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ABSTRACT

Weighted group algebras have been studied extensively in Abstract Harmonic Analysis.Complete

characterizations have been found for some important properties of weighted group algebras,
namely, amenability and Arens regularity. Also studies on some other features of these algebras,
say weak amenability and isomorphism to operator algebras, have attracted attention.

Hypergroups are generalized versions of locally compact groups. When a discrete group has
all its conjugacy classes finite, the set of all conjugacy classes forms a discrete commutative
hypergroup. Also the set of equivalence classes of irreducible unitary representations of a com-
pact group forms a discrete commutative hypergroup. Other examples of discrete commutative
hypergroups come from families of orthogonal polynomials.

The center of the group algebra of a discrete finite conjugacy (FC) group can be identified
with a hypergroup algebra. For a specific class of discrete FC groups, the restricted direct
products of finite groups (RDPF), we study some properties of the center of the group algebra
including amenability, maximal ideal space, and existence of a bounded approximate identity of
maximal ideals.

One of the generalizations of weighted group algebras which may be considered is weighted
hypergroup algebras. Defining weighted hypergroups, analogous to weighted groups, we study a
variety of examples, features and applications of weighted hypergroup algebras. We investigate
some properties of these algebras including: dual Banach algebra structure, Arens regularity,
and isomorphism with operator algebras.

We define and study Fglner type conditions for hypergroups. We study the relation of the
Folner type conditions with other amenability properties of hypergroups. We also demonstrate
some results obtained from the Leptin condition for Fourier algebras of certain hypergroups.
Highlighting these tools, we specially study the Leptin condition on duals of compact groups for

some specific compact groups. An application is given to Segal algebras on compact groups.
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The understanding of Mathematics is necessary for a sound grasp of
Ethics.

Socrates (469 BC-399 BC)

In life it is never a mathematical proposition which we need, but we use
mathematical propositions only in order to infer from propositions which
do not belong to mathematics to others which equally do not belong to

mathematics.

(In philosophy the question “Why do we really use that word, that propo-

sition?" constantly leads to valuable results.)

Ludwig Wittgenstein (1889 AD-1951 AD)
Tractatus Logico-Philosophicus 6.211
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INTRODUCTION

Roughly speaking, a hypergroup is a topological space equipped with an extra structure,
which leads to the construction of a Banach algebra on the Banach space of all bounded complex
Radon measures on the hypergroup. This binary operation takes the Dirac measures of each
two elements of the hypergroup to a compactly supported probability measure and therefore
has probabilistic taste, since one may roughly express that the outcome of the action of two

elements of a hypergroup is chosen ‘randomly’.

A consistent definition of hypergroups was presented in different manuscripts. Dunkl in
[22, 21], Spector in |71], and Jewett in [38| defined hypergroups in different ways. Although the
ideas are essentially the same, these definitions are not exactly equivalent. The definition which
has been widely studied afterwards is Jewett’s in [38] wherein he calls hypergroups “convos”.
Apparently, the term ‘hypergroup’ first was used for different mathematical objects back in the

1930s, see [56]. Here, we follow Jewett’s definition of hypergroups.

Not only were hypergroups defined as a generalization of locally compact groups, but also one
may show that some objects related to locally compact groups may be studied as hypergroups.
For instance, if G is a FC group (i.e. every conjugacy class is finite), then the set of all conjugacy
classes of G, denoted by Conj(G), forms a commutative discrete hypergroup. Also, for a compact
group G, the set of equivalence classes of irreducible unitary representations of G, denoted by G
and called the dual of the group G, is a commutative discrete hypergroup. On one hand, these
examples together with hypergroups which are defined on orthogonal polynomials, connect the
studies done on hypergroups to different topics in abstract harmonic analysis. On the other
hand, the similarities of hypergroups with groups suggest that one may be able to generalize the
studies on locally compact groups to hypergroups. For example, different amenability properties
of hypergroups and hypergroup algebras have been studied extensively, [70, 62, 51, 46, 37].

After a brief review of preliminaries in Chapter 1, in Chapter 2, we want to know more
about center of group algebras for FC groups. It is known that the center of the group algebra,
Z0(G), for an FC group G, is amenable if G, the derived subgroup of G, is finite (see [5]). In

Section 2.2, for a specific class of FC groups, called restricted direct products of finite groups, we



show that the other side is held. Let {G};};a be a family of finite groups. Then
G :={(z;)iex: ;= eq, for all except finitely many i eI }

is called the restricted direct product of {G;};a. In this section, we study various properties of
Z0' (@), such as amenability and its Gelfand spectrum. We show that Z¢!(G) is amenable if and
only if G; is abelian for all but finitely many ¢ which proves the aforementioned conjecture for
RDPF groups. Moreover, we characterize maximal ideals of Z¢'(G) with bounded approximate
identities. This section is based on a joint work with Professor Yemon Choi and Professor
Ebrahim Samei.

In Chapter 3, we study three examples of hypergroups. First in Section 3.1, we introduce
Conj(G) the set of all conjugacy classes of an FC group G as a hypergroup and characterize
its hypergroup algebra. Features of duals of compact groups, as hypergroups, have strong
relations to the properties of their corresponding compact groups. In Sections 3.2, we check
the hypergroup definition for dual of compact groups and perform some observations on them.
Eventually, we close this chapter by a polynomial hypergroup structure on Ny in Section 3.3.
This class of hypergroups has been of interest for many studies on discrete hypergroups namely
[27, 37, 47, 46, 50, 51].

One of the topics related to hypergroups which has been initiated based on a similar study
on locally compact groups is “weighted hypergroups" and “weighted hypergroup algebras". One
may note that, for the specific weight w = 1, the weighted case is reduced back to regular hyper-
groups and their algebras. The first studies over weighted hypergroup algebras may be tracked
back to |7, 32, 33]. Chapter 4 is devoted to weights on discrete hypergroups, their corresponding
algebras, and their examples. In Section 4.1, we study weighted hypergroup algebras, ¢! (H,w),
for commutative discrete hypergroups H and hypergroups weights w. Subsequently, in Sec-
tion 4.2, we introduce some weights which are related to the growing rate of finitely generated
hypergroups.

To emphasize the importance of weighted hypergroup algebras in abstract harmonic analysis,
we continue by studying some well-known Banach algebras on groups which are isomorphic to
some weighted hypergroup algebras. First we study weights and their properties on Conj(G), as
a hypergroup, for FC groups G. As examples of these weights, if (G, o) is a weighted discrete FC
group for some group weight o, then Z¢(G, ), the center of o-weighted group algebra, is shown
in Section 4.3 to be isometrically algebraic isomorphic to £*(Conj(G),w,) for some hypergroup

weight w, which is generated using o. We will introduce and study more examples of hypergroup



weights on Conj(G) in Sections 4.4 and 4.5. Finally, we close the chapter by Section 4.6 in which

we introduce and study some hypergroup weights on dual of compact groups.

The Fourier algebra of a general locally compact group was first studied by Eymard, [26].
There are several papers which defined Fourier space on hypergroups, as a Banach space, 78,
4, 60, 45]. But unfortunately, none of them could show that the Fourier space defined in the
aforementioned references actually forms an algebra, unlike the group case. So although the
definitions are mainly similar, strategies to study the hypergroups for which the Fourier space
is an algebra are different. In [60], Muruganandam defined the Fourier space of a hypergroup
H, as a Banach space denoted by A(H), analogous to the Fourier algebra of groups. Applying
some tools from character theory of hypergroups, he studied the pointwise multiplication of
elements of A(H) and the behaviour of the norm with respect to this multiplication. He could
develop a machinery to study hypergroups whose Fourier space is a Banach algebra. He called
a hypergroup H a regular Fourier hypergroup if A(H) equipped with pointwise multiplication is
a Banach algebra. Muruganandam also recognized a variety of regular Fourier hypergroups in
[60, 61]. He proved that some polynomial hypergroups, double coset hypergroups, and the space
of all orbits in a locally compact group G for some relatively compact subgroup of automorphisms
of G including inner ones are regular Fourier hypergroups. Chapter 5 studies Fourier algebra
of hypergroups. After studying some general properties of Fourier algebra of hypergroups in
Section 5.1, in Section 5.2, we add the dual of compact groups to the list of regular Fourier
hypergroups. Furthermore, we show that if G is a compact group, the Fourier algebra of G,
A(@), is isometrically isomorphic to the center of the group algebra of G, ZL'(G). Furthermore,
we prove that ZA(G) := A(G) n L'(G), as a subalgebra of A(G), is isometrically isomorphic to
the Banach algebra ¢*(G).

In [29], it was proved that the Fourier algebra of a compact group G is weakly amenable
if and only if the connected component of the identity, denoted by G, is abelian. We study
the question of weak amenability for ZA(G) of a compact group G in Section 5.3. Here, by
constructing one non-zero bounded derivation on ZA(SU(2)) and similarly ZA(SO(3)), we
prove the existence of a non-zero bounded derivation on ZA(G) for every compact group G

when G, is not abelian; ZA(G) for this class of compact groups is not weakly amenable.

Chapter 6, is an attempt to re-create some amenability features of locally compact groups for
hypergroups and their relations with the Fourier algebra on regular Fourier hypergroups. We de-

velop some definitions and observe some of their examples and applications in harmonic analysis.



For a locally compact group G, the Leptin condition was defined to characterize the existence of
a bounded approximate identity of the Fourier algebra, A(G); meanwhile, it is equivalent to the
amenability of the group GG. In an attempt to develop a similar machinery for hypergroups, we
introduce a modified version of the Leptin condition for hypergroups called D-Leptin condition
for some D > 1, in Subsection 6.1.1. This definition for D =1 corresponds previous definitions
of Leptin condition for locally compact groups in [54] as well as polynomial hypergroups in [37].
In Subsection 6.1.2, we show that the D-Leptin condition implies the existence of a bounded
approximate identity of the Fourier algebra for regular Fourier hypergroups. Furthermore, the
D-Leptin condition results some other amenability properties of hypergroups introduced and
studied in [70], see Subsection 6.1.3. Furthermore, we study the D-Leptin condition of some
Lie groups. As a result, the dual of SU(2), the special unitary group of 2 x 2 matrices, satisfies
the 1-Leptin condition. Further, based on some studies on representation theory of SU(3), the
special unitary group of 3 x 3 matrices, we show that the 3%-Leptin condition is satisfied by the
hypergroup of the dual of SU(3). Also for every connected simply connected compact real Lie
group G, the hypergroup G satisfies the D-Leptin condition for some D > 1, as it is shown in
Section 6.2.

Approzimate amenability of a Banach algebra was defined in [31]. A Banach algebra A is
said to be approximately amenable if every bounded derivation from A into the dual of any A-
bimodule can be approximated by a net of inner derivations. Reiter established classical Segal
algebras in his monograph [64]. A Segal algebra S'(G) on a locally compact group G is a dense
left ideal of L'(G) that satisfies some extra conditions. For example, the elements of L(G)
act on the Segal algebra as bounded multipliers. Approximate amenability of Segal algebras
has been studied in several papers. Dales and Loy, in [18], studied approximate amenability
of Segal algebras on the torus T and the group of real numbers R. They showed that certain
Segal algebras on T and R are not approximately amenable. It was further conjectured that
no proper Segal algebra on T is approximately amenable. Choi and Ghahramani, in [14], have
shown the stronger fact that no proper Segal algebra on T? or R? is approximately amenable.
In Subsection 6.2.3, applying the D-Leptin condition of hypergroups, we study the approximate
amenability of Segal algebras of compact groups. We prove that for every compact group G
whose dual satisfies the D-Leptin condition for some D > 1, every proper Segal algebra is not

approximately amenable. A version of this subsection has been published as a part of [2].

In Chapter 7, we study some properties of weighted hypergroup algebras, including Arens



regularity and isomorphism with operator algebras. We also study these features for some of
examples of weighted hypergroups introduced in the previous chapters.

Arens regularity of weighted group algebras has been studied by Craw and Young in [16].
They showed that a locally compact group G has a weight w such that L' (G,w) is Arens regular if
and only if G is discrete and countable. They also characterized the Arens regularity of weighted
group algebras with respect to one feature of the weight, called 0-clusterness as described in [17].
In Section 7.1, the Arens regularity of weighted hypergroup algebras for discrete hypergroups
is studied and it is shown that strong O-clusterness of the corresponding hypergroup weight
results in the Arens regularity of the weighted hypergroup algebra (strong O-clusterness implies
O-clusterness, [17]).

A Banach algebra A is called an operator algebra if there is a Hilbert space H such that A
is a closed subalgebra of B(#H). For a Banach algebra, one may ask about the existence of an
algebra isomorphism from the algebra onto an operator algebra. Isomorphism of weighted group
algebras to operator algebras has been studied before, see [52, 76]. In Section 7.2, studying the
hypergroup case, we demonstrate that for hypergroup weights which are weakly additive and

whose inverse is 2-summable over the hypergroup, an isomorphism to an operator algebra exists.



CHAPTER 1

PRELIMINARIES

1.1 Hypergroups
To define hypergroups, we need to present the definition of the Michael topology as follows.

Definition 1.1.1. |8, 1.1.1]

Let €(X) denote the space of nonvoid compact subsets of some locally compact space X. For
A, Bc X, set §4(B)={Ce&(X): CnA+@and C c B}. Then £(X) is given the topology
which is generated by the subbasis of all € (V') for all U and V' open subsets of X. Then
€(X) is a locally compact Hausdorff space. Moreover, if €2 is a compact subset of €(X) then
B=U{A: AeQ} is a compact subset of X.

For a locally compact space X, we use M(X) to denote the Banach space of all bounded
complex Radon measures on X. Recall that M(X) can be identified as the dual of Cp(X),
the C*-algebra of all continuous functions vanishing at infinity. For each z € X, d, denotes
the Dirac measure at x i.e. 6,(f) = f(x) for each f € Cy(X). We denote the C*-algebra of
bounded continuous complex valued functions on X by C(X). Also, C.(X) denotes the space

of all compactly supported elements of C'(X) which is dense in Cy(X).

Definition 1.1.2. |8, 1.1.2]

We call a locally compact space H a hypergroup if the following conditions hold.

(H1) There exists an associative binary operation * called convolution on M (H) under which
M(H) is an algebra. Moreover, for every z, y in H, §, * 0, is a positive measure with

compact support and |[d, * 5yHM(H) -1

(H2) The mapping (z,y) = d; * 0, is a continuous map from H x H into M (H) equipped with
the weak* topology that is (M (H),C.(H)) where each u € M(H) is considered as a
functional on C.(H) that is u(f) = [ fdp for any f e C.(H).



(H3) The mapping (z,y) — supp(dz * d,) is a continuous mapping from H x H into €(H)
equipped with the Michael topology.

(H4) There exists an element (necessarily unique) e in H such that
Je * O = 0 * 0 = Oy
for all z in H.

(H5) There exists a (necessarily unique) homeomorphism z — & of H called involution satisfying

the following:

(i) (#) == forall z € H.

(ii) If f is defined by f(t) := f(f) for all f € C.(H) and t € H, one may define fi( f) := u(f)
for all pe M(H). Then

(6, % 8,) =8y %0z for all z,y € H.

(H6) e belongs to supp(d, * dy) if and only if y = Z.

Remark 1.1.3. Since here we mainly work with discrete hypergroups, we may notice that for

discrete hypergroup, two continuity conditions (H2) and (H3) are automatically satisfied.

Applying the convolution of M (H), one may define an action between subsets of H. We

denote it by * again where the notation A * B stands for
(U{supp(d; * d,) : for all z € A and y € B} (1.1.1)

for A, B subsets of the hypergroup H. With abuse of notation, we use x * A and x * y to denote
{z} » A and {z} * {y}, respectively.

We call a hypergroup H commutative if M (H) forms a commutative algebra. To facilitate
the notation, for each pair z,y € H and f € C.(H), the value of the measure of d, * §, on f is

denoted by f(dz * dy). As mentioned in [8, 1.1.2], for each pair p,v € M(H) and f e C.(H),
= dg * 0y)d dv(y).
pev(f)= [ [ 16056, du(e)du(y)
We can define a left translation on C(H) by

Lef:H—>C, Lyf(y) = f(6z x 0y)

7



for each f in C(H) and z,y € H. Note that L,f € C.(H) for f € C.(H). Similar to the group
case a non-zero, positive, left invariant linear functional h (possibly unbounded) on C.(H) is
called a Haar measure i.e. h(L,f)=h(f) for all f e C.(H) and x € H. Note that h is a Radon
measure which satisfies the subinvariant translation on measurable sets i.e. h(K) < h(z * K)
for each compact set K ¢ H and x € H. The Haar measure is unique up to multiplication by a
positive constant, [8].

Unlike the theory of locally compact groups, the existence of a Haar measure on hypergroups
is not proven for general hypergroups'. But for specific cases of hypergroups including commu-
tative hypergroups, discrete hypergroups, and compact hypergroups, always a Haar measure
exists, 8, Section 1.3|. If there exists a Haar measure on a hypergroup H, it is unique up to a

constant multiplier.

Theorem 1.1.4. [8, Theorem 1.3.26]
Let H be a discrete hypergroup. Then there exists a Haar measure h: H - (0,00). If we assume

that h(e) =1, h(zx) = (63 * 0.(e))™* for all x € H.

Note that unlike groups, the Haar measure on discrete hypergroups is not necessarily a fixed
multiplier of the counting measure. As an instance, one may look at the Haar measure on 5@?2)
(see Example 3.2.2).

Since most of the hypergroups that we work with are discrete or commutative or both, from
now on, we assume that a hypergroup H possesses a Haar measure. In this case, for each
1 <p< oo, we define LP(H,h) (sometimes denoted by LP(H) if there is no risk of confusion) to

be the Banach space of p-integrable functions on H with respect to the Haar measure h; hence,

11 = ( [ 1 @) <oo.
Furthermore, for each f,ge€ C.(H) and y € H, let us define
Fog@)= [ F@)g(d»6,)dh(@) F(x) = F(@).

One may extend *j, and ~ to L'(H, h). L*(H,h) equipped with the convolution #*; forms a
Banach algebra, [8, Section 1.4]. To facilitate writing, we may use dz for integration with

respect to the Haar measure i.e. dh(z).

'Revising very last drafts of the thesis, Professor Yemon Choi directed me to the recent manuscript [11]. In
that, it has been claimed that the existence of a left invariant measure on an arbitrary hypergroup is proven.



Let H be a discrete hypergroup. As we mentioned before, /1(H) = M(H) is a Banach
algebra. One may easily show that in discrete case, for each pair f, g € ¢(H), we have
[fli= 20 1F @) frgla)= 3 Y dexds(x)f(t)g(s) (veH). (1.1.2)
reH teH seH
On the other hand, for a discrete hypergroup H equipped with the Haar measure h, one gets

[flzcan = 20 If@IR(t) and f 4 g(x) = 3 f(t)Lig(z)h(t).

teH teH

Proposition 1.1.5. [/8, Theorem 1.8/
The map f — fh, L'(H,h) - (X(H) is an isometric algebra isomorphism from the Banach
algebra L' (H, h) onto the Banach algebra ¢*(H).

Lemma 1.1.6. Let H be a discrete hypergroup equipped with a Haar measure h. For each pair
z,yeH,

O *p 0y(2) = 05 % %(z)% (ze H).

Proof. Let © be the inverse of the isomorphism defined in Proposition 1.1.5 i.e. O(f)(x) =
h(z)™' f(x) and x,y € H be arbitrary. For each z € H, we have

1 1

h? ) =000 % 8))(2) = 0(02) 51 O(3)(2) = i By (2).

The following proposition is a discrete case of |8, Proposition 1.2.16].

Proposition 1.1.7. Let H be a discrete hypergroup. Then for every ¢ € co(H) and f € (*(H),

the function

x> ) f(0)o(d7* dz)

teH

belongs to co(H).

Proof. Let € > 0 be fixed. Therefore there is some K c H finite such that for every x € H \ K|
lp(z)| < €| f|7*. Also there is some F ¢ H finite such that
> @) <elgl-
reH\F

Based on the definition of convolution between sets and (H1) in Definition 1.1.2, it is obvious

that C := F' * K is a finite subset of H.



Let ve HNC,teF,and se K. If §; * §,(s) #0, s € t * x. Therefore, by (H6), e € ¢ * x.
Again (H6) implies that & € 5+ or equivalently = € t*s € F'+ K which is a contradiction. Hence,
forze HNC,teF, and se K, §; * 65(s) = 0. Consequently,

S IF@Y [6(8)[67 * 02(s) = 0.

tel” seK

Therefore for x € H \ C, one gets

2 FWo0;*02)| < |2 FO)O0r+ )| +| D F()D(0; * 0x)
teH teF teH\F
< POl *d)+ Y [FDI¢]oo
teF teH\F
< e+ ) (O] X 10()I07 * 6.(s)
teF seH
= et Y IfOI Y5 16(8)I07 + 0x(s) + X0 IF (O] D |e(8)07 * 0z ()
teF seH\K teF seK
< et sup () f+ X 1F (O] Y [6(8)107 * d2(s) = 2e.
seH\K teF seK
And this finishes the proof. O

For two discrete hypergroups Hy and Ho, H := Hy x Ho forms a discrete hypergroup where

5(:51,x2) *H 5(y1,y2)(3’t) = 6$1 *Hq 5y1(3) 5$2 *Ho 592 (t)

forall x1,y1,s € Hy and xa,ys,t € Ho. As an extension of the previous product of hypergroups, let
{H;};e1 be a family of discrete hypergroups, then H := @, H; where for each z € H, x = (x;)e1
where z; is the identity of the hypergroup H;, eq,, for all 7 € I except finitely many. H is called
restricted direct product of (H;)jex-

A hypergroup H is said to be amenable if there exists a left invariant positive linear functional
of norm 1 on C(H). Amenability of hypergroups has been studied widely in [70]. Skantharajah,
in [70], showed that similar to amenable groups, all compact or commutative hypergroups are
amenable. But unlike group case, the amenability of hypergroups does not necessarily imply the
amenability of the hypergroup algebra as an algebra (defined in the following). The converse
is always true i.e. the amenability of a hypergroup algebra (as a Banach algebra) implies the

amenability of the corresponding hypergroup, |70, Proposition 4.9].

Let H be a commutative hypergroup equipped with a Haar measure h. Define
H:={aeCy(H): a(d; *6,) = a(z)a(y), a(F) = a(x), and a # 0}. (1.1.3)

Let us give H the topology of uniform convergence on compact subsets of H. Every a € H is

called a character of H and the topological space H is called the dual of the hypergroup H.
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For each y € M(H), one may define the Fourier-Stieltjes transform T (or F(u)) on H by

A(e) = [ a@)du(a) (ae ).

For f e L'(H) this gives the Fourier transform

Fl)= [ a@)f(@)da.

which is also denoted by F(f), see [8, Definition 2.2.3]. In the following we just summarize some

of the main properties of H from [8, Chapter 2].

Theorem 1.1.8. /8, Theorem 2.2.4]

Let H be a commutative hypergroup.
(1) Since the constant function 1 belongs to ﬁ, it is non empty.
(2) H is a locally compact topological space.

(3) The Fourier-Stieltjes transform is a norm-decreasing linear mapping from M(H) into

Cy(H).

(4) The Fourier transform is a norm-decreasing linear mapping from L'(H) into Co(H).

Furthermore, F(L'(H)) is a dense subalgebra of (Co(H),| o).

Theorem 1.1.9. /8, Theorem 2.2.13]
Let H be a commutative hypergroup. Then there exists a non-negative measure = on H, called

Plancherel measure of H such that
2 T2
do= | d
[ V@R = [ 1F@)Pdr(a)
for all fe LY(H)n L?>(H).

Note that for an arbitrary hypergroup H (unlike group case) the support of the Plancherel

measure, supp(m), may not be equal to H.

1.2 Group algebra and its center

Let G be a locally compact group which is a hypergroup that possesses a Haar measure A such
that A(xE) = A(E) for each measurable set £ ¢ G. From now on, we use dx to denote dA(x) in

our integrations over a group G.
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For a group G, the derived subgroup of G (also called the commutator subgroup of G) is the
closed normal subgroup of G generated by the set of all commutators of elements in G. We
denote the derived subgroup of G by G'.

We denote the hypergroup algebra of G' by L'(G) and call it the group algebra of G. Note

that L'(QG) is commutative if and only if G is a commutative group.

Definition 1.2.1. Let G be a locally compact group. The center of the group algebra is the
subalgebra of L'(G) consisting of all elements which commute with all elements of the group

algebra and is denoted by ZLY(G).

Theorem 1.2.2. Let G be a locally compact group. ZL'(G) is the set of all elements of L*(G)
which are almost everywhere constant on conjugacy classes of the group G i.e. f(yxy™) = f(x)

for almost all x,y € G.

For a proof, one may look at [57]|. Liukkonen and Mosak in their paper, [57], studied some of
the properties of ZL'(G). Namely they showed that ZL'(G) is a regular, Tauberian, symmetric
Banach *-algebra and contains a bounded approximate identity. In [5], Azimifard, Samei, and
Spronk studied some amenability properties of the center of group algebras for compact and

finite groups.

1.3 Banach algebras

1.3.1 Characters of commutative Banach algebras

Let A be a commutative Banach algebra. We denote by o(A) the (Gelfand) spectrum of A
which is the set of all non-zero multiplicative linear functionals on A; that is also called the

maximal ideal space or character space of A. For each 1 € 0(A), v is called a character on the

algebra A.

1.3.2 Injective and projective tensor products

We use [69] as our reference of this subsection. Let X and Y be two linear spaces. There
exists a linear space X ® Y, called the tensor product of X and Y and a canonical bilinear map
p: X xY - X @Y with the following universal property. For each linear space E and an

arbitrary bilinear map B : X x Y — E there exists one and only one linear map B such that
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B=Bo . A typical element u in X ® Y can be represented in the form of
n
w=Yzi ey (1.3.1)
i=1
for z; € X and y; € Y and x; ® y; = ¢(x;,y;). Note that this representation for each element may
not be unique. If X and Y are Banach spaces, we may apply their norms to norm X ® Y and
even complete it to a Banach space. In this case, a norm |- | on X ® Y is called cross norm if
|z ®yl| = |z|x|ylly for all z € X and y € Y. For each ue X ® Y, in the form of (1.3.1), let
n
= nt {3 bl sl 132)
where the infimum is taken over all representations of . This norm is called projective tensor
norm and is the largest possible cross norm defined on X ® Y. The completion of X ® Y with
respect to |- | is called projective tensor product of X and Y and denoted by X ®,Y. One may
show that the dual of X ®, Y, as a Banach space, is isometrically isomorphic to £(X,Y™), the
space of all bounded operators from X into Y*.

If A and B are two Banach algebras, there is a product on A ® B which makes it an algebra
such that (a1 ® b1)(az ® b2) = ajas ® bibe. The projective norm on A ® B is an algebra norm;
hence, A ®, B is a Banach algebra.

Let (S1, 1) and (S2, 12) be two measured spaces, then L'(Sy, 1) ®, L' (S2, p2), as a Banach
space, is isometrically isomorphic to L'(Sy x S, pt1 x po). Let Hy and Hy be two hypergroups.
Then there exists an isometric isomorphism 6 from the Banach algebra L'(H;) ® L'(H,) onto

LY(H, x Hy) such that
0(f ®g)(z,y) = f(z)9(y)

for all f e L*(Hy), g € L'(H,), and almost all = € H; and y € Hy. A proof would be exactly
similar to the group case, (see [43, Proposition 1.5.5]).
Moreover, for Banach spaces X and Y and ue X ®Y,
n
[ule = sup {Z; U(xi)p(yi) 1€ X* and ¢ € Y such that |4 <1 and |¢] < 1},
forms another norm called injective tensor norm which is the least cross norm one may define

on X ®Y. The completion of X ® Y with respect to the injective norm is called injective tensor

product of X and Y and denoted by X ®. Y.

Remark 1.3.1. For each two Banach spaces X and Y, the projective tensor norm or injective

tensor norm are cross norms.
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1.3.3 Amenability of Banach algebras

For amenability of Banach algebras, we use [68] as the main reference. The proof of the following
results can be found there.

If A is a Banach algebra, a Banach space X is called a Banach A-bimodule if there are
bounded maps, a homomorphism A4 - B(X) : a » (z ~ a-z) and an anti-homomorphism
A - B(X):awr (x » z-a), with commuting ranges. A Banach A-bimodule X is called
symmetric if the left and right module actions coincide i.e. a-z =x-a for all z € X and a € A.
The adjoints of these actions make the dual space X into a dual Banach A-bimodule.

A linear map D : A — X is called a derivation if D(ab) = a- D(b) + D(a) -b for a,b in A.
Inner derivations are those of the form D(a) =a-x —x-a for some x in X. A Banach algebra 4
is amenable if, for every dual Banach A-bimodule X*, every bounded derivation D : 4 - X~ is
inner.

