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ABSTRACT

The development and results of a 3-D site-specific groundwater flow and

transport study of the Potash Corporation of Saskatchewan Incorporated Cory

Division Potash Mine (PCS Cory Mine) and surrounding area are presented. The

mine is located approximately 10 km southwest of Saskatoon, Saskatchewan,

Canada. The objectives of the study are to simulate, analyze and predict the extent

of brine migration, originating from the PCS Cory Mine Waste Management Area

(WMA), in the groundwater flow system.

The hydrogeology of interest to the study is Late Cretaceous to Quaternary

in age. A 3-D finite element mesh representing the hydrogeology of the study area

is constructed. The FEMWATER code is used to simulate steady-state and

transient groundwater flow and solute transport processes. Calibration of the model

using observed hydraulic heads is reported.

Fifty years of brine plume migration at the PCS Cory Mine WMA, beginning

in 1969, are simulated. Detailed analysis of the position and concentration of the

brine plume in the surficial stratified deposits, the Floral Aquifer, the Judith River

Aquifer and in vertical cross-sections are conducted for the years 1979, 1986, 1995

and 2019. Analysis of the base case model indicates that after 50 years of

simulated brine transport, the contaminant plume migrated past the freshwater

bypass ditch in the surficial stratified deposits and infiltrates the Floral Aquifer

reaching concentrations in excess of 100 giL.

Sensitivity studies indicate that the engineered containment devices are

ineffective at inhibiting brine plume migration. These studies also show that brine

mounding in the tailings pile is a critical control on plume migration to the Floral

Aquifer and in vertical section. Varying the coefficient of tortuosity has little effect

on brine migration.
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CHAPTER 1

INTRODUCTION

Potash mining in Saskatchewan began in 1962. The potash ore is extracted

from the upper 70 m of the Prairie Evaporite Formation located between depths of

1000 and 2500 m (Tallin et al., 1990).

The ore consists of halite (NaCI), sylvlite (KCI), sometimes carnallite

(KMgCI3·6H20), minor sulphates and approximately 1 to 5% insoluble minerals. For

every tonne of KCI refined, 2 tonnes of NaCI and 1 to 2 m3 of brine are produced.

At operating capacity the Saskatchewan potash industry produces 28x1 06 tonnes

of salt tailings and 11 x1 06 m3 of brine each year. Over 250x1 06 tonnes of tailings

and lesser amounts of brine are stored on the ground surface in waste management

areas (WMAs) adjacent to the mine site. Mining is expected to continue for the next

100 years and thus presents a potentially large scale waste management problem

(Tallin et al., 1990). Brine, due to its high concentration relative to native

groundwater, can adversely affect the local environment if it migrates out of the

WMA (Meneley, 1989).

Environmental regulations for Saskatchewan potash mines are established

by the provincial government. However, when mining began, environmental

assessment investigations were not conducted and thus environmental factors were

not considered when determining the mine locations. Experience indicates that the

locations of the WMA, with respect to surface hydrology and subsurface

hydrogeology, are the most important factors controlling the long term success of

environmental management (Meneley, 1989).

The Potash Corporation of Saskatchewan Incorporated (PCS) is currently

developing decommissioning plans for PCS Cory Mine and its other Saskatchewan

potash mines. The objective of the decommissioning strategy is to reduce the

potential for a serious environmental waste management problem. Some of the

requirements for a viable decommissioning plan include the ability to remove all

1



tailings stored on the ground surface, to control the rate of brine released into the

subsurface from the containment facility and to obtain a reasonable level of care

and maintenance of the WMA (Meneley, 1989). One aspect of a mine

decommissioning plan is to predict long term brine migration, from the WMA, into

the regional and local groundwater flow systems.

1.1 Project Objectives

The primary objective of this thesis was to assess and predict long term brine

migration from the PCS Cory Mine WMA into the groundwater flow system. To

meet this objective a three dimensional (3-D), variable density, groundwater flow

and solute transport numerical model was utilized.

More specifically, the objectives of the groundwater flow and solute transport

modelling investigation for PCS Cory Mine and surrounding area were to:

1. Develop a 3-D conceptual representation of the hydrostratigraphy at PCS

Cory Mine and surrounding area from existing geological databases;

2. Construct a 3-D hydrogeological conceptual model that represents the

groundwater flow system and active contaminant transport processes;

3. Calibrate a numerical model using available hydrogeological data, results

from regional groundwater flow studies and observations of the brine plume

position at the mine;

4. Simulate transient brine migration from the WMA;

5. Analyze the effectiveness of existing engineered brine migration control

measures; and

6. Determine the limitations of the numerical simulation by conducting

sensitivity analysis.

The United States, Department of Defense Groundwater Modeling System

(GMS) was developed by Engineering Computer Graphics Laboratory of Brigham

2



Young University, Utah and United States Army Engineer Waterways Experiment

Station, Vicksburg, Mississippi. GMS is a comprehensive graphical interface used

for the constructing 3-D hydrogeological models and groundwater flow and

contaminant transport simulations (ECGL, 1996). The groundwater flow and solute

transport codes, MODFLOW, MT3D, MODPATH, FEMWATER, SEEP2D and RT3D

are supported by the GMS interfaces. All the tools required for site characterization,

model conceptualization, mesh and grid generation, geostatistical data interpolation

and post-processing are provided in the GMS graphical interface (ECGL, 1996).

The groundwater flow and solute transport code, FEMWATER, was used to

simulate groundwater flow and brine transport at PCS Cory Mine. FEMWATER is

a 3-D finite element, saturated-unsaturated, variable density, groundwater flow and

transport code developed by coupling the 3DFEMWATER (flow) and 3DLEWASTE

(transport) codes (ECGL, 1996 and Lin et al., 1996). During the 1990s

FEMWATER was modified slightly so that it could be supported by GMS.

1.2 Study Area Location

The region selected for the near-field groundwater contaminant migration

study was located in south, central Saskatchewan, Canada, between Saskatoon

and Vanscoy. The study area covers approximately 400 km2 of Saskatchewan

prairie (Map 1, Appendix F). The boundary of the groundwater flow and brine

transport study was selected based on topography, surficial hydrology,

hydrogeology, well data and results from regional numerical simulations of

groundwater flow. The approximate UTM (Universe Tranverse Mercator)

coordinates defining the roughly shaped hexagonal perimeter of the contaminant

migration study area were 375800E/5782800N, 372300E/5783100N,

358400E/5781400N,361700E/576400N,373200El5762900N,373200El5762900N,

and 381700E/5765000N.
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1.2.1 PCS Cory Mine Location

The PCS Cory Mine is located approximately 10 km west of Saskatoon along

Highway 7 (Map 1, Appendix F). The approximate perimeter of the mine site is

defined by the UTM coordinates 370600E/5769900N, 370600E/5774300N,

373350E/5774300N and 373350E/5769900N. The mine property includes all or

parts of Range 6, Township 36, Section 7,18, and 19, and Range 7, Township 36,

Sections 11-14, 23 and 24 (Maathuis at al., 1994), west of the third meridian.

Figure 1.1 illustrates the location of PCS Cory Mine in Saskatchewan, Canada. A

photograph of the western side of the mine site viewed from Highway 7 is shown in

Figure 1.2.

Figure 1.2 - Photograph of PCS Cory Mine Viewed From Highway 7
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1.2.1.1 Containment Structures at PCS Cory Mine

Since mining began at PCS Cory in 1962 and the initial construction of the

WMA in 1968, the WMA developed considerably, as knowledge and understanding

of the site hydrogeology improved. Numerous containment structures were installed

to protect the environment from stored solid wastes and surficial brine

contamination. Illustrated in Figure 1.3 is the layout of the WMA showing the

location of tailings pile, brine pond and other site features important to the numerical

modelling study.

At PCS Cory Mine the brine pond, slimes settling area and mine tailings are

contained by external dykes that are approximately 6 km long and at an elevation

of 497.1 m. The internal dykes used to separate the brine pond from the tailings

pile and slimes settling area are approximately 2 km in length.

The flood containment pond is also confined by dykes that are at an

elevation of 497.1 m. The elevation of the dykes in the slimes storage pond is

498.0 m in order to prevent overflowing of slimes into brine pond. The slimes

storage pond dykes are 1.2 km long.

A slurry trench was installed to impede brine plume migration from the WMA.

The slurry trench was installed in 1979 around the north, west and south sides of

the WMA (Figure 1.2). The slurry trench is 5.3 km long, 1 m wide, 5 to 8 m deep

and is keyed into the Floral Formation till. A mixture of fine sand and till hydrated

with brine was used to construct the slurry trench.

The freshwater bypass ditch was also installed in 1979 along the

southwestern edge of the WMA in order to intercept brine that may have migrated

through or from the slurry trench. The elevation of the bottom of the drainage ditch

varies from 494.26 m in the north to 491.81 m in the south. In 1986 two-small,

buried drains, known as the east drain and west drain, were installed south of the

tailings pond. In 1995 the west drain was extended to intercept the bypass ditch.

Brine intersecting the drains and ditch is pumped into the slimes storage pond.
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1.3 Site Topography and Drainage

Over the past two million years, Saskatchewan's landscape altered

significantly especially during the Pleistocene glaciation. The Wisconsinan

deglaciation occurring 10,000 to 17,000 years ago was the last glacial event

affecting Saskatchewan (Christansen, 1979). During these glacial events large ice

sheets, originating from present day northern Canada, flowed over and eroded the

Precambrian Shield. Eroded material was transported and deposited on the Interior

Plains forming a succession of till, glaciolacustrine, glaciofluvial and ice-contact

stratified deposits (Lennox et al., 1988 and Stephenson et al., 1988). The repeated

advance and retreat of the glacial ice front modified the stress regime, particularly

in the consolidated tills, thereby causing them to fracture in preferential directions

(Penner, 1986 and Stauffer and Gendzwill, 1987).

The terrain in the study area is gently undulating. The total topographic

variation is approximately 50 m (Figure 1.4 and Map 1, Appendix F). Topographic

lows ranging from 475 to 480 m are found near the South Saskatchewan River and

Moon Lake, located at the southeastern corner of the study area. Along the

southwestern margin of the study area and also northwest of pes Cory Mine are

the highest elevations, ranging from 520 and 530 m.

There are numerous factors influencing the hydrological conditions within the

study area. The climate at the study area and over most of central and southern

Saskatchewan is semi-arid. The majority of groundwater infiltration and recharge

originates from water filled depressions in upland areas and discharges in local and

regional topographic lows. Throughout most of the study area where numerous

seasonal and permanent sloughs are present, the water table is located near the

ground surface. Most surficial water flow in the study area is directed towards the

South Saskatchewan River Valley. Surficial drainage immediately southwest of the

study area discharges towards Rice Lake, which is subject to evaporation and is

situated in an enclosed low with no outflowing streams.
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PCS Cory Mine is situated on surficial sands, silts and clays that overlay low

permeability aquitards, permeable channel aquifers and Cretaceous bedrock

sediments. The mine site is located on a glacial lake plain and in particular, within

a broad, shallow, meltwater channel depression defined by the 500 m contour on

Figure 1.5. This depression originates northwest of the mine and extends southeast

towards Moon Lake and the South Saskatchewan River (Maathuis et al., 1994).

Along the eastern boundary of the study area is another parallel meltwater channel.

Both meltwater channels were formed during the final stage of Wisconsinan

deglaction (Christansen and Sauer, 1994).

Approximately 5 km west of PCS Cory Mine, the topography rises

approximately 25 m and forms a surface water catchment boundary. Surficial

drainage east of the divide flows towards the South Saskatchewan River. Drainage

west of the divide flows into the Rice Lake depression.
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Figure 1.5 - Location of Surficial Meltwater Channels
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CHAPTER 2

GEOLOGY AND HYDROGEOLOGY

Extensive geological research in Saskatchewan began in the mid 1940s.

During these investigations the Saskatchewan prairie soil was classified, mapped

and analyzed in detail. From these investigations the foundations of an in depth

knowledge of Saskatchewan's geological history was synthesized.

The regional geological setting at PCS Cory Mine and surrounding area is

described by Christiansen (1967, 1970 and 1979), Meneley (1970), Maathuis et a/.

(1994) and Maathuis and van der Kamp (1994). The geological setting of the study

area is qualitatively determined from testhole logs and cross-sections. Stratigraphy

at PCS Cory Mine and surrounding region was subdivided into Bedrock stratigraphy

and Quaternary glacial stratigraphy. Figure 2.1 outlines the stratigraphic framework

of PCS Cory Mine and the surrounding area.

2.1 Bedrock Stratigraphy

The bedrock stratigraphic units important to the study of brine migration at

PCS Cory Mine, were, in order of increasing age:

1. Bearpaw Formation;

2. Judith River Formation; and

3. Lea Park Formation.

The bedrock formations were deposited from 84 to 66 MA ago during the

Late Cretaceous Period. The Lea Park, Judith River and Bearpaw formations were

differentiated in stratigraphic drillhole logs by lithological and geotechnical

properties, relative stratigraphic position and electrical signatures.
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The elevation of the bedrock surface at PCS Cory Mine and surrounding area

ranges from approximately 365 to 485 m ASL (Maathuis et al., 1994) corresponding

to a typical thickness of 60 to 100 m of glacial deposits. Collapse structures,

resulting from the dissolution of salt from the Elk Point Group and Prairie Evaporite

Formation (Christiansen, 1967 and 1970) and glacial and fluvial erosion (Maathuis

et al., 1994) affects the bedrock topographic profile. Geological investigations

indicate that collapse structures are absent beneath the mine site, however, this

conclusion may involve some uncertainty due to the limited number of deep

stratigraphic drill holes (Maathuis et al., 1994).

2.1.1 Lea Park Formation

The Lea Park Formation is the lowermost stratigraphic unit considered in this

study. This formation consists of mainly non-calcareous, overconsolidated, marine,

silts and clays. The lowermost portion of the Lea Park Formation is calcareous

(Christiansen, 1970 and Maathuis et al., 1994). Drill hole data indicates that in the

study area the Lea Park Formation is more than 250 m thick (Maathuis et al., 1994).

2.1.2 Judith River Formation

Conformably overlying the Lea Park Formation is the Judith River Formation

which consists of marine and non-marine deltatic silts and clays and also fine­

grained sands and silts. The Judith River Formation is also interbedded with

carbonaceous and concretionary material (Christiansen, 1970 and Maathuis et al.,

1994).

The Judith River Formation is present throughout most of the study area.

The maximum thickness of the Judith River below the WMA is 16 m and throughout

the remainder of the study area no more than 40 m. The Judith River Formation is

laterally continuous below the WMA (Maathuis et al., 1994) but is not continuous

throughout the study area.
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2.1.3 Bearpaw Formation

The Bearpaw Formation is the youngest bedrock stratigraphic unit found in

the study area. This formation is composed of non-calcareous, marine silts and

clays that are preserved in collapse structures or as erosional remnants

(Christiansen, 1970 and Maathuis et al., 1994).

At the PCS Cory Mine WMA and most of the surrounding area the Bearpaw

Formation has a maximum thickness of approximately 10m. However near the

southeast corner study area thickness of the Bearpaw Formation increases to

almost 85 m. Large variations in formation thickness are attributed to its

preservation in collapse features.

2.2 Quaternary Stratigraphy

The Quaternary sediments, also known as "drift", are located between the

bedrock and the ground surface (Christiansen, 1970 and Maathuis et al., 1994). In

descending order, the Quaternary drift at PCS Cory Mine and surrounding area is

divided into three sections; the Saskatoon Group, the Sutherland Group and the

Empress Group. Some of the Empress Group sediments may be Tertiary in age

but are described here for convenience. The Sutherland and Saskatoon Groups

can be further divided into formations and subunits. It is not always possible to

differentiate between the formations of the Sutherland Group from test hole logs or

to locate the exact position of the stratigraphic contact between the Sutherland and

Saskatoon Group.

2.2.1 Empress Group

The Empress Group sediments are Tertiary to Late Quaternary in age and

are composed of stratified gravel, sand, silt and clay located between the

Cretaceous bedrock and the Sutherland Group (Christiansen, 1970 and Whitaker
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and Christiansen, 1972). These stratified sediments are fluvial, lacustrine and

colluvial in origin (Whitaker and Christiansen, 1972). The contact between the

bedrock surface and Empress Group is a preglacial erosional unconformity that is

identified by a quartzite or cherty gravel with minor amounts of petrified wood,

carbonates and igneous pebbles (Christiansen, 1970 and Christiansen, 1992).

Empress Group sediments are not encountered below PCS Cory Mine,

however they are found in the western portion of the study area. The stratigraphic

thickness of the Empress Group is highly variable ranging from 0 to 75 m.

2.2.2 Sutherland Group

The Sutherland Group sediments, which are predominately composed of till,

are located between the base of the lower most till unit and the Saskatoon Group

(Christiansen, 1992). Stratified deposits consisting of sand, gravel, silt and clay are

found sporadically throughout the Sutherland Group (Christiansen, 1992). The

contact between the Sutherland and Empress Group is easily located as the

lithology changes from stratified gravels, sands, silts and clays to a till.

The Sutherland and Saskatoon Group tills are differentiated by carbonate

content, texture, Atterberg Limits, electrical log signatures and preconsolidation

pressures. In general, the carbonate content and electrical resistivity of the

Sutherland Group till is less than the tills of the Saskatoon Group. The Mennon,

Dundurn and Warman Formations are subdivisions of the Sutherland Group

(Christiansen, 1992).

The thickness of the Sutherland Group is highly variable throughout the study

area reaching a maximum greater than 50 m. The predominant lithology is a hard,

dense, grey unoxidized till. Soil analysis of samples taken from the WMA indicate

that the Sutherland Group is mostly comprised of the Dundurn Formation, a

relatively high carbonate till and a sandy silt lithology similar to the Floral Formation

till. Assigning formation names to the Sutherland Group sediments is possible only

at a few test holes where carbonate analysis was conducted (Maathuis et al., 1994).
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Belowthe WMA, a stratified sand unit is found within in the Sutherland Group

sediments. This sand unit is thought to be part of a regional complex channel fill

system, even though it has only been encountered in a small number of test holes

drilled at the mine site (Maathuis et al., 1994). The sand unit is believed to be

present under the tailings facility and northwest of the plant site. It is absent under

the north perimeter dyke (Maathuis et al., 1994). The maximum thickness of the

stratified sand is approximately 16 m.

2.2.3 Saskatoon Group

The Saskatoon Group sediments are located between the Sutherland Group

and the ground surface (Christiansen, 1970 and Christiansen, 1992). The

Saskatoon Group is divided into the surficial stratified deposits, the Battleford

Formation and the Floral Formation.

2.2.3.1 Floral Formation

The Floral Formation is the lowermost stratigraphic unit in the Saskatoon

Group and is situated between the Sutherland Group and Battleford Formation.

The Floral Formation can consist of a basal stratified sand and two informally

subdivided tills that are separated by a discontinuous stratified sand unit.

Compositional differences between the two till units are insufficient to warrant a

formal stratigraphic name (Christiansen, 1992).

The stratified sand unit separating the two till units is the Riddell Member.

This unit contains stratified and cross bedded sands that are heavily stained with

iron and manganese oxides. Fossilized bone, shells and wood are abundant in the

Riddell Member (Skwarawoolf, 1980). The measured maximum thickness of the

Riddell sand is approximately 16 m in the study area.

The two Floral Formation tills have similar lithological characteristics. They

are both hard, have a high carbonate content and a silty-sandy grey appearance.
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The upper till is weathered and macroscopically fractured showing evidence of iron

and manganese oxidation. The lower till is unoxidized (Christiansen, 1970 and

Maathuis et al., 1994). The combined thickness of these till units is highly variable

in the study area, reaching a maximum thickness of approximately 20 m.

Preconsolidation pressures were measured for the Floral Formation till. The

range of preconsolidation pressure measurements are between 1500 and 2200 kPa

indicating that the thickness of the overlying glacial ice the till was between 170 to

240 m (Sauer and Christiansen, 1991).

The basal stratified sand unit in the Floral Formation is part of a regional

complex channel fill system trending northwest-southeast in the study area. This

sand channel is carved into the Sutherland Group till. It is thought that sand

deposition began during the late stages of Sutherland Group till deposition

(Maathuis et al., 1994). The maximum measured thickness of the channel sand is

over 26 m.

2.2.3.2 Battleford Formation

The Battleford Formation is composed of drift located between the Floral

Formation and surficial stratified deposits (Christiansen, 1992). The Battleford

Formation, in the study area, consists of an unstained, soft, friable till. The contact

between the Battleford and Floral Formation is unconformable and often denoted

by a stratified boulder pavement. In the study area, the stratigraphic contact is

gradational consisting of deformed soil fractures and disseminated oxidized stains

similar to that of the Floral Formation (Christiansen, 1992).

In addition to the macroscopic separation of the Battleford and Floral

Formations, the tills are differentiated on the basis of their preconsolidation

pressures. The preconsolidation pressures measured in the Battleford Formation

till vary from 350 to 750 kPa, significantly lower than the pressures measured in the

Floral Formation till (Sauer and Christiansen, 1991).
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The maximum measured thickness of the Battleford Formation at the PCS

Cory Mine WMA is about 5 m and in study area approximately 14 m. At the WMA,

the Battleford Formation till is only found near the southern end of the slurry trench,

however, it is found sporadically throughout the study area.

2.2.3.3 Surficial Stratified Deposits

The surficial stratified deposits accumulated during the Holocene. These

deposits include the preglacial and postglacial sediments located between the

Battleford Formation and ground surface. The Battleford - Surficial Stratified

Deposits contact is conformable and gradational where glaciolacustrine deposits are

inculcated with Battleford Formation till (Christiansen, 1992). The surficial stratified

deposits are found as a complex arrangement of sands, silts and clays within the

study area. The thickness is variable ranging from less than 2 m to more than 12

m, in the study area (Maathuis et a/., 1994).

