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Abstract

This study aims to illuminate a general framework for fixed point and coincidence point theorems. Our

theorems work with functions defined on ball spaces (X,B). This notion provides the minimal structure that

is needed to express the basic assumptions which are used in the proofs of such theorems when they are

concerned with functions that are contractive in some way. We present a general fixed point theorem which

can be seen as the underlying principle of proof for fixed point theorems of Banach and of Prieß-Crampe and

Ribenboim. Also we study two types of general coincidence point theorems and their applications to metric

spaces (Theorem due to K. Goebel) and ultametric spaces (Theorem due to Prieß-Crampe and Ribenboim).

Further, we find an alternative approach to coincidence point theorems. We introduce a general Bx theorem

which does not deal with obtaining a coincidence point for two functions f, g directly, but allows a variety

of applications. Then we present two coincidence point theorems as its applications. Finally, we introduce

three different coincidence point theorems for ultrametric spaces. These theorems are: a special case of one

of the general Bx theorem’s applications, a coincidence point theorem due to Prieß-Crampe and Ribenboim,

and an ultrametric version of Goebel’s theorem. We study the logical relation between these theorems.
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Chapter 1

Introduction

Coincidence point theorems concern two functions f, g from a set X into another set Y that, under certain

conditions, admit a coincidence point. A coincidence point is an element x ∈ X such that its images under

the functions f, g are the same; in other words, fx = gx. Fixed point theorems consider one function f from

a set X into itself and give conditions for the existence of a fixed point, that is, an element x ∈ X such that

fx = x. Fixed point theorems can be considered as special cases of coincidence point theorems where X = Y

and the second function g is the identity.

The existence of a fixed point of a function defined on some space X expresses some kind of completeness of

this space. The classical Banach Fixed Point Theorem requires the completeness of the metric space on which

the contractive function is defined. A similar result for ultrametric spaces was obtained by S. Prieß-Crampe

(see [9]) and then generalized by S. Prieß-Crampe and P. Ribenboim (see [10], and [11]). In this case the

required completeness property is called spherical completeness. The classical Brouwer Fixed Point Theorem

requires compactness of a topological space, which is equivalent to an analogue of spherical completeness,

now applied to the collection of all nonempty closed subsets of this space.

Recently Franz-Viktor Kuhlmann and Katarzyna Kuhlmann [4], [5], [6], and [7] have developed a general

framework for fixed point theorems which work with contractive functions. This general framework considers

functions defined on ball spaces that are spherically complete.

The main focus of this thesis is to extract a general principle of proof that works with fixed point theorems

and coincidence point theorems. In this thesis, I include some of the work done by Franz-Viktor Kuhlmann

and Katarzyna Kuhlmann [4], [5], [6], and [7] in Chapter 4, and apply the general fixed point theorems to

metric and ultrametric spaces.

The second and third chapters are devoted to definitions, tools, and background material that are needed

in the later chapters. We introduce some concepts about ordered sets in Chapter 2. Also, we discuss metric,

ultrametric, and topological spaces. Chapter 3 consists of two sections. In the first section, we introduce ball

spaces and their classification, and we take a closer look at the properties of functions on ball spaces in the

second section. Throughout these two chapters, we give examples of the concepts for more explanation.

In the first section of Chapter 4, we introduce a general fixed point theorem that works with functions f

that are defined on spherically complete ball spaces, and the balls B in the space are f -closed, i.e., f(B) ⊆ B.

We give the proof of this theorem and use it to find a fixed point for a function that is defined on a ball space
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whose elements are f -contracting (see Definition 3.2.2). After that we apply the general fixed point theorem

to metric spaces (Banach’s Theorem), and ultametric spaces (Theorem of Prieß-Crampe and Ribenboim). In

the second section, we present a Bx-type fixed point theorem. In this theorem, a function on a ball space

is needed to be self-contractive (see Definition 3.2.5) in order to have a fixed point on the space. As in the

first section, we give the application of the Bx-type fixed point theorem to metric and ultrametric spaces to

prove the theorems of Banach and of Prieß-Crampe and Ribenboim.

Chapter 5 deals with obtaining a coincidence point for two functions. We present two types of general

coincidence point theorems. We apply the General Coincidence Point Theorem I to metric spaces to prove

a theorem of K. Goebel, and the General Coincidence Point Theorem II to ultrametric spaces to prove a

theorem due to Prieß-Crampe and Ribenboim (cf. [12]).

In the last chapter, we introduce an alternative approach to coincidence point theorems. We work with

functions that take every element in a set X to a ball Bx in a ball space (Z,B). We first prove a general

theorem that is not itself a coincidence point theorem, but very flexible in its applications. The key idea is

to use an arbitrary assertion P (x) on the elements x ∈ X. In Section 6.2 we present two basic applications

of this general theorem, considering functions f, g : X → Y . In the first application, we take X to be a ball

space and use a function from X to its balls, taking the assertion P (x) to say that f(Bx) ∩ g(Bx) 6= ∅. In

the second application, we take Y to be a ball space and use a function from X to the balls in Y , taking

the assertion P (x) to say that fx, gx ∈ Bx. In Section 6.3, we introduce another Bx-type coincidence point

theorem for ultrametric spaces which is a special case of our last application, and we compare it with the

coincidence point theorem of Prieß-Crampe and Ribenboim and the ultrametric version of Goebel’s theorem.
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Chapter 2

Metric, Ultrametric, and Topological Spaces

In this chapter we will introduce the necessary concepts in metric, ultrametric, and topological spaces

that are needed for the following chapters. Our aim is to give information as needed without going into too

much detail. For more details about these spaces, we refer the reader to [2], [8], [13].

In our work, we will deal with ordered sets, in particular sets that are totally ordered.

Definition 2.0.1 (Ordered set). Let S be a set and � a relation on S. The pair (S,�) is called a partially

ordered set if the following conditions hold:

1) Reflexivity: a � a for all a ∈ S.

2) Antisymmetry: a � b and b � a implies a = b.

3) Transitivity: a � b and b � c implies a � c.

The pair (S,�) is called a totally (linearly) ordered set if it is a partially ordered set and satisfies the

additional condition:

4) Comparability: for any a, b ∈ S, a � b or b � a.

Definition 2.0.2. Take a, b in a (totally or partially) ordered set (S,�) with a � b. Then the following

subsets are called intervals:

(a, b) := {c ∈ S | a ≺ c ≺ b}, [a, b] := {c ∈ S | a � c � b}, as well as

{c ∈ S | a � c ≺ b}, {c ∈ S | a ≺ c � b}, {c ∈ S | a ≺ c}, {c ∈ S | a � c}, {c ∈ S | c ≺ b}, {c ∈ S | c � b}, and

S itself.

Intervals of the form (a, b) are called open bounded, and intervals of the form [a, b] are called closed

bounded.

Definition 2.0.3. An ordered set (X,<) is called:

1) a discretely ordered set if it satisfies that for all z ∈ X there exist x, y ∈ X for which x < y such that

{z} = (x, y).

2) a densely ordered set if for all x, y ∈ X for which x < y, there is some z ∈ X such that x < z < y.

Definition 2.0.4. Let T be a subset of an ordered set S. Then T is called:

1. a initial segment if a ∈ T and c ≺ a implies c ∈ T , and

2. a final segment if a ∈ T and a ≺ c implies c ∈ T .
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Definition 2.0.5. A cut in a totally ordered set (S,<) is a pair C = (D,E) with D,E subsets of S such

that D ∩ E = ∅, D ∪ E = S, and d < e for all d ∈ D, e ∈ E.

Example 2.0.6. The set R of real numbers with the usual ordering is totally ordered. It is cut complete,

that is, for every cut (D,E) with D and E nonempty, either D has a largest or E has a smallest element.

Therefore, every initial and every final segment is an interval (however, not bounded). But this is not in

general true in every ordered set.

Example 2.0.7. The rational function field R(X) can be ordered such that X becomes a positive infinitesimal

and 1/X is infinitely large. The set of all elements that are larger than every element of R is a final segment,

but it is not an interval as it has no infimum.

Example 2.0.8. The set of all subsets of a fixed set is partially ordered by inclusion.

Definition 2.0.9. A nest of subsets of a given set is a nonempty collection of subsets which is totally ordered

by inclusion.

Now we will introduce the spaces which our work is based on.

Definition 2.0.10. Let X be a nonempty set. A function d : X ×X → R is called a metric if the following

conditions are satisfied for all x, y, z ∈ X:

(M1) d(x, y) = 0 if and only if x = y.

(M2) d(x, y) ≥ 0.

(M3) d(x, y) = d(y, x).

(M4) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality).

The pair (X,d) is called a metric space.

Definition 2.0.11. Let (X, d) be a metric space and

r ∈ R≥0 := {r ∈ R | r ≥ 0}.

An open metric ball B◦r (x) is defined by

B◦r (x) := {y ∈ X | d(x, y) < r},

and a closed metric ball Br(x) by

Br(x) := {y ∈ X | d(x, y) ≤ r}.

