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Abstract

Recent studies of the transition metal dichalcogenide 2H-NbSe2 have led to debate in the

scientific community regarding the mechanism of the charge density wave (CDW) instability

in this material. Moreover, whether or not CDW boosts or competes with superconductivity

(SC) is still unknown, as there are experimental measurements which supports both scenar-

ios. Motivated by these measurements we study the interplay of charge density modulations

and superconductivity in the context of the Bogoliubov de-Gennes (BdG) equations formu-

lated on a tight-binding lattice. As the BdG equations require large numerical demand,

software which utilizes parallel algorithms have been developed to solve these equations

directly and numerically. Calculations were performed on a large-scale Beowulf-class PC

cluster at the University of Saskatchewan.

We first study the effects of inhomogeneity on nanoscale superconductors due to the

presence of surfaces or a single impurity deposited in the sample. It is illustrated that

CDW can coexist with SC in a finite-size s-wave superconductor. Our calculations show

that a weak impurity potential can lead to significant suppression of the superconducting

order parameter, more so than a strong impurity. In particular, in a nanoscale d-wave

superconductor with strong electron-phonon coupling, the scattering by a weakly attractive

impurity can nearly kill superconductivity over the entire sample.

Calculations for periodic systems also show that CDW can coexist with s-wave super-

conductivity. In order to identify the cause of the CDW instability, the BdG equations have

been generalized to include the next-nearest neighbour hopping integral t′. It is shown that

the CDW state is strongly affected by the magnitude of t′, while superconductivity is not.

The difference between the CDW and SC states is a result of the anomalous, or off-diagonal,

coupling between particle and hole components of quasiparticle excitations. The Fermi sur-

face is changed as t′ is varied; in particular, the perfect nesting and coincidence of the nesting

vectors and the vectors connecting van Hove singularities (vHs) for t′ = 0 is destroyed, and

vHs move away from the Fermi energy. It is found that within our one-band tight-binding

model with isotropic s-wave superconductivity, CDW and SC can coexist only for vanishing

t′ = 0 and for t′ 6= 0, the homogeneous SC state always has the lowest ground-state energy.
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Furthermore, we find in our model that as t′ increases, the main cause of the divergence

in the dielectric response accompanying the CDW transition changes from nesting to the

vHs mechanism proposed by Rice and Scott [1]. It is still an open question as to the ori-

gin of CDW and its interplay with SC in multiple-band, anisotropic superconductors such

as 2H-NbSe2, for which fundamental theory is lacking. The work presented in this thesis

demonstrates the possible coexistence of charge density waves and superconductivity, and

provides insight into the mechanism of electronic instability causing charge density waves.

iii



Acknowledgements

I would like to express my most sincere gratitude to my supervisor, Dr. Kaori Tanaka.

She has been both a friend and mentor throughout my studies, and I am thankful for our

many discussions together. Her encouragement, support, and advice throughout my project

were invaluable to me. I would also like to thank my committee members Dr. John Tse, Dr.

Masoud Ghezelbash, and the external examiner Dr. Artur Sowa for their contributions.

I am grateful to Jason Hlady and Sean Cavanaugh at the High Performance Comput-

ing Research Facility for their help and suggestions during the development of my parallel

routines. Their service and support were instrumental in completing this work. I further

want to thank the Natural Science and Engineering Research Council as well as the Canada

Foundation for Innovation for their financial support.

I wish to thank the many friends I have made in the Department of Physics and Engi-

neering Physics for making this a fun and exciting place to to learn and grow. My thanks go

out to Elise, Robyn, and Paul. You are cherished colleagues and friends. I am indebted to

the faculty and staff for all of their kindness and hospitality, as well as for the opportunities

they have provided me.

Finally, I am indebted to my family and loved ones for their unconditional encouragement

and support. I could not have done it without them.

iv



For my parents, Wayne and Deborah Sadowski.

v



Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables viii

List of Figures ix

List of Abbreviations xiii

1 Introduction 1

1.1 High-Tc Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Transition Metal Dichalcogenides . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Layout of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theoretical Background 10

2.1 BCS Theory of Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Charge Density Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 BdG Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Formulation 21

3.1 Extended-Hubbard Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Mean-Field Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 BdG Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Surfaces and Impurities in Nanoscale Systems 28

4.1 Degenerate SC and CDW State . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 D-Wave SC Sensitive to Surfaces . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 S-Wave SC with Single Impurity . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 D-Wave SC with Single Impurity . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Charge Density Modulations and Superconductivity 36

5.1 Coexistence of CDW and Superconductivity . . . . . . . . . . . . . . . . . . 36
5.1.1 Density Wave State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Superconducting State . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Coexistence of CDW and SC states . . . . . . . . . . . . . . . . . . . 39

5.2 Mechanism for CDW in the Tight-Binding Model . . . . . . . . . . . . . . . 41

vi



5.3 CDW state with varying Fermi Surface . . . . . . . . . . . . . . . . . . . . . 44
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusion 66

References 69

A BdG Equations in the Tight-Binding Model 73

A.1 Derivation of the BdG Equations . . . . . . . . . . . . . . . . . . . . . . . . 73
A.2 Derivation for the Ground-State Energy . . . . . . . . . . . . . . . . . . . . 77

B Numerical Methods 78

B.1 Introduction to ScaLAPACK . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.2 BLACS Process Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
B.3 Distributed Memory Storage Scheme . . . . . . . . . . . . . . . . . . . . . . 80
B.4 Diagonalization of BdG Matrix Elements . . . . . . . . . . . . . . . . . . . . 81
B.5 Calculations with Distributed Matrices . . . . . . . . . . . . . . . . . . . . . 83

C Derivation of the Dispersion Relations 85

D Chemical Potential and DOS for Negative t′ 88

vii



List of Tables

5.1 Results of the zero-temperature CDW amplitude and SC order parameter for
the three degenerate states. All states have E0 = −990.40t and TC = 0.33t.
In the mixed state (CDW+SC) the amplitude of the CDW modulations and
the SC order parameter are reduced to ∼ 62% and ∼ 78% their value in their
respective pure states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



List of Figures

1.1 2H-NbSe2 Fermi-Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Mapping of k-points corresponding to CDW and k-dependent SC gap. The
CDW wave vectors are consistent with the van Hove singularity scenario for
the CDW and these regions in k-space correspond to regions where the super-
conducting gap is maximum. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Map of the CDW energy gap in k-space. Regions where the CDW gap is
maximum correspond to regions where the SC energy gap is minimum. . . . 8

2.1 Peierls’ construction of a charge density wave. By distorting the lattice one can
move the energy gap from the zone boundary to π/2a. For a half-filled band
this corresponds to the Fermi level. This lattice distortion causes a periodic
modulation of the electron density, the wavelength of which is dependent on
kF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Fermi surface nesting for a three-dimensional material with 1-,2- and 3-dimensional
energy dispersion. The number of points which lead to divergent terms in the
response is strongly reduced in three dimensions. . . . . . . . . . . . . . . . . 18

4.1 (a) Electron density for a 20x20-site s-wave superconductor at half filling.
On-site coupling is Uii = −1.5t. The CDW+SC state is degenerate with
the SC state that has uniform density density distribution. (b) S-wave order
parameter for the system described in (a). The order parameter shows slight
suppression along the boundaries due to the loss of kinetic energy, but the
presence of a surface is not a pair-breaking process in s-wave superconductors. 29

4.2 Plot of the relative CDW amplitude and SC order parameter as a function
of temperature in an s-wave superconductor described in Figure 4.1(a). Am-
plitudes are taken with respect to the pure SC and CDW states. The CDW
and SC states clearly have the same transition temperatures; however, the
amplitude of the order parameter in the CDW+SC state is suppressed by
∼ 8% with respect to the SC state. Additionally, the amplitude of the density
modulations in the CDW+SC state is suppressed by ∼ 60% with respect to
the pure CDW state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 (a) Electron density for a pure 19x19-site d-wave superconductor at half fill-
ing. Off-site coupling is Uij = −1.5t. The density is suppressed all along
the boundaries, uniformly except for the four corners, and CDW-like density
modulations are no longer favoured in the ground-state. (b) D-wave order
parameter for the system described in (a). Similarly to the average density
distribution, the d-wave order parameter is suppressed on the surfaces. . . . 31

ix



4.4 (a) Electron density for a 21x21 s-wave superconductor at half filling. The
on-site coupling strength is Uii = −2t. In the presence of an impurity the
degeneracy of the pure case is removed and the CDW becomes the favoured
ground-state. (b) S-Wave order parameter for the system described in (a).
The upper (purple) plot is the order parameter for ǫ11,11 = −10.0t, while the
lower (green) plot is for ǫ11,11 = −0.5t. . . . . . . . . . . . . . . . . . . . . . 32

4.5 Electron density for a 21x21 d-wave superconductor at half filling with impu-
rity ǫ11,11 = −0.5t. (a) Uij = −1.5t. For weak electron-phonon coupling, the
charge density becomes localized around the impurity site and slightly sup-
pressed at the boundary. (b) Uij = −2.7t. For strong coupling the effect in (a)
becomes amplified, as electrons can gain more energy by moving away from
the surface. In this example the electron density is completely suppressed at
the boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.6 D-wave order parameter for the system described in Figure 4.5. (a) Uij =
−1.5t. The order parameter is suppressed at the location of the impurity as
well as along the boundary. (b) Uij = −2.7t. In the strong coupling case
the order parameter is completely suppressed at the impurity site, leaving a
narrow region of “surface superconductivity”. . . . . . . . . . . . . . . . . . 35

5.1 (a) Charge density distribution for the 18x18 cell lattice with |Uii| = 2.50t.
The colour scheme is such that regions of low density correspond to red, while
high density correspond to green. (b) The total density of states for the pure
CDW state, clearly exhibiting an energy gap. . . . . . . . . . . . . . . . . . . 37

5.2 LDOS for the 18x18 cell lattice with |Uii| = 2.50t. Sites (1,1) and (2,2) have
density less than one, while sites (1,2) and (2,1) have density greater than
one. The alternating charge density seen in Figure 5.1(a) results in a spatially
alternating local density of states. . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Site-averaged density of states for a 18x18 cell and |Uii| = 2.50t in the SC
state. Contrary to the CDW state the LDOS is identical at all sites in the
sample and therefore equivalent to the total DOS. The total DOS in the SC
state is identical to the DOS shown in Figure 5.1(b) for the CDW state. . . . 40

5.4 Relative CDW amplitude and SC order parameter as a function of tempera-
ture in the CDW+SC mixed state. Both SC and CDW disappear at the same
temperature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5 The Fermi surface for the 2D square lattice of the tight-binding Hamiltonian at
half filling. Nesting vectors connecting the sides of the square Fermi surface
are shown as black dashed lines and the positions of the saddle points are
marked with black circles. The vectors that connect the saddle points are
identical to the nesting vectors. . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Energy-momentum disperion relation for positive and negative values of t′.
The contours at the base identify the Fermi surfaces. In addition to a phase
shift of ~k = (±π/a,±π/a), surfaces for t′ = 0.25 are electron-like, while for

t′ = −0.25 are hole-like. When t′ → −t′ then E(~k) → −E(~k). . . . . . . . . . 45

x



5.7 Energy-momentum dispersion relation for various values of hopping parameter
t′. The contours at the base identify the Fermi surfaces. As t′ is increased
the top and bottom of the band rises, while the saddle points move lower in
energy. As a result the saddle points are moved off the Fermi surface. . . . 47

5.8 Band structure for a 24x24 cell in the normal state. As t′ increases the top and
bottom of the band move toward positive energy, while the total bandwidth
remains 8t. The band also begins to flatten near the vHs, indicating a large
density of states at this energy. . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.9 Calculated Fermi surface for a 24x24 cell at various values of hopping param-
eter t′. The plot only spans one quarter of the first BZ, and the full Fermi
surface can be found by symmetrizing to the other three quadrants. When
t′ 6= 0 perfect nesting disappears. . . . . . . . . . . . . . . . . . . . . . . . . 49

5.10 (a) Density of states for 0 ≤ t′ ≤ 0.45 for |U | = 0 on a 24x24 lattice. The
results are shifted vertically for clarity. As t′ increases the bandwidth remains
8t. However, negative-energy band width decreases, while the width of pos-
itive energy states increases. In addition the saddle-point singularity shifts
from E = 0 at t′ = 0 towards E = −2t as t′ increases. (b) The same results
obtained by the BdG equations, indicating the “artificial” states.. . . . . . . 50

5.11 Density of states for various values of t′. The results are shifted vertically for
clarity. These results were obtained for a 24x24 cell at half filling using on-site
coupling |U | = 5t. The gap seen in the DOS is a result of the presence of a
CDW. The vHs, only for the hole states for t′ 6= 0, are strongly enhanced as
t′ increases and the hole bandwidth is squeezed. . . . . . . . . . . . . . . . . 51

5.12 LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.1. . . . . . . . . . . 54

5.13 LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.2. . . . . . . . . . . 54

5.14 LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.3. . . . . . . . . . . 55

5.15 LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.4. . . . . . . . . . . 55

5.16 Dependence of gap size and Tc on t′ for the CDW and SC states on a 24x24
lattice with |U | = 5t. (a) The critical temperature is gradually reduced as t′

increases while the gap size decreases linearly. (b) For the CDW state one
can see a definite slope change in the gap to Tc ratio around t′ ∼ 0.25, while
in the SC state the ratio remains constant at the BCS value. . . . . . . . . . 57

5.17 Re ǫ(~q, ω → 0) for 0 ≤ t′ ≤ 0.45. The divergence at the nesting vector
~q = (±π/a,±π/a) can clearly be seen for all t′. As the Fermi surface changes
its shape in the dispersion and perfect nesting is destroyed, the divergence
rapidly decreases and begins to level off at t′ ∼ 0.25, indicating that the vHs
becomes dominant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.18 Density of States for various values of t′. The results are shifted vertically for
clarity. These results were obtained using a 24x24 cell at half filling using an
onsite coupling parameter of |U | = 5t in the superconducting state. . . . . . 60

xi



5.19 Chemical potential for 0 ≤ t′ ≤ 0.5 for |U | = 5t on a 24x24 lattice. Results are
shown for the normal, superconducting, and CDW states. One can see that
the chemical potential as a function of t′ behaves identically for the CDW
and normal states; however, there is a very different behaviour in the SC
state. This is a result of the anomalous coupling between particle and hole
amplitudes in the SC state. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.20 Ground state energy for 0 ≤ t′ ≤ 0.5 for |U | = 5t on a 24x24 lattice. Results
are shown for the normal, superconducting, and CDW states. At t′ = 0 the
SC and CDW states have identical ground-state energy and is considerably
lower than the normal-state energy. However for t′ 6= 0 the energies split
and the SC state always has the lowest energy. The behaviour of the normal
and CDW states energy curves is a result of the dependence of the chemical
potential on t′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.21 Condensation energy per particle for SC and CDW states. The condensation
energy is the difference in energy between the SC/CDW and normal states.
The larger condensation energy for the SC state indicates that it is the most
stable configuration. The increase in the CDW condensation energy near
t′ = 0.25 may indicate that a vHs driven CDW is more stable than due to
nesting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

B.1 ScaLAPACK software hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . 78
B.2 Example of a Pr = 2, Pc = 4 process grid . . . . . . . . . . . . . . . . . . . . 79
B.3 A 9X9 matrix distributed across 4 processors . . . . . . . . . . . . . . . . . . 80

D.1 Chemical potential for −0.5 ≤ t′ ≤ 0.5 on a 24x24 lattice. The chemical
potential increases for negative t′ such that µ for positive and that for negative
t′ are mirror images of each other. . . . . . . . . . . . . . . . . . . . . . . . . 88

D.2 Density of states for positive and negative t′ on a 24x24 cell with |U | = 5t.
Clearly, the density of states for positive and negative t′ are identical with
E(k) → −E(k). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



List of Abbreviations

SC Superconductivity
ScaLAPACK Scalable Linear Algebra Package
STM Scanning Tunnelling Microscope
STS Scanning Tunnelling Spectroscopy
LDOS Local Density of States
DOS Density of States
BdG Bogoliubov de Gennes Theory
BCS The Bardeen-Cooper-Schrieffer Theory
TMD Transition Metal Dichalcogenide
CDW Charge Density Wave
FS Fermi Surface
vHs van Hove Singularity
LOF List of Figures
LOT List of Tables

xiii



Chapter 1

Introduction

1.1 High-Tc Superconductivity

Superconductivity (SC), a phenomenon first uncovered by Heike Kamerlingh Onnes [2] in

1911, was an accidental discovery during the race to be the first to produce liquid helium [3].

During a series of experiments he found that the electrical resistance of pure mercury sharply

dropped to zero at 4K, and later coined the phrase superconductivity to describe it. It did

not take long for experimentalists to discover other superconducting materials and even more

exotic superconductors. Today, superconductivity above 77K is quite common and can be

demonstrated in high school class rooms and laboratories. As of 2009, the superconductor

with the highest recorded transition temperature is HgBa2Ca2Cu3Ox with TC = 135K [4].

In 1933 Meissner and Ochenfeld found that in addition to zero resistivity, superconduct-

ing metals expel magnetic fields from their interior. The expulsion of magnetic flux is a

fundamentally different behaviour from that of a “perfect conductor”, and demonstration of

the Meissner effect became the defining characteristic of a superconductor. Theorists worked

tirelessly for over 40 years trying to explain superconductivity until finally in 1957, Bardeen,

Cooper, and Schrieffer (BCS) were able to successfully apply the (relatively new) quantum

theory to describe superconductivity. In this theory electrons in the metal form pairs (known

as Cooper pairs) via interactions with the crystal lattice. The ground state is a coherent

state of these Cooper pairs, and the long-range correlation among them is what generates

the unusual properties of superconductors. For a while it seemed that superconductivity

was well understood in terms of the BCS theory and research began to slow down. One of

the key predictions of the BCS theory was that superconductivity should not occur at any
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temperature higher than roughly 40K. In 1986, however, to the surprise of the scientific com-

munity Bednorz and Müller discovered superconductivity in the Ba-La-Cu-O system near

30K [5] and soon after materials with TC ’s higher than 77K were found.

For the first time superconducting materials could be studied using liquid nitrogen as op-

posed to liquid helium which is more costly and difficult to work with. These so called high-

temperature (or “high-Tc”) superconductors not only exhibit a transition temperature Tc

that exceeds far beyond the highest Tc predicted by the BCS theory, but also defy the conven-

tional expectation that superconductivity cannot occur in magnetic materials. These com-

pounds, known as cuprates, are systems which contain CuO2 planes. In these planes oxygen

(O−−) has a valence configuration of (1s)2(2s)2(2p)6 while copper (Cu++) has configuration

(3d)9. There are a few interesting features which can be determined from knowledge of the

electronic configuration. Nine electrons occupy the five d orbitals (dxy, dxz, dyz, dz2 , dx2−y2)

making four orbitals doubly occupied and one singly occupied. Therefore for this system

the total spin S = 1/2 and the electron at the Cu site is magnetic. It was not imaginable

that copper, a magnetic atom, could possibly play a role in superconductivity as one would

expect magnetism to conflict with the spin-singlet Cooper-pairing. The wavefunctions for

the dx2−y2 orbitals have a small overlap with those on adjacent sites, meaning that the two

electrons can pair into either a spin singlet or triplet state.