Note that, canonical actions of A into its dual make A* into a dual Banach A-bimodule. A
Banach algebra A is weakly amenable if every bounded derivation D : A - A* is inner. If A
is commutative, the weak amenability is equivalent to this fact that every bounded derivation
D: A - X for a symmetric Banach A-bimodule X is constantly 0. Let ¢ € A* be a character i.e.
¢ is non-zero and ¢(ab) = ¢(a)¢(b) for all a,b € A. A non-zero linear functional dy € A* such
that dy(ab) = ¢(a)ds(b) + dy(a)d(b) is called a point derivation. If a non-zero point derivation
¢ exists, the derivation D : A - A" which is defined as D(a) := dy(a)¢ implies that A cannot

be weakly amenable. If a Banach algebra A is amenable, it is clearly weakly amenable as well.

Let A be a Banach algebra. Then the Banach algebra A ®, A forms a Banach .A-bimodule

where

a-(b®c):=(ab)®cand (b®c)-a=b® (ca)

for all a,b,c € A. Moreover, the mapping m : Ax A - A, where m(a,b) = ab, has a continuous
extension from A ®, A into A which we denote by m again.

For a Banach algebra A there are a variety of conditions which equal the amenability of the
Banach algebra. For example, A is amenable if and only if there is a norm bounded net (mg,)q

in A®, A such that
(1) limga-mg —mq-a=0.
(2) lim, [m(meg)a —al4 =0 and lim,, [am(m,) —a].4 = 0.
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Such a bounded net (myg,)q is called a bounded approzimate diagonal of A.
Note that the second adjoint m is a mapping m** : (A®, A)** - A**. Moreover, A** and
(A®, A)*" are also A-bimodules in canonical ways. An element M € (A ®, A)*" is called a

virtual diagonal for A if
a-M=M-aand a-m*™*(M)=m"*(M)-a=a.

The existence of a virtual diagonal also equals the amenability of A.

The concept of amenability constant was developed by Johnson, in [39], as a tool to study
the amenability of Fourier algebras. Roughly speaking, we can measure amenability of a Banach

algebra via amenability constant.

Definition 1.3.2. For a Banach algebra A, we denote the amenability constant of A by AM(.A)

and define it to be

inf {sup e HA@WA}
(07

where the infimum is taken over all bounded approximate diagonals (mq)q of A. If the set of

bounded approximate diagonals of A is empty, AM(.A) is set to be +oo.

For a Banach algebra A, AM(A) < oo if and only if A is amenable. If A is a unital Banach
algebra, AM(A) > 1.

Remark 1.3.3. Let A and B be Banach algebras, and let ¢ : A - B be a continuous homo-
morphism with dense range. It is well known that if A is amenable then so is B; moreover,
AM(B) < |¢|? AM(A). Toward a proof, one may note that for every bounded approximate
diagonal (mq)q of A, (¢ ® ¢(my))a is a bounded approximate diagonal of B.

Furthermore, if A and B are two amenable Banach algebras, the Banach algebra A ®., B is

also amenable, by [40, Proposition 5.4].

Note that for every amenable Banach algebra A, it has a bounded approximate identity. Let
A be an amenable Banach algebra, and let Z be a closed ideal of A with finite dimension or
codimension. Then Z is amenable. Specially for an amenable commutative Banach algebra A,

Ker(v) for all ¢ € 0(A) is amenable and consequently has a bounded approximate identity.
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1.4 More on locally compact groups

1.4.1 Representation theory of compact groups

For a locally compact group G, a unitary representation 7 from G into U(H,), the group of
all unitary operators on a Hilbert space H,, is a group homomorphism which is continuous
with respect to the topology of G and the strong operator topology on U(H,). For a sub-
Hilbert space K, of H, that is invariant under the group action of 7(z) for all x € G, the
representation 7, : G - U(K;) is called a sub-representation of . If m has exactly two sub-
representations corresponding to the Hilbert spaces {0} and H., then the representation 7 is said
to be irreducible. In this manuscript we mainly care about irreducible unitary representations
of locally compact groups which we call representations if there is no risk of confusion. Two
unitary representations p and 7 on a locally compact group G are called to be equivalent if there
is some unitary operator U : H, — H, such that U*p(2)U = n(x) for every z € G.

Let G be a compact group, G denotes a selection of continuous unitary irreducible repre-
sentations of G, when from each class of equivalent irreducible unitary representations, we have
one element in G. Let (7, Hy) be an irreducible unitary representation of a compact group G,
it is well-known that #, is a finite dimensional Hilbert space (see [36]). In this case, we denote
the dimension of H, by d. and call it the degree (or dimension) of the representation 7.

The trace of a matrix A = (a; ;)i je1,. n is defined to be the sum of the coefficients on the
diagonal of A, i.e. Y1 ,ai;. We denote the trace of A by Tr(A). Let GG be a compact group.
Since for each irreducible representation of G, say 7, d; is finite, 7(z) is a matrix for each x € G.
So we may define a function xr : G — C, called a character of G, by xx(z) := Trm(x) for z € G.
Note that xx(z7!) = xx(z) for all # € G and z € G. Moreover, yr(zyz™') = Trr(zyz™") =
Tr(w(z)m(y)m(x)™) = Tra(y) = xx(y), since Tr(AB) = Tr(BA) for all matrices A, B. Hence,
X for each representation 7 is a continuous class function i.e. it is constant over conjugacy
classes of G.

For each two compact groups G; and G, G := G1 x GG forms a compact group. For two
representations m; € G; with corresponding Hilbert space H;, i = 1,2 one may define a unitary

irreducible representation m; x w9 € G where

T x m2(z,y)(§ ®n) = m(x)§ ® ma(y)n

for & € Hy and n € Hy. Moreover, dr, xr, = dr,dr, and one may show that Tr(m ® ma(x,y)) =

Tr(mi(2))Tr(m2(y)). The inverse is true that is G = Gy x Ga i.e. for each w € G, 7 = 1y x mo for
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some 7; € @Z where 7 =1, 2.

For each two representations 7y, o € G , for a compact group G, 7 @ is a new representation
of G with Hilbert space H;1 @ Ha where w1 @ ma(x)(§ @ n) = m1(2)§ ® mo(z)n for all £ € Hy and
ne€Ha. And Tr(m @ mo(z)) =Tr(m(x)) +Tr(m(x)).

The proof of the following results can be found in [28, Section 5.3].

Proposition 1.4.1. For each character xr (7 € G), we have xr(eq) = dx, |Xx|oo = dr, and
Xx € ZLY(G).

Proposition 1.4.2. [28, (5.20)]
Let G be a compact group and A(G) denotes the Haar measure of G. Then for all wy,ms € G,

%f)xﬁ(x) if m=m =
X *XWQ(w) =
0 ifﬂ'l F T2

For a compact group G, for each 1 < p < oo, LP(G) ¢ L'(G); furthermore, (LP(G),| - ||»)
equipped with the convolution forms a Banach algebra. Similarly, C(G) ¢ L'(G) and therefore,
(C(G), |- |l ) equipped with the convolution forms a Banach algebra.

Definition 1.4.3. For a compact group G, define ZLP(G) := ZLY(G) n LP(G) (1 < p < )
and ZC(G) = ZLY(G)n C(G) ie. ZIP(G) = {f e LP(G): f+h=hxf Yhe L}Y(G)} and
ZC(G)={feC(G): f+h=hxfVYhe L' (G)}.

The Banach spaces ZLP(G) (1 < p < 00) and ZC(G) equipped with the convolution form
commutative Banach algebras. Furthermore, ZLP(G) and ZC(G) are the closure of the linear
span of {xr : m € G} for all 1 < p < co with respect to | - |, and || - ||, respectively. Let the
Haar measure on compact group G be normalized i.e. A(G) = 1. Then {x«}, .z even forms an

orthonormal basis of ZL*(G).

Theorem 1.4.4. [28, Theorem 5.26]
Let G be a compact group. Then m — b forms a bijection from G onto o(A), where A is one

of ZLP(G) (1< p< o) or ZC(G) as a commutative algebra with convolution and

vn(1) = o [ Sy
for each f € A.
For each 7 € G, let us define
(Fmen = [ F@)ra@ende (&neBH)).
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for each f € L'(G). The Fourier transform, F, of some f € L'(G) is defined to be (f(ﬂ))ﬁ@.
For each pair 7,0 € G, as a result of Schur orthogonality relations (|28, Section 5.2]), one gets
that

1 e
ila, ifm=0

Xr(0) = (1.4.1)

0 if m+o0.

For each compact group G, f ~ f() is an algebra homomorphism of L'(G) onto the algebra
of dr x dr matrices. In this case, A(G), the Fourier algebra of the compact group G is the set
of all functions f € L'(G) such that

[£lae) = 2 dell F(m) s, < o0 (1.4.2)
meG

where ||Al|s, for a matrix A denotes the trace class norm i.e. |A|s, = Tr(|4]|). One can show
that A(G) equipped with pointwise multiplication and the norm |- | () defined above forms a
Banach algebra (see [36, Theorem 34.18|). By (1.4.2), one can show that lin{x,} .z is dense in
A(G) and |xz|la(q) = dx for every 7 € G.

Similarly, for each f e L?(G),

1713 =3 dell F(m)3, (1.4.3)

neG

where ||A||‘252 is the the Hilbert-Schmidt norm of a matrix A = [a; j]1<i j<n that is (Zi,j |a1-7j|2)1/2.

Unfortunately, the word ‘character’ is used in both Banach algebra theory and in the repre-
sentation theory of finite groups and means two slightly different things. To prevent ambiguity,
we may occasionally use the phrase algebra character to mean a character in the sense of Gelfand
theory for the center of group algebra.

1.4.2 Segal algebras

Abstract Segal algebras first was defined in [10] as generalization of Segal algebras. We say that
the Banach algebra (B, | - ||g) is an abstract Segal algebra of a Banach algebra (A, | -|.4) if

1. B is a dense left ideal in A.
2. There exists M > 0 such that ||b| 4 < M|b|p for each be B.
3. There exists C' > 0 such that [ab|p < Clla|4|b|s for all a,be B.
If B is a proper subalgebra of A, we call it a proper abstract Segal algebra of A.
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The definition of Segal algebra and most of examples below are from [64]. Let G be a locally
compact group. A linear subspace S'(G) of L'(G), the group algebra of G, is said to be a Segal

algebra on G, if it satisfies the following conditions:

1. S1(@) is dense in L'(G).
2. SY(@) is a Banach space under some norm | - g1 and | f|g1 > | f|l1 for all fe S*(G).

3. SY(Q) is left translation invariant and the map x + L, f of G into S*(G) is continuous

where L, f(y) = f(z™1y).
4. |Lyflgr = | flg for all feSYG) and z € G.

Note that every Segal algebra on G is an abstract Segal algebra of L'(G) with convolution
product. Similarly, we call a Segal algebra on G proper if it is a proper subalgebra of L'(G).

Example 1.4.5.

o Let LA(G) = LY(G)n A(G) and |||]|| = ||h]1 + 1R ] a¢y for h e LA(G). Then LA(G) with
norm ||| - ||| is a Banach space; this space was studied extensively by Ghahramani and Lau
in [30]. They have shown that LA(G) with the convolution product is a Banach algebra
called the Lebesque-Fourier algebra of G; moreover, it is a Segal algebra on the locally
compact group G. LA(G) is a proper Segal algebra on G if and only if G is not discrete.
Also, LA(G) with pointwise multiplication is a Banach algebra and even an abstract
Segal algebra of A(G). Similarly, LA(G) is a proper subset of A(G) if and only if G is

not compact.

e The convolution algebra L*(G) n LP(G) for 1 < p < oo equipped with the norm | f||; + | f|,

is a Segal algebra.
e Similarly, L*(G) n Co(G) with respect to the norm | f||1 + | f|le is a Segal algebra.

e Let G be a compact group, F denote the Fourier transform, and £P(G) be the space
which will be defined in (3.2.1). We can see that f’l(ﬁp(@)), which we denote by €°(G),
equipped with convolution is a subalgebra of L'(G). For | flercy = 1Fflzocg), one can
show that for each 1 <p <2, (€’(G), |- HCP(G)) is a Segal algebra of G.
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CHAPTER 2

RESTRICTED DIRECT PRODUCTS OF FINITE GROUPS

In this chapter, we are interested in knowing more about the center of discrete group algebras.
Where G is a discrete group, if some conjugacy class C, = {yzy™ ' : y € G} is infinite for each
function f e Z¢*(G), it is easy to verify that f(C,) = 0; therefore, the characteristic function of
the set C,, denoted by 1¢,, does not belong to Z¢1(G). This is the main reason that we restrict
our study to discrete groups with finite conjugacy classes (including finite groups) which are
called finite conjugacy groups or in short FC groups. For a FC group G, we denote the set of
all conjugacy classes of G by Conj(G). In this chapter, we study a specific class of FC groups,
called RDPF groups and some properties of the center of their group algebras.

This chapter is based on a joint project with Professor Yemon Choi and Professor Ebrahim

Samei; a version of that has been written in the manuscript [3].

2.1 General properties of Zél(G) for product groups

It is well known that when G is finite, the space of maximal ideals of Zﬁl(G) corresponds to
the set of irreducible group characters of G. As a particular class of compact groups, one may

re-write Theorem 1.4.4 for finite groups, as follows.

Lemma 2.1.1. Let G be a finite group. If i is an algebra character on Zﬁl(G), then there is a

unique m € G such that for the corresponding group character X,

W(f) =Y f(@)dy, 'xa(zh)  for all feZ0(G). (2.1.1)

zeG
Conversely, for each group character x= of G, 7 € G, the formula (2.1.1) defines an algebra
character on Z0(Q).

The following lemma will be used later, in several places.

Lemma 2.1.2. Let H and K be (discrete) FC-groups. Then the canonical, isometric isomor-
phism of Banach algebras ¢*(H)® 01 (K) = (*(H x K) restricts to an isometric isomorphism of
Banach algebras Z0*(H)®~ Z0'(K) = Z0* (H x K).
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Proof. For any FC group H, we can define an averaging operator Py : (' (H) - Z(1(H) by

10

P (f)(x) = ol 2
where C, denotes the conjugacy class of x in H. Since H is an FC-group, Py is well-defined
and Ppy leaves elements of ZZl(H ) fixed. For two FC groups H and K, we define Py ® Pk :
(MN(H) @y 1K) » Z0'(H) ®, Z0'(K) where Py ® Px(f®g) = Pu(f)® Px(g) for each f®ge
(M(H) e, (1(K).

Now let H and K be FC groups, and let 6 : ¢*(H)®, ' (K) — ¢'(H x K) be the canonical
isometrical isomorphism of Banach algebras, which satisfies 6(f ® g)(x,y) = f(z)g(y) for all

fel'(H), gel'(K), re Hand y e K. We claim that
PHXKOGZGO(PH(X)PK). (2.1.2)

Note that for every pair H, K of FC groups, H x K is a FC group. Let f e ¢'(H) and
g e N(K). If (z,y) € H x K, then since C(z,y) may be identified with C,, x Cy, we have

PHXK Oe(f ®g)(l’,y) = PHXK(f(‘T)g(y))
= |O(z,y)|_1 Z f(t)g(s)

(t,5)eCxxCly

=[Cal™ X0 S G, Y g(s)

teCy, seCy

= Pu(f)(2)Px(9)(y) =60 (P ®Pr)(f®g)(z,y),
s0 Pryg o0(f®g) =00 (Py®Px)(f®g). Let feZO'(H) and g € Z¢*(K), then for each
hi ® hy € £1(H)®,¢*(K), note that

0(f ®9g) *¢ (mxi) 0(h1® h2) O((f *or(ary h1) ® (g %1 (1) h2))
O((h1 o1y [) ® (ha *p1(x0) 9))

O(h1 ® h2) *p (xiy 0(f ® g)-

Since the space generated by the set of all hy®hs is dense in 01 (H)®, ' (K), 0(f®g) € Z{* (HxK).
Hence, 0(Z0* (H)®, Z¢*(K)) € Z0*(H x K). To prove the converse inclusion: let u € ZI'(H x K );
then 07! (u) € (' (H)®,¢*(K), and so

u=Py.c0(0 (u)) = 0(Py ® Pg) (607 (u)) e Z¢'(H x K),

since Py ® P (6071 (u)) € Z0'(H) ®., Z¢*(K). Moreover, since 6! and Py ® Py both have norm
1, this shows that

Oz (mye, 212 (i) * 21 (H)@, ZIN (K) — ZI'(H x K)
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is not just surjective, but is an isometry, as claimed. O

2.2 The restricted direct product of finite groups

Let I be an indexing set and (G} )1 a family of finite groups; the restricted direct product of the
family (G;), abbrevated RDPF here, is defined to be the group

PG = {(aji)id € [[ Gi:zi = e, for all but finitely many z}

el 1€l
which is a group version of the definition mentioned in Section 1.1. Note that if I is finite, the

restricted direct product agrees with the usual direct product of groups.

Proposition 2.2.1. Let (G;);a be a family of finite groups and G their restricted direct product.
Then G is a FC group.

Proof. Let x = (z;)e1 € G and let Cy, denote the conjugacy class of z. Since z; = e, for all but
finitely many i € I, for any y = (v;)ic1, we have y;z;y; ' = e, € G for all but finitely many i € I.

Define I, := {i € I: x; # e, }, which is a finite subset of I. Then

Ce| = H |Cz,| < H |G| < o0,

i€l i€l

and since x was chosen arbitrarily, G is a FC group. O

Recall that for a group G, the center of the group is defined to be the set of all € G such
that xy = yx for all y € G and denoted by Z(G).

Proposition 2.2.2. Let (G;);e1 be a family of finite groups and let G = @1 G-
(i) Z(G) = @ia Z(Gi).
(i) G’ = @®ia G,
(iii) If each G; is nilpotent of class n, then so is G.
(iv) If each G is solvable of length n, then so is G.

Proof. (i). Let x = (x;)iex € Z(G). For some iy € I, suppose that z;, ¢ Z(G;,). Therefore,
there exists some y;, € G;, such that y;,zi, # xi,yi,. So for y := (y;) where y; = eq, for all
i eI~ {ip} and y; = y;, as defined for i = ig. Hence, the igth coordinate of xy which is z;,y;, is

not equal to the igth coordinate of yz which is y;,z;,. So, zy # yr which is a contradiction. So,
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Z(G) € ®;e1 Z(G;). Conversely, for each x = (x;)iex € @ier Z(G;) and each y = (y;)iex € G, for
each 7 € I, x;y; = y;x;; hence, Ty = yx.

(7). Note that for each commutator [z,y] € G', [z,y] = ([24,yi])ier € Pic1 G;. Therefore,
G’ € @;1 G. On the other hand, for each z € @y G, we know z = z(V--.2(" such that for
jel,n, I is a singleton. So without loss of generality, we assume that z € @;q G; and
I, = {io} is a singleton; hence, z;, = y}oylg where for each j € 1,---,m, yfo is a commutator
in G;,. For each j € 1,---,m, define 3/ = (yf )iel € G such that yg is the mentioned commutator
ygo for i = igp and eg, for i # ig. Therefore, y) e G’ for each j € 1,---,m, and consequently,
z=ylymeq.

(i7i) and (#v). First, note that if for each i € I, N; is a normal subgroup of G; such that G;/N;
is commutative, then N = @; N; is a normal subgroup of G = @, G; and G/N is commutative.
If for each 4, G; is nilpotent of class n, one may find a central series {eq, } = NZ-1<1 NZ-2<1 <IN = G;.
So, {eq} = Djex Ni1 4 - @i V' = G is a central series. Similarly, a set of subnormal series
{eg,} = NZ-1 < Nf < -+ NJ' = G; such that Njy1/N; is commutative implies the subnormal series
{eg} = N' = @i Ni1 Q<9 N" = @jep V' = G such that NI*1/NJ is commutative. O

Let (G;) be a family of finite groups, and let F' c I; write F'° for I\ F. Since

DGi=(DG)x (D Gi)
iel icF ieFe
by Lemma 2.1.2, we obtain an isometric isomorphism of Banach algebras
20N P Gy = NP Gi)e, 20 (P Gy). (2.2.1)
iel ieF ieFe

Hence, if we write E7 for the identity of Zﬁl(ﬁaie re Gy;), there is a unital, isometric, homo-

morphism of Banach algebras
1 2P Gy) - 20 (P Gy) (; Z0N PGy ®, 20 (P Gi)) (2.2.2)
ieF iel ieF ik
defined by 1p(f) = f ® Ef.. When F is a singleton, say {j}, we denote vz by ¢;. Let epe denote
the augmentation character on ZO (@;cpe G;) ie. for each f e ZO (®jepe Gy),
ere(f)= ) [f(2).
T€@iepc G;
If we denote by idp the identity homomorphism on Z¢* (@®icr Gi), then there is a unital, surjective

homomorphism of Banach algebras

Pr=idr ®cpe Zﬁl(ean) —>Z£1(®Gz) (2.2.3)
i€l el

which satisfies Pp(f ® g) = epe(g) f for all f € Z0H(@ep Gi) and all g € ZO (Bjepe Gy).
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2.3 The Gelfand spectrum of Z/'(G)

Let G be a RDPF group. Since Z¢'(G) is a commutative Banach algebra, it is natural to ask
for a description of its Gelfand spectrum. This is given by the following result (recall that

Lemma 2.1.1 gives a description of the spectrum when G is finite).

Theorem 2.3.1. Let (G;)iecx be a family of finite groups and G their restricted direct product.
Then there is a homeomorphism from o(Z(1(G)) onto

[To(Z6(G)) = {(i)ier : v € (201 (Gi)) Vi e T

i€l

equipped with the product topology. In particular, U(Zﬁl(G)) 18 totally disconnected.

Proof. For each w € o(Z0*(G)), we can define ¢; := wo1; for each i € I. Note that t; is a
functional on Z¢*(G;). Moreover, since [2]| < 1, t; is also continuous. Moreover, note that for

all f,g€Z0'(Gy),
Yi(fxg) =wer(f+g) =w(fOE +g®E}) =w(f @ Ef)w(g®@ E}) = wou(flweri(g) = i(f)vi(g).
So, 1; is an algebra character for Z¢'(G;) for each i € I. Conversely, let

Zco(G) ={f €c.(G): f is constant on the conjugacy classes of G}.

For each set (9););e1, we define w on Zc.(G) as follows: given f € Zc.(G), since supp(f) is a
finite subset of G. There is some F' € I such that supp(f) € @;ep Gi x Ef. It is clear that
wp(z) =[] vi(xi), 2=(2i)ier cPGi
ieF ieF

for 1;’s defined above. It will define a character group for finite group @;ep G;. Let w(f) :=
wr(Pr(f)) (Pr was defined in (2.2.3)). We show that w is well-defined. If for some F' ¢ F' for
some F,F' c I, and = = (2;)er € @ier Gy, then for y = (y;)icrr € @jcpr such that y; = x; for all
ieFandy =eg, fori¢ F, wp(z) =wp(y). Also, P(d;) = 0, ® Ef,. Clearly, for each pair F, F’
of subsets of I, if supp(f) € @jecr Gi x ES and supp(f) € @iepr Gi x ESyr, supp(f) € @jepnp Gi
B Moreover, since [ is finitely supported, wp(Pp(f)) = wp/ (Pr (f)) = wrar (Prar (f))-

Since w is a bounded linear map, we can extend it to Z€1(G). On the other hand, for all
f.g9€ Zc.(G) we have w(f  g) = w(f)w(g) and so w belongs to o(Z¢*(G)).

Let j: o(Z0Y(G)) - [ 0(ZL*(G5)) be the map defined by

J(w) = (wor)e-
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We have just seen that j is a bijection. It remains only to show that j is continuous. Let
U = [Liet Ui € [ier 0(Z61 (G;)) be a sub-basic open set i.e U; = o(Z£*(G;)) for all i € I but one i
when

Uiy = {4 € 0(ZL'(Gyy)) so that [(v ~ ¢, f)] < €}

for some f € Z¢'(Gy,), € > 0, and ¢ € o(Z0'(G;,)). We show that j~'(U) is open, by showing
that each w € j7(U) has a Gelfand-open neighbourhood contained in j™'(U). Since w € j(U),
d:=ec—|(wo,—¢,f)>0. Define

V= {w' e a(ZLH(G)) so that [(w' —w, 2, (f))] < 6}
an open neighborhood of w in Gelfand topology on ¢(Z¢'(G)). So, for each w' €V,

<w/_wvzio(f)) = ((W, _w) Oziovf) = <wlzio _wziovf>'

Hence,
|(W,Zi0 - ¢7 f>| < |<wlli0 - Wiy, f>| + |(wzio - ¢a f)| <€

thus, w’ o, € U;,. Therefore, j(w') € U. Since i¢ is arbitrary and f is an arbitrary element in
Zﬁl(Gio), Thus j is continuous; since it is bijective from a compact space onto a Hausdorff one,

we conclude that j~! is also continuous. ]

2.4 Characterizing ZL-amenability of RDPF groups

The amenability of the group algebra of a locally compact group G is equivalent to the amenabil-
ity of the group G, [68]. But, the amenability of ZL'(G), the centre of L'(G), is not character-
ized completely. If ZL'(G) is amenable for a locally compact group G, we call G ZL-amenable.
As we mentioned before, amenability constant of a Banach algebra is a tool to quantify the
amenability of the algebra. The amenability constant of ZL!(G) for a locally compact group G
is called the ZL-amenability constant of G.

As a conjecture for a discrete FC group G, Z L-amenability of GG is equivalent to the finiteness
of G'. In this section, we prove this conjecture for RDPF groups.

The following proposition is a result by Rider, [67], about the norm one of a class of idempo-
tents in group algebras of compact groups, presented in the following. Note that Rider’s result
is stated for the case where the Haar measure on G is normalized i.e. A(G) = 1. However, a
rescaling argument, based on Proposition 1.4.2, shows that this is equivalent to the formulation

we have given.
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Proposition 2.4.1. [67, Lemma 5.2/
Let G be a compact group with a Haar measure A and 1 =Y. p %Xﬂ for a finite subset F ¢ G

such that || Ly ay > 1. Then 9] 11,y > 301/300.

Remark 2.4.2. For a finite group G, let i be the normalized Haar measure on G'i.e. u(z) = |G|™
for every x € GG. Let us denote the group algebra generated by the normalized Haar measure p
by ¢'(G,u) and || |1, and *, denote the corresponding norm and the convolution respectively.
While £1(G,\)(= £}(G)) denotes the center of the group algebra with the regular counting
measure i.e. A(x) for every element z € G is 1. Hence, A = |G|u. Then one may define an

isometric linear map 6 : 1 (G, 1) — £*(G, ) where 0(f) = |G|f for every f € £}(G,u). Note that

0(f) *.0(g)(x) = %G(f)(y)G(y‘lyﬁ)u(y)
_ R 1,2 Y)
= |G y%f(y)g(y Te]
= |G|(f *x9)(x)
= 0(f *xg)(x).

Therefore, two algebras ¢1(G, ) and ¢1(G) are isomorphic. In many studies of finite groups
as a special case of compact groups, they are equipped with a normalized Haar measure. Here
we mainly work with the counting measure. So all results which are mentioned in the following

have been modified for the counting measure, in particular the following summary from [5].

Azimifard, Spronk, and Samei in [5] studied the ZL-amenability constant of the center of the

group algebra of finite groups. In [5, Theorem 1.8] they have shown that for a finite group G,

dz
M = Z |G|2X7r ® Xr (2.4.1)
meG

is a virtual diagonal of Z¢!(G) which is actually an idempotent of the form mentioned in
Proposition 2.4.1 that belongs to Z¢'(G) ®, Z¢'(G). Computing the norm of M where they
consider G equipped with normalized Haar measure, they achieved a formula for ZL-amenability
constant of G. One may note that by some simplifications in the ZL-amenability developed in
[5], for an abelian finite group G, since Z¢1(G) = (1(G), AM(Z¢*(G)) = 1. The following
proposition is based an observation which is done in the proof of [5, Theorem 1.10] applying

Proposition 2.4.1 and computing norm of M.
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Proposition 2.4.3. Let G be a non-abelian finite group equipped with the normalized Haar
measure \ generated by the counting measure. Then the ZL-amenability constant of G is always

greater than or equal to 1+1/300 i.e. AM(Z¢(G)) >301/300.

Proof. Let us consider M as an element in £1(G x G)(= £(G) ®, £1(G)). Note that, for each
representation 7 € G, 7@ 7€ G x G = G x G where 7 ® 7(z,y) = 7(z) ® 7(y) and dyrgr = d>. On

the other hand,

Xr ® Xa(z,y) =Tr(m(x))Tr(m(y)) =Tr(r@n(z,y)) = Xrer(x,y).

Therefore, M = |G| Y el Aror Xrer forms an idempotent which is a finite combination of
characters of the group G x G, based on Proposition 1.4.2. But by [5, Corollary 1.9], if G is non-
abelian | M| (gxqy = AM(Z£'(G)) > 1. Therefore, by Proposition 2.4.1, | M| > 301/300. O

The following theorem is the main result of this section.