Definition 2.0.12. A metric space (X, d) is said to be

1. complete if every Cauchy sequence in X converges in X, and

2. compact if it is compact as a topological space, where the open metric balls are taken as a basis of the

topology (see Definition 2.0.20).
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Example 2.0.13. The set R of real numbers with d(a, b) := |a− b| is a metric space.

Definition 2.0.14. Let X be a nonempty set. (X, d) is called an ultrametric space if d : X × X → Γ,

where Γ is a totally ordered set with a minimal element 0, satisfies the following properties:

(U1) d(x, y) = 0 if and only if x = y,

(U2) d(x, y) = d(y, x), and

(U3) d(x, z) ≤ max{d(x, y), d(y, z)} (ultrametric triangle law).

Remark 2.0.15. A metric space is an ultrametric space if its metric satisfies condition (U3). An ultrametric

space is a metric space if and only if Γ ⊆ R≥0.

The balls (open and closed) in an ultrametric space are defined in the same way as the balls in a metric

space, but now with radii in Γ:

Definition 2.0.16. Let (X, d) be an ultrametric space and γ ∈ Γ.

If γ > 0, an open ball in X is defined by

B◦γ(x) := {y ∈ X | d(x, y) < γ},

and a closed ball in X is the set

Bγ(x) := {y ∈ X | d(x, y) ≤ γ}.

We obtain the ultrametric ball space (X,B) by taking B to be the set of all balls

B(x, y) := {z ∈ X | d(x, z) ≤ d(x, y)} = Bd(x,y)(x).

This is the smallest ultrametric ball that contains both x and y.

Example 2.0.17. In every valued field, the valuation induces an underlying ultrametric. For example, take

the p-adic valuation vp on Q. Then dp(a, b) := p−vp(a−b) (with dp(a, a) := 0) is an ultrametric on Q. Its set

of values is a subset of R≥0, so it is also a metric.

The valuation ring Op := {a ∈ Q | vp(a) ≥ 0} is a closed ultrametric ball (and so are all of its scaled translates

cOp + d for c, d ∈ Q). The valuation ideal Op := {a ∈ Q | vp(a) > 0} is an open ultrametric ball (and so are

all of its scaled translates cOp + d for c, d ∈ Q with c 6= 0).

The balls in ultrametric spaces have important properties which we will use to prove some theorems in

our paper. These properties can be proved easily from the definition of ultrametric spaces.

properties 2.0.18. Let w, x, y, z ∈ X and γ, δ ∈ Γ.

1. Every point inside a ball is its center; i.e, if y ∈ Bγ(x), then Bγ(x) = Bγ(y).

2. If Bγ(x)
⋂
Bδ(z) 6= ∅, then either Bγ(x) ⊆ Bδ(z) or Bδ(z) ⊆ Bγ(x). Moreover, if γ ≤ δ, then

Bγ(x) ⊆ Bδ(z).
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3. If Bγ(x) ⊂
6= Bδ(z), then γ < δ.

4. B(w, z) ⊆ B(x, y) if and only if z ∈ B(x, y) and d(w, z) ≤ d(x, y).

5. If d(x, y) ≤ d(y, z), then B(x, y) ⊆ B(y, z).

6. If d(x, y) < d(y, z), then z /∈ B(x, y) and B(x, y) ⊂
6= B(y, z).

Proof. 1. Suppose y ∈ Bγ(x). Then d(x, y) ≤ γ. Take any z ∈ Bγ(x), so d(z, x) ≤ γ. Then we have

d(z, y) ≤ max{d(z, x), d(x, y)} ≤ γ.

Therefore z ∈ Bγ(y), and Bγ(x) ⊆ Bγ(y).

Now take any element w ∈ Bγ(y), so d(w, y) ≤ γ. Then

d(w, x) ≤ max{d(w, y), d(y, x)} ≤ γ.

Hence w ∈ Bγ(x), and Bγ(y) ⊆ Bγ(x). So Bγ(x) = Bγ(y).

2. Suppose that Bγ(x)
⋂
Bδ(z) 6= ∅. This means there is y ∈ Bγ(x)

⋂
Bδ(z). So we have d(y, x) ≤ γ, and

d(y, z) ≤ δ.

First suppose that γ ≤ δ, and let w ∈ Bγ(x). Then by definition we have d(w, x) ≤ γ ≤ δ, and since

d(y, x) ≤ γ ≤ δ, we get d(y, w) ≤ δ. Also d(y, z) ≤ δ and d(y, w) ≤ δ imply d(w, z) ≤ δ. This means

that w ∈ Bδ(z). Thus Bγ(x) ⊆ Bδ(z).

Now suppose that γ ≥ δ, and let v ∈ Bδ(z). Then by definition we have d(v, z) ≤ δ ≤ γ, and since

d(y, z) ≤ δ ≤ γ, we get d(y, v) ≤ γ. Also d(y, x) ≤ γ and d(y, v) ≤ γ imply d(v, x) ≤ γ which means

that v ∈ Bγ(x). Therefore Bδ(z) ⊆ Bγ(x).

3. Assume that Bγ(x) ⊂
6= Bδ(z). This means that there is y ∈ Bδ(z) but y /∈ Bγ(x). So d(y, x) > γ. Also

d(y, x) ≤ δ since Bδ(y) = Bδ(z) by property 1. Thus γ < bδ.

4. First suppose that B(w, z) ⊆ B(x, y). Then w, z ∈ B(x, y). We have

d(w, z) ≤ max{d(w, x), d(x, z)} ≤ d(x, y).

Now suppose that z ∈ B(x, y) and d(w, z) ≤ d(x, y). Take an element v ∈ B(w, z). Then since

z ∈ B(x, y) we have

d(v, x) ≤ max{d(v, z), d(z, x)} ≤ max{d(w, z), d(x, y)} = d(x, y).

Thus v ∈ B(x, y), and hence B(w, z) ⊆ B(x, y).

5. Assume that d(x, y) ≤ d(y, z). Since y is a common member of both balls B(x, y), B(y, z), we can apply

property 4, and we get B(x, y) ⊆ B(y, z).

6



6. Assume that d(x, y) < d(y, z). Then by property 5, B(x, y) ⊆ B(y, z). We have

d(x, z) ≤ max{d(x, y), (y, z)} = d(y, z) > d(x, y).

So z /∈ B(x, y). Therefore B(x, y) ⊂
6= B(y, z).

Definition 2.0.19. An ultrametric space (X, d) is called spherically complete if the intersection of every

nest of closed ultramtric balls is nonempty.

Definition 2.0.20. Let X be a set and τ a collection of subsets of X satisfying the following properties:

T1) ∅ ∈ τ and X ∈ τ.

T2) If Si ∈ τ for all i ∈ I, then
⋃
i∈I Si ∈ τ.

T3) If Sj ∈ τ for j ∈ {1, ..., n}, then
⋂n
j=1 Sj ∈ τ .

Then τ is called a topology on X and (X, τ) is a topological space, and we say that a subset U of X is

an open set in X if U ∈ τ .

Definition 2.0.21. Let (X, τ) be a topological space. A subset A of X is said to be closed if its complement

X\A is open.

Remark 2.0.22. The collection of all unions of arbitrary sets of open balls in a metric space forms a topology.

Theorem 2.0.23. In a topological space, the intersection of any collection of closed sets is closed.

Proof. Take a topological space (X, τ), and let Xi ⊆ X be a closed set for each i ∈ I. Then by de Morgan’s

Law, we have

X\
⋂
i∈I

Xi =
⋃
i∈I

(X\Xi).

Since the sets Xi are closed for all i ∈ I, their complements are open. Also the union of open sets is open,

so A =
⋃
i∈I(X\Xi) is an open set. Thus by definition of closed set,

⋂
i∈I Xi is closed.

Definition 2.0.24. A topological space (X, τ) is called compact if every open covering U of X contains a

finite subcollection that also covers X.

Theorem 2.0.25. Let X be a compact space. Let (Ci)i∈I be a nest of nonempty closed sets of X. Then⋂
i∈I Ci 6= ∅.

Proof. Assume that
⋂
i∈I Ci = ∅, and let Ui = X\Ci for all i ∈ I. These sets are open since their complements

are closed. Note that the family of open sets (Ui)i∈I covers X since

X = X\
⋂
i∈I

Ci =
⋃
i∈I

(X\Ci) =
⋃
i∈I

Ui.

Since X is compact, it has a finite subcover. We have that the set (Ci)i∈I = (X\Ui)i∈I is totally ordered

by inclusion, so we can extract a finite subcover of X as U1 ⊆ U2 ⊆ . . . ⊆ Uk. Then Uk must be equal to

X. Thus Ck = X\Uk = ∅, contradicting non-emptiness of the closed sets in the nest (Ci)i∈I . Therefore our

assumption cannot be true, so
⋂
i∈I Ci 6= ∅.
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Chapter 3

Ball Spaces

In this chapter we will introduce a generalized completeness property by defining so-called spherically

complete ball spaces. We will show a classification of ball spaces based on their completeness properties and

illustrate this classification by examples. In the second part we will look at the properties of functions defined

on ball spaces.