In addition to unusually high Tc, the cuprates exhibit a complex phase diagram that

consists of a magnetic insulator phase, superconductivity, the so-called pseudogap phase, and

non-Fermi-liquid behaviour due to strong interactions of the d electrons. There has also been

discussions on the possible existence of a quantum critical point inside the superconducting

‘dome’. The BCS theory, which is based on a weakly interacting Fermi liquid, is not equipped

to describe the properties of such systems. Discovery of the high-temperature cuprates

started a revolution in condensed matter research and at present there is no single theory

capable of explaining all of these observations, making high-Tc superconductivity one of the

most pressing problems in solid state theory.

The strongly correlated nature of the d electrons in the cuprates is what makes research

using the usual methods rather difficult. The work horse of condensed matter physics and

theoretical chemistry is the density functional theory (DFT) [6] used for performing band
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structure calculations. In DFT the electrons are approximated as independent particles, and

the electrostatic repulsion among them is replaced by an interaction with an average electron

density. This approximation, known as the local density approximation (LDA), effectively

reduces the many-body problem down to a single-particle problem and works well when

the correlation among electrons is relatively weak, or alternatively, when the electrons have

relatively high kinetic energy [7]. The strong electron correlations in the cuprates means

that this approximation is no longer valid, and alternatives to the usual DFT calculations

need be found.

1.2 Transition Metal Dichalcogenides

Many of the cuprates and recently discovered exotic superconductors exhibit charge density

waves (CDW) which can be observed directly by scanning tunneling spectroscopy (STS).

The Fermi surface changes across a CDW transition can be probed by angle-resolved pho-

toemission spectroscopy (ARPES) [8, 9] with high precision. In addition, there are some

CDW materials which exhibit features common to the cuprates, including “kinks” in the

energy-momentum dispersion, anisotropic electron-phonon coupling [10], as well as a pseu-

dogap [11, 12, 13]. There are theories which suggest that some phenomena seen in cuprates

could potentially be a manifestation of a CDW in these materials. Therefore, in order to

understand the underlying mechanism responsible for high-Tc superconductivity (which is

still unknown) it will be instructive to understand possible relationships between supercon-

ductivity and electronic instabilities that can cause CDW.

The transition metal dichalcogenides (TMDs) provide an excellent opportunity for study-

ing the interplay of charge density modulations and superconductivity in the context of the

conventional BCS theory. These materials show charge density waves [14, 15], and astonish-

ingly become superconductors at lower temperatures. For example, 2H-TaSe2 and 2H-TaS2

are TMDs which have a charge density wave transitions at TCDW = 90K and 75K as well as

a superconducting transitions at TSC = 0.6K and 0.15K, respectively[16, 17]. TMDs contain

chalcogen elements from the oxygen family (oxides are distinguished from chalcogenides)

combined with group V metals (i.e., NbSe2, TaSe2, NbTa2, etc., . . . ). The TMD’s form
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a layered X-M-X structure where the metal (M) atom is sandwiched between hexagonally

packed chalcogen atoms (X). The sandwich-like stacking can be made in a variety of ways

and one usually distinguishes between the pure octahedral type (1T) from the pure trigonal

prismatic (2H) stacking. In addition, since these layered materials are easy to cleave, they

are suitable for surface sensitive measurements such as ARPES and STS, and make an ideal

starting point for studying the interplay of CDW and superconductivity.

1.3 Motivation for Research

An especially interesting example of a TMD exhibiting the coexistence of CDW and SC

is 2H-NbSe2, which has TCDW = 33K and the transition to the superconducting state at

TSC = 7.2K is well-separated from CDW. This material, although relatively simple in com-

position, has recently become a source of significant debate in the area of superconductivity.

The charge density wave transition has traditionally been understood in terms of a concept

originally studied by Peierls [18, 19] called nesting. In this model, the existence of parallel

sections of the Fermi Surface that can be connected by a common wave vector lead to a

periodic lattice distortion, resulting in periodic charge density modulations [20]. One of the

predictions of this model is that such “charge density waves” have the periodicity deter-

mined by the “nesting (or CDW) wave vector” (which connect parallel portions of the Fermi

surface) and a gap should form at the Fermi level. When the material forms CDW, it tends

to become an insulator, due to the localisation of the electrons. Such a metal-insulator tran-

sition due to the formation of CDW has been observed in many metals. There are, however,

several TMDs (including NbSe2) that exhibit somewhat counter-intuitive properties, becom-

ing a better conductor upon going through a CDW transition [21]. This unusual behaviour

led T.M. Rice and G.K. Scott [1] to formulate a new mechanism for CDWs involving a van

Hove singularity near the Fermi Surface. A van Hove singularity is a saddle point in the

electron energy-momentum dispersion, and presents itself as a divergence in the density of

states. According to this model, vectors which connect vHs’s near the Fermi surface can

also result in a lattice distortion. In the normal state, the large density of states at the vHs

causes electrons to easily scatter to the saddle points. Therefore, removal of states at the
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Figure 1.1: NbSe2 Fermi Surfaces showing the double barreled cylinders around Γ and
K, as well as the CDW nesting vectors known from neutron scattering experiments[23].
More recent band structure calculations show that there is an additional “pancake”-like
structure at Γ, and that the cylinders have small dispersion along kz. Blue circles rep-
resent “hot-spots” determined by Kiss et al. [24] while green hatched circles correspond
to “hot-spots” measured by Borisenko et al.[25]

vHs in the CDW state can enhance the conductivity [22].

Ever since CDW was first observed in NbSe2, there has been ongoing debate regarding

the the mechanism for the CDW in this material. The first band structure calculations

for NbSe2 were performed by Mattheiss [26] in 1973 and these calculations were able to

provide the basic features of the band structure, giving a Fermi surface similar to that

shown in Figure 1.1. The Fermi surface of 2H-NbSe2 consists of two sets of cylindrical

pockets centered around Γ and K as well as a saddle point singularity at (1/2)ΓK. The

calculations performed by Mattheiss, however, were not selfconsistent, overestimating the

depth of the saddle point (∼400 meV below Fermi energy EF ) and showing only two bands

crossing the Fermi level. From more recent selfconsistent band structure calculations [27, 28]

we now know that there is an additional “pancake”-shaped surface at Γ which has significant

kz dispersion and that the vHs is closer to ≈150 meV below the Fermi energy. Using the

band structure results of Mattheiss and the CDW vectors known from neutron scattering

measurements (QCDW ≈ (2/3)ΓM [23]), J. A. Wilson et al. concluded that the CDW in
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2H-NbSe2 was a result of Fermi-Surface nesting [17] and that the mechanism of Rice and

Scott could be ruled out, as the van Hove singularity was too far away from the Fermi level.

It was not until 1999 that the first experimental mapping of the Fermi surface was done

by Straub et al. using ARPES [29]. This measurement was able to reproduce the bands

around Γ and K; however, due to the relatively limited energy and momentum resolution

(∆E = 60 meV and ∆θ = 1.5◦) they were not able to resolve the double-walled nature of the

Fermi surfaces. Using the measured Fermi surfaces they also concluded that the CDW was a

result of nesting between parallel portions of the hexagonal surfaces around Γ. Although the

vHs was closer to EF than had been thought originally (∼ 50 meV), it was still too far for

the Rice and Scott mechanism to be a major factor for the CDW transition. A subsequent

ARPES measurement by Tonjes et al. [30] reached the same conclusion; however, they too

were unable to resolve the double walls around Γ and K. Realizing that Fermi surface

nesting cannot explain the reduced resistivity of 2H-NbSe2 in the CDW state, they suggested

that the CDW might be caused by a combination of nesting of the Fermi surfaces and the

presence of van Hove singularities.

With the development of more advanced technology and ARPES techniques, all of the

expected Fermi surface sheets from the band structure calculations were finally resolved in

2001 [31]. This, as well as other measurements [32], have determined that contrary to the

results found by Straub et al. the hexagonal Fermi surface at Γ is far too large for nesting

with QCDW . If nesting is indeed the mechanism for the CDW it must be occurring somewhere

else in the Brillouin zone. Additionally, with improved energy resolution (∆E = 2.5 meV and

∆θ = 0.1◦) the superconducting gap has been measured by means of ARPES for the first time

[33]. An unexpected result is that the electron-phonon coupling and the superconducting

gap have been found to be Fermi-surface sheet dependent, being maximum in particular

regions of k-space [10].

This led to another problem for researchers. If nesting was indeed the mechanism respon-

sible for CDW in NbSe2, a gap should open open up in the regions connected by the CDW

vectors. The apparent absence of a CDW gap in the ARPES measurements had previously

been attributed to the poor energy resolution available at the time. Since the latest ARPES

[33] has been able to detect the SC gap in different regions of k-space, the lack of a CDW
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Figure 1.2: Mapping of k-points showing the CDW “hot spots” and k-dependent SC
gap [24]. The upper portion corresponds to measurements in the CDW state while the
lower portion is in the SC state. Red and blue circles identify “hot spots” which are
connected by the primary and secondary CDW vectors, respectively, and coloured dots
give the magnitude of the superconducting gap across the Fermi surfaces.

gap was a cause for concern, as the CDW gap was expected to be larger than the SC gap.

In order to explain the missing CDW gap, many theories have been proposed ranging from

gapless excitations [34] to nesting not being a factor at all in CDW formation [28].

The theory of Rice and Scott based on van Hove singularity has been revived once

again in a recent paper by Kiss et al. [24] in which they performed high-resolution ARPES

measurements of 2H-NbSe2. This experiment has shown that CDW-induced changes of the

electronic structure occur only at specific points in k-space, referred to as “hot spots”, and

the energy points where spectral changes are largest are those at the van Hove singularity.

They find the energy of the van Hove singularity (EvHs) to be ∼ 35 meV below the Fermi

level – close enough that the vHs mechanism for CDW is possible. In addition, the “hot

spots” in k space are located on portions of the Fermi surfaces which are closest to the vHs.

These points are along ΓK and are shown as blue circles in Figure 1.1. After symmetrizing

the “hot spots” to other points in the BZ they have found that these points are connected

by precisely the primary and secondary CDW vectors as shown in Figure 1.2. Moreover,

the regions of the Fermi surfaces where the CDW-induced changes occur correspond to
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Figure 1.3: Map of the CDW energy gap provided by Borisenko et al. [25]. The energy
gap breaks the inner K barrel into “arcs” and is maximum along the K −M −K line.
These new “hot-spots” are shown in Figure 1.1 as green hatched circles and are also
connected by the CDW nesting vectors. Regions where the CDW gap is maximum
correspond to regions where the SC energy gap is minimum.

regions where the electron-phonon coupling and the SC energy gap are maximum. Although

it has been the long standing consensus that CDW (tending towards insulating behaviour)

should compete with superconductivity, this result indicates that a CDW can in fact enhance

superconductivity.

Although these measurements have identified “hot spots” where the CDW induce spectral

changes, the CDW energy gap was still not observed in 2H-NbSe2. In a recent paper by

Borisenko et al. [25] they have used ARPES to perform an “ultra-high” precision mapping

of the Fermi surfaces and claim to provide direct measurements of the CDW energy gap for

the first time. They found that in contrast to all the previous studies of 2H-NbSe2, none of

the proposed nesting scenarios would apply and instead, points along the K −M −K line

on the inner K barrel are connected by the CDW vectors. The proposed CDW energy gap

seems to support this new scenario, and a plot showing the magnitude of the CDW gap in k-

space is presented in Figure 1.3. This figure shows that the CDW gap is maximum at specific

k-points in the BZ and breaks the inner K barrel into “arcs”. These new “hot spots” are

shown in Figure 1.1 as green hatched circles and correspond to regions in k-space where the

SC gap is minimum. Moreover, temperature-dependent measurements are claimed to show
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that the CDW gap persists into the normal state (in analogy with the pseudogap in cuprates)

and to explain why previous measurements of the energy gap had been unsuccessful. The

results provided by Borisenko et al. support the conventional nesting mechanism for the

CDW in 2H-NbSe2 and indicate that CDW competes with superconductivity.

As has been illustrated, there has been significant debate regarding the nature of the

mechanism for the CDW in 2H-NbSe2. To date there is no consensus as to whether the CDW

is a result of conventional nesting of the Fermi surfaces, or the vHs scenario proposed by

Rice and Scott. The experiments presented above provide strong justification for theoretical

studies of charge density modulations and their possible relation with superconductivity, and

provide the primary motivation for the research presented in this thesis.

1.4 Layout of Thesis

The remainder of this thesis is organized as follows. In Chapter 2 we review the relevant

theoretical background for superconductivity and CDW. Here, emphasis will be given to

the different models regarding the mechanism for a CDW instability. The theoretical and

computational formulation for our study is presented in Chapter 3. The coexistence of

charge density modulations and superconductivity is first examined in Chapter 4 for finite-

size systems with inhomogeneity as due to surfaces and impurities, with either s- or d-wave

superconductivity. The most significant results of this research are presented in Chapter 5,

in which we investigate the mechanism for the CDW instability in our model and study the

interplay of charge density modulations with superconductivity. Finally, Chapter 6 discusses

the scope of this study and concludes the thesis.
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Chapter 2

Theoretical Background

The goal of this chapter is to provide a sufficient background for the theoretical formula-

tion of the research. In this chapter a brief review of the BCS theory of superconductivity is

given and its scope and limitations are discussed. In addition an introduction to the theory

of charge density wave formation is given. The section concludes with a discussion of the

BdG theory and its advantages over the conventional BCS theory.

2.1 BCS Theory of Superconductivity

In the mid 1950’s there was a tremendous amount of research and effort put in by the

scientific community in order to try and understand the relatively new phenomena of super-

conductivity. Phenomenological theories due to London, Ginzburg, and Landau were able

to provide qualitative predictions; however, a fundamental understanding of the mechanism

behind superconductivity was still lacking. It was not until 1957 when Bardeen, Cooper,

and Schrieffer (BCS) proposed their theory of superconductivity [35] that the microscopic

mechanism of superconductivity could be understood.

The BCS theory of superconductivity is based on the Landau theory of the Fermi liquid,

which states that as long as the interactions among electrons do not lead to discontinuous

changes in the properties of the system, then a quasiparticle approach is valid. In the normal

state (as opposed to the SC state), the strong Coulomb repulsion among electrons is greatly

reduced due to screening, and together with the Pauli exclusion principle, its net result

is to shift the effective mass of the electron (hence the name “quasiparticle”) and change

the Fermi-Dirac distribution function around the Fermi energy only slightly. Thus a Fermi

liquid consists of free, independent quasiparticles and there is one-to-one correspondence
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between a quasiparticle in the “non-interacting” system and an electron in the many-body

system. What leads to superconductivity is the residual interactions among the Landau

quasiparticles in the normal metal via exchange of phonons. This is the starting point

of the BCS theory. The Fermi-liquid theory is then applied to the weak electron-phonon

interaction that results in the instability against Cooper-pair formation, and the terminology

“quasiparticle” is then used for a single-particle excitation in the superconducting state. For

this reason, henceforth the Landau quasiparticles in the normal state are simply referred

to as electrons. In conventional superconductors, the energy difference between the SC and

normal states is of the order of a few meV, and thus the nature of the correlations pertinent

to superconductivity cannot be drastically different above and below the superconducting

transition temperature. This justifies the use of the Fermi liquid approach in the BCS theory.

Experimental confirmation of the isotope effect, where the critical temperature of the

superconducting transition varies with the ionic mass, motivated studies of electron-phonon

interactions in metals. Bardeen and Pines [36] had previously worked on the electron-phonon

interaction and found the interaction to have the form

Hel−ph =
1

2

∑

kk′σσ′q

2~ωq|Mq|2ĉ†k′−q,σ′ ĉk′,σ′ ĉ†k+q,σ ĉk,σ

(ǫk − ǫk+q)2 − (~ωq)2
, (2.1)

where ckσ and c†kσ are the annihilation and creation operators for an electron of momentum

k and spin σ. The ǫk and ~ωq are the energy of an electron with momentum k and phonon

of momentum q, respectively. Although k and q represent three dimensional vectors, the

vector notation (i.e., ~k) has been suppressed for simplicity. The isotopic mass dependence

is contained in the electron-phonon scattering matrix element Mq. With this interaction in

mind BCS were struggling to find a solution to the general Hamiltonian,

H =
∑

kσ

ǫkn̂kσ +HCoul +Hel−ph +HExch , (2.2)

where the first term is the kinetic energy of the electron gas, and HCoul and HExch are

the direct Coulomb and exchange interactions, respectively. Cooper noticed that there is a

restricted range of energies where Hel−ph would be negative, namely,

ǫk − ǫk+q < ~ωq .
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For these energies, the electron-phonon interaction contribution to the overall Hamiltonian

would be negative and the total ground-state energy of the system would be reduced. Mo-

tivated by this result, Cooper began to study a class of matrices where the off-diagonal

components were all negative. To his surprise, he found that such a matrix always had at

least one bound state (i.e., negative eigenvalue), leading him to study the famous two-pair

problem above a filled Fermi sea. The major discovery by Cooper [37] was that there were

certain circumstances when the net interaction between the electrons could be attractive due

to the electron-phonon interaction. If two electrons were interacting above a filled Fermi

sea, then these electrons would inevitably form a bound state, now known as a Cooper pair.