2.3 Soil Properties

Knowledge of the stratigraphic framework at the study area is a prerequisite

for the successful design of a groundwater flow and solute transport model. In

addition to understanding the stratigraphic framework of the study area, the

geotechnical soil properties must also be known.

2.3.1 Dry Density

One of the important geotechnical properties is dry density. Table 2.1

indicates density ranges for different lithologies.
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Table 2.1 - Dry Density Ranges for Various Lithologies

Lithology Dry Density (kglm3
)

Gravel 1450 - 21 00(1 ),(2)

Sand 1350 - 1900(1)

Silt 1450 - 1950(1),(2)

Clay 1400 - 2100(1)

Till
Oxidized 1900 - 2200(1),(3)
Unoxidized 2150 - 2300(1),(3)

(1) Bell (1993)
(2) Eyles (1983)
(3) Holtz and Kovacs (1981)

2.3.2 Hydraulic Properties

For modelling purposes it is necessary to develop a hydrostratigraphic model

and assign hydraulic parameters, such as hydraulic conductivity, porosity,

compressibility and specific storage, to the different lithologic units. The

stratigraphic section must be subdivided into aquifer and aquitard units. Knowing

the hydraulic properties of the sediments and how they vary with position within the

study area is crucial for analyzing groundwater flow and brine transport.

Hydraulic properties were estimated from the literature. Table 2.2 lists the

hydraulic conductivity ranges and Table 2.3 summarizes the ranges of

compressibility, porosity and specific storage for the various lithologies encountered

in the study area.

2.3.2.1 High Hydraulic Conductivity Units

The high hydraulic conductivity units in the study area represented the

aquifer units. These aquifer units consisted of bedrock sands and silts and also

Quaternary gravels, sands and some silts.
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The Judith River Formation, which consists of partially consolidated, fine­

grained silts and sands, has an estimated hydraulic conductivity ranging from 6x1 0-6

to 1.2x1 0-5 m/s at PCS Cory Mine (Maathuis et a/., 1994).

The hydraulic conductivity of the Empress Group sands, silts and clays in the

study area were not measured. Freeze and Cherry (1979) indicate that the range

of hydraulic conductivity for a silty sand is between 1x1 0-7 to 3x10-3 m/s.

The Sutherland intertill sands are classified as fine to medium grained and

the hydraulic conductivity is thought to fall within the range of 6x1 0-5 to 1.2x1 0-4 m/s

(Maathuis et a/., 1994).

The channel fill sands and Riddell Member sands of the Floral Formation are

medium to course grained. The hydraulic conductivity of the channel sands varies

from 3.5x1 0-5 to 4x1 0-4 m/s (Maathuis et a/., 1994). The hydraulic conductivity of the

Riddell Member sands was not measured, however they are thought to fall within

the same range as the channel fill sands.

The surficial stratified deposits in the study area are extremely heterogenous.

The hydraulic conductivity of the sand is greater than 1x1 0-7 m/s (Maathuis et a/.,

1994) and likely falls within the range of a silty sand (1 x1 0-7 to 3x10-3 m/s) to a

clean sand (8x10-3 to 1x1 0-2 m/s) reported by Freeze and Cherry (1979).

2.3.2.2 Low Hydraulic Conductivity Units

The low hydraulic conductivity units found throughout the study area form

aquitards that impede groundwater flow and brine transport. The low hydraulic

conductivity units were associated with clay, till, shale and some silt. The hydraulic

conductivities of these units were very low however significantly increased if

fracturing existed. The documented hydraulic conductivity ranges for low hydraulic

conductivity till units in Saskatchewan were summarized by Maathuis and van der

Kamp (1994):
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1. Tills that are oxidized, fractured and shallow (less than 10m below the

ground surface) have a hydraulic conductivity between 1x1 0-8 to 1x1 0-7 m/s.

Such tills are found in the Floral Formation.

2. Tills that are unoxidized, fractured and situated at depths less than 30 m

generally have a hydraulic conductivity value ranging from 1x1 0-9 to 1x1 0-8

m/s. Such tills are found in the Floral Formation.

3. Unoxidized and unfractured tills located at least 10m below the ground

surface with a thickness more than 30 m have hydraulic conductivities falling

within the range of 1x1 0-11 to 1x1 0-10 m/s. This category includes tills of the

Sutherland Group and the thick unfractured tills of the Floral Formation.

Unoxidized surficial silts and clays have hydraulic conductivities as low as

4x1 0-10 m/s. Oxidized silts may have a hydraulic conductivity greater than 10-7 m/s.

Intact bedrock silts and clays have a hydraulic conductivity less than 10-10 m/s. If

the bedrock is fractured or was subjected to glacial shearing the hydraulic

conductivity can be several orders of magnitude higher (Maathuis and van der

Kamp, 1994).
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Table 2.2 - Ranges of Hydraulic Conductivity for the Geological Units
in the Study Area

Stratigraphic Unit Hydraulic Conductivity
(ml s)

Surficial Stratified Deposits
Sand 1x1 0-5 - 1x1 0-2 (5)

Silt 1x1 0-7 - 1x1 0-3 (1,5)

Clay 1x1 0-9 - 3x10-9 (1)

Floral Formation Till
Oxidized 1x1 0-8 - 1x1 0-7 (2)

Unoxidized 1x1 0-9 - 1x1 0-8 (2)

Riddell Member Sand 3.5x10-5 - 4x1 0-4 (1)

Floral Formation Sand 3.5x10-5 - 4x1 0-4 (1)

Sutherland Group Till 1x10-11 - 1x10-1O (3)

Sutherland Group Sand 6x10-5 - 1.2x1 0-4 (1)

Empress Group Sand 1x1 0-7 - 3x1 0-3 (5)

Empress Group Silt 1x1 0-7 - 3x1 0-3 (5)

Bearpaw Formation < 1x10-9 (1)

Judith River Formation 6x10-6 - 1.2x1 0-5 (1)

Lea Park Formation <10-10 (2)

(1) Maathuis et al. (1994)
(2) Maathuis and van der Kamp (1994)
(3) Keller et al. (1989) and Keller et al. (1988)
(4) Therrien and Sudicky (1996)
(5) Estimation based on Freeze and Cherry (1979)
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2.3.2.3 Storage Properties

The porosity of the hydrostratigraphic units in the study area was not

measured. Freeze and Cherry (1979) documented typical ranges of porosity for

different lithologies. These ranges were assigned to the high and low hydraulic

conductivity units encountered in the numerical study.

The porosity range documented by Freeze and Cherry (1979) for Cenozoic

and Mesozoic sandstones similar to that of the Judith River Formation is between

20 and 30%. The porosity of sands and silts in the Sutherland and Saskatoon

Groups is probably between 25 and 50%.

The porosity of the low hydraulic conductivity units were determined from

water content analysis by previous workers. The equivalent porosity of surficial silts

and clays generally range from 40 to 50%. Both Floral Formation and Sutherland

Group till samples were analyzed and found that porosity generally varied from 20

to 30% and 30 to 350/0 respectively (Maathuis and van der Kamp, 1994). The

porosity documented by Freeze and Cherry (1979) for consolidated bedrock silts

and clays, such as the Bearpawand Lea Park Formation, is less than 10%.

Figure 2.2a and 2.2b illustrate the relationship between hydraulic conductivity

and moisture content with suction pressure (negative pressure head). Most surficial

stratified deposits in the study area are unsaturated.

Soils in the unsaturated zone have a hydraulic conductivity and moisture

content lower than the same soil located below the water table. In the unsaturated

zone the moisture content is less than the soil porosity (Ranjitkar, 1989). In general,

hydraulic conductivity and moisture content of soils in the unsaturated zone is

dependent on suction pressure. Below the water table, hydraulic conductivity and

moisture content are independent of pressure head.
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2.3.2.4 Unsaturated Soil Properties

Table 2.3 lists the possible ranges for compressibility, porosity and specific

storage of soils encountered in the study area.

Table 2.3 - Ranges of Soil Compressibility (after Dominico and Schwartz, 1990),
Porosity and Specific Storage for Soils in the Study Area.

* Compressibility of Water at 25°C is 4.8x1 0-10 m2
/ N

(1) Maathuis and van der Kamp (1994)
(2) Therrien and Sudicky (1996)
(3) Estimation based on Freeze and Cherry (1979)

Stratigraphic Unit Soil Porosity Specific Storage
Compressibility (%) (m-1)

(m2
/ N)

Surficial Stratified Drift
Sand 5.2x10-8

- 1.0x1 0-7 25 - 50 (3) 6.9x10-4
- 1.9x1 0-3

Silt 5.2x1 0-8
- 1.0x1 0-7 35 - 50 (3) 7.4x10-4

- 1.9x1 0-3

Clay 6.9x10-8
- 1.3x1 0-7 40 - 50 (1,2) 9.5x1 0-4

- 2.7x1 0-3

Floral Formation Till 1.3x10-9
- 6.9x10-8 20 - 30 (1) 2.8x10-5

- 1.3x1 0-3

Riddell Member Sand 1.3x10-8
- 2.0x1 0-8 25 - 50 (3) 1.7x10-4

- 3.8x10-4

Floral Formation Sand 1.3x10-8
- 2.0x1 0-8 25 - 50 (3) 1.7x1 0-4

- 3.8x10-4

Sutherland Group Till 2.6x10-9
- 1.3x1 0-7 30 - 35 (2) 5.9x10-5

- 2.7x1 0-3

Sutherland Group Sand 1.3x10-8
- 2.0x1 0-8 25 - 50 (3) 1.7x1 0-4

- 3.8x10-4

Empress Group Sand 1.3x10-8
- 2.0x1 0-8 25 - 50 (3) 1.7x1 0-4

- 3.8x10-4

Empress Group Silt 2.0x10-9
- 1.3x1 0-8 35 - 50 (3) 3.8x10-5

- 1.9x1 0-4

Bearpaw Formation 2.6x10-5
- 1.3x1 0-7 o -10 (3) 5.9x10-5

- 2.7x1 0-3

Judith River Formation 1.3x10-8
- 2.0x10-8 5 - 30 (3) 1.7x10-4

- 3.8x10-4

Lea Park Formation 2.6x10-9
- 1.3x1 0-7 o- 10(3) 5.9x10-5

- 2.7x1 0-3

...

Specific storage is the volume of water released from a confined unit

volume of porous medium per unit decline in hydraulic head per unit thickness.
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Specific storage is related to the compressibility of the porous medium and that

of water, together with the porosity:

Ss = (a +nb)y w (2.1 )

where:

S5 = specific storage
a = soil compressibility
b = water compressibility
n = porosity
Vw = specific weight of water

Van Genuchten (1980) developed an empirical equation relating the relative

hydraulic conductivity and moisture content as a function of suction pressure. This

analytical expression developed from the theory of Mualem (1976) involves three

independent parameters determined empirically by fitting the soil-water retention

model to experimental data (van Genuchten, 1980).

Equations 2.2, 2.3 and 2.4 (Fetter, 1992, Lin et al., 1996, Mualem, 1976 and

van Genuchten, 1980) indicate the empirical expressions used by van Genuchten

to define the relationship between hydraulic conductivity, moisture content and

suction pressure. The storage characteristics of the porous media were determined

from the derivative of the soil-water characteristic profiles.

(2.2)

(2.3)
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where:

Kr =
Se =
~,y =
a =

1
Y=1-­

P

relative hydraulic conductivity ranging from 0.0 to 1.0
degree of saturation ranging from 0.0 to 1.0
soil-specific exponents
soil-specific coefficient

(2.4)

Equation 2.3 applies to soils in the unsaturated zone. The degree of

saturation, Se' equals one when the pressure head is equaled to or greater than

o m. Equation 2.5 demonstrates the relationship between moisture content and

effective moisture content.

where:

=
=

soil moisture content
residual moisture content

(2.5)

2.4 Study Area Hydrostratigraphy

The hydrogeological units present in the study area were subdivided into

Bedrock and Quaternary aquifers and aquitards. Figure 2.3 outlines the

hydrogeological units present at PCS Cory Mine and surrounding area.

In the study area the sands of the Judith River Formation, Empress Group,

Sutherland Group, Saskatoon Group and surficial stratified deposits comprised a

series of aquifers. With the exception of the Surficial Aquifer, these aquifers were

confined by aquitards. The aquitards included the shales of the Lea Park and

Bearpaw Formation, the tills of the Sutherland and Saskatoon Group and the clays
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of the surficial stratified deposits. Figure 2.4 shows the 3-D hydrostratigraphic

conceptual model constructed for the study area. Figure 2.5 shows cross-sections

taken from the hydrostratigraphic conceptual model.

Sources for the geological information referred to in the development of the

3-D hydrostratigraphic conceptual model include:

1. Saskatchewan Research Council (SRC) drillhole logs;

2. Geological publications by Christiansen (1967, 1970,1992), Christiansen and

Sauer (1994) and Sauer and Christiansen (1991);

3. Hydrogeological reports by Meneley (Meneley, 1970 and Meneley, 1989);

4. Preliminary hydrogeological investigations conducted by Maathuis et al.,

(1994); and

5. AGRA (1996) geological database for drillholes west of Saskatoon.

2.4.1 Lea Park Aquitard

The silts and clays of the Lea Park Formation form the Lea Park Aquitard in

the hydrogeological model. The base of the Lea Park Aquitard was considered to

be an impermeable boundary for the numerical study because of its low hydraulic

conductivity, depth below the WMA, thickness and continuity.

2.4.2 Judith River Aquifer

The Judith River Aquifer was the lowermost aquifer of interest in the study

area and is composed of partially consolidated sands and silts. The Judith River

Formation is bounded by the underlying Lea Park Aquitard and the overlying

Bearpaw Formation and Sutherland Group tills. Well yields are low in the Judith

River Aquifer because of the abundance of fine grained sand and silt (Maathuis et

al., 1994).
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The Judith River Aquifer is found throughout the study area except where it

is interrupted by collapse structures and glacial erosion. To the northwest of PCS

Cory Mine the Judith River Aquifer is eroded and infilled by Empress Group sands

(Maathuis et al., 1994). The Judith River Aquifer is laterally continuous below the

mine site.

2.4.3 Tyner Valley Aquifer

The Tyner Valley Aquifer is part of an extensive and productive aquifer

system in the Saskatoon area. This aquifer is part of one of the largest buried valley

aquifer systems in southern Saskatchewan. The Tyner Valley Aquifer consists of

alluvial and glaciofluvial silts, sands and gravels of the Empress and Sutherland

Groups (Meneley, 1970). Alluvial sediments were deposited in valleys present in

the Upper Cretaceous bedrock sediments and also those formed during the

Pleistocene glaciation. In the later stages of glaciation these valleys were covered

by till thereby forming a buried valley aquifer (Lennox et al., 1988).

The Tyner Valley Aquifer is present near the western margin of the study

area. It is not found below the mine site. The aquifer is bounded by the overlying

Sutherland Aquitard and underlying Lea Park Aquitard and Judith River Aquifer.

In the study area, the Tyner Valley Aquifer is predominantly continuous and

composed mostly of coarse stratified sediments. Near Grandora, Saskatchewan

(364600E, 5777400N), the continuity of the aquifer is interrupted by a collapse

structure. Here the Tyner Valley Aquifer is filled with lithology similar to the

Sutherland till. This results in a reduction in permeability causing an abrupt

increase in the hydraulic gradient near Grandora. Gravityfaulting resulting from salt

dissolutions is thought to be the cause of the lithology change and permeability

reduction (Maathuis et al., 1994 and Meneley, 1970).

The Tyner Valley Aquifer System is an interconnected group of aquifers that

includes the Battleford Valley Aquifer, the Tyner Valley Aquifer and the Judith River

Aquifer. The Judith River and Tyner Valley Aquifers are grouped into one aquifer
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system because the Judith River sands are contiguous with the Tyner Valley

Aquifer, causing the aquifers to function as a single, continuous, hydrological unit

(Meneley, 1970).

The Tyner Valley Aquifer System is confined by the Sutherland Group, Floral

Formation and the Lea Park Aquitard. Figure 2.6 shows the position of the Judith

River Aquifer and the Tyner Valley Aquifer within the aquifer system.

2.4.4 Sutherland Aquitard

The Sutherland Aquitard is composed of the Sutherland Group tills and the

silts and clays of the Bearpaw Formation. Throughout most of the study area the

Sutherland Aquitard separates the basal sands of the Floral Formation from the

sands of the Sutherland Group. It also separates the Floral and Sutherland sands

from the Tyner Valley and Judith River Aquifers. The Bearpaw Formation and

Sutherland Group were combined to form the Sutherland Aquitard because of their

similar hydraulic properties.

2.4.5 Sutherland Aquifer

Within the Sutherland Aquitard is a small, discontinuous intertill aquifer

composed of Sutherland Group sands. Little is known about lateral extent of this

intertill aquifer at the study area because of limited geological and hydrogeological

information. It is hypothesized that the width of the channel aquifer below the

tailings pile and also northeast of the plant is over 900 m, however, there is no direct

evidence to confirm these dimensions (Maathuis et al., 1994).
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Figure 2.6 - Areal Extent and Direction of Groundwater Flow in the Tyner Valley Aquifer System
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At most 8 m of Sutherland Aquitard separates the Sutherland and Judith

River Aquifers. The Sutherland Aquifer is separated from the basal sands of the

Floral Formation by approximately 3 to 10m of Sutherland Aquitard.

2.4.6 Floral Aquifers

Glaciofluvial sands and gravels of the Floral Formation were divided into two

confined aquifer units; the Floral Aquifer and the Riddell Aquifer. The Floral Aquifer

is a channel aquifer confined by the underlying Sutherland Aquitard and overlying

the Floral Formation till. The Riddell Aquifer is a discontinuous aquifer of limited

extent and is confined above and below by the Floral Formation till.

2.4.6.1 Floral Aquifer

The Floral Aquifer was the most important hydrogeological unit in the

groundwater flow and brine transport study. It was the most likely conduit for

advective brine flow. The location of the Floral Aquifer was determined from

drillhole information and inferred from topographic characteristics of the study area.

The topography of the study area includes a broad, channel like, shallow

depression outlined by the 500 m contour (Figure 1.4 and Map 1, Appendix F). This

depression originates northwest of PCS Cory Mine and extends southeast towards

Moon Lake. The surficial channel formed a conduit for meltwaters during glacial

retreat (Christiansen and Sauer, 1994). Maathuis et al. (1994) hypothesized that

buried channel aquifers are likely a reflection of this meltwater channel. During

glacial retreat, subglacial meltwater from the ice followed pre-existing channel

depressions on the ground surface. Over time these subglacial channels eroded

the overlying ice and became exposed (Maathuis et al., 1994). The repetition of this

cycle during multiple glacial events formed stacked channels as drainage re­

occupied the previously formed valleys.
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The Floral Aquifer consists of a series of channels with limited areal extent,

possibly originating from the Dalmeny Aquifer located north of the study area. The

channel aquifer below the mine site was the most important channel in the

numerical study. A second buried channel is found along the eastern border of the

study area below the topographic channel like meltwater depression (Figure 1.4 and

Map 1, Appendix F). A third possible channel is also found in the northwest corner

of the study site. Figure 2.7 shows the location and extent of the Floral Aquifer

channels.

2.4.6.2 Riddell Aquifer

The Riddell Aquifer is a small, discontinuous aquifer composed of cross­

bedded sand lens (Skwarawoolf, 1980) in the Floral Formation. The extent of the

Riddell Aquifer is not exactly known because of limited geological data.

2.4.7 Floral Aquitard

The Floral Aquitard is a continuous aquitard unit found throughout the study

area. The Floral Aquitard is composed of the Floral and Battleford Formation tills.

The Floral Aquitard separates the Floral and Riddell Aquifers from each other

and also from the surficial stratified drift deposits. This aquitard is a low hydraulic

conductivity unit impeding vertical brine migration from the WMA to the Floral

Aquifer. Fracturing in the aquitard, however, provides a possible accelerated

pathway for brine from the WMA to reach the Floral Aquifer.

2.4.8 Surficial Aquifers and Aquitards

The surficial stratified deposits form the Surficial Aquifer and Surficial

Aquitard in the hydrogeological model. The sands and silts form the Surficial

Aquifers while the clays form the Surficial Aquitard. The arrangement of the
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aquifers and aquitards in the study area is very complex as these units are

discontinuous.

2.5 Groundwater Flow and Recharge

Knowing the characteristics of the groundwater flow system in the study area

is very important when constructing a 3-D hydrogeological model for the numerical

simulation. Information about the flow system is acquired through water level

measurements and environmental measurements of annual precipitation and

evaporation rates.

Regional groundwater flow in the prairies was first subjected to extensive

study during the 1960s. At high elevations water infiltrates the ground surface and

recharges the flow system. At topographic lows, groundwater discharges from the

local, intermediate and regional systems via seepages and springs (T6th, 1962 and

T6th, 1963).

The amount of recharge depends on many factors. In the Interior Plains the

amount of evaporation far exceeds precipitation (Fortin et al., 1989). Christiansen

(1970) quotes that the mean precipitation west of Saskatoon is approximately 350

mm/yr while the rate of evaporation is appr..oximately 1000 mm/yr. Average

recharge rates are likely to be very low (5-10 mm/yr). Studies of a depression

focused recharge suggest that local rates may be as high as 30 mm/yr but most

authors agree that 5 to 10 mm/yr is consistent with large scale water balance

calculations (Fortin et al., 1989).

2.5.1 Flow in the Tyner Valley Aquifer System

Groundwater enters the Tyner Valley Aquifer System in the study area via

vertical flow from overlying glacial deposits and also from regional flow outside the

study area. The Tyner Valley Aquifer functions as a drain funneling groundwater

into the channel aquifer from the laterally continuous Judith River Aquifer. Meneley
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(1970) estimates that nearly 90% of the flow in the Tyner Valley Aquifer originates

from the Judith River Aquifer. Once groundwater flow enters the Tyner Valley

Aquifer it is diverted north towards the Battleford Valley arm where it then flows

westward ultimately discharging into the North Saskatchewan River (Karvonen,

1997 and Meneley, 1970). The direction of groundwater flow in the Tyner Valley

Aquifer System is shown in Figure 2.6..

