
Detecting Dissimilar Classes of Source Code

Defects

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Khalid Al Mustansir Billah

c©Khalid Al Mustansir Billah, August 2013. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree from the

University of Saskatchewan, I agree that the Libraries of this University may make it freely available for

inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is

understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not

be allowed without my written permission. It is also understood that due recognition shall be given to me

and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole or part should

be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Software maintenance accounts for the most part of the software development cost and efforts, with its

major activities focused on the detection, location, analysis and removal of defects present in the software.

Although software defects can be originated, and be present, at any phase of the software development life-

cycle, implementation (i.e., source code) contains more than three-fourths of the total defects. Due to the

diverse nature of the defects, their detection and analysis activities have to be carried out by equally diverse

tools, often necessitating the application of multiple tools for reasonable defect coverage that directly increases

maintenance overhead. Unified detection tools are known to combine different specialized techniques into a

single and massive core, resulting in operational difficulty and maintenance cost increment. The objective

of this research was to search for a technique that can detect dissimilar defects using a simplified model and

a single methodology, both of which should contribute in creating an easy-to-acquire solution. Following

this goal, a ‘Supervised Automation Framework’ named FlexTax was developed for semi-automatic defect

mapping and taxonomy generation, which was then applied on a large-scale real-world defect dataset to

generate a comprehensive Defect Taxonomy that was verified using machine learning classifiers and manual

verification. This Taxonomy, along with an extensive literature survey, was used for comprehension of the

properties of different classes of defects, and for developing Defect Similarity Metrics. The Taxonomy, and the

Similarity Metrics were then used to develop a defect detection model and associated techniques, collectively

named Symbolic Range Tuple Analysis, or SRTA. SRTA relies on Symbolic Analysis, Path Summarization

and Range Propagation to detect dissimilar classes of defects using a simplified set of operations. To verify

the effectiveness of the technique, SRTA was evaluated by processing multiple real-world open-source systems,

by direct comparison with three state-of-the-art tools, by a controlled experiment, by using an established

Benchmark, by comparison with other tools through secondary data, and by a large-scale fault-injection

experiment conducted using a Mutation-Injection Framework, which relied on the taxonomy developed earlier

for the definition of mutation rules. Experimental results confirmed SRTA’s practicality, generality, scalability

and accuracy, and proved SRTA’s applicability as a new Defect Detection Technique.

ii

Acknowledgements

My deepest gratitude is expressed towards my supervisor, Dr. Chanchal K. Roy, for his guidance, super-

vision and support that made this research possible.

Besides, I express my gratitude to Dr. Raymond Spiteri and Dr. Julita Vassileva for being in the

committee for the evaluation of this research, and to Dr. Ronald Bolton for examining the research as an

external examiner.

In addition, a special expression of gratitude goes to Xin Yi, for his implementation of the TXL rules

that made the recall measurement experiment possible under the Mutation-Injection framework.

I would like to extend my thanks to all staff of the Department of Computer Science, University of

Saskatchewan, for their support for the entire duration of this research in all dimensions possible.

A special mention goes to the members of the Software Research Lab, University of Saskatchewan, for their

role as the compassionate and ever helpful colleagues who often came up with casual solutions to problems

that seemed infeasible. I would like to mention Muhammad Asaduzzaman and Farouq Al-Omari for their

help in revising the draft.

And, as always, I am thankful to my mother for her constant support and encouragement.

iii

I dedicate this thesis to my mother, Naznin.

iv

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents v

List of Tables x

List of Figures xi

List of Abbreviations xii

1 Introduction 1
1.1 Motivation . 2
1.2 Research Overview . 3

1.2.1 Research Questions . 3
1.2.2 Problem Description and Solution Strategy . 4
1.2.3 Contribution of this Research . 6

1.3 Organization of this Dissertation . 7

2 Background 9
2.1 Terminology . 9

2.1.1 Defect . 9
2.1.2 System Qualities . 10
2.1.3 SRTA Specifics . 11

2.2 Research Methodology . 12
2.2.1 Literature Survey . 13
2.2.2 Problem Selection and Analysis . 15
2.2.3 Taxonomy Generation Framework and Taxonomy . 15
2.2.4 Model Generation and Analysis Technique Development 15
2.2.5 Experiment and Analysis . 15

2.3 Summary . 16

3 A Taxonomy of Defects and Defect Similarity 17
3.1 Chapter-specific Background . 17
3.2 Taxonomy and Taxonomy Structures . 18

3.2.1 Flat or Non-hierarchical Taxonomies . 18
3.2.2 Hierarchical Taxonomies . 18
3.2.3 Matrices . 18

3.3 The Trend of Defect Taxonomies . 19
3.4 Criteria for Developing a Taxonomy . 20

3.4.1 Desirable Properties . 20
3.4.2 Additional Properties . 20
3.4.3 Flexibility . 21
3.4.4 Extensibility . 21

3.5 Existing Taxonomies . 21
3.5.1 Taxonomies Focused on Specific Software . 22
3.5.2 Taxonomies Focused on Organizations and Processes 23

v

3.5.3 Taxonomies Focused on System Aspects . 24
3.5.4 Classification of Unusual Code Defects . 25
3.5.5 Other Taxonomies . 25
3.5.6 Prominent Issues with Present Taxonomies . 26

3.6 A Framework for Developing Extensible Defect Taxonomies 29
3.6.1 Development Objectives . 29
3.6.2 Formalization . 34
3.6.3 Procedure for Mapping Defects . 37

3.7 Case Study . 38
3.7.1 Experimental Setup . 38
3.7.2 Parameter Estimation . 39
3.7.3 A two-Layer Hierarchical Taxonomy . 39
3.7.4 Computation (C) . 40
3.7.5 Logic (L) . 42
3.7.6 Data, Interface and Input/Output(D) . 49
3.7.7 Synchronization (S) . 51

3.8 Evaluation of the Taxonomy . 52
3.8.1 Evaluation Directions . 52
3.8.2 Verification Using Machine Learning Classifiers . 53
3.8.3 Observations and Justifications . 56
3.8.4 Improvement on Human Effort . 58

3.9 Defect Similarity . 58
3.9.1 Similarity Coefficients . 59
3.9.2 Similarity in Defect Classes . 66

3.10 Answering the Research Question . 69
3.10.1 RQ5: Defect Similarity Criteria and Procedures . 69

3.11 Summary . 71

4 Existing Tools and Techniques 72
4.1 Solution Strategies . 72

4.1.1 Manual Inspection . 72
4.1.2 Static Analysis . 74
4.1.3 Problem Domain Transformation . 75
4.1.4 Hybrid Analysis . 76
4.1.5 Statistical Debugging . 77
4.1.6 Symbolic Analysis . 79
4.1.7 Context Sensitive Analysis . 80
4.1.8 Path Sensitive Analysis . 81
4.1.9 Model Checking and Enforcement . 81
4.1.10 Other Techniques . 82
4.1.11 Frameworks . 83

4.2 Defect Detectors Evaluation and Comparison . 84
4.2.1 Benchmarks . 84
4.2.2 Evaluative and Comparative Studies . 85

4.3 A Scenario Based Comparison of Defect Detection Tools . 85
4.3.1 Scenario 1: Finding Tools Matching Perspectives . 86
4.3.2 Scenario 2: Finding Information About a Tool . 86
4.3.3 Scenario 3: Qualitative Tool Comparison . 86

4.4 Issues and Challenges . 87
4.4.1 Defect Type Coverage . 87
4.4.2 Complete System Requirement . 88
4.4.3 Annotation . 88
4.4.4 Accuracy . 89

4.5 Summary . 89

vi

5 Using Symbolic Range Tuples in Defect Detection 90
5.1 Chapter-specific Background . 90
5.2 The Need for Detecting Dissimilar Defects . 91

5.2.1 Defect Classes Revisited . 91
5.2.2 Single Model Representation of Dissimilar Defect Classes 92

5.3 Existing Propositions . 94
5.4 An Overview of Symbolic Range Tuple Analysis . 95

5.4.1 The Preprocessing Phase . 95
5.4.2 The Model Building Phase . 96
5.4.3 The Analysis and Reporting Phase . 96
5.4.4 Example Workflow . 96

5.5 Solution Description . 97
5.5.1 Rationale . 97
5.5.2 Statement Ordering . 98
5.5.3 State-space Modelling . 98

5.6 The Symbolic Domain . 102
5.6.1 Notations and Specific Values . 102
5.6.2 The Range Tuple . 103
5.6.3 The Constraint . 105
5.6.4 The Resolution . 105
5.6.5 The Application . 106
5.6.6 Formation of the Constraint . 106
5.6.7 Formation of the Resolution . 107
5.6.8 Formation of the Application . 107
5.6.9 The Symbolic Algebra . 108
5.6.10 Range Inter-relation . 109

5.7 Defect Detection from the Ranges . 111
5.7.1 Defect Indication . 111
5.7.2 Coverage . 112
5.7.3 Detection Accuracy . 113

5.8 Detecting Computation Defects . 114
5.8.1 C1: Value Representation Defect . 114
5.8.2 C2: Value Offset Defect . 115
5.8.3 C3: Undefined Outcome . 115

5.9 Detecting Logical Defects . 116
5.9.1 L1: Improper Validation . 116
5.9.2 L2: Improper Terminal Conditions . 117
5.9.3 L3: Wrong Operation . 117
5.9.4 L5: Performance Issues . 117
5.9.5 L6: Improper Exception Handling . 118
5.9.6 L7: Control Flow Error . 119

5.10 Detecting Memory Defects . 119
5.10.1 M1: Invalid Memory Reference . 119
5.10.2 M2: Improper Deallocation . 120
5.10.3 M3: Memory Leaks . 120
5.10.4 M4: Overflows / Underflows . 120

5.11 Detecting Data, Interface and I/O Defects . 121
5.11.1 D1: Interface Mismatch . 121
5.11.2 D2: Data Mismatch . 121
5.11.3 D3: Improper Input Validation . 122
5.11.4 D4: Missing or Extra Inputs . 122
5.11.5 D5: Improper Abstraction . 123

5.12 Answering the Research Questions . 123
5.12.1 RQ1: Detecting Multiple Dissimilar Classes of Defects 123

vii

5.12.2 RQ2: Scope of Detection . 124
5.13 The SRTA Prototype . 125

5.13.1 Prototype Architecture . 125
5.13.2 Components . 125
5.13.3 Model Building Phase . 127
5.13.4 Analysis and Reporting Phase . 129

5.14 User-Defined Artifacts . 129
5.14.1 Lexical Specification . 129
5.14.2 Grammar Specification . 130
5.14.3 Defect Specification . 130
5.14.4 Implementation Notes . 130

5.15 Summary . 131

6 Experiments and Discussion 132
6.1 Chapter-specific Background . 132

6.1.1 Accuracy . 132
6.1.2 Scalability . 135
6.1.3 Generality . 135
6.1.4 Practicality . 135

6.2 Evaluation Overview . 135
6.3 Experimental Setup . 136

6.3.1 Experimental Environments . 136
6.3.2 Test Systems . 136
6.3.3 Tools for Comparison . 137

6.4 Experiment Descriptions . 138
6.4.1 Experiment 1: Application on Test Systems . 138
6.4.2 Experiment 2: Application over Benchmark . 138
6.4.3 Experiment 3: Large-scale Fault-Injection Experiment 139
6.4.4 Experiment 4: Controlled Experiment . 142

6.5 Results and Analysis . 143
6.5.1 Precision . 143
6.5.2 Recall . 145
6.5.3 Comparison with Other Tools . 149
6.5.4 Practicality . 154

6.6 Evaluation Outcome . 155
6.7 Answering the Research Questions . 156

6.7.1 RQ1: Detecting Multiple Dissimilar Classes of Defects 156
6.7.2 RQ2: Scope of Detection . 156
6.7.3 RQ3: Accuracy and Performance . 157
6.7.4 RQ4: Effect of System Complexity . 157

6.8 Summary . 158

7 Conclusion 159
7.1 Impact . 159

7.1.1 The Defect Model . 159
7.1.2 Multiple Defect Detection . 160
7.1.3 FlexTax . 160
7.1.4 The Defect Taxonomy . 160
7.1.5 Defect Similarity . 161

7.2 Threats to Validity . 161
7.3 Future Work . 162
7.4 Additional Information . 162
7.5 Summary . 162

References 164

viii

A Taxonomy Framework Parameters 175
A.1 Perspectives . 175
A.2 Perspective 1 . 175
A.3 Perspective 2 . 175

B Additional Mutation Operators 177

C Detailed Evaluation Data 180

ix

List of Tables

2.1 Inclusion and Exclusion Criteria . 14

3.1 Properties of Analyzed Defect Taxonomies . 26
3.2 Results of the 10-fold Cross Validation . 53
3.3 Comparison of Effort Requirements for FlexTax with Handpicked and Automated Taxonomies 58
3.4 Values for the Trivial Similarity Coefficient . 61
3.5 Values for the Distribution Similarity Coefficient . 62
3.6 Values for the Hamming Similarity Coefficient . 63
3.7 Values for the Modified Hamming Similarity Coefficient . 64
3.8 Values for the Jaccard-Needham Similarity Coefficient . 65
3.9 Values for the Tarantula Similarity Coefficient . 66

4.1 Properties of the Analyzed Tools . 84
4.2 Defect Coverage of Different Tools . 88

5.1 Summary of Defect Classes Described in Chapter 3 . 92
5.2 Examples of Absolute Limits for Different Entities . 103
5.3 Notations, Values and Symbols . 103
5.4 Example Range Formations for Different Statements in C++ 107
5.5 Defect Coverage of SRTA . 112

6.1 Summary of Assessment Procedures for SRTA’s Evaluation 136
6.2 Description of Experimental Environments . 136
6.3 Description of the Test Systems . 137
6.4 Properties of the BugBench Benchmark version 1.1 . 139
6.5 Single-mutation Operators Used in this Experiment (developed for C) 141
6.6 System Metrics for Scalability Test . 143
6.7 Precision of SRTA in Processing the Test Systems . 144
6.8 Precision of UNO, FindBugs and SPLINT Using Direct Experimental Data 145
6.9 SRTA’s Recall Assessment by Application on BugBench . 145
6.10 SRTA’s Recall Assessment from the Mutation-Injection Experiment 146
6.11 Recall of UNO, FindBugs and SPLINT Using the Mutation-Injection Experiment 149
6.12 Summary of Experimental Comparison of SRTA with UNO, SPLINT and FindBugs 151
6.13 Comparison of SRTA’s Precision with Other Tools Using Data from Literature 153

A.1 List of Attributes and Their Compliance to Defect Classes Developed in Chapter 3 176

B.1 Mutation Operators for the Three Complex Defect Classes (D3, D4, D5) 177
B.2 Mutation Operators Developed for C++ . 178
B.3 Mutation Operators Developed for Java . 179

C.1 Precision of SRTA in Processing the Test Systems . 180
C.2 SRTA’s Recall Assessment from the Mutation-Injection Experiment 181
C.3 SRTA’s Recall Assessment by Application on BugBench . 181
C.4 Comparison of SRTA’s Precision with UNO, FindBugs and SPLINT Using Experimental Data 182
C.5 Comparison of SRTA’s Recall with UNO, FindBugs and SPLINT Using Experimental Data . 182

x

List of Figures

1.1 Solutions Provided by the Approach . 6

2.1 Solution Phases for the Research . 12

3.1 Functional Structure of FlexTax . 30
3.2 Structure and Representation of a Multi-layer Hierarchical Taxonomy 34
3.3 The Procedure of Mapping Defects to Classes . 37
3.4 Distribution of Defects in the Generated Taxonomy . 55
3.5 Unmapped and Multiple Mapped Defects with Differing Values of Tp 55
3.6 Defect Class Similarity Over Different Coefficients . 67
3.7 Defect Class Similarity Over Different Coefficients (Continued) 68
3.8 Defect Class Similarity Over Different Coefficients (Continued) 69
3.9 Defect Class Similarity Over Different Coefficients (Continued) 70
3.10 Defect Class Similarity Over Different Coefficients (Continued) 71

4.1 Strategies Used in Detecting Defects . 73

5.1 Representation of Four Defects over Four Levels of Abstraction 93
5.2 Conceptual Architecture of SRTA . 95
5.3 Example Workflow of SRTA Over a Simple Example . 96
5.4 Generic State-space for an Atomic Entity . 99
5.5 State-space for Entities in Listing 5.1 . 100
5.6 Example State-space Models with Different Violations . 111
5.7 Detection Mechanism for Dissimilar Classes of Defects . 124
5.8 Structural Model of the SRTA Prototype . 126

6.1 Generation Phase of the Mutation-Injection Framework . 139
6.2 Evaluation Phase of the Mutation-Injection Framework . 140
6.3 ROC-type Plot to Compare SRTA, UNO, FindBugs and SPLINT 152
6.4 ROC-type Plot for Tool Performance Comparison . 154
6.5 Different Performance Measures for Scalability and Practicality Assessment 155

xi

List of Abbreviations

FlexTax FLexible EXtensible TAXonomies
SRTA Symbolic Range Tuple Analysis / Analyzer
FP False Positive
FN False Negative
TP True Positive
TN True Negative

xii

Chapter 1

Introduction

With their advancement in time, software systems are becoming progressively complex and this complexity

is observed in both their use and structure. Existing systems, through enhancements and improvements, are

turning into more complex ones while sophisticated new systems are being developed both as replacements

to the older systems, and under completely new requirements. This ever-increasing complexity of existing

systems, and the development of new and more complex systems, as apparent from Lehman’s assumptions1

[98], are natural part of the evolution of software technology and are not expected to cease.

