1989, Askins et al. 1990, Finch 

1991, Terborgh 1992, Rappole and McDonald 1994, Peterjohn et al. 1995, Sauer et al. 2011). 

Aerial insectivores, birds that feed exclusively on aerial insects year around, are experiencing 

among the greatest decline rates of any bird group. (Bohning-Gaese et al. 1993, Cadman et al. 

2007, McCracken 2008, Bird Studies Canada et al. 2012, NABCI Canada 2012). Recent studies 

have shown that this decline seems to be greater for populations located in the north and 

northeast of their breeding range. In addition, a stronger pattern of decline has been noticed for 

long-distance migrants that travel longer distances to their wintering grounds in Central and 

South America in contrast to short-distance migrants that winter in southern US (Nebel et al. 

2010). 

1.1. Potential factors of decline for aerial insectivores 

In North America, aerial insectivores include nightjars (family Caprimulgidae), swifts (family 

Apodidae), some flycatchers (family Tyrannidae), martins and swallows (family Hirundinidae) 

(Sibley 2000). All species of this group feed on flying insects, but they differ in foraging 

behavior, nesting habitat, and wintering locations. For instance, dominant forage habitat for 

swifts, martins and swallows are usually open areas in proximity to rivers, lakes and wetlands, 

while nightjars and flycatchers prefer woodland clearings. Nightjars usually nest on leafy of 

gravely soils, while flycatchers build cup-shape nests in trees, and swift, martins and swallows 

prefer man-made structures such as boxes, chimneys and building’s walls to place their nests 

(Poole 2005). In addition, some species are long-distance migrants that migrate to warmer 
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latitudes in southern South America; while others travel shorter distances to winter in southern 

North America and the Caribbean.  

Potential factors underlying declines for aerial insectivore populations are highly diverse, 

ranging from 1) habitat loss due especially to human activities, 2) habitat degradation, caused by 

increase of predation rates, scarcity of food supplies and higher incidence of diseases and 

ectoparasites, 3) changes in weather patterns, 4) exposure to environmental contaminants, and 5) 

persecution. 

1.1.1. Habitat loss 

Human activities centered on the extraction of natural resources have increased dramatically 

in recent decades. Additionally, development and intensification of agriculture has resulted from 

conversion to more modern farming techniques. For instance, these transformations have 

affected the amount of open-grasslands used for foraging (Evans et al. 2007). Mixed livestock 

and crop farming has been documented to have a positive association with reproductive success 

of Barn Swallows (Hirundo rustica) in Europe, and the reductions of these activities could be 

another potential reason for their decline in North America (Ambrosini et al. 2002, Grüebler et 

al. 2010). Flycatchers and nightjars are affected by changes in composition and structure of 

forests and native grasslands (DeGraaf and Yamasaki 2003, COSEWIC 2007). The replacement 

of old-style structures such as chimneys, flat-gravel roofs, barns or other buildings have reduced 

the availability of artificial nest sites for certain species like Barn Swallow, Chimney Swift 

(Chaetura pelagica), Common Nighthawk (Chordeiles minor) and Cliff Swallow (Petrochelidon 

pyrronota), and have been suggested as a main potential factor for the decline of these species 

(Brigham et al. 2001, COSEWIC 2011, COSSARO 2011). However, the extent to which a 

decrease in availability of nesting sites is limiting aerial insectivore populations remains unclear, 
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since a large number of suitable structures that were previously used by these species in the past 

remain unoccupied today.     

1.1.2. Habitat degradation  

1.1.2.1. Predation  

Abundance of predators could have important negative effects on the total number of 

individuals of a population (Thompson 2007, Rogers 2011). High predation rates in the breeding 

grounds was initially thought to have a significant impact in population declines of many number 

of insectivorous species of passerines in North America during 1968 to 1987 (Bohning-Gaese et 

al. 1993). However, follow-up studies have revealed that the situation may be more complex and 

predation may not play such an important role in the population dynamics of this group (Sauer et 

al. 1996).  

1.1.2.2. Food availability  

Reduction in food availability is a limiting factor for bird populations (Martin 1987, Boutin 

1990) since abundance of insects correlates with reproductive success of a large number of 

songbirds species (Strehl and White 1986, Rodenhouse and Holmes 1992, Marshall et al. 2002). 

This factor might be essential in the understanding of aerial insectivore population trends, since 

all declining species of this group share the main characteristic of feeding exclusively on flying 

insects (SCOC Committee 2009). The main potential factors that could be affecting prey 

availability are 1) increases in frequency and/or intensity of cold weather periods during spring 

in the northern portion of the breeding range, 2) the mismatch in the timing of insect emergence 

and reproduction due to changes in weather patterns, and 3) large scale declines of aerial insect 

populations due to extensive use of pesticides, which will be explained in more detail in section 

1.1.4.  
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1.1.2.2.1. Cold weather periods  

Aerial insectivorous migrants are especially vulnerable during cold weather periods because 

cold temperatures reduce aerial insect activity (Newton 2007). If cold weather periods become 

more frequent and prolonged, the amount of prey available for aerial insectivores could be 

considerably reduced (Taylor 1963). This lack of food will affect adult survival (Ligon 1968, 

Whitmore et al. 1977), but could especially influence body condition of young and their survival 

to independence (Gardarsson and Einarsson 1997, Bize et al. 2007) and potentially affect 

population sizes.  

1.1.2.2.2. Insect emergence and reproduction mismatch  

Vertebrates have evolved to synchronize periods of highest food demands from their young 

with the peak season of food abundance to maximize their reproductive output (Perrins 1970). In 

the case of aerial insectivores, the abundance of flying arthropods at the time of maximum food 

requirements of their young will be a crucial determinant of reproductive success. Warmer spring 

temperatures over the past decades have modified the breeding phenology of a wide variety of 

organisms, such as birds, amphibians, and insects (Beebee 1995, Crick and Sparks 1999, 

Bartomeus et al. 2011). In the case of birds, studies have reported an advance in egg-laying dates 

for many avian species due to an increase in global average temperature (Walther et al. 2002, 

Root et al. 2003). However, certain avian species appear unable to adapt to spatial and temporal 

changes in food resources and tend not to modify their migration and breeding phenology. 

Therefore, even if the abundance of insects remain stable at a breeding location over the years, 

this mismatch effect could potentially reduce the productivity of aerial insectivores and increase 

their mortality rates, with a consequent negative effect to their populations (Visser et al. 1998, 

Visser et al. 2006, Gaston et al. 2009) .  
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Several studies have suggested that long-distance migrants might have more difficulties to 

adapt their breeding and migratory phenology to recent changes in average temperature 

(Berthold et al. 1998, Faaborg et al. 2010, Jones and Cresswell 2010), and, those species seem to 

exhibit a greater population decline than short-distance migrants (Nebel et al. 2010). For 

instance, a comparison study of the short-distance migrant Dalmatian Pelican (Pelecanus 

crispus) and the long-distance migrant Great White Pelican (Pelecanus onocrotalus) in Europe 

has recently suggested that the Dalmatian Pelican has showed a rapid advancement in laying 

dates due to warmer temperatures over the last two decades, while Great White Pelican exhibited 

no change, and this could potentially have negative consequences to population size of the long-

distance species (Doxa et al. 2012).  

Timing of migration for short- and long-distance migrants is controlled by endogenous 

circannual mechanisms (Berthold 1984, Wikelski et al. 2008). Theoretically, short-distance 

migrants might be able to adjust their timing of migration more effectively in response to 

changes in local climate than long-distance migrants, since they winter closer to the breeding 

grounds and conditions on these wintering-locations might be more correlated with those on 

breeding areas. In contrast, the cues used for long-distance migrant species to migrate do not 

necessarily relate to conditions at their breeding areas. Therefore, long-distance migratory birds 

are more likely to experience a mismatch in peak food abundance for their young and might be 

more extensively affected by changes in climate (Visser et al. 2004). An example of the negative 

effect of mistiming of food availability and reproduction on an aerial insectivore is the case of 

the Pied Flycatcher (Ficedula hypoleuca) breeding in Europe (Both and Visser 2001). This long-

distance migrant has not changed its arrival date on the breeding grounds over the years and 

some populations have declined by about 90% in the last twenty years due to a mismatch in 
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timing of food peaks (e.g. caterpillars) for nestlings early in the season. In contrast, Tree 

Swallow (Tachycineta bicolor), a short-distance migrant breeding in North America whose 

populations are relatively stable, have adjusted their breeding phenology to warmer temperatures 

over a 40-year period and egg-laying dates have advanced by an average of nine days in some 

areas of its range (Dunn and Winkler 1999). Despite these findings, other studies have found 

little evidence for shifts in breeding phenology (Barrett 2002) or have shown the opposite pattern 

for short and long-distance migrants (Jonzén et al. 2006). Clearly, the phenomenon of breeding 

phenology changes due to variation in climate is not always so explicit, possibly due to 

differences among species and inconsistent temperature trends around the world. 

1.1.2.3. Diseases and parasites  

Environmental changes in recent decades such as changes in weather patterns, loss and 

alteration of habitat, and environmental pollution have likely promoted disease emergence and 

ectoparasitism by forcing pathogens and parasites into new ecological niches and facilitating 

their establishment or transmission (Holmes 1996). Communal breeding is an attribute shared by 

many species of aerial insectivores, especially in the swallow family, that presents some 

potential costs and benefits for the species (Alexander 1974). Aggregation during breeding is 

usually associated with the reuse of old nests from previous breeding seasons with the 

consequent cost for the individuals due to higher loads of ectoparasites and higher probability of 

contracting infectious diseases. These diseases can reduce fecundity rates of adults, as well as 

survival and body condition of young (Moss and Camin 1970, Brown and Brown 1986, Shields 

and Crook 1987, Szép and Møller 1999). In the case of West Nile virus, avian influenza, avian 

cholera or avian tuberculosis, they have the potential to cause rapid declines in bird populations 

by increasing adult and chick mortality rates (Hochachka and Dhondt 2000, Lachish et al. 2011). 
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Therefore, infectious diseases could be an especially important factor limiting aerial insectivore 

populations. 

1.1.3. Change in weather  

Local weather as well as regional climate patterns may strongly influence avian population 

dynamics (Sӕther et al. 2006). Weather conditions during the non-breeding season often affect 

population sizes mainly through a weather-dependent loss of individuals. Møller (1989) found 

that winter mortality during migration or in the wintering grounds was mainly related to 

environmental factors encountered on the wintering grounds and was the main cause of a 

population size reduction of Barn Swallows breeding in Denmark. In addition, Baillie and Peach 

(1992) reported that losses of individuals between fledging and the following breeding season 

was primarily due to weather conditions on wintering grounds and correlated strongly with 

population changes for several species of passerines.    

Weather during the breeding season can also directly affect survivorship and subsequent 

breeding densities if they encounter unseasonable cold periods, storms or other severe weather 

events (Blake et al. 1992, Newton 2007). Individuals with higher body condition usually arrive 

earlier in the season and benefit from occupying better territories which usually enhance their 

reproductive success (Møller 1994, Kokko 1999). However, the major cost of early arrival is a 

high probability of encountering adverse weather conditions (Møller 1994, Newton 2007). For 

aerial insectivore species, cold snaps and heavy precipitation periods early in the breeding season 

are one of the major causes of mortality, especially for swallows (Whitmore et al. 1977, Brown 

and Brown 1998, Brown and Brown 1999b, Brown and Brown 2000). In addition, prolonged 

periods of precipitation and cold temperatures could be problematic to birds indirectly since they 

have been previously linked to a reduction of incubation time, more extended incubation periods 

requirements, and reduction of immune system activity (Lifjeld et al. 2002, Ardia et al. 2010).  
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1.1.4. Environmental contaminants  

1.1.4.1. Direct effect 

Persistent organochlorine pesticide contamination has been implicated as a cause for the 

decline in populations of Neotropical migratory birds in recent decades (Mora 1997, Klemens et 

al. 2000). Pesticides such as organochlorines (OCs) and polychlorinated biphenyls (PCBs), 

which accumulate in animal tissues and biomagnify in food chains, were extensively used in 

North America in the 1950’s and 1960’s. Although these compounds have since been restricted, 

their negative effects still persist in the environment (Gard and Hooper 1995). These effects 

could be especially important in the case of aerial insectivorous birds, since they feed on aerial 

insects and could therefore directly ingest the compounds that their prey have accumulated 

(Klemens et al. 2000).  

In North America, OCs were largely replaced by a new generation of pesticides such as 

organophosphorus (OPs) and carbamates, which degrade faster in the environment. However, 

these compounds are more toxic and are known to be responsible for important bird population 

declines in North America and Europe (Newton 2004, Mineau et al. 2005). A clear example of 

their toxicity is the well-known case of the massive poisoning episode of Swainson Hawks 

(Buteo swainsoni) in the grasslands of Argentina due to the widespread use of an OP insecticide 

to control insect abundance (Goldstein et al. 1999). Despite such poisoning episodes, sublethal 

effects from constant exposure to OPs (i.e. dermal absorption and exhalation, contact with 

treated vegetation and poisoned insects, or direct ingestion), may also affect bird populations 

(Henny et al. 2010). Even if the amount of contaminant on their bodies might not be enough to 

directly kill them, contaminant exposure could affect avian populations indirectly by reducing 

the survivorship, fecundity and fitness of their individuals. Contaminant exposure could modify 

the behavior of adults (Hart 1993, Bustnes et al. 2001) or affect the endocrine system of  
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nestlings and reduce growth rate (Powell and Gray 1980, Colborn et al. 1993), with a consequent 

detrimental effect on adult reproductive success (Ratcliffe 1967, Henny et al. 2010). 

Migratory birds are potentially more widely exposed to environmental contaminants since 

their migratory movements allow them to encounter these substances on their breeding and 

wintering areas, as well as during migration (Gard et al. 1993). The specific use of OCs, OPs and 

PCBs in Central and South America is not well known but they are likely extensively applied 

across those regions (Lacher and Goldstein 1997), suggesting that Neotropical migrants could be 

also exposed to these compounds on their wintering grounds (Gard and Hooper 1995). 

1.1.4.2. Effect on insect populations 

The use of pesticides in agricultural or forested areas may have reduced the abundance of 

aerial insects (Scott-Dupree et al. 2009, Van Dijk 2011) and could have affected populations of 

aerial insectivores indirectly. These effects are more difficult to detect but have been seen in 

insectivorous species such as woodpeckers (family Picidae) that forage in bark beetles 

(Morrissey et al. 2008) and species of the family Emberizidae (Brickle et al. 2000, Hart et al. 

2006). For aerial insectivores, the use of a mosquito-control agents has been correlated with a 

reduction in clutch size and fledgling survival of House Martins (Delichon urbicum) in France 

due to a decrease in food intake by nestlings and an increase of adult foraging rates (Poulin et al. 

2010). A recent study of Chimney Swifts revealed the negative influence of pesticide treatments 

on their diet (Nocera et al. 2012). The examination of a well-preserved guano deposit showed a 

clear shift in insect diet from Coleoptera to Hemiptera starting in the 1960’s possibly due to the 

introduction of Dichlorodiphenyltrichloroethane (DDT) pesticides in North America and the 

associated decrease in beetle populations. More recently, the use of neonicotinoid insecticides 

have raised significant concern in the scientific community due to evidence of a connection to 

the honey-bee colony collapse disorder (CCD), which has dramatically reduced populations of 
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honey bees (Girolami et al. 2009, Maini et al. 2010, Lu et al. 2012). Therefore, these new group 

of insecticides should be considered carefully as a potential reason for the decline of aerial 

insectivores in North America due to its high toxicity for aerial insects and persistence in aquatic 

systems (Van Dijk 2011, Mason et al. in press). 

1.1.5. Human persecution  

Some species of aerial insectivores are associated with human activities during their breeding 

season, such as Barn Swallow, Cliff Swallow, Bank Swallow (Riparia riparia) and Chimney 

Swift. Barn and Cliff Swallows often use buildings to place their nests. Colonies of Bank 

Swallows occur in vertical banks or cliffs but also in human-made sites such as sand and gravel 

quarries and road cuts (Garrison 1999) and Chimney Swifts use chimneys as well as natural 

structures (Cink and Collins 2002). This close association with humans has beneficial and 

detrimental effects. For instance, despite their protection under the Migratory Birds Convention 

Act, 1994 (CWS 1991), numerous episodes of colony-site destruction have been reported due to 

building demolitions, excavations of sand banks, and replacement of old chimney structures 

(Garrison 1999). Additionally, swallows and swifts are often considered a nuisance and their 

nests destroyed. Despite the potential implications of these practices, no studies focused on the 

effects of these disturbances on population trends have been addressed yet. 

1.2. Migratory connectivity and seasonal interactions 

In North America, migratory birds travel between temperate breeding regions to southern 

areas with more optimum conditions in response to seasonal changes in habitat suitability 

(Berthold 2001). These species usually spend five months of their annual cycle on their 

wintering grounds, four months in their breeding locations and approximately three traveling 

across these locations (Newton 2008). Populations of migratory birds are therefore influenced 
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over global spatial scales across their annual cycle by factors on their breeding grounds, 

wintering grounds and stopover sites (Sherry and Holmes 1995).  

There are two main concepts related to annual migratory movements that can have a 

significant impact on the evolution, behavioral ecology and population dynamics of migratory 

birds. The first is the degree to which individuals breeding in the same areas migrate to the same 

wintering areas and vice versa known as “migratory connectivity” (Webster et al. 2002, Boulet 

and Norris 2006). The strength of this link determines how well populations are connected 

throughout the annual cycle by the migratory movements of their individuals. In populations 

with “strong connectivity”, the majority of individuals breeding in the same location spend the 

non-breeding season in the same wintering areas. In contrast, individuals from populations with 

“weak connectivity” migrate primarily to different wintering locations. In practice, populations 

tend to show a broad range of degree of connectivity across species and populations (Webster et 

al. 2002). The second concept is seasonal interaction whereby carry-over effects from previous 

seasons can affect subsequent events (Webster and Marra 2005 ). Thus, events and conditions in 

one part of their annual cycle can potentially have a negative or positive effect on the behavior 

and reproductive performance of migratory species at the individual level, as well as on their 

population dynamics (Webster et al. 2002). At the individual level, seasonal interactions can 

cause important variation in fecundity and annual survival (Norris and Taylor 2006). At the 

population level, carry-over effects  can disturb population equilibrium and influence the per-

capita reproductive rates in the following season, potentially leading to a population decline 

(Norris and Marra 2007). The magnitude of the effect of seasonal interactions on a population 

depends on the degree of connectivity of that population (Webster and Marra 2005 ). Therefore, 

determining the strength of migratory connectivity and seasonal interactions is essential to 
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address the potential causes for the widespread declines of aerial insectivores across North 

America.  

To understand migratory connectivity and seasonal interactions, we need to link breeding and 

wintering areas used by populations of interest and track their migratory movements. However, 

tracking these movements is extremely challenging and has involved the application of numerous 

techniques over time, such as extrinsic and intrinsic markers (Boulet and Norris 2006, Hobson 

and Norris 2008). Geographic variation in plumage and morphology could be used as an 

extrinsic marker when morphotypes are geographically segregated. Marking of individuals using 

tags, aluminum or color bands have also produced valuable results since it provides exact 

information on the start and end points of migratory movements (King 2001, Amirault et al. 

2006). However, the low recovery rates and the enormous marking effort necessary to obtain 

adequate data seriously reduce the value of these approaches. Radio transmitters and geolocator 

devices have proved to be useful in tracking migratory movements (Stutchbury et al. 2009b, 

Bächler et al. 2010, Bairlein et al. 2012, Mitchell et al. 2012, Stanley et al. 2012). However, 

sample size is usually reduced due to high costs and these devices can  negatively affect  the 

behavior and ecology of the species studied (Barron et al. 2010). The use of intrinsic markers to 

track migratory movements has considerably expanded in the last few years, primary due to 

various advantages over extrinsic markers. For instance, initial marking and subsequent 

recapture is not necessary, since every capture provides information on origin and less labor 

effort is required to obtain large sample sizes. This technique relies on the spatial distribution of 

intrinsic markers such as contaminants, parasites and pathogens, genetic markers, stable isotopes 

and trace elements to determine migratory origins of birds (Ricklefts et al. 2005, Smith et al. 
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2005, Boulet et al. 2006, Hobson and Wassenaar 2008, Poesel et al. 2008, Behrooz et al. 2009, 

Szép et al. 2009, Yogui and Sericano 2009, Chabot et al. 2012).  

1.3. Stable isotope techniques 

Stable isotopes are atoms of the same element that have different number of neutrons but the 

same number of protons. Stable isotope abundance of a given element in nature (δX) varies due 

to physical, biological and chemical transformations and it is usually expressed in delta (δ) 

notation as parts per mil (‰) as the ratio of the “heavy” and “light” isotopes of a sample (RA) 

relative to the isotopic ratio of an international standard (RS) following the equation:   

δX = [(RA/RS)/ RS] * 1000                                                                                                         (1.1)   

Stable isotopes of natural elements such as hydrogen (δ2H), carbon (δ13C), nitrogen (δ15N), 

sulphur (δ34S) and strontium (δ87Sr) have been extensively used as intrinsic markers and have 

provided a key approach in the study of migratory connectivity (Hobson 1999a, Hobson and 

Wassenaar 2008). This methodology is based on the fact that organisms incorporate isotopic 

signals of local food webs and ambient water through their diet. Keratinous tissues are 

metabolically inert once synthesized and reflect the isotopic value of nutrients and ambient water 

at the specific growing location plus an isotopic discrimination resulting from the transformation 

of chemical elements along the food chain during nutrients intake and excretion (Wassenaar 

2008). Movements of migratory birds can thus be tracked since birds moving among isotopically 

distinct areas during migration retain information of prior location in their feathers and other 

tissues (Hobson and Clark 1992, Hobson and Wassenaar 2008).  

1.3.1. Hydrogen isotopes 

Hydrogen isotopes are particularly useful for studies of avian migratory connectivity since 

δ2H values of feathers are correlated with δ2H values of precipitation at places where those 

feathers were grown and δ2H in precipitation varies across continents (Hobson and Wassenaar 
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2008). Feather-precipitation calibration curves for δ2H values have been created for different 

regions and avian groups to convert precipitation isoscapes into feather isoscapes accounting for 

the existent isotopic discrimination factor between feather and precipitation (Hobson and 

Wassenaar 2008, Clark et al. 2009, Hobson 2011). The recent integration of δ2H-feather 

information and GIS techniques has made possible to create reliable depictions of probability of 

origin of avian species (Hobson et al. 2009a, Gonzalez-Prieto et al. 2011, Hobson et al. 2012d, 

Ofukany et al. 2012).  

1.3.2. Carbon and nitrogen isotopes  

Carbon and nitrogen isotopes are also commonly used in studies of migratory connectivity 

mainly to identify habitat uses (Marra et al. 1998, Wassenaar and Hobson 2000, Kelly et al. 

2008). δ13C values in nature are related to different photosynthetic pathways in C3,C4 and CAM 

plants, since C3 plants clearly discriminate against 13C isotopes during fixation of CO2 in 

photosynthesis and are 13C-depleted relative to C4 and CAM plants, which tend not to 

discriminate so strongly against 13C (Fry 2006, Marshall et al. 2007). In addition to differential 

photosynthetic pathways, isotopic variation in C3 plant tissues may also result from differences 

in water-use efficiency. To avoid water loss in dry environments, C3 plants reduce significantly 

the diffusion of CO2 into their leaves, leading to an enrichment in 13C during photosynthesis 

(Marshall et al. 2007). In combination with other isotopes, δ13C values could also be used to 

distinguish inshore versus offshore (France 1995, Fry 2002, Sierszen et al. 2011) and marine 

versus freshwater environments (Nelson et al. 1989, Bearhop et al. 1999, Pruell et al. 2009). The 

natural abundance of δ15N in leaves relies on a variety of factors such as photosynthesis, 

mycorrhizal fungi associations, climate, or the large variation in δ15N values of soils due to land-

use practices (Kelly 2000). Plant species associated with mycorrhizal fungi usually show lower 

δ15N values (3 - 8‰) than non-mycorrhizal plants (Craine et al. 2009). At a local scale, foliar 
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δ15N values seem to be correlated negatively with annual precipitation rates and positively with 

mean annual temperature (Austin and Sala 1999, Martinelli et al. 1999, Craine et al. 2009). 

Variation in δ15N values can also reflect the excess of nitrogen-based fertilizers input into the 

land and water system and has the potential to be used to infer levels of agricultural activity 

(Hobson 1999b, Hebert and Wassenaar 2001, Yerkes et al. 2008).  

Despite their obvious usefulness, the application of stable isotope techniques for assignment 

of origins could be problematic due to the considerable isotopic variation among feather samples 

grown in same locations (Hobson 2005, Lott and Smith 2006, Hobson 2011) and the similarity in 

isotopic values of extensive geographical areas (Bowen et al. 2005). Recent studies have 

achieved the creation of feather origin depictions using a likelihood assignment methodology, 

which accounts for sources of variance in the isotope data and incorporate estimates of error 

(Royle and Rubenstein 2004, Van Wilgenburg and Hobson 2011). Recently, Hobson et al. 

(2012c) demonstrated that foraging substrate and migratory strategy are potential factors 

affecting the variance in the relationship between feathers and precipitation-δ2H values among 

avian species. To account for the problem of low resolution of isoscapes (e.g. hydrogen) in some 

geographical areas of the globe, some prior information about the species could be used to 

constrain results of assignment of origin. For instance, some studies have used distribution maps 

of the studied species to delimit depictions of origin (Royle and Rubenstein 2004, Gonzalez-

Prieto et al. 2011) or spatial information related to movement trajectories based on band 

recoveries (Van Wilgenburg and Hobson 2011, Hobson et al. 2012a). Others have constrained 

the analysis by previously excluding those individuals feeding in marine environments (Yerkes 

et al. 2008, Ofukany et al. 2012). Additionally, geographical distribution of δ2H, δ13C and δ15N 
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has been recently used as a prior to assign individuals to more constrained origins (Hobson et al. 

2012a, Hobson et al. 2012b).  

1.4. Studied species 

This thesis focuses on Barn Swallow, a long-distance migratory aerial insectivore that breeds 

throughout most of North America and winters primarily in South America and to a lesser extent 

in Central America (Figure.1.1 and Ridgely et al. (2007)). Barn Swallows have recently been  

reported breeding in Argentina during the boreal winter (Martinez 1983). This is the first known 

case of the species breeding in the Southern Hemisphere within its historical wintering range 

(Appendix A) and the population is expanding within that region (Billerman et al. 2011). The 

Barn Swallow is the most widely distributed swallow in the world. It is part of the family 

Hirundinidae and from six to eight subspecies are found in America, Europe, Africa, Asia and 

Oceania (Turner 2004, Zink et al. 2006). The species feeds while flying primarily on flies 

(Diptera), followed by beetles (Coleoptera), true bugs (Hemiptera), leafhoppers (Homoptera), 

and bees, wasps and ants (Hymenoptera) (Turner 1982, Brown and Brown 1999a, Turner 2004). 