3.1 Definition and classification of ball spaces

Definition 3.1.1. A ball space is a pair (X,B), where X is a nonempty set and B is a nonempty collection

of nonempty subsets of X. The elements of B will be called balls.

Note that we do not require any topology here. Our definition gives us flexibility and we can adapt it to

many cases, for example:

• intervals (closed or open) in an ordered set,

• metric (closed or open) balls in a metric space,

• any kind of ultrametric balls in an ultrametric space,

• closed or open subsets of a topological space.

We can also restrict attention to any nonempty subset of a given set of balls. In particular, we will be

interested in nests of balls.

Definition 3.1.2. A nest of balls is a nonempty collection of balls which is totally ordered by inclusion.

Lemma 3.1.3. Let (X,B) be a ball space. Then the set of all nests which contain a given ball B0 ∈ B has

maximal elements.

Proof. Take B0 ∈ B. Let C be the set of all nests which contain B0:

C = {N ⊆ B | N is a nest and B0 ∈ N}.

This set is partially ordered by inclusion. Take any subset F of C such that (F ,⊆) is a totally ordered set.

Then
⋃
N∈F N is a totally ordered set, so it is a nest containing B0 since B0 ∈ N for all N ∈ C. This nest
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is an upper bound for the chain F ⊆ C. Hence by Zorn’s Lemma the set C contains at least one maximal

element N0.

The basic completeness property which we will introduce now, is borrowed from ultrametric spaces.

Definition 3.1.4. A ball space (X,B) is called spherically complete if the intersection of every nest of

balls is nonempty.

Example 3.1.5. A spherically complete ultrametric space together with the family of closed ultrametric balls

is a spherically complete ball space.

Example 3.1.6. By Theorem 2.0.25, a compact topological space with the family of all nonempty closed

subsets is a spherically complete ball space.

Example 3.1.7. The reals, as an ordered set, with the family of all nonempty, closed and bounded intervals

is a spherically complete ball space, even though it is not compact under the derived topology.

Now we will observe what completeness of a metric space means in the language of spherically complete

ball spaces.

Theorem 3.1.8. Take a metric space (X, d) and a set S ⊆ R+ which has 0 as its unique limit point. Define

a ball space on X as

BS := {Br(x) | x ∈ X, r ∈ S}.

Then the metric space (X, d) is complete if and only if the ball space (X,BS) is spherically complete.

Proof. First suppose that (X, d) is a complete metric space. Take any nest N of closed metric balls in BS .

If the nest contains a smallest ball, then its intersection is nonempty; so we assume that is does not. Since

S has 0 as its unique limit point, we have that S is discretely ordered, and every infinite descending chain in

S can be indexed by the natural numbers. Therefore the nest N is of the form

(Brn(xn))n∈N,

where rn > rn+1 for every n ∈ N and

lim
n→∞

rn = 0.

Take ε > 0 and N ∈ N such that rN < ε
2 . Since (Brn(xn))n∈N is a nest, we have that the ball BrN (xN )

contains xm, xn for every m,n > N . Therefore, d(xm, xn) ≤ 2rN < ε. We have shown that (xn)n∈N is a

Cauchy sequence. Let y be its limit. We have to show that y lies in the intersection of all balls in N .

Take a ball Brn(xn) ∈ N and suppose that y /∈ Brn(xn). Then d(xn, y) > rn, and we set ε := d(xn, y)−

rn > 0. Since limn→∞ rn = 0, there is m ∈ N such that m > n and d(xm, y) < ε. Since N is a nest, we have

that xm ∈ Brn(xn), so d(xn, xm) ≤ rn . Thus,

rn + ε = d(xn, y) ≤ d(xn, xm) + d(xm, y) < rn + ε,
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a contradiction. We have proved that y ∈ Brn(xn) for every n ≥ N . Hence, y is in the intersection of the

nest N , proving that (X,BS) is spherically complete.

Now assume that (X,BS) is spherically complete. Take any Cauchy sequence (xn)n∈N in X. By our assump-

tions on S, we can choose a sequence (si)i∈N in {s ∈ S | s < s0} such that 0 < 2si+1 ≤ si. By induction on

i ∈ N we choose an increasing sequence (ni)i∈N of natural numbers such that the balls Bi := Bsi(xni) form

a nest.

Since (xn)n∈N is a Cauchy sequence, we have that for every i ∈ N there is n1 such that d(xn, xm) < s2 for

all n,m > n1 . Once we have chosen ni−1 , we choose ni > ni−1 such that d(xn, xm) < si+1 for all n,m ≥ ni .

We show that the so obtained balls Bi form a nest. Take i ∈ N and x ∈ Bi+1 = Bsi+1(xni+1). This means

that d(xni+1
, x) ≤ si+1. Since ni, ni+1 ≥ ni, we have that d(xni

, xni+1
) < si+1. We compute:

d(xni
, x) ≤ d(xni

, xni+1
) + d(xni+1

, x)

≤ si+1 + si+1 = 2si+1 ≤ si

Thus x ∈ Bi and hence Bi+1 ⊆ Bi for all i ∈ N. The intersection of this nest (Bi)i∈N contains some y, by

our assumption. We have that y ∈ Bi for all i ∈ N, which means that d(xni , y) ≤ si. Since

lim
i→∞

si = 0,

we obtain that

lim
i→∞

xni = y,

which proves that (X, d) is a complete metric space.

Now we will introduce a classification of ball spaces. The classification is based on the behavior of the

intersections of their nests.

Definition 3.1.9. 1. A ball space (X,B) is called S1 if the intersection of each nest of balls is nonempty.

In other words, an S1 ball space is a spherically complete ball space.

2. A ball space (X,B) is called S2 if the intersection of each nest of balls contains a ball.

3. A ball space (X,B) is called S3 if the intersection of each nest of balls contains a largest ball.

4. A ball space (X,B) is called S4 if the intersection of each nest of balls is a ball.

Remark 3.1.10. We have the following implications: S4 ⇒ S3 ⇒ S2 ⇒ S1.

Example 3.1.11. Consider the complete metric space X = R and a ball space (X,BS) like in the Theorem

3.1.8. It is S1 , but not S2 since BS does not contain singleton balls.
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Example 3.1.12. Take a spherically complete ultrametric space (X, d,Γ), where Γ is a densely ordered set

with least element 0. By definition, the ball space (X,B), where B = {Bγ(x) | γ ∈ Γ, x ∈ X}, is spherically

complete. We define general ultrametric balls as follows. Take x ∈ X and a lower cut set L ⊆ Γ, and set

BL(x) := {y ∈ X | d(x, y) ∈ L}.

Observe that

BL(x) =
⋃
γ∈L

Bγ(x).

Suppose that L does not admit a supremum in Γ. Then the intersection of the nest

{Bγ(x) | γ /∈ L}

is BL(x). Assume in addition that for every γ ∈ L there is some xγ ∈ X such that d(x, xγ) = γ. (This

condition is always satisfied when (X, d,Γ) is homogeneous, that is, for every x ∈ X and γ ∈ Γ there is xγ

such that d(x, xγ) = γ. Note that ultrametric spaces induced by valued fields are homogeneous.) Then BL(x)

is not itself of the form Bγ(x) for any γ, so it is not a ball in B, and it does not even contain a largest ball.

Indeed, if Bδ(y) were such a largest ball contained in BL(x), then γ = d(x, y) ∈ L, so Bδ(y) ⊆ Bγ(x); but

Bγ(x) is not the largest ball in BL(x). However, B0(x) ⊂ BL(x). This shows that (X,B) is S2 , but not S3.

If our ultrametric space is induced by a valued field with value group Q, such as the algebraic closure of

the field Qp of p-adic numbers, then it is homogeneous, but Γ is not cut complete, that is, there are lower cut

sets that do not admit a supremum. This shows that ultrametric spaces with the above properties exist.

Example 3.1.13. Consider the set X = {0, 1} × N with the lexicographic order. (This is the sum N + N in

the sense of ordered sets.) Take B to be the set of all closed bounded intervals with end points in {0, 1}× 2N.

Take a nest N in B. If there is an interval I ∈ N with both endpoints in {0} × 2N or both endpoints in

{1}× 2N, then the intersection of N is equal to
⋂
{J ∈ N | J ⊆ I}. The set {J ∈ N | J ⊆ I} is finite, so the

intersection of this set is just the smallest interval in this set. Now assume that every interval in N is of the

form

[(0, 2a), (1, 2b)] with a, b ∈ N

and the nest N is not finite. Then the intersection of the nest N is equal to the set

{(1, 1), (1, 2), . . . , (1, 2b0)},

where b0 is a smallest natural number with the property that there is a ∈ N such that [(0, 2a), (1, 2b0)] ∈ N .