As an increasing number of critical processes starts relying on software systems, emphasis on the quality of

the software increases to match the trend. To guarantee and maintain a high quality of the finished product,

application of quality assurance activities, such as software inspection and testing, is of crucial importance

[54] and is enforced through various methodologies.

One of the major tasks in software quality assurance is the prevention, detection and correction of defects

present in the system. Defects are defined as artifacts that can occur in any phase of the software develop-

ment process and are known to cause implications from mere nothing observable to critical failures. Severe

complications resulting from software defects include a number of spacecraft accidents [100] and even human

casualties in the U.S.A. and Canada [101]. Over the decades, the term defect has become an umbrella term

encompassing any abnormality introduced or incorporated at any stage of the software development process

and is known to be originated by a variety of factors, from simple human errors to complex architectural

problems.

Although defect is a valid term to be applied to any phase of software development, implementation

(i.e., source code) accounts for more than three-fourths of the total defects found in software systems [99]

including at least half of the critical security problems [25, 117]. For the defects that are not originated

in the implementation phase, often the most observable traces are found at implementation, a phenomenon

explained using the notion, “syntax as a carrier of semantics”[44]. Consequently, detecting defects from

source code has become the recipient of much research attention - resulting in the development of a large

number of strategies, techniques and tools over the last few decades.

The diversity of the nature of defects has been counterbalanced using equally diverse techniques. The task

1A set of eight laws on software evolution published by Lehman and Belady in the period 1974-1996. Three of the laws state
that (a) software complexity is always increasing, (b) software size and number will continue to grow and (c) software quality
will depend on more rigorous maintenance as the software evolves.

1

of detecting source code defects has been tackled from many directions, by applying numerous techniques and

strategies including various flavours of static, dynamic and hybrid analyses. Each of the strategies, techniques

and tools enjoys its own unique combination of advantages, while suffering from an equally unique and diverse

set of drawbacks. The narrow focus and specialized treatment of available tools towards particular defects

have made their application extremely dependent on specific scenarios. The application of a defect detection

endeavour with reasonable defect coverage on a project requires application of multiple tools - often diverse

in their nature, input requirements and outputs. Such multiple-tool approaches for defect detection often

require much human intervention through source formatting, annotation and input preparations. Detecting

multiple defects through a single tool can aid in such scenarios by reducing project overhead and effort

requirements. A few commercial tools exist that unify multiple detection activities into a massive internal

core (e.g., CodeSonar [63], Coverity SAVE [35], Polyspace C Checker [129], Frama-C [41]) that, in addition

to the considerably high cost of acquisition and maintenance, often end up into bizarre errors [29, 99].

Most dissimilar defects show similar characteristics over a certain level of abstraction, as was utilized by

most, if not all, of the defect taxonomies and exploited directly in the study by DeMillo and Mathur [44].

Being able to detect such defects using a single abstract model can serve as a low-cost, low-complexity and

easy-to-apply technique to simplify the task of defect detection. Such a technique is expected to improve the

state-of-the-art in multiple ways including, but not limited to, elimination of the need for different inputs

and formats for different defects, elimination of the need for different output interpretations and adaptations,

reduction of the complexities of the detection system making it more maintainable and cost-effective, and

improvement of the applicability of the process in general.

1.1 Motivation

Software maintenance accounts for a significant portion of the software development activities, often claiming

50%-80% of the total development cost [142, 96] over 80% of the development efforts [139, 2] for successful

legacy systems. A major part of the maintenance activities concern the detection and removal of defects that

were introduced to the system as “inevitable artifacts” [25]. A failure in the proper detection and removal

of the defects can have considerable impact on the quality of the software. A study applying a hypothetical

model on real data predicted as much as 33% profit-loss for a moderately sized non-mission-critical software

due to improper defect treatment [161].

Automatic defect detection can greatly reduce maintenance overhead and aid in quality assurance, and has

been the focus for much research activities. As software is ubiquitous in its nature [93], the defects also tend

to get diverse and domain-specific, forcing the detection techniques to be domain-specific and specialized over

single or few similar defect types. To provide a reasonable defect coverage, a software needs to be inspected

by a number of detection tools coming mainly from proprietary sources. Applications of such diverse tools

and techniques also require much external efforts as their input formats and requirements often differ (for

2

example, for the tools that depend on code annotation, a number of different annotation vocabulary and

techniques have to be applied).

Unified detection tools (i.e., the tools that detect multiple defects) usually merge the diverse techniques

into a single massive core. Such tools tend to be expensive (primary source: [64], secondary source: [86])

and provide with a slow or resource hungry performance portfolio [168]. A workaround to this is to be

able to apply a single technique to detect multiple defects. Although a similar approach is used in various

flavours over a few existing tools, the application of unified detection so far was restricted over similar defect

classes (e.g., different memory defects). Being able to use a technique over dissimilar defect classes thus can

greatly simplify the software maintenance activities, providing with attainable and easy-to-use solutions. This

research proposes a new technique that combines path summarization, state-space abstraction and symbolic

analysis into a scalable, practical and generic defect detection mechanism that can serve as a unified detection

approach.

1.2 Research Overview

This section provides an overview of the research questions, describes the problem and solution approach,

and describes the contribution of this research.

1.2.1 Research Questions

In this research, the primary objective was to search for a technique to apply to the detection of dissimilar

classes of defects. The research questions can be summarized as:

RQ1: Can a specific abstraction provide sufficient means for detecting multiple dissimilar

classes of defects?

This question has been treated as the primary research question. A technique was developed with a

combination of path summarization, state space-modelling for atomic identifiers, and symbolic analysis that,

in both theory and practice, was able to detect a number of dissimilar classes of defects. This research

question was answered in Chapter 5 and Chapter 6.

Once the technique was developed, the research then focused on answering the questions that become

relevant over the proven existence of such a technique,

RQ2: To what length can such a technique go in terms of dissimilar classes of defects?

After the development of the technique, different evaluation procedures were conducted to assess its

effectiveness. The developed technique was found to cover most of the defect classes that do not depend

extensively on design or other non-code artifacts. This question was answered in Chapter 5 and Chapter 6.

RQ3: What is the general effectiveness of such a technique in terms of accuracy and per-

formance?

The accuracy of the developed technique was tested through extensive experiments against existing tools

3

and techniques, and against large-scale fault injection procedures. The results confirmed that it is indeed

possible to use an unified technique, like the one developed in this research, that would perform as good as,

if not better than, the existing tools. This question was answered in Chapter 6.

RQ4: What is the effect of system complexity on the applicability of such a Technique?

A study was conducted to test the effect of the scalability-accuracy trade-off on the developed technique.

The technique was found to be resistant to structural and performance complexities of the system it processes,

and to scale to large systems without a compromise of performance. This question was answered in Chapter

6 using experimental data.

In order to properly define the objectives, a prerequisite was to establish defect similarity (and dissimi-

larity) criteria. This was treated using the last research question,

RQ5: What are the criteria and procedure to determine similarity in defect classes?

To answer this question, extensive surveys were conducted on defect classification schemes. Based on the

information obtained from the survey, a semi-automated framework was developed to map defects and to

create taxonomies in the process. The framework was applied on a large scale real dataset and a taxonomy

was generated. The taxonomy was then used to define defect similarity over different coefficients, to define the

technique of defect detection, and to define mutation rules used in experiments using the Mutation-Injection

framework. This question was answered in Chapter 3.

1.2.2 Problem Description and Solution Strategy

Automated detection of defects from source code is usually done through either of the two code analysis

techniques, or their combination. The first of these two, dynamic analysis, analyzes a software’s response

during execution and is able to uncover defects at a later phase of development [96]. Dynamic analysis is

able to provide low false positive rate2 and is usually more efficient, but usually has high false negative rate3,

requires complete code that can be built and executed, and has no means to analyze execution paths that

have not been taken during the particular execution. The second of the techniques, static analysis, analyzes

the actual source code. Static analysis usually has low false negative rate, can reach to any execution path

through the software but usually suffers from a high false positive rate. As the requirement is to detect

defects from source code, static analysis was the compelling candidate for this research.

A problem of static analysis is the phenomenon called “Path Explosion”, or the overwhelming number of

possible execution paths through a reasonably sized software [60]. Although it is possible for static analysis

to check all these paths, it is often infeasible to do a complete check due to the very large set of candidate

paths that demands high resources and impractical execution time. To cope with this situation, most static

analysis tools reduce the state-space for the software through a compromise between scalability and accuracy,

often sacrificing accuracy to scale to large applications.

2The ratio of incorrect detection over all detection. Described in Chapter 6.
3The ratio of missed detection over all problems present. Described in Chapter 6.

4

Although static analysis retains the ability to check incomplete code, unless a code is executed, the exact

flow of data in the code cannot be determined. To mitigate this scenario a technique named Symbolic Analysis

is used. Symbolic analysis is traditionally considered a variant of static analysis as it uses source code to

build up symbolic execution values for processing.

Symbolic analysis suffers from the same drawbacks of static analysis, that is, the very large number of

paths to check. Techniques often select a subset of the paths to analyze that brings the resource requirements

within practical limits. Such techniques often suffer from the cases of a defect hiding in one of the paths

that were excluded. On the other hand, as symbolic analysis uses inferred or abstract values instead of

the real data, it provides the flexibility of applying arbitrary abstraction to the analysis process. It has

been proven that if symbolic analysis can be used as a compositional tool, it can alleviate the path explosion

problem effectively [59]. One of the objectives of this research was to utilize this property of symbolic analysis

to overcome its own limitations that has been achieved using path summarization - a novel application of

compositional analysis.

Defects in source code often manifest themselves in a local context [96]. This nature of defects requires

path and context sensitive analysis techniques to be applied to make the detection effective and efficient. The

requirement of path sensitivity, and the nature of defects in staying in local contexts, are outlined in a recent

research work by Le and Soffa [96]. Again, to address this issue, symbolic analysis plays the crucial role due

to its flexibility to abstraction. To provide path sensitivity, context-awareness and wide-expanse capabilities,

symbolic analysis was chosen as the analysis technique.

Often balancing the scalability-accuracy trade-off results in sacrificing one in lieu of the other. Many

of the widely used tools sacrifice accuracy to achieve scalability [163]. Still, only a few tools ensure good

scalability [168]. In this research, the target was set to provide better accuracy, without deliberately sacrificing

scalability. The solution proposed by this research is realized through a framework, SRTA4.

Figure 1.1 describes the solution in a three-layer diagram, the top being the research goals, middle layer

showing the specific components of the solution towards achieving that goal and the bottom layer listing the

results obtained in the particular objectives.

Main goals for this research can be summarized into four parts - Accuracy, Scalability, Generality and

Practicality. The term ‘Accuracy’ is used to denote both a low false positive and low false negative rate. Path

summarization, context-sensitivity, and complete path envelopment in a form of inter-procedural analysis have

been used to tackle the problem of accuracy. Path summarization acts as a countermeasure to false negative

errors as it does not exclude any path from the analysis, as well as balancing the path explosion problem

by introducing summarized representations. Context-sensitivity and path envelopment both act in favour of

reducing false positives by taking the context into account, and by considering the exact sequence of events

that led to an entity’s states in the program.

‘Scalability’ of a system denotes the ability to retain its qualities against a varying range of properties.

4Abbreviation for Symbolic Range Tuple Analysis / Analyzer. Details are provided in Chapter 5.

5

Figure 1.1: Solutions Provided by the Approach (Adapted from the Dissertation of Wei Le, 2010)

In this context, scalability is used to denote the capability of successful processing with codebases of various

sizes, and with various degrees of information that can be inferred from the codebases. A scalable technique

should be able to process small and large software systems alike. Path summarization, as used in this

technique, contributes in ensuring scalability by simplifying and reducing the path explosion problem. The

state-space model used with path summarization and symbolic abstraction also contributed in making the

system scalable.

‘Generality’ is used to describe the technique’s ability to be adapted in different situations. The mecha-

nism proposed in this research does not use source code directly, rather converts the code into a simplified

intermediate model related to the software state-space, and uses symbolic analysis techniques instead of pure

static analysis. This approach ensures the adoption of the technique over different software systems, different

languages and across different degrees of completion for the systems.

‘Practicality’ is the applicability of the technique over real-world scenarios, that is, the ability to function

within reasonable environmental bounds. The technique developed in this research is practical in the sense of

resource requirement and execution time, covering more defect classes as compared to most existing tools and

in an execution environment with reasonable bounds. The state-space abstraction and completely soft-coded

specifications aided in making the system practical.

1.2.3 Contribution of this Research

(1) The primary contribution of this research was to develop a symbolic analysis technique, SRTA, to detect

dissimilar classes of software defects. The technique relies on path summarization and state-space abstraction

and was proven to be applicable on dissimilar defect types, incorporating generality and scalability.

(2) After the development of the technique, extensive experiments were conducted to verify its aspects.

The experiments were performed on widely used real-world open-source projects, against a benchmark suite,

through a large scale fault-injection procedure involving a Mutation-Injection framework, and in a controlled

6

experiment devised to check resource consumption. The experiments confirmed the practicality of the tech-

nique.

As a prerequisite to the research, a measure was required to establish defect similarity, which, as its

requirement, relied on a custom developed defect taxonomy. The other three contribution of this research

was in achieving this goal.

(3) A framework, FlexTax, was proposed to develop extensible defect taxonomies. The framework is a

new concept in that it deals with extensible and flexible taxonomies and utilizes objective similarity metrics

to classify defects. The concept addresses at least three of the major issues related with taxonomy generation

- orthogonality, completeness and non-redundancy.

(4) A defect taxonomy was developed using FlexTax and later used in comparison and assessment of the

different tools and techniques described in this dissertation. The taxonomy was validated against real world

data and was found to be flexible, extensible, complete, orthogonal and non-redundant.

(5) Based on the Taxonomy, defect similarity was evaluated against custom designed, and industry stan-

dard similarity coefficients. The evaluation was able to point out similarity criteria that were used in the

research.

1.3 Organization of this Dissertation

This dissertation is organized in seven chapters, with the current chapter being the brief introduction to the

rest.

