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FOREWORD

 This paper treats the development of the real number
system. As the title suggests, it is based on the theory of
number as presented by Bertrand Russell in his two works, the
"Introduction to Mathematical Philosophy" and the "Principles
of Mathematics", Iy chief aim has been to reduce the con-
cept of 'number' to such logical concepts as 'class' and
"relations'. The first part of this paper deals with these
concepts and the latter parts with their applications to
‘number'. Regarding the operations between numbers, much
is lert undone. I merely offer the essential definitions.
Certain refinements of these operations, such as the assoce
iative and distributive laws of algebra, are omitted. These
omissions are not due to the fact that such laws are unim-
portant or that they cannot be derived rrom 'number' as defined
in this paper, but to the fact that 1 discuss here only the
essential features of the number system and not the various
laws which may be deduced from these. |

References are given that the reader may amplify these

notes should he so desire, and a bibliography is appended.
I wish to express my appreciation of the assistance given
to me by Dr. G.H. Ling in the presentation of this thesis.

H'M.



PART I
CLASSES AND RELATIONS.

There are three main schools of thought in mathematics;
Formalistic, Intuitlonist, and Logistiel, but we shall be
concerned only with the last of these. Briefly stated, the
thesis of the Logistie school is that pure mathematies is a
branch of logic. Russell is regarded as being the chief ex=-
ponent of this school and his views as contained in the "Intro-
duction to Mathematical Philosophy" are expressed in what fole
lows.

There are two methods of mathematical investigation. The
first method 1is constructive. We adopt a set of premises as
for example the natural numbers 1,2,3..... and deduce results
which necessarily follow. In fact, all traditional pure math=-
ematics can be derived completely from the natural numbers by
using propositions of logic concerning these natural numbersz.
That is to say; if we take the natural numbers 1,2,3..... a8
our starting point and subject this initial premise to a series
of logical deductions, the whole of pure mathematlecs can be
made to follow by implication. This type of mathematical invest=-
igation proceeds from iundamental principles to those more come
plex, the reasoning is in general deductive, and the results
are justified only if the principles themselves are justified.
There 1is another method of mathematical investigation which is

analytical3 and this is the method with which Russell is prime

1. See Black "Nature of Mathematics™ p.7.
2. Russell "Introduection to Mathematical Philosophy" pe4.
3. Russell "Introduction to Mathematical Philosophy" p.le.
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arily concerned. We seek to establish such concepts as ‘'class!?,
'relation' and ‘order', out of which our former starting point,
the natural numbers must follow as & logical consequence, and
it is the purpose of Part I of this paper to discuss this latter
method.

Reference has been made above to ‘'logical deductions', but
no attempt will be made in this paper to investigate the prine
¢ciples of logic as this is the duty of the philosopher. We are

concerned with the applications of these principles rather

than with the principles themselves. Russell stat951 that,

"By the help of ten principles of deduction and ten other prem=
ises of a general logical naturé, all mathematics can be stricte
ly and rormally deduced; and all the entities that occur in math-
ematics can be defined in terms of the above twenty premises",
Por our purposes the important part of the above statement is
that all the entities occurring in mathematics e¢an be defined

in terms of the above twenty premises of logic. 1In what fol=-
lows, a discussion of 'elass', 'relation', and 'order', will

be given. If as has been suggested, these concepts can be made
to depend upon logic alone and our number system can be ded-
uced (logically) from these concepts, then it must follow that
pure mathematiecs can be made to rest entirely upon the above
principles of logicz.

The following dscussions of elass, relation, and order,

are to be treated as outlines of these concepts rather than

1. Russell "Principles of Mathematies.®" p.4.

2e *Logic is the youth of mathematics and mathematlcs is
the manhood of logic" ---"Introduction to Mathematical
Philosophy" p.l194.
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as exhaustive studies, Examples will be given where possible,
and specific references will be made to the works of Russell

wherein these concepts are treated iully.

CLASSES

In the preface of his "Principles of Mathematics", Russell
states, "In the case of classes I must confess I have failed
to perceive any concept fulfilling the conditions requisite
for the notion of Class", while in his Introduction to Math=-
ematical Philosophy1 he states, "A class may be defined in two
ways...". These statements may at first appear to be contra=-
dictory. That is: In the former statement he implies that a
class is a primitive notion which cannot be defined in terms
of any other concept while in the latter statement he proceeds
to define it. I will first disecuss these two statements and
show that they are not necessarily eontradietory.

The important word in the above statements is 'define'.
When something is defined, it may be done in two ways. (a) The
concept to be defined may be replaced by another eoncept, the
meaning of which is understood, and the properties of which
may be identical with those of the former concept. For example;
we shall, in a later section, define 'number' in terms of 'class'.

Here the concept of number will evolve from the concept of class.

1. Russell "Introduction to Mathematical Philosophy". p. 12.
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(b) Or the concept in question may be defined by what prop-
ertles it has rather than what it iﬁ' In elementary text
books1 in Euclidian geometry the question is raised, "What
is a point?" The author then proceeds to say that a point
has position but no area etc. Strictly speaking the question
has not been answered. Such a definition does not tell us
what a point is, nor does it replace the concept 'point' by
a more primitive concept 'fulfilling the conditions requisite
ror the notion of point'. If, however, we are willing to
accept the properties of a point as a definition of that con-
cept, we may say that it has been defined by its characteristic
properties.

We can apply this latter method of definition to classes,
If I say, "All the people in Canada® I am referring to a coll=
ection (elass) of individuals all having the property that
their position 1s within certain definite geographical limits,
and this is one of their defining properties., Again, if I say
"A1l isosceles triangles", I have in mind a collection of
three sided figures of any dimensions provided that two sides
of each are equal in length. As another example, consider
the e¢lass "All the perfeect squares". This is a ¢lass of num-
bersz each member of which is the 'eorresponding'5 square or
some cardinal number and this is the detining property ot the

class, Analytic geometry provides many illustrations of the

1. See Hall and Stevens "Pland Geometry"” p. .26

2. Classes do not presuppose numbers. This is merely an
illustration of class by characteristiec properties.
"Principles of Mathematics" p. 69.

3. ‘'Correspondence' will be disecussed in the section on
relations,
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class concept. ror example, consider the equation xl+j%=“}
where ‘'a' is any positive real number. To every such number
there corresponds a circle, and & elass of concentric eircles
is defined by this relation.

The above examples ought to illustrate how we may define
classes of objects by making use of eharacteristics common to
each member of the class, and we now give the following defe
inition of c¢lasses in general.

If a statement (or prcposition)l is made concerning a
term x, then all of the terms x for which this statement is
true constitute a alassz. When a class of objects is so
defined we say that it is defined 'intensionally'. That
this definition will serve to define the given examples of
classes 1s easily shown. Take for example, the first one.
"411 the people in Canada". Consider the statement or prop-
osition. "x is an individual 1living in Canada". If we sub=
stitute for x, the name of some individual this statement may
be true or it may be false. It certainly will be true if we
actually replace x by the name of any individual who does live
in eanada,‘and it will be false for all others. That is:
Every term x satisfying the above statement is a member of
the elass in question; and conversely, every member x of such

a class must make the statement true.