Note that this intersection is not a ball in B, but it contains the largest ball [(1, 2), (1, 2b0)]. Therefore, the

space (X,B) is S3, but not S4.

Example 3.1.14. Every ball space with a finite number of balls is S4 .

Example 3.1.15. A compact topological space with the set of all nonempty closed subsets is S4 as we have

seen in Theorem 2.0.23.
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Example 3.1.16. It is known that if (X, d,Γ) is spherically complete, then also the ball space

(X, {BL(x) | L lower cut set in Γ and x ∈ X})

is spherically complete (cf. [3]). The intersection of every nest of general ultrametric balls is again a general

ultrametric ball, if nonempty. So this ball space is S4 .

3.2 Functions on ball spaces

We will take a closer look at the properties of functions on ball spaces. We will also introduce some additional

properties that functions defined on a ball space can have. We start with the following proposition which

shows when the property of spherical completeness is preserved under a function between ball spaces.

Proposition 3.2.1. Let (X1,B1) and (X2,B2) be ball spaces and f : X1 → X2 a function. Suppose that the

preimage of every ball in (X2,B2) is a ball in (X1,B1). If N is a nest of balls in (X2,B2), then the preimages

of the balls in the nest N form a nest of balls in (X1,B1). If (X1,B1) is spherically complete, then also

(X2,B2) is spherically complete.

Proof. Let N be a nest of balls in (X2,B2). Then the preimage of every ball in N is a ball in (X1,B1) by

assumption. Since the balls in N are totally ordered by inclusion, their preimages are also totally ordered

by inclusion, so they form a nest of balls in B1.

Now suppose that (X1,B1) is spherically complete. Take a nest N in (X2,B2) and the collection N ′ =

{f−1(B) | B ∈ N} of preimages in X1 , which is a nest in B1. Note that f(
⋂
N ′) ⊆

⋂
B∈N f(f−1(B)) ⊆

⋂
N .

The intersection of N ′ is nonempty by assumption, so it contains some x ∈ X1. Then f(x) ∈
⋂
N . This

proves that (X2,B2) is spherically complete.

Now we will consider the functions defined on a ball space with the values in the same space and define some

properties a ball may have with respect to such functions, as well as properties of the functions themselves.

We will use them in the next sections.

Definition 3.2.2. Take a ball space (X, B) and a function f : X → X. We say that a ball B ∈ B is:

1. f-closed if f(B) ⊆ B,

2. f-contracting if it is f -closed, and f(B) ⊂
6= B unless B is a singleton.

Definition 3.2.3. The function f : X → X on a ball space (X, B) is called strongly contracting on

orbits if there is a function

X 3 x 7−→ Bx ∈ B

such that the following conditions hold for all x ∈ X:

(S1) x ∈ Bx,

(S2) Bfx ⊆ Bx, and if x 6= fx, then Bfix
⊂
6= Bx for some i ≥ 1.
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Definition 3.2.4. Take a function f : X → X on a ball space (X, B) which is strongly contracting on orbits.

A nest of balls N ⊂ B is called an f-nest if N = {Bx | x ∈ S} for some set S ⊆ X which is closed under f .

Definition 3.2.5. The function f is called self-contractive if it is strongly contracting on orbits and

satisfies:

(S3) if N is an f -nest and if z ∈
⋂
N , then Bz ⊆

⋂
N .
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Chapter 4

Fixed Point Theorems

We say that a function f from a set X into itself has a fixed point if there is x ∈ X such that fx = x.

Fixed point theorems try to find proper conditions on the function f and the space X to obtain a fixed

point. In this chapter we will study the function f in two cases. First we will define the function f on a ball

space (X,B) and put some conditions on balls in B to obtain the fixed point. Thereafter we will consider the

function f on a ball space (X,B) to be strongly contracting on orbits (see Definition 3.2.3) and find sufficient

conditions to ensure the existence of a fixed point. In both cases, we will apply the general theorems in

metric and ultrametric space to prove Banach’s Fixed Point Theorem and a theorem of S. Prieß-Crampe and

P. Ribenboim.

4.1 General fixed point theorems

Theorem 4.1.1 (General Fixed Point Theorem). Take a ball space (X,B) and a function f : X → X such

that the following conditions are satisfied:

(GF1) every ball B ∈ B is f -closed (see Definition 3.2.2),

(GF2) every non-singleton ball B ∈ B properly contains some B′ ∈ B,

(GF3) the intersection of every nest of balls in B is a singleton or contains some B ∈ B.

Then f has a fixed point in every ball.

Proof. Take any ball B0 ∈ B. Then by Lemma 3.1.3, there is a maximal nest N containing B0. Since every

ball in B is f -closed,

f(
⋂
N ) ⊆

⋂
B∈N

f(B) ⊆
⋂
B∈N

B =
⋂
N ,

that is,
⋂
N is f -closed. By condition (GF3),

⋂
N is a singleton or contains a ball B ∈ B. If

⋂
N is a

singleton, we obtain a fixed point. So suppose that N is not a singleton. Then it contains a ball B ∈ B. If

B is not a singleton, then by (GF2), it properly contains a ball B′ ∈ B. But N
⋃
{B′} is then a nest that

properly contains N , and this contradicts the maximality of N . Thus B must be a singleton {x}, and x is a

fixed point since B = {x} is f -closed by (GF1). Also x ∈ B0 since B is contained in B0 because B0 is a ball

in the nest N . Hence f has a fixed point in every ball in B.
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Theorem 4.1.2. Let f be a function on a ball space (X,B) such that the following conditions are satisfied:

(F1) there is at least one f -contracting ball (see Definition 3.2.2) in the ball space,

(F2) for every f -contracting ball B ∈ B there is an f -contracting ball in the image f(B),

(F3) the intersection of every nest of f -contracting balls contains an f -contracting ball.

Then f admits a fixed point.

Proof. Define B′ := {B ∈ B | B is an f -contracting ball}. By (F1) B′ 6= ∅, so (X,B′) is a ball space.

Every f -contracting ball is in particular f -closed, so (GF1) in Theorem 4.1.1 holds (for B′ in place of B).

Take any non-singleton ball B ∈ B′. Then by (F2) there is an f -contracting ball B′ in the image f(B).

Hence B′ ⊆ f(B) ⊂
6= B which proves that (GF2) holds. Now to show that also (GF3) holds, take a nest of

f -contracting balls N . Then by (F3), there is B0 ∈ B′ such that B0 ⊆
⋂
N . Thus (GF3) holds. So now we

can apply the General Fixed Point Theorem to (X,B′) to obtain a fixed point x0 in every ball B ∈ B′.

In the following subsections we will apply the General Fixed Point Theorem 4.1.1 to prove Banach’s Fixed

Point Theorem and a fixed point theorem due to Prieß-Crampe and Ribenboim.

4.1.1 Application to metric spaces

Definition 4.1.3. Let (X, d) be a metric space. A function f : X → X is said to be a contracting if there

is a positive real number c < 1 such that d(fx, fy) ≤ cd(x, y) for all x, y ∈ X.

Theorem 4.1.4 (Banach’s Fixed Point Theorem). Every contracting function on a complete metric space

(X, d) has a unique fixed point.

Proof. Let f be a contracting function on a complete metric space (X, d). Then for every x ∈ X we have:

d(fx, f2x) ≤ cd(x, fx). (4.1.1)

Consequently,

d(x, f ix) ≤ d(x, fx) + d(fx, f2x) + ...+ (f i−1, f ix)

≤ d(x, fx) + cd(x, fx) + ...+ ci−1d(x, fx)

≤ d(x, fx)(1 + c+ c2 + ...+ ci−1)

≤ d(x, fx)

∞∑
i=0

ci = d(x, fx)
1

1− c
(4.1.2)

where we were able to use the value of the geometric series since 0 < c < 1. We fix x ∈ X, set d := d(x, fx)

and define:

Bi := B cid
1−c

(f ix) =

{
y ∈ X | d(y, f ix) ≤ cid

1− c

}
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for all i ∈ N. We wish to show that each Bi is f -closed. Take fz ∈ f(Bi) with z ∈ Bi. By inequality 4.1.1,

and since f is contracting, we obtain:

d(fz, f ix) ≤ d(fz, f i+1x) + d(f i+1x, f ix)

≤ cd(z, f ix) + d(f ix, f i+1x)

≤ c
cid

1− c
+ cid =

cid

1− c
.

This shows that fz ∈ Bi, so f(Bi) ⊆ Bi. Thus each Bi is f -closed and (GF1) holds.

We wish to show that each Bi properly contains some ball in B. Since c < 1, there is some k ≥ 1 such

that
ck

1− c
<

1

2
.

Then
d(f i+kx, f i+k+1x)

1− c
≤ ck

1− c
d(f ix, f i+1x) <

1

2
d(f ix, f i+1x).

