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• FOREWORD 

This paper treats the development of the real number 

system. As the title suggests, it is based on the theory of 

number as presented by Bertrand Russell in his two works, the 

"Ln t.r-o duc t.Lon to Mathematical Philosophy" and the "Principles 

of Mathematics". My chief aim has been to reduce the con­

cept of 'number' to such logical concepts as 'class' and 

'relations'. The first part of this paper deals With these 

concepts and the latter parts with their applications to 

'number 1 
• Regarding the operations between numbers, much 

is lert undone. I merely offer the essential definitions. 

Certain refinements of these operations, such as the assoc· 

iative and distributive laws of algebra, are omitted. These 

omissions are not due to the fact that such laws are unim­

portant or that they cannot be derived rrom 'number' as defined 

in this paper, but to the fact that I discuss here only the 
. 

essential features of the number system and not the various 

laws which may be deduced from these. 

References are given that the reader may amplify these 

notes should he so desire, and a bibliography is appended. 

I wish to express my appreciation of the assistance given 

to me by Dr. G.H. Ling in the presentation of this thesis. 

H.M• 

•



• PART I 

CLASSES AND RELATIONS. 

There are three main schools of thought in mathematics; 

Formalftstic, Intuitionist, and Logisticl, but we shall be 

eoncerned only wi th the last of these. Briefly etated, the 

thesis of the Logistic school is that pure ma.thematics is a 

branch of logic. Russell 1s r'egarded as being the c:hief ex­

ponent of this school and his views as contained in the "Intro. 

duction to Ma.thematical Philosophy· are expressed in what rol. 

lows. 

There are two methods of mathematical investigation. The 

first method Is constructive. We adopt a set. of premises as 

f"OF example the natural numbers 1,2,3••••• and deduce results 

which necessarily tollow. In faet" all tradl tional pure math­

ematics can be derived completely from the natural numbers by 

2using propositions of logic concerning these natural numbers. 

That is to say; if we take the natural numbeli'S I, 2,3 • • • •• as 

our starting point and subject this initial premise to a series 

of logical deductions, the Whole of pure mathematics can be 

made to follow by implication. This type of mathematical invest­

19ation proceeds from fundamental principles to those more com­

plex, the reasoning 1s in general deductive, and the results 

are justified only if the principles themselves are justified. 

There is another method of mathematical investigation which is 

analytical and this is the method with which Russell 1s prim­

•
3 

1. See Black UNature of Mathematics· p.7. 
2. Russell "Introduction to l1athematical PhilosophylJ p.4. 
3. Russell UIntroduction to 1~thematical PhilosoPhY· p.l. 



• ar11y eoneezned , We seek to establish such concepts as 'class t , 

'relation' and 'order', out of which our former starting point, 

the natur-a'l, number-e must follow as all logical consequence , and 

it is the purpose of~art I or this paper to discuss this latter 

method. 

Re:ference has been made above to 'logical deductions I, but 

no attempt will be made in this paper to investigate the prin· 

ciples of logic as this is the duty of the philosopher'. We are 

concerned with the applications of these principles rather 
1than wi th the principles themselves. Russell states that, 

"By the help of ten principles of deduction and ten other prem­

lses of a general logical nature, all mathematics can be strict. 

ly and I'ormally deduced; and all the entities that oe eur in math­

ematies can be defined in terms of the a,bove twenty premises". 

For our purposes the important part or the above statement is 

that all the entities occurring in mathematics can be defined 

in terms of the above twenty premises of logic. In what fol­

lOWS, a discussion of 'class', 'relation', and 'order', will 

be given. It as has been suggested, these concepts can be made 

to depend upon logic alone and our number system can be ded­

uced (logically) from these concepts, then it must follow tha~

pure mathematics can be made to rest, entirely upon the above 

principles or 10gic2 • 

The following diScussions of class" relation, and order, 

are to be treated as outlines of' these eoncept s r-athez than 

• Russell "Principles of Mathematies. It p.4. 
-Logic is the youth of mathematics and mathematics is 
the manhood of logic'" ---"Introduction to Mathematical 
Philosophy" p.194. 
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• as exhaustive studies. Examples will be given where possible, 

and speeific references will be made to the works of Russell 

wherein these eoneept.s are treated tully. 

CLASSES 

In the preface of his ·Principles of Mathematics", Russell 

states, -In the ease of classes I must confess I have failed 

to perceive any concept, fulfilling the eondf tiona requisi te 

for the notion of Class", while in his Int.roduction to Math­

ematical PhilOSOphyl he states, "A class may be defined in two 

ways ••• It. These statements may at first appear t,o be contra.... 

dietary. That is: In the :f'ormer statement he implies tha't a 

class is a primitive notion which cannot be defined in terms 

of any other' concept while in the latter statement he pzoeeeds 

to define it. I will first dis~uss these two statements and 

show that they are not necessarily e'ontradie,tory. 

The important word in the above statements is Idefine'. 

When something is defined, it may be done in two ways. (a) The 

concept to be defined may be replaeed by another concept, the 

meaning of which is understood, and the properties of which 

may be identical with those of the former concept. For example; 

we shall, 1n a later seetion, define 'number' 1n terms of 'Class'. 

Here the concept of number will evolve from the concept of class. 

• 1. Russell -Introduction to 1{athemat1e~al Philosophy". p. 12 • 
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• (b) Or the concept in question may be defined by what prop­

erties it has rather than what it Is. In elementary text 

bookS} in Euclidian geometry the question is raised, "What 

is a point?" The author then proceeds to say that a point 

has position but no ar-ea ete , Strictly speaking the question 

has not been answered. Such a definition does not tell us 

what a point is., nor does it replac'e the eoneept 'point t by 

a more primitive concept 'fulfilling the conditions requisite 

for the notion of point'. If, however, we are willing to 

accept the properties of a point as a definition of that con­

cept, we may say that it has been defined by its characteristic 

properties. 

We can apply this latter method of definition to classes. 

If I say, "All the people in Canada- I am referring to a coll­

ection {class} of individua.1s all having the property that 

their position is within certain definite geographical limits, 

and this is one of their defining properties. Again, if I say 

"All isosceles triangles", I have in mind a co Ll.eet.Lon of 

three sided figures of any dimensions provided that two sides 

of each are equal in length. As another example, consider 

the class ItA11 the perfeet squares". 'Jrhis is a class of num­
2bers each member of which is the 'correspOnding,3 square or 

Some cardinal number and this 1s the derining property or the 

class. Analytic geometry provides many illustrations or the 

• 1. See Hall and stevens UPland Geometry" p. ,2i 
2. Classes do not presuppose numbers. This 1s merely an 

illustration of class by charaeteris~ic properties. 
"Principles of Mathematics" p. 69. 

3. 'Oorrespondence' will be discussed in the section on 
relations. 
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•
2. ). l.

class concept. b'Or example .. consider the equation x +J :: a.. 

where 'a' is any positive real number. To every 'such number 

there corresponds a circle, and a class of concentric circles 

is defined by this relation. 

The above examples ought to illustrate how we may derine 

classes of Objects by making use of characteristics common to 

each member of the class, and we now give the follOWing dar­

1nition of classes in general. 

If a statement (or proposition)l is made concerning a 

term x, then all of the terms x for which this statement 1s 

true constitute a elass2• When a class of objects is so 

defined we say that it is defined 'intensionally'. That 

this definition will serve to define the given exa~ples of' 

classes is easily shown. Take for example, the first one. 

"All the people in Canada-. Consider the statement or prop­

osi t.Lon , "x is an individual living in Canada tr • If we sull)," 

stitute for x, the name of some individual this statement may 

be true or it may be false. It certainly will be true if we 

aetually replace x by the name of any individual who does live 

in Canada, and it will be false for all others. That is: 

Every term x satisfying the above statement is a member of 

2. Russell defines class as: "All the satisfying 

the class in question; and conversely, every member x of such 

a class must make the statement true. 