—

1. See "Principles of Mathematics" p. 12,

2. Russell defines elass as: "All the terms satisfying some
propositional function". p. 20, "Principles of Mathematics"
The above definition avoids the use or the term 'proposit-
ional fumetion', but makes use ot its properties.
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There is another method1 of defining certain classes.

We may enumerate their members. This method, however, is ine
adaguate when the c¢lass is infinitez. For example we could
define the e¢lass "All the people in Canada" by enumerating
all of its merbers (if we had sufficient time). We could
not however, enumerate all of the perfect squares. When

a class is defined by the enumeration of its members it is
said to be defined 'extensionally'.

Of these two methods of defining a c¢lass the intensional
method is most appropriate for our purposes. It is not always
necessary, for our requirements, to list or enumerate each
term of a e¢lass. It is, however, essential that we have a
‘test'! for a given class such that if anyone should propose a
term, this test will positively include the term in the class
or positively exclude it. This test is supplied by the
'proposition' mentioned in the intensional definition of class.
There is a special type of elass called the null-class, This
may be defined as the class having no membersﬁ.

We have made reterence above to finite and infinite e¢lasses.

The distinction between these will be made after we have dis-

cussed relations in the next section.

I. Objection may be taken to giving two definitions of the
same thing. However, this second definition can be re-

- duced to the former definition. 7For the consistency of
these definitions see "Introduction to Mathematical Phil-
osophy." p. 12,

2., Infinite classes will be discussed in the sectlon on
relations.
3. Russell "Principles of Mathematics" p. 73.
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The Concept of Relation : The concept of relation is funde=

amental and no attempt will be made here to define itl.
However,'as in the case of classes, a great deal may be known
about relations without a definition.

If any pair of unfamiliar objeects were placed before us
and we were asked to describe it, I doubt if we would be able
to give a description without in some way or other setting
up & relation or comparison involving the two objects. At
some point in the description we would have to distinguish
one from the other. We might refer to one object as being
'to the leit of' the other, 'larger than' the other, 'darker
than' the other, or 'nmearer than' the other. All these are
merely relations between the two ;bjects which may occur to
us as we described them. In fact, language itself 1is merely
a means of relatin}objects to wordsz.

Notation: If a relation exists between two terms x and y, we
shall use Russell's notation xRy to imply this relationship.
For example, suppose R means 'to the left of', and x and y
are points on a line. Then xRy would mean the point x is

to the left of the point y. Or suppose R is the relation
‘parent', and x and y are individuals, then xRy would mean
x is a parent of y. Among the types of relations with which

we are most familiar are the relations 'less than' or ‘'greater

l. PFor a discussion of the definition of relations, see
"Principles of Mathematics" p. 95.
2. This is suggested in "Punctional Thinking" H. R. Hamley.
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than'. If R is taken to mean greater than, and x and y are
numbers, then xRy means x is greater than y. All such ex-
pressions xRy will be called ‘relaticnal propositions'l.

" Converse Relation: If x is related to y by a certain relation

R, then y is related to x by a relation which we will denote
by R, and‘the relation R is said to be the converse of R,
That is: If xRy is true then yRx is also true, the relations
R and R are said to differ in sense.

Uses of Relations in Mathematics: In mathematics, an importe

and use of relations is for ‘'ordering' classes of objects. 1In
considering a class of objects it is a mistake to say that
they have some natural order, or that some particular order is
an inherent characteristic of the class 1tse1r2. The membefs
of a class are capable of hafing several orders and we cannot
say that any one of these is more natural than the others.
Furthermore, an ‘order' can only occur when a certain type of
relation exists between the members themselves. When an order
obtains between the members of a class we must be able to say
of any two members, that one 'precedes' and the other 'follows'.
When a class has this property it is said te be an ordered
class (or ordered aggregate), and the relation which exists
between the members is said to serial. V//

It is only by using certain types of relations that we
can order clesses. The following is a classification of

relations and from these various types of relations we shall

1., "Principles of Mathematics" p. 95,
2. "Introduction to Mathematical Philosophy" Russell. p. 30.
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select certain combinations which will have the above prop-
erty.

Asymmetrical Relations: If a relation R exists between two

terms x and y, but a different relation exists between y and
X, then the relation R is said io be asymmetrical., Symbole
ically this may be expressed as follows; If xRy is true then
yRx must be falsel. One of the simplest examples of this type
of relation is the relation 'less than' between numbers. Thus
if %<y is true then y<x is false. Or if x and y are distinct
points on a line, and R is the relation 'to the left of', then
xRy and yRx cannot both be true. Examples of asymmetrical
relations which are not commonly used in mathematics can easily
be tound, as for example the relation 'parent'. In this case
xRy would mean x is a parent of y; Obviously yRx cannot also
be true,

Symmetrical relations; Relations which do not have the above

property are called symmetrical relations. An example of such

a relation is the relation 'unequal'. Thus if x and y are

numbers and R means 'unequal', then xRy and yRx are both true.
It is necessary here, to introduce three new terms in

connection with relations. These are domain, converse domain

and fieldg. The domain of a relation is the class of terns
each member of which has the given relation to something or

other, while the converse domain is the eclass of terms te which

1. "Principles of Mathematics" p. 218.
2. "Principles of NMathematics" p. 97. Also "Introduction
to Mathematical Philosophy" p. 32.



(10)

something or other has the given relation. The field of a
relation is the eclass composed of all the terms of the domain
and converse domain. For example, let R be the relation

‘owner' and consider the relational proposition xRy. Here, x

represents any one who owns something and y represents anything

which is owned. Hence the class of all such x's is the domain

while the class of y's is the converse domain; and the field
is the class consisting of both of these classes.

Transitive Relatiocns: Suppose a term x is related to a term y

by a certain relation R, and y is related to z by the same
relation R. Then if X is related to z by this relation, R
is said to be transitive. 1In other words, if xRy and yRz

to-gether always imply xRz then R is transitive. When xRy

and yRz always exclude xRz then R is said to be intransitive.

For example, consider the relation 'ancestor!. xRy and yRz
mean x is an ancestor of y, and y is an anecestor of z. It is
obvious that xRz is true, hence the relation is transitive.
The relation 'unequal' is an example of a relation which is
not transitive, for if x, y and z are numbers and R means
'unequal' then xRy and yRz do not necessarily imply xRz, for

x and z may be the same number.

gonnected Relations: If x and y are any two terms in the field

of a relation R, and either one of the relational propositions

‘V//

1
xRy or yRx is true, then K 1s said to be a connected relation .

1. Russell "Introduction to Mathematical Philosophy" p.32.
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Having so classified relations, we can construct or ine
vent certain relations having some of the above properties.
The purpose of this as we have already pointed out is, to ese
tablish an order among the members of unordered classes,

1
Serial Relations : Ldt R be a relation which is asymmetrical,

trangitive, and connected. Then by the above definitions R

must have the following properties., If x, y, and z are mem=
bers of the field of R, then: (1) either xRy or yRx is true.
(2) xRy and yRx cannot both be true. (3) xRy and yRz together
imply xRz. When R has these properties, it is said to be a
gerial relation. As an illustration of the uses of this type
of relation, consider the following problem. Suppose we were
given a class of objects a,b,c, and a serial relation R whose
field includes the members of this e¢lass and we were to order
them in accordence with this relation. We could proceed as
rollows:
Either aRb or bRa is true, but both are not true.

