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Abstract: 

This research is mainly about autonomously navigation of an agricultural wheeled mobile 

robot in an unstructured outdoor setting. This project has four distinct phases defined as: 

(i) Navigation and control of a wheeled mobile robot for a point-to-point motion. (ii) 

Navigation and control of a wheeled mobile robot in following a given path (path following 

problem). (iii) Navigation and control of a mobile robot, keeping a constant proximity 

distance with the given paths or plant rows (proximity-following). (iv) Navigation of the 

mobile robot in rut following in farm fields. A rut is a long deep track formed by the 

repeated passage of wheeled vehicles in soft terrains such as mud, sand, and snow.  

To develop reliable navigation approaches to fulfill each part of this project, three main 

steps are accomplished: literature review, modeling and computer simulation of wheeled 

mobile robots, and actual experimental tests in outdoor settings. First, point-to-point 

motion planning of a mobile robot is studied; a fuzzy-logic based (FLB) approach is 

proposed for real-time autonomous path planning of the robot in unstructured 

environment. Simulation and experimental evaluations shows that FLB approach is able to 

cope with different dynamic and unforeseen situations by tuning a safety margin. 

Comparison of FLB results with vector field histogram (VFH) and preference-based fuzzy 

(PBF) approaches, reveals that FLB approach produces shorter and smoother paths toward 

the goal in almost all of the test cases examined. Then, a novel human-inspired method 

(HIM) is introduced. HIM is inspired by human behavior in navigation from one point to a 

specified goal point. A human-like reasoning ability about the situations to reach a 

predefined goal point while avoiding any static, moving and unforeseen obstacles are given 
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to the robot by HIM. Comparison of HIM results with FLB suggests that HIM is more 

efficient and effective than FLB. 

Afterward, navigation strategies are built up for path following, rut following, and 

proximity-following control of a wheeled mobile robot in outdoor (farm) settings and off-

road terrains. The proposed system is composed of different modules which are: sensor 

data analysis, obstacle detection, obstacle avoidance, goal seeking, and path tracking. The 

capabilities of the proposed navigation strategies are evaluated in variety of field 

experiments; the results show that the proposed approach is able to detect and follow rows 

of bushes robustly. This action is used for spraying plant rows in farm field. 

Finally, obstacle detection and obstacle avoidance modules are developed in navigation 

system. These modules enables the robot to detect holes or ground depressions (negative 

obstacles), that are inherent parts of farm settings, and also over ground level obstacles 

(positive obstacles) in real-time at a safe distance from the robot. Experimental tests are 

carried out on two mobile robots (PowerBot and Grizzly) in outdoor and real farm fields. 

Grizzly utilizes a 3D-laser range-finder to detect objects and perceive the environment, and 

a RTK-DGPS unit for localization. PowerBot uses sonar sensors and a laser range-finder for 

obstacle detection. The experiments demonstrate the capability of the proposed technique 

in successfully detecting and avoiding different types of obstacles both positive and 

negative in variety of scenarios.  
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1.1 Background and motivation 

Investigation on development of autonomous mobile robots for agricultural use is essential 

because of tedious, monotonous and very exhausting tasks for farmers. These tasks may 

include seeding, sowing, irrigating, weeding and harvesting. So usage of mobile robots in 

agricultural farms will result in raising the quality of the products, lowering production 

costs, and reducing the manual labors. While an increasing numbers of robots are being 

used in many different areas such as agricultural, manufacturing, medical care etc., there 

are also increasing needs for robots to be navigated robustly, reliably and accurately. 

Robust navigation of robots in outdoor and unstructured (unknown) environments is still a 

major challenge.  

However, since the agricultural environments are very complex and mostly unstructured 

(unknown), navigation of mobile robots in these areas involve difficulties such as: robot 

operation in three dimensional continuously changing tracks, targets which are difficult to 

detect and reach, and targets may become hidden among leaves or branches. Hence, 

navigation and control of an agricultural autonomous mobile robot requires dynamic, real-

time representation of the environment (localization and map-building), obstacle detection 

and collision avoidance, and path planning/ path following toward the goal. Therefore to 

design a system that can robustly navigate mobile robots in all conditions is really difficult. 

Development of agricultural autonomous mobile robots is essential because of following 

reasons: 

 Potential shortages of farmers in future  
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 Farming tasks are usually exhausting, and robots are not affected by age, unlike 

humans  

 Farm setting are considered harsh and rough for a human, and may pose health 

hazards, thus using robots may be preferred in those settings 

The research described in this thesis is a comprehensive study of navigation of a mobile 

robot on an inclined actual farm field (with maneuverable hill) using real-time differential 

global positioning system (RTK-DGPS) for localization. Two wheeled mobile robots 

(PowerBot and Grizzly) used for experiments are equipped with sonar sensors and laser 

range finders (LRF) to perceive the environments and shown in Fig. 1-1.  

 

             

                                             (a)                                                                                        (b) 

Fig. 1-1: (a) PowerBot, (b) Grizzly mobile robots used for simulation and experimental tests 
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1.2 research objectives 

The main objective of this research is autonomously navigation of an agricultural mobile 

robot. This project has four distinct parts defined as: 

1) Navigation and control of a wheeled mobile robot for a point-to-point motion. In a 

farm setting a robot needs to navigate from a start point (home-position of the 

robot) to an end-point (where it starts to do its task).  

2) Navigation and control of a wheeled mobile robot in following a given path (path 

following problem for seeding in a straight or curve path).  

3) Navigation and control of a wheeled mobile robot, keeping a constant proximity 

distance with the given paths or plant rows (defined as parameter d in Fig. 1-1). This 

task is mainly for weed control and staying close enough to a row of crop for 

spraying. 

4) Navigation of a mobile robot in rut following in farm fields. A rut is a long deep track 

formed by the repeated passage of wheeled vehicles in soft terrains such as mud, 

sand, and snow. Fig. 1-2 shows a typical rut made by the passage of manned vehicles 

in a farm field. 
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Fig. 1-2: A typical rut formed by the passage of vehicles in a farm field 

These different aspects of the project are depicted schematically in Fig. 1-3.  

 

Fig. 1-3: Schematic of a navigation and control of wheeled mobile robot in farm field; first part of motion is a 
point-to-point motion while the second part are path following and proximity-following tasks. 
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1.3 Research methodology: 

To choose the best appropriate navigation technique for this project, various kinds of 

methods for navigation of the mobile robots were studied comprehensively. Therefore, to 

develop an autonomous mobile robot that is capable of navigating in unstructured outdoor 

terrains such as a farm setting reliably, three main steps were accomplished: literature 

review, modeling and computer simulation of the wheeled mobile robots, and actual 

experimental tests in outdoor settings. An extensive literature search for information 

regarding navigation of wheeled mobile robots in outdoor terrains was performed. This 

resulted in a critical analysis of relevant published scholarly articles, research reports, 

books, theses etc. Then, kinematics, dynamics and navigation of two mobile robots, 

PowerBot and Grizzly, were simulated in MobileSim and Robot Operating System (ROS). 

Finally, the navigation of mobile robots was conducted on PowerBot and Grizzly robots in 

outdoor settings.  

 

1.4 Synopsis of thesis 

The chapters of this thesis were arranged in order to cover the research objectives 

explained in Section 1.3. In this research, navigation includes point-to-point motion 

planning, path following, proximity-following, and also rut-following of the mobile robot in 

off-road terrains. This thesis is organized as follows: 
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Chapter 2: 

The contents of Chapter 2 were published in ASME conference under the title of “sensor-

based navigation of agricultural autonomous mobile robots” [9]. In this chapter, the results 

related to the first objective were presented. A fuzzy-logic based (FLB) approach was 

proposed for real-time point-to-point motion planning of a mobile robot in complex and 

mostly unstructured environment. FLB approach required no prior knowledge of the 

environment and was able to cope with different dynamic and unforeseen situations by 

tuning a safety margin. The proposed method was validated using simulation and 

experimental tests. In Chapter 2, the results of FLB approach were compared with vector 

field histogram (VFH) and preference-based fuzzy (PBF) approaches; the comparison 

revealed that FLB approach produced shorter and smoother paths toward the goal in 

almost all of the test cases examined. To compare the results with PBF and VFH methods, 

two criteria were computed: the total path’s length which robot traveled to reach its goal 

(PL) and total bending energy of the trajectory (BE). The total path length for the robot is 

calculated as summation of the distances between two consecutive points in robot’s path 

from start point (x1, y1) to the goal point (xn, yn). 

𝑃𝐿 = ∑√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2
𝑛−1

𝑖=1

 (1) 

To consider smoothness of the paths produced by the proposed strategy, the total bending 

energy BE of the paths were computed as summation of square of curvatures.  

𝐵𝐸 =∑𝜅𝑖
2

𝑛−1

𝑖=1

 (2) 
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where ki is the curvature of the path generated for the robot to follow. These two criteria 

were calculated for all paths produced by FLB, VFH, and PBF methods and are summarized 

in Table 1-I. It is seen from Table 1-I that the proposed navigation method produces 

shorter (lower value of PL) and also smoother paths (lower BE) compared with the PBF and 

VFH methods. Bending energy in FLB method for all cases except for the set-up3 was much 

smaller than the two other strategies; this means that our strategy provides much 

smoother paths with respect to the PBF and VFH approaches. FLB approach did not make 

abrupt changes in heading angle of the robot, and by providing shorter paths it decreased 

computational and execution times. The fuzzy approach developed in this chapter was 

applied on the mobile robot with other proposed approach in chapters 3, and 4. 

Table 1-I: Comparison of the total path length (PL) and bending energy (BE) for the proposed FLB method 
with PBF and VFH  

Method 
 

Set-up 

FLB PBF VFH 

PL (cm) BE (E-02) PL (cm) BE (E-02) PL (cm) BE (E-02) 

1 510 0.750 571 4.510 573 5.330 

2 680 0.610 943 68.420 966 10.500 

3 675 0.530 399 1.930 390 3.700 

4 570 0.670 433 4.620 380 3.620 

5 375 0.060 513 3.250 713 5.940 

6 450 3.400 469 2.820 425 5.550 

7 590 0.820 539 2.510 458 7.120 

8 575 0.510 466 7.320 456 10.170 

9 555 0.730 437 2.800 237 4.600 

10 425 0.520 444 2.040 400 5.010 

 

Chapter 3: 

The contents of Chapter 3 are under second review for publication in ASME journal of 

mechanisms and robotics under the title of “two new approaches for navigation of wheeled 
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mobile robots” [1]. This paper deals with point-to-point motion planning of the robot to 

fulfil the research objective 1. In this chapter a novel human-inspired method (HIM) was 

presented. HIM was inspired by human behavior in navigation from one point to a specified 

goal point. HIM endowed the robot a human-like ability for reasoning about the situations 

to reach a predefined goal point while avoiding any static, moving and unforeseen 

obstacles; this made the proposed strategy efficient and effective [8].  

The HIM used distance-based sensory data from a laser range-finder for navigation of a 

wheeled mobile robot in unknown and cluttered settings. No prior knowledge from the 

environment was needed for the navigation. HIM gave the robot a human-like ability of 

reasoning about the environment which provided uncertainty management ability for the 

system. HIM enabled the robot to deal with imprecise and uncertain information, therefore 

the navigation system handled the error from laser readings and GPS data. Experimental 

evaluation of HIM indicated that HIM was capable of creating smooth (no oscillations) 

paths for safely navigating the mobile robot, and coping with fluctuating and imprecise 

sensory data from uncertain environment. HIM specified the best path ahead, according to 

the situation of encountered obstacles, preventing the robot to get trapped in deadlock and 

impassable conditions. This deadlock detection and avoidance is a significant ability of 

HIM. The simulation and experimental results of HIM and fuzzy logic method were 

presented and compared. HIM was computationally fast and efficient, since it used very 

simple and easily applicable rules for real-time robot navigation. The proposed approach in 

this chapter (HIM) was implemented for obstacle avoidance in chapters 4, and 5 for the 

navigation of the robot. 
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Chapter 4: 

The content of Chapter 4 is a submitted paper to the ASME Journal of Mechanical Design 

under the title of “A biologically inspired approach for point-to-point and path-following 

navigation of mobile robots” [5].  

In Chapter 4, the second part of the research objectives was realized. A navigation system 

was developed for path following control of a wheeled mobile robot in outdoor (farm) 

settings and off-road terrains. The proposed system was composed of four main actions 

which are: sensor data analysis, obstacle detection, obstacle avoidance, and goal seeking. 

Using these actions, the navigation method is capable of autonomous row-detection, row-

following and path planning motion in outdoor settings such as farms. In order to drive the 

robot in off-road terrain safely, obstacle detection and obstacle avoidance modules were 

developed in navigation system. These modules enabled the robot to detect holes or 

ground depressions (negative obstacles), that are inherent parts of farm settings, and also 

over ground level obstacles (positive obstacles) in real-time at a safe distance from the 

robot. Other main originality of this chapter was that the robot could accurately identify the 

end of the rows of trees/bushes in farm/orchard and enter the next row to continue its 

tasks. The mobile robot utilizes a tilting unit which carries a laser range-finder to detect 

objects and perceive the environment, and a RTK-DGPS unit for localization. Diverse 

experimental tests were carried out using a differential wheeled mobile robot in farm fields 

to evaluate the navigation system. The experiments demonstrated that the proposed 

technique was capable of successfully detecting and following rows (path following) as well 

as robust navigation of the robot in point-to-point motion control.  
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Chapter 5: 

The content of Chapter 5 was submitted for possible publication in Journal of Robotica under 

the title of “A new 3D laser-based method for proximity-following and rut following in 

orchard rows” [6].  

The goal of this chapter was to fulfill the third and fourth parts of the research objectives. 

The navigation system developed in Chapter 4 was successfully extended to detect and 

follow the rows of bushes for proximity-following. In this system, while the robot followed 

the plant rows, it also kept a proximity distance with the rows. The plant rows were 

recognized based on Hough transform (a line recognition technique). The novelty of this 

chapter is in introducing a new curve fitting technique for row following. The proposed 

method generated piecewise smooth path for the robot to follow; this technique did not 

carry the shortages of Hough transform in line recognition. Rut following technique is also 

included in this chapter. This technique was carried out successfully to detect and follow 

different shapes and sizes of ruts (curvy, S-shape, and shallow ruts) and two ruts 

simultaneously in farm fields. In addition, data from a 3D laser range finder (LRF) was used 

to analyze the terrain and to detect negative obstacles. In this chapter, the navigation 

system was positively conducted to detect and avoid different holes in real-time in outdoor 

settings. The experimental evaluations conducted on a 4x4 differential drive 16.5 KW 

autonomous ground vehicle (AGV) in different field setups showed the accuracy and 

robustness of the proposed system in rut detection and tracking, proximity-following, and 

negative obstacle detection and avoidance tests. 

 



12 
 

Chapter 6: 

In this chapter the summary and conclusions of the thesis are presented. Also, the 

directions for the possible expansions and future study of the research were discussed in 

this chapter. 

The candidate’s research on topics not related to this thesis resulted in publications [2 to 4] 

and [9]. The abstracts of these publications are included in Appendix. 
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Abstract 

Investigation on development of autonomous mobile robots for agricultural use in a 

complex and mostly unstructured environment is studied. An approach that uses fuzzy-

logic control and distance-based sensory data for real-time navigation of a mobile robot in 

an unknown farm setting is proposed. This approach requires no prior knowledge of the 

environment and adjusts a safety margin to cope with dynamic and unforeseen conditions. 

The simulation and experimental results indicate that the proposed strategy navigates 

robot in different conditions safely and efficiently. Comparing our results with vector field 

histogram and preference-based fuzzy approaches revealed that the approach suggested 

here produces shorter and smoother paths toward goal in almost all of the test cases 

examined. 

 

2.1. Introduction 

Investigation on development of autonomous mobile robots for agricultural use is essential 

because of potential shortages of farmers in the future. Robots’ tasks in the farm setting are 

monotonous and repetition. These tasks may include seeding, weeding and harvesting. Use 

of mobile robots in farm setting may result in lowering production costs, and reducing the 

manual labors. 

However, since farm environments are very complex and mostly unstructured (unknown), 

navigation of robots involve difficulties such as: robot operation in changing tracks, and 

targets which are difficult to detect and reach.  
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In Europe and North America, particularly in Canada crop production has significant 

economic value, with millions of dollars of annual revenue. An autonomous mobile robot 

capable of navigating through rows of crops for intra-row weeding is a promising 

alternative for conventional weeding [1].  

To the authors’ knowledge only a few researchers have reported works in navigation of 

agricultural autonomous mobile robots. In [2] motion of a four-wheel-steering (4WS) 

mobile robot moving in farm land was modeled and controlled. They considered sliding 

and slippery conditions to attain both lateral deviation of the robot from desired path and 

the heading (orientation) of the vehicle with respect to a reference value. Outdoor 

navigation of a wheeled mobile robot was also discussed in [3]; navigation process was 

performed in four stages: Map-building, laser scanning and data processing, robot 

localization, and robot motion control.  

Managing the uncertainty and altering conditions is one of the most challenging problems 

in navigating mobile robots in an unknown and unstructured environment. Several 

approaches were suggested for robot navigation, such as the artificial potential field [4], the 

vector field histogram (VFH) [5], the edge detection [6], the obstacle boundary following 

[7], the goal oriented recursive path planning (GORP) [8], the curvature velocity method 

[9], the dynamic window approach [10], and the fuzzy-logic and neural-network based 

reactive methods [11]. The model-based approaches use a map or model of the 

environment to generate a path for the robot to follow toward goal point. In [12] an online 

approach to define an obstacle free path for an outdoor mobile manipulator was suggested. 

Measurements using ultrasonic and laser sensors were used to generate a map of the 

terrain and to define an obstacle free path for the robot. The uncertainty of parameters 
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computed in map building process was minimized using combination of adaptive Kalman 

filter and a fuzzy interface mechanism. But the model-based approaches would have 

difficulty dealing with the real time navigation of a mobile robot in outdoor environment. 

This is because it is usually difficult or maybe impossible to obtain an accurate model of a 

dynamic outdoor environment. Sensor-based approaches [13] use data from different 

sensors such as sonar, laser range finder or visual camera in real time to generate control 

commands for the mobile robot motion. The main advantage of sensor-based approaches is 

that a robot can navigate safely in a dynamic environment by reacting to unforeseen 

obstacles.  

The potential field method suffers from getting trapped in local minima; unintended 

stoppage happens between closely spaced obstacles; oscillations (circulating around) in the 

presence of multiple obstacles; and oscillations in narrow passages [4]. 

Dynamic window approach computes the optimum velocity of a robot and satisfies the 

kinematic and dynamic constraints of a robot, and maximizes a given cost function. This 

cost function is usually defined as a distance to a goal and obstacles in the environment 

[14]. In the GORP method a longest straight-path segment is first found; then the approach 

tries to direct the robot to the goal while keeping shortest distance to the predefined path 

and avoiding the obstacles [7]. This method produces paths in an open area with convex 

objects, but may have difficulty in the presence of non-convex obstacles and cannot plan 

the shortest path. To develop algorithms for real-time mobile robot navigation in 

unstructured and unknown outdoor environments, fuzzy-logic and neural-network 

approaches were proposed. Real time adaptive motion planning (RAMP) was developed for 

simultaneously planning and execution of motion of high degree of freedom mobile 
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manipulators [15]. Due to simplicity of implementation, fuzzy logic control is well suited 

for autonomous mobile robots. Fuzzy logic has been utilized in navigation systems for 

mobile robots for sometimes [16]. In navigating mobile robot in an obstacle free path 

hierarchical fuzzy controller [17] and preference-based fuzzy behavior method [18] were 

used. The navigation problem was broken down into two control actions: heading control 

and speed control. Obstacle avoidance was performed in speed control stage. Application of 

a hierarchical Fuzzy-Genetic system to produce an autonomous outdoor mobile robot 

controller capable of online learning and implementing was introduced in [19].  

Use of fuzzy-logic in mobile robot navigation [13] revealed flexible capability of fuzzy 

control results in producing smooth path for the robot motion; fuzzy-logic is also robust to 

face the errors and fluctuations in sensory data. The problems of deadlock, when there is 

no passable space for the robot to go through and the robot get trapped and goal-

unreachable were dealt with reinforcement learning to adjust parameters in fuzzy 

navigator. Fuzzy-logic approaches were also combined with other algorithms, such as 

genetic algorithms [20], potential fields [21], and neural networks [22]. 

In fuzzy-logic control and navigation of mobile robot the number of rules and 

input/outputs increase exponentially with the number of variables; hence performance 

time of real-time control of robot will increase dramatically. To solve this problem, a 

hierarchical fuzzy-logic strategy was proposed to break down the input space for analysis 

by sharing this space amongst multiple low level behaviors. Each behavior is designed to 

respond to specific types of situations, and then the recommended outputs of these 

behaviors are integrated via a high level coordination layer [23].  

This paper introduces a new fuzzy based approach for mobile robot navigation in an 
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agricultural farm setting with unforeseen and challenging conditions. The premise of the 

proposed method is its robust results for uncertain and changing environments which is 

inherent characteristic of the farm fields. In this research, tuning a safety factor enables the 

robot to cope with fluctuating and imprecise sensory data from uncertain environment. In 

this method no prior knowledge about the environment is needed, consequently it is 

appropriate and easy to implement for real-time navigation in mobile robotics. The 

proposed navigation method is experimentally tested in a laboratory setting, and is 

compared with previous methods such as Vector Field Histogram (VFH) and preference-

based fuzzy (PBF) [18]. 

 

2.2. Proposed fuzzy strategy for mobile robot navigation 

2.2.1. Robot Model 

In this study, an automated guided vehicle (AGV) mobile robot is employed to investigate 

the performance of the designed fuzzy navigation approach. The robot is equipped with 

two sonar arrays, one in front and the other one in the rear. These sonar arrays provide 

360 degrees of seamless sensing. The robot moves in one plane and can identify its own 

pose in the world by GPS and IMU (Inertial Measurement Unit) data in outdoor 

environment or integrating the encoder's information for indoor navigation. Each drive 

shaft is equipped with a high resolution optical quadrature shaft encoder for precise 

position, direction, and speed sensing and advanced dead-reckoning. 
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(a)  

(b) 
Fig. 2-1: Schematic of (a) the mobile robot and (b) the sonar arrangements on the robot 

 

In Fig. 2-1 a schematic of top view of the AGV and the sonar system are depicted. These 

sonar sensors are divided into four groups of left (sensors S23, S24, S0, S1, S2, S3), front 

(sensors S4, S5,…, S10), right (sensors S11, S12, …, S16) and back (sensors S17, S18,…, S22). 