Theorem 2.4.4. Let (G;)iecx be a family of finite groups and let G = @1 G;. Then the followings

are equivalent:

(i) Z0(Q) is amenable;

(i1) G is abelian for all but finitely many i;

(iii) G is isomorphic to the product of a finite group with an abelian group;

(iv) the derived subgroup of G is finite.
Proof. We start by defining N = {i € I: G; is non-abelian}.
(i) = (ii). By Proposition 2.4.3, AM(Z¢'(H)) > 1+ 1/300 whenever H is a finite non-
abelian group. Now suppose ZKI(G) is amenable, and let F' be a finite subset of N. Recall
that we have a quotient homomorphism of Banach algebras Pp : Zﬁl(G) - Zfl(@iep G),
as defined earlier in (2.2.3). Moreover, note that if Z€1(G) is equipped with the regular

counting measure, one may compute an upper bound for |[Pr|. For each f® g € Z(*(G) =

(20 (@icr Gi)) @ (2L (@icr- i), ome gets that | f © gly = |f[1]g]1. Therefore,

IPe(f @)l <ler-(DIIfIL<]flilgl- (2.4.2)

Note that according to the definition of projective tensor product and its norm, (2.4.2) implies

that |[Pp| < 1.
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It follows from Remark 1.3.3 that
oo > AM(ZIH(@)) = |Pr|> AM(Z0H(@)) > AM(ZEN (P Gr)).
el
Moreover, it was proven in [5] that
AM(Z0H (D Gi)) = [T AM(Z01(Gy))
ieF el
Hence, by Proposition 2.4.3,
oo > AM(ZEM(G)) = [T AM(ZEH(Gy)) = (1 +1/300) 7.
el

Since F' was an arbitrary finite subset of N, this shows N is finite.

(i) = (iii). LetI4={iel: G; is abelian}; thus, A = @, G is abelian. Since F':=I\ 14
is finite, so K = @;cr G; is a finite group and G = A x K.

(ili) == (i). If K is finite and A is abelian, then by Lemma 2.1.2,
20K x A) 2 70N (K)®, 20 (A) = Z61 (K)®., ' (A)

which is the projective tensor product of two amenable Banach algebras, hence is amenable by

[40, Proposition 5.4].

(ii) <= (iv). It is pointed out in Proposition 2.2.2(ii) that G’ = @;c; G;. Note that G} = {eg, }
if and only if G; is abelian. Therefore G’ is finite if and only if G; is abelian for all but finitely

many ¢.

2.5 Bounded approximate identities in maximal ideals of Zfl(G)

Stegmeir, in [72], studied the center of the group algebra Z¢'(G) for a RDPF group G where
ZEI(G) has a maximal ideal without a bounded approximate identity, and therefore, G is not
Z L-amenable. In this section, we study the existence of a bounded approximate identity of max-
imal ideals of Zﬂl(G) for RDPF groups with respect to a characterization of the corresponding
character 1 € o(Z01(Q)).

We need some preliminary observations, which all follow from basic properties of the non-

abelian Fourier transform for finite groups. Note that for a finite group G, the linear span of

{X#} g is dense in 7Z0H@).
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Let 1) be the algebra character on Z¢'(G) that corresponds to the irreducible group repre-
sentation o € G. Let us recall a finite version of Proposition 1.4.2 as follows where * denotes the

convolution with respect to the counting measure:

dy  dy Exs o=m

o Xo ¥ X = (251)
G| |Gl 0

OFT

Thus if 7 # o, then
Yo (Xr) = Z Xn(x)d;lxa(fl) = d;1X7r * Xo(eq) = 0.
zeG
Therefore, Ker(1),) is the closure of the linear span {xr: 7€ G~ {o}}. Note that Z¢!(G) has
the identity .. We show that Ker(v),) has the identity element

d
Uy 1= O — ——Xg- (2.5.2)
G|

To observe that, let f =3 & . axXx (Which belongs to Ker(1),)), for some finite set {a }
C. Therefore

P Cc
neG,mto —

1
[rus=f- Z A X * EdaXa
ne@, 0 | |
dy
=f- Z QWEXJ*XW:JC
neG w0

by (2.5.1).

Now suppose G = Gy x --- x G,. Then the Banach algebra £!(G) is isometrically isomorphic
with fl(G1)®7 . ®7f1(Gn). Let o,m € G. Then fori=1,...,n, there exists o;, m; € G; such that
o =01x%--x0, and m =7y x--- X7y, by Theorem 2.3.1; and since d, = [1j2; do, and dr = [T, dx,,

one may conclude from (2.5.1) that

dy.
nod, noq. n d. QL1 [GXo; O=T
ZXUZ' * 7r1 Xm 7me) = ¢
(®|G@-| ) (21|G| ) & (e * o) )

i=1 i=1 g+

Hence, one may rewrite the whole story of the identity of kernel of some character v,

corresponding to a representation o € G. Consequently, (2.5.2) implies that

1 1
Uy = O, — (—dglxgl) ® - ® (—dan%) e M(G1)® ..., (Gr), (2.5.3)
|G| |Gl
is an identity for Ker(t,).

Theorem 2.5.1. Let (G;)ic1 be a family of finite groups, and let G = @;aq Gy. Let w € o(Z0H(G)),
and let (xi)ix be the corresponding family of group characters. Then Kerw has a bounded

approzimate identity, if and only if dy,||x:i|1 = |Gi| for all but finitely many i € 1.
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Proof. Define for each F c I finite, Hp = @ G; and Hpe = @i p Gi, so that Z0Y(G) =
Z0'(Hp x Hpe). Write Epe for the identity element of Z¢'(Hp), i.e. the Dirac measure at the
identity element of Hpc, and likewise write Er for the identity element of Zﬁl(H r). We also
write d; for the degree of ;.

First suppose that d;|x;|1 = |G| for all but finitely many ¢ € I. As in Equation (2.5.3), define
up € Z0'(Hp) by

d;
up = Ep - Q) —7X
e

Let wp = woup, where 1 : ZO (Hp) - Z0'(G) was defined in (2.2.2). Then up is the identity

element of Kerwp. As ®, is a cross-norm,

sup |urp|1 =sup |Er - xil < sup % sup il ] <oo.
wp el =5up [~ @ vl <14 supl @ vl =1 sup [T 12l

el el el
Moreover, since [1p(urp)|1 = |ur ® Epc|1 = [up|1, the family (27(ur)) per,|Fl<co is bounded. We
claim that it is, when ordered by inclusion of finite subsets, a bounded approximate identity for

Kerw. To prove this, it is enough to prove that

Fc1h|11£1| (tp(up)) * f=f forall feKer(w); (2.5.4)

and by a standard approximation argument, we may assume without loss of generality that f
has a finite support. Thus, for f € Zc.(G) nKer(w) and S the support of f; if F' is any finite

subset of I such that S € ®;.pG; ® Epc, then

f=1wPr(f)

(where P is the homomorphisms defined in (2.2.3)). So, 0 = w(f) = worpoPpr(f) =wr(Pr(f)).
Consequently Pg(f) € Ker(wp), and thus

frwr(up) =1p(Pp(f) »ur) = (Pr(f)) = f.

This proves Equation (2.5.4).
Conversely, suppose that Kerw has a bounded approximate identity say (hq)s. For each
F cI when |F| < co define

“(f®g)=wre(g)f forall feZ('(Hp) and g e Z¢ (Hpe).
Since wge = w o 1pe has norm 1, being an algebra character, we have

[AR(f @ gl < [ fl1lgl,
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and so A%, defines a linear contraction from Z¢*(Hp x Hpe) onto Z¢'(Hp), using Lemma 2.1.2.

Moreover, given fi, fo € Z¢*(Hr) and g1, g € ZEI(HIC;),

A ((f1 % f2) ® (g1 % g2)) = wre(g1 * g2) f1 * fo

wre(g1) f1 * wre(g1) fo = AR (f1® g1) * AR(f2 © g2).

AL ((freg) * (f2©92))

Hence, by linearity and continuity, A% is an algebra homomorphism. Moreover,

wrAR(f ® g) =wr(wre(9)f) = wr(flwr(9) =w(f ®g)

and
e (f) = AR(f ® Epe) = wpe(Epe) f = f

for all f e ZO'(Hp) and g € Z¢* (Hpe).
Observe, since wpA% = w, that A% (Ker(w)) € Ker(wp). Moreover, for each f € Ker(wr),
w(p(f)) =w(f ® Epc) = wpr(f); therefore, 1p(f) € Ker(w). Since up € Ker(wp) and (hy) is a

bounded approximate identity for Ker(wp),

1A% (ha) = ur)1 = |AE(ha) * ur —up|:
= A% (ha) * Afrp(up) = Afrr(ur) |

= |A% (ha *1p(up) =1 (ur)) |1 0.

Because [A%] <1,

sup  sup Az (ha)[1 < sup [haf1 < M
FCI|Fl<oo « o

for some M >0, thus |up|1 < M for all finite subsets F' ¢ I. Hence

.

Ixilli = |1EFp —up|i <M +1 (2.5.5)
ieF |Gl|

Let i € I. For each i, |G;|~d;x; is a central idempotent in the group algebra ¢!(G;); in

particular it has ¢£'-norm > 1. Moreover, by Proposition 2.4.1,

| ) . 301
either [Gyfdi|xil1 =1 or |Gi[dillxili 2 55

But if {i € I:d;| xs|| > |G|} is infinite, we may find a subset F ¢ I such that (301/300)F! > M +1.
But by (2.5.5),

301\ d:
(ﬁ) SI_Iﬁ”Xi”l:||EF—UFH1£M+1
el 7

which is a contradiction. Therefore, d;|x;| = |G| for all but finitely many i. O
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Although the following theorem is not resulted from Theorem 2.5.1 directly, its proof is

analogous to some parts of the proof of Theorem 2.5.1.

Theorem 2.5.2. Let (G;)ex be a family of finite groups and let G = @;c1 Gi. Then the following

are equivalent:
(i) every mazimal ideal in Z0'(G) has a bounded approzimate identity;

(i) there is a finite subset F' c I such that, for each i € I~ F and each irreducible group

character x of G;, we have dy|x|1 = |G|

(i) there ewists a constant M > O such that each mazimal ideal in Z¢'(G) has a bounded

approximate identity of norm < M.

Proof.
(iii)) = (i). This is trivial.
(ii) == (iii). Let F be as assumed in (ii), and define

M = [T sup = a1 < oo,

dr
ieF weG |Gn|

Given w € o(Z1(@)), let (x;) be the corresponding family of (irreducible) group characters,

and let d; denote the degree of y;. For each finite subset T c I, define ur ¢ Z€1(€BieT G;) =
®ier Z¢' (Gi) by
di
ur =0 — Q) ——Xi
‘ 1T |Gl| '
Order the net (u7(ur)), where T ranges over all finite subsets of I, by inclusion. Then by an
argument like that in the proof of Theorem 2.5.1, (¢7(ur)) is a bounded approximate identity

for Kerw, with supy oz (ur)| < M + 1.

(i) = (ii). Suppose that (ii) does not hold. Then there exists an infinite set S c I, and for
each j € S, an irreducible group character ¢; on G; such that d;|¢;|1 #|G;|. Since |G;|7 d;¢; is
an idempotent in Z¢'(G;), Proposition 2.4.1 implies that |G;|d;|¢;]l1 > 301/300. Now let w in
o(Z(G)) be such that the corresponding family (x;) of group characters satisfies Xj = ¢; for
all 7€ S and x; =1 for j eI\ S. Then as in the last part of the proof of Theorem 2.5.1, we can

show that Ker(w) does not have a bounded approximate identity. O
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For any irreducible group character x on a finite group G, dy|x|l1 > |G| implies a lower

bound. In the rest of this section, we investigate this property a bit deeper.

Lemma 2.5.3. Let G be a finite group and x an irreducible character on G. Then dy|x|1 > |G]|.
Moreover, equality holds if and only if

Ix(z)|€{0,d\} forallzeg. (2.5.6)

Proof. Since  is irreducible, ¥ .. [x(2)|* = |G|, |28, Proposition 5.23]. Moreover, since | x| <
dy,
Gl= 3 x(@)? <dy 3 Ix(@)] = dylIx]h- (%)

zeG zeG@
For the second statement, we need to show that equality holds in (%) if and only if (2.5.6)

is satisfied. If |x(x)| € {0,d,} for all x € G, clearly the inequality in (x) is replaced by an
equality. Conversely, if (2.5.6) is not satisfied, pick y € G such that 0 < |x(y)| < dy. Then
X (W)I? < dylx(y)], so that

S Ix@P=x@WPF+ Y X@P <dx@l+dy Y Ix(@)=dy Y x(@)l

zeG zeGN{y} zeGN{y} zeGG

as required. ]

Following [42], in [3], a character satisfying (2.5.6) is called absolutely idempotent character,
abbreviated as AIC. Clearly each linear character is AIC. We also call a finite group G to be AIC
if each irreducible character of G is AIC. It follows from the definition that quotients of AIC
groups and from Theorem 2.3.1 that products of AIC groups are also AIC. F. Ladisch proves
the following result about AIC groups, [3].

Theorem 2.5.4. Every finite AIC group is nilpotent.
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CHAPTER 3

THREE FAMILIES OF EXAMPLES

In this chapter we introduce three main classes of discrete commutative hypergroups. In the

rest of this manuscript, we will study more properties of these classes of hypergroups.

3.1 Conj(G) as a hypergroup

In this section, G is a discrete finite conjugacy group with the group algebra (¢1(G),®, | - [1)
where ® denotes the regular convolution of the group algebra. Furthermore, Conj(G) is the
set of conjugacy classes of G. By Theorem 1.2.2, we know that for each two conjugacy classes
C and D, 1¢ and 1p, the characteristic functions of C' and D respectively, belong to Zﬂl(G);
thus, 1o ® 1p € Z0Y(Q), for ® the convolution of £'(G). Let ¥ denotes a linear mapping from
ce(G) N ZLHG) to c.(Conj(G)) such that for each f e ZLH(G) nco(G), ¥(f)(C) = |C|f(C) for
C € Conj(G) where

f(C):=f(x) for (every) zeC. (3.1.1)

First note that
[T(Hl= X 1WH@©I= > IFOlCI= L 1fOI =111,
CeConj(G) CeConj(G) ted
which shows that ¥ is an isometry. On the other hand, for each C' € Conj(G), ¥(1¢) = |C|dc.
Therefore ¥ is surjective. Since c.(G) n Z¢(G) and c.(Conj(G)) are dense in Z¢*(G) and
¢*(Conj(@)) respectively, ¥ can be extended as an isometric linear mapping from Z¢'(G) onto
?*(Conj(@)).
Applying W, let us define an associative binary operation * on c.(Conj(G)), where

1
IClID|

A simple approximation argument lets us to extend =, called convolution, as a continuous bilinear

action on ¢*(Conj(@G)); hence, (¢1(Conj(G)), *,| - |1) forms a Banach algebra. Therefore, from

oc *0p: W(lc@lp) C,DECOnj(G). (3.1.2)

now on we identify each function f € £!(Conj(G)) with its pre-image with respect to W. The

following theorem is an immediate result of the previous observations.

34



Theorem 3.1.1. Let G be a FC group. Then the Banach algebra (¢*(Conj(G)), +) is isometri-
cally isomorphic to (Z11(G),®).

Remark 3.1.2. Note that for each z € G and C, D € Conj(G) such that 10 ® 1p(2) # 0,

le®lp(z) =Y le(®1p(t'2) = Y Lip(2);

teG teC

therefore, z € C'D. Moreover, supp(lc ® 1p) is a subset of G which is invariant with respect to
inner automorphisms, so for some ag’D >0, we have
le®1p = Z ag’DlET.
E<Conj(G),E<CD

So for all C, D € Conj(G),

U(le®1p)=U( S aSP1p) = > aSP|Ep.
EeConj(G),EcCD EeConj(G),EcCD
Therefore
1
oc *0p = —— Z ag’D El(SE (313)

ICIDI pecon;(G),pecD

We show that Conj(G) is a discrete hypergroup with the convolution defined in (3.1.2) with

respect to Definition 1.1.2. We observed that (¢!(Conj(G)),*,]| - 1) forms a Banach algebra.
Moreover, for each C, D € Conj(G), one can write

a$P|E| S lc@®1p(t)
EeConj(G),EcCD teG

Z Z 10(8)1D($_1t)

teG seG

S 1c(s) Y 1p(t) = [C||D).

seG teG

Hence, |[6c * 6p|1 = 1 for the positive measure §c * §p. So £1(Conj(G)) satisfies (H1). For
e, the identity of the group G, let us denote the conjugacy class {e} by e as well. Therefore,
le ® 1o = 1¢ for each C € Conj(G); hence, 6, * d¢ = d¢ * de = 6 and therefore Conj(G) satisfies
(H4).

If for C' € Conj(G), C = C~! where C™' = {z7! : 2 € C}, one has that e € CC™!; hence,
e € supp(le * 1o-1) and consequently e € supp(dc * c-1). On the other hand, suppose that
e € supp(d¢ * 0p) for some C, D € Conj(G). Therefore,

0#1lo®1p(e) = Y le(®)ip(t™) = 3 1p(t™).
teG teC

It implies that at least for one x € C, ™! € D. Then by a simple argument about conjugacy

classes of groups, one may verify that D = C,-1 = C, = C. This implies (H6). For each
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f e M(@), we define f(z) = f(z1) for all z € G. A brief study of the properties of ® verifies
that (f®g) =g ® f. Also, 1c = 15 for each C € Conj(G). Since |C| = |C| for all C € Conj(G),

< 1 C,D y
(0c*0p) = (== o |EloE
(D sz o™ 1)
1 C.D| ¢
— oy |E|(SV
el 22, 171%)

( ].
ICIIDI
(=1 1
ICIIDI

> le®lp(E)|E;)
cCD

Z 1p®1a(E)|E[6;) =65 * 66
cCD

So Conj(G) satisfies (H5). This implies that Conj(G) is a commutative discrete hypergroup.

Note that to avoid conflict between our notations, in the section ® denotes the convolution
of the group algebra of G, ¢*(G), while * denotes the convolution of the hypergroup algebra of
Conj(@G), £*(Conj(G)).

Example 3.1.3. For a family of finite groups (G;);c, let G := @1 G; be the restricted direct
product of (G;)1. Then G is a discrete FC group, by Proposition 2.2.1. For each C' € Conj(G),
C can be seen as the conjugacy class of some x = (x;);x € C. On the other hand, for each
iel, ={iel:z; #eq,}, Cp # eg;- Therefore, C = [1;, Co,

of the group @jc.1, Gi; hence, C € @ Conj(G;). Conversely, for each C' € @, Conj(G;),

x Ef where EY is the identity

C = (Cj)jer where C; = eq, for all i € I except finitely many. We denote the set of all ¢ € I for
them C; # e, by Ic. For each i € Io, C; = Cy, for some z; € Gj. Define y = (v;)ier € G where
y; = z; for each i € Ic and z; = eg, otherwise. It is not hard to show that C, = C' € Conj(G).
This argument implies that the hypergroup Conj(G) equals the hypergroup generated by the
restricted direct product of (Conj(G;))ier,
Conj(G) = @Conj(Gi),
ie

as defined in Section 1.1.

Remark 3.1.4. By Theorem 1.1.4, for h, the Haar measure on Conj(G),
-1 .
h(C) = (50 * 50(6)) =|C| (C € Conj(@))
To prove that, note

6 * 0c(e) =

1 oxe. 1 |
= ) E5 = —1 _ 1 1 t 1 t O
leilte] EgZO:CaE 05 (e) cpp ¢ ®1c(e) = \C|2 S lea(O)lct™) =[C!



3.2 Dual of compact groups as hypergroups

In this section, G is a compact group. Let G denote the set of all irreducible unitary representa-
tions of a compact group G, up to equivalence relation, as defined in Section 1.4. Here we follow
the notation of [23] for the dual of compact groups and apply many results of [36, Section 27|
about representation theory of compact groups.

Let ¢ = {¢r: me G} if ¢r € B(Hy) for each 7 € G and define H¢||£°°(@) := sup,, ||¢r | for
|- | to be the operator norm of a matrix. The set of all those ¢’s with ||¢”L°°(§) < oo forms
a C*-algebra denoted by £°(G). It is well known that £%°(G) is isomorphic to the group von
Neumann algebra of G i.e. the dual of A(G), see [23, 8.4.17]. We define

LP(G)={peL>(): ”¢”2p(a) = Zdﬂu@r %, < oo}, (3.2.1)
weG

for | -||s,, the p-Schatten norm' that is HA||§p = Y o1 Sh(A) for s1(A) > s3(A) >-+s,(A) >0 the
singular values of a matrix A, i.e. the eigenvalues of the Hermitian matrix |A| := \/(A*A). For

each p, LP(G) is an ideal of £L=(G), see [23, 8.3]. Moreover, we define
Co(G) = {9 € L2(G) : lim |¢r|eo = 0}

For each f € LY(G), F(f) = (f(ﬂ'))ﬁeé belongs to Co(@G), where F denotes the Fourier transform

and

fm) = [ 1@m)da.
Indeed, F(L'(Q)) is a dense subset of Co(G) and F is an algebra isomorphism from L'(G) onto
its image where F(f * g) = F(f)F(g) for all f,g e L*(G). Moreover, F(A(G)) is isometrically
isomorphic to the Banach space £!(G), [23].

For each two unitary irreducible representations m,o € G, we know that 7 ® o forms a
new unitary representation of G whose dimension is drd,. This new representation can be
decomposed as a direct product of a finite set of irreducible unitary representations m1,..., T,

with respective positive constants m{7,...,my” €N, Le.

n
T®0=@m;m.
i=1

'Note that , as described in Chapter 1, for p = 1 and p = 2, p-Schatten norm is called Trace norm and
Hilbert-Schmidt norm respectively.
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consequently,
n n n
XrXo = Tr(7) Tr(o) = Tr(r ® o) = Tr (EB m;r’am) => m]7 Tr(m) =Y, m X, (3.2.2)
i=1 i=1 i=1
Therefore the dimension of 7 ® o which is drd, is equivalent to Yjt; m] “dy,. We define a

convolution on ¢.(G) by

n m?no-dﬂ_.
Op * 0g = L “Or, - 3.2.3
* 1;21 dﬂ-do- 7 ( )
Note that
nom; % dy, nom; % dy,
” 1:21 Wdﬂ ”21(@) = Z:Zl dwda =1 < H(SWHZI(@) H(scr”gl(a) (324)

By (3.2.3) the convolution is submultiplicative on ¢.(G), and since ¢.(G) is dense in £*(G); we
can extend the convolution defined in (3.2.3) to 61(6). For each representation 7 € G, T denotes

the complex conjugate of 7, [36, Definition 27.27].

Theorem 3.2.1. Let G be a compact group. Then G equipped with discrete topology, the convo-
lution (3.2.3), and the involution resulting from complex conjugate forms a discrete commutative

hypergroup.

Proof. (3.2.4) implies (H1) while the associativity is resulted from associativity of tensor prod-
ucts of the representations i.e. m ® (m2 ® m3) ¥ (711 ® T2) ® 3. Commutativity is a direct result
of this fact that 7 ® o is equivalent to o ® . The trivial representation mp : G - U(C) where
mo(z) = 1 for all z € G always belongs to G. Also, r®@m = 7 for all m € G. So Or, plays the
role of the identity of ¢1(G) and so G satisfies (H4). Since 7 2 7 and T® 0 2 T ® 7, (H5) is
held. One side of (H6) is directly resulted from [36, (27.34)]. On the other hand, suppose that
for two representations 7,0 € G, XxXo = 274 m; "% xx, such that for one 4, say i = 1, m; = mo, the

trivial representation of G, and m7"” > 0. Then
n - n . n
™0 ™o ™0 ™o
fGZmz Xro (2) X, (@) d = Zmz [Gxﬂo(x)xm(:n)dx = zml (XmaXﬂo)H(G) =my
i=1 i=1 i=1

since {Xr}, .z forms an orthogonal basis for ZL?*(G) (see [36, Theorem 27.24]). Note that

Xro () =1 and x-(x) = x7(x); hence similarly,

m77 = [ xe(@) e (@) @ = [ (@)X @) = (X, Xa)12() = Onr

Therefore m=0. O

To calculate the Haar measure of G, we apply Theorem 1.1.4. By [36, (27.34)], the multi-

plicity of 7y in the irreducible decomposition of T ® 7 is 1. So for each 7 € G, the Haar measure
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is defined by

d7r dﬁ - d2

h(r) = (65 % 6x(m0)) " = = di,

since dz = d.

Example 3.2.2. Let SU(2) denote the compact Lie group of 2 x 2 special unitary matrices on
C, and let m be the hypergroup of all irreducible representations on SU(2). It is known
that

S_U—(?) = (W)zeo,

1 3
571757"'

where the dimension of 7y is 2¢ + 1, see [36, 29.13]. Moreover, for all £,¢', 7y = m; and

0+
T®Ty 2 D T =My @ Mg @ @ Mo [36, Theorem 29.26]
r=[0-¢'|

called “Clebsch-Gordan” decomposition formula. So using Definition 3.2.3, we have that

R (2r +1)

67r 67r/ = T
¢ % Om r=%£,|(2£+1)(2£'+1) -

Also 7y = my and h(m;) = (20 +1)? for all .

Remark 3.2.3. Indeed, the hypergroup structure of SU(2) can be rendered by a family of
Chebyshev polynomials as a polynomial hypergroup structure on Ng. We will define polynomial

hypergroups in the following section.

Example 3.2.4. Suppose that {G;}1 is a non-empty family of compact groups for arbitrary
indexing set I. Let G := [T G; be the product of {G;}1 i.e.

G:={(zi)iea: zicGi}

equipped with the product topology. Then G is a compact group and [36, Theorem 27.43|

implies that G is nothing but

{m= ®7ri : such that m; € @z and 7; = 7y except for finitely many i € I}

i€l
equipped with the discrete topology. Moreover, for each 7 = Q7 € G, dyr = [Ticr dr, -

When 7, = Q;e1 7Ti(k) € G for k=1,2, one can show that

57r1 * 57r2(71') = H 5ﬂ_(1) *@i 57r§2)(71'i) for all 7 = ®7ri € é,

el i€l
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where %z is the hypergroup convolution of G; for each i € I. Also, each character y of G is
related to a family of characters ()i such that y; is a character of G; and
x(x) =TT xilz:)
i€l
for each x = (x;);a € G. Note that x; = 1 for all of i € I except finitely many; therefore, y is
well-defined.

3.3 Polynomial hypergroups on N

Let Ng = Nu{0}. Let (an)nen, and (¢n)nen, be sequences of non-zero real numbers and (by, )pen,

be a sequence of real numbers with the property

|
—_

a0+b0

ap+bp+c, = 1, n>1.

If (Rp)nen, 1s a sequence of polynomials defined by

Ro(z) = 1,
Ri(z) = a—lo(:c - bo), (3.3.1)
Ri(z)Rn(x) = apRpi1(x)+byRp(x)+cnRp-1(x), n>1,

then it is proven in [12]| that there exists a probability measure 7 on R such that

[R R () R (2)dm () = St (3.3.2)

where (/i )nen, 1S a sequence of positive numbers. The sequence (R, )nen, satisfying (3.3.2) is
called an orthogonal polynomial sequence. By induction, one can see that R, (1) = 1 for each

n € Ng. Moreover,
n+m

R, (z)Rp(x) = k_|2 |g(n,m; k)Ry(x) (3.3.3)

where g(n,m;k) € R for all |n —m| <k <n+m. Moreover, g(n,m;|n—-m|) and g(n,m;n +m)

are non-zero. The following theorem summarizes some of the main results of [49, Section 5].

Theorem 3.3.1. Let (Ry,)nen, be an orthogonal polynomial sequence defined by (3.53.1). Assume
that
g(n,m;k)>0 Vn,meNy, In—-m|<k<n+m.

Let * to be defined on Ng to ¢*(Ng) such that

n+m

Op * O = Z g(n,m; k)(sk

k=|n-m)|
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and i =n. Then (No,*,”) is a discrete commutative hypergroup with the unit element 0 which

is called the polynomial hypergroup on Ny induced by (R, )nen, -

[49, Section 5| is a good reference to observe almost all of the facts mentioned above. Here,
we should mention that there are plenty of concrete examples of polynomials that satisfy the
conditions of Theorem 3.3.1, namely Chebyshev polynomial of the first and second kinds, cosh
polynomials, ultraspherical polynomials, Jacobi polynomials, Karlin—McGregor polynomials, and

little q-Legendre polynomials.

Remark 3.3.2. For a polynomial hypergroup the left translation is defined by

n+m

Lof(m) =% g(n,m;k)f(k).

k=|n-m)|

Moreover, the Haar function is defined by

h(n) = (6, % 6,)(0)) " = g(n,n;0) 7" =yt
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CHAPTER 4

WEIGHTED DISCRETE HYPERGROUPS

In this chapter we study weights on discrete hypergroups, their corresponding algebras, and
their examples. Specially we are interested to see concrete examples of weights defined on the

classes of commutative discrete hypergroups which were introduced in Chapter 3.