" BRe " ¢Rb " " " " u u u

W aRe " cRa " " " u " n "
Suppose the relational propositions bRa, bRe, and aRc are true,
while the others are false. Then if we regard bRe as meaning
b 'precedes! ¢, and write it as "b,¢" and use this notation for
the other relational propositions, the order as determined by

R is b,a,c. Moreover, if we write these in any other order,

1. Russell "Introduction to Mathematical Philosophy" p. 42
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at least one of the above relational propositions would be cone
tradicted., For example if we expressed the order as a,c¢,b,
this would imply that aRc, aRb, and c¢Rb were true, but the last
two are false since the relation R is asymmetrical. Similarly

any other order or 'arrangement' would lead to a contradiction.



PART II

- NUMBER .

In the previous sections we have been concerned with the
concepts of class, relation, and order. It will be recalled
that we treated classes and relations separately, and used
these two notions to discuss order. That is: We said that
a class could be ordered by a certain type of relation. While
these concepts have a far wider scope than we shall discuss
here, yet they do form the basis ot Russell's theory ot number.
I reserved Part I entirely for a discussion ot these in place
of introducing them only as required; and while it is true
that certain refinements of these such as ‘one-one' relations,
similarity of classes, and correspondence, must be introduced
before we can discuss number, yet these follow easily irom the
general properties or the concepts themselves.

One~one relations can be understood best by first cone
sidering 'one-many' and 'many-one' relations. Suppose the
relation R means ‘'square' and x and y are real numbers. Then
xRy would mean "x is the square of y". This is an example of
a one-many relation sinece there is more than one number y whose
square is x. One-many relations may be defined as relations
such that xRy and x'Ry cannot both be true unless x and x'
are the sane term.l 'Many-one' relations are relations such
that xRy and xRy' cannot both be true unless y and y' are the

same term. If R means 'squarerocot' and x and y are real

1. Russell "Introduction to Mathematical Philosophy" p. 47.
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numbers then xRy means "x is a square root ot y" and such a
relation is many-one since x is the square root of only one
nurber while y has more than one square root. If a relation
is suech that there is only one x for which xRy is true, and
2lso only one y for which xRy is true, then R is said to be
a one-one1 relation.

Similarity of Classes: Suppose that to each member of a class

A, there corresponds one and only one member oi a c¢lass B, and
to each member of B there corresponds one and only one member
of A; then the classes A and B are said to be in 'one-one'
correspondence. Another way or stating this is to say that

if there is a one-one relatidn which correlates the members

of one class each with one member of the other class, then

the classes are said to be in ome-one correspondence. The
following example of one~-one correspondence between classes

is given by E.V. Huntingtonz. "The class of soldiers in an
army can be put in one-one correspondence with the class of
rifles which they carry, since (as we suppose) each soldier

is the owner of one and only one rifle and each rifle is the
property of one and only one soldier". The one-one relation
in this case would be a relation ot ownership, and the two
classes, soldiers and ritles would be in one-one correspondence.
Single valued algebraic functions present examples ot this

property of classes. The function y=2x-1 implies a one-one

1. Russell "Principles of Mathematics" p. 113
2. "The Continuum" p. 4.
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relation between‘a class of x's and a class of y's. To each
one of a set or élass of numbers x there corresponds a number
¥y When there is a one-one correspondence between two classes,
the classes are said to be similar, Russell's definitionl of
similar classes in terms of relation, domain, and converse
domain, is as follows: "One class 1s said to be similar to
another when there is a one-one relation of which the one class
is the domain, while the other is the converse domain."

Finite and Infinite Classes: One=-one correspondence ot classes

enables us to define finite and infinite eclasses, from which
definitions will follow a distinction between rinite and infine
ite numbers. In order to define these we must tirst state what
is meant by a part (or proper part) of a class. If A is a class
other than the null-class, and B is a class consisting entirely
of some but not all of the members of A, then B is said to be

a proper part of A, There are now two possibilities in conn=
ection with A. and B. Either A ecan or cannot be put into
one-one correspondence with its proper part B, If it is possible
to do so then A is said to be an intinite class., If &.is not

an infinite class then it is finite.

Finite Cardinal Numbers: In this section we shall discuss the

rinite cardinal numbers, and unless otherwise stated we shall

refer to these as 'numbers'. 1In a general way numbers may be
2

regarded as properties ot classes , and this association or

numbers with classes is entirely consistent with Russell's

g

i. Russell “Introduction to lMathematical Philosophy" p. 16,
2. Russell "Principles of Mathematics" p. 113.
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statementl that mathematics can be formally deduced as a branch
of logic,

Suppose we consider a certain finite class ot objects.
Regardless of the individual objects themselves, this class
has what we shall call a number associated with it. Now if
we consider another class of different objects, but such’that
the two classes are similar, then the two classes have some
reature or characteristic in common=-namely that the members
of one class can be put in one-one correspéndence with the
members of the other. We then say that the two classes have
the same cardinal number. For example, a baseball team is
an instance of what we commonly call the rnumber nine; also
the gloves they carry is another instance of the same number,
since (we suppose) the class of players and the class or gloves
can be put in one-one correspondence. But this is only saying
that the class of players is similar to the class of gloves
and that these classes have the same number. We could extend
our 111uétration so as to include other classes ot any objects
whatever, but with the restriction that all such classes must
be similar to either of the two given classes and hence to
each otherz. We would then have betrore us a set (or class)
of similar classes each class having a property (similarity)
common to all the members of the set. A perfectly arbitrary
symbol, the symbol 9, is invented to denote this set of

gsimilar classes.

l, Page 2 of this paper.
2. Russell "Introduction to Mathematical Philosophy" p. 16.
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The foregoing illustrates the use of the properties of

similar classes in defining a particular cardinal number, and

we now give Russell's definition of number in general. "A
number is a class of similar classes"l. To some, this defe
inition may seem repugnant. It may appear that Russell come
plicates matters by defining numbers in so unusual a manner.
For, according to his derinition, the number 2 would be the
class of 511 couplesz, or better still, the class of all
couples is the number 2. If objection were taken to the above
definition, there are two features concerning it that ought to
‘be considered. First: Does the definition involve or impliy
any terms which have not already been discussed and reduced to
logical concepts? The answer is no. The terwms class, and
similar class have been built up by using only logical prin-
cipless. Second: Can numbers as defined be used by the app~
lied mathematician? In order to answer this guestion it would
be neecessary to discuss the mathematical operations addition,
subtraction, multiplication, and division. These operations
will be treated later but it will suffice here to state that
Russell's definition of number does not in any way impair the
use of numbers. If we associate numbers with classes, and can

say that to a particular class there corresponds & number

(the number of the class), and to a number there corresponds
a set of classes, then operations between numbers can be made

to depend upon operations between classes., These operations

1. Russell “Principles of Mathematics" p. 116.

2. Couple is defined on p. 135 "Principles of Mathematics"
3+ If I have failed to justify this e ntention it is due to
the brevity of this paper rather than to any inherent

weakness in the argument.
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as applied to classes will be diseussed later and their counte
erparts——operations between numbers-—will follow as a necegse
ary consequence. To conclude: Cardinal numbers are symbols V/j
corresponding to sets of similar elasses. Tollowing Russell's
summaryl, we say that 0 is the class of classes whose only
member 1s the null class. There is only one class without

any members and that is the null class. Hence the set of null
classes has only a single member--the null class itself, and
this set we call the number 0. The number 1 is defined as
follows. Consider a class K which is not the null class but
such that if a term x belongs to K, the class without the x

is the null class, then the set of all classes similar to K

is the number.l. Similarly, this method can be extended to
define the finite‘cardinals in general. Thus if A and B are

two finite similar classes, then according to the definition

of number, A and B have the same number n. Let A' be a class
composed of all the terms of A and K ; and let B' be a class
composed of all of the terms of B and a c¢lass similar to K,

Then since A and B are similar, A' and B' are alsoc similar.