The obstacle distances detected in right, front, left, and back of the robot are represented 

by dR, dF, dL and dB respectively. These parameters are defined as: 

{
 

 
𝑑𝐿 = min{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠:  (S23, S24, S0,… , S3)}

𝑑𝐹 = min{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠: (𝑆4, 𝑆5,… , 𝑆10)}          

𝑑𝑅 = min{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠: (𝑆11, 𝑆12,… , 𝑆16)}     

𝑑𝐵 = min{𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑑𝑎𝑡𝑎 𝑜𝑓 𝑠𝑒𝑛𝑠𝑜𝑟𝑠: (𝑆17, 𝑆18,… , 𝑆22)}     

 (1) 

 

There exists an inertial coordinate system (Xi-Yi) attached to the ground and a robot 

coordinate system (x-y) attached to the centre of the robot base. The angle between 

heading of the robot and Xi axis is defined as angle (Φ), the angle between orientation of 

goal in x-y coordinate system and heading of the robot is defined as (θ). Control action 
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includes heading control, which provides change in heading angle of the robot (ΔΦ), and 

speed control which provides robot linear speed (v). 

 

2.3. Fuzzy Navigation Strategy 

The proposed navigation strategy in this research is based on fuzzy-logic control. Different 

behaviour blocks are suggested; each behaviour block is composed of sets of fuzzy-logic 

rule statements designed for achieving appropriate values for control parameters (ΔΦ and 

v). The motion control variables of the mobile robot are the translational speed of the robot 

(v) and the change in the heading angle of the robot (ΔΦ). These navigation blocks are 

composed of fuzzy rules and statements. Inputs for the navigation blocks are sensor 

reading information. For example in obstacle avoidance behaviour, this information is 

obstacle’s distances to the robot: sonar sensors’ measurement in right, front and left 

sectors of the robot to determine the distances to obstacles in each sector according to 

equation (1). These distances are mapped in to fuzzy membership functions {Far, Medium, 

Close} as shown in Fig. 2-2. Then according to the defined fuzzy rules, control outputs (ΔΦj 

and vj) for each rule are produced. The final control output will be obtained using 

defuzzification for each fuzzy rule’s output.  

The change in the robot heading angle is represented using five linguistic fuzzy sets {NB, 

NS, ZE, PS, PB}; these membership functions are illustrated in Fig. 2-3. NB is negative-big, 

NS negative-small, ZE zero, PS positive-small, and PB positive-big. The positive and 

negative terms mean counter-clock wise and clock wise rotation of the robot, respectively. 
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Fig. 2-2: Fuzzy membership functions for measured distance 

 

Fig. 2-3. Fuzzy membership functions for change in the robot heading angle 

 

2.4. Integration of the Fuzzy Outputs  

In some cases, the final fuzzy output for the change in heading angle of the robot has almost 

symmetrical shape about zero axis. For example if there is an obstacle in front area of the 

robot, there are two appropriate choices for the robot: to turn right or to turn left and the 

zero turning (straight motion of the robot) is not recommended. In this case the centroid 

defuzzification strategy gives a command: to go straight directly toward the obstacle. 

Therefore blending of the output rules that occur, during centroid defuzzification method 

can give a prohibited control command. In such situations the final control output for the 

robot may be: approaching an obstacle or even colliding with it. The mean of maximum 

(MOM) defuzzification strategy, while it guides the robot appropriately for this specific 
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case, it may produce abrupt transitions in the control command for other cases. To handle 

this problem, the Centre-of-the-Largest-Area (CLA)[24] defuzzification strategy was 

implemented here.  

 In CLA strategy, the fuzzy control output is divided into n distinct control areas (ΔΦ). Then 

a threshold value (Trsh) is used as a criterion to take into account or ignore these control 

areas; control areas with ΔΦ more than Trsh are selected in the fuzzy control output and 

other areas are ignored. Then the centroid method is used to obtain the final fuzzy control 

outputs ΔΦ and v: 

∆Φ =

∑ αj(Φj). ΔΦj

n

𝑗=1

∑ αj(Φj)
n

𝑗=1

 (2) 

𝑣 =

∑ αj(vj). vj
n

𝑗=1

∑ αj(vj)
n

𝑗=1

 (3) 

where αj (.) is the weighting factor for the rule j computed by product method and ∆Φj is 

area under the truncated membership function for change in the heading angle of the robot 

(ΔΦ), while vj is the corresponding value for the velocity (v) fuzzy sets. 

Changing the threshold value (Trsh) affects behaviour and outputs of the fuzzy navigation 

system. The (Trsh) shows the least value for control outputs to be calculated in final 

outputs of the navigation system. Effect of changing the (Trsh) parameter on navigation of 

the robot is also studied and depicted in simulation results. Choosing (Trsh=0) will give the 

same results as using centroid defuzzification strategy (robot is considered a point) and 

using (Trsh=1) is equal in using MOM approach for defuzzification (robot actual size is 

considered). The smaller the Trsh value means the smaller the robot, or the obstacle. 
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Consequently, smaller Trsh produce shorter path. 

 

2.5. Simulation Results  

The proposed navigation strategy was simulated in different environments: both static and 

dynamic (moving obstacles) configurations. An AGV mobile robot was used for this 

strategy. The AGV robot size is (660mm ⨉ 900mm ⨉ 480mm) and is shown in Fig. 2-4. 

 

Fig. 2-4: AGV mobile robot used for simulation and experiment 

 

2.6. Static Environment 

The performance of the algorithm is tested in different conditions, first for an unknown 

static environment with fixed position obstacles. In Fig. 2-5 a typical static setting with 

stationary obstacles and the mobile robot, which is equipped to sonars and laser range 

finder, is depicted; the obstacles are shown by black lines.  

Fig. 2-6 shows a typical result for an unknown static environment. Here obstacles are 

depicted by full circles and ellipses and the path which robot travelled is shown with a solid 

line.  
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Fig. 2-5: A view of AGV, static obstacles, and sonar rays 

 

 

Fig. 2-6.  Path of the AGV in an unknown static environment 

 

2.7. Dynamic Environment 

In order to implement the planned navigation algorithm for a dynamic setting, some of the 

obstacles are set to move with constant velocities in different directions. As we do not use 
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any map or prior information of the environment in the navigation algorithm, these moving 

obstacles are considered unforeseen. Figs. 2-7 and 2-8 show two cases of dynamic settings, 

in which motion of the obstacles are illustrated by arrows. These figures represent complex 

conditions and the ability of our algorithm to navigate the robot in dynamic environments. 

In these setups, the goal position is chosen such that the robot must maneuver around 

obstacles in order to reach goal position. The path which robot traversed from start point 

to reach the goal point is shown in blue solid curve. 

 

Fig. 2-7.  Navigation of the AGV in an unknown dynamic setting1 

 

 

Fig. 2-8.  Navigation of the AGV in an unknown dynamic setting2 
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2.8. Comparison of the Results 

To investigate the effectiveness of our navigation algorithm, this method is compared with 

preference-based fuzzy (PBF) method and VFH method represented in [18]. To obtain 

comparable results with PBF and VFH methods, locations of the obstacles, initial pose of 

the robot, position of the goal points and also dimensions of the test environment are 

chosen same as [18].Ten situations for two categories, single-path and multi-path setups 

are implemented. As mentioned before, the sensory data for the AGV robot are supplied by 

sonar sensors.  

First test situation is depicted in Fig. 2-11; obstacles are arranged in such a way to make a 

narrow passage for the robot. By changing the threshold value (Trsh) for CLA 

defuzzification approach, the motion of the robot will change and the robot goes through a 

different path. As shown in Fig. 2-11 performance of the proposed method for two values of 

Trsh= 0.6 and 0.3 are shown. The results of the VFH and PBF approaches for four cases are 

shown in Fig. 2-9 for comparison with our results. 

In Fig. 2-11, a more cluttered environment is demonstrated in which the robot had to 

navigate through very crowded setting, for two threshold values (Trsh= 0.6 and 0.3). 

Performances of our navigation strategy for different settings with diverse obstacle 

configurations are depicted in Figs. 2-11 to 2-20 all in static obstacle settings. 
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Fig. 2-9.  Navigation results for VFH and PBF approaches for four set-ups: (a): set-up1, (b): set-up2, (c): set-
up3 and (d): set-up4. Red dots are the paths generated by VFH and solid lines are the paths generated by 

fuzzy behavior[18]. 

 

To compare the results with PBF and VFH methods, two criteria used in [18], are 

computed: the total path’s length which robot traveled to reach its goal (PL) and total 

bending energy of the trajectory (BE). The total path length for the robot is calculated as 

summation of the distances between two consecutive points in robot’s path from start 

point (x1, y1) to the goal point (xn, yn). 

𝑃𝐿 = ∑√(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2
𝑛−1

𝑖=1

 (4) 

To consider smoothness of the paths produced by the proposed strategy, the bending 

energy BE of the paths are computed as summation of square of curvatures. To find the 

curvature of the path through points, the equation of the circle passing through three 

successive points in the path was obtained and then the curvature of this circle was 

computed. Coordinate of the center of the circle passing through three points, shown in Fig. 

(a) (b) 

(c) (d) 
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2-10, with coordinates: P1(x1, y1), P2(x2, y2), P3(x3, y3), joined by lines with slopes m1 and m2 

is given by: 

𝑥𝑐 =
𝑚1.𝑚2(𝑦1 − 𝑦3) + 𝑚2(𝑥1 + 𝑥2) − 𝑚1(𝑥2 + 𝑥3)

2(𝑚2 −𝑚1)
 (5) 

𝑦𝑐 =
−1

𝑚1
. (𝑥𝑐 −

𝑥1 + 𝑥2
2

) +
𝑦2 + 𝑦1
2

 (6) 

where slopes of lines m1 and m2 are computed as following: 

𝑚1 =
𝑦2 − 𝑦1
𝑥2 − 𝑥1

 (7) 

𝑚2 =
𝑦3 − 𝑦2
𝑥3 − 𝑥2

 (8) 

Finally, the radius of the circle Ri can be calculated by finding the distance between the 

center of the circle C and any one of the points on the circle.  

𝑅𝑖 = √(𝑥2 − 𝑥𝑐)2 + (𝑦2 − 𝑦𝑐)2 (9) 

The curvature of the path through points P1, P2, and P3, 𝜅𝑖 , is equal to: 

𝜅𝑖 =
1

𝑅𝑖
 (10) 

The total bending energy of the path is defined as summation of all curvature of pieces of 

path: 

𝐵𝐸 =∑𝜅𝑖
2

𝑛−1

𝑖=1

 (11) 

The objective is to find the sum of the smallest radius of curvature. 
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Fig. 2-10.  Radius of circle Ri passing through three points P1, P2, P3 

These two criteria are calculated for all paths produced by the suggested navigation 

method and are summarized in Tables 2-I and 2-II. 

It is inferred from Table 2-I and 2-II that the proposed navigation method produces shorter 

(lower value of PL) and also smoother paths (lower BE) compared with the PBF and VFH 

methods. Bending energy in the proposed method for all cases except for the set-up3 is 

much smaller than the two other strategies; this means that our strategy provides much 

smoother paths with respect to the PBF and VFH approaches. In the proposed approach the 

robot does not turn abruptly, and by providing shorter paths it will decrease computational 

and execution times. 

 

Fig. 2-11.  Navigation of the AGV for set-up1 
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Fig. 2-12.  Navigation of the AGV for set-up2 

 

 

Fig. 2-13.  Navigation of the AGV for set-up3 

 

 

Fig. 2-14: Navigation of the AGV for set-up4 
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2.9. Experimental Test Results 

The performance of the proposed navigation method was also evaluated using tests 

implemented on AGV shown in Fig. 2-4. The robot is equipped with sonars and also laser 

range finder. In this navigation strategy, sonar sensors are used for obstacle detection and 

determining the distance to the obstacle. Ten different snapshots of one test are 

demonstrated in Fig. 2-21. During the test, robot avoids obstacles which appear in its way 

safely and tries to reach its goal point. As it is depicted in Figs. 2-21 to 2-23 the robot 

reaches the target position successfully. 

 

Fig. 2-15: Navigation of the AGV for set-up5 

 

 
Fig. 2-16: Navigation of the AGV for set-up6 
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Fig. 2-17: Navigation of the AGV for set-up7 

 

2.10. Conclusion 

A strategy for mobile robot navigation in an uncertain and unforeseen setting was 

introduced. This approach is based on fuzzy-logic statements and sensory data from 

environment. It does not require prior information from the robot’s environment and was 

able to be implemented for real-time navigation. Tuning a safety margin enabled the robot 

to travel in different paths and cope with different conditions. Comparing our results with 

the published results in [18] showed that the proposed method produced smoother and 

also shorter paths in almost all of the test cases examined. Therefore this work represents a 

time-efficient and computationally cost-efficient approach for outdoor mobile robot 

navigation. 
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Fig. 2-18: Navigation of the AGV for set-up8 

 

Fig. 2-19: Navigation of the AGV for set-up9 

 

 

Fig. 2-20: Navigation of the AGV for set-up10 
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Table 2-I:  comparison of the total path length (PL) for the proposed method with PBF and VFH  

 
PL(cm) 

Method 
 

Set-up 

Our Method 
PBF VFH 

Trsh=0.3 Trsh=0.6 

1 450 510 571 573 

2 375 680 943 966 

3 - 675 399 390 

4 530 570 433 380 

5 525 375 513 713 

6 395 450 469 425 

7 544 590 539 458 

8 405 575 466 456 

9 135 555 437 237 

10 663 425 444 400 

 

 

Table 2-II:  Comparison of the total bending energy (BE) for the proposed method with PBF and VFH  

 
BE (E-02) 

Method 
 

Set-up 

Our Method 
PBF VFH 

Trsh=0.3 Trsh=0.6 

1 0.219 0.750 4.510 5.330 

2 0.110 0.610 68.420 10.500 

3 - 0.530 1.930 3.700 

4 0.600 0.670 4.620 3.620 

5 0.270 0.060 3.250 5.940 

6 0.300 3.400 2.820 5.550 

7 0.560 0.820 2.510 7.120 

8 0.580 0.510 7.320 10.170 

9 0.100 0.730 2.800 4.600 

10 0.350 0.520 2.040 5.010 
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Fig. 2-21: Snapshots of the AGV used for experiments: top-left image shows start point of the robot and 

bottom-right image indicates goal achievement. Image sequence proceeds to the right and down. 

 
Fig. 2-22: Navigation of real mobile robot for set-up11 

 
Fig. 2-23. Navigation of the AGV for set-up11 
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Chapter 3:     Two New Approaches for Navigation of 

Wheeled Mobile Robots 

 

The content of this chapter is under second review for publication in ASME journal of 

mechanisms and robotics, 2013.  

Heidari F., Fotouhi R., and Vakil, M., “Two New Approaches for Navigation of Wheeled 
Mobile Robots”, ASME Journal of Mechanisms and Robotics, under review with minor 
revision 2013. 
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Abstract: 

Development of new methods for real-time navigation of mobile robots in a complex and 

mostly unstructured environment is studied. Two novel approaches are proposed here: 

fuzzy logic based (FLB) and human-inspired method (HIM). These approaches use 

distance-based sensory data from a laser range finder for navigation of a wheeled mobile 

robot in unknown and cluttered settings. The approaches require no prior knowledge from 

the environment thus they are easy to be implemented for real-time navigation of mobile 

robots. The FLB method enables the robot to cope with dynamic and unforeseen conditions 

by tuning a safety margin (Trsh). FLB produces smoother and shorter paths in almost all of 

the test cases examined in comparison with other approaches. Also it uses fewer numbers 

of fuzzy rules for navigation. Therefore this technique represents a time-efficient and 

computationally effective method for outdoor mobile robot navigation. HIM is inspired by 

human behavior. HIM endows the robot a human-like ability for reasoning about the 

situations to reach a predefined goal point while avoiding any static and moving or 

unforeseen obstacles; this makes the proposed strategy efficient and effective. Results 

indicate that HIM is capable of creating smooth (no oscillations) paths for safely navigating 

the mobile robot, and coping with fluctuating and imprecise sensory data from uncertain 

environment. HIM specifies the best path ahead, according to the situation of encountered 

obstacles, preventing the robot to get trapped in deadlock and impassable conditions. This 

deadlock detection and avoidance is a significant ability of HIM. The simulation and 

experimental results of HIM and FLB are presented and compared. 

Keywords: wheeled mobile robot navigation, human-inspired method, fuzzy logic 

approach 
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3.1. Introduction: 

Increasingly, robots are being used in different applications such as agriculture, 

manufacturing, health care and so on; there is also increasing needs for these robots to be 

navigated robustly, reliably and accurately. Navigation of robots in outdoor and 

unstructured environments reliably, is still a major challenge. Since agricultural fields are 

very complex and mostly unknown; navigation of robots involves difficulties such as 

operation of the robot in continuously changing tracks and targets, which are difficult to 

detect and reach.  

This research is part of a bigger project in control and navigation of an autonomous mobile 

robot in agricultural farm for sowing, weeding, and harvesting. To choose the best 

appropriate navigation technique for this project, various kinds of methods for navigation 

of mobile robots were studied comprehensively. This study is mainly about reliable 

navigation of an outdoor wheeled mobile robot. First we worked on navigation of an 

automated guided vehicle (AGV), a mobile robot, for point-to-point motions, in which the 

robot tries to go to the goal point while avoiding any collision with static and moving 

(unforeseen) obstacles. Second, the mobile robot navigation to follow a given path is being 

carried out. This research is under development, and results will be reported later. 

Navigation of mobile robots in outdoor environments has been studied previously. In [1] 

motion of a four-wheel-steering (4WS) mobile robot moving in farm land was modeled. 

Trajectory planning was considered for a wheeled platform in [2]; None of these two works 

considered uncertainties such as moving (unforeseen) obstacles that are inherent of 

outdoor setting.  
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Managing the uncertainty and altering conditions is one of the most challenging problems 

in navigating mobile robots in an unknown and unstructured environment. Several 

approaches were suggested for robot navigation, such as the artificial potential field [3], the 

vector field histogram [4], the edge detection [5], the obstacle boundary following [6], the 

goal oriented recursive path planning (GORP) [7], the curvature velocity method [8], the 

dynamic window approach [9], and the fuzzy-logic and neural-network based reactive 

methods [10]. The potential field method [3] suffers from getting trapped in local minima; 

unintended stoppage happens between closely spaced obstacles; oscillations (circulating 

around) in the presence of multiple obstacles; and oscillations in narrow passages also may 

occur. Dynamic window approach [9] computes the optimum velocity of a robot and 

satisfies the kinematic and dynamic constraints of a robot, and maximizes a given cost 

function. This is usually defined as a function of distances to the goal and to obstacles. In 

GORP [7] method the longest straight-path segment is first found; then the approach tries 

to direct the robot to the goal, while keeping shortest distance to the predefined path, and 

to avoid obstacles. This method produces paths in an open area with convex objects, but 

may have difficulty in the presence of non-convex obstacles and cannot plan the shortest 

path. Fuzzy-logic and neural-network approaches for navigation were proposed in [11]. 

Optimum trajectory planning for group of mobile robots was studied in [12]; each robot 

moved from its start point to its goal position while minimizing its own energy. Navigation 

of mobile robots in rough terrain was discussed in [21, 22], in which power consumption of 

the robot was optimized in [21], and slip and skid of the robot in terrain was considered in 

[22]. These model-based approaches use a map or model of the environment to generate a 

path for the robot to follow toward a goal point. 
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In [13] an online approach to define an obstacle-free path for an outdoor mobile robot was 

suggested. Measurements using ultrasonic and laser sensors were used to generate a map 

of the terrain and to define an obstacle-free path for the robot. But model-based 

approaches would have difficulty dealing with the real time navigation of a mobile robot in 

outdoor environment. It is usually difficult or impossible to obtain an accurate model of an 

outdoor environment. Sensor-based approaches [14] use data from different sensors such 

as sonar, laser range finder or visual camera in real time to generate control commands for 

the mobile robot motion. The main advantage of a sensor-based approach is that it can 

navigate the robot in a changing environment by seeing unforeseen obstacles. Fuzzy logic 

has been utilized in navigation systems for mobile robots [15-16]. For navigating mobile 

robot in an obstacle-free path, hierarchical fuzzy controller [17] and preference-based 

fuzzy behavior method [18] were used. The navigation problem was broken down into two 

control actions: heading control and speed control. Obstacle avoidance was performed in 

speed control stage. Application of a hierarchical Fuzzy-Genetic system to produce an 

autonomous outdoor mobile robot controller capable of online learning and implementing 

was introduced in [19]. Stereo cameras and laser range finders have been used for 

autonomous navigation of the mobile robots. For example in [20] a SICK laser range finder 

and vision-based method was used for obstacle detection and collision avoidance for a 

Yamaha robot. The vision-based navigation techniques deeply depend on environment’s 

light and color which varies with seasons and day or night time. In practice, reliable and 

effective automated analysis of images from visual sensors is challenging. Similarly, 

techniques that successfully interpret on-line sensor data for several settings begin to fail 

past short ranges as the density and accuracy for such computation quickly reduce.  
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We proposed a self-supervised human-inspired method (HIM) to navigate the robot in 

different terrains and perceive traversable paths in unstructured outdoor settings. Mobile 

robots will be able to associate their observations of the terrain with learning signals using 

HIM. The difference between robot and human navigation is in the perceptual capabilities. 

Humans can detect, classify, and identify environmental features under widely varying 

environmental conditions, independent of relative orientation and distance [23]. To control 

a wheeled mobile robot that is capable of navigating in unstructured outdoor environments 

such as a farm setting reliably, we used inspiration from human skills. In this research, 

robots mimic how humans move in unknown environment when seeking goal and avoiding 

obstacles. This implies that the robot has to deal with unknown static and moving obstacles 

in outdoor settings. To do so, the robot has to sense, extract and process sensory data in 

real time. Also the robot must be able to detect the passable and non-passable spaces in its 

path due to unexpected moving obstacles.  

In this research, sensory data from the environment is perceived by a laser range finder 

mounted on the mobile robot. The performance of the human-inspired navigation method 

(HIM) is tested and compared with results from a fuzzy logic based (FLB) algorithm on an 

AGV in real world conditions. Because of environmental challenges (snow on the ground) 

tests were carried out indoor, but no prior information (map) of the environment was used 

for navigation of the robot. The premise of the proposed methods is their robust results for 

uncertain and changing environments which are inherent characteristics of the farm fields. 

