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Abstract

Conservation tillage practices have replaced traditional plowing and conventional
seedbed tillage in some dry areas in Western Canada and the USA. The planter or seed
drill is an important piece of equipment used in crop production systems. Because of time
constraints and large cropped areas, high-speed seeding operations are desirable.
However, the increased draft and power requirements associated with high operating
speeds are major factors limiting the speeds at which it is feasible to use tillage tools.

Dynamic effects on soil-tool cutting forces are important when operating at
elevated speeds. The rate-dependent behaviour of narrow tillage tools was investigated in
this study. A 9-m long linear monorail system was developed to carry narrow tools
through a linear soil bin at high speeds. Steady-state speeds from 0.5 to 10.0 m/s over | to
3 m were attained using this system.

The performance of tools with rectangular, triangular and elliptical cross sections
were studied. Experimental measurements showed a linear increase of draft with
increasing operating speed, for all tool shapes. Power input per operating depth and soil
pulverization also increased with an increase in tool speed. Elliptical, triangular and flat
tool shapes presented the lowest to highest draft requirements, respectively.

A hypoelastic soil constitutive relationship with variable Young’s modulus and
Poisson’s ratio was developed to describe the dynamic soil-tool cutting problem. Inertial
effects were initially included in the stiffness matrix; however, doing this introduced

numerical oscillations, even for small tool displacements (< 1 mm) and therefore this



model was abandoned. As a next step, lumped viscous components were incorporated in
the equation of motion (i.e., outside of the stiffness matrix). This reduced the oscillating
problem by adding more damping to the system. However, oscillations still occurred at
larger tool displacements (1-10 mm) after soil failure started. Using this model, it was
possible to simulate tool performance up to the early stages when soil failure started.

A reference tool procedure was proposed to estimate the dynamic soil parameter
in the soil model. The procedure used the flat tool as a reference tool and solved the soil
constitutive formulation using a finite element numerical scheme in an inverse method to
determine the set of damping coefficients. Static model parameters were determined using
conventional triaxial compression tests. The determined parameters were than used along
with the mathematical model to predict the performance of the triangular tool. Predictions
of triangular tool draft produced correct trends but overestimated experimental data. Draft
was overpredicted by less than 1% at 2.8 m/s but by 25% at 8.4 m/s tool speed.

Future work should focus on the reference tool concept to predict all soil
parameters for the dynamic model. This approach would avoid the need for lab tests using
disturbed soil samples and would provide further opportunities for practical application of
this technique. A shallow reference tool can be used in the field at different tool speeds to
determine parameters of a dynamic soil model. The model would then be used to predict
draft forces for other narrow tools running at the same operating depth. Although the

topic presented in this thesis is very promising, more studies are required.
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CHAPTER ONE

INTRODUCTION

1.1 Conservation Tillage Systems

Agricultural crop production systems require proper soil conditioning for adequate
plant establishment and growth. Tillage, which is defined as the physical manipulation of
soil, is the operation commonly used to transform soil structure according to plant needs.
Tillage tools are used to perform such operations. These tools are mechanical devices used
to apply forces to the soil to cause some desired effects such as pulverization, cutting,
inversion or movement of soil (Gill and Vanden Berg 1968).

The design and operation of tillage tools involve economic and energetic aspects,
as well as environmental aspects;

- tillage operations are expensive practices, even though various tool designs and
shapes can be manufactured at relatively low cost,

- tillage is traditionally performed at low speeds due to the high forces involved in
cutting and turning soil,

- one hectare of land cultivated to a depth of 100 mm has an estimated mass of 1

- the time spent tilling is substantial because of machinery’s slow working rates,
- capital investments in machinery acquisitions are also high due to the heavy

nature of the task.



The cost of energy for producing crops is becoming more important. Efficient
operation of tractors and implements is a problem faced by most farmers. Manufacturers
need data to assist in the development of more efficient tillage systems (Grisso et al.
1994). There is potential for energy savings by redefining current tillage systems or by
redesigning its actual components.

The world is becoming more conscious about environmental damages due to
modern farming practices. The degree of soil manipulation varies according to economical
and technological aspects. Excessive harrowing accelerates decomposition of crop
residues, pulverizes surface aggregates and can increase wind and water erosion. Tillage,
beyond that needed for satisfactory weed control on summer fallow, does not increase
crop yields (Johnson 1977). Soil conservation programs have been given priorities by
governmental research centres. Johnson (1977) stated that conservation tillage research
must be given priority in the design of equipment and systems for mechanically handling
and retaining crop residue on the land, and for seed and fertilizer placement. The goal of

conservation tillage is to provide very little tillage - just that necessary for crops’ needs.

Trends in conservation tillage equipment

Many changes in tillage and planting equipment have occurred over the past 15
years. Conservation tillage practices have replaced moldboard plowing and conventional
seedbed tillage on a large portion of cropped areas in the North American Prairies. The
planter or drill has become a very important piece of equipment used in crop production

(Harrigan and Rotz 1994). Furrow openers of a combined seed and fertilizer drill are
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required to place the seed and fertilizer in the seedbed with the minimum expenditure of
energy. Soil disturbance caused by the opener should be the minimum possible to avoid
soil water losses and aggravated weed problems (Darmora and Pandey 1995).

Today's soil tillage and seeding practices in the great plains of North America
incorporate the use of wide equipment. At the same time, there is a limitation in increasing
the power unit. While width of current equipment has already reached an extreme value,
the power delivered from tractors could be easily increased. However, the adoption of
larger and consequently heavier driving units would cause more compaction of soil. With
these limitations, an alternative way of increasing capacity of farm equipment is to increase
the speed of operation.

In Saskatchewan, the cultivator has become part of every farmer's operation and is
used for weed control. Recently, with the introduction of air seeders, the cultivator is also
being used for seeding and deep banding of fertilizer. No-till drills have been introduced
for seeding directly into the soil with a minimum of soil disturbance. No-till drills usually
use either disc-openers or hoe-openers (University of Saskatchewan 1987). Soil openers
are of major importance in conservation tillage equipment. Adequate opener design and
proper operation for a wide range of operating speeds is a major goal guiding the present

study.

Modeling of soil-tool interaction

Models of soil-tool interaction can be used in the new tool shape designs intended

to minimize draft, energy and soil disturbance during tillage.
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The first problem to be addressed is understanding the behaviour of tillage tools
interacting with soil. The field of soil dynamics has been addressing related subjects since
the early 1900's. Soil dynamics is defined as the branch of knowledge that considers the
motion of soil. More specifically, soil dynamics, a phase of soil science and mechanics
concerned with soils in motion, may be defined as the relation between forces applied to
the soil and the resultant soil reaction (Gill and Vanden Berg 1968).

When a mechanical device passes through the soil, irreversible and transient
phenomena may occur, even when the device is driven at a steady speed (Shibusawa
1992). Soil manipulation, including tillage, planting, and fertilization, is generally a
dynamic process in which strain-rate effects on soil stress-strain relations should be
considered in analytical modeling (Shen and Kushwaha 1995a). Quasi-static modeling of
soil-tool interaction can be acceptable for the low speed range of agricultural operations;
however, as the speed is increased, dynamic components have to be incorporated in
analytical models. Simplifications in the theory are usually made due to the difficulty in
formulating and solving ‘real’ problems, considering the nonlinearities and dynamics
involved. Soil failure around a narrow tillage tool is a three-dimensional problem (McKyes
1985). Because of the complexity, only a few investigators have considered the three-
dimensional case and even fewer have considered the dynamic behaviour of the soil (Xie
and Zhang 1985). The development of computers and numerical solution methods such as

the finite element method make analyses of such complex problems feasible.



Strain-rate effects

Rate effects on the force response of tillage tools such as moldboard plows have
been known to be significant since the early 1900’s (Wismer and Luth 1972). The power
requirement increases rapidly with speed, and soil shattering is usually greater at higher
speeds (Scott and Yule 1993). The resistance of a tool also increases with increased
speed. The effect of tool speed on forces can be significant. Draft, associated with speed,
is a major factor limiting increases in speed of operation. Tool shapes also affect the tool
draft. A better design of a tool shape can reduce draft requirements, and high working
rates would lead to a reduction in number of operations required to produce a seedbed
because of increased soil pulverization.

Draft is an important parameter for measurement and evaluation of implement
performance (Grisso et al. 1994). Rational design must be based on a knowledge of tool
performance and soil parameters (Stafford 1984). For efficient tillage, both must be
considered with the aim of minimizing specific resistance, i.e., draft per unit area of soil
disturbance (Godwin et al. 1984). Quantification of force response relations for the soil
cutting process can be used by the equipment designer for improving cutting element
design, and for mathematically simulating whole vehicle performance (Wismer and Luth
1972). Traditional tools have been designed in the light of empirical experimentation based
on low speed tests and quasi-static theory of soil cutting. Experimental results cannot be
directly extrapolated for use with high speed tools because the results would be

unrealistic.



Narrow tillage tools are the main components of conservation tillage equipment.
Literature regarding dynamic behaviour of narrow tillage tools is scarce. A better
understanding of soil dynamic behaviour will help in the design of new tool shapes which
will reduce tool draft and energy demand over a wide speed range. At the same time,
narrow tools disturb less soil, ideally only the minimum necessary to establish a crop.
Measurement of draft and energy requirements of tools tested over a wide range of speeds

should indicate optimum working speeds.



1.2 Objectives

The objectives of this study are as follows:

1) To design, construct and test an experimental setup to measure narrow tool
performance, including tool reaction forces and corresponding instantaneous speeds

over a large operating speed range.

2) To develop a model to predict dynamic soil behaviour which incorporates dynamic
rate effects and to implement a finite element solution of the model to analyze soil-tool

interaction over a large range of speeds.

3) To compare predictions of draft of narrow tillage tools with experimental data

obtained using the developed equipment (1).



CHAPTER 2

LITERATURE REVIEW

2.1 Soil Openers

Designs for reduced draft requirements and consequently energy expenditures are
some of the main concerns for soil manipulations produced by soil openers. Accessories
such as coulters, depth control wheels, press wheels and covering devices, contribute to
low drafts in general. Therefore, greater importance must be attributed to soil openers. A
brief overview on current soil-opener design is presented in this section.

Under prairie conditions, soils are usually shallow. In general, soil openers are
narrow tools. Narrow tools disturb considerably more soil than the extent of their width.
For this reason, soil openers present three dimensional effects.

Seeding of cereals is normally performed either by conventional practices on a
previously tilled field, or by conservation tillage systems on undisturbed soil (Kushwaha
and Foster 1993). Pre-seeding tillage operations typically use cultivators. Seeding
operations use disc openers or hoe openers. Air seeders use forced air flow to distribute
seed and fertilizer to cultivator shanks, hoes or discs (University of Saskatchewan 1987).

Disc openers are appropriate for trash conditions and heavy clay fields. They have
been very popular. Opened furrows are quite regular in shape with small soil disturbance.
However, acquisition and maintenance costs are usually high because of moving parts, a

great number of items present in the final unit assemblage, and manufacturing of elaborate



shapes. Disc units present heavy construction, adjustable frames for disc angle
adjustments, individual disc gangs, gauge wheels for improved depth control, disc bearing
gangs and expensive high carbon discs usually manufactured smooth or in notched shapes.
Disc damage and replacement are expensive compared to replacing shovels or hoe
openers. Gang bearing bolts must be tightened periodically to reduce disc damage in rocky
conditions.

Cultivator categories include heavy duty, intermediate and field cultivators. Heavy
duty cultivators or chisel plows are employed for operations such as breaking of new lands
using operating speeds in the range of 6-8 km/h. Crumbling increases with speed (Koolen
and Kuipers 1983). It is also used for deep banding of fertilizers and seeding. Field
cultivators have relatively narrowly spaced shanks and are used for secondary tillage.
Operating depth reaches the arable layer for chisel plows and half of it for field cultivators.
Arable layers of 100 mm are typical in the prairies. Intermediate cultivators combine field
and heavy duty cultivators with narrow shank spacing.

Hoe openers and cultivators have simple design with low manufacturing costs.
Depth control is adequate, but furrow shapes are not quite regular when compared with
disc openers. Soil disturbance is usually greater than the soil disturbance caused by disc
drills. Seed scattering is also greater for these type of tools than for discs. Operating
speeds average 2.2 m/s (University of Saskatchewan 1987).

Rigid openers work fine under light trash conditions. They present a low-cost and
simplified design. In direct stubble seeding, however, trash clogging becomes a problem.

Coulters are used to deal with the trash. Other types of accessories are also used for



furrow covering and depth control. Coulters cut trash ahead of tool openers. After seed
and fertilizers have been placed, covering devices close the furrow. Press wheels pack soil
against the seed for optimum germination conditions.

Conservation tillage includes no-till drills. Heavy shanks open a soil slice on
previously unprepared soil. Very little tillage and seeding operations are performed at the
same time. These systems do not require any prior seedbed preparation. Fertilizer banding
and seeding are done in one operation. Soil water losses and soil manipulation are
minimized. Conservapak® (Conservapack, Indian Head, SK) is one example of a no-till
drill conservation system (Figure 2.1).

Air seeders are versatile. They can perform conventional or conservation tillage
practices during seeding operations. All previously referred tillage tools can be used on air

seeders and are considered to be narrow tools.

2.2 Performance of Tillage Tools

2.2.1 Draft-speed relationship

Historically, the moldboard plow has been dominant in agriculture. For this reason
ample literature on draft-speed relationships for the moldboard plow is available. It is
known that its draft increases with speed (Gill and Vanden Berg 1968; Stafford 1979).
This relationship is usually of a quadratic form, but depending upon soil type, it can vary
between linear and quadratic. A large component of moldboard draft is due to the
movement of large masses of soil. Such forces are commonly referred to as ‘inertial’

forces.

10



Stubble

4
v

Packed
soil
3 §U .......
‘:gc Seed
*g:{:‘
5/ Fertilizer
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Prairie Care 1991).




Since the late 1970’s, the use of chisel plows has increased in importance. Chisel
plows represent a class of narrow tools. The amount of soil displaced by narrow tools is
considerably lower than that disturbed by moldboard plows. Inertial effects are not
expected to be as significant for narrow tools as for wide tools, although, they may still be
important. Instead, strain rate effects are mostly responsible for changes in soil strength
with speed (Stafford 1979).

Olson and Weber (1965) used high speed movies and an instrumented soil bin to
study the effect of speed on two artificial soils in front of simple wide tools. Tested speeds
ranged from 0.2 to 1.1 m/s. Increase of draft with speed was observed in the experiments,
but the causes for the increase were not fully explained. Stress-strain properties and
viscoelastic properties of the soil were identified as important factors. Acceleration of the
soil was not considered a significant factor to increase tool draft with increase in speed.

McKyes (1985) gives a general explanation for the dynamic effects of tillage tools,
based on the literature and practical experience. Considerable dynamic effects on soil can
be produced by cutting tools operating at high speeds. Two mechanisms in particular
affect the draft required to move soil. Inertial forces have remarkable importance for sandy
soils, or so called frictional soils. In clay soils the draft required is not too sensitive to
inertial forces, but shear strength increases substantially with increasing shear rates.

Dynamic interactions between soil and narrow tools are still not well understood.
Most of the published data are from experiments performed at relatively low speeds, up to
3 m/s. Much attention has been dedicated over the years to identify and understand basic

principles of soil cutting by narrow tools. Three works in particular provide basic



information from which basic guidelines on dynamic aspects of soil-tool interactions can
be drawn, namely, Payne (1956), Wismer and Luth (1972) and Stafford (1979).

Payne (1956) recognized the effect of speed on draft. Drafts of a flat vertical tool,
25 mm wide, were obtained in clay, clay loam and sandy loam soils (Figure 2.2). Drafts
measured at speeds of 2.7 m/s increased more than 20% in comparison with drafts at 0.2
m/s. The strengthening of soil with speed was observed for all three soils. The data also
seem to present a linear draft-speed relationship.

Wismer and Luth (1972) tried to isolate effects of inertial and non-inertial
components on pure frictional and pure cohesive soils. Chisel plow measurements on a
sandy silt soil in the field presented a linear draft-speed relationship. The maximum
investigated speed was 4.0 m/s. Inertial effects were shown to be not so noticeable for the
chisel plow as for the moldboard plow. A linearly increasing draft-speed relationship of the
3-m wide chisel plow working on a sandy silt soil is shown in Figure 2.3.

Soil cutting forces increased with speed, and soil water content highly affected the
form of the draft-speed relationship in the study by Stafford (1979). The plastic limit
appears to be an approximate boundary which defines two different soil behaviours.
Below the plastic limit an increasing draft-speed relationship is predominant. Above the
plastic limit a reduction seems to occur on the rate of increase of draft with speed.
Asymptotic relationships occurred for soils with high water contents. The maximum

investigated speed was 5.0 m/s.
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a 25 mm wide flat vertical tool (adapted from Payne 1956).
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Measurements of tool draft in situ result in highly scattered data. Despite the
difficulties faced in the field, data are still valuable if analysis makes use of proper
statistical tools and care is taken in doing the experiments. Ground unevenness, terrain
non-uniformity, and variable soil water content are among many factors that make field
data difficult to collect and interpret. Particularly at high speeds, depth of tool operation
must be carefully controlled and monitored because draft is very sensitive to tool depth.

Draft-speed data for narrow tools are scarce in the literature. ASAE Standards
D497 (1993) groups equipment and relates standard required draft according to speed of
operation in the commercial range (~ 1 to 3 m/s). It is a valuable source of information for
decision-making on aspects of management and practical design. To understand the
behaviour of soil-tool interactions, however, more specific and accurate determinations
are necessary.

Linke and Kushwaha (1992) conducted field tests on vertical narrow tools in the
field. Data with speeds up to 18 m/s were obtained. It was concluded that draft either
decreased or remained constant above a certain speed range. However, highly scattered
data typical of field tests were obtained. Draft variations were almost 100% for speeds
slightly lower than 8.4 m/s. The sensitivity of the draft to depth variations large. At a
shallow working depth of 50 mm, for instance, a £ 5 mm variation in depth (i.e., 10%
variation) is very difficult to maintain under field conditions, especially at high operating
speeds.

Wheeler and Godwin (1994) presented laboratory data for narrow tools working in

frictional and cohesive soils at speeds up to 5.6 m/s. Wheeler and Godwin (1996) showed

16



measurements of narrow tools running at speeds up to near 4.2 m/s in cohesive field soils

(Figure 2.4). In both their studies, draft increased as speed increased.

2.2.2 Soil bin measurements

Soil bin experimentation is very common, mainly because of difficulties in the
interpretation of field measurements. Even though there is an extra investment involved
with soil bin facilities, variables can be more easily controlled, which facilitates data
analysis. Draft versus speed relationships for narrow tools working in soil bins are also
scarce.

Early soil bin measurements were usually obtained for wide tools because basic
principles were easier to isolate and understand. Narrow tools present pronounced side
effects that complicate the analysis. Work done by Siemens et al. (1965) represents such a
basic kind of work. Rowe and Bames (1961) also considered the dynamic case of flat
wide blades moving in a clay and in a sandy clay soil at speeds from 0.2 to 0.8 m/s. The
heavier clay soil showed pronounced draft increases with speed; however, the increase in
draft was much smaller for the sandy clay. They concluded that soil shear strength became
larger as the rate of shear increased.

Xie and Zhang (1985), in one of the first studies to incorporate dynamic effects in
the numerical analysis of tool draft, presented graphs of draft versus speed for a wide tool.
Data from their work showed draft increasing with speed for a black loam as well as for a

sandy loam soil. Tool speed of operation reached a maximum of 1.4 m/s. The
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clay loam soil showed more pronounced increases in draft with speed in comparison with
results for the sandy loam soil. The latter produced little increase in draft with speed.

Stafford (1979. 1984) described soil bin force measurement equipment and
presented data results. Measured speeds were up to 5 m/s. Water contents ranged from
12.6% to 48.9%. Rare and valuable experimental data were presented in these papers.
Two sample cases of vertical narrow tools are shown in Figures 2.5 and 2.6, working on
sandy clay loam and clay soils, respectively. There is a noticeable influence of water
content on the draft-speed relationship. A linearly increasing draft-speed relationship was
obtained for a low water content of 12.6% (Figure 2.5). For the higher water content
(16.0%), increase in draft with speed was reduced and the curve leveled off. The same
trend is observed in Figure 2.6, in which the draft tends to level off with speed at higher
water contents (28.8, 38.7 and 48.9%). The only difference was that for soil at 18.2%
water content, the increase in draft showed a polynomial form.

Zeng and Yao (1992) measured horizontal and vertical forces for a 40 mm wide
tool working at a depth of 160 mm in a loam soil. Soil water content was 13% and soil
bulk density was 1.28 Mg/m’. The tool rake angle was 70° and speeds were up to 2.6 m/s.
Experimental and simulated data showed horizontal tool forces increasing with speed.

Vertical tool forces also increased with speed, but force values were small.

2.2.3 Energy requirements

Tillage operations demand a considerable amount of energy to deform and fail soil.

Energy is transferred into the soil. Energy requirements of tillage equipment are usually
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sandy clay loam soil at water contents 12.6% and 16.0% (after
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expressed in terms of unit area or volume of manipulated soil (Panwar and Siemens 1972).
This section deals with soil input energy, and the following section with soil changes
resulting from this action, i.e., soil disturbance and pulverization.

McKyes (1985) and Chancellor (1994) demonstrated the convenience of
presenting data in terms of energy per unit volume, since it has the same units as draft per
unit area. Tool draft divided by tool furrow cross sectional area represents the energy
required to cut a volume of soil:

energy(N.m) _ force(N) length(m)

volume(m3 ) area(mz) length(m)
Darmora and Pandey (1995) used the energy rate per depth of operation as an

index of performance for soil openers:

H-S
E =——v 2.1
d D 2.1
where,

. . . W
E, = input energy rate per unit operating depth (—) .
m

H = draft force (N),
S = operating speed (m/s),
D = depth of operation (m).

Soil water content and bulk density considerably affect the amount of energy
required to fail soil in unconfined compression. These two quantities define a specific soil
structure. In Panwar and Siemens’ (1972) investigations, stress-strain curves for low

water content samples had peaks at low strains and the soil tended to fail in a brittle mode.



At a high water content (28.1%) there was no occurrence of a definite peak and soil failed
plastically. At a low water content (16.5%), low energy levels were obtained, and
although failure strength was high, the failure strain was small. At the high water content,
the increase in failure strain (~ 210%) more than overcame the decrease in failure strength
(~ 55%). Increased levels of energy per unit volume (twelve-fold increase) were obtained
with increase in soil bulk density (1.2 to 1.4 Mg/m3) and water content (16.5 to 28.1%).

An increase in energy due to an increase in confining stress was reported by
Chancellor (1994). A clay loam soil with confining pressure of 74 kPa presented a ten-fold
increase in energy per unit volume of soil when compared with unconfined soil. It was
concluded that this energy increase was due to increases in both failure stress and failure
strain. A four-hundred fold increase in energy was also noted as compared to soil failure in
tension.

Chancellor (1994) also reported investigations by Aref et al. (1975) on triaxial
tests, and used partitioning of energy to analyze relaxation tests in confined compression.
The proportion of recovered energy increased with increased soil water content. It was
also pointed out that the energy transferred to surroundings was important in terms of
predicting volumetric and shear strains on the sample.

Dynamic effects relating rates of strain and energy have also been reported in the
literature. Niyamapa and Salokhe (1992) measured energy necessary to break soil
specimens in quasi-static and dynamic triaxial tests. For the quasi-static case, failure
energy per unit volume for a silty loam soil presented a minimum value at the lowest water

content and increased rapidly with increases in water content. Higher bulk density (1.3



Mg/m’) specimens required considerably more energy to fail than lower bulk density (1.2
Mg/m’) for similar water contents. Under dynamic tests (speeds up to 6 m/s), failure
energy for silty loam and sandy loam soils showed rapid increases with speed up to
approximately 5 m/s, and then decreased (Figure 2.7).

Care must be taken in interpreting dynamic triaxial tests. Characteristics of the load
cell might overlap with soil response itself. Energy transferred to surroundings might take
place in a very different manner than in field conditions, particularly for high strain rates.
Difficulties in interpretation of dynamic triaxial tests might explain the rare number of
publications relating energy requirements and strain rates from triaxial tests.

Another aspect related to energy was presented in the work of Russian
academicians on high speed tillage during the 1960’s and translated by the USDA at
Auburn, AL. Hendrick and Gill (1973) tried to analyze the Russian work. The existence of
operating velocities above which the energy required to cut soil would decrease was
suggested. The main aspects of some of these papers are summarized in the following.

Katsygin (1961, 1964) noted that with an increase in operating speed, an additional
“dynamic” resistance originates and the expenditure of energy is increased. A
concentration of energy will increase in the soil media so that both stresses and soil
crushing will increase. Since soil deformation requires some time to manifest, a reduction
of the deformed zone in front of the tool and increases in stress would occur. Therefore,

draft and crumbling of the soil slice would increase.



40 -

nE Water
S~
'E content
T 307 (%)
A
2 ]
£ ! —--—218
S 20- — 115
= i
= ———16.3
St !
@ :
S S N R 20.8
g 10
h i
3 |
= |
- |

0.

0 2 4 6 8

Loading speed (m/s)

Figure 2.7 Failure energy per unit volume for a silty loam soil submitted to

dynamic triaxial tests (after Niyamapa and Salokhe 1992).



Azyamova (1963) reported that for operating speeds greater than 2.8 to 3.3 m/s
the linear nature of shear stress vs. speed ceases, and an intense increase in shear or
normal stress occurs. This was explained by the excessive concentration of energy in front
of the narrow tool (which cannot distribute to the soil uniformly in short intervals of time).

Vetrov and Stanevski (1969) conducted studies with simple inclined blades, 50 mm
wide, at cutting speeds between 0 and 10 mV/s (details not reported). Although the main
study was concerned with draft, energy requirements were obtained from this study too. It
was concluded that increase in draft is less rapid at speeds below a speed of plastic soil
deformation, which they termed the ‘critical speed’. At speeds of cutting greater than
critical, the narrow tool is subjected all the time to undisturbed soil so that the character of
soil disturbance is changed. It was reported that the force for cutting soil with the narrow
tool increases proportionally to the speed of cutting, while above the critical speed it

doubles in comparison with the draft measured at a very low speed.

2.2.4 Soil disturbance

One objective of tillage is to break down soil structure. Tillage tools disturb and
pulverize soil particles. The extent of soil disturbance and pulverization depends on soil
properties and amount of energy input to the soil.
2.2.4.1 Disturbed area

Soil disturbance can be evaluated by measuring the soil cross-sectional area
affected by the tool pass. Disturbed area can be measured using roughness meters. Soil

roughness meters are able to measure soil disturbance and geometry of the seeding



furrow. They generally consist of a number of long pins with small cross sections. The use
of roughness meters is a reliable and inexpensive technique. The only requirement is that
the needle spacing be small enough to record abrupt surface variations. Specific draft,
which is the draft per disturbed area ratio, may also be evaluated. This ratio has the same
value as the ratio energy per volume of soil. It is an important parameter in the design of
soil tools.

Tessier et al. (1989) measured soil disturbance produced by soil openers using
roughness meters. No method has been adopted, in standard form, to quantify the soil
disturbance. Visual observation and comparison of disturbed areas among different soil
tools also have been used. Reported results in the field indicated hoe type furrow openers
disturbed more than twice the soil surface disturbed by disc type openers. Effects of
operating speed were not reported in this study.

McKyes and Desir (1984) measured disturbed soil areas of narrow tools on
different soil conditions at speeds of 1.4 m/s. Failure area was calculated by means of
passive earth pressure and it was assumed that the shape of the soil failure wedges was
determined by soil weight and strength. Predicted and measured disturbed areas indicated
reasonable agreement.

Tessier et al. (1989) and Darmora and Pandey (1995) used an index, R; , to
quantify soil disturbance:

0.5
T H?2
R, =| =1

1 n'-1

(2.2)

where:



H, = residual highs measured from the trace of furrow profile (mm),

i

n' = number of measurements.
Low values of R, indicate low soil disturbance.

In tests with simple cultivation implements (speeds up to 2.7 m/s), Payne (1956)
could not note any difference on the area of soil disturbed for various speeds. It was
noted, however, that soil adjacent to the tine seemed to be more disrupted at higher
speeds.

In the tests of Vetrov and Stanevski (1969) with simple blades, tests with different
speeds (up to 10 m/s) produced little change in the shape of the soil cut. The soil cross

section remained trapezoidal, and the relative dimensions were approximately constant.

2.2.4.2 Quality of tillage

Level of soil pulverization can be quantified by determining the change in surface
area of the soil particles. Alternatively, relative loosening of soil can also be used to
quantify the quality of tillage. The quality of work inside the disturbed area can be
evaluated through the determination of particle surface per volume of soil; in the case of
relative loosening of soil, by measuring soil densities before and after the process of cut.
These parameters, indicate the energy effectively transferred to the soil.

Gill and Vanden Berg (1968) observed that soil break up is important for plant
growth. A fine clod structure and a slight compaction is desirable to provide good contact

between soil and seed and give conditions for germination (Sitkei 1985). However,



describing the amount of soil breakup does not directly describe plant’s growth needs. It is
still useful to evaluate performance of tools and compare soil conditions.

The amount of soil breakup can be determined by sieving and classifying soil
particles. Mean weight diameter (MWD) is an index used to quantify the effects of soil
pulverization. A soil sample is passed through different sieve meshes and retained fractions
weighed. Soil mean diameter is computed according to cumulative mass contribution of
clods retained in each diameter range. The resultant mean diameter is called the mean
weight diameter (Gill and Vanden Berg 1968). Mean weight diameter can be used to
compare soil structures before and after a tiliage operation. However, there are many
initial soil conditions in which the soil cannot be separated and sieved. The soil may be a
continuous mass more like one clod soil block. In these cases only final soil conditions are
classified and compared. This method has been useful to quantify impact effects on soil
structures processed by rotary tillers.

Table 2.1 presents the effect of speed on the amount of soil breakup produced by a
chisel tool. It shows that as the speed of operation increased, the average size of clods
decreased. Therefore, the amount of soil breakup increased with speed.

Another index which has been used in mining excavations, the swelling factor, can
also be used to help quantify the quality of work (McKyes 1985). Swelling factor indicates

soil expansion based on soil densities prior to and after soil work, and is defined as:

\Ys -
SF= (-—f— 1)100% =Y~ 100% (2.3)
Vi Ye

where:



Table 2.1 Size of clods produced by chisel tool in relation to operating speed (Gill

and Vanden Berg 1968).
Soil type Tillage tool speed Clods greater than 19.2 mm in diameter
(m/s) (%)
Silty clay loam 0.8 31.7
1.1 30.8
1.4 28.2
Silt loam 1.4 8.3
1.7 5.8
1.9 53

Yo

Ye

= soil volume after cut (m’),

= soil volume before cut (m’),

= unit density before cut (N / m’),
= unit density after cut (N / m’).

Even in cases where soil has a structure of one clod, density can still be measured

before tillage and the soil loosening quantified. Changes in soil density mainly depend

upon initial soil density, water content and tillage tool geometry. Soil water content and

tool speeds are two of the factors that affect soil loosening.

Narrow tools pulverize more soil than wide ones; however, they require more

energy per volume to cut soil. The increase in energy does not increase soil breakup

proportionally (McKyes 1985). For environmental purposes, soil structure and bulk

densities are two important factors that would be, in some cases, even more important

than the energy spent in tillage machinery.
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Sitkei (1985) investigated soil clod breakup for seedbed preparation purposes.
Under dry conditions, difficulties arise in breaking clods down to desirable levels. Several
implement passes and high energy may be required to reach this aim. There was a lack of
clod support to allow energy transfer from the tool. Impact duration was studied. Test
results indicated that there was a critical tool velocity for clod breakage. Experiments in a
soil bin showed that clay loam clods tended to be broken only when tine tool velocity was
higher than the critical velocity. Therefore, soil pulverization would increase above this
critical tool velocity. Maximum tool velocity was 5.5 m/s. From experimental tests with
velocities from 3.1 to 3.6 m/s, breakable clod weights decreased only slightly. Second
passes were less efficient in breaking clods.

Other methods are being developed to evaluate soil structures. Stafford and
Ambler (1990) analyzed black and white pictures of soil on a moving camera mounted to
the rear of a seedbed cultivator. An image analysis processing unit was required. Zuo et al.
(1995) used fiber optics sensors on the go, to correlate the analog electrical signal from
the sensor to soil structure. Both of these studies reported some success, but indicated

that further research is needed to develop these methods.

2.3 General Theory of Material Behaviour

Truesdell and Noll (1965) tried to unify all theories of material behaviour in
continuum mechanics. Earlier attempts at the beginning of this century were not successful
(Eringen 1962). The main open problem of continuum mechanics, as described by
Truesdell and Noll (1965) still persists; that is, to formulate a general theory of material

behaviour for all classes of materials. As suggested in their treatise, a unified theory might



be only possible after a formulation of a unified theory of mechanics, thermodynamics and
electromagnetism.

Modern continuum mechanics had a great expansion in the late 1950’s and 1960’s
(Malvern 1969). The modem continuum mechanics are in essence theories of theories,
establishing possible forms that individual theories can take. Continuum mechanics had
traditionally been studied in separate branches. Now, there is a unified treatment of the
general principles and constitutive theory. The theory is divided in three parts: 1) general
principles applicable to all materials, 2) constitutive equations which define particular
idealized materials, and 3) specialized theories built on the foundations of general
principles and equations, applicable to specific problems (Malvern 1969).

General principles are presented in the book by Malvern (1969). The most
substantial improvement came from the formulation of very general principles, restricting
different forms of constitutive equations. Both nonlinear constitutive equations and some
widely used linear theories were affected by the new theoretical considerations. Two
Encyclopedia of Physics treatises “The classical field theories” by Truesdell and Toupin
(1960) and “The non-linear field theories of mechanics” by Truesdell and Noll (1965)
presented extensive literature reviews, with references extending back to the 17" century.

The general principles, combined with constitutive equations, can for example be
used to formulate a complete theory of linearized elasticity. The nonlinear theory of
elasticity is so mathematically complex, that severe restrictions such as infinitesimal

displacements and velocities were introduced to linearize the theory (Fung 1977). The



basic equations are as follows, representing field equations of linearized isotropic elasticity
in material coordinates (Malvern 1969).

The three equations of motion, six equations of Hook’s law, and six geometric
equations from definition of strain in the material coordinates, respectively, are

represented by the following well known equations:

oG d’u

—2 +pb. = i 2.4

ox, TPO =P o’ (24)

o; = Ag, 8, +2Gg; (2.5)
I aui auj

&y 'E[aT,.J'aTiJ (2.6)

where b denotes the body force per unit mass [F-M''] and p denotes the mass per unit

volume [M-L>]. The Lame constants are denoted by A [F-L?] and G [F-L?). The u, are
displacements [L], x; are particle coordinates [L], € strains [L/L], G, are stresses [F-L7]

and & is the Kronecker delta.

Based on Truesdell and Noll’s work, Haupt (1993) presented a comprehensive
review of the mathematical modeling of material behaviour in continuum mechanics. The
objective of the theory of material behaviour is the mathematical modeling to represent
material properties. Classical theories of continuum mechanics (Haupt 1993) include:
linear elasticity; hydrodynamics; Fuler and Navier Stokes equations; linear viscoelasticity;
Boltzmann’s principle of superposition; classical theory of plasticity; and the theory of

material behaviour.



Constitutive equations form a distinct mark of a particular theory. The classical
theories can be understood as asymptotic approximations of one far more general
constitutive model. To solve initial boundary value problems, the universal balance
equation of continuum mechanics must be completed by convenient assumptions about
individual material behaviour. Material properties relations might be represented by stress-
strain relations, material symmetry, and kinematics constraints. In continuum mechanics a
constitutive equation is a relation between state variables; for example, strain and stress
tensors. Figure 2.8 summarizes four different classes of the whole variety of material
behaviour. This behaviour can be recognized from experiments. The behaviour can be
rate-dependent or rate-independent, with hysteresis or without. These four different
categories of material behaviour motivated four classes of mathematical models, namely,
elasticity, plasticity, viscoelasticity and viscoplasticity.

These classes will be explained in sequence and only cases with potential
applications to the present problem will be referred to here. For instance, hyperelasticity

will not be mentioned in the elastic case, only hypoelasticity.

2.3.1 Hypoelasticity

Elasticity is a theory that models rate independent material behaviour without
hysteresis. A new class of elasticity is hypoelasticity. This theory was first introduced by
Truesdell (1955). Hypoelasticity theory has been presented by Eringen (1962), Gudehus
(1977b), and Chen and Saleb (1982). The term “hypo” means elastic in a lower sense or in

an incremental sense (Chen 1984). It is intended to explain the behaviour of materials with
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Classes of material behaviour (after Haupt 1993).
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short memory (Eringen 1962). Hypoelasticity is also powerful because it is formulated in
the incremental form, which provides advantages for computational implementation.
Incremental constitutive models are intended to represent a class of behaviour where the
state of stress depends on the current state of strain and on the stress path as well (Chen
and Saleb 1982).

Two types of constitutive equations could be classified as hypoelastic materials:
(1) the hyperbolic Duncan and Chang (1970) is a simplified form of hypoelastic model;
and, (2) the variable moduli, which separates hydrostatic and deviatoric stresses,
constitutes a more advanced model. These two constitutive relationships introduce an
additional (strain) rate relationship to the original rate-independent elasticity theory.
Hypoelasticity is path dependent and can also model plastic behaviour in a smooth
manner. The mechanical state of the material, however, is independent of the rate of
deformation (Antmam 1995). Although hypoelasticity theory is formulated in incremental
form in a rate type relationship, the final equations are strain rate and time independent.

A general form of constitutive law can be represented as:

f(c,6,8,€)=0 2.7
where:
c = stress (F-L™),
G = stress rate (F-L 2T,
€ = strain (L-L™"),
g = strain rate (L/L-T™).
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The incremental stress and strain tensors are linearly related through variable
material response moduli, which are functions of stress and strain states; for instance:

6 =Ci(Opmy )Ey (2.8)

The material response function, C,, describes instantaneous behaviour directly in
terms of time rates of G, (i.e., 6;;). The incremental stress-strain relationship is adequate

for mathematical representation of materials with limited memory. Integration of equation
2.8 shows the stress dependence of the model:

de,,
ot’

o, = J:Cijkl (C..) dt’ + o} 2.9

where 0’3 denotes initial stress and 1T° denotes instantaneous time (s). When C, (0 ) is

ij

=0, material

a constant, the model degenerates to hyperelasticity. When det|Cijkl (O )

instability or failure occurs. A drawback mentioned by Chen and Baladi (1985) is that
when tangential modulus of elasticity and Poisson’s ratio, E; and v, are used, the
behaviour near failure cannot be adequately described.

Equation 2.7 represents a form homogeneous in time. Therefore, time could be
removed from the equation. The rate then would simply be an incremental value. An
anisotropic material will be represented by the general relationship:

6; = f;(0y.Ey) (2.10)
If all terms have the same dimension in time, then the incremental equation holds:

6ij = Cijki€u (2.11)

For an isotropic hypoelastic material the general equation is expressed as:
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where the o;; are response coefficients.

The hypoelastic models are quite general and the theory of incremental elasticity
can be considered a special case (Desai and Siriwardane 1984). The great advantage of
hypoelasticity in relation to plasticity is that hypoelasticity is smooth during all paths,
unlike classical plasticity that requires a defined yielding. Moreover, when equation 2.12 is
assumed independent of stress, a grade zero hypoelastic model is obtained which
represents exactly the generalized Hook’s law in incremental form (with only two
independent constants). When the equations on the right hand side are assumed linear
functions of stress then it is called a grade one hypoelastic material and seven parameters
are required. Model parameters are usually determined by curve fitting data from

laboratory tests. Grade two hypoelasticity requires eighteen parameters.

2.3.2 Viscoelasticity

The theory of viscoelasticity models rate-dependent material behaviour without
equilibrium hysteresis. A general theory of viscoelasticity was formulated by Coleman and
Noll (1961). Due to the complexity of the general theory of viscoelasticity it is not

considered here. The classical linear theory of viscoelasticity was first introduced by L.
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Boltzmann in 1874 (Coleman and Noll 1961). A good review of viscoelasticity is
presented by Lee (1962). The basic assumption of the linear theory of viscoelasticity is a
constitutive equation relating stress tensor at time t, T(t), to the history of the infinitesimal

strain tensor E(t—s’), 0<s” <oo. If E(t—s’) is small in magnitude for all s”, then:

T =Q{EM}+ PO {EMD}+ [ dsH{E(t-s1}ds’ (2.13)
where:
(s ) =326, 2.14)
ds
lim ®(s')=0. 2.15)
§'—oo0

The stress relaxation function, @, is a function of time. For an isotropic material

®(t) is completely determined by two scalar-valued functions of time; the stress relaxation
functions for shear and dilatation. The &(s’){}(for each s") andQ{}are linear

transformations of the space of symmetric tensors in itself. The parameter € characterizes
the “linear equilibrium stress-strain law” of infinitesimal elasticity and is determined from
the two Lame’s constants for an isotropic solid. The classic linear theory (equations 2.13
to 2.15) refer to infinitesimal viscoelasticity because they are applicable only for small
strains.

The theory of infinitesimal viscoelasticity is justified on the assumption that at the
microscopic level, matter can be regarded as composed of linear viscous elements (*“dash-
pots”) and linear elastic elements (“springs™) connected together in an intricate network.
The material to which the theories are applied are not really composed of microscopic

springs and dash-pots, this is simply a mathematical idealization of material behaviour.



Since any function can be represented by piecewise linear functions over small
neighborhoods, for small deformations the stress can be expressed by a linear function of
the deformation history, as expressed by equations 2.13-2.15 (Coleman and Noll 1961).
Oida (1984) presents an example of an infinitesimal viscoelastic application - a two
dimensional finite element analysis of soil modeled as linear time dependent viscoelastic
material. A sinkage analysis of a wheel on a sandy loam soil was satisfactorily calculated
based on viscoelastic soil properties in the infinitesimal analysis. A rheological three-
element solid model (two dimensional) was used for the soil constitutive relationship. To
obtain viscoelastic soil parameters, relaxation curves were used from soil compression

tests. Volumetric strain of soil was not predicted.

2.3.3 Viscoplasticity

Every material shows more or less pronounced viscous properties. It can be said
that these effects are even more intensified when materials reach a plastic state.
Viscoplasticity simultaneously describes rheology and plastic effects. Rheology is
concerned with deformation of materials. The viscous properties of materials introduce a
time dependence of the state of the stress and strain. The plasticity properties make these
states of stress dependent on loading path. Thus, we obtain a dependence on load history
and time state. Figure 2.9 exemplifies dynamic stress-strain curves for work hardening and

stress sensitive material (Perzina 1966).
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stress-sensitive materials (top) (Perzina 1966).
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The most general constitutive model of material behaviour is the viscoplastic one.
This model represents rate dependent material behaviour including equilibrium hysteresis.
The classical rate independent plasticity is a limiting case of classical viscoplasticity. In
viscoplasticity, when the viscosity terms reduce to zero, the strain rate becomes infinite,
reducing the theory to the theory of plasticity (Lubliner 1990).

Viscoplasticity formulation for small strains is widely accepted in the literature.
The following presentation is similar to that given in Baladi and Rohani (1984), and in
Perzina (1966) as cited by Desai and Zhang (1987).

The total strain is decomposed in elastic and plastic parts:

g; =¢&; +€f (2.16)

where the total strain rate €; can also be resolved into elastic and inelastic parts (Perzina

1966):
g, =& +ED 2.17)
where:
&; = elastic strain rate (L/L-T™),
;7 = viscoplastic strain rate (L/L-T™).

The term €7 combines viscous and plastic effects. The viscoplastic material model does

not include viscous properties in the elastic region, simplifying the choice of yield criteria.
The initial static yield criterion does not differ from the known inviscid theory of plasticity.

An elastic relation is used in the elastic range.

€ =Ci(00)0y (2.18)



where:

C,a =material response function (F'-L?),
Gy = components of stress rate tensor (F-L'Z-T"),
O, = components of stress tensor (F-L?).

The essential difference between viscoplasticity and the model of rate-independent
plasticity is the flow rule. The inelastic strain rate depends on the ‘distance’ of the
instantaneous yield surface from the static yield surface. Inside the static yield surface only
purely elastic response occurs. The flow rule for a work-hardening and rate-sensitive

plastic material may be written as:

fs \ of
2P =y g(=2) ) —- 2.19
. Y<g( B )> 30, (2.19)

where:

f 3
<g(—§-)>= g(%s) for f;>0

B
L
=10 for £5<0
fs(0;,h)=0 = static yield surface (F-L™),
v = viscosity (T™'),
h = hardening parameter (F-L?),
B = scaling factor, (F-L?).
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The static yield surface f; =0 may expand or contract as h increases or decreases.

respectively (Figure 2.10). For very low rates of deformation equation 2.19 reduces to the
relation for inviscid plasticity.

Baladi and Rohani’s (1984) model gives reasonable predictions of dynamic
behaviour. The main drawback is the large number of parameters needed, i.e., sixteen.
Figure 2.11 shows typical dynamic responses on triaxial tests for stress-strain responses
and failure envelopes. The figure illustrates the growth of the failure envelope as the
“strength of the material increases with increasing rate of deformation™.

Viscoplastic problems have also been treated by Zienkiewicz (1977). An
assumption of no viscoelastic strain in the elastic range is usually used to simplify the

problem.

2.4 Models of Soil Cutting

2.4.1 Rate-independent models

2.4.1.1 Passive earth pressure theory

Classical theories of soil cutting have assumed soil behaviour to be independent of
strain rates. Changes in soil strength are not substantial in the low range of tillage
operating speeds. Models to predict soil-tool interactions began to appear in literature in
the 1960’s (e.g., Hettiaratchi and Reece 1967; Godwin and Spoor 1977; McKyes and Ali
1977; Perumpral et al. 1983). Terzaghi’s (1943) theory of passive earth pressure was used
for the prediction of the failure zone ahead of the tool, and soil forces were obtained from

slip-line theory. In these models, soil was assumed to behave as a rigid-plastic material so
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Figure 2.11 Typical stress-strain curves and failure envelopes for different strain
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1984).
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that failure is immediately reached upon load application. The validity of these models has
been generally proved by comparisons between theoretical experiments results (Grisso and
Perumpral 1985). The models are simple and fast to use, but their application is limited to
fairly simple tool geometries. Furthermore, analysis is limited to soil loads, and shear
behaviour of soil just prior to and failure is not dealt with (Hettiarachi and O’Callaghan
1980).

Studies using the theory of passive earth pressure have also provided basic
knowledge of soil cutting by narrow tools. It has been analytically formulated and
experimentally demonstrated that a narrow tool disturbs a wider soil zone than that
defined by its width. A model for side effects of a narrow tool and a centre wedge which is
formed in front of the tool was presented by Payne (1956). Soil angle of internal friction

and geometrical parameters greatly influenced the size of the wedge crescents.

2.4.1.2 Nonlinear elastic and elastoplastic models

Since the early 1970’s, the application of finite element methods to solve material
behaviour models based upon continuum mechanics have become increasingly popular,
mainly due to increasing power and availability of computers. The introduction of finite
element methods made it possible to model complex tool shapes in comparison with
passive earth pressure models; however, accurate results are strongly dependent on the
use of an appropriate soil constitutive relationship. Two categories of soil constitutive
relationships, non-linear elastic and elastoplastic, have found widespread application in soil

mechanics (Chi et al. 1993c; Wang and Gee-Clough 1993).
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In the nonlinear-elastic constitutive models, the behaviour of a nonlinear material is
considered as piecewise linear elastic behaviour. These models work well for simple
loading and unloading situations, but not for more generalized stress paths. Hooke’s law
in incremental form is usually employed. Parameters of the material, K (bulk modulus) and
G (shear modulus), or E (Young’s modulus) and v (Poisson’s ratio) are revised at every
increment along its stress-strain curve. Thus, nonlinear models are approximated by quasi-
linear models with nonlinear effects included in two basic material parameters.

Yong and Hanna (1977) were the first to apply finite element analysis to simulate
two dimensional soil cutting (Gee-Clough et al. 1994). A wide blade was used for cutting
a clay soil. Experiments were performed at blade speeds of 0.4 mm/s. They used an
incremental loading procedure, with interpolations on the stress-strain curve and a
hyperbolic type stress-strain relationship. Nodal coordinates were updated at the end of
every increment to accommodate large deformations. Strain rate components were
obtained by dividing incremental strains by the time increment.

Gee-Clough et al. (1994) used a finite element method to simulate cutting of wet
soil. Wide blades with rake angles of 25° to 125° were used in a nearly purely cohesive
Bangkok clay soil. The hyperbolic relationship was used to model soil behaviour. A good
agreement between predicted and experimental forces was reported. The incremental
method was adopted with material and geometrical nonlinearities, simultaneously solved in
the same load increment. Deformations from 48 mm to 60 mm were imposed on the soil

to reach failure.
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A nonlinear elastoplastic soil model was proposed by Duncan and Chang (1970).
The Mohr-Coulomb failure criteria was adopted as the failure criterion. The Duncan and
Chang (1970) model was based on studies conducted by Kondner and coworkers
(Upadhyaya 1994). Kondner (1963) proposed the following hyperbolic stress-strain

relationship for soils.