Now consider the set of all classes similar to A and B, and the
Set of all classes similar to A' and B'. The former set is, /
by definition, the cardinal number n, while the latter set is

defined to be the number (n+l}, The number (nt+l) is to be re-

1. [Russell "Principles of Mathematies" p. i28,
2., |Assume A and K have no members in common and are hence
exclusive classes,
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garded here as a composite symbol representing the cardinal
number of a set of classes rather than the arithmetic sum
of n and 1. The foregoing is meant only to show that if n
be any finite cardinal we can define another cardinal number
(n+l) different from n by using only the notion of similar

classes.



PART III
OPERATIONS BETWEEN CARDINALS

Addition:Up to the present we have been concerned with def-
ining the cardinal numbers 1,2,3,.. These symbols, it will
be recalled, were used for denoting classes. However, in
practice we use these symbols for other purposes, one of which
is for the common arithmetic processes. The cardinal numbers
1,2,3,.. as we have defined them are merely names for sets
of similar classes of objects, and this is the only use to
which we can put them up to now. We have not yet defined a

number system but merely a collection of symbols. A number

system can be defined as a set of elements or symbols and
a law for combining these symbolsl. The law of combination,

or operation, which we now developé} is the operation of v

addition of cardinals,

Addition as we shall regard it here, is essentially an
operation between classes, and we shall secure a definition
of addition of cardinal numbers by first investigating add-
ition of classes. Russell defines addition as follows?

"If u and v are classes, their 'logical sum' is the class to
which belongs every term which either belongs to u or belongs
to v". By this definition it is seen that when two classes

are combined by the above rule, a third class is defined.

1. This is suggested by Huntington in the "Continuum"

2. Russell "Principles of Mathematics" p. 117.
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This third class may be regarded as a sum-class, and is said
to be the sum of the two given classes, and the las of coue
bination or operation on the two given classes, is the oper-
ation of addition. 1In other words the above operation would
be as follows. Let A and B be two finitel classes which have
no membper in common. Suppose C is a class defined as follows:
Every term of A and of B is a term of €C§ while every term of
C is a term either of A or of B, The class C is then said to
be the sum of the classes A and B, We may now extend this
definition to addition of cardinal numbers. Every tinite class
has a cardinal number and every rinite cardinal number is the
number of some class. If Ny, Hz, N, are the cardinal numbers

3

of the above classes A, B, and C respectively, then Ns is said

to be the numerical sum of N.and N and we use the notation

1 2?
EI+NQ=N3 to imply this relation. The above definition of
addition of cardinals is dependent upon addition of classes,
and it is due to this tact that the commutative law is implied.
For in the above discussion of the classes A and B, no refere
ences were made to the order in which the terms or & and B were
to be combined., It is immaterial whether we say that C contains
every term of A and of B, or whether we say C contains every
term of B and of A. Hence since Ny is the cardinal number of
A and Nz the cardinal number of B, we have NifH2=H3 or N2+N1fN3.
A case which requires special attention is the case where Nj;

and Nz are the same number. For example, suppdse the class

A has the cardinal number 1, and B also has this

1. This restriction is not necessary, but only finite numbers
are to be considered here, See Section 112. Russell
“principles of Mathematics".
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cardinal nuuber (A and B are exclusive classes); then 1+1 is
detfined to be the cardinal number of a c¢lass D, where the class
D is defined to be the logical sum of A and B. Addition as
defined can be extended to any number of cardinals. Thus
K1+N2+H3 means M&Ns where Hi+Né=M and since M is a cardinal

number the operation may be repeated.

Subtraction:l

Subtraction, the inverse operation of addition, may be
defined as in the case of addition by first defining subtre
action of classes. Suppose every term of a class B is a term
of another class A. Define C as the class consisting of

every term of A which is not a term of B. Then if Nl,ﬁz,ﬂs

are the cardinal numbers of A, B, and € respectively, the

relation existing between Hl,Nz,and N3 may be expressed as

Ny~N =N, and N,

from Nl. In case € as defined above is the null eclass, then

is the number obtained by subtracting N2

its cardinal number is 0, and A and B représent the same

class., Then also Nl and N, are two symbols denoting the same

2
cardinal number, and we express this by the relations NI—N2=O
or by H1=N2. This definition of subtraction is restricted

to the case where every term of B is a term of A, but this
restriction can be partially removed in the following manner.

Suppose B' is any class which is similar to a proper par"ff2

-

L., Russell refers to subtraction as the :verse operation of
addition. The definition given here is my own, but I
have deduced it in a manner similar to that in which add-
ition was deduced.

2. See p./5 of this paper.
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of A or to A itself; then B! is similar to the class B above,
and hence has the same cardinal number No. As before, C can

be defined in terms of A and B and hence in terms of A and B',
and the above definition of subtraction applies to the numb-
ers corresponding to A, B’, and €. It is to be noted that the
above operation is not applicable to all numbers. The obvious
restriction is that B' must be a class similar to a proper part
of A or to A itself.

Multiplication: As in the case of addition and subtraction,

multiplication of numbers is defined by first considering
multiplication of classes. The following definition of multe
ipliecation will serve for any finite number of numbersl. Let
A and B be two finite exclusive classes. Suppose C is a class
of classes each of whose terms is itself a class consisting

of one term of A and one term of B. Then € is called the
Multiplicative class of A and B. If N3, Np, N; are the card=
inal numbers corresponding to &, B, and € Respectively, then

N, is defined to be the ‘'product' of N

3 1
this relation as NIXN2:N5° Since the multiplﬁgtive class € vV

and Nz, and we express

does not depend upon the order in which we choose terms from
A and B, we may say that € is the multiplicative class of B

and A and hence NzXNf=N5. Thus the commutative law of multe
iplication is implied in the definition of multiplication

itself. 1In case A is the null class, then C ean have no terms

-

l. Russell "Principles of Mathematics" p. 119, Section 115.
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and hence is also the null class, and we have 0XN§=O.

Ix0=0. This definition

of a product applies to any finite number of numbers, but fails

Similarly if B is the null class N

if we wish to define the product of an infinite number of

'factors'l. It also¥applies to exponéntiation if we define
(a)b to mean the product of b factors, each factor corresp=
onding to one of b similar e¢lasses, and 'a' being the card-

inal number of each of these classes,

1, For a definition of such a product see p. 119 Section 115
Russell “Principles of Mathematics.”



PART 1V

Inequalities and the Ordinal Character of Number.

We have defined classes, relations, and cardinal nume
bers; and shown the dependenCe of cardinal number upon the
concept of elass, In fact, cardinals are classes of similar
classes, and when we use for example the symbol 2, we are
merely generalizing, and using a convenient method of re-

ferring to certain collections of objects. The important

point is that 2 lused as a cardinal] denotes a collection of
some objects or other, and nothing else.