We assumed that the mobile robot performs in situations and settings that there is always 

ways to reach a goal point.  
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3.2. System architecture  

3.2.1. Methodology and Approach 

There are several different approaches for autonomous navigation of the mobile robot for 

point-to-point motion in outdoor setting. At first, in this research, a new fuzzy logic based 

(FLB) approach is designed to navigate the robot. We also introduced a novel human-

inspired method (HIM) for navigation with moving obstacles and rough settings. The 

simulation and experimental results of HIM and FLB are presented and compared here.  

3.2.2. Robot model used for simulation and experiments 

The navigation strategies are tested on an AGV. The robot size is (660mm ⨉ 900mm ⨉ 

480mm), and it is shown in Fig. 3-1. Our AGV is equipped with two sonar arrays, one in 

front and the other one in the rear. Also there is one SICK LMS200 laser range finder 

mounted in front of the robot. The laser range finder can sense objects within 50 meters 

away from the robot of 180° view in a single plane. Because the laser beam is highly 

focused and not readily distorted or absorbed by reflecting medium, the precision of the 

laser range finder is much superior to the sonar with many fewer false readings. Moreover, 

laser can detect objects much farther away from the robot compared to sonars. Therefore 

we decided to use laser range finder for navigation of the AGV and obstacle avoidance 

algorithms. The robot moves in a plane and can identify its own pose in the world 

coordinate system by GPS and Inertial Measurement Unit (IMU) data in outdoor 

environment, or integrating the encoder's information for indoor navigation as done in 

[30]. 
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Fig. 3-1: AGV mobile robot used for simulation 

and experiment tests 

 
Fig. 3-3: Sectors of the perceptible region detected by the 

laser range finder 

 
(a)  

(b) 
Fig. 3-2: Schematic of (a) the mobile robot and (b) the sonar arrangements on the robot 

In Fig. 3-2 (b), a schematic of top view of the AGV and the sonar sensors is depicted. These 

sonar sensors are divided into four groups of left (sensors S23, S24, S0, S1, S2, S3), front 

(sensors S4, S5,…, S10), right (sensors S11, S12, …, S16) and back (sensors S17, S18,…, S22). 

As shown in Fig. 3-2, there is an inertial coordinate system (Xi-Yi) attached to the ground 

(reference system) and a robot coordinate system (x-y) attached to the center of the robot 

base. The angle between current heading of the robot (y) and Xi axis is defined as angle (Φ), 

the angle between orientation of goal in x-y coordinate and heading of the robot is defined 
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as (θ). Control action includes heading control, which provides change in heading angle of 

the robot (ΔΦ), and speed control which provides robot linear speed (v). 

The perceptible region viewed by the laser range finder is illustrated in Fig. 3-3; this area is 

divided into three 60° circular sectors. The radius of the circular sector is the laser’s range. 

The size of this radius is 50 m for the laser used here. 

The distances to the objects detected by laser in right, front, and left, of the robot are 

represented by dR, dF, and dL respectively. These parameters are defined as following 

equation: 

dR= min {distance data reading for -90 ≤ angle ≤ -30} 
dF= min {distance data reading for -30 ≤ angle ≤ +30} 
dL= min {distance data reading for +30 ≤ angle ≤ +90} 

(1) 

These (dL, dF, dR) readings are used for obstacle avoidance and navigation behaviors. 

3.2.3. Kinematics of the robot 

The AGV used for experiments is a Hilare-type mobile robot, which has two differentially 

actuated wheels and two caster wheels as shown in Fig. 3-1; its schematic is shown in Fig. 

3-4. In this figure, T is the width of the robot and r is the radius of the differential wheels. 

(x1 - x2) is inertial coordinate system, ϕ is the heading angle of the robot; (xr1 - xr2) is the 

coordinate system fixed to the mobile robot and o is the origin of the (xr1 - xr2). The center 

of mass of the mobile robot is C.G., as shown in Fig. 3-4. The drive mechanism of the robot 

has two independent motors. The actual kinematic inputs that drive the robot and affect its 

speed and direction of motion are the two wheel speeds.  
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Fig. 3-4: Schematics of a Hilare-type mobile robot 

The vector q describes the configuration (position and orientation) of the robot at any 

time: 

 Txxq 21  (2) 

(x1 , x2) are the coordinates of the robot (point o) in the inertial frame. If the linear speed 

and angular velocity of the robot are v and ω, respectively, assuming no-slip on wheels, the 

velocity components can be written as: 
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The kinematics of the robot can be written as follows: 
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where  Tvu   is the control input. Angular velocity of the robot can be written in terms 

of velocities of the right and the left wheel centers (vr, vl): 
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T

vv lr   (5) 

3.2.4. Dynamics of the mobile robot 

The dynamics equations of motion of the Hilare-type mobile robot (Fig. 3-4) are presented 

as [29]: 
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where matrices are defined as following: 
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which τr and τl are torques applied at the right and the left driving wheels of the robot 

respectively. We let .2 wc mmm   and 
mcwc II

T
mcmI .2

2
.

2

2  . where, mc is the mass 

of the robot body, mw is mass of each differential wheel including its motor, Ic is the mass 

moment of inertia of the robot body about the vertical axis passing through C.G., Iw, is for 
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each wheel about its horizontal rotational axis, and Im is for each wheel about a vertical axis 

passing through its center. 

3.3. Algorithms 

This section is composed of two parts. In the first part, HIM for navigation of mobile robots 

is described in details. Then a description of FLB approach is given. 

3.3.1. Human-inspired method (HIM) 

This method is inspired from human behavior [23]. In this method, the robot makes 

decisions similar to a wise adult human in dynamic environments. HIM is designed to 

imitate behavior of an adult human to reach a goal point while avoiding any static and 

moving unforeseen obstacles. First, information about the environment is obtained using 

the laser range finder which is mounted on the robot. Data of the laser scanner are 

recorded in terms of the scanning angle and the distance between the robot and obstacles. 

HIM uses this data to find the closest traversable path toward the goal point.  

I. Check direct path to the goal 

Using laser data, HIM detects if there is any obstacle in a direct path from robot’s current 

position to the goal point. This behavior is called “Check Direct Path”; if there is no obstacle 

in the direct path, then the robot moves toward the goal point until it detects an obstacle 

(moving or stationary) on its way. Once an obstacle is detected in the path to the goal, HIM 

tries to find all possible scape-points in robot’s current position. Scape-points are positions 

that are travelable (safe and feasible) for the robot according to the predefined safety 

factor and the actual size of the robot.  
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II. Scape-point finding behavior 

Scape-points (also known as free-space) are safe and traversable positions for the robot. To 

find these scape-points in the robot environment, first the raw data from the laser are 

decoded into a list of points in polar coordinates. Afterward, those are mapped to the 

Cartesian (x-y) coordinates and are used for navigation and obstacle avoidance. Then lines, 

objects’ boundaries and free-spaces are obtained. This behavior is called Scape-Point 

Finding. Then, the total length of the path from the current pose of the robot to each scape-

point and from the scape-point to the goal point is computed. After that, the scape-point 

with the shortest total path length is chosen as a transitional goal point. The robot goes 

directly toward the transitional goal point; afterward the robot turns its heading toward 

the final goal point and repeats all previous behaviors until no obstacle is detected in the 

direct path to the goal point. Later the robot moves to the goal position.  

The resolution of the laser scanner used for tests, is 1.0 degree per point (i.e., 181 points for 

180 degrees). The accuracy of each measurement is ±5 cm in 50m. Fig. 3-5 shows one 

sample of the laser scanner measurements from the environment (blue dots are laser range 

finder (LRF) data). The occupancy grid for LRF data is determined; possible attributes for 

each grid are: occupied, free, and unknown. If any obstacle is detected at distance R then 

the grid at R is set as occupied. If no obstacle is observed then the region will be set as free. 

The region behind the occupied area is labeled as unknown. Fig. 3-6 shows the grid 

occupancy for a region of angular sector θ. If the free-space between two consequent end-

points of obstacles is traversable for the robot, those end-points are determined as scape-

points. All passable scape-points (S1, S2, S3, S4, and S5, shown in Fig. 3-7) for the robot are 

detected in the setting. After all passable scape-points are detected, the best traversable 
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path to the goal point is found. Total distance to reach the goal point via each scape-point is 

calculated as 5,...,1,  iPLD iii

 

. Fig. 3-8 (a) and (b) are illustrations of the performance of 

HIM for navigation. By using the minimum of Dis, the best scape-point (S3 here) is 

calculated, thus the robot moves to S3 and then to the goal point. The paths that robot 

traversed to reach the goal is shown as solid line. 

The advantage of HIM is that it can navigate the robot in a very dense, cluttered and 

complex environment. Also this method avoids local minima or local trap because HIM 

chooses passable ways and avoids very narrow passages in advance. Fig. 3-9 summarizes 

the basic structure of navigation process in HIM. 

 

Fig. 3-5: A sample 2D laser scanner data from the 

environment. Blue dots are obstacles detected by laser 

scanner. 

 

Fig. 3-6: Different regions in the laser scanner view. 
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Fig. 3-7: Scape-points are defined as Si. Li is the distance from the scape-point Si to the robot position. 

 

(a) 

 

(b) 

Fig. 3-8: Two typical performances of HIM for mobile robot navigation 
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Fig. 3-9: Path finding behaviors of HIM for mobile robot navigation 

 

3.3.2. Fuzzy logic based (FLB) approach 

Because of the simplicity of application, fuzzy logic control is a common technique for 

autonomous mobile robots navigation. In this study, fuzzy logic is utilized to navigate the 

AGV. The FLB strategy used here is based on different behavior blocks. Each behavior block 

is composed of sets of fuzzy logic rule statements designed for achieving appropriate 

values for control parameters: heading angle (ΔΦ) and velocity (v) of the robot. The motion 

control variables are the translational speed (v), and the change in the heading angle (ΔΦ) 

of the robot. These navigation blocks are composed of fuzzy rules and statements. Inputs 

for the navigation blocks are laser range finder data (distances detected by the laser). For 

example in obstacle avoidance behavior, this information is obstacle’s distances to the 

robot; and laser’s measurements in left, front and right sectors of the robot are defined 

according to the equation (1). These (dL, dF, dR) distances which are laser measurements 

in left, front and right sides, respectively, are mapped into trapezoidal fuzzy membership 

functions {Far, Medium, Close} (shown in Fig. 3-10)[26, 27]. Because piecewise linear 

functions are evaluated faster and more efficiently by computers, the triangular and 
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trapezoidal membership functions were used in our navigation system. These functions are 

such that the obstacle avoidance behavior becomes effective when an obstacle is observed 

by the robot. The values assigned to {Far, Medium, Close} functions are determined 

according to the size of the robot and safe distance in navigation. The distance is 

normalized by the AGV size. Then according to the defined fuzzy rules, control outputs (ΔΦj 

and vj) are produced for each rule. The overall control outputs ΔΦ and v are obtained using 

defuzzification from each fuzzy rule’s control outputs.  

The robot speed is represented by three fuzzy sets {STOP, SLOW, FAST}. In Fast mode, vj is 

equal to the maximum speed of the robot (Vmax); in SLOW, vj is equal to 0.2× Vmax (for safe 

navigation), and in STOP mode, vj is equal to zero. Similarly, change in the robot heading 

angle is represented using five linguistic fuzzy sets {NB, NS, ZE, PS, PB}; these membership 

functions are shown in Fig. 3-11 and are as follow: NB is negative-big, NS negative-small, ZE 

zero, PS positive-small, and PB positive-big. The positive and negative terms mean counter-

clock wise and clock wise rotation of the robot, respectively. 

 

 
Fig. 3-10: fuzzy membership functions for measured 

distance 

 
Fig. 3-11: fuzzy membership functions for change in 

the robot heading angle 
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I. Fuzzy rules: 

The fuzzy rules for determination of the robot turn angle and speed (ΔΦj and vj) are based 

on human reasoning. The main objectives of these rules are to avoid collision with 

obstacles and guiding the robot toward the goal. If the robot is far from obstacles in all 

three sectors, then the robot moves toward the goal with its maximum speed. If the goal is 

not in front of the robot and there exist obstacles, then the robot approaches the nearest 

obstacle in the right or left side, according to the smallest distance to the obstacle. If the 

goal and obstacles are both in front of the robot, then the robot approaches the nearest 

obstacle on its right or left while seeking the goal. The robot speed is based on the closest 

obstacle distance in the three sectors. If there is any close obstacle in front sector of the 

robot then the robot speed is zero. If there is any obstacle with medium distance in front 

sector then the robot speed is slow (0.2×Vmax). If the front sector of the robot is free from 

obstacles but there are obstacles in the right and/or left sides then the robot speed is slow 

(0.2×Vmax). But if obstacles are far from the robot (all sectors’ distances are far) then the robot 

speed is Vmax. The fuzzy rules for turn angle and speed of the robot (ΔΦj and vj) are 

summarized in Table 3-I. 

In some cases, the total fuzzy output for the change in heading angle of the robot (ΔΦ) has 

almost symmetrical shape about zero axis. For example, if there is an obstacle in front area 

of the robot, there are two appropriate choices for the robot, to turn right or left, but 

straight motion is not recommended. In this case, the centroid defuzzification strategy 

gives a prohibited command such as: go straight toward the obstacle (ΔΦ=0). Therefore, 

blending of the outputs of the rules that occur, during centroid defuzzification method can 

give a prohibited control command. In such situations the final control output for the robot 
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may be approaching an obstacle or even colliding with it. Another approach is the mean of 

maximum (MOM) defuzzification strategy, which guides the robot appropriately for this 

specific case. To solve this problem, the Centre-of-the-Largest-Area (CLA) approach was 

applied here for defuzzification [24]. In this strategy, the fuzzy control output (ΔΦ) is 

divided into two or more distinct control areas. Then the output with the largest area is 

chosen and taken into account for defuzzification using the standard Centroid technique. 

This technique resolves the prohibited responses of the Centroid method. If the control 

output for ΔΦ has equal areas for right and left turning, then either right or left turning 

direction is chosen according to the goal position as the “GOAL” turn direction. Thus by 

selection of the “GOAL” as turning direction, the final outputs that result in moving the 

robot straight into the local obstacle or the impassable terrain segment are avoided. The 

centroid method is used to obtain the overall fuzzy control outputs ΔΦ and v as follow: 
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where αj (.) is the weighting factor for the rule jth, and ∆Φj is area under the truncated 

membership function for change in the heading angle of the robot (ΔΦ), while vj is the 

corresponding value for the velocity fuzzy sets. 

This FLB method enables the robot to cope with fluctuating and imprecise sensory data 

from uncertain environment. In this technique no prior knowledge of the environment is 
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needed, consequently it is easy to implement for real-time navigation of the mobile robot. 

Comparing FLB approach with the published results in [18] showed that the FLB method 

produced smoother and also shorter paths in almost all of the test cases examined and also 

it uses fewer numbers of rules for navigation (more details are given in next section). 

Therefore this technique represents a time-efficient and computationally cost-efficient 

method for outdoor mobile robot navigation. 

Table 3-I: Fuzzy rules used in FLB  

1)  IF (dL, dF, dR) is (C, C, C)    THEN  v1 is ZE and ΔΦ1 is PB 
2)  IF (dL, dF, dR) is (C, C, M)   THEN  v2 is ZE and ΔΦ2 is NS 
3)  IF (dL, dF, dR) is (C, C, F)    THEN  v3 is ZE and ΔΦ3 is NB 
4)  IF (dL, dF, dR) is (C, M, C)   THEN  v4 is ZE and ΔΦ4 is ZR 
5)  IF (dL, dF, dR) is (C, M, M)  THEN  v5 is ZE and ΔΦ5 is NS 
6)  IF (dL, dF, dR) is (C, M, F)   THEN  v6 is ZE and ΔΦ6 is NS 
7)  IF (dL, dF, dR) is (C, F, C)    THEN  v7 is ZE and ΔΦ7 is ZR 
8)  IF (dL, dF, dR) is (C, F, M)   THEN  v8 is ZE and ΔΦ8 is NS 
9)  IF (dL, dF, dR) is (C, F, F)    THEN  v9 is ZE and ΔΦ9 is NS 
10)  IF (dL, dF, dR) is (M, C, C)   THEN  v10 is 0.2× vmax and ΔΦ19 is PS 
11)  IF (dL, dF, dR) is (M, C, M)  THEN  v11 is 0.2× vmax and ΔΦ11 is GOAL 
12)  IF (dL, dF, dR) is (M, C, F)   THEN  v12 is 0.2× vmax and ΔΦ12 is NS 
13)  IF (dL, dF, dR) is (M, M, C)  THEN  v13 is 0.2× vmax and ΔΦ13 is PS 
14)  IF (dL, dF, dR) is (M, M, M) THEN  v14 is 0.2× vmax and ΔΦ14 is ZR 
15)  IF (dL, dF, dR) is (M, M, F)  THEN  v15 is 0.2× vmax and ΔΦ15 is NS 
16)  IF (dL, dF, dR) is (M, F, C)   THEN  v16 is 0.2× vmax and ΔΦ16 is PS 
17)  IF (dL, dF, dR) is (M, F, M)  THEN  v17 is 0.2× vmax and ΔΦ17 is ZR 
18)  IF (dL, dF, dR) is (M, F, F)   THEN  v18 is 0.2× vmax and ΔΦ18 is NS 
19)  IF (dL, dF, dR) is (F, C, C)   THEN  v19 is 0.2× vmax and ΔΦ19 is PB 
20)  IF (dL, dF, dR) is (F, C, M)  THEN  v20 is 0.2× vmax and ΔΦ20 is PS 
21)  IF (dL, dF, dR) is (F, C, F)   THEN  v21 is 0.2× vmax and ΔΦ21 is GOAL 
22)  IF (dL, dF, dR) is (F, M, C)  THEN  v22 is 0.2× vmax and ΔΦ22 is PS 
23)  IF (dL, dF, dR) is (F, M, M) THEN  v23 is 0.2× vmax and ΔΦ23 is PS 
24)  IF (dL, dF, dR) is (F, M, F)  THEN  v24 is 0.2× vmax and ΔΦ24 is GOAL 
25)  IF (dL, dF, dR) is (F, F, C)   THEN  v25 is 0.2× vmax and ΔΦ25 is PS 
26)  IF (dL, dF, dR) is (F, F, M)  THEN  v26 is 0.2× vmax and ΔΦ26 is ZR 
27)  IF (dL, dF, dR) is (F, F, F)   THEN  v27 is vmax and ΔΦ27 is ZR 

 

3.4. Results 

The proposed navigation strategies (HIM and FLB) were verified on a mobile robot (the 

AGV shown in Fig. 3-1). The evaluation of the performance of methods was conducted 

using computer simulation and actual experiments. For the computer simulation a program 
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in Visual C++ was developed and two-dimensional visualization of the robot motion was 

given using MobileSim. In Fig. 3-12, a typical simulation setting with stationary obstacles 

and the mobile robot, which is equipped with sonars and laser range finder, is depicted. For 

actual experiments the AGV shown in Fig. 3-1 was used at the engineering building of 

University of Saskatchewan. Because of cold weather and existence of snow on the ground, 

we were unable to do experiment outdoor. Although experiments were carried out indoor, 

any prior information (such as a map) of the environment was not used for navigation. We 

plan to do our tests in actual outdoor settings when weather permits. Experiments were 

performed as the robot was navigating outdoor in a sense, except that floor was flat. For 

comparing the results of navigation strategies, energy consumption, path length and total 

time spent for the robot to reach the goal are measured. 

 
Fig. 3-12: A view of the mobile robot, static obstacles, sonar and laser rays in MobileSim 

 

3.4.1. Simulation results  

The proposed navigation strategies (FLB and HIM) are tested for different setups. In each 

situation, the results of FLB and HIM are both illustrated for comparison. The mobile robot 

was set at a specific start point (0,0) for each test, and goal point position and final heading 

of the robot were also defined. The path of the robot and its velocity during motion is 

recorded and is shown in Fig. 3-13 for four different setups. In these figures, solid black line 
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shows the path produced by HIM and dashed line is the path created by FLB approach. In 

each setup, the robot avoids obstacles and reaches the goal point successfully. As it is 

inferred from Fig. 3-13, in complex environments FLB may have some oscillations and 

create longer path to navigate the robot to reach the goal compared with HIM. Therefore, 

the simulation tests confirm the advantage of HIM in terms of path length, smoothness (no 

oscillations), and efficiency (less energy and time). The results of the tests in both 

simulation and experiments are based on empirical data. For each case tests are repeated 

at least ten times for simulation, and five times for experiments. Table 3-II provides 

comparisons of HIM and FLB for four different simulation setups. The comparison is based 

on three criteria: 1) The energy per unit mass, consumed by the mobile robot in Joule/Kg. 

2) The travelling time for the robot to reach the goal point in second (s). 3) The path length 

travelled by the robot to reach its goal point in meter (m). 

 
a): setup1 

 
b): setup2 

 
c): setup3 

 
d): setup4 

Fig. 3-13: Simulation results for verification of HIM and FLB approaches in four different setups. Navigation 
results for HIM are shown in solid black lines and results of the fuzzy approach are depicted in dashed black 

lines. 
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Table 3-II: Comparison of HIM and FLB in simulations 

Tests Criterion for comparison FLB HIM 

setup1 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (4,1.5) (4,1.5) 

Energy index (J/kg) 474.8 245.6 

Travelling time (s) 29.83 20.26 

Path length (m) 6.288 4.786 

Setup2 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (5.5,2) (5.5,2) 

Energy index (J/kg) 543.1 644.8 

Travelling time (s) 33.14 36.77 

Path length (m) 6.665 6.416 

Setup3 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (4,2.1) (4,2.1) 

Energy index (J/kg) 582.7 334.5 

Travelling time (s) 31.90 20.17 

Path length (m) 6.910 5.959 

Setup4 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (5.5,2) (5.5,2) 

Energy index (J/kg) 1173 381.0 

Travelling time (s) 67.41 20.93 

Path length(m) 6.711 6.551 

 

The energy per unit mass consumed by the robot is computed as follows: 

Work = force × displacement 

            =(mass × acceleration) × (velocity × time) 
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The path length (PL) is calculated as summation of the distance between two consecutive 
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points in the robot’s path from start point (x1, y1) to the goal point (xn, yn); where n is the 

number of points in path: 
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Table 3-II indicates that for all setups HIM produces shorter paths for navigation of the 

robot and generally it takes less time for the robot to reach goal point. This means 

computation time and decision making time for HIM is smaller than FLB. In addition, the 

energy per unit mass for HIM is less than FLB for most of the setups; which means HIM is 

more energy efficient compared with FLB. To validate these findings these setups were also 

implemented on the AGV which are presented in the next section. 