The binding energy would be maximum for electrons of opposite momenta (k, −k), and the

exchange correlation energy would be minimum if they had opposite spins. Thus the ground-

state energy of the superconducting state can be minimized if electrons form Cooper pairs

(i.e., pairs with k ↑ and −k ↓) with zero relative angular momentum, i.e., an s-wave bound

state. Instead of trying to solve the full interacting Hamiltonian (2.2), Bardeen, Cooper,

and Schrieffer [35] tried to solve a reduced Hamiltonian which consisted of a gas of paired

electrons interacting via an attractive potential:

Hred =
∑

kσ

ǫkn̂kσ +
∑

k,k′

Vk,k′ b̂†kb̂k′ , (2.3)

where Vk,k′ is assumed to be negative for pairing to occur. The b̂k’s are now Cooper-pair

annihilation operators given by b̂k = ĉ−k↓ĉk↑. Although the Hamiltonian is reduced, it is still

not possible to solve the problem exactly. The real breakthrough for the theory came when

Schrieffer suggested a form of coherent-state wavefunction cast in the form of a variational

approach. He suggested that the ground-state wavefunction could be written as:

|Ψ0〉 =
∏

k

(

uk + vkb̂
†
k

)

|0〉 , (2.4)

where uk and vk are the hole and particle amplitudes of a Cooper pair respectively, and |0〉 is

the vacuum state. Orthonormality of the wavefunctions demands that u2
k +v2

k = 1. Schrieffer

treated the particle and hole amplitudes as variational parameters under this constraint as

well as the constraint that on average the total number of particles in the system is fixed:

〈Ψ0|
∑

kσ

n̂kσ |Ψ0〉 = N , (2.5)
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where N is the total number of particles. Using the method of Lagrange multiplier, one

minimizes the ground-state energy,

δW = δ 〈Ψ0|Hred − µN̂op |Ψ0〉 = 0 . (2.6)

Here N̂op is the operator which counts the number of particles in the many-body system,

and µ is the chemical potential. By minimizing this energy in terms of uk and vk one finds

u2
k =

1

2

(

1 +
ǫk − µ

Ek

)

, (2.7)

v2
k =

1

2

(

1 − ǫk − µ

Ek

)

, (2.8)

ukvk =
∆k

2Ek

, (2.9)

where

Ek =
√

ǫ2k + ∆2
k , (2.10)

and ∆k is called the order parameter. In general it is a function of momentum k, and it

must be determined selfconsistently by the so-called gap equation:

∆k = −
∑

k′

Vkk′

∆k′

2Ek′

. (2.11)

In their derivation, BCS neglected anisotropic effects for s-wave superconductivity and re-

placed Vk,k′ by a constant average-value matrix element. This averaging neglects the details

of the band structure, but it was accepted based on the experimental evidence available at

the time. Today we know that there are in fact superconductors where anisotropy plays an

important role and must be included. The BCS formulation has also been extended to d-wave

pairing in high-Tc materials by making the electron-phonon coupling momentum-dependent.

For an isotropic s-wave superconductor, the gap equation is reduced to

∆ = −
∑

k′

V
∆

2Ek′

. (2.12)

When an electron in state k, σ is added or removed from the superconducting ground-

state, the pair state (k, σ;−k,−σ) is no longer available for pairing due to the Pauli exclusion

principle and blocked from coherent scattering among Cooper pairs. When this occurs the

pair state is said to be broken, increasing the total energy of the system. By using the
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definition of the wavefunction (2.4) and the commutation relations of the pair operators, the

ground-state energy of the system is given by

E = 〈Ψ0|Hred − µN̂op |Ψ0〉 =
∑

k

2 (ǫk − µ) v2
k +

∑

kk′

V ukvkuk′vk′ . (2.13)

By breaking a pair state of momentum k the energy of the system is increased by an amount

−2ǫkv
2
k − 2

∑

k′

V ukvkuk′vk′ .

To this we must add the kinetic energy of the added electron to get the total change in

energy

δE = ǫk
[

1 − 2v2
k

]

+ 2∆ukvk ,

where we have used the gap equation (2.12) to simplify the interaction energy. Using the

results in Equations (2.7)-(2.9) the increase in energy becomes (with µ = 0)

δE =
ǫ2k
Ek

+
∆2

Ek

= Ek . (2.14)

We thus find that Ek is the energy required to break a Cooper pair and create an excitation

in state k and ∆ is called the energy gap. Adding or removing an electron both break pair

states and in fact, both processes are equivalent and cannot be distinguished except that

they change the total number of particles N to N + 1 and N − 1, respectively. Thus, single-

particle excitations in the superconductor are a superposition of an electron and a hole. This

is referred to as a quasiparticle excitation and has energy Ek.

Excited states of the reduced Hamiltonian can be obtained through a canonical transfor-

mation, referred to as the Bogoliubov-Valatin transformation, which diagonalizes the Hamil-

tonian. These transformations are given by [38]

γ̂†k↑ = ukĉ
†
k↑ − vkĉ−k↓ ,

γ̂−k↓ = ukĉ−k↓ + vkĉ
†
k↑ ,

as well as their Hermitian conjugates. When these operators act on |Ψ0〉 one finds the
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relations,

γ̂†k↑ |Ψ0〉 = |Ψk↑〉 ,

γ̂†−k↓ |Ψ0〉 = |Ψ−k↓〉 ,

γ̂k↑ |Ψ0〉 = 0 ,

γ̂−k↓ |Ψ0〉 = 0 .

Evidently γ̂†k↑ creates a quasiparticle with momentum k and spin up and γ̂−k↓ destroys a

quasiparticle with momentum −k and spin down in the superconducting state; in either

case the total momentum and spin of the system are increased by k and spin one half. The

ground-state |Ψ0〉 is the vacuum state free of quasiparticles. These elementary excitations

are sometimes referred to as Bogoliubov quasiparticles or Bogolons.

2.2 Charge Density Waves

In the mid 1930s Rudolph Peierls was writing an introductory textbook on the quantum

theory of the solid state [18], and was in the process of designing a many-body exercise when

he made an accidental discovery. He was considering the following question; what would

happen if the crystal lattice could be distorted so that the size of the unit cell was effectively

doubled? It was well established that a periodic potential in the lattice causes a gap due

to a level splitting to form at the edge of the Brillouin zone. (In a one dimensional lattice

of lattice spacing a the gap is at k = π/a). Doubling the size of the unit cell, he thought,

should effectively halve the size of the Brillouin zone and the gap would now open at π/2a

as illustrated in Figure 2.1. If the metal had enough electrons so that the energy band was

half filled (half-filling), the Fermi level would also be at π/2a. He wanted to know if the

energy saved by the gap opening at the Fermi level was more than the energy cost to distort

the lattice in the first place. To his complete surprise [19] this distortion of the lattice was

always energetically favourable, and such a metal would undergo what is now known as the

Peierls transition. Since the distortion of the lattice causes the electron density to distort in

a periodic fashion, it is also known as a charge density wave transition (CDW).

Intuitively one can see that the formation of a charge density wave is dependent on
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Figure 2.1: Peierls’ construction of a charge density wave. By distorting the lattice
one can move the energy gap from the zone boundary to π/2a. For a half-filled band
this corresponds to the Fermi level. This lattice distortion causes a periodic modulation
of the electron density, the wavelength of which is dependent on kF .

the distortion of the lattice, and therefore the CDW is intimately tied with the electron-

phonon interactions. Physically, the CDW is induced as a result of electrons overscreening

the potential induced by the lattice of ions. The dielectric response of a gas of electrons

characterizes how the gas will respond to an external potential, and in general is frequency-

and wavevector-dependent. Therefore the behaviour of the dielectric response can provide

insight into density wave formation. A useful approximation which can characterize many

metals is given by Equation (2.15) and is known as the Lindhard equation for the dielectric

response of an electron gas [39]:

ǫ(~q, ω) = 1 − lim
α→0

e2

Vgǫ0q2

∑

~k

fo(~k + ~q) − fo(~k)

E(~k + ~q) − E(~k) − ~ω − i~α
. (2.15)

In this equation fo(~k) is the Fermi-Dirac distribution function at energy E(~k), Vg is the

volume of the unit cell, and q and ω are the space and time Fourier components of a general

time-dependent external potential. The Lindhard equation characterizes how the electron

gas will respond to an external potential, and for CDW formation this potential is a result

of phonon effects in the lattice. For CDW we are interested in the response for a frozen-in
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periodic lattice distortion, therefore the quantity of interest is ǫ(~q, ω = 0).

A divergence in the response indicates that the electron gas is unstable and electrons will

move to overscreen the potential. As Johannes et al. have emphasized [28, 40], although

the response has real and imaginary parts, it is the real part that defines a CDW instability.

As the imaginary part vanishes as α → 0, it is the real part shown in Equation (2.16)

which contains relevant information from within an energy window E(~k + ~q) − E(~k). It

is interesting to note that a divergence in the dielectric response can also be the origin of

the so-called Kohn Anomaly [41]. In real metals the electron-phonon interaction is replaced

by a screened interaction, which depends on the dielectric response ǫ(~q, ω). The singularity

which develops in the dielectric response means that this screening changes rather sharply

for specific wavevectors ~q. Therefore, the divergence of the dielectric response manifests itself

as a dip in the phonon frequency spectrum at q = 2kF , resulting in the Kohn Anomaly.

Re ǫ(~q, ω = 0) = 1 − lim
α→0

e2

Vgǫ0q2

∑

~k

(

fo(~k + ~q) − fo(~k)
)(

E(~k + ~q) − E(~k)
)

(

E(~k + ~q) − E(~k)
)2

+ (~α)2
(2.16)

For a time-independent perturbation the most dominant contributions to the sum in (2.16)

occur when E(~k + ~q) − E(~k) = 0, and in a one-dimensional metal the response diverges

whenever q = 2kF . That is, when two states spanned by the same wavevector q have the

same energy, the sum diverges, and the system becomes unstable towards a periodic lattice

distortion. Constant energy surfaces connected by a common wavevector is an effect referred

to as nesting, and in general depends on the particular topology of the Fermi surface. There

are many metals for which conduction occurs along “chains” and their energy dispersion

can be approximated as being one-dimensional. Thus, 3D metals with a “one-dimensional”

energy dispersion have a Fermi surface consisting of 2 parallel planes at k = ±kF . An

electron at k = −kF and a hole at k = +kF have the same energy and are separated by

q = 2kF . The wavevectors q which connect these points are referred to as nesting vectors.

Since there are an infinite number of these points in such a “one-dimensional” metal the

response is strongly divergent, and this is referred to as “perfect nesting” of the Fermi

surface. This is the reason why materials which exhibit CDW typically contain chains of

atoms. For dispersions in higher dimensions, however, the number of parallel points is
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reduced as illustrated in Figure 2.2. The reduction of the number of nested points from

two to three dimensions is significant, and there are very few “three-dimensional” metals

which exhibit CDW. Since the cuprates and transition metal dichalcogenides are essentially

“two-dimensional” metals, there is potential for nesting to be significant in these materials.

It is important to keep in mind that a divergence in (2.16) implies that the electron gas

is unstable towards density wave formation. In a real system, where the lattice of ions is

dynamic, nuclei may respond in such a way that a frozen in lattice distortion (zero phonon

mode) may not occur. In addition there may be so-called soft phonon modes for which

the eigenvalue of the electron-phonon scattering matrix vanishes. Such a zero-phonon mode

can cause CDW without a divergence in the dielectric response at all. Thus, although a

divergence in (2.16) provides strong criteria for a CDW instability, it does not necessarily

guarantee whether a CDW will form in a physical material.

Although conventional nesting is responsible for density wave formation in many metals,

it is not the only scenario in which a CDW can occur. In an article by Rice and Scott [1]

it was shown that any vector Qsp in momentum space which connects two saddle points

close to the Fermi energy can also lead to a divergence in the dielectric susceptibility. Points

connected by Qsp have the same energy, and as a result of the saddle points there will be a

very large density of states at this energy. This theory is particularly appealing as it provides

a plausible explanation as to why many of the transition metal dichalcogenides become better

conductors in the CDW state. In the normal state the large density of states at the vHs

causes electrons to easily scatter to the saddle point. Therefore the removal of states at the

Figure 2.2: Fermi surface nesting for a three-dimensional material with 1-,2- and
3-dimensional energy dispersion. The number of points which lead to divergent terms
in the response is strongly reduced in three dimensions [42].
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vHs in the CDW state would enhance the conductivity.

If a material has both Fermi-surface nesting as well as a saddle point in the vicinity of

the Fermi energy, the divergence in (2.16) due to the van Hove singularity will multiply the

divergence due to nesting. When this happens, it is not clear which mechanism is responsible

for the CDW. It is reasonable to assume that the mechanism resulting in the most dominant

divergence in the response is the dominant cause for the CDW instability; although, it can be

a combination of both. For the transition metal dichalcogenides the Fermi surface contains

both features, and there has been considerable debate regarding whether nesting or the vHs

mechanism is responsible for CDW in these metals.

2.3 BdG Theory

Although the BCS theory (which is formulated in momentum space) has been very success-

ful in describing isotropic and homogeneous superconductors, it suffers in that it cannot

describe superconductivity in the presence of inhomogeneity, where the order parameter

varies spatially. The Ginzburg-Landau theory [43] allows one to calculate spatial variation

of the macroscopic wavefunction of Cooper pairs. This phenomenological theory, however,

cannot describe SC on the scale smaller than the coherence length (roughly the size of a

Cooper pair), and is also only valid for temperatures near Tc. To understand the funda-

mental properties of superconductors on the microscopic scale, a generalization of the BCS

theory is necessary. In the presence of a surface or an impurity, momentum is no longer a

good quantum number and the Hamiltonian must be formulated in real space. This allows

the study of spatial variation of the order parameters. There are two theoretical approaches

which have been developed to study inhomogeneous systems. One is due to Gorkov [44] and

uses the equations of motion for the Green functions, and the second approach is due to de

Gennes [45] which is based on the quasiparticle wavefunctions. In the Bogoliubov de-Gennes

(BdG) formalism one starts with a real-space mean-field Hamiltonian and diagonalizes it by

means of a unitary transformation. The mean fields are then determined by variationally

minimizing the free energy. The BdG equations are a generalization of the BCS theory,

therefore for a homogeneous system they are equivalent. The tight-binding formalism is well
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suited for numerical calculations on a lattice as it allows one to control the band structure,

electron filling, and many other quantities unlike the free electron gas model. Combined with

the BdG formulation it provides a powerful tool for studying superconductivity in metals.

For this reason it is the tight-binding and BdG formalisms which we adopt for our studies.
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Chapter 3

Formulation

3.1 Extended-Hubbard Hamiltonian

The DFT with LDA breaks down for systems where the correlation effects are dominant,

such as the 3d transition metals. The most notable example of such a system is NiO, which

according to the independent electron approximation should be a metal since it contains

a d band that is not completely filled [46]. It turns out, however, that the actual NiO is

an insulator. The explanation for this was first given by Mott in 1949. The electrostatic

repulsion among electrons with overlapping orbitals will cause them to become localized at

the lattice sites, reducing their kinetic energy. When this happens, there is a competition

between the Coulomb repulsion and kinetic energy that is not accounted for within the

conventional LDA. For example, if we have two electrons with the same spin, they cannot

occupy the same lattice site (due to the Pauli exclusion principle) and so the Coulomb

repulsion energy in this case is relatively low. However, if they were to have opposite spins,

the electrons can occupy the same site and this would cause a large Coulomb repulsion

between the electrons. If the Coulomb energy is comparable to the kinetic energy gain of the

electron (which can be the case in the 3d transition metals), then transport may not occur

and the system becomes insulating. Mott and Hubbard proposed a model to account for

such electron correlations by adding an extra term to the LDA approximation, sometimes

referred to as an LDA+U model.

The Mott-Hubbard Hamiltonian can be extended to study superconducting systems by

using an attractive potential between electrons of opposite spins which occupy the same site.

This so-called Hubbard model is a minimal model for s-wave superconductivity that arises
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from isotropic electron-phonon interactions. To study the high-temperature superconduc-

tors which have d-wave symmetry the Hubbard Hamiltonian can be extended to include

longer range interactions between electrons occupying neighbouring sites. Such an extended

Hubbard Hamiltonian can be written as

H0 =
∑

〈ij〉σ

tijc
†
iσcjσ +

∑

iσ

(ǫi − µ) n̂iσ , (3.1)

H = H0 +
∑

i

Uiin̂i↑n̂i↓ +
1

2

∑

〈ij〉

∑

σσ′

Uijn̂iσn̂jσ′ . (3.2)

The single-particle Hamiltonian H0 describes a non-interacting electron gas on a lattice. The

electrons are modelled as having the kinetic energy that allows them to “hop” from site to site

in the lattice. This is represented by the electron creation and annihilation operators which

removes an electron at site j and creates an electron at site i with hopping amplitude tij

and spin σ. In this thesis we first assume that electrons only hop between nearest-neighbour

sites, and then in Chapter 5 the hopping will be extended to next-nearest neighbours as well.

The neighbour sites are represented by the sum over 〈i, j〉 (which should be read as the sum

over all sites i and all sites j which are nearest neighbours to i). The remaining terms in

the single-particle Hamiltonian are the local on-site potentials. The chemical potential, µ,

specifies the filling of the system (since in a tight-binding model you can control the filling

of the band), while ǫi is a single-particle impurity potential which allows for the study of

an impurity deposited at any site i in the lattice. The total Hamiltonian is the sum of the

single-particle Hamiltonian as well as the interactions among electrons as shown in Equation

(3.2). The Uii term represents an attractive s-wave interaction between two electrons of

opposite spins occupying at the same site, while the Uij term represents a longer-range

interaction such as d-wave coupling between electrons occupying neighbouring sites. The

extended Hubbard Hamiltonian is formulated in real space and provides the starting point

for our calculations.

3.2 Mean-Field Decomposition

The Hamiltonian in Equation (3.2) is exact and due to the two-body interaction terms, is

difficult, if not impossible, to solve exactly. As a result one must introduce an effective
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Hamiltonian in order to approximate the two-body interactions. To this end we apply a

mean-field method, where the two-body interactions are replaced with a one-body interaction

multiplied by a mean-field which needs to be solved selfconsistently. In the mean-field

approximation a two-body operator such as n̂i↑n̂i↓ is replaced by its average value plus

fluctuations about the average. Fluctuations higher than the second order are neglected in

this approximation. The on-site interaction operator becomes

n̂i↑n̂i↓ =
〈

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓

〉

+
(

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓ −

〈

ĉ†i↑ĉi↑ĉ
†
i↓ĉi↓

〉)

. (3.3)

The expectation value of a product of four operators can be evaluated using Wick’s Theorem.

For an arbitrary operator Ψ(i) Wick’s theorem states that the expectation value is given by

〈

Ψ†(1)Ψ†(2)Ψ(3)Ψ(4)
〉

=
〈

Ψ†(1)Ψ(4)
〉 〈

Ψ†(2)Ψ(3)
〉

−
〈

Ψ†(1)Ψ(3)
〉 〈

Ψ†(2)Ψ(4)
〉

(3.4)

+
〈

Ψ†(1)Ψ†(2)
〉

〈Ψ(3)Ψ(4)〉 .

Therefore the mean-field decomposition of the four electron operators is

〈

ĉ†i↑ĉ
†
i↓ĉi↓ĉi↑

〉

=
〈

ĉ†i↑ĉi↑

〉〈

ĉ†i↓ĉi↓

〉

−
〈

ĉ†i↑ĉi↓

〉〈

ĉ†i↓ĉi↑

〉

+
〈

ĉ†i↑ĉ
†
i↓

〉〈

ĉi↓ĉi↑

〉

.