However, we abuse the symbols 1,2,3... by making them serve
more purposes than the purpose mentioned above. For example,
if a group of soldiers were lined up before us, and we rege-

arded them as a collection of objects, then they would instance

some cardinal number, Suppose the cardinal number of their
class is 12. But if they are given the command to ‘'number
from the right!', each soldier uses one of the above symbols
1,2,3,...12 to denote his position in the group, and not to
describe classes of objects. These symbols, used in the latter
sense, are used to 'label' individual objects and when so
used, we say that they are used for ‘counting', and they
represent the 'ordinal' numbers. This double usage of the
above symbols is well expressed by E.G. Phillipsl who says:

"The distinction between a cardinal and an ordinal number is

j2 2% 9. ~ E.G IO/’H[['{"JS

-

1. "Analysis".
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rendered difficult by the fact that each finite positive integer
is made to serve two distinct purposes; it may be used to count,
when it is acting in the ordinal sense, and it may be used to
number when it is acting as a e¢ardinal number. Symbolically thee
is no distinction whatever between a cardinal and an ordinal
number, but logically there is a fundamental difference between
them." 1In a general waj thiskdistinction might be expressed
as follows: Cardinal numbers denote classes without any refe
erence to order among the elements of each class, while orde
inal numbers are 'relation-numbers' and imply an order between
the individual objects.

In order to deal more fully with this ordinal character
of number we shall first have to discuss the notions 'successor!
and 'hereditary property'. These will be discussed in the
next section on inequalities.
Inegualities® Inequalities of cardinal numbers are based on
inequalities of the classes with which the cardinals are assoce
lated., When two éardinal numbers are unequal, we shall say that
one number is 'lessthan' or'greater than' the other; hence our
proc€:dure will be to specify what we mean when we say that a

number Nl is less than another number Nz, or N_ is greater than

2

Nl.
Suppose A is any class to which a term x does not belong,
and B is the class composed of all the terms ot A together

with the term x, but no other terms. Then if Kl and No are

the cardinal numbers of the classes A and B respectively, No
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is said to be the successor of Rll. Since we have defined
addition of classes, and noting that the term x is a class
whose cardinal number is 1, the above definition of successor
amounts to the following definition: N+1 is the successor of
ﬁéz But this states a relation between N and R+l and we may
express this relationship tor any two cardinals n and n+l by
the notation nR(n+l) which means (n+l) is the successor of n,

or n is the immediate predecessor of (mt+tl). Now (n+l) is a

cardinal number hence it must also have a successor which we

may call n+2, then since the same relationship holds between

n+l and n+2 as between n and n+l, we have (n+l1l)R{(n+2). Since
any finite cardinal number always has a successor, this pro=
cess can be continued indefinitely and we will now use the carde
inal symbols to express this fact. The set of symbols 1,2,3,..n
(n+1)... will imply that n+l is the successor of n for any n

in the set, and we shall call this set, the natural number
series,

In order to define inequality between any two numbers of
the set, we shall first have to discuss 'properties' of numb-
ers, and in particular ‘'hereditary properties' in the natural
number series. To aésert that numbers have certain properties
might seem to be a vague assertion since we are merely referr-

ing to a set of symbols 1,2,3,..., but these symbols represent.

1. Russell "Introduction to Mathematical Philosophy" p. 23
2. Russell "Introduction to Mathematical Philosophy" p. <1
also Phillips "Analysis® p. 9.
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sets of classes by definition, énd classes do have propertiese=
their defining properties. In what follows, we shall not be
concerned with enumerating all the properties of numbers or
of their corresponding classes, as such a task would be impe-
cesible; but we shall be concerned with certain properties and
the numbers which have these properties., If I state that m
has every property that n has, I am not required to enumeraté
all of the properties of either. W%What I do state, is that if
any one should name a property of n, then m will also have
this property. Lgt us now consider the natural number series,
and apply to this the foregoing discussion.

Suppose that whenever n’has a certain property P, n+l the
successor of n, also has this property; then P is said to be
'hereditary' in the natural number seriesl. In other words,
since it belongs to n+l, it also belongs to n+2 the successor
of n+l, and hence to allkthe numbers that 'follow'. Consider
the three numbers m, m+l, n, noting that the second is the
successor of the first, and suppose n possesses every heredite~
ary property possessed by m+#l. Then n is said to be ‘'greater than
mor m is said to be 'less than' AEZ

Let us now examine the relationship expressed between
two numbers m and n when we say that m is less than n. If
we call this relationship R, then mRn means 'm is less than

n' or 'n is greater than m'. We shall now show that R is an

i

1. Russell "Introduction to Mathematical Philosophy" p.21
2. Russell "Introduction to Mathematical Philosophy" p.35
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asymmetrical relation. Suppose R were L symmetrical relation;
then we could say that n is greater than m and m is greater
than n. Consider the particular case when n is the successor
of m, The relationship mR(m+l) is true while (m+l)Rm is not,
since the successor of m+l is not m. Hence the relationship
'less than' is asymmetrical. The transitivity of R follows
immediately from definition; for if m,n, and p are three
distinct numbers such that n is greater than m, p is greater
than n, then p possesses every hereditary property of n while
n possesses every hereditary property of m. Hence p possesses
every heredi8ary property of m, and is, by definition, greater
than m. The relationship is also connected since it has for
its field, the cardinal numbers provided m and n are not the
same number.

%e have now established that the relationship 'less than'
has the three defining properties of a serial relationl. It is
then the type of relation which ‘'orders' an unordered class
of terms. The importance of the above truth lies in the fact
that we can define the so-called natural order of the cardinal
symbols. If two distinct numbers m and n are proposed, then
either m is greater than n,(m>n) or n is greater than m (n>m).
Common usage enables us to express this order in two ways:

(a) By writing m and n such that n follows m to imply that m¢n.

(b) By counting. The double purpose of the natural numbers

- —

l. See p. || of this paper.
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1,2,3,..n is now appareént. If we consider, for example, the
symbol 3, we may have in mind its cardinal properties, and
when used in this sense & denotes a class or sets of classes.
But 3 may also bring to our attention the number of numbers in
the natural series which has preceded it. If we have before
us a set of objects and we associéte each of these objects
with one of the nuwbers in the natural series 1,2,3,..., then
we have assigned an order to the set since the symbols which
name the individual objects are themselves an ordered set;

1 t0 the relation between the

and a relation which is similar
symbols, exists between the objects., Used in this sense, the
symbols 1,2,3,... imply relationships and not classes, and

when so used we refer to them as the ordinal numbers.

1. 'Similar relations' are discussed in Russell's
"Introduction to Mathematical Philosophy". p.53
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PART v

Integers, Rational, and Real Numbers,

We have seen that nﬁmbers serve two distinct purposese=-
to denote classes (ecardinal), and to denote relationshipsl
(ordinal). Conf£ining ourselves to the former use, we have
also seen that we can carry out certain operations with some
of these numbers. The uses of these operations need not be
exphasized here since if we apply mathematics to every=day
problems, the above operations are now indispensdéble to us.