3.4.2. Experimental results 

Similar experimental setups as those of simulations were used to evaluate FLB and HIM 

navigation methods. The mobile robot used is equipped with a laser range finder, which 

gives the distance of the robot to any obstacles. In each test, the robot starts from a start 

point defined as (0,0) and tries to reach a given goal point, while traversing the safest path 

and avoiding any encountered obstacles.  

Fig. 3-14 shows snapshots of the mobile robot traversing from the start point (as marked in 

the picture) to the goal point, using (a) fuzzy approach (b) human-inspired method.  
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(a) 

 
(b) 

Fig. 3-14: Snapshots of the AGV for experiments. The mobile robot traversing from start point to the goal 
point, using (a): FLB (b): HIM. Top-left image shows the robot at start point and bottom-right image indicates 

robot at the goal. Image sequence proceeds to the right and down. 

 

The two-dimensional view of the mobile robot motion and obstacles are depicted in Fig. 3-

15. The positions of the robot were recorded continuously in a file and the path of the robot 

was created using these data. Each scenario was carried on twice: first, implementing the 

fuzzy approach for navigating the robot, and then using the human-inspired method. In 

these figures, four different test results for both FLB and HIM are shown. In these figures, 

again the solid black line shows the path produced by HIM and dashed black line is the path 

created by FLB. In each setup, the robot avoids any obstacles and safely reaches to goal 

point. 

As it is shown in Fig. 3-15, FLB makes the robot to go directly toward the goal point until an 
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obstacle is detected on the way of the robot; then it navigates the robot to avoid the 

encountered obstacle. Unlike FLB, HIM determines the robot’s path such that, the robot 

does not go toward any stationary obstacles, similar to a human navigation. If a moving 

obstacle is detected, HIM will also change the robot’s path to avoid it. This saves time and 

energy as it is revealed in Table 3-III. 

 
(a)Setup1 

 
(b) Setup2 

 
(c) Setup3 

 
(d) Setup4 

Fig. 3-15: Experimental results for validating HIM and FLB for four different setups. Navigation results for 
HIM are shown in solid lines and for FLB are depicted in dashed lines. 

 High speed tests 

Effectiveness of the proposed navigation strategies is also verified in high speed tests. The 

mobile robot was navigated in the same environment as in setup3 shown in Fig. 3-17. Both 

algorithms (FLB and HIM) were tested when the mobile robot was moving at a speed of 

2m/sec.  

As Fig. 3-16 displays, both FLB and HIM are able to navigate the robot at this high speed 

(2m/sec) to attain the goal point while avoiding encountered obstacles.  
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Fig. 3-17 demonstrates that in fuzzy approach, first the mobile robot goes directly to the 

goal but when obstacles are encountered the robot goes around of the wall of obstacles 

even though this causes the robot to move away from the goal point. In human-inspired 

method, the robot from the start goes directly to the edge of the wall of obstacles which is 

the closest scape-point to the goal point, and then moves toward the goal. This makes the 

total execution time for HIM, shorter than FLB and also results in less energy consumption 

and shorter path length. 

 
(a) 

 
(b) 

Fig. 3-16: Snapshots of the AGV used for high speed experiments. The mobile robot movies from start point to 
the goal point at high speed of 2m/sec, using (a) FLB (b) HIM. Image sequence proceeds to the right and 

down. Top-left image shows the robot at start point and bottom-right image indicates the robot at the goal.  
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Fig. 3-17: Experimental results for testing HIM and FLB in setup3 at high speed tests (2m/sec). Robot path for 
HIM are shown in solid line and for FLB are depicted in dashed line. 

 Tests with moving obstacles 

The navigation strategies (FLB and HIM) were also tested for situations with moving or 

unforeseen obstacles. As shown in Fig. 3-18, there is a moving obstacle (guy) which blocks 

the robot path. Fig. 3-18 (a) shows snapshots of the navigation for FLB. From Fig. 3-19, it is 

revealed that the robot moves straight toward goal point until the wall of stationary 

obstacles keeps the robot from approaching to the goal; then the robot follows the wall and 

meets a moving obstacle on its way. Then, the robot changes its direction and turns away 

and follows the wall of stationary obstacles in opposite direction until it finds a passable 

way to attain goal point.  

Fig. 3-18 (b) shows snapshots of the robot navigation using HIM. As it is revealed in Fig. 3-

19, the robot moves straight to the edge of the wall of stationary obstacles (the best scape-

point) until it encounters a moving obstacle (the moving guy); then the robot avoids the 

moving obstacle and finds the shortest path to reach the goal. 
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(a) 

 
(b) 

Fig. 3-18: Snapshots of the AGV used for experiments with moving obstacle. The mobile robot moves from start 
point to the goal point, using (a) fuzzy approach (b) human-inspired method. Image sequence proceeds to the 

right and down. Top-left image shows the robot at start point and bottom-right image indicates robot at the goal.  

 

Fig. 3-19: Experimental results for HIM and FLB in setup4 at high speed (2m/s) with moving obstacle. Robot 
path for HIM is shown in solid line and for FLB is depicted in dashed line. Black arrow shows motion and 

range of the moving obstacle  
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Table 3-III: Comparison of HIM and FLB in experiments   

Tests Criterion for comparison FLB HIM 

setup1 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (4,1.5) (4,1.5) 

Energy index (J/kg) 964.9 833.9 

Travelling time (s) 82.28 64.00 

Path length(m) 4.500 4.465 

Setup2 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (5.5,2) (5.5,2) 

Energy index (J/kg) 1756 1095 

Travelling time (s) 107.2 65.50 

Path length(m) 6.262 6.150 

Setup3 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (4,2) (4,2) 

Energy index (J/kg) 1573 896.0 

Travelling time (s) 94.89 57.78 

Path length(m) 6.378 5.863 

Setup4 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (5.5,2) (5.5,2) 

Energy index (J/kg) 1151 1068 

Travelling time (s) 67.65 61.42 

Path length(m) 6.439 6.055 

High speed (2m/sec) 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (4,2) (4,2) 

Energy index (J/kg) 1500 1019 

Travelling time (s) 78.75 55.46 

Path length(m) 7.223 6.866 

Moving obstacle 

Start point (x, y) (m) (0,0) (0,0) 

Goal point (x, y) (m) (4,2) (4,2) 

Energy index (J/kg) 3404 1024 

Travelling time (s) 125.9 54.56 

Path length(m) 10.35 7.038 
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Fig. 3-19 illustrates that HIM creates a smooth (no oscillation in path) and shorter path for 

the robot which is time and energy efficient compared with FLB navigation result. This test 

demonstrates that both FLB and HIM are able to navigate the mobile robot safely in 

challenging situations The other advantage of the human-inspired method is that, 

deadlocks can be detected and avoided. Therefore, using HIM, the robot will not be trapped 

in dead-ends because HIM can guide the robot to passable points like a human behavior in 

similar situations. 

 Effect of “Trsh” on navigation 

To consider size of obstacles and the robot, a parameter (Trsh) was defined. Changing this 

value (Trsh) affects behavior and outputs of the fuzzy logic approach (FLB). The (Trsh) 

shows the least value for control outputs to be calculated in overall outputs of the 

navigation system. Choosing (Trsh=0) means that the actual robot size is considered with 

no buffer zone. Using (Trsh=1) means that two times of robot actual size is considered (i.e. 

a buffer zone equal to the robot size). The smaller the (Trsh) value means the smaller the 

robot size, or the smaller obstacles’ buffer. Consequently, smaller (Trsh) produces shorter 

paths. 

In order to provide an insight into the effect of changing (Trsh) on navigation of the mobile 

robot, some test examples are simulated. The results are depicted in Fig. 3-20; in these 

scenarios obstacles are arranged in such a way to make narrow passages for the robot. For 

each example the start and final destination of the robot are given. This figure shows the 

robot paths. Obstacles are illustrated by bold dots. Fig. 3-20 reveals that by changing the 

(Trsh) value in FLB approach, the robot goes through a different path. Tuning this safety 

margin (Trsh) enables the robot to travel in different paths and cope with different 
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conditions. Thus, in cluttered environments it is recommended to use small values of the 

(Trsh) such as 0.3 for navigation, and (Trsh) ≥ 0.6 would be appropriate for uncomplicated 

situations. We tested various values of (Trsh) in FLB method performance and the results 

presented in the paper are the best results attained for FLB. Therefore using other values of 

(Trsh) does not likely improve performance of FLB. 

 
a) setup1 

 

 
b) setup2 

 

 
d) setup4  

c) setup3 

 
e) setup5 

 
f) setup6 

 Fig. 3-20: Navigation results of the fuzzy approach for different values of the (Trsh) for six different 
examples.  
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3.5. Conclusion 

Two strategies for real-time navigation of a mobile robot in outdoor settings were 

introduced: a Fuzzy Logic Based (FLB) approach and a Human-Inspired Method (HIM). The 

FLB approach is based on fuzzy logic statements and sensory data received by a laser range 

finder from the environment. The fuzzy logic rules used in FLB are simple and require no 

prior information from the environment. Tuning a safety margin (Trsh) enabled the robot 

to travel in different paths and cope with different conditions. In cluttered and dense 

environments it is recommended to use small values of the (Trsh) such as 0.3, while 0.6 

could be an appropriate option for uncomplicated and unchanging situations. The FLB is a 

goal-oriented approach; it means that direction of the goal point is the first concern, and 

goal seeking will be delayed if any obstacle is detected. The FLB was compared with other 

methods such as vector field histogram (VFH) and preference-based fuzzy approaches in 

[25]. This evaluation showed that the proposed FLB method produced smoother and 

shorter paths in almost all of the test cases examined. Therefore this work represents a 

time-efficient and computationally cost-efficient approach for outdoor mobile robot 

navigation. 

The human-inspired strategy, HIM, is designed to imitate behavior of a wise human in 

navigating to a goal point by finding the shortest and a safe path, while avoiding stationary 

and moving obstacles. The mobile robot was given a human-like ability of reasoning about 

the environment making the proposed strategy efficient. Test results indicated that HIM is 

capable of creating smooth (absence of oscillations) paths for navigating the robot. Tests 

were carried out indoor due to harsh (snow) weather outside, but outdoor conditions were 

considered during tests. HIM is capable of preventing the robot to get trapped in deadlock 
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and impassable conditions, which is a significant ability of this method. Compared with 

FLB, the navigation time, energy consumption and the path length are less in HIM. This 

improvement is mainly due to human-like performance of HIM which navigates the robot 

to take an obstacle-free path from the start point with no need to go around the obstacles 

during the navigation. HIM is being extended to be used in path following tasks as well. 
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Abstract 

This paper describes a fully integrated navigation strategy of a wheeled mobile robot in 

outdoor (farm) settings and off-road terrains. The proposed strategy is composed of four 

main actions which are: sensor data analysis, obstacle detection, obstacle avoidance, and 

goal seeking. Using these actions, the navigation approach is capable of autonomous row-

detection, row-following and path planning motion in outdoor settings such as farms. In 

order to drive the robot in off-road terrain, it must detect holes or ground depressions 

(negative obstacles), that are inherent parts of these environments, in real-time at a safe 

distance from the robot. Key originalities of the proposed approach are its capability to 

accurately detect both positive (over ground) and negative obstacles, and accurately 

identify the end of the rows of trees/bushes in farm/orchard and enter the next row. 

Experimental evaluation were carried out using a differential wheeled mobile robot in 

different farm settings. The mobile robot, used for experiments, utilizes a tilting unit which 

carries a laser range finder to detect objects in the environment, and a RTK-DGPS unit for 

localization. The experiments demonstrate that the proposed technique is capable of 

successfully detecting and following rows (path following) as well as robust navigation of 

the robot for point-to-point motion control.  

Keywords: Mobile robot motion control, Path following, Row-detection, Hough transform. 
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4.1. Introduction 

Point-to-point mobile robot navigation is described as the process of determining a 

suitable and safe path between a start point and a goal point for the robot to travel between 

them while avoiding any encountered (static or moving) obstacles autonomously [1]. 

Different sensors can be used for obtaining information from the environment for the robot 

navigation [3, 4,5]. These sensors include cameras, sonars, laser range finders infrared, etc. 

There are broad areas for applications of mobile robots navigation; one of these 

applications is navigation of the mobile robot in farm setting for agricultural tasks. These 

tasks may include seeding, planting, spraying and harvesting. Autonomous row-detection 

and path following in farm settings are one of the most needed tasks in precision 

agriculture. Most of developed methods for autonomous navigations of robots in outdoor 

settings have been accomplished using computer vision. For example, two visual methods 

were designed for autonomous spraying fertilizers and planting rice in [2, 28]. Hough 

transform strategy was used for visual row detection and row following in agricultural 

setting in [29]. Work in [30] includes the computer vision technique and a laser range 

finder for row detection and autonomous navigation of a vehicle capable of driving in 

orchards. In most of the reported visual approaches for navigation of the mobile robot in 

outdoor settings, image processing and analyzing huge amount of data require expensive 

computational efforts. Also, visual methods are susceptible to variations in illumination, 

which can vary suddenly, thus they usually will not work at night. 

Another developed technique for mobile robot navigation is a map-based method. This 

approach needs certain information from the environment to build a metric (grid-based) or 

topological map. Samples of these types of navigation systems can be found in [6] and [7]; 
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these works solved the Simultaneous Localization and Map-building (SLAM) problem with 

stereo cameras and a Blackwellised particle filter. The technique included a hybrid 

approach of localization, and navigation. In [8], an obstacle detection technique was 

introduced for off-road robot navigation. They used a stereo camera, and a single axis lidar 

for obtaining information from the terrain. To improve navigation of mobile robot in 

outdoor settings overhead imagery data were used in [9]; authors introduced an online, 

probabilistic model to use settings’ features. For using map-based navigation in outdoor 

settings, there are no regular landmarks or features that can be tracked. Hence, the robot 

explores the vicinity and moves toward a goal position while avoiding any obstacles. 

Therefore, map-generation and map-based navigation techniques in unstructured settings 

require large amounts of computational resources that make them unpopular for outdoor 

environments.  

Several authors used laser scanners for obstacle detection and terrain modeling in off-road 

environments [10, 11, 12]. A method for detection and following of rut for off-road 

navigation of mobile robot was presented in [13]; they used laser reading and experimental 

offline rut models to obtain rut templates. The rut templates subsequently were used for 

training robot and detecting passable ruts. In pre-training navigation processes, image 

matching, feature detection and training algorithm need large amount of memory for 

storing examples as templates. Furthermore, the off-line training algorithm may not 

guarantee the convergence to a solution or an optimal solution [14].  

While autonomous mobile robot navigation is a well-studied topic, autonomous navigation 

in farm fields is relatively new and not yet fully explored. One of main challenges in this 
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area is negative obstacle detection; such as ditches, holes, slopes and ruts. Authors of [15] 

reported preliminary investigation where they used stereo cameras and shadow cast for 

detecting negative obstacles when illuminated by two lighting sources. Authors in [16] 

used the fact that terrain depressions show different thermal properties than their 

surroundings, to detect negative obstacles.  

The main contribution of this paper is proposing a new mobile robot navigation approach 

for outdoor terrains using 3D laser range-finder. Our approach is robust to weather 

conditions and time of day, as we are using an active sensor (3D laser range-finder), which 

does not depend on ambient illumination and can work at night time. In this paper, Hough 

transform algorithm was developed for row-detection in farm field using 3D laser data; the 

row of bushes are detected for autonomous spraying of crops. In addition, this research 

presents experimental evaluations of the navigation strategy in different tests such as 

point-to-point motion, row-detection and trajectory tracking tasks. 

This paper is organized as follows: Section 2 contains the navigation structure. In Section 3, 

kinematics and dynamics model of the robot are described. In Section 4, the trajectory 

tracking control of the robot is presented. Section 5 introduces the row-detection algorithm 

and Hough transform method. GPS calibration and 3D laser data analysis are included in 

Section 6 and 7, respectively. Obstacle detection and avoidance approaches are presented 

in detail in Section 8 and 9, respectively. The experimental setups and results of different 

tests are reported in Section 10. And finally, in Section 11 conclusion and discussion of 

future works are presented.  
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4.2. Navigation structure 

Structure of the mobile robot navigation system is depicted in Fig. 4-1. Laser data 

processing, obstacle detection, obstacle avoidance, and goal seeking are four main actions in 

our navigation approach. Information about the environment is provided by a 3D-laser 

range-finder. Laser (lidar) data are analyzed in Laser data processing state and a local grid 

map that moves with the robot is generated. The local map contains the sizes and positions 

of nearby obstacles. If any obstacle is identified in obstacle detection state then obstacle 

avoidance behavior is called in to avoid obstacles. Commands for avoiding any collision or 

untraversable terrain are sent to the robot control system. Then control variables, the 

translational speed of the robot (v) and the change in the heading angle of the robot (ΔΦ), 

are sent to the robot. 
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Fig. 4-1: The structure of the robot navigation algorithm 

4.3. Robot model 

Tests and evaluation of the proposed navigation strategy are conducted in two phases: 

computer simulations, and field experiments. In the first phase, a graphical model of a four 

wheeled mobile robot is developed in robots operating system (ROS). The wheeled mobile 

robot kinematics and on-board sensors are also modeled in the ROS. Detailed graphical 
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simulations are carried out for tests and are evaluated for different situations. In the 

second phase, the navigation strategy was implemented on the Grizzly mobile robot which 

is a 16.5 KW autonomous ground vehicle (AGV), shown in Fig. 4-20 (a). The AGV size is 1.8 

⨉ 1.3⨉ 1.0 m (length⨉ width⨉ height). It is equipped with a nodding 3D laser range finder 

(LRF), mounted on the front of the robot. The LRF has a 180° horizontal sweep plane and is 

mounted on a tilting unit which sweeps vertically from +45° to -45° providing 3D field of 

view for navigation. Real-time kinematics differential global positioning system (RTK-

DGPS) and an inertial measurement unit (IMU) are also installed on the vehicle for 6DOF 

localization designed for outdoor environment. The robot can travel to a speed of 4.4 m/s 

in tests. The robot’s size is ideal for farm tasks and it has a trailer hitch which allows towing 

ground engagement tools. Therefore this robot can be used for different farm applications 

such as seeding, spraying and plowing.      

 
Fig. 4-2: Geometric configuration of the mobile robot  
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4.3.1. Kinematics of the robot 

The AGV used for the experiments is a four-wheel-drive vehicle (having a 4x4 differential 

drive system) actuated by four motors, one motor drives each wheel. But for control 

applications, the wheels on the same side (left or right) are driven with the same velocity 

(meaning the wheels on the same side rotate with the same speed). The wheels are 

equipped with encoders. The schematic figure of the AGV is shown in Fig. 4-2. In this figure, 

T is the width of the mobile robot and r is the radius of its wheels. XI – YI is inertial 

coordinate system and ϕ is the heading angle of the robot; xr - yr is the local coordinate 

system which is fixed to the center of the mobile robot. It is in the middle between the right 

and left rear wheels of the robot. The center of mass of the robot is C.G. as shown in Fig. 4-2. 

The distance from xr axis to the C.G. is c. The kinematic inputs that drive the robot and affect 

its speed and direction of motion are the right and the left wheels’ speeds. The vector q 

describes the configuration (position and orientation) of the robot at any time: 

 Tyxq   (1) 

x , y are the coordinates of the robot (point o) in the inertial frame. If the linear speed and 

angular velocity of the robot are v and ω, respectively, assuming no-slip on wheels, the 

velocity components can be written as: 
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where q  is time derivative of configuration q, and  Tvu   is the control input given to 

the robot for navigation. Angular and linear velocity of the robot can be written in terms of 

linear velocities of the right and the left wheel centers (vr, vl): 

T

vv lr 
         2

lr vv
v


  (4) 

 

4.3.2. Dynamics of the mobile robot 

The dynamics equations of the motion of the robot (Fig. 4-2) are presented as [17]: 

).(),().( qBuqqCuqM    (5) 

Where matrices are defined as following: 

























r

IT

T

Ir

r

Imr
r

IT

T

Ir

r

Imr

qM
ww

ww

.2

..

2

.
.2

..

2

.

)(

 
































..
2

..

..
2

..
),(

cm
r

cm
T

r

cm
r

cm
T

r

qqC

cc

cc

 

(6) 











10

01
)(qB

       











l

r






     













v
u

 

(7) 



84 
 

which τr and τl are torques applied at the right and the left wheels of the robot, 

respectively. We let .2 wc mmm   and mcwc II
T

mcmI 2
2

2

2  . where, mc is the mass of 

the robot body, mw is mass of each wheel including its motor, Ic is the mass moment of 

inertia of the robot body about the vertical axis passing through C.G., Iw, is for each wheel 

about its horizontal rotational axis, and Im is for each wheel about a vertical axis passing 

through its center. A trajectory tracking controller is designed for the kinematic model of 

mobile robot.  

4.4. Path planning control of the robot 

This section describes in detail the path following controller designed for row tracking 

navigation system. The robot and the paths are modeled as illustrated in Fig. 4-3. The 

desired trajectory for the robot in the inertial coordinate system is defined as following:  
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The lateral no-slip condition states that the lateral component of the velocity of midpoint of 

front axle is zero and also, interaction forces between tires and the floor do not exceed 

maximum allowable static friction. This condition is described as follows: 
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The change in the heading angle of the robot is determined using the following equation: 

    )()(,)()(atan2 1212 txtxtyty 
 

(11) 

  )()( 12 tt

 

(12) 



85 
 

where (x(t1), y(t1), ϕ(t1)) and (x(t2), y(t2), ϕ(t2)) are the pose (position and orientation) of 

the robot at time t1 and t2, respectively. The goal is to control the robot to follow the 

desired trajectory given in Eq. (8). The error equations are defined as the difference 

between the desired and the actual values:  

     
 



d

ddd zzyyxxe
222

 (13) 

The term e is indicating the position error, and θ is the error in heading angle of the robot. 

Our goal is to control the heading angle of the robot, ϕ, in a way to minimize θ (given in Eq. 

(13)). 