(G'_03)=a+be (2.20)
where:
o2} = major principal stress (kPa),
O3 = minor principal stress (kPa),
£ = axial strain in G, direction,
a,b  =soil parameters determined from triaxial tests (kPa™).

Figure 2.12 shows the determination of parameters ‘a’ and ‘b’ from a stress-strain

plot, where:

a= 1 (2.21)
E, '

|

b=—— (2.22)
(6, =0 )uw

E, = initial tangent modulus (kPa),

(6, -0,),, = ultimate deviatoric stress (kPa).

The initial tangent modulus is expressed as:

ﬁ) " (2.23)

a

Ei = Kpa(
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(after Duncan and Chang 1970).



where:

P2 = atmospheric pressure (kPa),
K = modulus number,
n = exponent.

The ultimate compressive strength of the soil is usually higher than the deviatoric

stress at failure by a small amount. A failure ratio R can be defined as:

R, = 2=95)e (2:24)
(0,~03)u
where:
(6,-0,);, = deviatoric stress at failure (kPa).
An expression for the tangent modulus E, was obtained as follows (Duncan and
Chang 1970):
E, =[1_ R, (1—sin¢)(o, -—GJ)TKP,(giJn 225
2ccosd+20,sind P.
where:
E, = tangent modulus for any stress condition (kPa).

The hyperbolic model provides a mathematical form to relate stress and strain
through the use of a variable Young’s modulus (and Poisson’s ratio). Five parameters K,
n, ¢, ¢, and R are used to determine the instantaneous value of soil Young’s modulus of
elasticity according to the current element stress state. These parameters are normally

obtained from conventional triaxial tests.
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Chi (1989) and Chi and Kushwaha (1990) used the Duncan and Chang (1970)
hyperbolic stress-strain model to analyze soil failure of narrow tillage tools. A non-linear,
three dimensional, finite element program was written in FORTRAN to calculate soil
forces and predict zones of soil failure. Tetrahedral constant strain elements were adopted
because of their simplicity. The program analysis routine included the total load divided
into small tool displacement increments. The Poisson’s ratio was maintained constant
during the analysis. The tangent modulus was recalculated for every displacement
increment. Nodal coordinates (updated Lagrangian) were also updated after the end of
each displacement increment. Tool loading continued to be applied, up to when the force
reaction on the tool began to stay constant. Most soil in front of the tool had failed at this
point. Results of the finite element model for a flat tool at different rake angles compared
to soil bin data showed reasonably good agreement. For a triangular blade with 60° rake
angle, a remarkable decrease in draft with displacement occurred after failure.

Subsequently, Chi et al. (1993a, 1993b) modified the Duncan and Chang (1970)
model by assuming a variable Poisson’s ratio for the compressive loading process before
soil failure. After failure, a constant Poisson’s ratio close to 0.5 was assumed. Eight node
rectangular brick elements were used in the analysis. The modification produced a better
prediction of volumetric strain. The modified expression for Poisson’s ratio assumed a
linear relationship with the ratio of the actual deviatoric stress and deviatoric stress at
failure:

c, -0,

v=a,+b,
(0, -0;)¢

(2.26)

where:



\Y = Poisson’s ratio,
a,,b, =dimensionless parameters.
Note that equation 2.26 can also be expressed as a function of mobilized stress strength Sp,
of the soil:
v=a,+bS_ (2.27)

The Mohr-Coulomb failure criterion is written as:

T, =c+0 tan¢ (2.28)
where:
T, = soil shear strength (kPa),
o, = normal stress (kPa),
c = cohesion of the soil (kPa),
¢ = angle of internal friction of the soil (deg).

By substitution of the Mohr-Coulomb failure criterion in equation 2.26, the
following equation is obtained:

(1-sin¢)(c, —0,)
‘ 2ccosd +20,sind

v=a,+b (2.29)

Chi et al. (1993c) studied the behaviour of undisturbed samples of clay and a
gravely-clay loam soil under laboratory conditions. Two nonlinear elastic and two
elastoplastic soil models were evaluated, namely: a) Duncan and Chang (1970) with
variable Poisson’s ratio (Chi et al. 1993a, 1993b); b) Bayley et al.’s (1984) hyperbolic
model; ¢) Cam Clay model (Roscoe et al. 1958; Schofield and Wroth 1968); and, d) Cap

model (Drucker et al. 1955). The hyperbolic model, which incorporated variable Poisson’s
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ratio, best reproduced test data on triaxial and hydrostatic tests. The comparisons were
done only on simple stress paths in the laboratory. These models need to be verified under
field conditions.

Including a variable Poisson’s ratio requires two additional parameters, a, and b,,
and considering unloading and reloading requires an additional two parameters, K and n.
for a total of ten soil parameters. On the other hand, the elastoplastic models perform
reasonably well with only six parameters (Chi et al. 1993c). Thus, there is a trade off
between accuracy and complexity of model when chosen a constitutive model.

The Cam clay model (a simple critical-state model with a single yield surface) is
one of the simplest elastoplastic models available. Roscoe et al. (1958) and Schofield and
Roth (1968) pioneered this work on saturated clays at the University of Cambridge.
Wroth and Houlsby (1980) further modified the relationships of the consolidation and
swelling lines in terms of specific volume and mean normal pressure. Kirby (1989)
measured critical-state lines and yield surfaces for sampled unsaturated field soils.
Although, some significant differences in relation to saturated soil behaviour occur, it is
possible to use the model for unsaturated soils. The Cam clay model has attracted much
attention because of its efficiency. Only five soil parameters, which all have well defined
physical meanings, are necessary to describe elastic and plastic soil deformation (Chi et al.
1993c). A generalized constitutive relationship for this model is described in Desai and
Siriwardane (1984).

Critical-state theory relates the states of stress of a soil to its specific volume.

Based on soil triaxial tests, hydrostatic and deviatoric stresses can be measured for various
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specimens with different specific volumes. Historically, variable names p and q have been
used to denote hydrostatic and deviatoric stresses, respectively. State surfaces and a
critical-state line are defined. Soil behaviour is elastic for stress states within the state
surface. When stresses increase and reach state surfaces soil hardening or softening
occurs, as in classical plasticity theory. When the critical-state line is reached, soil flows
with no volume change.

Utilization of this model has been extended by agricultural engineers to tillage and
traction of unsaturated soils. Mechanical behaviour of wide and narrow tools has been
analyzed in the context of the critical-state soil mechanics. (Hettiarachi and O’Callaghan
1980; Hettiarachi 1987 Mojlaj et al. 1992; Wulfsohn 1994). Some criticism of the theory
has also been made. Laboratory tests are excessively time consuming. Hettiarachi and
O’Callaghan (1980), point out the major obstacle to critical state implementation is the
lack of knowledge of the relationship between stress components in all but the simplest
soil-implement relations. This is a general concern and applies not just for critical state
models. However, such limitations can be overcome by implementing the method in finite
element formulations (Wulfsohn 1994). Britto and Gunn (1987) implemented the finite
element formulation for saturated soils in FORTRAN computer code; which led to the
development of a commercially available code, CRISP-90. Practical implementation of
critical-state theory in agricultural soils requires development of simple techniques to
measure critical-state parameters in situ (Wulfsohn 1994). This is an objective for all

constitutive models.
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An elastoplastic hardening cap model was used in the investigation of a subsoiler
using three-dimensional finite element analysis by Araya and Gao (1995). Two types of
subsoilers with various rake angles were investigated: a soil breaker subsoiler type aimed
to produce maximum soil disturbance, and an injector type intended to produce minimum
soil disturbance. The experimental study was conducted in a mobile soil bin. Analysis was
conducted with a commercial finite element program. ADINA.. One subroutine program
was written to solve the approximate equations representing the problem. When soil is in

elastic state, stress-strain relationship is given by:

do; = Ade;d; +2Gdg; (2.30)
A= 2Gv
[-2v
where:
C;; = stress tensor (kPa),
€; = strain tensor (m/m),
i = Kronecker’s delta,
G = modulus of rigidity (kPa).

When the material reaches plastic state, the strain tensor consists of elastic and

plastic incremental strain components:

de; =dej +de} 2.31)
where:
€; = strain tensor,
e = elastic superscript,
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o) = plastic superscript.

The plastic strain tensor is expressed by Drucker-Prager strain-hardening law:

de? =1, aan (2.32)

i

Yield criterion is determined by:

f=o' I, +J':’2 -K, (2.33)
where:
c = compressive stress (kPa),
f = Yield function (kPa),
o = material parameter,
K, = material parameter (kPa),
I = first stress invariant (kPa),
J» = second deviatoric stress invariant (kPa).

Results indicated good agreement between experimental and predicted forward
soil rupture distances. However, predicted sideways soil rupture distances were larger
than experimental measurements, and predicted upward soil movements were smaller than
experimental measurements. Draft requirements from finite element predictions differed
from soil bin tests. For the pan breaker, predicted draft was 1.6 times the experimental
value. However, it was pointed out that degree of compaction in the soil bin was not the
same as that for the soil of the triaxial tests.

Desai and co-workers have presented a remarkable analysis and guidelines for the

solution of the general nonlinear three dimensional soil-structure interaction using a finite
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element method (Desai and Phan 1980; Desai et al. 1981; Desai et al. 1982). The analysis
also included a narrow tool pushed into the soil with analytical and experimental
comparisons. The formulation presented allowed consistent definitions of stress, stress
rate and constitutive laws in the incremental analysis and used Lagrangian and Eulerian
approaches for geometrical nonlinearities. The soil element formulations incorporated
various constitutive laws for geologic materials. Six different constitutive laws based on
Von Mises, Mohr-Coulomb, Drucker-Prager, critical state, capp and viscoplastic criteria
were incorporated in the computer code. Laboratory tests were developed to obtain model
parameters. Cap models were found to be the most suitable to model soil behaviour
among the studied models, based on laboratory data (Desai et al. 1981).

In agricultural applications, soil deformations are usually large. Two principal
nonlinearities are involved in numerical soil-tool modeling. First is the material
nonlinearity, which is related to soil behaviour, and second is the geometric nonlinearity
which is caused by large displacements. An incremental numerical procedure is often used
to solve soil-tool interaction with updated Lagrange. To deal with geometric and material
nonlinearities within each load step and iteration, (Desai and Phan 1980) suggested use of
the original Newton-Raphson method rather than the modified Newton-Raphson method
(constant initial stiffness matrix within load steps) for convenience and to save
computation time.

Liu and Hou (1985) reported the analysis of a continuous cutting of soil by narrow
blades. The three-dimensional nonlinear finite element method used incorporated large

displacements and a new elastoplastic mechanical model. The yield function was modeled



as a series of ellipses and the hardening function required six coefficients which had to be
experimentally determined. A satisfactory agreement of results with soil bin test data was

also reported.

2.4.2 Rate-dependent models

When a wider range of tillage operating speeds is to be investigated, changes in
soil strength with strain rate cannot be neglected.

Swick and Perumpral (1988) modified the Perumpral et al. (1983) quasi-static
model to incorporate dynamic effects. Model formulation included soil shear rate effects,
soil inertial forces and soil-metal friction parameters. Based on earlier results they
reported that soil shear strength and soil-metal friction increased with increasing shear
rates. The dynamic model formulation gave reasonable predictions for the narrow tools
tested (Swick and Perumpral 1988). Shear rates for both soil strength and soil-metal
friction tests were obtained using a shear box at different displacement rates in the range
of 0.08-21.2 mm/s. Maximum tested tool speed reached 1.2 m/s. Results indicated,
however, that acceleration forces accounted for a large portion of the increase in tool
force, contradicting the findings of others (e.g., Rowe and Barnes 1961; Siemens 1965;
Wismer and Luth 1972).

McKyes (1985) proposed a dynamic model which included an inertial component
in its formulation. The inertial forces involved in continuously accelerating new masses of
soil as the tool travels are the most important mechanisms in frictional soils when

operating speeds increase. Similarly, the strain rate dependent components are the most
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important mechanisms for cohesive soils. Inertial forces were incorporated in the wedge
analysis of a soil cutting. The model resulted in reasonable predictions when compared
with respect to the experimental draft of flat tools cutting sand reported by Luth and
Wismer (1971) and the maximum verified speed was about 3 m/s. Predictions presented
approximately 25% error with respect to the measured draft at a speed of 2.5 m/s.

Chi (1989) suggested a mathematical model to include dynamic effects in the
original formulation of the nonlinear elastic model. Inertial components were added in the

general equation of equilibrium of the soil as:

g—:‘jl —f, =p a;:;* (2.34)
where:
f, = body force vector (kN/m?),
u, = displacement vector of soil element (m),
P = soil density (kg/m’),
t = time (S),
X, = particle coordinates (m).

For an incremental procedure the acceleration force term can be written as follows:

o’u o (9du o Au
a?*&(“a?)-a(z) (2.33)

where:

Au = vector of displacement increment (m).
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For solution of the dynamic equations in time a Newmark integration method
(Newmark 1959) can be adopted. Bathe (1982) presented the procedure to solve dynamic
cases.

Zeng and Yao (1992) developed a soil cutting model to predict forces on wide and
narrow tools. The model incorporated shear rate effects on soil shear strength, soil-metal
friction and soil inertial effects. Comparison between prediction and experimental values
indicated that results were acceptable. Some important features of this model were as
follows: a) soil-metal friction and shear strength were not affected by shear rate; b) the
model is not applicable for soils that flow plastically; rather, a limiting stress condition of
Coulomb material is assumed at failure; c) shear rates were incorporated as:

Int=C,+C,Iny+C;In(i+C,c (2.36)
1 3 4~ n

where:

C,,C>,C3,C: = soil parameters,

T = shear stress (kPa),
Y = shear rate (s),

o = normal stress pressure (kPa).

n

and, d) soil-metal effects of shear rates were incorporated by the following normalized

equation:

£, =C’+A'ln(1+i)+0'ntan¢a (2.37)

Vo

where:

C’, A’, ¢, =soil-metal parameters,
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Vo = initial set sliding speed (m/s),
v = current speed of soil along soil-tool interface (m/s),

f = soil-metal shear (kPa).

Davis and Mullenger (1978) proposed a theoretical rate-type constitutive
relationship for the critical state soil mechanics, opening the possibility of incorporation of
dynamic effects in critical-state models. However, theoretical aspects and a fast and
practical determination of soil parameters remain to be solved.

Xie and Zhang (1985) investigated a soil-tool dynamic system using an
elastoplastic cap model with incorporated strain rate effects. The model was implemented
in a three-dimensional finite element program. A true triaxial test device and a dynamic
shear device were used to obtain soil parameters. An updated Lagrangian approach was
used to deal with large deformations. Predictions seemed to follow experimental data
quite well. Maximum speed range was 1.4 m/s.

Shen and Kushwaha proposed a model for the solution of the dynamic cutting
problem for agricultural tool operations (Shen and Kushwaha 1995b). A nonlinear elastic
soil constitutive relationship, the Duncan and Chang {1970) formulation, was adopted.
Strain rate effects were incorporated in the tangent modulus of elasticity E,. Based on
Qun and Shen’s (1988) work on rheological properties of wet soils, an equation was
proposed to modify the Mohr-Coulomb failure criterion and incorporate rate effects as

follows:

(0, —=03); =(0, —=03), +B; ln(f—) for > ¢,

€ (2.38)

(0, =0;); =(0, =C3) fore<g,
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with,

2ccos+20; sind

(0,=03)p = I—sin® (2.39)
where:
(6,—G,);, =Mohr-Coulomb failure criteria at a reference strain rate €, (kPa),
€ = current strain rate of a soil element (s™),
€, = reference strain rate (s™"),
B, = coefficient of the modified Duncan and Chang model for soil (kPa).

After substitution of equation 2.38 in the original equation for E, (equation 2.25)

the final expression forE; is as follows:

E =Kpn(g3-) 1— R,(1-sin0X0, ~G,) | foré> ¢,

2ccosd +20, sind+ B, (1-sin) In(—)
L &g

B, =Kp, | %2 | |- R=sin®N0, =0s) | e e (2.40)
2ccosd+20,sin¢

Kushwaha and Shen (1995) reportedly used the Newton-Raphson method to solve
for material nonlinearity, and an updated Lagrangian method for geometric nonlinearities.
They reported the use of an incremental and iterative algorithm to solve the dynamic
equilibrium equation (Shen and Kushwaha 1995b). Soil parameters were obtained from a

series of quasi-static and fast triaxial tests.
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2.5 Soil Parameters

Material parameters have to be identified for any application of constitutive
material modeling. The values of these parameters must be determined experimentally
(Haupt 1993). Idealizations and simplifying assumptions are required to obtain
experimental identification of material parameters. Specimens are usually assumed to
develop homogeneous states of stress and strain; however, this is not always a reasonable
assumption. The material test specimen is seen as an ‘operator’ which associates an output
process to each input process. Frequently, the input/output processes can also be

conveniently presented by stress-strain curves.

2.5.1 Dynamic soil properties

Gill and Vanden Berg (1968) defined dynamic properties of soil as properties
which manifest through movement of soil. Movement has to occur for these properties to
be determined. However, it does not necessarily have to be time-dependent. Relations
relating applied soil forces and deformations might be considered as dynamic soil
properties. It is difficult to study dynamic reactions because measurements must be done
during the action. Moreover, placement of equipment into a soil mass may alter soil
reactions.

The crux in soil dynamics is to identify and measure idealized soil mechanics
parameters. Therefore, dynamic parameters have to be measured in order to develop soil-

machine system descriptions and relationships.
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Mathematical relations can describe relations between stresses and strains.
Appropriate stress-strain mathematical relationships are a first step in describing soil
reactions due to tillage tool forces. For example, the simple linear elastic isotropic theory
describing stress-strain relations can relate stress to strain using only two parameters.
These two parameters measure the nature of the material and can be considered dynamic
properties of the material. In the same way, the basic Duncan and Chang (1970) model has
six parameters.

In other words, dynamic properties of soil can only be determined if a suitable
stress-strain relation, which in turn determines soil parameters, is identified. For instance, c
and ¢ are dynamic soil parameters determined experimentally on the assumption that the
Mohr-Coulomb relationship describes soil failure data. Thus, they are not real physical
properties of the soil as has been frequently stated, but curve-fitting parameters.

Chancellor (1994) reported many advances in measuring soil dynamic properties
since the Gill and Vanden Berg (1968) publication. Over the last 25 years, there has been a
remarkable improvement in equipment and instrumentation.

When rigid bodies of soil move or have contact with tool surfaces, the analysis is
simplified. Properties like friction, adhesion and abrasion can be more easily determined.

Separating properties into static and dynamic components is one way to
characterize soil. A dynamic property originates from the response of applied forces to
soil, which include movements. Static properties are defined as those that exist even when

forces are not acting on the body. Static properties do not have to remain constant when
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the body is moving in the same way dynamic properties do not have to change when the
body is moving.

Some dynamic properties might not be readily mathematically modeled. In such
cases a rough description of these phenomena in an empirical form is adopted. An example
is the measurement of shattering or rupture of soil, often called pulverization. The mean
weight diameter method (MWD) is a common empirical way to characterize the soil
structure. For such cases more development is needed in the theoretical aspects.

Hassan and Chancellor (1970) measured viscoplastic characteristics of saturated
clays. They found linear relationships between stress and strain rates. Highest measured
strain rate values were about 2 s”'. The viscosity term was defined as the slope of the
stress-strain rate graph.

Kocker and Summers (1988) were able to identify dynamic parameters of one-
dimensional second order viscoelastic model using cylindrical soil samples. One end was
vibrated at sonic frequencies and accelerometers were placed on the ends of the samples.

Remarkable advances have been made in the formulation of new constitutive
relationships for soil and the solution of differential equations by numerical methods
(commonly, the finite element method) to determine model parameters. Making use of
numerical tools such as response surface methodology and finite element methods, a
method called “inverse method” has been used in engineering to determine model material
properties. Upadhyaya (1993) and Rubinstein and Upadhyaya (1994) used this approach
to identify in-situ soil properties. First, a mathematical soil relationship is assumed and a

response surface is generated through orthogonal regression and a finite element solution
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technique. Soil field data are then measured and used to match the response surface
through the use of optimization algorithms. Model parameters are “calibrated” in this way.
This procedure overcomes the drawback of using remoided samples in laboratory tests
which present some differences from field cemented soils. Therefore, in-situ soil properties

can be accessed. The idea is to create a response surface once and then simply use it.

2.5.2 High speed triaxial tests

Many problems in engineering practice require the knowledge of soil properties of
dynamically loaded soils. The primary intention of fast triaxial tests is to apply a load at
similar rate to that a soil element would encounter during applications such as tillage. It
follows then that strain rates should reach levels on the same order of magnitude as the
soil dynamically loaded by a tool at fast speed of operation.

There are, however, a few difficulties associated with fast triaxial testing:

i) To reach fast and constant speed of soil specimen loading for a short specimen, usually

no longer than 100 to 150 mm, will require development of the specific equipment.

ii) With the shock wave blast imposed upon the specimen, a homogeneous stress and
strain distribution cannot be expected inside the specimen (as an illustration, for a rapid
axial load of a brass rod, more deformation occurs close to the application of the ram than

in the rest of the specimen, due to viscoplastic effects).
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iii) Remolded soils in triaxial cells do not behave the same as in situ soils for quasi-static
tests. For dynamic cases the differences might be enlarged. The energy and confining
conditions imposed upon the specimen boundary from pressurized air or water, is far
different than that imposed by surrounding soil mass. Different mechanisms act in real soils
and in triaxial cells (Chancellor and Upadhyaya 1994). It would be of value if these
mechanisms could be incorporated in triaxial cells. It is, therefore, not likely that fast
triaxial cells will represent soil behaviour as it behaves in the field, unless sophisticated
analytical corrections are made to interpret fast soil triaxial tests. However, a soil model
has to be assumed in anticipation for such an analysis. No studies have been reported to
support the correlation of the use of fast triaxial cell tests with agricultural field tests.

Das (1993) conducted static and dynamic unconsolidated undrained triaxial tests
for saturated clay soils. The experimental results of an axially loaded soil specimen showed
increases in deviatoric stress with increased axial strain rates (Figure 2.13).

Yong and Japp (1968) studied clay soil specimens under impulsive loading
undergoing large strain deformations. Their primary objective was to determine material
parameters and material behaviour. It appeared that loading rate was too high for the
specimen to deform in response. Therefore, a moving shock front was created and
changed strength of the material. This triaxial test study paid special attention to
transverse and longitudinal inertial effects, to the formulation of a flow law and to the
dynamic yielding. Corrections were made to account for the mass of the loading cap and
acceleration sensitivity of the force transducer. A uniform strain field was assumed.
Compressed air was the confined medium, used to avoid pressure drop due to volume

variation during the entry of the loading piston. Results were analyzed in terms of total
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Figure 2.13  Static and dynamic unconsolidated undrained triaxial tests for

saturated clay soils (after Das 1993).
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stresses only, due to short term of failure and large hydrodynamic lag in pore pressure
measurement. They also mentioned that the system performed adequately for loading
velocities in excess of 0.25 m/s and the machine was capable of delivering uniform loading
velocities of up to approximately 12.7 m/s. Strain rates were in the range of 110205,

Many simplifying assumptions were made: body forces were neglected; soil
remains saturated; velocity fields at quasi-static case, with negligible inertia, could
represent dynamic situations; perfect plastic material flow (no variation of volume, which
is reasonable for a wet clay); circumferencial specimen velocity equals zero; and, isotropy.
Large displacements (Eulerian strains) were considered in the formuiation.

Test results showed increased strain rates produced increasing deviatoric stresses

(Figure 2.14). A strain rate ¢, was taken as a reference. The graph showed deviatoric

stresses had linear relationship with logarithm of the ratio between actual strain ratio and

the reference one. The instantaneous dynamic stress, G(€,€) , was given as:

O(€,8) = 0, (&,€,) +'F(€) log(é) 241)
where:
o(g,€) = instantaneous dynamic stress (kPa),
oo(€,€g) = base value for dynamic stress, at base strain rate (kPa),
Y(e) = stress state parameter dependent on matenial (kPa),
£,&g = strain rate and reference strain rate, respectively (s).
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The calculated velocity of shock wave front indicated a region of instability when
the velocity of loading approached this velocity. This velocity was about 0.38 m/s for the
oil base clay used by Yong and Japp (1968) (Figure 2.15).

High speed compression tests have been reported by Kawamura (1985), but no
details of experiments were supplied. Breaking stresses increased with logarithm of speed
up to a maximum of 1 to 3 m/s.

Niyamapa and Salokhe (1992) conducted triaxial experiments in unsaturated soils
under undrained conditions. Speed of loading was from 0.35 to 6.2 m/s. Pressurized air
was used to produce a confining pressure. Forces at lower and upper parts of the
specimen were measured. For the high speed test the stress was not transmitted at once to
all parts of the test specimen. They noted that the peak axial stress at the lower force
transducer appeared at 7.8% axial strain, but at 11.6% strain at the upper transducer.

Change in mode of soil failure from brittle to plastic flow at 4.4 m/s for the sandy
loam and 5.7 m/s for the silty loam was reported by Niyamapa and Salokhe (1992). The
energy per volume used to break soil specimens at different water contents increased
rapidly with speed up to 4.5 m/s and then decreased. The energy for breaking sandy loam
soil decreased with increase in water content; however, the energy for breaking sandy
loam soil at 20.8% water content at 4.8 m/s was 87% higher than the quasi-static test at
similar conditions. General shear mode of failure and fragmentation were observed in the
brittle case. Fragmentation refers to soil specimen failure at numerous slip planes. Under

high speed, small cracks and fluidization were also observed.
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Figure 2.15 Calculated velocity of a shock wave indicates a region of instability
when the velocity of loading approaches a critical velocity, obtained
from high speed triaxial tests for wet clay soils (after Yong and Japp

1968)
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Shen and Kushwaha (1995b) proposed an equation similar to equation 2.41:

3
(6,~0,); =(0,—=0C;)q, +B, ln(é—) (2.42)
0
where:
B,  =strain-rate dependent coefficient of maximum stress difference (kPa).

Triaxial tests of specimens under displacement rates from 0.002 mm/s up to 12 mm/s were
performed (Shen and Kushwaha 1995b). Pressurized water was used to provide the

confining pressure.

2.5.3 Standard reference tool concept

The development of reference tillage tools to determine a dynamic soil strength
parameter was suggested by Upadhyaya (1984). The standard reference tool concept is
meant to characterize dynamic soil conditions based on a standard tillage tool acting as an
analog device. Standard reference tools have been developed to predict draft implement
requirements in any soil condition based on reference tillage tools run at a desired location
(Glancey and Upadhyaya 1990).

Glancey et al. (1996) predicted draft requirements of an implement based on
standard tillage tool drafts obtained in a particular soil condition. The standard reference
tool acted as an analog device to characterize dynamic conditions of the soil.
Configurations of standard tools used for prediction did not significantly affect draft
prediction. The prediction procedure required testing in many soil conditions. Three

implements were used, namely, a subsoiler, moldboard plow and chisel plow.
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Upadhyaya (1984) used dimensional analysis and mechanics to develop a
prediction equation for tillage tool draft. The expression of draft also included a ‘dynamic
cone index’ and speed of operation. A reference tool was proposed to measure dynamic

cone index. The developed equation can be expressed as:

[l %)

Where: H is the draft [F], C! dynamic cone index (FL?, d depth of operation [L], w
width [L], S speed [L-T"], p bulk density [M-L?], and B, and B, are geometry-dependent
factors.

Applying equation 2.43 to a reference tool of width w and rake angle o yields:

(ij =B{C! + B} pS*

wd
where the superscript r stands for reference implement. Defining B; = 1.0 gives:

(wid) =C! +B} pS? (2.44)

For a selected implement (other than the reference tool):

( H J =B,C! +B, pS? (2.45)

wd

Eliminating C! from equations 2.44 and 2.45 results in:

H HY ) HY .
— |=B,|— B,-B;)pS"=B,|—| +B,pS" 2.46
(wd) '(wd) +( B _)p l(wd) *+B.pS ( )

where B, = B, — Bf . Equation 2.46 can be used to estimate the specific draft of a desired

tool based on the measurement of the specific draft of the reference tool at a specific
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speed of operation. Thus, the specific draft of a reference tool at the adopted operating
speed is used as an indicator of the dynamic cone index of the soil.

Desbiolles et al. (1994a) developed a methodology based upon empirical
prediction relationships of draft forces of primary tillage tools obtained by Godwin and
Spoor (1977). A standard tine was used as a reference tool, and based upon calculated
indices the actual field tool draft was predicted. The reference tool used was a simple 45°
rake angle, 70 mm wide tine, working at 0.44 m/s. The methodology was based on a draft
force of a standard-tine, H':

H' = SSF x TGF (2.47)
where:

SSF = soil strength factor,

TGF = tine geometrical factor.

The 70 mm wide tine was used as a measuring device to measure the soil strength factor
of the soil at a desirable depth. The tine geometrical factor was theoretically determined.
An index I, assumed constant for a specified depth, related predicted and standard tine
draft:

Predicted tool draft = I x Standard-tine draft
where:

[ = GFial (2.48)

TGF
GFo = geometrical tool factor.
The tine geometrical factor TGF can be determined theoretically for the standard-tine

based on Godwin and Spoor (1977). A novel approach was achieved to empirically
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predict tool draft based on a standard tool concept used as reference. The tool indirectly
estimated soil strength. Results showed fairly good correlation, in the order of errors of
20%, for full tillage implements. In contrast, an extended study by Desbiolles et al.
(1994b) in which a cone penetrometer was used instead of a standard tool, produced
poorer predictions. Although satisfactory for sandy loam soils (predictions within 20%),

predictions errors for clay soils were on the order of 40%.

2.6 Summary of Literature

Soil openers are widely employed on dry land tillage equipment in the prairies.
Conservation tillage practices use openers intended to produce very little soil disturbance.
In general, such openers are narrow tools and there has been increasing interest in their
performance.

While quasi-static mechanics for prediction of soil-tool performance are well
developed, the science of soil-tool dynamic performance has not progressed much.
Typically, tool performance data show draft increasing with increases in speed. Wet soils
may show draft leveling off with speed. Failure energy per unit soil volume also increases
up to certain speeds. Soil disturbance and pulverization are also reported to increase with
increase in tool speed.

A general unified theory of material behaviour which could be used to model soil
behaviour is not currently available. Instead, specialized theories for various materials have
been developed. Models of dynamic soil behaviour have involved: i) incorporating
dynamic components, i.e., inertial and strain rate effects, in the formulation of a

hypoelastic material; ii) viscoelasticity; and, iii) viscoplasticity.
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Hypoelasticity represents one of the simplest theories available to be implemented
in a computer code. However, numerical instabilities may occur once soil behaviour
approaches failure. The nonlinear elastic soil model proposed by Duncan and Chang
(1970), which represents a simple form of hypoelasticity, incorporates a Mohr-Coulomb
failure criterion. Incorporation of dynamic components in this model can be readily
facilitated. The more specialized theories of viscoelasticity and viscoplasticity increase the
degree of difficulty in modeling soil.

Care must be taken when interpreting high speed triaxial test data. Energy
transferred to specimen surroundings might be expressed in a different form than
behaviour in the field. Soil parameters can be obtained in situ by using standard reference
tools. Standard reference tools are used as analog devices to characterize undisturbed
dynamic soil parameters. One advantage of this approach is that high speed triaxial tests

can be avoided and soil in-situ conditions can be tested.
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CHAPTER 3

MATHEMATICAL MODEL DEVELOPMENT

This chapter describes the development of a mathematical model of soil being cut
by a tool running at a constant speed. The first step, as in any evaluation of soil-tool
interaction, is the mathematical idealization of the system. A general equation developed
from continuum mechanics principles is introduced to represent the problem. The equation
is nonlinear and capable of representing large displacements, large strains and material
nonlinearities. To solve the equation, it is linearized and an approximate solution is
developed using the finite element method in an incremental procedure. In the procedure,
the total load is applied in increments. Large displacements are implemented using an
updated Lagrangian method, and material nonlinearities are used iteratively in a modified
Newton-Raphson method.

The soil constitutive relationship, which will contribute to the finite element
stiffness matrices, is for a hypoelastic material with strain rate effects incorporated in its
formulation. Appropriate assembling matrices are derived for the implementation of the
finite element method solution. Eight node isoparametric elements are used to discretize
the continuum. Applied body forces include inertia forces in the dynamic analysis. A
numerical time integration scheme is required for the dynamic analysis. Newmark’s
constant-average-acceleration (unconditionally stable) scheme is adopted in this study.

Damping effects are also considered. Mass matrices are implemented in a lumped form.
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The solution is implemented using a FORTRAN computer code. The

computational algorithm, including flow charts and the program structure, is described.

3.1 Soil Narrow Tool lIdealization

To make a mathematical solution of soil-tool interaction possible, some
idealizations of the soil-tool system are necessary. The following assumptions were made:

1) The tool is narrow, rigid, and working at a constant depth in the soil with a
constant velocity (Figure 3.1). According to quasi-static theory, valid for low speeds of
operation, side effects are significant for the draft evaluation of a narrow tool and so
cannot be neglected. This means that a three-dimensional model must be considered.

2) The physical symmetry of tools used in this study can be used to simplify the
numerical solution using the finite element method. A symmetric mesh discretization
reduces the number of elements by half and the degrees of freedom by almost a half. This
means that computation time and memory are significantly reduced. Final draft prediction
must be doubled when comparing the computational solution with experimental tool data.

3) Since the tool stiffness is many orders of magnitude greater than soil stiffness,
for a given force tool deflections are negligible in comparison to soil deformation. Thus,
representation of tool solid elements need not be included in the analysis. Instead, tool
shape and reactions can be modeled by rigid prescribed displacement nodes in the finite

element analysis.

80



Soil (lateral) Movement

Cavity

Soil (horizontal) Movement Direction of Movement

\ Tool -—

Cracks on Well

Figure 3.1 Soil tool idealization (after Desai and Phan 1980).
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4) A ‘smooth’ surface is expected to better represent the soil-tool surface than a
‘rough’ interface. Precise modeling of the soil-tool surface would require the formulation
of interface elements and the determination of interface properties under static and
dynamic cases, substantially increasing the work in determining model parameters.
Alternatively, contact or gap elements may be used to even further refine analysis and
improve predictions (Byrme 1987). In this study, however, the soil-tool interface is
assumed to be either a totally smooth or a totally rough surface, to simulate the extreme
cases.

5) The soil is idealized as an isotropic and homogeneous continuum. Soil particles
are idealized as lumped masses. The soil constitutive relationship is non-linear and with
strain rate dependency. Thus, the effect of different tool operating velocities on tool
reactions may be investigated.

6) Soil body forces are neglected since it is assumed that shallow soil would
produce negligible contribution to draft when compared to inertial and strain rate effects

or soil stiffness contributions. Inertial forces are considered in the model development.

3.2 Governing Equations

In this section nomenclature and general continuum mechanics equations that
represent the cutting problem are introduced. Then, an approximate finite element solution
and matrices are derived. Appendix A presents a review of tensors and the tensor notation

used in this section.



The motion of a body in a Cartesian system of coordinates is illustrated in Figure
3.2. Assume that all static and kinematic solutions are available for time O to time t, and

the solution for t+At is required.

Nomenclature

The notation uses left superscripts to refer to the body configuration in time and
right subscripts to indicate the coordinate axis. For instance, ", refers to the coordinates
of the body in relation to the axis | at time t+At. A left subscript indicates the
configuration with respect to which the quantity is measured (Bathe et al. 1975). The
notation for displacements is similar; for instance, when the quantity is related to some
reference (see below).

Some definitions for strains and stresses are now introduced:

The Green-Lagrange strain tensor is defined by (Kardestuncer and Norrie 1987):

I
E;= E(ui.j +ug; tuuy ;) 3.1

When displacements and their gradients are infinitesimal, the strain tensor (equation 3.1)
may be approximated as:
— l 3 2
g; =5 (U, +uy) (3.2)
The tensor g; is referred to as Cauchy’s infinitesimal strain tensor. Cauchy’s
stresses Ty; are defined by :

df, =(dA)n;t

v

(3.3)
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Figure 3.2  Motion of a body in the Cartesian system of coordinates (after Bathe
et al. 1975). A consistent notation is used for coordinates, displacements,
strains, stresses and applied forces. A left superscript indicates the
configuration in time in which the quantity occurs; a left subscript indicates
with respect to which configuration in time the quantity is measured (not
shown); and the right subscript refers to the coordinate axis.
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where dA is a differential area in a deformed body, n; the direction cosines of a unit

outward normal to dA , and df; a differential force acting on this area. The Cauchy stress

and strain thus simply refer to the stress or strain of the body at a particular configuration
(Figure 3.2).

In contrast, the 2nd Piola-Kirchhoff stress tensor, S;;, corresponds to the

ij»

configuration (t+ At) of a deformed body in relation to a reference configuration t :

H’A:Sij = :A{)—p S S X (3.4)
where:
‘p, o =mass density at a configurationt and (t + At), respectively (kg/m’),
tx = Cartesian coordinate at configuration t (m),
AT = Cauchy’s stress tensor at configuration (t+ At), i.e., the stress if the

reference configuration is the current configuration (kPa).
For example, using the above conventions, the Cauchy infinitesimal strain tensor

components referred to configuration (t+ At) are denoted by . €; , while the Green-

Lagrange strain tensor at (t+At) with reference to timet is denoted by ““E;. For

infinitesimal strains, the Cauchy and Green-Lagrange strains are identical. The reference
configuration used for applied forces, and for both 2nd Piola-Kirchhoff and Green-

Lagrange strains, is typically time t as denoted by the left subscripts in equation 3.4.
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Large deformations

The soil cutting problem with a narrow tool involves large soil displacements.
General formulations which incorporate large displacements, large strains and material
nonlinearities are presented by Bathe et al. (1975) and Desai and Phan (1980). In the
present study an updated Lagrangian or Eulerian configuration is developed to analyze
large deformations.

The formulation follows an incremental procedure. Once all discrete time points O,
At, 2At, ..., t have known solutions, the principal of virtual work is used to solve for
unknown static and kinematic variables, such as displacements, velocities and
accelerations in the t+At configuration. The objective is to evaluate the equilibrium
positions of the body at discrete points 0, At,...,t , t+At... where At is an increment in time.

The equilibrium of the body in the t+At configuration is expressed as:

I ”mtij 5 t+meij (u-Atdv): J’ :::tk S.Uk (lﬂ“dA)
I’.\lv K’AIA

(3.5)
+ j T Uafi 87u (THAV)

tedt gy

where 8 u, is a variation in the current displacement components Ay, & ar &y are

the variations in strains, and

p = mass density [M-L?],

ty = surface force vector [F-L7],

A = boundary surface of the element [L*],
\Y% = element domain [L3 1,
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£, = body force vector [F-M™].
Loading is assumed independent of the configuration of the soil body. Incremental
stress is decomposed as,
Sy =tT + Sy (3.6)
The constitutive relationship can be written:

:S;i=:Cis Eq (3.7)

s
where:
Cijrs = incremental constitutive (4" order) tensor.

Substituting equation 3.7 in equation 3.6 yields a nonlinear equation in the

incremental displacements u;:

[ Cin EL 8E4 (dV)+j' T 87, (V)= [ Tt 87, (Taa)

ty A

t+at l+Alf s‘uk (H-Aldv) (38)

t+att k

+
trdy

1
j'ra g. (‘dV)
‘v

t &

. . . . 1
where; ' V is the element domain in the configuration at timet , and n; = Y M Uy -

Equation 3.8 is valid for large deformations.

Linearization of equilibrium equations

Equation 3.8 is nonlinear in displacement increments and cannot be solved directly;

however, this equation can be linearized using the equality  E;=¢; for infinitesimal
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strains, and §° E; =8 &; (where 8" ¢; is a variation in the current strain components).
This yields a constitutive relation in incremental form:
0 S5=Ciis€rs 3.9)
The approximate equilibrium equation to be solved is then:

[Cis £ 8¢ (‘dV)+f ‘r; 8Tem ((dV) = j at, 8'u, (7 dA)
‘v

‘v lOAlA

+ [ v g, 8y, (aV)

iy
= [, T 8, (av)
(3.10)
Equation 3.10 is linear in terms of the incremental displacements. It is the basic
equation used for the finite element analysis using small incremental strains in finite

element methods (small discrete elements) for large deformations.

3.2.1 Finite element solution

In this section, the main focus is given to the presentation of matrices
corresponding to a single isoparametric element in the local system of coordinates (i.e., in
the element domain). Attention is also given to basic aspects of transformation of
equations to the global domain to calculate volume integrations and strain displacement
matrices. The objective is to develop stiffness matrices and load vectors to implement in a
finite element solution of equation 3.10. The final assemblage of the stiffness and load

vectors follow standard procedures for assembly of structure matrices, which can be
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obtained in text books such as Zienkiewicz (1977), Bathe (1982) and others. For small

strains, E;; and €; represent the same value, thus from now on we assume E=eg.

Element domain formulations

A solution of equation 3.10 is developed here using a finite element method to
obtain appropriate matrices. Eight node isoparametric elements are adopted for the
continuum discretization (Figure 3.3). Any point in the isoparametric element can be
expressed in terms of coordinate and displacement components at the nodes using the
same interpolation functions. Thus, the coordinates at any point in the element can be

expressed as:

X, =28',Nk "X, 3.11)
k=1
where:
Ak = coordinate at nodal point k with corresponding i direction, at
configuration t+ At in the global system,
k = nodal point,
Ny = interpolation function corresponding to nodal point k.

The shape function matrix for the current element is expressed as,

N, 0 0 N, 0 0 .. Ng 0 O
N={0 N, 0 0 N, 0 .. 0 Ng O (3.12)
0O 0 N, 0 0 N, ... 0 0 Ng
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Figure 3.3  Eight node isoparametric solid elements used for the three-

dimensional finite element solution (after Rao 1982).
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where the shape functions N; are obtained as (Desai and Abel 1972):
’ ’ ’ I’ r_7 Yo 4 r .7 .
N, (r"s",t )=§(l+r f)(1+ss])(1+t°t]))  j=lto8 (3.13)

where (r’,s’,t”) are natural coordinates and (r/,s{,t/) are natural coordinates of the

hexahedron nodes in the local system (Rao 1982), (Figure 3.3).
The displacements u at any point in the element can also be expressed using

interpolation functions, that is:

8
u, = Y N, ““uf (3.14)

k=l
where:

t+At u!(

= displacement at nodal point k with corresponding i direction at
configuration t + At.
To evaluate the stiffness matrix of an element and the vector of nodal point forces
the strain-displacement transformation matrix needs to be calculated. Strain-displacement

relationships are obtained for any point in the element. In the following expression for

strain components only first-order linear terms are retained and second order terms are

neglected.
cn t
Ep u?..l
€ Uss
G , (3.15)
8!2 O'S(ul.l +u2.l)
€33 0.5(u,; +u,,)
\8131 ~O.S(LIU +u3‘,)1

The strain matrix € is represented as:
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e=Bu (3. 16)
where the matrix B, namely, the strain-displacement transformation matrix, is an operator

which is completely defined once the shape function N is defined:

B=[B,B,. B, (3.17)
and,
N -
—i 9 0
ox,
INj
0 0
ax,
_ ox, .
B=lan ong ot j=1to8. (3.18)
Jx, 0dx,
aNj oNj
o <34 23
dx, dx,
ONj ONj
a9 o &
| 9x, ax, |

To evaluate derivatives of the shape functions it is necessary to establish a
transformation relationship from global to local coordinates. This is accomplished using
the Jacobian matrix, which is also used in the numerical integration scheme (Siriwardane

1980). The Jacobian matrix J is calculated as:

(9x, dx, 9x,] |2(ONi i) $(ON:i i) N i)
ax’l or ar'3 .2=:'> or xl) ,Z{ ar x2< .2=:'> or x3<
9%, 9x, 9xy | _[[9N; ; & (ON, | L(ON;
=% % | Z‘\as' "') 2,‘(85 g ;kas- S
ox, 9x, 0%, 8. (9N, | &[N, ;) &(oN, )
| ot ot ot | _Z.‘k?x‘) g:.(?xz} § S 3}‘

(3.19)



Now, substituting equations 3.11, 3.14 and 3.16 in equation 3.10 results in:

(iK_+ Ky Ju="* R-{F (3.20)
where:
‘K, = linear strain stiffness matrix in configuration at time t (referred to
configuration at time t ),
=K, =[ !B C:B_ ‘dV (3.21)
K =non-linear strain stiffness matrix in configuration at time t (referred to
configuration at time t ),
=Ky =] !B} 'T/By 'dV (3.22)
THALR = vector of externally applied nodal point loads (element surface and body
forces) at time t+ At,
' F = vector of nodal point forces equivalent to the element stresses at time t.

=F= (Bl 'T'dV (3.23)
B[ = linear strain displacement transformation matrix (defined below),

By = non-linear strain displacement transformation matrix,

. C = incremental material property matrix at time t,
't = matrix of Cauchy stress with configuration at time t,
'z = vector of Cauchy stress with configuration at time t,

T
=[T) 5 Tan s Tag s Tz 5 T Tyl
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The !K u, Ky u and ;F matrices were obtained from finite element representations

of [Cye,8;("dV), [ ‘t; 8y ("dV) and [ 'z, 87ey (‘dV), respectively.
(V lv lv

ijrs ~rs i

As noted above, the nonlinear part of the stiffness matrix (i.e., Ky ) is neglected
in this thesis since increments of loads are small. Instead, K| is updated at the beginning
of each load step. Britto and Gunn (1987) used the small displacement, small strain
approach in the Crisp program. Updated coordinates of nodal points were used. This is a
first approximation of an updated Lagrangian formulation. The first order updated
Lagrangian approach is also described by Cook (1981).

The linear stiffness matrix K; can be calculated using numerical integration. A
two-point Gaussian quadrature scheme is used for numerical integration. It should be
noted that the components of matrix B are functions of the natural coordinates r’, s’ and
t’, so that the volume integration is evaluated over the natural coordinate volume. The
differential volume dV is evaluated in terms of natural coordinates. Generally,

dV =detJdr' ds'dt (3.24)
The numerical integration requires the use of weighting factors calculated at sampling
points (i.e., the Gauss points) for optimum accuracy. The procedure is well explained in
Zienkiewicz (1977).

In the local domain, K| is calculated for every element as:

K, =[[[B"CBdetJdrdsdt (3.25)
Vlo
where:
C = constitutive matrix,
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Vio = element local domain.

Dynamic solution

Equation 3.20 represents a static solution, e.g., it has no time dependent terms.

The dynamic solution is expressed by:

(KL + Ky Ju="4 R-{ F-M"**u (3.26)
where:
Ay = vector of element nodal points accelerations at configuration t+At,
M = time independent mass matrix, calculated at configuration 0.

In the dynamic solution (equation 3.26) the applied body forces include inertia
forces. Damping is not considered. Mass of the body is assumed to be preserved. Thus,
the mass matrix is evaluated using the initial configuration, before time integration, at time
t = 0 as reference (Bathe 1982). For a three-dimensional solution, eight node
isoparametric solid elements, brick or hexahedron are used (Figure 3.3), (Rao 1982).

The mass matrix M can usually be calculated using consistent or lumped
formulation (Desai and Abel 1972). The lumped formulation is adopted here due to its
simplicity. In this procedure, masses are placed at nodal points in directions of the
assumed displacement degrees of freedom, on the assumption that material behaves like a
rigid body. Thus, there is an implicit assumption of no interaction between nodal masses.
Consequently, there is no coupling between element displacements and the lumped matrix,

resulting in a purely diagonal mass matrix. The lumped mass matrix can be obtained by
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dividing the total element mass equally among the element nodes:

M= [ p¥TWdV (3.27)
where:
p = material density (M/L7),
¥ = matrix of functions ‘¥; which have unit value over the region tributary to

node i, and zero elsewhere.

The volume differential is calculated using equation 3.24.

3.3 Finite Element Implementation

Implementation of the finite element solution presented above requires the solution
of the dynamic transient problem, which involves time, as well as geometric and material
nonlinearities.

Nonlinearity is simply a failure of a material to respond proportionally to the
excitation magnitude (Desai and Siriwardane 1984). Many factors can generate
nonlinearities. The most common are nonlinearities due to geometry (large displacements),
and material nonlinearities (nonlinear stress-strain behaviour). Both of these are factors in
this analysis.

The procedure developed in this thesis can accommodate all three cases in an
incremental solution using the same algorithm. The dynamic solution uses the Newmark
direct integration method to solve the dynamic equation 3.26 with respect to time. An

incremental scheme is combined with a material geometric nonlinearity solution scheme
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and an updated Lagrangian scheme (Eulerian). To accommodate material nonlinearity, a
modified Newton-Raphson method is used iteratively within each incremental load.