On the breeding grounds, Barn Swallows associate with man-made structures where they have 

access to artificial nesting sites (Brown and Brown 1999a). They are usually found in 

agricultural lands, cities and suburbs up to 1000 m above sea level, and along highways near 

open areas such as lakes, meadows and fields where they can forage for insects (Turner and Rose 

1989). During the non-breeding season, the species roosts communally with other swallow 

species in sugar-cane fields and open wetlands (Ridgely and Tudor 1989, Winkler 2006). Barn 

Swallows have a single complete annual molt that occurs shortly after arrival to their wintering 

grounds (Broekhuysen and Brown (1963), Pyle (1997) and Appendix B). As aerial insectivores, 

they rely on their flight ability to  
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Figure 1.1. Distribution of Barn Swallow (Hirundo rustica) in the Neotropical system (Ridgely 
et al. 2007).  

 

 

  



18 

forage and molt flight feathers slowly and gradually presumably to maintain flight efficiency 

(Rohwer et al. 2005).  

The Barn Swallow, despite its wide distribution and historical abundance, has decreased 

drastically in recent decades in most North America (Cadman et al. 2007, Nebel et al. 2010, Bird 

Studies Canada et al. 2012). Barn Swallow monitoring data from the Breeding Bird Survey 

(BBS) collected across North America during spring have shown that populations are in great 

decline in Canada and northern United States, while they remain stable or increasing in areas of 

southern United States (Sauer et al. (2011), Figure 1.2.). Results from Environment Canada 

suggest a clear pattern of decline for populations in Canada with an obvious increase in declining 

rates starting in the middle 80’s (Figure 1.3A). In contrast, U.S. Geological Survey results, 

calculated based on hierarchical Bayesian models techniques (Link and Sauer 2002, Sauer and 

Link 2011) also imply a decline of Barn Swallow populations in Canada but without this clear 

threshold in population change (Figure 1.3B). 

Recently, a similar approach using hierarchical Bayesian methods has been applied to the 

BBS data from the Canadian region and preliminary results suggest that aerial insectivore long-

term declines might have extended over 40 years, while the occurrence of a greater decline 

starting in the middle 80’s remains unclear (Adam C. Smith, EC-CWS, personal 

communication). At a global scale, the species is listed as Least Concern in the IUCN Red List 

of Threatened Species (BirdLife International 2012). In Canada, the reduction of at least 30% of 

the total number of mature individuals over the last ten years lead to the designation of Barn 

Swallow in May 2011 as a Threatened species (COSEWIC 2011) and to be classified as 

Threatened species in Ontario (COSSARO 2011).   
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Figure 1.2. Map of geographic patterns of annual population change of Barn Swallow in North 
America from 1966 to 2010 based on long-term BBS data. Colors in the map represent 
percentage of population change per year (Sauer et al. 2011).   

 
  



20 

 

Figure 1.3. Annual population change index for Barn Swallow in Canada based on two different 
statistical methods: (a) data from 1966 to 2010 using the U.S. Geological Survey (USGS) 
approach and (b) data from 1968 to 2008 based on the Environment Canada (EC) approach.  
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1.5. Thesis outline 

Barn Swallows have been declining in the northern part of their range, in Canada and northern 

US, while populations in the southern part (e.g. southern US) have remained relatively 

stable/increasing. Despite the fact that the overall breeding and winter ranges for the species are 

known, specific locations where individuals from different populations actually spend the winter 

and whether different breeding populations mix during winter remain unknown. The main 

objective of this thesis is to investigate potential causes of differential population trends 

experienced by Barn Swallows in North America. Potential differences in migratory connectivity 

between increasing and  

decreasing populations were examined to evaluate whether factors on the breeding or wintering 

grounds could be responsible for such differences. I hypothesize that decreasing populations may 

be influenced by more detrimental factors than increasing populations either on their breeding or 

wintering grounds. Individuals from declining populations could be carrying over negative 

effects from one season to the next one due to adverse conditions (i.e. habitat loss, change in 

weather conditions, environmental contaminants, habitat degradation) experienced during 

different stages of their annual cycle. In contrast, individuals from increasing populations may 

occupy more favorable areas (breeding or wintering) where conditions are not limiting 

populations.  

This thesis is organized into 4 chapters and 3 appendices that are formatted for scientific 

journals except for Chapter 1, “Introduction”, Chapter 4, “Summary and synthesis” and 

Appendix C.   

Chapter 2 (“Estimating wintering origins and migratory connectivity of Barn Swallow 

(Hirundo rustica) in North America: a multi-isotope approach”) addresses patterns of migratory 

connectivity of populations of Barn Swallow using δ2H, δ13C and δ15N measurements on feathers 
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and prior information based on distribution of the C3 and C4 vegetation on the wintering 

grounds. Additionally, it attempts to evaluate the effect of differential migratory connectivity on 

the distinct north-south population trend experienced by the species in North America. Feathers 

collected on the breeding grounds and grown on the wintering grounds were analyzed to identify 

potential areas of feather origin in the winter grounds (South America) based on feather-stable 

isotope values and existing knowledge of δ2H and δ13C isoscapes for that continent. It was 

hypothesized that birds breeding in northern declining populations migrate to different areas in 

South America compared to those of individuals from stable populations, and are therefore 

affected by different wintering conditions. Additionally, to compare δ2H isotopic variation of a 

highly colonial migratory bird, Cliff Swallow (Petrochelidon pyrrhonota), relative to a less 

colonial Barn Swallow, a small sample of Cliff Swallow feathers were examined.  

Chapter 3 (“Evaluation of possible factors occurring on breeding and wintering grounds 

influencing declines on breeding population of Barn Swallows (Hirundo rustica) in North 

America”) investigates factors on breeding and wintering grounds that could be playing a role in 

the differential decline of populations of Barn Swallows in North America.  

The importance of weather conditions during breeding and non-breeding seasons on the 

apparent survival rates of Barn Swallow was evaluated by studying the effect of ENSO-related 

weather and the length of cold periods in the spring, which has been previously shown to have an 

effect on aerial insectivore species mortality rates. The effects of local climatic variation on the 

reproductive performance of Barn Swallow in North America were investigated by selecting the 

best model comprising weather variables having a significant effect on reproductive success. 

Long-term changes in reproductive success were additionally tested by generating predictions of 

antecedent reproductive rates of the species based on weather patterns. I anticipated that 
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reproductive performance of Barn Swallows has declined over time according to population 

declines experienced by the species. Barn Swallow feather-deposited corticosterone (CORT) 

concentrations were used to test for exposure to stressors on the wintering grounds. I 

hypothesized that stressors on the wintering grounds play an important role in the differential 

population trends shown by breeding populations of the species in North America. Therefore, 

higher feather CORT values for those populations in decline were expected when compared with 

values of stable populations. I additionally tested whether the specific breeding and wintering 

location of individuals and winter-habitat use could have an effect on their stress response based 

on δ2H, δ13C and δ15N values on winter-grown feathers.  

Appendix A, “A multi-isotope (δ13C, δ15N, δ2H) approach to infer wintering location and 

habitat of the disjunct Argentinean breeding population of Barn Swallow (Hirundo rustica)”, 

focuses on identifying potential wintering areas of a population of Barn Swallows now breeding 

in the historic winter range of the species using a multi-isotope approach and prior information 

similarly to Chapter 2. Feathers grown prior to the breeding season and during breeding were 

analyzed for δ2H, δ13C, δ15N to locate areas where feathers were grown to test for a potential 

switch in molt pattern and migratory behavior of individuals. Appendix B, “Molt in Barn 

(Hirundo rustica) and Cliff (Petrochelidon pyrrhonota) Swallows at a winter roost site in 

Argentina”, provides a first and detailed description of molt of Barn and Cliff Swallows in the 

early austral summer and reports an important wintering site for migratory swallows in 

Argentina. Appendix C shows the relationship between δ2H values on tail and contour feathers 

δ2H of Barn Swallows sampled from same individual, used in this study for feather samples 

collected in the states of New York and New Jersey.   
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CHAPTER 2. ESTIMATING WINTERING ORIGINS AND MIGRATORY CONNECTIVITY 
OF BARN SWALLOW (Hirundo rustica) IN NORTH AMERICA: A MULTI-ISOTOPE 

APPROACH 

2.1. Introduction 

Despite its wide distribution and historical abundance, Barn Swallow (Hirundo rustica) 

populations have decreased drastically in the recent decades within North America (Cadman et 

al. 2007, McGowan and Corwin 2008, Nebel et al. 2010, Bird Studies Canada et al. 2012). These 

trends appear to be characteristic of several aerial insectivores breeding in North America 

(SCOC Committee 2009, Nebel et al. 2010, NABCI Canada 2012). Worldwide, Barn Swallow is 

listed as Least Concern in the IUCN Red List of Threatened Species (BirdLife International 

2012). In Canada, a decrease in the total number of adults of at least 30% of over the last ten 

years, has recently resulted in its designation as Threatened (COSEWIC 2011) and has been also 

classified as Threatened in Ontario (COSSARO 2011). Results from the Breeding Bird Survey 

(BBS) have shown most negative trends have occurred in Canada and the northern USA since 

1968; while more southern breeding populations have remained stable or have increased (Sauer 

et al. 2011). Currently, factors responsible for differential population trends for Barn Swallows in 

North America remain unknown.  

As a long-distance Neotropical migrant, Barn swallow spends much of the annual cycle at 

sites separated by thousands of kilometers and populations may be limited by factors occurring at 

breeding and wintering grounds and at stopover sites (Sherry and Holmes 1995, Newton 2008). 

Interaction among factors in different seasons may also occur, resulting in individuals carrying-

over effects from previous seasons that could ultimately influence overall reproductive success 

and survival (Webster et al. 2002). For instance, birds occupying good quality wintering habitats 

can acquire appropriate physical condition for migration and will arrive earlier to their breeding 
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grounds, with a consequent benefit on reproductive performance (Marra et al. 1998, Norris et al. 

2004). Saino et al. (2004) also found that environmental conditions on the African wintering 

grounds, as measured by the normalized difference vegetation index (NDVI), influenced first egg 

dates and clutch sizes of Barn Swallows breeding in Europe (see also Robinson et al. (2008), 

Ambrosini et al. (2011), Wilson et al. (2011)). In addition, Rockwell et al. (2012) recently 

showed that males of Kirtland’s Warbler (Setophaga kirtlandii) arrived on breeding grounds later 

following drier winters and that total rainfall in the wintering grounds, delayed arrival and nest 

initiation were significantly associated with lower fledgling success in the species. 

Deciphering the relative effects of factors influencing populations on wintering compare to 

breeding grounds can be enhanced by a knowledge of the strength of migratory connectivity 

(Webster et al. 2002). Strong connectivity between breeding and wintering populations suggests 

that most individuals from the breeding population will be influenced by similar factors on both 

breeding and wintering areas. In contrast, individuals in populations characterized by weak 

connectivity will typically be differentially affected by factors operating on the wintering 

grounds (Webster et al. 2002). Determining the strength of migratory connectivity between 

breeding and wintering populations is essential, then, to unravel changes in populations of Barn 

Swallow in North America, as well as to implement effective conservation strategies for the 

species (Webster et al. 2002, Rubenstein and Hobson 2004, Webster and Marra 2005 , Martin et 

al. 2007).  

Determining the nature of connectivity for target populations of migratory birds requires the 

ability to track movements across the annual cycle and numerous extrinsic and intrinsic markers 

have successfully been used to track such movements (Boulet and Norris 2006, Hobson and 

Norris 2008). Recent studies have effectively applied radio transmitters and geolocator devices 
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to derive approximate  migratory movements of relatively small species (Stutchbury et al. 2009b, 

Bächler et al. 2010, Bairlein et al. 2012, Mitchell et al. 2012, Stanley et al. 2012), but such 

markers necessarily have been applied to small numbers of individuals due to expense. In 

addition, all extrinsic markers can have negative effects on the behaviour of studied individuals 

(Barron et al. 2010). Spatial distributions of intrinsic markers such as contaminants, parasites, 

pathogens, genetics, trace elements and stable isotopes also have the potential to be used to track 

migration (Ricklefts et al. 2005, Behrooz et al. 2009, Yogui and Sericano 2009) and are typically 

unbiased by the choice of an initial studied population (Hobson and Norris 2008). However, 

intrinsic markers require an a priori understanding of the spatial distribution in nature of intrinsic 

markers and this has proven to be challenging. 

Stable isotope measurements of animal tissues have been extensively used to track migratory 

movements of individuals to study migratory connectivity and seasonal interactions (Hobson and 

Wassenaar 1997, Marra et al. 1998, Hobson 1999a, Bearhop et al. 2004, Norris and Taylor 2006, 

Hobson et al. 2009a, Rohwer et al. 2011). This technique is based on the fact that isotopic ratios 

in animal tissues reflect those in local foodwebs and ambient water and such ratios can vary 

geographically in a predictable manner (Hobson and Wassenaar 2008). Keratinous tissues, such 

as feathers, are especially useful since they are metabolically inert once synthesized and reflect 

the isotopic value of nutrients and ambient water at time of growth (Wassenaar 2008). Spatial 

patterns of the water isotopes (δ2H and δ18O) in particular have proven useful to create 

“isoscapes” of expected feather values at continental scales (West et al. 2010). Recently, plant-

δ13C isoscapes based on predictions of the distribution and relative abundance of C3 and C4 

vegetation have also been established for Africa (Still and Powell 2010) and South America 

(Powell et al. 2012). Similarly, Craine et al. (2009) has provided a global  theoretical plant-δ15N 
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isoscape. These developments have led to attempts to simultaneously combine isoscapes based 

on several elements (Hobson et al. 2012a, Hobson et al. 2012b, Hobson et al. 2012d). In South 

America, the distribution of δ2H in amount-weighted mean growing season precipitation shows a 

structure with the potential to be used in identification of origins of winter-grown feathers 

(Bowen et al. 2005). In addition, there is significant structure in the distribution of plant δ13C 

values to potentially increase the resolution of assignments based upon δ2H measurements 

(Powell et al. 2012).   

Here, I investigated the strength of migratory connectivity between North American breeding 

and South American wintering populations of Barn Swallow and whether connectivity could be a 

potential factor for the north-south differential population trend shown by the species in North 

America. If factors on the wintering grounds are responsible for differential population 

trajectories of Barn Swallows in North America, breeding populations in the northern part of the 

breeding range were expected to differ in their feather-stable isotope values from breeding 

colonies in the south. Individuals were additionally assigned to wintering regions in South 

America, independently of their breeding location, to identify any geographical structure in 

wintering origin. Finally, δ2H values of feathers for a smaller sample of Cliff Swallows 

(Petrochelidon pyrrhonota) were examined in order to contrast isotopic variation for this highly 

colonial species compared to the less colonial Barn Swallow. A stronger pattern of connectivity 

for more colonial Cliff Swallows relative to Barn Swallows was predicted.       

2.2. Methods 

2.2.1. Sample collection 

Adult Barn Swallows were captured using mist-nets during the breeding seasons (May to late 

August) of 2009, 2010 and 2011 at eight sites where swallows were declining (British Columbia, 

California, Quebec, Manitoba, New York State, Ontario, Saskatchewan, and Washington State) 
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and at five sites where they were stable or increasing (Alabama, Colorado, Mississippi, New 

Jersey, and Texas) (Figure 2.1.). All birds were banded using USFWS aluminum bands and sex, 

age and body measurements (wing length, tail length and weight) were recorded following the 

North American Banding Council guidelines (NABC 2001). One inner tail feather grown in the 

wintering grounds (Pyle 1997) was collected for each bird for stable isotope analyses and stored 

in labeled paper envelopes. For locations in New York and New Jersey, five or six contour 

feathers were collected. Both types of feathers (tail and contour feathers) were used for stable 

isotope analyses based on the linear relationship found between δ2H values of tail and contour 

feathers (Appendix C), which support the occurrence of a complete molt of flight and contour 

feathers in the wintering grounds (Pyle 1997). Adult Cliff Swallows were also captured in 2010 

and 2011 in four breeding colonies located in Manitoba (n = 76), Ontario (n = 73), Nebraska (n = 

134) and Texas (n = 10) and feathers grown in the wintering grounds were collected (Pyle 1997). 

Federal banding and collection permits for Canada and the US were obtained through the Bird 

Banding Laboratory part of the North American Bird Banding Program. All field protocols were 

approved by the University of Saskatchewan Animal Research Ethics Board and followed the 

guidelines of the Canadian Council on Animal Care. 

2.2.2. Stable isotope analyses 

Feather samples were cleaned of surface oils using a 2:1 (v/v) chloroform/methanol soak for 

24 hours and dried at room temperature under a fume hood for 48 hours. Samples were prepared 

and analyzed for stable isotope analyses (δ2H, δ13C and δ15N) in the National Hydrology 

Research Centre of Environment Canada in Saskatoon, Canada. A total of 644 Barn Swallow 

feather samples were analyzed for δ2H involving the subsampling of 0.35±0.02 mg of feather 

material collected from the right side of the feather tip and weighed into silver capsules. 

Additionally, 405 feathers were analyzed for δ13C and δ15N, and approximately 1 mg of feather  
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Figure 2.1. Sampling sites in North America where Barn Swallow feathers were collected during 
breeding season of 2009, 2010 and 2011.   
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tissue was collected from the left side of the tip of the feather and loaded into tin capsules. A 

total of 293 Cliff Swallow feather samples were also analyzed for δ2H using the same 

methodology explained above.  

Stable-hydrogen isotope measurements in Barn and Cliff Swallow feathers were performed on 

H2 derived from high-temperature flash pyrolysis (1350°C) of feathers using a Eurovector 

elemental analyzer (Milan, Italy - www.eurovector.it) interfaced with an Elementar Isoprime™ 

(Isoprime Ltd., Cheadle, Stockport, UK) continuous-flow isotope-ratio mass spectrometer 

(CFIRMS). Analyses of δ2H were conducted using the comparative equilibration method 

described by (Wassenaar and Hobson 2003) using three calibrated keratin isotope reference 

materials corrected for linear instrumental drift: Caribou Hoof (CBS: -197‰ ± 1.8‰), Kudu 

Horn (KHS:-54.1‰ ± 0.6‰) and a commercial keratin powder standard (Spectrum:-121.6‰ ± 

1.9‰). Feather samples were analyzed for δ13C and δ15N at the Department of Soil Science 

Laboratory, University of Saskatchewan, Saskatoon, using a Costech ECS4010 elemental 

analyzer (Costech Analytical Technologies Inc. Valencia, California) coupled to a Delta V 

Advantage mass spectrometer with Conflo IV interface (Thermo Scientific. Bremen, Germany). 

Two reference materials were used to calibrate δ13C and δ15N results, Bowhead Whale Baleen 

Keratin (BWB-II: δ13C=-18.50‰, δ15N=14.22‰) and an egg albumen (δ13C=-23.57‰, 

δ15N=6.24‰). All isotope measurements were reported in the delta (δ) notation as parts per mil 

(‰) relative to Vienna Standard Mean Ocean Water – Standard Light Antarctic Precipitation 

(VSMOW-SLAP) for δ2H, Vienna Standard PeeDee Belemnite (PDB) for δ13C, and atmospheric 

nitrogen (AIR) for δ15N. Within-run analytical precision was estimated as ±0.2‰ for δ13C and 

δ15N, and ±2.2‰ for δ2H.   
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2.2.3. Statistical analyses 

An Analysis of Variance (ANOVA) was applied to identify differences in feather mean δ13C, 

δ2H and δ15N values independently for all breeding populations of Barn Swallow followed by a 

post-hoc Tukey-test to compare isotopic differences among specific populations. Stable isotope 

results from ten breeding locations (n = 405), for which feather values for δ13C, δ2H and δ15N 

were available, were analyzed using a three-dimensional k-means clustering analysis (Hartigan 

1975) to arrange individuals into groups based on similarities in stable isotope profiles. This 

method assigns each case (i.e. feather sample) to a cluster by minimizing the “Euclidean 

distance” from the case to the corresponding cluster centroid and requires a priori specification 

of the number of clusters into which the samples will be placed. Two main criteria were used to 

determine the number of clusters that best reflected natural groupings in the data. First, an 

exploratory agglomerative hierarchical clustering analysis was used employing Ward’s criterion. 

Second, four sets of potential clustering centroids (k = 2-5) were selected and k-means clustering 

analysis was applied for the four selected sets. The validity of each of the four sets was assessed 

based on significant differences among centroids by performing a multivariate analysis of 

variance (MANOVA) for the three isotopes (δ2H, δ13C and δ15N) in each set. The k-means 

clustering solution which maximized the number of centroids while maintaining also statistically 

significant multivariate (δ2H, δ13C and δ15N) differences in the cluster means was selected. The 

final selection of four clusters to be applied in the k-means cluster analysis was based on the 

greatest consistency between results from both hierarchical and MANOVA analyses. All 

statistical analyses were performed using IBM SPSS Statistics 19.0.0.  

2.2.4. Assignment of feather origins 

Feather samples grown in the wintering grounds (n = 405) were clustered in four groups (G1: 

n=38; G2: n=111; G3: n=154 and G4: n=102) and these were assigned as putative wintering-
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origins in South America using normal probability density functions (Royle and Rubenstein 

2004, Hobson et al. 2009b, Van Wilgenburg and Hobson 2011) to assess the likelihood that the 

observed data (δ2Hf) could have resulted from growth at given locations within the δ2H isoscape 

of (Bowen et al. 2005) and prior information about the distribution of C3 and C4 plants in South 

America (Powell et al. 2012) following methodology described in (Hobson et al. 2009b).  

A raster surface of the amount-weighted mean precipitation δ2H isoscape (δ2Hp) for South 

America for growing season months (Bowen et al. 2005) was used as a proxy of distribution of 

δ2H values in rainfall in the continent. To limit the analysis to regions within the wintering range 

of the species, areas higher than 3,000 meters above sea level were removed from the isoscape 

(Brown and Brown 1999a). The empirical equation: 

δ2Hf = -17.57 + 0.95 δ2Hp                                                                                                           (2.1) 

reported for non ground-foraging Neotropical migrants (Hobson et al. 2012c) was applied to 

convert the altitude clipped δ2Hp isoscape to an equivalent feather δ2H (δ2Hf) isoscape. The 

expected standard deviation (σc) between individuals growing their feathers at the same locality 

for δ2H (σ = 14.4‰) was estimated using the standard deviation of the residuals from the same 

regression equation reported by Hobson et al. (2012c). To depict the probable molting origins of 

individuals, a normal probability density function:  

ƒ൫yכหμୡ, σୡ൯ ൌ ቀ ଵ
√ଶπσౙ

ቁ exp ቂെ  ଵ
ଶσౙ మ

 ሺyכ െ μୡሻ
ଶቃ                                                                        (2.2) 

was applied to assess the likelihood that a given pixel in the δ2Hf isoscape represented a potential 

origin for each feather sample.   

A theoretical spatial distribution of δ13C based on vegetation types in South America was 

obtained from Powell et al. (2012) (see also Figure 2.2.). From this, a dichotomous surface of 

C3- and C4-dominated vegetation zones was created. Cells with δ13C values < -20 ‰ were 
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classified as C3-dominated and those with δ13C values > -20 ‰ were classified as C4-dominated 

(Kelly 2000). These zones were then converted to equivalent feather-δ13C values assuming an 

isotopic discrimination factor of 2 ‰ between plant and feather, calculated based on known 

discrimination factors of ~ 1 ‰ between plants and herbivorous insects (DeNiro and Epstein 

1978, Peterson and Fry 1987, France and Peters 1997),, and ~ 1 ‰ between insects and bird 

feathers (Hobson 2007).. The expected mean and standard deviation (SD) of feather-δ13C for 

each region were calculated based on modeled δ13C values extracted from the dichotomous 

feather-δ13C isoscape. Equation A.2 was then applied to assess the probability that the observed 

δ13C of the feather represented growth in a C3 versus C4-dominated winter origin for each 

feather sample.  

Following Hobson et al. (2009b), our assignment algorithm used Baye’s Theorem to compute 

the probability of each pixel xi being the origin of a feather sample, given the observed feather 

value yj, where j indexes the C3 or C4 vegetation zone. 

௜หYݔ൫ݔ݂ ൌ y୨൯ ൌ  
ƒY ሺ୷|௑ୀ௫೔ሻƒ೉ ሺ୶౟|௃ୀ௝ሻ
∑ ƒY ሺ୷|Xୀ௫೔ሻƒX ሺ୶౟|௃ୀ௝ሻ౟

                                                                                (2.3.) 

The random variables Y and X are both continuous and represent the observed feather-δ2H 

values for Barn Swallows and the pixels within the feather-δ2H isoscape, respectively. The 

random variable J describes potential origins in C3 or C4-dominated zones and is thus 

categorical with a dimension of two.  

Spatially explicit probability densities were normalized to the sum of likelihoods, thus 

yielding a single probability of origin surface for each feather sample. To statistically assign 

individuals to molt origin the calculated spatially explicit probability densities for each feather 

sample were reclassified using 3:1 odds ratios of correctly assigning an individual to its molt 

origin. The set of cells that defined the upper 75% of estimated probabilities of origin was coded 
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as “1” (likely) and the rest as “0” (unlikely) (Van Wilgenburg and Hobson 2011). Results of the 

assignment of each individual were summed and mapped to obtain the most probable molting 

origin of the population. All analyses were performed using scripts adapted from (Van 

Wilgenburg and Hobson 2011) and employing the ‘raster’ package within R Statistical 

Computing environment, Version 2.10 (R Development Core Team 2011) and ArcGIS Version 

9.3 (ESRI 2011). 

2.3. Results 

Winter-grown feathers of Barn Swallows showed significant differences across breeding 

populations in δ2H (ANOVA, F12,600 = 13.95, p<0.001), δ13C (ANOVA, F9,395 = 6.47, p<0.001) 

and δ15N values (ANOVA, F9,397 = 6.75, p<0.001) (Table 2.1.). However, feather-δ2H values 

were not significantly different for most breeding populations in North America (ANOVA and 

Tukey-Test, p<0.05), with the exception of British Columbia. This breeding population differed 

from all populations except Saskatchewan, and showed δ2H feather values more depleted in 2H 

than any other group (Figure 2.3a.). When δ2H standard deviations (SD) of feathers from Barn 

and Cliff Swallows grouped by breeding location were compared, the range of δ2H values was 

larger for Barn Swallows (range of SDs: 8.1 - 17.3‰) than for Cliff Swallows (range of SDs: 6.1 

- 8.3‰) (Table 2.1., Figure 2.3.).  

K-means cluster analysis suggested four distinct clusters, corresponding to wintering regions, 

that were consistently different from each other in δ13C, δ2H and δ15N values simultaneously 

(MANOVA, F9,971 = 171.7, p<0.001) (Table 2.2.). For breeding colonies in Alabama, 

Mississippi, British Columbia, Quebec and California, 50% of the total population or greater 

were assigned to a single cluster, suggesting a stronger pattern of migratory connectivity. Birds 

breeding in Washington State also showed a strong segregation on wintering grounds with most  
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Figure 2.2. Estimated mean leaf δ13C (‰) per 5-min grid cell extracted from Powell et al. (2012) 
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Table 2.1. Stable isotope values (‰) of winter-grown feathers of Barn and Cliff Swallows 
collected from different breeding populations across North America. 
 