4.1 Weighted hypergroups and their algebras

Definition 4.1.1. Let H be a discrete hypergroup. We call a function w: H — (0, 00) a weight
if, for every z,y € H,
w(dz * by) < w(w)w(y)

where w(0y * 0y) = Yy w(t)dy * §y(t) is as defined in Section 1.1. We call (H,w) a weighted

hypergroup. Let £*(H,w) be the set of all complex functions on H such that
| fllex(rrwy = 2 1F(B)]w(t) < oo.
teH

Then one can easily observe that (¢*(H,w), | - le1(#1,)) forms a Banach space.

This definition is a specific case of the weighted hypergroups defined in [32]; here, we focus

mainly on discrete hypergroups.

Definition 4.1.2. A function w, : H — (0, 00) is called a central weight if

Wz(t) < WZ(SU)Wz(y)
for all t,z,y € H where t € x x y(= supp(d, * d,)), in the sense of (1.1.1).

Since, d, * d, is a positive probability measure, for each central weight w., one gets that

Z}:IWZ(t)éx * 0y (t) < Z}r:{wz(x)wz(y)éx * 0y () < wa(2)w (y)[ 6 * 5y|| = w(7)w: (y)-

Hence, w, is a weight over a hypergroup H. Although, most of the hypergroup weight studied
in here are central, in Subsection 4.4.1 and Section 4.6, we will see some examples of weights

which are not central weights.
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For all f,g € c.(H), we have

If*glevmwy = 2 1f*g(t)w(t)

teH

= 212 ) G xdy()f(2)g(y)lw(t)

teH xeH yeH

< 22 2 e xy(Dw(®)]f(2)g(y)l
reH yeH teH
= 2 2w xy)lf ()] lg(y)|
xeH yeH
< Y w@If@)] Y wWlgW =1 flezwlale ew)-
zeH yeH
Since c.(H) is dense in /1(H,w) and the convolution is continuous with respect to | - Lot (£ )5
one may extend the convolution to ¢!(H,w). Therefore, (¢*(H,w),*, | - ler(#1w)) 18 actually a

Banach algebra; we call it weighted hypergroup algebra of H with respect to the weight w.
Moreover, we can see that the dual of ¢! (H,w) is nothing but £°°(H,w™!) which is the set
of all functions ¢ : H — C such that

[6]les (tr-1) = sup | () w(t) ™" < oo.
teH
We may easily see that £°°(H,w™") equipped with the norm |- ¢ (#7051 forms a Banach space.

Definition 4.1.3. [17, Definition 2.6]

Let A be a Banach algebra. Then A is a dual Banach algebra with respect to E, if E is a closed
sub-bimodule of the dual A-bimodule A* that if for every ¢ € E and f € A, f-¢ and ¢- f belong
to E such that A= E*.

Let co(H,w™) be the set all elements ¢ in £°°(H,w™!) such that ¢w™ is vanishing at infinity.
Clearly co(H,w™) is Banach subspace of /> (H,w™).

Proposition 4.1.4. Let (H,w) be a weighted discrete hypergroup for a central weight w. Then
(Y(H,w) is a dual Banach algebra with respect to co(H,w™).

Proof. We know that ¢'(H,w) can be considered as the dual of co(H,1/w) = {f : H - C :
flw € co(H)}, by Riesz representation theorem; the second dual of ¢o(H,1/w) is £*°(H,1/w).
Let us define the Banach space isomorphism r : £1(H,w) — ¢1(H) where s(f) = fw for each
fel'(H,w). Then x*: £>°(H) - £>°(H,1/w) where
(7(9),02) = (¢, k(d2)) = 3 d(H)w(t)da(t) = P(2)w(x)
teH

for all x € H. So, k*(¢) = ¢pw. One may easily show that k*(co(H)) = co(H,1/w).
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On the other hand, we show that co(H,1/w) is an ¢'(H,w)-bimodule. To do so, let f,g €
(Y (H,w) and ¢ € co(H,1/w). Hence

(9:0-f)=(f*g,9)

> Frg(y)o(y)

yeH

= YN S s as(y) f(1)g(s)b(y)

yeH teH seH

= > g(s) > f() D 6+ 65 (v)o(y)

seH teH yeH

= > 9(s) Y F(£)d(8 * 6s).

seH teH

Therefore,

¢ fla) =3 f(£)d(d * dz).

teH
And similarly,

fo(z) =2 F(t)p(ds * 0r).

teH
Here we show that if ¢ € ¢o(H,1/w) and w is central, f-¢ and ¢ - f also belong to co(H,1/w)

for all f e ¢*(H,w). To do so, let us recall from Proposition 1.1.7 that for every ¢ € co(H) and
Vel (H),
x> Y h(t)p(6; * 6y) (4.1.1)

ted
belongs to co(H).

Let w be a central weight on H as defined in Definition 4.1.2. Note that for ¢ € co(H,1/w)
and f e (' (H,w), &* *(|¢]) = [plw™" € co(H). Moreover, since ~: H - H is a bijection, #(|f|) :=
|fl € 01 (H). Therefore,

|6 f ()]

Z f(t)¢(5t * 5:1:)

teH

> 101 + 6z)

teH

= DA 2 191(5)0e * 02(s)

teH seH

=5 BUIDW S et 160y (59 w(s) 61+ 6,(s)

teH w(t) seH

< 3 SO S0 () wla)ot) b+ 6u(s) (+)

teH w(t) SEt*T

= w(@) YRR (16D (0 * 6)

teH

w(x) Y RUDOR () (G5 62). (+%)

teH

IN

Note that (*) is because w is central. By (4.1.1), (x) belongs to co(H,1/w). Consequently, ¢- f

whose absolute value is dominated by a function in cy(H,1/w) belongs to co(H,1/w) as well.
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Similarly, one may show that f-¢ lies in co(H,1/w). Therefore, co(H,1/w) is a sub-bimodule
of £1(H,w)-bimodule ¢ (H,w) while co(H,1/w)* = ¢*(H,w). Consequently, /!(H,w) is a dual

Banach algebra. O

It would be interesting to know if the theorem remains true for arbitrary weights, not just

the central weights.

Definition 4.1.5. A hypergroup weight w on H is called weakly additive, if for some C' > 0,
w(0z * 6y) < C(w(x) +w(y)) for all z,y € H. Also w is said to be centrally additive if w(t) <
C(w(z) +w(y)) for some C' >0 and all z,y,t € H such that t € x * y.

Note that for all x,y € H, ¥ 05 * dy(t) = 1; therfore, for each weight w which is centrally

additive, it is weakly additive as well.

Definition 4.1.6. Let H be a hypergroup and w; and wo are two weights on H. Then w;
and wy are two equivalent weights if there are two constants C; > 0 and Cy > 0 such that

Crwi <wz < Cowy.
It is straightforward to check that if two weights w1 and wo on a hypergroup H are equivalent
with respect to two constants C7 and Cy as defined in Definition 4.1.6,
Cull - Nlerareony S 1 ler(mwy <€ Call - ot ()
hence, /1(H,w;) is isomorphic to ¢*(H,ws).

Remark 4.1.7. Let H be a discrete hypergroup equipped with the Haar measure h. For a
weight w: H — (0,00), let L'(H,w) be the set of all complex functions on H such that

1Lty = 20 1f O)lw(t)h(t) < oo

teH

Then (L'(H,w), | - ¢ (1)) equipped with the convolution forms a Banach algebra .

4.1.1 Product of weighted hypergroups

Let (Hy,w1) and (Hz,wsz) be two weighted hypergroups. For the hypergroup H := Hy x Hy and
the function w := wy x wy : Hy x Hy > (0, 00), we have that

Z w(s7t)5(x1,$2) *H 6(y1,y2)(57t) Z 511 >eHl 51,/1(5)“)1(5) Z 6z2 *H2 62/2 (t)wz(t)
(s,t)eH1xHo seH teHo

w1 (z1)wi (Y1) wa(z2)w2(y2)

IN

= w(xl,xQ)w(y17y2)~
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Therefore, w forms a weight on the hypergroup H. An argument similar to the group case

implies that £1(Hy x Hy,wy x wa) = £1(Hy,wr) ® (M (Hay,ws).

As an extension of the previous example, let { H; };c1 be a family of discrete hypergroups with
corresponding weights {w; };er such that w;(ep,) = 1 for all i € I except finitely many. Let us

recall from Section 1.1 that the restricted direct product of { H; };c1, denoted by H := @1 H;, is
{(zi)ier : x; = e, for all i € I but finitely many}.

We can define
Owiyin * O (Si)ict 1= [ [0 %1, 04, (51)
and -
w(Ti)ier = qwi(ﬂii)

which are well-defined. Using the properties of finite product of hypergroups, one may easily

verify that H forms a discrete hypergroup. Moreover,

Yo w(Si)iel O(zi)iar * O(ys)sa (Si)ict [T > wi(ss) 6z, *, 6y, (5:)

(si)icreH i€l s;eH;
Hwi(fﬁi) wi(yi)
i€l

= w(ﬂci)iel W(yi)iel

IA

for all (z;)iex and (y;)iex in H. Therefore, (H,w) is a weighted hypergroup. Note that since in
the aforementioned equations, only for finitely many indices, the corresponding values may not

be 1, the calculations are well-defined.

4.2 Some weights related to the growth of hypergroups
If a,b>0 and 8 >0, then
(a+b)’ <C(a” +1°) (4.2.1)

where C' = min{1,2°'}. We will use this inequality in the following.
Let H be a discrete hypergroup. For each finite subset F' of H, we define

F" = J{xy % »ap: forall xq,...,x, € F}.

Definition 4.2.1. A hypergroup H is called a finitely generated hypergroup if there exists a

finite subset F' € H, called a generator, such that

H=|JF"
neN
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Let F be a finite symmetric generator of H i.e. x € F implies that & € F'. Then we define
T H - Nu{0} (4.2.2)

by tp(z) = inf{n e N: x € F"} for all  # e and 7p(e) = 0. Moreover, since F' is symmetric,
7r(%) = 7p(x). Tt is straightforward to verify that if F’ is another finite symmetric generator of

H, then for some constants C1,Co, C17pr < 7p < CoTpr.

If there is no risk of confusion, we may just use 7 instead of 7. For each pair z,y € H, for

each t € x * y(= supp(d, * 0,)), t belongs to FT(’”)”(y), SO

7(t) <7(x) +7(y) where t ez *y. (4.2.3)

e Polynomial weight. For a given 8 >0, wg(x) := (1 +7(x))” is a central weight on H.

Proof. We know that for each t € x * y, wg(t) = (1+7(¢))? < (1 +7(x) +7(y))®. On the
other hand,
In(1+7(x)+7(y))

IA

In(1+7(x)+7(y) +7(x)1(y))
In(1+7(x)) +In(1+7(y)).

Therefore wg(t) < wg(z)wp(y). O

Remark 4.2.2. wg is centrally additive (and consequently weakly additive). For a generator F’
of H, note that

IN

C(L+7p(2)) + C(L+7r(y))”

= C(wp(z) +wp(y))

wp(t) = (L+7r(1)” < (L+7r(2) + 77 ())”

where C' = min{1,2%1} based on the inequality (4.2.1).

Cr(z)*

e Exponential weight. For given C >0 and 0 < a < 1, o4 c(2) =€ is a central

weight on H.

Proof. For x,y e H and t e x » y, 04,c(t) = CT < LCE@HWNY - Algo CT(@)+7 (1) <

eCT(w)aeCT(y)a, since 7(x) > 1 for all x # e. O

Example 4.2.3. [49] implies that F' = {0,1} is a symmetric generator of Ny. Using induction

and since 1 € F!, suppose that 77(n) = n. Then by [49, Proposition 5.2|, g(n,1;n + 1) # 0;
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therefore, n + 1 € supp(d, * 61) € F™. But n+1 ¢ F*. Thus 7#(n) = n for all n € Ny for the
map 7 defined in (4.2.2). In particular, Ny is a finitely generated hypergroup.

Consequently, for each 8> 0, we can define a polynomial weight wg on Ny where
wg(n):(1+n)5 (n € Np).
Also, for each 0 <a <1 and C >0, we can define an exponential weight o, ¢ on Ny where

oa,c(n) = e (n € Np).

Using these two classes of weights we can generate a variety of weighted hypergroup algebras.

4.3 Weights on Conj(G) derived from group weights

For a (discrete) group G, as a hypergroup, a weight is a mapping o : G — (0,00) such that
o(xy) < o(z)o(y) for all z,y € G, since 6, ® dy = 6yy. Then (G,0) is called a weighted group.
Therefore, £1(G, ) equipped by the convolution and the weighted norm i.e.

| fller(c.oy = tZC; [f(®)lo(t). (4.3.1)

is a Banach algebra called weighted group algebra.

To prove the main result of this section, we need the following lemma.

Lemma 4.3.1. Let w: Conj(G) — (0,00) be defined on Conj(G). Then

w(be *#6p) =~ 3 S w(Ci) (O, D € Conj(@)).

|C||D| teC seD

Proof. The proof is a straightforward calculation based on (3.1.3) as follows:

Y w(E)dc *dp(E) > w(E)ﬂag’D
EeConj(G) EeConj(G) |C||D|

1 ¢obp
= asw(Cy)
C’teConj(ZG)CthD |C||D|
w(Ct)
= 2 D]
i 1C|ID|

_ w(Cy)
= 2 i0p] &, e

= te% ; ]CHIS;]) lo(s)1p(t)

= |C||D| Z Zw(cst)

teD seC

le®1p(t)
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The following proposition, as the main result of this section, lets us apply group cases which

are constant on conjugacy classes to generate hypergroup weights on Conj(G).

Proposition 4.3.2. Let G be a FC group possessing a weight . Then the mean function wy,
defined as

ws(C) = 1 Y o(t) for every C e Conj(G) (4.3.2)
|C’ teC

is a weight on the hypergroup Conj(G).
Proof. By Lemma 4.3.1, it suffices to show that

1
S Wy (Cts) € wy(Cwy (D)
|C||D| teZC oD

for all C, D € Conj(G). To do so, using weighted group algebra ¢!(G, o), one gets

Y > we(Ca) = Y Le(s)1p(t)ws(Cir)

teD seC teG seG

= Z Z 10(8)1D(8_1t)wO'(Ct)
teG seG

= Z 1C®1D(Ct)wO'(Ct)
teG

= Y, le®lp(E)Elw.(E)
EeConj(G)

= Y 1le®1p(E) Y o(s)
EcConj(G) seE

= Y le®lp(t)o(t) =1 ® 1p|n(c.e
teG

IN

elea@eoyllnle ey = |Clws (C)|Dlws (D),

because |1z (q,0) = Tiep 0(t) = wo (E)|E| for every E € Conj(G).

We call w, the weight derived from o. When (G, o) is a weighted FC group, we define

ZEN(G,0) = {f e (G,0), f(yzy™) = f(z) Yo,y € G}
which is the center of the Banach algebra ¢!(G, o); hence, it is a commutative Banach algebra.

Corollary 4.3.3. Let (G,0) be a weighted FC group, and w, on Conj(G) be the weight derived
from o. Then the weighted hypergroup algebra £*(Conj(G),wy) is isometrically isomorphic to
ZING, o).

Proof. By Proposition 4.3.2, £*(Conj(G),w,) is a weighted hypergroup algebra. Similar to the
proof of Theorem 3.1.1, we define ¥ : Z¢'(G,0) - £}(Conj(G),ws) such that for each f €
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ZING, o), U(f)(C) =|C|f(C) for all C € Conj(G). Note that ¥ is an algebra homomorphism,
since the convolution is the same of the hypergroup algebra restricted to Zc.(G)(= c.(G) n
(Y(G)). To see that W is an isometry, note that for every f e Z¢Y(G, ),

() et conjcyws) = Yo BNHONwe(C)= . CIF(C)|ws(C)
CeConj(G) CeConj(G)
= 2 AN X a(s)= 2 IfDo(t) = [ fle .-
CeConj(G) seC teG
Here, F/(C') is as defined in (3.1.1). O

4.4 Central weights on Conj(G)

Let w be a mapping from Conj(G) to R* such that w(E) < w(C)w(D) for all conjugacy classes
E,C,D € Conj(G) where E ¢ CD. Then it is immediate that w forms a central weight on the

hypergroup Conj(G) as defined in Definition 4.1.2.

Remark 4.4.1. Let G be a FC group and w be a central weight on Conj(G). Then the mapping
0y, is defined on G by o, (z) := w(C,) that forms a group weight on G. And ¢!(Conj(G),w) as

a Banach algebra is isometrically isomorphic to Z¢'(G,0,,).

Example 4.4.2. Let G be a discrete FC group. The mapping w(C') = |C|, for C € Conj(G), is
a central weight on Conj(G). Clearly, if E ¢ CD, we have |E| < |C||D].

Example 4.4.3. Let G = @;1 G; for a family of finite groups (G} );e1 as studied in Example 3.1.3.
Given C' € Conj(G), for each a > 0, we define a mapping

wa(C) = (1+|Ciy [+ +|Ci, D

where i; € Ic. We show that w, is a central weight on Conj(G). Let E ¢ CD for some
E,C,D € Conj(G). One can easily show that for each i e I, E; ¢ C;D;; Ig € I ulIp. Therefore,

wa(C) = 1+ S |ED <1+ S |Ci|lDi))* by Example 4.4.2
iGIE iEIE
< 1+ ) 1G] 1+ Y D] =wa(C)wa(D).
il ielp

Theorem 4.4.4. Let (G,0) be a weighted F'C group such that M =supceconj(c)|C| < 00. Then

the hypergroup weight w,(C) := M?w,(C), for C € Conj(G), forms a central weight.
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Proof. Let E ¢ CD for some C, D, E € Conj(G). Note that for each t € F, there are some x € C

and y € D such that ¢ = zy, so one gets that

wo(E) = EZE o(t) < EZE 50 5 o)< 500) 3 0tw)
Hence,
o (E) < |Cleon (€) Dl (D) € M (Cho (D),
and 50, w.(E) < w.(C)ws (D). 0

Theorem 4.4.4 implies that for discrete groups whose conjugacy classes are uniformly finite,
every weight on G leads to a central weight on Conj(G). A group G is called a group with
finite commutator group or FD if its derived subgroup is finite. Let G be an FD group. For
every C € Conj(G), C = {zxz"1: 2 € G} for some x € C. Hence, Cx ! = {zzz a7t 2e G} c &’
and therefore |C| = |C2~!| < |G’|. Therefore, the order of conjugacy classes of an FD group are

uniformly bounded by |G].

4.4.1 An example: Conj(5s)

The natural question that one may ask would be the existence of a weight over Conj(G), for
some discrete FC group G, which is not equivalent to any central weight with respect to the
equivalency defined in Definition 4.1.6. In this subsection, we generate a class function which is
satisfying Lemma 4.3.1 but is not equivalent to any central weight.

Let S, be the symmetric group of degree n. First, we study Conj(S,) for n = 3 and
some possible weights on the finite hypergroup Conj(S3). Recall that for any element z =

z§1)z,(€1))(z§m)zl(€:)) € Sy, where (iy)---ég))’s are pairwise commute cycles, the conjugacy
class of x is the set of all elements of S, which can be written in the same cycle structure [19,
Section 1.3].

Figure 4.1 summarizes the support of dc * dp for all C,D € Conj(S3). As an example,
supp(éc(lz) *50(123)) = C(12)- To check this note that for each z € G where 1¢,,, ® 1¢, () #0,
one gets that

10y ® 1eag (2) = 20 1epn (D1, (712) = 3 Togy D licgs, ()= 2 (D).
teSs teSs teC12)Ca2s)
So, by the definition of the convolution on Conj(.S3), supp(50(12) * 5(;(123)) = C(12)C(123) which
is C(12). Clearly, since Conj(S3) forms a commutative hypergroup the table is symmetric, and

hence, one may complete the other half symmetrically.
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* Ce C2) C123)

Ce | {Ce} {Cuz)} {Caz2s}
Cl12) {Ce,C123)} {Cua}
C123) {Ce,C123y}

Figure 4.1: Convolution action on conjugacy classes of S3

Example 4.4.5. Using the table, one may easily verify that the weight w, defined in the fol-

lowing, forms a central weight on Conj(.Ss3).

‘Ce Cazy Clis)
w‘ 1 3 5}

Applying Lemma 4.3.1, it is sufficient to check that the following inequalities hold for w to

be a weight on Conj(S3).
(i) 1/3w(Ce) +2/3w(Clizs)) <w(Crig))*.
(i) 1<w(Ce),w(Cpias)-
(i) 1/2w(C123)) +1/2w(Ce) < w(C(123))*.

Remark 4.4.6. Some long computations on the previous equations imply that for each weight

w on Conj(S3), one may show that w, = aw will be a central weight for all « > 5/4.

Example 4.4.7. Considering equations (¢), (i7), and (7i7), one may verify that the weight w
as defined below is a weight on Conj(.S3).

‘ Ce Cra)y Cas)
w‘l 2 5

On the other hand, since 5 = w(C(123)) ;{w(C(m))Q =4, w is not a central weight.

Question. Can one generate a group weight ¢ on S3 for which w, is not a central weight on

Conj(S3)?

Example 4.4.8. We generate the RDPF group G = @,,ny 53 as defined in Section 2.2. Let us
define the weight w’ := [],,ey w on Conj(G) where w is the hypergroup weight on Conj(S3) defined
in Example 4.4.7. For each N € N, define Dy := [,y DgN) € Conj(G) where D,(LN) = C(123)

forallmel,...,N and D%N) = C, otherwise. One can verify that Dy € supp(dg, * 0, ) for
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En = [Then E,(lN) € Conj(G) with E,(lN) =Cg) forallnel,...,N and E,(lN) = C, otherwise.

Therefore
w'(D N w(C123))
,( N)2:H ( )2:(5/4)N—>oo
W' (EN) n=1 W(C(lz))

where N — co. We claim that w’ is a weight which cannot equal any central weight i.e. there

is not a constant M such that Mw' is a central weight. To prove this claim, let w, be a central
weight and a1 and ay two positive constants such that ajw’ < w, < asw’. Hence,

w'(Dy) B 23w, (Dy) o3

W(EN)? ~ aw.(En)? o

which is a contradiction.

4.5 Weights related to quotient groups

Let G be a group, N a normal subgroup of G, and T : /1(G) - ¢(G/N) the Reiter’s map as
defined in [65, (3.4.10)],

Tf(xN)=> f(at) for fel'(G)

teN
which is an onto algebra homomorphism. For each f € Z¢'(G) and g € £1(G), note that Tf®Tg =

T(f®g)=T(g® f) = Tg® Tf. Since T is onto, this implies that T(Z¢*(G)) € Z{(G/H).
Let us denote the restriction of T to Z¢'(G) by T again; hence, T : Z¢*(G) - Z{*(G/N). By
Theorem 3.1.1, T can be seen as a mapping T : £ (Conj(G)) — £ (Conj(G/N)).

Claim. We claim that for each z € G, T'(d¢,) = ac, 0c, for some 0 < ¢, < 1.

Proof of Claim. For each C, € Conj(G) and C,y € Conj(G/N), applying ¥ defined to prove
Theorem 3.1.1, one gets

1
[l

T(30,)(Con) =T 0 W( -

1¢,)(zN) = > 1c, (2t). (4.5.1)

|Cal e

First, assume that C,ny # C,ny. Toward a contradiction, one may assume that for some
te N, zt e C,. Without loss of generality, let zt = . But, this implies that zN = x N which is a
contradiction. Therefore, if Cpn # C.n, T(d¢,)(C.n) = 0.

On the other hand, one may complete the equation (4.5.1) as follows.

B R ERCH LI i s N e

T(0c,)(Con) =
|Cﬂ?| teN |Cﬂc| yeCy teN

So, if for some y € Cy, 2zt =y, Yy Oy(2t) = 1;

Lo LS S 6, (at) 1= b (Con).

0< <
Cal ™ |Cul ye, i
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For some 0 < a¢,, <1, we have proved the claim. O

Suppose that w be a weight on Conj(G) which is bounded away from zero i.e. for some
d >0, w(C) >4 for all C € Conj(G). Since w is away from zero by some § > 0, for each
f el (Conj(G),w),

5||fH€1(Conj(G)) = Z 6|f(C)| < Z |f(0)|w(0) = Hf||€1(C0nj(G),w)'
CeConj(G) CeConj(G)

Therefore, £*(Conj(G),w) is a subalgebra of £!(Conj(G)). So, let us define the restricted map
T, by

1, = T|51(Conj(G),w) : él(Ga UJ) - A

where A = Im(T,,) is equipped with the quotient norm i.e. for each f e £!(Conj(G),w),

I T ()l = [ f = Eller (onj(aywy - B € Ker Te}

Some arguments in the proof of the following proposition are similar to the ones in [65,

Proposition 3.6.11].

Proposition 4.5.1. The mapping @ : Conj(G/N) - R* defined as
B(Can) = nf{w(Cay) s y€ N} (Cay € Coni(G/N))

forms a weight on Conj(G/N).

Proof. Note that, T,,(dc, - dc,,) = ac,y(0c,y = 6c,,y) =0 for all z € G and y € N. For each
x € G and

17 (dc.) g

inf{”aC’zN50x - k”él(Conj(G),w) : keKer TOJ}

IA

inf{|ac,ydc, + ac,y0c,, —ac,y0c, o (conjc)w) : YENYT

ac,y nf{w(Cqy): ye N} =ac, y&(Cun).
Let us study the dual of the map T, which is denoted by 7.} : A* — £°°(Conj(G),w™t). So for
each ¢ € A%, T*(p) € £*°(Conj(G),w™). Hence,

|(907Tw(5C ))’ ac N“)O(C:L‘N)’
lolas >  sup —————EEe > sup — = || @l (Conj(a/N).@ 1) -
ceconj(@) 1Tw(0c, )¢ cpneconj/ny @Cn@(Can) (Conj(G/N)&™)

o4



Also, since A is equipped with the quotient topology, T} is an isometry. Hence,

172 () Lo (Comj(cy w1
755 (¢)(Ca)|

= sup ——————=
CreConj(G) W(Cw)

T3 () (Ca)l
sup e PTel
CoeConj(@)  @W(Czn)
_ sup |<<P,~Tw(5cx)>|
CocConj(@)  W(CeN)
|§0(CmN)|

= SUPQC, Ny~ A~ S Plee(Conj 5-1)-
SUD AC,N (G lollese (conjcc/Ny @1y

lo]lax

IA

So |+ l.a* = || [l (conj(c/n) 1) Consequently, as two Banach algebras,
(' (Conj(G/N),&) = £*(Conj(G),w)/ Ker T,,.
Thus,
16c,n * 0, et (conj(a/ny@) S 10cun et (conjiayny @y 19, et (Conja/ny @)

which equals to this fact that @(dc,y * dc,y) < O(Cen)@(Cyn). This shows that @ is a weight
on Conj(G/N). O

4.6 Weights on duals of compact groups

Corollary 4.6.1. Let G be a compact group and G be the set of all irreducible representations
of G as a discrete commutative hypergroup. Then wg(m) = d? = h(dz)P/? is a central weight for
each B > 0.

Proof. Since for every pair m,0 € G, the dimension of 7 ® o which is d.d, is equivalent to

n 0o 0 \n ~ .
iwym; “dy, for some m;® >0 and (m;)iL; € G, for each m;, € m * o one gets that

n
o o
drdy = Zml dr; > m;’ dr; > d
i=1

7Ti0'
O

Example 4.6.2. Let SU(2) be the hypergroup of all irreducible representations on the compact
group SU(2). Let F' = {m,m/2}. We claim that F' is a generator for SU(2). For m we know
that

3

Sy = S0 + Oy

o 7T1/2:4

T1/2 *
So F? = {m, m12,m1}. We claim that F?k = {774}2“:0. Suppose that this claim is correct for k — %

. _ k—1/2 _
that is F2k-1 = {Wi}izo/ . Therefore, for each m; € F2*°1 7, « mo = m; and for each m; # mo,
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T * Tjg = {Mi_1/2, Tiv12}- SO F% = 21 y{m,}. Thus, |F"| = n+1 and for each £ ¢ SU(2),
Tr(mg) =20 for all £> 0 and 7p(7p) = 0 where 7 is the map defined in (4.2.2).

Consequently, for each 8> 0, we can define a polynomial weight wg on SU(2) when
wa(mp) = (1+20)° 7, SU(2). (4.6.1)

Note that (4.6.1) implies that wg(7) = h(7)?/? = d? corresponds to the weight defined in Corol-
lary 4.6.1.

Also, for each 0 < a <1 and C > 0, we can define an exponential weight o, ¢ on SU(2) where
Oac(f) =GO 1 5U(2).