Chapter 2 provides the background to this research. It includes definition of common terms used in the

dissertation and provides a brief description of the research methodology.

Chapter 3 Provides the description of the prerequisites to the research - that is, a taxonomy generation

framework, a taxonomy, and defect similarity measures. The chapter describes the most relevant among the

existing categorizations of defects and analyzes their properties. The chapter then proceeds on proposing a

framework for developing extensible defect classifications and describes a defect classification scheme devel-

oped using the framework. Tests and analyses were conducted using the taxonomy before adopting it as the

taxonomy for the rest of this research, and the data from the tests and analyses is presented in this chapter.

Finally, the chapter describes the measures for defect similarity and establishes common similarity criteria.

Chapter 4, using the taxonomy established in Chapter 3, discusses the current state-of-the-art. It

describes and compares relevant tools and techniques that have been employed by defect detection activities

in the academia and industry. The techniques and tools were analyzed with respect to their reported strengths

and weaknesses. Chapter 4, along with the first part of Chapter 3, contributes to the literature review for

this research.

Chapter 5 gives the details of the proposed mechanism, SRTA, with its symbolic framework. The chapter

details the specifics of the adopted symbolic analysis, abstraction and the underlying model. The chapter

7

then proceeds on describing the use of SRTA in detecting dissimilar classes of defects. The chapter includes

brief description of a prototype implementation of SRTA.

Chapter 6 details the experimental setup, data, and analyses on the data to assess the developed defect

detection technique. The technique is compared with existing tools using open-source projects, and through

a large-scale fault-injection experiment conducted with the aid of a Mutation-Injection framework.

Chapter 7 concludes the dissertation.

8

Chapter 2

Background

This chapter provides the background to this research. In Section 2.1, common terminology used in this

dissertation is provided. The next section, Section 2.2, provides an overview of research methodology and

research phases, including notes on information source selection, data acquisition and analysis, and specific

development information.

2.1 Terminology

This section describes the general terminology used in this dissertation. In addition to the ones presented

in this section, relevant terms and definitions are included in appropriate places in later chapters of the

dissertation.

2.1.1 Defect

Software defect has been the subject of multiple definitions. The definitions come from individual research,

as well as from standardization organizations like IEEE.

Fault

A fault is an accidental condition that causes a functional unit to fail to perform its required operation

[73, 122]. Often the fault leads to a failure [122] thus acting as the underlying cause of the failure.

Failure

A failure is an event where a system or a component of the system stops performing a required function within

acceptable boundaries [73, 122]. Failures are often classified as the breakdowns of the system functions or

the observable points of deviation from its expected course during execution. In summary, it is the observed

impact of faults.

Error

An error is the human action that results into a fault in the software - it can be an omission or misinterpre-

tation of user requirements in the software specifications, incorrect translation, or omission of a requirement

9

in the design document [73, 122]. In summary, an error is the action that creates a fault.

Adopted Definition of Defect

Often the term “defect”, analogous to “fault” and “bug”, is defined differently by different sources - including

the mention as “a product anomaly” [73] or “the imperfections found in the code during technical reviews”

[122]. In the context of this study, a more elaborate definition relevant to source code is adopted.

Our adoption of the term source code defect indicates defects detectable from source code. In extended

definition, the term is used to indicate an artifact that,

(a) Exhibits its presence in source code, regardless of the origin,

(b) Is not a result of a language or environmental constraint beyond the control of the developer.

(c) Either produces wrong output or deviates the behaviour of the software from its expected course,

(d) Or provides a way to externally initiate or exploit the (c) above.

Throughout this dissertation, the term ‘defect’, unless mentioned otherwise, was used to indicate the

source code defect as described in this section. Clause (a) of this particular definition for defect was adopted

to ensure the defect come from source code only (that is, not policy problems or architectural violations).

Clause (b) excludes the cases where the developer was restricted by unsolvable constraints by the language

or environment. Clause (c) defines the generic nature of the defect, for proper identification. Finally, clause

(d) was included to include vulnerabilities in the set of defects.

Defect Location

Defect location is the process of isolating the specific locations or regions of source code that contain the

defect footprint and have to be modified for the removal of the defect [88]. Defect location complements defect

detection by adding the location information with the presence of defects. The location can be reported in

various granularities, to statements, functions, class definitions, files or modules.

2.1.2 System Qualities

Scalability

The term “Scalability” is defined for a system as, “a quality of software systems characterized by the causal

impact that scaling aspects of the system environment and design have on certain measured system qualities

as these aspects are varied over expected operational ranges” [46]. A scalable system is a system that can

accommodate this variation in a way that is acceptable to the stakeholders [46].

10

In the present context, the phrase “aspects of the system environment” means the subject system’s size

that can be expressed as any software size metric (e.g., LOC1, Complexity, NASA’s Object Oriented Quality

Metrics [123]). The “measured system qualities” denote the capability of successful detection, with varying

size of the codebase and inferred information.

For this research, lines of code was adopted as the size metric and scalability was considered over a range

of the software LOCs.

Accuracy

Accuracy of detection refers to detection of the relevant artifacts. In determining the accuracy of detection,

two established measures were used in this research.

One of the measures, Precision, denotes the probability that a detected artifact is relevant [61]. That is,

out of all detected artifacts, it specifies the probability of any artifact’s being a relevant one. In this context,

the term “relevance” indicates that the detected artifact contains the properties it is expected to contain

(i.e., a defect has the properties that make it a defect). The other measure, Recall, expresses the probability

that a relevant artifact is detected among all present artifacts [61]. The two associated terms, false positive

rate and false negative rate, are alternate ways of expressing precision and recall. A false positive rate is the

portion of artifacts that were detected incorrectly, over all detected artifacts (thus, 1 - false positive rate is

the normalized precision) and a false negative rate is the portion of artifacts should be detected but are not,

over all existing artifacts (thus, 1 - false negative rate is the normalized recall).

Detailed information on precision and recall, including the mathematical expressions used to estimate

their values and the specific procedures followed in this research, is presented in Chapter 6.

2.1.3 SRTA Specifics

This section describes the terminology specific to this research.

Artifact

The term artifact is used in this dissertation to mean any significant entity in the source code. The definition

spans to variables, constants as well as to statements and language constructs.

Entity

An entity is an artifact in the software that participates in operations. An entity can be an object (for

object-oriented / object-based systems), a variable, a constant, an array, a reference or a pointer.

1Lines of Code. Usually counted excluding comments. Two variants are in widespread use. (a) S-LOC, or Source Lines of
Code is the number of linebreaks in the source, and (b) L-LOC, or Logical Line of Code, is the number of logical statements in
the source

11

Atomic Entity

An atomic entity is an entity that cannot be decomposed into a collection of same or different entities. Any

entity with the basic type permitted in the programming language is an atomic entity.

Collective Entity

A collective entity is an entity that acts as a common reference point for a collection of atomic entities. Any

array or a pointer (for C / C++) that points to an array is a collective entity.

Composite Entity

A composite entity is a collection of atomic entities grouped under a common name. Any structure / class /

union is an example of a composite entity.

2.2 Research Methodology

This section describes the methodology used for the research. Different phases of research involved the

following,

(i) Literature survey.

(ii) Problem selection, specification and analysis.

(iii) Framework development for defect classification.

(iv) Experiment concerning the framework for defect classification.

(v) Model generation and analysis technique development.

(vi) Experiment and analysis under the developed model and analysis techniques.

Figure 2.1: Solution Phases for the Research

Development of the solution was performed in three distinct stages, as showin in Figure 2.1. In the figure,

rectangles denote particular solutions and the rounded rectangles denote the approach or technique for the

solution. The main goal of this research is to search for a technique for detecting dissimilar classes of defects.

12

The realization of this problem requires a definition on ‘dissimilar classes of defects’, which was provided

by the defect similarity study. The defect similarity study, for its functioning, requires a suitable defect

taxonomy for the definition of defect classes and their properties. The bottom-up processing order of the

problems in the figure denotes the sequence of the steps.

Solutions to these problems are presented in the top-down approach on the same figure. FlexTax was

developed as a semi-automatic framework to create defect taxonomies. Once the taxonomies were generated,

similarity coefficients were applied to measure the similarity (and dissimilarity). These similarity measures

were then used to develop SRTA to solve the problem of detection. Literature Survey was involved in every

phase of the research.

2.2.1 Literature Survey

As the first part of our research, the approach to a systematic literature review [19, 80, 118] was followed

to collect, analyze and process information. We have conducted the step-by-step formulation of the liter-

ature study to make it unbiased, complete and comprehensive. The procedures we have followed in this

step comprise to the mandatory parts of the Planning-Conducting-Reporting methodology recommended by

Kitchenham et al. in their 2009 paper [80]. The steps included,

(i) Planning the review

(a) Identifying the need for a review

(b) Specifying the research questions

(c) Developing a review protocol

(ii) Conducting the Review

(a) Identification of research

(b) Selection of primary studies

(c) Study quality assessment

(d) Data extraction

(e) Data synthesis

(iii) Reporting the outcome

(a) Specifying dissemination mechanism

(b) Formatting the main report

13

Table 2.1: Inclusion and Exclusion Criteria

Property Item Inclusion Criteria Exclusion Criteria

Type Research Articles Peer Reviewed Position and Student Papers
Technical Reports

Magazine and Newspaper
Articles

Objective Reports Subjective Opinions

Content Tools / Techniques Address Source Code Defects Do not apply to Source Code Defects
Applicable to Source Code Defects Deprecated
Adaptable to Source Code Defects Proven Invalid

Relevance Year of Publication On or after 1990 Before 1980 (with notable exceptions)

Information Source Selection

We have used well known publication repositories to collect the published information that corresponds to the

research questions. In the fields of relevance, the ACM Portal and IEEE XPlore have been sources of interest

for their large collection of published articles and ranking flexibilities. We have complemented the search

using Google search and Google Scholar search to find relevant publications. Our effort built a repository of

more than 200 published artifacts that we have analyzed to prepare this study.

Our searching methodology was twofold. First, we searched the repositories for predefined search strings

that correspond to our research questions. Our search strings were formulated using original form, alternate

phrasings and synonyms for the structure (“bug”, “fault”, “defect”) (“”, “detection”, “analysis”). Second,

while exploring the papers that were collected from the first methodology, we have marked and collected

the relevant papers that did not turn up in the first search but were referred in the papers we have been

exploring.

Primary Studies Selection

To collect the data and information, we selected the publications for consideration based on defined inclusion

and exclusion criteria as summarized in Table 2.1. Our studies resulted on a large publication repository

that we have rigorously analyzed, categorized and included in this study. The studies conducted using the

materials are presented in Chapter 3 and Chapter 4.

Data Extraction and Analysis

We have collected the data from the publications that primarily reported the data on a tool or technique, or

performed an experimental study involving the tool or technique and reported data from the experiment. The

biggest ordeal for us was that, not all publications report the data on the parameters we are interested in, and

although sometimes it is possible to map or derive the data from the ones provided, there also are situations

where no direct data was provided by the publications to use in assessing specific tools and techniques.

14

2.2.2 Problem Selection and Analysis

After the comprehensive analysis of the literature, we identified the issues and open problems relating to defect

detection, which defined the need for a unified detection approach for software defects and set the objectives

for this research. From the information we analyzed, it was clear that defect similarity metrics need to be

established before approaching the main problem of unified detection. Consequently, the prerequisites for

the main objective emerged as the establishment of a defect taxonomy and similarity metrics under a defined

framework.

2.2.3 Taxonomy Generation Framework and Taxonomy

To focus the research effort, a taxonomy on source code defects was necessary. Existing taxonomies, although

vast in numbers, do not usually provide separate treatment to source code defects. Thus, we required

a taxonomy to be constructed to cater for our need, additional to the requirement of defect similarity

assessment.

Instead of generating a specialized taxonomy suitable only for the current research, we have instead

proposed a framework for generating extensible taxonomies to suit general needs. The framework is gen-

eralized, flexible and automated to generate complete, orthogonal, non-redundant and abstract taxonomies

from earlier taxonomies or real defect data or a combination of both. The framework was used to generate

a taxonomy out of a large quantity of real defect data and evaluated against real data sources following

multiple procedures, including the use of machine learning classifiers and manual analysis. The taxonomy

generated by the framework was then used to analyze and compare existing tools and techniques with the

one developed. The Framework was described in Chapter 3.

2.2.4 Model Generation and Analysis Technique Development

To facilitate detection of dissimilar defects, source code needs to be incorporated into an abstract model that

enumerates necessary features required for the detection. A symbolic analysis model using range tuples was

designed for the purpose.

The model was used in multiple customizable analyses to detect the presence of the defects. The model

and the analyses were developed with the objective of generating high precision results with considerable

scalability across software sizes and implementation technology. The model and analysis techniques were

described in Chapter 5.

2.2.5 Experiment and Analysis

The model has been realized with a working prototype and applied on real-world systems to assess its

generality, detection capability, accuracy and scalability. The test systems were chosen from widely used

open-source projects and from diverse functional domains.

15

To incorporate a comprehensive testing of the system, the experiment was performed in multiple different

sub-experiments. First, the prototype was applied on open-source software systems implemented across

two general purpose languages and the accuracy of detection was analyzed. To assess the false negative

performance, the prototype was evaluated against a benchmark, and was separately evaluated using a large-

scale fault injection experiment. Additionally, the prototype was compared against other state-of-the-art

tools through direct experiments, and through secondary data.

For each of the sub-experiments, a case-by-case analysis was performed to describe the prototype’s be-

haviour, limitations and advantages. Chapter 6 describes the experiment and analysis.

2.3 Summary

In this chapter, common terminology, and an overview on research methodology were provided. The chapter

started by providing the definition of common terminologies as they are used in this research and then contin-

ued on describing the research methodologies and phases. The methodologies provide details of information

sources, inclusion and exclusion criteria, research phases and sequence and analysis techniques.

16

Chapter 3

A Taxonomy of Defects and Defect Similarity

This chapter describes a taxonomy of defects and a study on defect similarity. The chapter begins by

a section on the chapter-specific background (Section 3.1), and then continues on with a description of

taxonomy structures (Section 3.2) and the trend of taxonomy development with their desirable properties

(Section 3.3, Section 3.4), following the methodology outlined in Chapter 2. Using the notion of the outlined

properties, descriptions of notable defect taxonomies are provided next (Section 3.5). Next, aiming on

utilizing the analyzed features of defect taxonomies, a framework named FlexTax is proposed and described

along with the details of its underlying model and analysis techniques (Section 3.6). Next, the description

proceeds in detailing the experience of using FlexTax over the 25k real-world defect data of the CVE [119]

dataset (Section 3.7). This case study generated a taxonomy of software defects which is described in details

using examples and formal definitions (Section 3.7.3). This taxonomy’s evaluation using machine learning

classifiers and manual analysis against established databases is described in the next section (Section 3.8).

Finally, using this taxonomy, and considering the underlying principle of FlexTax, a study is described to

find defect similarity (Section 3.9).

3.1 Chapter-specific Background

This section provides chapter-specific terminology, definitions and descriptions, in addition to those provided

in Chapter 2.

Defect Class: A defect class, as it is used throughout this dissertation, is the description of a specific

phenomenon that has resulted from the underlying causes that count as defects. The defect class is the

description of the phenomenon, rather than the exact anomaly that results into the defect. One defect class

may contain one or more defect types. An example for a defect class is the ‘Undefined Outcome’, that

describes a situation where the outcome of an operation cannot be determined.

Defect Type: A defect type is an exact anomaly that is considered as a defect. A defect type describes one

specific problem in the code that, in effect, creates the detectable defect. One defect type contains more than

one defect instances. Continuing the example defect class from the previous definition, a defect type under

the class “Undefined Outcome” can be a division-by-zero, the use of an uninitialized value in an operation,

or performing undefined arithmetic operation.

17

Defect Instance: A defect instance is the occurrence of an anomaly, belonging to a defect type, in the code.