 
δ2H  δ13C  δ15N 

Species/Location n Mean SD   n Mean SD   n Mean SD

Barn Swallow 
(Hirundo rustica)            

British Columbia 22 -73.1 15.5  12 -21.2 1.5  12 10.8 1.9
Saskatchewan  8 -62.8 16.6         
Manitoba 83 -60.5 10.7  78 -20.5 2.8  78 10.0 1.1
California  30 -54.6 10.2  19 -20.5 1.7  17 10.1 1.2
Washington State  21 -58.4 14.9  14 -19.5 2.2  14 10.6 1.8
Quebec  13 -54.0 12.0  10 -16.0 2.4  10 11.9 1.7
Ontario 253 -48.5 10.7  163 -17.8 2.5  163 11.3 1.4
Colorado  39 -46.6 13.3  25 -19.7 3.0  25 10.7 1.4
New Jersey State  25 -47.6 11.0         
New York State  29 -47.5 13.7         
Mississippi  48 -38.8 10.3  33 -17.8 3.7  33 11.4 1.4
Alabama  31 -40.7 8.1  21 -16.5 3.8  20 11.4 1.3
Texas  38 -46.2 11.0  31 -18.8 4.0  31 11.0 1.6

Cliff Swallow 
(Petrochelidon 

pyrrhonota)      
Manitoba 76 -56.5 8.3         
Ontario  73 -55.3 8.1         
Nebraska  134 -52.5 6.3         
Texas 10 -44.6 6.2         
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Figure 2.3. Mean and standard deviations of δ2H values (‰) of breeding populations of Barn 
Swallow (a) and Cliff Swallow (b) in North America. Letters represent provinces and states 
(BC=British Columbia, SK=Saskatchewan, MB=Manitoba, WA=Washington State, 
CA=California, QC=Quebec, ON=Ontario, NY=New York, NJ=New Jersey, CO=Colorado, 
TX=Texas, MS=Mississippi, AL=Alabama, and NE=Nebraska). Numbers above locations 
represent sample sizes. Star symbol denotes significant differences in mean comparisons 
(Tukey’s HSD test; p<0.05) among British Columbia and the rest of breeding populations except 
Saskatchewan.  
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Table 2.2. Stable isotope values (‰) for the four groups created using k-means analysis. Letters 
denote significant differences in mean comparisons by a Tukey’s HSD test (p<0.05). 

 
 δ2H δ13C δ15N 

Group 1 (a)  -77.4 bcd -20.8 cd 11.1 
Group 2 (b)  -61.3 acd -19.3  c 10.6 d   
Group 3 (c)  -47.8 abd -17.9 ab 10.8 d 
Group 4 (d)  -33.4 abc -18.1 ac 11.4 bc 
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Figure 2.4. Percentage of individuals from each breeding populations assigned to the four groups 
created from k-mean analyses. (BC=British Columbia, MB=Manitoba, WA=Washington State, 
CA=California, ON=Ontario, QC=Quebec, CO=Colorado, TX=Texas, MS=Mississippi, and 
AL=Alabama. Red-dotted line denotes the 25% threshold corresponding to a complete 
panmixing of individuals. 
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Table 2.3. Percentage of individuals from each breeding population assigned to the four groups 
created applying k-means analysis based on δ2H, δ13C and δ15N values of winter-grown feathers 
of Barn Swallows. 

 

Population n Group 1 
(%) 

Group 2 
(%) 

Group 3 
(%) 

Group 4 
(%) 

Ontario 163 9 24 37 29 
Manitoba 77 14 44 36 5 
Quebec 10 10 20 50 20 
British Columbia 12 50 33 17 0 
Colorado 25 4 28 36 32 
California 19 11 53 37 0 
Washington State 14 7 43 43 7 
Mississippi 32 0 3 41 56 
Alabama 22 0 0 45 55 
Texas 31 3 26 42 29 
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Figure 2.5. Depicted potential molting origins in South America of 405 Barn Swallows breeding 
across North America sampled in 2009, 2010 and 2011 separated in the four isotopically distinct 
groups. Maps were created using δ2H and δ13C values of winter-grown feathers. Values depicted 
on maps represent the number of individuals in the total sample that were assigned to each cell in 
the map, representing a potential molting origin according to a 3:1 odds ratio.   
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individuals being distributed across two single clusters. In contrast, the rest of breeding 

populations showed a weaker pattern of connectivity. Individuals from these breeding colonies 

were more uniformly distributed across the four clusters, with each cluster comprising 

approximately 10 % to 30 % of the total population for each colony (Figure 2.4., Table 2.3.).  

Depicted molting origins of the four groups suggested a progressive longitudinal change in 

geographic locations of wintering grounds for North American Barn Swallows. Groups 1 and 2 

were mainly comprised of individuals from northern and western breeding regions and their most 

likely overwintering areas corresponded with western and central South America. Wintering 

areas for individuals in Group 1 and 2 were located along the west and east side of the Andes 

respectively. In contrast, potential molting regions for birds classified in Groups 3 and 4, 

composed mainly of eastern and southern breeding birds, corresponded with areas in north-

eastern and central-eastern South America respectively (Figure 2.5.).  

2.4. Discussion 

Breeding populations of Barn Swallow in North America exhibited significant variation in 

degree of migratory connectivity and populations in eastern and western North America 

generally were more segregated on the wintering grounds than those in central regions. 

Populations in Mississippi and Alabama showed the strongest pattern of connectivity with more 

than half of their individuals being assigned to a single cluster and the rest to a different cluster. 

Birds breeding in Washington State were mainly distributed across two clusters, showing 

relatively strong migratory connectivity. Similarly, breeding colonies in British Columbia, 

California, Manitoba and Quebec also showed a relatively strong connectivity with half of the 

total population grouped in one single cluster and the other half distributed between two other 

clusters. Populations in Texas, Colorado, and Ontario showed the weakest migratory 
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connectivity overall with individuals from these populations uniformly distributed among three 

different clusters. 

This diverse pattern of migratory connectivity among populations agrees with previous 

studies of Barn Swallows in Europe. Hobson et al. (2012a) recently found differential levels of 

connectivity among populations in Europe, showing higher heterogeneity of winter origins for 

Barn Swallow populations in western than in eastern regions. These findings are additionally 

supported by Ambrosini et al. (2009), who examined ring recovery data for Europe and Africa 

and found that the species winters over large areas but populations in northern Europe tend to 

segregate more in the wintering grounds than those in south-western Europe.  

Assignment of wintering origins by combining multiple stable isotope profiles and the 

theoretical distribution of C3 and C4 plants in South America showed a progressive longitudinal 

shift in wintering locations of Barn Swallows across North America. Birds breeding in northern 

and western North America tended to winter in western regions, while those breeding in southern 

and eastern populations wintered in the north-east of South America. This coarse longitudinal 

gradient in wintering regions is likely maintained by distinct flyways already described for the 

Neotropical Nearctic migratory system.  

Hobson et al. (2012a) similarly found evidence for large-scale spatial structuring of wintering 

locations in European Barn Swallow populations. That study suggested that breeding populations 

from Eastern Europe tend to overwinter in southern Africa, while most birds from the western 

part of their breeding range seem to migrate to more northern regions. Using feather-δ13C values, 

Evans et al. (2003) also found this longitudinal pattern and showed that breeding populations of 

European Barn Swallows from geographically separated areas in the west and east part of Europe 

wintered in isotopically distinct habitats.  
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Populations of Barn Swallow that present a stable/increasing population trend (i.e. Mississippi 

and Alabama) showed stronger patterns of connectivity than the rest of the breeding populations 

I examined in North America. These findings contrast with previous studies showing a higher 

vulnerability to factors in the wintering grounds of populations with strong migratory 

connectivity, mainly due to their more restricted wintering locations and their lack of flexibility 

in migratory behavior (Dolman and Sutherland 1995, Webster et al. 2002, Webster and Marra 

2005 ). Most of birds breeding in these stable/increasing regions occupy areas in north-eastern 

South America. In the north, these regions correspond with the Amazon Delta and tropical, 

subtropical moist forest biomes and cultivated areas (i.e. rice and sugar cane). Almost 60% of the 

total surface is occupied by forested areas and 40% by marshes and water bodies, and semi-

desert biomes are present in the east (Morelo 2002). These northern areas of South America 

could indeed represent high-quality habitats for Barn Swallows and individuals occupying these 

areas could be subjected to more beneficial conditions (i.e. large availability of insects, constant 

temperatures, etc.) than birds overwintering in dryer or more temperate locations. For example, 

most Barn Swallows from declining populations tended to overwinter in western and central 

South America, where temperatures and precipitation rates are significantly lower and marsh 

areas are less common (Morelo 2002). However, there is no evidence for a recent change in 

habitat quality for those western regions in the past few decades when population declines started 

to be more severe. Therefore, we are not able to relate those population declines with habitat 

quality.  

Significant differences in migratory connectivity were found between Barn and Cliff 

Swallows based on feather-δ2H values. Standard deviations in δ2H values of breeding locations 

of Barn Swallows were significantly larger than those of Cliff Swallows, suggesting broader 



 

45 

wintering ranges and an overall weaker migratory connectivity pattern for Barn Swallow 

compare to Cliff Swallows. I hypothesize that the differential strength of migratory connectivity 

found for these species could be potentially explained based on their degree of coloniality, 

although to my knowledge no studies have reported this relationship. Cliff Swallow is a highly 

colonial bird which typically nests in large colonies (Brown and Brown 1995) and exhibit a 

significantly high adult and young site fidelity (Brown and Brown 1996). In contrast, Barn 

Swallows show lower coloniality (Shields 1984, Brown and Brown 1999a). The existence of a 

strong heritable element on Cliff Swallows from the same breeding colony which force 

individuals to return to the same breeding location (Brown and Brown 2000) could potentially 

result in a high degree of segregation during the non-breeding season. Since this degree of 

coloniality and site fidelity is less remarkable for Barn Swallows, the effect of this heritable 

element of segregation may not be so intense for this species, causing a more extensive 

dispersion of individuals on the wintering grounds.  

In this study, information on feather δ2H, δ13C, δ15N was applied and additionally combined 

with information on geographic distribution of vegetation types in South America. Despite the 

advantages of using stable isotopes in studies of geographical origins, there is ambiguity in 

evaluating migratory connectivity using this approach based on three main limitations. First, this 

technique relies on the estimation of geographical distribution in nature of δ2H across continents 

(i.e. isoscapes), and these isoscapes are based on a long-term dataset of averaged δ2H-

precipitation values (Bowen et al. 2005). Therefore, uncertainty related to inter-annual variations 

in precipitation δ2H from the long-term GNIP average at local scales remains an issue when 

using δ2H isoscapes to identify molting origins. Secondly, the relatively large variance in within-

population δ2H profiles of known-origin feathers must be considered (Hobson 2011). The 
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statistical approach used in this study propagates this error in the assignment but the magnitude 

of variance in feather δ2H values within populations growing feathers at the same location and 

the nature of the isoscapes over continental areas results in the isotope approach being a weak 

tool for identifying the strength of migratory connectivity per se (Hobson et al. 2012c). The 

broad range of longitudinal variation in δ2H isoscapes for most continents is also a contributing 

factor here (Bowen et al. 2005). Therefore, while different isotope values of feathers (i.e. greater 

than the variance expected at a single site) strongly implies different geographic areas of feather 

growth, similar isotope values do not necessarily mean growth at the same location, since areas 

with similar isotopic values can be extensive. In order to constrain these areas of origins of 

migrants, δ2H analyses can be combined with other markers that show a better longitudinal 

structure such as other isotopes (strontium), genetics, and trace elements (Sellick et al. 2009, 

Chabot et al. 2012, Ofukany et al. 2012) or prior information in species distribution, band 

recoveries and isotopic/geographic clusters (Gonzalez-Prieto et al. 2011, Van Wilgenburg and 

Hobson 2011, Hobson et al. 2012a, Hobson et al. 2012b, Hobson et al. 2012d). 

In conclusion, these results showed that populations of North American Barn Swallows 

presented diverse levels of migratory connectivity as indicated by the assignment of individuals 

from same populations to a single (strong connectivity) or multiple (weak connectivity) isotopic 

clusters. A progressive longitudinal shift of wintering grounds was detected, with breeding 

populations in more northern and western regions wintering in western South America, and 

breeding populations in southern and eastern North America occupying areas in north-eastern 

South America. Stable populations of Barn Swallow exhibit an overall stronger pattern of 

connectivity than declining populations and occupied better quality regions characterized by 

warmer temperatures and higher precipitation rates. In contrast, declining populations tend to 
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occupy areas subjected to colder and drier conditions, less suitable for Barn Swallows. However, 

we were not able to relate population declines with habitat quality since there is no evidence for 

a recent change in habitat quality for those western regions when population declines started to 

be more severe.  

This is the first study that attempts to identify winter origins of a Neotropical long-distance 

migrant using stable isotopes analyses and presents a plausible explanation of potential reasons 

for the differential decline of Barn Swallows in North America. However, the broad range of 

feather isotope values representing wintering areas, even for those populations with strongest 

connectivity, suggests a large number of potential molting areas for Barn Swallows in South 

America. Indeed, we should not deny the possibility that populations may have stronger 

connectivity than shown in this study but we are not able to detect it due to limitations in stable 

isotope analyses. These results can be now investigated further by using more direct-tracking 

techniques such as low-weight geolocators or by combining stable isotopes with distributions of 

trace elements in South America.    
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CHAPTER 3. EVALUATION OF POSSIBLE FACTORS OCCURRING ON BREEDING 
AND WINTERING GROUNDS INFLUENCING DECLINES IN BREEDING POPULATIONS 

OF BARN SWALLOWS (Hirundo rustica) IN NORTH AMERICA 

3.1. Introduction 

Populations of declining aerial insectivores breeding in North America could be limited by 

ecological factors operating during more than one stage of their annual cycle on their breeding 

areas (Budnik et al. 2000, Hayden et al. 2000), wintering areas (Yalden and Pearce-Higgins 

1997), stopover sites (Newton 2008), or wintering and breeding locations (Sillett et al. 2000, 

Newton 2008). These ecological factors could be density-dependent, and so involve competition 

for limited resources, density dependent predation, etc. (Baillie and Peach 1992, Ferrer and 

Donazar 1996), or density-independent (i.e. weather, contaminants, habitat degradation, and 

other environmental stressors) (Blake et al. 1992, Williams et al. 1993, Ferrer and Donazar 1996, 

Klemens et al. 2000, Gill et al. 2001). However, specific effects of these impacts on population 

sizes are difficult to evaluate because of the large variety of factors that can separately or jointly 

influence survival and reproduction of migratory species at different stages of their annual cycle 

(Sherry and Holmes 1995).  

Barn Swallow populations have decreased drastically in recent decades in most of North 

America but reasons for these declines remain unknown (Cadman et al. 2007, McGowan and 

Corwin 2008, Nebel et al. 2010, Bird Studies Canada et al. 2012). Data from the Breeding Bird 

Survey (BBS) collected across North America have shown extensive declines from 1968 to 2010 

in Canada and northern Unites States, while populations in southern United States remain stable 

or increasing for the same period (Sauer et al. (2011) and Table 3.1.).  
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Table 3.1. Population trends estimates for Barn Swallow based on percentage of annual 
population change (% change) for a long- and short- term intervals for locations where sampling 
was performed. Star symbol denotes those locations where population trends are negative. 
Sample size represents the number of BBS survey routes on which the species was encountered 
during the long-term interval.  
 

  Long-term (1966-2010) Short-term (2000-2010) 

Location n % change 95% CI % change 95% CI 
British Columbia * 108 -4.9 -5.8, -3.9 -4.6 -7.2, -1.7 
Manitoba * 67 -2.6 -3.9, -1.7 -2.0 -3.6, -0.3 
Quebec * 112 -6.0 -7.0, -5.1 -5.4 -7.0, -3.6 
Ontario * 146 -2.3 -3.0, -1.7 -2.5 -4.1, -0.8 
California * 169 -1.4 -2.0, -0.8 -1.2 -3.0,  0.4 
Colorado 129 0.4 -0.7,  1.5 -1.4 -3.7,  1.0 
New York state * 123 -1.2 -1.7, -0.8 -1.0 -2.3,  0.4 
New Jersey state * 40 -1.2 -2.1, -0.3 -1.0 -2.5,  0.6 
Mississippi 51 3.0 2.0, 4.2 0.1 -2.8, 2.7 
Alabama 104 3.9 2.8,  5.1 -0.7 -2.8,  1.4 
Texas 212 4.1 3.3,  4.9 1.0 -0.7,  2.8 
Washington State * 82 -2.3 -3.0, -1.7 -2.6 -4.2, -0.9 
Saskatchewan * 87 -3.2 -4.0, -2.3 -3.3 -5.3, -1.4 
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3.2.1. Annual survival and weather 

The El Niño Southern Oscillation (ENSO) is a reliable measurement of wide-scale climatic 

fluctuations which can be used to study the effects of weather conditions in a large-scale 

geographic context. The ENSO phenomenon consists of a cycling of warming and cooling of the 

central and eastern Pacific Ocean surface and it is an important source of inter-annual weather 

variation over broad regions of the world (Philander 1990). The Southern Oscillation Index 

(SOI) is a quantitative measurement of the ENSO phenomenon and it is defined as the difference 

in sea level pressure between the tropical Pacific Ocean (Tahiti) and the Indian Ocean (Darwin) 

(Philander 1990). In North America, negative SOI values correspond to the warm phase of the 

ENSO phenomenon called El Niño; while positive SOI values are indicative of the La Niña 

phase, which has opposite effects to the El Niño phase. ENSO has a differential effect on 

weather conditions across North America. During El Niño phase, northern and western regions 

encounter drier and warmer conditions while southern United States experience higher 

precipitation rates and colder temperatures (Shabbar and Khandekar 1996, Shabbar et al. 1997). 

In South America, two distinct areas of ENSO-related weather conditions can be defined. 

Regions in the north and north-eastern South America show scarce precipitation during the El 

Niño phase, while regions in southern and western South America experience high precipitation 

rates (Ropelewski and Halpert 1987). In Central America, the west and east coasts differ 

significantly in the effect of the El Niño phase, since the west coast exhibit drought episodes and 

the east coast is subjected to intense precipitation (Ropelewski and Halpert 1987).  

Since El Niño and La Niña events have a clear impact on ambient temperatures and 

precipitation at a global scale, ENSO-related weather conditions could affect populations of 

migratory birds by indirectly affecting their survivorship and fecundity. On the breeding 

grounds, annual variation in ENSO has been previously related to fluctuations in adult survival 
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of Yellow Warblers (Dendroica petechia) in Manitoba (Mazerolle et al. 2005) and of Swainson’s 

Thrushes (Catharus ustulatus) across the western region of its breeding range (LaManna et al. 

2012). On the wintering grounds, Sillett et al. (2000) found that annual survival rates of Black-

throated Blue Warblers (Dendroica caerulescens) in Jamaica were strongly associated with 

annual SOI values, and Flockhart and Wiebe (2008) showed a similar correlation for adult 

Northern Flickers (Colaptes auratus) breeding in British Columbia. Variation in large-scale 

weather conditions have been previously shown to have a negative effect on population 

dynamics of Barn Swallow in Europe. Ambrosini et al. (2011) found that Barn Swallows have 

shifted their wintering locations in Africa northwards due to changes in temperature and 

precipitation. These changes favoured individuals that winter in warmer and drier regions, which 

are less favorable for them, and may have contributed to the overall decline of the species.  

3.1.2. Reproductive success and spring weather 

Local-weather patterns have important implications for reproductive success of avian species 

since they can affect reproduction parameters directly. For instance, severe drought episodes in 

western North Dakota in 1988 caused substantial reductions in grassland bird productivity and 

density (George et al. 1992). More recent studies on Lark Bunting (Calamospiza melanocorys) 

breeding in north-eastern Colorado have found that productivity was positively related to annual 

precipitation and negatively related to average temperatures during the breeding season (Skagen 

and Adams 2012). Weather on the breeding grounds, specifically extensive cold weather periods 

shortly after arrival, can also have an indirect effect on reproductive success of aerial 

insectivores by reducing insect activity and availability (Taylor 1963, Newton 2007). Warmer 

spring temperatures over the past decades have modified the breeding phenology of insects 

(Bartomeus et al. 2011). For aerial insectivore species, this change has involved adapting their 

breeding phenology to the new emergence dates of insects (Walther et al. 2002, Root et al. 
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2003). However, not all bird species are able to adapt so rapidly to these temporal changes in 

food sources, and this mismatch can potentially reduce their productivity and can have a negative 

effect on population sizes (Visser et al. 1998, Visser et al. 2006, Gaston et al. 2009).  

3.1.3. Stressors on the wintering grounds 

The term “stressor” can be defined as unpredictable and/or uncontrolled stimuli that an animal 

is exposed to (Romero et al. 2009). To cope with this stimuli, glucocorticoid stress hormones 

such as cortisol and corticosterone (CORT) are released in the organism to induce behavioral and 

physiological changes known as the “stress response” (Romero 2004). When these 

environmental perturbations persist in time, individuals need to allocate greater effort to keep 

their physiological parameters within normal levels and this could have important detrimental 

consequences for reproduction, survival and body condition (Dallman et al. 1992, Romero 2004, 

Romero et al. 2009). Therefore, CORT levels can be applied as a physiological index of the 

overall health of individuals and, by extension, the health of a population.  

Environmental factors, such as habitat quality, food availability or weather, and the 

physiological stress response tend to correlate; although this relationship is sometimes complex. 

For instance, Marra et al. (1998) and Marra and Holberton (1998) found that American Redstarts 

(Setophaga ruticilla) wintering in low- and high-quality habitats differed significantly in baseline 

plasma CORT levels, mainly due to sex-related inter-individual competition. CORT levels have 

been also correlated with annual changes in food availability. Doody et al. (2008) found that 

CORT levels in Common Murres (Uria aalge) were significantly higher in years where there 

was a prey-mismatch compared to years where food availability at periods of elevated demand 

was higher. Additionally, baseline CORT levels of adult Cliff Swallows breeding in Nebraska 

were significantly higher during a prolonged cold and windy weather event, potentially due also 

to the effect of food scarcity (Raouf et al. 2006). Weather conditions seem also to influence 
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CORT secretion in certain stages of the annual cycle of migratory birds. For example, variation 

in CORT levels in the blood of two migratory species during molt on the Arctic-breeding 

grounds was shown to be significantly correlated with weather conditions at those regions 

(Romero et al. 2000). Similar results were found for Barn Swallows in Switzerland, where 

unexpected reductions in ambient temperature, food availability and/or body condition led to an 

increase in plasma CORT concentrations of breeding adults (Jenni-Eiermann et al. 2008). 

Measuring CORT in feathers represents a convenient means of monitoring the physiological 

response of avian species to stressors during the period of feather growth (Bortolotti et al. 2008, 

Bortolotti et al. 2009). Since Barn Swallows undergo a complete molt of their flight feathers on 

their wintering grounds (Pyle (1997) and Appendix B), measures of feather-CORT levels will 

provide information of hypothalamic-pituitary-adrenal (HPA) axis activity on their wintering 

grounds  

Here, several factors potentially affecting survival of Barn Swallows operating on breeding 

and wintering grounds were investigated. Specifically, I examined 1) the effects on annual 

survival rates of Barn Swallows of weather conditions at breeding and non-breeding seasons 

related to ENSO, 2) the influence of spring weather on fecundity rates and 3) the differential 

effect on stable and declining populations of stressors on the wintering grounds as indicated by 

feather CORT levels. 

3.2. Methods 

3.2.1. Annual survival study 

Adult Barn Swallows were captured using mist nets at two locations during the breeding 

season from April to August: 1) from 2002 to 2011 in Ontario, Canada, while breeding in 

agricultural farms in the Guelph area (approximate coordinates: 80°19'W, 43°37N); and 2) from 

1999 to 2011 in Washington State, USA, in a breeding colony located at the facilities of 
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Woodland Park Zoo in Seattle (122°21'W, 47°40'N). Individuals were captured and banded 

following the guidelines of the North American Banding Council (NABC 2001). Age and sex 

were also determined based on tail length and evidence of breeding status (Pyle 1997). When 

captured individuals were found to be already banded from previous years, band number, age 

and sex were recorded to obtain mark-recapture data.  

Mean monthly values of SOI were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) website (http://www.cpc.ncep.noaa.gov) as a measure of ENSO annual 

conditions (Philander 1990). ENSO conditions on the wintering grounds (SOIw) were quantified 

by the mean monthly SOI values from September to March, and from April to August to reflect 

ENSO conditions on the breeding areas (SOIb). Since no correlation between SOIw and SOIb was 

found for the years included in the analysis (ON: r2=0.05 and WA: r2=0.05), I assumed that these 

indexes could be used separately to measure the effect of conditions on breeding and wintering 

grounds.   

3.2.2. Reproductive success  

Reproductive success of Barn Swallow was defined as the number of young which survived 

to 16 days old per total number of active nests in the studied population (i.e. fledgling success) 

following methodology by Barclay (1988) and was estimated for two well-established breeding 

colonies in Manitoba and Washington State. All nest structures were monitored over the entire 

breeding season from early May to September. Nests destroyed by humans were not included in 

estimates of reproductive success. Variables such as arrival date (date the first individual of the 

season is seen) and total number of nests, and variables related with fecundity (total number of 

eggs, chicks per nest, and fledglings) were recorded for each active nest. In Manitoba, birds were 

captured using mist nets and tail feathers were coloured with enamel paint to identify individuals 

from a distance. The study colony in Manitoba was located at the University of Manitoba Field 
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Station (Delta Marsh; 98°22'W, 50°11'N), a forested area in the south shore of Lake Manitoba 

where several buildings are used by swallows for nesting. Data on reproductive success for this 

population were obtained from a previous study performed on the same breeding location in 

1984, 1985 and 1986 (Barclay 1988) and by me in 2009 and 2010. The colony in Washington 

State was located at the Woodland Park Zoo and data on reproductive success for this breeding 

colony have been recorded for 12 consecutive years from 1999 to 2010.  

Daily temperature and precipitation data for both locations for the period from arrival through 

pre-fledgling of young were obtained online from two weather stations considered representative 

of the weather experienced by birds in their respective breeding colonies. Data for Manitoba 

were obtained from the Environment Canada Weather Office website 

(http://www.weatheroffice.gc.ca) from May 1 to June 31 for Delta Marsh Weather Station, 

Manitoba. Data for Washington State were obtained through the National Climatic Data Center 

(NOAA) website (http://www.ncdc.noaa.gov) from April 5 to June 31 for Mc. Millin Reservoir 

Weather Station, Washington State, located 50 km from the breeding colony. Seasonal 

temperature was expressed as average maximum (“MaxTemp”) and minimum (“MinTemp”) 

temperatures during the study period. The existence of exceptionally low temperature periods 

have been previously shown to have a negative effect on survival and reproductive success 

(Brown and Brown 1998, Jenni-Eiermann et al. 2008) of aerial insectivore species. Therefore, 

the variable “ColdDays”, defined as the total number of consecutive days (≥ 2 d periods) with 

maximum daily temperatures lower than 11ºC was selected to account for this phenomenon. The 

cut-off point (11ºC) followed from studies by Brown and Brown (1998) and Brown and Brown 

(1999b) on responses of Cliff Swallows (Petrochelidon pyrronota) and Barn Swallows, 

respectively, to weather conditions on the breeding grounds (see also Brown and Brown (2000)). 
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Precipitation was expressed as the average daily precipitation of the season (“AvePrecip”) and 

the potential effect of interactions between temperature and precipitation was accounted for by 

adding interaction parameters to the set of candidate models.  

3.3.3. Hormone analyses 

Adult Barn Swallows were captured using mist-nets during the breeding season (May to late 

August) of 2010 and 2011 in British Columbia (Alaksen National Wildlife Area, Delta. 