In this study we are considering only non-magnetic interactions, therefore the second term in

the expansion above is taken to be zero. Performing a similar decomposition for the off-site

interaction terms (considering only singlet pairing) yields the mean-field Hamiltonian,

Heff = H0 +
∑

iσ

V
(H)
ii n̂iσ +

1

2

∑

〈ij〉σ

V
(H)
ij n̂iσ − 1

2

∑

〈ij〉σ

V
(F )
ij c†iσcjσ (3.5)

+
∑

i

∆iic
†
i↑c

†
i↓ +

1

2

∑

〈ij〉

∆ijc
†
i↑c

†
j↓ +H.c.
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The mean fields are defined as

V
(H)
ii = Uii

〈

ĉ†iσ ĉiσ

〉

(3.6)

V
(H)
ij = Uij

〈

ĉ†jσ ĉjσ

〉

(3.7)

V
(F )
ij =

1

2
Uij

[〈

ĉ†jσ ĉiσ

〉

+
〈

ĉ†iσ ĉjσ

〉]

(3.8)

∆ii = Uii

〈

ĉi↓ĉi↑

〉

(3.9)

∆ij =
1

2
Uij

[〈

ĉj↓ĉi↑

〉

+
〈

ĉi↓ĉj↑

〉]

, (3.10)

where σ is the spin of the electron, either up or down. The first two fields are the on- and

off-site Hartree potentials, and the third term is the Fock potential due to the exchange

interaction between electrons on neighbouring sites. Finally, we have the on- and off-site

pairing potentials that correspond to the s-wave and d-wave order parameters, respectively.

It should be emphasized that the Hartree-Fock mean-fields need be included selfconsistently

for studies of density modulations on the atomic scale. These electron correlations, though

important, are often simply neglected due to a significant increase in computational demand

by including these terms. The rationale behind this is that it is commonly thought that

the net effect of the Hartree-Fock mean-fields is to shift the chemical potential and nearest-

neighbour hopping amplitudes. For systems with nanoscale or atomic-scale inhomogeneity

and charge density modulations, however, this is not the case and these terms cannot be

ignored. In fact, it is crucial to solve for the Hartree-Fock potentials selfconsistently as well

as the order parameters in understanding superconductivity in an inhomogeneous system.

These terms are also important for solving the number equation, as they also determine the

filling of the bands.

3.3 BdG Equations

The mean-field Hamiltonian in Equation (3.5) now only contains single-particle operators and

can be diagonalized via a canonical transformation. This can be done using the Bogoliubov-

Valatin transformation as described in Section 2.1. The electron annihilation operators are
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transformed as

ĉi↑ =
∑

n

(

γn↑un(i) − γ†n↓v
∗
n(i)
)

, (3.11)

ĉi↓ =
∑

n

(

γn↓un(i) + γ†n↑v
∗
n(i)
)

, (3.12)

where un and vn are complex numbers, and the operators γnσ, γ
†
nσ describe a quasiparticle

in state n with spin σ. These quasiparticle operators diagonalize the effective Hamiltonian,

Heff = E0 +
∑

nσ

ǫnγ
†
nσγnσ , (3.13)

where E0 is the ground-state energy, and ǫn is the energy of a quasiparticle excitation in

state n. As shown in Appendix A this implies,

[

Heff , γnσ

]

= −ǫnγnσ , (3.14)

[

Heff , γ
†
nσ

]

= ǫnγ
†
nσ . (3.15)

Since the form of the operators must be invariant under a canonical transformation, the

quasiparticle operators must also obey the fermion anti-commutation relations,

{

γmσγ
†
nσ′

}

= δmnδσσ′ , (3.16)
{

γmσγnσ′

}

= 0 , (3.17)
{

γ†mσγ
†
nσ′

}

= 0 . (3.18)

For a superconductor at finite temperature the quasiparticle operators also obey the Fermi-

Dirac statistics,

〈

γ†mσγnσ′

〉

= δmnδσσ′fn , (3.19)

〈γmσγnσ′〉 = 0 , (3.20)

where fn ≡ f(ǫn) is the Fermi-Dirac distribution function evaluated at energy ǫn. Equation

(3.16) with m = n and σ = σ′ implies that |un|2 + |vn|2 = 1, which is consistent with the

result from the BCS theory for a homogeneous system. By evaluating the commutators in

Equations (3.14) and (3.15), and using the transformations (3.11) and (3.12), one arrives at
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the Bogoliubov-de Gennes (BdG) equations:





T̂ + V̂ (H) + V̂ (F ) ∆̂

∆̂∗ −
(

T̂ ∗ + V̂ (H) + V̂ (F )
)









un

vn



 = ǫn





un

vn



 , (3.21)

where T̂ is the kinetic energy matrix, and V̂ (H) and V̂ (F ) are the Hartree and Hartree-Fock

potentials, and un and vn are the particle and hole amplitudes of the quasiparticle excitations,

respectively. For a lattice with N sites the BdG equations form a 2N × 2N eigenvalue

problem, where excitation energies are the eigenvalues and the particle-hole amplitudes are

the eigenvectors. Written in this form it is evident that the pairing potentials ∆̂ couple the

particle and hole amplitudes, and if ∆̂ = 0 (i.e., the normal state) then the two amplitudes

are independent and each state is either a particle or a hole state. This corresponds to the

Hartree-Fock equations for an electron and for a hole.

The mean fields in (3.21) are determined by minimizing the free energy of the system.

In analogy with the BCS theory, we use un and vn as variational parameters and perform

the minimization under the constraint that quasiparticle wave functions are normalized,

δF = δ 〈Heff〉 − TδS = 0 , (3.22)

which provides a set of selfconsistent equations for the mean fields. Here δF and δS are

a change in the free energy and entropy, respectively. In terms of the particle and hole

amplitudes they are given by

V
(H)
ij = Uij

∑

n

[

|un(j)|2fn + |vn(j)|2(1 − fn)
]

, (3.23)

∆ij = −1

2
Uij

∑

n

[un(i)v∗n(j) + un(j)v∗n(i) ] (1 − 2fn) , (3.24)

which are valid for either j = i or j 6= i. The notation fn represents the Fermi-Dirac

distribution function for energy ǫn. The Fock potential is defined as

V
(F )
ij =

1

2
Uij

∑

n

[ (u∗n(i)un(j) + un(i)u∗n(j)) fn + (vn(i)v∗n(j) + v∗n(i)vn(j)) (1 − fn) ] . (3.25)

The mean-field potentials are defined in terms of the particle and hole amplitudes and ener-

gies, and as a result the BdG equations (3.21) represent a set of Schrödinger-like equations
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which must be solved selfconsistently until the mean-field potentials converge. Since the elec-

tron creation and annihilation operators are defined in terms of the quasiparticle amplitudes,

any physical observable can be calculated in terms of the eigenvalues and eigenvectors. For

example it is possible to determine the average electron density at each site in the lattice,

since 〈ni〉 =
∑

σ〈ĉ
†
iσ ĉiσ〉. In terms of the solutions of the BdG equations this is

〈ni〉 = 2
∑

n

[

|un(i)|2 + |vn(i)|2(1 − fn)
]

. (3.26)

Two particularly useful physical observables that can be calculated are the ground-state

energy of the system and the local density of states (LDOS). Since the LDOS is what is

measured by scanning tunnelling spectroscopy (STS) it will be a convenient tool for analyzing

the results of our model. Using the same technique to determine the electron density, the

ground-state energy for the Hubbard Hamiltonian with on-site and off-site interactions is

given by

〈Heff〉 =2
∑

〈ij〉

(

tij −
1

2
V

(F )
ij

)

V
(F )
ij

Uij

+
∑

i

(

ǫi − µ+ V
(H)
ii

)

〈n̂i〉

+ 2
∑

i

|∆ii|2
Uii

+
1

2

∑

〈ij〉

V
(H)
ij 〈n̂i〉 +

∑

<ij>

|∆ij|2
Uij

.

(3.27)

The local density of states is

Ai(ω) =
∑

n

|un(i)|2 δ(ω − ǫn) + |vn(i)|2 δ(ω + ǫn) (3.28)

where un(i) and vn(i) are the particle and hole amplitudes at site i for energy ǫn. In these

equation δ(ω) is the Dirac delta function. The BdG equations are solved exactly, and as a

result have a very high numerical demand. To solve these equations I have developed parallel

algorithms designed to perform such calculations quickly and efficiently. The calculation have

been performed on a largescale Beowulf-class PC cluster, iglu, here at the U of S. Iglu has 128

Intel Xeon processors clocked at 3.06 GHz, each with 2 GB RAM. Matrix diagonalization has

been performed with the Scalable Linear Algebra Package (ScaLAPACK) designed for use on

distributed-memory parallel computers. Details of the derivation of the BdG equations and

the outline of the numerical algorithms are presented in Appendices A and B, respectively.
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Chapter 4

Surfaces and Impurities in Nanoscale Sys-

tems

In this chapter we first investigate the effects of inhomogeneity as due to the presence

of a surface or an impurity, or finite size of the sample on both s-wave and d-wave super-

conductivity. In particular, quantum interference effects in nanoscale superconductors are

studied, in which the influence of surface boundaries and even a single impurity can dominate

over the entire sample. The presence of a boundary or an impurity tends to trigger charge

density modulations and inhomogeneous superconductivity. We begin with a study of pure

finite-size systems and demonstrate that s-wave SC is quite robust against the presence of

a surface and can in fact coexist with CDW, while d-wave SC is not. We will then examine

the effects of a single impurity deposited onto the centre of a nanoscale sample. The results

presented in this chapter have not only a potential impact on nanotechnology, but also give

us interesting insight into the interplay of CDW and SC.

4.1 Degenerate SC and CDW State

The presence of a surface can lead to interesting behaviours of s-wave and d-wave supercon-

ductors. First we study a pure s-wave superconductor of finite size (20x20 atomic lattice)

with on-site electron-phonon coupling Uii = −1.5t at half filling (meaning that the to-

tal number of electrons is the same as the number of lattice sites, hence one electron per

site on average). What is remarkable about this system is that there are three degenerate

ground-states: the superconducting state with uniform density (SC), a CDW state with no

superconductivity (CDW), as well as the state in which CDW and SC coexist (CDW+SC).
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Figure 4.1: (a) Electron density for a 20x20-site s-wave superconductor at half filling.
On-site coupling is Uii = −1.5t. The CDW+SC state is degenerate with the SC
state that has uniform density density distribution. (b) S-wave order parameter for
the system described in (a). The order parameter shows slight suppression along the
boundaries due to the loss of kinetic energy, but the presence of a surface is not a
pair-breaking process in s-wave superconductors.

These states all have exactly the same ground-state energy and critical temperature, but

with different electron density distribution. The electron density and order parameter for

the CDW+SC state are shown in Figures 4.1 (a) and (b), respectively. In these figures red

indicates suppression (or minimum value) and blue means enhanced (maximum value). In

the mixed state (SC+CDW) the SC order parameter is suppressed compared to the homo-

geneous density state (SC) as shown in Figure 4.2. This intriguing result indicates that

contrary to usual expectations a CDW can in fact coexist with SC. In this figure, it can be

seen clearly that the density modulations of CDW and the SC order parameter vanish at the

same Tc. Figure 4.1 (b) also illustrates that the CDW amplitude in the mixed (CDW+SC)

state is suppressed compared to the pure (i.e., no SC) state.

This result also emphasizes the significance of the Hartree-Fock interactions in Equation

(3.6). If this term is not included when solving the mean-field equations a CDW solution

cannot be found and a uniform density distribution with increased ground-state energy

would always result. Including these terms allows the electrons to “feel the presence” of the

other electrons via exchange of phonons without anomalous coupling, and can gain energy by

formation of a charge density wave. It is clear that an inhomogeneous density distribution can

be induced by surfaces in a small superconductor. Naturally, an electron at the boundary will
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Figure 4.2: Plot of the relative CDW amplitude and SC order parameter as a function
of temperature in an s-wave superconductor described in Figure 4.1(a). Amplitudes are
taken with respect to the pure SC and CDW states. The CDW and SC states clearly
have the same transition temperatures; however, the amplitude of the order parameter
in the CDW+SC state is suppressed by ∼ 8% with respect to the SC state. Addition-
ally, the amplitude of the density modulations in the CDW+SC state is suppressed by
∼ 60% with respect to the pure CDW state.

lose some kinetic energy as it can no longer “hop” past the surface. The pairing interaction,

however, is local (on-site in our model) in s-wave superconductors and does not extend to

nearest-neighbours, making s-wave superconductivity quite robust against the presence of a

surface. Along the boundary there is now a competition set up between the kinetic energy

loss due to being near the surface versus the pairing energy gained by forming a Cooper pair,

and at a corner the loss in kinetic energy is doubled. The tendency of electrons to avoid

corners in order to minimize loss in their kinetic energy results in a smaller average density

at the four corners, thus triggering a CDW across the whole sample.

4.2 D-Wave SC Sensitive to Surfaces

In a d-wave superconductor the situation is quite different from the s-wave case. Again for

this system we model a pure d-wave superconductor with off-site electron-phonon coupling

Uij = −1.5t (Uii = 0) in a finite size (19x19) lattice at half filling. The electron density

and order parameter are shown in Figures 4.3 (a) and (b), respectively. In the case of d-
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Figure 4.3: (a) Electron density for a pure 19x19-site d-wave superconductor at half
filling. Off-site coupling is Uij = −1.5t. The density is suppressed all along the bound-
aries, uniformly except for the four corners, and CDW-like density modulations are no
longer favoured in the ground-state. (b) D-wave order parameter for the system de-
scribed in (a). Similarly to the average density distribution, the d-wave order parameter
is suppressed on the surfaces.

wave superconductivity, due to nearest-neighbour electron-phonon coupling, across a surface

the electrons not only lose kinetic energy, but also interaction energies (both Hartree-Fock

and pairing energies). Thus a surface is always pair-breaking and tends to suppress d-wave

superconductivity. This is reflected in the electron density distribution shown in Figure 4.3

(a), where the density is overall suppressed all along the boundaries (suppression is the largest

at the corners), and obviously a CDW cannot be formed. Also due to the loss of nearest-

neighbour interactions, the order parameter is smaller (i.e., less superconducting ordering)

along the boundaries (Figure 4.3 (b)). These results indicate that d-wave superconductivity

is very sensitive to the presence of a surface and will be an important constraint for surface-

sensitive measurements or developing nanoscale devices.

4.3 S-Wave SC with Single Impurity

We would now like to consider the effects of a single impurity deposited at the centre of

a nanoscale superconductor. In this regard we model an s-wave superconductor with on-

site electron-phonon coupling Uii = −2t in a finite size (21x21) lattice at half filling. The

impurity is deposited at the centre of the lattice (x = 11, y = 11). Here we present results
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Figure 4.4: (a) Electron density for a 21x21 s-wave superconductor at half filling. The
on-site coupling strength is Uii = −2t. In the presence of an impurity the degeneracy of
the pure case is removed and the CDW becomes the favoured ground-state. (b) S-Wave
order parameter for the system described in (a). The upper (purple) plot is the order
parameter for ǫ11,11 = −10.0t, while the lower (green) plot is for ǫ11,11 = −0.5t.

for an attractive impurity potential. Two cases for weak impurity scattering (ǫ11,11 = −0.5t)

and strong impurity scattering (ǫ11,11 = −10t) are presented. The electron density and

order parameter are shown in Figures 4.4 (a) and (b), respectively. As demonstrated in

the last section, in a pure s-wave system with open boundaries there are three degenerate

ground-states: the superconducting state with uniform density (SC), a CDW state with no

superconductivity (CDW), as well as the state in which CDW and SC coexist (CDW+SC).

When an impurity is deposited into the system, the degeneracy is lifted and the CDW state

becomes the preferred ground-state. This is because the impurity pins the phase of the

density wave to its site, making the modulations more favoured as shown in Figure 4.4 (a).

When the strength of the impurity is changed, some counter-intuitive results are ob-

tained. One would think that with strong impurity scattering superconductivity should be

suppressed more than with weak impurity scattering. As Figure 4.4 (b) indicates, however,

that in fact the opposite happens. The average value of the order parameter for the weak

(ǫ11,11 = −0.5t) impurity is suppressed by a considerable amount compared to the strong

(ǫ11,11 = −10.0t) impurity. After some thought, the reason why this should occur becomes

clear. For a strong impurity (attractive) potential, electrons become localized around the

impurity site and they do not have enough kinetic energy to hop to neighbouring sites.
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Moreover, the scattering length of a strong impurity can be rather short, possibly on the

scale of few atomic sites. The net effect of such a strong impurity is to effectively remove

that site from the lattice, and the remaining electrons are barely affected by the impurity.

For a weak impurity, however, an energy gain by sitting at the impurity site can be minor

and electrons are fairly mobile around the impurity. Still, the electrons are scattered by

the impurity (though weakly) and many can be affected by the relatively long scattering

length of the weak impurity. If the scattering length is comparable or even larger than the

coherence length, i.e., roughly the size of a Cooper pair, then this pair breaking effect of an

attractive impurity potential can be substantial. Therefore, in a nanoscale superconductor

in which the Cooper-pair wavefunction can extend over the bulk of the sample, SC can be

suppressed significantly by a single, weak impurity, whose scattering length is comparable to

the sample size. Since s-wave SC is robust against the presence of surfaces, we can conclude

that this is mainly an effect of the impurity by itself.

4.4 D-Wave SC with Single Impurity

Impurities deposited onto a finite-size d-wave superconductor have profoundly different ef-

fects than for the s-wave case. In addition to pair breaking at the boundaries, there is now

pair breaking occurring at the impurity site. We demonstrate the effects of an impurity

in a d-wave superconductor of a finite size (21x21) lattice at half filling with an impurity

deposited at the centre of the lattice with ǫ11,11 = −0.5t. To illustrate the effects of varying

the electron-phonon coupling strength for a fixed impurity potential strength, we present

the electron density distribution for Uij = −1.5t and Uij = −2.7t in Figures 4.5 (a) and

(b), respectively. The pair breaking due to the surface tends to push electrons away from

the boundary, and as can be seen in these figures the attractive impurity potential tends

to localize the electrons around its site. For stronger electron-phonon coupling this effect is

amplified, as the electrons can gain more energy by being further away from the boundary.

For Uij = −2.7t, there is a large region of localized electrons around the impurity, while the

density along the boundary is mostly suppressed.

The order parameter for Uij = −1.5t and Uij = −2.7t are shown in Figures 4.5 (a) and
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(b), respectively. As one would expect, the d-wave order parameter is suppressed around

the region of the impurity as well as along the boundaries, as these both cause pair breaking

processes. Increasing the electron-phonon coupling strength, however, leads to somewhat

surprising results. One would think that by increasing the pairing interaction the supercon-

ductor would be more robust against the presence of impurities due to its short coherence

length. As Figure 4.6 (b) shows, however, increasing the coupling strength leads to much

stronger suppression of the order parameter, in a much larger region. A weakly attractive

potential kills SC with strong electron-phonon interaction! In the example for Uij = −2.7t

shown above, the pair-breaking effects due to the surface and single impurity combined have

led to SC being completely destroyed in a major area of the sample, and what we are left

with is a narrow “ring” close to the boundary where SC remains more or less intact. This is a

very intriguing analogy to the so-called surface superconductivity seen in type-III materials

in a magnetic field, where SC is suppressed except in a thin layer near the surface.
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Figure 4.5: Electron density for a 21x21 d-wave superconductor at half filling with
impurity ǫ11,11 = −0.5t. (a) Uij = −1.5t. For weak electron-phonon coupling, the
charge density becomes localized around the impurity site and slightly suppressed at
the boundary. (b) Uij = −2.7t. For strong coupling the effect in (a) becomes amplified,
as electrons can gain more energy by moving away from the surface. In this example
the electron density is completely suppressed at the boundary.