In the incremental procedure the total load is divided and applied in load
increments. In the basic incremental procedure (Desai and Abel 1972) the load matrix R

and total displacement matrix u are defined by:

M
R=R,+) AR (3.28)
=t
M
u=uy+ ZAu (3.29)
=t
where:
Ry.AR = initial and incremental load matrices, respectively,
uy.Au = initial and incremental displacement vectors, respectively.

3.3.1 Material nonlinearity

The main reason for material nonlinearity is caused by the stress history of the
material. Soil physical characteristics change during loading. Material stiffness changes
with loading changes, and these changes are usually nonlinear for soils. Thus, the
constitutive matrix C must be reevaluated at each incremental load step.

Nonlinearity can also be caused by the type of loading, e.g., dynamic, rate of
loading and loading path. In the present case, the latter two cases apply. To solve material
nonlinearity problems some iterative techniques are available, for example, direct iteration,

Newton-Raphson method, modified Newton-Raphson method, and others. The modified
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Newton-Raphson method is used due to its simplicity, although convergence is slower

compared with the Newton-Raphson method.

Figure 3.4 illustrates the basic scheme of the modified Newton-Raphson method.
At the first iteration the tangential stiffness matn'x,K-?-, of the system is known, as is the

imposed load, R . Thus, a displacement u® is calculated by solving the following system

of equations for the first step (Zienckiewickz 1977):

Au" = -(K2)™(F" -R) (3.30)
where:
n = iteration number,
K‘% = initial tangent stiffness matrix,
(F“ - R) = unbalanced force vector,
F" = internal reaction forces at n iteration.

Second and subsequent iterations are reached maintaining the same initial

calculated stiffness K3 , such that K§ = K9 . Thus a new system of equations has to be

solved at every iteration. However, the stiffness remains constant. A new unbalanced load
vector is solved at every iteration. The process is completed when the unbalanced vector is
small compared with a preselected tolerance, say 1% based on the Euclidian vector norm

(Dhatt and Touzot 1984). Alternatively, displacements can be used to check convergence,

laaw)],
| As],

conv.criter.= 2. The process is supposed to converge less rapidly than in the full
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Figure 3.4 Basic scheme of the modified Newton-Raphson method (after
Zienckiewickz 1977). The u" indicate displacements at the n”

iteration, F" is the internal reaction force at the n™ iteration and R is the

total load (including both surface and body element forces).

99



Newton-Raphson method. However, the modified method is simpler to implement in a

computer program.

3.3.2 Transient analysis

A dynamic analysis requires a numerical time integration of the finite element

equations of motion (e.g., equation 3.26). Equation 3.26 is of the form,

Mii+ Ku=R (3.31)
R=R, +R -R,+R_ (3.32)

where:

R = external load vector,

K = stiffness matrix including linear and nonlinear effects,

R, =load vector related to body forces,

R, = load vector related to surface forces,

R;  =load vector related to element inertial forces,

R = load vector related to concentrated nodal forces.

Direct integration means that equation 3.31 is satisfied at discrete time intervals At,
(At = total time T / n equal time intervals), and a variation of displacements, velocities and
accelerations are assumed within each time interval. The integration scheme gives an
approximate solution at times 0, At, 2At, ..., t, t+At, ... T.

The solution of the equilibrium equation 3.31 governing the linear dynamic
response, might use one of the four direct integration methods: central difference method,

the Houboult method, the Wilson 6 method and the Newmark method (Bathe 1982;
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Newmark 19359). The Newmark method is adopted here due to its stability and
effectiveness. It is applied for each incremental load step. Table 3.1 outlines the complete
Newmark scheme in which damping effects are also included. The damping coefficient
was neglected in equation 3.31.

The Newmark integration scheme can be classified as an extension of the linear
acceleration method (Bathe 1982). Figure 3.5 illustrates the Newmark constant-average
acceleration scheme.

The basic equations of Newmark’s method are given by:

s+ [(1-8) 4+ A (3.33)
=" u+' ﬂAt+[(é—a)‘ i+ oz”‘“iliIAt2 (3.34)

The o and & are constants (Table 3.1). When o =— and 9§ =Zl the method is

1
2
unconditionally stable; this is the constant average acceleration method. Equation 3.31 is

assumed to be satisfied at times t and t+At.

M[+A[ﬁ+K[+A[u ___l+Al E (335)

f t+At

The "™'ii in equation 3.34 is solved in terms o u and substituted into

H'Aliiand t+At f t+At

equation 3.33. Thus, i are obtained as functions o u. These two

relations are substituted in 3.35 to solve for “"*'u. Then, using 3.32 and 3.33, "**'ii and

Aty can also be calculated.

It should be noted that the Newmark’s integration method is used once at every

load step to solve for displacements, velocities and accelerations. The material nonlinearity
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Table 3.1 Step by step solution using Newmark integration method (for each

incremental load) (Bathe 1982).

A. Initial Conditions:

1. Form stiffness matrix K , mass matrix M and damping matrix C;.

2. Initialize ®u , %4 and % .

3. Select time step size At, parameters & and § , and calculate integration constants:
8 > 050; o 2 025(05+8)2

an = 1 - a —._8_- —_1 -a —_1_._1-
0™ a2 'V aAl T aat P 2a
o At d
a,=——1l:ac=—{—=21|; 2 = At(1—-9) ; a; = SAt
4= 5 (a ) 6 (1-9): a4

4. Form effective stiffness matrix K: K=K +a,M+a2,C,
5. Triangularize K: K=LDLT.

B. For each time step:

1. Calculate effective loads at time t + At :
A R=UAMR + M(ag u +a, ta+astid) +C(a, ‘u+a, i +as'i)
2. Solve for displacements at time t + At :
LDLT t+At u=t+At Ii

3. Calculate accelerations and velocities at time t + At :

t+Atﬁ = ao(“'A‘u—‘u) -a, lu_aSLﬁ

l+Alil=["l+a6 (ﬁ+a7 H‘A[ﬁ
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Figure 3.5
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Newmark time integration scheme for various types of acceleration

(after Bathe 1982).
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is used iteratively inside each load step until a specified tolerance in the unbalanced load

vector is achieved.

3.3.3 Geometrical nonlinearity

The geometrical nonlinearity solution method adopted in the present problem uses
the updated Lagrangian technique; however, only a first order approximation, in which
mesh nodal coordinates are updated and the stiffness matrix is recalculated for every new

incremental step, is implemented in the computer code. The solution of the geometrical
nonlinearity was developed for equation 3.26, ({K, + Ky Ju="" R- F-M""i,
obtained from the dynamic solution. Incremental load steps are used with constant time
steps At in the dynamic solution. According to Britto and Gunn (1987), updating of nodal
point coordinates is equivalent to a first order approximation of an updated Lagrangian
formulation. Cook (1981) states that in the updated Lagrangian (Eulerian) formulation,
coordinates are updated to produce a new reference state. In the finite element context the
conventional stiffness matrix K is extended by higher order terms (K g ). Strains in the
local system are usually small enough that higher order terms can be omitted, thus the

omission of Ky in this formulation.

3.3.4 Constitutive relationship

The constitutive tensor C defines the stress-strain relations used in the finite
element calculations. It is required for calculation of element stiffness matrices and stress

vectors.
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A hypoelastic material is considered here, in which the constitutive tensor relates
incremental stresses to incremental strains. A modification to the original hyperbolic
relationship is also made so that C is also related to rates of strain.

The constitutive model considered and modified here, was presented by Shen and
Kushwaha (1993). Shen and Kushwaha (1993) began with the constitutive relationship
derived by Duncan and Chang (1970) (see section 2.41), in which the tangent modulus of

elasticity is represented by:

2 . 2
Esz[l_Rf(Gl—O:;)] Kpa(ﬁ)"z[l-Rf(l—sm(b)(cl—0'3)] Kpa(is_)"

(6, —-03)¢ Pa 2ccosd + 203 sind Pa

(3.36)
They then represented the rate effect using a relationship used by Qun and Shen

(1988) for wet soils: B, =In(€/€,) . It is noted that logarithmic relationships are typically

used for saturated soils (Gudehus 1977; Gudehus et al. 1977; Yong and Japp 1968).
Glancey et al. (1996) used a linear shear strength versus speed relationship for the
semi-empirical analysis developed for the work on standard reference tools. The equation
T, =1, +T,S was used by Glancey et al. (1996) to describe an elasto-plastic soil failure.
Here, 1, is the soil shear strength (kPa), T, is a soil parameter related to the static
component of shear strength (kPa), T; is a soil parameter related to the dynamic
component of shear strength (kPa-s/m) and S is the opefating speed (m/s). Preliminary
results of draft versus tool speed obtained for this thesis in the soil bin also suggest a linear

relationship between soil shear strength and speed.
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In this thesis, the strain rate effect is represented in a similar way to Glancey

(1996), by a linear viscous relationship AN(€-—¢€,), incorporated in the constitutive
relationship as:

(0, —03)¢ =(0; —03);g +AN(E—¢&y) foré>g,

L. (3.37)
(Gl "03)( =(Gl —03)f0 foreSEO
where:
AN =constant (kPa-s),
. Ot -
E=—=,E +€ +E (3.38)
at 1 2
= resultant strain rate (s"),
€9 = resultant reference strain rate in the axial direction, obtained

from conventional quasi-static triaxial tests (s™).

The strain rate relationship defined by equation 3.37 ((6, —0;); =21,) will have

a growing or contracting effect on the (quasi-static) Mohr-Coulomb failure surface and on
the hyperbolic relationship as well. It is similar to linear viscous effects (see Figure 3.6).
Even in viscoplasticity for soils, it is more usual to associate surfaces of yielding or failure
(e.g., Baladi and Rohani 1984) with a simple relation among surfaces of different strain
rates; for instance, a linear viscous model.

Substituting equation 3.37 into equation 3.36 and combining the result with the

Mohr-Coulomb failure criterion, the following equation is obtained:
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viscoplastic
(clay type)

ideally plastic

v

Figure 3.6  Simplified stress-strain rate behaviour of a visco-plastic material
(after Gudehus 1977). Also shown in the stress-strain rate behaviour

expressed by equation 3.37.
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— i

n
=|1- O3
E; 2CCOS¢+2G3Sin¢+AN(é ) Kp, o foré > €

— <0

(1-sind)

- 2 n
1—si -
E,=|1- R (1~ sin)o, - o3) Kp,| 22| foré<é,
2ccosd+20;3sind Pa

(3.39)

For the case € <¢, the relationship assumes the original Duncan and Chang

(1970) formulation. The constitutive matrix used in the incremental relationship ¢; = Cg;

can be written as:

[(1-v) v v 0 0 0
v (I-v) v 0 0 0
v v (1-v) 0 0 0
C=___Es___ 0 0 0 (1—72\’) 0 0
(1+v)(1-2v) <
1-2v
0 0 0 0 ( ) 0
9
0 0 0 0 0 (1’22")

(3.40)
So far, the formulation was developed for soil compression. Failed elements, either
in shear or in tension, have their tangential modulus reduced by a factor (1/1000) to
approximate small soil stiffness at failure. Duncan and Chang (1970) adopted a small
residual modulus for soil elements after failure. Failure in tension is assumed when the

major principal stress is greater than the soil cohesion. Failure by shear is assumed when
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instantaneous deviatoric stresses, (G; — ;) , reach the instantaneous deviatoric stresses at
failure, (6, —G,); =21, .

A variable Poisson’s ratio in the form presented by Chi et al. (1993a), is assumed
for the quasi-static case and this equation is assumed unchanged in the dynamic case:

(o0,-0,)

v=a,+b,
(0, —0,);¢

(3.41)

Constants a; and b, must be adjusted by curve fitting of the stress-strain data obtained

from quasi-static triaxial tests. The same path is assumed for either loading or unloading.

Unfortunately, hypoelastic models based on variable Poisson’s ratio v and elastic
modulus E may present instabilities when failure occurs (Chen 1985). This observation
was verified by preliminary analysis of data in this study. For the narrow tools tested, a
small displacement (even less than 1 mm) sometimes caused instabilities in the program
and analysis could not continue. This was because upon failure the elastic modulus was
reduced to almost zero (one thousandth of initial value) leading to numerical oscillations.
This behaviour was intensified with the presence of the lumped mass matrix and the
dynamic system of equations.

Thus, upon failure, another constitutive form for the equations must be
investigated (Desai and Siriwardane 1984, Britto and Gunn [987). In an alternative
formulation, the bulk and shear modulus of elasticity are considered separately (Desai and
Siriwardane 1984). Upon failure, only the bulk modulus, K, is reduced close to zero and

the shear modulus, G, remains unchanged. Thus, the failed soil can still maintain its

109



capacity to sustain shear stresses, but not hydrostatic stresses. The moduli G and K are

defined as follows:

E
G= 42
2(1+v) (342)
O R
=30-2v) (3.43)

and the elastic relationship is :

’ 2G ’
Gij = (K ——B—)Il&j ‘*'ZG% (344)

,—
I =¢;,

the first invariant of the strain tensor.

The constitutive matrix then becomes:

K’+ici K'—ﬁ K'—ﬁ 0O 0 o0
3 3 3
k+d8 x_ % o o o
3 3
C= K'+4_3G_ O 0 O (3.45)
2G O
sym 2G O

3.4 Computational Algorithms

3.4.1 Description

The finite element solution of the narrow cutting tool problem was implemented in

a FORTRAN computer code modified from the code referenced in Shen and Kushwaha
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(1995b). The basic governing equations used in the modified code, were described
previously (equations 3.39, 3.40 and 3.41). The original computer code (named Fep23)
utilized subroutines based on the program code of Zienckiewicz (1977), and the program
Fep2 from the University of Beijing (Agricultural Engineering Dept.), version 2, written
by Li Mingui (in Chinese). The dynamic solution, using mainly the modified Newmark
method, was based on the procedure given by Bathe (1982), already mentioned
previously. The original computer code (Fep23) was modified to assume the present form.
The modified code is named Dyntool and listed in Appendix B.

The modifications of the original code leading to the new Dyntool code were as
follows:
1) An Euclidian Vector Norm convergence criterion was introduced in the code. The
criterion was used to determine the number of iterations to solve soil element
nonlinearities according to a predetermined tolerance. The modified Newton-Raphson
method was already used in the original code to solve material non-linearities.
2) Rate-dependent variable AN was incorporated in the program according to equation
3.39. The soil element modulus of elasticity E; now depends on a linear relationship of
stress rates differences, AN(€—£€g).
3) The code was first altered to solve the inertial problem named Dyntool. The code,
considering inertial terms, is used to solve the soil modeled with stiffness and mass effects

(equation 3.26).
4) Poisson's ratio relationship was modified to incorporate the variable form, (equation

3.41) into the Dyntool code. Therefore, the Dyntool code simulated a material with
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variable Poisson’s ratio and variable elastic modulus. The Poisson’s ratio was set to a
value near 0.5 (v=0.499) when soil reached failure, indicating no further soil volume
change (Chi et. al 1993b).

5) The soil tangent modulus of failed elements was divided by a constant parameter at
every load iteration and kept at a residual value after the modulus reached a small value
(<0.5 kPa) as indicated by Duncan and Chang (1970). Thus, soil strength upon failure
increases slightly with strains, avoiding the small stiffness matrix values which cause
numerical instabilities.

6) Initial displacements, velocities and accelerations were initialized outside of the
incremental load step loops and feedback of dynamic effects were then incorporated
according to flow charts in Figures 3.7 and 3.8. An equivalent load vector was
incorporated according to equations given in Table 3.1, where the viscous term was
omitted for Dyntool in the inertial solution, and the inertial term was omitted for Dyntool-
2 in the viscous solution. The mass matrix was already lumped and calculated only once
before incremental loop steps start.

7) The Dyntool code was broken into small subroutines to be more efficiently processed
by the FORTRAN software running on Pentium machines. Double precision for main
variables was implemented.

8) The preprocessor was adapted to accommodate new input parameters into Dyntool
code. Data files were created to allow processed data to be exported to the ANSYS

commercial code for plotting. The procedure was used to take advantage of ANSYS
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graphics capabilities (plotting, screen views in 3D, mesh numbering) to facilitate
interpretation of the results. However, ANSYS solver modules were not used.

General and more detailed flow charts of the main program structure ‘Dyntool’ are
presented in Figures 3.7 and 3.8, respectively. The program tree is presented in Appendix
C. Input sample data are included in Appendix D. The algorithm was written to simulate a
soil, initially at rest, cut by a tool running at constant speed. Total tool displacement is
divided into increments. Each increment, divided by speed, determines the time increment
used in the Newmark constant acceleration method. Displacements, velocities and
acceleration vectors are initialized in the preprocessing block, so that the first solution is
static. Subsequent solutions are dynamic, because, besides displacements, velocities and
acceleration vectors are fed back to form the load vector in the next incremental load step,
and so on until the total load is attained.

The number of incremental load steps multiplied by prescribed tool incremental
displacements (passive loading) gives the total final displacement of the tool. The main
program structure is described as follows:

The preprocessing phase opens input data files, generates the soil mesh, boundary
conditions, applies external loads and forms the lumped mass matrix. A profile of the
stiffness matrix is stored with pointer vectors which is used for solving the equilibrium
equations for displacements in the other phases.

Material nonlinearities are solved using the already described modified Newton-
Raphson method (section 3.3.1). One tangential stiffness matrix is calculated for each

updated mesh in the incremental step. However, the same matrix is kept unchanged for the
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modified Newton-Raphson (material nonlinearity) iterations. The Euclidian Vector mode
convergence criterion is used to stop iterations at a prescribed tolerance (i.e., 1%) in
displacement increments to solve material nonlinearities. Stresses are calculated at the end
of incremental iterations, so that the new material tangent matrix can be updated. Also,
nodal coordinates and load vectors are updated, so that, a new tangent stiffness matrix can
be recalculated for the next incremental load step (see section 3.3, Figure 3.8 and Table
3.1). The code presents a “spaghetti structure”, updating it to a modern programming

structure code is still in progress and is not fully implemented in this dissertation.

3.4.2 Pre/post processors

Preprocessing is quite limited as only nodal linear generations are available for
meshing. The same applies for element and boundary condition generations. No graphical
user interface is available. Graphical analysis is more a necessity than just convenience,
particularly when the number of nodes and elements are large. In fact, it is more the rule
than the exception for three-dimensional analysis using solid elements.

Results output by the program are stored in matrix form. The use of an external
post processor is required. A commercially available finite element program, ANSYS 5.1,
with graphics capabilities was used to pre- and post-process undeformed and deformed

soil structures at each incremental step.
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3.4.3 Convergence criterion

The convergence criterion used for the modified Newton-Raphson method was the
Euclidean vector norm. Incremental displacements were adopted as variables of the
convergence criterion, instead of unbalanced load vectors, for programming convenience.
This criterion is presented by Siriwardane (1980), Bathe (1982) and Shen and Kushwaha
(1995b), and is also used in other commercial programs. The assumed specified tolerance

was 1072 . The Euclidean vector norm is defined as:

|-

VI, =(i|v.-|’] (3.46)

=i
Where |V[,is a norm of vector V of order n. In this case n will represent the
number of degrees of freedom.

The convergence criterion is defined for incremental iterated displacements in

relation to incremental displacements as:

. _laau,
conv.criter.= ————= (347
A,
where:
Au = nodal incremental displacements (inside incremental iteration but outside
modified Newton-Raphson loop),
A(Au) = nodal increment of the incremental displacement vector (inside modified

Newton-Raphson loop).
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3.4.4 Equation solver

The utilized solver for the equilibrium equation uses the LDLT triangularization
method for the stiffness matrix. It is well described by Zienckiewickz (1977). The
complete solution is obtained by back substitution, after the matrix is triangularized.

The adopted scheme has the advantage that it minimizes memory space, since only
the essential part of the stiffness array is stored (i.e., zeros are not stored) by the use of
pointers. The solution implemented in the adopted code is applied only for symmetric
matrices. Another advantage is that the LDLT solution matches the Newmark scheme
proposed by Bathe (1982). Therefore, solution of equilibrium equations is fast and
memory allocation is optimized. The program has been written such that memory is only

limited by the computer capacity (in this case for Pentium processor PC’s).

Summary

This chapter has shown the developed soil constitutive model for soil-tool
interactions based on one of the simplest theories available to include inertial and strain
rate effects in a soil constitutive relationship. A model with a dynamic AN parameter
including strain rate effects, and with inertial effects was proposed. As it will be seen in
chapter 5, the model was modified after numerical problems occurred in the simulations.
The modified model including viscous terms independent of the stiffness matrix proved

more satisfactory, nevertheless, the model still needs modification.
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CHAPTER 4

EXPERIMENTAL APPARATUS AND PROCEDURES

4.1 Soil Bin Monorail System

To verify the theoretical analysis, a monorail system was designed and built to
drive high-speed tools in the soil bin facility of the Department of Agricultural and
Bioresource Engineering, University of Saskatchewan (Figure 4.1). The monorail system
is capable of driving soil tools at a maximum steady state speed of 10 m/s under load.
Maximum draft is 1.5 kN at 10 m/s.

The main frame of the monorail consists of a 9 m long I-beam which guides a
sliding tool carriage. Small ball bearings mounted on the carriage provide the sliding
action on the beam. The beam is supported by transverse arm beams which pivot about
points to the side of the soil bin. A hydraulic piston may lower the system parallel to the
soil surface for the working position, or can be used to raise the system to allow
preparation of the soil for tests. This combination maintains the flexibility to control water
content, soil leveling and compaction level, as well as operating the monorail system.

A hydraulic drive system is used to accelerate and stop the carriage over a very
short periods of time. A variable displacement piston pump (model 23, Sundstrand, La
Salle, IL) operated by a 30 kW electric motor (Reliance, Columbus, OH) powered the
drive system (size 661, Reeves, Cleveland, OH). The oil is maintained in a closed loop at

high flow. A solenoid valve (026 48360 H, Hagglunds Denison Company, Delaware, OH)
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Figure 4.1  High speed monorail system built in the soil bin facility in the
Department of Agricultural and Bioresource Engineering, University

of Saskatchewan.



piloted by the control box shifts the oil flow to the main circuit to operate the hydraulic
motor. The motor drives a roller chain which operates the tool carriage. The hydraulic
circuit is given in Appendix E.

In the initial design, the sudden discharge of oil to the system produced transient
oscillations. This effect was corrected by installing an adjustable bypass damping valve in
the motor line (Figure 4.2). Various adjustments to the variable bypass valve make it
possible to control the ripple effect on the carriage speed. Velocity smoothing was
controlled to desirable levels by experimentation.

The stopping action is obtained by the solenoid valve. The oil supply is cut off
when a magnet installed in the carriage is detected by a limit switch wired to the electronic
box.

The instrumentation is capable of measuring and storing force data and
corresponding tool velocities (Figure 4.3). One stationary (PC 80386) and another on
board computer TDS2020 (Triangle Digital Services, London, England) were used to
collect data. The control box emits a triggering pulse to both computers and activates the
solenoid valve simultaneously to initiate data acquisition.

The tool holder is equipped with six load cells (one SSM-2000 and five SSM-
1000, Interface, Scottsdale, AZ) (Figure 4.4). This arrangement makes possible
measurement of forces in three directions (see Kepner et al. (1972) for details). The
signals from the load cells are conditioned by on-board signal conditioners and scanned by
the A/D input of a 16 bit on-board computer (TDS2020). Data are collected at 9.5

milliseconds intervals. A static calibration of the measured tool forces was performed with
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Figure 4.2  Adjustable bypass damping valve in the motor line removes transient

oscillations produced by a sudden discharge of oil in the system.
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Figure 4.4  Tool holder equipped with six load cells for force measurement in

three orthogonal directions.
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a load cell (S§SM-5000, Interface, Scottsdale, AZ) pulling the tool tip in the longitudinal.
transverse and vertical directions, and simultaneously recording the system reaction forces
measured in all directions. Typical measurement errors in the longitudinal direction were
0.9%. Cross-sensitivity among load cells produced, for the transversal direction 0.9% and
for the vertical direction 1.9% the value of the tool pulling force.

The speed is measured by an optical encoder (IY-1728-0906, Servo Systems Co.,
Montville, NJ) connected to the shaft of the chain sprocket. The digital signal is processed
by an interface board (RTI-800, Analog Devices, Norwood, MA) installed in the 80386

computer. Speed data were collected at 5.7 milliseconds intervals.

4.2 Experimental Procedure - Model Verification

4.2.1 Dynamic soil bin test procedure

Table 4.1 presents properties of the soil, a silty clay-loam, used in the soil bin tests.
The soil was carefully prepared using the soil processing unit (Figures 4.5 and 4.6). The
soil was first rototilled and gradually brought to the desired water content by spraying
water. Once the desired water content had been reached a small amount of water was
applied at each rototiller operation to compensate for evaporative losses. The soil was
then leveled and packed. A sheep-foot packer was used to pack subsoil followed by a
smooth roller to pack the surface soil.

Different compaction levels were obtained by varying the number of compacting
roller passes. A low compaction level was obtained with two passes of the sheep-foot

roller and four passes of the flat roller. A hard compaction level was obtained with ten



Figure 4.5  Soil being prepared by the soil processing unit.
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Figure 4.6  Soil being leveled and packed by the sheep-foot packer.
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Table 4.1 Soil properties.

Sand Silt Clay Water Content Plastic Limit  Liquid Limit
(%) (%) (%) (% db) (%) (%)

475 242 283 12.3 on 18.8 329

Standard deviation in parentheses.

passes of the sheep-foot roller and four passes of the flat roller. The hard compaction level
more closely simulates field conditions during tillage operations.

After each run, three core samples, 50 mm diameter by 50 mm high, were
collected for water content analysis and bulk density measurements. Additionally, cone
index measurements were taken at six depths, replicated seven times along the length
of the soil bin. A standard cone penetrometer S 313.2 (ASAE 1990) and a 50 mm
diameter by 50 mm high core sampler were used to determine soil strength and density
properties. The cone penetrometer rod was marked every 25 mm. Soil core samples were
collected for weighing and determination of wet bulk density at 0-50 and 50-100 mm
depths. The samples were collected from regions in the soil bin where the tool would have
attained steady state speeds. Soil samples were oven dried for 24 hours at 105° C for
water content and dry bulk density determination. Figure 4.7 shows all tool shapes
employed in the basic design and in the extended design tests.

The initial set of trials involved testing a flat, triangular and elliptical tool shapes at
three speeds (2.8, 5.6 and 8.4 m/s), two depths of operation (50 and 100 mm), and two
compaction levels (‘soft’ and ‘hard’) (Table 4.2). The elliptical tool was further tested at

extended operating speeds (Table 4.3). An average water content of 12.3% was
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Figure4.7  Tool shapes used in the soil bin experiments.
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Table 4.2 Experimental design adopted for the initial tests.

Tool type Width Depth Water Bulk density Tested speeds
content soft hard
(mm)  (mm) (%) (Mg/m°) (m/s)
1 Flat 9.4 50 12.3 1.15©04) 1.21 (0.03) 2.8 56 84
2 Flat 9.4 100 12.3 1.22 005 1.33 .04 2.8 56 84
3 Triangular 9.4 50 12.3 [.15004 1.21 .03 2.8 56 8.4
4 Triangular 9.4 100 12.3 1.22 005 1.33 (0.04) 2.8 56 8.4
5 Elliptical 9.4 50 12.3 1.15004 1.21 ©.03 28 56 84
6 Elliptical 94 100 12.3 1.22 005 1.33 0.04) 2.8 56 8.4

Three replications for each trial.
Standard deviations in brackets.

Table 4.3 Experimental design adopted for the extended tests (hard compaction

level).

Tool type Width Depth Water content Bulk density ~ Speed range

(mm) (mm) (%) (Mg/m *) (m/s)
Elliptical 94 100 12.3 1.32 0.5-10.0
Elliptical 94 100 17.0 1.45 0.5- 84
Elliptical 4.7 100 17.0 1.45 0.5-10.0

Three replications for each trial.
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maintained for all runs. Each data point consisted of three replications. The soil was roto-
tilled once for each test run.

Extended trials included refinement for the elliptical tool working in the speed
range of 0.5 up to 10.0 m/s at 12.3% water content. The water content was then increased
to 17.0%. Two elliptical tools were tested: the same 9.4 mm wide elliptical tool and
another one with half the width. The tools were tested over speed ranges from 0.5 up to
8.5 m/s and 0.5 to 10 m/s, respectively.

After the soil had been carefully prepared and leveled the system was lowered from
the storage position and the tool carriage was moved to the start position with the tool tip
just above the soil surface. The tool was then lowered to the desired working depth. The
on-board computer (TDS2020) was set to run on its own battery supply and the stationery
computer was set on waiting mode. A triggering pulse generated by the electronic box
simultaneously started the stationary computer, the on-board computer and the hydraulic
drive. The carriage accelerated, reached the nominal steady state speed, and finally the
break action was activated. The on-board computer was then connected to the stationary
computer to download the measured tool forces and speeds to the PC-computer hard disc.

After each run was performed, the [-beam frame was lifted and the resulting soil
profile was recorded with a plastic profilometer. The profilometer consisted of sliding
plastic pins, approximately 2 mm wide, regularly distributed along a 300 mm long pin
holder bar. There was no space between pins. The pins were displaced over the disturbed

soil to closely follow the soil profile. The profile was then traced on paper with a pen.
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Photo and images using a video camera were recorded for posterior analysis of soil
disturbance.

The soil was then prepared again for the next test run as described above. Using
the above system, it was possible to collect one replication of draft versus operating speed
per soil preparation. Three replications of the same point measurement could usually be

completed per day.

4.2.2 Quasi-static triaxial/shear box test procedures

Triaxial tests were conducted to measure soil response at slow (quasi-static)
loading rates. The resulting soil stress-strain curves were needed to calculate quasi-static
parameters used in the described analytical soil model (chapter 3).

The triaxial cell (10 kN, ELE International Ltd., Hemel Hempstead, Hertfordshire,
England) used is a conventional design (Chi 1989) (Figure 4.8). Drained triaxial tests were
performed to represent shallow top soil cut by the soil tools (depth of 50 and 100 mm).
The equipment allows axial soil specimen compression at constant confining pressures
produced by the cell water pressure. In the drained test a coarse porous stone is used at
the base of the cylindrical soil specimen. The stone allows air and water to escape from the
soil specimen during soil compression.

The same soil with characteristics from the soil bin trials, in terms of water content
and bulk density, were used to reproduce the remolded soil in the triaxial and shear box
tests. The soil test procedure included first sieving air dried soil through a #10 US

Standard sieve with 2 mm round openings.
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Figure 4.8 Conventional triaxial apparatus used for drained soil tests (Chi

1989).
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Cylindrical soil specimens, 52 mm in diameter and 106 mm in length, were
carefully produced by statically compacting soil in layers using a split compaction mold.
Triaxial tests were conducted under confining pressures of 0, 30, 60 and 90 kPa. After
isotropic consolidation, the samples were loaded to failure at a rate of 3 mm/min,
corresponding to a reference strain rate of 0.03 min™.

A volumeter similar to that described by Dunlap and Weber (1971) and Chi (1989)
was used to measure specimen volume change (Figure 4.9). The volume change in the soil
sample during loading was calculated from (Chi 1989):

ApV,

AV’ = o+ hp (4.1)
where:
AV’ = volume change in soil sample during loading,
V,  =total air volume in sample, line and test chamber before loading,
P, = atmospheric pressure,
Ap = pressure change in the volumeter chamber during loading,

A pressure transducer (model DP103-26, Valydine Northridge, CA) with range of
3.5 kPa (£ 1%) was used to monitor the pressure change Ap. A 50 ml syringe was used to
calibrate the volumeter.

The axial force applied to the specimen was measured by a 2.4 kN load cell (model
SSM-500, Interface, Scottsdale, AZ). Displacement was measured using an LVDT
(7DCDT 1000, Hewlett Packard Co., Andover, MA). Axial load, confining pressure, axial

displacement and pressure change were recorded by a Campbell 21X Micrologger
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Figure4.9  Schematic diagram of volumeter (Chi 1989).
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(Campbell Scientific Inc., Logan, Utah). These data were later processed to give stresses,
strains and volume changes and to calculate Poisson’s ratio. The test was assumed to
occur at constant temperature. The room was temperature controlled (estimated variation
within +1°C for a 30 minute period) and the complete test was usually less than 30
minutes.

Soil parameters obtained from triaxial tests are given in Table 4.4. Parameters (Ry,
n, k, ¢, ¢, v) were calculated using the procedures of Duncan and Chang (1970) and Chi
(1989).

A modified direct shear box apparatus was used to evaluate quasi-static soil-tool
interface parameters (Figure 4.10). A polished steel block, the same tool material used in
the soil bin tests, served as the base of the shear box.

The shear stress-displacement relationships were derived for DH and WH in the
soil direct shear box tests. The parameters were obtained following the work of Clough
and Duncan (1971) and results are presented in Table 4.5. Confined pressures were
averaged values: 30, 60, 90 and 150 kPa. Experimental confining pressures varied
between +1 kPa approximately.

Different normal pressures (30, 60, 90 and 150 kPa) were obtained by hanging
dead weights on the machine. Shearing speed was set to 0.02 mm/s. A 4.5 kN load cell
(model SSM-1000, Interface, Scottsdale, AZ) was used to measure axial loads and a
Campbell 21X Micrologger (Campbell Scientific Inc., Logan, Utah) recorded forces and

time. The loading speed was assumed constant for the shear box apparatus.
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Table 4.4 Soil parameters obtained from triaxial tests.

R¢ k n c ) v a* b*
- (kPa) - (kPa) (deg.) - - -
DH" 0.70 2454 0.000 6.7 39.3 0.38 04287 0.0658

WH 073 15.82 -0.156 11.7 36.83 0.34 - -

DL™ 073 1904 -0.045 6.1 37.1 0.33 - -

Poisson'’s ratio averaged over four tests.
* Variable Poisson’s parameters a, and b, according to Chi et al. (1993a), equation 3.41.
* DH - hard soil condition, 50-100 mm depth, water content 12.3%, bulk density

1.33 Mg/m’.
“ WH - hard soil condition, 50-100 mm depth, water content 17.0%, bulk density
1.45 Mg/m’.
++ DL - soft soil condition, 0-50 mm depth, water content 12.3%, bulk density
1.15 Mg/m’.
Table 4.5 Parameters obtained from shear box tests.
R¢ k n C, o
- (kPa/mm) - (kPa) (degrees)
DH" 0.88 92.31 0.356 0.6 23.8
WH™  0.87 87.27 0.535 8.3 24.0

* DH - hard soil condition, 50-100 mm depth, water content
12.3%, bulk density 1.33 Mg/m’.

*+ WH - hard soil condition, 50-100 mm depth, water content
17.0%, bulk density 1.45 Mg/m’.

137



Normal load

Shear load

Soil sample

Failure plane

B Stccl block :
P 100 x 100 mm [

Figure 4.10 Modified direct shear box apparatus used to evaluate quasi-static soil

tool interface parameters (after Chi 1989).
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Large strains occurred for soil cutting and also for triaxial tests. Axial true stresses
and strains were calculated as described by Chi (1989).
Typical experimental data from a triaxial test are shown in Figure 4.11. Deviatoric

stress and Poisson's ratio are presented for a confining pressure of 90 kPa and loading rate

of 0.05 mm/s.
P
G, =———— 4.2
 Ag(l+2g,) (4-2)
l
€, =-ln(—l—) I<l, . & >0 (4.3)
0
VI
Ag, 1A —— Ag, (4.4)
2\ Vv,

where, for compressive values taken as positive;

C, = true axial stress (kPa),

g, = true axial strain, (assumed large),

P = axial load (kN),

Ao = initial specimen cross section area (m®),
£, = radial strain,

1y = initial length of specimen (m),

1 = length of specimen during loading (m),
AV’

= volumetric strain Ag, = Ag, +2Ag, , (assumed small),

AV’ = volume change (m?),

V;  =initial volume (m’).
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Poisson’s ratio was calculated as v =-Ag_/Ag,, which was used in this study.
Alternatively, it can also be calculated as v=0.5 (1-Ae, / Ag,), where A stands for
incremental values and Ae, the incremental strain value in the axial direction of a

conventional cylindrical triaxial test; however, not used in this study.

4.3 Reference Tool Dynamic Parameter estimation

A reference tool method was developed to verify the validity of the numerical code
Dyntool, and to estimate the dynamic parameter AN. As shown in the next chapter, the
Dyntool model did not adequately represent the dynamic soil cutting problem due to
numerical instabilities and lack of sensitivity in the draft values as tool shapes changed.
Then, a new soil constitutive relationship, where the viscous parameters represented by C;
were independent of the stiffness matrix, was implemented in a code, named the Dyntool-
2. The Dyntool-2 proved to be more successful than the Dyntool code. The same
reference tool procedure to obtain dynamic parameter AN for the Dyntool code was used
with the Dyntool-2 code to determine the dynamic viscous parameter C; . Only the
procedure considering AN with the Dyntool code is presented here, however, using C,
with the Dyntool-2 code may be similarly considered.

A flat reference tool was initially run in the soil at a constant depth. Draft versus
speed data were recorded and used along with the Dyntool code to estimate AN. Further
computations using the code with a triangular tool shape mesh were used to predict tool

draft at corresponding speeds of the tool running at the same operating depth.
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The parameters needed for numerical model simulation consist of static parameters
obtained using quasi-static triaxial tests and an additional dynamic parameter AN
(equation 3.39). To obtain the dynamic parameter AN, the linear relationship obtained for
the experimental draft-velocity curves is used. All quasi-static parameters are assumed
unchanged for the dynamic case; however, the dynamic parameter will produce an
expanding dynamic failure surface. The expanding surface is dependent on soil strain rates.

Data of draft versus speed obtained from the flat reference tool run in the high
speed monorail test are used as a reference curve. A numerical simulation using the
program Dyntool with different dynamic parameters AN is run to obtain a response
surface, i.e., a region of different predicted numerical drafts versus speed. Discrete tool
speeds are associated with a particular AN value when the experimental value of tool draft
corresponds to the predicted draft of the response surface. The same procedure is
repeated for various tool speeds to estimate values of AN in the desired speed range.
Therefore, discrete dynamic parameters are estimated for a range of discrete tool speeds.
The estimated dynamic parameters related to tool speed can then be used to predict soil
tool response (draft x speed) corresponding to the discrete tool speeds for a triangular
tool or other tool geometries for the same soil conditions and constant working depth.

To verify the validity of the numerical program code Dyntool considering the
inertial equation, a two-part procedure was necessary, namely, i) quasi-static, and ii)
dynamic verification, because an appropriate dynamic solution for a sample case was not

found in the literature.



Simulations using the Dyntool program were compared with the analysis of a
circular footing on clay presented by Duncan and Chang (1970) to check the validation of
the quasi-static numerical code. Data of draft versus speed were obtained for a flat
reference tool running at the depth of 100 mm in a hard compacted soil with 12.3% water
content. A flat reference tool is used together with the numerical code, Dyntool, to obtain
the dynamic parameter AN. The dynamic parameter was then used to calculate the
response of the triangular or other different tool shapes working at same tool depth at the

calculated discrete tool speeds.
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CHAPTER 5

RESULTS AND DISCUSSION

This chapter presents the results and discussion of the experimental data from the
monorail system, dynamic response and power analysis, soil disturbance and pulverization,

and evaluation of the soil constitutive model for tool draft.

5.1 Experimental Results

5.1.1 Dynamic response of monorail system

Tool forces and operating speeds measured with the monorail system indicate the
dynamics of the monorail system performs adequately. At steady state speed, the tool
carriage mass (~ 10 kg including tool) did not introduce any inertial components to the
force measurements. This was confirmed by running the tool and carriage at various
speeds under no soil load, i.e., while the tool was not cutting any soil, which had been
previously removed from the tool path. A typical no load run of a flat tool operating at 5.6
m/s is shown in Figure 5.1. Data points were averaged at every ten points (running
average) in order to interpret data. A loaded run with the tool cutting the soil at 100 mm
depth is shown in Figure 5.2. The tool reached steady state speed for the load and for the
no load cases during at least 0.3 s. Tool reactions were stable during this time interval and

indicated an approximate null value on the no load run (average -12 N).
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Data points in Figures 5.1 and 5.2 indicate that the variability in the draft reduced
when soil load was introduced into the system, probably due to strong damping effects
produced by the soil mass. Results from a power spectral density analysis reinforce this
statement. The objective of doing the power spectral density analysis was to detect the
periodic fluctuation of the tool draft. The analysis was performed for the data of the basic
experimental design. The constant component of draft (the average) was subtracted from
the data points to analyze only oscillating components. Figures 5.3 and 5.4 show the
power spectral density analysis of draft force Fy performed for the data of Figures 5.1 and
5.2, respectively. Integration of the areas underneath the curves indicated that the total
power spectral density with no load (9.8x10° N*) was almost twice the level when soil
load was present (5.0x10° N?). When the tool was moving without engaging the soil, load
shocks on the bearings and the I-rail caused a wide frequency band to be generated from
zero up to approximately S0 Hz (Figure 5.3). Although aliasing does not affect the DC
component of the draft signal, and power spectral density values were damped, it could
still be present in the signal. A complete frequency analysis of the draft signal is suggested.
Based on the findings of this section on dynamic response of the monorail system, the

monorail system is capable of adequately measuring tool draft versus speed data.

5.1.2 Effect of soil condition and tool shape on draft

Figure 5.5 shows average cone index profiles for the hard and soft-packed soil in

the soil bin for an average soil water content of 12.3%. Table 5.1, representing soft and
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Table 5.1 Cone index versus depth for soft and hard soil compaction and
respective bulk densities. The soft soil condition had a water content of 12.6% +

0.86%. The hard soil condition had a water content of 11.9% =+ 0.43%.

Depth Cone index Bulk density

(mm) (kPa) Mg/m’)

Soft Hard Soft Hard

25 113 (.37 110 (1D

50 304 (0.54) 380 (0.65) 1.15 (0.03) 1.21 (0.02)
75 1103 ©.44) 1830 (0.44)

100 1868 (0.25) 3685 (0.26) 1.22 (0.04) 1.33 (0.03)
125 2193 (022) 4083 (0.30)

150 2186 (0.29) 4577 (0.36)

(Coefficient of variation in decimal in parenthesis)

hard compaction conditions, summarizes average cone index for depths from 25 to 150
mm, soil bulk densities and soil water content.

Low values of standard deviations for soil water contents were detected across the
length of the soil bin; however, cone index readings presented relatively high values of
coefficient of variation. The soil preparation method might have been partially responsible
for the relatively high variation of soil penetration strength. The use of a hand-held
penetrometer could have contributed to the variations also. It was observed that the sheep

pack roller produced spots with concentrated higher compaction levels at approximately
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150 mm intervals. Although the packing action of the sheep-foot roller was intended to
pack the subsoil only, the soil surface was also affected.

Draft results for various tool shapes from the initial set of trials (see Table 4.2) are
presented in Figures 5.6 and 5.7.

A linear draft versus speed behaviour was then assumed for the data and linear
regression was performed for the whole data split according to tool type, depth of
operation, and soil packing level. High values of R? were obtained. Intercept and slope
values are also shown for each trial (Table 5.2).

When soil strength conditions were harder, tool shape had a more pronounced
effect on the average slope value calculated at the two operating depths with each soil
compaction level and tool type (Table 5.2). For the soft packed soil with tool operating
depth of 50 mm different tool types did not produce substantial changes on draft-speed
requirements (curves 1, 3 and 5, Figure 5.6). The small changes in intercept and slope
values obtained for this treatment support this result. However, an increase in speed still
produced increase in draft. For the remaining conditions, elliptical tools presented the
lowest, and flat tools the highest draft requirements.

Average slope values obtained from the two operating depths under the same soil
conditions decreased as tool shape became more streamlined. This trend in the slopes is
also clearly seen from curves 2, 4 and 6 in Figure 5.7. The streamlining effect suggests
that tools were been dragged through, rather than ‘cutting’, the soil. Increase in the
operating depth substantially increased the draft demand for the three tool shapes and two

soil conditions studied.
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Table 5.2 Summary of linear regression analysis of the entire data split

according to tool shape, depth of operation, and soil packing level.

Depth  Intercept  Slope R?

(mm) (N) (N-s/m)
Soft soil
1 Flat 50 31 19 0.712
2 Flat 100 80 74 0.879
3 Triangular 50 41 18 0.741
4 Triangular 100 167 51 0.646
S Elliptical 50 41 14 0.863
6 Elliptical 100 82 46 0.883
Hard soil
1 Flat 50 13 35 0.975
2 Flat 100 102 124 0.919
3 Triangular 50 -58 41 0.981
4 Triangular 100 186 93 0.860
5 Elliptical 50 4 24 0.936
6 Elliptical 100 341 42 0.654

Coefficient of determination, R? .
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Data obtained from the basic test design were primarily intended to verify the
mathematical model. Use of this data to perform a statistical analysis would require a split
plot analysis. Intercepts and slopes calculated with the basic design draft-speed data
(Table 5.2) could be used to develop the split plot analysis. However, the data did not
present sufficient degrees of freedom for the error terms in the analysis to be small enough
to give meaningful results. Therefore, a factorial statistical analysis is reported in the
following. This analysis is not quite proper because of nesting effects involved among
variables of classes; instead, replicates would be better interpreted as subsamples.

A statistical 3x2x2x3 factorial analysis of data for the 12.3% soil water content
was developed using the statistical package SAS® (SAS 1985). Appendix F shows input
data and a sample SAS program. An analysis on the residual errors indicated that these
error terms presented a reasonably normal distribution curve, with only a very slight
indication of skewness. Residuals were tightly concentrated around a zero mean value.

The analysis of variance was performed using the SAS GLM procedure. All data
(108 data points) were considered by combining soft-packed and hard-packed soil results.
The following treatments (variables of classes) were considered: tool shape (T), tool depth
of operation (D), speed (S) and soil bulk density B(D) along with the interactions: TxD,
TxB(D), TxS, DxS, TxDxS, B(D)xS and TxB(D)xS (Table 5.3).

A coefficient of determination, R?, of 0.968 and a coefficient of variation of 16.8%

were obtained for this analysis.
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Table 5.3 Statistical analysis of soil condition, tool depth, speed and tool shape

along with interactions for the basic test design (12.3% water content).

Factor df Pr>F  Significance
T 2 0.0001 =
D 1 0.0001 *
TxD 2 0.0001 *
B(D) 2 0.0001 *%
TxB(D) 4 03421 —
S 2 0.0001 **
TxS 4 0.0001 **
DxS 2 0.0001 **
TxDxS 4  0.0073 *
B(D)xS 4 00004 **
*

TxB(D)xS 8 0.0098

** significant at 1% level of confidence, — not significant,

T = tool shape,

D = tool depth of operation,

TxD = tool shape versus tool depth interaction,

B(D) = soil bulk density,

TxB(D) = tool shape versus soil bulk density interaction,

S = speed,

TxS =tool shape versus speed interaction,

DxS = tool depth versus speed interaction,

TxDxS = tool shape versus tool depth versus speed interaction,
B(D)xS = soil bulk density versus speed interaction,

TxB(D)xS = tool shape versus soil bulk density versus speed interaction.
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Elliptical tool shapes

Results were based on the experimental design adopted in Table 4.3 in which only
elliptical tool shapes were used. Figure 5.8 shows draft results of all runs for these tests.
Three cases were measured: a) tool width of 9.4 mm, soil water content of 17.0% and soil
bulk density of 1.45 Mg/m’, b) tool width of 4.7 mm, soil water content of 17.0% and soil
wet bulk density of 1.45 Mg/m’ and c) tool width of 9.4 mm, soil water content of 12.3%
and bulk density of 1.33 Mg/m’.

All three conditions produced high linear correlation coefficients. All cases show
draft increases with speed. The slopes of the curves indicate the effect of speed on draft.
Slope was reduced when tool width was reduced by half in the same soil structures
(Figure 5.8(i1)). This effect can be explained by a reduction of mobilized soil volume when
tool width is reduced. Consequently, less soil is exposed to viscous effects, producing less
draft in relation to increases in speed. From the cases studied up to here, draft increased
linearly with speed with high correlation.

Soil packed to different bulk densities at different water contents form different
structures. Thus, two different soil water contents and two different soil bulk densities
indicate the effects of two different soil structures, i.e., one soil structure has a bulk
density of 1.45 Mg/m’ with 17.0% water content and the other 1.33 Mg/m® with 12.3%
water content. The regression intercept increased when soil water content and bulk density

increased simultaneously. However, the draft versus speed slope increased slightly.
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The most remarkable change was a translation of the regression line, i.e.. an increased
intercept (mostly due to bulk density increase).

A great number of data points per curve were available for each soil structure and
tool shape. Three orthogonal forces on the tools were measured. Results of the narrow
elliptical tool Figure 5.8, (case b) are shown in Figure 5.9. Both figures showed draft
forces, F, , were much higher in magnitude when compared with vertical forces, F,.
Vertical forces, F, , were less than 15% of the magnitude of longitudinal forces, F.
Therefore, this study was concerned only with draft forces, Fx . Further studies are
required if vertical forces are to be included in the unalysis. Transverse forces, F, , should
produce zero magnitude resultant force values due to tool symmetry. Experimental data
confirm values of transversal forces close to zero. Transverse forces were thus not

considered in subsequent analyses.