122°54'W, 49°8'N), Ontario (Guelph area. 80°6'W, 43°54'N), Saskatchewan (Prince Albert 

National Park. 106º1'W, 53º54'N), Washington State (Seattle. 122º21'W, 47º40'N), Mississippi 

(Greenville area. 89°23''W, 32°21'N), Alabama (Montgomery area. 86°59'W, 32°19'N) and 

Texas (Dallas area. 97°5'W, 32°20'N). All birds were banded using USFWS aluminum bands. 

Sex, age and body measurements (wing length, tail length and weight) were recorded following 

the North American Banding Council guidelines (NABC). One inner tail feather grown in the 

wintering grounds (Pyle 1997) was collected for each adult  for stress hormone analyses and 

stored in labeled paper envelopes.  

CORT was first extracted from feathers using a methanol-based extraction technique 

following procedures described by Bortolotti et al. (2008). Feather length was measured before 

and after removal of the calamus. Feather vanes were cut in small pieces (less than 5 mm) with 

scissors. Ten mls of methanol (HPLC grade, Fisher Scientific, Fairlawn, NJ, USA) was added to 

the cut feather sample and feathers were placed in a sonicating water bath for 30 minutes at room 

temperature followed by incubation at 50ºC overnight in a shaking water bath. Methanol was 

separated from feather material by vacuum filtration using a plug of synthetic polyester fibre in 

the filtration funnel. The methanol extract was then placed in a 50°C water bath and 

subsequently evaporated in a fume hood under air. Extract residues were reconstituted in a small 
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volume of phosphate-buffered saline (0.05 M, pH 7.6) and final samples were frozen at –20°C 

until analysed for CORT. Samples were extracted in a single extraction where > 89% of the 

radioactivity was recoverable. CORT levels in Barn Swallow feathers were measured by 

radioimmunoassay (RIA). Measurements were performed on reconstituted methanol extracts and 

samples were analyzed in two separate assays. Assay variability was defined as the percentage of 

coefficient of variation (CV), which was 7.3% within assays, and 2.3% and 4.9% for first and 

second assays. CORT values are expressed as pg CORT per millimeter of feather as an 

estimation of CORT per unit time of feather growth (Bortolotti et al. 2008, Bortolotti et al. 2009, 

Bortolotti 2010). All CORT analyses were performed at the laboratory facilities in the Biology 

Department, University of Saskatchewan, Canada. 

3.3.4. Statistical analyses 

3.3.4.1. Annual survival study 

Mark-recapture data from adult Barn Swallows breeding in Ontario and Washington State 

were used separately to estimate apparent annual survival (Φ) and recapture (p) rates for both 

populations using live-recapture or Cormack–Jolly–Seber (CJS) models (Cormack 1964, 

Lebreton et al. 1992). The term “apparent survival” was defined as the probability of survival of 

a bird considering that it remains alive but is not recaptured.  Recapture rate represents the 

probability of encountering an animal that was previously marked. All analyses were performed 

using the program MARK (White and Burnham 1999). An initial model including sex (g) and 

time (t) dependency in both survival and recapture parameters was developed (Φg*t, pg*t). The fit 

of this global model was assessed using the parametric bootstrap procedure (White et al. 2002). 

A total of 300 simulated bootstrap data sets which met the model assumptions of no 

overdispersion and independence were generated. The distribution of the deviance from the 
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original data was then compared with that generated from the bootstrap data sets to determine the 

probability of encountering a deviance equally or higher than the one obtained from the original 

data. Additionally, a measure of the degree of overdispersion of the observed data (ĉ) was 

calculated based on the mean of the deviance from both the observed and simulated results 

(White et al. 2002).  

Reduced parameter models were developed to test whether weather conditions in the breeding 

and wintering grounds could have an effect on survival rates of colonies located in Ontario and 

Washington State. First, a model that allowed parallel variation over time of survival rates of 

males and females (Φg+t) was created. Then, survival estimates were constrained to be a linear 

function of breeding and wintering weather conditions. SOIw and SOIb were used as a measure of 

weather conditions on the wintering and breeding grounds respectively. Survival was then 

modeled to vary in parallel and dependently of weather variables and sex. Additionally, models 

which allow simple variation of survival based on sex (Φg), wintering weather conditions 

(ΦSOIw), breeding weather conditions (ΦSOIb), year (Φt), and constant variation of survival over 

time (Φ) were included in the analysis. Recapture probabilities were also modeled as constant 

over time (p), as a function of year (pt) or group (pg), as a parallel variation over time between 

sexes (pg+t) and as full year and sex dependency (pg*t). The final candidate set comprised 70 

models including 14 different parameter-combinations for survival estimates and 5 parameter 

combinations for recapture estimates. All model notations followed Lebreton et al. (1992). To 

select the statistically most relevant model among all models from the candidate set, model 

selection methods based on the Akaike’s Information Criterion (AIC) were used (Akaike 1973, 

Johnson and Omland 2004). Models in both candidate sets from Washington State and Ontario 

data were ranked based on second-order variant of AIC (AICc) differences, adjusted for small 
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sample sizes. The model with the lowest AICc was selected as the most parsimonious model, 

although it was assumed that models with AICc values differing by less than 2 units had equally 

substantial level of support (Burnham and Anderson 2002). The probability that a selected model 

was a better fitted model to the data was assessed using the AICc weight value (Burnham and 

Anderson 2002). A model averaging procedure was applied to calculate average survival 

estimates when model selection uncertainty was evident (Anderson et al. 2000, Burnham and 

Anderson 2002).   

An additional analysis following the same methodology explained above was used to evaluate 

the effect on apparent survival on both breeding colonies of length of cold periods in the 

breeding grounds. A set of candidate models was created using the total number of consecutive 

days with maximum daily temperatures lower than 11ºC measured in a year (COLD) as a 

covariate and model selection was performed based on AIC values (Akaike 1973, Johnson and 

Omland 2004). Historical weather data for the period 1968 to 2011 were collected from weather 

stations in Alabama and Mississippi where populations remain stable and compared with data 

from weather stations close to the studied breeding colonies in Ontario and Washington State, 

where Barn Swallows are declining (Table 3.1.). Weather data for Alabama was collected from 

Selma Weather Station (87° 0'W, 32° 24'N) and from Moorhead Weather Station (90° 30'W, 33° 

27'N) for Mississippi. The dataset was searched for the frequency and extent of the occurrences 

of consecutive days with spring maximum daily temperatures equal to or lower than 11ºC. The 

search was confined to the period from the first day Barn Swallows have been reported to arrive 

to the areas to June 30.  

3.3.4. 2. Reproductive success study 

A General Linear Model (GLM) was applied to evaluate the relative importance of spring 

weather variables (explanatory variables) on reproductive success rates (response variable) of 
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colonies in Manitoba and Washington State. The most parsimonious model was selected among 

a class of competing models with different numbers of parameters using AICc (Akaike 1973), 

which accounts for the relative goodness of fit of a statistical model to the data and its 

complexity in the number of parameters. An initial model with the maximum number of 

explanatory variables and interactions (“Maximal”) was created and fitted to the data. The 

function “drop1” was used to identify the least explanatory variable in the maximal model and a 

new model was created when that parameter was removed. Variables were consecutively 

removed and the minimal adequate model was selected based on AICc and residual deviance 

values. In order to investigate how well the model selected fit the real data, residuals of the 

model were plotted to examine heterocedasticity (homogeneity of variance of residuals versus 

fitted values) and normality of residuals was tested using a q-q plot (Wilk and Gnanadesikan 

1968). All analyses were performed using Program R.  

The best approximating model was applied to historical weather data from 1968 to 2010 to 

estimate past productivity rates (fledgling/nest) over time for both breeding colonies and to 

identify any significant change which could be related to population declines.  

3.3.4.3. Winter stressors 

To determine whether birds from stable and declining populations in North America had 

differential stress levels on the wintering grounds, feathers were initially grouped based on the 

nature of their population trends (Table 3.1.). Two different groups including samples from 

stable and declining populations were defined for analytical purposes. Differences in CORT 

values between breeding populations were tested using ANOVA for the two groups. Differences 

in CORT levels across the seven studied breeding colonies and among the four distinct wintering 

locations in South America identified based on δ2H, δ13C, and δ15N values of feathers (see 

Methodology Chapter 2) were additionally tested using Tukey-HSD tests.  
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3.3. Results 

3.3.1. Annual survival and weather  

3.3.1.1. Effect of ENSO 

Model selection (Table 3.2. and Table 3.3.) and estimates of annual apparent survival 

probabilities (Table 3.4. and Table 3.5.) modeled based on ENSO conditions on breeding and 

wintering grounds differed for Barn Swallows breeding in Ontario and Washington State.  

The statistically best model for the Ontario data was the one in which apparent survival was 

constant over time (Φ, pg+t) (Table 3.2.). The other two models in which survival varied with 

SOIb (ΦSOIb, pg+t) and SEX (Φg, pg+t) differed in AICc values less than 2 units (AICc= 0.86 and 

1.55, respectively), suggesting significant support. However, they only differed from the best 

model in having one extra parameter, and in this specific situation the best model is considered 

that with the lowest AICc (AICc = 0) (Burnham and Anderson 2002, Arnold 2010). Model 

averaging results suggested that neither SOI in the breeding or the wintering grounds could be 

considered to have an effect on inter-annual survival probabilities (Figure 3.1.). In Washington 

State, the model which incorporated variation in survival relative to ENSO conditions in the 

spring (ΦSOIb, pt) was selected as the best-fit model (Table 3.3.). Two other models in which 

apparent survival varied in parallel as a linear-logistic function of SOIb and SOIw (ΦSOIb+SOIw, pt) 

and those of the model which only included SOIs as explanatory variable (ΦSOIb, pg+t) differed in 

AICc values less than 2 units. However, ΦSOIb+SOIw, pt only differed from the best model in 

having one extra parameter, and therefore, the best model is considered that with AIC = 0 

(Burnham and Anderson 2002, Arnold 2010). Model averaging results suggested that SOI in the 

breeding or the wintering grounds have a significant effect on inter-annual survival probabilities 

(Figure 3.2. and Figure 3.3.).  
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Table 3.2. Summary output of candidate models of annual survival (Φ) and recapture (p) 
probabilities for Barn Swallows breeding in Ontario from 2002 to 2011 based on ENSO. Model 
notations denote: g = sex groups (male and female), SOIb = average Southern Oscillation Index 
for breeding season, t = year, SOIw = average Southern Oscillation Index for wintering season, 
No subscript = constant over sex groups and year. Only models with AICc weights ≤0.01 are 
shown.  
 

Model Num. parameters AICc ∆AICc AICc weight Deviance 

Φ, pg+t 
11 1332.38 0.00 0.208 119.72 

ΦSOIb, pg+t 
12 1333.24 0.86 0.136 118.53 

Φg, pg+t 
12 1333.93 1.55 0.096 119.22 

ΦSOIw, pg+t 
12 1334.41 2.03 0.076 119.69 

Φt, pg 
11 1334.86 2.47 0.060 122.19 

Φg+SOIb, pg+t 
13 1335.00 2.62 0.056 118.23 

Φ, pt 10 1335.31 2.93 0.048 124.69 
ΦSOIb, pt 11 1335.65 3.27 0.041 122.99 
Φg*SOIb, pg+t 14 1335.72 3.34 0.039 116.89 
Φg+SOIw, pg+t 13 1335.96 3.58 0.035 119.19 
Φg, pt 11 1336.27 3.89 0.030 123.61 
Φg+t, pg 12 1336.32 3.93 0.029 121.60 
Φg+SOIb, pt 12 1336.52 4.14 0.026 121.81 
Φg*SOIb, pt 13 1336.70 4.32 0.024 119.93 
ΦSOIw, pt 11 1337.35 4.97 0.017 124.68 
Φg*SOIw, pg+t 14 1337.90 5.52 0.013 119.07 

Φg+SOIw, pt 12 1338.32 5.94 0.011 123.61 
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Table 3.3. Summary output of candidate models of annual survival (Φ) and recapture (p) 
probabilities for Barn Swallows breeding in Washington State from 1999 to 2011 based on 
ENSO. Model notations denote: g = sex groups (male and female), SOIb = average Southern 
Oscillation Index for breeding season, t = year, SOIw = average Southern Oscillation Index for 
wintering season, No subscript = constant over sex groups and year. Only models with AICc 
weights ≤0.010 are shown.  
 

Model Num. 
parameters AICc ∆AICc AICc weight Deviance 

ΦSOIb, pt 
14 463.30 0.00 0.254 

153.83

ΦSOIb+SOIw, pt 15 465.10 1.80 0.103 153.37

ΦSOIb, pg+t 15 465.30 1.99 0.094 153.57

Φg+SOIb, pt 15 465.46 2.16 0.086 153.73

ΦSOIw, pt 14 466.25 2.94 0.058 156.77

ΦSOIb+SOIw, pg+t 16 467.12 3.81 0.038 153.11

Φg+SOIb+SOIw, pt 16 467.29 3.98 0.035 153.29

ΦSOIb, p 3 467.37 4.06 0.033 181.50

Φg+SOIb, pg+t 16 467.52 4.21 0.031 153.52

Φg*SOIb, pt 16 467.59 4.28 0.030 153.59

ΦSOIb+SOIw, p 4 467.89 4.59 0.026 179.96

ΦSOIw, pg+t 15 467.93 4.63 0.025 156.20

Φg+SOIw, pt 15 468.46 5.16 0.019 156.73

Φg*SOIw, pt 16 468.94 5.63 0.015 154.94

Φ, pt 13 469.28 5.98 0.013 162.04

ΦSOIb, pg 4 469.35 6.05 0.012 181.42

Φg+SOIb+SOIw, pg+t 17 469.36 6.06 0.012 153.07 

Φg+SOIb, p 4 469.38 6.07 0.012 181.45

Φg*SOIb, pg+t 17 469.69 6.38 0.010 153.40 
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Table 3.4. Survival rates estimates and standard errors of male and female Barn Swallows 
breeding in Ontario calculated using model averaging and respective values of average Southern 
Oscillation Index for breeding season (SOIb). SOIw values are not shown since there were no 
observed effects of SOIw on survival rates. 
 
ONTARIO    
Year SOIb Males Females
    Survival  SE Survival SE

2003 -0.1 0.468 0.050 0.458 0.047 
2004 -0.3 0.475 0.054 0.463 0.050

2005 -0.1 0.528 0.051 0.517 0.048

2006 -0.3 0.518 0.048 0.507 0.045

2007 0.1 0.494 0.043 0.484 0.039

2008 0.6 0.487 0.043 0.483 0.040

2009 0.2 0.503 0.042 0.496 0.038

2010 1.4 0.451 0.056 0.451 0.053

2011 0.8 0.466 0.066 0.465 0.063
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Table 3.5. Survival rates estimates and standard errors of Barn Swallows breeding in Washington 
State calculated using model averaging and respective values of average Southern Oscillation 
Index for breeding season (SOIb) and Southern Oscillation Index for wintering season (SOIw).  
 
WASHINGTON STATE 

Year SOIb SOIw Survival SE 
2000 0.5 1.0 0.416 0.045 
2001 -0.1 1.1 0.512 0.044 
2002 -0.5 0.2 0.600 0.054 
2003 -0.1 -0.5 0.554 0.051 
2004 -0.3 0.0 0.576 0.048 
2005 -0.1 -0.6 0.552 0.051 
2006 -0.3 0.8 0.553 0.048 
2007 0.1 -0.4 0.514 0.047 
2008 0.6 1.3 0.393 0.050 
2009 0.2 1.2 0.461 0.042 
2010 1.4 -0.5 0.317 0.076 
2011 0.8 2.2 0.345 0.067 
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Figure 3.1. Apparent annual survival rates (±1 SE) of adult Barn Swallows breeding in Ontario 
from 2002 to 2011 relative to the mean SOI values of breeding (SOIb) and wintering (SOIw) 
season.   
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Figure 3.2. Apparent annual survival rates (±1 SE) of adult Barn Swallows breeding in 
Washington State from 1999 to 2011 relative to the mean SOI values of breeding season (SOIb). 
Negative values of SOI denote El Niño weather conditions while positive values correspond with 
La Niña conditions.     
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Figure 3.3. Apparent annual survival rates (±1 SE) of adult Barn Swallows breeding in 
Washington State from 1999 to 2011 relative to the mean Southern Oscillation Index in the 
wintering grounds (SOIw). Negative values of SOI denote El Niño weather conditions while 
positive values correspond with La Niña conditions.   
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Survival parameters estimates for Washington State calculated using model averaging methods 

to account for model selection uncertainty showed that survival probability (Mean ± SD = 0.495 

± 0.094) was higher in years with more negative SOIb values (El Niño years) (Table 3.5. and 

Figure 3.2). In addition, Barn Swallows breeding in Washington State seem to be also affected to 

some degree by ENSO conditions in the wintering grounds (SOIw), since apparent survival rates 

showed a clear tendency to decline in years with more positive SOIw values (La Niña years) and 

to increase in years with more negative values (El Niño years) (Figure 3.3).  

Recapture probability for the Ontario colony was best modeled as differing among years and 

between sexes (Table 3.2.). Model averaging results for Ontario showed that recapture rates for 

males and females were not different. In Washington State, the most parsimonious model 

incorporated the variation of recapture probability over time (Table 3.3.). Recapture rate 

estimates for birds breeding in Washington State calculated using model averaging methods 

ranged from 0.949 to 0.322 recaptured birds per year (Mean ± SD = 0.733 ± 0.218).  

3.3.1.2. Effect of length of spring cold periods 

Model selection suggested that the number of consecutive days within periods of cold 

temperatures in the spring (COLD) had a significant negative effect on apparent survival rates of 

Barn Swallows breeding in Washington State but not in Ontario. In Ontario, the model with best 

support assumed constant variation of survival (Φ pg+t) (Table 3.6.). Inter-annual survival 

probabilities for Ontario birds based on model averaging suggested that survival probability did 

not differ over years (Figure 3.4). In Washington State, the model with strongest support 

assumed the effect of the length of cold periods in the spring in inter-annual survival (ΦCOLD, pt) 

(Table 3.7.). Survival estimates of birds breeding in Washington State were overall significantly 

lower in years with a high number of cold periods (Figure 3.5). Historical cold weather data  



 

70 

Table 3.6. Model selection summary output of candidate models of annual survival (Φ) and 
recapture (p) probabilities for Barn Swallows breeding in Ontario from 2002 to 2011 based on 
the number of consecutive cold days in the spring. Model notations denote: g = sex groups (male 
and female), COLD= number of days within periods with maximum daily temperatures ≤ 11ºC, 
No subscript = constant over sex groups and year. Only models with AICc weights ≤0.010 are 
shown.  
 

Model Num. 
parameters AICc ∆AICc AICc weight Deviance 

Φ, pg+t 11 1332.38 0.00 0.296 119.72 
Φg, pg+t 12 1333.93 1.55 0.136 119.22 
ΦCOLD, pg+t 12 1334.19 1.81 0.120 119.47 
Φt, pg 11 1334.86 2.47 0.086 122.19 
Φ, pt 10 1335.31 2.93 0.068 124.69 
Φg+COLD, pg+t 13 1335.64 3.26 0.058 118.87 
Φg, pt 11 1336.27 3.89 0.042 123.61 
Φg+t, pg 12 1336.32 3.93 0.041 121.60 
Φg*COLD, pg+t 14 1336.65 4.27 0.035 117.82 
ΦCOLD, pt 11 1337.30 4.92 0.025 124.63 
Φt, p 10 1338.22 5.84 0.016 127.60 
Φg+COLD, pt 12 1338.25 5.87 0.016 123.54 
ΦCOLD, pg 4 1338.52 6.14 0.014 140.08 

Φg+t, p 11 1339.11 6.73 0.010 126.44 
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Table 3.7. Model selection summary output of candidate models of annual survival (Φ) and 
recapture (p) probabilities for Barn Swallows breeding in Washington State from 1999 to 2011 
based on the number of consecutive cold days in the spring. Model notations denote: g = sex 
groups (male and female), COLD= number of days within periods with maximum daily 
temperatures ≤ 11ºC, No subscript = constant over sex groups and year. Only models with AICc 
weights ≤0.010 are shown.  
 

Model Num. 
parameters AICc ∆AICc AICc 

weight Deviance 

ΦCOLD, pt 14 465.78 0.00 0.347 156.30 
Φg+COLD, pt 15 467.73 1.96 0.130 156.00 
ΦCOLD, pg+t 15 467.82 2.04 0.125 156.08 
Φ, pt 13 469.28 3.50 0.060 162.04 
ΦCOLD, p. 3 469.62 3.84 0.051 183.75 
Φg+COLD, pg+t 16 469.88 4.10 0.045 155.88 
Φg*COLD, pt 16 469.98 4.20 0.043 155.98 
Φ, pg+t 14 471.16 5.38 0.024 161.68 
Φt, pt 24 471.35 5.57 0.021 138.49 
Φg, pt 14 471.41 5.63 0.021 161.93 
Φ, p 2 471.42 5.65 0.021 187.61 
Φg+COLD, p 4 471.49 5.72 0.020 183.57 
ΦCOLD, pg 4 471.59 5.81 0.019 183.66 

Φg*COLD, pg+t 17 472.13 6.35 0.015 155.84 
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Figure 3.4. Apparent annual survival rates (±1 SE) of adult Barn Swallows breeding in Ontario 
from 2002 to 2011 relative to the number of days within periods with maximum daily 
temperatures ≤ 11ºC in the spring. 
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Figure 3.5. Apparent annual survival rates (±1 SE) of adult Barn Swallows breeding in 
Washington State from 1999 to 2011 relative to the number of days within periods with 
maximum daily temperatures ≤ 11ºC in the spring.   
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Figure 3.6. Consecutive number of days within periods with maximum daily temperatures ≤ 
11ºC in spring from 1968 to 2011 in Alabama (AL) and Mississippi (MS), where Barn Swallow 
populations are stable, and in Washington State (WA) and Ontario (ON), where populations are 
in decline. Numbers in brackets denote number of years included in the study.  
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comparisons between weather stations in southern US and stations in Ontario and Washington 

State showed that there were significant differences in the number of consecutive cold days in 

the spring among areas where populations were stable and in decline (ANOVA: F3,172 =243.8, 

p<0.01, n=176). The extent of periods of consecutive cold days was significantly lower in 

Alabama and Mississippi, with values between 0 and 4, than in Washington State and Ontario, 

which ranged between 14 to 2 and 27 to 5 respectively (Figure 3.6).     

3.3.2. Reproductive success and spring weather  

Reproductive success differed significantly among years in both breeding colonies (Table 

3.8.). In Manitoba, reproductive success and number of active pairs in the mid 80’s were higher 

than in 2009 and 2010. Reproductive success from 1984 to 1986 was 3.31 ± 0.27 fledglings/year, 

while for the two 2009 to 2010 period was 2.20 ± 0.35 fledglings/year. Fewer active pairs were 

found at this site in 2009 and 2010 (12 – 14 pairs) compared the 80’s (17 – 25). In Washington 

State, reproductive success was particularly low in 2008 but otherwise varied between 3.1 and 

3.9 over the 1999 to 2010 period. Total active nests in Washington State varied significantly over 

the 12-year period, with three minimums in 2001, 2005 and 2010 and two maximums in 2004 

and 2007. Values of reproductive success were similar for Barn Swallows breeding in Manitoba 

and Washington State. However, when reproductive success for the same years (2009 and 2010) 

was compared between different colonies; values in Washington State were significantly higher 

than in Manitoba.   

The most parsimonious model included four variables related to spring temperature but not 

precipitation, suggesting a larger effect of temperature on reproductive performance (Table 3.9.). 

When the actual values of reproductive success were plotted against estimated values calculated 

using the best model selected (Figure 3.7), a poor fit of the model to the data was found (r2 =  

0.17), suggesting some explanatory power of the model selected but also some caveats.  
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Table 3.8. Arrival date to the site, total number of active pairs (Manitoba) and nests (Washington 
State) in the breeding season and reproductive success (fledglings/nest) over the years for two 
breeding colonies of Barn Swallow in Manitoba (Delta Marsh) and Washington State (Seattle). 
Data from 1984-1986 was obtained from Barclay (1988). 
 

Year Arrival date Total 
pairs/nests

Reproductive 
Success

Manitoba 

1984 Early May 25 3.1

1985 Early May 25 3.2

1986 Early May 17 3.6

2009  14 2.5 
2010 11-May 12 2.0

Washington State   
1999 22-Apr 25 3.4

2000 17-Apr 21 3.8

2001 19-Apr 13 3.6

2002 08-Apr 19 3.4

2003 20-Apr 24 3.5

2004 13-Apr 32 3.1

2005  16 3.9 
2006 16-Apr 26 3.9

2007 07-Apr 30 3.3

2008 05-Apr 28 2.2

2009 07-Apr 20 3.2

2010 11-Apr 18 3.9
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Table 3.9. Competing general linear models of effects of spring weather variables on 
reproductive success of Barn Swallow in Manitoba and Washington State over the years. Models 
are based on the number of fledglings/nest from 1984-1986 and 2009-2010 for Manitoba and 
1999-2010 for Washington State. Interactions between explanatory variables were included in 
the analysis and are denoted with a colon symbol. Model in bold denotes the most parsimonious 
model.   
 

Models df Residual 
deviance AICc 

COLD + MeanPrecip + COLD:MeanPrecip + 
MaxTemp + MinTemp + MaxTemp:MinTemp 8 1.61 24.17 

COLD + MeanPrecip+ MaxTemp + MinTemp + 
MaxTemp:MinTemp 7 1.83 24.37 

COLD + MaxTemp + MinTemp + 
MaxTemp:MinTemp 6 1.95 23.43 

MaxTemp + MinTemp + MaxTemp:MinTemp 5 2.79 27.51 
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Table 3.10. Parameter estimates, standard error, t statistic, p-value, and upper and lower 
confidence limits (95%) for the weather variables included in the model selected as the model 
that best fit data on reproductive success of breeding colonies of Barn Swallows in Manitoba 
(1984-1986, 2009, 2010) and Washington State (1999-2010). All variables and intercept are 
significantly significant.   
 

Parameters Estimate Standard 
Error t p-value 95% CI 

     Lower Upper 

Intercept -96.09 26.982 -3.56 0.004 -154.89 -37.31

COLD -0.07 1.436 3.72 0.003 2.21 8.46

MinTemp 14.35 3.817 3.76 0.003 6.04 22.67

MaxTemp 5.34 0.031 -2.27 0.042 -0.14 -0.003

MinTemp:MaxTemp -0.77 0.202 -3.79 0.003 -1.21 -0.33 
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Figure 3.7. Model validation graph showing estimated values of reproductive success for Barn 
Swallows breeding in Manitoba (1984-1986, 2009, 2010) and Washington State (1999-2010) in 
the X axis and observed values of reproductive success for those colonies in the Y axis.    
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Figure 3.8. Estimated reproductive success values for Barn Swallow colonies in Manitoba (A) 
and Washington State (B) since 1968 to 2010. Values were calculated based on the most 
parsimonious model selected using model selection and AICc criterion.  
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The length of consecutive day-periods of cold weather and the interaction between average 

minimum and maximum temperatures in spring were negatively correlated with reproductive 

success. In contrast, minimum and maximum temperatures were positively correlated (Table 

3.10.).  