The hydraulic gradient in the Tyner Valley Aquifer increases significantly near

Grandora due to a permeability blockage resulting from collapse structures. This

blockage causes the hydraulic head north of Grandora to be controlled by the

elevation of the North Saskatchewan River. South of the permeability blockage the

hydraulic head is much higher and artesian conditions result from the impeded

groundwater flow (Meneley, 1970). Water levels measured in monitoring wells

completed in the Tyner Valley Aquifer are higher south of the permeability blockage

than they are north of the blockage.

Monitoring wells completed in the Judith River Aquifer have been flowing

since their installation at the mine site. Monitoring wells 77-702 and 86-103 have

high fluid levels suggesting that the Judith River Aquifer is poorly connected at these

sites (Maathuis et al., 1994). Artesian conditions in the Judith River Aquifer near

PCS Cory Mine indicate that an upward, vertical hydraulic gradient exists in this

area.

2.5.2 Flow in the Sutherland Aquifer

Monitoring wells 86-101 and 93-102 are completed in the intertill channel

aquifer while 86-104 and MW 86-106 are completed in the interti II sand lens.

Maathuis et al. (1994) indicated that water level data obtained from these wells

cannot be used for indicating the direction groundwater flow within the Sutherland

Aquifer as the aquifer is poorly defined. It is thought, however, that flow in the

Sutherland Aquifer is southward.
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2.5.3 Flow in the Floral Aquifers

Little is known about the flow regime in the Floral and Riddell Aquifers,

however, it is hypothesized that the Floral Aquifer acts as buried drain collecting

groundwater from neighboring tills and directing it towards the South Saskatchewan

River. Figure 2.7 illustrates the inferred direction of groundwater flow in the Floral

Aquifer.

Monitoring wells 18, 77-802, 77-804, 77-805, 86-107 and 93-103 were

completed in the Floral Aquifer. Analysis of well data indicates that groundwater

flow in the vicinity of PCS Cory Mine is southwards and the corresponding hydraulic

gradient is approximately 0.5 to 0.7 m/km (Maathuis et al., 1994). Water levels

recorded from 18 and 86-107 are higher than the level measured in the neighboring

well 77-802, thus suggesting that a localized narrow channel may exist within the

larger Floral Aquifer. This narrow channel, as interpreted by Maathuis et al. (1994)

acts as a drain for the neighboring sands. Monitoring wells were not completed in

the Riddell Aquifer.

2.5.4 Flow in the Surficial Aquifers

Water infiltrating the Surficial Aquifer moves either laterally or downward.

Lateral groundwater flow discharges in depressions, seasonal ponds, sloughs,

streams or at road side drainage ditches. Downward groundwater flow recharges

underlying aquifers.

2.5.5 Flow in the Vicinity of the Tailings Pile

When WMAs are sited above a saturated aquitard or aquifer, the change in

the total stress changes the pore pressure distribution within the groundwater

system. Variations in pore pressures in these conditions are most noticeable in

thick, low permeability, highly compressible formations; that is, the aquitards.

41



The increase in total stress resulting from the weight of the WMA increases

the hydraulic head within the aquitards. If the aquitard is thick the excess head

developed within the aquitard can be large and remain for many years after loading

stops. This excess head may act as a hydrodynamic barrier impeding the

downward flow of contaminants from the WMA. In this situation an upward flow

gradient from the middle of the aquitard to the base of the tailings pile and a

downward flow gradient towards the underlying aquifer may exist (Maathuis and van

der Kamp, 1994 and van der Kamp and Maathuis, 1985).

If loading stops, the excess head dissipates and the hydraulic barrier

disappears. However, the overlying weight may have caused the aquitard to

consolidate thereby reducing both the vertical hydraulic conductivity and the rate of

flow and transport through the aquitard (Maathuis and van der Kamp, 1994 and van

der Kamp and Maathuis, 1985).

This situation is more complex if a highly concentrated, dense fluid, such as

brine, is involved. The high fluid density creates a density-driven buoyancy force

causing brine to move downwards. The density-driven buoyancy force is of a

similar magnitude to the upward advective gradient and may prevent the

development of a hydrodynamic barrier.
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CHAPTER 3

MECHANICS OF FLUID TRANSPORT

The physical and chemical properties of brine have a significant affect on

brine migration. Since the density of brine is greater than native groundwater,

buoyancy forces influence the position of the brine plume in the groundwater flow

system. Predicting the location of the brine plume with time is important for

analyzing the environmental impact and also for developing mine decommissioning

plans.

3.1 Brine Properties

70

Figure 3.1 - The system NaCI-KCI-H20 for temperatures ranging from -22.9 to
100°C (Braitsch, 1971)
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A temperature solubility diagram for a NaCI-KCI-H20 system is shown in

Figure 3.1. Line R represents a solution that is mutually saturated with NaCI and

KCI at 100°C. Thefigure indicates the strong temperature dependence of solubility.

Brine, composed of NaCI and KCI and stored in the PCS Cory Mine WMA, is

saturated and has a density and TDS (Total Dissolved Solids) concentration of

approximately 1,280 kg/m3 and 300,000 mg/L respectively at DoC. This is

equivalent to a 5.3 M solution (Braitsch, 1971, Ho et al., 1989 and Kestin et al.,

1981). The approximate density and TDS concentration of native groundwater are

1,000 kg/m3 and 1,000 mg/L respectively.

The relationship between the density and concentration of brine is empirically

represented by the polynomial indicated in equation 3.1. Equation 3.2 gives a

similar empirical relationship between the absolute or dynamic viscosity and brine

concentration (Lin et al., 1996).

(3.1 )

(3.2)

where:

C =

a1, a2,. ..aa =

P =
Po =

~ =

~o =

chemical concentration of the fluid in ppt (parts
per thousand)
parameters required to define concentration
dependance of water density and viscosity
fluid density at a given chemical concentration
referenced fluid density at zero chemical
concentration
dynamic viscosity of fluid at given chemical
concentration
referenced dynamic viscosity at zero chemical
concentration
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The coefficients a1 to as are slightly pressure dependent and strongly

temperature dependent. A constant pressure and temperature of 5 MPa and O°C

respectively were used for interpolating values for the coefficients from data

documented by Kestin et al. (1981) and Rowe and Chou (1970). The mean annual

temperature in Saskatoon is close to O°C and natural groundwater temperatures in

the shallow subsurface are no more than 8DC. Groundwater temperatures are

normally subject to small fluctuations and the values used in the model are

considered valid for the anticipated range of pressure and temperature. Table 3.1

lists the parameters used for qualifying the relationship of brine density and dynamic

viscosity with concentration.

Table 3.1 - Parameters Used to Determine the Dependance of Chemical
Concentration on the Density and Dynamic Viscosity of Brine and Freshwater

Coefficients Value

a1 1.0006

a2 6.9787x10-4

a3 -4.2801 x1 0-7

a4 1.4352x10-1O

a5 1.0002

a6 0.0013

a7 3.3092x10-6

as 1.8854x10-9

3.1.1 Clay-Brine Interaction

Research on the effects of brine on clay soils indicate that when a highly

concentrated solution of NaCI is introduced into a soil, it can either increase or

decrease in the hydraulic conductivity of that soil. The change in hydraulic

conductivity is most dependent on the magnitude of the confining stress.
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When brine invades the pore spaces between clay particles, the

microstructure changes from a dispersed to a flocculated condition (Yang and

Barbour, 1992). The Na+ cations in brine interact with negatively charged clay

particles, thereby changing the soil properties. The physiochemical interactions

between the Na+ cation and the negatively charged clay surface may cause the clay

to osmotically consolidate and develop fractures (Barbour and Fredlund, 1989,

Barbour and Yang, 1993 and Ho ef aI., 1989). Osmotic consolidation results from

the shrinkage of the diffuse double layer. This may account for approximately 1.5

to 2.4 % volume reduction in till (Barbour, 1990).

Osmotic consolidation within tills is reduced when a confining stress is

applied. When clay is subjected to a large confining stress, such as that created by

the weight of a tailings pond or tailings pile, the strain generated by osmotic

consolidation is restricted. This can prevent an increase in the effective void ratio

between the clay aggregates (Barbour and Yang, 1993 and Yang and Barbour,

1992). Because the magnitude and direction of changes in hydraulic conductivity

beneath the WMA cannot be reliably predicted, it was assumed that any such

changes were small and could be neglected. This could be the subject of a

sensitivity analysis in a numerical model at a future date.

3.2 Brine Migration Pathways

Figure 3.2 illustrates the main pathways for brine migration outside the PCS

Cory Mine WMA. The elevation of brine ponded in the WMA is higher than the

elevation of the regional water table generating a radial, outward hydraulic gradient.

Density and concentration differences between brine and freshwater create strong

buoyancy forces, together with the hydraulic gradient, results in an unbalanced flow

and transport system. To attain equilibrium conditions, brine has a tendency to

move radial and downwards out of the WMA into the flow system where it will then

continue to migrate until equilibrium is reached.

Brine can move downwards through the surficial stratified deposits and into
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Figure 3.2 - Schematic Illustration of the Principal Brine Migration Pathways at the PCS Cory Mine WMA
(after Maathuis and van der Kamp, 1994)
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the Floral Aquitard. The mobility of brine in the Floral Aquitard may be greater in the

vertical direction than the horizontal because of its high density compared to native

groundwater and also due to preferential flow along vertical fractures within the

aquitard. The load generated by the weight of the WMA may form a hydraulic

barrier within the aquitard generating an upward flow gradient and possibly

impeding the downward transport of brine (Maathuis and van der Kamp, 1994).

The numerical model does not allow for consolidation of the aquitards to be

included in the analysis. Calculation of the relative magnitudes of the buoyancy

forces and the advective gradients driving flow suggests that both may be similar

in magnitude.

3.3 Hydraulic Head in Groundwater of Variable Density

Davies (1987), Oberlander (1989) and Bachu (1995) discussed the difficulties

and pitfalls when relating groundwater hydraulic head and flow directions in porous

media containing variable density fluids. The problem was originally investigated by

Lusczynski (1961).

The hydraulic head for a constant density fluid is described by equation 3.3.

Lusczynski (1961) introduced the concept of freshwater head and environmental

head in an attempt to predict the flow directions in chemically inhomogeneous and

density-driven fluids. Freshwater head (equation 3.4) in the flow system is defined

by Lusczynski (1961) as the equivalent height of the water column if the

"environmental" water is replaced by freshwater.

Ph =z+-
PQ

Ph =z+-
o PoQ
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where:
h = hydraulic head
ho = freshwater head
z = elevation
p = fluid pressure
P = environmental water density
Po = freshwater density

The environmental head (equation 3.5) is the freshwater head reduced by an

amount corresponding to the difference in density between the column of water to

a specified depth and an equivalent freshwater column (Lusczynski, 1961).

where:
he
Pe
!J.z

=
=
=

~Z(Pe - Po)
he =h0 +---'----

Po

environmental head
the average density of the in the column
depth of the fluid column

(3.5)

The average density of the fluid is given by:

P. =(~JfPdZ (3.6)

The driving force per unit mass in fluid flow was first described by Hubbert

(1940) and further described by Davies (1987), Oberland (1989) and Bachu (1995).

Hubbert (1940) indicated that the impelling force per unit mass (equation 3.7) of

fluid is related to the freshwater head gradient and buoyancy resulting from

variations in fluid density. Figure 3.3 shows the vector components of the driving

forces affecting fluid flow.

Equation 3.7 indicates that freshwater heads specify the horizontal vector

component of the impelling force. The vertical vector component of the impelling

force, however, cannot accurately be determined from freshwater head
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measurements (Bachu, 1995). Changes in fluid density, temperature, pressure,

and salinity are important parameters to consider when analyzing the vertical

component of the impelling force (Bachu, 1995 and Oberland, 1989).

F = -( Pp
o
)[Vh o +( ~~ )M]

The driving force ratio (DFR) is used to evaluate the relative magnitude of

freshwater hydraulic head and buoyancy forces in groundwater flow. When the

DFR is greater than 0.5, density-driven groundwater flow in a variable density

environment is significant. Neglecting these density related gravity effects may

result in erroneous interpretations of flow systems (Davies, 1987). When the DFR

is greater than 1.0, a free convection regime exists and fluid motion is governed by

density differences within the flow field. When the DFR is less than 1.0, a forced

convection system exists indicating that fluid flow is driven by external forces such

as advection (Bear, 1972). Equation 3.8 describes the DFR expression:

( ~p)V
DFR= r:- z

Vh o

50

(3.8)



Hydraulic Component of the
Drivin Force Vector

o
OCD.. ~
--til< --
:r~
CCo
-nO
~ 3
n"CD CD
<~
CD"
n 0......
0 .... :r

CD

Figure 3.3 - Vector Components of the Driving Force

3.4 Groundwater Flow and Mass Transport Principles

Two transport processes influencing brine migration in the groundwater flow

system are mechanical dispersion and molecular diffusion. The attenuation of brine

concentrations resulting from the physiochemical reaction between brine and the

porous media are assumed to be negligible for the purposes of this numerical

investigation. The interaction between dissolved salts and clay, however, can effect

the formation permeability through osmotic consolidation (van der Kamp, 1989) but

it has been argued earlier that such effects are difficult to quantify.
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3.4.1 Advection and Mechanical Dispersion

Advection is the movement of solute with the flowing groundwater. The

amount of dissolved material that is transported depends on the fluid concentration

and the groundwater flow velocity (Fetter, 1992 and Freeze and Cherry, 1979).

The advective movement of a solute is not affected by variable density or

chemical reactions within the subsurface. The equation for one dimensional (1-0)

advective mass flux (3.9a) and advective transport (3.9b) are shown below.

where:

F =
n =
v =
C =
ac /at =
ac / ax=

F =vnC

ac ac
-=-v-at ax

1-0 mass flux
effective porosity of the porous medium
average linear velocity
concentration of the solute
concentration gradient with time
concentration gradient with position

(3.9a)

(3.9b)

When groundwater flows through a porous medium it does not move at a

constant velocity. It moves at rates different to the average linear velocity on a

microscopic scale.

1. Flow is faster near the center of voids compared to the edges where fluid­

solid interactions occur;

2. Some solute particles will travel along longer flow paths; and

3. Flow velocities change as the pore diameters change.
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Mechanical dispersion is the mixing and spreading associated with

groundwater flow through porous media resulting in the "smearing" of the sharp

advective front. Longitudinal dispersion occurs in the direction of groundwater flow

while transverse dispersion occurs perpendicular to flow (Fetter, 1992).

3.4.2 Molecular Diffusion

Molecular diffusion gradually spreads the solute through the random

movement of particles. Diffusion causes the contaminant to migrate from areas of

high chemical concentration to low chemical concentration even in the absence of

flowing groundwater (Rowe, 1996). Fick's first law (equation 3.10) represents the

diffusive movement of a solute in 1-0;

where:
De =

F = -nO (~J
e ax

effective diffusion coefficient

(3.10)

The effective diffusion coefficient is dependent on the valence, ionic radius,

temperature, the solute species, lithology and pore size and distribution (Rowe,

1996). The self diffusion coefficient for most ionic solute species varies from 1x1 0-9

to 2x1 0-9 m2/s (Fetter, 1992). The effective diffusion coefficient for chloride ranges

from 1x1 0-10 to 5x10-10 m2/s (Maathuis and van der Kamp, 1995). The effective

diffusion coefficient can be reduced into two components;

where;
w
Do

=
=

De =roD 0

coefficient of tortuosity
self diffusion coefficient
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3.4.3 Hydrodynamic Dispersion

Hydrodynamic dispersion describes mass transport including the effects of

molecular diffusion and mechanical dispersion. Dispersion coefficients are usually

described by the empirical equations:

(3.12a)

(3.12b)

where:
DL =

DT =

a L =
aT =
Vi =

hydrodynamic dispersion coefficient in the direction of flow
(longitudinal)
hydrodynamic dispersion coefficient in the direction
perpendicular to flow (transverse)
longitudinal dynamic dispersivity
transverse dynamic dispersivity
velocity in the longitudinal direction

Dynamic dispersivity is a property that is dependent on the characteristics of

the porous media. The longitudinal dispersivity of a geological material is often at

least one order of magnitude greater than the transverse dispersivity (Fetter, 1992

and Maathuis and van der Kamp, 1994). Neuman (1990) commented on the scale

dependence of dispersivity and developed an empirical relationship between the

apparent longitudinal dynamic dispersivity and the length of the flow path, provided

that the flow path is less than 3,500 m. The longitudinal dynamic dispersivity can

be estimated by using the following empirical formula:

where;
L =

U L = (0.0175) L1
.
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3.4.4 Breakthrough Curve

When solute particles are traveling along different flow paths and at different

velocities the sharp concentration front expected for "piston-flow" is smeared

because of dispersion. The classical experiment illustrating dispersion involved a

tracer being continuously injected at the up gradient end of a sand column through

which water was flowing under steady-state conditions. The concentration of the

injected tracer at the inflow is Co and the concentration of the tracer at the outlet of

the sand column is measured as the relative concentration expression, C/Co. The

graph (Figure 3.4) shows the relative concentration of the tracer with time for the

outlet. This characteristic sigmoidal curve is known as a breakthrough curve. If the

tracer moved through the column without being dispersed (piston-flow), the

breakthrough curve would be a step function (Wang and Anderson, 1995).

1.0

oo--o

--------"-'=""'--

Dispersion

No Dispersion
"piston-flow"

Time

Figure 3.4 - Typical Breakthrough Curve
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CHAPTER 4

MODEL DEVELOPMENT

Once the hydrogeological conceptual model is developed, the native

groundwater water and brine properties are known and the processes affecting

brine migration are understood, a computer model that mathematically simulates

groundwater flow and transport can be constructed. Spatial and temporal

discretization of the problem domain must be carefully designed to ensure that the

model represents the natural system. Design is necessary to avoid, as much as

possible, artifacts created by the numerical calculations. The most serious of these

artifacts in solute transport modelling is an artificial "mixing" caused by the

calculation process (numerical dispersion).

4.1 Spatial Discretization

Developing a numerical model requires that the problem domain be

represented by a finite number of nodal points and elements. Elements are formed

I from the areas or volumes enclosed by lines connecting the nodal points. Nodes

are the points where groundwater head and solute concentration are calculated or

specified. Hydraulic properties are assigned to the elements in the problem domain.

Boundary conditions are applied either at nodal points or over the surface of

elements. The spatial discretization process is an attempt to faithfully represent the

hydrogeological units and to provide the most detail in areas of practical interest,

such as the WMA.

4.1.1 Finite Element Mesh Design

Mesh design is very important for the successful use of any numerical

method including the finite element method (FEM). Computational accuracy and

the level of computational effort are directly related to the mesh design. Well
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designed, finite element meshes provide more accurate solutions with less

computational effort. Poorly designed meshes can result in wasted computational

effort and loss of accuracy. Refining the finite element mesh increases accuracy

but computational effort is also increased. Coarse meshes require less

computational effort but both accuracy and spatial resolution of physical boundaries

are lost.

4.1.1.1 Two Dimensional Finite Element Mesh

The 2-D mesh used in the numerical investigation of PCS Cory Mine

consisted of 2356 nodes and 4685 triangular elements. The nodes located along

the boundary of the mesh coincided with the body-centered grid nodes of the finite

difference grid constructed by Karvonen (1997) for investigating regional

groundwater flow west of Saskatoon. Matching the x,y coordinates of the 2-D mesh

nodes with those of the regional flow model grid nodes allowed the hydraulic heads

determined at these locations in the regional model to be used as boundary

conditions for the local PCS Cory Mine model.

The 2-D finite element mesh was coarse along the perimeter of the study

area and was refined towards the PCS Cory Mine WMA. The mesh was designed

to provide both accuracy and detailed spatial resolution in the vicinity of the WMA.

Numerical dispersion is an artifact of the mesh and time-stepping used for

numerical results. The smallest distance that the contaminant will travel in one

model time step is the distance between adjacent mesh nodes. If either the time

step or the mesh spacing are too large then artificial mixing occurs. Fine time

discretization and small mesh elements are required to avoid "numerical mixing" that

exceeds the rate of the physical diffusive process. Problems with numerical

dispersion occur where imposed concentration gradients are high, hydrostratigraphy

is complex or the stresses imposed on the flow system due to the installation of

various containment devices are highly variable in time.

The aspect ratio of mesh elements (the ratio of maximum to minimum

57



element dimensions) need to be relatively small so that errors in the estimation of

gradients between elements are controlled. The aspect ratio was designed to be

no greater than 5: 1 (Anderson and Woessner, 1992 and Istok, 1989). The

transition from a coarse mesh to fine mesh was gradual. Elements were chosen so

that they did not cross or straddle hydrostratigraphic boundaries (Lin et al., 1996).

4.1.1.2 Three Dimensional Finite Element Mesh

The method of constructing a 3-D finite element mesh in GMS involves the

use of both a 2-D mesh and TINs (Triangular Irregular Networks). TINs are a series

of connected x,y,z points that map the surface of a hydrostratigraphic contact. The

2-D mesh is projected through the TIN surfaces representing the top and bottom

contact of a hydrostratigraphic unit (Figure 4.1). In projecting the 2-D mesh the

number of element layers used to model the hydrogeological unit is specified thus

creating a vertical column of 3-D elements (Figure 4.2). Refinement of the vertical

mesh is made in locations where the hydraulic head or concentration gradients are

high and in the unsaturated zone (Lin et al., 1996). Care is taken when constructing

the 3-D finite element mesh to ensure that the depth of the constructed elements

is not too large or too small relative to its horizontal length. This is particularly

significant if vertical flow components are an important part of the model.

The advantage of creating a 3-D element mesh in this fashion is that the

procedure is relatively fast for simple hydrostratigraphic systems. However, when

the hydrostratigraphy is relatively complex, the technique used to construct the 3-D

mesh must be modified. In some parts of the mesh, changes of material properties

of elements within layers are required. Figure 4.3 shows lens and pinchouts are

represented in a 3-D mesh.