L 
1. See "principles of Mathematics" p. 12. 

terms some 
proposi tional function tt. p , 20. "principles of l1athemat.Lcs" 

• 
The above definition avoids the use or the term ·proposit... 
ional ruaet.Lon I, but make's use of' its properties • 



(6)

• There is another method
1 

of defining certain classes • 

We may enumerate their members. This method, however,' is in­
~

adaquate when the class is infinite. For example we could 

define the class f'All the people in Canada- by enumerating 

all of its members (if we had sufficient time). We could 

not however, enumerate all of the per€ect squares. When 

a class is defined by the enumeration of its members it is 

said to be defined1extensionallyl. 

ot these two methods of defining a class the intensional 

method is most appropriate for our purposes. It is not always 

necessary, for our requirements, to list. or enumerate each 

term of a class. It is, however, essential that we have a 

'test' for a given class such that if anyone should propose a 

term, this test will positively include the term in the class 

or positively exclude it. This test is supplied by the 

'proposition' mentioned In the intensional definition of class. 

There is a special type of class called the null-class. This 
3

may be defined as the class haVing no members • 

We have made reference above to finite and infinite classes. 

The distinction between these will be made after we have dis­

cussed relations in the next section. 

• 

I. Objection may be taken to giving two dafini tiona of the 
same thing. Ho\vever, this second def1ni tion can be re­
duced to the former definition. For the consistency of 
these definitions see "Introduction to Mathematical Phil­
osophy. " p , 12. 

2. Infinite classes will be discussed 1n the section on 
relations. 

3. Russell "principles of Mathematics" p. 73. 
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• RELATIONS 

The Concept of Relation : The concept of relation is fund­
I

amental and no attempt will be made here to define it • 

However, as in the case of classes, a great deal may be known 

about relations without a definition. 

If" any pair of unfamiliar obje~ts were placed before us 

and we were asked to describe it, I doubt if we would be able 

to give a description without in some way or other setting 

up a relation or comparison involving the two objects. At 

some point in the description we would have to distinguish 

one from the other. We might refer to one object as being 

'to the left oft the other, 'larger than' the other, 'darker 

than' the other, or 'nearer than' the other. All these are 

merely relations between the two objects which may occur to 

us as we described them. In fact, language itself 1s merely 
2 

a means of relatin1-0bjects to words • 

Notation: If a relation exists between two terms x and y, we 

shall use Russell's notation xRy to imply this relationship. 

For example, suppose F{ means 'to the left of', and x and y 

are points on a line. Then xRy would mean the point x is 

to the left of the point y. Or suppose R is the relation 

'parent', and x and yare individuals, then xRy would mean 

x is a parent of y. Among the types of relations wi th which 

we are most familiar are the relations 'less than' or 'greater 

• 
1. FOr a discussion of the definition of relations, see 

"principles of Mathematics" p. 95 • 
2. This is suggested in "Pune.t.Lone I Thinking lt H. R.• Hamley. 
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• than'. If R is taken to mean greater than, and x and yare 

numbers, then xRy means x is grea tel" than y. All such ex­

pressions xBy will be called 'relational propositions,l. 

Converse )Re1ation: If x 1s related to y by a certain relation 

R, then y is related to x by a relation which we will denote 

by 'I, and the relation :R is said to be the converse of J!. 

That is: If xRy is true then yIfx is also true, the relations 

Rand R are said to differ in sense. 

Uses of Rel.!tions in Mathematics: I.n mathematics, an import­

and use of relations is for 'ordering' G::lasses of objects. In 

considering a class of objects it is a mistake to say that 

they have some natural order, or that some particular order is 
2 

an inherent characteristic or the class i tsel:r. The members 

of a class are capable of having several orders and we cannot 

say that anyone of these is more natural than the others. 

FUrthermore, an 'order' can only occur when a certain type of 

relation exists between the members themselves. When an order 

obt.aLns between the members of a class we must be able to say 

of any two members, that one 'precedes' and the other 'follows'. 

When a class has this property it is said to be an ordered 

class (or ordered aggregate), and the relation which exists 

between the members is said to serial. 

It is only by using certain types of relations that we 

can order classes. The follOWing is a classification of 

relations and from these various types of relations we shall 

• 1. "principles of Mathematics" p. 95.
2. "Introduction to Mathematical Philosophy" Russell. p. 30.
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• select certain combinations which will have the above prop• 

arty. 

As:ymmetric~al JRelations: It a rela tion JR exists between two 

terms x and y, but a different relation exists between "arid 

x, then the relation 11 is said to be asymmetrical. Symbol. 

ically this may be expressed as follows; It xRy is true then 
1

yRx must be false. One of the simplest examples of this type 

of relation is the relation 'less than' between numbers. Thus 

if x<y is true then y<.x is false. Or if x and yare distinct 

points on a line, and R is the relation 'to the left of', then 

xRy and yRx cannot both be true. Examples of asymmetrical 

relations which are not commonly used in mathematics can easily 

be r'ound , as for example the relation 'parent'. In this case 

xBy would mean x is a parent of y. ObViously yRx cannot also 

be true. 

Symmetrical relations; Relations which do not have the above 

property are called symmetrical relations. An example of such 

a relation is the relation 'unequal'. Thus if x and yare 

numbers and R means 'unequal', then xRy and y~x are both true. 

It is necessary here, to introduce three new terms in 

connection with relations. 'lhese are domain, converse domain 
2and field • The domain of a relation is the class of terms 

each member of Which has the given relation to something or 

other, while the converse domain is the class of terms to which 

•
1. "Principles of Mathematics" p. 218. 
2 • ttprinciples of Mathematics" p. 97. Also "Introduction 

to Mathematical Philosophyt. p , 32. 
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• something or other has the given relation. The field of a 

relation is the class composed of all the terms of the domain 

and converse domain. FOr example, let R be the relation 

'owner' and consider the relational proposition xRy. Here, x 

represents anyone who owns something and y represents anything 

which is owned. Hence the class of all such XiS is the domain 

while the class of yls is the converse domain; and the field 

is the class consisting of both of these classes. 

Transitive Relations: Suppose a term x is related to a term y 

by a certain relation R, and y is related to Z by the same 

relation R. Then if X is related to z by this relation, R ~'

is said to be transitive. In other words, if xRy and yRz 

to-gether always imply xRz then R is transitive. When xRy 

and yRz always exclude xRz then R is said to be intransitive. 

FOr example, consider the relation 'ancestor'. xRy and yHz 

mean x is an ancestor of y, and y is an ancestor of z. It is 

obvious that xRz is true, hence the relation is transitive. 

The relation 'unequal' is an example of a relation which is 

not transitive, for if x, y and z are numbers and R means 

'unequal' then xRy and yRz do not necessarily imply xRz, for 

x and z may be the same number. 

,onnected Relations: If x and yare any two terms in the field 

of a relation ~, and either one of the relational propositions 
1•XRy or yRx is true, then R is said to be a connected relation

• 
1. Russell "Introduction to Mathematical Philosophy" p.32 • 
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• 
Having so classified relations, we can construct or in­

vent certain relations having some of the above properties. 

The purpose of this as we have already pointed out,is, to es­

tablish an order among the members of unordered classes. 
1

Serial Relations: Let R be a relation which is asymmetrical, 

transitlve~ and connected. Then by the above definitions R 

must have the following properties. If x, y, and z are mem. 

bers of the. field of H, then: (1) either XRy or yRx is true. 