This shows that f ix and f i+1x cannot both lie in Bi+k. Therefore Bi+k ⊂
6= Bi, and (GF2) holds.

Set B = {Bi | i ∈ N}. Then the set S = { c
id

1−c | i ∈ N} of radii of the balls Bi has 0 as its unique limit

point. Since the metric space X is complete, Theorem 3.1.8 shows that the ball space (X,B) is spherically

complete. Take a nest N ⊆ B. Then
⋂
N 6= ∅. If N contains a smallest ball, then

⋂
N is equal to this

ball. Suppose that N does not contain a smallest ball. Then it contains balls of arbitrarily small radius. If

y, z ∈
⋂
N , then d(y, z) ≤ cid

1−c for all i ∈ N. Therefore d(y, z) = 0, that is, y = z, which shows that
⋂
N is a

singleton. We have proved that (GF3) holds.

Now we can apply the General Fixed Point Theorem to obtain a fixed point z ∈ X.

Proof of the uniqueness: Assume that y ∈ X is also a fixed point. Since f is contracting,

d(y, z) = d(fy, fz) ≤ cd(y, z).

Since 0 < c < 1, this can only be true if d(y, z) = 0, i.e., y = z. Hence the contracting function f has a

unique fixed point z in the complete metric space (X, d).

4.1.2 Application to ultrametric spaces

Theorem 4.1.5 (S. Prieß-Crampe, P. Ribenboim). Take a function f on a spherically complete ultrametric

space (X, d) such that for all x, y ∈ X:

1) d(fx, fy) ≤ d(x, y),

2) d(fx, f2x) < d(x, fx) if x 6= fx.

Then f has a fixed point.

Proof. For x ∈ X, let Bx be the ball defined as

Bx := {y ∈ X | d(y, x) ≤ d(x, fx)}.
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Consider the ball space (X,B), where B = {Bx | x ∈ X}. In order to show that (GF1) holds, we show that

f(Bx) ⊆ Bx for all Bx ∈ B. Take fy ∈ f(Bx) with y ∈ Bx which means that d(y, x) ≤ d(x, fx). By the

ultrametric triangle law, we have

d(fy, x) ≤ max{d(fy, fx), d(fx, x)}.

By assumption 1) we obtain

d(fy, x) ≤ max{d(y, x), d(fx, x)} = d(x, fx)

since y ∈ Bx. Hence fy ∈ Bx, so f(Bx) ⊆ Bx for all Bx ∈ B, and (GF1) holds.

Now we wish to show that every non-singleton Bx ∈ B properly contains some ball in B. Note that for

all x ∈ X, d(f2x, fx) < d(fx, x). By part 6 of 2.0.18, x /∈ Bfx and Bfx ⊂
6= Bx. Hence (GF2) holds.

Take a nest N of balls (Bxi)i∈I . Since (X, d) is spherically complete,
⋂
N 6= ∅. Suppose that

⋂
N is not

a singleton since otherwise (GF3) already holds. So there is y, z ∈
⋂
N such that y 6= z. This means that

y, z ∈ Bxi
for every Bxi

∈ N . Then we have

d(y, z) ≤ max{d(y, xi), d(xi, z)} = d(xi, fxi).

By part 4 of 2.0.18, it shows that Bz ⊆ Bxi
for every Bxi

∈ N . Thus Bz ⊆
⋂
N , and (GF3) holds. Now we

can apply Theorem 4.1.1 to obtain a fixed point.

4.2 Bx-type fixed point theorems

Theorem 4.2.1. Take a function f on a ball space (X,B) which is strongly contracting on orbits (see

Definition 3.2.3). If for every f -nest N (see Definition 3.2.4) in (X,B), there is some z ∈
⋂
N such that

Bz ⊆
⋂
N , then f has a fixed point.

Proof. Let f be a function on a ball space (X,B) which is strongly contracting on orbits. Then for every

x ∈ X, the set {Bfix | i ≥ 0} is an f -nest. Hence the set of all f -nests is nonempty. It is partially ordered by

inclusion since the union over an ascending chain of f -nests is again an f -nest. So by Zorn’s Lemma, there

is a maximal f -nest N . By the assumption of the theorem, there is some z ∈
⋂
N such that Bz ⊆

⋂
N .

Suppose that z 6= fz. Then by (S2), we have that Bfiz
⊂
6= Bz for some i ≥ 1. Since Bfiz

⊂
6=
⋂
N for some

i ≥ 1, the set N
⋃
{Bfkz | k ≥ i} is an f -nest which properly contains N . But this contradicts the maximality

of N . Therefore z is a fixed point.

We can rewrite Theorem 4.2.1 in the following way by using the definition of self-contractive function (see

Definition 3.2.5).

Theorem 4.2.2. Every self-contractive function on a spherically complete ball space has a fixed point.

The ball space in this theorem must be spherically complete to obtain the assumption of Theorem 4.2.1.

Now we will show how to use Theorem 4.2.2 to prove fixed point theorems in metric and ultrametric

spaces.
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4.2.1 Application to metric spaces

Theorem 4.2.3 (Banach’s Fixed Point Theorem). Every contracting function on a complete metric space

(X, d) has a unique fixed point.

Proof. Let f be a contracting function on a complete metric space (X, d). Then by inequality 4.1.2, for x ∈ X

we have

d(x, f ix) ≤ d(x, fx)

1− c
.

For x ∈ X and i ≥ 0, let

Bfix := {y ∈ X | d(y, f ix) ≤ ci

1− c
d(x, fx)}.

Consider the ball space (X,B), where B = {Bfix | i ≥ 0}. We wish to prove that f is self-contractive. By

definition of the balls, x ∈ Bx so (S1) holds. To prove that (S2) holds, take any element y ∈ Bfx. Then by

the fact that f is contracting we have:

d(x, y) ≤ d(x, fx) + d(fx, y)

≤ d(x, fx) +
c

1− c
d(x, fx) =

d(x, fx)

1− c
.

So y ∈ Bx. Therefore Bfx ⊆ Bx.

We have that f ix ∈ Bx for all i ≥ 0 since d(x, f ix) ≤ d(x,fx)
1−c . Since c < 1, there is some i ∈ N such that

ci

1− c
<

1

2
.

Then by inequality 4.1.1, we obtain

d(f ix, f i+1x)

1− c
≤ ci

1− c
d(x, fx) <

1

2
d(x, fx).

Therefore x and fx cannot both be in Bfix which means that Bfix
⊂
6= Bx. Hence (S2) holds.

Therefore f is strongly contracting on orbits.

As we show in the proof of Theorem 4.1.4 the set S = { ci

1−cd(x, fx) | i ≥ 0} of radii of the balls Bfix has

0 as its unique limit point. Since the metric space X is complete, by Theorem 3.1.8 the ball space (X,B) is

spherically complete. Take an f -nest N . Then
⋂
N 6= ∅. So there is some z ∈ X such that z ∈

⋂
N . We

wish to show that Bz ⊆
⋂
N . Take any Bx ∈ N , then Bfix ∈ N for all i > 0 since N is an f -nest. Using

that z ∈
⋂
N ⊆ Bfix for all i, and the fact that f is contracting, we compute:

d(z, fz) ≤ d(z, f ix) + d(f ix, fz)

≤ d(z, f ix) + cd(f i−1x, z)

≤ ci

1− c
d(x, fx) +

ci−1

1− c
cd(x, fx) = 2

ci

1− c
d(x, fx).

Since ci → 0 as i → ∞, we get d(fz, z) = 0. Thus Bz = {z} ⊆
⋂
N . This shows that f is self-contractive.

Now we can apply Theorem 4.2.2 to obtain a fixed point.

To prove the uniqueness, see the proof of the uniqueness in Theorem 4.1.4.
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4.2.2 Application to ultrametric spaces

Theorem 4.2.4 (S. Prieß-Crampe, P. Ribenboim). Take a function f on a spherically complete ultrametric

space (X, d) such that for all x, y ∈ X:

1) d(fx, fy) ≤ d(x, y),

2) d(fx, f2x) < d(x, fx) if x 6= fx.

Then f has a fixed point.

Proof. For x ∈ X, let Bx be the ball defined as

Bx := B(x, fx) = {y ∈ X | d(x, y) ≤ d(x, fx)}.

Consider the ball space (X,B), where B = {Bx | x ∈ X}. We want to prove that f is a self-contractive

function to apply Theorem 4.2.2. We observe that x ∈ Bx, so (S1) holds.

Note that d(fx, f2x) < d(x, fx), So by part 6 of 2.0.18,

Bfx = B(fx, f2x) ⊂
6= B(x, fx) = Bx.

Hence (S2) holds.

Now take an f -nest N of balls (Bxi)i∈I . Since (X, d) is spherically complete,
⋂
N 6= ∅. So there is z ∈ X

such that z ∈
⋂
N ⊆ Bxi for every Bxi ∈ N .