Example 4.6.3. Let us define w, : SU(2) - R" such that
a2£+1

20+1
for a fixed constant a > (v/5+1)/2. We show that w, is a weight on SU(2). For a pair of £,

wa(me) =

in %Z* :={0,1/2,1,3/2,...}, without loss of generality suppose that £ > ¢'. So

0+0 YAy
S (2 + Dwe(m) = a?r*t
r=0-{' r=0-{'
20-20'+1 20 2r
= a Z a
r=0
/
e @1
a“ -1

/ !
a2£+2£ +3 a2€+2€ +1

a?-1 a?-1

20202 ( a )
a?-1

< #wa(ﬁ)(% + Dwa(£)(2¢ +1).

IA

But since a > (/5 +1)/2, a/(a® - 1) < 1; therefore,

Wa(éw * 57@/) < Wa(me)wa (mer).

Note that

wa(m)?2  40+1"\20+1

where ¢ — oo; while w9y € 7y * mp. Hence, not only is w, not a central weight but also it is not

Wa(ﬂ'%) ~ a4€+1 (a2Z+1 )2

equivalent to any central weight. To show the second claim, let w, be a central weight and «y
and ao two constants such that ajw, < w, < asw,. Hence,

wa(mae) _ ajw(ma) of
wa(me)? = aqw,(m)?

which is a contradiction.
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Example 4.6.4. Let 0 be a weight on the group
1 20
20+1 T,:Z_:%

WU(WZ) =

a(r)

Zie. o(m+n)<o(m)o(n). We define

(te %Z*). (4.6.2)

Recall that elements of SU(2) can be regarded as m; when k € %Z* Suppose that m,n € —Z+

and without loss of generality n > m. Then,

1 2m 1 2n
= t
wo(Tm)wo(Ta) = 50 t:;:ma( ) 21 Z%U(S)
1 2m
> o(t+s)
(2m + 1)(2n + 1) t—ZZ:ms—Zn
1 2n+2m
= o(t—2n+s)
(2771 + 1)(277’ + 1) t= QnZQms—ZQn
1 2n+2m
- o(s) (*)
(2m + 1)(277' + 1) t= Q;st tZ:ML
1 2n+2m
>

Cm+1)(2n+ 1), 22 Z o(s)

n—2m s=—t

1 2r
(57,5, )

~ n+m (2T+ 1)
) T‘=;m 2m+1)(2n+1)

~ n+m (27‘+ 1)

) r:;m (2m +1)(2n + 1)""0(%)

Wo (Or,, * Or,)-

We note that, in (%) above, since if 2n - 2m <t

< 2n+2m and -2(n +m) < t — 4n; therefore

—2n < t, one gets that ¢t —4n < —t. Therefore, w, forms a weight on SU(2) as a hypergroup.

Remark 4.6.5. Let o(n) = a” for some a > 1 on Z. Clearly, o is a weight on Z and therefore,

one may consider the weight w, as defined in Example 4.6.4. For each £ € %Z* and a > (1+v/5)/2,

1 20 .
wo(me) = 557 r;%a }

a 2 40
l+a”+-+a
20+1 ( )
a2t M2 1
20+1 a?2-1
4€+2 -1

wa () m

where w, is the weight defined in Examples 4.6.3. But some simple calculations verify that for

every (€ 37" and a > 1,

a

1 a4f+2 -1
- <
a a4€+1 ( a2 _
This implies that
1
—Wq S Wg <
a

<
D)

a?-1

a2 -1’

Wa

for each a > (/5 + 1)/2; hence, the weights w, and w, are equivalent according to Definition 4.1.6.
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Example 4.6.6. [58, Proposition 4.11]
Let G be a compact group and w be a central weight on the hypergroup G. Then for each closed
subgroup N of G, we may define wy on N such that
wy(o)=  inf  w(x) (0eN)
neGo<n| N
where o < 7|N means that o is equivalent to one of the representations of irreducible decom-
position of 7|[N. Given € > 0, note that if 01,09 € N there are T, Ty € G such that o; < m; and
w(m;) <wn (o) + € for i =1,2. Note that for each o € 01 * 09, 0 < 01 ® 09 < 1|y ® m2|n; hence,
wn(o) = inf  w(m)< inf w(m) <w(m)w(me) < (wn(o1) +€)(wn(o2) +€).

meG,o<m| N T<TL®Mm2,0<T| N

Since € > 0 is arbitrary, it implies that wy is a central weight on N.
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CHAPTER 5
THE FOURIER ALGEBRA OF A REGULAR FOURIER HYPER-

GROUP

For a hypergroup H, Muruganandam, [60]|, gave a definition of the Fourier space, A(H),
and showed that A(H) is a Banach algebra with pointwise product for certain commutative
hypergroups. In this chapter first we study Fourier space of hypergroups in general. Then we
focus on the Fourier algebra of dual of compact groups. We finishes the chapter by studying the
amenability of ZA(G) for a compact group G in Section 5.3.

A version of some results of Sections 5.1 and 5.2 has appeared in [2].

5.1 Background

In this section, we review main properties of A(H) from [60]; the proof of all unproven results
mentioned in the following may be found there.

For a compact hypergroup H, Vrem in [78| defined the Fourier space similar to the Fourier
algebra of a compact group. Subsequently, Muruganandam, [60], defined the Fourier-Stieltjes
space on an arbitrary (not necessary compact) hypergroup H using irreducible representations
of H analogous to the Fourier-Stieltjes algebra on locally compact groups. Subsequently, he
defined the Fourier space of a hypergroup H, as a closed subspace of the Fourier-Stieltjes
algebra, generated by {f , f: f e L>(H,h)} or equivalently generated by {f #), f: f € Co(H)};
hence, A(H)nC.(H) is dense in A(H).

Proposition 5.1.1. Let H be a hypergroup. Then
(1) A(H)nC.(H) is dense in A(H),
(2) A(H) < Cy(H), by [60, Corollary 2.13],
(3) 1 oo <1 Lacarys by [60, Remark 2.9)
(4) for every we A(H), Lyu, @, and u belong to A(H), [60, Proposition 2.16].
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In [60], Muruganandam showed that when H is commutative, A(H) can be characterized as

follows. This argument first was appeared in [13].

Theorem 5.1.2. [60, Section /]

Let H be a commutative hypergroup. Then A(H) = {f #,§: f,g € L>(H,h)} and lull 4y =
inf || fl2]lgl2 for all f,g e L*(H,h) such that u = f * §.

Remark 5.1.3. The key point for this advantage of commutative hypergroups, as it was proven
in [60, Proposition 4.2] and |13, Section 2|, is this fact that F(A(H)), where F is the (extension
of the) Fourier transform, is L(S,7) where S, as a subset of H, is the support of the Plancherel
measure 7 (see [8, Chapter 2|). Note that the Fourier transform F : L'(H) - Co(H) is an algebra
isomorphism i.e. F(f *g) = F(f)F(g). Moreover, similar to the group case, F|r2(g)nr1(m) 18
an isometry which can be extended as an isometric isomorphism from L?(H) onto the Banach

space L2(S,m) (see [8, Theorem 2.2.22]). Therefore, by taking care of some details, one may
obtain that for each u e A(H), F(u) € L*(S,n) and since F(u) = fg for some f,ge L*(S,7),

u=ZoF(u)=Z(f)*Z(g).

But note that Z(f),Z(g) € L?(H). The implication of the norm is now obvious applying the
mapping Z for every fe A(H).

For a hypergroup H, it is known that for every x € H and f € L?>(H), L, f € L>(H) while
ILofl2 = || f]2 (see [8, (1.3.18)]). Therefore, L, is an operator in B(L?(H)) which we denote
it by A(z). The von Neumann sub-algebra of B(L?(H)) generated by (A())zerr is called the

hypergroup von Neumann algebra of H and denoted by VN (H).

On the other hand, for each f e L'(H), f * g€ L*>(H) for g € L>(H) while

1f = gl2 <1 fllgl2 (5.1.1)
(see [8, (1.4.12)]). So the operator A(f) which carries g to f * g belongs to B(L?(H)). The C*-
algebra generated by (A(f)) fer1(ar) in B(L*(H)) is called reduced C*-algebra of H and denoted
by C5(H). It is proven in [60| that C5(H) is actually a C*-subalgebra of VN (H).

Let By(H) denote the set of all continuous, bounded functions ¢ on H such that
sy = sww { [ (e p@ydes & L) 1@z < 1) < oo

Similar to the group case, it is proved that (Bx(H), | - |p,(m)) forms a Banach space which
is isomorphic to the dual of C{(H). Moreover, A(H) ¢ By(H) and for every u ¢ A(H),

lullacey = 1l By -
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Remark 5.1.4. Note that based on the inequality (5.1.1), for each f e L'(H), I f vy =
| flex ey < 1fl1. Hence, for every F e VIN(H)* while LY(H) is observed as a subalgebra of
VN(H), F|p1 sy can be considered as a functional on LY(H) or equivalently, Flri(my can be

represented by an element in L*(H), because

(E N < IENS vy < IEN Nz -

For a net (Ty)o € B(H) where H is a Hilbert space, T, converges to 0 in o-weak topology if
lim Y (Tadn, 1) = 0
n
for all sequences of (&,,7n)n € H where ¥, ([|€n %, + [0 ]3,) < 0.

Theorem 5.1.5. [60, Theorem 2.19]

Let H be a hypergroup. For every T € VN(H) there exists a unique continuous linear functional
o1 on A(H) satisfying ¢r(u) = (T'(f),9)r2(my where i = fx g. The mapping T ~ ¢r is a
Banach space isomorphism between VN (H) and A(H)*. Moreover, the above mapping is also a

homeomorphism when VN (H) is given the o-weak topology and A(H)* is given weak* topology.

Abusing the notation, for every T' ¢ VN (H) let us denote ¢p € A(H)* by T from now on.
One may show that for each p e M (H), u can be considered as an element in VN(H). In this
case for each u e M(H) and the corresponding operator T, € VN (H),

(T, u) = fHu(x)d,u,(a;) (ue ACH)), (5.1.2)
by [60, Proposition 2.21]. In particular, for each u e A(H),
AMz)(u) = u(x). (5.1.3)

Remark 5.1.6. For each f € L'(H) and u,v € A(H), note that f can be considered as a
function in VN (H); therefore, by (5.1.2),

(fuv) = (fuo) = [ F@u()o(a)dh().

Hence, f-u and similarly u- f equals pointwise multiplication of u and f on almost every x € H.

Moreover, the reduced C*-algebra of H, C5(H), is a closed A(H)-submodule of VN (H).

The last part of Theorem 5.1.5 and the characterization of A(H) for a commutative hyper-

group H in Theorem 5.1.2 result the following corollary.

61



Corollary 5.1.7. Let H be a commutative hypergroup. Then for a net (Ty)o € VN(H), T,

converges to 0 in o-weak topology if for every pair f, g€ L>(H), (Taf,g) = 0.

Recall that a state on a C*-algebra is a positive linear functional of norm 1. Moreover,
if A is a von Neumann algebra with predual A,, every state of A can be approximated by a
net of states of the elements of pre-dual in the weak™ topology. Therefore, for a commutative
hypergroup H each state u on V. N(H) which belongs to A(H) is in the form of f *j f for some
f e L?>(H) such that

1= [ull ) = ule) = f13. (5.1.4)

In [60], Muruganandam calls the hypergroup H a reqular Fourier hypergroup, if the Banach
space (A(H),| - ”A(H)) equipped with pointwise product is a Banach algebra. He studied this
property for a variety of commutative hypergroups in [60]. He showed that some polynomial
hypergroups including Jacobi polynomial hypergroups and Chebyshev polynomial hypergroups
are regular Fourier hypergroups. Furthermore, in [61], he pursued this study for double coset
hypergroups (which are not necessarily commutative). He showed that the hypergroup of the
double coset of a locally compact group G with respect to some compact subgroup H, usually
denoted by G//H, is also a regular Fourier hypergroup. One may see [8, Section 1.5] for more

information about coset hypergroups.

We prove a hypergroup version of |26, Lemma 3.2] which shows some important properties
of the Banach space A(H) for an arbitrary hypergroup H (not necessarily a regular Fourier
hypergroup). Some parts of the following Lemma have already been shown in |78] for compact
hypergroups where proof is applicable to general hypergroups. Here we present a complete proof

for the lemma. Note that for each A ¢ H for a hypergroup H, we define A= {Z: x e A}.

Lemma 5.1.8. Let H be a hypergroup, K a compact subset of H and U an open subset of H
such that K c U. Then for each relatively compact open set V such that K «V «V c U, there
exists some uy € A(H)nC.(H) such that:

1. uy(H) >0.
2. uV|K =1.
3. supp(uy) cU.
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4o v g < (har(K < V) hir (V)2

Proof. Let us define

1 .
uy : sy *p 1y,

" (V)
Since, for every x,t € H, 15,y (t)1y (0; * 6,) > 0, uy > 0. Moreover, for each z € K |
Licay *p 1y ()

fH Ly () 1y (65 % 82)dhg (¢)

[ e (1 (3 * 01)dhn (1)

LH Licev (82 % 61y (£)dhg(t) (b [8, Theorem 1.3.21])

L(lK*Va O * 0¢)dhp (t)
hir(V).

hi(V)uy (2)

Also [8, Proposition 1.2.12] implies that
Supp(lK*V *1 1\/) c (K * V% ‘7) cU

which implies that uy has compact support, [8, Proposition 1.2.12]|. Finally, by [60, Proposi-
tion 2.8], we know that

b < LEevlzlvlz  haGS V) Thu(1)E _ ha (K« V)
D= (V) hir (V) hu (V)3

O

Remark 5.1.9. For each pair K,U such that K c U, we can always find a relatively compact
neighborhood V' of ey that satisfies the conditions in Lemma 5.1.8. The existence is a result
of continuity of the mapping (z,y) — x * y with respect to the locally compact topology of
H x H into the Michael topology on €(H), (H3). Since H is locally compact, there exists
some relatively compact open set W such that K c W cW cU; K € § (W) as an open
set in the Michael topology and consequently for each z € K, x + e € €, 3(W). Since, the
mapping e — x * e is continuous, there is some neighborhood V}* of e such that for each y € V",

rrye,y p(W)ie xzxycW and z+ynHNW =@. Let us define
VO Z U (VEAVE).
Clearly, v =y, Moreover,
Kx»v® - Uyey (1) UzeK T * Y € Uge@ * Viiecw
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and K+VWnH\W = g since (z+y)n(H W) =@ forall 2 € K and y € V). Now let us replace
K by the compact set KV, Therefore, similar to the previous argument, for some relatively
compact open set W’ such that K+VODcW cW'c U, one may find some V3 a neighborhood
of e such that V® = V@ K« VD« V@ c W' and (K * VD) « V) (H\W’) = 2. Hence,
for the relatively compact open set V := V) A V() one gets that V = V and

K+« V+VcK VDV cWr,

So K+«Vx*VclU.

Remark 5.1.10. Let H be a regular Fourier hypergroup. Then if (e,), is an approximate
identity of A(H), for each compact set K € H, by Lemma 5.1.8, there is some ug € A(H) such

that ug|K = 1. Therefore, for each x € K, and based on Proposition 5.1.1,

IN

lim |1 - eq(z)] = lim|ug () — ug ()eq(x)| lim |ug — ugeq| oo

IN

li;n lur —urealacmy = 0.
Therefore, e, — 1 uniformly on compact subsets of H.

Remark 5.1.11. Let H be a discrete hypergroup. Then §, € L*(H) (and §, # 0 almost
everywhere): 8, * 8, € L2(H) « L2(H) € A(H). Hence, c.(H) ¢ A(H) and equivalently, A(H) n
ce(H) = cc.(H). Therefore, applying Proposition 5.1.1, ¢.(H) is dense in A(H). Moreover, if
H is a regular Fourier hypergroup, as it is proven in [60, Theorem 5.13|, the space of maximal

ideals of the Banach algebra A(H) is homemorphic to H as a discrete topological set.

5.2 The dual of a compact group

Given a commutative hypergroup, it is not immediate that it is a regular Fourier hypergroup
or not. We will show that when G is a compact group, the hypergroup Gisa regular Fourier

hypergroup.

Theorem 5.2.1. Let G be a compact group. Then G is a reqular Fourier hypergroup and A(@),

equipped with pointwise multiplication, is isometrically isomorphic with the center of the group

algebra G, i.e. A(G) = ZL'(G).

Proof. Let F be the Fourier transform on L!'(G). By [23, Proposition 8.4.3], Flr2qy is an
isometric isomorphism from Banach space L*(G) onto £2(G). Recall that ZL*(G) = ZLY(G) n
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L*(@)). By the properties of the Fourier transform, [23, Proposition 4.2|, for each f € ZL*(G),
ge LY (@), and 7 € G we have

F()(m) e F(g)(m) = F(f xg)(m) = Fg» [)(m) = F(g) () o F(f)(7). (5.2.1)
So F(f)(r) commutes with all F(g)(x) := f(x) for all f e L'(@). Since 7 is an irreducible
unitary representation into semisimple Banach algebra M,_(C); we conclude that F(f)(w) =
a1y, for some scalar o € C where I is the identity matrix. Because m was arbitrary, it implies
that F(f) = (arld,xd, ) g for a family of scalars (ar) .5 in C. Hence, by (1.4.3),

[£1z2(e) = 1F (O oy = Zdnﬂf(ﬂ)\\?sg = Zdwai\\fdﬁ |5, = X azda” = Zaih(ﬂ)- (5.2.2)
meG meG meG meG

Note that {Xr}. .z forms an orthonormal basis for ZL?*(G) and dyx is a non-zero idempotent
with respect to the convolution for every 7 € G, [28]. Therefore F(dxxx)() is the only non-zero
idempotent of the center My_(C) i.e. Iz . Hence Y(7) = d;'I;. and x(o) = 0 for all o # .
Similarly, F(xz) = d="I,_. Let us define f(x) := f(x); hence, X, = xx Using (5.2.2), we define
T :span{xr} reg =~ (@) by T(xx) = dz'6x. So,

T(Xx) = Txx) = dz'07 = d=' 07 = T(xx).
Note that span{x,} .z is dense in ZL*(G) and

”dﬂXﬂHLQ(G) =dy = h(ﬂ)l/z = H(SWHLQ(@JW [28].

Furthermore, for each f € span{x~} .z say f = XiL; a;Xx, for some a; € C and 7; € G, one
may apply (5.2.2) to observe that | f|z2(q) = [T (f)|z2(c). So, since T acts as an isometry on
span{Xx } ..z; moreover, since ce(@) is dense in L?(G, h) and span{xr}, .z is dense in ZL*(G)
(see |28, Chapter 5]), T can be extended as a mapping from ZL?(G) onto L?(G,h) which is an
isometrically isomorphism and takes complex conjugate to the involution.

We claim that T(fg) = T(f) *» T (g) for all f, g€ ZL*(G). To prove our claim it is enough
to show that T (X Xms) = T (Xary) *n T (X)) for w1, 72 € G. Using Lemma 1.1.6 and (3.2.2), for

each two representations 7, o € G, we have

T(XTA‘XU)

|
\‘l
—_—
NSl
3
<A
Q
>0
a
~——

= Txx) *n T(Xo)-
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Now we can define a surjective extension 7 : ZL'(G) - A(G), using the fact that span{Xr}..a
is dense in ZL'(G) and ||f|1 = inf |g1]2]g2]l2 for all g1, g2 € ZL?(G) such that f = g1ga which

are straightforward results. Using the definition of the norm of A(G),

1T aay = WEIT@) 2w T 2@n : T =T(g1) * T(g))

inf{|g1llr2(a)ll92l 2y f =02} = | fla

for each f € ZL'(G). To show that the extension of 7 is onto, for each pair g1, g2 € ZL*(G), we
note that gigo € ZL'(G).

So, 7T is an isometric isomorphism between Banach spaces. Hence, A(a ) is a Banach algebra
with the product which is carried through the mapping 7. In the remaining we show that this
product is actually the pointwise multiplication of functions in A(@) by using this fact that
span{xx} .z is dense in ZL*(G) and T (dxXx) = =, [28, Proposition 5.25]. Recall that for each
pair w,0 € G ,

drXx T=0

d7rX7r * dO’XO’ =
0 T+0
by Proposition 1.4.2. On the other hand,
O T=0
6:0p =4
0 @m0

Since span{d,}, .z is dense in A(Q), the algebraic action of A(G), inherited from ZL'(Q)

through T, is corresponding to the pointwise multiplication of A(G). So one may conclude that

(A(§)7'7||'||A(§))E(ZLl(G)a*an'Hl)- O

Remark 5.2.2. For a compact group G, we define ZA(G) := A(G)n ZL'(G). 1t is straightfor-
ward to check that

ZA(G) ={f e A(G): f(yzy™") = f(x) for all 7,y € G}.
Furthermore, ZA(G) forms a subalgebra of A(G) with respect to the pointwise multiplication.

Theorem 5.2.3. Let G be a compact group. Then the hypergroup algebra of @, Ll(é,h), 18
isometrically isomorphic with the Banach algebra ZA(G).

Proof. Note that the Fourier transform F is an isometric isomorphism from Banach space A(G)

onto Banach space £1(G), [23, Theorem 8.4.16]. Since G is a compact group A(G) ¢ LY(G);
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therefore, for each f e ZA(G) and ge L' (G), f+g=g* f; f € ZL'(G). By an argument similar
to the one after (5.2.1), for each 7 € G, f(7) = ax I for some o € C such that, by (1.4.2),

”fHA(G) = Z d7r|047r|”I7rH31 = Z awdgr
e e
~ Y anh(®) = 1T oy
meG

So T|za(c) is an isometry into L'(G, h).

Conversely, for each g = (ar), . € ce(@), define ¢, = (arlr). g€ LY(G). Since F: A(G) -
L£Y(@) is surjective, by [23, Definition 8.4.12], for such a ¢,, there exists some f € span{Xx} g €
A(G)n ZLY(G) such that F(f) = ¢y; hence, T(f) = g € c.(G) € L*(G). Applying this fact that
T is an isometric mapping and cc(@) is dense in Ll(@), T is a surjective mapping. Note that
this argument consequently implies that span{xr}, .z is dense in ZA(G).

We claim that T is an algebra isomorphism. To prove our claim, we just note that
S = 1 1 1
T (X Xmy) = T(Z miXUi) = Z mid;¢ 0o, = d7_r1 Omy *h d7_1'2 Oy =T (Xmy) *0 T (Xma)-
i=1 i=1
One may extend it to the whole ZA(G), using this fact that span{xr} .z is dense in ZA(G). O

Although the following corollary is a well-known result, we mention it here since we apply it
more often in the next section. Besides the classic proof, it may be implied by the argument in

the proof of Theorem 5.2.3.

Corollary 5.2.4. Let G be a compact group. Then ZA(G) is the closure of span{xx}, .a-

5.3 Amenability of ZA(G)

First let us briefly mention some results from [36, (29.25)] which characterize group characters
of SU(2). In this section, we present the torus T by the interval [0,27] where each 6 € [0, 27]
represents e,

Let uw e SU(2). There is a matrix a € SU(2) such that
a_lua = ) (531)

for some 0 € [0,27]. As we saw in Example 3.2.2, the irreducible unitary representations of
SU(2) can be represented by 7y where £ € %Z+ :={0,1/2,1,3/2,2,...}. Also for each xr, the

group character generated by the representation 7y, X, (@ ua) = xr,(u). So, we will know y, if
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we compute it on the matrices of the form (5.3.1) for each 6 € [0,27]. To facilitate the writing,
we denote X, (u) for some u corresponding to 6 by x,().
By [36, (29.25)], the irreducible group characters of SU(2) represented by {xx} 15+ can be
2

characterized by the functions!

sin(2k+1)6) 0e(0,7)u(m,2m)
xx(6) = sin(®) (5.3.2)
(2k + 1)k 0=0,7
where k € 7% and 6 € T.
For each f =7 ajxk, € in{xk}reng, by (1.4.2) and (1.4.1),

[ flacsuee) = Z‘idkjIoaj|||>?kj(7Tkj)||s1 = Z‘idkjlajllldiffwkj s, = Z‘i (2R + 1) (5.3.3)
J= j= j=

Let us define a mapping Z : lin{xx }n, = C*(T) to be the restriction map to the the torus T
as defined in (5.3.2) where C'(T) denotes the set of all differentiable functions on T. We claim
that Z can be extended to a continuous mapping on ZA(SU(2)). Doing so, it is enough to show
that Z(ZA(SU(2))) < A(T) where A(T) is the Fourier algebra of the torus.

Proving our claim about Z, note that for each k € %Z* and 6 € T~ {0,7},

sin((2k +1)0)  lGR+DO _ o=i2k1)0 2% (2206 %
T(u)(0) = T I S S ey o,
sin(0) el — =0 e;) e:%k

A similar argument works for 6 = 0,7 as well. Note that by (1.4.2),
% 2k
”I(Xk)HA(T) =0~ Z e HA(T) = Z 1=(2k+1).
(=-2k l=-2k
Therefore, |Z(xx)|a(ry = dr which is equal to ||xkllacsu()). For each f e lin{xx}ren, say

=200 a5,
| flacsvy) = D leel (20 +1) 2 [Z(f) | acry.-
=0

Hence, one may extend Z as a continuous linear mapping from ZA(SU(2)) into A(T). Note
that Z is the restriction mapping on T; therefore, Z(fg) = Z(f)Z(g) for all f,g € ZA(SU(2)).
Furthermore, if for some f € ZA(SU(2)), Z(f) =0, it means that for each conjugacy class C' of
SU(2), f(C)=0; f=0. So Z is injective. We denote the image of Z here by Az.

! Applying this representation of the elements of SU(2) with respect to their eigenvalues as elements in [0, 2],
each conjugacy class will be represented twice by the angle 6. But since, we want to study ZA(SU(2)) as functions
restricted on T as the maximal torus of SU(2), we rely on this representation.
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Remark 5.3.1. One may show that Z is not surjective to the closure of its image, Az. If 7
is surjective, since it is one to one as well, Z~' should form a bounded mapping from Az into
ZA(SU(2)). But note that on one hand for each k € No; [ xx—Xx-1]za(sv(2)) = (2k+1)+(2k-1) =
4k. On the other hand, |Z(xx - x&-1)]acr) = |e?2k0 4 =i2k0 lacry = 2. Therefore, Z cannot be

invertible and Az is not a closed subalgebra of A(T).
Proposition 5.3.2. ZA(SU(2)) is not (weakly) amenable.

Proof. Let us consider Az := Z(ZA(SU(2)) € C'(T) the restriction of the functions in ZA(SU(2))
on the maximal torus. We will prove the existence of a non-zero continuous point derivation on
Az. For 0 € (0,7), one may define Dy : A7 - C where Dy is the point derivation on functions of

CH(T) evaluated at . Therefore

2k 4 2k 4 2k
Do(xr) = > ite™ = ite —ite™™ = -2Y" (sin(00)
t=—2k =1 =1
2
= ———(2ksin((2k +1)0) — (2k + 1) sin(2k0)).
Ty P2k 1) - (24 1) sin(240))
Moreover, Dy is non zero, for example D j5(x1/2) = —2; further,
Do) €~ (2 1) = —
PXRL= Gn2(0/2) " sin?(0/2) XEIAGUE):

One may apply (5.3.3) to verify that for each f = %", ajxk; € in{xx }ken,,

2 oyl

[Do(f)I <), W”Xk”A(SU(Q)) =

1 acst(2)ys
j=1 )

sin?(6/2
which implies that Dy can be extended as a norm bounded linear map on ZA(SU(2)), because
lin{ X%} ren, is dense in ZA(G). Hence, Dy is a non-zero bounded derivation on Az, so Az is

not weakly amenable. O

Remark 5.3.3. Let SO(3) be the compact Lie group of 3 x 3 special orthogonal group. SO(3)
actually forms the set all of rotations in R® which preserves the length and orientation. In

fact, there is a two-to-one continuous homomorphism 7 from SU(2) onto SO(3) such that

Ker(7) = {£I}, |36, Theorem 29.36]. For

one gets that
cos(26) -sin26) 0

7(ug) = | sin(20) cos(260) 0
0 0 1
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Applying 7, one may show that for every integer ¢ € Z* := {0,1,2,---}, there is a representation
my € m and vice versa. Moreover, for all £,¢' € Z* (¢ > {'), my ® mp is equivalent to my_p @
To_pry1 @ ® mpypr. Moreover, xy(ug) is defined exactly as one defined xy on € in (5.3.2). So one
may rewrite this section for SO(3) and all the results would be still valid. Specially, ZA(SO(3))

is not (weakly) amenable.

In the remaining, we prove that not only are ZA(SO(3)) and ZA(SU(2)) not (weakly)
amenable, but also for fro a wider class of compact groups G, ZA(G) cannot be (weakly)
amenable.

To prove the main result of this section, we need to prove a few results first. Although the

following proposition is known for the experts, because of completeness we prove it here.

Proposition 5.3.4. Let G be a compact group. Then the space of maximal ideals of ZA(G)
is homeomorphic to Conj(G) equipped with the quotient topology of G through the mapping
t: G - Conj(G) where x — C,. Moreover, ZA(G) separates conjugacy classes of G i.e. for
C,D e Conj(G), C # D, there is some f e ZA(G) such that f(C)=0 and f(D) =1.