(2) xRy and yRx cannot both be true. (3) xRy and yRz together 

imply xRz. When Ii. has these properties, it is said to be a 

aerial relation. As an illustration of the uses of this type 

of relation, consider the following problem. Suppose we were 

given a class of objects a,b,c, and a serial relation R whose 

f'ield includes the members of this cla.ss and we were to order 

them in accordence with this relation. We could proceed as 

.tollows: 

Either aRb or bRa is true, but both are not true. 

tt b:B.c tt cRb t. It .. It U tt n 

H aRe tf eRa tt It tt « tt It " 
Suppose the relational propositions bRa, bRc, and aR'c are true, 

while the others are false. Then if we regard bRe as meaning 

b 'precedes· c, and write it as Itb,e" and use this notation for 

the other relational propositions, the order as determined by 

Ii. is b,a,c. Moreover, if we wri te these in any other order, 

1. Russell "Introduction to lIathematical Philosophy" p. 42 

• 



(12)

• at least one of the above relational propositions would be con­

tradicted. For example if we expressed the order as a,e,o, 

this would imply that aRe, aRb, and eRn were true, but the last 

two are false since the relation N is asymmetrical. Similarly 

any other order or 'arrangement' would lead to a contradiction • 

•



------

• PART II 

. NUMBER.• . 
In the previous sections we have been concerned with the 

concepts of class, relation, and order. It will be recalled 

that we treated classes and relations separately, and used 

these two notions to diseuss o.rcI.e.~. That is: We said that 

a class could be ordered by a certain type of rel~~~~~. While 

these concepts have a far wider scope than we shall discuss 

here, yet they do form the basis of' Russell's theory o r number. 

I reserved Part I entirely for a discussion of these in place 

of introducing them only as required; and While it is true 

that certain refinements ot' these such as tone-one' relations, 

similarity of classes, and correspondence, must be introduced 

before we can discuss number, yet these follow easily rr-om the 

general properties or the concepts themselves. 

One-one relations can be understood best by first eon­

sidering 'one-many' and 'many-one' relations. Suppose the 

relation R means 'square' and x and yare real numbers. Then 

xRy would mean is the square of yft. This 1s an example oftt x 

a one-many relation since there is more than one number y whose 

square 1s x. One-many relations may be defined as relations 

such that :xRy and x'Ry cannot both be true unless x and x' 

are the same term.
1 

':Many-one' rela tiona are relations such 

that xRy and xHy' cannot both be true unless y and y' are the 

same term. If R means 'squareroot' and x and yare real 

• -_......-_-,»:_----------------------~

1. Russell "Introduction to Mathematical Philosophyu p. 47. 
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• numbers then xRy means "x is a square root of yU and such a 

relation is many-one since x is the square root of only one 

number ~ile y has more than one square root. If a relation 

is such that there is only one x for which xRy is true, and 

also only one y for which xBy is true, then R is said to be 
1 

a one-one relation. 

Similarity; Q.t.:_~lasses: Suppose that to each member of a class 

A, there corresponds one and only one member of a class H, and 

to each member of B there corresponds one and only one member 

of A; then the classes A and B are said to be in tone-one' 

correspondence. Another way or stating this is to say that 

if there is a one-one relation which cor-r-e Lat.es the members 

of one class each wi th one member of the other e.Laas , then 

the classes are said to be in oae-one ~orrespondence. The 

:fol10wing example of one-one correspondence between classes 
~is given by E.V. Huntington. tt'l'he class of soldiers in an 

army can be put in one-one correspondence with the class of 

rifles which they carry, since (as we suppose) each soldier 

is the owner of one and only one rifle and each rifle is the 

property of one and only one soldier". The one-one relation 

in this case would be a relation o r ownership, and the two 

classes, soldiers and rit'les would be in one-one correspondence. 

Single valued algebraic runo t.Lons present examples o r this 

property of cl.as sea , The runc t.Lon y:2x-l implies a one-one 

1. Russell IltPFinciples of Mathematics" p. 113 

• 2. "!he Continuumtt p. 4 • 
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• relation between a class or x's and a class of y's. To each 

one of a se~ or class of numbers x there corresponds a number 

y. When there iS,a one-one correspondence between two classes, 
1

the classes are said to be simila..!:. Russell's defini tion of" 

similar classes in terms of relation, domain, and converse 

domain, 1s as follows: nOne class 1s said to be similar to 

another when there 1s a one-one relation of which the one class 

is the domain, while the other is the converse domain. 1t 

Finite and .infinite Classes: One-one correspondence of' classes 

enables us to define finite and infinite classes, from which 

definitions will follow a distinction between finite and infin­

i te numbers. In order to define these we must r'Lrat, state what 

1s meant by a part (or proper part) of a class. If A is a class 

other than the null-elass, and B is a class consisting entirely 

of some but not all of the members of A, then B is said to be 

a pr-oper- part of A, There are now two possibili ties in eonn» 

ection with A. and B. Either A can or cannot be put into 

one-one correspondence with its proper part B. If it is possible 

to do so then A 1s said to be an infinite class. If A·1s not 

an infinite class then it is finite. 

Fini te.-'~..!.r.dinal Numbers: In this s ee t.Lon we shall discuss the 

finite cardinal numbers, and unless otherwise stated we shall 

refer to these as 'numbers'. In a general way numbers may be 
:G

regarded as properties or classes, and this association or 

numbers With classes is entirely consistent with Russell's 

------------------- ---_._.--_. 
1. Russell "Introduction to Mathematical Philosophy" p. 16. 
2. Russell "Principles of Mathematics" p. 113.• 
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statement that mathematics can be formally deduced as a branch 

of logic.•
l 

Suppose we consider a certain rf.nt t.e class 0:1' objects. 

Regardless of the individual objects themselves, this class 

has what we shall call a nu~~r associated with it. Now if 

we consider another class of different objects, but such that 

the two classes are similar, then the two classes have some 

feature or characteristic in common--namely that the members 

of one class can be put in one-one corresp8ndence with the 

members of the other. We then say that the two classes have 

the same cardinal number. For example, a baseball team is 

an instance of what we commonly call the number nine; also 

the gloves they carry is another instance of the same number, 

since (we suppose) the class of players and the class or gloves 

can be put in one-one correspondence. But this is only saying 

that the class of players is similar to the class of gloves 

and that these classes have the same number. We could extend 

our illustration so as to include other classes of' any objects 

Whatever, but with the restriction that all such classes must 

be similar to either of the two given classes and hence to 
~

each other'. We would then have berore us a set (or class) 

of similar classes each class having a property (similarity) 

eommon to all the members of the set. A perfectly arbi trary 

symbol, the symbol 9, is invented to denote this set of 

similar classes. 

• 
.. ...... 

1. Page 2 of this paper.
2. Russell "Introduction to Mathematical Philosophy" p. 16. 
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The foregoing illustrates the use of the properties of 

simi lar classes 1n defining a partiC?."lllar e~ardinal ~umber, and 

we now give Russell's defini tion of' number in general. "A 
1

number is a class of similar classes" • To some, this def­

inition may seem repugnant. It may appear that Russell com­

plicates matters by defining number-s in so unusual a manner. 

For, according to his detinition, the number 2 would be the 

class of ~ll couples~, or better stlll, the e lass of all 

couples is the number~. If objection were taken to the above 

definition, there are two features concerning it that ought to 

be considered. First: Does the definition involve or imply 

any terms which have not already been discussed and reduced to 

logical concepts? The answer is no. !he terms class, and 

similar class have been built up by using only logical prin­
3

eiples • Second: Can numbers as defined be used by the app· 

lied mathematician? In order to answer this question it would 

be necessary to discuss the mathematical operations addition, 

subtraction, multiplication, and division. These operations 

will be treated later but it will suffice here to state that 

Russell's definition of number does not in any way impair the 

use of numbers. If we associate numbers with classes, and can 

say that to a particular class there corresponds a number 

(the number £f. the class)', and to a number there corresponds 

a set of classes, then operations between numbers can be made 

to depend upon operations between classes. These operations 

• 1. Russell uPrineiples of Ma thematies" p. 116.
2. Couple is defined on p. 135 "Princip1es of Mathematics"
3. If I have failed to justify this oontention it is due to

the breVity of this paper rather than to any inherent 
weakness in the argument. 
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• as applied to classes will be discussed later and their count~

erparts-operations between nwnbers-will follow as a neeees... 

ary consequence. To conclude: Cardinal numbers are symbols tl 
corresponding to sets of similar classes. FOllowing Russell's 

1 
summary , we say that 0 is the class of classes whose only 

member is the null class. There is only one class without 

any members and that is the null class. Hence the set. of null 

classes has only a single member--the null class itself, and 

this set we call the number O. The number 1 is defined as 

follows. Constder a class K which is not the null class but 

such that if a term x belongs to K, the class without the x 

is the null class, then the set of all classes similar to K 
- I 

is t~e number.l. Similarly, this method can be extended to 

defire the finite cardinals in general. Thus if A and Bare 

two Ifinite similar classes, then according to the definition 

of lumber, A and B have the same number n. Let AI be a class 
®

of all the terms of A and K ; and let B' be a class 

of all of the terms of B and a class similar to K. 