5.1.3 Power analysis

An analysis of power per operating depth, P,, , (Darmora and Pandey 1985) was
conducted since the parameters need to determine P, were readily available (see equation
2.1). Soil properties vary over the operating depth, since the soil becomes stiffer and more
dense at higher depths. Power measurements have to be interpreted as an average of the
total depth. It is still a good measurement, however, because of the above it reflects only

the particular soil condition for which it is evaluated.
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Figures 5.10 to 5.12 present calculated values of P,,. Figures 5.10 and 5.11 were
obtained from the basic test design data, while Figure 5.12 is for the extended test data.
Figure 5.10 shows power per operating depth Py, for the soft packed soil at 12.3% water
content. Figure 5.11 shows P, values for the hard packed soil at the same soil water
content. Values of P, from Figure 5.12 were calculated from the extended test design data
with elliptical tools.

Multiple regression analysis based on a polynomial relationship was performed for
the extended test data. Sufficient degrees of freedom were available for this analysis. Table
5.4 shows results of the best fit regression coefficients. A similar analysis was not
performed for the basic test design because there were insufficient degrees of freedom.

Figures 5.10 to 5.12 show that power per operating depth increased with speed of
operation for all cases. A trend was identified for power values when comparing the
lowest and the highest operating speeds, 2.8 m/s and 8.4 m/s, respectively. At the lowest
speed, power P,, presented a narrow span range for all tool shapes. At the highest speed,
the power P, presented a wide span range. While at low speed of operation, change in
shape does not produce much change in P, , at high speeds, different tool shapes produce
substantial changes in P,, . On soft packed soil (Figure 5.10) a six fold increase in P,, was
observed for a threefold increase in speed at a 50 mm depth (curves 1, 3, 5). For the depth
of 100 mm (curves 2, 4, 6), increase in P, was about seven fold for the same speed range
(2.8 to 8.4 m/s). The value of P, is much more influenced by depth of operation and tool
shape at high speeds of operation. At low speeds these two factors are less remarkable.

Depth of operation was a major factor increasing expenditure of power. These results
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Table 5.4 Multiple regression analysis for the extended tests data with elliptical

tools, showing results of the polynomial law regression.

Width Water content  Bulk Density A B’ R?
(mm) (%) Mg/m’)
4.7 17.0 1.45 44225 3.3785 0.9948
94 17.0 1.45 0.7025 3.3563 0.9950
94 12.3 1.33 07116 1.3824 0.9866

'Y = AX? +BX, where Y = P,, (power per depth, W/m), X = S (speed, m/s).

were expected, since at higher operating depths more soil volume is considered and soil
strength increased as indicated by increasing cone index values (Table 5.1).

Results from the hard packed soil condition (Figure 5.11) showed similar trends
compared with soft packed soil. However, P,, increased ten fold for the operating depth of
50 mm (curves I, 3, 5). For the depth of 100 mm (curves 2, 4, 6), a five to seven-fold
increase occurred depending upon tool shape.

Regression curves presented in Figure 5.12 for the elliptical tools show consistent
behaviour. A four to fivefold increase in P,, was observed for the 2.8-8.4 m/s speed range,
at the operating depth of 100 mm (curves 1 and 3).

The change in soil structure from a combination of loose/dry (12.3% water
content, 1.33 Mg/m3 bulk density) to wet/dense (17.0%, 1.45 Mg/m3) produced an
increase of 50% in P, for the speed of 2.8 m/s. For the speed of 8.4 m/s, P, increased by

30%. Soil structure represented an important factor in soil draft.
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From previous cases, the most favorable condition in terms of lowest draft
requirement was running an elliptical tool, at a shallow depth of 50 mm on a soft packed
soil. For this tool, a three-fold increase in operating speed (2.8 to 8.4 m/s) produced a six
fold increase in P, .

There is potential for tool draft optimization. Changes in rake angle and tool
geometry to make the tool more aggressive, can reduce power requirements. It is
interesting to note that P, increases with speed supports the findings of strong damping

effects that were obtained from the power spectral density analysis.

5.1.4 Soil disturbance and pulverization

Analysis of soil disturbance in relation to tool type and operating speed was
performed. Figures 5.13 to 5.16 show results of cross-sectional soil profiles measured
with the profilometer. These data were available only in analog form. A statistical analysis
of profile parameters such as that done by Tessier et al. (1989) would require conversion
of data to digital form for numerical computation. A statistical analysis would also require
a larger number of profilometer replicates, since disturbed cross section patterns collected
along the tool path produced great variability. Analysis here was limited to visual
interpretation of Figures 5.13 to 5.16.

Two tool shapes (flat and elliptical), two depths of operation (50 and 100) mm,
and two speeds 2.8 and 8.4 m/s were considered as presented in the figures. Each trial was
replicated three times. Each graph line shown is one replication of the profilometer

measurements. Due to the limited profilometer width (300 mm), right and left sides of the
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centre line were measured separately. Lower curves on each figure were produced by
tools operating at 2.8 m/s. Upper curves corresponded to tools operating at 8.4 my/s.
Figures 5.13 and 5.14 correspond to flat tools, and figures 5.15 and 5.16 to elliptical ones.
The disturbed soil does not necessarily indicate the tool depth, because during the cutting
process soil was thrown so that some soil particles fell back and refilled the furrow.

Visual comparison between results from tools working at the 50 mm depth
(Figures 5.13 & 5.15) versus the same tool types working at the 100 mm depth (Figures
5.14 & 5.16) indicated larger soil disturbance for the 100 mm depths.

Soil particles were thrown sideways due to tool action. Flat tools spread more soil
sideways than elliptical tools in all cases shown. Stream-lined tools produced a narrower
soil spread pattern; for instance, compare Figure 5.13 (bottom) and Figure 5.15 (bottom).

The greater soil disturbance produced by an increase in operating speed can be
visualized in each figure by comparing results from 2.8 and 8.4 m/s speeds. For all cases,
from the lowest to highest speed, the furrow level was filled to an upper level and raised
mostly with more pulverized soil. Figure 5.17 shows soil disturbance and pulverization
produced by the passage of flat tools with a depth of 100 mm and speeds of 2.8, 5.6 and
8.4 my/s for a soil water content of 12.3%. Figure 5.17 supports soil disturbance trends
obtained in the traces shown in Figures 5.13 to 5.16.

It would have been desirable to measure the cross sectional area of soil particles
after the loose thrown soil had been removed from the surface. Some difficulties arose,

however, such as being able to remove soil without disturbing the remaining soil, and
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identifying the boundary between loose and undisturbed soil. It also becomes more
difficult to obtain cross-sectional areas due to changes in the reference soil level or datum.

It is helpful to define the soil structures to be used as follows: DL dry/loose (water
content 12.3%, bulk density 1.15 Mg/m®); DH dry/dense (water content 12.3%, bulk
density 1.33 Mg/m3); and, WH wet/dense (water content 17.0%, bulk density 1.45
Mg/m?).

A narrower soil spread pattern was observed for WH compared to DL tests. In
these tests, tool draft was higher. The increase in draft and decrease in soil spread
indicated that an extra resistance to tool movement was provided by the different soil
structures. Damping forces became more evident. The relatively short distance that soil
was thrown away from the tool path suggests low influence of inertial forces for the
investigated conditions (Personal communication, W. J. Chancellor, Professor Emeritus,
University of California, Davis 1996).

Soil pulverization was a reflection of the power required to cut soil. In general,
increasing tool speed increased soil pulverization; however, the resulting furrows did not
appear to change considerably. Quantification of the cross-sectional area with disturbed
soil removed would be desirable in future work. The R; index presented in the literature
would also be of value (equation 2.2). To do this a large number of profilometer replicates
would be required. Recording and analyzing these data would require great computational
capabilities. It would thus be more appropriate to use an automated process of data

collection and processing.
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5.2 Evaluation of Soil Constitutive Model for Tool Draft

Three steps were accomplished in this part of the study: (1) An available finite
element code (Dyntool) was modified to implement the procedure described by Duncan
and Chang (1970). To test the code, a static analysis of a circular footing on clay, reported
by Duncan and Chang (1970) was implemented using soil parameters given in their paper.
(2) Results from the triaxial tests on the DH soil structure were used to simulate quasi-
static triaxial tests to calibrate the model with experimental parameters. A variety of
dynamic simulations were implemented to determine appropriate time steps and mesh
refinements. (3) Performance of narrow tools, of flat and triangular shapes, were simulated
under both static and dynamic conditions. Flat tools were used as reference tools to
determine the dynamic soil parameters which, along with the static parameters obtained

from triaxial tests, were used to predict draft forces for the triangular tools.

5.2.1 Quasi-static sample case verification

Finite element analysis of the settlement of a circular footing on a pure clay soil
was reported by Duncan and Chang (1970). Parameters used in the numerical modeling
and results of average footing pressure versus displacements obtained by Duncan and
Chang (1970) are given in Table 5.5 and results of the simulation will be presented along
with simulations from this thesis for comparison (model I).

The numerical code used in this thesis (Dyntool) employs three-dimensional eight-
node brick elements. The original analysis by Duncan and Chang (1970) was developed

for a two-dimensional axisymmetric problem. Figure 5.18 shows the mesh used by Duncan
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Figure 5.18 Maesh for analysis of two-dimensional settlement of circular footing on

a pure clay soil used by Duncan and Chang (1970).
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Table 5.5 Parameters used in finite element analysis of a circular footing on clay

by Duncan and Chang (1970).

k n R c ¢  Unit weight v
(kPa) (kN/m?)

50 0 09 53 0 17.3 0.48

and Chang (1970). They used four node isoparametric and axisymmetric elements. They
presented their simulation results in a graphical form. The settlement curve predicted by
Duncan and Chang will be compared against simulated three-dimensional settlement
curves obtained using Dyntool.

Figure 5.19 shows a top view of the mesh and restraints used in the Dyntool
analysis. The three-dimensional mesh shown makes use of symmetry. The one quarter
section of the circular footing is considered equivalent to the original two-dimensional
Duncan and Chang’s problem. Average pressure was obtained by dividing footing reaction
by the area of the quarter footing. Load was imposed in small displacement steps along the
longitudinal direction.

Soil elements in compression and tension were modeled using the hyperbolic
model (equation 2.25) until element failure. Elements in tension were assigned a confining
pressure equal to zero. When element failure occurred, its modulus of elasticity was
divided by an arbitrary factor (500) and a residual modulus of elasticity value of 1.0 kPa
was assumed. The value of the tangent elastic matrix (equations 3.21, 3.40 for E=E,, 3.17
and 2.25) that is calculated based on the tangent modulus of elasticity and Poisson’s ratio,

was updated for new load iterations by dividing the current values of the tangent modulus
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Figure 5.19 Three-dimensional mesh and restraints used with Dyntool simulations

of two-dimensional circular footing.
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of elasticity (which compose the tangent elastic matrix, not the initial modulus) until a
residual value in the order of 1 kPa was reached. As reported by Duncan and Chang
(1970), the residual value of tangent moudulus of elasticity of the failed element affects
the shape of the final portion of the footing settlement curve to some degree (i.e., the
‘reference curve’ shown in Figure 5.20). When soil elements failed in tension a value equal
to soil cohesion was adopted for the soil shear strength. After failure, Poisson’s ratio was
assumed constant and close to a value of 0.5 (i.e., incompressible). The value used was
0.499. Prior to failure, Poisson’s ratio was assumed a constant equal to 0.48. This
procedure is the same as that implemented by Duncan and Chang (1970). Soil weight was
implemented in the form of concentrated nodal forces. A tolerance of 1% was used in the
Euclidean norm convergence criterion of the modified Newton-Raphson procedure
(equations 3.46 and 3.47).

The original loading increments applied to the footing by Duncan and Chang
(1970) were quite large (i.e., 26.75 kPa), probably due to computing limitations of that
time. In this thesis, load steps were adopted, as close as possible, to represent equivalent
loading increments used in the paper. Twenty five prescribed displacements of 50 mm
were adopted in this thesis. Figure 5.20 shows results of the Dyntool simulations as well
as the original Duncan and Chang (1970) solution. There was no significant improvement
in the Dyntool settlement calculation for refinements beyond 0.005 m, i.e., calculations
with smaller displacement increment sizes.

The tangent elastic matrix had to be divided by an ‘arbitrary’ factor after soil

failure. Figure 5.21 shows the effect of choice of this dividing parameter on predictions.
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The figure clearly shows that the model was sensitive to the choice of factor since large
loading steps also produced significant differences in the results (Figure 5.20). The model
was calibrated with known data (i.e., ‘reference’ in Figures 5.20 and 5.21), which is the
footing settlement solution curve reported by Duncan and Chang (1970). Having done
this, the Dyntool code was shown to adequately solve the Duncan and Chang (1970)
model equations.

As can be seen, determination of some model constants are arbitrary, i.e., there is
no well defined criterion for its determination. ‘Calibration’ of the static model was
achieved here by determining model parameters that reproduced, as near as possible,
Duncan and Chang’s solution for footing average settlement pressure versus
displacements. Despite all these difficulties, a reasonable correlation of the settlement
predictions by using Dyntool with the reported Duncan and Chang (1970) solution was

obtained.

5,2.2 Triaxial tests

Parameters obtained from DH triaxial tests were used in numerical simulations
using Dyntool and predictions were compared with the DH experimental data. Although
good stress-strain predictions are generally expected between experimental and analytical
data for quasi-static monotonic loading, the model as implemented had great difficulty
reproducing the soil test behaviour, particularly after failure, unless first calibrated with

known cases.



The previous section described calibration of the static model. Before verification
of the dynamic model, it was first necessary to ‘calibrate’ the quasi-static form of the
model. In this first step, measurements of reaction forces versus top cap displacements for
quasi-static triaxial tests were compared with numerical simulations. Soil properties and
results from DH samples were used. In the second stage (model IT), numerical simulations
representing triaxial tests were performed to investigate incorporation of dynamic

components in the model. Details of these steps were as follows:

I) A variable Poisson’s ratio was used in the simulation (Chi et al. 1993b). Parameters a,
and b; (equation 3.41) were available for DH samples (Table 4.5). The mesh and
concentrated loads simulating confining pressure are shown in Figure 5.22. The
magnitudes of the applied forces were determined by dividing the desired confining
pressure by the sample surface area and then applying equivalent forces at the element
nodes. The total force representing the confining pressure was applied in the first time
step, and after that set to zero. In the subsequent time steps the only loading applied were
prescribed displacements of the specimen top cap. In this way, second and subsequent
simulations started from a state of stress referring to the desired confining pressure applied
in the first step. Applying the total confining pressure in the first step was preferred over
applying it in small increments since test specimens were first consolidated and then
sheared by increasing the axial load under controlled displacement conditions. In this
incremental analysis the total load is not reapplied in subsequent steps, because this would

represent increased confining pressure for these steps. The confining pressure was applied
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to the quarter specimen in the form of concentrated loads radially applied to the external
surface of the soil specimen.

Numerical simulations and experimental data are presented for unconfined
specimens and for constant confining pressures of 30, 60 and 90 kPa in Figure 5.23. The
application of the total deformation was divided into displacement increments of 0.2 mm
for unconfined conditions and for a confining pressure of 30 kPa, 0.4 mm for 60 kPa and
0.55 mm for 90 kPa confining pressure. Experimental confining pressures varied between
+1 kPa approximately.

Very good agreement between analytical and experimental data was obtained for a
confining pressure of 60 kPa over all displacements, which were large. The displacement
of 40 mm corresponds to an axial true strain of 47%. For all confining pressures there was
good agreement between analytical and experimental data for relatively small true strains,
(~ 10%). However, for the 90 kPa confining pressure, predictions significantly
underestimated experimental data for displacements beyond 10 mm (9.9% strain).
Prediction trends diverged as displacements became larger. For smaller confining
pressures (i.e., 0 and 30 kPa) predictions overestimated axial forces consistently for higher
strains.

The numerical predictions were quite sensitive to the choice of value for the failure
ratio R;. Some of the above discrepancies can be explained by the choice of Ry value. The
value of R¢ had been calculated as an average of all R; obtained from all confining pressure
cases, despite the variation among the values. Very good predictions were obtained for the

confining pressure of 60 kPa which had a measured R¢ value approximately equal to the
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average 0.7. Discrepancies occurred as correct values of R, diverged from the average
value. However, further refinements on R¢ were not considered a major concern at this
point since the model was approximately reproducing the soil behaviour. End cap effects,
due to friction of the specimen ends against the top cap and the porous disk sitting on the
pedestal, may also contribute to these discrepancies. The specimen ends are modeled
frictionless, however, friction always occur in the measurements.

The adopted hyperbolic model (equations 3.21, 3.17, 3.40 for E=E, and 2.25),
using a variable Poisson’s ratio (equation 3.41), was thus deemed to justify proceeding
with the investigation of dynamic numerical simulation. At this stage, the finite element
code, Dyntool, was deemed to satisfactorily solve the theoretical equations for quasi-static

conditions.

II) In the next step strain rate effects were added to the static model according to equation
3.39, which makes use of the dynamic parameter AN. Viscous effects were incorporated
in the stiffness matrix (equation 3.26). At this stage inertial terms were still neglected, i.e.,
masses of soil particles were set equal to zero (i.e., p = 0, equation 3.27, since M=0)
(Model II).

A top cap speed of 8.4 m/s was simulated for a triaxial test subjected to a
confining pressure of 60 kPa. The effect of different values of strain rate coefficients, AN,
were investigated. Figure 5.24 shows predicted specimen force reactions vs. displacements
curves with AN values varying from zero up to 1000. Dynamic reaction forces when AN
was equal to 1000, increased up to five times in relation to the static case (i.e., AN=0).

The influence of AN on ‘viscous’ strength decreased with higher AN values. For instance,
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an AN value of AN=10 approximately tripled the predicted force (Figure 5.24) as
compared to AN=0. These simulations were performed to verify if the model could be
sensitive to different dynamic terms AN and also to see what happens to the specimen as a
result of this simulation. The data in the literature is not for same conditions in these
triaxial tests; however the simulations can be compared with respect to order of
magnitude. Soil strength versus speed data published in the literature (see Figures 2.4 to
2.7) show increases on tool drafts in the order of 1.5 to 4 times the quasi-static value,
which indicates that the order of magnitude of the predicted top cap reactions is adequate
for the ranges of AN used in these simulations. Figure 5.25 shows a cross-sectional area of
the deformed soil specimen when a 8.4 m/s speed was imposed at the top cap with ends
totally restrained. As can be seen, the cross-section bulged non-symmetrically indicating
non-homogeneous deformation. Fast triaxial test simulation was not compared in this
study to experimental data because of experimental difficulties, such as loading the short
specimen with constant fast speed and maintaining the confining pressure constant during
the test.

Figure 5.26 demonstrates the sensitivity of soil reactions to different loading
speeds from static to 8.4 m/s. A value of AN=2 was used in these simulations since it gave
an intermediate curve between minimum and maximum simulations in Figure 5.24. Change
in speed was seen to be able to mobilize strain rate (viscous) effects from the soil. and
increased top cap reactions were generated from increased top cap speeds.

Incorporation of inertial effects (equation 3.26) in the mode! II, (i.e., equations
3.21, 3.17, 3.40, 3.39, 3.41, 3.26 and 3.27; which will be refc:ied to from henceforth as

model III) produced reactions shown in Figures 5.27 and 5.28. Loading speeds were
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Figure 5.25 Finite element predicted cross-sectional area of a deformed triaxial

soil specimen when a 8.4 m/s loading rate was imposed at the top cap.
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varied from quasi-static (10° m/s) up to 8.4 m/s. Both figures show stable response
reactions for quasi-static conditions. Predictions of large static displacements were
achievable, agreeing with experimental tests, and that which is expected from tillage
operations. However, incorporation of inertial effects created numerical instabilities.
Oscillations ending in numerical over- or under-flow values occurred for all dynamic cases
(speeds 0.5-8.4 m/s) and the program had to be interrupted. Total dynamic top cap
displacements did not even reach 1 mm (less than 1% strain) before problems began. Thus,
the model does not show adequate behaviour when soil elements approach failure under
dynamic conditions.

It seems the dynamic case only aggravates problems which may already occur in
static cases. Even for static cases, when the displacements are very large (> 50 mm) many
elements fail and numerical instabilities also occur, leading to numerical over-flow of
estimated reactions. According to Chen and Baladi (1985), for the hypoelastic model

when the determinant of the material response function equals to zero, ie.,

det|Ci,-k, (c m,,)l =0, material instability or failure occurs. When tangential modulus of

elasticity and Poisson’s ratio, E. and v, are used, the behaviour near failure cannot be
adequately described. Therefore, it results from their statements that the determination of

the stiffness matrix generates numerical instabilities (det K — 0).
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5.2.3 Flat and triangular tool simulations

Despite all the problems above associated with model III, analysis was still
extended to confirm these findings using the real cutting tool problem. For these
simulations experimental tool data were also available for comparison, providing further
justification for need to change the model formulation.

Coarse meshes of 171 nodes and 92 elements (Figure 5.29) were used to simulate
the flat and the triangular tools. The triangular faced tool mesh was obtained by relocating
node coordinates of the original flat mesh corresponding to the soil-tool interface. A more
refined mesh consisting of 1399 nodes and 1040 elements (Figure 5.30) was also used for
the flat tool simnulations.

Incorporation of dynamic inertial effects (model III) in the flat and triangular
coarse meshes produced numerical instabilities as shown in Figures 5.31 and 5.32; just as
had occurred with the dynamic triaxial simulations. Total tool displacements were small,
i.e., less than 1 mm, when instabilities started to occur.

The refined mesh shown in Figure 5.30 was processed for AN values of 2, 10° and
10°%, with soil mass neglected. Loading consisted of 100 steps of 0.1 mm prescribed
displacements. Simulations were not capable of producing significant tool reactions when
the smallest to the largest value of AN were adopted (10 to 10%). Failed elements did
not respond adequately to viscous effects because division of the tangent elastic modulus
of the soil by a constant value also divided viscous effects, which had been moved to the
stiffness matrix. For the case of narrow tools, failure was initiated early, even under very

small displacements (0.3 mm).
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Figure 5.30 Refined (deformed) mesh consisting of 1399 nodes and 1040 elements

used to simulate the flat tool.
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5.2.4 Model modification for narrow tool simuiation

In summary, the numerical simulations of triaxial tests and of narrow tools showed
that, in its present form, the model with viscous effects (incorporated in the stiffness
matrix) and with inertial effects, i.e., model III, cannot satisfactorily simulate dynamic soil
loading, which is the primary aim of this research. The model might be considered
sufficient for a limited number of applications using simple static stress loading paths. Soil
behaviour was simulated adequately only during the early stages of loading, before failure
had been initiated. Incorporation of inertial effects generated numerical instabilities in all
considered cases. Removing inertial terms and dealing with damping, or viscous, terms
incorporated in the stiffness matrix (model II) delayed onset of numerical instabilities but
was not capable of predicting the significant differences in the reaction forces of the flat
versus the triangular edged narrow tools.

It follows that if the mass of soil can be neglected, then numerical oscillations
might be avoided. Under such conditions, the magnitudes of the stiffness matrix
coefficients should have high enough values to avoid numerical oscillations. However,
inclusion of the dynamic soil parameter, AN in the stiffness matrix (equations 3.21, 3.39
and 3.40), was not capable of producing considerable changes in the predicted tool draft.
This does not agree with the experimental data obtained for the narrow tools tested over a

range of speeds in the soil bin.
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It was noted during soil bin tests that the disturbed soil was thrown only short
distances from the tool path. This observation suggests that inertial effects are negligible
relative to viscous effects, which in contrast, would be substantial.

The constitutive finite element formulation was modified to incorporate lumped
damping effects while keeping the stiffness matrix free of damping or strain rate effects,
and neglecting inertial effects, that is:

Cu+Ku=R (5.1
where the R is the external load vector, where the inertial forces are neglected (equation

3.32), u are displacements and K the stiffness matrix (F/L). This will be referred as model
IV. In this formulation the damping coefficient C, is in the lumped matrix form (F-T/L),

(Desai and Abel 1972),

C =] n¥"¥dv (5.2)
18 = material damping (F-T/L),
b 4 = matrix of functions ¥; which have unit value over the region tributary to

node i and zero elsewhere,
\' = element local domain (L%).
In the lumped formulation procedure damping terms are placed at nodal points, in
directions of the assumed displacement degrees of freedom (Desai and Abel 1972). The
lumped damping matrix can be obtained by dividing the total element damping equally
among the element nodes. No interaction is assumed between nodal damping. Thus, there
is no interaction among damping components in the lumped damping matrix. The result is

a purely diagonal damping matrix.



The K. the stiffness matrix, is given by equations 3.21, 3.39 with AN=0 (Duncan
and Chang 1970), 3.40 and 3.41. That is:

The tangent modulus of elasticity,

2

_ R(c, -0,) o; ’ <
E,=1- 2ccosQ+ 20, sind Kp“(p_a'J (5.3)
(I -sing)
the constitutive matrix,
[(1-v) v v 0 0 0 ]
v  (I-v) v 0 0 0
v v (1-v) 0 0 0
E 0 0 0 -2v 0 0
C=———=— P (5.4)
(t+v)1-2v) < |_n
0 0 0 0 ( '9"’) 0
0 0 0 0 o (L= 2")
i \ 2 ]
the linear stiffness term for each element,
K, = [[[BTCBdetJdrdsdt (5.5)
vl
and a variable Poisson’s ratio,
g, -0
v=a, +b,('—i. (5.6)
(01 —0; )r

Stiffness was calculated according to the verified Dyntool code with AN equal to
zero, i.e., static condition (equation 3.39). The Dyntool code was modified to incorporate
the new numerical solution. In the Dyntool-2 code, stiffness still obeyed the hyperbolic

formulation with variable Poisson’s ratio but inertial terms were removed. Damping and
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strain rate values, previously neglected in the Newmark formulation (Bathe 1982), were
now reincorporated in the Dyntool-2 code (Appendix B). The integration scheme gives an
approximate solution of equation 5.1 similar to that presented in Table 3.1; however, the
equation presented in item 4 of part A is replaced by:

K=K+a,C, (5.7)
and the equation presented in the item 1 of part B is replaced by:

WA R=*4R+C,(a,'u+a, ‘u+a, i) (5.8)

The general procedure of adopting 2 damping term as explained above was based
on the one dimensional findings of Kocker and Summers (1988) in which a viscoelastic
model was found to best represent soil (Chancellor 1994). This was expected to reduce

numerical instability problems.

5.2.5 Predictions using a reference tool

Up to this stage of the model development, it had not been possible to use a flat
tool as a reference tool to determine viscous parameters (AN with Dyntool), which would
then be used in the model to predict the behaviour of another tool shape. A preliminary
investigation with this goal is presented in this section. However, due to problems with
Dyntool, C, viscous parameters with the Dyntool-2 code are used instead.

The Dyntool-2 finite element code was run using the coarse flat and triangular
meshes referred to in the previous section (Figures 5.29 & 5.33). The flat tool was used as

a reference tool to obtain C, parameters for different speeds of operation by comparing
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simulations with experimental results. The value of C, obtained in this way, and speed
were then used in the computer code to predict triangular tool drafts.

First, draft forces were predicted using an initial set of damping coefficient, C;, and
based on the error of predictions compared with experimental values, another value of
damping was selected for subsequent computations. Typically, around four to five
iterations were performed before convergence to a solution was reached. Five speeds
between 2.8 and 8.4 m/s were simulated for a flat tool operating at a depth of 100 mm.
The calculated maximum draft force of each speed was compared with the draft data
obtained from experimental measurements with the flat tool. Figure 5.34 shows the
calculated drafts for the reference tools. Peak values of draft from the force versus
displacement curves were used to determine damping coefficients. Displacements beyond
attainment of the peak value started to produce numerical oscillations and the numerical
analysis had to be interrupted. The peak value represents the maximum strength the soil
mobilizes at which point failure starts to occur more intensively. Interpolations and
extrapolations of C, were performed until the error between experimental and predicted
drafts was within 1.0 N.

A strong trend of increasing in the damping coefficient C, occurred with increase in
tool speed (Figure 5.35). Plotted on a logarithmic C; scale, an approximately linear
increase in the lumped damping coefficient C; for the lower speed range from 2.8 up to 5.6
m/s occurred. At a higher speed range from 5.6 up to 8.4 m/s another approximately linear
relationship of logarithm of damping C, with speed can be assumed. At approximately 5.6

m/s a sharp change occurred in the damping trend. Damping increased with speed at the
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Figure 5.35 Damping coefficients C, determined using reference tool method

increased rapidly with tool speed.



approximate rate of 4x10® kN s*m’ for the lower speed range up to 5.6 m/s speed. The
slope of the line for the higher speed range was 7x10°* kN s*/m’. Although, a rapidly
increasing damping versus speed relationship was obtained, at least the model (model [V)
was sensitive enough for the predicted drafts to correlate with experimental measurements
(Figure 5.36). Further study in which damping and inertial terms are separated would be
required to better evaluate the effect of inertial components in the model.

Once the values of damping coefficients C, were obtained for various speeds, the
finite element code was used to estimate drafts for the triangular tool at the same speeds.
The triangular mesh (Figure 5.33) was used to compute draft forces for each tool speed.
Figure 5.37 shows predicted and experimental triangular forces versus displacements at
three operating speeds. The model correctly predicted lower drafts for the triangular tools
than the flat tools. In view of the coarse mesh used, results are reasonable. Only two brick
elements had been used to represent tool shape. The utilized coarse mesh could have
introduced a stiffer than expected response for the soil elements. A finer mesh was not
used for this case. Predictions of the triangular tool draft overestimated experimental
measurements by less than 1% at the speed of 2.8 m/s and by 25% at 8.4 m/s. Mesh
refinement and re-sizing of loading steps should improve predictions, although this was
not done for this study. Even though improved soil models could possibly better predict
soil behaviour after failure, at least the present damping modification was capable of
providing predictions based on a reference tool and finite element analysis. This presented

a significant improvement over analyses reported in earlier sections.
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The reference tool procedure described here successfully combined a finite element
prediction with a standard reference tool in an inverse method to determine the dynamic
soil damped lumping coefficient C,. In theory, it should be possible to use it to ‘calibrate’
all soil parameters (including static ones) to the soil conditions, although at this stage this

was not done. Further work would be required to accomplish this.

5.3 Summary of Results and Discussion

Results presented in this chapter included: a) experimental soil-tool data and
statistical analyses; b) determination of soil parameters; and, c¢) numerical simulations

using a finite element code Dyntool, and its modifications.

5.3.1 Experimental results

All tools showed linear increases of draft with operating speed. Tool draft
requirements were lowest for the soft packed soil with the elliptical tool working at a
shallow depth (50 mm). Depth of operation and speed had substantial effects on the tool
draft. The shape of the tools was important. The more streamlined elliptical tool shape
resulted in reduced draft. Elliptical, triangular and flat tool shapes presented the lowest to
the highest draft requirements, in that order. This streamlining effect suggests that viscous
drag forces, rather than soil cutting forces, predominate. Power per operating depth also
increased with tool speed, represented by a polynomial law for the case of the elliptical
tools (the only cases which presented enough degrees of freedom for this analysis). Soil

disturbance and pulverization increased with increased tool speeds.
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5.3.2 Simulations

Soil was modeled as a hypoelastic material with strain rates incorporated in the
tangential modulus of elasticity and inertial soil mass in the equilibrium equation. The
Dyntool code was first verified using a quasi-static example available in the literature
(Duncan and Chang 1970). When simulation of dynamic cases were performed, numerical
instabilities occurred when soil elements approached failure. Using the flat and triangular
tool meshes, instabilities appeared for small displacements, usually smaller than 1 mm.

Several steps were tried to solve the problem. The removal of the inertial term (Mii)

from the model reduced numerical oscillations. Triaxial simulations showed that the model
was sensitive to the strain rate parameter incorporated in the stiffness matrix, AN, but this
was not the case when a narrow tool was simulated. Modifications to this model involved
removing strain rate effects from the stiffness matrix and introducing a damping matrix C
in the equilibrium equation. This reduced numerical instabilities, so that larger tool
displacements could be simulated. Nevertheless, displacements were still limited to less
than 10 mm, thus not completely solving the problem.

A reference tool procedure was used to estimate dynamic damping coefficients C; .
The estimated damping coefficients increased rapidly with increases in tool speed,
particularly for speeds from 5.6 to 8.4 m/s. The modified model (Dyntool-2) was still not
completely satisfactory in modeling the soil cutting problem (mainly due to numerical
instabilities), particularly when soil approached failure. However, reasonable results were
obtained. Predictions using triangular tools showed correct trends and errors were on the

order of 1% for the speed of 2.8 m/s, and 25% error at 8.4 m/s. The use of the reference
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tool shows promise, since all dynamic and static model soil parameters can in theory be
obtained by doing in-situ tests with a simple tool shape, eliminating the need for laborious

laboratory tests (e.g. triaxial tests) with remolded soil specimens.

For the range of speeds tested a ‘blunt’ (i.e., elliptical) tool presented lower draft
demand than a sharp (i.e, triangular) tool. These experimental results suggested that tool
drag predominated over soil cutting. This finding was further supported by the modelling
exercise, in which viscous terms were much more important rather than inertial terms
(which in fact could be neglected). Excessive manipulation and remoulding of the soil in
the soil bin, without allowing enough time for soil cementation bonds to re-form, may be
the main reason for this behaviour. Field testing in cemented soils would be required to

investigate both drag and cutting forces behaviour.



CHAPTER 6

SUMMARY AND CONCLUSIONS

The effect of operation speed on the behaviour of narrow tillage tools has been
studied only to a very limited extent up to the present time. Theoretical aspects include
determination of static and dynamic soil properties. In this study, static soil parameters
were determined from conventional triaxial tests, while a new technique for the
determination of a dynamic soil damping parameter was proposed and a preliminary
verification carried out. The concept was developed based on developments of standard
reference tools previously adopted by other researchers. The technique relies on
measurements of a standard reference tool draft which is used as an inverse method to
determine a dynamic soil parameter and a finite element method implemented in the
Dyntool code to solve model equations. The technique needs further development and
hopefully can aid in the design of new narrow tillage tools. The most successful soil model
verified here was a simple viscoelastic one. A three-dimensional model was used due to
the nature of narrow tillage tool behaviour.

As a part of this research, a unique soil bin high speed tool testing device was
developed. An electrical motor of 30 kW was adequate to drive the carriage system having
an approximately 10 kg mass, along a 9 m long rail. The successful testing of tillage tools
in an ordinary, short (9 m), soil bin facility at speeds up to 10 m/s is an important

development. Another important aspect of high speed operation of tillage tools, i.e. the
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power demand, was analyzed. Power per operating depth increased with speed for all
studied cases.

The following conclusions are drawn from this study:

Objective 1. To accomplish objective 1, a unique 9-m long monorail equipment and
instrumentation were developed to drive and to measure draft forces and speed of narrow
tools working in a soil bin. The system worked satisfactorily for the range of tested speeds
of 0.5 to 10 m/s. Tool steady-state speeds were attained and maintained for approximately
1-3 m. The amount of scatter of draft data points, supported by a power spectral density
analysis of draft data, showed that the system worked with reduced draft fluctuations
when a tool moved while engaged in the soil. Roughness meters, i.e. a profilometer, was
used to assess soil tillage disturbance.

Rectangular, triangular and elliptical shaped narrow tools were evaluated using the
developed system. Power spectral density analysis of draft data indicated substantial soil
damping effects. Power per operating depth, P,, , increased with tool speed; draft forces
also increased with speed. High speeds of operation represented more remarkable
differences in P,, than low ones when comparing different tool shapes. Depth of operation
was a major factor increasing expenditure of power per depth of operation. The elliptical
tool shape showed better P, performance.

Photographic and video camera analysis indicated increasing soil crumbling with
increasing tool speed. Three replications on soil disturbance measurements by using

profilometers were not sufficient for statistical considerations. Difficulties arose in trying
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to measure the cross-sectional area of the disturbed soil around the tool path.
Quantification of these parameters could not be addressed in the present work.

Soil preparation was reflected in the draft results. Maximum measured average
tool draft (rectangular tool, width of 9.4 mm, operating depth 100 mm) was 1.2 kN at 8.4
m/s. Soil properties, however, where found to be highly sensitive to the soil preparation
method. Measured soil cone index values showed large coefficients of variance (22-77%,
at 12.3% average water content).

Tool shape, depth of operation and speed had substantial influence on draft. Data
of soft pack soil for the depth of 50 mm did not show substantial change in draft for the
investigated tool shapes. It was the only condition that did not present a significant
influence of tool shape on draft.

When soil structure had greater bulk densities shape effects were much more
evident. Comparisons among tool shapes indicated elliptical, triangular and rectangular
tool shapes, had lower to higher draft requirements in increasing order. All cases showed
linear draft vs. speed relationships and high values of R*.

Soil was thrown only a relatively small distance away from the tool path, indicating

low influence of inertial forces but high viscous effects on tool draft.
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Objective 2. A viscoelastic based constitutive model was developed. Models did not
satisfactorily handle soil behaviour close to soil failure. As a result, difficulties were
encountered in implementing the model in a finite element formulation; specifically
numerical instabilities were prevalent in dynamic cases.

A fundamental problem was revealed during the literature review. It seems that
hypoelastic models with variable Young’s modulus and Poisson’s ratio cannot adequately
predict soil behaviour close to failure. In situations when the determinant of the stiffness
matrix is equal to zero, (det ICl = 0), material instability or failure occurs. In this thesis,
while this was already a problem when running quasi-static large deformations, it became
even more aggravated when attempting to simulate dynamic cases, particularly for narrow
tools since failure is initiated immediately on very small tool displacements (<1 mm).

Some values of soil parameters in the Duncan and Chang (1970) model are
arbitrary so that calibration is required. Inclusion of a variable Poisson’s ratio into quasi-
static triaxial modeling provided good predictions when compared with experimental
measurements. However, dynamic simulations incorporating inertial effects and viscous
effects directly in the stiffness matrix K, where Mii+Ku=R, produced numerical
oscillations when the soil approached failure. When failure was reached, low values of the
stiffness matrix introduced strong oscillations, particularly with the inertial dynamic model.

Neglecting inertial effects Mii from the analysis, while still considering viscous

effects by incorporating them in the stiffness matrix, and with a residual value set to the
stiffness matrix for soil elements at failure (see Duncan and Chang 1970) solved problems

with numerical oscillations. However, the resulting model gave poor predictions when
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strain rate effects where introduced; the model did not produce increased draft response
when tool speed was increased.

When damping effects were considered separately and removed from the stiffness
matrix to produce a system equation of the form C,u+ Ku= R, better predictions were
obtained. The use of high damping values, C; , in the numerical analysis reduced, but did
not eliminate, oscillation effects. The equivalent stiffness matrix K resulted in higher
numerical values of stiffness so that oscillations simply occurred at slightly larger tool

displacements (1 to 5 mm).

Objective 3. An innovative procedure was proposed to determine dynamic soil damping
properties by using the reference tool concept combined with finite element analysis and
static soil properties determined using conventional methods. Damping rate coefficients
representing dynamic soil properties were obtained from rectangular reference tool runs
and then used in the finite element model to estimate draft forces for triangular tools. Even
though the soil finite element mesh used was coarse and the soil mode! was only
satisfactory prior to soil failure, the model was capable of predicting distinguishing
features of flat versus triangular tool performance. Correct trends were produced, but
values of draft versus speed were overpredicted by 1% to 25%, with the higher differences
obtained at higher speeds. Thus, the preliminary trials show that the method proposed has

promise, but a more complete, broader investigation is required.



In conclusion, there is still a need to develop appropriate soil constitutive models
to improve simulation analysis. Correct modeling of soil failure is particularly important

for the tillage tool cutting problem.



CHAPTER 7

RECOMMENDATIONS AND SUGGESTIONS

FOR FUTURE RESEARCH

The following are suggestions arising from the work presented in this thesis.
1) Empirically test and improve different tool shapes in terms of draft and soil disturbance
in the soil bin by means of the developed high speed equipment. Soil openers might be

tested and compared.

2) Develop adequate automated instrumentation to measure disturbed soil cross-sectional
profiles and cutting areas. Automation will facilitate obtaining enough replications for

statistically sound analysis. Equipment with greater data storage capacity is needed.

3) Design and develop adequate depth controller devices in order to make practical field
applications viable for high speeds. Also, potential applications in ‘controlled traffic’

monorail systems shows promise and should be investigated.

4) Perform fundamental studies of soil cutting over high speed dynamic range (W. J.
Chancellor, Professor Emeritus, UC Davis, Personal communication, 1996). This might
include soil cutting with a wire cutting materials with various viscosities and even water

beds. The purpose is to isolate fundamental soil effects.
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5) Investigate the use of viscoplastic models of soil behaviour which would handle soil
failure in a more adequate form. Optimizing for a minimum number of dynamic parameters

while considering static parameters constant might greatly facilitate dynamic analysis.

6) Proceed with a complete study based on the reference tool concept described in this
thesis. In theory there is no need to rely on determination of static parameters from static
triaxial tests since all static and dynamic parameters can be obtained from response
surfaces and inverse techniques. Changes in load steps, more mesh refinement and a more

suitable constitutive model might be required (see Rubinstein et al. 1994).

7) The use of full advantage of pre- and post-processors from commercial finite element
programs is strongly recommended. This will be particularly needed for meshes with a

large number of degrees of freedom, which is very common in three dimensional analysis.

8) Higher orders of approximation for updated Lagrangian schemes are also recommended
to avoid errors for large load steps. In this thesis updated nodal coordinates were used.

The implementation of full Newton Raphson method is also recommended.

8]
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Appendix A

Tensors and tensor notation

Definition

Consider (in a Cartesian coordinate system) a set of axis (X;), with the
corresponding set of unit vectors (e;) (also known as the basis of the coordinate system),
and another set (x;) with the basis (e; ). The Ba,- is the cosine of the angle between the
X, -axis and the x;-axis, i.e., e; -e; =B;.

A tensor of rank or order n is a quantity T represented in a basis (e;) by a

component array {Ti.i:-.i.. }(i,iz...in =1,2,3)and in another basis (e )by the component

array {T }(i,iz...in =1, 2, 3) where,

ijiy-.iy

Ti',iz._i,, = Bi,k, Bizkz --~Bi,k, Tk,k:._k, (A.1)

Example of tensor quantities are stress, strain and moment of inertia.

Notation

Indicial and tensor notation provide an economic manner to write complicated and
long mathematical expressions. Three coordinates of a point, denoted by x, y, z or x;, Xz,
X3, can be compactly expressed as:

x,i=1,2,3 (A2)
In the case of a second order notation,

xi i j=1,2,3 (A.3)



represents,

1= 1,_] = 1, 2,3 Xn X X
1=2,j=12,3 = [X, X5 Xxn (A4)
1i=3j3j=1273 Xy X3 Xy

and, in general, the number of terms N in an indicial notation of nth order can be
expressed as: N = 3°. (A.5)

The ‘summation convention’ is defined as follows: the symbol Z may be omitted

i
(i.e., it is implied) if the summation (dummy) index (say i) appears exactly twice in each
term of sum. Example:

a;b, =a,b, +a,b, +a;b,. (A.6)
If a subscript occurs precisely once in one term of an expression it is called a ‘free index’;
if a subscript occurs precisely twice in one term of an expression it is called a ‘dummy
index’; it is a mistake if the subscript occurs more than twice.

The Kronecker delta is defined as,

1 ifi=j
= =3, A7
% {o ifi;tj} i (A7)

A comma is used to indicate differentiation; thus for example, the partial derivative

form of du,/dx, can be simplified to the formu,;. The first subscript refers to the

component of u, and the comma indicates partial derivative with respect to the second
subscript correspondent to the relevant coordinate axis.
Details on this subject are available in Desai and Siriwardane (1984), Lubliner

(1990), and Chen and Saleeb (1982).