Figure 4.6: D-wave order parameter for the system described in Figure 4.5. (a)
Uij = −1.5t. The order parameter is suppressed at the location of the impurity as
well as along the boundary. (b) Uij = −2.7t. In the strong coupling case the order
parameter is completely suppressed at the impurity site, leaving a narrow region of
“surface superconductivity”.
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Chapter 5

Charge Density Modulations and Supercon-

ductivity

In this chapter the results regarding the nature of the interplay between CDW and SC in

the context of the BdG equations is examined. The purpose of this research is to understand

the relationship between the superconducting and CDW states in our model. We begin by

studying a periodic system without impurities and examining the coexistence of the CDW

and SC states. In order to identify the mechanism for the density wave instability we

examine the topology of the Fermi surface and how it affects the interplay between the SC

and CDW states. It is hoped that the results in this chapter can provide a theoretical basis

for interpreting the results seen in experiments such as those described in Chapter 1.

5.1 Coexistence of CDW and Superconductivity

In addition to the charge density modulations found in finite size systems as described in

Chapter 4, density modulations have also been found for systems with periodic boundary

conditions (PBC) without impurities. It has also been found that with on-site s-wave inter-

actions both the CDW state and superconducting state coexist at half filling. As a typical

example we present (below) the main results for an 18x18 cell at half filling using PBC and

on-site s-wave coupling strength Uii = −2.50t. There are three degenerate ground-states for

this system: the superconducting state with uniform density (SC), a CDW state with no

superconductivity (CDW), as well as the state in which CDW and SC coexist (CDW+SC).

Each of these three states have identical ground-state energy and transition temperature.

The following sections detail how each of the three states are achieved.
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Figure 5.1: (a) Charge density distribution for the 18x18 cell lattice with |Uii| = 2.50t.
The colour scheme is such that regions of low density correspond to red, while high
density correspond to green. (b) The total density of states for the pure CDW state,
clearly exhibiting an energy gap.

5.1.1 Density Wave State

The pure density wave state is achieved by setting the anomalous SC coupling terms in the

BdG equations to be zero. More precisely, the off-diagonal components of the BdG equations

are zero:




Ĥ 0

0 −Ĥ









un

vn



 = ǫn





un

vn



 . (5.1)

Thus, the particle and hole amplitudes un and vn are decoupled. Since superconductivity

is “off”, the sole effect of the on-site s-wave attraction Uii is to cause electron correlations

via the Hartree potential (Eq. (3.6)). As already mentioned in Section 4.1, this term is

crucial to obtaining density modulations. If this term were simply neglected (as is typically

the case) no CDW would result and one would have a uniform density distribution with

a larger ground-state energy. The electron density for our 18x18 cell with PBC is shown

in Figure 5.1(a) and clearly shows regular CDW density modulations. The ground-state

energy of this state is ECDW
0 = −990.40t and has a critical temperature of TCDW

c = 0.33t.

The ground-state energy of the normal state (i.e., no CDW) with the uniform density at half

filling is E0 = −522.61t. The site-averaged density of states (DOS) is shown in Figure 5.1(b).
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Figure 5.2: LDOS for the 18x18 cell lattice with |Uii| = 2.50t. Sites (1,1) and (2,2)
have density less than one, while sites (1,2) and (2,1) have density greater than one.
The alternating charge density seen in Figure 5.1(a) results in a spatially alternating
local density of states.

This DOS shows a gap opening at the Fermi level that signifies the stability of the CDW

state and the required energy to add or remove an electron to destroy the perfect periodic

charge modulations. The energy gap is well-defined and the DOS appears to be particle-hole

symmetric; however it is not so for the local density of states, which alternates from site to

site following the charge alteration. The LDOS at sites (x, y) = (1, 1), (1, 2), (2, 1), (2, 2) are

shown in Figure 5.2. Sites (1, 1) and (2, 2) correspond to regions with an average density

less than one, and sites (1, 2) and (2, 1) have an average density greater than one. Figure 5.2

shows that the sites with the electron density greater than one have a large number of states

available for hole excitation, while sites with an average electron density less than one have

a large number of states available for particle excitation. When the site-averaged density of

states is calculated the peaks appear to be symmetric as in Figure 5.1(b). The CDW energy

gap will be discussed in much greater detail in Section 5.4
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5.1.2 Superconducting State

By including the off-diagonal components of the BdG equations the particle and hole ampli-

tudes un and vn are coupled via the order parameter given by Eq (3.9), and the result is a su-

perconducting state. When the BdG equations are solved selfconsistently, the solutions con-

verge to a superconducting state with an s-wave order parameter of ∆s = 0.601t. This state

turns out to be a homogeneous solution, with a constant order parameter (∆i = ∆s ∀ i)
and uniform charge density. The SC state has a ground-state energy of ESC

0 = −990.40t

and a critical temperature of T SC
c = 0.33t, identical to what was found for the pure CDW

state. The site averaged density of states for the SC state is shown in Figure 5.3. As can

be seen in this figure this is identical to the DOS obtained for the CDW state shown in Fig-

ure 5.1(b). Thus, the superconducting and CDW ground-states are degenerate. These two

stable ground states have exactly the same energy and critical temperature; however, they

have different electron density distributions. One state has a uniform density over the entire

sample (SC), while the other, as shown in Figure 5.1(a), has periodic density modulations,

i.e., a CDW. Contrary to the CDW state, in the SC state the local density of sates at each

site is identical to the site-averaged density of states shown in Figure 5.3. This is expected

due to the uniform density and order parameter in the sample.

5.1.3 Coexistence of CDW and SC states

As shown in the previous section, both the CDW state and the SC state are degenerate.

In this section it will be shown that in fact these two states can coexist together simul-

taneously. Since the BdG equations are selfconsistent equations, one must start from an

initial approximation for the mean fields. For the pure SC state the initial approximation

for the charge density was taken to be uniform. In order to mix the CDW state with the SC

state, we have solved the BdG equations selfconsistently starting from the Hartree potential

solution in the pure CDW state and a constant order parameter as an initial input. In this

way we have been able to let the solutions converge to a mixed CDW and SC state. The

ground-state energy of this mixed state is ECDW+SC
0 = −990.40t and the critical tempera-

ture is TCDW+SC
C = 0.33t. That is, the mixed state also has the same ground-state energy
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Figure 5.3: Site-averaged density of states for a 18x18 cell and |Uii| = 2.50t in the
SC state. Contrary to the CDW state the LDOS is identical at all sites in the sample
and therefore equivalent to the total DOS. The total DOS in the SC state is identical
to the DOS shown in Figure 5.1(b) for the CDW state.

and critical temperature as the pure SC and CDW states. A summary of the s-wave order

parameter and CDW amplitudes for these three states is presented in Table 5.1. As the table

shows, in order for CDW and SC to coexist, both the order parameter and amplitude of the

CDW are suppressed relative to when the states are separate. A plot of the CDW amplitude

and s-wave order parameter as a function of temperature for the mixed state is shown in

Figure 5.4. In this plot the CDW amplitude and order parameter are taken with respect

to their respective pure-state value at zero temperature (i.e., at T = 0 the order parameter

and the CDW amplitude in the mixed state (SC+CDW) are reduced to 78% and 62% their

value in their respective pure states). The plot shows that both superconductivity and CDW

disappear at the same critical temperature. At this point, why density waves occur at all is

not obvious. The normal state of this system is homogeneous (i.e., no surface boundaries nor

impurities). Therefore, the pure CDW and SC+CDW states must be a result of electronic

instability.
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Figure 5.4: Relative CDW amplitude and SC order parameter as a function of tem-
perature in the CDW+SC mixed state. Both SC and CDW disappear at the same
temperature.

State ∆0 (units of t) CDW Amplitude

SC 0.60154 0.00000

CDW 0.00000 0.48123

Mixed 0.46925 0.30110

Table 5.1: Results of the zero-temperature CDW amplitude and SC order parameter
for the three degenerate states. All states have E0 = −990.40t and TC = 0.33t. In
the mixed state (CDW+SC) the amplitude of the CDW modulations and the SC order
parameter are reduced to ∼ 62% and ∼ 78% their value in their respective pure states.

5.2 Mechanism for CDW in the Tight-Binding Model

We have determined that the CDW found in the previous section must be a result of an

electronic instability of the normal state. In order to identify the mechanism of this instability

we need to study the topology of the Fermi surface in our model. For the tight-binding model

with hopping among nearest neighbours, the Fermi surface is a square at half filling as shown

in Figure 5.5 and perfect nesting is occurs on the entire Fermi surface. In addition, we must

also identify the position of the saddle point singularities, which are the relevant parameters

for the vHs mechanism. As already mentioned in Section 2.2 it has been shown by Rice and
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Scott [1] that any vector in momentum space which connects two saddle point singularities

can also lead to a divergence in the dielectric response,

ǫ(~q, ω) = 1 − lim
α→0

e2

Vgǫ0q2

∑

~k

fo(~k + ~q) − fo(~k)

E(~k + ~q) − E(~k) − ~ω − i~α
, (5.2)

where f0(~k) is the Fermi-Dirac distribution function for energy E(~k). The divergence of the

response indicates that the electron gas is unstable towards CDW formation, and in addition

to nesting, any vector ~Qsp which connects two saddle points will also result in a logarithmic

divergence. To find the position of these saddle points we must study the normal-state

dispersion relation. For the Hamiltonian in Equation (3.2) in the normal state (i.e., |U | = 0)

the energy-momentum dispersion relation can be found analytically as

E(~k) = −2t (cos(kxa) + cos(kya)) , (5.3)

where a is the lattice spacing and the periodic boundary conditions make kx and ky are

integer multiples of 2π/Na:

kx =
2πnx

Na
and ky =

2πny

Na
,

where nx and ny are integers. We take the Brillouin zone to be −N/2 ≤ nx, ny ≤ N/2 for a

system of N lattice sites. By taking the derivative of the dispersion relation with respect to

momenta one can find the locations of the critical points,

∇~kE(~k) = 0 .

The location of the critical points are then determined by the equations,

∂kx
E(~k) = 2ta sin(kxa) = 0 ,

∂ky
E(~k) = 2ta sin(kya) = 0 ,

which give for the critical points k′x = mπ/a and k′y = nπ/a, where m and n are integers. In

the first Brillouin zone this corresponds to the 9 points:

(k′x, k
′
y) =







































(0, 0) ,

π
a
(±1, 0) ,

π
a
(0,±1, ) ,

π
a
(±1,±1) .

(5.4)
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Figure 5.5: The Fermi surface for the 2D square lattice of the tight-binding Hamil-
tonian at half filling. Nesting vectors connecting the sides of the square Fermi surface
are shown as black dashed lines and the positions of the saddle points are marked with
black circles. The vectors that connect the saddle points are identical to the nesting
vectors.

In order to determine if these points are saddle points we shall examine the second partial

derivatives. The points are saddle points if M(k′x, k
′
y) < 0, where

M(kx, ky) =

∣

∣

∣

∣

∣

∣

∂kx,kx
E(~k) ∂kx,ky

E(~k)

∂ky ,kx
E(~k) ∂ky ,ky

E(~k)

∣

∣

∣

∣

∣

∣

(5.5)

is the 2×2 Hessian matrix. Substituting the critical points into Equation (5.5) one finds that

the only points which give M(kx, ky) < 0 are

(k′x, k
′
y) =











π
a
(±1, 0)

π
a
(0,±1)

(5.6)

The location of the saddle points in Equation (5.6) correspond precisely to the midpoints

of the line X −M − X and are illustrated as black circles in Figure 5.5. As a result the

vector which connect the saddle points and the nesting vector connecting parallel parts of the

Fermi surface are the same (~QCDW = ~QSP = (±π/a,±π/a), with magnitude
√

2π/a). Since

these vectors correspond to the wavevectors of the charge density modulation this result is
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consistent with the densities shown in Figure 5.1(a), as the modulation occurs along the ΓX

direction with wavelength

λCDW =
2π

QCDW

=
√

2a .

5.3 CDW state with varying Fermi Surface

The results of the previous section have shown that the density modulations in Figure 5.1(a)

are consistent with an instability of the Fermi surface. Since ~QSP and ~QCDW are identical,

however, there is no way to determine whether the density modulations are a result of nesting

and/or the van Hove singularity mechanism identified by Rice and Scott [1]. In order to study

the effects of the vHs on the CDW we extend our tight-binding model to include hopping

among next-nearest neighbours as well. By doing so we arrive at a much richer Fermi surface

and it enables us to study the effects of the Fermi surface topology on the CDW states. By

modifying the hopping parameter, the Hamiltonian now has the form:

H0 =
∑

〈ij〉σ

tijc
†
iσcjσ +

∑

iσ

(ǫi − µ) n̂iσ , (5.7)

H = H0 +
∑

i

Uiin̂i↑n̂i↓ +
1

2

∑

〈ij〉

∑

σσ′

Uijn̂iσn̂jσ′ . (5.8)

where

tij =



























−t if i and j are nearest neighbours,

t′ if i and j are next nearest neighbours,

0 otherwise,

(5.9)

and we restrict the next-nearest neighbour hopping to |t′| < 0.5t. Results for |t′| > 0.5 would

be unrealistic as the next-nearest neighbour element becomes comparable to the nearest-

neighbour hopping. In addition we only perform calculations for t′ > 0, as t′ < 0 is equivalent

to t′ > 0 with E(k) interchanged with −E(k). This is illustrated in Figure 5.6 which shows

the energy dispersion relation plotted in a repeated zone scheme for positive and negative

values of t′. The Fermi surface is illustrated by the contours at the base. This figure

indicates that the Fermi surface for negative t′ is equivalent to that of positive t′; however

surfaces are shifted in the first BZ by ~k = (±π/a,±π/a) and have become hole-like. As
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Figure 5.6: Energy-momentum disperion relation for positive and negative values of
t′. The contours at the base identify the Fermi surfaces. In addition to a phase shift
of ~k = (±π/a,±π/a), surfaces for t′ = 0.25 are electron-like, while for t′ = −0.25 are

hole-like. When t′ → −t′ then E(~k) → −E(~k).

shown in Appendix D, at half filling the chemical potential for negative t′ increases as t′

increases, keeping the density of states equivalent for both signs of t′, the only difference in

the DOS being E(k) changed to −E(k). The sole result of changing t′ → −t′ is to change

E(k) → −E(k) and therefore it suffices to study the case for t′ > 0 only. When next-nearest

neighbour hopping is included into the Hamiltonian the normal-state dispersion relation

becomes

E(~k) = −2t (cos(kxa) + cos(kya)) + 4t′ (cos(kxa) cos(kya)) . (5.10)

With nearest-neighbour hopping only, the properties of the ground-state are dominated by

nesting of the Fermi surface as well as the vHs present at the Fermi energy. By including

hopping between next-nearest neighbours we can remove the perfect nesting in Figure 5.5.

The vHs is always present, however, due to the particular topology of the Fermi surface.

Using the critical point test shown in the previous section it can be shown that the positions

of the saddle points do not change as a function of t′; however as the chemical potential
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changes, the vHs is moved off the Fermi surface. This can also been seen in Figure 5.7 which

shows surface plots of the dispersion relation E(~k) at several values of t′.

Using the position of the saddle points in the dispersion relation one finds that the

location of the saddle points in the DOS are given by

EvHs = −4t′ − µ . (5.11)

The five remaining points in Equation (5.4) correspond to maxima and minima in the

dispersion relation and allow us to identify the top and bottom of the band. The bot-

tom of the band occurs at (k′x, k
′
y) = (0, 0) while the top of the band is located at points

(k′x, k
′
y) = (π/a)(±1,±1). Using these points one finds that

Emin = −4t+ 4t′ − µ , (5.12)

Emax = +4t+ 4t′ − µ . (5.13)

The bandwidth in our model is 8t and independent of t′; however, the entire band begins to

shift upward as t′ increases. As a result, the width of the negative states decreases, while the

width of positive energy states increases. This can clearly be seen in Figure 5.8 which shows

the band structure for various values of t′ in the normal state (i.e. |U | = 0). This figure

shows that the van Hove singularity remains below the Fermi level as t′ increases, while the

entire band shifts upwards towards positive energy. In addition, the band begins to flatten

in the region near the vHs, which results in a very large density of states at this energy.

The density of states shown in Figure 5.10(a) verifies this, as the vHs clearly moves towards

negative energy and its divergence grows with increasing t′.

This density of states in Figure 5.10(a) is the result if one solves the usual Hartree

equations with |U | = 0. However, if one solves the BdG equations in the normal state

one obtains the DOS as shown in Figure 5.10(b) which has additional states below the

bottom of the band. Looking at this figure alone one might incorrectly conclude that the

bandwidth becomes larger with increasing t′; however, this is not the case as these additional

state are “artificial” and are a result of the particle-hole symmetry of the BdG equations.

When solving the BdG equations for the normal state using Equation (5.1) we are effectively

solving the Hartree equations twice; the solutions of which having both positive (electron)
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Figure 5.7: Energy-momentum dispersion relation for various values of hopping pa-
rameter t′. The contours at the base identify the Fermi surfaces. As t′ is increased the
top and bottom of the band rises, while the saddle points move lower in energy. As a
result the saddle points are moved off the Fermi surface.
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and negative (hole) energies. As an example, suppose for large t′ the normal-state bandwidth

ranges from −2t ≤ ǫ ≤ 6t. The positive energy solutions will have the same bandwidth.

The negative energy solutions, however, will have a bandwidth in the range −6t ≤ ǫ ≤ 2t

making the combined bandwidth appear to be −6t ≤ ǫ ≤ 6t. Since the true physical states

are those from the positive energy solutions, the states for −6t ≤ ǫ ≤ −2t are “artificial”

and the density of states is zero. Thus when solving the BdG equations one must be mindful

that the true states are those which belong to the normal state dispersion given by Equation

(5.10), and states outside the bandwidth are an artificial creation of the BdG equations.

Figure 5.9 shows how the Fermi surface evolves with varying t′. The shape of the Fermi

surface is a strong function of the next-nearest neighbour hopping parameter t′. When t′

becomes nonzero, the square seen in Figure 5.5 is destroyed and the Fermi surface begins to

exhibit curvature. Parallel portions (although small) do seem to exist for t′ < 0.2, however,

quickly disappear as the curvature increases for larger t′. This implies that nesting of the

Fermi surface should become weaker with increasing t′ and eventually disappear completely.