Estimations of reproductive success since 1968 using the created model for breeding colonies 

in Manitoba and Washington State suggest no clear pattern of change in the mid 80’s for either 

of the colonies (Figure 3.8). Manitoba had higher number of years with values of 0 of 

reproductive success (Figure 3.8a), while Washington State did not experience years with that 

low fecundity. In fact, values in this colony seem to have increased over the years starting in the 

early 80’s (Figure 3.8b).  

3.3.3. Wintering ground stressors 

Overall, feathers of Barn Swallow did not differ in CORT levels between stable and declining 

breeding populations (Table 3.11. and Figure 3.9a; ANOVA: F1,87 =1.502, p=0.22, n=89), as well 

as among breeding populations throughout North America (Table 3.11. and Figure 3.9b.; 

ANOVA, Tukey HSD: F6,82 =1.965, p=0.08, n=89). Additionally, there were not significant 

differences in CORT levels among wintering locations in South America (Table 3.11. and Figure  

3.9c. ANOVA, Tukey HSD: F3,38 =0.735, p=0.54, n=42). No significant relationship between 

CORT and stable isotope values of feathers was found (Figure 3.10; δ2H: Pearson correlation=  

0.109, p>0.1, n=42; δ13C: Pearson correlation=0.070, p>0.1, n=42; δ15N: Pearson correlation=-

0.012, p>0.1, n=42), suggesting that feather-CORT levels were not related with geographical 

origin of feathers.  

 



 

82 

Table 3.11. Sample size, mean, standard deviation and standard error of feather corticosterone 
(CORT) values (pg/mm) of adult Barn Swallows grouped based on breeding population origin, 
population trend of state/province where samples were collected, and wintering areas in South 
America. Group 1, Group 2, Group 3, Group 4 notations denote groups created using hydrogen, 
carbon and nitrogen stable isotope values of feathers.      
 
 n Mean 

(pg/mm) SD SE 

Breeding areas     
Ontario 25 4.31 1.01 0.20

British Columbia  5 3.29 1.64 0.73

Washington State 10 4.34 0.70 0.22

Saskatchewan 5 4.69 0.90 0.41

Texas  15 4.69 0.70 0.18

Alabama 15 4.73 0.82 0.21

Mississippi 14 4.06 1.21 0.32

Trend     
Stable 44 4.51 0.96 0.15

Declining  45 4.24 1.05 0.16

Wintering areas     
Group 1 8 3.90 1.52 0.54

Group 2 13 4.54 1.02 0.28

Group 3 18 4.58 1.04 0.24

Group 4 3 4.23 1.34 0.78

 
 



 

83 

 

Figure 3.9. Mean (±SE) feather corticosterone (CORT) values of adult Barn Swallows. Graph A 
shows CORT values of stable populations (Stable) and declining populations (Declining); Graph 
B shows CORT values of breeding populations across North America (Mississippi, MS; 
Alabama, AL; Texas; British Columbia, BC; Washington State, WA; Saskatchewan, SK; 
Ontario, ON); Graph C shows CORT values of feathers grown in four different wintering 
locations in South America (Gr1: Western areas west of Andes, Gr2: Western areas east of 
Andes, Gr3: North-eastern central areas, Gr4: North-eastern areas). Numbers in brackets denote 
sample sized. Note different scale of CORT values.  
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Figure 3.10. Relationships between hydrogen, carbon and nitrogen stable isotope values and 
measurements of corticosterone (CORT) of feathers of adult Barn Swallows grown in the 
wintering grounds.  
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3.4. Discussion    

3.4.1. Annual survival and weather  

A clear effect of ENSO on inter-annual survival of Barn Swallows was found for birds 

breeding in Washington State but not for birds breeding in Ontario. Apparent annual survival of 

swallows in Washington State were strongly and negatively correlated with average SOI values 

for the breeding months, showing that they were lower during La Niña years and higher during 

El Niño years, while survival rates for Ontario birds remained constant over time. 

These results can be explained based on the differential effect of ENSO across North 

America. Temperature and precipitation rates in western and northern areas of North America, 

where the Washington State population is located, tend to be highly affected by ENSO; while 

north-eastern areas, such as Ontario, tend to be not so affected. (Shabbar and Khandekar 1996, 

Shabbar et al. 1997). In addition, in western North America La Niña phase characterizes by 

colder and wetter conditions especially in the winter, and these conditions have been previously 

shown to have a negative effect on survival of aerial insectivore species (Dence 1946, Ligon 

1968, Whitmore et al. 1977, Brown and Brown 1999b). 

Weather conditions on the wintering grounds appear to have also differential effects on inter-

annual survival rates of Barn Swallows breeding in Washington State and Ontario. Annual 

survival probabilities of Washington State swallows varied primarily with ENSO-related weather 

conditions on the breeding grounds, while weather conditions on the wintering grounds seem to 

have an additional but not so strong effect. Survival rates in Washington State were significantly 

higher during El Niño-winters, while survival rates decreased in years characterized by La Niña-

winters. The fact that the best model for Washington State did not include SOI in the wintering 

grounds could be due to the effect of the low value of inter-annual survival probability for one El 

Niño winter. 
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These results suggest that Barn Swallows breeding in Washington State may migrate to areas 

in south-eastern South America where ENSO correlates with precipitation rates. In those areas, 

El Niño-years characterized by high rainfall rates during the wintering months (Ropelewski and 

Halpert 1987), and since the amount of precipitation on the wintering grounds is positively 

correlated with the amount of insect biomass available, these individuals may experience lower 

mortality rates during those years (Szép 1995, Sillett et al. 2000, Strong and Sherry 2000). In 

contrast, no significant correlation between survival and SOI for the winter months was found 

for the breeding colony in Ontario. A similar lack of correlation between survival probability of a 

population and ENSO conditions on wintering grounds have been shown for Black-throated Blue 

Warblers (Dendroica caerulescens) breeding in New Hampshire (Sillett et al. 2000). Annual 

survival rates of a population wintering in Jamaica correlated with ENSO changes but no 

correlation was found for a breeding population in New Hampshire. Sillett et al. (2000) 

suggested that breeding individuals from the New Hampshire site disperse more extensively on 

the wintering grounds, occupying some areas where the impact of ENSO on weather conditions 

is important and others where ENSO has no effect. In a study of Purple Martins (Progne subis) 

breeding in north-western Pennsylvania, Stutchbury et al. (2009a) also found no evidence that 

ENSO influenced adult survival and hypothesized that this lack of correlation was due to low 

migratory connectivity. In my study, differences in the effect of ENSO-related conditions on the 

wintering grounds between colonies may be related to the geographical location of the wintering 

areas and the degree of migratory connectivity of the populations. Since the effect of ENSO on 

weather conditions in South America is also geographically dependant, birds breeding in Ontario 

may winter in areas in South America not so severely influenced by ENSO. In addition, results 

from Chapter 2 suggest significantly weaker migratory connectivity for Barn Swallows breeding 
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in Ontario, suggesting that these birds may disperse extensively in the wintering grounds. 

Therefore, the effect of ENSO on the annual survival probability of the population may be 

difficult to detect since individuals could be affected differently by ENSO at these different 

geographical locations. In contrast, results of migratory connectivity for birds breeding in 

Washington State suggest stronger connectivity for this population, so individuals breeding in 

this location may be segregating more extensively on the wintering grounds going to areas where 

the effect of ENSO in weather is more significant. I found there was no correlation between 

winter and summer SOI indices, so they seem to be two independent variables feasible to be used 

as a measure of weather conditions on breeding and wintering months. However, it should be 

considered that these variables are additionally including weather conditions during migration 

and not only breeding and wintering periods.  

Extensive cold weather periods early in the breeding season were negatively associated with 

apparent survival rates of Barn Swallows breeding in Washington State, but there was no 

correlation for birds breeding in Ontario. I additionally found that the number of consecutive 

cold spring-days for the period 1968-2011 was particularly high in those areas showing negative 

population trends (Ontario and Washington State), while regions where Barn Swallow 

populations tend to be stable or increasing (Mississippi and Alabama) experienced fewer cold 

weather events, suggesting that this variable can play a role in the differential population 

dynamics of the species. Although long-term effects of abnormal high mortality episodes are 

difficult to prove, their immediate effects on population trends have been previously documented 

for aerial insectivore species. For instance, populations of Barn Swallows breeding in Germany 

and Denmark were shown to be reduced by 20%-50% due to an early period of cold during fall 

migration in the previous year (Møller 2011). Similar observations were reported for breeding 
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Cliff Swallows in the northern Central Plains, where the frequency of unseasonable weather 

periods in spring caused large mortality events which may have lead to a natural selection of 

birds arriving late in the season (Brown and Brown 2000). However, the frequency of these cold 

episodes in the spring seems to have not increased in the last few decades when the intense 

declines of the species was initiated, and we cannot conclude that this factor therefore driving 

population declines of Barn Swallows. 

Average apparent survival rates of Barn Swallows breeding in Ontario and Washington State 

were similar and were slightly higher when compared with values from other breeding colonies 

in Europe. Møller and Szép (2002) found that survival probabilities of a Danish population of 

Barn Swallows varied over time during a 10-year period, showing survival probabilities for 

males of 34.3% and 33.8% for females. Additionally, overall survival of Barn Swallows 

breeding in Britain was approximately 40% (Robinson et al. 2008). A study on the effects of 

radiation caused by the explosion of the nuclear reactor at Chernobyl on survival of Barn 

Swallows showed extremely low survival probabilities in highly contaminated areas (28%) in 

comparison to areas with low contamination levels (40%) (Møller et al. 2005, Møller et al. 

2012). Further studies using stable isotope analyses suggested that the Chernobyl population is 

recruiting individuals from an extensive wintering area (Møller et al. 2006).  

Ontario and Washington State birds showed similar inter-annual survival rates between sexes, 

suggesting that similar factors might be influencing the survival rate of the two sexes. These 

findings agree with previous studies of survival rates in Sand Martins (Riparia riparia) breeding 

in Hungary (Szép 1995) and Cliff Swallows in the northern Great Plains (Brown and Brown 

1996). In the case of European Barn Swallows, survival rates of males and females breeding in 
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Denmark did not vary in parallel though time and were instead negatively correlated with tail 

length for males and positively for females (Møller and Szép 2002). 

3.4.2. Reproductive success and spring weather  

Environmental conditions early in the breeding season related to ambient temperature had a 

significant effect on the reproductive performance of Barn Swallows breeding in Manitoba and 

Washington State, while weather variables associated with precipitation had little effect. 

In insectivorous birds, timing of breeding is often synchronized with the peak in insect 

abundance to enhance reproductive performance (Lack 1968, Visser et al. 1998) and previous 

studies have shown positive relationships between an increase in food supplies and reproductive 

parameters (Boutin 1990). However, periods of low temperature could reduce the amount of 

insects available during the breeding season to raise young (Bryant 1975, O'Connor 1979) and 

can cause smaller egg clutches, reduced immune response and body condition of young and 

overall lower reproductive success rates (Ojanen et al. 1981, Dawson 2008). In contrast, warmer 

ambient temperatures could lead to a greater food supply and have been proven to relate to a 

reduction in incubation time, increase of body mass, as well as with a enhance of development 

rate of young swallows (Dawson et al. 2005, Dunn 2006, Ardia et al. 2010). Despite previous 

findings suggesting the negative effect of cool and rainy days on reproductive success of 

insectivore birds (Collister and Wilson 2007, Arlettaz et al. 2010); this study found no 

correlation between annual reproductive success and precipitation weather variables, suggesting 

that precipitation at the areas where the study was performed is not a limiting factor.  

Historical reproductive success values estimated from 1968 to 2011 showed some variation 

over the years, potentially related to normal annual weather anomalies. However, no significant 

decrease in reproductive performance since 1968 was found for either of the two studied 

colonies. Apart from the effect that weather conditions could have on the reproductive success of 
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Barn Swallows, there are other factors especially related to nest predation that could affect 

fecundity. These results suggest that population declines experienced in those locations might 

not be related with a decrease in fecundity rates over the years due to weather conditions. 

However, it cannot be concluded that fecundity has not contributed to population declines, since 

there might be other factors having an effect on reproductive success that should be considered.  

3.4.3. Wintering ground stressors 

Barn Swallows experiencing stressors on wintering grounds where they grow feathers were 

expected to show higher CORT levels than unstressed populations. However, no differences in 

feather CORT concentrations were found for individuals breeding in stable compare to declining 

populations, or for individuals occupying different breeding and/or wintering locations, possibly 

because all populations were exposed to similar wintering conditions. Alternatively, individuals 

may indeed be exposed to different stressors on the wintering grounds, but the assumption that 

variation in CORT levels on the wintering grounds is correlated with relative fitness is yet to be 

proven for this species (Breuner et al. 2008, Bonier et al. 2009, Sheriff et al. 2011). 

The no significant correlation between feather-concentrations of CORT and feather δ2H, δ13C 

and δ15N values corroborates that geographic location of wintering grounds and habitat used 

during the non-breeding season had little effect on stress-related physiological responses during 

the molt phase. A recent study has made the first successful attempt to combine stable isotope 

analyses and CORT level measurement techniques to test the effect of environmental factors on 

the stress response of birds. Barger and Kitaysky (2012) studied the feeding behavior of two 

seabird species with highly similar dietary needs based on stable isotope profiles of blood and 

their physiological stress response to changes in food availability and oceanographic conditions. 

Additionally, Marra et al. (1998) and Marra and Holberton (1998) showed that individuals 

wintering in low-quality scrub habitats (with more enriched levels of 13C) presented elevated 
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plasma CORT concentrations and more deteriorated physical condition than those wintering in 

high-quality mangrove habitats (with more depleted levels of 13C). Results from my study may 

not correspond with Marra et al. (1998) and Marra and Holberton (1998) potentially because 

stressors in the wintering grounds are not limiting factors affecting population sizes of North 

American Barn Swallows or due to differences in the applied techniques to measure CORT.  

Overall, this study suggests a differential effect of ENSO on inter-annual survival rates of 

Barn Swallows breeding in Washington State and Ontario, potentially due to geographical 

variation in ENSO effect on weather conditions across North America and the degree of 

migratory connectivity of populations. Local weather conditions related to temperature variables 

(especially length of cold weather periods) were shown to have an effect on reproductive success 

rates of Barn Swallows, but there has not been a clear decline on reproductive success modeled 

by changes in weather over time. In addition, analyses of CORT levels in feathers did not reveal 

enough evidence to suggest that declining populations are subjected to stronger winter stressors 

than stable populations.   
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CHAPTER 4. SUMMARY AND SYNTHESIS 

Establishing geographic links between different stages of the annual cycle (breeding, 

migration and wintering) of migratory species is fundamental to our understanding of factors 

limiting their populations (Webster et al. 2002, Webster and Marra 2005 ). Factors on the 

breeding grounds have an important effect on fecundity rates as well as age-specific survival, 

while factors on the wintering grounds mainly have an impact on overwinter survival (Sherry 

and Holmes 1995). Periods of the annual cycle are inextricably linked and events occurring 

during previous seasons could have an effect on subsequent seasons and influence population 

sizes (Webster and Marra 2005 ). A large variety of extrinsic and intrinsic markers have been 

used to track migratory movements of avian species. Specifically, the abundance of naturally 

occurring stable isotopes in avian tissues have been one of the most applied techniques to 

evaluate migratory connectivity of populations (Hobson and Norris 2008). Other intrinsic 

markers such as genetics, contaminants, parasites, or trace elements have been also combined 

with stable isotopes to improve inferences (Ricklefts et al. 2005, Smith et al. 2005, Boulet et al. 

2006, Hobson and Wassenaar 2008, Poesel et al. 2008, Behrooz et al. 2009, Szép et al. 2009, 

Yogui and Sericano 2009, Chabot et al. 2012, Hobson et al. 2012d).  

The Barn Swallow (Hirundo rustica), a long distance migrant and an aerial insectivore, has 

declined drastically in most of North America but its populations remain stable in the southern 

USA (Nebel et al. 2010, Sauer et al. 2011, Bird Studies Canada et al. 2012). Reasons for these 

differential trends and whether factors on breeding and/or wintering grounds could be causing 

these declines remain unclear. Some of the most likely factors affecting populations negatively in 

both breeding and wintering areas are habitat loss, habitat degradation (e.g. predation, food 

availability, diseases and parasites), weather stochasticity, and human persecution (i.e. 
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destruction of nests and nest sites). Here, I relied on stable isotope analyses (δ13C, δ15N, δ2H) of 

Barn Swallow feathers grown on the wintering grounds to establish patterns of migratory 

connectivity of breeding populations of the species. I also evaluated evidence for factors 

operating during different stages of the annual cycle causing regional differences in population 

declines. The approach was to: 1) examine the impacts of ENSO-related weather conditions on 

breeding and wintering areas on annual survival, 2) investigate the influence of weather 

conditions on the breeding grounds on annual fecundity rates, and 3) study the potential 

differential effect of stressors on the wintering grounds on stable and declining populations 

4.1. Wintering origins and migratory connectivity  

Measurements of δ13C, δ15N, and δ2H on feathers can provide information about likely 

geographic origins of birds during molt (Hobson and Wassenaar 2008), and this information 

could be of great importance in characterizing the degree of migratory connectivity of 

populations. δ2H, δ13C and δ15N values of winter-grown feathers of Barn Swallows and prior 

information on distribution of vegetation types in South America were used in Chapter 2 to 

identify potential wintering areas of individuals from different breeding populations in North 

America and to evaluate migratory connectivity.  

Populations of North American Barn Swallows presented a diverse range of migratory 

connectivity based on δ2H, δ13C and δ15N analyses and the assignment of individuals from same 

populations to a single or multiple isotopic clusters. Populations in eastern and western North 

America showed a stronger pattern of segregation on the wintering grounds than populations 

located in the central region of the breeding range of the species. This pattern of differential 

levels of connectivity among populations was also found for the species in Europe (Ambrosini et 

al. 2009, Hobson et al. 2012a).  
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When migratory connectivity of Barn Swallows was compared with Cliff Swallows 

(Petrochelidon pyrrhonota), a stronger pattern of connectivity was found for the most colonial 

species, suggesting a stronger effect of the heritable element which force individuals from the 

same breeding colony to return to the same breeding location (Brown and Brown 2000) for Cliff 

than Barn Swallows.  

A progressive longitudinal shift of wintering grounds was additionally found for the species 

combining feather stable isotope profiles and the theoretical distribution of C3 and C4 plants in 

South America as a prior. Most likely wintering areas for northern and western breeding birds 

corresponded with western South America, while birds breeding in southern and eastern North 

America tended to occupy areas in north-eastern South America, suggesting that the dispersal of 

Barn Swallows is limited differently in some parts of the breeding range than in others, 

potentially due to different migratory routes followed by individuals. These findings agree with 

previous studies on European Barn Swallows which suggested a spatial structure in wintering 

origins for Barn Swallows (Evans et al. 2003, Hobson et al. 2012a).  

Populations of Barn Swallow that exhibit a stable/increasing population trend (i.e. Mississippi 

and Alabama) showed overall stronger patterns of connectivity than the rest of populations in 

North America. These finding contrast with previous studies which suggested a higher 

vulnerability to factors in the wintering grounds of populations with strong migratory 

connectivity (Dolman and Sutherland 1995, Webster et al. 2002, Webster and Marra 2005 ) and 

evidence the potential role that wintering grounds factors can be playing in population dynamics 

of Barn Swallow in North America. The majority of birds breeding in these stable/increasing 

regions occupy areas in north-eastern South America, which exhibit certain characteristics highly 

beneficial for Barn Swallows, such as warm temperatures and high precipitation rates all year 
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around, and high availability of foraging areas (Szép 1995, Sillett et al. 2000, Strong and Sherry 

2000, Morelo 2002). In contrast, most of individuals from declining populations tend to 

overwinter in western and central South America, where temperatures and precipitation rates are 

significantly lower and good quality foraging areas are significantly less available (Morelo 

2002). Despite these findings, there is no evidence for a recent change in habitat quality for those 

western regions in the past few decades when population declines started to be more severe and 

we are therefore not able to relate those population declines with habitat quality. 

This study has provided novel and significant information on migratory connectivity between 

breeding and non-breeding areas and wintering origins of Barn Swallows breeding in different 

locations across North America. Despite the apparent limitations of stable isotope techniques on 

the identification of geographical origins, the use of a multi-isotope approach and the 

combination of prior information on geographic distribution of vegetation types has resulted 

extremely useful to constrain geographic origins of migrants and these results have improved 

significantly the limited information regarding seasonal linkages of a long-distance migrants’ 

population. However, future studies combining direct-tracking techniques or geographical 

distribution of trace elements is needed to further constraint the broad geographic origins of Barn 

Swallows.   

4.2. Factors on breeding and wintering grounds  

4.2.1. ENSO-related weather conditions  

Despite the growing concern regarding declines in populations of aerial insectivore species 

like Barn Swallow, potential reasons for population declines across North America remain 

poorly known. Several studies have attempted to identify specific factors that could be driving 

demographics of migratory aerial insectivore species in decline. However, identifying these 

factors is extremely challenging due to the large variety of confounding effects that affect annual 
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survival and reproduction rates across the entire annual cycle of migratory species (Sherry and 

Holmes 1995). In Chapter 3, I attempted to determine the potential effect of weather factors at a 

large and local scale on inter-annual survivorship and fecundity of Barn Swallows and to identify 

some of the ecological factors that could be driving the population declines of Barn Swallows in 

North America. 

Model selection methodology was applied to long-term mark-recapture data of two breeding 

colonies of Barn Swallow in Seattle, Washington State, USA and Guelph area, Ontario, Canada, 

to study the effect of large-scale weather conditions on both breeding and wintering grounds on 

annual survival rates of Barn Swallows in North America. The averaged Southern Oscillation 

Index (SOI) values for spring and winter months was used to define El Niño Southern 

Oscillation (ENSO) conditions on breeding and wintering sites respectively. I additionally tested 

whether the length of cold periods in spring affected negatively individual survival. This study 

revealed significant differences in the effect of ENSO-related weather conditions on annual 

survivorship between the two studied populations. Strong evidences for weather conditions 

related to ENSO on the breeding and wintering grounds causing differential inter-annual 

survivorship on Barn Swallows breeding were found for the Washington State population. In 

contrast, no correlation between survival probability and ENSO-related weather conditions was 

found for birds breeding in Ontario. In Washington State, years characterized by El Niño 

conditions during breeding months showed significantly higher apparent annual survival rates 

than years when breeding season-weather was characterized by the La Niña phase. A potential 

explanation for this finding is that, in North America, La Niña phase corresponded with colder 

and wetter weather conditions (Shabbar and Khandekar 1996, Shabbar et al. 1997), which have 

been previously shown to have a negative effect on survival of aerial insectivore species (Dence 
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1946, Ligon 1968, Whitmore et al. 1977, Brown and Brown 1999b). Weather conditions related 

to ENSO during wintering months were found to be also of importance for inter-annual survival 

rates. This finding could be explained by the differential geographical location of wintering areas 

of the breeding populations of Barn Swallows and the differential degree of migratory 

connectivity of populations determined in Chapter 2 (Table 2.3. and Figure 2.4.). The effects of 

ENSO on weather conditions vary significantly across South America and birds breeding in 

Washington State may be wintering in regions where ENSO has an important effect on weather 

and the El Niño phase correlates with higher precipitation rates. In contrast, breeding birds from 

Ontario may occupy areas in South America which weather conditions seem to be less 

influenced by ENSO. Additionally, birds breeding in Ontario tend to disperse more extensively 

on the wintering grounds than Washington State birds and the effect of ENSO on the annual 

survival probability of the population may be difficult to detect since individuals could be 

affected differently by ENSO-related weather conditions at these different geographical 

locations. Akaike’s Information Criterion (AIC) model selection and averaging analyses 

suggested that the length of cold periods in spring had a strong negative effect on inter-annual 

survival for Barn Swallows breeding in Washington State but not for those breeding in Ontario. 

These results agree with previous studies that showed particularly high mortality rates of 

insectivorous birds after relatively extensive periods of cold weather in the spring in several 

areas in North America (Dence 1946, Ligon 1968, Whitmore et al. 1977, Brown and Brown 

1999b). I found that North American locations where Barn Swallow populations are in decline 

encounter significantly longer periods of cold weather in the spring over the years than those 

breeding in stable areas. These results support the hypothesis that inclement weather after arrival 
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from spring migration and early in the breeding season could have an important effect on 

reproductive success and survivorship of Barn Swallows.      

4.2.2. Effects of spring weather on fecundity 

The effect of weather conditions on the breeding grounds on annual fecundity rates of Barn 

Swallows from two breeding colonies in North America was examined and weather variables 

with a significant effect on reproductive success were identified. Results suggested that annual 

reproductive success of Barn Swallows varies significantly according to maximum and minimum 

spring temperatures and length of cold periods in the spring, suggesting a larger effect of 

temperature than precipitation parameters. These results confirm the important role that 

temperature plays in the reproductive performance of aerial insectivorous birds and open new 

questions regarding the future impact on the demographics of these species in response to global 

changes in weather. The extent of cold periods in the spring had been previously shown to have a 

negative effect on adult survival of aerial insectivore species (Brown and Brown 2000, Newton 

2007), and these results confirm the important effect of this factor on the reproductive success of 

this group. In contrast with previous studies which have suggested the negative effect of both 

cold and rainy periods during the breeding season on the reproductive performance of insectivore 

birds (Collister and Wilson 2007, Arlettaz et al. 2010), my results show that spring weather 

variables related to the length of consecutive day-periods of cold weather and the minimum and 

maximum daily temperatures were the only weather-related factors that affected the overall 

productivity of Barn Swallows on the breeding grounds.  

4.2.3. Stressors on wintering grounds 

Potential differences in stress experienced by birds on the wintering grounds were evaluated 

using corticosterone (CORT) concentrations on winter-grown feathers. I predicted that birds 

from declining populations will have higher feather CORT levels than birds from stable 
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populations, since long-term environmental perturbations can have a profound impact on 

physiological parameters of organisms, and could consequently affect negatively their population 

trends (Romero et al. 2009). Despite this assumption, CORT levels of individuals did not differ 

from stable and declining populations. Similar results were found for birds breeding in 

geographically separated regions in South America. These results show no evidence for the 

negative effect of CORT-related stressors on the wintering grounds during molt as potential 

reasons for the decline of Barn Swallows in North America. However, it is important to 

recognize that feather-CORT is but one parameter that might honestly reflect environmental 

conditions during molt and much more research is required to ascertain if wintering ground 

factors are negatively influencing swallow populations in North America. 

4.3. Conclusions  

Populations of Barn Swallows in North America experience a diverse range of migratory 

connectivity. Populations in central regions of North America tended to mix more extensively on 

the wintering grounds while populations in western and eastern North America exhibited 

stronger patterns of migratory connectivity with at least half of their entire population 

overwintering in the same wintering region. Interestingly, those populations with strong 

connectivity located in southern US showed a more positive population trend in comparison with 

the rest of populations in North America, suggesting the importance of wintering locations and 

factors affecting individuals at those locations on the population dynamics of the species.  