Appendix B

Dyntool program code

C....INCREMENTAL ANALYSIS VERSION 1.0 FOR VAX 3100 with iteration
C.....and with constant time step (Bathe algorithm)
PROGRAM FEP2
C....FEM SOFTWARE FOR MACHINE-SOIL SYSTEM
C....VERSION 1.0
C....WRITTEN BY JIE SHEN.
C....DEC.19, 1993
C....FORTRAN COLUMN MAJOR
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL EXFIL
REAL TO,DT,SECNDS
CHARACTER*9 FLLFO
CHARACTER NAMINP(9),NAMOUT(9),HEAD*50,HEAD1*50
COMMON/HEAD/HEADI
EQUIVALENCE (FI,NAMINP(1)),(FO,NAMOUT(1))
DATAFLFO/ .DAT, .OUTY
DATA HEAD/ FEM SOFTWARE FOR MACHINE-SOIL SYSTEM 1.0 7/
HEADI=HEAD
WRITE(*,1000)
WRITE(*,*) ' INPUT FILE NAME (5 LETTERS ONLY) '
READ (*,'(5A1)) NAMINP(I),I=1,5)
DO I=1,5
NAMOUT(I)=NAMINP(I)
END DO
INQUIRE(FILE=FO,EXIST=EXFIL)
IF(EXFIL)THEN
OPEN(6,FILE=FO,STATUS='OLD")
ELSE
OPEN(6,FILE=FO,STATUS=NEW")
END IF
OPEN(5,FILE=FL,STATUS='OLD")
c******************************
inquire(file="output.fil',exist=exfil)
if(exfil) then
open(7,file="output.fil',status="old")
close(7,status="delete")
endif
open(7,file="output.fil',status="new")

inquire(file="disp.fil',exist=exfil)
if(exfil) then
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open(81,file="disp.fil',status="old")
close(81,status='delete’)
endif
open(81,file='disp.fil',status="new")
inquire(file="VELO.fil' exist=exfil)
if(exfil) then
open(84,file="VELO.fil' status="old")
close(84,status='delete")
endif
open(84,file="VELO.fil',status="new’)
inquire(file="ACCE.fil' exist=exfil)
if(exfil) then
open(85,file="ACCE.fil',status="old")
close(85,status='delete")
endif
open(85.file="ACCE.fil',status="new’)
inquire(file="fail fil' ,exist=exfil)
if(exfil) then
open(82,file='fail.fil',status="old")
close(82,status='delete’)
endif
open(82,file="fail fil',status="new’)
inquire(file='gaus.fil' exist=exfil)
if(exfil) then
open(83,file="gaus.fil',status="old’)
close(83,status="delete’)
endif
open(83,file="gaus.fil' ,status="new")
inquire(file="PLOTDISP.fil',exist=exfil)
if(exfil) then
open(86,file="PLOTDISP fil',status="o0ld")
close(86,status='delete’)
endif
open(86,file="PLOTDISP.fil',status="new’)

inquire(file="_LREAC.FIL' exist=exfil)

if(exfil) then
open(89,file="LREAC.FIL'status="old")
close(89,status='delete’)
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endif
open(89.file="LREAC.FIL',status="new")

WRITE(89,*%) LREAC.FIL - NDF, TOOL LOCAL REAC: X,Y.Z'

¢ MAXM=30000 -—--> 33000
¢ MAXR=50000 -—---> 85000
¢ MAXA=500000 -——-> 910000
WRITE(6,1000)HEAD
TO=SECNDS(0.0)
CALL PCONTR(FO)
DT=SECNDS(TO0)
WRITE(*,600)DT
600 FORMAT(' ', Lapsed time ="F10.1," sec."
1000 FORMAT(/A50/)
END

C....Modified Uriel A. Rosa feb 08/96

SUBROUTINE ADDSTF(LD,JP,S,NST)
IMPLICIT REAL*8 (A-H,0-Z)
C....STIFFNESS MATRIX ASSEMBLAGE
PARAMETER (MAXA=910000)
CHARACTER Y
COMMON/PRINT/Y
COMMON/A/A(MAXA)
COMMON/CDATA/NDF,NDM,NEN,NEJ,NE,NEQ
COMMON/ELDATA/LM,N,MA MCT.,IEL NEL
DIMENSION LD(*),JP(*),S(NST,NST)
IF(Y.EQ.'Y'OR.Y.EQ.'y") WRITE(*,2000) N,S
2000 FORMAT(' ELEMENT NUMBER ',I14,' ELEMENT STIFFNESS'/(6E12.5))
DO 200 J=1,NST
K=LD(J)
[F(K.LE.0) GO TO 200
L=JP(K)-K
DO 100 I=1,NST
=LD(D)
IF(M.GT.K.OR.M.LE.0) GO TO 100
M=L+M
AM)=AM)+S{.I)
100 CONTINUE
200 CONTINUE
RETURN
END



SUBROUTINE BASBLY(B,P,.LD,NS)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION B(*),P(*),.LD(*)
C.....ASSEMBLE THE LOAD VECTOR
DO 100 I=1,NS
I=LD()
[FAI.GT.0) BAI)=B(O)+P(I)
100 CONTINUE
RETURN
END

SUBROUTINE BOUN(ID)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
LOGICAL GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DIMENSION ID(NDF,*),IDL(6)
CHARACTER*6 BC
DATABC/ B.C. "/
C.....RESTRAINT CONDITIONS INPUT
4 IF(DB_FLAG) WRITE(6,2000) (I,BC.I=1,NDF)
IF(SC_FLAG) WRITE(*,2000) (I,BC.I=1,NDF)
DO 10 I=1,NJ
DO 10 J=1,NDF
10 ID@,DH=0
N=0
NG=0
402 L=N
LG=NG
READ(5.*) N,NG,(IDL(D),I=1,NDF)
50 IF(N.LE.0.OR. N.GT.NJ) GO TO 60
DO 51 I=1,NDF
ID(I,N) =IDL(I)
51 IF(L.NE.0 .AND. IDL(I).EQ.0 .AND. ID(I,L).LT.0) ID(I,N)=-1
LG=ISIGN(LG,N-L)
52 L=L+LG
IF((N-L)*LG .LE.0) GO TO 402
DO 53 I=1,NDF
LMLG =L-LG
53 IF(ID(I,LMLG).LT.0) ID(IL) =-1

243



GO TO 52
60 DO 58 N=1,NJ
DO 56 I=1,NDF
[F(ID(I,N).NE.O) GO TO 57
56 CONTINUE
GO TO 58
57 IF(DB_FLAG) WRITE(6,2005) N,(ID(.N),I=1,NDF)
IF(SC_FLAG) WRITE(*,2005) N,(ID(,N),I=1,NDF)
58 CONTINUE
RETURN

2000 FORMAT(/5X,NODAL BOUNDARY CONDITIONS'//2X,'NODE',7(14,A6)/1x)
2005 FORMAT(16,7(17,3X))
END

C.....UPDATE ALL NODE COORDINATE AFTER EACH LOAD INCREMENTAL
STEP
SUBROUTINE CUPDATE(X,UR,ID,F,IX,NEN1)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL IT_FLAG
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON/ITFACE/NINT,THITA,H
COMMON/PROCESS/NPROP,NITEM,IT_FLAG
DIMENSION X(NDM,*),UR(*),ID(NDF,*),F(NDF,*),IX(NEN 1,*)
DO 110 N=1,NJ
DO 110 I=1,NDM
K=ID(I,N)
[F(K.LT.0) X(ILN)=X{IN)+F(L.N)
[F(K.GT.0) X(I,N)=X(I,N)+UR(K)
110 CONTINUE
CS=COS(THITA)
SN=SIN(THITA)
DO 120 N=1,NE
=[X(NENI,N)
[F(MA.EQ.NINT) THEN
I1=IX(1,N)
[2=IX(2,N)
X(1,12)=X(1,I1)-H*CS
X(2,12)=X(2,11)-H*SN
ENDIF
c120 CONTINUE
RETURN
END

O O 000000006
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* DEFINITLFI i
LOGICAL TRUE,FALSE
INTEGER OK,EOF
PARAMETER (TRUE=.TRUE.,FALSE=.FALSE.,OK=0,EOF=-1)

SUBROUTINE ELDAT(IX,NEN1)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DIMENSION IX(NENT1,*),IDL(9)
LOGICAL ERR,GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
C.....ELEMENT DATA INPUT
2 L=0
Li=1
I=1
DO 206 I=1,NE,50
IF(DB_FLAG) WRITE(6,2001) (K,K=1,NEN)
[F(SC_FLAG) WRITE(*,2001) (K,K=1,NEN)
J=MINO(NE,[+49)
DO 206 N=LJ
[F(L-N) 200,202,203
200 READ (S,* ERR=15) L.LX,LK,(IDL(K),K=1,NEN)
IF(L.EQ.0 .AND. L1.EQ.0) GO TO 15
L1=LX
IF(L.LT.0) GO TO 15
IF(L.EQ. 0) L= NE+1
IF(LX.EQ.0) LX=1
IF(L-N) 201,202,203
201 IF(DB_FLAG) WRITE(6,3001) LN
IF(SC_FLAG) WRITE(*,3001) LN
ERR = .TRUE.
GO TO 206
202 NX=LX
DO 207 K=1,NEN
[F(IDL(K).GT.NJ.OR.IDL(K).LT.0) GO TO 208
207 IX(K,L)=IDL(K)
X(NEN1,L) =LK
GO TO 205
203 CONTINUE
IX(NEN1,N) = IX(NEN1,N-1)
DO 204 K=1,NEN
IX(K.N) = IX(K,N-1) +NX
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[F(IX(K.N-1).EQ.0) IX(K,N)=0
IFIX(K,N).GT.NJ .OR. IX(K,N).LT.0) G O TO 208
204 CONTINUE
205 IF(DB_FLAG) WRITE(6,2002) N, IX(NEN1,N),(IX(K,N),K=1,NEN)
IF(SC_FLAG) WRITE(*,2002) N,IX(NEN,N),(IX(K,N),K=1,NEN)
GO TO 206
208 IF(DB_FLAG) WRITE(6,3002) N
IF(SC_FLAG) WRITE(*,3002) N
ERR=.TRUE.
206 CONTINUE
2001 FORMAT(//5X,ELEMENTS CONNECTION'//1X,ELEM MATE',
1 10(I2, NODE')/(10X,10(I2,' NODE"))
2002 FORMAT(2I5,1017/(10X,1017))
3001 FORMAT(SX,**FATAL ERROR** ELEMENT"I5, APPEARS AFTER
ELEMENT'
1 ,I5)
3002 FORMAT(5X,'**FATAL ERROR** ELEMENT"I5,' HAS ILLEGAL NODES")
15 RETURN
END

SUBROUTINE ELEMLIB(D,UL,URL, X, XI.O,IX,S,P,VL,L.J K ISW)
IMPLICIT REAL*8 (A-H,O-Z)

C....ELEMENT LIBRARY
REAL*8 P(K),S(K,K),UL(1),URL(1)
DIMENSION IX(1),D(1),X(1),XLO(1),VL(ndf,*)
COMMON/CDATA/NDF NDM,NEN,NJ,NE,NEQ
COMMON /ELDATA/ LM,N,MA ,MCT,IEL,NEL
IF(IEL.LE.0.OR.IEL.GT.30) GO TO 400

IF(IEL.EQ.11) GO TO 11

IF(IEL.EQ.16) GO TO 16

IF(IEL.EQ.17) GO TO 17

IF(IEL.EQ.18) GO TO 18
IF(IEL.EQ.26) GO TO 26

IF(IEL.EQ.27) GO TO 27

IF(IEL.EQ.28) GO TO 28

IF(IEL.EQ.29) GO TO 29

IF(IEL.EQ.30) GO TO 30

IFIEL.EQ.31) GO TO 31

IF(IEL.EQ.32) GO TO 32
cll CALL ELMTI11(D,UXJIX,S,P,IJ K ISW)
¢ GOTO 100
cl6 CALL ELMT16(D,UL,URL.X,XLO,IX,S,P,VL,[J K, ISW)
¢ GOTO 100
cl7 CALL ELMT17(D,U,X.IX,S,P,VL,IJ,K,ISW)

O O 006

o0On0aqe e
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¢ GOTO 100
cl8 CALL ELMT18(D,UX,IX,S,P,VL,LJ,K,ISW)

¢ GOTO 100

c21 CALL ELMT2{(D,UX,IX,S,P,VL,LJ.K,ISW)

¢ GOTOI100

26 CALL ELMT26(D,UL,URL,X,XLO,IX,S,P,VL,LLI.K.ISW)

GO TO 100

c27 CALL ELMT27(D,U.X,IX,S,P,VL,LJ K, ISW)

¢ GOTOI100

c28 CALL ELMT28(D,U.,X,IX,S,P,VL,LJLK,ISW)

¢ GOTO 100

C29 CALL ELMT29(D,UX.IX,S,P,VL,1J.K,ISW)
C GOTO 100
C30 CALL ELMT30(D,U,X.IX,S,P,VL.LJ.K,ISW)
C GOTO100
C31 CALL ELMT31(D,UX,IX,S,P,VL,1],K,ISW)
C GOTO100
C32 CALL ELMT32(D,U.X,IX,S,P,VL,LJ,K,ISW)
C GOTOI100
100 RETURN
400 WRITE(*,4000) IEL

STOP
4000 FORMAT(5X, **FATAL ERROR** ELEMENT CLASS NUMBER',I5,
INPUT")

END

¢.....Uriel A.Rosa.... June 4,96
c.....Uriel A.Rosa .... June 2,96
C....Modified Uriel A. Rosa Feb 10/96 ; May-18-96 (Poisson) UAR

SUBROUTINE ELMT26(D,UL,URL.XL,XLO,IX,S,P,VL NDF,NDM,NST,ISW)

IMPLICIT REAL*8 (A-H,0-Z)

CHARACTER HEAD*50,WD*11,WDD*10,FILENAME(12),fi*12
C....THREE-DIMENSIONAL, ISOTROPIC, NON-LINEAR, STRAIN RATE-
DEPENDENT
C....ELASTICITY ELEMENT WITH 8 NODES. THE TANGENT MODULUS Es IS
EXPRESSED
C.....ON THE BASIS OF DUNCAN-CHANG MODEL (1970).

C....DESIGNED BY JIE SHEN
C....NOV. 14, 1993
REAL*8 D(*),XL(NDM,*),XLO(NDM,*)
COMMON /ELDATA/ LM,N,MA MCT IEL,NEL
COMMON /HEAD/HEAD
COMMON /CDATA/ N1,N2,NEN,NJ,NE,NEQ
COMMON /DYNAMICS/ SPEED,DT,THITA,BATA,GAMA
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COMMON /FLAG_BLO/
GE_FLAG.DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DIMENSION UL(NDF,*),URL(NDF,*),IX(*),S(NST,NST),P(NST),
* VL(NDF,*),SHP(4,8),SHPO(4,8),XG(8),YG(8),ZG(8),WG(8),SIG(9)
* EPS(6)
C Grefe(14) UAR
DIMENSION GREFE(3)

DIMENSION DEPS(6),DEPSR(3),DSIG(6),WDD(2),V(20),G(4),GG(3)
* SIGN(3)
LOGICAL
FLAG,GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,ST_FLAG,
* SC_FLAG
EQUIVALENCE (FLFILENAME(1))
DATA WD/3-D PROBLEMY/
DATA WDD/SHEAR FAILURE', TENSILE FAILURE'
data fi /'middata .fil'/
C
C.... GO TO CORRECT ARRAY PROCESSOR
GO T0O(1,2,3,4,5,4,4), ISW
C....INPUT MATERIAL PROPERTIES
1 =ma+48
filename(8)=char(NMA)
INQUIRE(FILE=fi, EXIST=FLAG)
IF(FLAG) THEN
OPEN(NMA, FILE=fi,status='0ld")
CLOSE(NMA,STATUS=DELETE")
END IF
OPEN(NMA FILE=fi, ACCESS='DIRECT" status="new',RECL=160,
* FORM="UNFORMATTED')
c.....D(1)=Ks(-);D(2)=ns(-);D(3)=Xun(-); D(4)=Rho(kN/m"3); D(5)=L(-)
c.....D(6)=K(-);D(7)=Cohn(kPa);D(8)=Fai(Degree); D(9)=Rsf(-); D(10)=Bs(-)
c.....D(11)=dEpsn(0)(1/s);D(12)=St(-);D(13)=Sc(-);D(14)=Ms(-)
READ(5,*) D(1),D(2),D(3),D(4),D(5),D(6),D(7),.D(8),D(9),D(10)
* D(11),D(12),D(13),D(14)
Es=D(1)*100.
XUN=D(3)
L=int(D(5))
K=int(D(6))
IF(L.EQ.0) L=2
IF(K.EQ.0) K=1
L = MINO4,L)
D(S)=L
K = MIN0(4,MAXO0(1,K))
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D@®6)=K
G(1)=Es*(1.-XUN)/(1.+XUN)/(1.-2.*XUN)
G(2)=XUN*G(1)/(1.0E0-XUN)
G(3)=Es/2.0E0/(1.0E0+XUN)
C.....SET INITIAL STRESSES AND STRAINS TO ZERO AND ELASTIC MATRIC G
DO 1211=1,20
12 Vv({I1)=0.0
DO 141=1,3
NNi=15+I
VINN1D)=G(D)
14 CONTINUE
MMM=NE*8
DO 16 2=1 MMM
16 WRITE (NMA,REC=I2) (V(I).I=1,20)
LINT=0
WRITE(*,2000) D(1),D(2),D(3).D(4),L.K,D(7).D(8),D(9),D(10)
* D(11),D(12),D(13),D(14)
WRITE(6,2000) D(1),D(2),D(3),D(4).L.K,D(7),D(8),D(9),D(10)
* D(11),D(12),D(13),D(14)
WRITE(7,2000) D(1),D(2),D(3),D(4),L,K,D(7),D(8),D(9),D(10)
* D(11),D(12),D(13),D(14)
WRITE(*,2050) (G(I),I=1,3)
WRITE(6,2050) (G(I),I=1,3)
WRITE(7,2050) (G(1),I=1,3)

WRITE(6,2001) HEAD
RETURN
C..... WTITE INFORMATION ON SCREEN
2 RETURN

3 NMA=MA+438
L = int(D(5))
L=2
C IF(L*L*L.NE.LINT) CALL PGAUSS3(L,LINT.XG,YG,ZG,WG)
CALL PGAUSS3(L.LINT,XG,YG,ZG.WG)
DO 36 L9 = I, LINT
NNN=(N-1)*8+L9
READ(NMA,REC=NNN) (V(I).I=1,20)
DO 32 I=1,3
32 G(M=VI+15)
CALL SHP3 (XG(L9),YG(L9),ZG(L9),XL,SHP,XSJ,NDM,NEL,IX, FALSE.)

GG(1)=G(1)*XXSJ
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GG(2)=G(2)*XXS]J
GG(3)=G(3)*XXS]J
NSL=NEL*NDF
DO 34 J=1,NEL
J1=(J-1)*NDF
DO 34 K=J,NEL
K1=(K-1)*NDF
SU1+1,K1+1)=S(J 1+1,K1+1)+SHP(1.1)*SHP(1,K)*GG(1)+SHP(2,J)*
1 SHP(2,K)*GG(3)+SHP(3,J)*SHP(3,K)*GG(3)
SU1+1,K142)=S(J 1+1,K1+2)+SHP(1,J)*SHP(2,K)*GG(2)+SHP(2,])*
1 SHP(1,K)*GG(3)
S(J1+1,K1+3)=S(J1+1,K1+3)+SHP(1,J)*SHP(3,K)*GG(2)+SHP(3,])*
1 SHP(1,K)*GG(3)
S 1+2,K1+1)=S(J14+2,K1+1)+SHP(2,])*SHP(1,K)*GG(2)+SHP(1,J)*
1 SHP(2,K)*GG(3)
S(J142,K1+2)=S(J 1+2,K1+2)+SHP(2,))*SHP(2,K)*GG(1)+SHP(1,J)*
1 SHP(1,K)*GG(3)+SHP(3,J)*SHP(3,K)*GG(3)
S(UJ1+42,K1+3)=S(J1+2,K1+3)+SHP(2,J)*SHP(3,K)*GG(2)+SHP(3,])*
1 SHP(2,K)*GG(3)
S 143,K1+1)=S(J1+3,K1+1)+SHP(3.))*SHP(1 K)*GG(2)+SHP(1 J)*
1 SHP(3,K)*GG(3)
S(J1+3,K1+2)=S(J1+3,K1+2)+SHP(3,])*SHP(2,K)*GG(2)+SHP(2,J)*
1 SHP(3,K)*GG(3)
S(J1+3,K1+3)=S(J 14+3,K1+3)+SHP(3,J)*SHP(3,K)*GG(1)+SHP(2,])*
1 SHP(2,K)*GG(3)+SHP(1,J)*SHP(1,K)*GG(3)

C...FORM LOWER PART BY SYMMETRY
S(K1+1,J1+1)=S(1+1,K1+1)
S(K142,J141)=S(J1+1,K142)
S(K143,J1+1)=S(J 1+1,K1+3)
S(K1+1,J142)=S(J 142K 1+1)
S(K142,J142)=S(J 142K 1+2)
S(K143,J142)=S(J 142,K1+3)
S(K1+1,J143)=S(J 143 K1+1)
S(K142,J143)=S(J14+3,K1+2)
S(K1+3,J1+3)=S(J14+3,K1+3)

34 CONTINUE

36 CONTINUE
RETURN

C....MODIFY TANGENT MODULUS,OUTPUT RESULTS AND CALCULATE
FORCE RESIDUE
C... SET STRESS HISTORY
4 NMA=MA+48
L=int(D(5))
Ess=D(1)*100.



XUN=D(3)
FAI=D(8)*3.1415926/180.0
Rsf=D(9)
C=D(7)
C IFL*L*L.NE.LINT) CALL PGAUSS3(L,.LINT,XG,YG,ZG,WG)
L=2
CALL PGAUSS3(L,LINT XG,YG,ZG,WGQG)
DO 430L9 = [,LINT
NNN=(N-1)*8+L9
READ(NMA REC=NNN) (V(I),I=1,20)
do 402 I=1,3
402 G(D=V(I+15)
DO 404 I=1,6
404 EPS(D=V(I)
DO 406 I=1,9
SIG(I)=V(I+6)
406 CONTINUE
C.... COMPUTE ELEMENT STRESSES, STRAINS, AND FORCES
C....COMPUTE ELEMENT SHAPE FUNCTIONS

C.... COMPUTE STRAINS AND COORDINATES
DO4081=1,6
408 DEPS(I)=0.0
XX =0.0
YY=00
2Z2=0.0
vX=0.0
VY =0.0
VZ=00
DO 410JK = I,NEL
XX = XX + SHP(4,JK)*XL(1,JK)
YY =YY + SHP(4,JK)*XL(2,JK)
ZZ= ZZ + SHP(4,JK)*XL(3,JK)
VX = VX + SHP(4,JK)*VL(1,JK)
VY = VY + SHP(4,JK)*VL(2,JK)
VZ = VZ + SHP(4,JK)*VL(3,JK)
C....COMPUTE INCREMENTAL STRAINS
DEPS(1) = DEPS(1) + SHP(1,JK)*URL(1,JK)
DEPS(2)=DEPS(2)+SHP(2,JK)*URL(2,JK)
DEPS(3) = DEPS(3) + SHP(3,JK)*URL(3,JK)

DEPS(4)=DEPS(4)+SHP(2,JK)*URL(1,JK)+SHP(1,JK)*URL(2,JK)
DEPS(5)=DEPS(5)+SHP(3,JK)*URL(2,JK)+SHP(2,JK)*URL(3,JK)

410 DEPS(6)=DEPS(6)+SHP(3,JK)*URL(1,JK)+SHP(1,JK)*URL(3,JK)

DO 4l111=1,3
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411 DEPSR(I)=DEPS(I)/DT
SRXYZ=SQRT(DEPSR(1)**2.+DEPSR(2)**2.+DEPSR(3)**2.)
VXYZ=SQRT(VX*VX+VY*VY+VZ*VZ)

C.... COMPUTE STRESS
DSIG(1) =G(1)*DEPS(1)+G(2)*DEPS(2)+G(2)*DEPS(3)
DSIG(2) =G(2)*DEPS(1)+G(1)*DEPS(2)+G(2)*DEPS(3)
DSIG(3) =G(2)*DEPS(1)+G(2)*DEPS(2)+G(1)*DEPS(3)
DSIG(4)=G(3)*DEPS(4)

DSIG(5)=G(3)*DEPS(5)
DSIG(6)=G(3)*DEPS(6)

C....COMPUTE TOTAL STRESSES AND STRAINS
DO 412 I=1,6

412 SIG(I)=SIG(ID+DSIG(I)

DO 413 1=1,6

413 EPS(D)=EPS(D)+DEPS(I)
I[F(ISW.EQ.6.0R.ISW.EQ.7) GO TO 426
CALL PSTRES3(SIG,SIG(7),51G(8),SIG(9))

C....SAVE PRESENT STRESS DATA
DO 414 1=1,6
V(ID=EPS()

414 CONTINUE
DO 416 I=1,9

416 VI+6)=SIGI)

c WRITE(6,2060) L9,N
c WRITE(6,*) 'SIGMA7=SIG(7),'SIGMAS8',SIG(8),' SIGMA9',SIG(9)
c WRITE(89,3333) 'SIGMA7,8,9="SIG(7),SIG(8),SIG(9)

C....CHECK THE STATE OF STRESS OF EACH UNIT

CRFFRAAA IR AR AR EAAR AR A KK AAK KK
C....ISIG(7)I<ISIG(9)| WHEN BOTH SIG(7) AND SIG(9) ARE LE 0.
C...THEREFORE, SIGMA 3 SHOULD BE -SIG(7)

C

C...INITIALIZATION

C......tt -—-> strain rate difference
=SRXYZ-D(11)

¢ IF(D(14).GT.0.001) THEN
c [F(TT.GT.1.0.AND.DY_FLAG) Ess=Ess*TT**D(14)
¢ ENDIF

[F(D(2).LT.1E-6.0R.SIG(7).GT.0.0) THEN

XX=1.0
ELSE



IF(D(2).GT.0.001) THEN
XX=(-SIG(7)/100.)**D(2)
ELSE
XX=1.0
END IF
END IF
C [F(DB_FLAG) WRITE(6,*) 'TT="TT**D(16), XX="XX
C....TREATMENT OF FAILED ELEMENTS
IF(V(19).GE.0.5.0R.V(20).GE.0.5) THEN

May 18/96 UAR If tension or shear failure -> then Poisson ratio is
set to xun=0.49 or 0.499 according to Duncan&Chang (1976-thesis)
for a occurance of no volume change at failure; (Jose H.F.Pereira).

O 0O o000

Xun=0.499
Es=Ess*XX/D(12)

UAR

WRITE(*,*) "L9 N",.L9,N
WRITE(*,*) "Es",Es
UAR

ORI !

GO TO 420
END IF
C.....TENSILE FAILURE CRITERION ( WHEN SIG(7)>0)
IF(SIG(7).GT.0.) THEN
TC=C*D(13)
IF(SIG(7).GE.TC) THEN
IF(ST_FLAG) THEN
Es=Ess/D(12)
V(20)=1.0
ELSE
Es=Ess
END IF
GO TO420
ELSE
SIGMAF=2.0*¥C*COS(FAI)/(1.0-SIN(FAI))
GO TO 419
END IF
END IF
C....SHEAR FAILURE CRITERION ( WHEN SIG(7)<0)
SIGMAF=(2.0¥C*COS(FAI)-2.0*SIG(7)*SIN(FAI))/
* (1.0-SIN(FAD)
IF(DB_FLAG) WRITE(6,*) ' OLD SIGMAF='SIGMAF
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C.....criteria tt>0 —-> incorporate strain rate effects in sigmaf
418 IF(TT.GT.0.0.AND.DY_FLAG) SIGMAF=SIGMAF+d(10)*TT
[F(DB_FLAG) WRITE(6,*) ' NEW SIGMAF="SIGMAF
C
C....SHEAR FAILURE (sigmal-sigma3)>sigmaf
419 QQI13=(SIG(7)-SIG(9))-SIGMAF
[F(QQ!13.GT.1.0E-6) THEN
¢ WRITE(6,2010) N,WDD(1)
C  WRITE(*,2010) N,WDD(1)
Es=Ess*XX/D(12)
V(19)=1.0
GOTO 420
END IF
C....NO SHEAR FAILURE
DNG=D(9)*(SIG(7)-SIG(9))/SIGMAF
IF (DNG.GE.0.99) DNG=0.99
Es=Ess*XX*(1.-DNG)*(1.-DNG)

C......Chi's triaxial parameters to correct Poisson's ratio
c......for UAR triaxial test soil DH0O-90.
CHIA=0.4287
CHIB=0.0658

RSP=(SIG(7)-SIG(9))/SIGMAF
c......RSP (Poisson's strength ratio) <=1.0 => Poisson=CHIA+CHIB*RSP
Crrrrererenereeeenssssstenessnnnsanes > 1.0 => Poisson=0.499
XUN=CHIA+CHIB*RSP

IF (RSP.GT.1.0) THEN
WRITE(*,*) 'RSP>1.0'
XUN=0.499

END IF

¢ WRITE(*,*) Poisson="XUN

C....FORM ELASTIC MATRIC DD

420 G(1)=Es*(1.-XUN)/(1.+XUN)/(1.-2.*XUN)
G(2)=XUN*Es/(1.+XUN)/(1.-2.*XUN)
G(3)=Es/(2.0%(1.0+XUN))

¢  WRITE(89,*) 'Es',Es
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C WRITE(6,*) 'G(1)=,G(1),'G(2)='G(2),'G(3)=",G(3)
C IF(V(19).GT.0.5) WRITE(7,*) L9,' OF ',N,’' IS SHEAR FAILED'
c IF(V(19).GT.0.5) WRITE(*,*) L9, OF '\N,' IS SHEAR FAILED'

C IF(V(20).GT.0.5) WRITE(7,*) L9, OF ',N,' IS TENSILE FAILED'
c IF(V(20).GT.0.5) WRITE(*,*) L9,' OF ' N,' IS TENSILE FAILED'
Careeernecnneeasenenes ENDIF

IF(MA_FLAG) THEN
DO 422 14=1,3
422  V(I4+15)=G(14)
END IF

C.... OUTPUT STRESSES AND STRAINS
IF(IMCT.GT.0) GO TO 424
¢ WRITE(6,2001) HEAD
MCT =50
424 MCT=MCT-2
C.....ONLY OUTPUT INFORMATION AT GAUSSAN POINT 1
¢ IF(L9.EQ.1) THEN
¢ WRITE(6,2002) L9,N,MA (SIG(IT),[1=1,5),.XX,YY,EPS,SIG(6)
¢ ENDIF
GOTO 430

426 XXSJ = XSJ*WG(L9)
J1=1
DO 428 J9 = | NEL
IFISW.EQ.7.0R.ISW.EQ.6) THEN
P(J1)=P(J1)-(SHP(1,J9)*DSIG(1)+SHP(2,J9)*DSIG(4)+
* SHP(3,J9)*DSIG(6))*XXSJ
P 1+1)=P(J1+1)-(SHP(2,J9)*DSIG(2)+SHP(1,]9)*DSIG(4)+
* SHP(3,J9)*DSIG(5))*XXSJ
P(J1+2)=P(J1+2)-(SHP(3,]9)*DSIG(3)+SHP(2,J9)*DSIG(5)+
* SHP(1,J9)*DSIG(6))*XXSJ
GOTO 428
END IF
P 1)=PJ1)-(SHP(1,J9)*SIG(1)+SHP(2,J9)*SIG(4)+
* SHP(3,J9)*SIG(6))*XXSJ
PJ1+1)=P(J1+1)-(SHP(2,19)*SIG(2)+SHP(1,J9)*SIG(4)+
* SHP(3,J9)*SIG(5))*XXSJ
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PJ1+2)=PJ1+2)-(SHP(3,J9)*SIG(3)+SHP(2,J9)*SIG(5)+

* SHP(1,J9)*SIG(6))*XXSJ

428
430

C...

J1=J1 +NDF
CONTINUE

AVERAGE TANGENTIAL MODULUS IN EACH ELEMENT

IF(ISW.EQ.4.AND.MA_FLAG) THEN

432

434
436

438

DO 432 [=1.3
SIGN()=0.0
G(ID)=0.0
DO 436 L9 = |, LINT
NNN=(N-1)*8+L9
READ(NMA ,REC=NNN) (V(1),I=1,20)
DO 434 1=1,3
IF(V(19).GT.0.5.0R.V(20).GT.0.5) SIGN()=1.0
G(DH=GM)+V(1+15)/8.0
CONTINUE
DO 440 L9=1,LINT
NNN=(N-1)*8+L9
READ(NMA,REC=NNN) (V(I),I=1,20)

UAR
minimum value for residual elastic modulus=0.50 kPa
GREFE(16)=1.0*(1.-XUN)/(1.+XUN)/(1.-2.*XUN)
GREFE(17)=1.0*XUN/(1.+XUN)/(1.-2.*XUN)
GREFE(18)=1.0/(2.0*%(1.0+XUN))

UAR

gdivi = value to divide Et after failure
GDIVI=1000.0

UAR

DO 438 14=1,3
IF(SIGN(14).GE.0.5) THEN
V({4+15)=1.E-6
UAR G()/1000 means "Es"/1000
V([4+15)=V14+15)/GDIVI
minimum value for residual elastic modulus=0.50 kPa
IF(V(14+15).LT.GREFE(I4+15)) THEN
V(I4+15)=GREFE(14+15)
END IF
UAR
Write(*,*) 'G(1)=',V(16),V(17),V(18)
GOTO 438
END IF
V([4+15)=G(14)
CONTINUE



WRITE(NMA REC=NNN) (V(I),I=1,20)
440 CONTINUE
END IF

C....ISOPARAMETRIC ELEMENT MASS MATRIX FOR PLANE PROBLEMS
C P=DIAGONAL (LUMPED) MASS ARRAY (IN VECTOR)
C....COMPUTE MATRIX AT EACH INTEGRATION POINT
5 L=int(D(5))
L=2
C IF(L*L*L.NE.LINT) CALL PGAUSS3(L,LINT . XG,YG,ZG,WG)
CALL PGAUSS3(L,LINT.XG,YG,ZG,WG)
DO 504 L9 = 1,LINT
CALL SHP3 (XG(L9),YG(L9),ZG(L9),XL,SHP,XSJ,NDM,NEL,IX, FALSE.)
DMASS=D(4)*XSJ*WG(L9)
DO 502 I=1,NEL
P(3*I-2)=P(3*I-2)+DMASS*SHP(4,])
P(3*I-1)=P(3*I-2)
P(3*)=P(3*I-2)
502 CONTINUE
504 CONTINUE
RETURN

C.... FORMATS FOR INPUT-OUTPUT
2000 FORMAT(/5X,43H 3-D, ISOTROPIC, NON-LINEAR, RATE-DEPENDENT /
* 5X,49HEL ASTICITY ELEMENT WITH EIGHT NODES(DUNCAN-CHANG) //
1 10X,3HKs=,E15.5,3H(-)/
2 10X,3Hns=,E15.5,3H(-)/
3 10X,4HXUN=,E15.5,3H(-)/
4 10X,4HRho=,E15.5,8H(kN/m”3)/
5 10X,2HL.=,14/
6 10X,2HK=,14/
7 10X,2HC=,E15.5,5H(kPa)/
8 10X,4HFai=,E15.5,8H(Degree)/
9 10X,4HRsf=,E15.5,3H(-)/
* 10X,3HBs=,E15.5,3H(-)/
1 10X,8HdEps(0)=,E15.5,5H(1/s)/
2 10X,3HSt=,E15.5,3H(-)/
3 10X,3HSc=,E15.5,3H(-)/
4 10X,3HMs=,E15.5,3H(-) /)
2001 FORMAT(/A50/5X,16HELEMENT STRESSES/2X,15SHGAUSS POINT----,
* //1X,18H ELEMENT MATERIAL,
1 3X,9H11-STRESS,3X,9H12-STRESS,3X9H22-STRESS 4X,
2 8HI1-STRESS,4X,8H2-STRESS/2X,7H1-COORD,2X,7H2-COORD,3X,
3 9HI11-STRAIN,3X,9H12-STRAIN,3X,9H22-STRAIN, 12X SHANGLE)



2002 FORMAT(2x,13,/219,5E12.3/2F9.3,3E12.3,F18.2/1X)
C FORMAT(/5X,18HELEMENT NO. & MATE,3X,9H11-STRESS,11H 12-
STRESS,
C * 12H--22-STRESS,4X,8H1-STRESS 4X,8H2-STRESS/5X,10H----- STATE,
C & 2X,11HOF THE UNIT/5X,2I9,5E12.3,5X,A10)
2010 FORMAT(/2X,12HELEMENT NO.=,17,2X,10H—---STATE=,A30)
2020 FORMAT(/5X,8(6F9.4)/)
2040 FORMAT(2x,18HRATIO OF BRAKING=,F12.9,4H ET=,F7.3/)
2050 FORMAT(/5X,28HINITIAL ELASTIC MATRIC VALUE/,'G(1)="F18.7.
1 'G(2)='F18.7,G(3)="F18.7)
2060 FORMAT(/5X,15HGAUSS POINT----,I2,12H NO. OF ELEM,2X.I3)
3333 format(al4,3f12.4)
END

SUBROUTINE SHP3 (SS,TT,YY,X,SHP,XSJ,NDM,NEL,IX,FLG)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 X
LOGICAL FLG
DIMENSION SHP(4,*),X(NDM,*),QS(8),QT(8),QY(8),XS(3.3)
1 ,SX(3,3),IX(*)
DATA QS/0.5E0,-0.5E0,-0.5E0,0.5E0,0.5E0,-0.5E0,-0.5EQ,
1 0.5E0/,QT/-0.5E0,-0.5E0,-0.5E0,-0.5E0,0.5E0,0.5EO,
1 0.5E0,0.5E0/,QY/-0.5E0,-0.5E0,0.5E0,0.5E0,-0.5E0,-0.5EQ,
1 0.5E0,0.5E0/
C.... FORM 8-NODE ISOPARAMETER ELEMENT SHAPE FUNCTIONS
DO 100I=1,8
PS=0.5E0+QS(I)*SS
PT=0.5e0+QTM)*TT
PY=0.5e0+QY(D*YY
SHP(L,I) = QS()*PT*PY
SHP(2,I) = PS*QT(I)*PY
SHP(3,I) = PS*PT*QY(D)
100 SHP(4,I)= PS*PT*PY
C dol0li=138
C101 write(*,*) 'shp(1,i)shp(1,i),'shp(4,i)’,shp(4.i)
C.... CONSTRUCT JACOBIAN AND ITS INVERSE
DO 130 1= 1,NDM
DO 130J=1,3
XS =0.0
DO 130 K=1,NEL
130 XS@J) = XS{,J) + X(J,K)*SHP(LK)
C  write(*,*) 'xs(1,1),xs(1,1),'’xs(2,2)"xs(2,2),'xs(3,3)',xs(3,3)
C...FORM JACOBIAN DETERMINANT
XSI=XS(1,1)*XS(2,2)*XS(3,3)+XS(2,1)*X8(3,2)*XS(1,3)
1 +XS(3,1)*XS(1,2)*XS(2,3)-XS(1,3)*XS5(2,2)*XS(3,1)



1 -XS(2,1)*XS(1,2)*XS(3,3)-XS(1,1)*XS(3,2)*XS(2,3)
write(*,*) 'xsj=",xsj

IF(FLG) RETURN
SX(1,1)=(XS(2,2)*XS(3,3)-XS(2,3)*XS(3.2))/XSJ
SX(1,2)=(XS(1,3)*XS(3,2)-XS(3,3)*XS(1,2))/XS]
SX(1,3)=(XS(2,3)*XS(1,2)-XS(1,3)*XS(2,2))/XSJ
SX(2,1)=(XS(3,1)*XS(2,3)-XS(3,3)*XS(2,1))/XSJ
SX(2,2)=(XS(1,1)*X8(3,3)-XS(1,3)*XS(3,1))/XSJ
SX(2,3)=(XS(2,1)*XS(1,3)-XS(1,1)*XS(2,3))/XSJ
SX(3,1)=(XS(2,1)*XS(3,2)-XS(2,2)*XS(3,1))/XSJ
SX(3,2)=(XS(3,1)*XS(1,2)-XS(1,1)*XS(3,2))/XSJ
SX(3,3)=(XS(1,1)*XS(2,2)-XS(2,1)*XS(1,2))/XSJ

... FORM GLOBAL DERIVATIVES

DO 1401 = 1,NEL
TP=SHP(1,[)*SX(1,1)+SHP(2,1)*SX(1,2)+SX(1,3)*SHP(3,])
TQ=SHP(1,[)*SX(2,1)+SHP(2,)*SX(2,2)+SX(2,3)*SHP(3.I)
SHP(3.)=SHP(1,D)*SX(3,1)+SHP(2.)*SX(3,2)+SX(3,3)*SHP(3.I)
SHP(2,)=TQ

140 SHP(1,1)=TP

00

21

K=IX(1)
RETURN
END

SUBROUTINE PGAUSS3(L,LINT,X,Y,Z,W)

... GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /ELDATA/ LM,N,MA MCT.IEL,NEL
DIMENSION QX(8),QY(8),QZ(8),X(*),Y(*),Z(*),W(*)
DATA QX/1.,-1.,-1.,1.,1.,-1.,- 1,1/,

1QY/-1.,-1.-1.,-1, 1,111/

DATA QZ/-1.,-1.,1.,1.,-1.,-1,,1.,1./

LINT =L*L*L

... 2X2X2 INTEGRATION

G=1.0E0/SQRT(3.0E0)
DO 21 I=1,8
X(D=G*QX(D)
Y(=G*QY(I)
Z(D=G*QZ(I)
W(I)=1.0E0
RETURN
END

SUBROUTINE PSTRES3(SIG,P1,P2,P3)
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C
C

C
C
C

.... COMPUTE PRINCIPAL STRESSES (3 DIMENSIONS)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION SIG(6),A(4),RT1(2),RT2(2),RT3(2)
.... STRESSES MUST BE STORED IN ARRAY SIG(6) IN THE ORDER
TAU-XX,TAU-YY,TAU-ZZ,TAU-XY, TAU-YZ TAU-XZ
AIl=SIG(1)+SIG(2)+SIG(3)
AI2=SIG(1)*SIG(2)+SIG(2)*SIG(3)+SIG(1)*SIG(3)-SIG(4)*SIG(4)
1 -SIG(5)*SIG(5)-SIG(6)*SIG(6)
AI3=SIG(1)*SIG(2)*SIG(3)+2.*SIG(4)*SIG(5)
1 *SIG(6)-SIG(1)*SIG(5)*SIG(5)-SIG(2)
1 *SIG(6)*SIG(6)-SIG(3)*SIG(4)*SIG(4)
A(1)=1.
A(2)=-All
AQR)=AI2
A4)=-Al3
TOL=0.001
CALL CUBIC(A,RT1,RT2,RT3,TOL.NOROOT)
P1=RTI(1)
P2=RT2(1)
P3=RT3(1)
IF(P1.LT.P2) THEN
P=P1
Pi=P2
P2=P
END IF
IF(P1.LT.P3) THEN
P=P1
PP=P2
Pi=P3
P2=P
P3=PP
END IF
IF(P2.LT.P3) THEN
P=pP2
P2=P3
P3=P
END IF
RETURN
END

SUBROUTINE CUBIC(A,RT1,RT2,RT3,TOL,NOROOT)

THIS SUBROUTINE FINDS THE ROOTS (REAL OR REAL AND
COMPLEX) TO ANY CUBIC EQUATION.



IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(4),C(4),RT1(2),RT2(2),RT3(2), B(2)
ZERO = TOL/10.
IF(ABS(A(1)) - ZERO) 7,7,12
7 CALL QUADRT(A(2), RT1,RT2,TOL.NOROOT)
RETURN
12 NOROOT =3
IT=0
DO1I=24
I AM=AD/A(1)
A(D)=1.0
IF(ABS(A(2)).LE.ZERO) GO TO 2
NDA =3
B(1)=1.0
B(2) = -(A(2)*.333333)
CALL LINCNG(A,NDA,B,C)
IT=1
GO TO4
2 DO3I=14
CD=AD
4 X =(C(4)*C(4))*.25 + (C(3)**3) *.037037
IF(X.LT.0.0) GOTO9
X = SQRT(X)
Y =-(C(4)*.5)
I=1
RTIDH =Y +X
5 N=0
IFRTI(I).LTOO0)N=1
IF(ABS(RT1(I)).LE.ZERO) GO TO 6
RT1(I) = EXP((ALOG(ABS(RT1(I))))*.333333)
IF(N.EQ.1) RT1(I) =-RTI(D)
6 IFA.EQ2)GOTOS8
I=2
RTID=Y-X
GOTOS
8 RT2(2) =((RT1(1) - RT1(2))*.5)*1.732051
RTI1(1) = RTI(1) + RT1(2)
RT1(2)=0.0
RT2(1) =- RTI1(1) *.5
RT3(1) =RT2(1)
RT3(2) =-RT2(2)
GOTO 11
9 ZZ=ABS(C(3))
X = -(C(4)*.5)/SQRT((ZZ**3)*.037037)

w



ANG= ACOS(X)
Y = 2.0%(SQRT(ZZ*.333333))
ANG = ANG*.333333
RT1(1) = Y*COS(ANG)
RT2(1) = Y*COS(ANG + 2.09440)
RT3(1) =Y * COS(ANG + 4.18879)
RT1(2)=0.0
RT2(2)=0.0
RT3(2)=0.0
11 IFIT.EQ.0) RETURN
RT1(1) =RTI1(1) + B(2)
RT2(1) = RT2(1) + B(2)
RT3(1) = RT3(1) + B(2)
RETURN
END
SUBROUTINE QUADRT(A,ROOT1,ROOT2,TOL,NOROOT)

THIS SUBROUTINE SOLVES ANY QUADRATIC EQUATION OF THE FORM
A(1)X**2 + A(2)X + A(3) FOR REAL OR IMAGINARY ROOTS.

ONONONQ]

w N

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(3), ROOT1(2), ROOT2(2)
ZERO =TOL/10.
IF(ABS(A(1)) - ZERO) 2,2,1
IF(ABS(A(2)) - ZERO) 3,34
NOROOT =0

RETURN

NOROOT =2

X =A@2)*A(2) - 4.0 *A(1) * A3)
Y =A(l) + A(1)

Z =SQRT(ABS(X))/'Y
W=-AQ)Y
IF(X.LT.0.0)GOTO 7
ROOTI(1) =W +Z
ROOTI1(2)=0.0
ROOT2(1)=W -Z

ROOT2(2) = 0.0

RETURN

ROOTI(1) =W
ROOTI(2)=Z

ROOT2(1) =W

ROOT2(2) =-Z

RETURN

NOROOT =1

ROOTI(1) =-AB)YA(2)



oNoNeNe!
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ROOT1(2) =0.
RETURN
END

SUBROUTINE LINCNG(A,NDA,B,C)

SUBROUTINE TO MAKE A LINEAR CHANGE OF VARIABLES

IN A GIVEN POLYNOMIAL.

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(1), B(2), C(1)
BIPWR = 1.0

NZ=NDA +1

DO41=1NZ

C@) = A

DO 81=2,NZ

C@ = C(@ + C(I-1)*B(2)
C(NZ) = C(NZ)*B1PWR
NZ=NZ-1

BIPWR = BIPWR*B(1)

IF (NZ.GT.1) GOTO 6

C(1) =C(1) * BIPWR
RETURN

END

.....................................................