The TIN surfaces created for representing the hydrostratigraphy of the study

area were, in ascending order; the Lea Park Aquitard, Tyner Valley Aquifer System,

Sutherland Aquitard, Floral Aquifer, Floral Aquitard and the topographic surface.

TI N surfaces were not constructed for the complex and discontinuous
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hydrogeological units, such as sand units of the Sutherland Aquifer, Riddell Aquifer,

Surficial Aquifer and Surficial Aquifer. Constructing TIN surfaces for these units

would result in a 3-D mesh having vertical elements of zero thickness. It is

necessary to avoid constructing meshes containing hydrostratigraphic units of zero

thickness. The elements in the 3-D mesh corresponding to the Judith River Aquifer,

Tyner Valley Aquifer, Sutherland Aquifer, Riddell Aquifer, Surficial Aquifer and

Surficial Aquitard were assigned the appropriate hydraulic properties. The final 3-D

mesh contained 18 layers and a total of 44673 nodes and 84058 elements. Table

4.1 lists the number of layers constructed within each aerially extensive

hydrogeological unit.

20 Mesh
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Figure 4.1 - Projection Technique used for Constructing a 3-D Mesh
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Figure 4.2 _3-D Mesh Showing Multiple Hydrostratigraphic Units Represented by
Vertical Columns of 3-D E\ements
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Figure 4.3 - Modelling Lens and Pinchouts in a 3-D Mesh
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Table 4.1 - Number of Layers Constructed for the Hydrogeological Units in the 3­
D Finite Element Mesh

Hydrostratigraphic Unit Number of Layers

Surficial Aquifer and Aquitard 2

Floral Aquitard 5

Floral Aquifer 2

Sutherland Aquitard 4

Tyner Valley Aquifer System 2

Lea Park Aquitard 3

TOTAL 18

4.1.2 Boundary Conditions

Once the 3-D finite element mesh is designed, boundary conditions can be

specified. The types of boundary conditions used in groundwater flow and solute

transport models are (Anderson and Woessner, 1992 and Wang and Anderson,

1995):

1. Specified hydraulic head (Dirichlet) boundary conditions;

2. Specified groundwater flow (Neumann) boundary conditions; and

3. Hydraulic head dependent groundwater flow (Cauchy or mixed) boundary

conditions.

The perimeter of the study area was located at a considerable distance away

from the WMA in order to minimize the influence of boundary effects. The nodes

along the perimeter of the mesh were placed at the same location as the grid nodes

used in the numerical study of regional groundwater flow west of Saskatoon

(Karvonen, 1997). The hydraulic heads determined from the calibrated regional

groundwater flow study were used as constant head boundary conditions for the
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site-specific model. Constant head boundary conditions determined from the

calibrated regional groundwater flow model were only assigned to the aquifers and

surficial stratified deposits that intersected the perimeter of the site-specific mesh.

Constant head boundary conditions were not applied to the aquitards. The implicit

assumption for the aquitards was no flow. Since these units have low hydraulic

conductivity, this was an acceptable approximation.

Constant head (Dirichlet) boundary conditions were also assigned to the

nodes coinciding with the location of surface hydrological features such as rivers,

streams, lakes and perennial sloughs. The values assigned to these features were

determined from published information and topographic elevations inferred from

Map 1, Appendix F. Constant head boundary conditions were also applied at the

tailings pond and beneath the tailings pile. Table 4.2 summarizes the range of

constant heads used in the model.

Table 4.2 - Constant Hydraulic Heads Used in the Numerical Model

Surficial Stratified Deposits Boundary 478 m - 521 m

Streams and Perennial Sloughs 476m-515m

South Saskatchewan River 478 m - 479 m

Moon Lake 480 m

Tailings Pond 493m

Floral Aquifer 478 m - 521 m

Tyner Valley Aquifer 473 m - 510 m

Judith River Aquifer 481 m - 507 m

Constant flux (Neuman) boundary conditions were applied to the centroid of

the mesh elements in the top layer of the model in order to represent recharge

water infiltrating into the flow system. Flux boundary conditions were not applied to

the elements containing constant head nodes, since such fluxes were redundant.
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4.1.2.1 Hydraulic Properties and Initial Conditions

After the 3-D model was constructed and the boundary conditions were

specified, hydraulic properties and initial conditions for the model were assigned.

The first approximation of hydraulic properties for the various aquifer and aquitard

units used in the model agreed with the calibrated values determined by Karvonen

(1997) and fell within the range of values given by Dominco and Schwartz (1990),

Maathuis et al., (1994), Mualem, (1978), Ranjitkar, (1989) and van Genuchten

(1980). The hydraulic properties assigned included saturated hydraulic conductivity

(Kx, Ky and Kz) and soil-moisture characteristics for the unsaturated zone. The

ranges of these values are summarized in Tables 2.2 and 2.3 (Chapter 2).

An initial hydraulic head of 490 m was assigned to the numerical mesh as a

preliminary estimate of the hydraulic head distribution in the flow system. By

assigning an "average ground surface" initial condition the time required for model

convergence was reduced. This value was important for nonlinear unsaturated flow

systems where an "average" ground surface or topographic elevation value seemed

to provide a good starting point. If the system was suspected to be strongly

nonlinear, careful choice of initial conditions was essential since results may have

been highly sensitive to this choice.

4.2. Temporal Discretization

Temporal discretization is the process of selecting the time steps that the

simulation will use to advance the solution.

When time stepping, large time steps are avoided since the flow and

transport processes are nonlinear and properties can change significantly both as

a function of hydraulic head and concentration. Large time steps can result in a

loss of numerical accuracy and problems with convergence. The magnitude of the

time step specified for a coupled simulation is dependent on (Istok, 1989):
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1. The size and shape of the elements in the finite element mesh;

2. The specific storage and hydraulic conductivity of the elements;

3. Whether lumped or consistent formulation ;s used to calculate element

capacitance matrices;

4. Boundary conditions; and

5. The relaxation parameter.

Small time steps, along with close spaced nodes provide a better discrete

approximation of the partial differential equation governing the physical processes

of flow and transport. Reducing the time step can attenuate unstable numerical

oscillations that result from nonlinearity. The magnitude of the initial time used for

highly nonlinear transient problems can be estimated using equation 4.1 (Bear and

Verruijt, 1987):

where:

~t

S
T
~x

=
=
=
=

time step interval
storativity of the porous medium
transmitivity
characteristic measure of the mesh size.

(4.1 )

For explicit solution schemes, the time step controls the stability of the

solution. For implicit schemes, the time step controls the accuracy of the solution.

An implicit time stepping scheme was used to simulate flow and transport at PCS

Cory Mine and surrounding area.
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4.3 Numerical Formulation

4.3.1 Galerkin's Method

The FEMWATER code uses Galerkin's method to formulate the finite

element equations. Galerkin's technique is a Method of Weighted Residuals

(MWR) and is the most commonly used procedure for solving groundwater flow and

solute transport problems (Bickford, 1990).

In MWR the first step is to find an approximate solution that represents the

value of the dependent variable for the problem domain. When the approximate

solution is substituted into the system of linear equations, a residual error for each

node in the problem domain is calculated (Istok, 1989).

Values of the dependent variables are continuously updated through an

iterative process until the residuals are sufficiently small for the solution to be

accepted (Bear and Verruijt, 1987). The iteration process continues until the value

of the residuals is within a predetermined tolerance criterion. A form of Gauss­

Seidel iterations is used to perform the residual minimization in the FEMWATER

code.

4.3.2 Pointwise Iterative Matrix Solver

The pointwise iterative matrix solver in FEMWATER was selected for

calculating the coupled flow and transport solutions. It adopts a basic successive

iteration method, such as Gauss-Seidel, successive over-relaxation or successive

under-relaxation, to solve matrixequations (Lin etal., 1996). The pointwise iterative

solver produces a convergent solution when the matrix is diagonally dominant. The

advantage of this matrix solver is that it is more robust than conjugate gradient

methods using either polynomial or incomplete Choleski preconditioners. The

disadvantage of the pointwise iterative matrix solver is that convergence can be

slower than the other methods (Lin et al., 1996).
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A mass lumping formulation was used in conjunction with the pointwise

iterative matrix solver to obtain a more accurate solution. Mass lumping tends to

increase the potential for numerical instability but tends to avoid problems with mass

balance in transport (Lin et al., 1996).

4.3.3 Gaussian/Gaussian Quadrature

Gaussian/Gaussian quadrature was used for integrating the finite element

equations. Numerical approximations are obtained for the integrated function within

a specified interval by calculating the weighted sum of values of the function at

specific points on the interval (Istok, 1989 and Wang and Anderson, 1995). The

Gaussian/Gaussian quadrature performs surface and element integration and

provides the most accurate integration procedure (Lin et al., 1996).

4.3.4 Backward Difference Weighting Factor

The backward difference method is an implicit numerical scheme (Lin et al.,

1996). In this scheme for time stepping, the spatial derivatives of the dependent

variable are evaluated simultaneously at a new time. The advantage of an implicit

time stepping scheme is its unconditional stability. Equation 4.1 shows the matrix

equation for the fully implicit case to solve Laplace's equation (Wang and Anderson,

1995):

(4.1 )

where:

{h} =
a =
t =
~t =

Column matrix of nodal hydraulic heads
1 for backward difference or fully implicit time stepping
Current time
Time step
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4.3.5 Relaxation Parameter

For the solution of nonlinear flow and transport equations an estimate of the

initial pressure head and concentration is required to construct the matrix equation.

Under-relaxation, exact-relaxation and over-relaxation are the three options

available to estimate new pressure heads and concentration distributions. In all

cases the estimates are based on previous approximations. For under-relaxation,

the relaxation parameter ranges from 0.0 to 1.0. Exact-relaxation, the value of the

relaxation parameter is 1.0. For over-relaxation, the ranges from 1.0 to 2.0 (Lin et

al., 1996). The exact-relaxation parameter was selected for solving both flow and

transport equations in FEMWATER. The equation relating the relaxation parameter

to the unknown hydraulic heads for Laplace's equation is given in 4.2 (Wang and

Anderson, 1995):

where:

h·· =I,J

m =
hm.. =I,J

W =

h~+1 =h~ + (fl,m+1 - h~ )00
I,) I,j I,J I,j

value of the hydraulic head at any point
iteration index
initial guess for the unknown hydraulic head
relaxation parameter

(4.2)

When determining the new hydraulic head values (hm
+

1
) the previously

determined hydraul ic heads (hm
) are modified or corrected. The relaxation

parameter controls how much correction is made for each step in the iteration.

If w < 1, then the correction to the "guess" is reduced and convergence is

slow but stabilized. This is called under-relaxation. If w > 1, then the correction to

the "guess" is increased. This accelerates convergence but may lead to "overshoot"

and instability.
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CHAPTER 5

STEADY-STATE MODEL CALIBRATION AND RESULTS

FEMWATER was used to calculate the steady-state groundwater heads. In

steady-state groundwater flow, the volume of fluid entering a mesh element equals

the volume of fluid flowing out. Hydraulic head is independent of time for steady­

state flow.

When calibrating the steady-state flow model the hydraulic parameters and

boundary conditions were adjusted until the simulated hydraulic heads matched the

water levels measured in the field. Once the steady-state flow regime was

simulated, the transient transport component of model was calibrated by matching

the model predictions to the known history of the site.

5.1 Calibration of the Steady-State Groundwater Flow Model

Small changes in material properties, within the constraints of the observed

and estimated data, were made to improve the correspondence between the

observed and predicted steady-state heads. The boundary conditions changed in

the calibration process were those simulating the WMA, surficial water bodies,

constant heads and the infiltration fluxes at the surface. Boundary conditions along

the perimeter of the model were acquired from a regional hydrogeological flow

model (Karvonen, 1997) and were not adjusted.

Calibration of the steady-state groundwater flow model for PCS Cory Mine

and surrounding area was based on:

1. Water levels measured in peizometers and monitoring wells;

2. Documented groundwater velocities; and

3. Results of regional groundwater flow numerical studies (Karvonen, 1997).
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5.2 Errors Associated with Calibration Heads

All field measurements have associated errors. When calibrating a

groundwater flow simulation a calibration target is specified. The calibration target

quantifies the allowable difference between the simulated hydraulic head and the

hydraulic head observed in the field. The calibration target used for the brine

migration study was ±2.47 m. This corresponded to ±5% of the total hydraulic head

difference in the model. Errors attributed to field data that affect the value of the

acceptable calibration target include:

1. Transient Effects

Calibrating a groundwater flow model with field water level measurements

introduces transient effect errors into the model. The transient effect errors occur

because the measured water levels are influenced by changes in seasonal and long

term in climatic conditions. Maathuis and van der Kamp (1995) indicate that climate

change and seasonal fluctuations can vary the hydraulic head by several meters.

2. Density Effects

Hydraulic head measurements used for calibrating the steady-state

groundwater flow model are influenced by fluid concentration through the fluid

density parameter of the hydraulic head. The more concentrated the fluid within the

monitoring well, the more effect it has on the measured water level.

When calculating the steady-state groundwater flow field freshwater

concentration (1 gIL) and density (1,000 kg/m3
) were assumed. If the fluid

concentration is greater than freshwater or if a dense fluid has infiltrated into the

monitoring well, the concentration and density will be greater than 1 gIL and 1,000

kg/m3 respectively. This results in the observed head being an underestimate of the

freshwater head.
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3. Measurement Errors

These errors are associated with the accuracy of the water level measuring

device, the operator and the location of the survey point. Generally measurement

errors are on the order of a few hundredths of a meter, however, the magnitude of

such errors can increase for. regional surveys (Anderson and Woessner, 1992).

Errors in ground level estimates or surveys are the major inaccuracies in reporting

water level data. For some data points, ground level was established from

topographic maps resulting in a potential error of several meters.

4. Scaling Effects

Anderson and Woessner (1992) describe scaling effects as errors resulting

from the mesh elements unable to represent the small scale heterogenities within

them. Point field values may not represent the region of a model mesh element.

Scaling effects can introduce errors into the model by using water level

measurements obtained from wells having long screen lengths. Numerical

simulations require point head data. Field measurements from monitoring wells with

long screened zones may not represent the point head data needed for numerical

simulations (Anderson and Woessner, 1992).

5. Interpolation Errors

Nodal positions in models should coincide with the location of monitoring

wells used in model calibration. If the nodes do not coincide with the well position

then interpolation is used to determine the simulated hydraulic head from

su rrounding nodes. For large regional investigations the errors associated with

interpolation errors can be several meters (Anderson and Woessner, 1992).

Interpolation error decreases when nodal points are closely spaced.
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5.3 Calibration Database

The hydraulic head field data used for calibrating the groundwaterflow model

was supplied by AGRA Earth and Environmental, the SRC and the Saskatchewan

Water Corporation (SWC). Data from twenty-two wells were used for this study.

Not all measurements were equally reliable. Table 0.1 in Appendix 0 lists the well

name, hydrostratigraphic position and measured hydraulic head used for the flow

model calibration. The well location and hydraulic head measurements are shown

on Map 2, Appendix F.

5.4 Flow Model Calibration Technique

Calibrating the groundwater flow model for PCS Cory Mine and surrounding

area involved a trial and error process. During model calibration hydraulic

properties and boundary conditions were assigned to the mesh nodes and

elements. Using the assigned values, FEMWATER calculated the steady-state

groundwater flow distribution for the region. The simulated hydraulic heads were

compared to field measurements. If the simulated heads matched the observed

heads within the predetermined range of the calibration target, the model was

considered calibrated. If not, then the hydraulic parameters and/or boundary

conditions were adjusted. FEMWATER was then used to recalculate the solution.

This process continued until the simulated hydraulic heads matched the field

conditions within the ranges specified by the calibration target. Figure 5.1 illustrates

the trial and error procedure used in steady-state groundwater flow model

calibration.
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Figure 5.1 Trial and Error Calibration Process (after Anderson and Woessner, 1992)
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(5.1 )

5.4.1 Evaluation of the Calibrated Steady-State Groundwater Flow Model

The steady-state flow model calibration was evaluated both qualitatively and

quantitatively. In the qualitative evaluation attention was given to the flow patterns

relative to those indicated by Meneley (1970) and Maathuis et al. (1994). The

computed results were reviewed and analyzed to ensure that groundwater flow

directions, gradients and fluxes were consistent with field evidence.

In the quantitative evaluation of the numerical results, the difference between

measured and simulated hydraulic heads were analyzed. There is no standard

convention for evaluating calibrated models (Anderson and Woessner, 1992),

however there are commonly used measures for evaluating the "average error"

resulting from trial and error calibration. "Average error" measures used for

quantifying the calibrated steady-state groundwater flow model include:

1. Mean Error

The mean error (ME) quantifies the average difference between the

measured hydraulic head (hm) and the simulated hydraulic head (hs) for a given

number of calibration points (n). The ME is not the preferred method for evaluating

calibrated models as both positive and negative differences are included in the

mean during averaging. These differences may cancel out the calibration error. A

positive ME indicates that the calibrated hydraulic heads are lower than field

measurements. A negative ME indicates that the calibrated hydraulic heads are

higher than field measurements (Anderson and Woessner, 1992).

1 n

ME = nt; (h m- hs)j

2. Mean Absolute Error

The mean absolute error (MAE) is the average of the absolute value of the
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(5.2)

measured and simulated hydraulic head differences. The MAE, when compared

to the ME, provides a better assessment of how much the measured heads vary

with the simulated heads. In the MAE calculation the absolute values of the

residual heads are determined priorto averaging. (Anderson and Woessner, 1992).

1 n

MAE =- :L.1(h m - h,);1
n i=1

3. Root Mean Square Error

The root mean square (RMS) error is the square root of the average of the

squared differences between the measured and simulated heads. The RMS is the

best error estimate available if the errors are normally distributed (Anderson and

Woessner, 1992).

(5.3)

5.5 Calibration Results for the Steady-State Flow Model

More than forty trial and error calculations were performed before obtaining

a calibrated steady-state groundwater flow model. A graph showing the calibration

correlation between measured and simulated hydraulic heads for the monitoring

well data used in the trial and error process is shown in Figure 5.2. Figures 0.1 to

0.4, Appendix 0 contains the calibration plots for the individual aquifer units.

The solid line shown in Figure 5.2 represents perfect calibration, meaning

that simulated hydraulic head exactly matches field data. The two dashed lines

parallel to the solid line represent the ±SOlo (±2.47m) limits of the calibration target.
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Groundwater Flow Model Calibration Data
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Figure 5.2 - Calibration Plot of the Groundwater Flow Model Calibration Data
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Data points lying within the dashed zone were successfully calibrated. The points

falling outside this zone were not successfully calibrated.

Table 5.1 summarizes the calibration errors calculated for the steady-state

groundwater flow model. The ME, MAE and RMS computed from the steady-state

calibrated model were -0.71 m, 2.70 m and 4.71 m respectively. The negative ME

indicates that, in general, the simulated hydraulic heads were larger than the

measured water levels. The MAE and RMS were high because of large differences'

between the measured and simulated heads for few of the monitoring wells. Table

5.2 lists the observations wells that were not successfully calibrated.

Table 5.1 - Average Errors Calculated from the Calibrated Flow Model

Hydrogeological Unit Points ME (m) MAE (m) RMS (m)

Surficial Stratified Deposits 2 7.05 7.35 7.20

Floral Aquifer 6 -1.03 1.81 1.83

Sutherland Aquifer 3 -0.76 2.30 2.49

Tyner Valley Aquifer 5 -3.48 3.48 4.59

Judith River Aquifer 6 -0.41 1.37 1.85

Entire Model 22 -0.71 2.70 4.71

Table 5.2 - Unsuccessfully Matched Calibration Data

Well Name Hydrogeological Unit Difference (m)

SRC Moon Lake I Surficial Stratified Deposits -14.55

93-102 Sutherland Aquifer +3.46

Dan Nahathewsky Tyner Valley Aquifer +8.80

Keet David Tyner Valley Aquifer +5.33

86-105 Judith River Aquifer +2.74
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The simulated hydraulic head for SRC Moon Lake I monitoring well was

14.55 m lower than the water level measured in the field. The SRC Moon Lake I

well is located on a hillside that consists of sand underlain by stratified clay. It is

possible that the water level measured in this monitoring well is from a locally

perched water table. Because of sparse data in the vicinity of SRC Moon Lake I

and the coarse mesh outside the WMA, it was difficult to resolve small scale

heterogenities in the groundwater flow system. Errors in survey measurements for

the SRC Moon Lake I monitoring well are also possible.

The simulated hydraulic head in the Sutherland Aquifer for hole 93-102 was

3.46 m more than the observed head. The discrepancy between the calibrated and

measured levels may result from the ambiguity about the thickness and extent of

the Sutherland Aquifer below the WMA (Maathuis et al., 1994). Monitoring well 93­

102 was measured almost one year after the other monitoring wells completed in

the Sutherland Aquifer levels were measured (Maathuis et al., 1994). The hydraulic

conditions and fluid concentration affecting well 93-102 at the time of measurement

may have been different to those for the other monitoring wells completed in the

aquifer.

Domestic wells, Dan Nahathewsky and Keet David, completed in the Tyner

Valley Aquifer were not successfully calibrated. The simulated hydraulic head for

the Dan Nahathewsky well was 8.80 m higher than the measured level. The

calibrated hydraulic head for the Keet David domestic well was 5.33 m above the

observed water level. The main reason for the unsuccessful calibration of these

wells was that they are located near the perimeter of the study area. Boundary

conditions obtained from the regional groundwater flow study (Karvonen, 1997)

were consistent to the simulated hydraulic heads for the two domestic wells. These

errors were largely inherited from the regional model of Karvonen (1997).

Other reasons for inability to calibrate the simulated heads for the Dan

Nahathewsky and Keet David domestic wells include scale effects and surveying

error. Near the boundary of the study area the mesh was coarse and the Tyner

Valley Aquifer is geologically complex. A coarse numerical mesh cannot account
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for the small scale heterogenities where average hydrogeological properties were

assigned to large mesh elements.