However, if we confine ourselves to the cardinal numbers
and attempt to carry out these operations on all such numbers,
our attempts will fail. It is certainly true that for any two
cardinals m and n, there is a number p such that m¢n-p, but
it is not true that a cardinal number r exists such that m-n:r
for all such numbers m and n. Similarly it we define the
'quotient' of m and n to be q where m:nxq, there may or there
may not be a cardinal number q which satisfies this condition.
Since the cardinals will not permit the general use of these
operations we have two alternatives. Either we must restre=
ict the operations to such numbers as apply, and regard such
an operation as m-n (where m¢n) as an impossibility; or we may
retain the generality of the operation and attempt to re-
define the symbols in such a manner as to ensure this genere-
ality. Mathematicians have chosen the latter course, and we

have only to consider the results obtained, to justify this

-

Y. Russell implies this property by referring to ordinals
as 'relation numbers'. "Introduction to Mathematical
Philosophy"” p. 63.
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choice. For example, suppose a new Symbol (¥1) is introde

uced, and associated with a 'distance' OP extending to the

right of a point O (Figurel) and the symbol (-1) represents

an equal distance 0@ but extending to the left of 0.

¢ : > (Fig- 1)
4 0 P

Suppose also that we can combine these symbols by some rule
(operation) in such a manner as to give rise to a new symbol
(+n); then this new symbol may represent a definite property
in some problem, In other words, physical problems may somee
times be solved symbolically by first associating symbols with
the physical properties ot the given problem; then operating
with the symbels, and finally interpreting the symbolic result
of such operations., It would seem appareént that a restricted
set of symbols would naturally restrict our ability to deal
with physical problems and hence the desirability of adopting
& more comprehensive set of symbels would be justified. But
care must be taken if we introduce new symbols,vsince we must
not impair the logical foundation upon which methematics ha$§
been built. An ideal state of affairs would be attained ir
we could define our number system logically, define operations
between these numbers, and at the same time be assured that we
had sufficient symbols in our number system and sufficient
operations between these symbols, to solve the physical probe

lems demanded of the mathematician.
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Integers: Our immediate requirement is a number system which
will permit the unrestricted use of the operations of addition
and subtraction. In order to achieve this we propose a new

set of symbols +..-3,-2,-1,0,+1,%+2,+3,....which we shall call
integers. Integers must not be regarded as an extension of the
cardinals, hence +m is not to be confused with the cardinal
number m. m is a class of classes, while +m-is something
entirely differentl. The following is Russell's definition of
the integers +m and -m. If m and n are finite cardinals
(inductive numbers), then +m is the relation or(n+m)to n, and
-m is the relation of n to (n+m. Hence +m and —m are not classes
but relations. 1In particular they are converse relationsz.
Addition of integers can easily be defined in terms of addition
of cardinals. Thus if m,n, and p are cardinal numbers and
nt+m=p, then for their corresponding integers, (+m)+(+n)=(+p).

In the case of subtraction, suppose m, n,and d are cardinals
such that m-n=d, then (+m)~(+n)=(+d) defines the corresponding
operation between the integers (+m), (+n),and (+p). If n>m
then no such cardinal d exists, but there is a number d1 such
that n«m:dl; hence the operation of subtraction of the integer
{(+n) from the integer (+m) may be expressed as (+m)—(+n):(~d1) .
The importance of the above discussion lies in the fact that

we have given a meaning to the expression (+m)-(+n) when the

cardinal number n is greater than the cardinal numberfm).

1. Russell "Introduction to Mathematical Philosophy" p. 64.

2., See p. § of this paper,

3. Addition and subtraction of integers are not discussed in
Russell's "Introduction to Mathematical Philosophy", but
these operations as defined here,are, I believe, consis-
tent with his theory.
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Rational Numbers: The operation of multiplication of cardinal

numbers can be carried out when any two numbers m and n are
given. 1In other words, a cardinal number p exists such that
mXn-p. But for any two numbers m and n, there may or there may
not be a cardinal numberq such that m-=nyq. If such a number

q exists, it is said to be the quotient of m divided by n,

and we shall employ the notationZ=% to express this operation.
Thusgihas a meaning to us if and only if a cardinal g exists, amd

what we now wish to do is to assign a meaning to Ef

regardless
of the existence of q. Suppose m and n are any two cardinal
numbers, and that x and y are two cardinal numbers chosen

such that nx=my. When m, n, x, and y are so defined, Russell
defines the fraction E% to be that relation which holds
between x and y + If neither m nor n are O, this relation is
cne=one. For suppose it is a one-many relation; then there

is another number y! such that x bears the same relation to

y' as it does to y. 1In particular, we could say that since
nx=my, then nx=my' and so my=my' which is impossible unless

y and y' are the same. A similar contradiction would arise it
the relation were assumed to be many-one. Aspecial case to

be considered is when m is O but n is not. Then.é% would be
the relation between x and y when nxzQy, This condition rege
uires x to be the cardinal O, but does not restrict y. Hence

the relation of x to y is one-many. Similarly ifn is O

but m is not, then O.x=my restricts y to the cardinal O but

1. Russell "Introduction to Mathematical Philosophy ". p.64
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imposes no restrictions on x, and the relation is many-one.l

In the discussion of rational numbers in his "Introduction to
Mathematical Philosophy", Russell does not discuss the relation
(if such a relation exists) Bxpressed by g— ; Obvicusly this
relation is the relation between x and y when x.0=-y.0; but

this condition is satisfied by any two numbers hence it is
merely the relation of any number to any number.v

By the above definition we have created a new set of syme
bols. These symbols are of the form'%% where m and n are card=
inals; they do not denote classes, and so far we have not
devised any means of combining them by Opvfations such as those
which were used to combine cardinals. All we can say so far
is that ' is a symbol which denotes a relation betweenfard=
inals and hence between classes. However, the'important
feature to realize is that Russel defines ratios logically.

The terms used in the definition were ‘cardinal number! and
'relation?', and these themselves have been previously defined
in terms of logical concépts.

But even though these new symbols will permit of a log=
ical definition, the question of their adaptability to every
day problems will naturally arise. The usefulness of cardinals
is suggested by their own definition since they symbolize

classes of objects; and such classes do enter into these

1. Russell "Introduction to Mathematical Philosophy" p.65
The relation %> is always the same for any m. Russell
calls this the "infinity of rationals"., In what follows
we shall, unless otherwise stated, exclude this case.
Hence in any fraction of the fornx@% it will be understood
that n is not O,
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problems. Do‘relations as exhibited by ratios also enter into
these problems? To answer this question would require a dise
cussion of such concepts as 'quantity' and 'measurement' which is
beyond the scope of this paperl. However, when we consider for
example that the ratio ?3 states a relation between the carde
inals x and y whenever l.x=my it is evident that some relation
exists between the cardinals 1 and m. But to say that the
cardinal '1’ bears some relation to the cardinal m is to say that
their corresponding classes are related; and in particular, it
these classes have members in common, we are in reality dise
cussing a relation ol the part to the whole . It is probable
that fractions were first introduced to denote such relations
between quantities; and the above trivial example is given
only to suggest (not to prove) how this property might be

deduced from the logical definition of ratio.