Proof. Clearly for each C' € Conj(G), ¥¢ : ZA(G) — C forms a multiplicative bounded functional
on ZA(G) where ¥o(f) = f(x) for some z € C. Hence, Kervy¢ is a maximal ideal space of
ZA(G).

Conversely, for each ¢ € 0(ZA(G)) and f € Ker ¢, f is not invertible. Theorem 3.6.15 and
Theorem 3.7.1 of [66] imply that for a commutative regular Banach algebra A and a closed
subset E of o(A) equipped with the Gelfand spectrum topology, if a € A such that |p(a)| > >0
for every ¢ € E, then there exists some a’ € A such that p(aa’) =1 for every ¢ € E. In particular,
this applies to E = 0(A). It is known that A(G) is a commutative regular Banach algebra and
its Gelfand spectrum is homeomorphic to G.

Now assume that f(x) # 0 for all x € G; therefore, f as an element in A(G) is invertible
i.e. there exists some f’ € A(G) such that ff'(z) =1 for all x € G. Clearly since f is a class
function so is f’; f' € ZA(G) which violates our assumption. Therefore, f(x) = 0 for some z € G.
Therefore, Ker ¢ € Ker1c, as two maximal ideals. So, ¢ = ¢¢,.

Let us note that for each f € A(G), LyR,f(x) = f(y *zy) also belongs to A(G). Therefore,

we may get a Bochner integral of L, R, f for all y € G; consequently, P: A(G) - ZA(G) where

P(N@) = [ ™ ay)dy.

For x € G, note that C, € Conj(@G) is the image of the compact set G through the continuous

mapping y ~ yxy~'; C, is a compact and hence closed subset of G. Applying regularity of the
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Banach algebra A(G), for each C, D € Conj(G) where C # D, there is some f € A(G) such
that f(C) =1 and f(D) = 0. The existence of such a f is proven in [26, Lemma 3.2|, since
the conjugacy classes are closed as mentioned. Hence, P(f)(C) =1 and P(f)(D) = 0 when
MG) =1.

Let ¥ : Conj(G) - 0(ZA(G)) be the mapping such that U(C') =1¢. ¥ is an onto mapping.
In the following we demonstrate that ¥ is a homeomorphism where Conj(G) is equipped with
the quotient topology of G' through the mapping ¢ : G - Conj(G) where z — C,. By [59,
Theorem 22.2], for each f € ZA(G) as a continuous class function, f can be regarded as a
function in C(Conj(G)); consequently the quotient topology of Conj(G) is finer that the Gelfand
topology o(ZA(G)). Note that o(ZA(G)) is compact, because ZA(G) is a unital algebra.
Therefore, ¥ : 0(ZA(G)) - Conj(G) forms a continuous bijection from a compact space to

another compact space; hence, ™! is continuous. O
The following theorem is the main result of this section.

Theorem 5.3.5. Let G be a compact group such that Ge, the connected component of the

identity, is not abelian. Then ZA(G) is not weakly amenable.

Proof. Since G, is not abelian, by a result in the proof of Theorem 2.1 in [29], G, has a closed
subgroup H such that is isomorphic to the topological group SU(2) or SO(3).

For each f ¢ A(G), let tg(f) denotes the restriction of the function f to the subgroup
H. As it was proven in [20], for the closed subgroup H of G, tg(A(G)) = A(H); further,
ler (P acey < [ flae)- Therefore, ZA(G)|n < A(H) where ZA(G)|n = tu(ZA(G)).

Moreover, for each f € ZA(G), f(zyxz™t) = f(y) for all z,y € G. So for each z,y € H,
f(zyz™') = f(y). In other words, f|z is a class function on H as well. Hence ZA(G)|y € ZA(H).

For each 7 € G, note that 7|7 is a unitary representation and it may be decomposed applying
finitely many representations o; € H such that 7| g = ®-ymio;; hence,

m
X (y) = Tr(wlu (y)) = ;mzxgi(y) for all y € H,
where m; denotes the number of redundant of each representation ¢; in the irreducible decom-
position of w|y. Hence, xx|x €lin{xs},.7-

If for each 7 € G, X is a constant function on H; therefore, lin{x~}, .z and consequently
ZA(G) are also constant on H. In this case, Proposition 5.3.4 implies that H is contained in
just one conjugacy class of G'i.e. H = {e}. Hence, there is some 7 € H such that x|z (= tir(xx))

is not a constant function on H; xx|g = Xj_oarxk for n € K where K = %Z* (={0,1/2,1,---}) if
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H=SU(2) or K=Z*(={0,1,---}) if H =50(3), ay € C, and {xy }rex are the group characters
of H. Note that aj # 0 for at least one k£ > 0. Therefore, for the restriction mapping Z
defined earlier, we get that Z(yx) € A(T) is not a constant function on T (because all constant
functions in A(T) are the elements of the subalgebra generated by the constant function 1, by
[28, Proposition 5.23|, and clearly Z(xj) does not belong to that subalgebra while oy # 0 for
some k > 0). Therefore,

n n 2k

I(x«[H)(0) = Y anZ(xi)(0) = D > e elin{x}pezsjp (0€T)

k=0 k=0 (=—2k
is not a constant function on T. Hence, there is some 6 € (0,7) such that Dy(x-|H) # 0
for the continuous point derivation Dy defined in the proof of Proposition 5.3.2. Note that
leer (F) | acey < 1 flace for all f e ZA(G); hence, Dy oty forms a non-zero bounded derivation

on ZA(G) and therefore, ZA(G), as a commutative algebra, is not weakly amenable. O

Question. In [29], it was proved that the Fourier algebra of a compact group G is weakly
amenable if and only if G, is abelian. Theorem 5.3.5 shows that for such a G one side of such
a result holds for ZA(G) as well. One may conjecture that the other side can be proven for

ZA(QG) as well where G, is abelian.
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CHAPTER 6

FOLNER TYPE CONDITIONS ON HYPERGROUPS

6.1 Amenability properties of regular Fourier hypergroups

Amenability of hypergroups has different levels. The concept of amenability can be defined on
hypergroups as the existence of a left invariant mean, analogous to groups. In this sense lots of
hypergroups that we know are amenable, say all commutative hypergroups and compact hyper-
groups. This notion of amenability was mainly studied in [70]. In that paper, the author also
showed that the amenability of a hypergroup is equivalent to the property (P;) which is defined
in the following. In this chapter, we introduce more amenability properties of hypergroups and

study them.

6.1.1 Fglner type conditions on Hypergroups

Amenable locally compact groups are characterized by a variety of properties including Fglner
type conditions. These conditions have been studied extensively, [25, 54]. Not only have Fglner
conditions attracted attention for locally compact groups, but Fglner conditions have also been
interesting and useful in the study of semigroups, [73]. They relate the concept of “amenability"
to the structure of the group or semigroup. In this section, we look at a generalization of Fglner
type conditions over hypergroups.

In [2], T introduced the Leptin condition for hypergroups. Here, we define more Fglner type
conditions for hypergroups and we study their relations. To recall, for each two subsets A and

B of some set X, we denote their symmetric difference, (AN~ B)u (B\ A), by A A B.

Definition 6.1.1. Let H be a hypergroup and D > 1 an integer. We define the following

properties:

(Lp) We say that H satisfies the D-Leptin condition if for every compact subset K of H and € > 0,
there exists a measurable set V' in H such that 0 < h(V') < co and h(K *V)/h(V) < D +e.
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(F') We say that H satisfies the Folner condition if for every compact subset K of H and € > 0,
there exists a measurable set V in H such that 0 < h(V) < oo and h(x *V A V)/h(V) <¢

for every z € K.

(SF) We say that H satisfies the Strong Folner condition if for every compact subset K of H and
€ > 0, there exists a measurable set V in H such that 0 < (V') < oo and h(K+V AV)[h(V) <

€.

Remark 6.1.2. If a hypergroup H satisfies the 1-Leptin condition, H is said to satisfy the
Leptin condition as defined in |2, Definition 4.1]. From now on, we may use the Leptin condition

instead of the 1-Leptin condition and we denote it by (L).

Proposition 6.1.3. For every compact hypergroup H, H satisfies all conditions (SF), (F),
and (L).

Proof. The proof is a direct result of finiteness of the Haar measure on compact hypergroups,

[8], by replacing V' = H for all conditions in Definition 6.1.1. O

Remark 6.1.4. In Definition 6.1.1 of the Leptin condition, (Lp), we can suppose that V is
compact. To show this fact suppose that H satisfies the D-Leptin condition. For compact subset
K of H and € > 0, there exists a measurable set V' such that h(K * V)/h(V) < D +¢e. Using
regularity of h, as a measure, for each positive integer n, we can find compact set V3 € V such

that h(V ~V7) < h(V))/n. This implies that 0 < h(V7) and h(V)/h(V1) <n/(n-1). Therefore

h(K *Vy)  h(V) (h(K % V1) n
vy S h(Vl)( %) )< o1 Pre)

So we can add compactness of V' to the definition of the Leptin condition.
Proposition 6.1.5. For every hypergroup H, (SF') implies (L).

Proof. For a compact set K and € > 0, let V' be a measurable set such that A(K+V AV) < eh(V).

Hence

h(K % V) ~ < h(K V) —-h(V)

h(V) B h(V)
WK + V) +h(V) - 20((K V) V)
B h(V)
h((K * V) A V)
h(V)
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Proposition 6.1.6. For every discrete hypergroup H, (F') implies (SF). And consequently,
(F) implies (L).

Proof. We should just show that (F') = (SF') the rest is obtained by Proposition 6.1.5. Let K
be a compact subset of H. Since for discrete hypergroups, each compact set is finite, we may
suppose that K = {x;}I',. Therefore, for € > 0 there is a finite set V such that 0 < h(V') and

M(z*V)av) e

% T (x e K).

So
h((Uiiz) »V AaV) k(Ui (zix V) AV)

h(V) ) h(V)
2 oh(xyxV AV)

<y

= M)

The last inequality is a result of the following fact about arbitrary sets By, B, C":
((Bl U Bg) A C) c (Bl A C)) U (B2 A C))
O

Remark 6.1.7. If H is a locally compact group, all the conditions (F'), (SF'), and (L) are
equivalent and they equal the amenability of the group H. If one tries to adapt the rest of
relations of (F'), (SF), and (L) from the group case, [63], one may notice that in almost all of
the arguments, the inclusion z(A \ B) € zA \ 2B is crucially applied where A, B are subsets
of the group H and x is one arbitrary element.! But this inclusion does not necessarily hold
for a general hypergroup. As an example, one may consider A := {7‘(’0,7['%, .. ,ﬂ'k_%,ﬂ'k} and
B = {7r0,7r%,...,7rk_1,7rk_%} as two subsets of SU(2) for some k ¢ %Z* (see Example 3.2.2).
Therefore, one gets mi * A ={0,7y/2,..., T2} and 7 * B = {myp,... ,7r2k_%}; hence, (7 * A) \

() * B) = {mo, mar}. But mp * (AN B) = * mp = {70, 7M1, ..., Tok-1, Tor }-

6.1.2 The existence of a bounded approximate identity of Fourier algebra

For a regular Fourier hypergroup H, we denote the existence of a |- ||A( m)-bounded approximate

identity by some D >1 by (Bp) and we call it D-bounded approximate identity.

Theorem 6.1.8. Let H be a regular Fourier hypergroup which satisfies the D-Leptin condition.
Then A(H) has a D-bounded approximate identity.

!Note that in general the equality holds, but this side of the inclusion suffices.

75



Proof. Fix € > 0. Using the D-Leptin condition on H, for every arbitrary non-void compact set K
in H, we can find a measurable subset Vi of H with 0 < h(Vk) < oo such that h(K *Vk)/h(Vi) <
D?(1 +¢€)2. Define

1 _
VK ¢ KV *h Lvg.

=1

h(Vi)
As in the proof of Lemma 5.1.8, we have |[vk | 4¢my < D(1 +¢) and vk|x = 1. We consider the
net

{ae,x : K € H compact, and 0 <e <1}

in A(H) where ac i = (1+ €) tvg and Qe, K, < Gey, K, Whenever supp(vk, ) € Ko and ez < €. So
(@e, i) ke H,0<e<1 forms a |- | 4(zry-norm D-bounded net in A(H)NC.(H). Let fe A(H)nC.(H)
with Ko =supp f. Then vi f = f where Ko € K. Therefore

) ) ) f . €
lim lm lac.sc f = flacey =lm "= = flacn = 1£lagn lim ——=0.

Since, by Proposition 5.1.1, A(H) nC.(H) is dense in A(H), (ac K )o<e<1,kcH is a D-bounded

approximate identity of A(H). O

Remark 6.1.9. Let G be a compact group. Then the Fourier algebra of G, A(@ ), is algebraically
isometrically isomorphic to ZL'(G), by Theorem 5.2.1. Also since every compact group G is a
SIN-group, [35], ZL'(G) always has a 1-bounded approximate identity. Therefore, A(G) has a

1-bounded approximate identity.

6.1.3 Reiter condition

In [70, Theorem 4.1], it was shown that the amenability of a hypergroup is equivalent to the

property (P;) which is defined as follows.

Definition 6.1.10. [70, p32]
We say that H satisfies (P,), 7 = 1 or 2, if whenever € > 0 and a compact set E ¢ H are given,

then there exists f e L"(H), f >0, | f]» =1 such that
[0z * f=flr<€e zeE.

We say that K satisfies the Reiter condition if it has property (P).

[70, Theorem 4.3| showed that (P2) implies (P;). Furthermore, for every hypergroup H,
(P1) is equivalent to the amenability of H, [70, Theorem 4.1].
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Example 6.1.11. Every commutative or compact hypergroup H, as an amenable hypergroup,

satisfies condition (P), see [70].
We rely on the following lemma which is from [70] to characterize (P).

Lemma 6.1.12. [70, Lemma 4.4]
Let H be a hypergroup. Then H satisfies (Py) if and only if there is a net (fo)a € L?(H) such

that | fal2 =1 and fo * fo converges to 1 uniformly on compact subsets of H.

Remark 6.1.13. Note that by Lemma 6.1.12, (P») implies the existence of a net (go) (in the
form of go = fo * fa) which belongs to A(H) while, by Theorem 5.1.2, | gq lacey < I1fal3 =1

Remark 6.1.14. Note that in hypergroup case, (P2) is not necessarily equivalent to the
amenability of the hypergroup, though it implies the amenability of the hypergroup. As a coun-
terexample, one may consider the Naimark hypergroup, see [8, (3.5.66)] and |70, Example 4.6],

that is a commutative hypergroup structure on R* (= [0, +00)) where

1 T+yY
Og * Oy = ‘ sinh(t)d; dt (z,y e R"),

sinh(z) sinh(y) Jjz—y
Z = x, and 0 is the identity. For this hypergroup, constant character 1 does not belong to
the support of the Plancherel measure. But [70, Lemma 4.5] shows that for a commutative
hypergroup H, the constant character 1 belongs to the support of the Plancherel measure if and
only if H satisfies (P). Therefore, the Naimark hypergroup does not satisfy condition (P2)

while as a commutative hypergroup it does satisfy (Pp).

The following theorem resembles the Leptin theorem for commutative regular Fourier hy-
pergroups. In the proof, some techniques of the proof of group case (see |68, Theorem 7.1.3|)
have been applied. Some properties of the Fourier algebra which are applied here have been
mentioned briefly in Section 5.1.

Let us recall that a state on a C*-algebra is a positive linear functional of norm 1. Moreover,
if A is a von Neumann algebra with predual A,, every state of A can be approximated by a
net of states of the elements of pre-dual in the weak® topology. Therefore, for a commutative
hypergroup H, a state u on VN(H) which belongs to A(H), is in the form of g * § for some
ge L?(H) (see Section 5.1).

Theorem 6.1.15. Let H be a commutative reqular Fourier hypergroup. Then the following

conditions are equivalent.
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(B1) A(H) has a 1-bounded approximate identity.
(Bp) A(H) has a D-bounded approximate identity for some D > 1.
(Py) H satisfies (P3).

Proof. (B1) = (Bp) is trivial.
(Bp) = (P2).

For (e4)a a D-bounded approximate identity of A(H), there exists a w*-cluster point F ¢
VN(H)*. Note that for each x € H, (A(7), F) = limo(\(2),eq) = limy ea(7) = 1. So Flpi(mp)
may be interpreted as the constant function 1 on H (where L'(H, h) is observed as a subalgebra
of VN(H)). Therefore, for each f,g € L'(H,h), one gets that (F, f * g) = (F, f) (F,g). Hence
F|p1(a,p 1s a multiplicative functional on L'(H,h). Therefore, for each f € L'(H,h), (F, f*5,f) =
(F, f)(F, f) =|(F, f)|*> 0. But L'(H,h) is dense in the C*-algebra C; (H); hence, Flesry is a
positive functional on C§(H) that is (F, f * f) >0 for every f ¢ C3(H). Also as a multiplicative
functional, ||F|C;(H)H = 1. But as a positive norm 1 functional, F|C;(H) is a state. Thus,
by [55, Corollary 2.3.12], Flcs(m) is extendible to a state £ on VIN(H). Because states of
VN(H) which belong to A(H) are weak” dense in the set of all states of VIN(H), we may
find a net (fg)g in {f *, f: f e L*(H,h)} such that fz = g *5 g5 - E in weak* topology
for a net (gg)s € L*(H,h). Moreover, 1 = | fglacmy = fa(e) = g5 *n gs(e) = lgsl3. Since
Floxny = Elcg (m), for each ue A(H) and f € LY(H), since uf € L'(H), we have

ligl(Ufﬂaﬁ =(u-E, f) = (F,uf) =lim(eq, uf) = {u, f). (6.1.1)

Therefore, ufz — u with respect to the topology o(A(H), L*(H)). Recall that L*(H) is dense
in C{(H) while A(H) ¢ B\(H) and By(H) = C{(H)*. Let us fix u € A(H). Therefore, for
some given € > 0 and f € C5(H), there is a g € L' (G) such that |g - flesmy < e Also there is
some [y such that for each 5 > By, [(ufs —u,g)| <e. So,

[(fou—w, )l < [fsu=u,f=g)l+[{fsu-ug)

lwllaceny (I fallacy + DS = gllosn + € < 2lulacy + De.

IN

Therefore, ufg — f with respect to the topology o(A(H),C}(H)) which corresponds to the
weak topology on By(H). It is a well-known result of functional analysis that the weak closure
of a convex set coincides with its norm closure, so that for every € > 0, there exists ¢y,

¢ e conv{ fg} such that u; € A(H) for i=1,...,n and |u;p — u| a¢sry < €. Moreover,

1=p(e) <[l <lelacm < 1.
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Note that ¢ is also is a positive functional in the cone of positive functionals on VN(H);
therefore, ¢ is actually a state and since H is commutative, @ = 1) * 1 for some 1) € L?(H).

To make the set of all such ¢’s a net, let I := {(S,€):S c A(H) is finite, € > 0} become a
directed set by (S,€) < (S’,€")if S ¢ S” and € > €. This lets us to render the net (pq)q € conv{fz}
that is a bounded approximate identity of A(H). On the other hand, for each compact set
K ¢ H, by Lemma 5.1.8, there is some ug € A(H) such that ug|K = 1. Therefore, for each
rekK,

IN

lm [1 = @o(2)] = lim |ug (2) - uk (2)pa(r)] < limfug - urpale

IA

lim [ug —urpal ac =0-

So ¢4 — 1 uniformly on compact subsets of H. Consequently, by Lemma 6.1.12, the existence

of the net (¢4 ) implies (P).

(P2) = (B1).
Let (gs)s be the net generated by (P,) in Lemma 6.1.12, that is gg = fg * f5 for some fz € L2(H)

while | fg[2 =1 for every 5 and gg — 1 uniformly on compact sets. Therefore,

1= £5l3 = 95(e) < lgsloo < lgsl acry < I 513 < 1.

Also for each u e A(H)nC.(H) and f e L'(H),

IN

hg;lfH lu(z)|lgs(x) - 1| f(z)|dx
fsuer(u) [u(z)llgs(x) =1 f (2)|dx = 0.

lim{ug; - u. )

Let us fix u € A(H). For given € >0 and f € L'(H), there is some v € A(H) n C.(H) such

that |u—v|am) < € and By such that for any 3> By, [{(vgs — v, f)| <e. So for any 3 > o,

ugs —u, f)l < Wugs —vgp, F)l+ {vgs = v, F)| +[(v=-u, f)|

IN

lu=vlacmlgslacn | fl+e+ o =wl|awmlfl

e[ fllr+1).

AN

Therefore, by one generalization to arbitrary functions on A(H), limg ugg = v in the topology
o(A(H),L'(H)). But indeed A(H) ¢ By\(H) and this topology on bounded subsets of A(H)
coincides to the weak topology on By(H) i.e. o(B\(H),C5(H)). So similar to the previous

part, there is a (eq)a € conv{gg}s such that
horén ”uea — €a ”A(H) =0
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for every uw e A(H). Also note that for each a,

1=eq(e) <[ealeo < fealacm) <1

Remark 6.1.16. Let G be a locally compact group. Then G satisfies the D-Leptin condition
for each D > 1 if and only if it satisfies the Leptin condition. To observe this fact, note that the
existence of a bounded approximate identity for A(G) is equivalent to satisfaction of the Leptin

condition by the group G, |68, Theorem 7.1.3].

6.1.4 Summary

Theorem 6.1.17. Let H be a commutative reqular Fourier hypergroup. Where
(SF) H satisfies the strong Folner condition.

(Lp) H satisfies the D-Leptin condition for some D > 1.

(Bp) A(H) has a D-bounded approzimate identity for some D > 1.

(Py) H satisfies (Py).

Then

(SF) (L1) (Lp) (Bp) == (B1) == (I»)

Proof. (SF) = (L1) by Proposition 6.1.5. While (L;) = (Lp) is trivial, (Lp) = (Bp) by
Theorem 6.1.8. (By) < (Bp) < (P2), by Theorem 6.1.15.

Note. In Theorem 6.1.17, note that we suppose H to be a commutative hypergroup; hence, H
is amenable, and equivalently, H satisfies the Reiter condition.
Note. For a locally compact group H in Theorem 6.1.17, all aforementioned conditions are

equivalent and equal the amenability of the group (see [63] and [68]).
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6.2 D-Leptin condition on dual of compact groups

In Theorem 5.2.1, it was proven that the duals of compact groups, as discrete commutative
hypergroups, are regular Fourier hypergroups. We will apply this fact to study some properties
of compact groups, using the Fourier algebra of the dual of compact groups. In the following
we study the D-Leptin condition for some hypergroups which are the dual of compact groups.
We calculate D, for S/U_(3\) and STJTQ), relying on representation theory of the corresponding
compact groups.

Note that since the duals of compact groups are commutative, they are all amenable hyper-
groups, [70], but this amenability does not say anything about the Fglner condition on these
hypergroups (unlike groups). So the next question is: for which compact groups G do the
hypergroups G satisfy the D-Leptin condition?

A version of some results of this section has been published in [2].
Proposition 6.2.1. The hypergroup SU(2) satisfies the Leptin condition.

Proof. Take a finite subset K of SU(2) and € > 0. Let k :=sup{¢: my € K}. Recall that for the
Haar measure h, h(mp) = d?w = (20 +1)? for every (¢ %Z+ (see Example 3.2.2). We select m > k
such that for V = {m,}}2,

h(V) DR

(2m+2k+1)3+ S (2m+ 2k +1)% + £ (2m + 2k + 1) .
= <1l+e.
%(2m+ 1)3+3(2m+1)2+5(2m+1)

Note that for every my, € K, {1 < k <m and for every m, € V, fo < m. Therefore, my, * 7, =

Uﬁire?—ﬁzl{m}' Let us fix my, € mp, * mp,; 0 < Ly < 4y + Ly < k+m. By splitting the possibilities of

¢y with respect to m and k in the following, we show that 7y, € m * V' and since g, {1, and ¢,

are arbitrary, this implies that my, * V € » V for every my, € K.

(i) If k < lyp < m+k. Then for t := ly — k < m, one gets that 7 * m = Uii\ﬁo— {m¢} which

2%

clearly contains .

(i1) If 0 <4y <k and g € N*. Then 7y * 7y = U%fo{ﬂ'g} contains my,.

_1
i) If0< o<k and £y ¢ N*. Then mp %, 1 =" 2
k
2

1 {m} contains mg,.
=3

Therefore, for each x € K, K * V = Uz + V S+ V. So by using (6.2.1),

h(K % V) B h(m * V)

W) ST () <l+e.
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O]

In the following theorem, we study the D-Leptin condition for the hypergroups defined in
Example 3.2.4.

Theorem 6.2.2. Let G = [, Gi for a family of compact groups (G;)sx such that for each
i eI, G; satisfies the D;-Leptin condition. Then if D := [Tiex Di exists, G satisfies the D-Leptin

condition.

Proof. Given finite subset K of G and € > 0 there exists some finite set F' ¢ I such that K ¢
®icr K; ® B where K; is a finite subset of G\l and F% = ;e r mo Where mg’s are the identities
of the corresponding hypergroup G;. If D := [T;ex Di < 00, given € > 0, one may find an ¢’ > 0 such
that [T;ep(D; +€') < D + €. Using the D;-Leptin condition for each G;, there exists some finite
set V; such that hg (K; * V;)/hg (Vi) < D; + €. Therefore, for the finite set V = (®ier V;) ® £,

h(K*V) < H th(KZ *V;) < H(D--}-gl) <D +e.
(V) Tar he, (Vi) g

6.2.1 D-Leptin condition for dual of Lie groups

Let G be a connected simply connected compact real Lie group, (e.g. SU(n)). Then, G, as
the dual object of a compact Lie groups, forms a finitely generated hypergroup (see |9, 77]).
Suppose that F'is a finite generator of G; therefore, by [6, Theorem 2.1|, there exists positive
integers 0 < o, 8 < oo such that
ha(FF)
<
kde

<B (6.2.2)

for all k € N where dg is the dimension of the group G as a Lie group over R. According to the
following theorem, this estimation for the growth rate of G results in the satisfaction of D-Leptin

condition for G.

Theorem 6.2.3. Let G be a connected simply connected compact real Lie group. Then @, as a

hypergroup, satisfies the D-Leptin condition for some D > 1.

Proof. Take a finite set K ¢ G. Suppose that F is a finite generator of G. For some k € N,
K ¢ F*. Moreover, for each £ € N, F* « F¥ ¢ F'**_ By applying (6.2.2),

ha (K * F* ha (FF Pk dg dg
lim sup M < limsup M = lim sup i ) ¢ (t+k) < Bla.
Therefore, G satisfies the D-Leptin condition for some 1 < D < oo. [
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6.2.2 D-Leptin condition of SU(3)

Let SU(3) denote the special group of 3 x 3 unitary matrices which is a connected simply
connected compact real Lie group. Although by Theorem 6.2.3, we may verify the satisfaction
of the D-Leptin condition for SU(3), we found it difficult to calculate the constants o and 8 in
the proof of Theorem 6.2.3 for G = SU(3). Here we may apply some studies on the representation
theory of SU(3) to find a concrete answer for D.

Proposition 6.2.1 proves that Leptin condition is satisfied for the dual of 2 x 2 special unitary
matrices group. We have not been able to prove the same result for the dual of the 3 x 3
special unitary matrix group, ST]_@ Instead, we may show that 57](\3) satisfies the 6561-
Leptin condition. Our main reference to study SW(T%) is [79]. In this paper, the irreducible
decomposition of the tensor product of irreducible representations of SU(3) has been studied.
The author would like to thank Professor Wesslén for the constructive communication about
this subsection. Here we recall the following brief background from [79] as well.

One may present the irreducible representations of SU(3) by {(p,q)}, qenu{oy Where for each
representation (p,q) the dimension of the representation is (p+1)(g+1)(p+q+2)/2. Although
the precise decomposition of tensor product of irreducible representation studied in [79] is fairly
complicated and we do not have a simple formula similar to the “Clebsch-Gordan” decomposition

formula for SU(2), introduced in Example 3.2.2, the work of [79, Section E] shows that
(p,q) * (¥',q") € {(i,4) : 0 < i, j < 3max{p,q} + 3max{p’,¢'} + 1}. (6.2.3)
Proposition 6.2.4. The hypergroup SU(3) satisfies the 6561-Leptin condition.

Proof. Fix a finite set K of SU(3) and € > 0. Given K}, := {(i,j)}f’jzo for some k € N such that
K c K, for each n € N, define V,, := {(i,j)};szo. Hence, by (6.2.3),

Ky # Vi € Upp={(4,7) :4,7€0,...,3k+3n+1}.

Therefore,
h(K % V,) < h(Ky * Vy,) B h(Up 1)
h(Va) = h(Va) = h(Va)
DI R(( ) z?’;*%"” TE+1)2(+1)%(i+ 5 +2)
W:Oh((z,])) ” 04(z+1)2(j+1)2(z+]+2)2
which approaches 6561 = 3% when n — oo, by some simple calculations. ]
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6.2.3 An application: approximate amenability of Segal algebras of compact

groups

The notion of approximate amenability of a Banach algebra was introduced by Ghahramani and
Loy in [31]. A Banach algebra A is said to be approzimately amenable if for every A-bimodule
X and every bounded derivation D : A - X, there exists a net (D, ) of inner derivations such
that

lig[nDa(a) =D(a) forall ac A.