By 1) and since z ∈ Bxi
, we have that:

d(fxi, fz) ≤ d(xi, z) ≤ d(xi, fxi).

By the ultrametric triangle law and the foregoing inequalities,

d(z, fz) ≤ max{d(z, xi), d(xi, fxi), d(fxi, fz)} = d(xi, fxi).

So by part 4 of 2.0.18, Bz ⊆ Bxi
for every Bxi

∈ N . Therefore Bz ⊆
⋂
N , and (S3) holds. So we can apply

Theorem 4.2.2 to obtain a fixed point.
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Chapter 5

Basic Coincidence Point Theorems

In this chapter, we will introduce general coincidence point theorems and apply them in metric and ultra-

metric spaces to prove coincidence point theorems due to K. Goebel and to Prieß-Crampe and Ribenboim.

5.1 Basic coincidence point theorems for ball spaces

Theorem 5.1.1 (Coincidence Point Theorem I). Let (X,B) be a spherically complete ball space and f, g :

X → Y functions satisfying the following conditions:

(CT1) for every B ∈ B, f(B) ⊆ g(B),

(CT2) for every nest of balls N , either
⋂
B∈N g(B) is a singleton or there is B′ ∈ B such that B′ ⊂6=

⋂
N .

Then every ball in B contains some x ∈ X such that fx = gx.

The condition that (X,B) be spherically complete can be dropped if for every B ∈ B, B = g−1(g(B)).

Proof. Take any B0 ∈ B. The set of all nests of balls containing B0 is partially ordered by inclusion, and the

union over a linearly ordered set of such nests is again a nest containing B0. Hence by Zorn’s Lemma there

is a maximal nest N0 containing B0. Suppose that
⋂
B∈N0

g(B) is not a singleton. Then by (CT2), there is

B′ ∈ B such that B′ ⊂6=
⋂
N0. But then N0 ∪{B′} would be a nest of balls containing B0 and larger than N0,

which contradicts its maximality. Therefore
⋂
B∈N0

g(B) must be a singleton, say {y} for some y ∈ Y .

Using (CT1),

f(
⋂
N0) ⊆

⋂
B∈N0

f(B) ⊆
⋂

B∈N0

g(B) = {y} .

Therefore fx = y = gx for every x ∈
⋂
N0 ⊂ B0. If (X,B) is spherically complete, then

⋂
N0 6= ∅ and

there is at least one such x. If on the other hand B = g−1(g(B)) for all B ∈ B, then all preimages of y are

contained in every B ∈ N0 and thus again,
⋂
N0 6= ∅.

Remark 5.1.2. If we take X = Y and g to be the identity function in Theorem 5.1.1, we obtain Theorem

4.1.1.

Now by taking the ball space (X,B) to be S2 , the conditions needed in our coincidence theorem can be

made nicely symmetric. We obtain the following theorem:
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Theorem 5.1.3 (Coincidence Point Theorem II). Let (X,B) be an S2 ball space and f, g : X → Y functions

satisfying the following conditions:

(CS1) for every B ∈ B, f(B) ∩ g(B) 6= ∅,

(CS2) for every B ∈ B, either f(B) is a singleton or g(B) is a singleton or there is B′ ∈ B such that B′ ⊂6= B.

Then every ball in B contains some x ∈ X such that fx = gx.

Proof. As before, there is a maximal nest N0 containing a ball B0. Since (X,B) is an S2 ball space, the

intersection of N0 contains a ball B. By (CS2) we have that f(B) or g(B) is a singleton {y} for some y ∈ Y

since the existence of a ball B′ ∈ B with B′ ⊂6= B would contradict the maximality of the nest N0 . Now by

(CS1) we get f(B) ∩ g(B) = {y}, so for some x ∈ B ⊂ B0, we get fx = y = gx.

5.2 Applications

In this section, we will apply Coincidence Point Theorem I to prove a theorem due to K. Goebel, and

Coincidence Point Theorem II to prove a theorem due to Prieß-Crampe and Ribenboim.

5.2.1 Application to metric spaces

The following is a coincidence point theorem for metric spaces proved by K. Goebel in [1].

Theorem 5.2.1 (K. Goebel). Let X be an arbitrary set and (Y, d) a metric space, and take functions

f, g : X → Y such that:

(G1) f(X) ⊆ g(X),

(G2) g(X) is a complete metric space,

(G3) there is a positive real number c < 1 such that d(fx, fy) ≤ cd(gx, gy) for all x, y ∈ X.

Then there exists x ∈ X such that fx = gx.

Proof. Take x0 ∈ X. By (G1) there is some x1 ∈ X such that fx0 = gx1 . If x0 = x1, we get a coincidence

point and we are done, so we assume that x0 6= x1. Define

d := d(fx0, gx0) = d(gx1, gx0). (5.2.1)

Consider a sequence (xi)i∈N in X such that gxi = fxi−1 for all i ∈ N. By condition (G3) we have:

d(gxi+1, gxi) = d(fxi, fxi−1) ≤ cd(gxi, gxi−1).

By induction on I, we thus obtain for all i ∈ N:

d(gxi+1, gxi) ≤ cid.

For i ∈ N we consider the closed metric balls

Ai := A cid
1−c

(gxi) =

{
gy | d(gxi, gy) ≤ cid

1− c

}
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in g(X). The radii of these balls form a set of positive real numbers with 0 as its only limit point. By (G2)

the metric space (g(X), d) is complete, therefore by Theorem 3.1.8 the ball space (g(X), {Ai | i ∈ N}) is

spherically complete.

Define a ball space (X,B) on X by taking as balls the preimages

Bi = g−1(Ai)

for i ∈ N. We will show that this ball space satisfies the conditions of Theorem 5.1.1.

Take z ∈ Bi. Then gz ∈ Ai, and therefore d(gz, gxi) ≤ cid
1−c . By condition (G1), fz = gz′ for some z′ ∈ X.

Then we have, using (G3):

d(gz′, gxi) = d(fz, fxi−1) ≤ cd(gz, gxi−1) ≤ c[d(gz, gxi) + d(gxi, gxi−1)]

≤ c

[
cid

1− c
+ ci−1d

]
=

cid

1− c
.

This shows that fz = gz′ ∈ Ai and therefore f(Bi) ⊂ g(Bi). We have proved that condition (CT1) of

Theorem 5.1.1 is satisfied.

To show that also the second condition of Theorem 5.1.1 holds, we first show that the balls Bi, i ∈ N,

form a nest. Take z ∈ Bi+1. Then gz ∈ Ai+1, thus d(gz, gxi+1) ≤ ci+1d
1−c . We have:

d(gz, gxi) ≤ d(gz, gxi+1) + d(gxi+1, gxi) ≤
ci+1d

1− c
+ cid =

cid

1− c
.

Therefore gz ∈ Ai , which implies that z ∈ Bi, showing that Bi+1 ⊆ Bi.

Take a nest N of balls in (X,B). It is of course a subnest of the nest {Bi | i ∈ N}. Then {g(B) | B ∈ N} is

a nest in (g(X), {Ai | i ∈ N}). Since this ball space is spherically complete,
⋂
B∈N g(B) is nonempty. Assume

that
⋂
B∈N g(B) is not a singleton, i.e., there are z1, z2 in X such that gz1, gz2 ∈

⋂
B∈N g(B), gz1 6= gz2.

Since g−1(g(B)) = B, we obtain that z1, z2 ∈ B for every B ∈ N , thus z1, z2 ∈
⋂
B∈N B. Since 0 < c < 1,

there is k ∈ N such that

d(gz1, gz2) > 2
ckd

1− c
. (5.2.2)

This implies that gz1 and gz2 cannot be both contained in Ak , so z1 and z2 cannot be both contained in Bk .

But as the former are both contained in g(B) for every ball B ∈ N , we find that the nest {g(B) | B ∈ N}

can only contain balls Ai with radii larger than that of Ak , which means that i < k. For these Ai we have

that Bk = g−1(Ak) ⊆ g−1(Ai) = Bi , so Bk ⊆
⋂
N . Since z1 and z2 are both contained in

⋂
N , but not in

Bk , we find that Bk ⊂
6=
⋂
N . This shows that also condition (CT2) of Theorem 5.1.1 holds.

Now we can apply Theorem 5.1.1 to obtain a coincidence point.

5.2.2 Application to ultrametric spaces

Theorem 5.2.2 (S. Prieß-Crampe, P. Ribenboim). Let (X, d) be an ultrametric space, and take functions

f, g : X → X. Assume that:
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(PR1) (g(X), d) is spherically complete,

(PR2) f(X) ⊆ g(X),

(PR3) if gx 6= fx = gy, then d(fx, fy) < d(fx, gx),

(PR4) if d(gx, gy) ≤ d(gx, fx), then d(gy, fy) ≤ d(gx, fx).

Then there is x ∈ X such that fx = gx.