Therefore by choosing an appropriate value of t′ it should be possible to determine which

mechanism, nesting or the van Hove singularity, is responsible for generating density waves

in our model.
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states at this energy.
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Figure 5.9: Calculated Fermi surface for a 24x24 cell at various values of hopping
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Figure 5.10: (a) Density of states for 0 ≤ t′ ≤ 0.45 for |U | = 0 on a 24x24 lattice.
The results are shifted vertically for clarity. As t′ increases the bandwidth remains
8t. However, negative-energy band width decreases, while the width of positive energy
states increases. In addition the saddle-point singularity shifts from E = 0 at t′ = 0
towards E = −2t as t′ increases. (b) The same results obtained by the BdG equations,
indicating the “artificial” states..
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Figure 5.11: Density of states for various values of t′. The results are shifted vertically
for clarity. These results were obtained for a 24x24 cell at half filling using on-site
coupling |U | = 5t. The gap seen in the DOS is a result of the presence of a CDW. The
vHs, only for the hole states for t′ 6= 0, are strongly enhanced as t′ increases and the
hole bandwidth is squeezed.

5.4 Results and Discussion

In order to study the mechanism responsible for the CDW in our model and its relationship to

the SC state we have studied a 24x24 periodic lattice with on-site s-wave coupling Uii = −5t

as a function of the next-nearest neighbour hopping parameter t′ for both CDW and SC

states. For these calculations the Hartree and Hartree-Fock potentials were solved directly

and selfconsistently. In addition, in order to ensure that the system is exactly at half filling, a

second iteration loop was inserted to vary the chemical potential µ until the required average

electron density has been obtained.

The CDW density of states for varying t′ is shown in Figure 5.11. One can see that in

contrast to the normal-state DOS in Figure 5.10(a), the CDW DOS clearly exhibits a gap
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at the Fermi energy for all values of t′. When charge density modulations are present in the

system, the Hartree potential V
(H)
ii has the same modulations, since

V
(H)
ii = Uii

∑

σ

〈

ĉ†iσ ĉiσ

〉

= Uii

∑

σ

〈niσ〉 . (5.14)

Therefore, in the CDW state the Hartree potential V
(H)
ii is periodic with the same periodicity

as the density. The spatial variation of the Hartree potential makes it impossible to interpret

V
(H)
ii as a simple shift of the chemical potential, and by ignoring the Hartree potential

one cannot obtain any CDW state. This is the reason why it is so imperative to include

the Hartree and Hartree-Fock interactions when studying systems with inhomogeneity, as

without them all of the essential physics would have been missed.

Looking at Figure 5.11 alone one might conclude that the positive-energy coherence peak

disappears for t′ > 0.1. This figure is misleading as it is the average density of states for

all sites in the sample, and as was shown in Section 5.1.1 the LDOS alternates from site

to site in the CDW state. The LDOS for t′ = 0.1, 0.2, 0.3, 0.4 at several sites within the

sample is shown in Figures 5.12 to 5.15. Similarly to Section 5.1.1, sites (1,1) and (2,2) have

density less than one, while sites (1,2) and (2,1) have density greater than one. One can see

that as t′ increases and the positive-energy width widens, the positive-energy coherence peak

becomes much smaller in amplitude. Near t′ = 0.3 it becomes difficult to define coherence

peaks; the energy level structure becoming clearer on either side of the gap. This behaviour

is reminiscent of pseudogap behaviour in some high-Tc superconductors, where a gap in the

density of states is present without coherence peaks [47]. It is plausible that when t′ > 0.25

the vHs is the dominant mechanism for the CDW instability, and the pseudogap behaviour

of the energy gap in this regime can be a manifestation of this.

It is also evident that the density of states at the van Hove singularity is also dependent

on t′ and becomes sharply peaked for larger t′. This is a consequence of the normal-state

band structure. Recall that for t′ = 0 the energy dispersion is symmetric and there are an

equal number of particle and hole states. Since the particle and hole states for t′ = 0 are

symmetric, on average the LDOS produces the symmetric DOS seen in Figure 5.11. When

t′ is increased the band structure around the chemical potential is not symmetric, and the

positive energy bandwidth is greater than the negative energy bandwidth as shown in Figure
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5.10(a). The wider energy width means that the positive energy states are more spread. In

addition, one can see that as the negative energy width gets smaller the van Hove singularity

starts to move away from the Fermi level and at t′ ∼ 0.3 the LDOS at the vHs begins to

grow significantly, even for sites with n(i) < 1. Since the vHs is always below the Fermi

level, most of the hole excitations at sites with n(i) > 1 are forced to occur at the vHs. The

presence of the energy gap reduces the negative energy width even further, and as a result

the vHs becomes significantly enhanced as t′ increases.
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Figure 5.12: LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.1.
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Figure 5.13: LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.2.

54



-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
Energy (units of t)

0

0.25

0.5

0.75

1

1.25

1.5

L
oc

al
 D

en
si

ty
 o

f 
St

at
es

(1,1)
(1,2)
(2,1)
(2,2)

t
/
=0.3

Figure 5.14: LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.3.
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Figure 5.15: LDOS for the 24x24 cell lattice with |Uii| = 5t and t′ = 0.4.
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So far it has been shown that the normal state is unstable towards formation of a charge

density wave, and that a gap opens up at the Fermi level. The question that needs to be

answered is, what is the mechanism responsible for this instability? When t′ = 0 perfect

nesting of the square Fermi surface can lead to an instability towards CDW, but is there a

scenario for which the vHs mechanism of Rice and Scott is applicable? Figure 5.9 shows that

perfect nesting is destroyed as t′ increases, and it has been shown that for large t′ (∼ 0.45)

the majority of allowed hole excitations occur at the vHs. Thus, it is plausible that the vHs

mechanism is responsible for the CDW at large values of next-nearest neighbour hopping.

In order to study where this transition from the nesting to vHs mechanism may occur,

the t′-dependence of the CDW energy gap ∆ and Tc was calculated and the results are

shown in Figure 5.16. The DOS shown in Figure 5.11 indicate that the CDW gap becomes

smaller as t′ increases and this is verified in Figure 5.16(a). In addition to the gap, the CDW

transition temperature Tc is a strong function of the next-nearest neighbour hopping and Tc

is suppressed very quickly for large t′. The addition of next-nearest neighbour hopping tends

to suppress CDW modulations, resulting in a lower critical temperature and a smaller gap.

The ratio 2∆/Tc is shown in Figure 5.16(b) for both the CDW and SC states. As a result of

Tc and the energy gap both being dependent on t′, the ratio 2∆/Tc is not constant, in contrast

to the SC state (see the green line in Fig. 5.16(b)). In fact the behaviour is approximately

linear with a definitive slope change around t′ ∼ 0.25. Since this ratio is a measure of the

electron-phonon coupling strength, this slope change may be an indication of a transition

from the nesting to the vHs mechanism for the CDW instability. This interpretation is

consistent with the Fermi surfaces shown in Figure 5.9, since for t′ . 0.25 there do exist

(small) parallel portions of the Fermi surface in which nesting could occur. For t′ > 0.25,

however, there is no discernible Fermi surface nesting, and nesting cannot be a dominant

cause responsible for CDW.

There is additional evidence supporting the vHs mechanism present in susceptibility

calculations of Equation (2.15). In the vHs scenario proposed by Rice and Scott [1] the

logarithmic divergence of the susceptibility due to nesting multiplies the divergence due to

the vHs. Therefore the vHs scenario will be responsible for the CDW formation as long as

the nesting-driven divergence is weaker than that of the van-Hove singularity. Results for
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Figure 5.16: Dependence of gap size and Tc on t′ for the CDW and SC states on a
24x24 lattice with |U | = 5t. (a) The critical temperature is gradually reduced as t′

increases while the gap size decreases linearly. (b) For the CDW state one can see a
definite slope change in the gap to Tc ratio around t′ ∼ 0.25, while in the SC state the
ratio remains constant at the BCS value.
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the real part of the dielectric response function are shown in Figure 5.17 for 0 ≤ t′ ≤ 0.45.

A divergence at the wavevector ~QCDW = (±π/a,±π/a) can clearly be seen for all values of

t′, and is largest for perfect nesting at t′ = 0. When t′ is increased, the magnitude of the

divergence rapidly decreases by an order of magnitude between t′ = 0 and 0.1, and between

t′ = 0.25 and 0.45 there is no noticeable change. For t′ > 0.25 the enhanced density of states

at the vHs results in a growing contribution to the divergence, and the overall divergence of

the response remains constant. This shows that when t′ > 0.25 the divergence at ~QCDW is

a result of the van Hove singularity contribution being more dominant than that of Fermi

surface nesting.

Although it is not possible to determine the precise contribution from either nesting or

the vHs to the CDW instability, what we do know for certain is that as t′ grows, conventional

nesting plays a significantly smaller role. The evidence presented above, including enhance-

ment of the density of states at the vHs, divergence of the dielectric response function, and

the slope change in 2∆/Tc suggest that for t′ > 0.25 the van Hove singularity is the primary

mechanism responsible for the CDW instability in our model. This provides an excellent

opportunity for studying the interplay of CDW with SC, as we have identified two regimes

in which the CDW is a result of different mechanisms, and allows us to determine under

which circumstances superconductivity can coexist with CDW.

For the CDW state the ratio 2∆/Tc was shown to be t′-dependent; however, for the SC

state this ratio has a fundamentally different behaviour. As already seen in Figure 5.16(b)

neither the SC gap nor the critical temperature varies with t′, and for large coupling strength

(|U | = 5t) the ratio stays constant near the BCS value. For small coupling |U | ≈ 1.5t, the

ratio is dependent on t′, though only very weakly. For |U | = 1.5t the gap size varies by

roughly 35% between t′ = 0 and t′ = 0.45 and the variation rapidly decreases to less than

7% for |U | = 2t. Such variation is not surprising since for such small electron-phonon

coupling strengths the SC interaction and the kinetic energy are comparable. When the

on-site coupling strength is much larger than the kinetic energy, we find that the variation

of the Fermi surface has little effect on superconductivity.

The behaviour of the superconducting state is quite distinct from the CDW state. This

can be seen in Figure 5.18 which shows the superconducting density of states for various
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Re ǫ(~q, ω → 0)

Figure 5.17: Re ǫ(~q, ω → 0) for 0 ≤ t′ ≤ 0.45. The divergence at the nesting vector
~q = (±π/a,±π/a) can clearly be seen for all t′. As the Fermi surface changes its shape
in the dispersion and perfect nesting is destroyed, the divergence rapidly decreases and
begins to level off at t′ ∼ 0.25, indicating that the vHs becomes dominant.
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Figure 5.18: Density of States for various values of t′. The results are shifted vertically
for clarity. These results were obtained using a 24x24 cell at half filling using an onsite
coupling parameter of |U | = 5t in the superconducting state.

values of t′ for |U | = 5t. The SC DOS (ignoring the “artificial” states) somewhat reflects

the change of the Fermi surface; however, the gap size is independent of t′. It is important

to keep in mind that the electron density is uniform for the SC state and as a result the

LDOS is identical at every site in the lattice. In this case the site-averaged density of states

and the local DOS are identical. Figure 5.18 shows another feature that is distinct from the

CDW state: the DOS at the van Hove singularity is quite featureless. This is because for

the superconducting state the energy gap in the DOS is a result of the anomalous coupling

between particle and hole states (i.e., the off diagonal component ∆̂ in the Hamiltonian), and

represents the energy required to break a Cooper pair and create particle-hole excitations.

The apparent abscence of any feature at the vHs can be explained by the effect of the

BCS gap on the density of states. According to the BCS theory and Equation (2.10), the

quasiparticle excitation energy in the SC state has the form
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Ek =
√

ǫ2k + ∆2 . (5.15)

where ǫk is the single particle kinetic energy and ∆k ≡ ∆. Since there is a one-to-one

correspondence between single-particle states in the normal and SC states one finds that the

density of states in the superconducting state is given by [43]

NS(Ek)dE = NN(ǫk)dǫ

NS(Ek)

N(0)
=

dǫk
dE

where we have approximated the density of states in the normal state around the chemical

potential to be approximately constant NN(ǫ) ≈ N(0). Evaluating (5.15) gives the density

of states in the superconducting state as

NS(Ek)

N(0)
=







Ek√
E2

k
−∆2

Ek > ∆ ,

0 Ek < ∆ .
(5.16)

This means that a singularity in the density of states develops at Ek = ±∆ generating the

familiar coherence peaks around the chemical potential. Excitations in the superconducting

state occur close to the chemical potential, and therefore the singularity at the saddle points

(which is below the Fermi level) is relatively unaffected. This implies that contrary to the

CDW state, which is strongly dependent on t′, the superconducting state is quite robust

against changes of the Fermi surface. For intermediate to strong electron-phonon coupling,

the SC state is barely affected by the next-nearest neighbour hopping parameter t′.

As the results presented in Figure 5.16(b) show, the behaviour of the CDW and SC states

are fundamentally different. The CDW state is very sensitive to changes in the Fermi surface,

while the SC state is not. The difference between the two states stems from the difference

between anomalous and diagonal coupling. In the superconducting state the particle and hole

amplitudes are coupled via the order parameter, and near the Fermi surface an excitation

is a complicated mixture of both. Thus in the superconducting state, the coherence peaks

with the square-root behaviour in Equation (5.16) stay well-defined even for t′ > 0. The

CDW state on the other hand has particle and hole amplitudes decoupled and the excitations

are independent of each other, meaning that Fermi surface changes can have a significant
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Figure 5.19: Chemical potential for 0 ≤ t′ ≤ 0.5 for |U | = 5t on a 24x24 lattice.
Results are shown for the normal, superconducting, and CDW states. One can see
that the chemical potential as a function of t′ behaves identically for the CDW and
normal states; however, there is a very different behaviour in the SC state. This is a
result of the anomalous coupling between particle and hole amplitudes in the SC state.

impact. This can be seen in the chemical potential, which is a representation of the energy

required to change the particle number of the system by one. Figure 5.19 shows the chemical

potential for the normal, CDW, and superconducting states as a function of t′. The chemical

potential is identical for both the CDW and normal states. It is, however, much lower in

the SC state. What this indicates is that it is relatively easy to add or remove particles in

the SC state as compared to the CDW or normal states. The mixing between particles and

holes in the SC state via the anomalous coupling is what makes it the SC state so robust to

Fermi surface changes.

What we have identified so far is that as the next-nearest neighbour hopping is enhanced,

the Fermi surface begins to change shape. As this happens the perfect nesting at t′ = 0 is

destroyed and contributions to the CDW from the vHs begins to become more dominant.

Both the energy gap and transition temperature are reduced, indicating that the stability of

the CDW state is suppressed as nesting is reduced. Conversely, for intermediate to strong
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Figure 5.20: Ground state energy for 0 ≤ t′ ≤ 0.5 for |U | = 5t on a 24x24 lattice.
Results are shown for the normal, superconducting, and CDW states. At t′ = 0 the
SC and CDW states have identical ground-state energy and is considerably lower than
the normal-state energy. However for t′ 6= 0 the energies split and the SC state always
has the lowest energy. The behaviour of the normal and CDW states energy curves is
a result of the dependence of the chemical potential on t′.

coupling strengths the superconducting state is hardly affected by t′, and as shown in Figure

5.16(b), it is quite robust against Fermi surface changes. In Section 5.1.3 it has been shown

that for t′ = 0 the SC and CDW states are degenerate and can coexist. For t′ 6= 0, however,

we have not found such a mixed state solution, as the solution always converges to a uniform

SC state. In order to understand the relationship between the CDW and SC states, the

ground-state energy has been computed as a function of t′ and is shown in Figure 5.20 for

the SC, CDW, and normal states. At t′ = 0 the CDW and SC states are degenerate; however

this degeneracy is removed as soon as t′ becomes nonzero. The SC state always has lower

energy than the CDW state. This observation explains why we have not been able to find

mixed-state solutions, as the BdG equations tend to converge to the state with the lowest

energy.

The condensation energy of the SC and CDW states, which is the ground-state energy
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Figure 5.21: Condensation energy per particle for SC and CDW states. The conden-
sation energy is the difference in energy between the SC/CDW and normal states. The
larger condensation energy for the SC state indicates that it is the most stable config-
uration. The increase in the CDW condensation energy near t′ = 0.25 may indicate
that a vHs driven CDW is more stable than due to nesting.

per particle measured with respect to the normal state (i.e., kinetic energy), can also provide

crucial information regarding the nature and stability of these two states. The condensation

energy per particle is shown in Figure 5.21 for both the CDW and SC states as as function

of t′. This energy is a representation of the energy saved by forming the CDW or SC states.

Since the SC condensation energy is always greater than the CDW energy, this result verifies

the interpretation of Figure 5.20 that the SC state is always preferred for t′ 6= 0. Interestingly,

the SC condensation energy strongly depends on t′, while the CDW energy does not. At first

sight, this appears to be contradictory to the fact that ∆ and Tc are independent of t′. This

t′ dependence of the SC condensation energy, however, can be explained by inspecting the

density of states in Figure 5.3. As the vHs moves toward negative energy, the hole-excitation

states in the vicinity of the gap edge are drastically reduced. This change is reflected in the

condensation energy; the SC state becoming more stable as t′ increases. Additionally, the dip

shape in both SC and CDW condensation energy around t′ = 0.25 is a result of the different

behaviour of the chemical potential in the SC and normal states. For the CDW state the
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condensation energy is a reflection of the energy needed to destroy the regular/periodic

density modulations in the sample. Once the CDW has formed, this energy is fixed and

does not depend on t′. Intriguingly, Figure 5.21 also indicates a small increase of the CDW

condensation energy for t′ & 0.25. Given that we have identified the vHs as the source of

the CDW instability in this regime, this may indicate that a vHs-driven CDW is more stable

than that due to nesting.

The results presented in this chapter provide an interesting insight into the interplay of

charge density modulations and superconductivity. We have seen that when there is perfect

nesting of the Fermi surface (t′ = 0), the CDW can coexist with superconductivity. When

perfect nesting is destroyed (t′ 6= 0), diminishing Tc and gap size indicate that the CDW

state is suppressed. In addition, pseudogap behaviour, enhancement of the density of states

at the vHs, divergence of the dielectric response, and a slope change in 2∆/Tc all indicate a

transition from nesting to a vHs mechanism for the CDW instability in our model. Ground-

state energy calculations show that once perfect nesting is removed and the saddle-point

mechanism has a more dominant role, the CDW and SC states can no longer coexist. In

this case the SC ground-state is always preferred.
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Chapter 6

Conclusion

Recent studies of the transition metal dichalcogenide 2H-NbSe2 have led to extensive

debate in the scientific community regarding the mechanism for the CDW instability in this

material [24, 25]. Additionally, the precise nature of the relationship between charge density

modulations and superconductivity is not known. In this thesis the Bogoliubov-de Gennes

(BdG) equations formulated on a tight-binding lattice have been used to study the interplay

of charge density waves (CDW) and superconductivity (SC). As the BdG equations have

high numerical demand, software which utilizes parallel algorithms have been developed to

solve these equations directly and numerically. Calculations were performed on a large-scale

Beowulf-class PC cluster at the University of Saskatchewan.