Every single occurrence of an anomaly counts as a separate defect instance. Continuing the example from

the previous two definitions, every single division-by-zero instance counts as a defect instance.

As an example to illustrate the three terms, if a software’s code contains ten divisions-by-zero and ten

uninitialized value usage, it should count as twenty defect instances, two defect types and one defect class.

3.2 Taxonomy and Taxonomy Structures

A taxonomy is a classification system that allows one to uniquely identify the subjects of interest, often

depicting the subject of interest and its classification category as an ordered tuple [13]. In other words, a

taxonomy assigns a set of defects to a set of distinct classes or categories under a given rule. Taxonomies can

be formed for multiple purposes, and in three different structures, as reported by the literature.

3.2.1 Flat or Non-hierarchical Taxonomies

Flat taxonomies ideally contain one single set of distinct categories without any overlapping criteria. Such

taxonomies realize only one point-of-view at a time.

The advantages of flat taxonomies are the easier generation and simplified decision making - as there is

only one level of hierarchy, a new class can be added with the consideration of basic properties. The strongest

disadvantage of such taxonomies is the restriction on the freedom of interpretation. As such taxonomies (e.g.,

[82, 44, 10]) are developed only through one point-of-view, most often that of the developer, they are usually

not adaptable to other’s needs.

3.2.2 Hierarchical Taxonomies

Hierarchical taxonomies arrange the categories in different levels, where each level generalizes the levels below

it and specializes the levels above it. Hierarchical taxonomies can (but do not always) realize more than one

points-of-view at a time.

The most prominent advantage of hierarchical taxonomies is the increased degree of freedom of interpreta-

tion. The disadvantage of the hierarchical taxonomies is the more complex structure than the flat taxonomies.

Addition of a new class has to be decided from a number of different directions, should it contain more than

one views. Additionally, such taxonomies (e.g., [6, 116, 162, 99, 140, 120]) tend to suffer from difficulty in

completeness.

3.2.3 Matrices

Matrices arrange different perspectives or properties through different directions of arrangement, and use the

combinations of the cross-cutting directions to define defect categories. Matrices always realize more than

one points-of-view for classification.

18

The advantage of matrices is that, they fully realize different points-of-view, providing room for later

interpretation. The disadvantage is that, based on dimensions, matrices can be complex to map into. The

addition of a new class on a matrix is dependent on the interaction of a number of different points-of-view.

Such taxonomies (e.g., [62, 28, 89]) tend to be the most flexible and extensible.

3.3 The Trend of Defect Taxonomies

In commercial software development projects, statistical fault density metrics act as tools of cost estimation

and decision support [128] and often suffice in achieving the goals. However, it is argued that a comprehensive

defect taxonomy is a necessity, and not just a supportive measure, for proper software quality assurance

activities [128, 140].

A number of defect taxonomies are in existence and being used, varying both in their content and intent

- focusing in areas such as errors, behaviours, functionalities, vulnerabilities, and, incidents and attacks

[156, 155]. The diversity of defects and their specialized attachments to different projects made it difficult

to apply the same set of defect classes to all, or most, projects and thus has contributed to the large

set of parallel taxonomies in existence today. None of the classifications has become a truly and broadly

applied practice, with their practical application restricted mainly on severity or impact only [159]. The

taxonomies are used much discretely by different organizations, sometimes having different branches of the

same organization adopting different taxonomies to describe the same defects [140]. The reasons for the

emergence of parallel taxonomies are attributed to different factors by the literature, including the diversity

of data sources and formats [140], independent applications of quality assurance techniques [54], lack of

orthogonality [54, 140, 124], use of parallel terminology [140], ambiguities or unclear descriptions [54], non-

standard documentations [54] and a learning curve associated with defect categorization at the early stages of

the projects that compel developers to record defects without properly classifying them [140]. Nevertheless,

whatever the reasons for not having one may be, the need for consistent defect taxonomies can neither be

denied nor ignored.

Although a few taxonomies like the Hewlett-Packard Defect Taxonomy and the Orthogonal Defect Clas-

sification Scheme have established themselves as prominent tools for defect analysis [54], it is difficult, if not

impossible, to develop a single taxonomy for all software systems of the world due to their extreme diversity

in technologies, objectives and tasks. Existing defect taxonomies for the implementation artifacts (i.e., source

code) have the same limitations, as it is apparent from multiple taxonomies that are in effect today. Although

the complete taxonomies that span all phases and artifacts of a software life-cycle differ due to the extremely

diverse tasks a software system achieves, different source code defect taxonomies do share similar elements

that can be generalized into a higher level of defect classifications with widespread applications.

19

3.4 Criteria for Developing a Taxonomy

A number of factors have driven the defect classification objectives. Schemes have been developed focusing

on defect origin [89], essential functionalities [82], effects [89], activities to fix the defect [44] and the impact

the defect may cause [6]. Although different criteria are considered for different defect taxonomies and there

is no unanimous agreement by researchers about the complete set of properties that will identify a perfect

taxonomy, a number of desirable qualities were established and agreed upon by most of the concerned.

3.4.1 Desirable Properties

A study by Freimut [53] investigated the properties of defect taxonomies, along with those of the defects,

and made a number of recommendations that afterwards have made their way into notable research in

the field [140]. According to Freimut’s original recommendations [55] and a later follow up study [53], a

defect taxonomy should contain at least five desirable properties - Clearly Defined, Exemplified, Orthogonal,

Complete and Small in Number of Categories.

Clearly Defined: Each category in the taxonomy must be clearly and precisely defined [53]. This quality,

if ensured, can eliminate a number of problems prevalent in existing taxonomies, including the ambiguity

and strictly subjective usage.

Exemplified: Each category should be provided with example(s) [55, 53]. This recommendation aims

to establish that no hypothetical category is included, ensuring the non-redundancy of the taxonomy.

Complete - The categories should be complete in a sense that, a category exists for every defect encoun-

tered along the process [53].

Orthogonal - Categories should be mutually exclusive, so that only one category is applicable to a defect

[53].

Small Number of Categories - The number of categories should be small, typically from five to nine

[54]. We disagree with this particular recommendation as it is not always possible to ensure this property

over different points-of-view, and on different projects. Furthermore the term “Small Number”, due to its

subjective definition, can lead to confusion in taxonmies.

Additional to this set of properties, other researchers [12, 72, 107, 87] have proposed a number of properties

for good taxonomies that comply with this set of properties. A number of researchers seem to converge in one

opinion - that taxonomies should describe the properties of the elements they classify, and not the individual

problems themselves [111, 87, 12, 13].

3.4.2 Additional Properties

In addition to the proposed properties of taxonomies, we argue that two more properties need to be complied

with to make a taxonomy effective and useful.

20

3.4.3 Flexibility

By the term ‘Flexibility’, we mean the ability of a taxonomy to accommodate itself with changing situations

without altering its base structure. In other words, flexibility means the ability of the taxonomy to reconfigure

its defect mapping based on the need. The rationale behind this argument consists of two points. First, while

developing a taxonomy, a developer may find situations that require a reinterpretation of previous decisions.

If a taxonomy is not reconfigurable, this reinterpretation usually requires discarding the unfinished taxonomy

and develop another from scratch. A reconfigurable taxonomy can avoid such workload by accommodating

the new interpretations and by remapping the defects as required.

The second argument is, as taxonomies are developed to serve subjective interests [90], often the taxonomy

developed by one do not suffice for the need of another on a similar endeavour. If the taxonomy is flexible,

the later user can reconfigure it according to the need and make it a better suited device for the task.

3.4.4 Extensibility

‘Extensibility’ is a common term in Software Engineering used to indicate the property of a software system

of being extended to encompass new requirements. In the present context, it is used to denote the means

to add new categories to taxonomies should the need arises. This property is required because, due to the

ubiquity of the nature of the software, it is not often possible to predict what situation may arise in future,

for other software or for the future versions of the same software. Such unforeseen situations also bring in yet

un-encountered defects. If a taxonomy does not provide a mechanism to extend itself to the need of the new

requirement, it runs the risk of being obsolete. In such cases,the efforts involved in developing a taxonomy

may be required to repeat for developing a new taxonomy for the same purpose for every new release of the

same software system. To preserve the consistency of the taxonomies, extensibility must be ensured over

defined and formal rules.

3.5 Existing Taxonomies

From an overwhelming number of present taxonomies, twelve taxonomies were chosen for analysis of their

properties. The taxonomies were chosen if they provided a specific treatment to source code defects, and

if they complied to any of the four additional criteria - (a) Developed in recent time (within 5 years),

(b) Received considerable citations, (c) Reported to have considerable success either in the industry or in

academia and (d) Provided an unusual treatment of the problem.

The discussion on the taxonomies include the reason behind its selection, a general description and the

taxonomy’s strengths and weaknesses.

21

3.5.1 Taxonomies Focused on Specific Software

This section describes the taxonomies that apply to specific software only. The taxonomies discussed in this

section were either developed using a single software system, or were developed to be applied on a single

software system.

Errors of TEX

Published by Knuth [82] in 1989, a description of errors in the popular typesetting system TEX created one

of the earlier examples of defect taxonomies. This classification scheme was based on essential functionality

rather than being based on the external observable artifacts of the program [6, 82].

The Errors of TEX creates categories with the names, “An algorithm gone awry”, “A blunder or a mental

typo”, “A clean up for consistency or clarity”, “A data structure debacle”, “An efficiency enhancement”, “A

forgotten function”, “A generalization or growth of ability”, “An interactive improvement”, “A language lia-

bility”, “A mismatch between modules”, “A promotion of portability”, “A quest for quality”, “Reinforcement

of robustness”, “A surprising scenario” and “A Trivial Typo” [82, 6].

However, this classification is focused on TEX system only and is difficult to apply on systems where

the original code writer is not the one applying the classification [87], making it strongly subjective. The

taxonomy is complete till the time it was applied, with no possible extension in future - thus having a

tendency towards incompleteness once a new feature is added or the software is reimplemented. It is strongly

non-orthogonal as multiple categories overlap with each other.

DeMillo and Mathur’s Classification

DeMillo and Mathur [44] proposed a grammar based defect classification scheme as the basis of an automatic

defect classifier and applied it on the Errors of TEX [82]. Their scheme classifies a defect into one of the

four major classes - “Missing entity”, “Spurious entity”, “Misplaced entity” and “Incorrect entity” where an

entity is a representation of the defect [44]. Among their classes, missing entities are the ones that require

the introduction of an element in the code to correct it [44], encompassing all kinds of omitted checks and

cleanup codes. The second of the four, spurious entity, indicates those faults that require a removal from its

characteristic elements from the code [44] - thus many security flaws, code clones [137, 133] and performance

bugs qualify for this category. Third in the category, misplaced entity, denotes those cases where an element

is required to be relocated inside code to remove the defect [44] and the fourth and last category, incorrect

entity, is described simply as the defect that cannot be classified into any of the other three [44].

This taxonomy is strongly objective, requiring minimum human supervision, and no subjective discretion,

in its generation process. However, the taxonomy suffers from an extremely concise structure involving four

categories only, which may suffice for a single system like TEX, but are not applicable to larger and more

diverse systems like the Unix.

22

3.5.2 Taxonomies Focused on Organizations and Processes

This section describes the taxonomies that were aimed at specific organizations or engineering processes.

The Hewlett-Packard Scheme

The Hewlett-Packard Taxonomy includes all phases of development [54]. A defect is described using three

attributes - “Origin”, “Type” and “Mode”. Origin refers to the phase of introduction for the defect, type

describes a particular origin in more details and mode describes the reason for which the defect is considered

a defect [54]. The choice of origin specifies a set of values that further elaborates the origin [53].

In the predefined six choices for origin, only one is dedicated to code. The types associated with code

draw from the set containing “Interprocess Communications”, “Data Definition”, “Module Design”, “Logical

Description”, “Error Checking”, “Standards”, “Logic”, “Computation”, “Data Handling” and “Interface

Implementation” with the first six shared with design defects [53]. For each of the types, a single attribute

from the list of “Missing”, “Unclear”, “Wrong”, “Changed” and “Better way” can be assigned [53].

The HP Taxonomy provides a generic structure applicable across software development companies in their

tasks, and is generic to be adopted to other granularities. But the taxonomy is neither flexible nor extensible,

limiting its applicability beyond the range of application software.

The Orthogonal Defect Classification Scheme

Introduced by IBM, the Orthogonal Defect Classification scheme (ODC) was developed focusing on the

defects found in code [54]. ODC associates a defect with a set of orthogonal attributes that identify the

process requiring attention, in the same way of characterizing a point using n values in an orthogonal n-axis

Cartesian space [28].

The ODC identifies eight defect types to be applied on the processes [28]. Coding is described as a process

thus the defect types do apply to code defects, along with their relevance to other artifacts, processes and

phases of the software life cycle. The scheme focuses on the existential attributes of defects instead of the

inference based approximate location of its injection [28].

Of the eight defect types, the first is “Function”, that denotes a problem in a new feature added to

the software. The second type is “Interface”, that accounts for both the internal and external interfaces

of the components. The third defect type, named “Checking”, refers to the validation rules in the code.

The fourth type, “Assignment”, denotes all kinds of data assignment operations. The fifth type, “Timing

/ Serialization”, denotes the defects that occur in concurrent or distributed programming where resource

sharing and parallelism are in effect. The sixth type, “Build/Package/Merge”, includes defects in build

systems, libraries, version control and migration. The seventh type, “Documentation”, is the set of defects

that affect both publications and maintenance notes and the last of the types, “Algorithm”, describes a

code defect in its pure form - any logical or arithmetic error that affects the efficiency or effectiveness of the

23

software and can be fixed by correcting or at best, re-implementing a module [28].

A notable point about the ODC is that it is not a concrete or fixed defect classification scheme. Rather

it is more of a concept that was instantiated through the eight defect types, and that includes room for any

adoption in compliance with its basic requirements, the requirements being orthogonality, consistency across

phases and uniformity across processes [28].

3.5.3 Taxonomies Focused on System Aspects

This section describes taxonomies that were developed on generalized system properties, instead of a specific

software, engineering process or organization.

Unix Security Taxonomy

Published by Aslam in 1995 [6], this taxonomy focuses on security faults present in Unix Systems and takes

an approach to classify defects through software fault analysis. The faults are classified into three distinct

groups - “Operation faults”, “Environment faults” and “Coding faults”, of which coding faults are directly

relevant to our current study. This taxonomy relies on a defect database [6] and employs objective decision

making processes [13].

One strict criticism of this taxonomy is that, despite the incorporation of real world data, the taxonomy

was designed for implementation specific UNIX faults only [13]. A second issue, as pointed out by Bishop [13],

is that the Unix Security Taxonomy contains very prominent ambiguities due to its insufficient specification

of the point-of-view.

Extracted from the taxonomy, we found the relevant-to-code elements to be two types of coding faults, the

“Condition validation error” and “Synchronization error”. The condition validation error is defined to contain

two categories, “Failure to handle exceptions” and “Input validation error”, with the latter further subdivided

into “Field value correlation error”, “Syntax error”, “Type and number of input fields”, “Missing input” and

“Extraneous input” [6, 156]. Synchronization errors contain “Improper or inadequate serialization” and

“Race condition”.

Landwehr’s Program Security Flaw Taxonomy

Landwehr [89] developed a taxonomy from three different angles - “Genesis”, “Point of introduction” and

“Location” [156]. Of the three, a number of defects correspond to the source code defects. These defects,

even if they do not get exploited as security flaws, can cause improper behaviour by the software and thus fall

into our interest. Categorized under the super-category “Inadvertent Flaws”, these types include “Incom-

plete or inconsistent validation”, “Domain error”, “Serialization or aliasing”, “Inadequate authentication”,

“Boundary condition violation” and “Exploitable logic errors” [89].