The since A and B are similar, AI and B 1 are also similar. 

Now Iconsider the set of all classes similar to A and B, and the 
I 

Set IOf all classes similar to AI and :B'. The former set is, 

by 1efinition, the cardinal number n, while the latter set is 
I 

defred to be the number (n+-l). The number (nt-l) is to be r1!l­

1. Russell "Principles of Mathematios" p. 128. 
2. Assume A and K have no members in common and are hence 

exclusive classes • 

• 
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• 
garded here as a composite symbol representing the cardinal 

number of a set of classes rather than the arithmetic ~

of nand 1. The foregoing is meant only to show that if n 

be any fini te car-ddna l, we can define another cardi nal number 

(n~l) different from n by using only the notion of similar 

classes • 

•



• PART III 

OPERATIONS BETWEEN CARDINALS 

Addition:Up to the present we have been concerned with def­

ining the cardinal numbers 1,2,3, •• These symbols, it will 

be recallAd, were used for denoting classes. However, in 

practice we use these symbols for other purposes, one of which 

is for the common arithmetic processes. The cardinal numbers 

1,2,3, •• as we have dAfined them are merely names for sets 

of similar classes of objects, and this is the only use to 

which we can put them up to now. We have not yet defined a 

number system but merely a collection of symbols. A number 

system can be defined as a set of elements or symbols and 

1 a law for combining these symbols • The law of combination, 

or operation, which we now dev e Lope.; I s the operation of 

addition of cardinals. 

Addition as we shall regard it here, 1s essentialiy an 

operation between classes, and we shall secure a definition 

of addition of cardinal numbers by first investigating add­
2 

Ition of classes. Russell defines addition as follows: 

"If u and v are classes, their 'logical sum' is the class to 

which belongs every term which either belongs to u or belongs 

to VUe By this definition it is seen that when two classes 

are combined by the above rUle, a third class is defined. 

1. This is suggested by Huntington in the tlContinuum" 

• 2. Russell "principles of' Mathematics·' p , 117 • 
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• -
This third class may be regarded as a sum-e1ass, and is said 

to be the sum of the two given classes, and the law of com­

bination or operation on the two given classes, is the oper­

ation of addition. In other words the above operation would 

be as follows. Let A and B be two rinitel classes Which have 

no member in common. Suppose C is a class defined as follows: 

Every term of A and of B Is a term of C; while every term of 

e is a term either of A or of B. The class C is then said to 

be the sum of the classes A and B. We may now extend this 

definition to addition of cardinal numbers. Every finite class 

has a cardinal number and every tinite cardinal number is the 

number of some class. If Nl, N N are the cardinal numbers
2, 3 

of the above classes A, B, and C respectively, then N3 Is said 

to be the numerical sum of Bland N and we use the notation2, 
KlfN ~N to imply this relation. The above definition of23 

addition of cardinals is dependent upon add~tion of classes, 

and it is due to this fact that the commutative law is implied. 

For in the above discussion of the classes A. and B, no refer'. 

ences were made to the order in which the terms or- A and B were 

to be combined. It is immaterial whether we say that e contains 

every term of A and of B, or whether we say C contains every 

term of B and of A. Hence since Ni is the cardinal number or 

A and N2 the cardinal number of B, we have Nl+N2=N3 or K2+Nl~ N3• 
A case which requires special attention Is the ease where HI 

and N2 are the same number. For example, suppose the class 

• A has the cardinal number 1, and B also has this 

1. This restriction is not necessary, but only finite numbers 
are to be considered here. See Section 112. Russell 
·'Principles of Mathematics". 
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• 
cardinal number (A and Bare eEclusive classes); then 1+1 is 

defined to be the cardinal number or a class D, where the class 

D is defined to be the logical sum of A and B. Addition as 

defined can be extended to any number of cardinals_ Thus 

means M+N3 where lilt N =M and since M is a cardinalN1+ N21-N3 2 
number the operation may be repeated. 

1Subtraction: 

Subtraction~ the inverse operation of addition, may be 

defined as in the case of addition by first defining subtr. 

action of classes. Suppose every term of a class B 1s a. term 

of another e.La s s A. Define e as the class consisting of 

every term of A which is not a term of B. Then if N1,N2,N3 
are the cardinal numbers of A, B, and C respectively, the 

relation eXisting between Nl,N2,and N3 may be expressed as 

Nl-~12:'N and N is the number obtained by sUbtra~tit1.K N23, 3 
from HI- In case C as defined above is the null class, then 

its cardinal number is 0, and A and B represent the same 

class. Then also N and N are two symbols denoting the sameI 2 
cardinal number, and we express this by the relations Nl-N2=O 
or by Nl~N2. This definition of subtraction is restricted 

to the case where every term of B is a term of A, but this 

restriction can be partially removed in the following manner. 
2Suppose B' is any class which 1s similar to a p~oper part 

_.~c ~ ~ _.. 
1. Bussell refers to subtraction as the;verse operation of 

addition. The definition given here is my own, but I 
have deduced it in a manner similar to that in which add­

• ition was deduced. 
2. See p , /5' of this paper • 
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• of A or to A itself; then HI is similar to the class B above, 

and hence has the same cardinal number N2. As before, C can 

be defined in terms of A and B and hence in terms of A and B', 

and the above definition of subtraction applies to the numb~

ers corresponding to A, n', and C. It is to be noted that the 

above operation is not applicable to all numbers. The obvious 

restriction is that B' must be a class similar to a proper part 

of A or to A itself. 

Multi p'l,i.c.aJ~ioll: As in the case of addition and sub tr-aet.Lon , 

multiplication of numbers is defined by first considering 

multiplication of classes. The following definition of mult­

iplication will serve for any finite number of numbersl• Let 

A and B be two finite exclusive classes. Suppose C is a class 

of classes each of Whose terms is itself a class consisting.. ..... 

of one term of A and one term of' B. Then e is called the 

Multiplicative class of A and B. If Nl, N2' N;S are the card. 

inal numbers corresponding to A, B, and t Respectively, then 

N is defined to be the 'product' of III and K2, and we express3 
this relation as N Since the mul tiplac,tive class C v v'

1XN2=N3• \ 
does not depend upon the order in Which we choose terms from 

A and B, we may say that C is the multiplicative class of B 

and A. and hence N2XNf:tN3. Thus the commutative law of mult. 

iplication is implied in the definition of multiplication 

itself. In case A is the null class, then C ean have no terms 

__......._4t- ... ..._.•_. _ .... -., 

• 
1. Rus se11 U Pr inc i pIe s 0 f Irathematic s tt p , 119, Se c t ion 115 • 
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• and hence is also the null class, and we have OXN '= o• 
2 

Similarly if B is the null class Nyc 0:::0. This definition 

of a product applies to any finite number of numbers, but fails 

if we wish to define the produc t of an infinite number of 
1

'factors' • It also~pplies to expon~ntiatlon if we define 

(a)b to mean the product of b factors, each factor corresp. 

onding to one of b similar classes, and 'a' being the card­

ina1 number of each of these classes.-

• 
1. For a definition of such a product see p. 119 Section 115 

Russell uPrincip1es of Mathematics. 1t 



PART IV 

Inequalities and the ~~qi~al Character of Number. 

We have defined classes, relations, and cardinal num­

bers; and shown the dependence of cardinal number upon the 

concept of class, In fact, cardinals!.!:.! classes of similar 

classes, and when we use for example the symbol 2, we are 

merely generalizing, and using a convenient method of re. 

ferring to certain col~~~~ions of objects. The important 

point is that 2 ~used as a cardinalI denotes a colleetion of 

some objects or other, and nothing else. 