Proof. By condition (PR2) we can consider the ultrametric ball

Bd(fx,gx)(gx) = {gy | d(gy, gx) ≤ d(fx, gx)}

in (X, d) for every x ∈ X. Then we define (not necessarily ultrametric) balls on X as:

Bx := g−1(Bd(fx,gx)(gx)) = {y ∈ X | d(gy, gx) ≤ d(fx, gx)}

and set

B := {Bx | x ∈ X}.

We have that Bx 6= ∅ since x ∈ Bx , so (X,B) is a ball space. To prove that it is S2 , we will show first

that By ⊆ Bx for every y ∈ Bx . Take y ∈ Bx and z ∈ By. That means that d(gx, gy) ≤ d(fx, gx) and

d(gy, gz) ≤ d(fy, gy). By condition (PR4) we have d(gy, fy) ≤ d(gx, fx), thus by the ultrametric triangle

law d(gx, gz) ≤ d(gx, fx), so z ∈ Bx.

Consider a nest of balls (Bxi
)i∈I in (X,B). Then (g(Bxi

))i∈I is a nest of closed ultrametric balls in

(g(X), d). Since (g(X), d) is spherically complete by (PR1), there is gz in the intersection of the nest

(g(Bxi))i∈I for some z ∈ X. But then z ∈ Bxi and Bz ⊆ Bxi for every i ∈ I, which shows that Bz is

contained in the intersection of the nest (Bxi)i∈I . We have now proved that (X,B) is an S2 ball space.

By Condition (PR2), for every x ∈ X there is y ∈ X such that gy = fx ∈ Bd(fx,gx)(gx). Then also

y ∈ Bx, so fx = gy ∈ f(Bx) ∩ g(Bx) and condition (CS1) of Theorem 5.1.3 is satisfied.

Take a ball Bx ∈ B. If g(Bx) = Bd(fx,gx)(gx) is not a singleton, then fx 6= gx. In this case, fx = gy for

some y 6= x. We have that y ∈ Bx, so By ⊆ Bx . By using condition (PR3) we obtain:

d(gy, gx) = d(fx, gx) > d(fx, fy) = d(gy, fy).

This shows that x /∈ By and therefore, By ⊂
6= Bx . Hence, condition (CS2) is also satisfied.

Now we can apply Theorem 5.1.3 to obtain a coincidence point.
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Chapter 6

Bx type Coincidence Point Theorems

In this chapter we will introduce a general Bx type theorem that is not itself a coincidence point theorem,

but allows high flexibility in its applications. In the second section we will derive from the general Bx type

theorem coincidence point theorems for two distinct cases which are based on either the domain or codomain

of the functions under consideration being chosen to be a ball space. In the last section we will introduce

three different types of coincidence point theorems for ultrametric spaces and find the logical relation between

them.

6.1 A general Bx type theorem

Theorem 6.1.1 (Basic Theorem). Take a set X and a ball space Z. Let P (x) be any assertion about the

element x ∈ X. Assume that there is a function

X 3 x 7−→ Bx ∈ B(Z)

such that:

(∗) if (Bxi
)i∈I is a nest of balls in B(Z) and P (xi) holds for all i ∈ I, then there exists some y ∈ X such

that P (y) holds and By is a singleton or By ⊂
6=
⋂
i∈I Bxi .

Then for every x0 ∈ X such that P (x0) holds, there is z0 ∈ X such that P (z0) holds and Bz0 is a singleton

contained in Bx0
.

The condition (∗) can be broken down into two conditions:

(∗1) If Bx is not a singleton and P (x) holds, then there exists y ∈ X such that By ⊂
6= Bx and P (y) holds.

(∗2) If (Bxi)i∈I is a nest of balls in B(Z) and P (xi) holds for all i ∈ I, then there exists some y ∈ X such

that P (y) holds and By ⊆
⋂
i∈I Bxi

.

In applications, condition (∗) is often checked by checking the two cases (∗1) and (∗2) separately.

Proof. Take x0 ∈ X such that P (x0) holds. Then the set S = {Bx ⊆ Bx0
| x ∈ X and P (x) holds} contains

Bx0
and is thus nonempty. By (∗2), it is downward inductively ordered by inclusion. Hence by Zorn’s Lemma,

there is a minimal element Bz0 in S. Suppose that Bz0 is not a singleton. Then by (∗1) there exists y ∈ X

such that By ⊂
6= Bz0 and P (y) holds. Thus By ∈ S which contradicts the minimality of Bz0 . Therefore Bz0

must be a singleton. Since Bz0 ∈ S, P (z0) must hold.
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6.2 Bx type coincidence point theorems for ball spaces

We take two sets X and Y and functions f, g : X → Y . In the first application of Theorem 6.1.1, we consider

the set X to be a ball space, and take the assertion P (x) to say that f(Bx)
⋂
g(Bx) 6= ∅.

Theorem 6.2.1. Take a ball space X, a set Y , and functions f, g : X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(X)

such that

(A1) if Bx is not a singleton and f(Bx)
⋂
g(Bx) 6= ∅, then there is y ∈ X such that By ⊂

6= Bx and

f(By)
⋂
g(By) 6= ∅,

(A2) if (Bxi
)i∈I is a nest of balls in B(X) such that f(Bxi

)
⋂
g(Bxi

) 6= ∅ for all i ∈ I, then there is y ∈ X

such that By ⊆
⋂
i∈I Bxi

and f(By)
⋂
g(By) 6= ∅.

Then for every x0 ∈ X such that f(Bx0
) ∩ g(Bx0

) 6= ∅, there is z ∈ Bx0
such that fz = gz.

Proof. Apply Theorem 6.1.1 by setting Z = X and take P (x) to be the assertion that f(Bx)
⋂
g(Bx) 6= ∅.

By the theorem, there is z0 ∈ X such that Bz0 is a singleton contained in Bx0 and f(Bz0)
⋂
g(Bz0) 6= ∅.

Since Bz0 is a singleton, say Bz0 = {z} with z ∈ X, it follows that ∅ 6= f(Bz0)
⋂
g(Bz0) = {fz}

⋂
{gz}, hence

fz = gz. Since Bz0 ⊆ Bx0
, we have that z ∈ Bx0

.

Corollary 6.2.2. Take a ball space X, a set Y , and functions f, g : X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(X)

such that f(Bx)
⋂
g(Bx) 6= ∅ for all x ∈ X and the following conditions are satisfied:

(A1′) if Bx is not a singleton, then there is y ∈ X such that By ⊂
6= Bx ,

(A2′) if (Bxi)i∈I is a nest of balls in B(X), then there is y ∈ X such that By ⊆
⋂
i∈I Bxi .

Then there is some z ∈ X such that fz = gz.

Now in the next application of Theorem 6.1.1, we consider the set Y to be a ball space and take the

assertion P (x) to say that fx, gx ∈ Bx .

Theorem 6.2.3. Take a ball space Y , a set X, and functions f, g : X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(Y )

such that:

(B1) if Bx is not a singleton and fx, gx ∈ Bx, then there is y ∈ X such that By ⊂
6= Bx and fy, gy ∈ By,

(B2) if (Bxi
)i∈I is a nest of balls such that fxi, gxi ∈ Bxi

for all i ∈ I, then there is y ∈ X such that

By ⊆
⋂
i∈I Bxi and fy, gy ∈ By.

If there is any x0 ∈ X such that fx0, gx0 ∈ Bx0
, then there is some z ∈ X such that fz = gz.
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Proof. Apply Theorem 6.1.1 by setting Z = Y and taking P (x) to be the assertion that fx, gx ∈ Bx. By the

theorem, there is z ∈ X such that Bz is a singleton contained in Bx and fz, gz ∈ Bz. Since Bz is a singleton,

fz = gz.

Corollary 6.2.4. Take a ball space Y , a set X, and functions f, g : X → Y . Assume that there is a function

X 3 x 7−→ Bx ∈ B(Y )

such that fx, gx ∈ Bx for all x ∈ X and the following conditions are satisfied:

(B1′) if Bx is not a singleton, then there is y ∈ X such that By ⊂
6= Bx ,

(B2′) if (Bxi)i∈I is a nest of balls, then there is y ∈ X such that By ⊆
⋂
i∈I Bxi .

Then there is some z ∈ X such that fz = gz.

6.3 Bx-type coincidence point theorems for ultrametric spaces

In this section, we will introduce three theorems for ultrametric spaces. These theorems are: a special case

of Corollary 6.2.4, a coincidence point theorem due to Prieß-Crampe and Ribenboim, and the ultrametric

version of Theorem 5.2.1.

Theorem 6.3.1. Let X be a set and (Y, d) an ultrametric space, and take functions f, g : X → Y . For each

x ∈ X, set Bx := B(fx, gx). Assume that:

(C1) for all x ∈ X such that Bx is not a singleton, there is y ∈ X such that By ⊂
6= Bx,

(C2) if (Bxi
)i∈I is a nest of balls, then there is y ∈ X such that By ⊆

⋂
i∈I Bxi

.