In this thesis, we have first studied the effects of open boundaries and a single impurity in

nanoscale superconductors. The presence of a surface or an impurity tends to cause charge

density modulations and inhomogeneous superconductivity. Is has been found that in our

tight-binding system at half filling, s-wave superconductivity is quite robust against the

existence of surfaces: the ground state is three-fold degenerate with a pure CDW (no SC)

state, a pure SC (no CDW) state, and a state in which CDW and SC coexist. In contrast,

d-wave superconductivity is surface-sensitive and suppressed along the surface boundaries.

We have then examined the influence of a single attractive impurity deposited at the centre

of a nanoscale superconductor. It has been demonstrated that a weakly attractive impurity

potential can lead to significant suppression of the superconducting order parameter, more

so than a strong impurity. Perhaps the most fascinating result has come from the study of

various d-wave coupling strengths in the presence of a weak impurity. We have found that

in a nanoscale d-wave superconductor with strong electron-phonon coupling, the scattering

by a weakly attractive impurity can indeed kill superconductivity in the bulk of the sample,

66



leaving “surface superconductivity” only.

Calculations for periodic systems also show that CDW can coexist with s-wave supercon-

ductivity. Since this system is pure in the sense that there are no boundaries or impurities,

the density modulations must be a result of an electronic instability of the normal state.

To identify the mechanism of the instability, the single-particle Hamiltonian was modified

to include the hopping integral between next-nearest neighbour sites (t′), which changes the

shape of the Fermi surface. It was demonstrated that the CDW state is strongly dependent

on t′ and that the transition temperature TCDW is suppressed as the Fermi surface changes

its shape. By studying the dielectric response, the density of states, and the ratio 2∆/Tc,

it has been found that for t′ < 0.25 the CDW instability is mostly a result of the conven-

tional Fermi surface nesting, while for t′ > 0.25 it is dominated by the van-Hove singularity

mechanism of Rice and Scott [1].

In contrast to the CDW state, we have found that the superconducting state with uni-

form density distribution does not depend on t′. The difference between the CDW and

homogeneous SC states in this regard stems from the anomalous, or off-diagonal, coupling

between particle and hole components of a quasiparticle in the SC state. As the particle

and hole amplitudes are coupled by the order parameter, superconductivity is quite robust

against changes of the Fermi surface.

To study the coexistence of CDW and SC, the ground-state energy as a function of t′

was calculated for both the CDW and SC states. It was found that except for t′ = 0,

superconductivity is always the preferred ground state. Since t′ = 0 is the only point where

there is perfect nesting of the Fermi surface, these results indicate that within our model,

when the CDW instability is a result of the vHs scenario, SC and CDW can no longer coexist.

The authors of [25] have concluded from their ARPES measurements that the CDW in 2H-

NbSe2 is a result of nesting. It must be kept in mind, however, that the nesting points

in momentum space found in [25] are far from the conditions required for perfect nesting.

The dispersion along kz [32] means that the contribution to the divergence of the dielectric

response can be rather weak, if any. Combined with the fact that resistivity measurements

favour the vHs scenario, it is possible that the CDW instability in 2H-NbSe2 is a result of

combined contributions from both the saddle-point and nesting mechanisms.
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The results presented in this thesis show that within our model, a vHs-driven CDW can-

not coexist with SC. It is important, however, to consider the scope to which our results may

apply. Our model calculations are relevant only for one-band, isotropic, s-wave superconduc-

tivity. It is a well-established fact, however, that 2H-NbSe2 is a multiple-band superconductor

[48, 49]. Moreover, one may have to take into consideration anisotropic effects due to the

shape of the Fermi surfaces and possibly momentum (FS sheet)-dependent electron-phonon

coupling. Therefore, in order to properly understand the experimental data on 2H-NbSe2,

the BdG equations must be extended to account for multiple bands and possibly anisotropic

effects.

The interplay between CDW and SC is one of the most challenging problems facing

researchers in condensed matter physics today. It has long been the consensus that charge

density waves should compete with superconductivity. The results presented in this thesis,

however, have illustrated that this is not always the case and CDW and SC can in fact

coexist. Whether CDW enhances or competes with SC is still an open question. It is hoped

that the results presented in this thesis provide motivation for further research.
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ter, B. Büchner, R. Weber, R. Follath, L. Patthey, and H. Berger. Pseudogap and charge
density waves in two dimensions. Phys. Rev. Lett., 100(19):196402, May 2008.

[12] C. Kallin M. R. Norman, D. Pines. The pseudogap: friend or foe of high Tc? Advances

in Physics, 54:715–733, 2005.

69



[13] A Yazdani. Visualizing pair formation on the atomic scale and the search for the
mechanism of superconductivity in high-tc cuprates. Journal of Physics: Condensed

Matter, 21(16):164214, 2009.

[14] R L Withers and J A Wilson. An examination of the formation and characteristics of
charge-density waves in inorganic materials with special reference to the two- and one-
dimensional transition-metal chalcogenides. Journal of Physics C: Solid State Physics,
19(25):4809, 1986.

[15] R.V. Coleman, B. Giambattista, P.K. Hansma, A. Johnson, W.W. McNairy, and C.G.
Slough. Scanning tunnelling microscopy of charge-density waves in transition metal
chalcogenides. Advances in Physics, 37(6):559, 1988.

[16] H. Mutka. Superconductivity in irradiated charge-density-wave compounds 2H−NbSe2,
2H − TaS2, and 2H − TaSe2. Phys. Rev. B, 28(5):2855–2858, Sep 1983.

[17] J.A. Wilson, F.J. Di Salvo, and S. Mahajan. Charge-density waves and superlattices
in the metallic layered transition metal dichalcogenides. Advances in Physics, 50(8
SPEC.):1171 – 1248, 2001. Charge-density waves;.

[18] Rudolph Peierls. Quantum Theory of Solids. Clarendon Press, Oxford, 1955.

[19] Rudolph Peierls. More Surprises in Theoretical Physics. Princeton University Press,
1991.
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J. Pollmann. Fermi surface of 2H −NbSe2 and its implications on the charge-density-
wave mechanism. Phys. Rev. B, 64(23):235119, Nov 2001.

[33] Takayuki Kiss, Takayoshi Yokoya, Ashish Chainani, Shik Shin, Minoru Nohara, and
Hidenori Takagi. Fermi surface and superconducting gap of 2H-NbSe2 using low-
temperature ultrahigh-resolution angle-resolved photoemission spectroscopy. Physica

B: Condensed Matter, 312-313:666 – 667, 2002.

[34] Ryan L. Barnett, Anatoli Polkovnikov, Eugene Demler, Wei-Guo Yin, and Wei Ku.
Coexistence of Gapless Excitations and Commensurate Charge-Density Wave in the
2H Transition Metal Dichalcogenides. Phys. Rev. Lett., 96(2):026406, Jan 2006.

[35] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.

Rev., 108(5):1175–1204, Dec 1957.

[36] John Bardeen and David Pines. Electron-phonon interaction in metals. Phys. Rev.,
99(4):1140–1150, Aug 1955.

[37] Leon N. Cooper. Bound electron pairs in a degenerate fermi gas. Phys. Rev.,
104(4):1189–1190, Nov 1956.

[38] J. R. Schrieffer. Theory of Superconductivity, pages 47–48. W.A. Benjamin, Inc., Pub-
lishers, 1964.

[39] Otfried Madelung. Introduction to Solid-State Theory. Springer, 1978.

[40] M. D. Johannes and I. I. Mazin. Fermi surface nesting and the origin of charge density
waves in metals. Phys. Rev. B, 77(16):165135, Apr 2008.

71



[41] W. Kohn. Image of the fermi surface in the vibration spectrum of a metal. Phys. Rev.

Lett., 2(9):393–394, May 1959.

[42] M. Dressel. Peierls instability and charge density waves. http://www.pi1.

uni-stuttgart.de/glossar/Peierls e.php, 2008.

[43] M. Tinkham. Introduction to Superconductivity. Dover Publication, Inc., Second Edi-
tions, 1995.

[44] L.P. Gor’kov. On the energy spectrum of superconductors. Sov. Phys. JETP, 7:505–508,
1958.

[45] P. de Gennes. Superconductivity of Metals and Alloys. Boulder, CO: Westview Press,
1999.

[46] S. Hufner. Photoelectron Spectroscopy. Springer-Verlag, 1995.

[47] Øystein Fischer, Martin Kugler, Ivan Maggio-Aprile, Christophe Berthod, and
Christoph Renner. Scanning tunneling spectroscopy of high-temperature superconduc-
tors. Rev. Mod. Phys., 79(1):353–419, Mar 2007.

[48] C. L. Huang, J.-Y. Lin, Y. T. Chang, C. P. Sun, H. Y. Shen, C. C. Chou, H. Berger, T. K.
Lee, and H. D. Yang. Experimental evidence for a two-gap structure of superconducting
NbSe2 : A specific-heat study in external magnetic fields. Phys. Rev. B, 76(21):212504,
Dec 2007.

[49] M. Zehetmayer and H. W. Weber. Experimental evidence for a two-band superconduct-
ing state of NbSe2 single crystals. Phys. Rev. B, 82(1):014524, Jul 2010.

72



Appendix A

BdG Equations in the Tight-Binding Model

A.1 Derivation of the BdG Equations

The mean field Hamiltonian in our model is

Heff = H0 +
∑

iσ

V
(H)
ii n̂iσ +

1

2

∑

〈ij〉σ

V
(H)
ij n̂iσ − 1

2

∑

〈ij〉σ

V
(F )
ij c†iσcjσ (A.1)

+
∑

i

∆iic
†
i↑c

†
i↓ +

1

2

∑

〈ij〉

∆ijc
†
i↑c

†
j↓ +H.c.

We wish to make a transformation to a basis such that the Hamiltonian is diagonal, i.e.,

Heff = E0 +
∑

nσ

ǫnγ
†
nσγnσ , (A.2)

where E0 is the ground-state energy, and ǫn is the energy of a quasiparticle excitation in
state n. In this representation the new operators γnσ and γ†nσ create and destroy excitations
with respect to the ground state. Since the form of the quasiparticle operators must be
invariant under a canonical transformation, the quasiparticle operators must also obey the
fermion anti-commutation relations,

{

γmσγ
†
nσ′

}

= δmnδσσ′ , (A.3)
{

γmσγnσ′

}

= 0 , (A.4)
{

γ†mσγ
†
nσ′

}

= 0 . (A.5)

Therefore in the basis in which Heff is diagonal we have
[

Heff , γ
†
nσ

]

=
∑

n′σ′

ǫn′

[

γ†n′σ′γn′σ′ , γ†nσ

]

.

Using the identity
[AB,C] = A {B,C} − {A,C}B , (A.6)

one has,
[

Heff , γ
†
nσ

]

=
∑

n′σ′

ǫn′

(

γ†n′σ′

{

γn′σ′ , γ†nσ

}

−
{

γ†n′σ′ , γ
†
nσ

}

γn′σ′

)

=
∑

n′σ′

ǫn′γ†n′σ′δnn′δσσ′

= ǫnγ
†
nσ .
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Similarly,
[

Heff , γnσ

]

=
∑

n′σ′

ǫn′

[

γ†n′σ′γn′σ′ , γnσ

]

=
∑

n′σ′

ǫn′

(

γ†n′σ′

{

γn′σ′ , γnσ

}

−
{

γ†n′σ′ , γnσ

}

γn′σ′

)

= −
∑

n′σ′

ǫn′γn′σ′δnn′δσσ′

= −ǫnγnσ .

The transformation which diagonalizes the mean-field Hamiltonian is the Bogoliubov-Valatin
transformation, and gives the electron annihilation operators in terms of the quasiparticle
operators:

ci↑ =
∑

n

(

γn↑un(i) − γ†n↓v
⋆
n(i)
)

(A.7)

ci↓ =
∑

n

(

γn↓un(i) + γ†n↑v
⋆
n(i)
)

(A.8)

Thus by computing the commutators [Heff , ci↑] and [Heff , ci↓] explicitly and comparing
coefficients we arrive at the BdG equations.

We begin by calculating the commutators term by term. To keep the calculation man-
ageable, I break up the Hamiltonian into the single-particle, s− and d−wave components,
where

H0 =
∑

〈ij〉σ

t̃ijc
†
iσcjσ +

∑

iσ

(ǫi − µ̃) n̂iσ ,

Hs =
∑

i

(

∆iic
†
i↑c

†
i↓ + ∆⋆ci↓ci↑

)

,

Hd =
1

2

∑

<i,j>σ

V
(H)
ij niσ +

1

2

∑

<i,j>

(

∆ijc
†
i↑c

†
j↓ + ∆⋆

ijcj↓ci↑

)

.

For simplicity I have defined

t̃ij = tij −
1

2
V

(F )
ij ,

µ̃ = µ− V
(H)
ii .

The quantity of interest is then,
[

Heff , ck↑

]

=
[

H0, ck↑

]

+
[

Hs, ck↑

]

+
[

Hd, ck↑

]

. (A.9)

The first term is,
[

H0, ck↑

]

=
∑

〈ij〉σ

t̃ij

[

c†iσcjσ, ck↑

]

+
∑

iσ

(ǫi − µ̃)
[

n̂iσ, ck↑

]

.
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Evaluating the commutators,

[

c†iσcjσ, ck↑

]

= c†iσ

{

cjσ, ck↑

}

−
{

c†iσ, ck↑

}

cjσ

= −cjσδikδσ↑ ,
[

c†iσciσ, ck↑

]

= c†iσ

{

ciσ, ck↑

}

−
{

c†iσ, ck↑

}

ciσ

= −ciσδikδσ↑ ,

yields,
[

H0, ck↑

]

= −
∑

〈j〉

t̃kjcj↑ − (ǫk − µ̃) ck↑ . (A.10)

For the s-wave term we have,

[

Hs, ck↑

]

=
∑

i

(

∆ii

[

c†i↑c
†
i↓, ck↑

]

+ ∆⋆
[

ci↓ci↑, ck↑

])

.

Evaluating the commutators,

[

c†i↑c
†
i↓, ck↑

]

= c†i↑

{

c†i↓, ck↑

}

−
{

c†i↑, ck↑

}

c†i↓

= −c†i↓δik ,
[

ci↓ci↑, ck↑

]

= 0 ,

yields,
[

Hs, ck↑

]

= −∆kkc
†
k↓ . (A.11)

The d-wave term is,

[

Hd, ck↑

]

=
1

2

∑

<i,j>σ

V
(H)
ij

[

niσ, ck↑

]

+
1

2

∑

<i,j>

(

∆ij

[

c†i↑c
†
j↓, ck↑

]

+ ∆⋆
ij

[

cj↓ci↑, ck↑

])

.

After evaluating the commutators

[

c†i↑c
†
j↓, ck↑

]

= c†i↑

{

c†j↓, ck↑

}

−
{

c†i↑, ck↑

}

c†j↓ ,

= −c†j↓δik
[

cj↓ci↑, ck↑

]

= 0 ,

we find
[

Hd, ck↑

]

= −1

2

∑

<j>

V
(H)
kj ck↑ −

1

2

∑

<j>

∆kjc
†
j↓ . (A.12)
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Upon substituting (A.10), (A.11), (A.12) into (A.9) we find

[

Heff , ck↑

]

= −
∑

〈j〉

t̃kjcj↑ − (ǫk − µ̃) ck↑ − ∆kkc
†
k↓ −

1

2

∑

<j>

V
(H)
kj ck↑ −

1

2

∑

<j>

∆kjc
†
j↓ . (A.13)

Repeating the same procedure for [Heff , ck↓] results in

[

Heff , ck↓

]

= −
∑

〈j〉

t̃kjcj↓ − (ǫk − µ̃) ck↑ + ∆kkc
†
k↑ −

1

2

∑

<j>

V
(H)
kj ck↓ +

1

2

∑

<j>

∆kjc
†
j↑ . (A.14)

By substituting the relations (A.7) and (A.8) into (A.13) and (A.14), the commutators can
be expressed in terms of the quasiparticle creation and annihilation operators as

[

Heff , ck↑

]

= −
∑

〈j〉n

t̃kj

(

γn↑un(j) − γ†n↓v
⋆
n(j)

)

+

−
∑

n

(

ǫk − µ̃+
1

2

∑

<j>

V
(H)
kj

)

(

γn↑un(k) − γ†n↓v
⋆
n(k)

)

−
∑

n

∆kk

(

γ†n↓u
⋆
n(k) + γn↑vn(k)

)

− 1

2

∑

<j> n

∆kj

(

γ†n↓u
⋆
n(j) + γn↑vn(j)

)

.

(A.15)

Using the Bogoliubov-Valatin transformation for the electron annihilation operator in (A.7),

[

Heff , ck↑

]

=
∑

n

un(k)
[

Heff , γn↑

]

− v⋆
n(k)

[

Heff , γ
†
n↓

]

= −
∑

n

(

ǫnun(k)γn↑ + ǫnv
⋆
n(k)γ†n↓

)

. (A.16)

Comparison of the coefficients of γn↑ and γ†n↓ in (A.15) and (A.16) leads to

∑

〈j〉

t̃kjun(j)+

(

ǫk − µ̃+
1

2

∑

<j>

V
(H)
kj

)

un(k)+∆kkvn(k)+
1

2

∑

<j>

∆kjvn(j) = ǫnun(k) , (A.17)

−
∑

〈j〉

t̃kjvn(j) +

(

ǫk − µ̃+
1

2

∑

<j>

V
(H)
kj

)

vn(k) + ∆⋆
kkun(k) +

1

2

∑

<j>

∆⋆
kjun(j) = ǫnvn(k) ,

(A.18)
which are known as the BdG equations. It can be written in matrix form as

(

T̂ + V̂ (H) + V̂ (F ) ∆̂

∆̂∗ −
(

T̂ ∗ + V̂ (H) + V̂ (F )
)

)

(

un

vn

)

= ǫn

(

un

vn

)

. (A.19)
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A.2 Derivation for the Ground-State Energy

The ground-state energy is given by

〈

Heff

〉

=
〈

H0

〉

+
〈

Hs

〉

+
〈

Hd

〉

(A.20)

and we will calculate the expectation values term by term. The expectation value for the
single-particle term is

〈

H0

〉

=
∑

〈ij〉σ

t̃ij

〈

c†iσcjσ

〉

+
∑

iσ

(ǫi − µ̃)
〈

n̂iσ

〉

.