This is not the original definition but it is equivalent. In [31], it is observed that approxi-
mately amenable algebras have approximate identities; moreover, closed ideals with a bounded
approximate identity and quotient algebras of approximately amenable Banach algebras are
approximately amenable.

In this subsection, we study the approximate amenability of proper Segal algebras of compact
groups. Approximate amenability of Segal algebras has been studied in several papers. Dales and
Loy, in [18], studied approximate amenability of Segal algebras on T and R. They showed that
certain Segal algebras on T and R are not approximately amenable. It was further conjectured
that no proper Segal algebra on T is approximately amenable. Choi and Ghahramani, in [14],

have shown the stronger fact that no proper Segal algebra on T¢ or R? is approximately amenable.

Remark 6.2.5. I extend the result of Choi and Ghahramani to apply to all locally compact
abelian groups, not just T¢ and R? in [2]. My approach, like that of Choi-Ghahramani and
Dales-Loy, was to apply the Fourier transform and work with abstract Segal subalgebras of the

Fourier algebra of a locally compact abelian group.

In [14], a nice criterion is developed to prove the non-approximate amenability of Banach
algebras. We will rely crucially on this criterion. For this reason, we present a version of the
criterion below. Recall that for a Banach algebra A, a sequence (ay,)nen € A is called multiplier-
bounded if, for some M > 0, sup,,oy |lanb| < M|b| and sup,,y |ban| < M|b| for all be A. If S is
an abstract Segal algebra of a Banach algebra A, each element a € A acts on A as a bounded

multiplier on §.

Theorem 6.2.6. (Choi-Ghahramani)
Let A be a Banach algebra. Suppose that there exists an unbounded but multiplier-bounded
sequence (ap)ns1 € A such that

AnQn+l = An = Gp+10n
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for all n. Then A is not approzimately amenable.

To prove the main theorem we need the following lemma. The proof of the following lemma

is adapted from [44, Lemma 1].

Lemma 6.2.7. Let A be a Banach algebra and J be a dense left ideal of A. Then for each

idempotent element p in the center of algebra A i.e. p* =pe Z(A), p belongs to J.
Proof. Since J is dense in A, there exists an element a € J such that |p—a|4 < 1. Let us define
bi=p+ ) (p-a)
n=1
One can check that pb— pb(p — a) = pba, which is an element in 7. On the other hand,
p(p+ Z(p—a)”) —p(p+ Z(p—a)") (p-a)
n=1 n=1

p+p Yy (p-a)"-py.(p-a)" -p(p-a)

n=1 n=2

p+p(p—a)-p(p-a)=p.

pb —pb(p - a)

O

Remark 6.2.8. As an alternative proof for Lemma 6.2.7, let us assume that (if A is not unital)
A, is the unitalized algebra of A with the identity e. Therefore, for the idempotent p € A, there
is some a € J such that |p—a|4 < 1. Therefore, by a well-known argument in spectral theory of

Banach algebras, for z := p — a, e — x is invertible and

(e—x) ' =e+z+a®+-

Note that a = p—x; therefore pa = p—px = p(e—z) = (e—x)psince p € Z(A). Sop = (e—x) 'pac J.

Corollary 6.2.9. Let G be a compact group. Then lin{x,} .7 is | -|1-dense in ZL*(G) and
for every Segal algebra S*(G), its center, ZS'(G), contains lin{x~}. g

Proof. Let T be the map defined in the proof of Theorem 5.2.1. Then, T(ZL'(G)) = A(G). Also
for the discrete hypergroup G, A(G) equals the | - || A(G)-Closure of lin{d,} .z, [60]. Therefore,
ZLY(G) is the | - [q-closure of lin{xr} .z, since T(xz) = d; 0 for each 7 € G. Also by

Lemma 6.2.7, S*(G) contains all central idempotents d,x, for each 7 € G.

The main theorem of this section is as follows.
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Theorem 6.2.10. Let G be a compact group such that G satisfies the D-Leptin condition for

some D > 1. Then every proper Segal algebra on G is not approrimately amenable.

Proof. Let S1(G) be a proper Segal algebra on G. Fix € > 0. Using the D-Leptin condition on
G, for every arbitrary non-void finite set K in G, we can find a finite subset Vi of G such that
h(K * Vi)/h(Vk) < (D +¢)?. Using the proof of Lemma 5.1.8, for

1

I vy v < v o2

we have HUKHA(@) < (D +¢), vg|k = 1, and support of vk is compact. We consider the net
{vg : K € G compact} in A(G) where vk, > vg, whenever supp(vg,) € Ka. So (vK) g forms
a|- HA(@)—bounded net in A(G)nce(G). Let f e A(G)ne.(G) with K =supp f. Then v f = f.
Therefore, (vK) g is a (D +¢e)-bounded approximate identity of A(G), since A(G) neo(G)(=
ce(@)) is dense in A(G), by Remark 5.1.11.

Using T defined in the proof of Theorem 5.2.1, we can define the net (ux), .z in S*(G)
by ug = T Y(vg). Fix a finite set Ko € G. We show that (uK) @ satisfies some conditions.
First of all, since 7 is an isometry from ZL'(G) onto A(G), (uK) ge@ is @ | - [1-bounded net in

Sl(G), by Lemma 6.2.7. Moreover, since 7 is an isomorphism,
UK, * UKy = T_l(vKl) * T_I(UK2) = T_I(UK1UK2) = T_I(UK1) SUK,

for vg, > vk, which we equivalently denote by ur, > ug,. Let (ux) .z be the net constructed.

Claim. For every Ky c é, Ky finite, the net {ug : ux > ug,} is unbounded in the norm of
SHG).

To prove the claim, assume towards a contradiction that there exists Ky finite and C > 0
such that |lug||g1(q) < C for all ug > ug,. Since G is compact and SH(@) is a Segal algebra,
we know, [44], that S'(G) has a central approximate identity which is bounded in L-norm.
Denote this by (eq)q. By Corollary 6.2.9, let us generate a net (6;7E)a’1>6>0 in lin{xr}, .z where
leq.e = eallt < € for each pair of («,¢) while @ ~ on the given order and ¢ — 0; therefore,
(€l )a1e0 € ZS'(G). We show that (€, )a,15e0 is still a central | - [1-bounded approximate

identity of S(G). To do so, for each f € S*(G), note that

IN

lewe* f=Flsie lene* f—ear fllsia) + lea* f = flsie

IN

len.e —eallil fllsiay + lea * f = flsi

which goes toward 0 where a grows and € — 0. Moreover, for each («,€), there exists some

finite set K’ such that Ky ¢ K’ ¢ G and T (eq.)vie = T(ep,) for each v < vg; hence,
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”6;75”51(6‘) = limg ||€f175 * UK ||51(G). Consequently,

letelsr ey =limfeqe xurlsi@y < suwp _|eqchluxlsi @) < Clea.lr

KocKcG
This implies that (e, )a,15e-0 18 |- [ $1(g)-bounded. But, a Segal algebra cannot have a bounded
approximate identity unless it coincides with the group algebra, [10], which contradicts the

properness of S1(G). Hence, the claim is proved.

To generate a sequence which satisfies the conditions of Theorem 6.2.6, fix a non-empty
finite set Ko € G. By our claim, we inductively construct a sequence of finite sets Ky c K c -
in G such that ug, > ug, , and lur,llsi(qy = n for all n e N. Since ug, * uk, , = uk,_,, by

Theorem 6.2.6, S'(G) is not approximately amenable.

6.3 Leptin condition for Polynomial hypergroups

In [37] the authors try to render the notion of Fglner conditions on polynomial hypergroups.
With this motivation, summing sequences in the context of polynomial hypergroups are defined

as follows.

Definition 6.3.1. [37, Definition 2.1|
Let Ny denote the polynomial hypergroup defined in Section 3.3 and h its Haar measure. A
sequence (Ay)nen, Where A, € Ny for all n € N is called summing sequence on the polynomial

hypergroup Ny if it satisfies
(1) A, € Ay for every n e Ny,
(2) NO = UnENO A’na

(3) h(A,) < oo for every n € Ny,

) tim M ADAL

Jim hAy) =0 for all k£ € N.

In [37], a polynomial hypergroup Ny is said to satisfy property (H) if

_ h(n)
a1 ()

[37, Theorem 2.5] shows that a polynomial hypergroup on Ny satisfies condition (H) if and only

- 0. (6.3.1)

if the sequence (Sy,)nen i @ summing sequence where for each n € N, S, := {0,1,...,n}.
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Proposition 6.3.2. Let Ny be a polynomial hypergroup which has a summing sequence (Ayp )nen, -

Then it satisfies all the Leptin, Strong Fglner, and Folner conditions.

Proof. If we just show that the existence of a summing sequence implies the Falner condition, the
rest would be proven based on Proposition 6.1.6, since Ny is a discrete commutative hypergroup.

Let K ¢ Ny be finite. Since (Ay,)nen is @ summing sequence, for given € > 0, there is some N € N

such that
h(k * ANAAN)
h(An)
for every k € K. Therefore, Ny satisfies (F') and consequently (SF') and (L). O

Remark 6.3.3. Note that if Ny satisfies (H), the canonical sequence (Sy,)nen, is & summing
sequence. Therefore by Proposition 6.3.2, every polynomial hypergroup which satisfies condition
(H) satisfies (L), (F'), and (SF'). As an example in [37], it was shown that Jacobi polynomials
satisfy condition (H) and consequently have the canonical sets (S, )ney as a summing sequence.

So this class of polynomial hypergroups includes Jacobi polynomials.
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CHAPTER 7

ARENS REGULARITY AND OPERATOR ALEGBRAS

In Chapters 3 and 4, we saw a family of hypergroups which have applications to some Banach
algebras on locally compact groups. In this chapter, we pursue our studying on properties of
weighted hypergroup algebras. Therefore the abstract results obtained in this chapter can be
applied to the Banach algebras mentioned in the previous chapters. Doing so, we enrich this

chapter with a variety of examples.

7.1 Arens regularity

7.1.1 General theory

This subsection is a brief report of the general theory of Arens regularity of Banach algebras
which is a summary of a part of [17, Chapter 2|. So all unproven results can be found there.

Let A be a Banach algebra. For ¢ € A* and f, g € A, one may define ¢- f and f-¢ in A* by

(f-0.9)=(0:9f), (&-F.9)=(0:f9).

Note that this implies that A* is actually an A-bimodule with respect to the maps

(fyo)=o-f, (f;d)= [0, AxA" > A"
For each ¢ € A* and F € A**, let us define ¢- F and F - ¢ in A* by their action on A where
(f,¢-F)=(F.f-¢), (f,F-¢)=(F,¢-[)

for all f € A. Eventually, for each pair F,G € A**, one may define
(FOG,¢)=(F,G-¢), (FOG,¢)=(G,¢-F)

for all ¢ € A*.

Theorem 7.1.1. [17, Theorem 2.8/
The Banach space A** equipped with multiplication O (with multiplication <) forms a Banach

algebra.
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Definition 7.1.2. The Banach algebra A is called Arens regular if two actions O and < coincide.

Let A be a Banach algebra and F,G € A**, we know that there are nets (f,) and (gg)g in
A such that f, - F and gz - G in weak” topology. One may show that for products 0O and &
Of A*)(—,

FoG=w"-limw" -lim fogs and FOG=w"-limw" -1lim f,g3.
[e] B B a

Note that since A is a closed subalgebra of (A**,0) and (A**, <), by identifying each element

of A by its image in the second dual, one gets that

fF=foF=foFand F-f=FOf=F&f (FeA*™, feA.

Let us recall from Definition 4.1.3, that a Banach algebra A is called a dual Banach algebra
with respect to F, if F is a closed sub-bimodule of the dual A-bimodule A* that if for every
¢peFand fe A, f-¢ and ¢- f belong to E such that A= E*. Also by Proposition 4.1.4, for a

central weight w, /1(H,w) is a dual Banach algebra.

For Banach algebra A, let A, be a Banach space such that A is (isometrically isomorphic
to) (A.)* as its dual Banach algebra that is the dual space of A, as a Banach space, and such

that the multiplication becomes separately weak*-continuous. Therefore, for every f, g€ A and

(beA*a

(fga¢>:<g7¢'f>'

Moreover, let A be a dual Banach algebra with respect to A.. Let ¢ : A, - (As)** be the
canonical embedding which identifies every elements ¢ € A, as a linear functional in A*. For

every ¢ € A, F e A**, (P(F),¢) = (F,¢). Further, for each f e A, F e A** and ¢ € A,, recall
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that F' is the weak * limit of a net (fy)a S .A; hence,

(P(f-F),0) = (f-F.ue))
= (f-F.u(9))
= (Fue)-f)
= lim(fa,u(¢) f)

07

= lim(f fa, L(¢))

{
m(
= lim(fa, @~ f) (%)
= lim(fa, (¢ 1))
= (Fue- 1))
= (P(F).¢- )
= (fP(F),0).
Note that (x) is correct based on this fact that A is a dual Banach algebra of A.. But since
A, is weak* dense in A" = (A.)**, one may conclude that P(f-F) = fP(F) and similarly,
P(F-f)=P(F)f for all feAand FeA*™.
Let us define AL = {F e 4" : (F,¢) =0for all ¢ € A.}.

Proposition 7.1.3. [17, Proposition 2.16]
Let A be a dual Banach algebra with respect to some Banach space A, where A= (A.)*. Then
A is Arens reqular if @O0V =® S W =0 for all P,V € AL

Proof. Note that for each F' € A, (F - P(F),¢) =0; F - P(F) € A;. Hence, A** = Ao A;
as a direct sum of Banach spaces where every F € A** can be decomposed canonically as

(P(F),F - P(F)). Furthermore, note that for every F,G € A**,

FoG = (P(F)+(F-P(F)))o(P(G)+(G-P(G)))

P(F)P(G)+ P(F)-(G-P(G)) + (F - P(F))-P(G)

+

(F-P(F))o (G- P(Q)).

Therefore, (A**,0) can be identified as a semidirect product A x AL if for F' = (f,®) and
G=(g,9) in A",
FOoG=(fg,f-U+® g+VOd). (7.1.1)

Similar argument works for &-action as well; hence, (A**, &) = Ax A; where for each F € A** | if

$:= F-P(F)e AL and f = P(F), F = (P(F),¥). Therefore, for each F = (f,®) and G = (g, )
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inA*x—’
FOG=(fg,f-¥+P-g+VO QD). (7.1.2)

Therefore if oW =® &G W =0, (7.1.1) and (7.1.2) finish the proof. O

7.1.2 Arens regularity of weighted hypergroup algebras

In [41, Chaptetr 4], Kamyabi-Gol applied the topological center of hypergroup algebras to prove
some results about the hypergroup algebras and their second duals. For example, in [41, Corol-
lary 4.27|, he showed that for a (not necessarily discrete and commutative) hypergroup H (which
possesses a Haar measure), L'(H) is Arens regular if and only if H is finite.

Arens regularity of weighted group algebras has been studied by Craw and Young in [16].
They showed that a locally compact group G has a weight w such that L'(G,w) is Arens
regular if and only if G is discrete and countable. [17]| presents a thorough report of the Arens
regularity of weighted group algebras. In the following we adapt the machinery developed in [17,
Section 8] for weighted hypergroups. [17, Section 3| studies repeated limit conditions and gives
a rich variety of results for them. Here, we will use some of these results. We define 0O-cluster

functions as presented in [17, Definition 3.2] and [17, Definition 3.6].

Definition 7.1.4. Let X and Y be non-empty sets, and let f: X xY — C be a function. Then
f O-clusters on X xY if

limlim f (2, yn) = imlim f (2, y,) =0
n m m n

whenever (z,,) and (y,) are sequences in X and Y, respectively, each consisting of distinct
points and both repeated limits exist.

If f is a bounded continuous function on X x Y into C. Then f 0-clusters strongly on X x Y if

lim limsup f(z,y) = lim limsup f(x,y) = 0.
T—00 Y=>0 rooco

y—oo
Let X and Y be non-empty sets, and let f: X xY — C be a continuous bounded function.
Then [17, Proposition 3.8 shows that if f O-clusters strongly on X x Y, it O-clusters on X x Y.

Note that for £** : 1 (H,w)** - (1 (H)** and ® € ¢o(H,w)*, one gets

(7(2),0) = (®,r7())

which is equal to 0 for all ¢ € co(H). Therefore **(®) € co(H)*. The converse is also true and

straightforward to show (which we do not use here so we do not mention).
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Let us define the bounded function Q: H x H - (0,1] b
(z,ye H). (7.1.3)

The following theorem is a generalization of |17, Theorem 8.8]. In the proof we use some

techniques of the proof for [53, Theorem 3.16].

Theorem 7.1.5. Let (H,w) be a weighted hypergroup and let Q 0-cluster strongly on H x H.
Then ®aW =0 and ® OV =0 whenever ®,V € co(H,1/w)*.

Proof. Let us show the theorem for ® 0 W, the proof for the other action is similar. Let &, W €
co(H,1/w)*. There are nets (fa)a,(95)s € £'(H) such that f, — £**(®) and gz - £**(¥) in
weak* topology of *(H)**. Without loss of generality, let |**(®)| = |£**(¥)| = 1; hence, by a
standard corollary of Goldstine’s theorem, [24, Theorem 9.7.14], (fo)a and (gg)s may be chosen
such that sup,, | fa[1 <1 and supg |gs)1 < 1.

So for each 1) € £ (H), k* (1)) = 1w € £*°(H,1/w) and ® O € £} (H,w)**; hence,

(Yw, k(PO T))

(*(¢), O W)
—%m?w%m%mwnﬂwn

liénlién(i/}w, falw * glw).

Thus

(Yw, k™ (2O W))]

limlim|<¢w,fa/w * gglw)]
fa(x gﬁ(z)

= limlim| >} o(m)w(y) X * 0. (y)
yeH wzeH (LL‘) w(z)
< hmsuphmsup > [fa(@)l l95(2)] D w(W)w(y)de * 6-(y)
B x,zeH w(x) w(z) yeH
< tmsuptimsp [l 3 [(olgp()] Y A0+ (0)
x,zeH yeH ( ) (Z)
= thUthSUPH@ﬁsz(H) ZH|fa(fC)||gﬁ(2)|Q(fU %)

For a given € > 0, since by the hypothesis lim, limsup, Q(z,z) = 0, there is a finite set
A € H such that for each x € A°:= H \ A there exists a finite set B, € H such that for each
zeBS:=H~\B,|Qx,z)|<e.

First note that

hmsup lim sup Z Z [fa(2)|lgs(2) |z, 2) < 1imsuplim6supera l1llgal1 <e.

reAC ze BS
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Also according to our assumption about ® and ¥ and since for each x € H, 6, € co(H, 1/w),
lim fo(z) = (®,4,) =0, liéng@(a?) =(0,d,)=0.
(0%

So for the given € > 0 there is o such that for all ag < o, |fo(2)] < €/|A] for all x € A. Moreover,
for each x € A® there is some [ such that for all 3 where 8§ < 3, |gg(2)| < €/|By| for all z € B,

(this is possible since A and B, are finite). Therefore, since [Q(z, 2)| < 1,

limsuplimsup 33 3 10 (2)lg3(2)[0(z,2) < lmsupelgshr =

xeA zeH
and
lim sup lim sup Z Z |fa(z)|lgs(2)|2(z,2) < limsup Z | fo(2)|lim sup Z l95(2)|
a B8 xr€AC zeB, & reAC B8 2B,
< limsupe|fofi =¢.
«
But

> fa(@)lgs(2)I(, 2) >, fa(@)llgs(2)|Q(z, 2)

x,zeH xeAc,ze BS
+ 2 Ma@)llgs(2)|(z, 2)
reA,zeH
+ 2 a@llgs(2)IQ(z, 2),
reAC zeBy

and so, one gets that [(¢Yw, x** (@0 ¥))| < 3€||1)| 0. This implies that ® o ¥ = 0.
O

Theorem 7.1.6. Let (H,w) be a discrete weighted hypergroup with a central weight w and

consider the following conditions:
(1) Q 0-clusters strongly on H x H.
(2) ¥ =DV =0 for all @,V € co(H, 1/w)*.
(3) Y(H,w) is Arens reqular.

Then (1) = (2) = (3).

Proof. (1) = (2) by Theorem 7.1.5. (2) = (3) is implied from Proposition 7.1.3 and Proposi-
tion 4.1.4. 0

Remark 7.1.7. Since in hypergroups, the cancellation does not necessarily exist, the argument

of [16, Theorem 1| cannot be applied to show ((3)) implies ((1)).
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Corollary 7.1.8. Let (H,w) be a weighted discrete hypergroup such that w is a weakly additive
central weight. If 1w € co(H), then ¢*(H,w) is Arens regular.

Proof. We have

Oy * 0.
lim limsupM < limsuplimsupCM
Too0 Yoo w(w)w(y) zooo yooo  w(w)w(y)
1 1
= Climsuplimsup 0.

00  Yy—00 W(x) ’ @ )

Therefore Q 0O-clusters on H x H and hence ¢! (H,w) is Arens regular by Theorem 7.1.6.
O

Corollary 7.1.9. Let H be an infinite finitely generated hypergroup. Then for each polynomial
weight wg (3>0) on H, (*(H,wg) is Arens regular.

Proof. Let F be a finite generator of the hypergroup H containing the identity of H rendering the
central weight wg. First, note that by Remark 4.2.2, wg is centrally additive (and consequently
weakly additive) with constant C' = min{1,2%'}. Moreover, for each N ¢ N, FV is a finite

subset of H such that for each x € H ~ FV, 7r(x) > N; hence,
wp(z) = (1+71p(2))? > (1+N)P.
Hence 1/wg € co(H) and therefore ¢*(H,wgs) is Arens regular, by Corollary 7.1.8. O

Example 7.1.10. In Section 3.3, we introduced polynomial hypergroup structure of Ny. Fur-
ther, as a finitely generated hypergroup, we defined the polynomial weight wg on that where

wg(n) = (1 +n)? for every n e Ng. Therefore by Corollary 7.1.9, ¢}(No,ws) is Arens regular.

Remark 7.1.11. Every infinite finitely generated hypergroup H admits a weight for which the
corresponding weighted algebra is Arens regular. An argument similar to |16, Corollary 1] may
apply to show that for every uncountable discrete hypergroup H, H does not have any central

weight w which O-clusters.

7.1.3 Arens regularity of weighted hypergroup algebra of Conj(G) for some
special G

Remark 7.1.12. Let w be a central weight on Conj(G) for some FC group G. Then there is a
group weight o, as defined in Remark 4.4.1, such that ¢£!(Conj(G),w) is isometrically Banach
algebra isomorphic to Z¢*(G,0,,). So one may use the embedding ¢!(Conj(G),w) = £1(G,0,)
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to prove the results of this subsection applying the theorems which are characterizing weighted

group algebras..

Example 7.1.13. Let Aff, := Z, x Z; be the affine group generated with Z,(:= Z/pZ) for a
prime number p, when for each (a,b), (a’,b") € Aff, we define (a,b)(a’,b") = (a+ba’,bb"). Based
on the calculations of [74, p 274, in the following table, we re-present the structure of conjugacy
classes of Aff),.

Conjugacy classes | Co1)y Cr1,1y Cloy) Y2, p]

Number 1 1 p-2
Size 1 p-1 P
As a direct result of the above table, for each three conjugacy classes say Cq,Cs, D ¢
Conj(Aff,), |D| < (|C1] +|Cq|) if D ¢ C1Cy for each prime number p > 3. In other words,
the weight w,(C') := |C|, defined in Example 4.4.2, forms a central additive weight on Aff,. Let
P be the set of all prime numbers greater than or equal to 3. Define G = ®pep Aff}, and w, is
the weight defined in Example 3.1.3 for some o > 0. For C € D » E for C, D, E € Conj(G), we

have
wa(C) = (A+[Cy|+-+]C;, )”
< (1+|Dy|+ - +|Dyi, | + 1+ By | + -+ |E;, N
< M ((L+|Diy |+ +[Di, D* + (1 +|Ejy | + -+ |Ei, )?) < C(wa(D) + wa(E))

for M = min{1,2° '}, by (4.2.1), where i; € Ic and I¢ is the set of all indexes i € I such that
x; # ey, for some x = (x;);e1 € C as defined before in Example 3.1.3.

Hence, w, is centrally additive (see Definition4.1.5). Moreover, since for each p € P, |C| > p—1
for any non-trivial element C' € Conj(Aff,), lim, w,(Cy) = oo for each sequence of distinct

elements of Conj(G). Therefore by Corollary 7.1.8, £} (Conj(G),w,) is Arens regular.

Example 7.1.14. Let SL(2,2") denote the finite group of special linear matrices over the field
Fan with cardinal 2", for given n € N. The character table of SL(2,2") can be found at [1|. In
the following we just present the part of the character table related to the conjugacy classes of

SL(2,27).

Conjugacy classes | e N c3(x) cy(2)
Number 1 1 (2" -2)/2 27t
Size 1 22m_1 22mgon 920 _on
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As a direct result of the above table, for each three conjugacy classes say Ci,Co, D €
Conj(SL(2,2")), |D| < 2(|Cy| +|Cs|) if D ¢ C1Cy for all n. Let us define the FC group G
to be the RDPF of (SL(2,2"))nen i.e.

G =@ SL(2,2").
n=1

Therefore, similar to the previous example, for the hypergroup Conj(G), the weight w,, as
defined as in Example 3.1.3, is centrally additive for the constant M = 2%min{1,2% !}, and
consequently, weakly additive. Moreover, since img e wa(C) = 00, £1(Conj(G),w,) is Arens

regular, by Corollary 7.1.8.

Remark 7.1.15. Let G be an FC group and ¢ a group weight on G. We defined w,, the derived
weight on Conj(G) from ¢ in Definition 4.3.2. Recall that in this case Z¢!(G, ) is isomorphic
to the Banach algebra ¢!(Conj(G),w,), by Corollary 4.3.3. If N is a normal subgroup of G,
in Section 4.5, we defined a quotient mapping T, : ¢*(Conj(G),w,) — ¢*(Conj(G/N),&y) in

Proposition 4.5.1 where
QU(CII?N) = inf{wa(czy) P YE N} (CxN € CODJ(G/N))

Let us note that for an Arens regular Banach algebra A, every quotient algebra A/Z where 7 is a
closed ideal of A is Arens regular as well (see [17, Corollary 3.15]). Therefore, if £}(Conj(G),ws)
is Arens regular, for every normal subgroup N, ¢!(Conj(G/N),&s), which is isomorphic to

(Y (Conj(G),w, )/ Ker(T,,), is Arens regular.

7.1.4 Arens regularity of (1(SU(n),w)

Example 7.1.16. In Example 4.6.2, we observed that for each 3 > 0, wg(¢) = (2¢ + 1) is
a polynomial weight on the finitely generated hypergroup m Therefore Kl(m,wﬂ) is
Arens regular. Note that wg also corresponds the weight on the dual of SU(2) which is generated
by the degree of representations. See Corollary 4.6.1.

In this subsection, we may generalize the result of Example 7.1.16 for all SU(n) and wg
for B > 0 base on some recent studies on the representation theory of SU(n). As an example
for Corollary 4.6.1, (m),wg) is a discrete commutative hypergroup where wg(m) = d2 for
some (8 > 0. It is known that there is a one-to-one correspondence between m} and n-tuples
(m1,...,m) € Z7 such that

ML 2T > 2Ty 27y =0.
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This presentation of the representation theory of SU(n) is called dominant weight. Using this
presentation, we have the following formula which gives the dimension of each representation.

7Ti—7Tj+j—’i

dr= [] —F—— (7.1.4)

1<i<j<n J—i
where 7 is the representation corresponding to (7i,...,m,). Suppose that m, v, u are repre-
sentations corresponding to (my,...,7,), (V1,...,v), and (p1,..., i), respectively, such that

7 ev* u. By a new result of Collins, Lee, and Sniady [15, Corollary 1.2|, for each n € N, there

exists some D,, > 0 such that

d
T <D,(1/py +1/v1). (7.1.5)
dud,
when neither v nor p is the trivial representation of SU(n). Hence in general if C,, = max{D,,,1/2},
then
dr 1 1
<20, ( + ) . (7.1.6)
dﬂd’/ 1+ 1751 1+ 141

Applying (7.1.6), we prove that wg O-clusters on SU(2).

Theorem 7.1.17. For every >0, £*(SU(n),wp) is Arens regular.