This taxonomy is specific in its task, focusing on security flaws only. Although its three-tier consideration

of the defects provides a different approach towards the classification problem, it is not applicable beyond

24

small-scale desktop systems.

Basili and Pericone’s Taxonomy

Published in 1984, Basili and Pericone’s Software Fault Taxonomy classifies the faults based on environmental

factors [10]. Although the taxonomy suffers from a few ambiguous definitions [44], it provides five classes

that all relate to code defects. The classes of defects are mentioned as “Initialization”, “Control structure”,

“Interface”, “Data” and “Computation” [10, 44]. This taxonomy is notable for its unusual treatment of

software defects in relation to environmental cause.

3.5.4 Classification of Unusual Code Defects

This section provides an additional classification of software defects.

Bohrbug

Bohrbugs, named after the Bohr Atomic Model, are trivial defects that exhibit themselves subject to a set

of conditions and can be detected easily [65]. Bohrbugs are often described as permanent defects [83] that

do not change their nature with changes in the environment.

Heisenbug

Heisenbugs are defects that elude detection by changing nature through the change in execution environment,

thus making their observation and correction difficult at the same time. Named after the Heisenberg’s

Uncertainty Principle, these defects are transient defects [83] that depend on the execution configuration and

thus are often observable in a finished product, but not in its development version. A study [65] argues that

all software defects are either Bohrbugs or Heisenbugs, with another [83] supporting the claim after almost

two decades, using the experience over grid applications. Based on the observations made on defect types

that are described later in this chapter, this research agrees with the observation that defects can be either

transient or consistent (i.e., permanent), thus agreeing with the statement.

3.5.5 Other Taxonomies

Apart from the ones already described, a number of different taxonomies exist that involve code defects, that

we do not describe as their types are covered one way or the other by the ones described. The taxonomies

focusing on generic software defects are rare, but most of those focusing on software security include software

defects in their classification scheme. A number of dissertations [72, 87] that focused on computer or network

security taxonomies, included code defects either directly or through some indirect form.

25

Table 3.1: Properties of Analyzed Defect Taxonomies

Bias Properties Scope

Taxonomy / Author(s) Focus S
u
b

je
c
ti

v
e

O
b

je
c
ti

v
e

#
C

a
te

g
o
ri

e
s

M
o
d
e
l

C
o
m

p
le

te
n
e
ss

O
rt

h
o
g
o
n
a
li
ty

N
o
n
-r

e
d
u
n
d
a
n
c
y

O
rg

a
n
iz

a
ti

o
n

S
y
st

e
m

P
ro

je
c
t

P
ro

c
e
ss

E
x
te

n
si

b
il
it

y

Source

1. HP Scheme [62] HP G# 10(21) M G# G# G# G# G# G# G# [53, 54, 153]

2. ODC [28] IBM G# 5(8) M G# G# G# [53, 28, 153, 156, 114, 99, 140, 128]

3. Errors of TEX [82] TEX # 9(15) F # # G# # # # # # [44, 156, 128]

4. DeMillo & Mathur [44] TEX # 4(4) F G# G# # # # [44, 128]

5. Unix Security Taxonomy [6] Unix G# G# 9(12) H # G# # # # # [6, 156, 162, 13]

6. Landwehr [89] Security # 10(13) M G# G# # # # G# [89, 156, 162, 6, 12, 72, 107]

7. Basili & Pericone [10] Complexity # 5(5) F # G# # # # # [44, 99]

8. Mariani [116] Components # 10(18) H G# # # # # [140]

9. Weber [162] Security # 17(17) H # G# G# # # # # [162]

10. Leszak et al. [99] Projects G# 11(21) H G# # # # G# G# G# G# [140]

11. Seaman et al. [140] Projects G# G# 10(24) H G# G# G# G# G# # # G# [140]

12. Nakamura et al. [120] Projects # 8(9) H G# # # # # # # [120]

Legend: = Strong, G#= Weak, #= None

Categories: Categories related to source code (Total number of categories) - counted at the most elaborate level

Model: F = Flat, M = Matrix, H = Hierarchical

3.5.6 Prominent Issues with Present Taxonomies

Table 3.1 lists a comparison of 12 existing taxonomies that treat source code defect either exclusively, or

with a considerable coverage. The leftmost column lists the taxonomies, or the name of the authors in case

the taxonomy is not referred by a generic name. The second column, focus, mentions the target of original

taxonomy development - which is either a specific system, or specific type of projects or organizations. The

Subjectivity and Objectivity columns describe the development bias of the taxonomy.

Implicit Focus to Source Code

Most defect taxonomies focus on defects in the entire system, with minimal, and often no focus, to source

code defects. Despite the fact that source code contains 75% of the total defects of the software system [99], it

is not the focus of an equal share of taxonomies. In Table 3.1, the column ‘#Categories’ shows the analyzed

taxonomy’s focus on source code.

The taxonomies that do focus on source code (e.g., [54, 28, 6, 82, 44, 10]) suffer from other issues, as

pointed out by a number of studies [44, 140], and described in subsequent sections.

Subjectivity and Objectivity

Table 3.1 shows the subjective and objective bias of taxonomies. In the table, the bias for both subjectivity

and objectivity were denoted using one of the three symbols - ‘strong’, ‘weak’ and ‘none’. The term ‘bias’ is

used to express the actual methodology of developing the taxonomy - a subjective bias being the application

of developer’s discretion in the generation process, and an objective bias being the application of automated

or automation capable rules or methods in the generation. A strong bias in any of the column indicates that

the bias denoted by the column is a necessary and sufficient element in generating the taxonomy. A weak

26

indicator denotes that the bias can be applied, but is not sufficient to generate the taxonomy on its own. A

no bias indicator expresses the absence of the particular bias in the generation process. For example, a strong

subjective and weak objective bias means that the developer’s discretion and objective rules both can result

in the taxonomy, but developer’s discretion alone can generate the complete taxonomy, while the objective

rules require the discretion as its supportive mean to achieve the goal.

As it is apparent from Table 3.1, most taxonomies have strong bias towards subjectivity. The taxonomies

that are developed entirely on subjective discretion (e.g., [82, 10, 89]) tend to be specialized, and are often

obscured for later interpretation, as can be inferred from the columns grouped under ‘scope’. The human

centric procedure for subjective development may also introduce more inaccuracies into the taxonomies

developed in this way than their objective counterparts.

Taxonomies that focus entirely on the objective end (e.g., [44]) are likely to result in extremely concise

structures that can only be used by specific software systems and groups that develop the system, as it

is apparent from the ‘number of categories’ column. The advantage it offers over the purely subjective

taxonomies is that the procedure can be applied on similar systems, but it does not create a single taxonomy

that can be applied on more than one systems.

Regardless of the development process, it is argued that taxonomies are developed to serve subjective

interests [90] by providing insights into the subject of interest. This argument can be extended in having

taxonomies to incorporate subjectivity in their construction. Most widely adopted taxonomies (e.g., HP,

ODC [28]) incorporate both the subjective and objective activities into the development process - which

seems to be an inevitable quality for any taxonomy intended to be generalized over multiple subjects.

Specialization

The columns grouped under ‘Scope’ in Table 3.1 show the generality of the taxonomies across four perspectives

- Organizations, Systems, Projects and Processes. Business entities were considered as ‘Organizations’ (e.g.,

HP, IBM or NASA), specific computer software groups or frameworks were included in ‘Systems’ (e.g.,

UNIX), specific standalone software were considered in ‘Projects’ (e.g., TEX) and the more general processes

of development were included in ‘Processes’. A taxonomy’s compliance to generality across each perspective

is marked as either ‘strong’, ‘weak’ or ‘none’. A strong value in any of the perspectives denotes that the

taxonomy is ready to be used across different entities in that perspective. A weak association is used to denote

cases where a taxonomy cannot be readily applied, but can be adapted into one, across that perspective. A

no association denotes that the taxonomy can neither be applied nor adapted across the perspective. For

example, in row 6 of the table, Landwehr’s taxonomy is reported to be applicable to different systems, with

no application across organizations, processes or projects.

Most taxonomies are developed with a narrow focus for the defect targets. Often, the focus is on specific

software systems [44, 155, 6, 12], specific technologies [116, 114, 115], and specific defect types, most often

security faults only [162, 111, 89, 155, 6, 12, 72].

27

Violation of Desirable Properties

Most of the taxonomies are criticized for violating the desirable properties for effective taxonomies. Many

of the taxonomies, especially the ones that are created via purely subjective discretion, are criticized for

having unclear definitions, confusing mapping and overlapping categories - thus violating the orthogonality

principle.

In Table 3.1, the last three properties grouped under “Properties” show the compliance to desirable

properties. A strong indicator indicates that the taxonomy completely complies with the mentioned property,

a weak indicator indicates the taxonomy attempts to comply with the property but contains problems that

prevent its complete compliance, and a none indicator indicates the taxonomy does not attempt to comply

with the property.

Most taxonomies violate the orthogonality principles by one way or the other, often through ambiguities

present in their definitions, as pointed out by numerous studies [44, 6, 12, 89, 116].

The phenomena that “views to the systems have different levels of abstraction” and “the same defect may

belong to different classes due to different abstraction levels” were observed as a problem to the validity of

a taxonomy by Bishop and Bailey [13] but argued against by Weber [162]. Weber’s argument was that, if a

defect manifests this property of being classified in different groups at different abstractions, it is due to the

property of the defect and not the flaw of the taxonomy.

Extensibility

Extensibility is a feature overlooked by most taxonomies, as Table 3.1 displays. In the ‘Extensibility’ column, a

strong indicator is used to express that the taxonomy explicitly considers extensibility as one of its objectives.

A weak indicator means the taxonomy does not consider extensibility as a development objective, but provides

a degree of extensibility using an “Others” category or a similar construct. A none indicator indicates the

taxonomy is completely non-extensible.

A question may arise at this point about our advocacy of Extensibility that we consider as a desirable prop-

erty for taxonomies. The “Others” category clearly goes against the desirable property of non-redundancy

while providing a degree of extensibility. The extensibility we speak in favour of, is not reflected in the

extensibility provided by the “Others” category. Our argument was in favour of ‘Controlled and Specific’

extensibility, while the one provided by including an “Others” category in the taxonomy is both uncontrolled

and unspecific. Such inclusions can create inconsistencies in the taxonomies in future, which our recommen-

dations do not intend to. The controlled and specific extensibility that we recommend ensures the taxonomy

is extended following strict rules, and under defined formal methodologies, ensuring the preservation of

consistency.

28

3.6 A Framework for Developing Extensible Defect Taxonomies

This section describes FlexTax (FLexible EXtensible TAXonomies), a human supervised automated system

for defect mapping into flexible and extensible taxonomies that are generated as the defects are being mapped.

3.6.1 Development Objectives

The development objectives of FlexTax can be summarized as,

(i) Defining objectivity of an automated system within subjective bounds of a human supervisor.

(ii) Balancing the workload between the automated system and human supervisor.

(iii) Representation of multiple points-of-view.

(iv) Ensuring flexibility and extensibility.

(v) Providing perfectly orthogonal defect mapping, instead of perfectly orthogonal definitions.

Software is ubiquitoes and it is not possible to enumerate all tasks a software performs or will perform in

the future. This translates to the statement that ‘all’ future defects cannot be identified. Therefore, trying to

develop a taxonomy that can be applied to all situations of the present and future is impractical. However, a

workaround to this matter can be developed. If a taxonomy is flexible and automated, it can at least become

consistent for the present situation, without a guarantee of future performance. And if it is extensible, it

can provide a way to accommodate future change. The combination of flexibility and extensibility thus can

make a taxonomy resilient to invalidation - although cannot guarantee its being perfect or everlasting.

Objectivity within Subjective Bounds

Quantification, classification and definition of individual defects are often subjective notions [90]. Being

developed for human interpretation, it is not always possible for a taxonomy to leave off all subjective

elements. On the other hand, to be precise and non-redundant, a defect taxonomy requires the employment

of objective methods. In the framework, an effort was made to balance and formalize the subjectivity, instead

of trying to eliminate it altogether.

FlexTax aims to define the objectivity within the bounds of subjective requirements - making the process

of classification automation-possible, while retaining the flexibility of interpretation offered by subjective

choices.

Workload Balance

The working principle of FlexTax aims to balance the workload between the human supervisor and automated

processes. The supervisor defines the boundary of processes and specifies the directions of the processing,

29

Figure 3.1: Functional Structure of FlexTax

while the automated system handles the tasks that have high effort requirements - like mapping, determining

the point where a new category is required, or the reconfiguration of the taxonomy if required.

Figure 3.1 shows the concept of FlexTax. In Figure 3.1(a), specific tasks are shown for the human

supervisor and the automated system and Figure 3.1(b) shows the flow of operations. As shown in Figure

3.1(a), the tasks that require high efforts, like re-configuring the entire taxonomy when a new class is added

or determining the requirements for a new class, are left to the automated system while the relatively less

effort heavy tasks, like approving weights and determining properties are left to the human supervisor.

FlexTax implements the development objectives through a set of perspectives, a set of attributes, one

conversion function and one mapping function, as described in subsequent sections.

Multi-layered Taxonomy Representation

Different taxonomies correspond to different points-of-view and all except flat taxonomies may accommodate

more than one points-of-view. Often inputs to the same classification process come from multiple and

different perspectives, generating different versions of the same taxonomy. To develop a taxonomy that

serves or accommodates multiple interests, a mechanism is required to represent the taxonomy in multiple

directions at the same time.

To make a taxonomy beneficial through different phases of the defect reporting, detection and removal

process, FlexTax considers different perspectives through different directions of the taxonomy. A perspective

is considered as a subjective interpretation of a defect’s nature from one specific point-of-view and is realized

through a set of attributes that corresponds to the perspective. In other words, the attributes to defects

and defect classes are chosen with a view to realize a specific perspective. A perspective is not meant for

processing by the automated framework, and can be free-form.

For flat taxonomies, FlexTax uses exactly one perspective that describes the general direction of the

classification. As flat taxonomies do not incorporate more than one points-of-view, one perspective suffices

for its need.

30

For hierarchical taxonomies, multiple perspectives are used with relation to each other - each perspective

being applicable to one level of classification. Every perspective except the one corresponding to the topmost

level elaborates the perspective above it, and every perspective except the one corresponding to the bottom-

most level generalizes the perspective below it.

For matrices, FlexTax uses multiple perspectives without relation to each other. That is, every single

perspective describes the taxonomy from a different point-of-view and even though one might generalize or

specialize another, it is not an explicit relation.

Perspectives are realized through a set of Attributes, which are features describing the defects and classes.

The attributes, like the perspectives, are meant for the human supervisor and do not require a strict structure

(can be natural language constructs). However, the compliance of the defects and classes need to determined

with respect to these attributes, and thus their definitions are not entirely free-form like those of the perspec-

tives. An attribute definition is required to provide exactly one comparable feature for the class or defect.

For example, “Assigning an entity a value larger than its maximum capability” can be an attribute, while

“Assigning an improper value to an entity” is not, because the first statement can be utilized to find a strict

compliance while the second cannot be as it contains the ambiguous term “improper” which might mean a

number of situations.

Characterization

A defect can be characterized in many ways - and it has been done in previous research from the point of

effect, root cause, or technicality. Considering the scope of the defect in this study, a single characterization

approach might pose a problem with orthogonality, and may hinder the extensibility.

FlexTax considers a defect class as a quantitative characterization of a set of attributes selected in com-

pliance with the perspectives. The collection of attributes represent a set of features determined through the

specific perspectives. Any two perspectives may share attributes, but the two sets of attributes correspond-

ing to any two perspectives are not identical. The attributes are assigned numerical weights that distinguish

every combination of attributes from all other combinations. Every defect has a corresponding compliance

vector that denotes its compliance to the set of attributes. This compliance vector is then converted, through

a conversion function, into a point in an n-dimensional Euclidean Space that denotes the characteristics of

the specific defect.