For our calculation un and vn can be assumed to real without loss of generality. One can
then show that

〈

c†iσcjσ

〉

=
〈

c†jσciσ

〉

.

Using the definition of the mean fields in (3.6) to (3.10) we find

〈

H0

〉

= 2
∑

〈ij〉

t̃ij
V

(F )
ij

Uij

+
∑

i

(ǫi − µ̃)
〈

n̂i

〉

. (A.21)

For the s and d-wave components we find

〈

Hs

〉

=
∑

i

(

∆ii

〈

c†i↑c
†
i↓

〉

+ ∆⋆
〈

ci↓ci↑
〉

)

= 2
∑

i

|∆2
ii|

Uii

, (A.22)

〈

Hd

〉

=
1

2

∑

<ij>σ

V
(H)
ij

〈

n̂iσ

〉

+
1

2

∑

<i,j>

(

∆ij

〈

c†i↑c
†
j↓

〉

+ ∆⋆
ij

〈

cj↓ci↑

〉)

=
1

2

∑

<ij>

V
(H)
ij

〈

n̂i

〉

+
∑

<ij>

|∆ij|2
Uij

, (A.23)

where we have again taken advantage of un and vn being real. The expressions (A.21), (A.22),
and (A.23) along with the definitions for t̃ij and µ̃ yield the total ground-state energy as

〈

Heff

〉

=2
∑

〈ij〉

(

tij −
1

2
V

(F )
ij

)

V
(F )
ij

Uij

+
∑

i

(

ǫi − µ+ V
(H)
ii

)〈

n̂i

〉

+ 2
∑

i

|∆2
ii|

Uii

+
1

2

∑

<ij>

V
(H)
ij

〈

n̂i

〉

+
∑

<ij>

|∆ij|2
Uij

.

(A.24)

77



Appendix B

Numerical Methods

B.1 Introduction to ScaLAPACK

ScaLAPACK, which stands for Scalable Linear Algebra Package, is an extension of the LA-
PACK library for performance on distributed-memory message passing computers which
support PVM and/or MPI. Similarly to LAPACK, ScaLAPACK contains routines for solv-
ing linear equations, least squares, and eigenvalue problems. LAPACK however is written
as a single thread of execution and does not provide routines for parallel execution. ScaLA-
PACK is designed for efficiency and scalability as the problem size and number of processors
increases.

ScaLAPACK is dependent on a few libraries for implementation. These libraries include
the BLAS (Basic Linear Algebra Package) used for performing common linear algebra com-
putations, PBLAS which is a parallel set of the BLAS routines, and BLACS (Basic Linear
Algebra Communication Subprograms) which is used for communication of data between
process nodes. BLACS and the process grid model will be discussed in the following section.
The basic components of ScaLAPACK are shown in Figure B.1. Elements below the dashed
line labelled Local are called by a single processor, while elements labeled Global are parallel
routines.

Figure B.1: ScaLAPACK software hierarchy
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B.2 BLACS Process Grid

BLACS is a message passing library designed for implementing linear algebra. The processes
of a distributed memory machine are organized into a two-dimensional process grid. Each
process on the grid stores a piece of the overall matrix. If a calculation is executed with
P processes labelled 0, 1, . . . , P − 1, then the BLACS arranges these processes into a grid
with Pr rows and Pc columns where Pr × Pc = P . This ordering also allows for certain
forms of scoped operations. For example, we can issue commands that only allow a specific
process row or column to participate. This mapping is done so that matrix elements can be
efficiently distributed across different process nodes. An example of eight processes mapped
onto a 2 × 4 process grid is shown in Figure B.2

Figure B.2: Example of a Pr = 2, Pc = 4 process grid
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B.3 Distributed Memory Storage Scheme

Once the process grid had been initialized by the BLACS the matrix elements must be dis-
tributed out to the processes in the grid. For the execution of a parallel program to be
efficient, the distribution of matrix elements should be well balanced amongst the processes
on the grid. Load balancing and communication characteristics largely influence the perfor-
mance of the computation and must be considered during the design of high performance
algorithms. For dense matrices ScaLAPACK distributes the memory according to the two-

dimensional block-cyclic data scheme. This distribution scheme provides a simple way to
partition a matrix and distribute the elements across a process grid.

In a two-dimensional block cyclic data distribution the first task is to divide the matrix
into blocks of size MB × NB. If the block size does not divide the matrix evenly, then the
last block in each row/column will contain the remaining elements. These blocks are then
cyclically dealt out to each process in the grid like a deck of cards. As an example, we
will distribute the following 9 × 9 matrix across a 2 × 2 process grid using a block size of
MB = NB = 2 as shown in Figure B.3.

Figure B.3: A 9X9 matrix distributed across 4 processors

The important thing to remember in this style of data distribution is that every process in
the grid owns a collection of these blocks, which are then stored locally in a two-dimensional
column major array. For example the local matrix stored by process (0, 0) is a 5 × 5 array
with elements:

A0,0 =













a11 a12 a15 a16 a19

a21 a22 a25 a26 a29

a51 a52 a55 a56 a59

a61 a62 a65 a66 a69

a91 a92 a95 a96 a99













Similarly process (0, 1) owns a 5 × 4 array, (1, 0) owns a 4 × 5 array, and (1, 1) owns a
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4 × 4 array. In this case the load is not shared evenly by the processors; however, it is the
most balanced distribution given this particular matrix size. If we had chosen a block size of
MB = NB = 3 we would have an even division of the global matrix. However process (0, 0)
and (1, 0) would take on approximately twice as many matrix elements as the remaining
nodes.

From this example we can see that the size of the matrix we are solving is only limited by
the number of processors available. This is the advantage of the distributed memory scheme,
as it allows one to solve problems that are much larger than any one processor is capable of
performing alone.

B.4 Diagonalization of BdG Matrix Elements

The BdG Equations are given by:

∑

i′

(

T̂ii′ + V̂
(F )
ii′

)

un(i′) + V̂
(H)
ii un(i) + ∆̂iivn(i) +

∑

i′

∆̂ii′vn(i′) = ǫnun(i) , (B.1)

−
∑

i′

(

T̂ii′ + V̂
(F )
ii′

)

vn(i′) + V̂
(H)
ii vn(i) + ∆̂⋆

iiun(i) +
∑

i′

∆̂⋆
ii′un(i′) = ǫnvn(i) , (B.2)

where

T̂ii′ =
∑

<j>

tijδi′j − (µ− ǫi) δii′ , (B.3)

V̂
(H)
ii = V

(H)
ii +

1

2

∑

<j>

V
(H)
ij , (B.4)

V̂
(F )
ii′ = −1

2

∑

<j>

V
(F )
ij δi′j , (B.5)

(B.6)

and

tij =











−t if i and j are nearest neighbours,

t′ if i and j are next nearest neighbours,

0 otherwise.

(B.7)

The < j > indicates a sum over sites j which are neighbours to site i. The selfconsistent
mean fields V

(H)
ij , V

(F )
ij , and ∆ij are given by

V
(H)
ij = Uij

∑

n

[

|un(j)|2fn + |vn(j)|2(1 − fn)
]

, (B.8)

∆ij = −1

2
Uij

∑

n

[un(i)v∗n(j) + un(j)v∗n(i) ] (1 − 2fn) , (B.9)

V
(F )
ij =

1

2
Uij

∑

n

[ (u∗n(i)un(j) + un(i)u∗n(j)) fn

+ (vn(i)v∗n(j) + v∗n(i)vn(j)) (1 − fn) ] (B.10)
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which are valid for either j = i or j 6= i. The sums in Equations (B.8) to (B.10) are over
positive eigenvalues only. We use n to label the eigenvalues and i to label the sites. If the
system contains N sites then i ranges from 1 ≤ i ≤ N . The fn is the Fermi-Dirac distribution
function with argument βǫn, where β = 1/kBT , with T the temperature.. This gives us two
coupled equations which are to be solved simultaneously. The presence of the mean fields
(B.8) to (B.10) indicate that they must also be solved selfconsistently.

These equations can be written in the more compact form

(

T̂ + V̂ (H) + V̂ (F ) ∆̂

∆̂∗ −
(

T̂ ∗ + V̂ (H) + V̂ (F )
)

)

(

un

vn

)

= ǫn

(

un

vn

)

. (B.11)

By introducing the composite eigenvector

(

un

vn

)

=



























u1
n

u2
n
...
uN

n

v1
n

v2
n
...
vN

n



























(B.12)

we can rewrite Equation (B.11) in terms of only one matrix Λ given by:

Λjj′ =

{

T̂jj′ + V̂
(H)
jj + V̂

(F )
jj′ + δj+N,j′∆̂jj′ j ≤ N

−T̂j−M,j′−M − V̂
(H)
j−M,j−M − V̂

(F )
j−M,j′ + δj−M,j′∆̂

⋆
j−M,j′ j > N .

(B.13)

The column index j′ of the matrices T̂ , V̂ (H), and V̂ (F ) on the first (second) line is also
restricted to j′ ≤ N (j′ > N). The matrices are N × N while the overall matrix Λ is
2N × 2N . The indices j and j′ therefore run from 1 to 2N . In terms of the site label i we
have

i =

{

j j ≤ N
j −N j > N

This will give the matrix components of Λ as
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Λ̂ =




































−µ̃ t̃ 0 ··· 0 t̃ ∆1 ∆12 0 ··· 0 0

t̃ −µ̃ t̃ 0 ··· 0 ∆21

... 0 ··· 0 0

0 t̃
... ... 0 ··· 0

... ... ...
...

...
... 0

... ... ... 0 ··· 0
... ... 0 0

0 0 0 t̃ −µ̃ t̃ 0 0 ··· ∆N−1,N−2 ∆N−1 ∆N−1,N

t̃ 0 0 0 t̃ −µ̃ 0 ··· 0 0 ∆N,N−1 ∆N

∆⋆
1

∆⋆
12

0 ··· 0 0 µ̃ −t̃ 0 ··· 0 −t̃

∆⋆
21

... 0 ··· 0 0 −t̃ µ̃ −t̃ 0 ··· 0

...
... ... ... ··· 0 0

... ... ... 0
...

0 0 0
... ∆⋆

N−1
∆⋆

N−1,N 0 ··· 0 −t̃ µ̃ −t̃

0 0 0 ··· ∆⋆
N,N−1

∆⋆
N −t̃ 0 ··· 0 −t̃ µ̃





































(B.14)

Together with the composite eigenvector the BdG equations can be written as an eigenvalue
equation,

Λ̂x = λx . (B.15)

There are 2N eigenvalues λ and eigenvectors which correspond to the particle (n ≤ N) and
hole (n > N) energies and wavefunctions, respectively. The matrix Λ̂ is distributed across
the process nodes according to the storage scheme discussed in the previous section. The
diagonalization is done using the ScaLAPACK routine PDSYEVD. This routine solves the
eigenvalues and eigenvectors for a given symmetric distributed matrix using a divide and
conquer algorithm. The eigenvectors are stored in an 2N × 2N distributed matrix Ẑ with
the eigenvectors as columns.

Ẑ =
(

x1 x2 · · · xN−1 xN

)

(B.16)

B.5 Calculations with Distributed Matrices

Once the matrix Λ̂ has been diagonalized we can compute the quantities given in Equations
(B.8) to (B.10). This process is not quite straightforward since the elements of the eigenvec-
tors are distributed across each processor. We need to construct a mechanism for computing
these quantities which minimizes the number of communication broadcasts. The trick is
defining a one dimensional array that will store the local eigenvector components for a given
column of the matrix Z. For example, suppose we have only N = 6 sites. This gives the
dimensions of Λ̂ and x as 12 × 12 and 12 × 1, respectively. To solve this with ScaLAPACK
we can use a 2 × 2 process grid using MB = NB = 3. The local components for the n-th
column of Ẑ for each process will be
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Node : (0, 0) (0, 1) (1, 0) (1, 1)

At this point it is possible to call the BLACS routine DGSUM2D which performs an
element-wise summation of an array or a matrix. The result(which will be the desired column
of the matrix Ẑ) is placed on all nodes after completion of the summation. If we were to
perform a gathering operation for each element of Ẑ, we would require N2/2 broadcasts
(since we only need to perform summations for positive eigenvalues). Using this method of
summing local process columns, we only need to perform N/2 broadcast calls, considerably
increasing the performance of the routine.

Once ∆ij, V
(H)
ij , and V

(F )
ij have been computed we can substitute them into (B.11) and

perform the routine again for the new matrix elements. This process must be performed
until all mean fields are selfconsistent to within a desired convergence criterion. For example
we would iterate the BdG equations until the order parameter satisfies

∣

∣

∣

∣

∆New
i − ∆Old

i

∆New
i

∣

∣

∣

∣

< ǫ (B.17)

where ǫ is the desired tolerance for ∆.
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Appendix C

Derivation of the Dispersion Relations

In the normal state the tight-binding Hamiltonian including next-nearest neighbour hop-
ping is given by

H0 =
∑

〈ij〉σ

tijc
†
iσcjσ −

∑

iσ

µ n̂iσ , (C.1)

where

tij =











−t; if i and j are nearest neighbours.

t′; if i and j are next nearest neighbours.

0; otherwise.

(C.2)

Wwe introduce the Fourier transform of the creation and annihilation operators as

ciσ =
1√
N

∑

~k

ckσe
i~k·~Ri , (C.3)

ckσ =
1√
N

∑

~Ri

ciσe
−i~k·~Ri , (C.4)

where N is the total number of sites on the lattice. For simplicity hereafter we will suppress
the spin index. Denoting the lattice spacing as a and by using periodic boundary conditions
on the lattice the Bloch condition for the wavefunctions ψ(x) in one dimension gives:

ψ(x+Nxa) = ψ(x);

ψkx
(x+Nxa) = eikxNxaψkx

(x) ,

so that we must have
eikxNxa = 1 , (C.5)

i.e.,

kx =
2πnx

Nxa
(C.6)

where −Nx

2
≤ nx ≤ Nx

2
. Similar results hold for both y and z directions. We can break

up the Hamiltonian into two separate sums and calculate the contributions from nearest
neighbours and next-nearest neighbours separately. That is to say that we replace the sum
over 〈ij〉 with

∑

〈ij〉

=
N.N
∑

〈ij〉

+
Next N.N
∑

〈iℓ〉

, (C.7)

where j are the nearest neighbours (N.N) and ℓ are the next-nearest neighbours (Next N.N)
to site i. Calculating the first term in the Hamiltonian explicitly gives
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−t
∑

〈ij〉

c†icj =
−t
N

∑

〈ij〉σ

∑

kk′

c†kck′ei(~k·~Ri−~k′·~Rj) . (C.8)

In two dimensions (N = NxNy) the nearest neighbour sites are

~Rj = {(xi ± a, yi), (xi, yi ± a)} . (C.9)

Then writing out the sum over nearest neighbours we have

−t
∑

〈ij〉

c†icj =
−t
N

∑

~Ri

∑

kk′

c†kck′

(

ei(~k·~Ri−~k′·(~Ri±ax̂)) + ei(~k·~Ri−~k′·(~Ri±aŷ))
)

=
−t
N

∑

~Ri

∑

kk′

c†kck′ei(~k−~k′)·~Ri

(

e∓
~k′·ax̂ + e∓

~k′·aŷ
)

=
−2t

N

∑

~Ri

∑

kk′

(

cos(k′xa) + cos(k′ya)
)

c†kck′ei(~k−~k′)·~Ri

We can write ~Ri = a(ix, iy), where ix and iy are the site numbers, and the summation over
the coordinates as

∑

~Ri

=
∑

ix,iy

, (C.10)

where ix = 1, 2, · · · , Nx and iy = 1, 2, · · · , Ny. If we let ~q = ~k − ~k′ where

~qx =
2πmx

Nxa
~qy =

2πmy

Nya

and mx = nx − n′
x, my = ny − n′

y are also integers then we can evaluate the sum over
coordinates as

Nx
∑

ix=1

Ny
∑

iy=1

ei(~k−~k′)·~Ri =

(

Nx
∑

ix=1

eiqxixa

)





Ny
∑

iy=1

eiqyiya





=

(

1 − ei2πmx

e−i2πmx/Nx − 1

)(

1 − ei2πmy

e−i2πmy/Ny − 1

)

= 0 .

However, if ~k = ~k′ then
Nx
∑

ix=1

Ny
∑

iy=1

ei(~k−~k′)·~Ri = NxNy = N ,

therefore
∑

~xi

ei(~k−~k′)·~Ri = δkk′N . (C.11)

86



Then

−t
∑

〈ij〉

c†icj =
−2t

N

∑

kk′

(

cos(k′xa) + cos(k′ya)
)

c†kck′δkk′N

= −2t
∑

k

(cos(kxa) + cos(kya)) c
†
kck . (C.12)

Now calculating the contribution from the next-nearest neighbours yields

t′
∑

〈iℓ〉

c†ick =
t′

N

∑

〈iℓ〉

∑

kk′

c†kck′ei(~k·~Ri−~k′·~Rℓ) . (C.13)

The next-nearest neighbours are given by the coordinates

~Rℓ = ~Ri ± a(x̂± ŷ) . (C.14)

Writing out the sum over next-nearest neighbours gives:

t′
∑

〈iℓ〉

c†ick =
t′

N

∑

~Ri

∑

kk′

c†kck′ei(~k·~Ri−~k′·~Ri±a(x̂±ŷ))

= t′
∑

kk′

c†kck′δkk′e∓ia(k′

x±k′

y)

where

e∓ia(k′

x∓k′

y) = e−ak′

xe−ak′

y + e−ak′

xeak′

y + eak′

xe−ak′

y + eak′

xeak′

y

= 2ek′

xa cos(k′ya) + 2e−k′

xa cos(k′ya)

= 4 cos(k′xa) cos(k′ya) .

Therefore the sum over next-nearest neighbours becomes

t′
∑

〈iℓ〉

c†ick = 4t′
∑

k

cos(kxa) cos(kya)c
†
kck . (C.15)

Substituting Eqs (C.15) and (C.12) into the Hamiltonian yields

H0 =
∑

k

E(~k)c†kck , (C.16)

where
E(~k) = −2t (cos(kaa) + cos(kya)) + 4t′ cos(kxa) cos(kya) − µ . (C.17)
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Appendix D

Chemical Potential and DOS for Negative

t′
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Chemical Potential vs. Next Nearest Neighbor Hopping
24x24 Cell

Figure D.1: Chemical potential for −0.5 ≤ t′ ≤ 0.5 on a 24x24 lattice. The chemical
potential increases for negative t′ such that µ for positive and that for negative t′ are
mirror images of each other.
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Figure D.2: Density of states for positive and negative t′ on a 24x24 cell with |U | = 5t.
Clearly, the density of states for positive and negative t′ are identical with E(k) →
−E(k).
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