—

Proof. Let (ptm)meny and (vg)geny are two arbitrary sequence of distinct elements of SU(n).
)

Since, the elements of (fim )men ((Vk)ken)) are distinct, limy,co ugm = oo (limgeo ng) =00 )
where (i, = (ugm), . ,,u,(qm)) (v = (1/§k), . .,V,(Lk))). For each arbitrary pair (m,k) € N x N, if

T € [y * Vi, We have

1 1
dr <2C,( ) + O] )dumdyk.
L+ py 1+
Hence
1 1
(,Uﬁ(ﬂ') < (2Cn)ﬂ( (m) + (%) )6W5(Nm)w,8(1/k)~
1+ 1+
Therefore

1 1
(m) + (k) )ﬁwﬁ(ﬂm)wﬂ(yk)'
q T+

W (B * 00 ) = D B # Oy (M)wp () < (2C,)5(
weSU(n) L+

Or equivalently

e )
1+,u,§m) 1+1/§

wﬁ(éﬂm * 6Vk) <
wg(pim )ws(vr)

Qﬁ(:uma Vk’) =

And,
lim limsup Qg(pm, V) = klim lim sup Q3 (pm, vx) = 0.

m— 00 k— 00 m— 00

Since SU(n) is countable, this argument implies that g 0-clusters strongly on SU(n) x SU(n)
and, by Theorem 7.1.6, £} (SU(n),wg) is Arens regular. O
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7.1.5 Some weighted hypergroup algebras are not Arens regular

In the following theorem, we apply some techniques of [16] to show that for restricted direct

product of hypergroups many weights fail to give Arens regular algebras.

Theorem 7.1.18. Let (H;);c1 be an infinite family of non-trivial hypergroups and for each i €1,
wj is a weight on H; such that wi(em,) = 1 for all except finitely many i € 1. Let H = @1 H; and

w = [Terwi, as defined in Subsection 4.1.1. Then ¢*(H,w) is not Arens regular.

Proof. Since 1 is infinite, suppose that Ny x Ny € I. Define v, = (2;)iex (um = (2;)ie1) where
z;=ey, foralli e I\ (n,0) (i € IN(0,m)) and z(,, 0y (7(0,m)) be a non-identity element of Hy,, o
(H(o,m)) for all n € N (m € N). Note that for each pair of elements (n,m) € Nx N, v, * up,
forms a singleton in H; moreover, w(vy * Um) = w(vn)w(um). Hence, (vn * Um) (n,m)enxn forms
a sequence of distinct elements in H.

Let us define f,, = 4,, and g, = 0y, for all n,m € N; hence, f,, * g (t) = Oy, 5u,,- Suppose
that A := {(vp,um) : n > m} and ¢ € £*°(H) is the characteristic function of the subset A.
Clearly, £ (fn) =w ™' f, and 71 (gm) = w ' gm belong to £ (H,w) for all n,m and £*(¢) = we €
0%°(H,w™), for s define in Subsection 7.1.2. Note that

(W™ fu x 0 g, W)
= 2 (W farwTgm) (Dw(t)e(t)

<w_1fn * W_lgma K (¢))

teH
 w(vn * um)
- W(Un)W(um)¢(vn *Um)
1 ifn>m
= O(vn *up) =
0 ifn<m

Let us recall that for each n and m, | ful s (gw) =1 and |gm|e(mw) =1 So (fn)nen and (gm)men,

as two nets in the unit ball of ¢*(H,w)** which is weak* compact, have two subnets (fs)s and

(g9p)p such that f, and g converge weakly* to some F and G in ¢*(H,w)**, respectively.
Note that for the specific element ¢, defined above,

(FOG,¢)= ligllién(w_lfa *w g, k¥ (4)) =0

while

(FOG,p) = hglhgl((w*lfa *wlgs, k¥ (¢)) = 1.

Hence FOG # F <& G and 1 (H,w) is not Arens regular. O
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Example 7.1.19. Let G be the restricted direct product of an infinite family of finite groups
(Gi)i- By Example 3.1.3, Conj(G) = @ Conj(G;). Also for w(Cy) = [1;|Cs,|, w is a weight
such that ¢ (Conj(G),w) is not Arens regular, by Theorem 7.1.18. One may compare this weight

with the examples in Subsection 7.1.3.

7.2 Operator algebra property of weighted hypergroup algebras

Let (H,w) be a weighted discrete hypergroup. In this section, we study the existence of an
algebra isomorphism from ¢'(H,w) onto an operator algebra. A Banach algebra A is called an

operator algebra if there is a Hilbert space H such that A is a closed subalgebra of B(H).

Definition 7.2.1. Let A be a Banach algebra and m : A x A — A is bilinear mapping m(f,g) =
fg. Then A is called injective, if m has a bounded extension from the injective tensor product
A®. A into A, where Q. is the injective tensor product. In this case, we denote the norm of m

by [m/e.
We present the following theorem from [52, Corollary 2.2.| without a proof.

Theorem 7.2.2. Let A be an injective Banach algebra. Then A is isomorphic to an operator

algebra.

Injectiveness of weighted group algebras has been studied before. Initially Varopoulos, in
[76], studied the group Z equipped with the weight o,(n) = (1 + |n|)® for all a > 0. This
study looked at injectiveness of ¢£!(Z,0,). He showed that ¢(Z,0,) is injective if and only
if @ > 1/2. The manuscript [52], which studied the injectiveness question for a wider family of
weighted group algebras, developed a machinery applying Littlewood multipliers. In particular,
they partially extended Varopoulos’s result in |76] to finitely generated groups with polynomial
growth. Following the structure of [52], in this section, we study the injective property of

weighted hypergroup algebras.

We know that ¢! (H,w) ®- £ (H,w) is isometrically isomorphic with ¢! (H x H,w xw). More-
over, (*(H x H,w xw)* is nothing but ¢*°(H x H,w ! xw™'). Since the injective tensor product
is minimal among all Banach space tensor products, the identity map ¢ : £1(H) x ¢1(H) —

(Y (H) x ¢*(H) may extend to a contractive mapping
0 (H) 0, (1 (H) ~ (' (H) o, (' (H).
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Since, ¢ has a dense range,
G (C(H) @ A (H)) - (C(H) @y 0 (H))* = £°(H x H) (7.2.1)

is an injective mapping. Therefore, applying +*, one may embed (¢/*(H)® ¢ (H))* into £°°(H x
H), as a sub vector space of {*°(H x H).

7.2.1 Littlewood multipliers for hypergroups

Let H be a discrete hypergroup. We define Littlewood multipliers of H to be set of all functions
f+H x H - C such that there exist functions f1, fo : H x H — C where

f(x,y) = f1(ac,y) +f2(x,y) ($7y€ G)

and

sup 3, |fi(z,y)I” < oo, Sup > |fala, )l < oo.

yeH gel Hyer

We denote the set of all Littlewood multipliers by T?(H) and define the following norm on
T(H)

zeH yeH

1/2 1/2
| F 2y = mf{sup( > iz, y)l ) +Sup(Z |f2(2, y) ) }

where the infimum is taken over all possible decompositions f1, fo. Note that for each f € T?(H)

and a decomposition fi, fo of that,

I fle= sy = sup [f(z,9)] < sup [fi(z,y)| + sup |fa(z,y)]
z,yeH x,yeH x,yeH
1/2 1/2
< sup(Z |f1(fc,y)|2) +SHP(Z |fa(,y) ) < 00,
yeH \gelr yeH

since for discrete space H, (>(H) ¢ ¢*°(H) and || - |0 < |- |2. Since fi, fo, in the previous
equation are arbitrary, | f| e mxmy < | fl72(m). Hence T?(H) € £%°(H x H). Furthermore, for
each ¢p € (°(H x H) and f e T?*(H), f¢p e T?>(H) and

[ F N2y < 1 F 2y @lloo- (7.2.2)

Theorem 7.2.3. Let I : T?(H) » ((1(H) ®, (*(H))* = {>(H x H) be the mapping which
takes every element of T>(H) to itself as a bounded function on H x H. Then I(T?*(H)) ¢
V((N(H) @ 0 (H))*) for the mapping o* defined in (7.2.1).

Moreover, for J:=1*" ol i.e. J:T*(H) — ({*(H)® (' (H))* is well-defined and | J| < Kg

where Kg is Grothendieck’s constant.

101



The proof and its preliminaries are given in Appendix A. From now on, we identify (¢! (H)®.
(Y (H))*) with its image with respect to the mapping ¢+*; hence, .J is the identity mapping which
takes T2(H) into (¢1(H) ® L1(H))*.

7.2.2 The operator algebra property of weighted hypergroup algebras

Theorem 7.2.4. Let H be a discrete hypergroup and w is a weight on H such that €, de-
fined in (7.1.3), belongs to T*>(H). Then (*(H,w) is injective. Moreover, for m as defined in
Definition 7.2.1,
Im|e < K@l Q72
Proof. Let
Ty : 0N (H x Hyw xw) - 0 (H,w)
such that

Lu(feg)=f*g (7.2.3)

for f,g € {*(H,w). The adjoint of T',, T'},, can be characterized as follows.

I5(0)(@,y) = (T5(6), 02 ® 0y) = (&, T (b ® by)) = (¢, 6z * Jy)

for all ¢ € /*°(H,w™!) and z,y € H. Now we define L from ¢ (H) to £*°(H x H) such that the

following diagram commutes.

(> (H,w™t) (°(H x Hyw™ ' xw™)
| |
(>°(H) (>(H x H)

where P()(z) = p(x)w(z) for p € £ (H) and R(¢)(z,y) = ¢(x,y)w ™ (2)w (y) for ¢ € £°(H x

H,w'xw™) and x,y € H. Hence, one gets

(Ls e P(p)) (=,y)
w(z)w(y)
s (we) (2, y)
w(z)w(y)
(pw,dy * 5y>
w(z)w(y)

s el
= 2.0 O

L(p)(z,y) = R(T, 0 P(v)) (x,y)

(1).

for all p € ¢*°(H). Hence,

w(t) )
0 0y(8) e o] € 3 e 0y(8) o s
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So there is a function v, : H x H — C such that

(63? * 5y:W(P>
L =u,(z,y) ]| o)z, y
and [|vg [ e < 1. Therefore
L(p) = Ap)Q2

where A(p)(x,y) = v,(2,y)| @] for all ¢ € £ (H). Since Q belongs to T%(H) and T?(H) is an
(*(H x H)-module, L(¢) € T*(H) and |L(¢) |72y < [¢]loo [Ql72(sr). Therefore L(£*(H)) €
T*(H) c ((*(H) ® *(H))*.

In this case, using the following diagram with A = R™1((¢}(H) ® ¢(*(H))*),

T*

> (H,w™) = A - (°(H x Hyw™t xw™)
0= (H) L~ ((/(H) e ' (H))* ‘ 0°(H x H)

Cliam. A= (/*(H,w) ® 1 (H,w))*.

Proof of Claim. Note that R is the adjoint of R. an isomorphism from ¢'(H) ®, ¢'(H) into
(Y (H,w) ®- (*(H,~) such that R.(f®g) = fw™ ® gw™!. Similarly, one may define the isometry
RS such that RE(f®g) = fwl®gw™. Therefore, RS : (*(H) ® A (H) - (1 (H,w) @ (H,w) is
a Banach space isomorphism. Let us define, similar to ¢, 1, : £1(H,w) ®, (*(H,w) - (*(H,w) ®
(*(H,w). Therefore, clearly the following diagram commutes (one may study the maps on

elementary elements).

(M (H,w) ®, (' (H,w) e HH,w) @A (H,w)

| |

(N(H) ®, (*(H) d (NH) ® (M (H)

For R, = (RS)*, we get

B

(IM(H,w) ® (H(H,w))* = 0°(H x Hyw xw™)

I |

((1(H) ® (' (H))* a (°(H x H)

Therefore, for each ¢ € o/ ((¢1(H,w) ® *(H,w))*), R(Y) € t*(({*(H) ® £*(H))*). Similarly,
if we may identify o7 ((¢*(H,w) ® (1 (H,w))*) with (¢{*(H,w) ® ¢*(H,w))* as a subspace of
0°(H x Hyw ™t xw™),

R((¢"(H,w) & (' (H,w))") = (¢'(H) @ ¢'(H))".
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So, we have shown that I'* is a map projecting ¢*°(H) into (¢} (H) ® ¢ (H))* as a subset of
¢°°(H x H). we see that T}, is a map projecting £°°(H,w™!) into (/*(H,w) ®¢*(H,w))*. Hence,
'Y =m*, where

m: 0N (H,w) ® 0 (H,w) - (*(H,w).

and therefore m is bounded while |[m| = ||| = ||RTwP|| = | L|. Moreover,

L) e mnyecer ey < 11T (@) r2(ary < K@ |72y [A(0) [0 (zrxry
< K@ Q2 1@l
for all p € £>°(H). Consequently, [m|e < Kg| 2|72y O

Example 7.2.5. Let wg be the weight defined on SU(n) in Corollary 4.6.1. As we have shown

in the proof of Theorem 7.1.17, for polynomial weight wg, 5 >0, and pu,v € SU(n),

1 1 1 1
B(M,Z/)S(C) (1+u1+1+1/1) < 5(0) ((1+M1)B+(1+V1)5)>

where Ag = min{1,2°71}. To study | - for Qg, let us note that for each k£ € Nu {0},

||T2(SU(2))

there are less than (1 + k)" 2 many A e SU(n) such that A\; = k. Therefore
Z Z (1+ k)2
28 = 23
7SO (1+ )\1) (1+k)

which is convergent if and only if 28 —n +2 > 1. Therefore, for 8> (n—1)/2, Qg € T*(SU(n))
and by Theorem 7.2.4, £*(SU(2),ws) is injective. Moreover, note that
Ap(2C,,)P . Ap(2C,,)P

sl € [0 o A0
1/2 1/2
A5(20,)8 A5(20.)8 1
< sup > % + sup > %
veSU(n) \ ueSU(n) m peSU(n) \veSU(n) 1
1 1/2
< Ap(2 B —_ .
< At (,;)(1 k)?ﬁ”*?)

Hence
o 1/2
B+1 B
Imlle < KgA2"Cy) (Z W)

for Ag = min{1,2°71}.

Let us recall the definition of weakly additive weights on hypergroups from Definition 4.1.5.
w is a weakly additive weight on a hypergroup H if for all z,y € H, w(d; * §y) < C(w(z) +w(y))

for some fixed C > 0.
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Corollary 7.2.6. Let H be a discrete hypergroup and w is a weakly additive weight on H with

corresponding constant C > 0. Then (1(H,w) is injective if

1
> ()2 < o0.

reH
Moreover, for m as defined in Definition 7.2.1,

L \2
|m[e <2CKg (;}j{ W) :
Proof. Suppose that ¥,z w(2)™? < co. Note that for each t € x * y,
w(t w(T)+w
e o R o R
Thus based on (7.2.2) and for functions f1(z,y) = w(z)™" and fo(z,y) = w(y) ™,

‘ c C
2)1/2)

IA

122y

(xu y) g +—
o(@) " )|l
2\ 1/2
sup + sup
(yeH (x;{ ) reH (y%;[

N
¢ (%w(xv) |

Consequently, by Theorem 7.2.4, Q e T?(H) and

C
w(z)

C

w(y)

IA

1/2
1
|m]e < 2CK, ( —) .
L PPwese

O

Remark 7.2.7. In Example 7.1.14, we introduced a hypergroup which results from conjugacy
classes of a specific group, G = ®;°,5L(2,2"). For the weight w, defined on Conj(G) by
Example 3.1.3, we observed that ¢!(Conj(G),ws) is Arens regular. Moreover, as mentioned
in Example 7.1.14, w, forms a weakly additive weight on Conj(G). But we may show that
Y ceConj(c)w(C) ™ = 0. Doing so, let us define Ey, to be the set of all C' = @penCy € Conj(G)
such that Ic = {1,2,...,m} where Ic := {n € N : (), # egpa9n)} for each n in Io. More-
over, for each n € I, let C), = c4(2) for c4(z) denoted in the conjugacy table of SL(2,2") in
Example 7.1.14. Therefore,

1 i 1
zeConj(G) W(C)Q m=2CeEn, W(C)Q
SO | s
>
- mzzg (1+41 44 4m)2
i 2m(m—1)/2

= (4m+1 _ 1)2/9 =%

3
|
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Hence, not all weakly additive weights are satisfying the other condition mentioned in Corol-

lary 7.2.6.

For finitely generated hypergroups, we have introduced two classes of weights in Section 4.2,
namely, polynomial growth weights and exponential weights. Applying this fact that polynomial
weights are weakly additive, in the following, we study operator algebra isomorphism for weighted
hypergroup algebras with polynomial weights. Developing a machinery which relates exponential
weights to polynomial ones, we also study exponential weights in Subsection 7.2.3. For the case

that H is a group, this has been achieved in [52]

Corollary 7.2.8. Let H be a finitely generated hypergroup. If F is a generator of H such
that |F™| < Dn® for some d,D > 0 and wg is the polynomial weight on H associated to F' (see
Section 4.2). Then £'(H,wpg) is injective if 28 > d + 1. Moreover,

00 d 1/2
c <2CK,
il <20k (10 35 20 )
for C'=min{1,2°71}.

Proof. To show this corollary, we mainly rely on Corollary 7.2.6. By Remark 4.2.2, wg is weakly
additive whose constant is C' = min{1,2°71},

To show the desired bound for |m||¢, note that

1 1

BTOT T ST S B T

aett wB(7)? zeH n=0 {ge [\ Fn- 1}

1 —= <1 —
@t Z (1+n)25

which is convergent if 28 > d + 1. Furthermore, by Corollary 7.2.6,

1 1/2 oo Dnd 1/2
Iml. <2CKg (ZH —wﬁ(x)Q) ’ 2CK@(1 *;—(un)w)

Example 7.2.9. As we have seen in Example 4.6.2, for each >0, wg defined in (4.6.1) is the
polynomial weight on SU(2) associated to F' = {mg,71/2}. Therefore, by Remark 4.2.2, wg is

weakly additive on SU(2). On the other hand,
1

2 <7r> ZZ <2£+1>26 " 2

75U @) VB zt N7
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which is convergent if 8 > 1/2. Note that this bound for g verifies the bound which was found
in Example 7.2.5 by using a different property of SU(2). Furthermore, Corollary 7.2.6 implies
that

oo 1 1/2

ot n?

for C' = min{1,2°71}.
Example 7.2.10. For a polynomial hypergroup Ny, as a finitely generated hypergroup with the
generator F' = {0,1}, we have |F"| =n+1 < 2n, as we have seen in Section 3.3. Hence for d = 1
and D =2, |[F"| < Dn?. Recall that by Remark 3.2.3, m can be regarded as a specific case
in this example.

By Corollary 7.2.8, for the polynomial weight wg with > 1 associated to F, Y (No,wg) is
injective. In this case also, an argument similar to Example 7.2.9 implies that

-~ 1/2
1
[m]e <2CKg (Z W)

n=1

for C' = min{1,2°°1}.

7.2.3 Hypergroups with exponential weights

The other class of weights introduced for finitely generated hypergroups in Section 4.2 is the
class of exponential weights. As we mentioned before, unlike polynomial weights, exponential
weights are not necessarily weakly additive. In this subsection , following [52], we develop a
machinery to study operator algebra isomorphism of these weights. The following lemma is

narrated from |52, Lemma 3.2| without its proof.

Lemma 7.2.11. Let 0 < a <1, C >0, and 8 > max{l,m}. Define the functions p :
[0,00) > R and ¢q: (0,00) > R by
o T
p(x):=Cx* - Bln(1 +x),q(x) := Z%

g2\l o . , .
Then on [( m) ,oo), p is increasing and q is decreasing.

The following lemma is a hypergroup adaptation for [52, Theorem 3.3] and the proof is

similar to [34, Lemma B.2].

Lemma 7.2.12. Suppose that 0 < <1, C >0, and 5 > max{l,ﬁ}. Let p:[0,00) - R
and q : (0,00) = R be the functions defined in Lemma 7.2.11. Let H be a finitely generated

hypergroup with a symmetric generator F' and w: H — (0, 00) such that

w(z) = PTF@) = or@)a(Tr (@) o0 g1l 2 ¢ H.
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Then w(t) < Mw(x)w(y) for all t,z,y € H such that t € x * y where

M = max{ePz1)PG2)P(3) ;21 € [0,4K] NNy, 22,23 € [0,2K] n Ny}

. 62 1/
K= (C’a(l—a)) '

Proof. We split the proof into four cases with respect to possibilities of 7p(z), 77(y), and

and

7p(t) for t € & »y. In each case, we apply Lemma 7.2.11 and this fact that ¢ = 1, and

T7r(t) < 7p(z) + 7p(y). In particular note that M > 1.

Case I: max{7p(z),7r(y)} < 2K. In this case, note that 7p(t) < 7p(x) + 7r(y) < 4K for

every t € x » yy. Therefore,

_ WO o) @) ) ¢
w(z)w(y)

Case II: max{7p(z),7p(y)} > 2K and min{7p(z),7r(y)} < K. Without loss of generality,
we may suppose that 7p(x) > 2K and 7p(y) < K. Since H is a discrete commutative hypergroup,
for each t € x *y, © € t » § (see [49, Lemma 1.2]). Therefore, for the symmetric generator F'
(where 7(y) = 7r (7)), one gets that 7p(z) + 7r(y) 2 7r(t) > 7p(z) - Tr(y) 2 2K - K = K.
Hence,

PED) ¢ e W)
- r@+mr(W)a(rr (2)+7r (v))
= @ (@)+7r(Y)) Tr (V) (T (@) +7r (Y))
< F@a(rr(@)+7r(y)) JKa(K)
< er@alrr(@) KalK) (0

= Prr@) e p(rrW)) p(FK)=P(rr(W)) < Mfw(2)w(y).
Note that (x) is implied by this fact that ¢ is a decreasing function on that specific interval.

Case III: min{7rp(x),7r(y),7r(t)} > K for some t € x *» y. In this case, note that K <

Tr(2), 7P (y) < Tr(x) + 77 (y). Hence,
ep(TF(t)) < ep(TF(w)+TF(y))

= ¢ F@)a(Tr(@)+7r(Y)) o TF (¥)a(TE (2)+7r (y))

e (@) @) e Wa(TrW)) = (2 w(y) < Mw(z)w(y).

AN
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Case IV: Finally let min{7p(z),7r(y)} > K while 7x(t) < K for some ¢t € x * y. So

w(@)w(y) = P (T (2))+p(TF (y))

2p(K)

[\

2P =P(Tr(®) 4y (1) > %w(t).
In other words, w(t) < Mw(x)w(y). O

Theorem 7.2.13. Let H be a finitely generated hypergroup. If F is a symmetric generator of
H such that |F™| < Dn? for some d,D > 0 and Oa,c 5 an exponential weight on H for some

0<a<1and C>0. Then (*(H,o,c) is injective.
Proof. Let wg be the weight defined in Lemma 7.2.12. We define a function w: H — (0, c0) by
OJ(IL‘) . O'a,C(x) _ eC’TF(x)"‘—Bln(1+TF(1’)) (IL‘ c H)

 wp(e)

6 dn
' Ca(l-a) 2 -

Therefore, by Lemma 7.2.12, w(t) < Mw(z)w(y) for some M > 0 and all ¢,z,y € H such that

where wg is the polynomial weight defined on H associated to F' and > max{1

t € x * y. Therefore
an,C’(t) < Wﬁ(t)
oa,c(@)oac(y) ~  ws(z)ws(y)
Hence it follows from Remark 4.2.2 that

oac(t) Iy ( 1 1 )

ac(@oac) - \A+r@)? 1+ (1))

for a modified constant M’ > 0. Therefore by the proof of Corollary 7.2.8, Qg . € T?(H). Hence

('(H,04,c) is injective by Theorem 7.2.4. O

Example 7.2.14. As a result of Theorem 7.2.13, and to follow Example 7.2.9 and Exam-
ple 7.2.10, if H is a polynomial hypergroup on Ny, for each exponential weight o, ¢ for 0 <a <1
and C >0, /' (H, 0a,c) is injective. Note that by Remark 3.2.3, this class of hypergroups includes
SU(2).

109



APPENDIX A
p-SUMMING OPERATORS AND DUAL OF INJECTIVE TENSOR

PRODUCTS

Recall that in Subsection 1.3.2, we briefly have mentioned the definitions and some basic

facts about tensor products of Banach spaces.

Definition A.0.15. |75, Section 9|
Let X and Y be Banach spaces. An operator T': X — Y is called p-summing if there exists a
constant C' > 0 such that for all finite sequences (zy,)neny € X one gets
1/p 1/p
(Zizeor) e s (Shewr)
n peX*: [@llx+<1 \ n

The infimum of all such C' is denoted by 7,(T") and is called p-summing norm of T'.

If an operator T' is not p-summing, we may define m,(7") = co. The set of all p-summing
operators from X into Y is denoted by II,(X,Y") after [75] and (II,, 7)) forms a normed operator
ideal in £(X,Y") (the space of all bounded operators from X into Y).

Definition A.0.16. |69, pp63-64] and [75, p42]

Let X and Y be Banach spaces. An operator T': X — Y is called integral if there exists a compact
Hausdorff space K and a probability measure x4 on K and two operators Wi : X - C(K) and
Wo: LY (K, i) - Y** such that the following diagram commutes i.e. idoT = Wy o I o Wi.

T id

X Y Yy *
o
C(K) LYK, )

where id is the canonical identity from Y into its second dual and I is the identity map from
C(K) into L'(K,u). Then |T||; == inf |[Wy|||Ws]|, where W; and Wy are changing between all
possible factorizations, defines a norm called integral norm. The space of all integral norms of

X into Y denoted by Z(X,Y") equipped with | - ||; is a normed operator ideal in £(X,Y).

Proposition A.0.17. Let X and Y be two Banach spaces. Then (X ®.Y)* is isometrically
isomorphic to TI1(X,Y™).

Proof. By [69, Proposition 3.14|, we know that (X ®c Y)* is isometrically isomorphic to the
space of all integral operators from X into Y*, denoted by Z(X,Y ™). By |75, p50], T: X - Y is
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an integral operator if and only if 7" is 1-summing. Moreover, 71 (T") = |T'||; where | - |; implies

the integral norm of T O

Theorem A.0.18. [75, Theorem 10.11]
Let LY(S) be the Banach space of all p-integrable functions on a measure space (S,%, 1) and let
H be a Hilbert space. Then every operator T € L(L*(S),H) is 1-summing and 1 (T) < Kg|T||

where Kg is Grothendieck’s constant.

Lemma A.0.19. Let T} : X - Y and Ty : Y — Z be bounded operators. Then m (T11T2) <
| T |7p(To) for each p.

Proof. Just note that

1/p 1/p 1/p
(zm(xn)up) su:r’n(zuzr’g(xn)up) Tjc s (z|<¢,xn>rp) .

geX*: ¢l xe<t \'m

O]

Proof of Theorem 7.2.3. For each f e T?>(H), let f = fi + fo be an arbitrary Littlewood decom-
position of f. Clearly, fi, fa2, and f belong to ¢*°(H x H). Note that

(®(HxH)=(("(H)®, ' (H))*" = L(O*(H),(>(H)) [69, Section 2.2].

So f; may be represented by some Ty, € L(¢'(H),¢®(H)) i = 1,2, if we prove that T}, €
Iy (¢1(H), ¢ (H)), then we are done, by Proposition A.0.17.

For fi, note that t ~ fi(-,t) : H — (2(H) is a function in ¢*(H,¢?(H)). So, for each
g € (*(H) define Ty, (9) = Sierm 9(t) f1(-,t) € (2(H). So Ty, is an operator from ¢'(H) into
¢2(H). Furthermore,

1@l = [T emneo
teH 2
1/2
< Tl D] < ||g|1sup(z |f1<s,t>|2) .
teH teH \seH

Therefore, by Theorem A.0.18, for T}, as an operator from £'(H) into £?(H),

1/2
m(Fp) < KT | < K@sup(z |f1<s,t>|2) .
teH \seH

For fo, similarly, note that s ~ fa(s,-) : H — ¢*(H) is a function in ¢*(H,¢*(H)). So, for
each g € (' (H) define T4,(g) = Ygerr 9(8) f2(s,-) € (2(H). So T}, is an operator from ¢'(H) into
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¢*(H). Furthermore,

1T (D)2 = ||D 9(s)fi(s,
seH
1/2
< T le)lIfs, )2<9H18up(21f2(8 t)\) .
seH teH

For Ty, as an operator from ¢'(H) into ¢*(H),

1/2
m(17) < KalTsl < Kasup( TR0
teH
Also, note that ids e o Ty, is an operator from ¢'(H) into ¢*°(H). Lemma A.0.19 implies
that

1 (idg,e0 0 T;) < ida,00|m1 (T,) (i =1,2).

Note that since || [leo < |- ]2, [id.00| < 1. To conclude, one may apply Lemma A.0.19 to conclude

IT¢)i =m1(f)

IA

T (f1) + mi(f2)
Z ™ (idQ,OO Osz‘)
)

> lida,oo |71 (Ty,)
i=1,2

Ko (sup(z |f1(s,t)l2)1/2 rsup (2 1) )/)

teH \seH teH

IA

IN

IA

Since, the choice of fi and fo was arbitrary |Ty[; < K@l flr2(m)- i
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