I found evidence for a differential effect of ENSO-related weather conditions on breeding and 

wintering grounds on survivorship of Barn Swallows, potentially due to geographical variation in 

ENSO effect on weather conditions across North America and the degree of migratory 

connectivity of populations. Local weather conditions related to temperature variables 
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(especially length of cold weather periods) were shown to have an effect on reproductive success 

rates of Barn Swallows. In addition, analyses of CORT levels in feathers did not reveal enough 

evidence to suggest that declining populations are subjected to stronger winter stressors than 

stable populations.   

This study has provided a first attempt to identify factors occurring on breeding and/or 

wintering grounds that could have an effect on population sizes of Barn Swallows in North 

America. Further work to understand the profound declines of Barn Swallows, and of aerial 

insectivores overall, should attempt to study how weather conditions (i.e. La Niña events and 

extensive cold weather periods early in the spring) have varied over time and whether these 

changes correlate with the existed patterns of population decline of the species. In addition, 

future work should focus on enhancing the knowledge on habitat requirements of the species in 

the wintering grounds, as well as on identifying specific hot-spots in those regions. Geographical 

differences in habitat quality on the wintering grounds could be studied further by applying 

geospatial techniques such as the Normalized Difference Vegetation Index (NDVI) for South 

America (Balbontín et al. 2009). Following studies should also focus on addressing the effects 

that other factors could have on population size of Barn Swallows, such as contaminants, human 

persecution and habitat transformation on the breeding grounds.   

 



101 

LIST OF REFERENCES 

Akaike, H. (1973). Information theory as an extension of the maximum likelihood principle. 
Second International Symposium on Information Theory, Akademiai Kiadi. 

Alexander, R. D. (1974). The evolution of social behavior. Annual Review of Ecology and 
Systematics 5: 325-383. 

Ambrosini, R., A. M. Bolzern, L. Canova, et al. (2002). The distribution and colony size of Barn 
Swallows in relation to agricultural land use. Journal of Applied Ecology 39(3): 524-534. 

Ambrosini, R., A. P. Møller and N. Saino (2009). A quantitative measure of migratory 
connectivity. Journal of Theoretical Biology 257(2): 203-211. 

Ambrosini, R., D. Rubolini, A. P. Moller, et al. (2011). Climate change and the long-term 
northward shift in the African wintering range of the Barn Swallow Hirundo rustica. 
Climate Research 49(2): 131-141. 

Amirault, D. L., F. Shaffer, K. Baker, et al. (2006). Preliminary results of a five year banding 
study in eastern Canada: Support for expading conservation efforts to non-breeding sites? 
Proceedings of the Symposium on the Wintering Ecology and Conservation of Piping 
Plovers. D. R. Rabon. Raleigh, U.S. Fish and Wildlife Service  

Anderson, D. R., K. P. Burnham and W. L. Thompson (2000). Null hypothesis testing: Problems, 
prevalence, and an alternative. The Journal of Wildlife Management 64(4): 912-923. 

Ardia, D. R., J. H. Pérez and E. D. Clotfelter (2010). Experimental cooling during incubation 
leads to reduced innate immunity and body condition in nestling Tree Swallows. 
Proceedings of the Royal Society B: Biological Sciences 277(1689): 1881-1888. 

Arlettaz, R., M. Schaad, T. S. Reichlin, et al. (2010). Impact of weather and climate variation on 
Hoopoe reproductive ecology and population growth. Journal of Ornithology 151(4): 
889-899. 

Arnold, T. W. (2010). Uninformative parameters and model selection using Akaike's Information 
Criterion. Journal of Wildlife Management 74(6): 1175-1178. 

Askins, R. A., J. F. Lynch and R. Greenburg (1990). Population declines in migratory birds in 
eastern North America. Current Ornithology 7: 1-57. 

Austin, A. T. and O. E. Sala (1999). Foliar δ15N is negatively correlated with rainfall along the 
IGBP transect in Australia. Australian Journal of Plant Physiology 26(3): 293-295. 



 

102 

Bächler, E., S. Hahn, M. Schaub, et al. (2010). Year-round tracking of small Trans-Saharan 
migrants using light-level geolocators. PLoS ONE 5(3): e9566. 

Baillie, S. R. and W. J. Peach (1992). Population limitation in Palaearctic-African migrant 
passerines. Ibis 134: 120-132. 

Bairlein, F., D. R. Norris, R. Nagel, et al. (2012). Cross-hemisphere migration of a 25 g 
songbird. Biology Letters 8(4): 505-507. 

Balbontín, J., A. P. Møller, I. G. Hermosell, et al. (2009). Individual responses in spring arrival 
date to ecological conditions during winter and migration in a migratory bird. Journal of 
Animal Ecology 78(5): 981-989. 

Barclay, R. M. R. (1988). Variation in the costs, benefits, and frequency of nest reuse by Barn 
Swallows (Hirundo rustica). The Auk 105(1): 53-60. 

Barger, C. P. and A. S. Kitaysky (2012). Isotopic segregation between sympatric seabird species 
increases with nutritional stress. Biology Letters 8(3): 442-445. 

Barrett, R. T. (2002). The phenology of spring bird migration to north Norway. Bird Study 49(3): 
270-277. 

Barron, D. G., J. D. Brawn and P. J. Weatherhead (2010). Meta-analysis of transmitter effects on 
avian behaviour and ecology. Methods in Ecology and Evolution 1(2): 180-187. 

Bartomeus, I., J. S. Ascher, D. Wagner, et al. (2011). Climate-associated phenological advances 
in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of 
Sciences 108(51): 20645-20649. 

Bearhop, S., D. R. Thompson, S. Waldron, et al. (1999). Stable isotopes indicate the extent of 
freshwater feeding by Cormorants Phalacrocorax carbo shot at inland fisheries in 
England. Journal of Applied Ecology 36(1): 75-84. 

Bearhop, S., G. M. Hilton, S. C. Votier, et al. (2004). Stable isotope ratios indicate that body 
condition in migrating passerines is influenced by winter habitat. Proceedings of the 
Royal Society of London. Series B: Biological Sciences 271(Suppl 4): S215-S218. 

Beebee, T. J. C. (1995). Amphibian breeding and climate. Nature 374(6519): 219-220. 

Behrooz, R., A. Esmaili-Sari, S. Ghasempouri, et al. (2009). Organochlorine pesticide and 
polychlorinated biphenyl in feathers of resident and migratory birds of south-west Iran. 
Archives of Environmental Contamination and Toxicology 56(4): 803-810. 



 

103 

Berthold, P. (1984). The endogenous control of bird migration: A survey of experimental 
evidence. Bird Study 31(1): 19-27. 

Berthold, P., A. J. Helbig, G. Mohr, et al. (1992). Rapid microevolution of migratory behaviour 
in a wild bird species. Nature 360: 668-670. 

Berthold, P., W. Fiedler, R. Schlenker, et al. (1998). 25-year study of the population 
development of central European songbirds: A general decline, most evident in long-
distance migrants. Naturwissenschaften 85(7): 350-353. 

Berthold, P. (2001). Bird migration: A general survey. New York, USA, Oxford University 
Press, Inc. 

Billerman, S. M., G. H. Huber, D. W. Winkler, et al. (2011). Population genetics of a recent 
transcontinental colonization of South America by breeding Barn Swallows (Hirundo 
rustica). The Auk 128(3): 506-513. 

Bird Studies Canada, EC-CWS, NB Department of Natural Resources, et al. (2012). Maritimes 
Breeding Bird Atlas dataset. Maritimes Breeding Bird Atlas website. 

BirdLife International. (2012). Hirundo rustica. IUCN 2012. IUCN Red List of Threatened 
Species. Version 2012.1., 2012. 

Bize, P., A. Klopfenstein, C. Jeanneret, et al. (2007). Intra-individual variation in body 
temperature and pectoral muscle size in nestling Alpine Swifts Apus melba in response to 
an episode of inclement weather. Journal of Ornithology 148(4): 387-393. 

Blake, J. G., G. J. Niemi and i. J. M. Hanowsk (1992). Drought and annual variation in bird 
populations. Ecology and conservation of neotropical migrant landbirds. J. M. Hagan 
and D. W. Johnston. Washington D.C, USA, Smithsonian Institution Press: 419-430. 

Bohning-Gaese, K., M. L. Taper and J. H. Brown (1993). Are declines in North American 
insectivorous songbirds due to causes on the breeding range? Conservation Biology 7(1): 
76-86. 

Bonier, F., P. R. Martin, I. T. Moore, et al. (2009). Do baseline glucocorticoids predict fitness? 
Trends in Ecology & Evolution 24(11): 634-642. 

Bortolotti, G. R., T. A. Marchant, J. Blas, et al. (2008). Corticosterone in feathers is a long-term, 
integrated measure of avian stress physiology. Functional Ecology 22(3): 494-500. 



 

104 

Bortolotti, G. R., T. Marchant, J. Blas, et al. (2009). Tracking stress: localisation, deposition and 
stability of corticosterone in feathers. Journal of Experimental Biology 212(10): 1477-
1482. 

Bortolotti, G. R. (2010). Flaws and pitfalls in the chemical analysis of feathers: bad news-good 
news for avian chemoecology and toxicology. Ecological Applications 20(6): 1766-1774. 

Both, C. and M. E. Visser (2001). Adjustment to climate change is constrained by arrival date in 
a long-distance migrant bird. Nature 411(6835): 296-298. 

Boulet, M., H. L. Gibbs and K. A. Hobson (2006). Integrated analysis of genetic, stable isotope, 
and banding data reveal migratory connectivity and flyways in the northern Yellow 
Warbler (Dendroica petechia). Ornithological Monographs No. 61. The American 
Ornithologists' Union. California, USA, University of California Press: 29-78. 

Boulet, M. and D. R. Norris (2006). The past and present of migratory connectivity. 
Ornithological Monographs No. 61. The American Ornithologists' Union. California, 
USA, University of California Press: 1-13. 

Boutin, S. (1990). Food supplementation experiments with terrestrial vertebrates: Patterns, 
problems, and the future. Canadian Journal of Zoology 68(2): 203-220. 

Bowen, G. J., L. I. Wassenaar and K. A. Hobson (2005). Global application of stable hydrogen 
and oxygen isotopes to wildlife forensics. Oecologia 143(3): 337-348. 

Breuner, C. W., S. H. Patterson and T. P. Hahn (2008). In search of relationships between the 
acute adrenocortical response and fitness. General and Comparative Endocrinology 
157(3): 288-295. 

Brickle, N. W., D. G. C. Harper, N. J. Aebischer, et al. (2000). Effects of agricultural 
intensification on the breeding success of Corn Buntings Miliaria calandra. Journal of 
Applied Ecology 37(5): 742-755. 

Brigham, R. M., Janet N.G., R. G. Poulin, et al. (2001). Common Nighthawk (Chordeiles 
minor). The Birds of North America Online. A. Poole. Ithaca, Cornell Lab of 
Ornithology. 

Broekhuysen, G. J. and A. R. Brown (1963). The moulting pattern of european swallows, 
Hirundo rustica, wintering in the surroundings of Cape Town, South Africa. Ardea 51(1): 
3-43. 

Brown, C. R. and M. B. Brown (1986). Ectoparasitism as a cost of coloniality in Cliff Swallows 
(Hirundo pyrrhonota). Ecology 67(5): 1206-1218. 



 

105 

Brown, C. R., A. M. Knott and E. J. Damrose (1992). Violet-green Swallow (Tachycineta 
thalassina). The Birds of North America Online. A. Poole. New York, USA, Cornell Lab 
of Ornithology. 

Brown, C. R. and M. B. Brown (1995). Cliff Swallow (Petrochelidon pyrrhonota). The Birds of 
North America Online. A. Poole. New York, USA, Cornell Lab of Ornithology. 

Brown, C. R. and M. B. Brown (1996). Coloniality in the Cliff Swallow: The effect of group size 
on social behavior. Chicago, USA, University Of Chicago Press. 

Brown, C. R. (1997). Purple Martin (Progne subis). The Birds of North America Online. A. 
Poole. New York, USA, Cornell Lab of Ornithology. 

Brown, C. R. and M. B. Brown (1998). Intense natural selection on body size and wing and tail 
asymmetry in Cliff Swallows during severe weather. Evolution 52(5): 1461-1475. 

Brown, C. R. and M. B. Brown (1999a). Barn Swallow (Hirundo rustica). The Birds of North 
America Online. A. Poole. New York, USA, Cornell Lab of Ornithology. 

Brown, C. R. and M. B. Brown (1999b). Natural selection on tail and bill morphology in Barn 
Swallows Hirundo rustica during severe weather. Ibis 141(4): 652-659. 

Brown, C. R. and M. Brown (2000). Weather-mediated natural selection on arrival time in Cliff 
Swallows (Petrochelidon pyrrhonota). Behavioral Ecology and Sociobiology 47(5): 339-
345. 

Bryant, D. M. (1975). Breeding biology of House Martins (Delichon urbica) in relation to aerial 
insect abundance. Ibis 117(2): 180-216. 

Budnik, J. M., M. R. Ryan and F. R. Thompson Iii (2000). Demography of Bell's Vireos in 
Missouri grassland-shrub habitats. The Auk 117(4): 925-935. 

Burnham, K. P. and D. R. Anderson (2002). Model selection and multimodel inference: A 
practical information-theoretic approach. New York, USA, Springer. 

Bustnes, J. O., V. Bakken, K. E. Erikstad, et al. (2001). Patterns of incubation and nest-site 
attentiveness in relation to organochlorine (PCB) contamination in Glaucous Gulls. 
Journal of Applied Ecology 38(4): 791-801. 

Cadman, M. D., D. A. Sutherland, G. G. Beck, et al. (2007). Second atlas of breeding birds of 
Ontario (2001-2005). Ontario, Canada, Bird Studies Canada, Environment Canada, 
Ontario Field Ornithologists, Ontario Ministry of Natural Resources, and Ontario Nature. 



 

106 

Chabot, A. A., K. A. Hobson, S. L. Van Wilgenburg, et al. (2012). Advances in linking wintering 
migrant birds to their breeding-ground origins using combined analyses of genetic and 
stable isotope markers. PLoS ONE 7(8): e43627. 

Cink, C. L. and C. T. Collins (2002). Chimney Swift (Chaetura pelagica). The Birds of North 
America Online. A. Poole. New York, USA, Cornell Lab of Ornithology. 

Clark, R. G., K. A. Hobson and L. I. Wassenaar (2009). Corrigendum — Geographic variation in 
the isotopic (δD, δ13C, δ15N, δ34S) composition of feathers and claws from lesser scaup 
and northern pintail: implications for studies of migratory connectivity. Canadian 
Journal of Zoology 87(6): 553-554. 

Colborn, T., F. S. v. Saal and A. M. Soto (1993). Developmental effects of endocrine-disrupting 
chemicals in wildlife and humans. Environmental Health Perspectives 101(5): 378-384. 

Collister, D. M. and S. Wilson (2007). Contributions of weather and predation to reduced 
breeding success in a threatened northern Loggerhead Shrike population. Avian 
Conservation and Ecology 2(2). 

Cormack, R. M. (1964). Estimates of survival from the sighting of marked animals. Biometrika 
51(3-4): 429. 

COSEWIC (2007). Status report on the Commong Nighthawk Chordeiles minor. Committee on 
the Status of Endangered Wildlife in Canada. Ottawa, Canada. 

COSEWIC (2011). Assessment and status report on the Barn Swallow Hirundo rustica in 
Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa, Canada. 

COSSARO (2011). Candidate species at risk evaluation form for Barn Swallow (Hirundo 
rustica). Committee on the Status of Species at Risk in Ontario. Ottawa, Canada. 

Craine, J. M., A. J. Elmore, M. P. M. Aidar, et al. (2009). Global patterns of foliar nitrogen 
isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient 
concentrations, and nitrogen availability. New Phytologist 183(4): 980-992. 

Crick, H. Q. P. and T. H. Sparks (1999). Climate change related to egg-laying trends. Nature 
399(6735): 423-423. 

CWS (1991). Birds protected in Canada under the Migratory Birds Convention Act. Occasional 
Paper Number 1. Canadian Wildlife Service and Environment Canada. Ottawa, Canada. 

Dallman, M. F., S. F. Akana, K. A. Scribner, et al. (1992). Stress, feedback and facilitation in the 
hypothalamo-pituitary-adrenal axis. Journal of Neuroendocrinology 4(5): 517-526. 



 

107 

Dawson, R. D., C. C. Lawrie and E. L. O'Brien (2005). The Importance of microclimate 
variation in determining size, growth and survival of avian offspring: experimental 
evidence from a cavity nesting passerine. Oecologia 144(3): 499-507. 

Dawson, R. D. (2008). Timing of breeding and environmental factors as determinants of 
reproductive performance of Tree Swallows. Canadian Journal of Zoology 86(8): 843-
850. 

DeGraaf, R. M. and M. Yamasaki (2003). Options for managing early-successional forest and 
shrubland bird habitats in the northeastern United States. Forest Ecology and 
Management 185(1–2): 179-191. 

Dence, W. A. (1946). Tree Swallow mortality from exposure during unseasonable weather. The 
Auk 63(3): 440. 

DeNiro, M. J. and S. Epstein (1978). Influence of diet on the distribution of carbon isotopes in 
animals. Geochimica et Cosmochimica Acta 42(5): 495-506. 

Dolman, P. M. and W. J. Sutherland (1995). The response of bird populations to habitat loss. Ibis 
137: S38-S46. 

Doody, L. M., S. I. Wilhelm, D. W. McKay, et al. (2008). The effects of variable foraging 
conditions on Common Murre (Uria aalge) corticosterone concentrations and parental 
provisioning. Hormones and Behavior 53(1): 140-148. 

Doxa, A., A. Robert, A. Crivelli, et al. (2012). Shifts in breeding phenology as a response to 
population size and climatic change: Acomparison between short- and long-distance 
migrant species Auk 129(4): 753-762. 

Dunn, P. O. and D. W. Winkler (1999). Climate change has affected the breeding date of Tree 
Swallows throughout North America. Proceedings of the Royal Society of London. Series 
B: Biological Sciences 266(1437): 2487-2490. 

Dunn, P. O. (2006). Breeding dates and reproductive performance. Birds and climate change. A. 
P. Møller, W. Fiedler and P. Berthold. California, USA Academic Press: 69-85. 

ESRI (2011). ArcGIS 9.3. Redlands, CA, Environmental Systems Research Institute. 

Evans, K. L., S. Waldron and R. B. Bradbury (2003). Segregation in the African wintering 
ranges of English and Swiss Swallow Hirundo rustica populations: A stable isotope 
study. Bird Study 50(3): 294-299. 



 

108 

Evans, K. L., J. D. Wilson and R. B. Bradbury (2007). Effects of crop type and aerial 
invertebrate abundance on foraging Barn Swallows Hirundo rustica. Agriculture, 
Ecosystems &amp; Environment 122(2): 267-273. 

Faaborg, J., R. T. Holmes, A. D. Anders, et al. (2010). Recent advances in understanding 
migration systems of New World land birds. Ecological Monographs 80(1): 3-48. 

Ferrer, M. and J. A. Donazar (1996). Density-dependent fecundity by habitat heterogeneity in an 
increasing population of Spanish Imperial Eagles. Ecology 77(1): 69-74. 

Finch, D. M. (1991). Report on population ecology, habitat requirements and conservation of 
Neotropical migratory birds. Colorado, US, United States Department of Agriculture. 

Flockhart, D. T. T. and K. L. Wiebe (2008). Variable weather patterns affect annual survival of 
Northern Flickers more than phenotype in the hybrid zone. Condor 110(4): 701-708. 

France, R. L. (1995). Differentiation between littoral and pelagic food webs in lakes using stable 
carbon isotopes. Limnology and Oceanography 40(7): 1310-1313. 

France, R. L. and R. H. Peters (1997). Ecosystem differences in the trophic enrichment of C13 in 
aquatic food webs. Canadian Journal of Fisheries and Aquatic Sciences 54(6): 1255-
1258. 

Francis, D. M. (1980). Moult of European swallows in Central Zambia. Ringing & Migration 
3(1): 4-8. 

Freer, V. and B. Belanger (1981). A technique for distinguishing the age classes of adult Bank 
Swallows. Journal of Field Ornithology 52(4): 341-343. 

Fry, B. (2002). Stable isotopic indicators of habitat use by Mississippi river fish. Journal of the 
North American Benthological Society 21(4): 676-685. 

Fry, B. (2006). Stable isotope ecology. New York, USA, Springer Science  

Gard, N. W., M. J. Hooper and R. S. Bennett (1993). Effects of pesticides and contaminants on 
neotropical migrants. Status and Management of Neotropical Migratory Birds 229: 310-
314. 

Gard, N. W. and M. J. Hooper (1995). An assesment of potential hazards of pesticides and 
environmental contaminants. Ecology and management of neotrpical migratory birds. A 
synthesis and review of critical issues. T. E. Martin and D. M. Finch. New York, USA, 
Oxford University Press. 



 

109 

Gardarsson, A. and A. Einarsson (1997). Numbers and production of Eurasian Wigeon in 
relation to conditions in a breeding area, Lake Myvatn, Iceland. Journal of Animal 
Ecology 66(4): 439-451. 

Garrison, B. A. (1999). Bank Swallow (Riparia riparia). The Birds of North America Online. A. 
Poole. Cornell Lab of Ornithology, New York, USA. 

Gaston, A. J., H. G. Gilchrist, M. L. Mallory, et al. (2009). Changes in seasonal events, peak 
food availability, and consequent breeding adjustment in a marine bird: A case of 
progressive mismatching. The Condor 111(1): 111-119. 

George, T. L., A. C. Fowler, R. L. Knight, et al. (1992). Impacts of a severe drought on grassland 
birds in western North Dakota. Ecological Applications 2(3): 275-284. 

Gill, J. A., K. Norris, P. M. Potts, et al. (2001). The buffer effect and large-scale population 
regulation in migratory birds. Nature 412(6845): 436-438. 

Ginn, H. B. and D. S. Melville (1983). Molt in birds. Number 19. Hertfordshire, UK, British 
Trust for Ornithology. 

Girolami, V., L. Mazzon, A. Squartini, et al. (2009). Translocation of neonicotinoid insecticides 
from coated seeds to seedling guttation drops: A novel way of intoxication for bees. 
Journal of Economic Entomology 102(5): 1808-1815. 

Goldstein, M. I., T. E. Lacher, B. Woodbridge, et al. (1999). Monocrotophos-induced mass 
mortality of Swainson's Hawks in Argentina, 1995–96. Ecotoxicology 8(3): 201-214. 

Gonzalez-Prieto, A. M., K. A. Hobson, N. J. Bayly, et al. (2011). Geographic origins and timing 
of fall migration of the Veery in northern Colombia. Condor 113(4): 860-868. 

Grüebler, M. U., F. Korner-Nievergelt and J. Von Hirschheydt (2010). The reproductive benefits 
of livestock farming in Barn Swallows Hirundo rustica: Quality of nest site or foraging 
habitat? Journal of Applied Ecology 47(6): 1340-1347. 

Gwinner, E. (1987). Annual rhythms of gonadal size, migratory disposition and molt in Garden 
Warblers Sylvia borin exposed in winter to an Equatorial or a Southern Hemisphere 
photoperiod. Ornis Scandinavica 18(4): 251-256. 

Gwinner, E. (1996). Circannual clocks in avian reproduction and migration. Ibis 138(1): 47-63. 

Hart, A. D. M. (1993). Relationships between behavior and the inhibition of acetylcholinesterase 
in birds exposed to organophosphorus pesticides. Environmental Toxicology and 
Chemistry 12(2): 321-336. 



 

110 

Hart, J. D., T. P. Milsom, G. Fisher, et al. (2006). The relationship between Yellowhammer 
breeding performance, arthropod abundance and insecticide applications on arable 
farmland. Journal of Applied Ecology 43(1): 81-91. 

Hartigan, J. A. (1975). Clustering algorithms. New York, USA, Wiley. 

Hayden, T. J., D. J. Tazik, R. H. Melton, et al. (2000). Cowbird control program at Fort Hood, 
Texas: Lessons for mitigation of Cowbird parasitism on a landscape scale. Ecology and 
management of Cowbirds and their hosts. J.N.M. Smith, T.L. Cook, S.I. Rothstein, S.K. 
Robinson and S.G. Sealy. Austin, USA, University of Texas Press. 

Hebert, C. E. and L. I. Wassenaar (2001). Stable nitrogen isotopes in waterfowl feathers reflect 
agricultural land use in western Canada. Environmental Science & Technology 35(17): 
3482-3487. 

Henny, C. J., R. A. Grove, J. L. Kaiser, et al. (2010). North American Osprey populations and 
contaminants: Historic and contemporary perspectives. Journal of Toxicology and 
Environmental Health, Part B 13(7-8): 579-603. 

Hobson, K. A. and R. G. Clark (1992). Assessing avian diets using stable isotopes II: Factors 
influencing diet-tissue fractionation. The Condor 94(1): 189-197. 

Hobson, K. A. and L. I. Wassenaar (1997). Linking breeding and wintering grounds of 
Neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. 
Oecologia 19(1): 142-148. 

Hobson, K. A. (1999a). Tracing origins and migration of wildlife using stable isotopes: A 
review. Oecologia 120(3): 314-326. 

Hobson, K. A. (1999b). Stable-carbon and nitrogen isotope ratios of songbird feathers grown in 
two terrestrial biomes: Implications for evaluating trophic relationships and breeding 
origins. The Condor 101(4): 799-805. 

Hobson, K. A. (2005). Stable isotopes and the determination of avian migratory connectivity and 
seasonal interactions. Auk 122(4): 1037-1048. 

Hobson, K. A. (2007). An isotopic exploration of the potential of avian tissues to track changes 
in terrestrial and marine ecosystems. Stable isotopes as indicators of ecological change. 
T. Dawson & R. Siegwolf. London, UK, Academic Press: 129-144. 

Hobson, K. A. and D. R. Norris (2008). Animal migration: a context for using new techniques 
and approaches. Tracking animal migration using stable isotopes. K. A. Hobson and L. I. 
Wassenaar. London, UK, Elsevier Academic Press: 1-19. 



 

111 

Hobson, K. A. and L. I. Wassenaar (2008). Tracking animal migration using stable isotopes. 
London, UK, Elsevier Academic Press. 

Hobson, K. A., H. Lormee, S. L. Van Wilgenburg, et al. (2009a). Stable isotopes (δD) delineate 
the origins and migratory connectivity of harvested animals: the case of European 
woodpigeons. Journal of Applied Ecology 46(3): 572-581. 

Hobson, K. A., M. B. Wunder, S. L. Van Wilgenburg, et al. (2009b). A method for investigating 
population declines of migratory birds using stable isotopes: origins of harvested Lesser 
Scaup in North America. PLoS ONE 4(11): e7915. 

Hobson, K. A. (2011). Isotopic ornithology: A perspective. Journal of Ornithology 152(0): 49-
66. 

Hobson, K. A., A. P. Møller and S. L. Van Wilgenburg (2012a). A multi-isotope (δ13C, δ15N, 
δ2H) approach to connecting European breeding and African wintering populations of 
barn swallow (Hirundo rustica). Animal Migration 1: 8-22. 

Hobson, K. A., S. L. Van Wilgenburg, T. Piersma, et al. (2012b). Solving a migration riddle 
using isoscapes: House Martins from a dutch village winter over west Africa. PLoS ONE 
7(9): e45005. 

Hobson, K. A., S. L. Van Wilgenburg, L. I. Wassenaar, et al. (2012c). Linking hydrogen (δ2H) 
isotopes in feathers and precipitation: Sources of variance and consequences for 
assignment to isoscapes. PLoS ONE 7(4). 