SUBROUTINE EQLOAD(,NP,W,A XL,F)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION F(6)

I[F(I.GT.4) GO TO 10

IF(I.LE.3) WL=W/XL

S=(1.-2.*NP)

GOTO(1,2,34)I

F(4)=WL*A

F(1)=W-F(4)

RETURN

B=XL-A
FQ2+NP)=WL*B*B*(2.*A+XL)/XL/XL
WAB=WL*A*B
F(3-NP)=S*WAB*B/XL
F(5+NP)=W-F(2+NP)
F(6-NP)=-S*WAB*A/XL

RETURN

B=XL-A
F(5+NP)=6.*WL*A*B/XL/XL
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F(2+NP)=-F(5+NP)
F(3-NP)=S*WL*B*(B-2.*A)/XL
F(6-NP)=S*WL*A*(A-2.*B)/XL
RETURN

4 WI=W=*XL/20.
W2=A*X1/20.
F(2+NP)=7.*W1+3.*W2
F(3-NP)=S*(3.*W1+2.*W2)*XL/3.
F(5+NP)=3.*W1+7.*W2
F(6-NP)=-S*(2.*W1+3.*W2)*XL./3.
RETURN

10 WRITE(6,2000) I

2000 FORMAT( ** ERROR ** EQUIVALENT LOAD TYPE'I6,' HAS BEEN

INPUT"
RETURN
END

SUBROUTINE FORBACK(A,B,JP.N)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(*),B(*),JP(*)
C....FORWARD REDUCTION
=2
DO 200 I=2,N
MI=I-JP(D)+JP(I-1)+1
DO 100 J=MII-1
BM=B(D-AI)*BJ)
=1J+1
100 CONTINUE
J=1J+1
200 CONTINUE
C.....REFORM THE RIGHT HAND SIDE
DO 300 I=1,N
JPI=JP(I)
B(D=B@*AJPI)
300 CONTINUE
C....BACK SUBSTITUTION
=1J-1
DO 500 I=N,2,-1
MI=I-JPT)+JP(I-1)+1
DO 400 J=I-1,MI,-1
I=IJ-1
400 B@)=BI)-AAN)*B()
=1J-1
500 CONTINUE



RETURN
END

SUBROUTINE GAUSS(XC,XL,.IX.NEN1)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION XC(NDM,*),IX(NEN1,*), XL(NDM,*)
DIMENSION SHP(4,9)
DIMENSION SG(16),TG(16),WG(16),CGAUSS(3,8)
COMMON/CDATA/NDF ,NDM,NEN,NJ,NE,NEQ
LINT=0
DO 300 N=1,NE
DO 108 I=1,NEN
I=IX(I,N)
IF(II.NE.O) GO TO 105
GO TO 108
105 HOD=II*NDF-NDF
NEL=I
DO 106 J1=1,NDM
106 XLJ1,1)=XCJ1,II)
108 CONTINUE

L=2
IF(NDM.EQ.2) THEN
IF(L*L.NE.LINT) CALL PGAUSS(L,LINT,SG,TG,WG)
ENDIF
IF(NDM.EQ.3) THEN
c IF(L*L*L.NE.LINT) CALL PGAUSS3(L,.LINT.XG,YG,ZG,WG)
ENDIF
DO 200 L=1,LINT
IF(INDM.EQ.2) THEN
CALL SHAPE(SG(L),TG(L),XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)
ENDIF
IF(INDM.EQ.3) THEN
c CALL SHP3(XG(L),YG(L),ZG(L),XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)
ENDIF
DO 120 I=1,NDM
120 CGAUSS(1,L)=0.0
DO 130 I=1,NDM
DO 130 J=1,NEL
130 CGAUSS(I,L)=CGAUSS(I,L)+SHP(NDM+1,J)*XL(1.J)
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200 CONTINUE

WRITE(83,1000) ((CGAUSS(LJ).I=1.NDM),J=1,LINT)
300 CONTINUE

RETURN
1000 FORMAT(3E15.7)

END

SUBROUTINE GENVEC(NDM,X,CD,FC,NJ,ERR)
C....GENERATE REAL DATA ARRAYS BY LINEAR INTERPOLATION
IMPLICIT REAL*8 (A-H,0-Z)
COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
CHARACTER CD*18,FC*6
LOGICAL ERR,GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
REAL*8 X(NDM,*),XL(6)
ERR=FALSE.
N=0
NG=0
102 L=N
LG=NG
READ (5,*,ERR=999) N,NG,(XL(I),I=1,NDM)
101 IF (N.LE.0.OR.N.GT.NJ) GO TO 109
DO 103 I=1,NDM
103 X(ILN) = XL()
IF (LG) 104,102,104
104 LG=ISIGN(LG,N-L)
LI= TABS(N-L+LG)-1)/IABS(LG)
DO 105 I=1,NDM
105 XLD)=(XI,N)-X(,L))/LI
106 L=L+LG
IF((N-L)*LG.LE.0) GO TO 102
IF(L.LE.O.OR.L.GT.NJ) GO TO 108
DO 107 I=1,NDM
LMLG=L-LG
107 X{A,L)=X{I,LMLG)+XL(I)
GO TO 106
108 IF(DB_FLAG) WRITE(6,3000) L,CD
IF(SC_FLAG) WRITE(*,3000) L,CD
ERR=.TRUE.
GO TO 102
109 CONTINUE
DO 110 I=1,NJ,50
IF(DB_FLAG) WRITE(6,2000) CD,(K,FC,K=1,NDM)

266



IF(SC_FLAG) WRITE(*,2000) CD,(K.FC,K=1,NDM)
N=MINO(NJ,I+49)
DO 110 J=LLN
IF(SC_FLAG) WRITE(*,2009)J,(X(L,J),L=1,NDM)
110 IF(DB_FLAG) WRITE(6,2009)J,(X(L,J),L=1,NDM)
RETURN
999 ERR=.TRUE.
RETURN
2000 FORMAT(/5X,A18/2X,SHNODE ,6(16,A6))
2008 FORMAT(I10,32H HAS NOT BEEN INPUT OR GENERATED)
2009 FORMAT(16,6F12.4)
3000 FORMAT(5X, **FATAL ERROR** ATTEMPT TO GENERATE NODE'I5,
1 "IN', A18)
END

SUBROUTINE LDLT(A,JP.N)
C....LDLT TRIANGULAR DECOMPOSITION
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(*),JP(*)
NK=JP(N)
A(1)=1.0/A(1)
=1
=2
ID1=JP(1)
DO 500 I=2,N
ID2=JP(I)
MI=I-ID2+ID1+1
MJ=1
DO 300 J=MILI-1
J=IJ+1
IFJ.EQ.1) GO TO 100
MI=J-JP(D)+IPJ-1)+1
100 All=A())
MIJ=MAXOMMIMIJ)
IK=JP(I)-I+M1J
JK=IP(D)-J+M1J
DO 200 K=M1J,J-1
All=ATJ-A(IK)*A(JK)
IK=IK+1
JK=JK+1
200 CONTINUE
A=Al
300 CONTINUE
[I=1J+1

267



AlIl=AI)
J=JP(I-1)+1
DO 400 J=MI,I-1
JI=IP(J)
All=A1))
A(IN=AdD*AJ))
AllI=AII-AIT*A(1))
=IJ+1

400 CONTINUE
A(D)=1.0/ALl
ID1=ID2

500 CONTINUE
RETURN
END

SUBROUTINE MODIFY(U,LD,S,DUL,NS)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 U,DUL,S
DIMENSION U(1),LD(1),S(NS,1),DUL(1)
COMMON/DYNAMICS/SPEED,DT,THITA,BATA.GAMA
DO 110 I=1,NS
K=LD(I)
IF(K.LE.0O) GO TO 110
DO 100 J=1,NS
100 UEK)=U(K)-S(L,))*DUL(J)
110 CONTINUE
RETURN
END

SUBROUTINE MZERO(M,N)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION M(N)
DO 100 I=1,N

100 M(D=0.0
RETURN
END

c.....(Dynat7) UAR May-30-96
¢ (Dynat6) UAR May-24-96
C.....Modified...Uriel A. Rosa Feb 10/96

SUBROUTINE PCONTR(FO)
IMPLICIT REAL*8 (A-H,0-Z)



REAL*8 TOLRUUR,TOLRUR,TOLC
PARAMETER (MAXM=33000,MAXR=85000,MAXA=910000)
C....IN SUBROUTINE ADDSTF, THERE IS ANOTHER PARAMETER
STATEMENT TO
C.....DEFINE MAXA WHICH ALSO NEED BE CHAGED, IF CHANGE HAPPENS
TO THE ABOVE
C....MAXA. NOTE MAXM FOR INTEGER ARRAY, MAXR FOR REAL ARRAY.
AND MAXA FOR
C....TOTAL STIFFNESS ARRAY
CHARACTER FO*9,CFLAG*5,CH_FLAG*7
LOGICAL ERR,ASEM,GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,
* ST_FLAG,IT_FLAG,SC_FLAG
COMMON/M/M(MAXM)
COMMON/R/R(IMAXR)
COMMON/A/JAMAXA)
COMMON/CDATA/NDF NDM,NEN,NJ,NE.NEQ
COMMON/MDATA/NUMMAT
CHARACTER FD*25,FORC*6,P
COMMON/PRINT/P
COMMON/ASEM/ASEM
C....NPROP DENOTES NUMBER OF TOTAL INCREMENT STEPS
C.....NITEM DENOTES NUMBER OF TOTAL ITERATION STEPS DURING EACH
LOADING STEP
COMMON/PROCESS/NPROP NITEM,IT_FLAG
COMMON/DYNAMICS/SPEED,DT, THITA,BATA,GAMA
C GE_FLAG FOR IDENTIFING LINEAR OR NON-LINEAR GEOMETRIC
ANALYSIS
DY_FLAG FOR IDENTIFING STATIC OR DYNAMIC ANALYSIS
DB_FLAG FOR IDENTIFING OUTPUT STATUS FOR DEBUG OR NOT
MA_FLAG FOR IDENTIFING VARIABLE OR CONSTAT STIFFNESS
UL_FLAG FOR IDENTIFING UPDATED OR TOTAL LAGRANGINA METHOD
ST_FLAG FOR CONSIDERING TENSILE FAILURE INFLUENCE ON SHEAR
STRENGTH
C SC_FLAG FOR SHOWING THE INFORMATION ON SCREEN
COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DATA FORC/ FORC '/FD/ NODAL FORCE/DISPLY/
C....READ IN CONTROL DATA

NOOOnN

=0
2 READ(5,'(AS)") CFLAG
[F(CFLAG.EQ.'MSFEM'.OR.CFLAG.EQ.'msfem’) I=1
[F(I1.LEQ.0) GO TO 2
READ(5,*) NJ,NE,NUMMAT,NDF,NDM,NEN
WRITE(*,2000) NJ,NE,NUMMAT ,NDF,NDM,NEN



WRITE(6,2000) NJ,NE,NUMMAT NDF,NDM,NEN
NENI1=NEN+1
NNEQ=NJ*NDF
NST=NDF*NEN
NSW=NE*NEN
C....INTEGER ARRAY POINTERS
NIX=1
=NIX+NENI*NE
NLD=NID+NNEQ
NJP=NLD+NST
NTEN=NJP+NNEQ
NSHE=NTEN+NSW
NENDI=NSHE+NSW
C....REAL ARRAY POINTERS
NXC=1
NUXC=NXC+NJ*NDM
NXCO=NUXC+NJ*NDM
ND=NXCO+NJ*NDM
C....LIMITTED TO 19 PARAMETERS FOR EACH KIND OF MATERIAL.
C.....THE 20TH IS THE ELEMENT TYPE NUMBER.
NXL=ND+20*NUMMAT
NXLO=NXL+NEN*NDM
NUL=NXLO+NEN*NDM
NURL=NUL+2*NST
NS=NURL+NST*2
NP=NS+NST*NST
NF=NP+NST
NPF=NF+NNEQ
NTF=NPF+NNEQ
NTPF=NTF+NNEQ
NU=NTPF+NNEQ
NFR=NU+NNEQ
NUR=NFR-+NNEQ
NUUR=NUR+NNEQ
NSM=NUUR+NNEQ
NU1=NSM+NNEQ
NV1=NU1+NNEQ
NW1=NV1+NNEQ
NU2=NWI1+NNEQ
NV2=NU2+NNEQ
NW2=NV2+NNEQ
NWW=NW2+NNEQ
NUI=NWW+NNEQ
NVL=NUI+NNEQ
NENDR=NVL+NST
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NWW -- INCREMENTAL ACCELERATION;

CALL SETMEM(NENDLMAXM,ERR)
IF(ERR) THEN

WRITE(*,3000)

WRITE(6,3000)

STOP

END IF

CALL SETMEM(NENDR,MAXR ERR)
IF(ERR) THEN

WRITE(*,3001)

WRITE(6,3001)

STOP

END IF

CALL MZERO(M(1),NENDI)

CALL PZERO(R(1),NENDR)

C....MESH GENERATION

C
Cc

CALL PMESH(R(NXC),R(NXLO),M(NIX),M(NID),R(ND),R(NUL), R(NURL)
* R(NS),R(NP),NENI,NST)

CALL GENVEC(NDF,R(NF),FD,FORC,NJ,ERR)

IF(ERR) GO TO 20

UAR
DO 800 [1=1,NDM*NJ

c800 WRITE(88,*) R(NID+I1-1)

C
C

WRITE(88,1088) (J,(XC(LJ),]=1,NDM),J=1,NJ)
1088 FORMAT (((' N, I5,3(,\E15.7))))
UAR

DO 3 I1=1,NDM*NJ
R(INXCO+I1-1)=R(NXC+I1-1)
..... DEFINE THE PROFIL FOR GLOBAL STIFFNESS MATRIX STORAGE

CALL PROFIL(M(NJP),M(NID),M(NIX),NEN1,NK)

CALL SETMEM(NK,MAXA ERR)

IF(ERR) THEN

WRITE(*,3500)

STOP

ENDIF
WRITE(*,*) DO YOU WANT TO OUTPUT ELEMENT STIFFNESS (Y/N)?'
READ (*,(A)) P

P='N'



C.....DETERMINE NON-ZERO DISPLACEMENT BOUNDARY CONDITION
MAGNITUDE

CALL VALBOUN(R(NF),M(NID),RDB)
C.....DETERMINE COORDINATES OF GAUSS POINTS
¢ CALL GAUSS(R(NXC),R(NXL),M(NIX),NEN1)
C.....INITIAL PARAMETERS(SPEED(M/S))

NPROP=1

WRITE(*,*)INPUT SPEED(M/S):2.5, 5.0, 10.0 OR 15.0

READ(5,*) SPEED,NSTEP,NITEM,N_W

write(7,*) 'speed(m/s)=",speed

write(*,*) 'speed(m/s)=",speed

write(81,*) speed

WRITE(84,*) SPEED

WRITE(8S,*) SPEED

WRITE(82,*) SPEED

WRITE(86,*) SPEED

WRITE(*,*)INPUT TOTAL STEPS:/
C READ(*,*) NSTEP

write(7,*) ' TOTAL STEPS="NSTEP

write(*,*) 'TOTAL STEPS="NSTEP

write(81,*) nstep

WRITE(84,*) NSTEP

WRITE(8S5,*) NSTEP

WRITE(82,*) NSTEP

WRITE(86,*) NSTEP

write(7,*%) TTERATION STEPS=',NITEM

write(*,*) TTERATION STEPS=',NITEM

write(*,*) 'interval(m)=",RDB

write(7,¥) 'interval(m)=',RDB

IF(RDB.LE.1.E-6) RDB=1

¢ UAR
IF(RDB.LE.1.E-6) write(*,*) 'Warning: RDB=1'
IF(RDB.LE.1.E-6) write(7,*) 'Warning: RDB=1!"
¢ UAR

DT=RDB/SPEED
IF(N_W.EQ.0) THEN
write(*,*) NEWMARK METHOD'
write(7,*) 'NEWMARK METHOD'
ELSE
write(*,*) "WILSON METHOD'
write(7,*%) 'WILSON METHOD'
ENDIF
READ(S,(A7)") CH_FLAG

(1]
~J
(9]



[F(CH_FLAG.EQ.DY_FLAG.OR.CH_FLAG.EQ.'dy_flag') THEN
DY_FLAG=.TRUE.
write(*,¥) 'DYNAMIC SOLVING SCHEME'
write(7,*) 'DYNAMIC SOLVING SCHEME'
ELSE
DY_FLAG=FALSE.
write(*,¥) 'STATIC SOLVING SCHEME'
write(7,*) 'STATIC SOLVING SCHEME'
ENDIF
READ(5,(A7)) CH_FLAG
IF(CH_FLAG.EQ.'GE_FLAG.OR.CH_FLAG.EQ.'ge_flag’) THEN
GE_FLAG=.TRUE.
write(*,*) 'NON-LINEAR GEOMETRIC SOLVING SCHEME'
write(7,*) 'NON-LINEAR GEOMETRIC SOLVING SCHEME'
ELSE
GE_FLAG=FALSE.
write(*,*) 'LINEAR GEOMETRIC SOLVING SCHEME'
write(7,*) 'LINEAR GEOMETRIC SOLVING SCHEME'
ENDIF
READ(5,(A7)) CH_FLAG
IF(CH_FLAG.EQ.DB_FLAG'.OR.CH_FLAG.EQ.'db_flag’) THEN
DB_FLAG=.TRUE.
write(*,*) 'OUTPUT DEBUG INFORMATION'
write(7,*) 'OUTPUT DEBUG INFORMATION'
ELSE
DB_FLAG=FALSE.
write(*,*) 'DO NOT OUTPUT DEBUG INFORMATION'
write(7,*) 'DO NOT OUTPUT DEBUG INFORMATION'
ENDIF
READ(5,'(A7)) CH_FLAG
[F(CH_FLAG.EQ.MA_FLAG'.OR.CH_FLAG.EQ.'ma_flag’) THEN
MA_FLAG=.TRUE.
write(*,*) 'NON-LINEAR MATERIAL SOLVING SCHEME'
write(7,*) 'NON-LINEAR MATERIAL SOLVING SCHEME'
ELSE
MA_FLAG=FALSE.
write(*,*) LINEAR MATERIAL SOLVING SCHEME'
write(7,*) LINEAR MATERIAL SOLVING SCHEME'
ENDIF
READ(S,(A7)) CH_FLAG
IF(CH_FLAG.EQ.'UL_FLAG'.OR.CH_FLAG.EQ.ul_flag’) THEN
UL_FLAG=.TRUE.
write(*,*) ‘'UPDATED LAGRAGIAN SOLVING SCHEME'
write(7,*) 'UPDATED LAGRAGIAN SOLVING SCHEME'
ELSE
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UL_FLAG=.FALSE.
write(*,*) TOTAL LAGRAGIAN SOLVING SCHEME'
write(7,*) TOTAL LAGRAGIAN SOLVING SCHEME'
ENDIF
READ(S,'(A7)) CH_FLAG
IF(CH_FLAG.EQ.'ST_FLAG'.OR.CH_FLAG.EQ.'st_flag") THEN
ST_FLAG=.TRUE.
write(*,*) 'CONSIDERING TENSILE FAILURE'
write(7,*) 'CONSIDERING TENSILE FAILURE'
ELSE
ST_FLAG=.FALSE.
write(*,*) 'NOT CONSIDERING TENSILE FAILURE'
write(7,*) 'NOT CONSIDERING TENSILE FAILURE'
ENDIF
READ(S,'(A7)") CH_FLAG
IF(CH_FLAG.EQ.'SC_FLAG'.OR.CH_FLAG.EQ.'sc_flag") THEN
SC_FLAG=.TRUE.
write(*,*) INFORMATION SHOWING ON SCREEN'
write(7,*) INFORMATION SHOWING ON SCREEN'
ELSE
SC_FLAG=.FALSE.
write(*,*) 'NO INFORMATION SHOWING ON SCREEN'
write(7,*) 'NO INFORMATION SHOWING ON SCREEN'
ENDIF

..INTEGRATION PARAMETERS
-.N_W=0,NEWMARK METHOD; N_W=1, WILSON METHOD:

[F(DY_FLAG) THEN
IF(N_W.EQ.0) THEN
THITA=1.0
BATA=0.25
GAMA=0.50
AO0=GAMA*DT
Al=1.0/(DT*DT*BATA)
A2=-1.0/(BATA*DT)
A3=-1.0/(2.0*BATA)
A4=A0*Al
A5=A0*A2
A6=DT+A0*A3
A7=A3+1.0
A8=DT-A0
ELSE
THITA=1.4
Al=6./(THITA*DT)**2.
AO=A1/THITA
A2=-6.0/(THITA*DT)
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A3=-3.0
A4=3.0/(THITA*DT)
A5=A3
A6=-THITA*DT/2.0
A7=-6.0/(THITA*THITA*DT)
A8=1.0-3.0/THITA

ENDIF

ELSE

THITA=1.0

ENDIF

oNoRENoNoNoNoNoNoNe Ko Ko

VARIABLES

CU -- TOTAL DISPLACEMENT VECTOR, GLOBAL, ARRANGED BY
ACTIVATED D.OF.

C UR -- INCREMENTAL DISPL. VECTOR, GLOBAL, ARRANGED BY
ACTIVATED D.O.F.

C UUR -- DISPL. INCREMENT IN ITERATION, GLOBAL, ARRANGE BY
ACTIVATED D.OF.

C UL -- ELEMENT TOTAL DISPL. VECTOR. URL -- ELEMENT INCREMENTAL
DISPL. VECTOR.

CF -- TOTAL FORCE VECTOR, GLOBAL, ARRANGED BY TOTAL D.O.F.

CFR -- INCREMENT FORCE VECTOR, GLOBAL, ARRANGE BY ACTIVATED
D.O.F.

C XC -- TOTAL NODE COORDINATE, GLOBAL, ARRANGED BY ACTIVATED
D.O.F.

C XL -- ELEMENT NODAL COORDINATE,

C PF -- INCREMENTAL NODAL REACTION FORCE, ARRANGED BY TOTAL
D.O.F.

C TPF -- TOTAL NODAL REACTION FORCE, ARRANGED BY TOTAL D.O.F.

C TF -- REFERENCE FORCE FOR ITERATION AT NITEM=I

CID -- GLOBAL IDENTIFICATION,

C ID>0, NON-CONSTRAINT, KNOWN-FORCE; ID NUMBER=NUMBER OF
ACTIVATED D.O.F.

C ID<0, CONSTRAINT, KNOWN-DISPLACEMENT

C LD -- ELEMENT IDENTIFICATION

C ISW=6, LD=TOTAL D.O.F NUMBER
C OTHERS, LD=ID NUMBER ARRANGED BY ACTIVATED D.O.F.FOR
REAL NODES
LD=0 ,FOR EMPTY NODES
FLOWCHART

form mass matrix, M <--
TPF <--0
DO 30 I=1,NSTEP

NONOOOONn
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form stiffness matrix, A <-—-
TF<-0,UR <--0
DO 40 III=1,NITEM
FR <--0,UUR<--0
FR <-- F (external load)
FR <-- FR+specified displacement+element load
FR <-- FR+dynamic factor(V1,W1)
UUR <-- FR+TF
solve
UR <-- UR+UUR
(display TF,FR,UUR,UR for debug)
calculate TF <--
calculate PF <--
40 continue
U <-- U+UR
W2 <--, V2 <--
calculate incremental reaction force, PF <--
TPF <-- TPF+PF
calculate stresses, update modulus
V1<--V2, Wl <--W2
update coordinate, XC <--
C 30 continue

oNoNeo oo o N Ne ke R Ne No No N Ko RO RO RO NSO RO N

oNQ!

C....FORM MASS MATRIX
4 CALL PZERO(R(NSM),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(INXC),R(NXCO) M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN,5)
CALL PZERO(R(NTPF),NNEQ)
CALL PZERO(R(NU),NNEQ)

C
C....INITIALIZE U, U., U.. (STARTS FROM STATIC STATE)

CALL PZERO(R(NV1),NNEQ)
CALL PZERO(R(NW1),NNEQ)

C

C-----—-——----—-Beginning of Increment Analysis----------------
DO 30 II=1,NSTEP
write(*,*) 'TOTAL LOADING STEPS=', nstep
write(7,*) "TOTAL LOADING STEPS=/, nstep
C....FORM ELEMENT STIFFNESS
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CALL PZERO(A,NK)
ASEM=TRUE.
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU), R(NUR),R(NXC),R(INXCO) M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,3)
ASEM=FALSE.
DO 10 I=1,NEQ
NN=M(NJP+I-1)
IF(DB_FLAG) WRITE(83,*) EQ.NUM="I,'NN="NN,'OLD A(NN)=",A(NN)
IF(DY_FLAG) ANN)=A(NN)+A1*R(NSM+I-1)
IF(DB_FLAG) WRITE(83,*) 'A(NN)=" A(NN),RINSM)="R(NSM+I-1)
10 CONTINUE
C....LDLT TRIANGULAR DECOMPOSITION
CALL LDLT(A.M(NJP),NEQ)
C....NODAL FORCE INPUT
CALL PZERO(R(NUR),NNEQ)
CALL PZERO(R(NFR),NNEQ)
CALL PLOAD (M(NID),R(NF),R(NFR),NNEQ,NPROP.III, THITA)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(INXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(INXC),R(NXCO).M(NIX),
2 R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,3)
DO 16 I=1,NEQ
IF(DB_FLAG) WRITE(83,*) EQ.NUM="1,'OLD NFR="R(NFR+I-1)
C
C......KEY POINT: IF THE FOLLOWING EQUATION IS INCLUDED IN THE
ALGORITHM,
C.....THE STABILITY IS NOT GOOD. THEREFORE, WE OMIT IT. THIS MEANS

THE FIRST

C.....STEP WE GET THE STATIC SOLUTION AND USE THIS SOLUTION AS THE
INITIAL

C.....VALUE FOR THE ITERATIONS TO GET THE EXACT DYNAMIC
SOLUTION. IN THIS

C....WAY, THE STABILITY CAN BE ALWAYS GARRANTEED.

C....NEWMARK, BATHE PAGE 352
C.....FULL EFFECTIVE LOAD VECTOR

R(NFR+I-1)=R(NFR+I-1)-R(NSM-+I-1)*(A2*R(NV 1+I-1)+(A3)*R(NW 1+I-1))

IF(DB_FLAG) WRITE(83,*) 'NEW NFR="R(NFR+I-1)
R(NUR+I-1)=R(NFR+I-1)
16 CONTINUE
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C....FORWARD ELIMINATION AND BACKWARD SUBSTITUTION
CALL FORBACK(A,R(NUR),M(NJP),NEQ)
C....FORBACK DOESN'T CHANGE THE CONTENT IN MATRIX A
C....ITERATION DURING EACH LOADING STEP: NSTEP
C....COMPUTE THE REACTION
IF(DB_FLAG) THEN
CALL PZEROR(NPF),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(INPF),R(NTF),R(NU),R(NUR),R(NXC),RINXCO),M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN,6)
CALL PRTREAC(R(NPF),R(NF),M(NID),RDB,11,2)
CALL PRTDIS(MM(NID),R(NUR),R(NF),R(NV2),R(NW2),2)
ENDIF
C
C—mmmememe - Beginning of Iteration
DO 40 OI=1,NITEM
write(*,*) TTERATION STEP='"III,, LOADING STEP='II
write(6,*) TTERATION STEP="II,’ LOADING STEP='II
IF(DB_FLAG) THEN
write(7,*) TTERATION STEP="III,, LOADING STEP='1I
ENDIF
DO 31 I=1,NEQ
IF(NOT.DY_FLAG) THEN
RNWW+I-1)=0.0
ELSE
RINWW+I-1)=A I*RINUR+I-1)+A2*R(NV I +[-1)+(A3)*R(NW 1 +I-1)
ENDIF
31 CONTINUE
C.....CALCULATE REFERENCE FORCE VECTOR TF
CALL PZERO(R(NTF),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(NXC),R(NXCO),M(NIX),
2 R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,7)
DO 32 I=1,NEQ
R(NUUR+I-1)=R(NFR+I-1)-R(NSM+I-1)*RINWW+L- [)+R(NTF+I-1)

32 CONTINUE
WRITE(*,*) 'F,A" R(NUUR+85-1),A(85)

C....FORWARD ELIMINATION AND BACKWARD SUBSTITUTION
CALL FORBACK(A ,R(NUUR),M(NJP),NEQ)

C.....UPDATE INCREMENTAL DISPLACEMENT VECTOR

C.....CONVERGENCE CRITERIA - EULERIAN VECTOR NORM

TOLRUUR=0.
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TOLRUR=0.
TOLC=0.

DO 17 I=1,NEQ
R(NUR+I-1)=R(NUR+I-1}+R(NUUR+I-1)

TOLRUUR=TOLRUUR+R(NUUR+I-1)*R(NUUR+I-1)
TOLRUR=TOLRUR+R(NUR+I-1)*R(NUR+I-1)

17 CONTINUE

C WRITE(*,*) 'UUR,UR',85 R(NUUR+85-1),R(NUR+85-1)

TOLC=SQRT(TOLRUUR)/SQRT(TOLRUR)
WRITE(6,*) II,' ', TOLC =", TOLC
WRITE(*,*) I, ', TOLC =", TOLC

IF(DB_FLAG) THEN
DO 6 MM=1,NEQ
WRITE(83,*) 'N=" MM, FR+M*W='"R(NFR+MM-1)-R(NSM+MM-1)*
1 RNWW+MM-1), TF="R(NTF+MM-1)
6  WRITE(7,*) 'N=' MM, NUR="R(NUR+MM-1),NUUR="R(NUUR+MM-1)
DO 7 MM=NEQ+!1,NNEQ
WRITE(83,*) 'n="MM, FR+M*W="R(NFR+MM-1)-R(INSM+MM-1)*
I RONWW+MM-1), TF="R(NTF+MM-1)
7  WRITE(7,*) 'n=',MM, NUR='R(NUR+MM-1), NUUR='R(INUUR+MM-1)
ENDIF

C....COMPUTE THE REACTION
CALL PZERO(R(NPF),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(NXC),R(INXCO),M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,6)

DO 33 I=1,NJ
DO 33 J=1,NDF
K1=(-1)*NDF+J
K2=M(NID+K1i-1)
c [F(K2.GT.0) RINPF+K 1-1)=-R(NSM+K2-1)*R(NWW+K2-1)+R(NPF+K1-1)
33 CONTINUE
c

[F(DB_FLAG) THEN
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CALL PRTREAC(R(NPF),R(NF),M(NID),RDB,I1.2)
CALL PRTDIS(M(NID),R(NUR),R(NF),R(NV2),R(NW2),2)
ENDIF

.. UAR .. Tolerance for the (Daht,1985?) Euclidian Vector norm=1%

IF (TOLC.LT.0.01) GOTO 140
UAR

40 CONTINUE

140 WRITE(*,*) 'END OF INTERNAL ITER=", II, ' TOLC='TOLC

@ — --End of Iteration

WRITE(6,*) 'END OF INTERNAL ITER=", III, ' TOLC=',TOLC

DO 18 I=1,NEQ
IF(NOT.DY_FLAG) THEN
R(NU+I-1)=R(NU+I-1)+R(NUR+I-1)
ELSE
IF(N_W.EQ.0) THEN
R(NU+I-1)=R(NU+I-1)+R(NUR+I-1)
R(INW2+I-1)=A1*R(NUR+I-1)+A2*R(NV I +I-1)+A7*R(NW 1+I-1)
RINV2+I-1)=R(NV 1+I-1)+A8*R(NW I +I-1)+AO0*R(NW2+I-1)
ELSE
RINW2+I-1)=A0*R(NUR+I-1)+A7*R(NV 1 +I-1)+A8*R(NW1+I-1)
R(INV2+I-1)=R(NV 1+I-1)+0.5*DT*(R(NW2+I- 1 )+R(NW1+I-1))
RNU+I-1)=R(NU+I-1)+DT*R(NV1+I-1)+(DT*DT/6.0)*(R(NW2+I-1)

*  +2*R(NWI+I-1))

R(NUR+I-1)=DT*R(NV1+I-1)+(DT*DT/6.0)*(R(NW2+I-1)

*  $2FR(NWI1+I-1))

ENDIF
ENDIF

18 CONTINUE

CALL PRTDIS(M(NID),R(NU),R(NF),R(NV2),R(NW2),1)
CALL PLTDIS(R(NXC),R(NUR),M(NID),R(NF),R(NUXC).ILLRDB)

C CALL PLTVEL(R(NV2),M(NID),R(NF),R(NUXC),II,SPEED,RDB)

C CALL PLTACL(R(NW2),M(NID),R(NF),R(NUXC),II,LRDB)

C....COMPUTE THE INCREMENTAL REACTION PERTICLUARLY FOR WILSON
METHOD

C CALL PZERO(R(NPF),NNEQ)

C CALL PFORM(R(NF),R(NFR),M(NLD),R(INUL),R(NURL),R(NXL),R(NXLO),
C 1 R(NNS),R(NP),R(NPF),R(INTF),R(NU),R(NUR),R(NXC),R(NXCO),M(NIX)

C 2 ,R(ND)M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NENI,6)

C CALL PRTREAC(R(NPF),R(NF),M(NID),RDB,II,2)

C CALL PRTDIS(M(NID),R(NUR),R(NF),R(NV2),R(NW2),2)

DO 19 I=1,NNEQ

19 R(NTPF+I-1)=R(NTPF+I-1)+R(NPF+I-1)

280



CALL PRTREAC(R(NTPF).R(NF).M(NID),RDB.II.1)
C....COMPUTE ELEMENT STRESSES
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO).
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(NXC),R(INXCO),M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,4)
C.....AVERAGE TANGENTIAL MODULUS IN EACH ELEMENT
CALL PZERO(R(NV1),2*NNEQ)
IF(.NOT.DY_FLAG) GOTO 24
DO 22 I=1,NEQ
R(NV1+I-1)=R(NV2+I-1)
22 R(NWI1+4I-1)=R(NW2+I-1)
24 CONTINUE
CALL CUPDATE(R(NXC),R(NUR),M(NID),R(NF),M(NIX),NEN1)
C CALL PLTFAL(MM(NIX),M(NTEN),M(NSHE),NEN1,II,RDB)
NPROP=NPROP+1
30 CONTINUE
C End of Increment Analysis
20 WRITE(*,2200) FO
¢ WRITEQ@BL*)'F

RETURN
2000 FORMAT(' NUMBER OF NODAL POINTS =15/
1 " NUMBER OF ELEMENTS =I5/
1 ' NUMBER OF MATERIALS ="I5/
1 ' NUMBER OF DEGREES/NODE =15/
l ' NUMBER OF DIMENSION SPACE =I5/
1 ' NUMBER OF NODES/ELEMENT ="I5/)

2200 FORMAT(/" ** END OF FINITE ELEMENT PROGRAM **'/
1 ' THE RESULTS ARE STORED IN FILE : ',A9)

3000 FORMAT('" **PROBLEM SIZE TOO LARGE (INTEGER ARRAY)**')

3001 FORMAT(' **PROBLEM SIZE TOO LARGE (REAL ARRAY)**')

3500 FORMAT( **FATAL ERROR** GLOBAL STIFFNESS MATRIX TOO BIGY)
END

SUBROUTINE PFORM(F,FR,LD,UL,URL,XL,XLO,S,P,PF,TF,U,UR.X,XCO
1,IX,D,ID,JP,SM,V2,VL NST,NEN1,ISW)

IMPLICIT REAL*8 (A-H,O-Z)

LOGICAL ASEM,IT_FLAG

COMMON/ASEM/ASEM

COMMON/CDATA/NDF NDM,NEN.NJ.NE,NEQ
COMMON/ELDATA/LM.,N,MA MCT.IEL.NEL
COMMON/INTERFACE/NINTR,CS,SN,H
COMMON/PROCESS/NPROP ,NITEM,IT_FLAG
COMMON/DYNAMICS/SPEED,DT,THITA,BATA,GAMA
DIMENSION UL(NDF,*),URL(NDF,*),U(*),UR(*),F(NDF,*),FR(*)



1 ,TF(*),S(NST,*),P(*),XL(NDM, *),X(NDM,*),D(20,*),IX(NEN,*),
2 ID(NDF,*),LD(NDF,*),JP(*),SM(*), VL(NDF,*),V2(*),PF(NDF,*)
3 , XCOMNNDM,*),XLLO(NDM,*)
I[EL=0
MCT=0
DO 110 N=I,NE
C....ZEROLIZE UL,URL,S,P
CALL PZERO(UL,NST*(NST+5))
CALL PZERO(VL,NST)
MA=IX(NENI,N)
DO 108 I=1,NEN
II=IX(I,N)
I[F(II.NE.Q) GO TO 105
DO 102 J=1,NDF
102 LD{.,I)=0
GO TO 108
105 [D=I*NDF-NDF
NEL=I
DO 106 J1=1,NDM
XLO@J1,D)=XCOJ1,II)
106 XL{J1,D=XJ1,II)
DO 107 J=1,NDF
K=ID(J,II)
IF(X.GT.0) then
URL(®J,)=UR(K)
VL(.D=V2(K)
endif
INEN=I+NEN
IF(K.LT.0) then
C....REMEMBER THAT ONLY THE CALCULATION OF ELEMENT NODAL
REACTION FORCE TF
C.....DO NOT REQUIRE THE SPECIFIED DISPLACEMENT. IN OTHER CASES,

SUCH AS
C....THE CALCULATION OF TOTAL REACTION NODAL REACTION FORCE

AND ELEMENT
C.....STRESS DO REQUIRE INCLUDING THE SPECIFIED DISPLACEMENTS.
IFISW.EQ.6.0R.ISW.EQ.4) URL(J,I)=F(J.II)
IF(ISW.EQ.7) URL(J,1)=0.0
URL{J,INEN)=F(J,II)
IF(ABS(F(J,II)).GT.1.0E-5) THEN
VLI, D=FJ.,II)/DT
ELSE
VL@J,D=0.0
ENDIF
ENDIF



IFAISW.EQ.6) K=IID+J
107 LD{.I)=K
108 CONTINUE
[E20=D(20,MA)
[F(IE20.NE.IEL) MCT=0
IEL=IE20
CALL
ELEMLIB(D(1,MA),UL,URL, XL, XLO,IX(1,N),S,P.VL NDF,NDM,NST ISW)
I[F(ASEM.AND.ISW_.EQ.3) CALL ADDSTF(LD,JP,S,NST)
IF(ISW.EQ.7) CALL BASBLY(TF,P,LD,NST)
130 IF(ISW.EQ.6) CALL BASBLY(PF,P,.LD,NST)
IF(.NOT.ASEM.AND.ISW.EQ.3) CALL MODIFY(FR,LD,S,URL(1,NEN+1)
* NST)
I[F(NOT.ASEM.AND.ISW.EQ.3) CALL BASBLY(FR,P,LD,NST)
IF(ISW.EQ.5) THEN
DO 122 I=1,NEN
DO 122 J=1,NDF
K=LD(J.I)
KK=(I-1)*NDF+J
IF(K.GT.0) SM(K)=SM(K)+P(KK)
122 CONTINUE
ENDIF
110 CONTINUE
RETURN
END

SUBROUTINE PGAUSS(L,LINT,R,Z,W)
... GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /ELDATA/ LM,N,MA MCT.,IEL,NEL
DIMENSION LR(9),LZ(9),LW(9),R(3),Z(3),W(3),G4(4),H4(4)
DATA LR/-1,1,1,-1,0,1,0,-1,0/,LZ/-1,-1,1,1,-1,0,1,0,0/
DATA LW/4*25,4%40,64/
LINT =L*L
GO TO(1,2,34),L

C.... 1X1 INTEGRATION

R(1) =0.0EO

Z(1) =0.0E0

W(1) =4.0E0

IF(NEL.EQ.3) THEN

Z(1) =-1.0E0/3.0EQ

W(1) =3.0E0

END IF

—



NN

21

w N

31

41

RETURN

.... 2X2 INTEGRATION

G = 1.0EO0/SQRT(3.0EQ)
DO211=14
RI) = G*LR(I)
Z(M = G*LZ()
w(I) = 1.0EO
RETURN

... 3X3 INTEGRATION

G = SQRT(0.6E0)
H = 1.0E0/81.0E0
DO31I=19
R =G*LR(D)
Z(M) =G*LZ®D)

W) = H*LW()
RETURN

... 4X4 INTEGRATION

G = SQRT(4.8E0)

H = SQRT(30.0E0)/36.0E0

G4(1) = SQRT((3.0E0+G)/7.0EQ)

G4(4) =- G4(1)

G4(2) = SQRT((3.0E0-G)/7.0EQ)

G4(3) =-G4(2)

H4(1) =0.50E0 - H

H4(2) = 0.50E0 + H

H4(3) =0.50E0 + H

H4(4) = 0.50E0 - H

I=0

DO41J=14

DO41K=1,4

I=1+1

R = G4(K)

Z(I) = G4QJ)

W(I) = H4(J)*H4(K)
CONTINUE

RETURN

END

...........................................................

SUBROUTINE PLOAD(ID,F,FR,NN,NPROP,III, THITA)

IMPLICIT REAL*8 (A-H,0-Z)

LOGICAL GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,ST_FLAG,

* SC_FLAG

DIMENSION F(1),ID(1),FR(1)

COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,



* ST_FLAG,SC_FLAG
DO 50 I=1,NN
50 FR{)=0.0
DO 100 N=1,NN
J=ID(N)
C IF(NOT.DY_FLAG)THEN
IFJ.GT.0) THEN
I[F(NPROP.EQ.1) THEN
FR(J)=F(N)+FR{J)
ENDIF
ENDIF
C ELSE
C IF(J.GT.0) FRQ)=F(N)*(NPROP-1.)+F(N)*THITA+FR(J)
C ENDIF
100 CONTINUE
RETURN
END

C....GENERATE ACCELERA.FIL FILE FOR PLOT COMMAND TO
C....PLOT THE ACCELERATION FIELD CONFIGURATION
SUBROUTINE PLTACL(W.ID,F,.D,NN,RDB)
IMPLICIT REAL*8 (A-H,0-2)
LOGICAL IT_FLAG
DIMENSION W(*),ID(NDF,*),F(NDF,*),D(NDM,*)
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON/PROCESS/NPROP NITEM,IT_FLAG
DO 110 N=1,NJ
DO 110 I=1,NDM
K=ID(,N)
IF(K.LT.0) D(I,N)=0.0
IF(K.GT.0) DA.N)=W(K)
110 CONTINUE
DISPLACE=RDB*NPROP
WRITE(85,*) NN,DISPLACE
WRITE(85,1000) ((D(I,N),I=1, NDM),N=1,NJ)
RETURN
1000 FORMAT(6E15.7)
END

SUBROUTINE PLTDIS(X,UR,ID,F,D,NN,RDB)
IMPLICIT REAL*8 (A-H,0-Z)
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LOGICAL IT_FLAG
DIMENSION X(NDM,*),UR(*),ID(NDF,*),F(NDF,*),D(NDM,*)
COMMON/PROCESS/NPROP NITEM,IT_FLAG
COMMON/CDATA/NDFNDM,NEN,NJ,NE,NEQ
DO 110 N=1,NJ
DO 110 I=1,NDM
K=ID({,N)
IF(K.LT.0) D(LN)=X(LN)+F(I.N)
IF(K.GT.0) D(ILN)=X(I,N)+UR(K)

110 CONTINUE
DISPLACE=RDB*NPROP
WRITE(81,*) NN,DISPLACE
WRITE(86,*) NN,DISPLACE
WRITE(81,1000) ((D{I,N),I=1,NDM),N=1,NJ)
WRITE(86,1000) (D(,N),I=1,NDM),N=1,NJ)
RETURN

1000 FORMAT(3E23.15)
END

C....GENERATE DATA FILE TO PLOT THE FAILURE ZONE IN FRONT OF TOOL

SUBROUTINE PLTFAL(IX,NTENSILE NSHEAR,NEN1,NN,RDB)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL IT_FLAG
DIMENSION NTENSILE(NEN, *),NSHEAR(NEN, *),IX(NEN1,*)
DIMENSION V(20)
COMMON/CDATA/NDF NDM,NEN,NJ,NE,NEQ
COMMON/PROCESS/NPROP,NITEM,IT_FLAG
DO 10 N=1,NE
MA=IX(NENI,N)
NMA=ma+48
LINT=4
IF(NDM.EQ.3) LINT=8
DO 1219 =1,LINT
NNN=(N-1)*LINT+L9
IF(NDM.EQ.2) READ(NMA REC=NNN) (V(I),I=1,14)
IF(NDM.EQ.3) READ(NMA ,REC=NNN) (V(I),I=1,20)
NTENSILE(L9,N)=0
NSHEAR(L9,N)=0
[F(NDM.EQ.2) THEN
[F(V(14).GE.0.5) NTENSILE(L9,N)=1
IF(V(13).GE.0.5) NSHEAR(L9,N)=1
ENDIF
[F(NDM.EQ.3) THEN
IF(V(19).GE.0.5) NSHEAR(L9,N)=1
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IF(V(20).GE.0.5) NTENSILE(L9,N)=1
ENDIF
12 CONTINUE
10 CONTINUE
DISPLACE=RDB*NPROP
WRITE(82,*) NN,DISPLACE
WRITE(82,1000) (NTENSILE(I,J),NSHEAR(IJ),I=1,LINT),J=1,NE)
RETURN
1000 FORMAT(10(2X,14,2X,14))
END

SUBROUTINE PLTVEL(V.ID,F,D,NN,SPEED,RDB)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL IT_FLAG
DIMENSION V(*),ID(NDF,*),F(NDF,*),D(NDM,*)
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON/PROCESS/NPROP,NITEM,IT_FLAG
DO 110 N=1,NJ
DO 110 I=1,NDM
K=ID(L,N)
IF(K.LT.0) THEN
D(I,N)=0.0
IF(F(I,N).GE.1.E-05) D(I,N)=SPEED
ENDIF
I[F(K.GT.0) D(LN)=V(K)
110 CONTINUE
DISPLACE=RDB*NPROP
WRITE(84,*) NN,DISPLACE
WRITE(84,1000) ((D(,N),I=1,NDM),N=1,NJ)
RETURN
1000 FORMAT(6E15.7)
END

c....Urlel A. Rosa June 6,96
c....Urlel A. Rosa June 1,96

SUBROUTINE PMESH(XC,XLO,IX,ID,D,UL,URL,S,P,NEN1,NST)
C....DATA INPUT AND GENERATION ROUTINE

IMPLICIT REAL*8 (A-H,0-Z)

CHARACTER COOR*6,XX*18

COMMON/CDATA/NDF.NDM,NEN,NJ,NE,NEQ

COMMON/MDATA/NUMMAT
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COMMON/ELDATA/LM.N,MA MCT,I[EL.NEL

COMMON /FLAG_BLO/ GE_FLAG.DY_FLAG.DB_FLAG.MA_FLAG.UL_FLAG.
* ST_FLAG,SC_FLAG

DIMENSION XC(NDM,*),XLO(NDM,*),IX(NEN.*),ID(NDF.*),D(20,*)
LOGICAL ERR,GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,

* ST_FLAG,SC_FLAG

DATA XX/ NODAL COORDINATES/COOR/ COOR '/

C....GENERATE PLOTMESH.FIL DATA FILE
INQUIRE(FILE=PLOTMESH.FIL' EXIST=ERR)
IF(ERR) THEN

OPEN(80,FILE="PLOTMESH.FIL',status="old")
CLOSE(80,STATUS=DELETE"
ENDIF
OPEN(80,FILE="PLOTMESH.FIL',status="new")

C.....GENERATE MSH.DAT DATA FILE
INQUIRE(FILE="MSH.DAT"EXIST=ERR)
IF(ERR) THEN

OPEN(88,FILE="MSH.DAT status='old")
CLOSE(88,STATUS="DELETE')
ENDIF
OPEN(88,FILE="MSH.DAT status='new’)

C....NODAL COORDINATES DATA INPUT

1 CALL GENVEC(NDM,XC,XX,COOR,NJ.ERR)
IF(ERR) WRITE(*,3000)
IF(ERR) STOP

C....ELEMENT DATA INPUT

2 CALL ELDAT(IX,NEN1)

C....GENERATE PLOTMESH.FIL
WRITE(80,*) 'T"
WRITE(80,*) NJ,NE,NDF,NEN,NDM
WRITE(80,1000) (XC(LJ),I=1,NDM),J=1,NJ)
WRITE(80,1100) ((IX(L,J),I=1,NEN),J=1,NE)
WRITE(80,*) 'F'

C....GENERATE MSH.DAT
WRITE(88,*) '/PREP7'
WRITE(88,*) /TITLE,Title,Dynatg’
WRITE(88,*) 'ET,1,45'
WRITE(88,*) 'EX, 1,10’
WRITE(88.*) 'EY, 1,10’
WRITE(88,*) 'EZ,1,10'
WRITE(88,*) "'
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WRITE(88,1088) (J(XC{1,J),I=1,NDM),J=1,NJ)
WRITE(88,1188) ((IX(LJ),I=1,NEN),J=1,NE)

WRITE(88,%) "'
WRITE(88,*) 'NPLOT
WRITE(88,*) EPLOT'
WRITE(88,*) TTER, 1,1
WRITE(88,*) 'AFWRITE'
WRITE(88,*) 'FINISH'
WRITE(88,*) /INPUT,27'
WRITE(88,*) 'FINISH'

O 0O 0000060

C....MATERIAL DATA INPUT
3 DO 304 N=],NUMMAT
READ(S5,*) MA,IEL
IF(DB_FLAG) WRITE(6,2000) MA,IEL
IF(SC_FLAG) WRITE(*,2000) MA,IEL
IFMMA.EQ.0) GO TO 4
CALL PZERO(D(1,MA),20)
D(20,MA)=IEL
CALL ELEMLIB(D(1,MA),UL,URL,XC,XLO,IX,S,P,VL,NDF,NDM,NST,1)
304 CONTINUE
C....BOUNDARY CONDITIONS INPUT
c1000 FORMAT(10E15.7)
c1100 FORMAT(16(4X.I5))
1000 format(3el5.7)
1100 format(4(4x,i5))

C....FORMAT FOR MSH.DAT
1088 FORMAT (((' N, I5.3(,,E15.7))))
1188 FORMAT ((( E"8(’,’,I5))))

1200 format(4x,Al)
2000 FORMAT(" MATERIAL TYPE ' 14, ELEMENT TYPE ',14/)
4 CALL BOUN(D)
WRITE(*,*)' END OF MESH GENERATION'
3000 FORMAT( **FATAL ERROR** IN MESH GENERATION")
RETURN
END

SUBROUTINE PROFIL(JP,ID,IX,NEN1,NK)
IMPLICIT REAL*8 (A-H,0-Z)
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
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DIMENSION JP(1),ID(NDF,1),IX(NENI,*)
C....SET UP EQUATION NUMBERS
NEQ=0
NAD=0
DO 50 N=1,NJ
DO 40 I=1,NDF
J=ID(I,N)
IF(J) 30,20,30
20 NEQ=NEQ+l1
ID(I,N)=NEQ
GO TO 40
30 NAD=NAD-1
ID(IL,N)=NAD
C  WRITE(6,*) N='N,NAD='NAD
40 CONTINUE
50 CONTINUE
C....COMPUTE ROW BANDWIDTH
DO 500 N=1,NE
DO 400 I=1,NEN
O=IX(I,N)
[F(I.LEQ.0) GO TO 400
DO 300 K=1,NDF
KK=ID(K,II)
IF(KK.LE.0) GO TO 300
DO 200 J=1,NEN
JI=IX(J,N)
IF(JJ.EQ.0) GO TO 200
DO 100 L=1,NDF
LL=ID(L.JJ)
IF(LL.LE.O) GO TO 100
M=MAXO(KK,LL)
JPM)=MAXO0(JP(M),IABS(KK-LL))
100 CONTINUE
200 CONTINUE
300 CONTINUE
400 CONTINUE
500 CONTINUE
C.....COMPUTE DIAGONAL POINTERS FOR PROFIL
NK=1
JP(1)=1
I[F(NEQ.EQ.1) RETURN
DO 600 N=2,NEQ
600 JP(N)=JP(N)+JP(N-1)+1
NK=JP(NEQ)
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WRITE(*,2000)NK

2000 FORMAT( THE MAXIMUM STORAGE OF GLOBAL STIFFNESS =',16/)
RETURN
END

C....NSIGN=1, TO OUTPUT TOTAL DISPLACEMENT
C....NSIGN=2, TO OUTPUT INCREMENTAL DISPLACEMENT
SUBROUTINE PRTDIS(ID,U,F,V2,W2,NSIGN)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL DB_FLAG,GE_FLAG,DY_FLAG,MA_FLAG,UL_FLAG,ST_FLAG
* SC_FLAG
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON/PROCESS/NPROP NITEM
COMMON /FLAG_BLO/GE_FLAG,DY_FLAG,DB_FLAG.MA_FLAG.UL_FLAG,
* ST_FLAG,SC_FLAG
DIMENSION ID(NDF,*),U(*),F(NDF.*),UL(6),V2(*),W2(*).VL(6), WL(6)
DO 102 [I=1,NJ,50
IF(DB_FLAG) THEN
IF(NSIGN.EQ.1) WRITE(6,2000)(K,K=1,NDF)
IF(NSIGN.EQ.2) WRITE(6,2002)(K,K=1,NDF)
ENDIF
JI=MINO(NJ,II+49)
DO 102 N=I1,JJ
NOUT=0
DO 100 I=1,NDF
K=ID(I,N)
C IF(K.LT.0) UINEQ-K)=F(I,N)*NPROP
IF(K.LT.0) THEN
IF(NSIGN.EQ.1) UL(I)=F(I,N)*NPROP
IF(NSIGN.EQ.2) UL()=F(,N)
VL()=V2(NEQ-K)
WL()=W2(NEQ-K)
ENDIF
IF(K.GT.0) THEN
ULD=U(K)
VL(D)=V2(K)
WLD)=W2(K)
ENDIF
[F(ABS(F(I,N)).GT.1.E-6) NOUT=1
100 CONTINUE
[F(DB_FLAG) THEN
IF(NOUT.EQ.1) WRITE(6,2001) N,(UL(I),I=1,NDF)
ENDIF
102 CONTINUE
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RETURN
2000 FORMAT(//1X,;NODAL DISPLACEMENTS/2X,'NODE',6(I8, DISP"))
2001 FORMAT(I6,6E12.4)
2002 FORMAT(/1X,INCREMENT DISPLACE/2X,/NODE',6(I8. DISP"))
END

C.....Madified........ Uriel A. Rosa Feb 01/96 & May 11/96

SUBROUTINE PRTREAC(R,F,ID,RDB,II,NSort)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,ST_FLAG
* SC_FLAG
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
COMMON/PROCESS/NPROP,NITEM
COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DIMENSION F(NDF,*),ID(NDF,*)
REAL*8 R(NDF,*),RSUM(6),FORC(6)
NNEQ=NDF*NJ
DO 50 K=1,NDF
RSUM(K)=0.0
FORC(K)=0.0
S0 CONTINUE
disp=RDB*NPROP
WRITE(7,*) N="II,  DISP=',DISP
WRITE(*,*) 'DISP=",DISP
WRITE(6,*) 'DISP=",DISP
IF(NOT.DB_FLAG) THEN
IF(NSort.EQ.1) THEN
WRITE(6,2004) (K,K=1,NDF)
WRITE(7,2004) (K,K=1,NDF)
ENDIF
IF(NSort.EQ.2) THEN
WRITE(6,2000) (K,K=1,NDF)
WRITE(7,2000) (K,K=1,NDF)
ENDIF
ENDIF
DO 100 N=1,NJ,50
J=MINO(NJ,N+49)
IF(DB_FLAG) THEN
IF(NSort.EQ.1) THEN
WRITE(6,2004) (K,K=1,NDF)
WRITE(7,2004) (K,K=1,NDF)
ENDIF
IF(NSort.EQ.2) THEN