The calibrated head for monitoring well 86-1 05 completed in the Judith River

Aquifer was 2.74 m greater than the measured water level. A possible reason for

this variation was the geological complexity in the vicinity of the well. The average

hydraulic properties used to the model Judith River Aquifer may not precisely reflect

local geological conditions. Surveying and other measurement errors may have

also contributed to the unsuccessful calibration of this well.

5.6 Calibrated Steady-State Groundwater Flow Model

The cal ibrated steady-state groundwater flow model represents a reasonable

approximation of the flow system but not necessarily the correct solution. The trial

and error process during calibration does not provide an exact solution for the flow

regime in the study area. Further modification of hydraulic properties could still

provide many equally calibrated solutions. Furthermore, the steady-state flow

regime for the study area incorporated the boundary conditions form a regional

groundwater flow investigation (Karvonen, 1997). Biases and errors in the regional

flow model will contribute to errors in the calibrated site-specific flow model.

5.6.1 Calibrated Model Parameters

The hydraulic conductivities of the hydrogeological units in calibrated

groundwater flow model are summarized in Table 5.3. These calibrated values are

in agreement with published information and the values reported by Karvonen

(1997) for regional groundwater flow numerical study. The constant head for the

tailings pond was 493 m. An infiltration rate of 0.1 mm/yr was used in the calibrated

model.

Table 5.4 lists the parameters used to describe the soil-moisture

characteristics of the hydrostratigraphic units in the study area. These parameters
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were applied to both steady-state and transient calibrated simulations. The soil­

moisture characteristic data were obtained from Carsel and Parrish (1988), Mualem

(1976), Mualem (1978), Ranjitkar (1989) and van Genuchten (1980).

Table 5.3 - Calibrated Hydraulic Conductivity

Hydrostratigraphic Unit Kh (m/s) Kz (m/s) Kh (m/yr) Kz (m/yr)

Surficial Stratified Deposits
Sand 3.00x10-4 6.00x10-5 9.46x103 1.89x103

Silt 3.06x10-6 6.11x10-7 9.64x101 1.93x101

Clay 3.06x10-9 3.06x10·9 9.64x10-2 9.64x10-2

Floral Aquitard 6.96x10-9 3.06x10·8 5.34x10-1 9.64x10-1

Riddell Aquifer 5.00x10-5 6.85x10-6 1.58x103 5.26x102

Floral Aquifer 1.08x10-4 1.48x10-5 3.42x103 1.14x103

Sutherland Aquifer 2.00x10-4 6.67x10-5 6.31x103 2.10x103

Sutherland Aquitard 7.00x10-11 7.17x10-12 2.21x10·3 2.21 x1 0-4

Tyner Valley Aquifer - High K 8.33x10·6 2.78x10-6 2.63x102 8.76x101

Tyner Valley Aquifer - Low K 2.08x10-8 2.08x10-9 6.57x10-1 6.57x10-2

Judith River Aquifer 5.00x10·6 1.67x10-6 1.58x102 5.26x101

Lea Park Aquitard 8.33x10·12 8.33x10·12 2.63x10-4 2.63x10-4
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Table 5.4 - Calibrated Parameters Describing the Soil-Moisture Characteristics of
the Hydrostratigraphy in the Study Area

Stratigraphic Unit 8s 8r a ~
(0/0) (0/0) (m-1) ( )

Surficial Stratified Deposits
Sand 46.9 14.9 1.42 2.75
Silt 27.2 9.0 3.83 9.42
Clay 44.6 20.0 0.15 1.17

Floral Aquitard 25.0 16.0 0.80 1.09

Riddell Aquifer 44.0 12.0 7.5 2.01

Floral Aquifer 38.1 10.0 12.4 2.28

Sutherland Aquitard 33.0 16.0 0.60 1.09

Sutherland Aquifer 35.0 9.0 13.10 2.61

Tyner Valley Aquifer - High K 38.0 14.0 3.83 2.60

Tyner Valley Aquifer - Low K 46.9 19.0 1.80 2.06

Judith River Aquifer 25.0 15.3 2.74 10.40

Lea Park Aquitard 8.0 6.0 0.15 1.17

Slurry Trench 45.0(1) 40.0(1) 0.70 1.17
(1) Barbour (1997)

5.7 Steady-State Groundwater Flow Model Results

The hydraulic heads and groundwater flow velocities determined from the

calibrated steady-state model were plotted.

Figure 5.3 shows the magnitude of the steady state groundwaterflowvelocity

in the study area plotted on a logarithmic scale. The dark green to light blue regions

correspond to the locations of aquitards. Flowvelocities at these locations were on

the order of 10-4 m/yr to 10-6 m/yr. Flow velocity in the Lea Park Aquitard

represented by the dark blue color ranged from 2x10-6m/yr to 5x10-9 m/yr. Major

aquifer units denoted by the light green, orange and red colored regions had
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Figure 5.3 - Magnitude of the Steady-State Calibrated Flow Velocity in the Study Area
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relatively high flow velocities ranging from approximately 10-1 m/yr in the light green

areas to 10 m/yr in the red areas.

5.7.1 Tyner Valley Aquifer System

Figures 5.4 and 5.5 show the hydraulic head and flowvelocity in Tyner Valley

Aquifer System respectively. Permeability restrictions and discontinuities in the

Tyner Valley Aquifer System significantly influenced the hydraulic head, hydraulic

gradient and the groundwater flow velocity in the study area.

The calibrated hydraulic head in the Tyner Valley Aquifer System varied from

over 510 m near the southeast corner of the study area to under 474 m in the north

central region. The hydraulic head distribution in the Tyner Valley Aquifer System

was complex.

The permeability restriction near Grandora resulted in a large hydraulic

gradient in this area. South of Grandora the hydraulic gradient was less but

hydraulic head was high and artesian conditions exist. North of Grandora the

hydraulic head is governed by the elevation of the North Saskatchewan River

(Meneley, 1970).

The flow velocity in the Tyner Valley Aquifer was highly variable throughout

the study area. Towards the southwest the average flow velocity was approximately

6x10-2 m/yr. Flow in the vicinity of the permeability restriction was as low as 4x10-4

m/yr. North of the permeability restriction flow velocity increased to approximately

4x10-1 mlyr. Most groundwater flow in the Tyner Valley Aquifer was directed away

from the permeability restriction near Grandora.

The hydraulic gradient in the Judith River Aquifer was, in general, more

uniform than that in the Tyner Valley Aquifer. The hydraulic gradient in the Judith

River Aquifer in northeast portion of the study area increased due to the

permeability blockage. A local recharge feature existed in the Judith River Aquifer.

In this region the Sutherland Aquitard was relatively thin. The reduction in thickness

allowed the Floral Aquifer to recharge the Judith River Aquifer at an increased rate.
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Figure 5.4 - Calibrated Hydraulic Head In the Tyner Valley Aquifer System
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Figure 5.5 - Calibrated Groundwater Flow Velocity in the Tyner Valley Aquifer System
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Flow in the Judith River Aquifer varied from approximately 9x10-2 m/yr to

4x10-1 m/yr. Some areas in the Judith River Aquifer had localized flow velocities as

low as 3x1 0-2 m/yr and as high as 1 m/yr. Most groundwater flow south of the WMA

discharged into the South Saskatchewan River. Groundwater north of the WMA

flowed towards the Tyner Valley Aquifer channel.

5.7.2 Sutherland Aquifer

The calibrated steady-state hydraulic head in the Sutherland Aquifer ranged

from 486 to 504 m in the study area. The hydraulic head within the vicinity of the

WMA ranged from 493 m in the south to 496 m in the north. The average

groundwater flow velocity was 3x10-2 m/yr and was directed southwards.

5.7.3 Floral Aquifer

Figure 5.6 illustrates the steady-state hydraulic head distribution in the Floral

Aquifer. Groundwater originating from the Floral Aquitard and Dalmeny Aquifer

recharges the Floral Aquifer (Karvonen, 1997). Flow in the Floral Aquifer was

northwest to southeast discharging into the South Saskatchewan River.

Hydraulic head in the Floral Aquifer was approximately 500 m in the northern

part of the study area and 476 m to the south. The branch of the Floral Aquifer

located along the eastern perimeter of the study area was 503 m in the north and

472 m at its southern extent. The average hydraulic head within the detached

aquifer portions located near the northwest and southwest corners of the study area

were approximately 500 m and 520 m respectively.

Figure 5.7 shows the steady-state groundwater flow velocity. Flow at the

north end of the central Floral Aquifer channel was approximately 6x10-1 m/yr.

As groundwater flowed toward the WMA the flow rate increased to 1 m/yr. North

of the WMA the flow rate increased to 9 m/yr.
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Figure 5.6 - Calibrated Hydraulic Head in the Floral Aquifer
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Figure 5.7 - Calibrated Groundwater Flow Velocity in the Floral Aquifer
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There was a localized region beneath the WMA where the flow rate was

approximately 28 m/yr. Groundwater flow vectors diverted around the aquifer

discontinuities in the vicinity of the WMA and velocities increased locally. Beneath

most the WMA and to the south of the mine site the flow rate was approximately 1

m/yr. As groundwater approached the South Saskatchewan River Valley the flow

rate increased to 9 m/yr.

Groundwater velocity in the Floral Aquifer channel located along the eastern

perimeter of the study area increased as it moved towards the South Saskatchewan

River. In the northern portion of the channel the flow rate was approximately 6x1 0-1

m/yr. As it moved southward, the flow rate increased to 1 m/yr. Groundwater

discharging into the river valley varied from 9 to 28 m/yr.

Flow in the detached aquifer at the northwest corner of the study area varied

from 9x10-2 to 1 m/yr. Similarly flow in the detached aquifer located along the

southwestern edge of the study area fluctuated from 1 m/yr to 9 m/yr. In both

detached portions of Floral Aquifer groundwater was flowing westward, probably

discharging at Rice Lake.

5.7.4 Riddell Aquifer

The steady-state hydraulic head in the Riddell Aquifer varied from roughly

493 m in the southern most position to 495 m in the northern area. Groundwater

flow in the aquifer was southwards attaining an average velocity of 3x10-1 m/yr.

There was a localized region where the flow velocity increased to approximately

1 m/yr.

5.7.5 Surficial Stratified Deposits

The calibrated steady-state hydraulic head and groundwater flow velocities

in the surficial stratified deposits are shown in Figures 5.8 and 5.9 respectively.
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Figure 5.9 - Calibrated Groundwater Flow Velocity in the Surficial Stratified Deposits
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Hydraulic head in the surficial stratified deposits was significantly affected by

topography and lithology. In southwest region of the study area, where topography

is high, the calibrated hydraulic head ranged from approximately 514 m to over

520 m. Where the South Saskatchewan River Valley is located the hydraulic head

reduced to 478 m. The calibrated steady-state hydraulic head in the vicinity of the

WMA was approximately 493 m.

Throughout most of the study area hydraulic head gradient varied with

topography. As topographic elevation decreases the hydraulic gradient generally

decreased. Large hydraulic gradients in the surficial stratified deposits were

generally found in sands adjacent to clays where the hydraulic conductivity contrast

was high.

Figure 5.9 shows that near the western perimeter of the study area

groundwater discharged to Rice Lake. To the east, flow was towards the meltwater

channel located in the middle of the study area (Figure 1.5). Once in the meltwater

channel flow moved southward towards Moon Lake and the South Saskatchewan

River. Located near the eastern perimeter of the study area was another surficial

groundwater channel.

Flow in the Surficial Aquitard ranged from 9x10-6 m/yr to 9x10-4 m/yr. Flow

in the Surficial Aquifer varied from 9x10-3 m/yr to 28 m/yr.

5.8 Transient Brine Transport Parameters

In transient simulations hydraulic head and brine concentration are calculated

as a function of time. Transient modelling of flow and brine transport in the study

area used the calibrated steady-state flow system as the initial condition for the

simulation. Determining when the transient brine transport simulation was

calibrated was difficult because only limited anecdotal qualitative information existed

regarding the position and concentration of the brine plume with time. In absence

of calibration standards, sensitivity analysis was used to evaluate the results of the

transient brine transport model.
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The material properties used in the transient brine transport model are listed

in Table 5.5. The hydraulic conductivities and boundary conditions determined from

the calibrated steady state flow model were applied to the transient model. The

hydraulic conductivity of the slurry trench was 6.4x1 0-10 mls (Arun, 1994 and Haug

et al., 1988). The dry densities of the hydrostratigraphic units were assumed from

the range of values listed in Table 2.1 (Chapter 2). The coefficient of tortuosity for

the surficial stratified deposits and underlying consolidated sediments were

assumed to be 0.500 and 0.250 respectively. The surficial stratified deposits was

assigned a large value because it is unconsolidated. The coefficient of tortuosity

for the slurry trench was assumed to be 0.380, the average of the coefficient of

tortuosity of the surficial stratified deposits and the more consolidated sediments.

The longitudinal and transverse dispersivity specified in the transient model

was 5.00 m. These values were greater than those determined by the empirical

expression relating the apparent longitudinal dispersivity to the flow length (equation

3.13). The shortest horizontal and vertical flow length in numerical mesh was

approximately 3 m. Using the empirical expression calculated a dispersivity slightly

smaller than the one used in the numerical model. By using a higher dispersivity

the contaminant plume migrated further from the WMA. This was a conservative

design assumption. Numerical dispersion also increased the predicted rates of

mixing.

The molecular diffusion coefficient used in the transient model was 1.67x1 0-9

m2/s. The coefficient used falls within the range 1x1 0-9 to 2x1 0-9 m2/s documented

by Fetter (1992). It was also consistent with the chloride effective diffusivity range

of 2.5x1 0-10 to 5x1 0-10 m2/s determined by Maathuis and van der Kamp (1994) during

brine diffusion tests at ambient groundwater temperatures.

The distribution coefficient was set to zero for chloride since it was not

significantly modified by ion exchange, adsorption and microbial activity (Davis and

DeWiest, 1966).

93



Table 5.5 - Transient Model Parameters

Hydrostratigraphic Unit Dry Density Coefficient of Tortuosity
(kg/m3

)

Surficial Stratified Deposits
Sand 1800 0.500
Silt 1600 0.500
Clay 1300 0.500

Floral Aquitard 2000 0.250

Riddell Aquifer 1900 0.250

Floral Aquifer 1900 0.250

Sutherland Aquifer 1900 0.250

Sutherland Aquitard 2200 0.250

Tyner Valley Aquifer - High K 1900 0.250

Tyner Valley Aquifer - Low K 1950 0.250

Judith River Aquifer 1950 0.250

Lea Park Aquitard 2300 0.250

Slurry Trench 2000 0.380
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CHAPTER 6

ANALYSIS OF BRINE MIGRATION

Brine migration at PCS Cory Mine began with the onset of brine storage at

the WMA. Concentration and density differences between brine and native

groundwater, the hydraulic gradient created by the brine pond constant head and

the advective flow velocities in the regional flow system were primary factors

affecting brine migration. Containment structures such as perimeter dykes, slurry

walls, bypass ditches, drains and storage facilities were installed at various times

to inhibit brine migration from the WMA. Conservative numerical results suggest

that these structures were sufficient for impeding brine transport in the surficial

stratified deposits. These structures, however, were not successful at stopping

lateral brine transport in the surficial stratified deposits by diffusion or at inhibiting

the downward migration of brine due to its strong negative buoyancy.

FEMWATER was used to simulate 50 years (1969-2019) of brine migration

in the study area. All figures showing the position and concentration of the brine

plume were plotted using the logarithm of concentration in order to resolve, in detail,

the structure of the brine plume with time. The concentration of brine contained in

the tailings pond used in the numerical simulation, was 300,000 mglL or 300 gIL.

This corresponded to a logarithmic concentration of 2.48, or 102
.
48 ~ 300 gIL. The

concentration of native groundwater used in this study was 1,000 mglL or 1 gIL,

which corresponded to a logarithmic concentration of 0.0.

6.1 Overview of Analysis Locations

Numerical results showing the brine plume position and concentration from

1969 to 2019 were computed for PCS Cory Mine and surrounding area. The

characteristics of the brine plume after 10, 17, 26 and 50 years in the surficial

stratified deposits, Floral Aquifer, Judith River Aquifer and in vertical cross-sections

95



were computed and examined in detail. Figure 6.1 shows the location the cross­

sections used for the assessment of brine migration at PCS Cory Mine and also the

nodal locations where breakthrough profiles of the Floral Aquifer were constructed.

B A

1 Km

Figure 6.1 - Location of Cross-Sections and Nodal Points Used in the
Analysis of Brine Plume Migration
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6.2 Overview of Control Measures

In 1969, brine storage at the PCS Cory Mine WMA began. The year 1969

represented time 0 for the transient model study. The constant brine concentration

applied to the model for the 50 years of simulated brine transport was 300 giL at the

tailings pond and tailings pile and 250 giL at the pond sources located immediately

north and south of the tailings dam (Figures 1.4 and 6.1). Brine contained in the

tailings pond was saturated and therefore assigned 300 giL. The pond source

concentration was assumed to be less than saturated brine since they are diluted

by surface run-off, local precipitation and are not in direct contact with the tailings.

The constant hydraulic head simulating the tailings pond and tailings pile was

assumed to be 493.0 m and for the run-off ponds, 492.9 m. The constant head

boundary conditions and concentrations were based on measured elevations and

conductivities. These measurements take into account the effects of seasonal

changes by averaging.

In 1979 a slurry trench and freshwater bypass ditch were constructed at the

WMA (Figures 1.4 and 6.1). The slurry trench was hydrated with brine at the time

of installation. An initial concentration of 300 giL was assigned to the slurry trench

in order to simulate brine hydration. The constant head boundary conditions used

to simulate the freshwater bypass ditch ranged from 491.81 m at its southern end

to 494.36 m at its northern end. The constant head conditions assigned to the

nodes located along the bypass ditch between the northern and southern limits

decreased at a constant rate from north to south. All constant head boundary

conditions along the bypass ditch were coupled with a concentration boundary

condition equal to native groundwater (1 giL). Both the slurry trench and freshwater

bypass ditch were added to the numerical model after 10 years of simulation time.

The" east and west drain (Figures 1.4) were added to the numerical model

after 17 years of simulated brine migration (1986). The constant head boundary

condition applied to the east and west drains were both approximately 492 m. A

constant concentration of 1 giL was also assigned to these drains.
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The flood containment pond, slime storage facility and an extension of the

west drain (Figure 1.4) were constructed in 1995 and therefore included in the

numerical model after 26 years of simulation time. Difficulties were experienced

during the construction of a dyke west of the flood containment pond. This resulted

in the overflow of brine from the containment pond into a region located between

the slurry trench and tailings dam. Brine then pooled along the northwest perimeter

of the tailings facility. This surface water ponding was also included in the

numerical simulation at this time. Constant head and concentration boundary

conditions of 492.9 m and 250 gIL respectively were applied to represent the flood

containment pond, slimes storage unit and overflow of brine. The head and

concentration boundary conditions added to the extension of the west drain were

approximately 492 m and 1 gIL respectively.

6.3 Analysis of Brine Migration

The results discussed here are for the base case model which includes all

containment structures and brine sources but does not allow for brine mounding in

the tailings pile.

6.3.1 Brine Plume in the Surficial Stratified Deposits

Figure 6.2a to 6.2d shows the contaminant plume in the surficial stratified

deposits at 10, 17, 26 and 50 years after the initiation of brine storage at PCS Cory

Mine in 1969.

After 10 years (Figure 6.2a) brine migrated outside of the containment dykes

surrounding the tailings facility. The contaminant originating from the pond sources

dispersed into the surrounding surficial stratified deposits. The slurry trench was

easily located by its high concentration resulting from brine hydration during

construction. By 1979 the brine plume moved approximately 270 m to the east.

The brine plume originating from the WMA also intercepted the slurry trench to the
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west. There was an apparent localized advance in the contaminant plume near the

west-central edge of the WMA. This radial advance was approximately 300 m from

the source and coincided with the location of the Surficial Aquifer. The brine plume

has not reached the freshwater bypass ditch after 10 years.

The brine plume in the surficial stratified deposits calculated for the year

1986, after 17 years is shown in Figure 6.2b. The difference between the position

of the brine plume after 10 and 17 years was readily apparent especially along the

slurry trench and to the north of the WMA. By 1986 brine originating from the slurry

trench dispersed and the peak concentration was less than 300 giL. North of the

WMA and near the slurry trench the brine plume expanded considerably. The most

significant expansion occurred in the proximity of the Surficial Aquifer (to the north

of the WMA). After 17 years the brine plume intercepted the freshwater bypass

ditch over much of its length. The western extent of the migration was

approximately 450 m west from the southwest corner of the tailings dam. The brine

plume has not reached the east and west drain at this time. The brine plume was

spreading towards the drains within the Surficial Aquifer near the southwestern

edge of the WMA.

Figure 6.2c shows the position of the brine plume within the surficial stratified

deposits in the year 1995, after 26 years. The difference between the position of

the brine plume after 17 and 26 years was relatively small. More spreading

between the tailings facility, the pond sources in the south and the slurry trench

north of the tailings pond was evident.

Figure 6.2d shows the predicted location of the brine plume in the surficial

stratified deposits for the year 2019, after 50 years. The flood containment ponds,

overflow pond and slimes storage facility contributed significantly to the subsequent

24 years of spreading in the surficial stratified deposits.

The brine concentration between the slurry trench and the northwest side of

the tailings dam was over 200 giL except at a few locations where it reduced to

approximately 80 giL. The development of the flood containment area as a source

resulted in the further contamination of neighbouring soils. The addition of the slime
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Figure 6.2 - Position of the Brine Plume in the Surficial Stratified Deposits after (a) 10 years and (b) 17 years of
Brine Transport
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Figure 6.2 - Position of the Brine Plume in the Surficial Stratified Deposits after (c) 26 years and (d) 50 years of
Brine Transport
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storage facility also contributed to the spreading of the brine plume in the surficial

stratified deposits. The predicted concentration of brine reaching the east and west

drains were slightly above 1 giL.