However, we abuse the symbols 1,2,3 ••• by making them serve 

more purposes than the purpose mentioned above. For example, 

if a group of soldiers were lined up before us, and we reg­

arded them as a collection of objects, then they would instan~~

some cardinal number. Suppose the cardinal number of their 

class is 12. But if they are given the commanl to 'number 

fFom the right', eac~l:!. soldier uses one of the above symbols 

1,2,3, •••12 to denote his l2.o.s.i.t.i,op in the group, and not to 

describe classes of objects. These symbols, used in the latter 

sense, are used to 'label' individual objects and When so 

used, we say that they are used for 'counting', and 'they 

represent the 'ordinal' numbe~s. This double usage of the 

above symbols 1s well expressed by E.G. Phillips
1 

who says: 

"The distinction between a cardinal and an ordinal number is 

----_.. -------------.--------- --------­

• 1. ItAnalysis". p.9. -..- f..G p~.(r'r~S
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• rendered difficult by the fact that each finite positive integer 

is made to serve two distinct purposes; it may be used to count, 

when it is acting in the ordinal sense, and it may be used to 

number when it is acting as a ear-d tnaL number. Symbolically thae 

is no distinction whatever between a cardinal and an ordinal 

number, but logically there is a fUndamental difference be tween 

them." In a general way this distinction might be expressed 

as follows: Cardinal numbers, denote classes wi thout any ref... 

er-ene.e to order among the elements 0 f each class, while erd . 

inal numbers are 'relation-numbers' and imply an order between 

the individual objects. 

In order to deal more fully with this ordinal character 

of number we shall first have to discuss the notions 'successor' 

and 'hereditary property'. These will be discussed in the 

next section on inequalities. 

Inequalities: Inequalities of cardinal numbers are based on 

inequalities or the classes wi th which the cardinals are assoc­

iated. When two cardinal numbers are unequal, we shall say that 

one number is t less,than' or 'greater than I the other; hence our 

proce:dure will be to specify what we mean when we say that a 

number Hi is less than another number N or N is greater than2, 2 

N1• 
Suppose A is any class to which a term x does not belong, 

and B is the class composed of all the terms OI' A together 

with the term x, but no other terms. Then if Hl and N2 are 

the cardinal numbers of the classes A and B respectively, -2

• -------,-----_.-._.-_......---~,-_._--------------
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is said to be the ~.uc.c..~SS,o.r1 of Xl. Since we have defined 

addition of classes, and noting that the term x is a class• 
1 

whose cardinal number is 1, the above definition of successor 

amounts to the following definition: B+l is the successor of 

~ But this states a relation between Nand .+1 and we may 
-_.-.-.~

express this relationship ror any two cardinals nand n+l by 

the notation nR(n+l) which means (n+l) is the successor of n, 

or n is the immediat,e, predecessor of (n+l). Now (nt-l) is a 

cardinal nwnber hence it must also have a successor which we 

may call n+2, then since the same relationship holds between 

n+l and n+2 as between nand nfl, we have (nfl)R(n+I). Since 

any finite cardinal number always has a successor, this pro­

cess can be continued indefinitely and we will now use the card­

inal symbols to express this fact. The set of symbols 1,2,3, ••0 

(n+l) ••• will imply that n+1 is the successor or n l"or any n 

in the set, and we shall call this set, the natural number 

series. 

In order to define inequality between any two numbers of 

the set, we shall first have to discuss 'properties' of numb­

ers, and in particular 'hereditary properties' in the natural 

number series. To assert that numbers have certain properties 

might seem to be a va.gue assertion since we are merely referr­

ing to a set of symbols 1,2,3, ••• , but these symbols represent, 

1. Russell "Introduction to Mathematical Philosophy" p. 23 

• 
2. Russell ttIntroduction to Mathematical Philosophy" p. ~1

also Phillips "Analysis " p. 9 • 
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• sets of classes by definition, and classes do have properties.... 

their defining properties. In what follows, we shall not be 

concerned with enumerating all the properties of numbers or 

of their corresponding classes, as such a task would be imp­

ossible; but we shall be concerned with cert,a!!! properties and 

the numbers which have these properties. If I state that m 

has every property that n has, I am not required to enumerate 

all of the properties of either. What I do state, is that if 

anyone should name a property of n, then m will also have 

this property. Let us now consider the natural number series, 

and apply to this the foregoing discussion. 

Suppose that whenever n has a certain property P, 0+1 the 

successor of n, also has this property; then P is said to be 
1 

'hereditary' in the natural number series. In other words, 

since it belongs to n+1, it also belongs to nr2 the successor 

of nfl, and hence to all the numbers that 'follow·. Consider 

the three numbers m, m+l, n, noting that the second is the 

successor of the first, and suppose n possesses ~ye~l heredit­

ary property possessed by m~l. Then n 1s said to be 'greater than 

m or m 1s said to be 'less than' n~.

Let us now examine the relationship expressed between 

two numbers m and n when we say that m is less than n. If 

we call this relationship' 11, then mRn means 1m is less than 

n" or In is greater than m", We shall no*show that R is an 

1. Russell Ulntroduction to Mathematical Philosophy" p.2l

• 2. Russell "Introduction to Mathematical Philosophy" p.35 
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• asymmetrical relation • Suppose R were ~ symmetrical relation; 

then we could say that n 1s greater than m and m is greater 

than n , eonatder the particular case when n 1s the suece asor­

of m. The relationship mR(m~l) 1s true while (mtl)Rm is not, 

since the successor of m-tl is not m. Hence the relationship 

'less than' is asymmetrical. The transitivity of R follows 

immediately from definition; for if m,n, aDd p are three 

distinct numbers such that n is greater than m, p is greater 

than n, then p possesses every hereditary property of n while 

n possesses every hereditary property of m. Hence p possesses 

every herediiary property of m, and is, by definition, greater 

than m. The relationship is also connected since it has for 

its field, the cardinal numbers provided m and n are not the 

has the three defining properties of a serial relation • It is 

same number. 

We have now established that the relationship 'less than' 
1 

then the type of relation which ·orders' an unordered class 

of terms. The importance of the above truth lies in the fact 

that we can define the so-called natural order of the cardinal--_.­..-...... 

symbols. If two distinct numbers m and n are proposed, then

either m is greater than n)(m)n) or n is greater than m (n>m).

Common usage enables us to express this order in two ways:

Ca) By writing m and n such that n follows m to imply that m<n.

(b) By counting. The double purpose of the natural numbers 

-----------------,­
1. See p , II of this paper • 

• 
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• 1,2,3, ..n is now apparent. It we consider, for example, the 

symbol 3, we may have in mind its cardinal properties, and 

when used in this sense I denotes a class or sets of classes. 

But 3 may also bring to our attention the number of numbers in 

the natural series which has ErecedeH it. If we have before 

us a set of objects and we associate each of these objects 

with one of the numbers in the natural series 1,2,3, ••• , then 

we have assigned an order to the set sinee the symbols which 

name the individual objects are themselves an ordered set; 

and a relation which is mmilar1 to the relation between the 

symbols, exists between the objects. Used in this sense, the 

symbols 1,2,3, ••• imply relationships and not classes, and 

when so used we refer to them as the ordinal numbers. 

• 1 • 'Similar relations' are discussed in Russell's 
ltlntroduction to Mathematical Philosophyu. p.53 



PART v 

• Intege!'~..l_Ration~J.J. and Real Numbers. 

We have seen that numbers serve two distinct purposes.· 
1to denote classes (cardinal), and to denote relationships 

(ordinal). Conlining ourselves to the former use, we have 

also seen that we can carry out certain operations with some 

of these numbers. The uses of these operations need not be 

~\ exphasized here since if we apply mathematics to every-day 

problems, the above operations are now indispens~ble to us. 