 
Fig. 4-3: General model of the robot for path following 

The next step is to find control inputs to minimize the tracking errors in Eq. (13). The 

kinematics control laws used in this research were developed using techniques described 

in [24]. The developed controller is capable of solving the position stabilization, and path 

following, problems simultaneously. As a result the robot is asymptotically driven to an 

arbitrarily small neighborhood of the desired position, path, or trajectory. Control 
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parameters are then tuned to assure that physical constraints are satisfied. The linear 

velocity of the robot is chosen as: 
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(14) 

where k1 and k2 are the controller parameters which control the response; ke and kr are 

defined as: 

)2cos(  ek
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where ε is a small perturbance to avoid a discontinuity in the response. The optimized 

control law governing rotational velocity is given by: 

dk   2)tanh(.3  (18) 

where k3 is a positive scalar gain to control the angular response of the controller. 

Initial values of v and ω obtained from equations (14) and (18) are rarely performing well 

for the row following system. To solve these problems the dynamic extensions [25] are 

defined as follow: 

  vvvkv av

r   .  (19) 

   
  a

r k .

 

(20) 

The values va and ωa are the measured velocity states of the robot. The states rv  and r are 

the control commands sent to the robot. These new states are introduced to decline steady 

state error and improve boundedness. The extensions perform as low pass filters, which 

improve the controller response in the presence of noisy state feedback. The gains kv and 

kω are used to control the response of the dynamic extension. The variables v and ω are the 
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outputs from equations (14) and (18). By modeling the system as a discrete one, the 

control commands rv  and r are calculated from following equations: 
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All tests (in both simulations and experiments) are performed with assumption of zero 

initial conditions. After various simulations and testing of the controller system, the 

controller parameters are chosen. The controller parameters are properly tuned, after 

several tests, for the navigation system in order to follow the desired path to achieve the 

desired performance. The experiments are performed with the following values chosen for 

the controller parameters: k2= 0.02 m, ε= 0.003 m, k1= 0.85, k3= 0.3, and kv= kω= 3.0. The 

maximum reference velocity of the robot is 4m/s, and the maximum robot acceleration is 

1m/s2. Initial and final velocities of the AGV are zero, with a linear ramp function to a 

constant velocity. 

4.5. Row-detection and Hough transform 

In this paper, for detecting rows of trees in a farm field, data from the laser range finder 

were used. The algorithm developed here, for row detection is Hough transform, which was 

originally patented by Hough [23]. This approach is a curve fitting technique to a group of 

data points. It is used for line or any circular shape detection. Since in farm field, rows of 

trees may not be exactly in one line therefore using a Hough transform is a superior 

method compared with alternative approaches such as least-squared for curve fitting of 

laser data. Hough transform is used here to generate a path (equation of a line) for the 
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robot to follow. The data detected by LRF produce equation of a line using Hough 

transform. The approach is briefly described here. 

A line in the image space can be expressed in Cartesian coordinate system as follows: 

cxmy  .

 
(23) 

where m is the slope of the line and c is the y-intercept. The line equation can also be 

expressed in a (ri–θ) Polar coordinate system as follows (see Fig. 4-4): 
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(24) 

Hence, the line equation can be written as: 

 sin.cos. yxri 
 

(25) 

The representation of the straight line in Cartesian and polar coordinate system is shown in 

Fig. 4-4. 

 

Fig. 4-4: Polar (ri–θ) representation of a line 
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Fig. 4-5: a) a group of lines passing through a point (x0, y0); b) each line can be represented by a pair of (ri, θi ) 

that becomes a sinusoidal curve at the ri–θi plane. 

In general, for each point (x0, y0), a group of lines passing through that point can be 

parameterized by a pair of (ri, θi) as following: 

iii yxr  sin.cos. 00 

 
(26) 

Therefore each pair of (ri, θi) represents a line that passes through point (x0, y0) (Fig. 4-5a). 

For a given point (x0, y0), the family of lines that passes through it in polar coordinate 

system represents a sinusoidal wave. This sinusoidal representation is shown in Fig. 4-5b. 

Thus each line can be represented with a pair of (ri, θi). 

 
(a)                                                                                                    (b) 

Fig. 4-6: a) Collinear points with normal parameterization of (r0, θ0). b) Collinear points are transformed into 
curves that intersect in a single point in the r-θ plane. 
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The Hough transform method uses this transformation of points to sinusoidal curves to 

find a line passing through a group of points; this is based on the premise that points that 

belong to the same line in the X-Y plane will be transformed into curves with an 

intersection point in the (ri, θi) plane (see Fig. 4-6b). Thus, to find the line passing through a 

group of points, such as (x1,y1), …, (x4,y4), one can find the point where the majority of these 

sinusoidal waves intersect in corresponding domain (ri, θi); this gives the equation of the 

line passing through group of the points using Eq. 24.  

In general, in Hough transform, a line can be identified by finding the number of 

intersections between curves in (ri, θi) domain. This is the basic of the Hough transform for 

identifying lines.  

The purpose of using Hough transform here is to automatically detect the lines of the row 

of bushes or trees in a farm field and to provide lateral offset and heading measurements 

sent to the mobile robot controller. Then the robot moves beside the rows of bushes while 

keeping proximity with them for spraying as an example of a given task. Again the result of 

implementing Hough transform algorithm on a sample of laser point clouds is depicted in 

Fig. 4-7; it is observed that detected lines (light blue lines) are matched real lines (dark 

blue).  

The path generated by the navigation system for the robot to follow is shown in Fig. 4-8; 

two parallel lines (1), (3) generated by Hough transform are also depicted in this figure. 

These parallel lines indicate the rows of bushes; the robot is programmed to follow a line 

between the two rows of bushes shown here as line (2).  
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Fig. 4-7: (a) Original laser point clouds. (b) Hough transform of the points. (c) Line detection using Hough 

transform algorithm. Detected lines are shown in light blue. 

 

 
Fig. 4-8: Row of bushes detected by LRF, and lines (1), (3) generated by Hough transform. 

 

4.6. GPS calibration and data analysis 

Localization of the robot is necessary for navigation and control. Using dead-reckoning and 

robot’s wheel encoders data are not very accurate for outdoor localizations, particularly 

when the robot is going to travel in an uneven terrain or on loose soils such as agricultural 

farm fields. The encoders’ calculations may have large errors because of wheel slippage and 

wheel imperfection which cause quick accumulation of the position errors. Therefore for 

accurate localization of the robot a real-time kinematics differential global positioning 

system (RTK-DGPS) is used. Here, we used a set of rover-and-fix Novatel GPS system. 
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Differential GPS (DGPS) uses a fixed GPS receiver at a position whose coordinate is known 

with accuracy of less than 1 meter. The position of the base station itself is configured by a 

correction supplied by the service of some companies for example, Canadian Satellite 

Station in Calgary. The fixed receiver collects data from all visible satellites to the base GPS 

and computes predicted satellite ranges. The difference is the satellite range error, which is 

then converted to correction signals sent via radio transmission to the rover GPS using 

Pacific Crest radio antenna. Using RTK-DGPS accuracy of localization is improved down to 2 

cm, which is quite satisfactory for our purpose. 

RTK-DGPS provides latitude (ψ) and longitude (λ) of positions on Earth at each time step. 

Therefore Mercator projection is used to convert geographical data (ψ, λ) to the Cartesian 

coordinate (x, y) measured on the Earth surface. The Mercator projection includes parallel 

equally spaced lines of longitude, and parallel but increasingly spaced lines of latitude. The 

GPS data is converted to Cartesian coordinates using following equations: 
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where (a1 = 6378206.4) is the equatorial radius of Earth ellipsoid in meters, and (a2= 

8.227185 E-2) is Earth ellipsoid eccentricity. Start point of the tests is assumed as origin for 

the Cartesian coordinate system (x=0, y=0, z=0). Then the Cartesian coordinates x and y 

obtained from Eqs 27 and 28 are sent to the robot control action module.     

4.7. 3D Laser data analysis 

A 2D laser scanner detects objects facing its planar field of view. Thus, it cannot recognize 

ground-level obstacles, negative obstacles (such as holes), and above the robot level’s 
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objects. In order to provide a 3D-scan of the environment, a rotating laser range finder 

(LRF) is used for navigation. The LRF consists of a 2D-laser scanner (SICK 511 for outdoor), 

to scan a horizontal plane, installed on a tilting unit with a stepper motor that mechanically 

sweeps the scan-plane continuously up and down. The 3D LRF provides a horizontal view 

of α = 180° (yaw angle) with an angular resolution of down to Δα= 0.25° (rotating mirror 

device). A relatively low resolution (Δα = 1°) and horizontal range of view of α= 160° are 

adequate for safe obstacle avoidance. These setting dramatically decreases operation time 

of real-time navigation and obstacle avoidance. In this operating mode a single 2D laser 

scan of 181 distance-measurements is read approximately in 13.32 ms (with about 75 Hz 

frequency). The tilting LRF system allows to pitch the scanner over a vertical angular range 

of up to θ = 120° with a maximum resolution of Δθ= 0.25°. By controlling pitch angle (θ) of 

the laser a 3D-scan of the front of the robot is obtained. The pitch angle resolution is set to 

one degree (Δθ= 1°) and range of change of θ is set to -45°<θ<+45° are adequate for safe 

obstacle avoidance. Therefore, the tilting LRF provides necessary scans of the farm setting 

for avoiding obstacles and also for accurately detecting nontravelable paths in the terrain. 

As shown in Fig. 4-20, the scanner system is mounted on front-top of the robot. Fig. 4-9 

clarifies the operating range of the tilting LRF. 
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Fig. 4-9: Laser range finder position 

 
Fig. 4-10: 3D point clouds acquired by the laser range finder in two example scenes: a) titling angle θ= 10°; b) 

θ= -15°. The point clouds are analyzed for path planning and obstacle avoidance algorithms. 

 
Fig. 4-11: Spherical mapping for laser point clouds.  

In this work, 3D-scans of the setting for obstacle avoidance while robot is moving is 

provided by adjusting tilting range of the tilting unit from +45° to -45° downward. Each 
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these scans into the global coordinate frame according, to the pose of the robot, results in a 

3D point cloud. Fig. 4-11 shows an example of the point clouds acquired by the laser range 

finder. Each point from the point cloud is represented by the tuple (di, θ, αi) which di is ith 

distance-measurement along the line-of-sight of the laser ray in the current scan-plane 

tilted θ°); where θ and αi are the current pitch angle and the yaw angle of that 

measurement. The corresponding Cartesian coordinates of the scan-point, (x, y, z), can be 

expressed using an image transformation. Based on the sensor geometry, a spherical 

mapping exists from (di, θ, αi) to (x, y, z), as shown in Fig. 4-11. The laser plane view rotates 

about the Y-axis. The transformation of point from point cloud to the Cartesian frame is as 

follows:  
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(29) 

By tilting the laser plane (changing θ), the operating range of the laser can be adjusted to 

detect both positive and negative obstacles in real-time in the environment.  

4.8. Obstacle detection algorithm 

The laser range finder, described in section 6, continuously delivers 3D measurements of 

the robot surrounding. The data is interpreted in a way that allows real-time obstacle 

detection and avoidance for navigation of the robot. A real-time local map, containing 

obstacles in front of the robot (see Fig. 4-9) is obtained. An example of this map is depicted 

in Fig. 4-12b for the scene shown in Fig. 4-12a. 
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(a)                                                                                     (b) 

Fig. 4-12: (a) A sample scene. (b) Section A-A view of the obstacle map generated using the laser data (point 
cloud) for scene in (a) 

3D Cartesian coordinates of laser point cloud (e. g. shown in Fig. 4-12b) are indicated by

 
jijiji ZYX ,,, ,, ; where i is for the yaw angle, and j is for the pitch angle of the laser beam 

(see Fig. 4-9). Obstacle detection algorithm is based on measured distances of the robot to 

obstacles. Laser point clouds are used for determination of obstacles’ location in the local 

map of the surroundings. The terrain local map is updated from the latest laser scans. A 

sample raw terrain local map generated from a laser point clouds is shown in Fig. 4-13. 

This map was created from laser data shown in Fig. 4-12 in a farm setting. The rows of 

trees and uneven ground surface are visible in this figure.  

 
Fig. 4-13: A local map of the environment generated using laser data from Fig. 4-12 

If two nearby points (e. g. (1) and (2)) whose vertical difference 
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The threshold value for the farm setting was chosen as L= 0.2 m. 

Beside obstacle detection, traversability of the terrain is also extracted from 3D laser data. 

Terrain slopes and inclinations are used to divides the environment into regions that are 

crossable or non-crossable for the robot. The surface inclination or slope can be defined as 

the angle between surface normal vector N and the vector )1,0,0(K which is perpendicular 

to the horizontal surface, as shown in Fig. 4-14. The slope angle is calculated using 

definition of dot products: 
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At a point P in 3D space, normal unit vector np (shown in Fig. 4-15), is obtained as cross 

product of the vectors Pβ and Pγ, which are tangent to curves β–scan and γ–scan 

respectively, as follows: 
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Using image processing techniques derivative vectors Pβ and Pγ are calculated numerically. 

Roughness of the terrain, R, with normal vector izyxi nnnn ),,( can be calculated from 

following equation: 
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(34) 

Where np is the number of points to be considered in the terrain. If the roughness, R, of the 

terrain exceeds a threshold value, R> 0.2m, the terrain will be considered as impassable. 

Therefore, in addition to obstacles such as rocks, terrain’s depression, slope and 

unevenness are considered in this stage of navigation. In the slope analysis, a path is 

considered as crossable due to their low depression. Then traversable region model is built 

based on the sensor data in the real-time. This model represents the free space for the 

robot to navigate through. A sample of the traversable region modeling is shown in Fig. 4-

16, where the horizontal axis is the beam yaw angle and the vertical axis is the range values 

(obstacles’ distances to the robot). This 2D-graph is used for safe path planning. Obstacle-

free paths available to the robot are depicted in dashed lines. The widths of these obstacle-

free paths are determined according to the size of the AGV (also shown in Fig. 4-16). Then 

the robot is navigated to the goal point using these safe paths. 

 
Fig. 4-14: Terrain slope definition 
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Fig. 4-15: estimating normal vector at point P 

 
Fig. 4-16: A sample of the traversable region modeling from the laser scanner data: traversable paths are 

depicted in dashed lines, width of the AGV is also shown along these paths.  

 

4.9. Obstacle avoidance algorithm 

In the case that any obstacle is detected in obstacle detection module, the navigation 

technique invokes obstacle avoidance action and a collision free path is generated. Two 

approaches were developed for obstacle avoidance in [19]: Fuzzy Logic Based (FLB) and 

Human Inspired Method (HIM). These two approaches (FLB and HIM) are applied to 

prevent collision with obstacles and also to plan safe paths for the robot.  
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4.9.1. Fuzzy logic based (FLB) 

Fuzzy logic controller has been suggested for navigation of mobile robots in some research 

[26, 27]. This navigation strategy is composed of sets of fuzzy-logic rule statements 

designed for achieving appropriate values for control parameters (ΔΦ and v). The control 

variables of the mobile robot are the translational speed of the robot (v) and the change in 

the heading angle of the robot (ΔΦ). Inputs for the obstacle avoidance blocks are sensor 

reading information: obstacles’ distances to the robot. Laser measurements in right, front 

and left sectors are used to determine the distances to the obstacles in each sector 

according to Eq. (31).  

dR= min {distance data reading for -90 ≤ angle ≤ -30} 
dF= min {distance data reading for -30 ≤ angle ≤ +30} 
dL= min {distance data reading for +30 ≤ angle ≤ +90} 

(35) 

Where dR, dF, and dL are the distances to the objects detected by LRF in right, front, and 

left sectors respectively. These distances are mapped in to fuzzy membership functions 

{Far, Medium, Close} as shown in Fig. 4-17. Then according to the defined fuzzy rules, 

control outputs (ΔΦj and vj) for each rule are produced. The final control output ΔΦ and v 

are obtained using centroid defuzzification method:  

The change in the robot heading angle is represented using five linguistic fuzzy sets {NB, 

NS, ZE, PS, PB}; these membership functions are illustrated in Fig. 4-18. NB is negative-big, 

NS: negative-small, ZE: zero, PS: positive-small and PB: positive-big. The positive and 

negative terms mean counter-clock wise and clock wise rotation of the robot, respectively.  
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Fig. 4-17: fuzzy membership functions for measured 

distance 

 
Fig. 4-18: fuzzy membership functions for change in 

the robot heading angle 

4.9.2. Human inspired method (HIM) 

The other method applied for obstacle avoidance action is HIM [19]. This method is 

designed to imitate a wise adult human behavior in dynamic environments to reach a goal 

point [20]. Laser data and data from obstacle detection state are used to find the closest 

traversable scape-points to the goal point. Scape-points are defined as points that are 

passable by the AGV according to the predefined safety factor and the actual size of the 

robot. HIM uses obstacles boundaries to detect the scape-points and the best collision-free 

path for the robot navigation. HIM finds passable ways ahead and avoids very narrow 

passages therefore it avoids local minima or local traps. Fig. 4-19 summarizes the basic 

structure of HIM. 
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Fig. 4-19: obstacle avoidance behavior of HIM  

4.10. Evaluation and experimental results 

The proposed navigation strategy was tested on a custom-build mobile robot (the AGV) as 

illustrated in Fig. 4-20 in farm fields for different setups. Each test scenario was repeated at 

least ten times. Fig. 4-22 shows the robot paths for eight different setups of point-to-point 

motion experiments. In each experimental scenario, the results of both FLB and HIM for 

obstacle avoidance are depicted; in these figures, solid black lines show the paths produced 

by HIM and dashed lines are the routes created by FLB approach. The robot was set at a 

specific start point for each test, and position of the goal point and final heading of the 

robot were also specified. Pose of the robot during motion was recorded; and is also shown 

in Fig. 4-22 for eight different test setups. In each case, the robot avoided all obstacles and 

reached the final goal point safely and successfully. The navigation approach was tested 

with different obstacle densities and sizes over 100 times for both positive and negative 

obstacles. Both FLB and HIM navigated the AGV in almost all test situations successfully 

with no failure. In each case, if there was at least one feasible way for the AGV to reach its 

goal position, then the robot normally found the best possible route to its destination. 

Different actions in navigation strategy such as obstacle-detection, obstacle-avoidance and 
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goal-seeking behaviors were fully performed in each test and the AGV finished all tests 

successfully. In the experimental evaluation of the proposed navigation approach, first, 

path planning navigation, obstacle detection and avoidance actions for both negative and 

positive obstacles under different conditions were evaluated. Finally, row-detection and 

path following experiments were performed in farm fields. All experimental evaluations 

were accomplished on soft soil in farm fields. The robot average speed in most tests was 1 

m/s. 

  
Fig. 4-20: Experimental outline: 4⨯4 differential drive Grizzly mobile robot (AGV), tilting laser range finder 

for obstacle detection and base RTK-DGPS for localization  

 

4.10.1. Point-to-point motion navigation 

First, the ability of the proposed navigation approach for path planning (point-to-point 

motion) is evaluated. In these experimental setups, the configurations of obstacles are 

chosen in a way that there is at least one traversable path for the robot. In each test, the 
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robot starts from a start point defined as (0,0,0) and reaches its user-specified goal point, 

while traversing a safe path and avoiding any encountered positive or negative obstacles. 

Figs. 4-21 and 4-23 show snapshots of the actual robot run travelling from the start point 

to the goal point while avoiding obstacles.  

 
Fig. 4-21: Snapshots of the robot for a typical experiment: The robot is travelling from “start point” to the 
“goal point”, using HIM for obstacle avoidance. Left: robot at start point, middle: robot at mid-point, right: 

robot at the goal point in [21] 
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e): setup5 

 
f): setup6 

 
g): setup7 

 
h): setup8 

Fig. 4-22: Experimental results for validating navigation strategy for eight different setups (a) to (h). Solid 
line: robot’s path using HIM, dashed line: robot’s path using FLB. 
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Fig. 4-23: Snapshots of the robot run for experiment in setup8: The robot is traversing from start point to the 
goal point, using HIM for obstacle avoidance. Top-left: the robot at start point, and bottom-right: the robot at 

the goal. Image sequence proceeds to the right and down. [22] 

 

The two-dimensional top view of the test results (robot path and obstacles) are depicted in 

Fig. 4-22. The paths of the AGV are created using data from LRF and RTK-DGPS. Both fuzzy 

(FLB) approach and human-inspired method (HIM) are implemented for obstacle-

avoidance behavior in each scenario. Setups 1 and 3, represent simple walls of obstacles 

that require the robot to go between walls of obstacles and find the passable space. Setups 

2 and 4 illustrate more complex situations and the ability of the robot to navigate very 

small gaps and reach the goal point successfully. Setup 5 shows a very crowded situation 

that obstacles surrounded the goal point. The robot needed to travel through small gaps 

and avoid all obstacles to reach the goal position. In setups 6 to 8 different shapes of 

obstacle walls (S-shape, L-shape and semi-circular) were constructed between the start 

point and the goal position; the robot needs to follow the walls and find a way around the 

obstacles to reach the goal. 

It can be observed from Fig. 4-22 that FLB directs the robot to go straight toward the goal 

point until an obstacle is detected on its way; then the robot avoids the encountered 

obstacles. However, HIM determines the robot’s path such that, the robot does not go 
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toward any stationary obstacles, as a human would do during navigation. If an unforeseen 

obstacle is detected, HIM will also change the robot’s path to avoid colliding with the 

obstacle. This saves time and energy during the navigation. The performance of the 

navigation approach for path planning motion is summarized in Table 4-I; the proposed 

navigation method proved to be robust for point-to-point motion in outdoor settings (such 

as farm fields). 

Table 4-II provides comparisons of HIM and FLB for eight different experimental results in 

point-to-point motion. The comparison is based on three criteria: 1) The energy per unit 

mass, consumed by the mobile robot in Joule/Kg. 2) The travelling time for the robot to 

reach the goal point in second (s). 3) The path length travelled by the robot to reach its goal 

position in meter (m). The energy per unit mass consumed by the robot is computed as 

follows: 

Work = force × displacement =(mass × acceleration) × (velocity × time) 

 st
s

m
v

s

m
a

kg

J
Em 

























2

 
(38) 

The path length (PL) is calculated as summation of the distance between two consecutive 

points in the robot’s path from start point (x1, y1, z1) to the goal position (xn, yn, zn); where n 

is the number of points in path: 


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Table 4-II indicates that for all tests, HIM produces shorter paths for navigation of the robot 

and generally it takes less time for the robot to reach the goal position. This means 

computation time and decision making time for HIM is smaller than FLB. In addition, the 
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energy per unit mass for HIM is less than FLB for most of the setups; which means HIM is 

more energy efficient compared with FLB.  