Defect classes, like defects, are represented under the same Euclidean Space and through the same mech-

anism. A defect class is simply an ideal defect of that class, one that complies with every single attribute

relevant to that class. This approach was chosen to facilitate a few benefits. First, it classifies defect classes

and defects under the same framework - making it possible to build the taxonomy from earlier taxonomies,

real world defects, or a combination of both using the same techniques. Second, it provides a way to resolve

the orthogonality problems with carefully chosen values for specific attributes. Third, it provides a way of

prioritizing specific classes by segregating planes that contain the defect classes through any dimension.

31

To make classes distinct from one another, FlexTax segregates the attributes relating to a class as a

set of Essential Attributes and a set of Optional Attributes, with the sets being mutually exclusive to each

other. An attribute belonging to the set of optional attributes for a class can be an optional attribute for any

number of other classes, but an attribute being an essential attribute to a class is exclusive to that class’s

essential attributes only, although it can be an optional attribute for any other class. To become a member

of a class, a defect has to contain the same essential attributes, although may not have all or any of the

optional attributes.

The characterization of the defect and defect class is done through a conversion function that accepts

the defect and defect class’s compliance vectors and computes an intermediate representation using a defined

mapping function. The intermediate representation is a vector expressed in an n-dimensional Euclidean

space - with each dimension expressing one perspective. Thus the intermediate representation’s projection

on any axis denotes the affinity of the defect or defect class towards the perspective represented by that axis.

The definition of the conversion function remain fixed for any taxonomy, but are not restricted by FlexTax.

Different taxonomies may have different mapping functions based on the situation under which the taxonomy

is developed.

After the conversion function’s characterization of a defect, a mapping function performs the mapping of

a defect to a defect class under defined criteria. These criteria involve the intermediate representations and,

like the conversion function, are not restricted by FlexTax, although must remain fixed for one taxonomy.

Orthogonality

A problem of orthogonality immediately arises from the procedure mentioned in the previous section. If a

point corresponding to a defect (a defect-point) is equally associative to points corresponding multiple defect

classes (defect-class-points), then the classification becomes undecidable. Often it is not possible to provide

completely orthogonal definitions for a defect, owing to the different interpretations by different users. To

account for this reality, FlexTax does not aim to eradicate all traces of non-orthogonality from a defect class’s

description, rather focuses on assigning the defect to the most relevant defect class should a situation with

multiple associations arises.

Often, orthogonality cannot be ensured as a strict rule for taxonomies. An example is shown in Listing

3.1. A buffer overflow means accessing a piece of memory beyond the permitted range, and an off-by-one

error is the offset of a desired value by one. There can be a situation where an off-by-one error results into a

buffer overflow, as is depicted in the listing. Still, it is not possible to substitute the definition of one by the

other because off-by-ones are not the only causes of buffer overflows, and not all off-by-one errors result into

buffer overflows. If they are merged into one class, the class has to exclude situations of arithmetic errors

that do not contribute to buffer overflows. To accommodate such situations, deliberate overlapping regions

have to be kept in defect class definitions. FlexTax realizes this practical situation, and focuses on completely

orthogonal mapping instead of completely orthogonal definitions.

32

Listing 3.1: Code Listing Showing Situation of Non-orthogonality

1 int a [1 0 0] ;

2 for (int i = 0 ; i <= 100 ; i++)

3 {

4 a [i] = 0 ;

5 }

The fact that different types of defects correspond to different levels of response (e.g., complete failure,

major deviation, minor deviation) can be characterized through prioritization of defect classes according to

severity. The prioritization, in addition to expressing the relative defect severity, can also solve the problem

of orthogonality to some degree by identifying the most bizarre effect resulting from a defect. FlexTax’s

concept of Essential Attributes assigned to classes and defects eliminate any confusing mapping scenario,

where non-exclusive properties for a class are included in the optional attributes.

FlexTax considers numerical weights assigned to the defect classes - in the form of the values in the

characterization vector. The defects are thus segregated into different lines (if taxonomy contains two per-

spectives), planes (if the taxonomy contains three perspectives) or hyperplanes (if the taxonomy contains

more than three perspectives) (hereinafter, the generic term ‘plane’ is used to mean either of the three). Any

two planes across a perspective contain two different groups of classes based on their relative importance, as

set by the weight setting policy. The values are set so that the distances between planes that hold defect

class points of different priorities are at least twice the maximum distance between any two defect class point

on the same plane through the same perspective. The reason for this adoption is to force the defect points

to be closer to the maximum significant, or maximum prioritized defect classes. Thus for confusing defects,

the defect gets associated with the most severe defect class, nullifying the effect of other associations.

To implement the weight for a class, the attributes are assigned weights through a weight assignment

policy. This weight assignment policy, in addition to the conversion and mapping functions, is the third

configurable aspect of FlexTax that can be modified with need, but should remain constant for a single

taxonomy.

Extensibility

To create extensible taxonomies, there has to be a mechanism to determine the point where new defect classes

need to be incorporated into the taxonomy. In congruence with the prioritization scheme set in the previous

section, it can be safely assumed that in case a defect’s proximity to the nearest defect class is bigger than

the distance of the prioritized planes, a new plane with higher/lower priorities needs to be introduced - that

is, a new parent class needs to be introduced.

If a defect is not close enough (by means of Euclidian Distance) to any defect class under a perspective,

but is not distant enough to form a new plane, a new defect class needs to be introduced under the same

parent class.

33

Figure 3.2: Structure and Representation of a Multi-layer Hierarchical Taxonomy

Figure 3.2 shows a conceptual view of the multi-layer taxonomy. With Figure 3.2(a) denoting the struc-

ture of a three layer hierarchical taxonomy and Figure 3.2(b) showing the representation in FlexTax. The

representation shows three planes prioritized along perspective 3. A defect point would have the same priority

as its closest plane.

3.6.2 Formalization

This section provides the formal framework for FlexTax. The expressions written in this section followed the

conventions - using upper case letters to denote sets, upper case letters with subscripts to denote subsets,

lower case letters with subscripts to denote set elements and Greek letters to denote constants.

Let,

(i) D = {d1, d2, ...} a set of defects existing in code.

(ii) P = {p1, p2, ..., pn} a set of n perspectives (i.e., subjective directions) to categorize those defects.

(iii) A = {a1, a2, ..., am} a set of m attributes for defects, determined with respect to the set P . For every

pi ∈ P , there exists a subset Ai ⊆ A. For i 6= j, Ai and Aj may not be mutually exclusive.

(iv) W = {w1, w2, ..., wm} a collection of m numerical weights corresponding to the attributes in set A. For

every ai ∈ A, there exists a wi ∈W .

(v) C = {c1, c2, ..., cx} is a set of defect classes, where, for any perspective pi, there exists a Ci ⊆ C. For

i 6= j, Ci and Cj are mutually exclusive.

(vi) B = {b1, b2, ..., bm} is a collection of m values to denote a single level compliance to each element ai ∈ A.

Naturally, a Bi ⊆ B exists for every Ai ⊆ A. Unlike W and A, B has to have separate instance Bci for

every single ci ∈ C and Bdi for every single di ∈ D.

(vii) M = {m1,m2,m3, ...} is a collection of intermediate values for defects and defect classes. The set M

can be considered a model to represent any entity, that is, any defect or defect class.

34

(viii) Weight : W → R, where R is the set of real numbers, is a relation that assigns weights to different

members in the set W.

(ix) Convert : D → M is a conversion function that converts the defect features into an intermediate

representations.

(x) Map : M → C is a mapping function that maps a defect’s intermediate representation to a specific

defect class.

(xi) α is a predefined minimum separation between any two classes on the same plane.

Defect Characterization

For any defect di and defect class cj , there is an Euclidean Vector V di = {vdi (1), vdi (2), ...vdi (n)} and V ci =

{vci (1), vci (2), ...vci (n)} where every value in the vector corresponds to a real value determined by the associa-

tion of the vector to one pk ∈ P . The association, in this case, is denoted by the position of the point along

the particular axis that represents the perspective pk.

The values vi(n) are determined by analyzing the compliance of the defect or defect class to the set of

attributes, and through association of the attributes to the set of perspectives. The conversion function

accepts the compliance vector for a defect, or class, and produces the vector V di or V ci .

The conversion function can be customized to realize different conversion policies (e.g., defining preemptive

attributes, creating prioritized relations or creating attribute dependency). For this experiment, however, a

simplified conversion scheme was adopted that sums up all corresponding weights towards a perspective.

vi(n) =

m∑
k=1

bk ∗ wk ∗ z(k) for every bk ∈ Bi (3.1)

where,

z(k) = 1 if ak corresponds to pn, 0 otherwise

Algorithm 3.1 shows the conversion algorithm in pseudocode.

Relating defects with classes

A mapping function decides the association between a defect and any corresponding defect class. In case a

reasonable mapping cannot be defined, a new class is incorporated to the set of classes. The new class is

derived from the defect that posed the requirement for the new class, and thus contains the same attributes

the defect contains.

The mapping function is a configurable entity that has two distinct parts. The first part is the comparison

metric, and the second part is a criterion to satisfy for the mapping. There can be a number of mapping,

including average, weighted average, different distance metrics and other combinations. For the experiment

to test FlexTax, a simple mapping was adopted. For the current experiment, the mapping is done through

computing the Euclidean Distance between the two vectors.

35

Algorithm 3.1: ConvertDefectToModel
Data:
d: The defect to be mapped
P: The set of Perspectives
A: The set of Attributes
W: The set of Weights
Bd: The compliance vector for d
Result:
M(d): Interpediate Representation of d

1 Let val(p)← The value across perspective p;
2 for each p ∈ P do
3 Set val(p)← 0;
4 for each ai ∈ A do
5 if a corresponds to p then
6 Set z ← 1;
7 end
8 else
9 Set z ← 0;

10 end

11 set val(p)← val(p) + Bdi ∗ wi ∗ z;
12 end

13 end
14 return val(p) as M(d);

Considering dist(V1, V2) to be the Euclidean Distance between the two vectors, that is,

dist(V1, V2) =

√√√√ n∑
k=1

{v1(k)− v2(k)}2 (3.2)

and,

proximity(di, cj) = min(dist(Vd(i), Vc(k)) for all ck ∈ C) (3.3)

The mapping condition, for the current research, is defined as,

proximity(di, cj) ≤ Tp (3.4)

where,

Tp = a threshold used to validate proximity.

The weights wk assigned to the attributes have the purpose of distinguishing one defect attribute from

another, and do not quantify any concrete measurement. This matter can be exploited by assigning arbitrary

values for different attributes over a particular perspective.

To put the framework to use in generating a taxonomy, we have used the following rule. For all unassigned

weights wk associated with the attributes for a new defect class, if the attribute is not among essential

attribute, the weight 1 is assigned. For the attributes that belong to the set of essential attributes, a total

weight is distributed among them. The total weight is calculated as α more than the maximum of total

attribute values of all other classes. Algorithm 3.2 shows the weight assignment policy.

36

Algorithm 3.2: WeightOfAttribute
Data:
x: The attribute to assign weight to
P: The Set of Perspectives
E: The set of Essential Properties
O: The set of Optional properties
Result:
w: Weight of x

1 Let α← The minimum distance between two classes ;
2 Let κ← Number of elements in E ;
3 if x ∈ E then
4 Let p← The perspective associated with x;
5 Let v ← The maximum value towards p for all c ∈ C ;

6 return v+α
κ ;

7 end
8 else
9 return 1.

10 end

Figure 3.3: The Procedure of Mapping Defects to Classes

3.6.3 Procedure for Mapping Defects

Mapping of the defects, and building and extending the taxonomy in the process, is interactive with the

requirement of feedback from the end user. In the entire process, users’ feedback is used to determine the

attributes and to find the affiliation to the attributes.

Figure 3.3 shows the procedure for mapping a defect. Rounded rectangles denote sets, rectangles denote

functions and arrows denote the association between different artifacts. The diagram shows the set of Defects

D, the set of Classes C, and six attributes a1-a6 distributed over three perspectives p1, p2, p3. p1, p2 have

common attributes a2, a3, while p2, p3 have common attribute a5. The defect d3, being associated to the

attributes a1, a3, a5, is converted into the model entity M(d3) by the Conversion Function and then passed

on to the Mapping function. If a defect class c2 happened to be containing the same essential attributes as

d, in a previous phase, it would have been converted into the model entity M(c2) by the same procedure,

and in this case, the mapping function would map the defect d3 with the class c2 (or any other class) based

on their similarity. In case no mapping was found, FlexTax would create a new defect class, denoted as cx

that has the same attributes as d, the defect being mapped, and incorporate the class into the set of classes.

37

Any future defect that resembles similarity with d will then be mapped into the new class.

Algorithm 3.3: MapDefectsToClasses

Data: C,D,A,Bdi ,W,Tp
Result: None

1 for each d ∈ D do
2 if C = ∅ OR proximity(d, C) > Tp then
3 Let Ed ← The Essential properties for d;
4 Let Od ← The Optional properties for d;
5 Let X ← Ed ∪Od;
6 Set A← A ∪X;
7 for each ai ∈ A do
8 if ai ∈ X then

9 set (bi ∈ Bdi)← 1;
10 set wi ← Weight(ai, Ed, Od);

11 end
12 else

13 set bi ∈ Bdi ← 0;
14 end

15 end
16 Designate c← d;
17 Set C ← C ∪ c;
18 Associate d to c;

19 end
20 else
21 if More than one c ∈ C has proximity ≤ Tp then
22 Let cx ← The one with most priorities among all matched c ∈ C;
23 end
24 else
25 Let cx ← c;
26 end
27 Associate d to cx;

28 end

29 end

3.7 Case Study

This section describes a case study conducted to validate FlexTax, and a two-layer hierarchical taxonomy

that was generated from that study. The study was conducted using real world defect data obtained from

the Common Vulnerabilities and Exposure, or CVE, dataset [119].

3.7.1 Experimental Setup

CVE [119] is a dictionary that defines common vulnerabilities in software systems. It is not intended to be a

data repository, but it provides useful defect information as a catalogue to list common vulnerabilities. We

have used more than 25000 reported cases from CVE as experimental data to evaluate FlexTax.

There are multiple reasons for selecting CVE as the test repository. First, CVE contains well formed and

verified descriptions of defects, and provides a defect classification of its own. Although the focus of CVE

is on vulnerabilities, the originators of the vulnerabilities are defects in source code. Second, CVE contains

defects from multiple systems, in contrast to the bug repositories that contain data from specific projects.

Using CVE’s reported instances can encompass the same dimensions as multiple bug repositories would have

provided.

38

3.7.2 Parameter Estimation

FlexTax requires the structure of the taxonomy to be determined before the development starts, to realize its

subjective dimensions. For this experiment, as the data to CVE are reported from system users / maintainers

and used by developers / maintainers, a two-layer hierarchical approach (that is, one with two perspectives)

was used. First perspective described the most visible effect of the defect from a professional’s point of view.

Second perspective described the details for the developers.

The value Tp is the threshold of proximity used to measure a defect’s association with a class, and is

required to be estimated before development. For this, a small experiment was conducted with three sets of

50 random defects each. The results were used to estimate initial Tp that best minimizes the incompleteness

and it was found to be 50% of the predefined minimum distance between two classes, α.

64 attributes were used to classify the defects, of which 59 were used for the second perspective. For sim-

plicity, the attributes were specified as subjective descriptions that can form a strict compliance relationship

with the defect - that is, a defect either fully complies with the attribute or does not comply at all.