6.3.2 Brine Plume in the Floral Aquifer

Figures 6.3a to 6.3d show the predicted brine concentration in the Floral

Aquifer after 10, 17, 26 and 50 years.

Figures 6.3a shows the brine plume for the year 1979, after 10 years. The

highest concentration in the Floral Aquifer was approximately 4 giL and was located

below the southwest corner of the tailings facility. The plume also intercepted the

aquifer below the northwest corner of the tailings dam, however, the concentration

at this location was less than 2.5 giL.

After 17 years of brine migration (Figure 6.3b) the largest concentrations

computed in the Floral Aquifer were below the northwest corner and southwestern

region of the tailings facility. The values were approximately 5 giL and 13 giL

respectively. Brine contamination originating from the hydrated slurry trench

construction had, in some places, infiltrated into the Floral Aquifer attaining

concentrations greater than 7 giL both to the north and south.

The extent of predicted brine contamination in the Floral Aquifer was

considerably higher by 1995 (Figure 6.3c), after 26 years. Most of the Floral Aquifer

below the WMA was contaminated. The largest concentration of the brine in the

aquifer was less than80 giL and was found below the southwest edge of the tailings

dam. Brine from the hydrated slurry trench continued to infiltrate the aquifer and in

some places the concentration in the aquifer originating from the trench was

greater than 35 gIL. Evidence of contamination from the pond sources was also

present in the aquifer. The highest concentration originating from these sources

was approximately 12 gIL.

Figure 6.3d illustrates the predicted brine plume in the Floral Aquifer for the

year 2019, after 50 years. The maximum concentration simulated in the Floral
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Figure 6.3 - Position of the Brine Plume in the Floral Aquifer after (a) 10 years and (b) 17 years of Brine Transport
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Figure 6.3 - Position of the Brine Plume in the Floral Aquifer after (c) 26 years and (d) 50 years of Brine Transport
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Aquifer was approximately 128 giL. The concentration of brine from the hydrated

slurry trench that infiltrated the aquifer was over 80 giL. The pond sources south of

the tailings facility also contributed to the contaminant plume in the channel aquifer.

6.3.2.1 Floral Aquifer Breakthrough Profiles

Logarithmic concentration breakthrough profiles (Figure 6.4) were

constructed for nodes 14877, 15250 and 15383 in the Floral Aquifer. The location

of these nodes are shown on Figure 6.1. All three profiles show increased brine

concentration with time. The maximum concentration reached at nodes 14877,

15250 and 15383 after 50 years of simulated brine migration were approximately

3, 9.5 and 118 giL respectively.

6.3.3 Brine Plume in the Judith River Aquifer

The maximum concentration predicted the Judith River Aquifer in the year

2019 was less than 1.5 giL. The location of the concentration maximum was

beneath the southeast corner of the WMA. A plan view map showing the

concentration distribution was not constructed because the maximum concentration

in the aquifer was approximately equalled to background conditions.

6.4 Cross-Section Results

Figures 6.5a to 6.5d show the concentration along section A-AI for the years

10, 17,26 and 50. The region bounded in white and sandy-yellow shows the limits

of the Floral and Judith River Aquifers respectively. Sections B-BI, C-C' and 0-01

show the brine plume for the year 2019 as a fence diagram in Figure 0.5, Appendix

O.
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Log TDS Concentration Profile of Floral Aquifer
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Figure 6.5 - Position of the Brine Plume along Section A-A' after (a) 10 years and (b) 17 years of Brine Transport
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Section A-AI (Figure 6.5a) shows the position of the brine plume in 1979,

after 10 years. The brine plume infiltrated the Floral Aquitard. Spreading of brine

in the surficial stratified deposits was evident north of the tailings facility. Figure

6.5a shows the hydrated slurry trench as isolated sources at both ends of the

section. Along section A-AI the brine plume had not migrated into the Floral Aquifer.

The brine plume shown in section A-A' for the year 1986, after 17 years

(Figure 6.5b) indicated that further spreading of the plume occurred in all directions.

Brine originating from the hydrated the slurry trench had spread especially within the

Surficial Aquifer north of the tailings facility. The concentration distribution indicated

that by 1986 the brine plume was contaminating the Floral Aquifer. The highest

concentration shown in A-A' in the aquifer was nearly 5 giL near "A" at the north end

of the section.

Figure 6.5c shows the brine plume along section A-A' computed for the year

1995, after 26 years. The brine plume had spread laterally and downwards. Saline

fluids from the WMA and hydrated slurry trench infiltrated into the Floral Aquifer and

also into the underlying Sutherland Aquitard. The highest concentration recorded

in the channel aquifer along section A-AI was approximately 7 giL and was located

below the slurry trench north of the tailings facility.

The position of the brine plume predicted for the year 2019, after 50 years,

along section A-AI is shown in Figure 6.5d. The contaminant front advanced both

radially and vertically. There were several locations where the plume migrated

through the Floral Aquifer and infiltrated into underlying Sutherland Aquitard and in

some places, the Sutherland Aquifer. The predicted maximum concentration in the

channel aquifer and underlying aquitard after 50 years of transient brine migration

was over 20 giL.

6.5 Transport Mechanisms

Molecular diffusion was one of the main transport processes governing brine

migration in the surficial stratified deposits. The brine plume diffused radially in the
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surficial soils due to the large concentration gradient existing between the brine and

native groundwater.

Advective velocities were low in the clay and till aquitards where the hydraulic

gradient and hydraulic conductivities were small. The hydraulic gradient between

the elevated brine pond and the regional water table induced the dispersive

transport.

The density contrast between brine and native groundwater dominated the

downward migration of brine at the mine site. Analysis of variable density

groundwater flow and solute transport was complex and strongly coupled as the

density-driven component of fluid flow was dependent on fluid concentration. Brine

in the WMA was highly concentrated and very dense. As the brine plume moved

downwards, the vertical extent of the brine slug increased. This resulted in an

increased hydraulic head driving fluid vertically. Beneath the plume fluids were

forced out radially in the aquifers by increased advective velocities. This allowed

for dispersive processes to spread the brine plume in the direction of groundwater

flow.

Spreading of the brine plume in the Floral Aquifer was effected by the

groundwater flow velocity and hydrodynamic dispersion. The largest advective

velocities were generated radially around the sinking plume. Advective transport in

the aquifer accelerated the fluid towards the South Saskatchewan River Valley. The

brine plume also moved down the channel of the Floral Aquifer, under the action of

gravity, in a direction controlled by the elevation of the channel floor.

The shape of the breakthrough curves plotted for various nodes in the Floral

Aquifer indicated that dispersive transport processes affect the brine plume. If

molecular diffusion and mechanical dispersion did not exist in the aquifer then the

breakthrough curve would be a step function.

6.6 Calibration of the Transport Model

The PCS Cory Mine WMA was inspected in September 1997 to aid with the
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calibration of the FEMWATER simulation by comparing its results with field

conditions. Photographs were taken to assist with interpretation of brine migration

predictions. Figures 6.6a and 6.6b show the flood containment pond and the

overflow brine pond. Inspection of the PCS Cory Mine WMA revealed that brine

probably migrated west of the slurry trench. Evidence for this was the presence of

strongly saline soils and salt-tolerant vegetation.

The base case model appears to be a valid approximation of the

groundwater flow and brine transport characteristics at the study area. The validity

of the transport model in representing field conditions were difficult to confirm

because of the limited data. The detailed geometry of the hydrostratigraphic units

in the study area and the position and concentration of the brine plume with time

were not well constrained.

At PCS Cory Mine, based on water quality information, for 1997, 28 years

after the onset of brine storage in the WMA, brine was detected in both east and

west drains. The brine concentrations measured at these drains were under 20 gIL.

To simulate the brine plume migrating to the east and west drains after 28 years,

more detailed information regarding the precise geometry of the Surficial Aquifer in

thevicinity of these drains is needed.

Information about the timing of brine infiltration into the Floral Aquifer was

limited. Golder Associates (1996) indicate from their numerical modelling studies

that the time required for the 250 mglL isochlor to intercept the Floral Aquifer is

between 8 and 50 years after the onset of brine storage. The estimated time of

brine plume breakthrough in the Floral Aquifer, computed in the base case model,

falls within the 8 to 50 year window reported by Golder Associates (1996).

Karvonen (1997) suggests that the advective front does not leave the WMA

after 500 years of brine transport. When density dependent effects are modelled

the sinking brine plume generates radial advection of the insitu fluids by

displacement. The dense plume obstructs regional advection and appears to move

down the gradient of the base of the aquifer rather than down the hydraulic gradient.
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Figure - 6.6 Photographs of the (a) flood containment pond and
(b) overflow pond
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CHAPTER 7

SENSITIVITY ANALYSIS

The purpose of a sensitivity study is to evaluate the uncertainty in the

calibrated model resulting from indeterminate estimation of hydraulic properties,

changing hydrological stresses and boundary conditions (Anderson and Woessner,

1992). In the sensitivity study model parameters having a significant effect on

computed results were identified. The values of these parameters were varied

across a plausible range of values that could notably affect the numerical outcome

(Istok, 1989).

The sensitivity study was applied to the transient numerical simulation in

order to investigate the variability in the computed brine plume position with time.

The transient model parameters were varied one at a time to determine their

individual effects on the numerical results. A few sensitivity simulations were

performed on the calibrated steady-state flow model. All figures showing the

concentration of the brine plume were constructed using logarithmic concentration

values.

7.1 Time Steps

The first set of sensitivity runs were performed to determine the effects of the

time step on numerical accuracy, numerical oscillation and the amount of

computational time needed to simulate 50 years of transient brine migration.

Four sensitivity runs were performed. The time step used in the sensitivity

analysis were 12 months, 4 months, 2 months and 1 month. Results for different

the time steps were summarized by comparing the mean and standard deviation of

the computed brine concentrations at various times. Table E.1 , Appendix E lists the

mean and standard deviation computed for the four sensitivity runs.

The mean and standard deviation values in Table E.1 indicate that using a
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smaller time step only slightly decreased the computed mean and standard

deviation. A 1 month time step was chosen to simulate brine migration at PCS Cory

Mine and vicinity for all subsequent analysis. Reducing the time step further,

increased the computational time required to simulate the flow and transport

process but did not significantly improve the quality of the results.

7.2 Spatial Parameters

Sensitivity studies were conducted on the spatial domain of the calibrated

steady-state groundwater flow and the transient transport model. The majority of the

sensitivity runs were performed on the transient model. A detailed sensitivity study

was recently carried out on the regional steady-state groundwater flow model west

of Saskatoon (Karvonen, 1997). The objective of this thesis was to study transient

brine migration in the vicinity of PCS Cory Mine. For this reason, most of the

analysis concentrated on the transient performance of the model.

7.3 Steady-State Flow Model

Sensitivity runs were performed on the site-specific, steady-state

groundwater flow model. During these sensitivity runs the amount of infiltration,

hydraulic conductivity and the brine pond constant head level were altered to

determine its impact on the computed flow system. Qualitative and quantitative

results (Tables E.2 to E.5, Appendix E) from these simulations indicate that

changing either infiltration or hydraulic conductivity had minimal effect on the

simulated head levels calculatedforthevarious monitoring wells. Sensitivity results

indicated that the constant head level of the brine pond had a considerable effect

on the simulated hydraulic heads. Raising the pond level increased the computed

hydraulic heads, especially in the Floral Aquifer. The optimum brine pond elevation

determined from the calibrated steady-state model and used for all subsequent

numerical simulations was 493 m.
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7.4 Base Case Transient Model

Numerous sensitivity runs were conducted on the base case model to

determine the effect of various modelling parameters on the brine plume. The

following simulations were performed and analysed during the sensitivity study:

1. Results for the base case model were compared with the results for a

simulation with no brine containment structures to determine the impact of

these structures on brine migration;

2. The effect of brine mounding within the tailings pile on the position of the

brine plume was studied. Both containment structures and no structures

were investigated; and

3. The impact of varying the coefficient of tortuosity on the position of the

contaminant plume.

=224
8

Figure 7.1 - Total Number of sets of results computed for the Sensitivity Analysis
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Eight sensitivity models, with concentration distributions saved at four times

(year 10, 17,26 and 50), four cross-sections (A-A', 8-8', C-C' and D-D') and three

plan views (surficial stratified deposits, Floral Aquifer and Judith River Aquifer) were

analyzed in the study. This provided the potential for 224 (8x7x4) sets of results

showing the concentration distribution for the sensitivity studies (Figure 7.1). Only

a fraction of these results was included in this thesis. Table E.6, Appendix E lists

the sensitivity models, times the computed brine plume positions were saved, the

plan views and cross-sections that were constructed for the sensitivity analysis.

7.4.1 Brine Migration Without Containment Structures

A sensitivity study was conducted to determine if the slurry trench, freshwater

bypass ditch, flood containment pond and slimes storage facility affected the

position of the brine plume. The results obtained after 50 years of brine migration

were compared with the results of the base case model described in Chapter 6.

Figures 7.2a and 7.2b show the position of the brine plume after 50 years of

transient brine migration in the surficial stratified deposits and the Floral Aquifer

respectively.

The spreading of the brine plume in the surficial stratified deposits (Figure

7.2a) appeared fairly uniform, with the exception of a localized region west of the

tailings facility where brine dispersed more in the Surficial Aquifer.

Comparing the brine plume calculated in this sensitivity simulation (Figure

7.2a) with that of the base case model (Figure 6.2d) showed that the slurry trench,

flood containment pond and slimes storage facility contributed significantly to the

advancement of the brine plume. Hydrating the slurry trench with brine provided an

advanced source for contaminant spreading. If the slurry trench was not hydrated

with brine, the plume would not have spread as much. It is difficult to determine at

this time whether or not the freshwater bypass ditch impeded brine transport.
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Figure 7.2 - Position of the Brine Plume in the (a) Surficial Stratified Deposits and (b) Floral Aquifer after 50 years
of Simulated Brine Transport for a Model Without Containment Structures
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Figure 7.2b shows the position of the brine plume in the Floral Aquifer. The

highest concentration was approximately 128 gIL and was situated below the

southwest region of the tailings facility. This corresponded with that calculated in

the base case model after 50 years of brine transport. A comparison of Figure 6.3d

with Figure 7.2b indicated that a significant amount of brine contamination in the

Floral Aquifer resulted from the slurry trench, theflood containment pond and slimes

storage facility. Figure 7.2b also shows that the brine plume in the channel aquifer

for a simulation with no engineering structures was less extensive than that

calculated for the base case model.

The highest concentration of the calculated in this sensitivity study for the

Judith River Aquifer was less than 1.5 gIL. This was in agreement with the

maximum concentration determined in the base case model.

Figure 7.3 shows the brine plume computed along section A-A'. Comparing

these results of the base case model (Figure 6.5d) further suggested that the

hydrated slurry trench, flood containment pond and slime storage facility contributed

significantly to the position of the contaminant plume.

7.4.2 Brine Mounding in the Tailings Pile

Simulations were performed to determine the effect of brine mounding within

the tailings pile on the position of the brine plume. The results from these

simulations were compared with the results of the base case model. An estimate

was made of the rate of increase in brine head with time.

A maximum rate of 0.36 m/yr was estimated for brine mounding and was

assigned to nodes in the centre of the tailings pile. The rate of brine mounding

assigned around these central nodes was 0.24 m/yr. The nodes near the perimeter

of the tailings pile were assigned a mounding rate of 0.12 m/yr. The highest

elevation of the simulated mounded brine after 50 years of brine migration was 18

m. The mounding rates were determined from speculation by individuals working

at PCS Cory Mine. They were thought to simulate the worst case scenario of brine
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Figure 7.4 - Difference Between the Brine Plume with Brine Mounding and the Base Case Model after 50 Years of
simulated Brine Transport in the (a) Surficial Stratified Deposits and (b) Judith River Aquifer.
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mounding. All nodes located within the tailings pond and throughout the remainder

of the tailings facility maintained a constant hydraulic head of 493 m.

7.4.2.1 Brine Plume in the Surficial Stratified Deposits

The position of the brine plume in the surficial stratified deposits, subjected

to brine mounding in the tailings pile is shown in Figures E.1 a to E.1 d, Appendix E.

The difference between the position of the brine plume, subjected to brine

mounding and the base case model, after 50 years, is shown in Figure 7.4a. The

largest differences in brine plume position were located along the southern

perimeter of the tailings pile. The maximum difference in concentration was

approximately 4 gIL and was denoted by the light green coloured area.

7.4.2.2 Brine Plume in the Floral Aquifer

The positions of the brine plume infiltrating the Floral Aquifer after 10, 17, 26

and 50 years of brine migration with brine mounding are shown in Figures 7.5a,

7.5b, 7.5c and 7.5d respectively.

The plume position computed within the Floral Aquifer for the year 1979,

after 10 years, is shown in Figure 7.5a. An elevated concentration of approximately

60 gIL was found in the southwest region of the aquifer below the tailings facility.

The concentration reduced to the northeast of this localized high. The plume was

also significant in the Floral Aquifer below the northwest corner of the tailings

facility.

The brine plume computed for 1986, after 17 years of brine mounding

(Figure 7.5b), indicated that more brine infiltrated into the Floral Aquifer. The region

of the aquifer below the tailings pile was almost entirely contaminated. The highest

concentration in the aquifer at this time was over 170 gIL. The concentration of the

plume in the aquifer below the highest elevations of brine mounding was

approximately 40 gIL. Figure 7.5b also shows aquifer contamination resulting from
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Figure 7.5 - Brine Plume in the Floral Aquifer after (a) 10 years and (b) 17 years of simulated Brine Transport with
Brine Mounding in the Tailings Pile
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Figure 7.5 - Brine Plume in the Floral Aquifer after (c) 26 years and (d) 50 years of simulated Brine Transport with
Brine Mounding in the Tailings Pile
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the slurry trench and pond sources.

The brine plume computed in the Floral Aquifer, for the year 1995, after 26

years, is shown in Figure 7.5c. The concentration in the aquifer at this time was

over 200 giL at some locations. The concentration of brine originating from the

slurry trench and pond sources also increased in the Floral Aquifer.

The highest brine concentration computed in the Floral Aquifer after 50 years

of brine transport with brine mounding was over 275 giL (Figure 7.5d). Most of the

contaminant concentration in the channel aquifer was located below the tailing pile

and varied from 60 to 160 giL. Evidence for increased brine contamination from

various containment structures and pond sources are shown in Figure 7.5d.

Differences between the computed position of the brine plume in the Floral

Aquifer for the brine mounding and base case model are shown in Figures 7.6a to

7.6d.

After 10 years of brine mounding in the tailings pile, the highest difference

in brine concentration within the Floral Aquifer between the brine mounding case

and base case model was approximately 50 giL. The maximum difference was

located below the southwest area of the tailings facility. Figure 7.6a also indicated

that the concentration over most of the aquifer below the tailings pile computed from

the brine mounding sensitivity study was higher than in the base case model.

The difference in the brine plume position and concentration for brine

mounding and the base case model, for the year 1986, is shown in Figure 7.6b.

The largest concentration difference was nearly 130 giL and was located below the

tailings pile. Again, the extent of brine contamination in the Floral Aquifer was

higher than the base case when brine mounding occurred in the tailings pile.

Figures 7.6c and 7.6d show the difference in the brine plume position

between the brine mounding and base case model after 26 and 50 years of

contaminant transport from the WMA respectively. The maximum difference in

brine concentration simulated for the years 1995 and 2019 in the Floral Aquifer were

approximately 150 giL and 190 giL respectively. Both Figure 7.6c and 7.6d indicate
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Figure 7.6 - Difference between the Brine Plume Computed from the Brine Mounding and Base Case Model for the
Floral Aquifer after (a)10 years and (b) 17 years of simulated Brine Transport
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Figure 7.6 - Difference between the Brine Plume Computed from the Brine Mounding and Base Case Model for the
Floral Aquifer after (c) 26 years and (d) 50 years of simulated Brine Transport
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that when brine mounding occurred, the areal extent of the plume and

concentrations in the Floral Aquifer increased.

7.4.2.2.1 Breakthrough Profiles

Logarithmic breakthrough profiles of concentration with time (Figure 7.7) for

nodes 14877, 15250 and 15383 in the Floral Aquifer were constructed using the

brine mounding values.

The breakthrough curves show that the onset of groundwater contamination

in the Floral Aquifer occurred more rapidly in the areas located below the tailings

pile. Figure 7.7 also indicated that the concentration of the brine plume in the

channel aquifer below the tailings pile was higher than for the rest of the tailings

facility. The highest concentration recorded at nodes 14877, 15250 and 15383 after

50 years of simulated brine transport with brine mounding were approximately 3,

203 and 258 giL respectively. The concentration observed at nodes 15250 and

15383 were considerably higher than the values attained in the base case model

(Figure 6.4).

7.4.2.3 Brine Plume in the Judith River Aquifer

The difference in the position and concentration of the brine plume in the

Judith River Aquifer computed with brine mounding and the base case model for the

year 2019 is shown in Figure 7.4b. The maximum difference in concentration

calculated in the aquifer at this time was approximately 4 giL and was located below

the southeast corner of the tailings pile. The maximum concentration of the

contaminant in the Judith River Aquifer, after 50 years with brine mounding, was

nearly 5.5 giL (Figure E.2, Appendix E). This was much higher than the 1.5 giL

computed for the base case model.