Table 4-I: summary of the path-planning navigation (point-to-point motion) experimental 
results in a farm field. Robot navigation was tested for eight different setups. 

Tests 
Number of 

trials per setup 

Failed 

tests 

Success 

rate (%) 

Setups 1 to 7 10 0 100 

Setup8 8 0 100 

 
 
 

Table 4-II: Comparison of HIM and FLB in experiments   

Tests Criterion for comparison FLB HIM 

setup1 

Start point (x, y) (m) (0,0,0) (0,0,0) 

Goal point (x, y) (m) (4,1.5,0) (4,1.5,0) 

Energy index (J/kg) 1500 1200 

Travelling time (s) 71.20 61.00 

Path length(m) 4.500 4.235 

Setup2 

Start point (x, y) (m) (0,0,0) (0,0,0) 

Goal point (x, y) (m) (5.5,2,0) (5.5,2,0) 

Energy index (J/kg) 1826 1082 

Travelling time (s) 80.2 55.50 

Path length(m) 6.357 6.010 

Setup3 

Start point (x, y) (m) (0,0,0) (0,0,0) 

Goal point (x, y) (m) (4,2,0) (4,2,0) 

Energy index (J/kg) 1473 856.0 

Travelling time (s) 75.71 38.38 

Path length(m) 6.621 5.963 

Setup4 

Start point (x, y) (m) (0,0,0) (0,0,0) 

Goal point (x, y) (m) (5.5,2,0) (5.5,2,0) 

Energy index (J/kg) 1120 904.0 
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Travelling time (s) 57.65 49.42 

Path length(m) 6.539 5.842 

Setup5 

Start point (x, y) (m) (0,0,0) (0,0,0) 

Goal point (x, y) (m) (10,10,0) (10,10,0) 

Energy index (J/kg) 2800 2009 

Travelling time (s) 200.1 101.1 

Path length(m) 15.22 11.86 

Setup6 

Start point (x, y) (m) (3,10,0) (3,10,0) 

Goal point (x, y) (m) (6,13,0) (6,13,0) 

Energy index (J/kg) 1512 851.2 

Travelling time (s) 100.0 45.12 

Path length(m) 20.11 10.86 

Setup7 

Start point (x, y) (m) (8,0,0) (8,0,0) 

Goal point (x, y) (m) (10,11,0) (10,11,0) 

Energy index (J/kg) 1500 1019 

Travelling time (s) 248.7 65.46 

Path length(m) 60.22 15.20 

Setup8 

Start point (x, y) (m) (11,0,0) (11,0,0) 

Goal point (x, y) (m) (10,41,0) (10,41,0) 

Energy index (J/kg) 4512 3501 

Travelling time (s) 300.0 255.1 

Path length(m) 57.11 46.86 

 

4.10.2. Row-detection and path following 

This section documents the performance of the navigation strategy to detect plant rows 

and follow them. These scenarios contain different shapes of rows on hilly and uneven 

grounds. This strategy can be used for spraying rows of bushes and/or trees in a farm 

setting. Fig. 4-24 shows a snapshot from the actual robot run in the row-detection and path 

following. In one case, three rows of pylons were set; the length of each path was 8m thus 
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the total length of the path that the robot traversed was 24m. Hough transform algorithm 

was used to detect the lines passing through the rows. Then the robot followed the 

detected rows. The novelty of this row-detection algorithm is that this state is able to detect 

the end of the rows and directs the robot to turn around at the end of row and go to the 

next row. Long gaps in detected lines were considered as signal for end of rows and were 

defined as potential end-points. These gaps are analyzed more specifically to identify exact 

end-points. Then the robot is guided to the next row. Fig. 4-25 shows the desired and actual 

paths for the robot in a typical row-detection and path following test performed.  

For path following tests, positions and heading angles of the robot, as explained in detail in 

Section 4, are controlled. At each time, control commands, which are the linear velocities of 

the right and left wheels of the robot (vr, vl), are sent to the program. The performances of 

the path following tests are represented in terms of errors indices (e, θ) which are given in 

Eq. (13). 

Figures 26– 31 illustrate the performance of the navigation approach in path following 

tests; the desired and actual paths of the robot in row-following test for scenarios 1 to 5 are 

depicted in these figures. Error indices (e, θ) for these scenarios are also depicted in these 

figures. These results show that the distance error index, e, is less than 0.1 m for all cases. 

Further, it is important to mention that all error indices almost converge to zero, which 

means that the robot followed the reference paths reasonably accurate. These results verify 

that the row-detection and row-following algorithms perform efficiently in the farm fields. 

Hence, the robustness of the proposed method under different conditions is demonstrated.  
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In scenario 5, as depicted in Fig. 4-30, the terrain contains a highly sloped hill; this scenario 

shows the ability of the navigation system to handle situations on hilly and rough terrains. 

Figure 30 displays a set of snapshots obtained from the actual robot run on hills, and Fig. 4-

31 shows the desired and actual paths of the robot. The error terms (e, θ) obtained from 

the system response are shown in Fig. 4-31 (b) and (c); it is shown that error indices go to 

zero eventually, which means that AGV is following the desired path.  

 
Fig. 4-24: Lines corresponding to the rows detected by the navigation method using Hough transform in [22] 

 
Fig. 4-25: A typical experimental result for row-detection and path following scenario: desired and actual 

paths of the robot are depicted by dashed line and solid line; bushes are shown by stars. 
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(a) Desired and actual paths of the robot 

 
(b) Position error 

 
(c) Heading angle error 

Fig. 4-26: Experimental results obtained for scenario 1 (path following test) 

 
(a) Desired and actual paths of the robot 

 
(b) Position error 

 
(c) Heading angle error 

Fig. 4-27: Experimental results obtained for scenario 2 (path following test) 

 

 
(a) Desired and actual paths of the robot 

 
(b) Position error 

 
(c) Heading angle error 

Fig. 4-28: Experimental results obtained for scenario 3 (path following test) 

 

Table 4-III provides summary of experimental results in path following tests. The 

maximum, minimum, and average of the error (e, θ) for all five scenarios are calculated in 

this table. 
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(a) Desired and actual paths of the robot 

 
(b) Position error 

 
 

 
(c) Heading angle error 

Fig. 4-29: Experimental results obtained for scenario 4 (path following test) 

 
 

 
Fig. 4-30: Snapshots of the robot following a path on a hill in [21]. Top-left: the robot at start point, and 

bottom-right: the robot at the end-point. Image sequence proceeds to the right and down.  
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(a) Desired and actual paths of the robot 

 
(b) Position error 

 

 
(c) Heading angle error 

 

Fig. 4-31: Experimental results obtained for scenario 5 (path following test) 

 

 

Table 4-III: summary of the path following navigation experimental results in a farm field. 
Maximum, minimum and average of the errors (e, θ) are presented. 
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Scenario 4 1.62 0.00 0.76 0.50 -0.91 0.00 

Scenario 5 2.99 0.00 0.93 0.45 -0.90 -0.24 
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4.10.3. Obstacle detection and avoidance 

Negative obstacles such as holes, gaps and ground depression are inherent parts of off-road 

terrains and farm fields. Therefore the performance of the proposed navigation strategy 

was tested in cases with negative obstacles. This scenario contained both positive and 

negative obstacles. Negative obstacle was a hole with depth and diameter of 50cm on the 

ground. The results of this experiment are shown in Fig. 4-33. Fig. 4-32 shows a set of 

snapshots obtained from the actual robot run; and in Fig. 4-33 the desired and actual paths 

of the robot while avoiding both positive and negative obstacles are depicted. The 

robustness of the proposed navigation module in hole-detection and avoidance are proved 

experimentally.  

 
Fig. 4-32: Snapshots of the robot following a path while avoiding obstacles in [22] 

 
Fig. 4-33: Experimental results for path following scenario in the presence of both positive and negative 

obstacles on the way of the robot. The size of positive obstacle was 50×50×40 cm (length× width× height) and 
the hole depth and diameter was 50 cm. 
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4.11. Conclusion and future work 

In this paper, we presented a navigation strategy which is composed of different actions for 

coping with diverse situations; sensors data processing, environment mapping, obstacle 

detection, obstacle avoidance, and goal seeking are the main behaviors in the navigation 

strategy. All of these behaviors are evaluated in different scenarios for point-to-point 

motion, path following, row-detection, and row-following. A tilting laser range finder was 

used for row-detection and following and also for obstacle avoidance. One major advantage 

of the proposed strategy over existing methods is that negative obstacles (such as holes, 

ditches and ground depressions) which are inherent part of off-road terrains, are detected 

and avoided in real-time. It was demonstrated that the algorithms presented in this paper 

analyze 3D laser data and detect both positive and negative obstacles accurately for high-

speed navigation of a wheeled mobile robot in outdoor (such as farm settings). The other 

novelty of the suggested navigation strategy is that in row-detection approach, the end of 

the rows of trees can be identified. Therefore the proposed algorithm is capable of 

autonomously traversing entire farm for spraying, mowing and seeding which results in 

increasing efficiency with no need of having prior information about the setting. By 

adjusting vertical angular resolution of the laser, the obstacle detection algorithm was 

improved to detect negative obstacles at long ranges continuously. The proposed strategy 

was experimentally evaluated in different settings. The navigation method was validated in 

eight different setups for point-to-point motion control successfully. Six different paths (S-

shape, curvy, etc.) were tested to evaluate the proposed path following strategy. In all of 

these experiments, the displacement error, e, was less than 0.2 m; the error in heading 

angle of the robot, θ, approached to zero as well.  
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Future work will involve development of the navigation approach for proximity-following 

actions. This will be used for sparing rows of bushes and crops in farm fields. In addition, 

the proposed strategy is going to be applied for rut detection and rut following algorithms. 

Finally, we would like to expand the application of the proposed navigation strategy for 

towing and plowing tasks in a farm setting. It is planned to develop the current system to 

consider effect of interaction forces of ground engagement tools for seeding on robot 

navigation as well. 
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Abstract 

This article presents an original strategy for autonomous navigation of a mobile robot in 

farm fields to perform precision farming. The proposed navigation approach in this paper 

involves a novel method for recognition and following of rows of crops. The introduced 

approach generates piecewise smooth path for the mobile robot to follow in a farm field. 

This technique is applicable for different shape and size of rows of bushes and is able to 

detect and identify two or more rows, simultaneously. The accuracy of the proposed 

method is verified using field experiments, such as proximity-following and rut following 

tests. The other originality of this research is introducing a new technique for real-time 

detecting and avoiding negative obstacles such as holes, ground depressions and ditches in 

off-road terrains. The presented algorithm analyzes the terrain using data generated by a 

3D-laser range finder (LRF) to perceive the environment and utilizes a geometry-based 

tactic to detect both positive (over ground) and negative (below ground level) obstacles in 

real-time at a safe distance from the robot. The navigation system is implemented on a 4x4 

differential drive autonomous ground vehicle (AGV) in a variety of field setups. The 

experimental evaluation showed the accuracy and robustness of the proposed system in 

rut detection and tracking, proximity-following, and negative obstacle detection and 

avoidance tests.  

Keywords: Negative obstacle avoidance, Path planning, Trajectory tracking control, Row 

detection. 
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5.1. Introduction 

Although considerable progress has been made on autonomous navigation of mobile 

robots in unstructured and off-road terrains, up to now, there are still several open 

problems remaining unsolved for implementations as well. In particular, existing 

navigation methods generally do not adapt to different types of environment such as farm 

fields and may not be reliable for these situations. Moreover, many existing approaches are 

limited to near-field sensing and consequently show myopic performance [1]. Since 

agricultural fields are very complex and mostly unknown, navigation of robots involve 

difficulties such as: operation of the robot in continuously changing tracks, targets which 

are difficult to detect and reach. Therefore to design an autonomous navigation system for 

agricultural machines that can robustly operate in all conditions is really difficult. In 

outdoor settings there are no regular landmarks or features that can be tracked for 

navigation. Hence, the robot explores the vicinity and moves toward a goal position while 

avoiding any encountered moving or stationary obstacles. In these cases, two kinds of 

methods can be used: Map-based or Map-Less Navigation Techniques.  

Most of the developed methods for robot navigation in orchards were map-based 

techniques wherein the autonomous vehicle may only be used in some specific orchard 

sites. Map-based navigation techniques explore the environment and automatically build a 

metric or topological map, thus they need certain information from the environment. 

Examples of this system can be found in [2, 3, 4]; they used a stereo camera, and a single 

axis lidar for obtaining information from the terrain. Color-based technique was used for 

analysis of camera data and terrain classification to distinguish between grass and ground. 

In [5], authors introduced an online, probabilistic model to use settings’ features by taking 
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advantage of other features. Their approach was self-supervised learning method that 

extracted color features and predicted traversal costs over large areas from overhead 

camera data. Performance of the color-based terrain detection deeply depends on 

environment light and grass color which vary with seasons and day or night time. Also, 

these techniques have short-range view; to improve short-range view of sensors for robot 

navigation, [1] presented an adaptable path planning strategy that used look-ahead sensing 

of possible obstacle configurations. This navigation strategy was based on a “what-if” 

analysis of hypothetical future configurations of the environment. Hough transform 

algorithm combined with vision-based method was used for crop row detection in farm 

field by [6]. An enhanced topological map fused with sensors’ data such as wheel odometer, 

global positioning system (GPS), and mono-camera was presented in [7]. A stereovision 

based crop row detection method for navigation of an autonomous ground vehicle (AGV) 

was described in [8]; stereo-image processing, elevation map creation and navigation point 

determination for crop row detection were different functions of the presented algorithm. 

Applying map-based navigation approaches in a farm field requires path planning before 

the vehicle can perform its tasks. The navigation phase starts only if the map of the 

environment has been built. This task of surveying and map generation is time consuming 

for the farmer and requires expensive computational resources and storage capacity. 

The other type of robot navigation technique, map-less, does not need prior knowledge of 

the setting. The movements of the robot depend only on sensory data as it perceives them. 

Vision-based navigation methods have been used for map-less techniques. Two main 

methods were developed for vision-based navigation approaches: optical-flow-based and 

appearance-based. Optical-flow-based methods estimate the motion of objects or features 
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within a sequence of data. Appearance-based techniques are based on the storage of 

images in previous recording phase. These images are used as templates. The robot self-

localizes and navigates in the environment by matching the current viewed frame with the 

stored templates. Talukder et al. [9] applied an optical flow-based technique to detect 

moving obstacles within the camera field of view. The procedure assumed that moving 

objects caused a discontinuity in optical flow orientation and magnitude with respect to the 

background pixels. Talukder et al. [10] enhanced the approach in [9] by combining the 

stereo disparity field and optical flow to estimate depth, to model the robot motion and to 

detect moving obstacles in the scene. In [11], stereo data were combined with the optical 

flow from one of the stereo images, to build an occupancy grid and perform a real-time 

navigation technique. Another example of the appearance-based techniques is proposed in 

[12]; authors presented a color-based image segmentation approach for object detection, 

and grayscale image processing for detecting the opponent robots. The fuzzy logic concept 

was combined with visual navigation approaches by several authors. One example of these 

techniques is [13].  

A developed method to detect weed using machine vision and geometrical measurements 

such as shape factor, aspect ratio, and length is presented in [14]. Color based image 

processing was successfully used to detect weeds [15, 16, 17]. Real-time differential images 

obtained from a set of three digital cameras were used to detect small weed in different 

crops. Later, [18] developed a vision based approach for differential spraying of farm fields; 

their method determined the quantity and distribution of weeds in the row of crop and 

decided, based on information from images, whether to undertake selective spraying to 

control the weeds. The main problems of appearance-based strategies are finding an 
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appropriate algorithm to create the environment representation and defining the on-line 

matching criteria. Also, extraction of qualitative information and feature detection from 

sequences of images may be a time consuming process that causes these approaches to fail. 

Most of the developed techniques for precision agriculture use machine vision sensors for 

navigation [18]. Therefore one issue which affects the robustness of these approaches is 

ambient light conditions that vary a great deal in outdoors. 

The goal of this research is to present a new approach for robust recognition of plant rows 

based on the modified Hough transform. The novelty of the paper is in proposing a new 

curve fitting technique for row detection and following. The proposed method generates 

piecewise smooth path for the robot to follow and it does not have the shortages of Hough 

transform in line recognition. To demonstrate the capabilities of the suggested method in 

row detection and row following, it was evaluated in different test situations in farm fields. 

Another contribution of this paper is to use a 3D lidar for row detection and following in 

farm fields. This paper is organized as follows: Section 2 contains the research components. 

In Section 3, the proposed approach is described in detail. In Section 4, the trajectory 

tracking control of the robot is presented. Section 5 introduces the negative obstacle 

detection approach. The experimental setups and results from different tests are reported 

in Section 6. And finally, in Section 7 conclusion and discussion of future works are 

presented.  

5.2. Test robot 

In this research a four wheeled autonomous ground vehicle (AGV) is used for tests and 

evaluation of the proposed navigation strategy. The AGV is a 16.5 KW robot (shown in Fig. 
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5-10) with size: 1.8 ⨉ 1.3⨉ 1.0 m (length⨉ width⨉ height). It is equipped with a nodding 

3D laser range finder (LRF), mounted on the front of the robot. The LRF has a 180° 

horizontal sweep plane and is mounted on a tilting unit which sweeps vertically from +45° 

to -45° providing 3D field of view for navigation. Real-time kinematics differential global 

positioning system (RTK-DGPS) and an inertial measurement unit (IMU) are also installed 

on the vehicle for 6DOF localization designed for outdoor environment. The robot can 

travel up to a speed of 4.4 m/s. The robot’s size is ideal for farm tasks and it has a trailer 

hitch which allows towing ground engagement tools. Therefore this robot can be used for 

different farm applications such as seeding, spraying and plowing. 

5.3. The proposed approach for path following algorithm 

Existing algorithms for row detection were not found to be sufficient for application in farm 

fields due to following reasons: (1) Most of these techniques are vision-based and their 

performance deeply depends on environment light and grass color which vary with 

seasons and day or night time. (2) Using Hough transform for image data or even 3D laser 

data has two main drawbacks: large memory requirement and slowness. (3) Another 

weakness of the Hough transform algorithm is that it often recognizes many similar lines 

instead of the main one. Then the algorithm returns a lot of lines without starting and 

ending points. Hence, current methods cannot produce a smooth and robust continuous 

path for the robot to follow in farm field for doing its task such as spraying or weed control. 

Therefore a new row detection algorithm was developed to use 3D laser to detect rows of 

plants. A curve fitting technique is applied to Hough transform results to produce robust 

piecewise smooth paths for the robot to follow in farm fields.  
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5.3.1. Hough transform for line recognition 

In this paper, for detecting rows of trees in a farm field, data from the laser range finder 

were used. The algorithm developed here, for row detection is Hough transform, which was 

originally patented by Hough [23]. This approach is a curve fitting technique to a group of 

data points. It is used for line or any circular shape detection. Since in farm field, rows of 

trees may not be exactly in one line therefore using a Hough transform is a superior 

method compared with alternative approaches such as least-squared for curve fitting of 

laser data. Hough transform is used here to generate a path (equation of a line) for the 

robot to follow. The data detected by LRF produce equation of a line using Hough 

transform. The approach is briefly described here. 

A line in the image space can be expressed in Cartesian coordinate system as follows: 

cxmy  .

 
(1) 

where m is the slope of the line and c is the y-intercept. The line equation can also be 

expressed in a (ri–θ) Polar coordinate system as follows (see Fig. 5-1a): 





sin
.

sin

cos irxy 

 
(2) 

Hence, the line equation can be written as: 

 sin.cos. yxri 
 

(3) 

The representation of the straight line in Cartesian and polar coordinate system is shown in 

Fig. 5-4. 
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(a)                                                      (b)                                                             (c) 

Fig. 5-1: a) Polar (ri–θ) representation of a line; b) a group of lines passing through a point (x0, y0); c) each line 
can be represented by a pair of (ri, θi ) that becomes a sinusoidal curve at the r–θ plane. 

In general, for each point (x0, y0), a group of lines passing through that point can be 

parameterized by a pair of (ri, θi) as following: 

iii yxr  sin.cos. 00 

 
(4) 

Therefore each pair of (ri, θi) represents a line that passes through point (x0, y0) (Fig. 5-1b). 

For a given point (x0, y0), the family of lines that passes through it in polar coordinate 

system represents a sinusoidal wave. This sinusoidal representation is shown in Fig. 5-1c. 

Thus each line can be represented with a pair of (ri, θi). 

 
(a)                                                                                                    (b) 

Fig. 5-2: a) Collinear points with normal parameterization of (r0, θ0). b) Collinear points are transformed into 
curves that intersect in a single point in the r-θ plane. 
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The Hough transform method uses this transformation of points to sinusoidal curves to 

find a line passing through a group of points; this is based on the premise that points that 

belong to the same line in the X-Y plane will be transformed into curves with an 

intersection point in the (ri, θi) plane (see Fig. 5-6b). Thus, to find the line passing through a 

group of points, such as (x1,y1), …, (x4,y4), one can find the point where the majority of these 

sinusoidal waves intersect in corresponding domain (ri, θi); this gives the equation of the 

line passing through group of the points using Eq. 2.  

In general, in Hough transform, a line can be identified by finding the number of 

intersections between curves in (ri, θi) domain. This is the basic of the Hough transform for 

identifying lines.  

The purpose of using Hough transform here is to automatically detect the lines of the row 

of bushes or trees in a farm field and to provide lateral offset and heading measurements 

sent to the mobile robot controller. Then the robot moves beside the rows of bushes while 

keeping proximity with them for spraying as an example of a given task. Result of 

implementing Hough transform algorithm on a sample of laser point clouds is depicted in 

Fig. 5-3; it is observed that several lines (black lines) are identified using Hough transform 

for a crop row.  

     
Fig. 5-3: (a) Original crop rows in farm field [19]. (b) Hough transform of the points. Lines recognized using 

Hough transform are shown in black lines in (a). 



131 
 

Therefore the path generated by navigation algorithm would not be a particular smooth 

one. To obtain a smooth path which fits the crop row, the exponential curve fitting 

technique is applied to the Hough-recognized lines. This is a novelty of this algorithm. 