However, if we confine ourselves to the cardinal numbers 

and attempt to carry out these operations on all such numbers, 

our attempts will fail. It is certainly true that for any two 

cardinals mand n, there is a number p such that m+n~p, but 

it is not true that a cardinal number I' exists such that m-n=r 

!'or all such numbers m and n , Similarly if we define the 

'quotient' of m and n to be q where m:n~q, there mayor there 

may not be a cardinal number q which satisfies this condition. 

Since the cardinals will not permi t the general use of these 

operations we have two alternatives. Either we must rest1'­

iet the operations to such numbers as apply, and regard such 

an operation as m-n (where m<n) as an impossibility; OF we may 

retain the generality of the operation and attempt to 1'e­

define the symbols in such a manner as to ensure this gener­

ality. Mathematicians have chosen the latter course, and we 

have only to consider the results obtained, to justify this 

• 1. Russell implies this property by referring to ordinals 
as 'relation numbers t. "Introduction to Mathematical 
Philosophy" p. 63. 
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choice. For example, suppose a new symbol (+1) t s introd­

• uced, and associated with a 'distance' OP extending to the 

right of a point 0 (Figure]) and the symbol (-1) represents 

an equal distance OQ but extending to the left of O. 

~:--_---------1"'-----------)-

~ o p 

Suppose also that we can combine these symbols by some rule 

(operation) in such a mannep as to give rise to a new symbol 

t+n); then this new symbol may represent a definite property 

in some problem. In other words, physical problems may some­

times be solved symbolically by first associating symbols with 

the physical properties or the given problem; then operating 

with the symbols, and fina;Lly interpreting the symbolic result 

of such operations. It would seem apparent that a restricted 

set of symbols would naturally restrict our ability to deal 

with physical problems and hence the desirability of adopting 

a more comprehensive set of symbols would be justified. But 

care must be taken if we introduce new symbols, since we must 

not impair the logical foundation upon which mathematics haS 

been built. An ideal state of affairs would be attained if 

we could define our number system logically, define operations 

between these numbers, and at the same time be assured that we 

had sufficient symbols in our number system and sufficient 

operations between these symbols, to solve the physical prob­

lems demanded of the mathematician • 

•
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• Integers: Our immediate requirement is a number system Which 

will permit the unrestricted use of the operations of addition 

and subtraction. In order to achieve this we propose a new 

set of symbols •••-3,-2,-1,O,~1,~2,r3,••••which we shall call 

integers. Integers must not be regarded as an extension of the 

cardinals, hence +m is not to be confused with the cardinal 

number m. m 1s a class of classes, While ~m is something 
1

entirely di f'ferent. The following is Russell's defini tion or 

the integers -em and -me If m and n are finite cardinals 

(inductive numbers), then rID is the rela~~ion of' (n+-m) to n , and 

-m is the relation of n to (n+m). Hence -sm and -m are not classes 

but relations. In particular they are converse relations ~ • 

Addition of integers can easily be defined in terms of addition 

of cardinals. Thus if m,n, and p are cardinal numbers and 

n+m=p, then for their corresponding integers} (tm)+(+n)=(+p). 

In the case of subtraction, suppose ro, n)and d are cardinals 

such that m-n~d, then <+m)-(rn)~(+d) defines the corresponding 

operation between the integers (tm), (+n)Jand (~p). If n>m 

then no such cardinal d exists, but there is a number d such
1 

that n-m~dl; hence the operation of subtraction of the integer 
- '@ 

(tn) from the Lnt.egez <+m) may be expressed as (-tm)~ (+n)::: (- d ) •1 

The importance of the above discussion lies in the fact that 

we have given a meaning to the expression (+m)-(tn) when the 

cardinal number n is greater than the cardinal numbe~~

•
1. Russell "Introduction to Mathematical Fhilosophy" p. 64. 
2. See p. 8 of this paper • 
3. Addition and subtraction of integers are not discussed in 

Russell's "Introduction to Mathematical Philosophyff, but 
these operations as defined here)are, I believe, consis­
tent with his theory. 
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• Rational Numbers:. The operation of multiplication of cardinal 

numbers can be carried out when any two numbers m and n are 

given. In other words, a cardinal number p exists such that 

m;<n=-p. But f'or- any two numbers m and n , there mayor there may 

not be a cardinal numbe~q such that m=nxq. If such a number 

q exists, it is said to be the quotient of m divided by n, 

and we shall employ the notation ~=~ to express this operation. 

Thus~has a meaning to us if and only if a cardinal q exists, and 
'Y\ 

what we now wish to do is to assign a meaning to ~ regardless
/1"'\ 

of the existence o:f q. Suppose m and n are any two cardinal 

numbers, and that x and yare two cardinal numbers chosen 

such that ~my. When m, n, x, and yare so defined, Russell 

defines the '\'\'1 
fra~tion;yj to be that relation which holds 

between x 
<!)

and y. If neither m nor n are 0, this relation is 

one-one. FOr suppose it is a one-many relation; thAn there 

is another number y' such that x bears the same relation to 

y' as it does to y. In particular, we could say that ~ince

nx~my, then nx~my' and so mu~mwt which is impossible unless 

y and y' are the same. A similar e@ntradiction would arise if 

the relation were assumed to be many-one. A~pecial ease to 

be considered is when m is 0 but n is not. Then!l- would be 
11 

the relation between x and y when nx~Q~ This condition req­

uires x to be the cardinal 0, but does not restrict y. Hence 

the relation of x to Y is one-many. Similarly if n is 0 

but m is not~ then O.x=m.y restricts y to the cardinal 0 but 

• 1. Russell "Introduction to Mathematical Philosophy p.64ft. 
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imposes no restrictions on x, and the relation 1s many-one • 

In the discussion of rational numbers in his "Introduction to• 1 

Mathematical Philosophy", Russell does not discuss the relation 

(if such a relation eXists) Bxpressed by ~ Obviously this•D 

relation is the relation between x and y when x.O:y.O; but 

this condition is satisfied by any two numbers hence it is 

merely the relation of any number .!:£ any number. 

By the above definition we have created a new set of sym­

bols. These symbols are of the form ~ where m and n are card­
11 

inals; they do not denote classes, and so far we have not 

devised any means of combining them by' opwrations such as those 

which were used to combine cardinals. All we can say so far 

is that ~ is a symbol which denotes a relation betwee~ard·

inals and hence between classes. However, the important 

feature to realize is that Russel defines ratios logically. 

The terms used in the definition were 'cardinal number' and 

'relation', and these themselves have been previously defined 

in terms of logical concepts. 

But even though these new symbols will permit of a log­

ical definition, the question of their adaptability to every 

day problems will naturally arise. The usefulness of cardinals 

is suggested by their own definition since they symbolize 

classes of objects; and such classes do enter into these 

• 
1. Russell "Introduction to Mathematical Philosophy" p.65

The relation 1% is always the same for any m, Russell 
calls this the "inrini ty of rationals". In what follows 
we shall, unless otherwise stated, exclude this case • 
Hence in any fraction of the form ~ it will be understood 
that n is not o. 
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• problems. Do relations as exhibited by ratios also enter into 

these problems? To answer this question would require a dis­

cussion of such concepts as 'quantity' and 'measurement' which is 
1

beyond the scope of this paper • However, when we consider for 

example that the ratio ~ states a relation between the card-
I 

Inals x and y whenever l.x~my it is evident that some relation 

exists between the cardinalsl and m. But to say that the 

cardinal 'llbears some relation to the cardinal m is to say that 

their corresponding classes are related; and in particular, if 

these classes have members in common, we are in reality dis­

cussing a relation or the pa~t to the whole • It is probable 

that fractions were first introduced to denote such relations 

between quantities; and the above trivial example is given
;-.-_._-- ! 

only to suggest (not to prove) how this property might be 

deduced from the logical definition of ratio. 