127



Log TDS Concentration Profile of the
Floral Aquifer With Brine Mounding

2.5,------,------,-------,-----,.------,

2.0 -j----+--+---+--------7"-4-------I---------1

0.5 +--t-----1J-----\-----+-----j------J

---Im......
s:::

1.50
+:as...- -14877s:::
CD -152500
s:::

-153830
()

en
c 1.0.-
0)
0
--I

5040302010

0.0 ~-==----+----+-----I-----+-----1

o

Time (Years)

Figure 7.7 - Breakthrough Profiles for the Floral Aquifer when Brine Mounding
occurs in the Tailings Pile
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7.4.2.4 Cross-Section Results

Figures 7.8a to 7.8d show the position of the brine plume along section A-A'

with brine mounding, after 10, 17,26 and 50 years. Figure E.3, Appendix E shows

the position of the brine plume after 50 years of brine mounding for sections B-B',

C-C' and 0-0'.

After 10 years with brine mounding, the amount of brine migration below the

tailings pile increased. The highest concentration in the Floral Aquifer along section

A-A' was approximately 3.5 giL (Figure 7.8a).

The brine plume position in Figure 7.8b shows the concentration along

section A-A' for the year 1986. The highest concentration in the Floral Aquifer along

this section after 17 years of brine migration with brine mounding was approximately

55 giL. The plume also migrated into the Sutherland Aquitard attaining a maximum

concentration of approximately 10 giL. Figure 7.8b also showed the radial spread

of brine from the hydrated slurry trench.

Figure 7.8c shows the position and concentration of the brine plume, for the

year 1995, along section A-A'. By 1995, the maximum concentrations in the Floral

Aquifer and underlying Sutherland Aquitard were approximately 125 giL and 50 giL

respectively.

The computed brine plume position and concentration along section A-A', for

the year 2019, is shown in Figure 7.8d. The Floral Aquifer located belowthe tailings

pile was entirely saturated with brine. The highest concentration in the Floral

Aquifer is 250 giL and in underlying Sutherland Aquitard was approximately 160 gIL.

The brine plume infiltrated into the Sutherland Aquifer attaining concentrations of

approximately 6 giL.

Figures 7.9a, 7.9b, 7.9c and 7.9d show the difference between the brine

plume computed, with brine mounding and the base case along section A-A' for

years 1979, 1986, 1995 and 2019 respectively. These figures indicate that the

downward rate of brine migration was greater when brine mounding occurred in the

tailings pile. Figures 7.9a to 7.9d also shows that downward rate of brine migration
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Figure 7.8 - Brine Plume along Section A-A' after (a) 10 years and (b) 17 years of simulated Brine Transport with
Brine Mounding within the Tailings Pile
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Figure 7.8 - Brine Plume along Section A-A' after (c) 26 years and (d) 50 years of simulated Brine Transport with
Brine Mounding within the Tailings Pile
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below the mounded brine was greater than the rate below the remainder of the

tailings facility. Figure E.4, Appendix E shows the difference in the computed brine

plume position for sections B-B', C-C' and D-D' after 50 years of brine transport.

Figures 7.9a and 7.9b indicate that the greatest concentration differences

computed for 10 and 17 years of brine migration were in the Floral Aquitard. After

17 years there was also a large concentration contrast computed in the Floral

Aquifer. Both Figures 7.9a and 7.9b indicate that the amount of brine in the Floral

Aquifer, with brine mounding, was greater than the base case model.

The difference in computed brine plume position for the year 1995, is shown

in Figure 7.9c. This figure shows that there was a large concentration difference in

both the Floral Aquitard and Floral Aquifer after 26 years of brine migration, with

brine mounding. Similarly, Figure 7.9d indicates a large difference in concentration

existed after 50 years of contaminant migration.

7.4.3 Brine Mounding Without Containment Structures

Sensitivity runs simulating brine mounding within the tailings pile were carried

out for the WMA with no containment structures. The results of these simulations

after 50 years are shown in Figure E.5, Appendix E.

The results indicate that the brine plume position in the surficial stratified

deposits did not change significantly, when compared to the base case model. The

brine plume in the Floral Aquifer was similar to that discussed in Section 7.4.2.2 with

the exception that there was no contribution of brine from the containment

structures. The concentrations in the Judith River Aquifer obtained from this

sensitivity simulation were similar to the computed values in Section 7.4.2.3.
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Figure 7.9 - Difference in the Brine Plume along Section A-A' for the Brine Mounding and Base Case Model after
(a) 10 years and (b) 17 years of simulated Brine Transport
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Figure 7.9 - Difference in the Brine Plume along Section A-A' for the Brine Mounding and Base Case Model after
(c) 26 years and (d) 50 years of simulated Brine Transport
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7.4.4 Varying the Coefficient of Tortuosity

The final set of sensitivity simulations varied the coefficient of tortuosity for

the hydrostratigraphic units in the study area. Two sensitivity simulations were

performed; one had high coefficients of tortuosity and the other had low coefficients

of tortuosity. The coefficients used in the sensitivity study represented the extreme

limits for porous media. By using the upper and lower bounds of tortuosity values,

the best and worst case scenarios were simulated and analyzed. The coefficient

of tortuosity assigned to the slurry trench was the average of those assumed for

surficial and consolidated soils. Table 7.1 lists the coefficient of tortuosity values

used in the sensitivity analysis.

Table 7.1 - Coefficient of Tortuosity Values Used in the Sensitivity Study

Porous Media Unit High Coefficient Low Coefficient of
of Tortuosity Tortuosity

Surficial Stratified Deposits
Sand 1.0000 0.2500
Silt 1.0000 0.2500
Clay 1.0000 0.2500

Floral Aquitard 0.5 0.125

Riddell Aquifer 0.5 0.125

Floral Aquifer 0.5 0.125

Sutherland Aquifer 0.5 0.125

Sutherland Aquitard 0.5 0.125

Tyner Valley Aquifer - High K 0.5 0.125

Tyner Valley Aquifer - Low K 0.5 0.125

Judith River Aquifer 0.5 0.125

Lea Park Aquitard 0.5 0.125

Slurry Trench 0.75 0.1875
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The calculated brine plume in the surficial stratified deposits, Floral Aquifer

and in vertical section (Figures E.6 to E.8, Appendix E) after 50 years of brine

transport using high and low coefficients of tortuosity were fairly similar. Figure 7.1 0

illustrates the difference in the computed brine plume position using the high and

low coefficient of tortuosity values. The figure indicates that changing the coefficient

of tortuosity of the soil had little affect on the position and concentration of the brine

plume for the year 2019, after 50 years. Section A-A' (Figure 7.11) indicated that

the largest difference in brine plume concentration after 50 years of contaminant

transport was in the vertical direction. The maximum concentration difference

between the high and low coefficient of tortuosity values was less than 30 giL. This

was computed only at a few nodes directly below the tailings facility.
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Figure 7.10 - Difference in the Brine Plume Concentration computed in the (a) Surficial Stratified Deposits and (b)
Floral Aquifer for the High and Low Tortuosity Cases after 50 years of simulated Brine Transport
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CHAPTER 8

SUMMARY AND CONCLUSION

A site-specific investigation of brine migration in the vicinity of PCS Cory Mine

located southwest of Saskatoon, Saskatchewan, Canada was conducted using

FEMWATER, a variable density groundwater flow and solute transport numerical

code. The primary objective of this numerical study was to simulate long term brine

migration from the PCS Cory Mine WMA in order to assist with the environmental

impact assessment evaluation of brine contamination.

The specific project objectives, listed in Section 1.1, Chapter 1, were met in

this study. A 3-D hydrogeological conceptual model representing the groundwater

flow system and solute transport mechanisms at PCS Cory Mine and surrounding

area was developed (Chapters 2 and 3). This conceptual model was then

transformed into a mathematical model that numerical simulated the flow and

transport regime of the study area (Chapter 4).

The steady-state groundwater flow system computed by the numerical model

was calibrated using available hydrogeological data, results from regional

groundwater flow studies and direct observations of the brine plume at the mine

site (Chapter 5). Following model calibration, 50 years of transient brine migration

at the WMA was simulated using FEMWATER (Chapter 6). The effectiveness of

existing engineered containment structures at impeding brine plume migration was

investigated in detail (Chapter 7). Sensitivity analyses were also performed to

determine the limitations of the numerical study (Chapter 7).

8.1 Hydrostratigraphy

Geological information was extracted from numerous drillholes and

geophysical logs obtained for the study area. Porous media having similar physical

and chemical properties were combined to form a 3-D hydrostratigraphic conceptual
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model required forthe numerical study. The hydrostratigraphic units identified in the

study area were, in ascending order:

1. Lea Park Aquitard;

2. Tyner Valley Aquifer System which included the;

- Judith River Aquifer, and
- Tyner Valley Aquifer,

3. Sutherland Aquitard;

4. Sutherland Aquifer;

5. Floral Aquifer;

6. Riddell Aquifer;

7. Floral Aquitard; and

8. Surficial Aquifer and Surficial Aquitard.

8.2 Site-specific Groundwater Flow Model

A finite element numerical mesh was constructed from the 3-D

hydrostratigraphic conceptual model using the graphical interface, GMS. The

numerical mesh used to simulate groundwater flow and transport in the vicinity of

PCS Cory Mine consisted of 44,673 nodes and 84,058 elements. A total of 18

layers were constructed.

8.2.1 Calibrated Steady-State Groundwater Flow Model

The steady-state groundwater flow model was calibrated using a trial and

error process. This process involved matching the simulated hydraulic heads, within

±2.47 m, with the water levels measured from numerous monitoring wells in the

study area. Hydraulic conductivity, infiltration and brine pond elevation were

systemically altered until the flow model was calibrated. The mean error (ME),

mean absolute error (MAE) and root mean square error (RMS) were computed at
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the end of each calibration run. The calibrated hydraulic conductivities used in the

numerical study are listed in Table 8.1.

Table 8.1 - Calibrated Hydraulic Conductivity

Hydrostratigraphic Unit Kh (m/s) Kz (m/s) Kh (m/yr) Kz (m/yr)

Surficial Stratified Deposits
Sand 3.00x10-4 6.00x10-S 9.46x103 1.89x103

Silt 3.06x10·6 6.11 x1 0-7 9.64x101 1.93x101

Clay 3.06x10-9 3.06x10-9 9.64x10-2 9.64x10-2

Floral Aquitard 6.96x10-9 3.06x10-8 5.34x10-1 9.64x10-1

Riddell Aquifer 5.00x10-s 6.85x10-6 1.58x103 5.26x102

Floral Aquifer 1.08x10-4 1.48x10-s 3.42x103 1.14x103

Sutherland Aquifer 2.00x10-4 6.67x10-s 6.31 x1 03 2.10x103

Sutherland Aquitard 7.00x10-11 7.17x10-12 2.21 x1 0-3 2.21 x1 0-4

Tyner Valley Aquifer - High K 8.33x10-6 2.78x10·6 2.63x102 8.76x101

Tyner Valley Aquifer - Low K 2.08x10-8 2.08x10-9 6.57x10-1 6.57x10-2

Judith River Aquifer 5.00x10-6 1.67x10-6 1.58x102 5.26x101

Lea Park Aquitard 8.33x10-12 8.33x10-12 2.63x10-4 2.63x10-4

8.2.1.1 Tyner Valley Aquifer System

Analysis of the cal ibrated steady-state flow model provided information about

the groundwater flow velocity within the study area. Most groundwater flow in the

Judith River Aquifer north of the mine recharged the Tyner Valley Aquifer while flow

in the south discharged in the South Saskatchewan River. Flow in the Judith River

Aquifer was recharged by the Floral Aquifer near the eastern perimeter of the study

area. Groundwater flow in the Tyner Valley Aquifer was significantly affected by a

permeability reduction near Grandora. This reduction in the Tyner Valley channel

caused the development of artesian conditions in the aquifer within the vicinity of
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PCS Cory Mine. The magnitude of groundwater flow velocities in the Judith River

and Tyner Valley Aquifer varied from 3x1 0-2 m/yr to 1 m/yr and 4x1 0-4 m/yr to 4x1 0-1

m/yr respectively.

8.2.1.2 Floral Aquifer

Groundwater flow in the Floral Aquifer discharged in the South

Saskatchewan River. The magnitude of the flow velocity varied from 6x1 0-1 m/yr to

9 m/yr. Localized areas below the WMA had flow rates as high as 28 m/yr.

8.2.1.3 Surficial Aquifer

The majority of groundwater flow in the surficial stratified deposits was

directed towards the central meltwater channel in the study area (Figure 1.5). There

appeared to be a groundwater divide in the surficial stratified deposits parallel to the

central meltwater channel. Groundwater in the surficial stratified deposits reaching

the central meltwater discharged in the South Saskatchewan River Valley. The

magnitude of groundwater flow velocities in the surficial stratified deposits were

highly variable. The flow velocity in the Surficial Aquitard varied from approximately

9x10-6 m/yr to 9x10-4 m/yr, while in the Surficial Aquifer it ranged from 9x10-3 m/yr

to 28 m/yr.

8.3 Base Case Transient Transport Model

The following section refers to the base case model where brine mounding

was not included but all engineering structures were present.

8.3.1 Surficial Stratified Deposits

The positions of the brine plume at the WMA were analyzed for the years
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1979, 1986, 1995 and 2019. The brine plume calculated after 50 years of simulated

brine migration showed that in the surficial stratified deposits the plume had spread

past the freshwater bypass ditch. The brine plume originating from the flood

containment pond, slime storage facility, pond sources and the slurry trench also

advanced radially.

8.3.2 Floral Aquifer

The brine plume within the Floral Aquifer spread and its concentration

increased with time. After 10, 17,26 and 50 years of brine migration, the maximum

concentrations in the channel aquifer originating from the tailings facility were

approximately 4, 13,80 and 128 gIL respectively. Brine originating from the surficial

pond sources, hydrated slurry trench, flood containment pond and slime storage

facility also contributed to the brine plume in the Floral Aquifer.

8.3.3 Judith River Aquifer

The concentration calculated for the year 2019, after 50 years, in the Judith

River Aquifer below the WMA was marginally greater than native groundwater

(1 gIL). The maximum concentration simulated in the Judith River Aquifer was under

1.5 gIL.

8.3.4 Cross-Section Results

Characteristics of the brine plume in the vertical direction were observed

along cross-sections through the WMA. These cross-sections indicated after 50

years of brine migration the plume had infiltrated the Sutherland Aquitard and the

Sutherland Aquifer.
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8.4 Sensitivity Analysis

Numerous sensitivity runs were conducted. Few sensitivity runs were

performed on the steady-state flow model since an earlier, detailed sensitivity

analysis was performed on the regional groundwater flow system that included the

study area.

Sensitivity simulations varied the time step used to simulate 50 years of brine

migration. Results indicated that reducing the time step from 12 months, to 4

months, to 2 months and finally 1 month only slightly reduced the mean and

standard deviations of the calculated concentrations. This analysis indicated that

results were generally insensitive to the time step used. A 1 month time step was

used to simulate the 50 years of brine migration in the base case model.

Sensitivity simulations were performed to compare the position and

concentration of the brine plume calculated from a simulation without containment

structures, to the results obtained from the base case model. Analysis indicated

that the slurry trench had little effect on the attenuation brine migration in the

surficial stratified deposits. Analysis also indicated that hydrating the slurry trench

with brine created a contaminant source that contributed to the advancement of the

brine plume in the surficial stratified deposits and also the extent of groundwater

contamination in the Floral Aquifer. The flood containment pond and slimes storage

facility, installed in 1995, also contributed to the advancement of the brine plume in

the surficial stratified deposits and the Floral Aquifer.

The effect of brine mounding within the tailing pile was also analyzed.

Comparing the computed brine plumes indicated that there was little difference in

the surficial stratified deposits, however there was significant differences in the

Floral Aquifer. The maximum concentration in the Floral Aquifer, when subjected

to 50 years of brine mounding within the tailings pile, was over 275 gIL (compared

to 128 gIL without mounding). Almost all of the Floral Aquifer below the tailings pile,

after 50 years, was contaminated with dense brine when mounding was included.

After 50 years the concentration of most of the groundwater in the Floral Aquifer
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(away from the mounded core) was less than seawater (35 giL). The maximum

concentration in the Judith River Aquifer after 50 years, with brine mounding, was

approximately 4 giL (compared with 1.5 giL in the base case model).

Brine mounding studies were also performed without containment structures.

The results were compared with the base case model and also the previous

sensitivity studies simulating brine mounding in the WMA. Analysis of the compared

results confirmed that the slurry trench had little effect on preventing the spread of

brine in the surficial stratified deposits. The results also indicated that brine

mounding in the tailings pile increased the downward rate of brine migration.

The final sensitivity runs involved changing of the coefficient of tortuosity of

the aquifer and aquitard units. The results indicated that varying the coefficient of

tortuosity had relatively little effect on the characteristics of the brine plume.

8.5 Future Work

Outlined below are a number of areas where additional research could be

conducted.

8.5.1 Hydrostratigraphy of the PCS Cory Mine WMA

1. The hydrogeology of the surficial stratified deposits within the vicinity of the

WMA should be mapped in detail. Detailed hydrostratigraphic information

about the surficial soils will increase the reliability of computed brine plume.

2. Fluid levels in the monitoring wells at PCS Cory Mine should be remeasured

and water samples taken. This data will provide information about the

environmental hydraulic head and also the position and concentration of the

brine plume. This will also assist with the calibration of subsequent

groundwater flow and contaminant transport models.
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3. Further investigation of the Floral Aquitard in the vicinity of the mine should

be conducted to establish the extent of possible fracturing on the position of

the brine plume. This information will assist in the characterization of the

Floral Aquitard in model studies.

4. Inclined drilling and installation of monitoring wells should be completed in

the Floral Aquifer to help determine the extent of the brine plume in the

channel aquifer beneath the tailings pile. This will help determine if brine

mounding is present in the tailings pile. The recommended localities for

inclined drilling are near the northern perimeter and also the southwestern

and southeastern regions of the tailings facility.

8.5.2 Additional Numerical Modelling

1. The concentration of the pond sources, flood containment facility and slimes

storage area used in the numerical model shou Id be altered to match the

concentration determined from systematic conductivity measurements.

2. Sensitivity to changes in the longitudinal and transverse dispersivity should

be investigated to determine how it affects the simulated brine plume.

3. Changes to the boundary conditions along the western perimeter of the

Tyner Valley Aquifer System should be reviewed in order to better fit the

observed groundwater flow system.

4. The calibrated steady-state and transient flow and transport models should

be recalibrated as more information regarding position and concentration of

the brine plume is obtained.
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5. As computer systems become more powerful and are able to model

sophisticated problems, the numerical mesh should be refined in the vertical

direction, directly below and within the vicinity of the WMA. Refining the

mesh in this manner will reduce numerically induced dispersion and also

provide more detailed information about the vertical migration of the brine

plume.
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APPENDIX A

FEMWATER - FLOW AND TRANSPORT

CODE VERIFICATION

When modelling a groundwater flow system parameters are needed to

characterize the system. Coupled groundwater flow and solute transport problems

are often studied and analyzed using numerical models.

The numerical codes require specification of boundary conditions, hydraulic

head, concentration distributions and material properties. The codes compute the

transient hydraulic head and contaminant concentration. The numerical codes

solve for a series of discrete nodal points and elements in two steps; one for the

flow field and the other for the contaminant transport.

Before numerical investigations are conducted, the numerical code must be

verified to ensure that it accurately simulates coupled flow and transport for the

particular kind of problem investigated. The FEMWATER code used in this thesis

was verified using the classic Henry (1964) seawater encroachment problem and

the Elder (1967) buoyancy-driven flow problem. Simple 3-D groundwater flow and

brine transport problems were also solved using FEMWATER to gain insight about

brine migration and experience in the convergence characteristics of the code for

site-specific purposes.

A.1 FEMWATER

FEMWATER was developed in the early 1990s by combining the two

numerical codes, 3DFEMWATER (flow) and 3DLEWASTE (transport), into a single

groundwater flow and solute transport code (Lin et a/., 1995).

FEMWATER is a 3-D finite element code simulating saturated-unsaturated,

variable density, groundwater flow and solute transport. The selection of

FEMWATER, for simulating groundwater flow and solute brine transport at PCS
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Cory Mine, was based on the following capabilities:

1. Solution of 3-D density-driven flow and transport problems;

2. Supported by the GMS graphical interface;

3. Effective incorporation of saturated and unsaturated conditions; and

4. Ability to model fluid density and dynamic viscosity as a function of

concentration (equations 3.1 and 3.2).

A.2 Numerical Verification of Classic Examples

To successfully simulate density-dependent, groundwater flow and solute

transport, the numerical code must represent the physical system through a set of

governing equations in a stable fashion (Voss and Souza, 1987). Numerical codes

must be validated to ensure that it accurately simulates flow and transport

processes.

There are a limited number of published 3-D problem verifications. Often 3-D

numerical codes are verified using 2-D analytical and numerical solutions. This

section discusses the classic "Henry Problem" for seawater encroachment (Henry,

1964) and "Elder Problem" for buoyancy-driven fluid flow (Elder, 1967).

A.2.1 Henry's Seawater Encroachment Verification

Henry (1964) studied the interaction between freshwater and seawater in a

confined aquifer near the coast of Florida. In particular, Henry analyzed the

characteristics of the transition zone existing between freshwater and seawater.

The flow conditions were such that freshwater was moving over a diffuse saltwater

wedge that encroached the aquifer and discharged into the sea (Voss and Souza,

1987).

Often variable density flow and transport codes are verified by comparing the

numerical results with those of Henry's (1964) approximate solutions for steady-
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state saltwater intrusion into an aquifer. To date, numerical models such as the 2-D

particle tracking model of Pinder and Cooper (1970), the finite difference model by

INTERA (1979) and the finite element models by Segol et al. (1975), Huyakorn and

Taylor (1976), Desai and Contractor (1977), Frind (1982), SUTRA (Voss, 1984) and

FEFLOW (Diersh,1996) have not matched Henry's analytical solution. This may

indicate that some of Henry's approximate results may be inaccurate. Although

numerical codes do not exactly match Henry's analytical results, confidence in the

accuracy for solving nonlinear problems involving highly dispersed transition zones,

is gained provided that the code matches results of other numerical models

(Diersch, 1996 and Voss and Souza, 1987).