Then there is z ∈ X such that fz = gz.

Theorem 6.3.1 is a special case of Corollary 6.2.4. Clearly the conditions (C1) and (C2) on the ultrametric

ball space (Y, {Bx | x ∈ X}) are same as the conditions (B1′) and (B2′); further, fx, gx ∈ Bx for each x ∈ X

by definition of the ball Bx .

We will now consider the following two theorems. The first one was proved by Prieß-Crampe and Riben-

boim in [12].

Theorem 6.3.2 (S. Prieß-Crampe, P. Ribenboim). Let (X, d) be an ultrametric space and f, g : X → X.

Assume that:

(PR1) (g(X), d) is spherically complete,

(PR2) f(X) ⊆ g(X),

(PR3) if gx 6= fx = gy, then d(fx, fy) < d(fx, gx),

(PR4) if d(gx, gy) ≤ d(gx, fx), then d(gy, fy) ≤ d(gx, fx).

Then there is z ∈ X such that fz = gz.

The second theorem is an ultrametric version of Theorem 5.2.1.
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Theorem 6.3.3. Let X be an arbitrary set and (Y, d) an ultrametric space. Take functions f, g : X → Y

such that

(GU1) g(X) is spherically complete,

(GU2) f(X) ⊆ g(X),

(GU3) d(fx, fy) ≤ d(gx, gy) for all x, y ∈ X, and if gx 6= gy, then d(fx, fy) < d(gx, gy).

Then the following holds:

i) there exists z ∈ X such that fz = gz,

ii) if fz = gz and gz = gx then also fx = gx, and

iii) if fz = gz and fy = gy, then gz = gy.

Remark 6.3.4. Statements ii) and iii) are immediate consequences of the hypothesis and only the existence

of a coincidence point is nontrivial.

Indeed, suppose that fz = gz. To show ii), take z 6= x ∈ X such that gz = gx. Then by (GU3),

d(fx, fz) ≤ d(gx, gz) = 0. So fx = fz, and since fz = gz, it follows that fx = gz = gx.

To show iii), suppose that y, z ∈ X are coincidence points. We want to show that their images under g are

the same. We have that d(gy, gz) = d(fy, fz) ≤ d(gy, gz) where the equation holds since y, z are coincidence

points, and the inequality holds by assumption (GU3). Again by (GU3), it follows that d(gy, gz) = 0, and

therefore gy = gz.

The following lemma which exhibits the logical relations between the conditions of Theorems 6.3.1, 6.3.2

and 6.3.3.

Lemma 6.3.5. Let X be a set, (Y, d) an ultrametric space, and f, g : X → Y functions. For each x ∈ X,

set Bx := B(fx, gx). Then:

1) Condition (GU3) of Theorem 6.3.3 implies conditions (PR3) and (PR4) of Theorem 6.3.2.

2) Condition (PR3) of Theorem 6.3.2 implies:

if Bx is not a singleton, then

∀x, y ∈ X : gy = fx⇒ By ⊂
6= Bx, (6.3.1)

and condition (PR4) of Theorem 6.3.2 implies:

∀x, y ∈ X : gy ∈ Bx ⇒ By ⊆ Bx. (6.3.2)

3) Assume that (PR2) holds, so that we can set Y = g(X) in Theorem 6.3.1. Then (6.3.1) implies condition

(C1) of Theorem 6.3.1, and (6.3.2) together with (PR1) implies condition (C2) of Theorem 6.3.1.

Proof. 1) a) Assume that gx 6= gy = fx. Then we can apply the condition (GU3) of Theorem 6.3.3 to obtain

that

d(fx, fy) < d(gx, gy) = d(gx, fx) = d(fx, gx),

which proves (PR3) of Theorem 6.3.2.
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b) Assume that d(gx, gy) ≤ d(gx, fx). Then we can apply condition (GU3) of Theorem 6.3.3 to obtain that

d(fx, fy) ≤ d(gx, gy) ≤ d(gx, fx),

so

d(gy, fy) ≤ max{d(gy, gx), d(gx, fx), d(fx, fy)} = d(gx, fx),

which proves (PR4).

2) a) Assume that Bx is not a singleton. Then fx 6= gx. Assume that gy = fx. Then by condition (PR3) of

Theorem 6.3.2, d(fx, fy) < d(fx, gx). So

d(gy, fy) = d(fx, fy) < d(fx, gx),

and since gy = fx ∈ Bx, we obtain from part 6 of 2.0.18 that By = B(fy, gy) ⊂
6= B(fx, gx) = Bx .

b) Assume that gy ∈ Bx . Then d(gx, gy) ≤ d(gx, fx) and condition (PR4) of Theorem 6.3.2 gives d(gy, fy) ≤

d(gx, fx). By part 5 of 2.0.18, this yields that By = B(gy, fy) ⊆ B(gx, fx) = Bx .

3) a) Assume that Bx is not a singleton. Since Y = g(X), there is y ∈ X such that fx = gy. By 6.3.1 it

follows that By ⊂
6= Bx . This proves (C1).

b) Assume that (Y, d) is spherically complete. Take a nest N = (Bxi)i∈I . Since (Y, d) is spherically complete,

there is some b ∈
⋂
N , and since g is surjective, there is y ∈ X such that gy = b. We have to show that

By ⊆
⋂
N . For this, we show that By ⊆ Bxi

for all i ∈ I. Since gy ∈
⋂
N , we have that gy ∈ Bxi

for all

i ∈ I. By 6.3.2, By ⊆ Bxi
for all i ∈ I. Thus By ⊆

⋂
N , which proves (C2).

According to this lemma, we have the following connection between the three theorems stated at the

beginning of this section:

Proposition 6.3.6. Theorem 6.3.1 implies Theorem 6.3.2, and Theorem 6.3.2 implies Theorem 6.3.3.

In the following, we will illustrate the use of Theorem 6.3.1 by deriving Theorem 6.3.3 directly from it.

Proof. We assume that the conditions of Theorem 6.3.3 are satisfied. Then as in part 3) of Lemma 6.3.5, we

can take Y = g(X) in Theorem 6.3.1, and we set

Bx := B(fx, gx) ∈ B(Y )

for every x ∈ X.

Take x ∈ X and assume that Bx is not a singleton, i.e., fx 6= gx. Since f(X) ⊂ g(X), there is y ∈ X

such that gy = fx 6= gx. By condition (GU3), we have:

d(gy, fy) = d(fx, fy) < d(gx, gy).

By part 6 of 2.0.18, it follows that By = B(fy, gy) ⊂
6= B(fx, gx) = Bx , which proves (C1) of Theorem 6.3.1.
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Take a nest of balls N = (Bxi)i∈I . Since g(X) is spherically complete, there is gy ∈
⋂
Bxi for some

y ∈ Y . We wish to show that By ⊆
⋂
Bxi . By the ultrametric triangle inequality, we obtain for all i ∈ I:

d(fy, gy) ≤ max{d(fy, fxi), d(fxi, gxi), d(gxi, gy)}.

We have that

d(fy, fxi) ≤ d(gy, gxi) ≤ d(fxi, gxi),

where the first inequality follows from (GU3) and the second inequality holds since gy ∈ Bxi
= B(fxi, gxi).

By part 5 of 2.0.18, it follows that By = B(fy, gy) ⊆ B(fxi, gxi) = Bxi
. Therefore By ⊆

⋂
N , which proves

(C2) of Theorem 6.3.1.

Now by Theorem 6.3.1, there is z ∈ X such that fz = gz.

29



References

[1] Goebel, K.: A coincidence theorem, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968),

733–735

[2] Körner, T.: Metric and topological spaces, Create Space Independent Publishing Platform (2014)

[3] Kubis, W. – Kuhlmann, F.-V.: Intersection closures of ultrametric ball spaces, in preparation

[4] Kuhlmann, F.-V. – Kuhlmann, K.: A common generalization of metric, ultrametric and topological fixed

point theorems, Forum Math. 27 (2015), 303–327; and: Correction to ”A common generalization of metric,

ultrametric and topological fixed point theorems”, Forum Math. 27 (2015), 329–330; alternative corrected

version available at: http://math.usask.ca/fvk/GENFPTAL.pdf

[5] Kuhlmann, F.-V. – Kuhlmann, K.: Fixed point theorems for spaces with a transitive relation, to appear

in Fixed Point Theory

[6] Kuhlmann, F.-V. – Kuhlmann, K.: A basic framework for fixed point theorems: ball spaces and spherical

completeness, in preparation

[7] Kuhlmann, F.-V. – Kuhlmann, K. –Shelah, S.: Symmetrically complete ordered sets, abelian group, and

fields, Israel J. Math. 208 (2015), 261–290

[8] Munkres, J.: Topology, 2nd ed, PHI Learning Private Limited, Delhi, (2013)

[9] Prieß-Crampe, S. : Der Banachsche Fixpunktsatz für ultrametrische Räume, Results in Mathematics 18
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