Operatious..betw~~_~Atios: If·~ and 1- are ratios and the/)") if 
cardinal number mq is less than the cardinal np, then we shall 

say that·~ 1s less than E (1-v'I i.E) and E is greater than ~ , 
-')1 } ~ ~} ~

Equality between ratios is defined as follows: If mq~np then 

the above ratios are equal. From the above, we can deduce two 

important properties of the rational number system. (1) If we 

are given any two ratios ~ and.E. which are not equal, then 
'"Y\ 1­

there is a ratio ~ such that !0 ( !} < P • For Ii" ~ and 1­
S "Y\ S 1- ~ lr 

are unequal then e1 ther ~ L. £. or ~ > j:> • Suppose the former 
~} ~ 1­

I·,C'- .... -- - __.__ ... ' _~_..... • .• ', ' .. ­.. ~_,. ..

1. Russell discusses these e oneep t s and their relation to 
'number· in his "Principles of Mathematics" Chapters XIX 
to XXI 
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• 1'11 f- P
is true. Consider the ratio ~f} , and compare this with the 

ratios~ and~; .m(ntq) is less than n(mtp) since mq is less 

than np"'and welrhave 1'Vl -: ~. Similarly it may be shown that
""'" "n +c,_

~+p ~ e . Let the cardi~als rand s be such that r=m~p. and 
~~~ ~ ~

s:::n-J.q, then '!:0 ~ q- L.}. (2) The relations Iles s than' and 'greater 
~ 5 1- . ' 

than' between ratios are serial relations. This follows rrom 
I 

the tact that the relation'less thad between car-d ina.l,e 1s 
,""1 

asymmetrical, transitive, and connected. 

We can now deduce the following property of ratios. If 

_ J p - lies""" J _Jl and ~ are any three ratios we shall say that /L 

""" S ir .5 
between the other t,wo if I"W\ c ~ c E or it ~ "> -::: > E.. Since ~

-"1 S t n, 5 } """ 

and -1f;:were any_ _equal ratios it follows that there are 

always ratios between any two given ratios and no two of 

these are consecutive, since ii they were property (1) would-- . 

be denied. ~urthermore, if we consider the class of all 
-"'-""".,.-.. 

unequal ratios and we order this class by the serial relation 

fles s than', we have before us an infinite ordered class of" 

t'VV\terms; each term being of the form ~ where m and n are card­

inals. Such an ordered class of terms we shall call a series 

and since there are always terms between any two given terms 
I 

we shall call the series compact. Hence we can now refer to 

the ordered rational numbers as a compact series. 

!d,d,1.t i on : If' ~ and t are ratios then tlie:lr sum is defined 

to be ~ t +~ lr Which is, itself' a ratio since npj-mq and nq are 

cardinalS: lrHence addi tion is always possible wi thin the 

• Russell "Introduction to Mathematical Philosophy". p.66 
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rational number system, and we shall express this operation 

as 'YY\ +};::: --nP+"""""'fJ. 
"V\} ~~

SUbtractionl: We shall say that the difference between ~

and! is ~ t>. This difference represents a rational num­
1- M't 

ber if and only if the cardinal mq is greater than or equal to 

np , This operation is expressed by ~ -). = ~~~J;
~ tr f'Yl1r 

Multiplication: We shall say that the product of~ and ~
'\""'\. lJ . "" 'b­

is - and express this operation by the relation ~x.~ =~~
~ 'b- . '" ,.. ~ ~'

Division: The quotient of~by J; (where p is not 0) may be 
"lo'\ } 

defined to be ~~ which is itself a ratio since mq and np are 
""'p 

cardinal numbers. 

From these definitions it is seen that the operations of 

addition, multiplication, and division can be carsied out 

between any two ratios (with the one exception that p must 

not be 0 in the case of division). The operation of subtrac­
tJ'V' {"I

tion alone is restricted since mq-np is a cardinal~if mq is 

greater than or equal to np. Furthermore, the commutative 

law of addition and multiplication between ratios follows 

immediately from the commutative law of addition and multip­

lication of cardinals. 

In order to define subtraction between any two ratios it 

is necessary to assign a meaning to~~Pwhen np is greater
"h'r 

than mq. This, Russell does in a manner analogous to the 

manner in which he defined negative integers2• Thus the positive 

1. The operations of subtraction, multiplication, and div­
1s i on are not discussed in Russell's "IntroductionI'. The 
definitions given here, are, I believe, consistent with his 
theory of rationals. 

2. Russell "Introduction to Mathematical Philosophy" p.66 
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• ratio (t ~) is the !.ela~i.~n of C~ +t.) to ~ while the ~egative
I·. _ ..... 

ratio ( _ E ) is the rela tion of ~ to (~+j; ).
7;- ~ 1r"'" 

It has now been established that the four rational operat­

ions--addition, multiplication, sUbtraction, and division can 

be carried out between any two numbers ~ and 1. in the rational 
~ ~, 

number series. Hence since operations between any two members 

of this series have been defined, we can refer to this series 

as a number syst~~.

Thus to sum up: The rational number system is an infinite 

co1lec tion of terms each term or which is of the form (+ ~) or­

(- ~). These terms may be ordered by the serial relation 
I'Vj 

'less than);, and men so ordered, they form a ser-t es , Since 

there are terms of this series between any two given terms, 

the series is compact, and no two terms are consecutive. 

Finally we may say that the rour rational operations are possible 

between any two members of the systeml• 

_ ............ .... .1~

t- .. -•. P .----'- -_.----------------­

1. An additional property possessed by the rational number 
system is that It constitutes a closed set under each of 
the four rational operations. That is: If any two rat~
ionals are combined by orie of these operations, the re. 
suIt of such a combination is itself a number of theret 
of' rationals; and under these circumstances we say that the 
set is closed (one exception is that the divisor must 
not be 0). When the set is closed tor all of the rational 
operations we say that the set is a number field (see 
Dickson '-Modern Algebraic Theories" p , 150). It follows 
that the set of rational numbers is a field. This is 
not true, however, of all sets of numbers; f'or if we 
consider the set of positive and negative integers, tbis 

•
set is closed under the operations of addition, subtr­
action, and multiplication, but is not closed under
division.



The Real Number System •

• We have, so far, discussed four operations between num­

bers. Tnese operations were first introduced as laws for 

combining classes; they were then applied to the symbols 

representing classes (l.e. the cardinals), and in this manner 

we defined laws for combining these cardinal numbers. It 

was found however, that in order to retain the generality or 

the inverse operations (SUbtraction and division) we had to 

revise our number system, and the system which finally evolved 

was the rational number system. Now if we introduce new oper­

a tiona; these may, or they may not, appl, to all rational 

numbers. The operation of exponentiation involves no serious 

difficulty; for if m is any number there is a number M such 
2:M.that m However, the inverse operation, extraction of 

roota, is limited to certain rationals. If given a cardinal 

number m there mayor there may not be a number n such that 

n 
2 
~ m, Thus we see again that it is an inverse operation 

which presents difficulties when we attempt to ensure the 

free use or such operations within our number system. It is 

easily shownl that no number M other than a square number~

has a square root within the rational number system. Here, 

as before, the mathematician has two courses to follow. 

He may restrict such an operation to those numbers as have 

rational square roots; or he may seek a number system whose 

• 
1. E.G. Phillips "Analysis" p.15 2 
2. If there is an integer m such that m::.:M 
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elements will admit of a logical definition, and such that the• 
proposed operation will be possible within the new number 

system. A simple example will perhaps suffice to show the 

advisability of the latter course. 

In any number system, I think it is safe to say that 

geometric interpretations ought to be considered1 . By choos­

ing a suitable unit of measurement, we can associate with 

each rational number a line segment provided the line seg­

ment has the two properties --length and direction. 'Fhe 

converse however, is not true. There is no rational number 

which denotes the length of the diagonal of a unit square. 

We can say the symbol ~represents this length, and that 

such a symbol is an irrational number, but this is by no 

Russell arrives at a definition of such irrational numb­

ers not by extending the rational system so as to include the 

irrationals, but by defining a new number system which he 

ealls the real number system. The symbols used in the rat­

ional system are also used in the real number system, but 

although these symbols are retained, they are logically 

different. The following is an outline of Russell's theory 

of real numbers •. 

------------_._,-----------­ ---............_,-~--

• 1. Burkhardt tn his "Theory of Functions of a complex 
Yariable lt points out this connection between numbers 
and their geometric counterpart. p. 3 Section 2. 