Hobson, K. A., S. L. Van Wilgenburg, L. I. Wassenaar, et al. (2012d). A multi-isotope (δ13C, 
δ15N, δ2H) feather isoscape to assign Afrotropical migrant birds to origins. Ecosphere 
3(5): art44. 

Hochachka, W. M. and A. A. Dhondt (2000). Density-dependent decline of host abundance 
resulting from a new infectious disease. Proceedings of the National Academy of 
Sciences 97(10): 5303-5306. 

Holmes, J. C. (1996). Parasites as threats to biodiversity in shrinking ecosystems. Biodiversity 
and Conservation 5: 975-983. 

Jenni-Eiermann, S., E. Glaus, M. Grüebler, et al. (2008). Glucocorticoid response to food 
availability in breeding barn swallows (Hirundo rustica). General and Comparative 
Endocrinology 155(3): 558-565. 

Johnson, J. B. and K. S. Omland (2004). Model selection in ecology and evolution. Trends in 
Ecology & Evolution 19(2): 101-108. 



 

112 

Jones, T. and W. Cresswell (2010). The phenology mismatch hypothesis: Are declines of 
migrant birds linked to uneven global climate change? Journal of Animal Ecology 79(1): 
98-108. 

Jonzén, N., A. Lindén, T. Ergon, et al. (2006). Rapid advance of spring arrival dates in long-
distance migratory birds. Science 312(5782): 1959-1961. 

Kelly, J. F. (2000). Stable isotopes of carbon and nitrogen in the study of avian and mammalian 
trophic ecology. Canadian Journal of Zoology 78(1): 1-27. 

Kelly, J. F., M. J. Johnson, S. Langridge, et al. (2008). Efficacy of stable isotope ratios in 
assigning endangered migrants to breeding and wintering sites. Ecological Applications 
18(3): 568-576. 

King, D. T. (2001). Movements and mortality of American White Pelicans banded at Marsh 
Lake, Minnesota. North American Bird Bander 26(2). 

Klemens, J. A., R. G. Harper, J. A. Frick, et al. (2000). Patterns of organochlorine pesticide 
contamination in Neotropical migrant passerines in relation to diet and winter habitat. 
Chemosphere 41(7): 1107-1113. 

Kokko, H. (1999). Competition for early arrival in migratory birds. Journal of Animal Ecology 
68(5): 940-950. 

Lacher, T. E. and M. I. Goldstein (1997). Tropical ecotoxicology: Status and needs. 
Environmental Toxicology and Chemistry 16(1): 100-111. 

Lachish, S., S. C. L. Knowles, R. Alves, et al. (2011). Fitness effects of endemic malaria 
infections in a wild bird population: The importance of ecological structure. Journal of 
Animal Ecology 80(6): 1196-1206. 

Lack, D. (1968). Ecological adaptationsfor breeding in birds. London, UK, Methuen. 

LaManna, J. A., T. L. George, J. F. Saracco, et al. (2012). El Niño-Southern Oscillation 
influences annual survival of a migratory songbird at a regional scale. Auk 129(4): 734-
743. 

Lebreton, J.-D., K. P. Burnham, J. Clobert, et al. (1992). Modeling survival and testing 
biological hypotheses using marked animals: A unified approach with case studies. 
Ecological Monographs 62(1): 67-118. 

Lifjeld, J. T., P. O. Dunn and L. A. Whittingham (2002). Short-term fluctuations in cellular 
immunity of Tree Swallows feeding nestlings. Oecologia 130(2): 185-190. 



 

113 

Ligon, J. D. (1968). Starvation of spring migrants in the Chiricahua Mountains, Arizona. The 
Condor 70(4): 387-388. 

Link, W. A. and J. R. Sauer (2002). A hierarchical analysis of population change with 
application to Cerulean Warblers. Ecology 83(10): 2832–2840. 

Lott, C. A. and J. P. Smith (2006). A geographic-information-system approach to estimating the 
origin of migratory raptors in North America using stable hydrogen isotope ratios in 
feathers. Auk 123(3): 822-835. 

Lu, C., K. M. Warchol and R. A. Callahan (2012). In situ replication of honey bee colony 
collapse disorder. Bulletin of Insectology 65(1): 99-106. 

Maini, S., P. Medrzycki and C. Porrini (2010). The puzzle of honey bee losses: A brief review. 
Bulletin of Insectology 63(1): 153-160. 

Marra, P. P., K. A. Hobson and R. T. Holmes (1998). Linking winter and summer events in a 
migratory bird by using stable-carbon isotopes. Science 282(5395): 1884-1886. 

Marra, P. P. and R. L. Holberton (1998). Corticosterone levels as indicators of habitat quality: 
effects of habitat segregation in a migratory bird during the non-breeding season. 
Oecologia 116(1/2): 284-292. 

Marshall, J. D., J. R. Brooks and K. Latjha (2007). Sources of variation in the stable isotopic 
composition of plants. Stable isotopes in ecology and environmental science. R. 
Michener and K. Lajtha. Oxford and Northampton, UK, Blackwell Publishing Ltd. 

Marshall, M. R., R. J. Cooper, J. A. DeCecco, et al. (2002). Effects of experimentally reduced 
prey abundance on the breeding ecology of the Red-eyed Vireo. Ecological Applications 
12(1): 261-280. 

Martin, T. E. (1987). Food as a limit on breeding birds: A life-history perspective. Annual 
Review of Ecology and Systematics 18: 453-487. 

Martin, T. G., I. Chadès, P. Arcese, et al. (2007). Optimal conservation of migratory species. 
PLoS ONE 2(8): e751. 

Martinelli, L. A., M. C. Piccolo, A. R. Townsend, et al. (1999). Nitrogen stable isotopic 
composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46(1-
3): 45-65. 

Martinez, M. M. (1983). Nidificacion de Hirundo rustica erythrogaster (Boddaert) en la 
Argentina. (Aves, Hirundinidae). Neotrópica 29(81): 83-85. 



 

114 

Mason, R., H. Tennekes, F. Sánchez-Bayo, et al. (in press). Immune suppression by 
neonicotinoid insecticides at the root of global wildlife declines. Journal of 
Environmental Immunology and Toxicology. 

Mazerolle, D. F., K. W. Dufour, K. A. Hobson, et al. (2005). Effects of large-scale climatic 
fluctuations on survival and production of young in a Neotropical migrant songbird, the 
Yellow Warbler Dendroica petechia. Journal of Avian Biology 36(2): 155-163. 

McCracken, J. (2008). Are aerial insectivores being 'bugged out'? Bird Watch Canada 42: 4-7. 

McGowan, K. J. and K. Corwin (2008). The second atlas of breeding birds in New York State. 
New York, USA, Cornell University Press. 

Mineau, P., C. M. Downes, D. A. Kirk, et al. (2005). Patterns of bird species abundance in 
relation to granular insecticide use in the Canadian prairies. Ecoscience 12(2): 267-278. 

Mitchell, G. W., A. E. M. Newman, M. Wikelski, et al. (2012). Timing of breeding carries over 
to influence migratory departure in a songbird: An automated radiotracking study. 
Journal of Animal Ecology 81(5): 1024-1033. 

Møller, A. P. (1989). Population dynamics of a declining swallow Hirundo rustica population. 
Journal of Animal Ecology 58(3): 1051-1063. 

Møller, A. P. (1994). Phenotype-dependent arrival time and its consequences in a migratory bird. 
Behavioral Ecology and Sociobiology 35(2): 115-122. 

Møller, A. P. and T. Szép (2002). Survival rate of adult Barn Swallows (Hirundo rustica) in 
relation to sexual selection and reproduction. Ecology 83(8): 2220-2228. 

Møller, A. P., T. A. Mousseau, G. Milinevsky, et al. (2005). Condition, reproduction and 
survival of Barn Swallows from Chernobyl. Journal of Animal Ecology 74(6): 1102-
1111. 

Møller, A. P., K. A. Hobson, T. A. Mousseau, et al. (2006). Chernobyl as a population sink for 
Barn Swallow: Tracking dispersal using stable-isotope profiles Ecological Applications 
16(5): 1696-1705. 

Møller, A. P. (2011). Behavioral and life history responses to extreme climatic conditions: 
Studies on a migratory songbird. Current Zoology 57(3): 351-362. 

Møller, A. P., A. Bonisoli-Alquati, G. Rudolfsen, et al. (2012). Elevated mortality among birds 
in Chernobyl as judged from skewed age and sex ratios. PLoS ONE 7(4). 



 

115 

Mora, M. A. (1997). Transboundary pollution: Persistent organochlorine pesticides in migrant 
birds of the southwestern United States and Mexico. Environmental Toxicology and 
Chemistry 16(1): 3-11. 

Morelo, J. (2002). Grandes ecosistemas de Sudamérica. El futuro ecológico de un continente. 
Una visión prospectiva de América Latina. G. C. Gallopín. Bueno Aires, Argentina, Ave 
Fenix: 1-54. 

Morrissey, C. A., P. L. Dods and J. E. Elliott (2008). Pesticide treatments affect Mountain Pine 
Beetle abundance and Woodpecker foraging behavior. Ecological Applications 18(1): 
172-184. 

Moss, W. W. and J. H. Camin (1970). Nest parasitism, productivity, and clutch size in Purple 
Martins. Science 168(3934): 1000-1003. 

NABC (2001). Guide to the banding of North American passerines. California, USA, Point 
Reyes Station. 

NABCI Canada (2012). The State of Canada's Birds, 2012. Ottawa, Canada, North American 
Bird Conservation Initiative Canada, Environment Canada: 36. 

Nebel, S., A. Mills, J. D. McCracken, et al. (2010). Declines or aerial insectivores in North 
America follow a geographic gradient. Avian Conservation and Ecology 5(2): 1. 

Nelson, C. S., T. G. Northcote and C. H. Hendy (1989). Potential use of oxygen and carbon 
isotopic composition of otoliths to identify migratory and non-migratory stocks of the 
New Zealand common smelt: A pilot study. New Zealand Journal of Marine and 
Freshwater Research 23(3): 337-344. 

Newton, I. (2004). The recent declines of farmland bird populations in Britain: An appraisal of 
causal factors and conservation actions. Ibis 146(4): 579-600. 

Newton, I. (2007). Weather-related mass-mortality events in migrants. Ibis 149(3): 453-467. 

Newton, I. (2008). The migration ecology of birds. Amsterdam, The Netherlands, Academic 
Press. 

Nocera, J. J., J. M. Blais, D. V. Beresford, et al. (2012). Historical pesticide applications 
coincided with an altered diet of aerially foraging insectivorous Chimney Swifts. 
Proceedings of the Royal Society B: Biological Sciences. 



 

116 

Norris, D. R., P. P. Marra, T. K. Kyser, et al. (2004). Tropical winter habitat limits reproductive 
success on the temperate breeding grounds in a migratory bird. Proceedings of the Royal 
Society of London. Series B: Biological Sciences 271(1534): 59-64. 

Norris, D. R. and C. M. Taylor (2006). Predicting the consequences of carry-over effects for 
migratory populations. Biology Letters 2(1): 148-151. 

Norris, R. D. and P. P. Marra (2007). Seasonal interactions, habitat quality, and population 
dynamics in migratory birds. The Condor 109(3): 535-547. 

O'Connor, R. J. (1979). Egg Weights and Brood Reduction in the European Swift (Apus apus). 
The Condor 81(2): 133-145. 

Ofukany, A. F. A., K. A. Hobson and L. I. Wassenaar (2012). Connecting breeding and 
wintering habitats of migratory piscivorous birds: Implications for tracking contaminants 
(Hg) using multiple stable isotopes. Environmental Science & Technology 46(6): 3263-
3272. 

Ojanen, M., M. Orell and R. A. Vaisanen (1981). Egg size variation within passerine clutches 
effects of ambient temperature and laying sequence. Ornis Fennica 58(3): 93-108. 

Paynter, R. A. (1995). Nearctic passerine migrants in South America. Massachusetts, USA, 
Nuttall Ornithological Club. 

Perrins, C. M. (1970). The timing of bird's breeding seasons. Ibis 112(2): 242-255. 

Peterjohn, B. G., J. R. Sauer and C. S. Robbins (1995). Population trends from the North 
American Breeding Survey. Ecology and management of Neotropical migratory birds. T. 
E. Martin and D. M. Finch. New York, USA, Oxford University Press. 

Peterson, B. J. and B. Fry (1987). Stable isotopes in ecosystem studies. Annual Review of 
Ecology and Systematics 18: 293-320. 

Philander, S. G. (1990). El Niño, La Niña, and the Southern Oscillation. California, USA, 
Academic Press. 

Poesel, A., D. Nelson, H. Gibbs, et al. (2008). Use of trace element analysis of feathers as a tool 
to track fine-scale dispersal in birds. Behavioral Ecology and Sociobiology 63(1): 153-
158. 

Poole, A. (2005). The Birds of North America Online New York, US Cornell Laboratory of 
Ornithology. 



 

117 

Poulin, B., G. Lefebvre and L. Paz (2010). Red flag for green spray: Adverse trophic effects of 
Bti on breeding birds. Journal of Applied Ecology 47(4): 884-889. 

Powell, G. V. N. and D. C. Gray (1980). Dosing free-living nestling starlings with an 
organophosphate pesticide, famphur. The Journal of Wildlife Management 44(4): 918-
921. 

Powell, R. L., E.-H. Yoo and C. J. Still (2012). Vegetation and soil carbon-13 isoscapes for 
South America: integrating remote sensing and ecosystem isotope measurements. 
Ecosphere 3(11): 109. 

Pruell, R. J., B. K. Taplin and J. D. Karr (2009). Stable carbon and oxygen isotope ratios of 
otoliths differentiate juvenile Witner Flounder (Pseudopleuronectes americanus) habitats. 
Marine and Freshwater Research 61(1): 34-41. 

Pulido, F. (2007). The genetics and evolution of avian migration. BioScience 57(2): 165-174. 

Pyle, P. (1997). Identification guide to North American birds, Part I: Columbidae to Ploceidae. 
California, USA, Slate Creek Press. 

R Development Core Team (2011). R: A language and environment for statistical computing. 
Vienna, Austria, R Foundation for Statistical Computing. 

Raouf, S. A., L. C. Smith, M. B. Brown, et al. (2006). Glucocorticoid hormone levels increase 
with group size and parasite load in Cliff Swallows. Animal Behaviour 71(1): 39-48. 

Rappole, J. H. and M. V. McDonald (1994). Cause and effect in population declines of migratory 
birds. Auk 111(3): 652-660. 

Ratcliffe, D. A. (1967). Decrease in eggshell weight in certain birds of prey. Nature 215: 208-
210. 

Ricklefts, R. E., S. M. Fallon, S. C. Latta, et al. (2005). Migrants and their parasites: A bridge 
between two worlds. Birds of two worlds. R. G. a. P. Marra. Baltimore, USA, Johns 
Hpkins University Press. 

Ridgely, R. S. and G. Tudor (1989). Swallows and Martins: Hirundinidae. The Birds of South 
America. R. S. Ridgely and G. Tudor. Texas, USA, University of Texas Press: 49-66. 

Ridgely, R. S., T. F. Allnutt, T. Brooks, et al. (2007). Digital distribution maps of the birds of the 
western hemisphere. NatureServe. Arlington, Virginia, USA. 



 

118 

Robinson, R. A., D. E. Balmer and J. H. Marchant (2008). Survival rates of hirundines in relation 
to British and African rainfall. Ringing & Migration 24: 1-6. 

Rockwell, S. M., C. I. Bocetti and P. P. Marra (2012). Carry-over effects of winter climate on 
spring arrival date and reproductive success in anendangered migratory bird, Kirtland's 
Warbler (Setophaga kirtlandii). Auk 129(4): 744-752. 

Rodenhouse, N. L. and R. T. Holmes (1992). Results of experimental and natural food reductions 
for breeding Black-throated Blue Warblers. Ecology 73(1): 357-372. 

Rogers, C. M. (2011). Use of fecundity measured directly throughout the breeding season to test 
a source–sink demographic model. Conservation Biology 25(6): 1212-1219. 

Rohwer, S., L. K. Butler and F. D. R. (2005). Ecology and demography of east-west differences 
in molt scheduling on Neotropical migrant passerines. Birds of two worlds: the ecology 
and evolution of migration. R. Greenberg and P. P. Marra. Baltimore, USA, Johns 
Hopkins University Press. 

Rohwer, S., K. A. Hobson and S. Yang (2011). Stable isotopes (δD) reveal east-west differences 
in scheduling of molt and migration in Northern Rough-winged Swallows (Stelgidopteryx 
serripennis). The Auk 128(3): 522-530. 

Romero, L. M., J. M. Reed and J. C. Wingfield (2000). Effects of weather on corticosterone 
responses in wild free-living passerine birds. General and Comparative Endocrinology 
118(1): 113-122. 

Romero, L. M. (2004). Physiological stress in ecology: Lessons from biomedical research. 
Trends in Ecology & Evolution 19(5): 249-255. 

Romero, L. M., M. J. Dickens and N. E. Cyr (2009). The reactive scope model - A new model 
integrating homeostasis, allostasis, and stress. Hormones and Behavior 55(3): 375-389. 

Root, T. L., J. T. Price, K. R. Hall, et al. (2003). Fingerprints of global warming on wild animals 
and plants. Nature 421(6918): 57-60. 

Ropelewski, C. F. and M. S. Halpert (1987). Global and regional scale precipitation patterns 
associated with the El Niño/Southern Oscillation. Monthly Weather Review 115(8): 1606-
1626. 

Royle, A. J. and D. R. Rubenstein (2004). The role of species abundance in determining breeding 
origins of migratory birds with stable isotopes. Ecological Applications 14(6): 1780-
1788. 



 

119 

Rubenstein, D. R. and K. A. Hobson (2004). From birds to butterflies: Animal movement 
patterns and stable isotopes. Trends in Ecology & Evolution 19(5): 256-263. 

Saino, N., T. Szep, M. Romano, et al. (2004). Ecological conditions during winter predict arrival 
date at the breeding quarters in a trans-Saharan migratory bird. Ecology Letters 7(1): 21-
25. 

Sauer, J. R., G. W. Pendleton and B. G. Peterjohn (1996). Evaluating causes of population 
change in North American insectivorous songbirds. Conservation Biology 10(2): 465-
478. 

Sauer, J. R., J. E. Hines, J. E. Fallon, et al. (2011). The North American Breeding Survey, 
Results and Analysis 1966-2010. Version 12.07.2011. Laurel, MD, USGS Patuxent 
Wildlife Research Center. 

Sauer, J. R. and W. A. Link (2011). Analysis of the North American Breeding Bird Survey using 
hierarchical models. The Auk 128(1): 87-98. 

SCOC Committee (2009). Aerial insectivore workshop. Society of Canadian Ornithologists 
Conservation Committee. Ottawa, Canada. 

Scott-Dupree, C. D., L. Conroy and C. R. Harris (2009). Impact of currently used or potentially 
useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: 
Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria 
(Hymenoptera: Megachilidae). Journal of Economic Entomology 102(1): 177-182. 

Sellick, M. J., T. K. Kyser, M. B. Wunder, et al. (2009). Geographic variation of strontium and 
hydrogen isotopes in avian tissue: implications for tracking migration and dispersal. PLoS 
ONE 4(3): e4735. 

Shabbar, A. and M. Khandekar (1996). The impact of El Nino-Southern Oscillation on the 
temperature field over Canada. Atmosphere-Ocean 34(2): 401-416. 

Shabbar, A., B. Bonsal and M. Khandekar (1997). Canadian precipitation patterns associated 
with the Southern Oscillation. Journal of Climate 10(12): 3016-3027. 

Sheriff, M., B. Dantzer, B. Delehanty, et al. (2011). Measuring stress in wildlife: techniques for 
quantifying glucocorticoids. Oecologia 166(4): 869-887. 

Sherry, T. W. and R. T. Holmes (1995). Summer versus winter limitation of populations: What 
are the issues and what is the evidence? Ecology and management of neotropical 
migratory birds. A synthesis and review of critical issues. T. E. Martin and D. M. Finch. 
New York, USA, Oxford University Press. 



 

120 

Shields, W. M. (1984). Factors affecting nest and site fidelity in Adirondack Barn Swallows 
Hirundo rustica. The Auk 101(4): 780-789. 

Shields, W. M. and J. R. Crook (1987). Barn Swallow coloniality: A nest cost for group breeding 
in the Adirondacks? Ecology 68(5): 1373-1386. 

Sibley, D. A. (2000). The Sibley guide to the birds. New York, USA, Andrew Steward 
Publishing. 

Sierszen, M. E., J. R. Kelly, T. D. Corry, et al. (2011). Benthic and pelagic contributions to 
Mysis nutrition across Lake Superior. Canadian Journal of Fisheries and Aquatic 
Sciences 68(6): 1051-1063. 

Sillett, T. S., R. T. Holmes and T. W. Sherry (2000). Impacts of a global climate cycle on 
population dynamics of a migratory songbird. Science 288(5473): 2040-2042. 

Skagen, S. K. and A. A. Y. Adams (2012). Weather effects on avian breeding performance and 
implications of climate change. Ecological Applications 22(4): 1131-1145. 

Smith, T. B., S. M. Clegg, M. MKimura, et al. (2005). Molecular and genetic approaches to 
linking breeding and wintering areas in five Neotropical migrant passerines. Birds of two 
worlds. R. G. a. P. Marra. Maryland, USA, Johns Hopkins University Press: 222-234. 

Snow, D. W. (1978). Relationships between the European and African avifaunas. Bird Study 
25(3): 134-148. 

Stanley, C. Q., M. MacPherson, K. C. Fraser, et al. (2012). Repeat tracking of individual 
songbirds reveals consistent migration timing but flexibility in route. PLoS ONE 7(7): 
e40688. 

Still, C. J. and R. L. Powell (2010). Continental-scale distributions of vegetation stable carbon 
isotope ratios. Isoscapes. J. B. West, G. J.Bowen, T. E. Dawson and K. P. Tu. 
Amsterdam, The Netherlands, Springer 179-193. 

Strehl, C. E. and J. White (1986). Effects of superabundant food on breeding success and 
behavior of the Red-winged Blackbird. Oecologia 70(2): 178-186. 

Strong, A. M. and T. W. Sherry (2000). Habitat-specific effects of food abundance on the 
condition of Ovenbirds wintering in Jamaica. Journal of Animal Ecology 69(5): 883-895. 

Stutchbury, B. J. and S. Rohwer (1990). Molt patterns in the Tree Swallow (Tachycineta 
bicolor). Canadian Journal of Zoology 68(7): 1468-1472. 



 

121 

Stutchbury, B. J. M., J. R. Hill, III, P. M. Kramer, et al. (2009a). Sex and age-specific annual 
survival in a Neotropical migratory songbird, the Purple Martin (Progne subis). Auk 
126(2): 278-287. 

Stutchbury, B. J. M., S. A. Tarof, T. Done, et al. (2009b). Tracking long-distance songbird 
migration by using geolocators. Science 323(5916): 896. 

Szép, T. (1995). Relationship between west African rainfall and the survival of central European 
Sand Martins Riparia riparia. Ibis 137(2): 162-168. 

Szép, T. and A. P. Møller (1999). Cost of parasitism and host immune defence in the Sand 
Martin Riparia riparia: A role for parent-offspring conflict? Oecologia 119(1): 9-15. 

Szép, T., K. Hobson, J. Vallner, et al. (2009). Comparison of trace element and stable isotope 
approaches to the study of migratory connectivity: An example using two hirundine 
species breeding in Europe and wintering in Africa. Journal of Ornithology 150(3): 621-
636. 

Sӕther, B.-E., W. J. Sutherland and S. Engen (2006). Climate influences on avian population 
dynamics. Birds and climate change. A. P. Møller, W. Fiedler and P. Berthold. 
California, USA Academic Press: 185-205. 

Taylor, L. R. (1963). Analysis of the effect of temperature on insects in flight. Journal of Animal 
Ecology 32(1): 99-117. 

Terborgh, J. (1989). Where have all birds gone? New Jersey, USA, Princeton University Press. 

Terborgh, J. (1992). Why american songbirds are vanishing? Scientific American 266(5): 98-104. 

Thompson, F. R. (2007). Factors affecting nest predation on forest songbirds in North America. 
Ibis 149: 98-109. 

Turner, A. and C. Rose (1989). Swallows and martins. An identification guide and handbook. 
Massachusetts, USA, Houngton Mifflin. 

Turner, A. (2004). Family Hirundinidae (swallows and martins). Handbook of the Birds of the 
World Vol.9. J. D. Hoyo, A. Elliot and D. Christie. Barcelona, Spain, Lynx Editions: 602-
685. 

Turner, A. K. (1982). Optimal foraging by the swallow (Hirundo rustica, L): Prey size selection. 
Animal Behaviour 30(3): 862-872. 



 

122 

Underhill, L. G., R. J. M. Crawford and C. J. Camphuysen (2002). Leach's Storm Petrels 
Oceanodroma leucorhoa off southern Africa: Breeding and migratory status, and 
measurements and mass of the breeding population. Transactions of the Royal Society of 
South Africa 57(1-2): 43-46. 

Van Dijk, T. (2011). Effects of neonicotinoid pesticide pollution of Dutch surface water on non-
target species abundance. Master of Sustainable Development, Utrecht University. 

Van Wilgenburg, S. L. and K. A. Hobson (2011). Combining stable-isotope (δD) and band 
recovery data to improve probabilistic assignment of migratory birds to origin. 
Ecological Applications 21(4): 1340-1351. 

Visser, M., L. Holleman and P. Gienapp (2006). Shifts in caterpillar biomass phenology due to 
climate change and its impact on the breeding biology of an insectivorous bird. 
Oecologia 147(1): 164-172. 

Visser, M. E., A. J. v. Noordwijk, J. M. Tinbergen, et al. (1998). Warmer springs lead to 
mistimed reproduction in Great Tits (Parus major). Proceedings: Biological Sciences 
265(1408): 1867-1870. 

Visser, M. E., C. Both and M. M. Lambrechts (2004). Global climate change leads to mistimed 
avian reproduction. Birds and climate change. A. P. F. W. B. P. Moller. California, USA, 
Academic Press: 89-110. 

Walther, G.-R., E. Post, P. Convey, et al. (2002). Ecological responses to recent climate change. 
Nature 416(6879): 389-395. 

Wassenaar, L. I. and K. A. Hobson (2000). Stable-carbon and hydrogen isotope rations reveal 
breeding origins of Red-winged Blackbirds. Ecological Applications 10(3): 911-916. 

Wassenaar, L. I. and K. A. Hobson (2003). Comparative equilibration and online technique for 
determination of non-exchangeable hydrogen of keratins for use in animal migration 
studies. Isotopes in Environmental and Health Studies 39(3): 211 - 217. 

Wassenaar, L. I. (2008). An introduction to light stable isotopes for use in terrestial animal 
migration studies. Tracking animal migration with stable isotopes. K. A. Hobson and L. 
I. Wassenaar. London, UK, Academic Press. 

Webster, M. S., P. P. Marra, S. M. Haig, et al. (2002). Links between worlds: Unraveling 
migratory connectivity. Trends in Ecology & Evolution 17(2): 76-83. 