Operations between Ratios: If'E? and " are ratios and the

cardinal number mq is less than the cardinal np, then we shall
say that-ﬁa is less than P (™ <P) and £ 1is greater than 13‘
Equality between ratios is defined as follows: If mg=np then

the above ratios are equal. From the above, we can deduce two
important properties of the rational number system. (1) If we

are given any two ratios T and £ which are not equal, then

there is a ratio - such that ™M ¢ 2<£ , For ir ™ ana P
S M S ™
are unequal then eitherzaLuE or "

M > p
T %

« Suppose the former

1. Russell discusses these concepts and their relation to
‘number' in his "Principles of Mathematics" Chapters XIX
to XXI
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P
Mt

ratios 22 and P ; .m(ntq) is less than n(mtp) since mg is less

» and compare this with the

is true. Consider the ratio

than np and we have'§:< g&#g. Similarly it may be shown that

ff{f’< 2, Let the cardinals r and s be such that r-m}p and

s=n+q, then @3 < ?‘Lff (2) The relations 'less than' and 'greaper
than' between ratios are serial relations. This follows trom
the ract that the relation ‘less than between cardinals is
asymmetrical, transitive, and connected.

We ecan now deduce the following property of ratios. If

—) =

™M, and £ are any three ratios we shall say that.% lies
N

between the other two if M ¢ 2 s P or it W >25/, . Since 7@
LA A Mm% ™ 7S A\

and_ilfwere any tmequal ratios it follows that there are
alwaya'ratios between any two given ratios and no two of

these are consecutive, since it they were property (1) would

be denied. Furthermore, if we consider the class of all
unequal ratios and we order this ¢lass by the serial relation
'less than', we have before us an infinite ordered class or
terms; each term being of the form ?Eiwhere m and n are carde
inals., ©Such an ordered class of terms we shall call a series
and since there are always terms between any two given terms
we shall call the series compactl. Hence we can now refer to

the ordered rational numbers as a compact series.

Addition: If X and £ are ratios then tjeir sum is defined

to be MP+t™9  which is itselt a ratio since npymq and nq are
n .
cardinals, “Hence addition is always possible within the

D

1, Russell "Introduction to Mathematical Philosophy". p.66
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raticnal number system, and we shall express this operation

as M4 B mpiomg
n M%.

Subtractionl: We shall say that the difference between '2&

and P is qﬁﬁ:lfb. This difference represents a rational num-
"M
ber if and only if the cardinal mq is greater than or equal to

np. This operation is expressed by ?S “_il:,nﬁﬂg:?ﬁ

'y
Maltiplication: We shall say that the product ofga and 2
islég; and express this operation by the relation}fxft:gp,
"

Division: The quotient of by %- (where p is not 0) may be

defined to be :%} which is itself a ratic since mq and np are
cardinal numbers.

From these definitions it is seen that the operations of
addition, multiplication, and division can be careied out
between any two ratios (with the one exception that p must
not be O in the case of ﬁivision). The operation of subtrac-
tion alone is restricted since mqe-np is a cardinalﬁg} mg is
greater than or equal to np. PFurthermore, the commutative
law of addition and multiplication between ratios follows
immediately from the commutative law of addition and multip-
lication of cardinals.

In order to define subtraction between any two ratios it
is necessary to assign a meaning to*?%i?bwhen np is greater
than mqg. This,kRussell does in a manner analogous to the

manner in which he defined negative integersg. Thus the positive

1. The operations of subtraction, multiplication, and div-
ision are not discussed in Russell's "Introduction". The
definitions given here, are, I believe, consistent with his
theory of raticnals.

2. Russell "Introduction to Mathematical Philosophy" p.66
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ratio (+§,) is the relation of(%f+i) to 2 while the negative
ratio (- %» ) is the relation of'ga to (+£ ).

It has now beén established that the four rational operat=
ions-addition, multiplication, subtraction, and division can
be carried out between any two numbersfg‘ and 2 in the rational
number series. Hence sinceIOperations between any two members

of this series have been defined, we can refer to this series

as a number system.

¢

Thus to sum up: The rational number system 1is an infinite
collection of terms each term of which is of the form(ﬁ-;a) or.
(—-Ef). These terms may be ordered by the serial relation
'less than%, and when so ordered, they form a series. Since
there are terms of this series between any two given terms,

the series is compact, and no two terms are consecutive.

Finally we may say that the rour rational operations are possible:

between any two members of the systeml.

ks -

1. An additional property possessed by the rational number
system is that it constitutes a closed set under each of
the four rational operations. That is: If any two ratﬁ
ionals are combined by one of these operations, the re=
sult o such a combination is itselt a number of theset
of rationals; and under these circumstances we say that the
set is closed (one exception is that the divisor must
not be 0). When the set is closed ror all of the rational
operations we say that the set is a number field (see
Dickson “Modern Algebraic Theories" p. 150), It follows
that the set of rational numbers is a field. This is
not true, however, of all sets of numbers; for if we
consider the set of positive and negative integers, this
set is closed under the operations of addition, subtr-
action, and multiplication, but is not closed under

division.



The Real Number System.

We have, so far, discussed four operations between num-

bers. These operations were first introduced as laws for
' combining classes; they were then applied to the symbols
representing classes (i.e. the cardinals), and in this manner
we defined laws for combining these cardinal numbers. It
was found however, that in order to retain the generality of
the inverse operations (subtraction and division) we had to
revise our number system, and the system which finally evolved
was the rational number system. Now if we introduce new operw
ations; these may, or they may not, apply to all rational
numbers. The operation of exponentiation involves no serious
difficulty; for if m is any number there is a number M such
that m%:M. However, the inverse operation, extraction of
rootg, is limited to certain rationals. If given a cardinal
number m there may or there may not be a number n such that
n%:m, Thus we sSee again that it is an inverse operation
which presents difficulties when we attempt to ensure the
iree use ot such operations within our number system. It is
easily shown1 that no number M other than a square number(:?:>
has a square root within the rational number system. Here,

as before, the mathematician has two courses to follow.
He may restrict such an operation to those numbers as have

rational square roots; or he may seek a number system whose

l. E.G. Phillips "Analysis" p.l5 o
2. If there is an integer m such that m: M
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elements will admit of a logical definition, and such that the
proposed operation will be‘possible within the new number
system. A simple example will perhaps suffice to show the
advisability of the latter course.

In any numbér system, I think it is safe to say that
geonmetric interpretations ought to be consideredl. By choos-
ing a suitable unit of measurement, we can associate with
each rational number a line segment provided the line seg=
ment has the two properties --}ength and direction. The
converse however, is not true. There is no rational number
ﬁhich denotes the length of the diagonal of a unit square.

We can say the symbol /§~represents this length, and that

such a symbol is an irrational number, but this is by no

means gibing a logical definition of irrational numbers in v/
general.ﬁ

Russell arrives at a definition of such irrational numbe
ers not by extending the rational system so as to include the
irrationals, but by defining a new number system which he
calls the real number system. The symbols used in the rate
ional system are also used in the real number system, but
although these symbols are retained, they are logically
different. The following is an outline of Russell's theory

of real numbers.,’

1. Burkhardt in his "Theory of Functions of a complex
Variable" points out this connection between numbers
and their geometric counterpart. p. 3 Section 2.
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We have seen that the rational number system is a compact
series, and hence the class of all such rationals is an inrine-
ite ordered class. The relation which has been used to order
this class 1is the merial relation 'less than'., We shall
refer to this as the relation P, We require the two following
definitions in order to discuss real numbers.,

Maximum: If 'A' is a class, ordered by the serial relation P,
and x is a term of A such that xPy is not true ror any y
which is a member of A, then x is said to be a maximum of A
with respect to Pl. If for example, the class to be ordered
is the class of all ratios less than L , then ll would be the
maximum of this class sinee it bears éhe relation 'less than'
to no member of the class, but is itselt a member of the class.
Minimum: The minimum of a c¢lass with respeet to P is its
maximum with respect to P. In the above example there is no
minimum, but if we consider the class ot ratios equal to and
greater than | , then 1 is its miniwum.