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• We have seen that the rational number system is a compact 

series, and hence the class of all such rationals is an inrin­

ite ordered class. The relation which has been used to order 

this class is the aerial relation 'less than'. We shall 

refer to this as the relation P. We require the two following 

definitions in order to discuss real numbers. 

Maximum~ If 'A' 1s a class, ordered by the serial relation P, 

and x is a term of A such that xPy is not true ror any y 

which is a member of A, then x is said to be a maximum of A 

With respect to pl. If f'or example, the class to be ordered 

is the class of all ratios less than ~ , then ~ would be the 
I I 

maximum or this class sinee it bears the relation 'less than' 

to no member 2f the class, but is itself a member of the class. 

Minimum: The minimum of" a class with respect to P 1s 1ts 

maximum with respect to P. In the above example there 1s no 

minimum, but if we consider the class or ratios equal to and 

greater than 1 , then..!- is its minimum. 
I I 

We shall use these two terms maximum and minimum to define 

!'irst. a particular ' irrational number' ~ and then to define 

any real number. 

Consider the ordered class of all ratios, and suppose 

that we divide these into two class (sections), in such a manner 

that one class is composed of all the ratios whose squares 

are less than ~ , and the other class is composed of all the 
I 

• 1. Russell "Introduction to Mathematical Philosophy". p,. 70 • 
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• ratios whose squares are greater than 2 • We shall call the 
f 

:former class a lower section and the latter,an upper section. 

Logically there are four possible cases to consider. (1) There 

may be a maximum to the lower section and a minimum to the 

upper section. (2) There may be a maximum to the lower sect­

Ion but no minimum to the upper section. (3) There may be no 

maximum to the lower section but a minimum to the upper. (4) 

There may be neither a maximum to the lower nor a minimum to 

the upper. 

Ir the lower section has a maximum ratio r, then by def­
2

inition r <.. ~ but the square 01:' any ratio greater than r would 
I 

be equal to or greater than ~ • Since no rational number 
J 

whose square 1s equal to 2 exists, it follows that the square 

of any number greater than r is greater than~ • But this is 
I 

not true since we can find rational numbers (by the arithmetic 

rule) whose squares lie between r 
2 

and ~ • Hence no such max-
J 

imum can exist. A similar contradiction arises if we assume 

that, the upper section has a minimum, hence ease (4) obtains 

and the sections have neither maximum nor minimum. We then 

define the real irrational number {2" to be the class of all 

ratios whose squares are less than the rational number ~ • 
J 

We now treat the general case and give Russellts der­

inition of any real number. 

Let the ordered class of all ratios be divided into two 

elasses--a lower class CL and an upper class e such that 

every member of CL is less than every member of eu • Then• 
u 



logically there are four possibilities: (1) CL may have a• 
maximum and C a minimum. (2) CL may have a maximum but u 

eu no minimum. (3) CL ~ Have no maximum but e may haveu 

a minimum. (4) CL j~~lf have no maximum and C no minimum. 
u 

The first of these can be eliminated since it implies the 

existence of two ratios r and r such that is a memberr 11 2 
of CL while every other member of CL is less than r 1• 
Similarly r would be a member of e while every other member2 u 

of C 
u 

would be greater than 1'2* Then since r 
1<r2 

there would 

be a ratio between It
1 

and r 
2 

which would be a member of neither 

class. Thus (1) leads to a contradiction. Before discussing 

the three remaining cases we shall introduce the term 'upper 

boundaryt. If CL has a maximum, we shall call this maximum 

the upper boundary of C If C has no such maximum but enL• L 
has a minimum, we shall call this minimum the upper boundary 

of CL• In other words, the upper boundary of C is ei therL 
1

the maxirnumpf CL or the minimum of Cu. There can be no 

ambiguity since we have shown that both of these cannot exist. 

From this it follows that if C has no maximu~ and t no
L u 

minimum, then no upper boundary exists. 

Cases (2), (3), and (4) can now be reduced to two and 

only two possibilities; Either CL h~~ an upper boundary, 

or it has not. If cases (2) or (3) ob'tain, then it has such 

a boundary While if case (4) obtains, it has not. If the 

1. Russell "Introduction to Mathematical PhilosophytJ p. 70-71•
. 
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• lower section CL has an upper boundary r we shall call the 

ordered class of all ratios less than r a segment, and r will 

be the boundary of this segment, while if no such boundary r 

exists, then the lower section CL is itself a segment. We 

can now give the following definitions: 

1. A rational real number is a segment of the series of ratios 

which has a boundary, and this boundary is the rational number 

to which it corresponds. 

2. An irrational number is a segment of the series of ratios 
,1

which has no boundary • 

If we regard the real number system as the totality of all 

such numbers as defined in 1. and 2. above, then we can say 

that a real number is a segment of ,the series of ratios. 

This definition of real numbers may appear to be unduly 

complicated, but it is logically sound. By this definition, 

the real number (2:is the ordered class of all ratios whose 

squares are less than the rational number ~ ; and the real 
I 

number 1, is the ordered c lass or all ratios less than j. •, 
These classes do exist hence Russell's definition of real 

number, even though complicated, has the merit of employing ~o

terms Whose existence can be questioned. 

The operations which were used to combine rational numbers 

can be applied to real numbers, hence none or the useful pr-op» 

erties of'numberf have been lost by this definition. In each 

• 1. Russell "Introduction to Mathematical Philosophyu p. 72. 



• case, the operation in question can be reduced to the corresp­

onding operation between rational numbers as the following 

definition of addition will show. 

If U and V are any two real numbers, then they are 

segments of ratios. Let ~l be any ratio of the class U and 

r 2 be any ratio of the class V. Form the sum rif-r2 as 

defined by addition of rationals. The class o r sums found by 

choosing r and r in all possible ways from U and V is itself
l 2 

a segment of ratios, and hence determines a real number S. 

Then S is the sum of U and V~

An important result of the above definition of real number 
2

is the principle of continuity. The following example 

illustrates this principle. It has been shown that all 

ratios can be divided into two ordered classes accordingly as 

their squares are less than or greater than 2. There is no 

rational number between these two classes since these classes 

consist of all ratios; and When this situation arises we say 

we have a 'Dedekind Cut' or an ·irrational section'. But if 

we now consider the real number ~as previously defined, it 

will be seen that this number corresponds to the irrational 

section. ThuS even though there is no rational number between 

the two classes there is always a real number having this 

property. Another way of illustrating this principle is as 

follows: Consider any segment of real numbers. Each real 

• 1. Russell Introduction to Mathematical Philosophy" p. 73tf 

2. See "Analysis lt by E. G. Phillips. p. 29. This has been 
termed the "axi.om of continui t y " owing to a different 
treatment of irrationals. See Russell tfPl'inciples of 
Mathematics tt p. 279. 
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• number of the segment is, by definition, a segment of ratios • 

Hence a segment of real numbers defines a segment of ratios 

which is, by definition a real number. In other words every 

segment of the class of real numbers deter~nes a real 

number. This was not true of the rational number system since 

the lower class in the above example defined no rational 

number. 

Thus to conclude: Real numbers have been defined by 

using only the concepts of class~ relation, and order, to· 

gether with certain terms which themselves8volve from these 

concepts. That is to say; we constructed a chain of definit­

iOns, each link of this chain being a particular type of num­

bel' defined in terms of the preceding type. We started with 

classes of elements and relations, and from these we ded­

ueed a defini tion of ear-dd.naI number. We then defined pos­

itive and negative integers by usin~ the definition of cardin­

al number together with a relation (+m being the relation of 

n-~m to n). Rational numbers evolved from cardinals by 

defining a rational number in terms of the previously defined 

cardinals and a relation R, (R being the relation of x to y 

when xn:my). Finally, real numbers were defined in terms of 

rationals, together with such concepts as'segment', Iboundary' 

and 'series', and these latter terms were deduced from the 

properties of ordered classes • 

•
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