WRITE(6,2000) (K.K=1,NDF)
WRITE(7,2000) (K,K=1,NDF)
ENDIF
ENDIF
DO 100 I=N,J
DO 75 K=1,NDF
C REKID=-R(KK))
RSUM(K)=RSUM(K)-R(K.I)
75 CONTINUE
DO 76 K=1,NDF
76 IF(ABS(R(K,)).GT.1.0E-3) GO TO 77
GO TO 100
77 IF(DB_FLAG) WRITE(6,2001) L(-R(K,I),K=1,NDF)
100 CONTINUE
¢ ¥kt ak ok e sl e e o e ke ok sk e ok ke sk ke ke e sk e ok sk sk sk sk ke o sk sk ok ok ok ok ke ke sk ke ok ok ok
DO 120 N=1,NJ
NSIGN=0
DO 110 I=1,NDF
K=ID(I,N)
IF(K.LT.0) THEN
IF(ABS(F(I,N)).GT.1.E-6) THEN
NSIGN=1
ENDIF
ENDIF
110 CONTINUE
IF(NSIGN.EQ.1) THEN
DO 115 I=1,NDF
115 FORC(I)=FORC(I)-R(I,N)
C WRITE(6,2001) N,(-R(K,N),K=1,NDF)
C WRITE(7,2001) N,(-R(K,N),K=1,NDF)
ENDIF
120 CONTINUE
WRITE(7,2003)(FORC(K),K=1,NDF)
WRITE(*,2003)(FORC(K),K=1,NDF)
WRITE(6,2003)(FORC(K),K=1,NDF)
WRITE(6,2002)(RSUM(K),K=1,NDF)
WRITE(7,2002)(RSUM(K),K=1,NDF)
WRITE(*,2002)(RSUM(K),K=1,NDF)

WRITE(89,5000) II,(',, FORC(K),K=1,NDF)
C  WRITE(*,5000) II(, FORC(K),K=1,NDF)

ok e ok e e e ke ok o ok sk ke ok e sk ok sk ok ke ke ke ke e e o ok ke sk o ke ke e sk sk ok s ok ke e ke

RETURN
2000 FORMAT(/5X, INCREM. REACTIONS'/2X,'NODE',6(I8,' DOF"))
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2001 FORMAT(6,6E12.4)
2002 FORMAT(3X, TOTAL SUM',6E12.4)
2003 FORMAT(3X,LOCAL SUM',6E12.4)
2004 FORMAT(/5X, TOTAL REACTIONS'/2X,NODE',6(18, DOF"))
5000 FORMAT(I6,3(A1,E12.4))
END

SUBROUTINE PSTRES(SIG.P1,P2.P3)
IMPLICIT REAL*8 (A-H,O-Z)
... COMPUTE PRINCIPAL STRESSES (2 DIMENSIONS)

DIMENSION SIG(3)
... STRESSES MUST BE STORED IN ARRAY SIG(3) IN THE ORDER

TAU-XX,TAU-XY,TAU-YY

XI1 = (SIG(1) + SIG(3))/2.0E0

XI2 = (SIG(1) - SIG(3))/2.0E0

RHO = SQRT(XI2*X1I2 + SIG(2)*SIG(2))

P1 =XI1 + RHO

P2 = XI1 - RHO

P3 =45.0E0

IF(XI2.NE.0.0) P3 = 22.5E0*ATAN2(SIG(2),XI2)/ATAN(1.0)

RETURN

END

na 0N

SUBROUTINE PZERO(P.N)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION P(N)
DO 100 I=1,N

100 P(I)=0.0
RETURN
END

SUBROUTINE ROTATE(S,CS,SN,NST ,NDF,FLAG)
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL FLAG
DIMENSION S(NST,NST)
C.....ROTATE TO GLOBAL FRAME
IF(CS.EQ.1.) RETURN
DO 13 I=],NST,NDF
J=I+1
DO 11 N=I,NST
T  =S(N,D*CS-S(N.J)*SN
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S(N,J) =S(N.[)*SN+S(N.J)*CS
11 S(NND=T
13 CONTINUE
IF(NOT.FLAG) RETURN
DO 14 1=1,NST,NDF
J=1+1
DO 12 N=LNST
T =S(IN)*CS-SJ,N)*SN
SJ.N) =S(ILN)*SN+S(J,N)*CS
12 SAN)=T
14 CONTINUE
RETURN
END

¢ Function to determine lapsed time from BASE
* This version works for any period up to 24 hours.
¢ A.E. Krause
c
REAL FUNCTION SECNDS(BASE)
implicit none
include 'definiti.fd’
REAL BASE, TIME
INTEGER IHR,IMIN ISEC,I100TH,IYR,IMON,IDAY ,DAY_START,year_start,
+  month_start,day_of_year_start,sum,i,day_of_year
integer days(12),tdays(12)
logical leap_year,leap_year_start
SAVE DAY_START,month_start,year_start,days,tdays,
+ day_of_year_start
data days/31,28,31,30,31,30,31,31,30,31,30,31/
CALL GETDAT(IYR,IMON,IDAY)
IF(BASE.EQ.0.0)THEN
sum=0
leap_year_start=FALSE
doi=1,12
tdays(i)=sum
if(i.eq.2.AND.leap_year(IYR))then
sum=sum+1
leap_year_start=TRUE
endif
sum=sum-+days(i)
enddo
year_start=I'YR
month_start=IMON
day_start=[DAY
day_of_year_start=tdays(month_start)+day_start
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ENDIF
CALL GETTIM(IHR,IMIN,ISEC,I100TH)
TIME=(100*(60*(IMIN+60*IHR)+ISEC)+I100TH)/100.0
[FADAY.NE.DAY_START.OR.IMON.NE.month_start)THEN
day_of_year=tdays(IMON)+IDAY
TIME=TIME+(day_of_year-day_of_year_start)*86400.0
ENDIF
SECNDS=TIME-BASE
RETURN
END
logical function leap_year(year)
implicit none
integer year
leap_year=((mod(year.4).eq.0.AND.mod(year,100).ne.0).OR.
+ (mod(year,400).eq.0))
return
end

SUBROUTINE SETMEM(N.M.ERR)
C.....MONITOR AVAILABLE MEMORY
IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL ERR
ERR=.FALSE.
IF(N.LE.M) RETURN
ERR=.TRUE.
WRITE(*,2000) N.M
WRITE(6,2000) N.M
RETURN
2000 FORMAT(SX,**INSUFFICIENT STORAGE**',5X,'REQUIRED ='1I8,5X,
1 'AVAILABLE =',18/)
END

SUBROUTINE SHAP2(S,T,SHP,IX,NEL)
C.... ADD QUADRATIC FUNCTIONS AS NECESSARY
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION IX(*),SHP(3,*)
S2 = (1.0E0-S*S)/2.0E0
T2 = (1.0E0-T*T)/2.0EO
DO 100 I=5,9
DO 100J=1,3
100 SHP(,I) =0.0
C.... MIDSIDE NODES (SERENDIPITY)
IF(IX(5).EQ.0) GO TO 101
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SHP(1,5) =-S*(1.0EQ-T)
SHP(2,5)=-S2
SHP(3,5) = S2*(1.0E0-T)
101 IF(NEL.LT.6) GO TO 107
IF(IX(6).EQ.0) GO TO 102
SHP(1,6)=T2
SHP(2,6) = -T*(1.0E0+S)
SHP(3,6) = T2*(1.0E0+S)
102 IF(NEL.LT.7) GO TO 107
IF(IX(7).EQ.0) GO TO 103
SHP(1,7) = -S*(1.0E0+T)
SHP(2,7)=S2
SHP(3,7) = S2*(1.0E0+T)
103 IF(NEL.LT.8) GO TO 107
IF(IX(8).EQ.0) GO TO 104
SHP(1,8)=-T2
SHP(2,8) = -T*(1.0EQ-S)
SHP(3,8) = T2*(1.0E0-S)
C.... INTERIOR NODE (LAGRANGIAN)
104 IF(NEL.LT.9) GO TO 107
IF(IX(9).EQ.0) GO TO 107
SHP(1,9) = -4.0E0*S*T2
SHP(2,9) = -4.0EQ0*T*S2
SHP(3,9) = 4.0E0*S2*T2
C.... CORRECT EDGE NODES FOR INTERIOR NODE (LAGRANGIAN)
DO 106J=1,3
DO 105SI=1,4
105 SHP(,I) = SHP(J,I) - 0.25E0*SHP(,9)
DO 1061=5,8
106 IF(IX(I).NE.O) SHP({,I) = SHP(,I) - .SE0*SHP(J,9)
C.... CORRECT CORNER NODES FOR PRESENSE OF MIDSIDE NODES
107 K=8
DO1091I=14
L=I+4
DO 108J=1,3
108 SHP(J,I) = SHP(,I) - 0.SE0*(SHP(J,K)+SHP(J,L))
109 K=L
RETURN
END

SUBROUTINE SHAPE(SS,TT,X,SHP,XSJ,NDM,NEL,IX,FLG)
IMPLICIT REAL*8 (A-H,O-Z)

LOGICAL FLG

DIMENSION SHP(3,*),X(NDM,1),5(4),T(4),XS(2,2),SX(2,2),IX(*)



DATA S/-0.5E0,0.5E0,0.5E0,-0.5E0/,T/-0.5E0,-0.5E0.0.5E0,0.5E0/
C.... FORM 4-NODE QUADRILATERAL SHAPE FUNCTIONS
DO 100I=1,4
SHP(3,I) = (0.5e0+S(I)*SS)*(0.5¢0+T(I)*TT)
SHP(1,I) = ST)*(0.5e0+T(D*TT)
100 SHP(2,I) = T(I)*(0.5¢0+S(I)*SS)
IF(NEL.GE.4) GO TO 120
C.... FORM TRIANGLE BY ADDING THIRD AND FOURTH TOGETHER
DO 110I=1,3
110 SHP(,3)=SHP(,3)+SHP(1,4)
C.... ADD QUADRATIC TERMS IF NECESSARY
120 IF(NEL.GT.4) CALL SHAP2(SS,TT,SHP,IX,NEL)
C.... CONSTRUCT JACOBIAN AND ITS INVERSE
DO 1301=1,NDM
DO 130J=1,2
XS(1.J) =00
DO 130K = ILNEL
130 XS(LJ) = XSJ) + X(I,K)*SHP(J,K)
XSJ =X8(1,1)*XS(2,2)-XS(1,2)*XS(2,1)
IF(FLG) RETURN
SX(1,1) =XS(2,2)/XS]
SX(2,2) = XS(1,1)/XSJ
SX(1,2) =-XS(1,2)/XS]
SX(2,1) =-XS(2,1)/XS]
C.... FORM GLOBAL DERIVATIVES
DO 140I=1,NEL
TP = SHP(1,[)*SX(1,1)+SHP(2,1)*SX(2,1)
SHP(2,I) = SHP(1,)*SX(1,2)+SHP(2,I)*SX(2,2)
140 SHP(1,[)=TP
RETURN
END

C.....Uriel A.Rosa...June 03,96
C.....Uriel A.Rosa...May 30,96

SUBROUTINE VALBOUN(F,ID,RDB)
IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION ID(NDF,*),F(NDF,*)
COMMON/CDATA/NDF,NDM,NEN,NJ,NE,NEQ
DO 120 N=1,NJ
DO 110 I=1,NDM
K=ID(,N)

C UAR
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C  WRITE(88,*) TID(I,N) ,ID(I,N)
C UAR
IF(K.LT.0) THEN

IF(F(ILN).GT.1.E-6) RDB=F(I,N)

END IF
110 CONTINUE
C UAR-Restr.

IF(ID(1,N).LT.0.0) THEN
WRITE(88,428) N,F(1,N)
END IF
IF(ID(2,N).LT.0.0) THEN
WRITE(88,429) N,F(2,N)
END IF
IF(ID(3,N).LT.0.0) THEN
WRITE(88,430) N,F(3,N)
ENDIF

C UAR - Forces

IF(ID(1,N).GT.0) THEN
WRITE(88,501) N,F(1,N)
END IF

IF(ID(2,N).GT.0) THEN
WRITE(88,502) N,F(2,N)
END IF

IF(ID(3,N).GT.0) THEN
WRITE(88,503) N,F(3,N)
END IF

C UAR

120 CONTINUE

WRITE(88,*) '
WRITE(88,*) 'FINISH'

C UAR
428 FORMAT ('D,.15,,UX," E15.7)
429 FORMAT (D,\I5,,UY, E15.7)



430

501
502
503

FORMAT (D, 15,,UZ, E15.7)
FORMAT (F, 15, FX, E15.7)
FORMAT (F, IS, FY, E15.7)

FORMAT (F,\I5, FZ, E15.7)

UAR

RETURN
END
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Dyntool-2

Obs: Dyntool-2 uses same subroutines from Dyntool except those ones listed as
follows:

c.....Uriel A.Rosa .... June 4,96
c.....Uriel A.Rosa .... June 2,96
c.....Modified Uriel A. Rosa Feb 10/96 ; May-18-96 (Poisson) UAR

SUBROUTINE ELMT26(D,UL,URL,XL.XLO,IX,S,P,VLNDF,NDM,NST,ISW)

IMPLICIT REAL*8 (A-H,O-Z)

CHARACTER HEAD*50,WD*11,WDD*10,FILENAME(12),fi*12
C....THREE-DIMENSIONAL, ISOTROPIC, NON-LINEAR, STRAIN RATE-
DEPENDENT
C....ELASTICITY ELEMENT WITH 8 NODES. THE TANGENT MODULUS Es IS
EXPRESSED
C.....ON THE BASIS OF DUNCAN-CHANG MODEL (1970).
C.....DESIGNED BY JIE SHEN
C.....NOV. 14, 1993

REAL*8 D(*),XL(NDM,*), XLLO(NDM,*)
COMMON /ELDATA/ LM,N,MA MCT,IEL,NEL
COMMON /HEAD/HEAD
COMMON /CDATA/ N1,N2,NEN,NJ,NE,NEQ
COMMON /DYNAMICS/ SPEED,DT,THITA,BATA,GAMA
COMMON /FLAG_BLO/
GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DIMENSION UL(NDF,*),URL(NDF,*),IX(*),S(INST,NST),P(NST),
* VL(NDF,*),SHP(4,8),SHPO(4,8),XG(8),YG(8).ZG(8),WG(8),SIG(9)
* EPS(6)
C Grefe(I4) UAR
DIMENSION GREFE(3)

DIMENSION DEPS(6),DEPSR(3),DSIG(6), WDD(2),V(20),G(4),GG(3)
* SIGN(3)
LOGICAL
FLAG,GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,ST_FLAG,
* SC_FLAG
EQUIVALENCE (FL,FILENAME(1))
DATA WD/3-D PROBLEMY/
DATA WDD/SHEAR FAILURE', TENSILE FAILURE'/
data fi /'middata .fil'/
C
C.... GO TO CORRECT ARRAY PROCESSOR
GO T0O(1,2,3,4,5,4,4), ISW
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C.... INPUT MATERIAL PROPERTIES
1 NMA=ma+48
filename(8)=char(NMA)
INQUIRE(FILE=f1,EXIST=FLAG)
IF(FLAG) THEN
OPEN(NMA, FILE=fi,status='old")
CLOSE(NMA,STATUS=DELETE")
ENDIF
OPEN(NMA, FILE=fi, ACCESS=DIRECT",status='new',RECL=160,
* FORM="UNFORMATTED")
c.....D(1)=Ks(-);D(2)=ns(-);D(3)=Xun(-); D(4)=Rho(kN/m*3);D(5)=L(-)
c.....D(6)=K(-);D(7)=Cohn(kPa);D(8)=Fai(Degree); D(9)=Rsf(-); D(10)=Bs(-)
C.....D(11)=dEpsn(0)(1/s);D(12)=St(-);D(13)=Sc(-);D(14)=Ms(-)
READ(5,*¥) D(1),D(2),D(3),D(4),D(5),D(6),D(7),D(8),D(9),D(10)
* D(11),D(12),D(13),D(14)
Es=D(1)*100.
XUN=D(3)
L=int(D(5))
K=int(D(6))
I[F(L.EQ.0) L=2
[F(K.EQ.0) K=1
L = MINO@4,L)
D(S)=L
K = MIN0(4 MAXO0(1,K))
D(@6)=K
G(1)=Es*(1.-XUN)/(1.4+XUN)/(1.-2.*XUN)
G(2)=XUN*G(1)/(1.0E0-XUN)
G(3)=Es/2.0E0/(1.0E0+XUN)
C....SET INITIAL STRESSES AND STRAINS TO ZERO AND ELASTIC MATRIC G
DO 1211=1,20
12 V({1)=0.0
DO 14 1I=1,3
NNI1=15+I
VINN1)=G(I)
14 CONTINUE
MMM=NE*§
DO 16 2=1 MMM
16 WRITE (NMA,REC=I2) (V(I),I=1,20)
LINT=0
WRITE(*,2000) D(1),D(2),D(3),D(4),L,K,D(7),D(8),D(9),D(10)
*  D(11),D(12),D(13),D(14)
WRITE(6,2000) D(1),D(2),D(3),D(4),L,K,D(7),D(8),D(9),D(10)
*  D(11),D(12),D(13),D(14)
WRITE(7,2000) D(1),D(2),D(3),D(4),L,K,D(7),D(8),D(9),D(10)
*  D(11),D(12),D(13),D(14)
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WRITE(*,2050) (G(1),I=1,3)
WRITE(6,2050) (G(I),I=1,3)
WRITE(7,2050) (G(D).I=1,3)
WRITE(6,2001) HEAD

RETURN
C..... WRITE INFORMATION ON SCREEN

RETURN

NMA=MA+48

L = int(D(5))

L=2
C IF@L*L*L.NE.LINT) CALL PGAUSS3(L,.LINT . XG,YG,ZG,WG)
CALL PGAUSS3(L,LINT.XG,YG,ZG,WG)
DO 36 L9 = 1,LINT
NNN=(N-1)*8+L9
READ(NMA REC=NNN) (V(I),I=1,20)
DO 32 1=1,3
32 G(M=V(I+15)
CALL SHP3 (XG(L9),YG(L9),ZG(L9),XL,SHP,XSJI,NDM,NEL,IX,.FALSE.)

C....CALCULATE THE ELEMENT STIFFNESS MATRIX S
GG(1)=G(1)*XXSJ

GG(2)=G(2)*XXSJ

GG(3)=G(3)*XXSJ

NSL=NEL*NDF

DO 34 J=1,NEL

J1=(J-1)*NDF

DO 34 K=J,NEL

K1=(K-1)*NDF

SJ1+1,K1+1)=SJ1+1,K1+1)+SHP(1,J)*SHP(1, K)*GG(1)+SHP(2,J)*
1 SHP(2,K)*GG(3)+SHP(3,J)*SHP(3,K)*GG(3)
S(J1+1,K1+2)=S(J1+1,K1+2)+SHP(1,J)*SHP(2 K)*GG(2)+SHP(2,J)*
1 SHP(1,K)*GG(3)
SJ1+1,K1+3)=S(J1+1,K1+3)+SHP(1,J)*SHP(3,K)*GG(2)+SHP(3,J)*
1 SHP(1,K)*GG(3)
SJ1+42,K1+1)=S(J1+2,K1+1)+SHP(2,J)*SHP(1,K)*GG(2)+SHP(1,J)*
1 SHP(2,K)*GG(3)
S(J1+2,K1+2)=S(J1+2,K1+2)+SHP(2,J)*SHP(2,K)*GG(1)+SHP(1,])*
1 SHP(1,K)*GG(3)+SHP(3,J))*SHP(3,K)*GG(3)
SJ1+2,K1+3)=S(J1+2,K1+3)+SHP(2,J)*SHP(3,K)*GG(2)+SHP(3,])*
1 SHP(2,K)*GG(3)
S(J1+3,K1+1)=S(J1+3,K1+1)+SHP(3,J))*SHP(1,K)*GG(2)+SHP(1,)*
1 SHP(3,K)*GG(3)



SJ1+3,K1+2)=S(J1+3,K1+2)+SHP(3.))*SHP(2,K)*GG(2)+SHP(2.J)*
1 SHP(3.K)*GG(3)
S(J1+3 K1+3)=SJ1+3,K1+3)+SHP(3.))*SHP(3,K)*GG(1)+SHP(2,J)*
1 SHP(2,K)*GG(3)+SHP(1,J)*SHP(1,K)*GG(3)
C....FORM LOWER PART BY SYMMETRY
S(K1+1,J1+1)=S(J1+1,K1+1)
S(K1+2,J1+1)=S(J1+1,K1+2)
S(K1+3,J1+1)=S(J1+1,K1+3)
S(K1+1,J1+2)=S(J1+2,K1+1)
S(K142,J142)=SJ1+2,K1+2)
S(K1+3,J1+2)=S(J1+2,K1+3)
S(K1+1,J1+3)=S(J1+3,K1+1)
S(K1+2,J143)=S(J1+3,K1+2)
S(K1+3,J1+3)=S(J1+3,K1+3)
34 CONTINUE
36 CONTINUE
RETURN

C....MODIFY TANGENT MODULUS,OUTPUT RESULTS AND CALCULATE
FORCE RESIDUE
C... SET STRESS HISTORY
4 NMA=MA+HS8
L=int(D(5))
Ess=D(1)*100.
=D(3)
FAI=D(8)*3.1415926/180.0
Rsf=D(9)
C=D(7)
C IF(L*L*L.NE.LINT) CALL PGAUSS3(L,LINT,XG,YG,ZG,WQ)
L=2
CALL PGAUSS3(L.LINT . XG,YG,ZG,WG)
DO 43019 = I,LLINT
NNN=(N-1)*8+L9
READ(NMA,REC=NNN) (V(),I=1,20)
do 402 I=1,3
402 G(D=V(I+15)
DO 404 1=1,6
404 EPS(D=V()
DO 406 I=1,9
SIG(D)=V1+6)
406 CONTINUE
C.... COMPUTE ELEMENT STRESSES, STRAINS, AND FORCES
C....COMPUTE ELEMENT SHAPE FUNCTIONS
CALL SHP3 (XG(L9),YG(L9),ZG(L9),XL,SHP,XSJ,NDM,NEL,IX,.FALSE.)
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C.

.. COMPUTE STRAINS AND COORDINATES

DO4081=1,6

408 DEPS(I)=0.0

XX =0.0

YY=00

2Z2=0.0

VX =00

VY =0.0

VZ=0.0

DO 410 JK = I.NEL

XX = XX + SHP(4,JK)*XL(1,JK)
YY =YY + SHP(4,JK)*XL(2,JK)
ZZ= 7ZZ + SHP(4,JK)*XL(3,JK)
VX = VX + SHP(4,JK)*VL(1,JK)
VY = VY + SHP(4,JK)*VL(2,JK)
VZ = VZ + SHP(4,JK)*VL(3.,JK)

...COMPUTE INCREMENTAL STRAINS

DEPS(1) = DEPS(1) + SHP(1,JK)*URL(1,JK)
DEPS(2)=DEPS(2)+SHP(2,JK)*URL(2,JK)

DEPS(3) = DEPS(3) + SHP(3,JK)*URL(3,JK)
DEPS(4)=DEPS(4)+SHP(2,JK)*URL(1,JK)+SHP(1,JK)*URL(2,JK)
DEPS(5)=DEPS(5)+SHP(3,JK)*URL(2,JK)+SHP(2,JK)*URL(3,JK)

410 DEPS(6)=DEPS(6)+SHP(3,JK)*URL(1,JK)+SHP(1,JK)*URL(3,JK)

DO 411 I=1,3

411 DEPSR(I)=DEPS(I)/DT

C...

SRXYZ=SQRT(DEPSR(1)**2.+DEPSR(2)**2.+DEPSR(3)**2.)
VXYZ=SQRT(VX*VX+VY*VY+VZ*VZ)

COMPUTE STRESS

DSIG(1) =G(1)*DEPS(1)+G(2)*DEPS(2)+G(2)*DEPS(3)
DSIG(2) =G(2)*DEPS(1)+G(1)*DEPS(2)+G(2)*DEPS(3)
DSIG(3) =G(2)*DEPS(1)+G(2)*DEPS(2)+G(1)*DEPS(3)
DSIG(4)=G(3)*DEPS(4)

DSIG(5)=G(3)*DEPS(5)

DSIG(6)=G(3)*DEPS(6)

..... COMPUTE TOTAL STRESSES AND STRAINS

DO 412 I=1,6

412 SIGIN=SIGID)+DSIGI)

DO 413 I=1,6

413 EPS(=EPS(I)+DEPS(I)

C

IF(ISW.EQ.6.0R.ISW.EQ.7) GO TO 426
CALL PSTRES3(SIG,SIG(7),SIG(8),S1G(9))

...............................................................

DO 414 I=1,6
V(I)=EPS(I)
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414 CONTINUE
DO 416 I=1.9
416 V(I+6)=SIG(I)

c WRITE(6,2060) L9,N
c WRITE(6,*) 'SIGMAT7=",SIG(7),'SIGMA8',SIG(8),' SIGMA9',SIG(9)
c WRITE(89,3333) 'SIGMA7,8,9=",SIG(7),SIG(8),SIG(9)

C.....CHECK THE STATE OF STRESS OF EACH UNIT

CRFFRR Rk Rk Rk kR Rk kR R ks Rk ok
C....ISIG(N)ISIG(9)! WHEN BOTH SIG(7) AND SIG(9) ARE LE 0.
C....THEREFORE, SIGMA 3 SHOULD BE -SIG(7)

C....INITTIALIZATION

C......tt ——> strain rate difference
TT=SRXYZ-D(11)
¢ IF(D(14).GT.0.001) THEN
c IF(TT.GT.1.0.AND.DY_FLAG) Ess=Ess*TT**D(14)
¢ ENDIF
IF(D(2).LT.1E-6.0R.S1G(7).GT.0.0) THEN
XX=1.0
ELSE
IF(D(2).GT.0.001) THEN
XX=(-SIG(7)/100.)**D(2)
ELSE
XX=1.0
END IF
END IF
C [IF(DB_FLAG) WRITE(6,*) 'TT="TT**D(16), XX="XX
C....TREATMENT OF FAILED ELEMENTS
IF(V(19).GE.0.5.0R.V(20).GE.0.5) THEN

May 18/96 UAR If tension or shear failure -> then Poisson ratio is
set to xun=0.49 or 0.499 according to Duncan&Chang (1976-thesis)
for a occurance of no volume change at failure; (Jose H.F.Pereira).

O O 000

Xun=0.499
Es=Ess*XX/D(12)

C UAR

c WRITE(*,*) "L9 N",L9,N
c WRITE(*,*) "Es",Es
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C UAR

GO TO 420
END IF
C....TENSILE FAILURE CRITERION ( WHEN SIG(7)>0)
IF(SIG(7).GT.0.) THEN
TC=C*D(13)
IF(SIG(7).GE.TC) THEN
IF(ST_FLAG) THEN
Es=Ess/D(12)
V(20)=1.0
ELSE
Es=Ess
END IF
GO TO 420
ELSE
SIGMAF=2.0*C*COS(FAI)/(1.0-SIN(FAI))
GO TO 419
END IF
END IF
C....SHEAR FAILURE CRITERION ( WHEN SIG(7)<0 )
SIGMAF=(2.0*C*COS(FAI)-2.0*SIG(7)*SIN(FAL)Y
* (1.0-SIN(FAI))
IF(DB_FLAG) WRITE(6,*) ' OLD SIGMAF="SIGMAF

C.....criteria tt>0 ---> incorporate strain rate effects in sigmaf
418 IF(TT.GT.0.0.AND.DY_FLAG) SIGMAF=SIGMAF+d(10)*TT
IF(DB_FLAG) WRITE(6,*) ' NEW SIGMAF=",SIGMAF
C
C....SHEAR FAILURE (sigmal-sigma3)>sigmaf
419 QQ13=(SIG(7)-SIG(9))-SIGMAF
IF(QQ13.GT.1.0E-6) THEN
¢ WRITE(6,2010) N,WDD(1)
C  WRITE(*,2010) N,WDD(1)
Es=Ess*XX/D(12)
V(19)=1.0
GOTO 420
END IF
C....NO SHEAR FAILURE
DNG=D(9)*(SIG(7)-SIG(9))/SIGMAF
IF (DNG.GE.0.99) DNG=0.99
Es=Ess*XX*(1.-DNG)*(1.-DNG)

C......Chi's triaxial parameters to correct Poisson's ratio
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C

...for UAR triaxial test soil DH00-90.

CHIA=0.4287
CHIB=0.0658

RSP=(SIG(7)-SIG(9))/SIGMAF

...RSP (Poisson's strength ratio) <=1.0 => Poisson=CHIA+CHIB*RSP
................................. > 1.0 => Poisson=0.499

XUN=CHIA+CHIB*RSP

IF (RSP.GT.1.0) THEN
WRITE(*,*) 'RSP>1.0¢
XUN=0.499

END IF

WRITE(*,*) Poisson=" XUN

..FORM ELASTIC MATRIC DD

420 G(1)=Es*(1.-XUN)/(1.+XUN)/(1.-2.*XUN)

G(2)=XUN*Es/(1.+XUN)/(1.-2.*XUN)
G(3)=Es/(2.0*(1.0+XUN))

WRITE(89,*) 'Es'.Es

WRITE(6,*) 'G(1)=',G(1),'G(2)=".G(2),'G(3)="G(3)
IF(V(19).GT.0.5) WRITE(7,*) L9, OF ',\N," IS SHEAR FAILED'
IF(V(19).GT.0.5) WRITE(*,*) L9,’ OF N, IS SHEAR FAILED'

IF(V(20).GT.0.5) WRITE(7,*) L9, OF '.N," IS TENSILE FAILED'
IF(V(20).GT.0.5) WRITE(*,*) L9, OF "N,' IS TENSILE FAILED'

................... ENDIF

IFIMA_FLAG) THEN
DO 422 4=1,3

422 V(I4+15)=G(14)

C.

(of

END IF

.........................................................

..............................................................

.. OUTPUT STRESSES AND STRAINS

[F(IMCT.GT.0) GO TO 424
WRITE(6,2001) HEAD

308



MCT =50
424 MCT=MCT-2
C....ONLY OUTPUT INFORMATION AT GAUSSAN POINT 1
¢ IF(L9.EQ.1) THEN
¢ WRITE(6,2002) L9,N,MA,(SIG(II),[I=1,5),XX,Y Y EPS,SIG(6)
¢ ENDIF
GOTO 430

426 XXSJ = XSI*WG(L9)
JI=1
DO 428 J9 = I,NEL
IFISW.EQ.7.0R.ISW.EQ.6) THEN
P(J1)=P(1)-(SHP(1,J9)*DSIG(1)+SHP(2,J9)*DSIG(4)+
* SHP(3,19)*DSIG(6))*XXSJ
P(J1+1)=P(J1+1)-(SHP(2,J9)*DSIG(2)+SHP(1,J9)*DSIG(4)+
* SHP(3,J9)*DSIG(5))*XXSJ
P(J1+2)=P(J1+2)-(SHP(3,J9)*DSIG(3)+SHP(2,J9)*DSIG(5)+
* SHP(1,J9)*DSIG(6))*XXSJ
GOTO 428
END IF
P 1)=P(J1)-(SHP(1,J9)*SIG(1)+SHP(2,J9)*SIG(4)+
* SHP(3,J9)*SIG(6))*XXSJ
P(J1+1)=P(J 1+1)-(SHP(2,J9)*SIG(2)+SHP(1,19)*SIG(4)+
* SHP(3,J9)*SIG(5))*XXSJ
P(J1+2)=P(J1+2)-(SHP(3,J9)*SIG(3)+SHP(2,J9)*SIG(5)+
* SHP(1,J9)*SIG(6))*XXSJ
428 J1=1J1 +NDF
430 CONTINUE
C.....AVERAGE TANGENTIAL MODULUS IN EACH ELEMENT
IFASW.EQ.4.AND.MA_FLAG) THEN
DO 432 [=1,3
SIGN(D)=0.0
432 G(I)=0.0
DO 436 L9 = I,LINT
NNN=(N-1)*8+L9
READ(NMA ,REC=NNN) (V(I),I=1,20)
DO 434 1=1,3
IF(V(19).GT.0.5.0R.V(20).GT.0.5) SIGN(I)=1.0
434 GI)=GM)+V(I+15)/8.0
436 CONTINUE
DO 440 L9=1,LINT
NNN=(N-1)*8+L9
READ(NMA,REC=NNN) (V(I),I=1,20)

c UAR
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c minimum value for residual elastic modulus=0.50 kPa
GREFE(16)=1.0*(1.-XUN)/(1.+XUN)/(1.-2.*XUN)
GREFE(17)=1.0*XUN/(1.+XUN)/(1.-2.*XUN)
GREFE(18)=1.0/(2.0*(1.0+XUN))

c UAR
c gdivi = value to divide Et after failure
GDIVI=1000.0
c UAR
DO 438 I4=1,3
IF(SIGN(I4).GE.0.5) THEN
c V(I4+15)=1.E-6

c UAR G()/1000 means "Es"/1000
V(14+15)=V(4+15)/GDIVI
c minimum value for residual elastic modulus=0.50 kPa
IF(V(I4+15).LT.GREFE(I4+15)) THEN
V(4+15)=GREFE(4+15)

END IF
c UAR
c Write(*,*) 'G(1)=",V(16),V(17),V(18)
GOTO 438
END IF

V(14+15)=G(I4)
438 CONTINUE
WRITE(NMA,REC=NNN) (V(I).I=1,20)
440 CONTINUE
END IF

RETURN
C....ISOPARAMETRIC ELEMENT MASS MATRIX FOR PLANE PROBLEMS
C P=DIAGONAL (LUMPED) MASS ARRAY (IN VECTOR)
C....COMPUTE MATRIX AT EACH INTEGRATION POINT
5 L=int(D(5))
L=2
C IF(L*L*L.NE.LINT) CALL PGAUSS3(L,.LINT.XG,YG,ZG,WG)
CALL PGAUSS3(L,LINT,XG,YG,ZG,WG)
DO 504 L9 = 1,LINT
CALL SHP3 (XG(L9),YG(L9),ZG(L9),XL,SHP,XSJ,NDM,NEL,IX, FALSE.)
DMASS=D(4)*XSJ*WG(L9)
DO 502 I=1,NEL
P(3*1-2)=P(3*1-2)+DMASS*SHP(4.I)
P(3*I-1)=P(3*I-2)
P(3*)=P(3*I-2)
502 CONTINUE
504 CONTINUE
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C.... FORMATS FOR INPUT-OUTPUT
2000 FORMAT(/5X,43H 3-D, ISOTROPIC, NON-LINEAR, RATE-DEPENDENT /
* 5X 49HELASTICITY ELEMENT WITH EIGHT NODES(DUNCAN-CHANG) //
1 10X,3HKs=,E15.5,3H(-)/
2 10X,3Hns=,E15.5,3H(-)/
3 10X, 4HXUN=,E15.5,3H(-)/
4 10X,4HRho=,E15.5,8H(kN/m"3)/
5 10X,2HL.=,14/
6 10X,2HK=,14/
7 10X,2HC=,E15.5,5H(kPa)/
8 10X,4HFai=,E15.5,8H(Degree)/
9 10X,4HRsf=,E15.5,3H(-)/
* 10X,3HBs=,E15.5,3H(-)/
1 10X,8HdEps(0)=,E15.5.5H(1/s)/
2 10X,3HSt=,E15.5,3H(-)/
3 10X,3HSc=,E15.5,3H(-)/
4 10X,3HMs=,E15.5,3H(-) /)
2001 FORMAT(/AS50/5X,16HELEMENT STRESSES/2X,15SHGAUSS POINT----,
* [[1X,18H ELEMENT MATERIAL,
1 3X,9H11-STRESS,3X,9H12-STRESS,3X9H22-STRESS, 4X,
2 8H1-STRESS 4X,8H2-STRESS/2X,7H1-COORD,2X,7H2-COORD,3X,
3 9H11-STRAIN,3X,9H12-STRAIN,3X,9H22-STRAIN,12X,SHANGLE)
2002 FORMAT(2x,13,/219,5E12.3/2F9.3,3E12.3,F18.2/1X)
C FORMAT(/5X,18SHELEMENT NO. & MATE,3X,9H!11-STRESS,I1H 12-
STRESS,
C * 12H---22-STRESS.,4X,8H1-STRESS,4X,8H2-STRESS/5X,10H-----STATE,
C & 2X,11HOF THE UNIT,/5X,219,5E12.3,5X,A10)
2010 FORMAT(/2X,12HELEMENT NO.=,17,2X,10H-—-STATE=,A30)
2020 FORMAT(/5X,8(6F9.4)/)
2040 FORMAT(2x,18HRATIO OF BRAKING= ,F12.9,4H ET=,F7.3/)
2050 FORMAT(/5X,28HINITIAL ELASTIC MATRIC VALUE/,'G(1)=,F18.7,
1 'G(2)='F18.7,/G(3)="F18.7)
2060 FORMAT(/5X,1SHGAUSS POINT----,12,12H NO. OF ELEM, 2X.I3)
3333 format(al4,3f12.4)
END

SUBROUTINE SHP3 (SS,TT,YY.X,SHP,XSJ NDM,NEL,IX,FLG)
IMPLICIT REAL*8 (A-H,0-Z)

REAL*8 X

LOGICAL FLG

DIMENSION SHP(4,*),X(NDM,*),QS(8),QT(8),QY(8),XS(3,3)

1 ,8X(3,3),IX(*)

DATA QS/0.5E0,-0.5E0,-0.5E0,0.5E0,0.5E0,-0.5E0,-0.5EQ,
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1 0.5E0/,QT/-0.5E0,-0.5E0,-0.5E0,-0.5E0,0.5E0,0.5EQ,
1 0.5E0,0.5E0/,QY/-0.5E0,-0.5E0,0.5E0,0.5E0,-0.5E0,-0.5EOQ,
1 0.5E0,0.5E0/

C.... FORM 8-NODE ISOPARAMETER ELEMENT SHAPE FUNCTIONS
DO100I=1,8
PS=0.5E0+QS(I)*SS
PT=0.5e0+QT(I)*TT
PY=0.5e0+QY(D)*YY
SHP(1,I) = QS(D)*PT*PY
SHP(2,I) = PS*QT(I)*PY
SHP(3,I) = PS*PT*QY(I)

100 SHP(4,)= PS*PT*PY

C do101i=1,8

C101 write(*,*) 'shp(1,i)',shp(L,i),'shp(4,i)',shp(4.i)

C.... CONSTRUCT JACOBIAN AND ITS INVERSE
DO 1301 =1,NDM
DO 130J=1,3
XS({1,)H=0.0
DO 130K = I,NEL

130 XS{.J) = XS.J) + X(J,K)*SHP(1,K)

C  write(*,*) 'xs(1,1)',xs(1,1),'’xs(2,2)",xs(2,2),'xs(3,3)",xs(3,3)

C...FORM JACOBIAN DETERMINANT
XSJ=XS(1,1)*XS(2,2)*XS(3,3)+XS(2,1)*XS(3,2)*XS(1,3)
I +XS(3,1)*XS(1,2)*XS(2,3)-XS(1,3)*XS(2,2)*X5(3,1)
1 -XS(2,1)*XS(1,2)*XS(3,3)-XS(1,1)*XS(3,2)*X5(2,3)

C  write(*,*) 'xsj=".Xsj
[F(FLG) RETURN
SX(1,1)=(XS(2,2)*X5(3.3)-XS5(2,3)*XS(3,2))/ XS]
SX(1,2)=(XS(1,3)*XS(3,2)-XS(3,3)*X8(1,2))/XSJ
$X(1,3)=(XS(2,3)*XS(1,2)-XS(1,3)*XS(2,2))/XS]
SX(2,1)=(XS(3,1)*XS(2,3)-XS(3,3)*XS(2,1))/ XS]
$X(2,2)=(XS(1,1)*XS(3,3)-XS(1,3)*XS(3,1))/XSJ
$X(2.3)=(XS(2,1)*XS(1,3)-XS(1,1)*X8(2,3))/XS]J
SX(3,1)=(XS(2,1)*XS(3,2)-XS(2,2)*XS(3,1))/XSJ
SX(3,2)=(XS(3,1)*XS(1,2)-XS(1,1)*XS(3,2))/XSJ
$X(3,3)=(XS(1,1)*XS(2,2)-XS(2,1)*X5(1,2))/XS]J

C.... FORM GLOBAL DERIVATIVES
DO 1401=1,NEL
TP=SHP(1,1)*SX(1,1)+SHP(2,))*SX(1,2)+SX(1,3)*SHP(3.I)
TQ=SHP(1,I)*SX(2,1)+SHP(2,I)*SX(2,2)+SX(2,3)*SHP(3,I)
SHP(3,I)=SHP(1,I)*SX(3,1)+SHP(2,I)*SX(3,2)+SX(3,3)*SHP(3,I)
SHPQ2.D=TQ

140 SHP(1,)=TP
K=IX(1)
RETURN



21

END

SUBROUTINE PGAUSS3(L,LINT X.Y,Z,W)

... GAUSS POINTS AND WEIGHTS FOR TWO DIMENSIONS

IMPLICIT REAL*8 (A-H,0-Z)
COMMON /ELDATA/ LM,N,MA MCT.IEL,NEL
DIMENSION QX(8),QY(8),QZ(8),X(*), Y(*),Z(*),W(*)
DATA QX/1.,-1.,-1,,1,,1-1.-1.,1./,
1QY/-1.,-1.,-1.,-1,1,1.,1,1/

DATA QZ/-1.,-1,,1.,1.,-1.,-1.,1.,1./

LINT = L*L*L

... 2X2X2 INTEGRATION

G=1.0E0/SQRT(3.0E0)
DO 21 I=1,8
X(D=G*QX(D)
Y(D=G*QY(D)
Z(H=G*QZ(D
W(D)=1.0E0
RETURN
END

SUBROUTINE PSTRES3(SIG,P1,P2,P3)

... COMPUTE PRINCIPAL STRESSES (3 DIMENSIONS)

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION SIG(6),A(4),RT1(2),RT2(2),RT3(2)

... STRESSES MUST BE STORED IN ARRAY SIG(6) IN THE ORDER

TAU-XX, TAU-YY, TAU-ZZ,TAU-XY, TAU-YZ,TAU-XZ
AI1=SIG(1)+SIG(2)+SIG(3)
AI2=SIG(1)*SIG(2)+SIG(2)*SIG(3)+SIG(1)*SIG(3)-SIG(4)*SIG(4)

I -SIG(S5)*SIG(5)-SIG(6)*SIG(6)
AI3=SIG(1)*SIG(2)*SIG(3)+2.*SIG(4)*SIG(5)
1 *SIG(6)-SIG(1)*SIG(5)*SIG(5)-SIG(2)
1 *SIG(6)*SIG(6)-SIG(3)*SIG(4)*SIG(4)
A(l)=1.
A(2)=-All
AQ)=AI2
A(4)=-AI3

TOL=0.001

CALL CUBIC(A,RT1,RT2,RT3,TOL.NOROOT)

P1=RTI(1)

P2=RT2(1)

P3=RT3(1)
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OO0 n0n

I[F(P1.LT.P2) THEN

P=P1

P1=P2

P2=P

END IF

IF(P1.LT.P3) THEN

P=P1

PP=P2

P1=P3

P2=P

P3=PP

END IF

IF(P2.LT.P3) THEN
=P2

P2=P3

P3=P

END IF

RETURN

END

SUBROUTINE CUBIC(A,RT1,RT2,RT3,TOLNOROOT)

THIS SUBROUTINE FINDS THE ROOTS (REAL OR REAL AND
COMPLEX) TO ANY CUBIC EQUATION.

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(4),C(4),RT1(2),RT2(2),RT3(2), B(2)

ZERO =TOL/10.

IF(ABS(A(1) ) - ZERO) 7,7,12
7 CALL QUADRT(A(2), RT1,RT2,TOL,NOROOT)

RETURN

12 NOROOT =3

1

IT=0
DO11=24
A = AQ)Y/A(L)
A()=10

[F(ABS(A(2)).LE.ZERO) GO TO 2

NDA =3
B(1)=1.0

B(2) = -(A(2)*.333333)
CALL LINCNG(A,NDA,B,C)

IT=1
GOTO4

2 DO3I=14
3 C(D=AD



4 X =(C(4)*C(4))*.25 + (C(3)**3) *.037037
IF(X.LT.0.0)GOTO9
X =SQRT(X)
Y =-(C(4)*.5)
I=1
RTINH=Y+X
5 N=0
IFRTI(I).LT.0.0) N =1
[F(ABS(RT1(I)).LE.ZERO) GO TO 6
RT1(I) = EXP((ALOG(ABS(RT1(I))))*.333333)
IF(N.EQ.1) RT1(I) = -RT1()
6 IFI.LEQ.2)GOTOS8
I=2
RTID=Y-X
GOTOS
8 RT2(2) = ((RT1(1l) - RT1(2))*.5)*1.732051
RTI1(1) = RTI(1) + RT1(2)
RT1(2)=0.0
RT2(1)=-RTI(1) * .5
RT3(1) = RT2(1)
RT3(2) =-RT2(2)
GO TO 11
9 ZZ=ABS(C(3))
X = -(C(4)*.5)/SQRT((ZZ**3)*.037037)
ANG= ACOS(X)
Y = 2.0*(SQRT(ZZ*.333333))
ANG = ANG*.333333
RTI1(1) = Y*COS(ANG)
RT2(1) = Y*COS(ANG + 2.09440)
RT3(1) = Y * COS(ANG + 4.18879)
RT1(2)=0.0
RT2(2) = 0.0
RT3(2)=0.0
11 IFJT.EQ.0) RETURN
RT1(1) =RTI(l) + B(2)
RT2(1) = RT2(1) + B(2)
RT3(1) = RT3(1) + B(2)
RETURN
END
SUBROUTINE QUADRT(A,ROOT1,ROOT2,TOL,NOROOT)

THIS SUBROUTINE SOLVES ANY QUADRATIC EQUATION OF THE FORM
A(1)X**2 + A(2)X + A(3) FOR REAL OR IMAGINARY ROOTS.

SHONO NP

IMPLICIT REAL*8 (A-H,0-Z)
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DIMENSION A(3), ROOT1(2), ROOT2(2)
ZERO =TOL/10.
IF(ABS(A(1)) - ZERO) 2,2,1
IF(ABS(A(2)) - ZERO) 3,3,4
NOROOT =0

RETURN

NOROOT =2

X =A(2)*A(2) -4.0 *A(1) * AQ3)
Y = A(l) + A(1)

Z =SQRT(ABS(X))Y
W=-AQ)Y

IF(X.LT.0.0) GOTO 7
ROOTI(1)=W+Z
ROOT1(2)=0.0
ROOT2(1)=W-Z
ROOT2(2)=0.0

RETURN

ROOTI(1) =W
ROOTI1(2)=Z
ROOT2(1)=W
ROOT2(2) =-Z

RETURN

NOROOT =1
ROOTI(1) =-A(3YA(2)
ROOT1(2) =0.

RETURN

END

SUBROUTINE LINCNG(A,NDA,B,C)

SUBROUTINE TO MAKE A LINEAR CHANGE OF VARIABLES

IN A GIVEN POLYNOMIAL.