3.7.3 A two-Layer Hierarchical Taxonomy

The application of FlexTax over the dataset of CVE resulted into a taxonomy of 22 classes grouped under

5 groups. Following sections describe the Taxonomy. Layer-1 categories (belonging to perspective 1) are

identified with an alphabetic character and the subcategories under each category (belonging to perspective

2) are marked with a number. For each category, a definition and example defects were mentioned. For

clarity, these examples were chosen as simple ones for demonstrating the situation and were selected from

assignments submitted by students in University of Saskatchewan’s introductory programming courses1. The

code listings provided as examples were also chosen from the same source. As an annexure to this chapter,

Appendix A provides the details on the actual attributes and other parameters for developing the taxonomy.

The defects were described using three terms,

Definition 3.1. An ‘entity’ is a symbolic representation of data in source code. It can be a variable, a

constant, or an expression, and may denote a single value or a collection of values such as an array or a

pointer to allocated memory.

Definition 3.2. For any entity e, the set of permitted data values P = {p : p is a single value for e} is the

set of all defined values e can assume over its build environment.

Definition 3.3. For any entity e, the set of expected data values V = {v : v is a single value for e} is the

set of values for e in its context assumed under the correct behaviour of the software. For any single entity,

V ⊆ P .

1CMPT 111 (Introduction to Computer Science and Programming), 2011 and 2012. CMPT 115 (Principles of Computer
Science), 2011, 2012. Both obtained from the submitted assignments by the students and analyzed anonymously.

39

3.7.4 Computation (C)

Computation defects are defects that produce incorrect output due to an anomaly present in specific values

of identifiers, or calculation results. FlexTax proposed three defect classes for computation defects.

Value Representation Defect (C.1)

A value representation defect is caused by the representation of values to a different set than what is expected.

Such representation often truncates a range of values to a subset of itself, or generates a completely non-

matching value than the entity that receives it expects. As a generic statement, a wrong value representation

defect can be defined as,

Definition 3.4. For an entity e1 with the set of expected values V1, a value representation defect occurs if

the value of e1 is represented to fit an entity e2 with set of expected values V2 such that, V1 6⊆ V2.

Common examples of such defects include, but are not limited to,

(i) Type casting a value to a type able to hold only values smaller than the one being cast.

(ii) Representing a floating point value as a binary number for which the binary representation is non-

terminating (not all floating point numbers fall into this category).

(iii) Type Overflows.

(iv) Integer Divisions.

(v) Assigning unsigned values to signed types (risks changing the sign).

(vi) Comparing floating point numbers as exact values.

A point to note about this defect type is, not all instances of the same statement results into a defect.

Listing 3.2 shows two instances of the situations. The first instance, in line 1, is a defect because the binary

representation of 0.1 is a non-terminating fraction. The set of expected values for f is, Vf = {x : 0.1 ≤ x ≤

0.5}, while, due to the addition of the extra values due to the non-terminating fraction, the actual set of

values will be Wf = {0.1, 0.2 + δ1, 0.3 + δ2, 0.4 + δ3, 0.5 + δ4}, making the last value out of range for the loop.

However, in line 4, the defect does not exist as the values now accommodate the entire range as was defined

that is, the applied values Wf = {0.1, 0.2 + δ1, 0.3 + δ2, 0.4 + δ3, 0.5 + δ4}.

Listing 3.2: Sample Code Listing Showing a C1 Defect

1 for (f loat i = 0 . 0 ; i <= 0 . 5 ; i += 0 . 1)

2 {

3 }

4 for (f loat i = 0 . 0 ; i <= 0 . 6 ; i += 0 . 1)

5 {

6 }

40

Value Offset Defect (C.2)

Value offset defects are introduced by a specific offset of values in any entity. These defects are usually

introduced by two phenomena. First is using a constant in an operation that is off by its actual point and

Second is using a wrong comparison operator introducing an off-by-one defect. In its generic form, these

offsets can be positive or negative, and can be of any magnitude.

Definition 3.5. For an entity e with set of expected values V and set of permitted values P , a value offset

defect occurs if, for determinable and defined values w for e, it holds that ∃w : w ∈ P,w 6∈ V .

Examples of the defect includes, but are not limited to,

(i) Considering the minimum array index as 1 while it is actually 0 (and vice versa).

(ii) Considering the maximum array index as the number of elements of the array, while it is one less (and

vice versa).

(iii) When counting number of elements in a range, not considering both of the terminal entities.

Listing 3.3: Sample Code Listing Showing a C2 Defect

1 #define SIZE 100

2 int a [SIZE] ;

3 for (i = 0 ; i <= 100 ; i++)

4 {

5 a [i] = 0 ;

6 }

The Code Listing 3.3 shows a common off-by-one error as the limit of the for loop is one step more than

it should have been. Other varieties of the value offset defects occur in estimating a value and in recurrent

structures.

Undefined Outcome (C.3)

This class includes defects that result into undefined states or undefined results from operations performed

on them. Undefined states can originate by using an entity whose initial states are not known and no

determinable operation has been performed on it before its use as an r-value, or by using an entity that had

been subjected to an operation for which the outcome is not known. The generic form of this defect can be

described as,

Definition 3.6. For any entity e with set of expected values V and set of permitted values P , an undefined

outcome occurs if for applied values w of e it holds that ∃w : w ∈ P but w ∈ V is undecidable

Common examples of this defect includes, but are not limited to,

41

(i) Division by zero.

(ii) Using an uninitialized value.

(iii) Using an entity that suffered from Defect C1 in an operation.

Listing 3.4: Sample Code Listing Showing a C3 Defect

1 int Sumup(int n)

2 {

3 int sum ;

4 for (int i = 0 ; i <= n ; i++)

5 {

6 sum = sum + i ;

7 }

8 return sum ;

9 }

Listing 3.4 shows a situation where the use of an uninitialized value results into the defect. The value

returned in this case cannot be determined due to the initial undetermined value in sum, and the outcome

of the defect will propagate through any statement and scope this function’s return value is used in.

3.7.5 Logic (L)

Logical defects are defects that arise from logical constructs and control flow. FlexTax proposed eight logical

defect classes.

Improper Checks (L.1)

This class includes the defects where the omission or an error in the check for an entity results into an

improper validation of any data. The defect can exhibit itself as either an absence of a validation, or by using

a condition as a validation artifact that has either improper operator or operand. In generic form, it can be

defined as,

Definition 3.7. If a validation statement allows a set of values W for an entity e with expected set of values

V and permitted set of values P where it holds that, ∃w : w ∈ W,w 6∈ V OR w 6∈ P , then the validation

statement suffers from an improper check.

Common examples of the Improper Checks include, but are not limited to,

(i) Not providing a check in a necessary place.

(ii) Creating a check with wrong, but relevant, operator (i.e., the operator does not create a compile error

as it is relevant, but introduces a flaw due to being incorrect).

42

(iii) Creating a check with wrong, but relevant, operand (i.e., the operand does not create a compile error

as it is relevant, but introduces a flaw due to being incorrect).

(iv) The C2 Defect occurring in the condition part of a validation statement.

(v) Using an irrelevant operator (e.g., = in case of ==).

Listing 3.5: Sample Code Listing Showing an L1 Defect

1 int f unc t i on (void)

2 {

3 int value , check ing va lue ;

4 . . .

5 i f (va lue = check ing va lue)

6 {

7 . . .

8 }

9 else

10 {

11 . . .

12 }

13 }

The code fragment presented in Listing 3.5 shows a common defect drawn from the submitted assignments

in one of the undergraduate introductory programming course in the University of Saskatchewan. The check

results into a tautology as assignment operators always return a reference to the object assigned to, which

can only be interpreted as a true value.

Improper Terminal Condition (L.2)

This class includes the defects that are introduced in case of recurrent structures by improperly estimating

the terminating condition. The defect can exhibit itself as an infinite loop or recursion, as a loop or recursion

that terminates early or fails to terminate at the proper point.

A difference with the previous class (L1) is that, the L1 defects result in wrong outcome or execution

path, but does not involve controlling recurrent structures. In its generic form, this defect can be described

as,

Definition 3.8. For any recurrent structure control entity e with the set of expected values V and the set of

permitted values P , an improper terminal condition occurs if for w as values assigned to e, ∃w : w 6∈ V holds.

Prominent defect types under this class include, but are not limited to,

(i) Not using any terminal condition.

(ii) Exhibiting a C1, C2, C3, or L1 defect in the terminal condition.

43

(iii) Making a terminal condition an tautology or a contradiction.

(iv) Not updating a loop controller inside the loop.

Wrong Operation (L.3)

This class includes defects that involve doing one operation where another was appropriate. Such action

either makes the value deviate from the expected set of values or, in case of repetitive code, violates the

expected relation between the consecutive values inside the set of expected values. In its generic form, this

defect can be described as,

Definition 3.9. For any entity e that is a resultant from any operation with the set of expected values V ,

the operation is a wrong operation if any value of e does not comply with the values v ∈ V or, for any value

vi, vj ∈ V , the relation vi → vj is violated for j = i± 1.

Listing 3.6: Sample Code Listing Showing an L3 Defect

1 for (i = 0 ; i < 10 ; i−−)

2 {

3 . . .

4 }

Prominent defect types for this class include, but are not limited to,

(i) Using = in place of == and vice-versa.

(ii) Using < in place of > and vice-versa.

(iii) Using ++ in place of −− and vice-versa.

Flaws in Algorithm (L.4)

This category includes the defects that are originated from a flaw in the algorithm but are traceable from

source code. There can be many different defect types constituting to this class, and not all can be listed

(due to the infinite possibilities of algorithm design). Often the comprehension of this defect requires design

knowledge for its comprehension.

Definition 3.10. For any entity e with the set of expected values V , if the relation vi → vj between any two

values of V , vi and vj becomes different that what is expected, it denotes a flaw in algorithm.

The flaws in algorithm is not strictly a source code defect (although it is often traceable from source

code) because detecting such defects require the knowledge of the algorithm or design in addition to the

information inferred from source code.

Prominent defect types in this class include, but are not limited to,

44

(i) Not saving a value when required.

(ii) Not updating a value when required.

(iii) Not setting a value when required.

(iv) Any of the other defects if introduced by the algorithm.

Performance Issues (L.5)

This class includes defects that do not cause a wrong output or deviated behaviour, but could be implemented

in a better way. An example is running a loop more than it should be run (not an Improper Terminal

Condition, as it doesn’t violate the expected values). A classic instance of the defect is a brute-force prime

number checker that checks every factor of a number to determine if it is prime while it suffices checking only

the factors that are as large as the square root of the number2.

Definition 3.11. For any entity e with the set of expected values V , if the same set V can be, but is

not, achieved with a mechanism less burdensome in terms of resource usage, execution time, or any other

performance measure, then the present implementation denotes a performance defect for e.

Performance issues can be caused by a number of faults in the program, starting from benign issues

like keeping unused variables, using redundant variables or using extra complex logic. For the most part,

detection of performance issues requires knowledge of the architecture and design of the software and thus

these defects are not strictly source code defects.

Prominent defect types in this class include, but are not limited to,

(i) Declaring never-used entities.

(ii) Allocating more than required.

(iii) Not using part of the allocated memory.

(iv) Making more than one conditional branch to do the same task.

Improper Exception Handling (L.6)

This class includes defects that result from exception handling problems. Three situations may be considered

as problems with exception handling, the first is handling an exception for a code block that does not generate

any exception under any condition, second is not handling an exception for a code block that might generate

an exception, and the third is handling a wrong exception for a code that generates an exception. In its

generic form, this defect can be described as,

2This particular performance issue exists in case of the brute-force algorithm only, and does not affect the advanced or
efficient algorithms.

45

Definition 3.12. For any block of code, if the block is able to generate a set of exceptions EG and the exception

handling code considers the set of exception EH where EH 6= EG, the situation denotes an improper exception

handling defect.

Prominent defect types in this class include, but are not limited to,

(i) Not catching an exception.

(ii) Catching a wrong exception.

(iii) Catching an exception, but not handling it.

(iv) Catching the right exception, but handling it wrong.

Control Flow Error (L.7)

The control flow error for any part of the code is a piece of code that results into an improper control flow.

Examples include making a condition a tautology or a contradiction or creating a branch of code that will

never be reached. The difference between the Improper Checks and the Control Flow Error is that, unlike

Improper Checks, Control Flow Errors use valid constructs, but the semantics are invalid for the checking,

while the Improper Checks defect involves operators that can be detected from the compiler’s perspectives.

Definition 3.13. If, for a validation statement, the outcome has a set of expected values V , while the actual

values that are produced as the outcome has a set W , and W 6= V , then the statement suffers from a Control

Flow Error.

Prominent defect types in this class include, but are not limited to,

(i) Making an always-taken branch.

(ii) Making a never-taken branch.

(iii) Creating unreachable code.

Design Non-conformance (L.8)

This category includes defects that are resulted from the difference from design. These defects differ with the

other logical defects in that, they do not always result into non-functioning code, or in any code that in itself

can indicate the problem. The examples can be an improper module interface definitions where the module

is functioning and can be used, but not in the way the design document specifies - creating problems in other

parts of the software implementation. This type of defects are not present entirely on the source code.

Prominent defect types in this class include, but are not limited to,

(i) Replacing efficient sorting with inefficient ones.

46

(ii) Changing design data structures

(iii) Introducing new code.

(iv) Not implementing part of the design code.

Memory (M)

Memory related defects are defects that involve the access or manipulation of the computer’s memory. Flex-

Tax proposed four defect classes for memory defects.

Invalid Memory Reference (M.1)

Invalid memory references occur when a piece of non-existing memory is referred in either a read or write

operation, or a read-only memory is accessed for a write operation. Examples include referring to unallocated

memory or referring to a memory that has been deallocated. Often exhibited as a null pointer dereference,

this defect can be caused by the undefined outcome defect on a memory entity.

Definition 3.14. For an atomic or collective entity e denoting a memory region for use with the set of

permitted values P and the set of Expected values V, if, for applied values w for e, it holds that, ∃w : w 6∈

P OR w 6∈ V , the operation denotes an invalid memory reference.

Listing 3.7: Sample Code Listing Showing an M1 Defect

1 void f unc t i on (void)

2 {

3 char ∗p ;

4 c in >> p ;

5 return ;

6 }

In the code fragment shown in Listing 3.7, the pointer p contains a garbage value that, while trying to

be accessed, will result into a segmentation fault. In case p was initialized to 0, it would have caused a null

pointer dereference.

Prominent defect types in this class include, but are not limited to,

(i) Null-pointer dereference.

(ii) Invalid pointer dereference.

(iii) Using an incompatible value as a pointer.

(iv) Creating a C1 or C2 or C3 defect in a memory entity.

47

Improper Deallocation (M.2)

An improper deallocation occurs when a piece of memory is tried to be deallocated in the wrong way.

This defect can be introduced by a number of mechanisms, including, deallocating a non-existing memory,

deallocating an already deallocated memory, trying to deallocate a null pointer or deallocating a memory

with a wrong operator (malloc() vs. delete, new vs. free()).

Definition 3.15. For an entity e denoting a memory region for use with the set of expected values V and

set of permitted values P , an improper deallocation occurs if P = ∅ or a value w is deallocated for e where

w 6∈ P .

Listing 3.8: Sample Code Listing Showing an M2 Defect

1 void f unc t i on (void)

2 {

3 char ∗p = new char [SIZE] ;

4 . . .

5 d e l e t e [] p ;

6 . . .

7 d e l e t e [] p ;

8 return ;

9 }

Prominent defect types in this class include, but are not limited to,

(i) Deallocating deallocated memory.

(ii) Deallocating unallocated memory.

(iii) Using wrong deallocation procedure (new − > free(), malloc() − > delete, new[] − > delete, new − >

delete[])

Memory Leaks (M.3)

This category includes defects that result from not releasing an allocation memory after the operations

finishes. Ideally, if M is a set of allocated memory for an operation, M = ∅ should hold when operation

finishes.

Definition 3.16. For an entity e denoting a memory region for use with the set of permitted values P and

a set of expected values V , a memory leak occurs if, after deallocation, P 6= ∅ OR V 6= ∅.