The problem domain and boundary conditions used to verify the Henry

problem are presented in Figure A.1. Table A.1 lists the parameters used in the

numerical simulation. The maximum density contrast in the Henry Problem was

2.5% (Oldenburg and Pruess, 1995) since the density of seawater is 1.025 Mg/m3
.

The numerical results calculated with FEMWATER, like most other variable

density codes [e.g., Voss and Souza (1984) and Diersch (1996)] matched the early

results published by Pinder and Cooper (1970).

There are several problems with the Pinder-Cooper solution as a verification

standard. First, the solution is not entirely converged after 100 minutes, the

simulation time. Second, the computational grid generates significant numerical

dispersion.

Table A.2 lists the spatial discretization characteristics of the 3-D meshes

used in this verification exercise. The results of the 20x1 Ox1 3-D mesh design were

compared with that of Pinder-Cooper, SUTRA and FEFLOW. The results

demonstrated good agreement with these published results.
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Figure A.1 - Problem domain and boundary conditions for the Henry (1964) seawater intrusion problem
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Table A.1 - Parameters used in the Henry (1964) Seawater Intrusion Verification
(after Oldenburg and Pruess, 1995)

Quantity Value

Porosity 0.35

Permeability 1.02x10-9 m2

Viscosity 1.0x10-3 Pa's

Gravity 9.81 m/s2

Longitudinal Dispersivity Om

Transverse Dispersivity Om

Molecu lar Diffusivity 6.6x10-6 m2/s

Tortuosity 1

Density of Pure Water 1000 kg/m3

Density of Pure Brine 1025 kg/m3

Mass Source on Left Side 6.6x10-2 kg/m's

Table A.2 -Spatial Discretization Characteristics of the Finite Elements Meshes
Used to Simulate the Henry (1964) Solution with FEMWATER

3-D Mesh Design # of Nodes # of Elements

20x10x1 231 200

40x20x1 861 800

80x40x1 3321 3200
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Figure A.2a - Concentration Profile of the Henry Problem computed by FEMWATER for the 20x10x1 Mesh
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Figure A.2b - Concentration Profile of the Henry Problem computed by FEMWATER for the 40x20x1 Mesh
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Figure A.2c - Concentration Profile of the Henry Problem computed by FEMWATER for the 80x40x1 Mesh
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The Henry problem (1964) simulated with FEMWATER converged after 180

minutes of simulation time. The concentration distribution computed from the

various mesh designs are shown in Figures A.2a to A.2c. The concentration profile

indicated that the interface between freshwater and seawater narrowed as the nodal

spacing in the numerical grid reduced. The attenuation of this interface occurred

because numerical dispersion reduced. Numerical dispersion being a discretization

artifact resulting in the smearing of sharp interfaces. Refining the numerical grid

decreased the amount of numerical dispersion thereby allowing for the more

accurate representation of narrow transition zones (Oldenburg and Pruess, 1995).

A.2.2 Elder's Buoyancy-Driven Fluid Flow Verification

Elder (1967) experimentally and numerically studied fluid flow caused by

heating a basal porous layer. The physics of the Elder's study involves a nonlinear

system of that can be simulated using equations coupling free convection flow and

heat transfer (Diersch, 1996).

The numerical results from Elder's study of thermal convection can be used,

by analogy, to verify fluid flow driven only by density variations (Oldenburg and

Pruess, 1995 and Voss and Souza, 1987). The problem domain and boundary

conditions used for simulating Elder's problem are shown in Figure A.3. The

parameters used for the FEMWATER verification simulations are listed in Table A.3.

The maximum density change within the model was more than 20% for saturated

brine, making the Elder problem a very challenging validation test for coupled flow

and transport numerical codes.

The concentration profi les computed for various times by FEMWATER are

shown in Figure A.4. Figure A.5 demonstrates the flow field vectors the show the

direction of convective flow at 20 years. The convective flow system calculated by

FEMWATER matches, both spatially and temporally, that calculated with FEFLOW.

The concentration distribution and flow field shown in Figures A.4 and A.5

represents a strongly coupled problem. The computed flow field was very complex
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Figure A.3 -Problem domain and boundary conditions for the Elder (1967) free convection problem
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Figure A.4 - Brine Plume calculated by FEMWATER at various Elapsed Times
for the Free Convective Flow
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Figure A.5 - Vectors calculated after 20 Years of Simulated Free Convective Flow
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and evolved through a series of transient clockwise and counterclockwise vortices

(Voss and Souza, 1987).

The FEMWATER results for Elder's problem demonstrated that spatial and

temporal discretization were crucial. Mesh discretization used for the FEMWATER

verification was similar to that used by Voss and Souza (1987). Analysis indicated

that at large elapsed times the numerical results were sensitive to mesh

discretization and the time stepping scheme but appeared less sensitive to the

choice of solver.

Table A.3 - Parameters used for the Elder (1967) Problem (after Oldenburg and
Pruess, 1995)

Quantity Value

Porosity 0.1

Permeability 4.845x10-13 m2

Viscosity 1.0x10-3 Pa·s

Gravity 9.81 m/s2

Transverse Dispersivity Om

Longitudinal Dispersivity Om

Molecular Diffusivity 3.565x10-6 m2/s

Tortuosity 1

Density of Pure Water 1000 kg/m3

Density of Pure Brine 1200 kg/m3

A.3 Forced Convection Simulations

A series of forced convection simulations were performed using

FEMWATER. Boundary conditions used for the forced convection simulations

(Figure A.6) are similar to Elder's free convection simulation (Figure A.3) but were

modified by coupling the constant concentration boundary condition with a constant
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hydraulic head. The parameters used in the forced convection simulations were the

same as those in the free convection problem (Table A.3). The importance of the

forced convection simulation was that it provides information about the

characteristics fluid flow when both constant hydraulic head and concentration were

applied. This was the case that applied to brine ponds.

In the forced convection simulation, fluid convection was affected by the

constant hydraulic head boundary condition. The driving force governing fluid flow

was influenced by the hydraulic gradient and density variations (equation 3.7).

Figure A.7 illustrates the location of the brine plume at various of elapsed times.

Figure A.8 shows the flow vectors calculated after twenty years.
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Figure A.6 - Boundary Conditions for the Forced Convection Simulation
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Figure A.7 - Brine Plume calculated by FEMWATER at various Elapsed Times
for the Forced Convective Flow
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APPENDIX B

THREE DIMENSIONAL COUPLED BRINE TRANSPORT

SENSITIVITY STUDIES

The groundwaterflowand brine transport numerical studyfor PCS Cory Mine

and vicinity was complex, highly nonlinear and significantly influenced by hydraulic

gradients, density contrasts and the hydrogeological system. In order to understand

this complexity small scale groundwater flow and brine transport simulations were

performed for a simple layered porous media geometry. The purpose of these 3-D

simulations was to provide an understanding of the mechanisms affecting brine

migration and to gain insight into processes controlling solute transport.

Numerous flow and transport simulations were conducted using 2 giL, 20 giL

and 200 giL contaminant source TDS concentrations. One hundred years of brine

migration was simulated using FEMWATER. The model parameters are listed in

Table 8.1. The hydraulic conductivity of the porous media was not changed

throughout the simulations, with the exception of the clay unit. This unit was

assigned either a relatively high value to represent fractured till or relatively low

value to represent unfractured till. The dispersivity values for all hydrostratigraphic

units were assigned either a relatively high or relatively low value.

, Figures B.1 and 8.2 showthe problem domain and boundary conditions used

for Simulations A to C and D and E respectively. The base of the sand aquifer

modelled in Simulations A to C was horizontal while the base of the aquifer

modelled in Simulations D and E was dipping 10 in a direction opposing

groundwater flow. Simulations D and E were modelled using only the 200 giL TDS

source concentration. Figures B.3, B.4, B.5, B.6 and 8.7 show the results of

Simulations A, B, C, D and E respectively.
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Figure B.1 - Problem Domain and Boundary Conditions For Simulations A to C
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Table B.1 - Hydraulic Properties used for the Brine Flow and Transport Problems

Quantity Value

Hydraulic Conductivity (K)
Silty Sand 4.2x10-6 m/s = 131.4 m/yr
Clay (High) 2.8x10-7 m/s = 8.8 m/yr
Clay (Low) 1.4x10-a m/s = 4.4x1 0-1 m/yr
Sand 1.4x10-4 m/s = 4415.0 m/yr

Dispersivity (ad
Low 15 m
High 150 m

Molecular Diffusion Coefficient (Dd) 5.0x1 0-10 m2/s = 1.6x1 0-2 m2/yr
* Note: a L = 10 x aT

Table B.2 - Summary of the Brine Plume Simulations Conducted

Simulation A LowK LowaL 8=0

Simulation B LowK High a L 8=0

Simulation C High K High a L 8=0

Simulation D LowK LowaL 8 = 81

Simulation E High K High a L 8 = 81

Figure B.3 shows the results of Simulation A, the low hydraulic conductivity

clay and low dispersivity case. The results showed that the denser the plume, the

more rapid the downward movement. Only the contaminant plume for the 200 gIL

source reached the basal boundary and begun to spread laterally. Most plume

development occurred in the basal aquifer due to the higher groundwater flux. By

contrast, little spreading occurred in the low hydraulic conductivity clay.

Figure B.4 shows the results for Simulation B, the low hydraulic conductivity

clay and high dispersivity case. For all cases, spreading was greater than that of

Simulation A. The differences between Simulations A and B illustrated the sensitivity

of the predictions to the dispersivity parameter.
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Figure B.5 - Position and Concentration of the Brine Plume in Simulation C
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The results of Simulation C, the high hydraulic conductivity clay and high

dispersivity case, are shown in Figure B.5. The differences between Simulations

Band C illustrated the sensitivity of the predications to the clay hydraulic

conductivity.

Figure B.6a shows the results of Simulation D which introduced a gently

dipping aquifer and contained a 200 gIL source concentration. Figure B.6b shows

the 200 gIL case from Simulation A with no aquifer dip. The difference in

contaminant plume position between the two figures isolated the effect of the

aquifer dip. The relatively uniform green color in Figure B.6c, showing the

difference between B.6a and B.6b, indicated that a dipping basal aquifer had little

effect on the contaminant plume for ahydrostratigraphic section with lowdispersivity

soils and a low hydraulic conductivity clay unit.

Figure B.7a shows the results of Simulation E. Differences between B.7a

and B.7b, for the high clay hydraulic conductivity and high dispersivity cases, were

the result of the aquifer dip. Significant variations in contaminant plumes

characteristics were highlighted by the blue and red colored regions (Figure B.7c).

The blue area indicated that the brine plume calculated in the dipping aquifer case

did not spread as much in the direction of groundwater flow when the aquifer was

horizontal. The area in red showed that brine plume computed from the dipping

aquifer case advanced more downslope, in a direction opposing groundwater flow,

when compared to the horizontal aquifer case.
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Figure B.6 - Difference in the Brine Plume Position for the Dipping and Horizontal
Basal Aquifer (Low Clay Hydraulic Conductivity, Low Dispersivity Case)
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Figure B.7 - Difference in the Brine Plume Position for the Dipping and Horizontal
Basal Aquifer (High Clay Hydraulic Conductivity, High Dispersivity Case)
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B.1 Conclusions From The Couple Brine Transport Simulations

The results of the coupled brine transport simulations provided information

about the sensitivity of the movement of brine in the groundwater flow system to

basal aquifer dip, dispersivity and clay hydraulic conductivity. Simulations A, Band

C indicated that rate of downward brine migration and also the amount of dispersion

was sensitive to lowdispersivity soils and low hydraulic conductivity clay units. The

results from Simulations A and B indicated that increasing the dispersivity of the

porous media by a factor of 10 resulted in significant differences. The results of

Simulations Band C further indicated that for high dispersivity, the system was

sensitive to the increased clay hydraulic conductivity.

Comparing the results of Simulation A with Simulation D showed that when

the dispersivity of the porous media and the hydraulic conductivity of the confining

unit was low, the amount of spreading the contaminant plume down dip was

minimal. If soil dispersivity and hydraulic conductivity of the clay unit were high,

brine would move down dip, against the direction of groundwater flow. The down

dip migration of the brine plume against groundwater flow occurred because the

density-driven component of flow was greater than the component of flow resulting

from the hydraulic head gradient.
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Figure C.1 - Judith River Aquifer Isopach Map

184



5780000

5770000 1---+

360000

ISOPACH (m)

100

10

o

o Km ===a__ 5 Km

Figure C.2 - Tyner Valley Aquifer Isopach Map
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APPENDIX D

CALIBRATED STEADY-STATE AND TRANSIENT MODEL
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TABLE D.1 - WATER LEVEL DATA USED IN THE STEADY-STATE MODEL CALIBRATION

MONITORING AQUIFER EASTING NORTHING MEASURED
WELL NAME UNIT WATER LEVEL (m)

77-702 Judtih River 370902 5773589 499.7
77-802 Floral 372478 5771153 491.11
77-804 Floral 372150 5771552 491.31
77-805 Floral 372806 5770828 490.84
86-101 Sutherland 372272 5773577 496.9
86-103 Judith River 370861 5773368 497.8
84-104 Sutherland 370892 5772053 493.4
86-105 Judith River 371680 5770495 494.6
86-107 Floral 372917 5771596 495.32
86-109 Judith River 373278 5772750 494.8
93-102 Sutherland 372590 5770985 491.05
93-103 Floral 372585 5770993 490.83
D13/MW#18 Floral 372073 5771158 491.79
Dan Nahathewsky Tyner Valley 363925 5775000 489.9
Gittings Fred Tyner Valley 361650 5772200 506.6
Gossen Marv Tyner Valley 364775 5773425 507.5
Keet David Tyner Valley 364300 5771700 503.9
Keet Nelson Tyner Valley 367100 5778500 489.2
Miller Daryl Judith River 361400 5778900 499.9
MW#20 Judith River 372650 5771013 494.52
SRC Moon Lake I Surficial Drift 375650 5767500 503.9
SRC Moon Lake II Surficial Drift 375600 5764500 486.7
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CALIBRATION PLOT FOR THE JUDITH RIVER
AQUIFER
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Figure D.1 - Calibration Plot for the Judith River Aquifer
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CALIBRATION PLOT FOR THE TYNER VALLEY
AQUIFER
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Figure 0.2 - Calibration Plot for the Tyner Valley Aquifer
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CALIBRATION PLOT FOR THE SUTHERLAND
AQUIFER
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Figure D.3 - Calibration Plot for the Sutherland Aquifer

191



CALIBRATION PLOT FOR THE FLORAL AQUIFER

510 -r--------,---------.------...,----------,---,------..

505 +----__j-----I-----_!__--'-----}'---.,.-'----

-E-

•, ..
'~

,I

490 +----------------..... ~····-r
I

"C
ca
(1) 500 +----__j-----I---,'----F---"----!----___I
::t:
.5:!
::::J
ca
~

"C
>­
::t:
"C
(1)
-; 495 +------+--~----¥----'--_!__---__j----___I

::::J
E.-en

510505500495490

485 .jL--~-__j----___+_----+----___1------'

485

Observed Hydraulic Head (m)

Figure 0.4 - Calibration Plot for the Floral Aquifer
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CALIBRATION PLOT FOR THE
SURFICIAL AQUIFER

510 -,---------,--------,------------r----,------------,.,

505 +------+----+-------+-----,---7-------1

-E-"C
C'CS
CI) 500 +------+----+---~-____¥_------,-.:----+-------I
J:
.2-::1

C'CS..
"C
>­
J:
"C
! 495 +-------+-------,----¥-------+------+-------I

C'CS

::1
Een

490 -I-------~----

•

510505500495490
485 1'-------<-----------+-----+--------1

485

Observed Hydraulic Head (m)

Figure 0.5 . Calibration Plot for the Surficial Aquifer
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SENSITIVITY ANALYSIS
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TABLE E.1 - Time Domain Sensitivity Analysis

12 Months Time Step 4 Months Time Step 2 Months Time Step 1 Month Time Step

Standard Standard Standard Standard
YEAR Mean Deviation Mean Deviation Mean Deviation Mean Deviation

0 1.815 12.711 1.815 12.711 1.815 12.711 1.815 12.711
1 2.801 16.303 2.801 16.303 2.801 16.303 2.780 16.215
2 3.104 17.706 3.104 17.706 3.085 17.626 3.031 17.382
3 3.290 18.563 3.290 18.563 3.229 18.295 3.186 18.100
4 3.442 19.225 3.412 19.105 3.346 18.823 3.311 18.656
5 3.544 19.664 3.500 19.487 3.445 19.260 3.416 19.117
6 3.614 19.958 3.576 19.815 3.531 19.630 3.507 19.502
7 3.697 20.262 3.645 20.099 3.607 19.949 3.586 19.832
8 3.771 20.535 3.706 20.348 3.675 20.228 3.658 20.123
9 3.836 20.772 3.762 20.569 3.737 20.476 3.722 20.379
10 3.877 20.913 3.813 20.768 3.793 20.696 3.780 20.609
15 4.096 21.887 4.018 21.517 4.015 21.519 4.008 21.463
20 4.218 22.123 4.179 22.077 4.172 22.027 4.166 22.002
25 4.350 22.543 4.310 22.492 4.299 22.454 4.285 22.367
30 4.394 22.812 4.418 22.759 4.410 22.702 4.381 22.631
35 4.511 23.062 4.509 23.043 4.488 22.968 4.460 22.839
40 4.597 23.285 4.590 23.260 4.571 23.104 4.549 22.981
45 4.677 23.495 4.661 23.423 4.652 23.313 4.590 23.100
50 4.751 23.678 4.727 23.562 4.725 23.428 4.654 23.197
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TABLE E.2 - INCREASE BRINE POND HEAD TO 498 m

HYDROGEOLOGICAL UNIT ME (m) MAE (m) RMS (m)

SURFICIAL DRIFT 7.01 7.36 7.18
FLORAL AQUIFER -3.24 3.46 3.73
SUTHERLAND AQUIFER -0.83 2.33 2.52
TYNER VALLEY AQUIFER -3.56 3.56 4.64
JUDITH RIVER AQUIFER -0.49 1.39 1.89
ENTIRE MODEL -1.37 3.18 4.51

TABLE E.4 -INCREASE INFILTRATION TO 25 mm/yr

HYDROGEOLOGICAL UNIT ME (m) MAE (m) RMS (m)

SURFICIAL DRIFT 6.75 7.37 7.06
FLORAL AQUIFER -1.11 1.87 1.89
SUTHERLAND AQUIFER -0.76 2.30 2.49
TYNER VALLEY AQUIFER -3.51 3.51 4.62
JUDITH RIVER AQUIFER -0.43 1.38 1.86
ENTIRE MODEL -0.77 2.73 4.65

TABLE E.3 - DECREASE BRINE POND HEAD TO 488 m

HYDROGEOLOGICAL UNIT ME (m) MAE (m) RMS (m)
SURFICIAL DRIFT 7.09 7.35 7.22
FLORAL AQUIFER 1.25 1.25 1.91
SUTHERLAND AQUIFER -0.70 2.30 2.49
TYNER VALLEY AQUIFER -3.40 3.40 4.54
JUDITH RIVER AQUIFER -0.32 1.35 1.81
ENTIRE MODEL -0.03 2.52 6.00

TABLE E.5 - EVAPORATION RATE EQUALED TO 25 mm/yr

HYDROGEOLOGICAL UNIT ME (m) MAE (m) RMS (m)
SURFICIAL DRIFT 7.28 7.33 7.31
FLORAL AQUIFER -0.96 1.77 1.81
SUTHERLAND AQUIFER -0.76 2.30 2.49
TYNER VALLEY AQUIFER -3.43 3.43 4.56
JUDITH RIVER AQUIFER -0.40 1.37 1.85
ENTIRE MODEL -0.66 2.68 4.76
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Table E.6 - Figures Constructed For the Sensitivity Analysis

Year 10 17 26 50
Model

Base Case Model 2/1 2/1 2/1 3/4

No Containment Structures - - - 2/1

Base Case Model and Brine Mounding 1/1 1/1 1/1 3/4

Difference Between Brine Mounding and Base Case Model 1/1 1/1 1/1 3/4

No Containment Structures and Brine Mounding - - - 2/0

Base Case with a High Coefficient of Tortuosity - - - 1/1

Base Case Model with a Low Coefficient of Tortuosity - - - 1/1

Difference Between the High and Low Coefficient of Tortuosity - - - 2/1
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Figure E.1- Brine Plume in the Surficial Stratified Deposits after (a) 10 years and (b) 17 years of simulated Brine
Transport with Brine Mounding in the Tailings Pile
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Figure E.1- Brine Plume in the Surficial Stratified Deposits after (c) 26 years and (d) 50 years of simulated Brine
Transport with Brine Mounding in the Tailings Pile
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Figure E.2 - Brine Plume in the Judith River Aquifer after 50 years of simulated Brine Transport with Brine
Mounding in the Tailings Pile
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Figure E.3 - Position of the Brine Plume along Sections B-B', C-C' and 0-0' after 50 years of simulated Brine
Transport with Brine Mounding in the Tailings Pile
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Figure E.4 - Difference between the Brine Plume along Section B-B', C-C' and 0-0' for the Brine Mounding and
Base Case Model after 50 years of simulated Brine Transport
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Figure E.5 - Brine Plume in the (a) Surficial Stratified Deposits and (b) Floral Aquifer after 50 years of simulated
Brine Transport for the Brine Mounding Case Without Containment Structures
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Figure E.6 - Brine Plume in the (a) Suriicial Stratified Deposits and (b) Floral Aquifer after 50 years of simulated
Brine Transport for the High Coefficient of Tortuosity Case
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Figure E.? - Brine Plume in the (a) Surficial Stratified Deposits and (b) Floral Aquifer after 50 years of simulated
Brine Transport for the Low Coefficient of Tortuosity Case
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Figure E.8 - Brine Plume along Section A-A' after 50 years of simulated Brine Transport for the (a) High and (b)
Low Coefficient of Tortuosity Cases
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APPENDIX F

STUDY AREA MAPS
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