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(1), B(2), C(1)
BIPWR = 1.0

NZ =NDA + 1

DO41=1NZ

C(I) =Ad)

DO81=2,NZ

C(H =CO) + CJ-1)*B(2)
C(NZ) = C(NZ)*BIPWR
NZ=NZ-1

B1PWR =B1PWR*B(1)

IF (NZ.GT.1)GOTO 6
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C(l)=C(1) * BIPWR
RETURN
END

..... INCREMENTAL ANALYSIS VERSION 1.0 FOR VAX 3100 with iteration
..... and with constant time step (Bathe algorithm)

PROGRAM FEP2

..... FEM SOFTWARE FOR MACHINE-SOIL SYSTEM

..... VERSION 1.0

..... WRITTEN BY JIE SHEN.
..... DEC.19, 1993

..... FORTRAN COLUMN MAJOR

IMPLICIT REAL*8 (A-H,0-Z)
LOGICAL EXFIL
REAL TO,DT,SECNDS
CHARACTER*9 FLFO
CHARACTER NAMINP(9),NAMOUT(9),HEAD*50,HEAD1*50
COMMON/HEAD/HEADI
EQUIVALENCE (FILNAMINP(1)),(FO,NAMOUT(1))
DATA FLFO/ .DAT', .OUTY
DATA HEAD/ FEM SOFTWARE FOR MACHINE-SOIL SYSTEM 1.0 '/
HEAD1=HEAD
WRITE(*,1000)
WRITE(*,*) ' INPUT FILE NAME (5 LETTERS ONLY) !
READ (*,'(5A1)) NAMINP(I),I=1.5)
DO I=1,5
NAMOUT(I)=NAMINP(I)
END DO
INQUIRE(FILE=FO,EXIST=EXFIL)
[F(EXFIL)THEN
OPEN(6,FILE=FO,STATUS='0LD")
ELSE
OPEN(6,FILE=FO,STATUS=NEW)
END IF
OPEN(5,FILE=FL,STATUS='OLD")

C******************************

inquire(file="output.fil',exist=exfil)

if(exfil) then
open(7,file="output.fil',status='old")
close(7,status="'delete’)

endif

open(7.file="output.fil',status="new")

..........................

inquire(file='disp.fil',exist=exfil)
if(exfil) then
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open(8 1.file='disp.fil' status="old’)
close(81,status='delete")

endif

open(81,file='disp.fil',status='new")

inquire(file="VELO. fil' exist=exfil)

if(exfil) then
open(84.file="VELO.fil',status="old")
close(84,status='delete")

endif

open(84,file="VELO.fil';status="new’)

inquire(file="ACCE fil' exist=exfil)

if(exfil) then
open(85,file="ACCE.fil',status='old")
close(85,status="delete’)

endif

open(85,file="ACCE.fil',status="new’)

inquire(file="fail.fil',exist=exfil)

if(exfil) then
open(82, file='fail fil' status="old’)
close(82,status='delete")

endif

open(82,file="fail fil',status="new’)

inquire(file="gaus.fil',exist=exfil)

if(exfil) then
open(83,file="gaus.fil',status="old")
close(83,status='delete")

endif

open(83,file="gaus.fil'status="new’)

inquire(file="PLOTDISP.fil' exist=exfil)

if(exfil) then
open(86,ﬁle='PLOTDISP.ﬁI',status:'old')
close(86,status='delete’)

endif

open(86,file="PLOTDISP. fil',status="new’)

..........................

inquire(file="LREAC.FIL' exist=exfil)

if(exfil) then
open(89,file="_LREAC.FIL' status="0ld")
close(89,status="delete")
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endif
open(89.file="LREAC.FIL' status="new")

WRITE(89,*) LREAC.FIL - NDF, TOOL LOCAL REAC: X,Y,Z'

¢ MAXM=30000 ------> 35000
¢ MAXR=50000 ------> 85000
¢ MAXA=500000 ------> 910000
WRITE(6,1000)HEAD
TO=SECNDS(0.0)
CALL PCONTR(FO)
DT=SECNDS(TO0)
WRITE(*,600)DT
600 FORMAT(' ', Lapsed time ='F10.1, sec.")
1000 FORMAT(/A50/)
END

C.....(Dynat10) UAR Jun-29-96 UAR CX. CHANGES
C.....(Dynat7) UAR May-30-96

¢ (Dynat6) UAR May-24-96

C....Moadified...Uriel A. Rosa Feb 10/96

SUBROUTINE PCONTR(FO)
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 TOLRUUR,TOLRUR,TOLC
PARAMETER (MAXM=35000,MAXR=85000,MAXA=910000)
C....IN SUBROUTINE ADDSTF, THERE IS ANOTHER PARAMETER
STATEMENT TO
C....DEFINE MAXA WHICH ALSO NEED BE CHAGED, IF CHANGE HAPPENS
TO THE ABOVE
C....MAXA. NOTE MAXM FOR INTEGER ARRAY, MAXR FOR REAL ARRAY,
AND MAXA FOR
C....TOTAL STIFFNESS ARRAY
CHARACTER FO*9,CFLAG*5,CH_FLAG*7
LOGICAL ERR,ASEM,GE_FLAG,DY_FLAG,DB_FLAGMA_FLAG,UL_FLAG,
* ST_FLAG,IT_FLAG,SC_FLAG
COMMON/M/M(MAXM)
COMMON/R/R(MAXR)
COMMON/A/A(MAXA)
COMMON/CDATA/NDF ,NDM,NEN,NJ,NE,NEQ
COMMON/MDATA/NUMMAT
CHARACTER FD*25,FORC*6,P
COMMON/PRINT/P
COMMON/ASEM/ASEM
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C.....NPROP DENOTES NUMBER OF TOTAL INCREMENT STEPS
C....NITEM DENOTES NUMBER OF TOTAL ITERATION STEPS DURING EACH
LOADING STEP
COMMON/PROCESS/NPROP NITEM,IT_FLAG
COMMON/DYNAMICS/SPEED,DT,THITA BATA,GAMA
C GE_FLAG FOR IDENTIFING LINEAR OR NON-LINEAR GEOMETRIC
ANALYSIS
DY_FLAG FOR IDENTIFING STATIC OR DYNAMIC ANALYSIS
DB_FLAG FOR IDENTIFING OUTPUT STATUS FOR DEBUG OR NOT
MA_FLAG FOR IDENTIFING VARIABLE OR CONSTAT STIFFNESS
UL_FLAG FOR IDENTIFING UPDATED OR TOTAL LAGRANGINA METHOD
ST_FLAG FOR CONSIDERING TENSILE FAILURE INFLUENCE ON SHEAR
STRENGTH
C SC_FLAG FOR SHOWING THE INFORMATION ON SCREEN
COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,
* ST_FLAG,SC_FLAG
DATA FORC/ FORC /FD/ NODAL FORCE/DISPLY
C.....READ IN CONTROL DATA

oNoNONPN®!

I=0
2 READ(5,(AS)) CFLAG
[F(CFLAG.EQ.MSFEM'.OR.CFLAG.EQ.'msfem’) I=1
IF(I.LEQ.0) GO TO 2
READ(5,*) NIJNE,NUMMAT,NDF,NDM,NEN
WRITE(*,2000) NJ,NE.NUMMAT,NDF NDM,NEN
WRITE(6,2000) NJ,NE,.NUMMAT,NDF ,NDM,NEN
NEN1=NEN+1
NNEQ=NJ*NDF
NST=NDF*NEN
NSW=NE*NEN
C....INTEGER ARRAY POINTERS
=1
NID=NIX+NENI*NE
NLD=NID+NNEQ
NJP=NLD+NST
NTEN=NJP+NNEQ
NSHE=NTEN+NSW
NENDI=NSHE+NSW
C....REAL ARRAY POINTERS
NXC=1
NUXC=NXC+NJ*NDM
NXCO=NUXC+NJ*NDM
ND=NXCO+NJ*NDM
C....LIMITTED TO 19 PARAMETERS FOR EACH KIND OF MATERIAL.
C.....THE 20TH IS THE ELEMENT TYPE NUMBER.
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NXL=ND+20*NUMMAT
NXLO=NXL+NEN*NDM
NUL=NXLO+NEN*NDM
NURL=NUL+2*NST
NS=NURL+NST*2
NP=NS+NST*NST
NF=NP+NST
NPE=NF+NNEQ
NTF=NPF+NNEQ
NTPF=NTF+NNEQ
NU=NTPF+NNEQ
NFR=NU+NNEQ
NUR=NFR+NNEQ
NUUR=NUR+NNEQ
NSM=NUUR+NNEQ
NU1=NSM+NNEQ
NV1=NU1+NNEQ
NW1=NV1+NNEQ
NU2=NW1+NNEQ
NV2=NU2+NNEQ
NW2=NV2+NNEQ
NWW=NW2+NNEQ
NUI=NWW+NNEQ
NVL=NUI+NNEQ
NENDR=NVL+NST

NWW -- INCREMENTAL ACCELERATION;

CALL SETMEM(NENDILMAXM, ERR)
IF(ERR) THEN
WRITE(*,3000)
WRITE(6,3000)
STOP
END IF
CALL SETMEM(NENDR,MAXR ,ERR)
IF(ERR) THEN
WRITE(*,3001)
WRITE(6,3001)
STOP
END IF
CALL MZERO(M(1),NENDI)
CALL PZERO(R(1),NENDR)
..... MESH GENERATION
CALL PMESH(R(NXC),R(INXLO),M(NIX),M(NID),R(ND),R(NUL),R(NURL)
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C
C

* R(NS),R(NP),NEN1.NST)
CALL GENVEC(NDF.R(NF),FD,FORC.NJ.ERR)
I[F(ERR) GO TO 20

UAR
DO 800 I1=1, NDM*NJ

c800 WRITE(88,*) R(NID+I1-1)

C
C

o
c

C

WRITE(88,1088) (J,(XC(1,J),I=1,NDM),J=1,NJ)
1088 FORMAT (((' N,".I5,3(,,E15.7))))
UAR

DO 3 I1=1,NDM*NJ
RINXCO+I1-1)=R(NXC+I1-1)

...DEFINE THE PROFIL FOR GLOBAL STIFFNESS MATRIX STORAGE

CALL PROFIL(M(NJP),M(NID),M(NIX),NEN1,NK)

CALL SETMEM(NK,MAXA ERR)

IF(ERR) THEN

WRITE(*,3500)

STOP

ENDIF
WRITE(*,*) DO YOU WANT TO OUTPUT ELEMENT STIFFNESS (Y/N)?
READ (*,(A)) P

P=N’

..DETERMINE NON-ZERO DISPLACEMENT BOUNDARY CONDITION

MAGNITUDE

C
c
C

CALL VALBOUN(R(NF),M(NID),RDB)

...DETERMINE COORDINATES OF GAUSS POINTS

CALL GAUSS(R(NXC),R(NXL),M(NIX),NEN1)

.. INITTAL PARAMETERS(SPEED(M/S))

NPROP=1

WRITE(*,*) INPUT SPEED(M/S):2.5, 5.0, 10.0 OR 15.0!'

READ(5,*) SPEED,NSTEP,NITEM,N_W

write(7,*) 'speed(m/s)=",speed

write(*,*) 'speed(m/s)=",speed

write(81,*) speed

WRITE(84,*) SPEED

WRITE(8S5,*) SPEED

WRITE(82,*) SPEED

WRITE(86,*) SPEED

WRITE(*,*)INPUT TOTAL STEPS:/
READ(*,*) NSTEP

write(7,*) 'TOTAL STEPS='NSTEP

write(*,*) ' TOTAL STEPS='NSTEP
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write(81,*) nstep

WRITE(84,*) NSTEP

WRITE(85,*) NSTEP

WRITE(82,*) NSTEP

WRITE(86,¥) NSTEP

write(7,*) TTERATION STEPS="NITEM
write(*,*) TTERATION STEPS="NITEM
write(*,*) 'interval(m)=',RDB

write(7,*) 'interval(m)=',RDB
IF(RDB.LE.1.E-6) RDB=1

UAR
IF(RDB.LE.1.E-6) write(*,*) 'Warning: RDB=1"
IF(RDB.LE.1.E-6) write(7,*) "Warning: RDB=1"
UAR

DT=RDB/SPEED
IF(N_W.EQ.0) THEN
write(*,*) ' NEWMARK METHOD'
write(7,*) ' NEWMARK METHOD'
ELSE
write(*,*) "'WILSON METHOD'
write(7,*) 'WILSON METHOD'
ENDIF
READ(S,(A7)") CH_FLAG
I[F(CH_FLAG.EQ.DY_FLAG'.OR.CH_FLAG.EQ.'dy_flag') THEN
DY_FLAG=TRUE.
write(*,*) 'DYNAMIC SOLVING SCHEME'
write(7,*) ' DYNAMIC SOLVING SCHEME'
ELSE
DY_FLAG=.FALSE.
write(*,*) 'STATIC SOLVING SCHEME'
write(7,*) 'STATIC SOLVING SCHEME'
ENDIF
READ(S,'(A7)) CH_FLAG
[F(CH_FLAG.EQ.'"GE_FLAG'.OR.CH_FLAG.EQ.'ge_flag") THEN
GE_FLAG=TRUE.
write(*,*) NON-LINEAR GEOMETRIC SOLVING SCHEME'
write(7,*) 'NON-LINEAR GEOMETRIC SOLVING SCHEME'
ELSE
GE_FLAG=.FALSE.
write(*,*) 'LINEAR GEOMETRIC SOLVING SCHEME'
write(7,*) 'LINEAR GEOMETRIC SOLVING SCHEME'
ENDIF
READ(S,'(A7)) CH_FLAG
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[F(CH_FLAG.EQ.DB_FLAG'.OR.CH_FLAG.EQ.'db_flag") THEN
DB_FLAG=.TRUE.
write(*,*) 'OUTPUT DEBUG INFORMATION'
write(7,*) 'OUTPUT DEBUG INFORMATION'
ELSE
DB_FLAG=FALSE.
write(*,*) 'DO NOT OUTPUT DEBUG INFORMATION’
write(7,*) 'DO NOT OUTPUT DEBUG INFORMATION'
ENDIF
READ(S,'(A7)) CH_FLAG
IF(CH_FLAG.EQ.MA_FLAG'.OR.CH_FLAG.EQ.'ma_flag") THEN
MA_FLAG=.TRUE.
write(*,*) NON-LINEAR MATERIAL SOLVING SCHEME'
write(7,*) NON-LINEAR MATERIAL SOLVING SCHEME'
ELSE
MA_FLAG=.FALSE.
write(*,*) LINEAR MATERIAL SOLVING SCHEME'
write(7,*) LINEAR MATERIAL SOLVING SCHEME'
ENDIF
READ(S,'(A7)) CH_FLAG
IF(CH_FLAG.EQ.'UL_FLAG'.OR.CH_FLAG.EQ.'ul_flag) THEN
UL_FLAG=TRUE.
write(*,*) 'UPDATED LAGRAGIAN SOLVING SCHEME'
write(7,*) UPDATED LAGRAGIAN SOLVING SCHEME'
ELSE
UL_FLAG=.FALSE.
write(*,*) TOTAL LAGRAGIAN SOLVING SCHEME'
write(7,*) TOTAL LAGRAGIAN SOLVING SCHEME'
ENDIF
READ(S,'(A7)) CH_FLAG
IF(CH_FLAG.EQ.'ST_FLAG'.OR.CH_FLAG.EQ.'st_flag") THEN
ST_FLAG=.TRUE.
write(*,*) 'CONSIDERING TENSILE FAILURE'
write(7,*) 'CONSIDERING TENSILE FAILURE'
ELSE
ST_FLAG=.FALSE.
write(*,*) 'NOT CONSIDERING TENSILE FAILURE'
write(7,*) 'NOT CONSIDERING TENSILE FAILURE'
ENDIF
READ(S,'(A7)) CH_FLAG
I[F(CH_FLAG.EQ.'SC_FLAG'.OR.CH_FLAG.EQ.'sc_flag') THEN
SC_FLAG=.TRUE.
write(*,*) TINFORMATION SHOWING ON SCREEN'
write(7,*) TNFORMATION SHOWING ON SCREEN'
ELSE
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SC_FLAG=FALSE.
write(*,¥) 'NO INFORMATION SHOWING ON SCREEN'
write(7,*) 'NO INFORMATION SHOWING ON SCREEN’
ENDIF
C....INTEGRATION PARAMETERS
C....N_W=0NEWMARK METHOD; N_W=1, WILSON METHOD;
IF(DY_FLAG) THEN
C IF(N_W.EQ.0) THEN
THITA=1.0
BATA=0.25
GAMA=0.50
A0=GAMA*DT
Al=1.0/(DT*DT*BATA)
A2=-1.0/(BATA*DT)
A3=-1.0/(2.0*BATA)
Ad4=A0*Al
AS=A0*A2
A6=DT+A0*A3
A7=A3+1.0
A8=DT-A0
ELSE
THITA=1.4
Al1=6./(THITA*DT)**2,
AO=Al/THITA
A2=-6.0/(THITA*DT)
A3=-3.0
A4=3.0/(THITA*DT)
AS5=A3
A6=-THITA*DT/2.0
A7=-6.0/(THITA*THITA*DT)
A8=1.0-3.0/THITA
ENDIF
ELSE
THITA=1.0
ENDIF

VARIABLES

C U -- TOTAL DISPLACEMENT VECTOR, GLOBAL, ARRANGED BY
ACTIVATED D.OF.

C UR -- INCREMENTAL DISPL. VECTOR, GLOBAL, ARRANGED BY
ACTIVATED D.O.F.

C UUR -- DISPL. INCREMENT IN ITERATION, GLOBAL, ARRANGE BY
ACTIVATED D.OF.

C UL -- ELEMENT TOTAL DISPL. VECTOR. URL -- ELEMENT INCREMENTAL
DISPL. VECTOR.
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CF --TOTAL FORCE VECTOR, GLOBAL, ARRANGED BY TOTAL D.O.F.

C FR -- INCREMENT FORCE VECTOR, GLOBAL, ARRANGE BY ACTIVATED
D.OF.

C XC -- TOTAL NODE COORDINATE, GLOBAL, ARRANGED BY ACTIVATED
D.OF.

C XL - ELEMENT NODAL COORDINATE,

C PF - INCREMENTAL NODAL REACTION FORCE, ARRANGED BY TOTAL
D.OF.

C TPF -- TOTAL NODAL REACTION FORCE, ARRANGED BY TOTAL D.O.F.
C TF -- REFERENCE FORCE FOR ITERATION AT NITEM=I

C ID -- GLOBAL IDENTIFICATION,

C ID>0, NON-CONSTRAINT, KNOWN-FORCE; ID NUMBER=NUMBER OF
ACTIVATED D.O.F.

C ID<0, CONSTRAINT, KNOWN-DISPLACEMENT

C LD -- ELEMENT IDENTIFICATION

C ISW=6, LD=TOTAL D.O.F NUMBER
C OTHERS, LD=ID NUMBER ARRANGED BY ACTIVATED D.O.F.FOR
REAL NODES
LD=0 ,FOR EMPTY NODES
FLOWCHART

form mass matrix, M <--
TPF <--0
DO 30 Ii=1,NSTEP
form stiffness matrix, A <--
TF<--0,UR<-0
DO 40 III=1 ,NITEM
FR <-0,UUR <--0
FR <-- F (external load)
FR <-- FR+specified displacement+element load
FR <-- FR+dynamic factor(V1,W1)
UUR <-- FR+TF
solve
UR <-- UR+UUR
(display TF,FR,UUR,UR for debug)
calculate TF <-—
calculate PF <--
40 continue
U <-- U+UR
W2 <--, V2 <--
calculate incremental reaction force, PF <--
TPF <-- TPF+PF
calculate stresses, update modulus
V1 <-- V2, Wl <--W2

oNoNoNoEeNo oo Ko RoNo ke R Ne Ko N No No N No N o No o RO RO RO K]
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C  update coordinate, XC <—-
C 30 continue

C....FORM MASS MATRIX
4 CALL PZERO(R(NSM),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(NXC),R(INXCO),M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,5)
CALL PZEROR(NTPF),NNEQ)
CALL PZERO(R(NU),NNEQ)

C
C....INITIALIZE U, U., U.. (STARTS FROM STATIC STATE)

CALL PZERO(R(NV1),NNEQ)
CALL PZERO(R(NW1),NNEQ)
C

C-------—-————-Beginning of Increment Analysis--------------—-
DO 30 II=1,NSTEP
write(*,*) "TOTAL LOADING STEPS=', nstep
write(7,*) 'TOTAL LOADING STEPS=', nstep
C....FORM ELEMENT STIFFNESS
CALL PZERO(A,NK)
ASEM=TRUE.
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(INTF),R(NU), RAINUR),R(NXC),R(INXCO),M(NIX)
2 ,R(IND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,3)
ASEM=FALSE.
DO 10 I=1,NEQ
NN=M(NIJP+I-1)
IF(DB_FLAG) WRITE(83,*) 'EQ.NUM="]I,'NN="NN,'OLD A(NN)="A(NN)

C UARCX. CHANGES
I[F(DY_FLAG) A(NN)=A(NN)+A4*R(NSM+I-1)

IF(DB_FLAG) WRITE(83,*) 'A(NN)=",A(NN), R(NSM)=",R(NSM+I-1)
10 CONTINUE
C....LDLT TRIANGULAR DECOMPOSITION

CALL LDLT(A,M(NJP),NEQ)
C....NODAL FORCE INPUT

CALL PZERO(R(NUR),NNEQ)

CALL PZERO(R(NFR),NNEQ)
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CALL PLOAD (M(NID),R(NF),R(NFR),NNEQ,NPROP,III,THITA)

CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL).R(NXLO),

1 R(NS),R(NP),R(NPF),R(INTF),R(NU),R(NUR),R(NXC),R(INXCO),M(NIX),

2 R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST.NEN1,3)

DO 16 I=1,NEQ

IF(DB_FLAG) WRITE(83,*) 'EQ.NUM="I,OLD NFR="R(NFR+I-1)

C
C.....KEY POINT: IF THE FOLLOWING EQUATION IS INCLUDED IN THE
ALGORITHM,
C.....THE STABILITY IS NOT GOOD. THEREFORE, WE OMIT IT. THIS MEANS
THE FIRST
C.....STEP WE GET THE STATIC SOLUTION AND USE THIS SOLUTION AS THE
INITIAL
C.....VALUE FOR THE ITERATIONS TO GET THE EXACT DYNAMIC
SOLUTION. IN THIS
C.....WAY, THE STABILITY CAN BE ALWAYS GARRANTEED.

C....NEWMARK, BATHE PAGE 512 (?)
C.....FULL EFFECTIVE LOAD VECTOR

C UAR CX.CHANGES
R(NFR+I-1)=R(NFR+I-1)-R(INSM+I-)*(AS*R(NV I+[-1)+(A6)*R(NW 1 +I-1))
C

IF(DB_FLAG) WRITE(83,*) NEW NFR=",R(NFR+I-1)
R(NUR+I-1)=R(NFR+I-1)
16 CONTINUE

C....FORWARD ELIMINATION AND BACKWARD SUBSTITUTION
CALL FORBACK(A,R(NUR),M(NJP),NEQ)
C....FORBACK DOESN'T CHANGE THE CONTENT IN MATRIX A
C.....ITERATION DURING EACH LOADING STEP: NSTEP
C....COMPUTE THE REACTION
IF(DB_FLAG) THEN
CALL PZERO(R(NPF),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(NXC),R(INXCO),M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,6)
CALL PRTREAC(R(NPF),R(NF),M(NID),RDB,II,2)
CALL PRTDIS(M(NID),R(NUR),R(NF),R(NV2),R(NW2),2)
ENDIF
C
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Cormmmm e Beginning of Iteration
DO 40 [II=1,NITEM
write(*,*) TTERATION STEP="III,, LOADING STEP='II
write(6,*) TTERATION STEP=1II,Y, LOADING STEP="1I
IF(DB_FLAG) THEN
write(7,*) TTERATION STEP="1II,’ LOADING STEP="1I
ENDIF
DO 31 I=1,NEQ
IF(NOT.DY_FLAG) THEN

RINWW+I-1)=0.0

ELSE

C UAR VEL.VECTOR

C UAR CX. CHANGES
RINWW+I-1)=A0*(A1*R(NUR+I-1)+A2*R(NV I+[-1)+(A3)*R(NW 1 +I-1))
R(INWW+I-1)=R(INWW+I-1)+DT*R(NW I +I-1)

C  WRITE(*,*) DT'.DT

ENDIF
3] CONTINUE
C....CALCULATE REFERENCE FORCE VECTOR TF
CALL PZERO(R(NTF),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO).
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),RINUR),R(NXC),R(NXCO),M(NIX),
2 R(ND),M(NID),M(NJP),R(INSM),R(NV2),R(NVL),NST,NEN1,7)
DO 32 I=1,NEQ
R(NUUR+I-1)=R(NFR+I-1)-RONSM+I- 1 )*R(NWW-+I- 1 }+R(NTF+I-1)

32 CONTINUE
WRITE(*,*) 'F, A", R(NUUR+85-1),A(85)

C....FORWARD ELIMINATION AND BACKWARD SUBSTITUTION
CALL FORBACKI(A,R(NUUR),M(NJP),NEQ)
C....UPDATE INCREMENTAL DISPLACEMENT VECTOR
C.....CONVERGENCE CRITERIA - EULERIAN VECTOR NORM
TOLRUUR=0.
TOLRUR=0.
TOLC=0.
DO 17 I=1,NEQ
R(NUR+I-1)=R(NUR+I-1)+R(NUUR+I-1)

TOLRUUR=TOLRUUR+R(NUUR+I-1)*R(NUUR+I-1)
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TOLRUR=TOLRUR+R(NUR+I-1)*R(NUR+I-1)

17 CONTINUE

C  WRITE(*,*) 'UUR,UR',85,R(INUUR+85-1),R(INUR+85-1)

TOLC=SQRT(TOLRUURYSQRT(TOLRUR)
WRITE(6.*) II,’ ', TOLC ="TOLC
WRITE(**) I11, ', TOLC =" TOLC

IF(DB_FLAG) THEN
DO 6 MM=1,NEQ
WRITE(83,*) N=',MM, FR+M*W=' R(NFR+MM-1)-R(NSM+MM- 1 )*
1 R(NWW+MM-1), TF= RINTF+MM-1)
6  WRITE(7,*) N=',MM,NUR='R(NUR+MM-1), NUUR=,R(NUUR+MM- 1)
DO 7 MM=NEQ+1,NNEQ
WRITE(83,*) 'n=",MM, FR+M*W='R(NFR+MM- 1 )-R(NSM+MM- 1 )*
1 R(NWW+MM-1), TF=' R(NTF+MM-1)
7 WRITE(7,*) 'n=',MM,NUR="R(NUR+MM-1), NUUR=",R(NUUR+MM- 1)
ENDIF

C.....COMPUTE THE REACTION
CALL PZERO(R(NPF),NNEQ)
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL).R(NXLO).
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(INXC),R(INXCO).M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN,6)

DO 33 I=1,NJ

DO 33 J=1,NDF

K1=(I-1)*NDF+J

K2=M(NID+K1-1)
c [F(K2.GT.0) RONPF+K1-1)=-R(NSM+K2-1)*RINWW+K2-1)+R(NPF+K1-1)
33 CONTINUE
c

IF(DB_FLAG) THEN

CALL PRTREAC(R(NPF),R(NF),M(NID),RDB,II,2)

CALL PRTDIS(M(NID),R(NUR),R(NF),R(NV2),R(NW2),2)
ENDIF

C..... UAR .. Tolerance for the (Daht,1985?) Euclidian Vector norm=1%
IF (TOLC.LT.0.01) GOTO 140
¢ UAR
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40 CONTINUE

140 WRITE(*,*) 'END OF INTERNAL ITER=", III, ' TOLC="TOLC
WRITE(6,*) 'END OF INTERNAL ITER=", III, ' TOLC='TOLC
C----=——-----—End of Iteration
DO 18 I=1,NEQ
IF(.NOT.DY_FLAG) THEN
R(NU+I-1)=R(NU+I-1}+R(NUR+I-1)
ELSE
IF(N_W.EQ.0) THEN
R(NU+I-1)=R(NU+I-1)+R(NUR+I-1)
RINW2+I-1)=A1*R(NUR+I-1)+A2*R(NV 1+[-1)+A7*R(NW1+I-1)
R(INV2+I-1)=R(NV1+I-1)+A8*R(NW 1+I- 1)+ AO*R(NW2+I-1)
ELSE
RINW2+I-1)=A0*R(NUR+I-1)+A7*R(NV1+I-1)+A8*R(NW1+I-1)
RINV2+I-1)=R(NV1+I-1)+0.5*DT*(R(NW2+I-1)}+R(NW1+I-1))
R(NU+I-1)=R(NU+I-D)+DT*R(NV 1+I-1)+(DT*DT/6.0)*(R(NW2+I-1)
*  $2 *R(NWI1+I-1))
R(NUR+I-1)=DT*R(NV1+I-1)+(DT*DT/6.0)*(R(INW2+I-1)
* 42 **R(NW1+I-1))
ENDIF
ENDIF
18 CONTINUE
CALL PRTDIS(M(NID),R(NU),R(NF),R(NV2),R(NW2),1)
CALL PLTDIS(R(NXC),R(NUR),M(NID),R(NF),R(INUXC),II,LRDB)
C CALL PLTVELRNV2),M(NID),R(NF),R(INUXC),II,SPEED,RDB)
C CALL PLTACL(R(NW2)M(NID),R(NF),R(NUXC),II,RDB)
C.....COMPUTE THE INCREMENTAL REACTION PERTICLUARLY FOR WILSON
METHOD
C CALL PZERO(R(NPF),NNEQ)
C CALL PFORMR(NF),R(NFR),M(NLD),R(NUL),R(INURL),R(NXL),R(NXLO),
C 1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(INUR),R(NXC),R(NXCO),M(NIX)
C 2 .R(ND)M(NID)M(NIJP),R(NSM),R(NV2),R(NVL),NST,NEN1,6)
C
C

CALL PRTREAC(R(NPF),R(NF),M(NID),RDB,II,2)
CALL PRTDIS(M(NID),R(NUR),R(NF),R(NV2),R(NW2),2)
DO 19 I=1,NNEQ
19 R(NTPF+I-1)=R(NTPF+I-1)+R(NPF+I-1)
CALL PRTREAC(R(NTPF),R(NF),M(NID),RDB,II,1)
C....COMPUTE ELEMENT STRESSES
CALL PFORM(R(NF),R(NFR),M(NLD),R(NUL),R(NURL),R(NXL),R(NXLO),
1 R(NS),R(NP),R(NPF),R(NTF),R(NU),R(NUR),R(NXC),R(NXCO),M(NIX)
2 ,R(ND),M(NID),M(NJP),R(NSM),R(NV2),R(NVL),NST,NEN1,4)
c....AVERAGE TANGENTIAL MODULUS IN EACH ELEMENT
CALL PZERO(R(NV1),2*NNEQ)
IF(NOT.DY_FLAG) GOTO 24
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DO 22 I=1,NEQ
R(INV1+I-1)=R(NV2+I-1)
22 RNWI+I-1)=R(NW2+I-1)
24 CONTINUE
CALL CUPDATE(R(NXC),R(NUR),M(NID),R(NF),M(NIX),NEN1)
C CALL PLTFALM(NIX),M(NTEN),M(NSHE),NEN1,II,RDB)
NPROP=NPROP+1
30 CONTINUE
C End of Increment Analysis
20 WRITE(*,2200) FO
¢  WRITE(L,*) 'F
RETURN
2000 FORMAT(' NUMBER OF NODAL POINTS =15/
' NUMBER OF ELEMENTS =15/
"NUMBER OF MATERIALS =15/
' NUMBER OF DEGREES/NODE =15/
' NUMBER OF DIMENSION SPACE =I5/
1 ' NUMBER OF NODES/ELEMENT ='1I5/)
2200 FORMAT( ** END OF FINITE ELEMENT PROGRAM **'/
1 ' THE RESULTS ARE STORED IN FILE : ',A9)
3000 FORMAT(' **PROBLEM SIZE TOO LARGE (INTEGER ARRAY)**')
3001 FORMAT( **PROBLEM SIZE TOO LARGE (REAL ARRAY)**)
3500 FORMAT(' **FATAL ERROR** GLOBAL STIFFNESS MATRIX TOO BIGY/)
END

Pt pt et et

c....Uriel A. Rosa June 29,96
c....Uriel A. Rosa June 6,96
c....Uriel A. Rosa June 1,96

SUBROUTINE PMESH(XC,XLO,IX,ID,D,UL,URL,S,P,NEN],NST)
C....DATA INPUT AND GENERATION ROUTINE

IMPLICIT REAL*8 (A-H,0-Z)

CHARACTER COOR*6,XX*18

COMMON/CDATA/NDF ,NDM,NEN,NJ,NE,NEQ

COMMON/MDATA/NUMMAT

COMMON/ELDATA/LM,N,MA MCT,IEL,NEL

COMMON /FLAG_BLO/ GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,

* ST_FLAG,SC_FLAG

DIMENSION XC(NDM,*), XLLO(NDM,*),IX(NEN 1,*), ID(NDF, *),D(20,*)

LOGICAL ERR,GE_FLAG,DY_FLAG,DB_FLAG,MA_FLAG,UL_FLAG,

* ST_FLAG,SC_FLAG

DATA XX/ NODAL COORDINATES/COOR/ COOR '/

C....GENERATE PLOTMESH.FIL DATA FILE
INQUIRE(FILE='PLOTMESH.FIL' . EXIST=ERR)



O o060 000

I[F(ERR) THEN
OPEN(80,FILE="PLOTMESH.FIL'status='old")
CLOSE(80,STATUS=DELETE)

ENDIF

OPEN(80,FILE=PLOTMESH.FIL' status="new")

..... GENERATE MSH.DAT DATA FILE
INQUIRE(FILE="MSH.DAT" EXIST=ERR)
IF(ERR) THEN

OPEN(88,FILE="MSH.DAT" status='old")
CLOSE(88,STATUS=DELETE")
ENDIF
OPEN(88,FILE="MSH.DAT" status="new’)

..... NODAL COORDINATES DATA INPUT
CALL GENVEC(NDM,XC,XX,COOR,NJ,ERR)
IF(ERR) WRITE(*,3000)
IF(ERR) STOP

..... ELEMENT DATA INPUT
CALL ELDAT(IX,NENI)

..... GENERATE PLOTMESH.FIL
WRITE(80,*) T'
WRITE(80,*) NJ,NE,NDF,NEN,NDM
WRITE(80,1000) ((XC(1,J),I=1,NDM),J=1,NJ)
WRITE(80,1100) (IX(1,J),I=1,NEN),J=1,NE)
WRITE(80,*) 'F

..... GENERATE MSH.DAT
WRITE(88,*) /PREPT
WRITE(88,*) '/TITLE,Title,Dynat10’
WRITE(88,*) 'ET,1,45'
WRITE(88,*) 'EX,,10'
WRITE(88,*) EY, 1,10’
WRITE(88,*) 'EZ,1,10°
WRITE(88,*) '

WRITE(88,1088) (J,(XC(1.J).]=1,NDM),J=1,NJ)
WRITE(88,1188) ((IX(LJ),I=1,NEN),J=1,NE)

WRITE(88,*) "'
WRITE(88,*) 'NPLOT
WRITE(88,*) 'EPLOT'
WRITE(88,*) TTER,L,1"
WRITE(88,*) 'AFWRITE'
WRITE(88,*) 'FINISH'
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¢  WRITE(88,*) /INPUT,27'
c¢  WRITE(88,*) FINISH'

C....MATERIAL DATA INPUT
3 DO 304 N=1,NUMMAT
READ(S,*) MA,IEL
IF(DB_FLAG) WRITE(6,2000) MA,IEL
IF(SC_FLAG) WRITE(*,2000) MA,IEL
IF(IMA.EQ.0) GO TO 4
CALL PZERO(D(1,MA),20)
D(20,MA)=IEL
CALL ELEMLIB(D(1,MA),UL,URL , XC,XLO,IX,S,P,VL,NDF NDM,NST,1)
304 CONTINUE
C.....BOUNDARY CONDITIONS INPUT
c1000 FORMAT(10E15.7)
c1100 FORMAT(16(4X,15))
1000 format(3el5.7)
1100 format(4(4x,i5))

C....FORMAT FOR MSH.DAT
1088 FORMAT (((' N,'.I5,3(,",E15.7))))
1188 FORMAT (((' E',8(",,I5))))

1200 format(4x,Al)
2000 FORMAT( MATERIAL TYPE " 14, ELEMENT TYPE ',14/)
4 CALL BOUN(ID)
WRITE(*,*) ' END OF MESH GENERATION'
3000 FORMAT( **FATAL ERROR** IN MESH GENERATION')
RETURN
END



Appendix C

Dyntool program tree

| MAIN

|| SECNDS[2]

111 GETDAT?
I[IILEAP_YEAR
[11GETTIM?

[ PCONTR

[11 SETMEM[3]

{11 MZERO

I 11 PZERO{11]

|11 PMESH
[111GENVEC
1111 ELDAT

{111 PZERO...
{[I1ELEMLIB
{111 ELMT16 (not used)
[T PGAUSS(3]
{11111 SHAPE[S]
[H1H1T I SHAP2
I1111I PSTRES
I11TTELMT26
[T PGAUSS3(3]
111 H SHP3[3]
[11111PSTRES3
{111 CUBIC
il I QUADRT
(LLETTT LINCNG
111 BOUN

i11 GENVEC...

11 PROFIL

{1 VALBOUN

I 11 PFORM][7]
111 PZERO[2]...
[i 11 ELEMLIB...
{111 ADDSTF

111 BASBLY[3]
[111 MODIFY
[11LDLT

i1 1 PLOAD

|11 FORBACK]2]
|11 PRTREAC[3]
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| 11 PRTDIS[3]
[1TPLTDIS
11 CUPDATE
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Appendix D

Dyntool flat tool input sample data: 171 nodes , 92 brick elements (f1t84.dat)

3-d,depth=100mm,width=904mm,.elemt 26
msfem
171,92,1,3,3,8
1,1,0,0.0047,0.2
4,0,0,0.15,0.2
5,1,0,0.0047,0.15
8,0,0,0.15,0.15
9,0,0,0,0.1
10,1,0,0.0047,0.1
13,0,0,0.15,0.1
14,0,0,0,0.05
15,1,0,0.0047,0.05
18,0,0,0.15,0.05
19,0,0,0,0
20,1,0,0.0047,0
23,0,0,0.15,0
24,1,0.05,0.0047,0.2
27,0,0.05,0.15,0.2
28,1,0.05,0.0047,0.15
31,0,0.05,0.15,0.15
32,0,0.05,0,0.1
33,1,0.05,0.0047,0.1
36,0,0.05,0.15,0.1
37,0,0.05,0,0.05
38,1,0.05,0.0047,0.05
41,0,0.05,0.15,0.05
42,0,0.05,0,0
43,1,0.05,0.0047,0
46,0,0.05,0.15,0
47,0,0.1,0,0.2
48,1,0.1,0.0047,0.2
51,0,0.1,0.15,0.2
52,0,0.1,0,0.15
53,1,0.1,0.0047,0.15
56,0,0.1,0.15,0.15
57,0,0.1,0,0.1
58,1,0.1,0.0047,0.1
61,0,0.1,0.15,0.1
62,0,0.1,0,0.05
63,1,0.1,0.0047,0.05
66,0,0.1,0.15,0.05

337



67,0,0.1,0,0
68,1,0.1,0.0047.0
71,0,0.1,0.15,0
72,0,0.2,0,0.2
73,1,0.2,0.0047,0.2
76,0,0.2,0.15,0.2
77,0,0.2,0,0.15
78,1,0.2,0.0047,0.15
81,0,0.2,0.15,0.15
82,0,0.2,0,0.1
83,1,0.2,0.0047,0.1
86,0,0.2,0.15,0.1
87,0,0.2,0,0.05
88,1,0.2,0.0047,0.05
91,0,0.2,0.15,0.05
92,0,0.2,0,0
93,1,0.2,0.0047,0
96,0,0.2,0.15,0
97,0,0.3,0,0.2
98,1,0.3,0.0047,0.2
101,0,0.3,0.15,0.2
102,0,0.3,0,0.15
103,1,0.3,0.0047,0.15
106,0,0.3,0.15,0.15
107,0,0.3,0,0.1
108,1,0.3,0.0047,0.1
111,0,0.3,0.15,0.1
112,0,0.3,0,0.05
113,1,0.3,0.0047,0.05
116,0,0.3,0.15,0.05
117,0,0.3,0,0
118,1,0.3,0.0047,0
121,0,0.3,0.15,0
122,0,0.4,0,0.2
123,1,0.4,0.0047,0.2
126,0,0.4,0.15,0.2
127,0,0.4,0,0.15
128,1,0.4,0.0047,0.15
131,0,0.4,0.15,0.15
132,0,0.4,0,0.1
133,1,0.4,0.0047,0.1
136,0,0.4,0.15,0.1
137,0,0.4,0,0.05
138,1,0.4,0.0047,0.05
141,0,0.4,0.15,0.05
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142,0,0.4,0,0

143,1,0.4,0.0047,0

146,0,0.4,0.15,0

147,0,0.5,0,0.2

148,1,0.5,0.0047,0.2

151,0,0.5,0.15,0.2

152,0,0.5,0,0.15

153,1,0.5,0.0047,0.15
156,0,0.5,0.15,0.15

157,0,0.5,0,0.1

158,1,0.5,0.0047,0.1

161,0,0.5,0.15,0.1

162,0,0.5,0,0.05

163,1,0.5,0.0047,0.05
166,0,0.5,0.15,0.05

167,0,0.5,0,0

168,1,0.5,0.0047,0

171,0,0.5,0.15,0

0,0,0,0,0

1,1,1,28,5,1,24,29,6,2,25,0
4,1,1,33,10,5,28,34,11,6,29,0
7,1,1,37,14,9,32,38,15,10,33,0
11,1,1,42,19,14,37,43,20,15,38
15,1,1,53,28,24,48,54,29,25,49
18,1,1,58,33,28,53,59,34,29,54
21,1,1,62,37,32,57,63,38,33,58
25,1,1,67,42,37,62,68,43,38,63
28,0,1,70,45,40,65,71,46,41,66
29,1,1,77,52,47,72,78,53,48,73
33,1,1,82,57,52,77,83,58,53,78
37,1,1,87,62,57,82,88,63,58,83
41,1,1,92,67,62,87,93,68,63,88
44,0,1,95,70,65,90,96,71,66,91
45,1,1,102,77,72,97,103,78,73,98
49,1,1,107,82,77,102,108,83,78,103
53,1,1,112,87,82,107,113,88,83,108
57,1,1,117,92,87,112,118,93,88,113
61,1,1,127,102,97,122,128,103,98,123
65,1,1,132,107,102,127,133,108,103,128
69,1,1,137,112,107,132,138,113,108,133
73,1,1,142,117,112,137,143,118,113,138
77,1,1,152,127,122,147,153,128,123,148
81,1,1,157,132,127,152,158,133,128,153
85,1,1,162,137,132,157,163,138,133,158
89,1,1,167,142,137,162,168,143,138,163
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92,0,1,170,145,140,165,171,146,141,166
1,26
24.54,0,0.4287,1.32,2,1,6.7.39.3,0.7,2.00,0.0005,1.1
0,0,0,0,0
1,0,1,1,0
5,0,1,1,0
10,0,1,1,0
24,0,0,1,0
28,0,0,1,0
33,0,0,1,0
48,5,-1,0,0
58,0,1,0,0
475,-1,-1,0
57,0,1,1,0
9,5,-1,-1,0
19,0,1,1,1
15,0,1,0,0
20,0,1,0,1
2,1,-1,0,0
4,0,1,1,0
6,1,-1,0,0
8,0,1,1,0
11,5,-1,0,0
21,0,1,0,1
12,5,-1,0,0
22,0,1,0,1
13,5,-1,-1,0
23,0,1,1,1
32,5,0,-1,0
42,0,0,1,1
62,0,0,1,0
67,0,0,1,1
72,5,0,-1,0
92,0,0,1,1
97,5,0,-1,0
117,0,0,1,1
122,5,0,-1,0
142,0,0,1,1
147,5,-1,-1,0
167,0,1,1,1
27,0,0,1,0
31,0,0,1,0
36,5,0,-1,0
46,0,0,1,1
51,25,0,-1,0
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151,0,1,1,0
56,25,0,-1,0
156,0,1,1,0
61,25,0,-1,0
161,0,1,1,0
66,25,0,-1,0
166,0,1,1,0
71,25,0,-1,-1
171,0,1,1,1
150.5,-1,0,0
170,0,1,0,1
149,5,-1,0,0
169.0,1,0,1
148,5.-1,0,0
168,0,1,0,1
43,1,0,0,-1
45,0,0,0,1
68,1,0,0,-1
70,0,0,0,1
93,1,0,0,-1
95,0,0,0,1
118,1,0,0,-1
120,0,0,0,1
143,1,0,0,-1
145,0,0,0,1
0,0,0,0,0
47,5,0.0001,0,0
57,0,0.0001,0,0
48,5,0.0001,0,0
58,0,0.0001,0,0
0,0,0,0,0
8.4,100,10000,0
dy_flag
no_ge_flag
nodb_flag
ma_flag
UL_FLAG
ST_FLAG

* UL_Flag should be used in order to make the out-of-balance
force vector to be zero *
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Appendix F

SAS input sample data (fas12.dat) and sample program (fas12.sas)

(fas12.dat)

1 1 1 1 1 112.8443
2 1 1 I 1 75.54804
3 1 1 | 1 78.12469
1 2 1 1 1 86.79357
2 2 l 1 1 82.93132
3 2 1 1 1 89.82632
1 3 1 1 1 89.79578
2 3 1 1 1 74.94781
3 3 | 1 1 92.57247
1 1 2 1 1 302.4878
2 1 2 1 | 243.644
3 1 2 1 1 307.2182
1 2 2 1 1 302.8063
2 2 2 1 1 416.5212
3 2 2 1 | 332.7686
1 3 2 1 1 219.1866
2 3 2 I 1 214.2041
3 3 2 1 1 184.3478
1 l 1 2 1 97.41201
2 1 1 2 1 117.4224
3 1 1 2 1 112.6954
1 2 1 2 1 55.27967
2 2 | 2 1 59.61629
3 2 1 2 | 69.79965
1 3 1 2 1 65.35588
2 3 1 2 1 56.54833
3 3 1 2 1 68.10781
1 1 2 2 1 516.313
2 1 2 2 1 428.5753
3 1 2 2 1 387.8103
1 2 2 2 1 475.3628
2 2 2 2 1 397.4427
3 2 2 2 1 394.7133
1 3 2 2 1 605.5133
2 3 2 2 | 417.6347
3 3 2 2 1 405.0501
1 1 | 1 2 159.5643
2 1 1 l 2 146.7866
3 1 1 1 2 86.12796
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WR = WRN =W~ WR = WK~ WRN~WRN=WN=WN~,WN~WN~,WND—~WN=WN=WN~—~

— = I W W N NN = e = WWWEANNNMEME 2 WWWRNRON = =~ WWLWNDNODRY = =~ WWLWWNhNDN

MI\)Nr—'o—-o—-'—'—-»—-u—-»—»—-NN(QNNIQNNM.—-»—-—-r—v—tn—-v—-.—v—ﬂNMI\)l\)Nl\)NNI\)i—-'—-y—-n—v—-v——

— et et b et et pemt et bt = = = BRI D R RO R R DN B DN DN N R NN N NN = e e e e e e e et e b e e

WWLWWLWWWWWWWLWWLWWWLWNRNNRDPRNDRDPRDPDREDPDRPRPRDRERPEPRPDRPDPRDPDPDPDPDPDDND DD DDDNDDDND

147.5684
137.3299
157.3672
93.15495
114.888

124.042

455.4154
447.0275
582.9299
393.5803
3325111
380.2815
345.1109
345.4502
349.0776
188.7182
215.1753
213.9772
156.546

141.7306
168.9808
150.1857
157.8476
135.3325
808.9184
878.361

700.1122
802.5185
710.0367
724.7673
585.9609
551.3072
473.5855
170.2468
179.394

238.6844
131.1066
201.2552
222.8507
154.0701
161.1639
180.6284
600.3785
684.3849
803.6665
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764.1842
539.207
603.3104
540.3384
458.0001
385.7683
310.9212
278.9322
313.6726
2924151
276.0797
297.6855
210.1539
173.0109
201.1526
1063.546
1290.739
1044.293
832.1966
1116.344
868.9687
716.2232
756.3283
655.84

W W WRNMNDNME == WWWNNDNE =, WLWWRR NN
NN NN NDNNDNDNDNNDNNDNDNDND — = ————
W W W W W LW WW L WW LWL W WLW WL WL WWWWw

W R = WK — WK — WA — WK M WHKN m WK — WK
[SS 20 NS I (ST o6 I 6 S0 I SO T 5 T S I NS I N T SO I SO R (S I (6 )

(fas12.sas)

title ‘effect of R T D B S on draft F';

option 1s=78;

data;

infile 'fas12.dat’;

inputRTDBSF;

proc glm;

classRTDBS;

model F =T D T*D B(D) T*B(D) S T*S D*S T*D*S S*B(D) T*S*B(D);
run;
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Appendix G

Steady state draft vs. speed data shown on Figure 5.1

Time Speed Draft
(s) (m/s) N)
1.005 5.3 -432
1.011 5.3 -47
1.017 5.3 20
1.022 5.3 3
1.028 5.3 33
1.034 5.3 58
1.039 53 -168
1.045 5.3 363
1.051 5.3 -723
1.057 5.4 74
1.062 5.3 -151
1.068 5.3 -88
1.074 5.3 70
1.079 54 188
1.085 5.3 -219
1.091 5.3 330
1.097 5.3 -18
1.102 54 -302
1.108 5.4 -39
1.114 5.3 -126
1.119 54 397
1.125 5.4 -577
1.131 5.3 116
1.136 5.3 -118
1.142 5.4 180
1.148 53 -9
1.154 5.4 383
1.159 5.4 -401
1.165 5.4 -5
1.171 54 12
1.176 5.4 -101
1.182 5.4 -43
1.188 5.3 37
1.194 54 -59
1.199 5.4 619
1.205 54 3
1.211 5.4 -93
1.216 5.4 191
1.222 5.5 29
1.228 5.3 -59
1.234 5.4 58
1.239 5.4 -323
1.245 5.4 16
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1.251 5.4 154

1.256 5.4 -18
1.262 5.4 -17
1.268 5.5 91
1.274 54 -134
1.279 54 387
1.285 54 -130
1.291 5.4 -1
average 5.4 m/s -12N
stdev 0.04 m/s 239N
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