Employing the proposed curve fitting technique on Hough-identified lines generates a 

piecewise smooth model of the row of bushes and as a result smooth paths for the robot to 

follow. 

5.3.2. Curve fitting technique to generate smooth paths 

A curve fitting approach is introduced for processing generated lines from Hough 

transform. The method uses different lines for estimation and is adjustable according to 

each set of collected data by LRF. This technique estimates piecewise smooth curve with 

specified accuracy and an overall approximation model of the data is generated. Sets of 

coefficients that describe a profile shape within each piece of the model are calculated; then 

the final model is fitted to the measured data points. 

The generated lines by Hough transform are used as reference lines for producing curve in 

this model. The goal is to make the estimated curve tangent to the reference lines in as 

much points as possible (Fig. 5-4). 

Model construction and curve generation involves specification of the parameters of the 

model and determination of the coefficients of data. In order to produce a smooth curve 

from the reference lines, (reference lines that are recognized by Hough transform) various 

curve fitting techniques were studied and tested here. In many cases, the generated curves, 

which are the paths for the robot to follow, are either too simple to fully describe the real 

rows of bushes, or too complex with many parameters that need long computations and 
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cannot be used for online row detection or row following. More importantly, these curve 

fitting techniques are only useful for some particular shape of crop rows and inapplicable 

to other shapes of rows. In this paper, a general flexible path creation method is proposed. 

This approach is tested and applied for different crop rows in farm fields.  

Let’s y(x) be a smooth curve for the robot path. This curve is developed from Hough 

transform reference lines. The inclinations of the i-th reference line is indicated by i . The 

goal is to make the tangent of the curve at any point vary from the tangent of the initial 

reference line 0  to the tangent of the final reference f as x increases. Thus, the tangent of 

the curve is defined with an exponential expression described as: 

  Kx

ff ex   0)(
 (5) 

where parameter K is a positive number adjusted for different paths. Then we can have: 
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where const is a constant, which can be calculated using the reference inclinations and 

initial positions as follows: 
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The equation of the whole curve is sum of all piecewise curves of y(x). The curves y(x) are 

computed from laser data at each time for online path planning. The proposed path 

provides smooth transition from initial to final conditions without any abrupt changes in 
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the heading angle of the robot. Several experimental results from row following and rut 

following tests are used in order to verify the equations and evaluate the value of the 

parameter K. 

 
Fig. 5-4: Lines generated by Hough transform (dash lines) are used as reference lines for generating smooth 

curve (solid curve) for the robot to track. Initial position: (x0, y0). 

 
Fig. 5-5: Application of the curve fitting technique for path planning. Lines generated by Hough transform 

(dash lines) are used to create piecewise smooth path for the robot to follow. 

One sample of a curve generated for path planning and row following is illustrated in Fig. 5-

5.  
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5.4. Path following control of the robot 

This section describes in detail our proposed method for path following control of the 

robot for rut and proximity-following actions. First, general kinematic model of the four 

wheel drive AGV is giving then a control law applied for the rut following and the 

proximity-following is presented.  

 
Fig. 5-6: Geometric configuration of the mobile robot 

5.4.1. Kinematics of the robot 

The AGV used for the experiments is a four-wheel-drive vehicle (having a 4x4 differential 

drive system) actuated by four motors, one motor drives each wheel. But for control 

applications, the wheels on the same side (left or right) are driven with the same velocity 

(meaning the wheels on the same side rotate with the same speed). The wheels are 

equipped with encoders. The schematic figure of the AGV is shown in Fig. 5-6. In this figure, 

T is the width of the mobile robot and r is the radius of its wheels. XI – YI is inertial 

coordinate system and ϕ is the heading angle of the robot; xr - yr is the local coordinate 

system which is fixed to the center of the mobile robot. It is in the middle between the right 
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and left rear wheels of the robot. The center of mass of the robot is C.G. as shown in Fig. 5-6. 

The distance from xr axis to the C.G. is c. The kinematic inputs that drive the robot and affect 

its speed and direction of motion are the right and the left wheels’ speeds. The vector q 

describes the configuration (position and orientation) of the robot at any time: 

 Tyxq   (9) 

x , y are the coordinates of the robot (point o) in the inertial frame. If the linear speed and 

angular velocity of the robot are v and ω, respectively, assuming no-slip on wheels, the 

velocity components can be written as: 
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The kinematic model of the robot can be written as follows: 
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(11) 

where q  is time derivative of configuration q, and  Tvu   is the control input given to 

the robot for navigation. Angular and linear velocity of the robot can be written in terms of 

linear velocities of the right and the left wheel centers (vr, vl): 

T

vv lr 
,        2

lr vv
v


  (12) 

 

5.4.2. Path following control  

This section describes in detail the path following controller designed for row following 

and proximity-following systems. The robot and the paths are modeled as illustrated in Fig. 
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5-7. The desired trajectory for the robot in the inertial coordinate system is defined as 

following:  
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)(
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The lateral no-slip condition states that the lateral component of the velocity of midpoint of 

front axle is zero and also, interaction forces between tires and the floor do not exceed 

maximum allowable static friction. This condition is described as follows: 

0cossin )()(   dd yx   (14) 

⇒   


























)()(

)(

)(
arctan)(

tt

tx

ty
t

dd

d

d

d











 
(15) 

The change in the heading angle of the robot is determined using following equation: 

    121212 ,arctan xxyy  
 

(16) 

⇒       12

 

(17) 

where (x1, y1, ϕ1) and (x2, y2, ϕ2) are the pose (position and orientation) of the robot at time 

t1 and t2, respectively. The goal is to control the robot to follow the desired trajectory given 

in Eq. (13). The error equations are defined as the difference between the desired and the 

actual values:  

     
 



d

ddd zzyyxxe
222

 (18) 

The term e is indicating the position error, and θ is the error in heading angle of the robot. 

Our goal is to control the heading angle of the robot, ϕ, in a way to minimize θ (given in Eq. 

(18)). 
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Fig. 5-7: General model of the robot for path following 

The next step is to find control inputs to minimize the tracking errors in Eq. (18). The 

kinematics control laws used in this research were developed using techniques described 

in [21]. The developed controller is capable of solving the position stabilization, and path 

following, problems simultaneously. As a result the robot is asymptotically driven to an 

arbitrarily small neighborhood of the desired position, path, or trajectory. Control 

parameters are then tuned to assure that physical constraints are satisfied. The linear 

velocity of the robot is chosen as: 
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where k1 and k2 are the controller parameters which control the response; ke and kr are 

defined as: 

)2cos(  ek
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where ε is a small perturbance to avoid a discontinuity in the response. The optimized 

control law governing rotational velocity is given by: 
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dk   2)tanh(.3  (23) 

where k3 is a positive scalar gain to control the angular response of the controller. 

Initial values of v and ω obtained from equations (19) and (23) are rarely performing well 

for the row following system. To solve these problems the dynamic extensions [22] are 

defined as follow: 

  vvvkv av
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The values va and ωa are the measured velocity states of the robot. The states rv  and r are 

the control commands sent to the robot. These new states are introduced to decline steady 

state error and improve boundedness. The extensions perform as low pass filters, which 

improve the controller response in the presence of noisy state feedback. The gains kv and 

kω are used to control the response of the dynamic extension. The variables v and ω are the 

outputs from equations (19) and (23). By modeling the system as a discrete one, the 

control commands rv  and r are calculated from following equations: 
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All tests (in both simulations and experiments) are performed with assumption of zero 

initial conditions. After various simulations and testing of the controller system, the 

controller parameters are chosen. The controller parameters are properly tuned for the 

navigation system in order to follow the desired path to achieve the desired performance. 

The experiments are performed with the following values chosen for the controller 
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parameters: k2= 0.02 m, ε= 0.003 m, k1= 0.85, k3= 0.3, and kv= kω= 3.0. The maximum 

reference velocity of the robot is 4m/s, and the maximum robot acceleration is 1m/s2. 

Initial and final velocities of the AGV are zero, with a linear ramp function to a constant 

velocity. 

5.5. Negative obstacle detection behavior 

One of challenges in autonomous navigation of the robot in farm field is existence of 

negative obstacles (depression of the ground as shown in Fig. 5-8) that if traversed by the 

robot, would be a danger to the robot because they could cause roll-over, tip-over, or high-

centering. Usually ditches that are larger than the diameter of the wheel of the robot can 

cause damage to the robot. Hence, we introduced a new robust method for negative 

obstacle detection using 3D laser data. 

 
Fig. 5-8: Sample of negative obstacles in off-road terrain  

  
Fig. 5-9: Geometry of negative obstacle (ditch) detection  
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Schematic of a negative obstacle is shown in Fig. 5-9. The width and the height of the 

obstacle are “W” and “h”, respectively; “H” is the height of LRF from the ground. The 3D 

laser range finder has α=180 degree of horizontal view (yaw angle) and vertical range of 

view (pitch angle θmin≤ θ ≤θmax). Dmin, Dmax and d are laser readings at angles θmin, θmax , and 

θ respectively. Laser readings over flat ground level (when there is no positive or negative 

obstacle) will be computed as following: 

 sin
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where “Dθ” is laser reading on ground level at pitch angle θ, and α is the azimuth (yaw) 

angle in the plane view of LRF. By using the following equations, both positive and negative 

obstacles can be detected: 
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where “dθ” is the laser reading at angle θ, and L is the size of passable (small) obstacles (L is 

threshold length for obstacle detection action to kick in).   

5.6. Experiments and results 

In this section, the experimental evaluations of the proposed navigation system in various 

setups are presented. All experiments are conducted on the four wheel drive AGV in farm 

fields in different trials. The AGV, the tilting laser range finder (LRF), and the global 

positioning system, RTK-DGPS, used as experimental platform are depicted in Fig. 5-10. 

First, the navigation algorithm was evaluated to recognize and avoid different holes 

appeared on the way of the robot. Then proximity-following tests, which included the rows 

with undefined shapes were conducted. Also, the performance of the new navigation 

technique was tested to detect and follow different ruts (S-shape ruts, broken ruts, and 

shallow ruts). Finally, some tests were performed to validate the hole detection, hole 

avoidance and proximity-following algorithms altogether.   

 
(a) 

 
(b) 

Fig. 5-10: Experimental platform: (a): 4x4 differential drive AGV, tilting laser range finder for obstacle 
detection, and (b): global positioning system RTK-DGPS for localization 

 

Rover GPS

Tilting laser

AGV

IMU

Communicating 

radio (PDL) base



142 
 

5.6.1. Negative obstacle detection and avoidance 

Negative obstacles such as holes, gaps and ground depression are inherent parts of off-road 

terrains and farm fields. Therefore the performance of the proposed navigation strategy 

was tested in these cases. We conducted experiments on various types of holes which were 

placed on the path of AGV. Results of hole detection and avoidance tests are displayed in 

Figs. 5-11 to 5-20. Tests were conducted on holes with different shapes and sizes. The 

results of all these experiments showed that the robot managed to accurately avoid and 

pass all holes appeared on its way.  

In the first scenario, the navigation strategy is utilized for guiding the robot from a start 

position to a user-specified goal point, while avoiding encountered negative or positive 

obstacles. The goal position is chosen approximately 11 meters in front of the robot, 

measured on a straight line. Directly in between the start and goal position, there is a hole 

with length, width and depth of 0.5m ⨯2m ⨯0.8 m respectively as seen in Fig. 5-11. The 

robot begins from the start point moving toward the goal point until it detects the hole; 

then the robot turns to follow the hole’s boundaries and avoid entering the hole. Once AGV 

passes the hole, it travels toward the goal position. Fig. 5-11 demonstrates snapshots of the 

actual robot navigation in point-to-point motion (moving directly from start point (*) to 

goal point (⍟)) while avoiding a hole in the first scenario. Fig. 5-12 shows the path 

traversed by the robot (AGV) from its start position until it has autonomously reached the 

specified goal point, using the proposed navigation strategy. 
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Fig. 5-11: Scenario 1: Snapshots of the robot navigation in point-to-point motion, moving directly from the 

start point (*), left image, to the goal point (⍟) while avoiding a hole. The actual path of the robot is shown in 
black dash-dotted line and the direct path from (*) to the (⍟) is depicted in white dash line. Right image 

shows close up view of the hole. 

 
Fig. 5-12: Scenario 1: Performance of the navigation strategy in the presence of a narrow hole on the way of 

the robot  

In the second scenario, the same hole as in scenario 1 is used but the robot is approached in 

different direction with respect to the hole, as seen in Fig. 5-13. In this case, the goal 

position is chosen approximately 7 meters in front of the robot, measured on a straight line 

from start point. As the robot navigated toward the goal, it detected the hole and followed 

the hole’s boundaries and continued its way toward goal point on a straight path. 

Snapshots of the actual robot run in point-to-point motion while avoiding the hole in 

scenario 2 is depicted in Fig. 5-13 and Fig. 5-14. 
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Fig. 5-13: Scenario 2: Snapshots of the robot navigation in point-to-point motion, from the start point (*), left 
image, to the goal point (⍟) while avoiding a hole. The actual path of the robot is shown in black dash-dotted 
line and the direct path from (*) to the (⍟) is depicted in white dash line. Right image shows close up view of 

the hole. 

 
Fig. 5-14: Scenario 2: Performance of the navigation strategy in the presence of a wide hole on the way of the 

robot  

The third scenario demonstrates the performance of the proposed strategy to navigate the 

robot in passing a deep rectangular hole. Directly in between the start and goal position, 

there is a hole with length, width and depth of 0.6 m ⨯ 0.5 m ⨯ 0.6 m respectively. 

Snapshots of the actual robot run in point-to-point motion while avoiding the hole in 

scenario 3 is depicted in Fig. 5-15. The robot reached the goal position successfully as its 

path is depicted in Fig. 5-16. 

In the next two scenarios, two very wide natural ground depressions, which are unsafe for 

the robot to traverse them, are used to verify the performance of the proposed navigation 

method to guide the robot when confronting big holes. In these two situations, there are big 

and relatively deep holes between the start and specified goal positions on the specified 
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path of the robot. Theses cavities have unspecified shapes with approximate length, width 

and depth of 7 m ⨯2.5 m ⨯1 m and 3 m ⨯4 m ⨯1 m for scenarios 4 and 5, respectively, as 

seen in Figs. 5-17 and 5-19. As illustrated in Figs. 5-18 and 5-20, the robot reached the goal 

position successfully avoiding entry into the very wide holes. 

 
Fig. 5-15: Scenario 3Snapshots of the robot navigation in point-to-point motion, going in a straight line from 

the start point (*), left image, to the goal point (⍟) while avoiding a hole. The actual path of the robot is 
shown in dash-dotted line and the direct path from (*) to the (⍟) is depicted in dash line. Right image shows 

more detail of the hole. 

 
Fig. 5-16: Scenario 3: Performance of the navigation strategy in the presence of a deep hole on the way of the 

robot  

 
Fig. 5-17: Scenario 4: Snapshots of the robot navigation in point-to-point motion, when moving directly from 

the start point (*), left image, to the goal point (⍟) while avoiding a very wide hole. The actual path of the 
robot is shown in black dash-dotted line and the straight path from (*) to the (⍟) is depicted in white dash 

line.  
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Fig. 5-18: Scenario 4: Performance of the navigation strategy in the presence of a very wide hole on the way of 

the robot  

 

 
Fig. 5-19: Scenario 5: Snapshots of the robot navigation in point-to-point motion, moving in a straight line 

from the start point (*), left image, to the goal point (⍟) while avoiding a very big hole. The actual path of the 
robot is shown in black dash-dotted line and the straight path from (*) to the (⍟) is depicted in white dash 

line.  

 
Fig. 5-20: Scenario 5: Performance of the navigation strategy in the presence of a very big hole on the way of 

AGV  

The results of hole detection and avoidance tests are summarized in Table 5-I.  
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Table 5-I: Hole detection and avoidance experimental results in outdoor setting. Approximate dimensions of 
holes are: length⨯ width⨯ depth measured in meter.  

Tests 
Hole dimension in 

meters: (L⨯ W⨯ D) 

Number 

of trials 

Success 

rate (%) 

Scenario 1 2⨯0.5⨯0.8 3 100 

Scenario 2 0.5⨯2⨯0.8 3 100 

Scenario 3 0.6⨯ 0.5⨯0.6 2 100 

Scenario 4 7 ⨯2.5 ⨯1  2 100 

Scenario 5 3 ⨯4 ⨯1 2 100 

 

5.6.2. Rut detection and following  

A rut is a long deep track formed by the repeated passage of wheeled vehicles in soft 

terrains such as mud, sand, and snow. Fig. 5-23 shows a typical rut made by the passage of 

manned vehicles in a farm field. In this section, capabilities of the proposed navigation 

system to follow different shapes of ruts including very shallow and curvy ones are 

verified. In addition these tests confirm that the navigation method works well regardless 

of initial posture (position and heading angle) of the robot with respect to the ruts. The 

snapshots from the actual run of the robot tracking a curvy rut is depicted in Fig. 5-21. Both 

the actual and the desired paths of the robot are presented in Fig. 5-22; this figure shows 

that the proposed method is able to detect and track curvy ruts.  
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Fig. 5-21: Scenario 6: Snapshots of the robot following a curvy rut in the farm field [19].  

 
Fig. 5-22: Scenario 6: Rut following scenario with a curvy rut: rut (desired path) and actual path traveled by 

the robot. 
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Fig. 5-23: Scenario 7: Snapshots of the robot following a shallow rut in the farm field [19].  

 
Fig. 5-24: Scenario 7: Rut following scenario of shallow ruts: desired path is middle of the left and right ends 

of the ruts and actual path is solid line. 
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from the beginning of the row; it detected and tracked the row while retained an offset 

distance of equal to 1m from the row. The desired and actual paths of the robot are 

depicted in Fig. 5-26. The performance and accuracy of the navigation strategy in 

proximity-following test is displayed in Fig. 5-27; it is seen that the distance from the row 

of bush was not constant. This distance changed from a min 0.8 m and max 1.17 m with an 

average of 0.97 m. This test demonstrates that the proposed navigation strategy is able to 

effectively detect and track the crop rows and at the same time maintaining a given 

distance from the row. 

 
Fig. 5-25: Scenario 8: Snapshots of the robot in a proximity-following test in the farm field [19].  

 
Fig. 5-26: Scenario 8: Proximity-following scenario: the row of bushes and the actual path traveled by the 
robot are shown in dashed * and solid lines respectively. The robot was to keep a distance of 1m from the 

row. 
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Fig. 5-27: Scenario 8: Performance of navigation strategy in proximity-following experiment  

5.6.4. Proximity-following and hole avoidance 

These experiments serve two purposes: first, they are performed to show that the system is 

capable of detecting and tracking row of bushes while retaining the desired proximity 

distance (f =1m) from the row. The second, these tests are used to verify the performance 

of the navigation strategy to recognize and avoid any holes and ground depressions that 

appear on the way of the robot simultaneously. The results of these experiments are shown 

in Figs. 5-28 to 5-30. Fig. 5-28 displays a set of snapshots from the actual robot run in 

scenario 9. There were two holes with approximate length, width and depth of 0.5m⨯ 

0.6m⨯ 0.5m respectively on the planned path of the robot. The desired and actual paths of 

the robot following the row of bushes while avoiding holes are depicted in Fig. 5-29.  

 
Fig. 5-28: Scenario 9: Snapshots of the robot in proximity-following and hole avoidance test in a farm field 

[19].  
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Fig. 5-29: Scenario 9: Experimental results for proximity-following in the presence of two holes on the path of 

robot: desired and actual paths of the robot are depicted as dashed * and solid lines respectively; holes are 
shown as solid circles. 

 

Performance of the navigation strategy in scenario 10 is depicted in Fig. 5-30; there were 

two given holes with approximate length, width and depth of 0.7m⨯ 0.7m⨯ 0.7m 

respectively on the way of the robot. The desired and actual paths of the robot tracking the 

rows of bushes while avoiding holes are depicted here. As illustrated in this test, the robot 

is capable of following two parallel rows of bushes and avoiding encountered obstacles 

(holes here).  
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Fig. 5-30: Scenario 10: Experimental results for proximity-following of two parallel rows of bushes in the 

presence of two negative obstacles on the path of robot: desired and actual paths of the robot are depicted in 
dashed * and solid lines respectively. 

 

5.7. Conclusion and future work 

In this article a navigation strategy for mobile robots in outdoor settings was proposed. The 

main advantages of this technique are: (i) accurately identifies negative (below ground 

holes) and positive obstacles (over ground level); (ii) creates a flexible and smooth path 

using a proposed curve fitting technique for path planning, row following and rut following 

in outdoor settings such as farm fields; (iii) precisely detects and follows rows of crops or 

bushes. The proposed approach was experimentally evaluated in different outdoor terrains 

and in diverse situations. The navigation system is not restricted to a specific crop or row 

of bushes and it was tested on diverse scenarios. A 3D laser range finder was employed to 

perceive the environment, detect the rows of bushes, and ruts and also guided the robot to 

its desired goal points.  
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road terrains, are detected and avoided in real-time. By adjusting vertical angular 

resolution of the laser, the obstacle detection algorithm was improved to detect negative 

obstacles at long ranges continuously. It means that the laser data were analyzed in both 

downward and upward tilting of the laser scanner for detecting negative obstacles at a safe 

distance from the robot.  

The other novelty of the suggested navigation technique is that in rut and proximity-

following approaches, a curve fitting method is applied to the identified lines from Hough 

transform to create a smooth model of the ruts/plant rows for the robot to follow. Using 

Hough transform for row detection using laser data yields in many scattered short lines. If 

the robot follows these Hough lines, there would be abrupt changes in the heading angle of 

the robot which results in waste of energy and time. Thus, employing the proposed curve 

fitting algorithm generates a smooth model of the crop rows and consequently smooth 

paths for the robot to follow, hence both the power consumption of the robot and time of 

execution will reduce substantially. 

The field tests reported in this paper demonstrated that the designed navigation strategy is 

capable of autonomously traversing an entire farm field for spraying, mowing and seeding 

with no need of prior information from the settings which results in increasing farming 

efficiency in the future. The performance of the navigation strategy in proximity-following 

test showed that the distance from the row of bush was not constant. This distance changed 

from a min 0.8 m and max 1.17 m with an average of 0.97 m. The ability of the proposed 

navigation strategy to effectively detect and track the crop rows and at the same time 

maintaining a given distance from the row was validated. 
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Future work may involve improvement of the navigation strategy in handling holes and 

negative obstacles to navigate faster and more efficient. For example, if the width of a hole 

is less than a threshold value then the robot can pass over the hole safely without trying to 

avoid it. 