We shall use these two terms maximum and minimum to define
tirst a particular 'irrational number’ t/Ei and then to define
any real number.

Consider the ordered c¢lass of all ratios, and suppose
- that we divide these into two class (sections), in such a manner
that one class is composed of all the ratios whose squares

are less than %., and the other class is compocsed of all the

I

1. Russell ‘"Introduction to Mathematical Philosophy". p, 70.
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ratios whose squares are greater than_g . We shall call the
former class a lower section and the lgtter, an upper section.
Logically there are tour possible cases to consider. (1) There
may be a maximum to the lower section and a minimum to the
upper section. (2) There may be a maximum to the lower secte
ion but no minimum to the ﬁpper section. (3) There may be no
maximum to the lower section but a minimum to the upper. (4)
There may be neither a maximum to the lower nor a minimum to
the upper.

If the lower section has a maximum ratio r, then by def=
inition r2< % but the square ot any ratio greater than r would
be equal to or greater than 2 . Since no rational number
whose square 1s equal to 2 e;ists, it follows that the square
of any number greater than r is greater thanﬁ% « But this is
not true since we can find rational numbers (by the arithmetic
rule) whose squares lie between r2 and % . Hence no such max-
jmum can exist. A sinilar contradiction arises if we assume
that the upper section has a minimum, hence case (4) obtains
and the sections have neither maximum nor minimum. We then
define the real irrational number |f§—to be the class of all
ratios whose squares are less thén the rational number 2 .

We now treat the general case and give Russell's d;fﬁ
inition of any real nucber.

Let the ordered class of all ratios be divided into two

classes--a lower class CL and an upper class Cu such that

every member of Cy is less than every member of C,. Then
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logically there are four possibilities: (1) C; may have a
maximunm and Cu a minimum., (2) CL may have a maximum but
Cg no minimum. (3) €L Py Have no maximum but €, may have
a minimum. (4) CL,inmghave no maximum and Cu no minimum.
The first of these can be eliminated since it implies the
existence of two ratios r. and r_ such that ry is a member

1 2

of CL while every other meumber of CL is less than Ty

Similarly r_ would be a member of Cu while every other member

2
of Cu would be greater than ry. Then since ri<r2 there would
be a ratio between r, and r2 which would be a member of neither
class., Thus (1) leads to a contradiction. Befeore discussing
the three remaining cases we shall introdude the term 'upper

boundary'. If C. has a maximum, we shall call this maximum

L
the upper boundary of CL. If CL has no such maximum bUt,Cu
has a minimum, we shall call this minimum the upper boundary
of CL. In other words, the upper boundary of QL is either
the maximumpf CL or the minimum of cu.l There can be no
ambiguity since we have shown that both of these cannot exist.
From this it follows that if CL has no maximum and Gu no
minimum, then no upper boundary exists.

Cases (2), (3), and (4) can now be reduced to two and
only two pOSSibilities; Either CL has an upper boundary,

or it has not. If cases (2) or (3) obtain, then it has such

a boundary while if case (4) obtains, it has not. If the

3

1. Russell "Introduction to Mathematical Philosophy" p. 70-71
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lower section CL has an upper boundary r we shall call the
ordered class of all ratios less than r a segment, and r will
be the boundary of this segment, while if no such boundary r
exists, then the lower section CL is itself a segment. We
can now give the following definitions:

1. A rational real number isba segment of the series of ratios

which has a boundary, and this boundary is the rational number
to which it corresponds.

2. 4An irrational number is a segment of the series of ratios

1
which has nc boundary .
If we regard the real number system as the totality of all
such numbers as defined in 1. and 2. above, then we can say

that a real number is a segment of the series of ratios.

fhis definition of real numbers may appear to be unduly
complicated, but it is logically sound. By this definition,
the real number fé—lg the ordered class of all ratios whose
squares are less than fhe rational number %.; and the real
number 1, is the ordered class of all ratios less than % .
These classes do exist hence Russell's definition of real
number, even though complicated, has the merit of employing mo
terms whose existence can be questioned.

The operations which were used to combine rational numbers

can be applied to real numbers, hence none ot the useful prop=

erties of 'numberl! have been lost by this definition. In each

1. Russell "Introduction to Mathematical Philosophy" p. 72.
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case, the operation in question can be reduced to the corresp-
onding operation between rational numbers as the following
definition of addition will show,

If U and V are any two real numbers, then they are
segmnents of ratios. Let Xy be any ratio of the class U and
r2 be any ratio of the cléss V. Porm the sum rifrz as
defined by addition of rationals. The class of sums found by
choosing r1 and r2 in all possible ways from U and V is itself
a segment of ratios, and hence determines a real number S.
Then 8 is the sum of U and Vg)

An important result of the above definition of real number
is the principle of continuityz. The following example
illustrates this principle. It has been shown that all
ratios can be divided intc two ordered classes accordingly as
their squares are less than or greater than 2. There is no
rational number between these two classes since these classes
consist of all ratios; and when this situation arises we say
we have a 'Dedekind Cut' or an ‘'irrational section', But if
we now consider the real number Jgﬂas previously defined, it
will be seen that this number correspénds to the irrational
section. Thus even though there is no rational number between
the two classes there is always a real number having this

property. Another way of illustrating this principle is as

follows: Consider any segment of real numbers. Each real

)

1. Russell " Intrcduction to Mathematical Pnhilosophy" p. 73

2. See "Analysis" by E. G. Phillips. p. 29. This has been
termed the "axiom of continuity" owing to a different
treatment of irrationals. See Russell "Principles of
Mathematics" p. 279.
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number of the segment is, by definition, a segment of ratios.
Hence a segment of real humbers defines a segment of ratios
which is, by definition a real number. 1In other words every
segment of the e¢lass of real numbers determfnes a real
number. This was not true of the rational number system since
the lower class in the above example defined no rational
number .

Thus to conclude: Real numbers have been defined by
using only the concepts of class, relation, and order, to-
gether with certain terms which themselves avolve from these
concepts. That is to say; we constructed a chain of definit-
ions, each link of this chain being a particular type of nume
ber defined in terms of the preceding type. We started with
classes of elements and relations, and from these we ded-
uced a definition of cardinal number. We then defined pos~-
itive and negative integers by using the definition of cardin-
al number together with a relation (-tm being the relation of
n-pm to n). Rational numbers evolved from cardinals by
defining a raticnal number in terms of the previously defined
cardinals and a relation R, (R being the relation of x to y
when xn=my). Finally, real numbers were defined in terms of
rationals, together with such concepts as 'segment', 'boundary'
and 'series', and these latter terms were deduced from the

properties of ordered classés.
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