Webster, M. S. and P. S. Marra (2005 ). The importance of understanding migratory connectivity 
and seasonal interactions. Birds of two worlds: The ecology and evolution of the 



 

123 

temperate-tropical migration systems. R. Greenberg and P. P. Marra. Maryland, USA, 
Johns Hopkins University Press: 199-209. 

West, J. B., G. J. Bowen, T. E. Dawson, et al. (2010). Isoscapes. Understanding movement, 
pattern, and process on Earth through isotope mapping. London, UK and New York, 
USA, Springer Dordrecht Heidelberg. 

White, G. C. and K. P. Burnham (1999). Program MARK: Survival estimation from populations 
of marked animals. Bird Study 46(sup001): S120-S139. 

White, G. C., K. P. Burnham and D. R. Anderson (2002). Advanced features of program MARK. 
Proceedings of the Second International Wildlife Management Congress. R. F. a. M. 
Bethesda, The Wildlife  Society. 

Whitmore, R. C., J. A. Mosher and H. H. Frost (1977). Spring migrant mortality during 
unseasonable weather. The Auk 94(4): 778-781. 

Whittington, P. A., B. M. Dyer, R. J. M. Crawford, et al. (1999). First recorded breeding of 
Leach's Storm Petrel Oceanodroma leucorhoa in the Southern Hemisphere, at Dyer 
Island, South Africa. Ibis 141(2): 327-330. 

Wikelski, M., L. B. Martin, A. Scheuerlein, et al. (2008). Avian circannual clocks: adaptive 
significance and possible involvement of energy turnover in their proximate control. 
Philosophical Transactions: Biological Sciences 363(1490): 411-423. 

Wilk, M. B. and R. Gnanadesikan (1968). Probability plotting methods for the analysis of data. 
Biometrika 55(1): 1-17. 

Williams, T. D., E. G. Cooch, R. L. Jefferies, et al. (1993). Environmental degradation, food 
limitation and reproductive output: Juvenile survival in Lesser Snow Geese. Journal of 
Animal Ecology 62(4): 766-777. 

Wilson, S., S. L. LaDeau, A. P. Tøttrup, et al. (2011). Range-wide effects of breeding- and 
nonbreeding- season climate on the abundance of a Neotropical migrant songbird. 
Ecology 92(9): 1789-1798. 

Winkler, D. W. (2006). Roosts and migrations of swallows. El hornero 21: 85-97. 

Yalden, D. W. and J. W. Pearce-Higgins (1997). Density-dependence and winter weather as 
factors affecting the size of a population of Golden Plovers Pluvialis apricaria. Bird 
Study 44(2): 227-234. 



 

124 

Yerkes, T., K. A. Hobson, L. I. Wassenaar, et al. (2008). Stable isotopes (δH, δ13C, δ15N) reveal 
associations among geographic location and condition of Alaskan Northern Pintails. 
Journal of Wildlife Management 72(3): 715-725. 

Yogui, G. T. and J. L. Sericano (2009). Levels and pattern of polybrominated diphenyl ethers in 
eggs of Antarctic seabirds: Endemic versus migratory species. Environmental Pollution 
157(3): 975-980. 

Zink, R. M., A. Pavlova, S. Rohwer, et al. (2006). Barn swallows before barns: Population 
histories and intercontinental colonization. Proceedings of the Royal Society Biological 
Sciences Series B 273(1591): 1245-1251. 

 
 



 

125 

APPENDIX A. SWITCHING HEMISPHERES: A NEW MIGRATION STRATEGY FOR THE 
DISJUNCT ARGENTINEAN BREEDING POPULATION OF BARN SWALLOW (Hirundo 

rustica)  

A.1. Introduction 

While avian migration systems appear well established, involving the regular periodic 

movement by individuals of several thousand kilometers (Newton 2008), there are several 

intriguing cases whereby individuals and populations respond rapidly to changing environmental 

circumstances leading to a modification of their migratory strategy (e.g. (Snow 1978 , Berthold 

et al. 1992, Whittington et al. 1999)). Such responses presumably confer significant benefits to 

those founder populations thereby promoting an evolutionary change in migratory behavior 

(Pulido 2007). Additionally, the appearance of new migratory traits usually involve further 

physiological and behavioral changes such as timing of reproduction and onset of molt, 

associated with changes in circannual rhythms as an adaptation to new climates, photoperiod or 

other circumstances (Berthold 1984, Gwinner 1987, Gwinner 1996).  

However, there are generally few opportunities to examine the evolution of such adaptive 

processes due to the rarity of well-documented cases of new migratory systems in nature. 

Moreover, until recently, it has been extremely difficult to infer movements of small birds at 

continental scales due to limitations in conventional approaches to tracking animal movements 

(Hobson and Norris 2008). Here, we present the results of a study of a recently established 

disjunct breeding population of Barn Swallow (Hirundo rustica) in Argentina (Martinez 1983) 

whose movements were inferred using a multiple stable isotopic forensic examination of their 

feathers. Recent genetic studies indicate that this population was initially derived from the North 

American breeding population through colonization by migratory individuals (Billerman et al. 
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2011) but nothing is known of how new migratory and life history strategies may have since 

rapidly evolved.  

A.2. Methods 

 Breeding Barn Swallows (n =100) were sampled during the austral summer (November-

January) of 2006 and 2007 at colonies along the Atlantic coast of Buenos Aires province, 

Argentina. Tail feathers clearly grown prior to breeding were identified based on wear (Pyle 

1997) and collected for all captured birds. For some individuals captured at the beginning of the 

breeding season tail feathers were induced to regrow and were then collected later in the season. 

All feathers were cleaned of surface oils in 2:1 (v/v) chloroform:methanol solvent rinse and 

prepared for δ2H, δ13C and δ15N analysis at the Stable Isotope Laboratory of Environment 

Canada, Saskatoon, Canada. The non- exchangeable hydrogen of feathers was determined using 

the method described by (Wassenaar and Hobson 2003) and using two calibrated keratin 

hydrogen-isotope reference materials. Hydrogen isotopic measurements were performed on H2 

gas derived from high-temperature (1350 °C) flash pyrolysis of 350 ± 10 µg feather subsamples 

and keratin standards using continuous-flow isotope-ratio mass spectrometry. Measurement of 

the two keratin laboratory reference materials (CBS, KHS) corrected for linear instrumental drift 

were both accurate and precise with typical mean δ2H ± SD values of -197 ± 0.79 ‰ (n = 5) and 

-54.1 ± 0.33 ‰ (n = 5), respectively. All results are reported for non-exchangeable H expressed 

in the typical delta notation, in units of per mil (‰), and normalized on the Vienna Standard 

Mean Ocean Water – Standard Light Antarctic Precipitation (VSMOW-SLAP) standard scale. 

For δ13C and δ15N analyses, between 0.5 and 1.0 mg of feather material was combusted online 

using a Eurovector 3000 (Milan, Italy - www.eurovector.it) elemental analyzer. The resulting 

CO2 and N2 was separated by Gas Chromatograph (GC) and introduced into a Nu Horizon (Nu 
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Instruments, Wrexham, UK - www.nu-ins.com) triple-collector isotope-ratio mass-spectrometer 

via an open split and compared to a pure CO2 or N2 reference gas. Stable nitrogen (15N/14N) and 

carbon (13C/12C) isotope ratios were expressed in delta (δ) notation, as parts per thousand (‰) 

deviation from the primary standards: atmospheric nitrogen and VPDB (Vienna Pee Dee 

Belemnite carbonate) standards, respectively. Using previously calibrated internal laboratory C 

and N standards (powdered keratin and gelatin), within runs, precisions for δ15N and δ13C were 

better than ± 0.15 ‰. 

Mean differences in feather δ2H, δ13C and δ15N values between known breeding grounds (i.e. 

those grown locally) versus unknown wintering grounds were tested using t-tests. Some 

individuals were sampled for both feathers grown on the breeding and wintering grounds. In 

those cases, a paired t-test was used to identify differences between growth origins. Multivariate 

Analysis of Variance (MANOVA) was applied to test simultaneously for isotopic differences 

among feathers using Pillai’s trace statistic. All statistical analyses were performed using R 

Version 2.10.1 (R Development Core Team 2011).  

Naturally molted tail feathers from 100 individuals from Argentina were used to assign Barn 

Swallows to their molting origins applying a δ2H isoscape and dichotomous prior information on 

the occurrence of C3- and C4-dominated vegetation zones in South America using methodology 

described in (Hobson et al. 2009b). The amount-weighted mean precipitation δ2H isoscape 

corresponding to the growing season of South America (Bowen et al. 2005) was converted into 

an equivalent feather δ2H (δ2Hf) isoscape using the empirical equation reported for non ground-

foraging Neotropical migrants (Hobson et al. 2012c):: 

δ2Hf = -17.57 + 0.95 δ2H                                                                                                           (A.1) 
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The expected standard deviation (σc) among individuals growing their feathers at the same 

locality for δ2H (σ = 14.4‰) was estimated using the standard deviation of the residuals from the 

same regression equation reported by (Hobson et al. 2012c). To depict the probable molting 

origins of individuals, a normal probability density function (Equation A.2.) was applied to 

assess the likelihood that a given pixel in the δ2Hf isoscape represented a potential origin for each 

feather sample.   

ƒ൫yכหμୡ, σୡ൯ ൌ ቀ ଵ
√ଶπσౙ

ቁ exp ቂെ  ଵ
ଶσౙ మ

 ሺyכ െ μୡሻ
ଶቃ                                                                       (A.2) 

where ƒ(y*|μc,σc) represents the probability that a given cell (pixel) represents a potential origin 

for an individual of unknown origin (y*), given the expected mean δ2Hf  for that cell (μc) based 

on the predicted value for that cell within the isoscape, and the expected standard deviation (σc) 

of δ2Hf among individuals growing their feathers at the same locality. 

A theoretical spatial δ13C-distribution of vegetation in South America was obtained from (Still 

and Powell 2010, Powell et al. 2012). From this, we created a dichotomous surface of C3- and 

C4-dominated vegetation zones. Cells with δ13C values < -20 ‰ were classified as C3-

dominated and those with δ13C values > -20 ‰ were classified as C4-dominated (Kelly 2000). 

These zones were then converted to equivalent feather-δ13C values assuming an isotopic 

discrimination factor of 2 ‰ between plant and feather, calculated based on known 

discrimination factors of ~ 1 ‰ between plants and herbivorous insects (DeNiro and Epstein 

1978, Peterson and Fry 1987, France and Peters 1997), and ~ 1 ‰ between insects and bird 

feathers (Hobson 2007). The expected mean and standard deviation (SD) of  feather-δ13C for 

each region were calculated based on modeled δ13C values extracted from the dichotomous 

feather-δ13C isoscape. Equation A.2 was then applied to assess the probability of a C3 or C4-

dominated winter origin for each feather sample.  
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I used Baye’s Theorem to compute the probability of each pixel xi being the origin of a 

feather sample, given the observed feather value yj, where j indexes the C3 or C4 vegetation 

zone. 

൫x୧หYݔ݂ ൌ y୨൯ ൌ  
ƒY ሺ୷|Xୀ୶୧ሻƒX ሺ୶౟|Jୀ୨ሻ
∑ ƒY ሺ୷|Xୀ୶୧ሻƒX ሺ୶౟|Jୀ୨ሻ౟

                                                                                  (A.3) 

The random variables Y and X are continuous and represent the feather-δ2H values for Barn 

Swallows breeding in the disjunct population and the pixels within the feather-δ2H isoscape, 

respectively. The random variable J is categorical with dimension two and describes potential 

origin in C3 or C4-dominated zones.  

Spatial probability densities were normalized to the sum of likelihoods to finally obtain a 

single probability density surface for each feather sample. To statistically assign individuals to 

molt origin the calculated spatially explicit probability densities for each feather sample were 

reclassified using 3:1 odds ratios of correctly assigning an individual to its molt origin. The set of 

cells that defined the upper 75% of estimated probabilities of origin was coded as “1” (likely) 

and the rest as “0” (unlikely) (Van Wilgenburg and Hobson 2011). Results of the assignment of 

each individual were summed and mapped to obtain the most probable molting origin of the 

population. All analyses were performed using R Version 2.10. (R Development Core Team 

2011) and GIS Version 9.3 (ESRI 2011). 

A.3. Results 

Feathers grown on unknown wintering locations (n = 84) and those grown locally in Buenos 

Aires province (n = 16) differed significantly for the three isotopes simultaneously (MANOVA, 

F3,96 = 26.21, P < 0.001) and for δ2H (t98 = 3.96, P < 0.001) and δ15N (t98 = 8.06, P < 0.001), but 

not in δ13C values (t98 = -1.77, P > 0.05) when tested separately (Table A1.). Similar results were 

found for feathers grown on unknown wintering (n = 16) and known breeding (n = 16) locations 
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collected from the same individuals. Feather types varied isotopically for the three isotopes 

(MANOVA, F3,28 = 32.06, p < 0.001) as well as in δ2H (t15 = 4.98, p < 0.001) and δ15N (t15 = 

8.04, p < 0.001) but not in δ13C values (t15 = -0.17, p > 0.1) (Table A1.). Feathers grown on the 

Argentinean breeding grounds (n = 16) formed a tight group (SD: δ15N = 0.2 ‰, δ2H = 5.0 ‰, 

δ13C = 0.2 ‰), while feathers grown outside of the breeding season (n = 100) were more broadly 

distributed (SD: δ15N = 2.0 ‰, δ2H = 20.7 ‰, δ13C = 2.8 ‰) (Figure A1).  

Depicted molt origins based on δ2H and δ13C values corresponded to regions in north-eastern 

South America, more specifically in northern Brazil, French Guiana, Suriname, Guyana, and 

Venezuela (Figure A2).  

A.4. Discussion 

Feathers grown by swallows breeding in Buenos Aires province differed isotopically from 

those grown outside of the breeding grounds presumably during the austral winter. Thus, the 

ancestral (boreal) molt phenology was replaced by a new (austral) migratory strategy in this 

newly formed breeding population. Our isotopic assignment of wintering locations corresponded 

with the northeastern region of South America (specifically northern Brazil, French Guiana, 

Suriname, Guyana, and Venezuela), areas known to also be frequented by wintering swallows 

from North America (Paynter 1995, Brown and Brown 1999a). These findings agree with 

previous reports of sporadic observations of Barn Swallow in northern South America during the 

months of June, July and August (Paynter 1995). Possibly, birds from this disjunct breeding 

population winter in areas that are available following the departure of North American migrants 

to their breeding grounds. This change of migratory strategy may have involved a complete 

change in molt strategy motivated by an adaptation to the new annual cycle particular to the 

southern hemisphere. The adoption of an austral migration and molt strategy by a founder 
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population established in the opposite hemisphere clearly represents an extreme case of rapid 

adaptation which has been previously shown in a few species such as the Leach’s Storm Petrel 

(Oceanodroma leucorhoa), a European long-distance migrant which has founded a new breeding 

population within its wintering range in South Africa (Underhill et al. 2002).  
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Table A1. Mean and SD of δ2H, δ13C and δ15N values (‰) in feathers of Barn Swallows captured 
on their breeding grounds in Buenos Aires province. (A), feathers sampled once. (B), feathers 
forced to grow in known breeding grounds. (C), feathers initially plucked from birds sampled in 
(B). 

 

Growing location  n mean SD 

δ2H 
Wintering grounds  (A) 84 -52.3 20.7

Breeding grounds  (B) 16 -31.7 5.0

Wintering grounds  (C) 16 -57.2 20.6

δ13C 
Wintering grounds (A) 84 -20.9 2.8

Breeding grounds (B) 16 -22.2 0.2

Wintering grounds (C) 16 -22.0 3.2

δ15N 
Wintering grounds (A) 84 11.0 2.0

Breeding grounds (B) 16 15.0 0.2

Wintering grounds (C) 16 10.5 2.4

 
 



 

133 

 

Figure A1. Boxplots of δ2H, δ13C and δ15N values (‰) of Barn Swallow feathers. Letter A 
represents a sample of birds whose feathers were sampled once and were grown on unknown 
austral wintering grounds. Letters B and C represent feathers forced to grow on the breeding 
grounds in Argentina and those initially plucked (grown on unknown austral wintering grounds), 
respectively. Star symbol denotes significant differences in mean using independent (A vs C) or 
paired (B vs C) t-tests as appropriate (p < 0.05). Numbers in brackets represent sample sizes. 
Results indicate that feathers grown on the breeding grounds were isotopically different from 
those grown on the austral wintering grounds for δ2H and δ15N values. 
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Figure A2. Potential wintering origins of Barn Swallows breeding in the Atlantic coast of 
Buenos Aires province (Argentina). Maps were created using δ2H and δ13C values of winter-
grown feathers. Values depicted on maps represent the number of individuals in the total sample 
that were assigned to each cell in the map, representing a potential molting origin according to a 
3:1 odds ratio.      
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The broad range of feather isotope values representing the austral wintering period of 

swallows breeding in Argentina suggest a number of possible molting areas in the southern 

portion of their breeding range. Indeed, we cannot rule out the possibility that some of the  

individuals we examined were in fact new arrivals from North America (Billerman et al. 2011) 

or represented an extreme case of double breeding (Rohwer et al. 2011). However, the most 

parsimonious explanation is the adoption of an austral migratory system that has Argentinean 

breeders wintering and molting over a broad range of northeastern South America. We recognize 

the ambiguity of assignment of birds to regions of South America using stable isotope methods. 

Indeed, little ground truthing of our multi-isotope feather isoscape for South America has been 

conducted and so ours represents only the most parsimonious of several possible explanations. 

Nonetheless, ours is a falsifiable hypothesis that can now be investigated further using isotopic 

tools and also the use of light-sensitive geolocators that are now small enough to be used on this 

species (Bächler et al. 2010, Bairlein et al. 2012).   
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APPENDIX B: MOLT OF BARN AND CLIFF SWALLOWS AT A WINTER ROOST SITE IN 
ARGENTINA 

B.1. Introduction 

Swallows are among the minority of Neotropical migrants breeding in North America that do 

not molt their body and flight feathers prior to departure to their wintering grounds (Pyle 1997). 

A likely reason for this delay is that, as aerial foragers, they are forced to replace flight feathers 

as slowly as possible to maintain aerial efficiency prior to and during migration. A complete molt 

(including the sequential replacement of all body and flight feathers) during the breeding season 

would require high energy costs that could affect their reproduction and migration (Rohwer et al. 

2005). Of the eight species of migratory swallows that breed in North America, four of them; 

Tree (Tachycineta bicolor), Violet-green (Tachycineta thalassina), Cave (Petrochelidon fulva) 

and Northern Rough-winged (Stelgidopteryx serripennis) swallows, are short-distance migrants 

that initiate molt on the breeding grounds and finish on their wintering areas (Stutchbury and 

Rohwer 1990, Brown et al. 1992, Rohwer et al. 2011). In contrast, long-distance migratory 

swallows such as Barn (Hirundo rustica), Bank (Riparia riparia), Cliff (Petrochelidon 

pyrrhonota) swallows and Purple Martin (Progne subis) delay their molt until arrival on their 

winter areas with only few if any flight feathers molted before arriving (Freer and Belanger 

1981, Brown and Brown 1995, Brown 1997, Pyle 1997, Brown and Brown 1999a). 

During the non-breeding season, both Barn and Cliff swallows roost communally in marshes 

often involving millions of individuals (Winkler 2006). However, little is known about the 

winter distribution and phenology of molt on the wintering grounds of these species in Central 

and South America. As part of another study involving sampling swallows on their wintering 

grounds, we opportunistically recorded molt stages on birds captured. Here, we report an 



 

137 

important wintering site for migratory swallows in Argentina and provide the first description of 

molt of Barn and Cliff Swallows in the early austral summer.  

B.2. Methods 

Birds were captured from 22 November to 2 December 2010, at Colonia Carlos Pellegrini, 

Corrientes, Argentina (28º 32’ 34” S, 57º 11’ 27” W), located in the Natural Reserve of Iberá. 

This is an extensive (1,300,000 ha) shallow marsh surrounding Laguna del Iberá (Ibera Lake). 

Swallows foraged over open grassland and above water where high densities of flying insects 

were seen. Reed beds on the lake were used for roosting.  

Swallows were captured passively using mist nets (6 and 12 m, 30 mm mesh) operated from 

30 min before sunrise for five hrs and for four hrs before sunset. For all captured swallows, molt 

stages for flight feathers, wing coverts, head, and body feathers were scored and individuals were 

aged when molt stage permitted. For primaries, secondaries, and rectrices, the sequence of molt 

was recorded following the system developed by the British Trust for Ornithology (Ginn and 

Melville 1983) and the North American Banding Council guidelines (NABC 2001). Body 

feathers were scored as molting or not and the percentage of contour feathers that were molting 

was recorded at the time of capture. Different types of wing coverts that were molting or already 

replaced were additionally identified. All birds were weighed to the nearest 0.5 g, measurements 

of unflattened wing chord were also obtained to the nearest 0.1 mm and photographs taken for 

Barn Swallows.  

B.3. Results 

All Barn (16 hatching-year [HY], 1 after-hatch-year [AHY]) and Cliff (n = 5) Swallows were 

actively molting at the time of capture (Table B1 and Table B2). Four HY Barn Swallows (24%) 

were in an early stage of molt (Figure. A1). P1, P2 and P3 had started to grow, but they did not  
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Table B1. Qualitative assessment of molt for Barn Swallows (n = 17) captured in Colonia Carlos 
Pelegrini (Corrientes, Argentina) in late November and early December 2010 sorted and grouped 
from less to more advance stage of molt. Molt stage was scored for primaries (new and molting), 
secondaries, rectices and wing coverts (Gr=Greater, Md=Medium and Ls=Lesser).  
 

 
  

Ind.  
ID 

Date Age Primaries 
(new) 

Primaries 
(molting)

Secondaries Rectrices Coverts 
(molting)

1 22 Nov HY None P1,P2,P3 Old Old Gr
2 24 Nov HY None P1,P2,P3 Old Old Gr, Md
3 24 Nov HY None P1,P2,P3 Old Old Gr, Md

15 1 Dec HY None P1,P2,P3 Old Old Gr
        

4 25 Nov HY P1,P2,P3 P4 Old Asymmetric 
molt 

Gr

6 29 Nov HY P1,P2 P3,P4 Old Old Gr, Md, 
Ls

9 29 Nov HY P1,P2 P3,P4 Old Old Gr, Ls
10 29 Nov HY P1,P2 P3,P4 Old Old Gr, Ls
13 1 Dec HY P1,P2 P3,P4 Old Old Gr, Md, 

Ls
16 1 Dec HY P1,P2 P3 Old Old Gr, Ls
        

5 25 Nov HY P1,P2,P3 P4,P5 S1 molting R1 molting Gr, Md, 
Ls

7 29 Nov HY P1,P2,P3,P
4  

P5 Old R1 molting Gr, Md, 
Ls

8 29 Nov AHY P1,P2,P3,P
4 

P5 S1 molting R1 molting Gr, Md, 
Ls

11 29 Nov HY P1,P2,P3 P4 S1 molting Old Gr, Ls
17 2 Dec HY P1,P2,P3 P4,P5 S1 molting R1 molting Gr, Md, 

Ls
        

12 30 Nov HY P1,P2,P3,P
4,P5 

P6 S1, S2 
molting

R1 molting Gr, Md, 
Ls

14 1 Dec HY P1,P2,P3,P
4,P5 

P6 S1, S2 
molting

R1, R2, R3 
molting 

Gr, Md, 
Ls
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Table B2. Qualitative assessment of molt for Cliff Swallows (n = 5) captured in Colonia Carlos 
Pelegrini (Corrientes, Argentina) in 2010. Molt stage was scored for primaries (new and 
molting), secondaries, rectices and wing coverts (Gr=Greater, Md=Medium and Ls=Lesser). 
 
Ind. 
ID 

Date Primaries 
(new) 

Primaries 
(molting)

Secondaries Rectrices Coverts 
(molting)

3 29 Nov None P1, P2 Old Old Gr. 
2 29 Nov None P1, P2 Old Old Gr.

4 29 Nov P1 P2, P3 Old Old Gr., Md.

5 30 Nov P1, P2 P3, P4 Old Old Gr., Ls.

1 29 Nov P1, P2, P3 P4, P5 Old R1 molting Gr, Md, Ls
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Figure B1. Barn Swallow individuals actively molting captured during November-December 
2010 in a winter site in Argentina. Upper left: P1, P2, P3 actively molting. Upper right: bird in an 
advance stage of molt with most primaries already replaced and secondaries and wing coverts 
actively growing. Lower left: Rectrices molting. Lower right: Dorsal body contour feathers 
molting and some already replaced. Arrows indicate replaced and replacing feathers.   

 

B

BA 
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present any replaced primaries, secondaries or rectices. Six HY individuals (35%) had replaced 

P1 and P2, while P3 and P4 were still in molt, and rectrices and secondaries had not started to be 

replaced.  

Of the remaining individuals, four HY and one AHY (29%) had replaced the first three or 

four primaries and were simultaneously molting P4 and P5, secondaries and rectrices. Two 

individuals were in an advanced stage of molt; their first five primaries were new and P6, 

secondaries and rectrices were actively molting (Figure A1). Symmetric molt of rectrices had 

started in 35% of all Barn Swallows (five HY and one AHY) (Figure A1). Body feathers and 

wing coverts were actively molting for all individuals (Figure A1). All Cliff Swallows were 

molting primaries at the time of capture. Two individuals (40%) were actively molting P1 and P2 

but did not have any flight feathers completely replaced. The remaining 60% were more 

advanced in their molt and had already replaced some of the inner primaries (P1, P2 and P3) and 

were sequentially molting the rest of them. No secondary molt had started and only one 

individual, in the most advanced stage of molt, was growing its inner rectrices (R1). Body molt 

on Cliff Swallows was not very extensive since only a 5-10% of body feathers were observed 

growing in all Cliff Swallows but 100% were actively molting coverts. 

B.4. Discussion 

Molt in Barn and Cliff Swallows clearly occurred shortly after arrival on the wintering 

grounds. For primary feathers of both species, a sequential replacement occurred consecutively 

starting with P1 and was synchronized with the molt of secondaries which was also sequential. 

For Barn Swallows, it was evident that secondaries started to grow from S1 to S6 following 

replacement of P1, P2 and P3, and molt of rectrices was underway. For Cliff Swallows, the same 

sequential molt pattern for primary feathers was found, but secondary molt was not recorded and 
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only one individual was molting rectices. Both species were actively molting body contour 

feathers and wing coverts at the time of capture, but Barn Swallows were more advanced.  

Molt in Barn Swallows was consistent with previous descriptions of molt in this species at 

wintering locations in Africa. However, our study showed that 100% of individuals captured 

were molting primary feathers by the end of November, while other studies in southern Africa 

suggested that at least a 20% of individuals had not started molting primaries at that time 

(Broekhuysen and Brown 1963, Francis 1980). Barn and Cliff Swallows molted flight feathers 

gradually and in sequence presumably to maintain flight efficiency (Rohwer et al. 2005), since 

primary replacement only commenced when the previous feather had grown at least three-fourths 

of the total length. In addition, Barn Swallows were more advanced in molt than Cliff Swallows 

and overall molt period appeared protracted. 
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APPENDIX C. RELATIONSHIP BETWEEN δ2H VALUES ON TAIL AND CONTOUR 
FEATHERS OF BARN SWALLOWS SAMPLED FROM SAME INDIVIDUAL   
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