Furthermore, as a possible extension, the applications of the proposed navigation strategy 

is planned to be used in towing, seeding, and plowing tasks in farm fields. It is planned to 

develop the current system to consider effect of interaction forces of towing till and soil on 

robot navigation in seeding as well. 

Acknowledgment: of CNH and University of Saskatchewan department of soil science for 
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6.1. Summary and Conclusion  

In conclusion, this research was focused on introducing an autonomous navigation strategy 

for a mobile robot in outdoor terrains. The proposed navigation approach was composed of 

different modules to deal with diverse situations; sensors data processing, environment 

mapping, obstacle detection, obstacle avoidance, goal seeking, path planning, and path 

following were the main modules in the navigation strategy.  

In Chapter 2, a new fuzzy-logic based (FLB) method was developed for real-time point-to-

point motion planning of a mobile robot in unstructured environment. In this approach, 

sonar sensors were utilized to perceive the environment and detect obstacles. This method 

required no prior knowledge of the environment (such as a map) for navigation. Adjusting 

a safety margin enabled the navigation system to cope with different dynamic and 

unforeseen situations. The proposed method was validated using simulation and 

experimental tests on PowerBot mobile robot (shown in Fig. 1-1a). The kinematics model 

of the PowerBot was developed in Chapter 2. The results of this chapter were compared 

with vector field histogram and preference-based fuzzy approaches; the comparison 

revealed that our proposed approach produced shorter and smoother paths toward the 

goal in almost all of the test cases examined which was an advantage of this method. The 

suggested fuzzy method was applied in the rest of the chapters for mobile robot navigation 

in point-to-point motion and path following studies, as well.  

In chapter 3, a novel human-inspired method (HIM) was introduced for mobile robot 

navigation. HIM was inspired by human behavior in navigation from one point to a 

specified goal point. HIM endowed the robot a human-like ability for reasoning about the 
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situations to reach a predefined goal point while avoiding any static or unforeseen 

obstacles; imitating human behavior in navigation enabled the robot to avoid to get 

trapped in deadlocks and impassable conditions which made the proposed strategy 

efficient and effective. In this chapter, FLB and HIM were applied for point-to-point motion 

planning of the robot PowerBot in the presence of static and moving obstacles. Distance-

based sensory data from a laser range-finder were used for navigation of the PowerBot in 

unknown and cluttered settings. Experimental evaluation of HIM indicated that HIM was 

capable of creating smooth (no oscillations) paths for safely navigating the robot, and 

coping with fluctuating and imprecise sensory data from uncertain environment.  

             

                                             (a)                                                                                        (b) 

Fig. 1-1: (a) PowerBot, (b) Grizzly mobile robots used for simulation and experimental tests 

In Chapter 4, path following and row following navigation systems for mobile robots in 

farm fields were presented. Hough transform was developed for recognition of plant rows 

from 3D laser range finder data. This technique is used for autonomous spraying of crops 

and plant rows. In addition, this chapter presented experimental evaluation of the 
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navigation strategy on a Grizzly robot (shown in Fig. 1-1b) in variety of tests such as point-

to-point motion, row-detection and path following tests.  

In Chapter 5, the row following navigation system, which was introduced in Chapter 4, has 

been extended for rut following and proximity-following missions. In rut following system, 

the robot kept an existing rut in middle of the robot’s wheels when possible; and in 

proximity-following, the robot followed the plant row while keeping a predefined 

proximity distance with the row. A new curve fitting method was introduced for producing 

a piecewise smooth path for the robot to follow. This technique removed abrupt changes in 

the heading angle of the robot in path following. Also in this chapter, a new method for 

detection of negative obstacles, such as holes and ground depressions, was introduced and 

experimentally tested. Experimental evaluation on Grizzly robot showed that the proposed 

navigation strategy was capable of detecting and following plant rows, and ruts in different 

scenarios. 

6.2. Contributions of the research 

The contributions of the candidate’s research cover the objectives defined for her thesis. 

The major contributions of this thesis are: 

1) Developed a new human-inspired method (HIM) for point-to-point navigation and 

control of a wheeled mobile robot in outdoor and unstructured settings.  

2) Path following navigation of a wheeled mobile robot in farm setting.  

3) Developed a new method for negative obstacle detection and avoidance, such as 

holes, ditches and ground depressions.  
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4) Developed strategies for navigation of a mobile robot in proximity-following and rut 

following in farm fields. A rut is a long deep track formed by the repeated passage of 

wheeled vehicles in soft terrains such as mud, sand, and snow.  

The major contributions of this thesis are explained in more detail as follow:  

1) The first objective was covered by introducing a fuzzy-logic based (FLB) approach 

that used sonar data for real-time navigation of a mobile robot in point-to-point 

motion in an unknown farm setting. This contribution was discussed in Chapter 2. 

The major advantages of the proposed approach over existing methods were that: 

i.  The number of fuzzy logic rules used for navigation of the robot was less 

than other techniques; these rules were simple and easily applicable for real-

time navigation; this made a big reduction in execution time.  

ii. FLB approach required no prior knowledge of the environment such as maps 

or landmarks and by adjusting a safety margin, the proposed approach was 

safely and efficiently able to cope with uncertainty and imprecision in 

sensory data in dynamic and unforeseen conditions.  

iii. The simulation and experimental results revealed that FLB approach in 

comparison with vector field histogram and preference-based fuzzy 

approaches produced shorter and smoother paths toward a goal in almost all 

of the test cases examined.  

2) In chapter 3, a new human-inspired method (HIM) was introduced for mobile robot 

navigation in outdoor settings. HIM, was designed to imitate behavior of a wise 
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human in navigation to a predefined goal point. The major advantages of HIM over 

existing methods are that:  

i. HIM gave the robot a human-like ability of reasoning about the environment 

which provided uncertainty management ability for the system. HIM enabled 

the robot to deal with imprecise and uncertain information, therefore the 

navigation system handled the error from laser readings and GPS data.  

ii. HIM has a modular structure which makes it easy to add new modules that 

develop additional behaviors to the navigation system. This makes the 

proposed strategy easily extensible.  

iii. The proposed human-inspired navigation strategy is computationally fast 

and efficient, since it uses very simple and easily applicable rules for real-

time robot navigation. 

iv. The local minimum problem which is also called the deadlock, or dead end 

problem was solved in HIM, since HIM specifies the best path ahead, 

according to the situation of encountered obstacles, preventing the robot to 

get trapped in deadlock and impassable conditions.  

v. Compared with FLB, the navigation time, energy consumption and the path 

length are less in HIM. This progress is mainly because of human-like 

performance of HIM which navigates the robot to take an obstacle-free path 

from the start point with no need to go around the obstacles during the 

navigation.  
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3) In Chapter 4, a navigation strategy was introduced for path following of a wheeled 

mobile robot in farm fields. This chapter gave the results related to the second 

objective of this research. The main contributions of this chapter are: 

i. The proposed navigation system is robust to weather conditions and time of 

day, as we used an active sensor (3D laser range-finder), which does not 

depend on ambient illumination and can work at night time.  

ii. In this chapter, Hough transform algorithm was developed for row-detection 

in farm field using 3D laser data.  

iii. The other novelty of the suggested navigation strategy is that in row-

detection module, the ends of the plant rows were identified and the robot 

turned to the next plant row autonomously. Therefore the designed system is 

capable of autonomously traversing entire farm for spraying, mowing and 

seeding. 

iv. Experimental evaluations of the navigation strategy in different scenarios 

such as point-to-point motion, row-detection and row tracking tasks were 

performed in farm fields. 

4) In Chapter 5, a navigation system was developed for proximity-following and rut 

following in farm fields. The contents of this chapter were related to the objectives 3 

and 4. The novelties of this chapter are summarized as following: 

i. A new approach for robust recognition of plant rows based on the modified 

Hough transform was proposed.  
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ii. A new curve fitting technique for row detection and following was presented. 

The proposed method generates piecewise smooth path for the robot to 

follow and it does not have the shortages of Hough transform in line 

recognition.  

iii. Other advantage of the proposed strategy over existing methods is that 

negative obstacles such as holes, ditches and ground depressions, which are 

inherent part of the off-road terrains, were detected and avoided in real-time. 

This contribution was explained in detail in Chapter 5.  

iv. The capabilities of the suggested navigation system in row detection, row, rut 

and proximity following were evaluated in different test situations in farm 

fields. Experiments were conducted on Grizzly robot and showed that the 

proposed strategy was able to handle different scenarios such as: diverse 

obstacle configuration in point-to-point motion tests; S-shape, curvy and 

unknown shapes of path following tests; and even navigation on hilly and 

uneven surfaces. 

These contributions resulted in one published conference paper which is Chapter 2, and 

three submitted journal papers which are Chapters 3, 4 and 5 of this thesis.  

 

6.3. Future possible works 

The extension of the presented research can be in the theoretical and the experimental 

parts.  
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1. Future work will involve the improvement of the navigation strategy in handling 

holes and negative obstacles more wisely. For example, if the width of a hole is less 

than a threshold value then the robot can pass over the hole safely without turning 

around it. 

2. In addition, we would like to enhance the rut following approach to manage the 

scenarios with more than one rut which makes the robot to place the wheels in the 

ruts and move in the ruts. This can reduce lateral slippage of the robot and improve 

the vehicle energy efficiency by reducing the energy wasted on compacting the 

ground, especially in off-road terrains navigation. 

3. Furthermore, as a possible extension, the applications of the proposed navigation 

strategy can be extended in towing and plowing tasks in farm fields. It is planned to 

develop the current system to consider effect of interaction forces of towing till and 

soil on robot navigation as well. 

4. Currently, our navigation system is not able to follow a desired profile for the 

velocity of the robot. Velocity and stability control of the robot is another part of 

our future research. 

5. Finally, the dynamic model of the mobile robot can be used for the control and 

navigation of AGV in both point-to-point motion and trajectory tracking actions. 

Therefore, by designing a controller based on dynamic model of the robot, the 

stability and slippage of AGV and the forces acting on it will be considered; these 

can be used for the following future research.  
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Appendix  

 

Abstract of the candidate’s publications on topics that are not directly related 

to this thesis, but related in broad robotics research are presented here. The 

full papers are available online, or upon request. These publications are listed 

as follow:  

1. Vakil M., Sharbati E., Vakil A., Heidari F., Fotouhi R. “Vibration analysis of a Timoshenko 
beam on a moving base”, Journal of Vibration and Control, DOI: 10.1177/ 
1077546313492808, 2013.  

2. Heidari F., Vakil M., Fotouhi R., Nikiforuk P. N., “Truncation error of assumed mode 
modeling for flexible-link manipulators”, Journal of Mechanical Engineering Science, 
226 (11), 2627-2644, 2012.  

3. Vakil M., Fotouhi R., Nikiforuk P. N., Heidari, F. “A study on the free vibration of flexible-
link flexible-joint manipulators”, Journal of Mechanical Engineering Science, 225(6), 
1361-1371, 2011.  

4. Heidari, F., Vakil M., Fotouhi R., “On the Accuracy of Assumed Mode Modeling For 
Flexible Manipulators”, ASME 2011 International Design Engineering Technical 
Conferences, Washington, DC, USA, August 29-31, 2011. 
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Truncation errors of assumed shape
modeling for flexible-link manipulators

Fatemeh Heidari, Mohammad Vakil, Reza Fotouhi
and Peter N Nikiforuk

Abstract

The assumed mode shape method has been widely used to derive finite degree-of-freedom dynamic models for flexible-

link manipulators, which theoretically have infinite degree-of-freedom dynamics. For a single flexible manipulator, this

approximation changes locations of the zeros of transfer functions between base torque and end-effector displacement.

The change in locations of zeros considerably affects accuracy of the model and therefore the performance of model-

based controllers. This article presents a comprehensive study on the change in locations of zeros due to the truncation

associated with assumed mode shape method. It is shown that the locations of approximate zeros depend on four non-

dimensional parameters, whereas the locations of analytical zeros depend on only two non-dimensional parameters.

Approximate zeros are obtained from assumed mode shape method models, whereas analytical zeros are derived from

infinite order models. A thorough study of the differences between approximate zeros and analytical zeros versus the

number of mode shapes as well as all the physical parameters is performed. Moreover, guidelines are provided to select the

numbers of mode shapes such that the approximate zeros become close to the analytical zeros. These guidelines can easily

be used by control and modeling engineers, making them valuable for modeling and control of flexible robot manipulators.

Keywords

Flexible robot manipulator, assumed mode shape modeling
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Introduction

The governing dynamic equations of the single flexible
link manipulator (SFLM), shown in Figure 1, are infi-
nite dimensional.1 However, truncated dynamic models
using the assumed mode shape method (AMM) are
widely used for modeling of flexible robot manipula-
tors.2,3 The AMM is of particular interest for analysis
of flexible manipulators4–6 as it changes an infinite
dimensional model into a finite dimensional one.
However, AMM is an approximate truncated dynamic
model as it eliminates the mode shapes that are out of
the bandwidth of interest.7 This approximation affects
the accuracy of the dynamic model.8 Since the perfor-
mance of the controllers designed based on the AMM
depends on the accuracy of the model,7,9 the precision
of the approximated AMM model is important.

For the SFLM shown in Figure 1, the transfer func-
tion between the base torque and the end-effector dis-
placement y can be obtained adopting the AMM
approximation10 or using the infinite dimensional
model.11 These transfer functions have zeros and

poles that are, respectively, the roots of the numerator
and denominator of the transfer function.10 The trans-
fer function derived based on the infinite dimensional
model well represents the behavior of an experimental
setup, and hence its poles and zeros are more accurate
than those of the AMM. If exact modes of vibration are
employed in the AMM,12 the locations of the poles will
be as those associated with the infinite dimensional
model. However, AMM can considerably change the
locations of zeros.8 As an example, the zeros of an
SFLM which is modeled by an infinite mode of vibra-
tion must all be real,11 but when AMM is adopted,
these zeros can be imaginary as well.10
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Abstract: In this article, explicit expressions for the frequency equation, mode shapes, and
orthogonality of the mode shapes of a Single Flexible-link Flexible-joint manipulator (SFF) are
presented. These explicit expressions are derived in terms of non-dimensional parameters which
make them suitable for a sensitivity study; sensitivity study addresses the degree of dependence
of the system’s characteristics to each of the parameters. The SFF carries a payload which has
both mass and mass moment of inertia. Hence, the closed-form expressions incorporate the
effect of payload mass and its mass moment of inertia, that is, the payload mass and its size.
To check the accuracy of the derived analytical expressions, the results from these analytical
expressions were compared with those obtained from the finite element method. These com-
parisons showed excellent agreement. By using the closed-form frequency equation presented in
this article, a study on the changes in the natural frequencies due to the changes in the joint
stiffness is performed. An upper limit for the joint stiffness of a SFF is established such that for the
joint stiffness above this limit, the natural frequencies of a SFF are very close to those of its
flexible-link rigid-joint counterpart. Therefore, the value of this limit can be used to distinguish
a SFF from its flexible-link rigid-joint manipulator counterpart. The findings presented in this
article enhance the accuracy and time-efficiency of the dynamic modeling of flexible-link flex-
ible-joint manipulators. These findings also improve the performance of model-based control-
lers, as the more accurate the dynamic model, the better the performance of the model-based
controllers.

Keywords: flexible-link flexible-joint manipulator, natural frequency, mode shapes

1 INTRODUCTION

The dynamic model derivation of flexible-link flex-

ible-joint manipulators is the first step before their

model-based research, such as model-based control-

ler research in [1, 2]. The dynamic model of manipu-

lators with links’ flexibility, which is preferred for the

controller analysis, is almost always derived by the

assumed mode shape method [3, 4]. In the assumed

mode shape method, each link’s lateral deflection is

represented by a series of mode shapes multiplied by

time-varying weight functions. The Closer the

selected mode shapes to the real mode shapes of

the system, the more accurate the assumed mode

shape modeling [4] and more precise the dynamic

analysis [5]. This article presents the exact closed-

form mode shapes of a Single Flexible-link Flexible-

joint manipulator (SFF) where these mode shapes

can be used for the precise dynamic modeling.

Consequently, a controller whose design is based on

this model will have a better performance in the

experimental verification [6].

While there are reports on the natural frequencies

and mode shapes of a SFF [7–10], these reports do not

present closed-form expressions for the natural fre-

quencies and mode shapes considering both the pay-

load mass and its mass moment of inertia. However,

closed-form expressions not only can be used as

benchmarks to validate the numerical analysis [11]
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Article

Vibration analysis of a Timoshenko beam
on a moving base

M Vakil1, E Sharbati1, A Vakil2, F Heidari1 and R Fotouhi1

Abstract

In this paper free vibration of a Timoshenko beam with a tip payload, which is mounted on a cart (referred to as TBC) is

studied. The cart (base) can only have lateral displacement and the tip payload has both mass and mass moment of inertia.

The center of mass of the payload does not coincide with the point where the beam connects to the payload. Therefore,

the tip of the beam is exposed to an extra bending moment due to the inertial force of the payload.

By employing Hamilton’s principle, the governing equations of motion and the associated boundary conditions for the

TBC are first derived and then transferred into dimensionless forms. By using these governing equations and their

associated boundary conditions, the closed-form frequency equation (characteristic equation) of the TBC is derived. This

closed-form frequency equation is validated both analytically and numerically. The closed-form expressions for the mode

shapes of the TBC and their orthogonality are also presented.

By using the closed-form characteristic equation, a sensitivity study is performed and the changes in the natural

frequencies versus changes in the physical parameters are investigated.

The results presented in this paper are valuable for precise dynamic modeling and model-based control of flexible mobile

manipulators; a flexible mobile manipulator is a flexible link manipulator with a moving base.

Keywords

Closed-form frequency equation, mode shapes, orthogonality, Timoshenko beam

1. Introduction

The behavioral analysis of flexible structures is an ever-
demanding research endeavor which must be imple-
mented for the proper design of components utilized
in machines, robots (Salarieh and Ghorashi, 2006), heli-
copter rotors, compressor blades (Ozgumus and Kaya,
2007), etc. These behavioral analyses can be done
numerically or analytically. Although analytical rela-
tions can be obtained for simple systems, numerical
analysis may be the only available option for complex
systems. Although analytical methods have practical
limitations, if they can be derived, they offer advantages
that (i) – can be used as a benchmark to verify the
numerical analysis (Oguamanam, 2003) and (ii) – can
be used for a sensitivity analysis (Vakil et al., 2011a).
In addition, the analytical (closed-form) expressions are
usually computationally efficient compared with the
numerical methods. Due to these advantages, there
are numerous studies on the derivation of closed-form
expressions for different flexible structures. Because
presenting a comprehensive literature review on all

these analytical studies is not the main aim of this
paper, the investigations which are more relevant are
summarized as follows:

The closed-form expressions for the (characteristic)
frequency equations of Euler-Bernoulli beams with
classical boundary conditions and elastic supports are
available in Rao (2004) and Karnovsky (2004). The
extensions of the results in Rao (2004) are presented
in Wiedemann (2007), where the natural frequencies
of an Euler-Bernoulli beam with large offset masses
mounted on elastic supports are reported. The changes
in the natural frequencies of an Euler-Bernoulli beam
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ABSTRACT 
Assumed mode shape method (AMM) has been widely used to 

derive finite degree-of-freedom (DOF) dynamic model for flexible link 

manipulators, which theoretically have infinite DOF dynamics. For 

single flexible manipulator, this approximation changes locations of 

the zeros of transfer function, between base torque and end-effector 

displacement. The change in locations of zeros considerably affects 

accuracy of the model and hence the performance of model-based 

controllers. 

This paper presents a comprehensive study on the change in 

location of zeros due to the truncation associated with AMM. It is 

shown that the locations of zeros of AMM model depend on four non-

dimensional parameters while the locations of the analytical model 

depend on only two non-dimensional parameters; AMM zeros are 

obtained from AMM model while analytical zeros derived from 

infinite order model. A thorough study on the differences between 

AMM zeros and analytical zeros versus number of mode shapes as 

well as all the physical parameters is performed. Moreover, guidelines 

are provided to select the numbers of mode shapes such that the AMM 

zeros become close to the analytical zeros. These guidelines can easily 

be used by control engineers and thus makes them valuable for 

modeling and control of flexible robot manipulators. 

 
KEYWORDS: flexible robot manipulator, assumed shape modeling  

INTRODUCTION 
The governing dynamic equations of a single flexible link 

manipulator (SFLM) shown in Fig. 1, are infinite dimensional [1]. 

However, truncated dynamic models using the assumed mode shape 

method (AMM), are widely used for modeling flexible robot 

manipulators [2,3]. In the AMM, the spatial deflection of the flexible 

link is representing by a summation of mode shapes which are 

multiplied by time varying weight functions. The AMM are of 

particular interest for analysis of flexible manipulators [4,5,6] as it 

changes an infinite dimensional model into a finite dimensional model. 

However, AMM is an approximate truncated dynamic model as it 

eliminates the mode shapes that lie out of the bandwidth of interest [7]. 

The approximation associated with the AMM affects the accuracy of 

the dynamic model [8]. Since the performance of the controllers 

designed based on the AMM depends on the accuracy of the model 

[7], the precision of the approximated AMM model is important.  

For a SFLM shown in Fig. 1, the transfer function between the 

base torque   and the end-effector displacement y can be obtained 

adopting the AMM approximation [9] or using the infinite dimensional 

model [10]. These transfer functions have zeros and poles, which are 

respectively the roots of the numerator and denominator of the transfer 

function [10].  The transfer function for a SFLM has right-hand-side 

(RHS) zeros in the domain S of the Laplace transform and thus has the 

non-minimum characteristic [11]. These RHS zeros are of critical 

importance as they limit the control bandwidth and deteriorate the 

trade-off between robustness and desirable control performance [12]. 

Furthermore, the locations of the (RHS) zeros considerably change the 

performance of the model-based controllers such as the inverse 

dynamic controller [13]. Hence a study in the accuracy of the AMM 

zeros is of crucial important. Although there are few reports on the 

difference between the AMM models and infinite dimensional model 

[7,14], there are no report on how the physical parameters and number 

of mode shapes can affect the accuracy of the AMM modeling.  More 

precisely, there is not report on the changes in the locations of AMM 

zeros and infinite dimensional model zeros versus number of mode 

shapes and the physical parameters of the SFLM. 

 
Fig. 1: Schematic of a slewing single flexible link manipulator, 

SFLM 
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