Prominent defect types in this class include, but are not limited to,

1. Not deallocating an allocated memory.

2. Deallocating only part of an allocated memory.

48

Over/Underflow (M.4)

A memory overflow occurs when a piece of memory is accessed with more data than it can hold, or is accessed

beyond its maximum limit. An underflow is the same condition occurring beyond the minimum limit of the

memory.

Definition 3.17. For an entity e denoting a memory region for use with the set of expected values V and

the set of permitted values P , if for an applied value w it holds that, ∃w : w 6∈ V but w is adjacent to V , the

operation denotes a memory over/underflow.

Prominent defect types in this class include, but are not limited to,

(i) Accessing an allocated memory beyond the last valid address.

(ii) Accessing an allocated memory before the first valid address.

(iii) Trying to write data bigger than the size of allocated memory.

(iv) Not terminating the allocated memory with right marker.

3.7.6 Data, Interface and Input/Output(D)

This group of defect classes contains defects that arise from data usage, interface specification and usage and

the input/output to the software or a specific module. FlexTax proposed five defect classes under this group.

Interface Mismatch (D.1)

This defect type denotes a mismatch between the interfaces of a system. The difference is often an archi-

tectural or design issue and are not usually traceable from source code. The ones that can be traced from

source code exhibit discrepancies in either parameter numbers, types, values or ordering for function usage.

Definition 3.18. An interface mismatch occurs where, for any invocation of an interface that require the

set of entities ER the actual used set of entities is EA and ER 6= EA

Prominent defect types in this class include, but are not limited to,

(i) Calling a function with wrong parameter types.

(ii) Calling a function with repeated parameters.

(iii) Using default values for parameters.

(iv) Creating a C1 defect in the parameter of a function.

49

Data Mismatch (D.2)

A data mismatch is the use of data values not proper for the use in an interface. The difference between

interface mismatch and data mismatch is that, interface mismatch uses wrong entities for an interface, but

data mismatch uses right entities, with wrong states.

Definition 3.19. A data mismatch occurs when, for an entity e1 required to invoke an interface, the set of

expected values as used in the interface is V1, but the interface is invoked with an entity e2 with the set of

expected values V2 for which it holds that, V2 6⊆ V1.

Prominent defect types in this class include, but are not limited to,

(i) Calling a function with right parameter types, but wrong values.

(ii) Creating C3 defects in the parameter of a function.

(iii) Casting pointers / values to fit function call.

Improper Input Validation (D.3)

This defect occurs from not validating the inputs to a module or program before they are processed. This

defect is actually an L1 defect applied on the input to a module or the entire software.

Definition 3.20. An improper input validation defect occurs if, for a module or program with the set of

input entities E, there exists an L1 defect for any e ∈ E.

Prominent defect types in this class include, but are not limited to,

(i) Not validating an input before use.

(ii) Using an invalid validation for an input.

Missing or Extra Input (D.4)

A defect in this category occurs if the software or any module is put to work with insufficient or extra input

required for processing. A missing input can cause the software to crash, while an extra input may introduce

an error in computation.

Definition 3.21. A missing or extra input defect occurs where, for any invocation of an interface that require

the set of entities ER the actual used set of entities is EA and |ER| 6= |EA|

Prominent defect types in this class include, but are not limited to,

(i) Not providing enough inputs.

(ii) Missing fields in composite entities used as input.

50

(iii) Providing extra inputs for variable list modules.

(iv) Providing extra fields in composite entities used as input.

Improper Abstraction (D.5)

This defect arises from providing improper access to a data member of a module. The term improper access

means either to provide access to a data member that should not be accessed, or to restrict access to one

that should be accessed.

Prominent defect types in this class include, but are not limited to,

(i) Failing to provide access to a member.

(ii) Passing an entity by-reference that should be passed by value and vice-versa.

(iii) Returning reference to a private/protected entity by a public function.

(iv) Not providing an interface to interact with a private data member.

3.7.7 Synchronization (S)

Synchronization defects are defects that occur in a multiprocess / multithread software and involve the

sequencing or interleaving of the processes or threads. FlexTax proposed two defect classes under this group.

Prohibitive States (S.1)

This category contains the defects that result into a prohibition on any block of code into completing its

task. Examples include deadlocks, process starvation and improper priority assignments.

Definition 3.22. A prohibitive state occurs if the software’s execution reaches a point where no further

execution is possible until a certain condition is satisfied, and the condition cannot be satisfied immediately

under the current situations.

Prominent defect types in this class include, but are not limited to,

(i) Deadlock.

(ii) Data Race.

(iii) Process Starvation.

51

Improper Sequencing (S.2)

This category includes the defects that results into effects coming from improper sequence of execution for

different blocks of code. Examples include atomicity violation, improper serialization and lock-and-release

problems.

Definition 3.23. An improper sequencing defect occurs if, through the interactions among multiple entities

or processes, the order of execution impels the software to enter into undesirable states which could not have

occurred had the sequencing been different.

Prominent defect types in this class include, but are not limited to,

(i) Atomicity Violation.

(ii) Unsynchronized update.

(iii) No Locking mechanism for critical objects.

3.8 Evaluation of the Taxonomy

This section describes the evaluation of the taxonomy generated by FlexTax to verify its effectiveness. FlexTax

cannot be directly evaluated as it is a framework and it possibly is the only one of its kind. The taxonomy

was evaluated to point out its strengths and weaknesses which, in turn, would assess FlexTax.

3.8.1 Evaluation Directions

The two-layer taxonomy developed using FlexTax has been evaluated from three perspectives

(i) Completeness: There must not be any defect unaccounted for.

(ii) Non-redundancy: There must not be a defect class with no defect mapped in it.

(iii) Orthogonality: There must not be a confusion in mapping defects to classes.

For a comprehensive evaluation, two different evaluations were done.

(i) Verification using Machine Learning Classifiers

(ii) Manual Cross-matching with established defect databases

52

Table 3.2: Results of the 10-fold Cross Validation

Pass

Classifier 1 2 3 4 5 6 7 8 9 10 Avg.

1. J48(C4.5) 0.92 1.0 0.98 0.95 0.99 0.97 1.0 0.99 0.94 0.94 0.968

2. Naive Bayes 0.97 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.99 1.0 0.996

3. Bayes Net 0.99 1.0 0.98 0.97 1.0 0.97 1.0 1.0 0.99 0.99 0.989

3.8.2 Verification Using Machine Learning Classifiers

FlexTax uses defect features in the form of Attributes to specify the defects and classes, and the defect

feature comparison as the classification metrics to determine the defect’s affiliation to a class. When it is

used for generating a hierarchical taxonomy (as was done for the current research), the approach becomes

an instance of classification using information gain (as new classes are added when there is significantly

different information to be obtained from them). This quality makes the taxonomy an appealing candidate

for a machine learning algorithm that works on information gain for classification. It was exploited in our

endeavour to verify the accuracy of FlexTax with a J48 machine learning classifier using the Weka Data

Mining Software [66].

A random sample of 1000 classified defect instances, along with their feature vectors (the compliance

vector, B) were chosen from the defects classified by FlexTax. The Weka Toolkit [66] was used to train a

J48 Classifier (a variant of the C4.5 machine learning classifier) and to apply it on a 10-fold cross validation

over this 1000 defect set. The results are presented in Table 3.2. The classifier was chosen for its explicit

treatment on information gain induced classification.

To further validate the case study, the same experiment was repeated under the Naive Bayes and Bayes

Net classifiers, with results presented in the same table.

As can be observed from the data, for 96.8% cases under the J48 classifier, the defects were mapped exactly

as expected. Of the remaining 32 defects that did not match, 29 were integer overflows (C1) mapped to

memory overflows (M4) - due to the similarity in their features. The other three involved confusing scenarios

that FlexTax resolved using prioritization, but J48 (C4.5) failed to handle as there was no equivalent scheme

for the classifier.

Both the the Naive Bayes and Bayes Net classifiers reported close to 100% accuracy, owing to the fact that

even though orthogonality problems may exist between defects, their feature sets are essentially independent.

However, we would like to consider the J48 classification as the most accurate one due to the particular

nature of the classifier.

The results from classification demonstrate that the classification mechanism for FlexTax is accurate

and feasible. The same machine learning classifiers could be used as the main classification technique for

FlexTax, but it could pose a problem in resolving orthogonality issues, or could alter the structure of the

already established taxonomy, against both of which FlexTax has its own specific mechanisms. FlexTax

53

uses prioritization and proximity calculation to balance such scenarios. Prioritization helps to balance the

orthogonality problems, while proximity calculation preserves the consistency of the taxonomy.

Established Defect Databases

CVE is a dataset that defines defects leading to vulnerabilities for software systems and have been used by

many organizations. Among the over 50000 entries in CVE from multiple systems, more than 25000 belong

to source code defects and were processed. Rest of the entries, including repitition, fall under policy and

architecture related issues that fall beyond the scope of FlexTax. The classification generated the results

as presented in Figure 3.4 under ‘Set 1’. In the figure, classes C, L, M, D and S denotes the collective

(i.e., Perspective 1) Computation, Logic, Memory, Data and Synchronization defects with respect to the

total defects. The classes C1-C3, L1-L8, M1-M4, D1-D5, S1 and S2 denotes the specific classes belonging to

Perspective 2 and the corresponding bars show the defect distribution within the same group of classes (not

with respect to total defects). As a secondary set, the defect dataset recorded from the projects implemented

under this research was used. The secondary set, denoted as ‘Set 2’ in Figure 3.4, contains 208 defects from

general software development tasks. Observations on the data are reported in the next section.

Unfortunately, due to the subjective variance incorporated in taxonomies, there is no standard for a

correct taxonomy that can be used as a benchmark. CVE provides its own taxonomy comprising of 41

classes of which 30 relate to source code defects, but the focus of CVE on the impact of the defect, and

not the defect itself - making it improper for exact one-to-one comparison of defects or classes. However, a

case-by-case comparison can be done if the defect features can be inferred from CVEs categories. From the

defects classified by FlexTax, a random sample of 5% was chosen and the defect class attributes were listed.

For each defect, the attributes of the corresponding CVE category, where they can be inferred, were listed.

The two sets of attributes were cross matched. It was found that for all except 14 defects, the essential

defect class attributes for FlexTax’s generated taxonomy were supersets of the corresponding CVE attributes

- establishing the point that should this classification scheme were used for CVE instead of the handpicked

classification applied at present, the defects would have belonged to the same class as they do now.

The 14 defects that showed discrepancy between the generated taxonomy and the corresponding category

in CVE were analyzed more closely. Their classification by FlexTax was found to be more accurate than the

CVE classifications. The reason of the discrepancy was that, FlexTax considered all properties the defects

exhibited while CVE considered only the most severe properties. As FlexTax considered all properties, their

highest affiliation to a class became the class they are associated in. And as CVE considered only the most

severe properties, the most severe outcome they cause became their class of affiliation. Our analysis revealed

that, often a defect can cause a single most severe problem to be classified into one category, but the collective

influence of a lot of other not-so-severe impacts can outweigh the severity of the single incident.

54

Figure 3.4: Distribution of Defects in the Generated Taxonomy

Figure 3.5: Unmapped and Multiple Mapped Defects with Differing Values of Tp

55

Estimating the value of Tp

The threshold Tp poses a two sided problem. Evidently, it can be deducted that with a sufficiently large

Tp, only one defect class is required. This generalizes into the statement that, the higher the value of Tp,

the lower is the number of defect classes. On the other hand, having a higher Tp will also give rise to the

chances of mapping the same defect to multiple classes. That is, the lower is the Tp, the higher is the chance

of orthogonality.

To test a suitable value, instead of repeating the experiment over such a large dataset, we have evaluated

different Tp against the generated taxonomy. The results are presented in Figure 3.5. In the figure, three

trends show (a) the defects having no class with distance less than Tp, (b) the defects having exactly one

class within the bounds of Tp, and (c) the defects having multiple classes within the bounds of Tp.

As apparent from Figure 3.5, the value of Tp as 12-15% of the average distance between any two consecutive

defect classes is the best balance between the two. However, as orthogonality issues are not sure to occur

in case of multiple match, but incompleteness is a certain phenomenon in case any defect is left un-mapped,

we would recommend to use a value of Tp that minimizes the number of non-matched defects. In case of the

developed taxonomy a value of 50% was used.

A point to mention is that, having multiple distances to classes less than the threshold does not definitely

identify orthogonality problems. Some of the cases will result into orthogonality issues if the minimum

distance is the same to more than one classes. In our taxonomy, no orthogonality issues arose.

3.8.3 Observations and Justifications

(1) In Figure 3.4 (Set 1) the classes C, M, L, D, S encompass a full range of defects (i.e., 100%) and

the calculation was made compared to total defects. This states the fact that no defect was left out in the

classification, proving the completeness of the generated taxonomy. Same observation is made with Set 2.

(2) In Figure 3.4 (Set 1), some categories have very low distributions, but none effectively reaches 0, the

lowest defect density translates to 1 defect in the total set. A question may arise about the requirement of such

categories. In reality, this is a strength of FlexTax to recognize categories like these. FlexTax incorporated

the category only if the feature set of the first defect mapped to this category was distinct enough to demand

a new category. Had it not been mapped with the low density category, the defect would have mapped to a

wrong category in consideration of its features. Set 2 further strengthens the requirement of these categories,

often showing considerable population in categories that have low population over Set 1. Set 2 has a few

categories with 0 distribution - attributed to the fact that the taxonomy was not developed using Set 2.

(3) In Figure 3.4 (Set 1), most distribution is in the data related defects, as opposed to the memory

defects as described by CVE [119] in its own classification. The reason behind it is that, CVE, being focused

on vulnerabilities, considers the defect’s impacts where FlexTax considered the underlying causes. Most of

the vulnerabilities classified by CVE in the memory defects were originated by using unauthorized access or

56

using wrong parameters, both of which fall under data related defects in FlexTax’s classification.

(4) In Figure 3.4 (Set 1), most defect concentration for any group is in the first class of the group. This can

be explained by a peculiarity of FlexTax. As the classes are created from human identified features, naturally

most of the significant features are associated with the first class, and unless they are later reassigned to

other classes, they remain associated with the first class, drawing most defects into the area of distribution.

Set 2 does not seem to correspond to this observation. As Set 2’s features were not used in developing the

taxonomy, it did not bias the features to be concentrated in the first category.

(5) In Figure 3.5, the Trends (a) and (c) exhibit a reciprocal relation, as is expected from the role of Tp

in the generation process. However, Trend (b) should decrease uniformly as Tp increases, which it does in

general, with an unexpected rise at Tp = 10% to 25%. A closer look discovered that some defect classes had

too many optional attributes that, by cumulative weight, became almost equal to the essential attributes to

other classes that had less weight for essential attributes. Defects containing one class’s essential attributes

and many of another’s optionals tend to get a high affinity to both. This problem can be solved by making

classes further apart so that the optional attributes do not gain enough weight to be equal to the essential

ones of any class (i.e., it can be resolved by using a larger α).

(6) In Figure 3.5, when Tp = 0%, Trend (b) should be 100% and Trend (a) should be 0%. It did not

happen in this case because Tp was varied against a fixed set of classes and defects, instead of an open set

with as many classes as there can be. But the 80% for Trend (a) at Tp = 0 indicates that in case Tp = 0%,

there would have been 20% more classes than there already are (not equal to total defect count because same

defect is reported in different instances). Therefore, for a handpicked classification, one can expect around

27 classes considering the 20% increment. CVE’s own handpicked classification system lists 41 defect classes,

of which 11 do not belong to source code defects (and defects belonging to those classes were excluded from

all analyses), bringing the classes close to the number we predicted.

(7) As apparent from Figure 3.5, the value of Tp as 10%-15% of α is the best balance between the multiple

and zero mapping situations. However, as orthogonality issues are not sure to occur in case of multiple match,

but incompleteness is a certain phenomenon in case any defect is left un-mapped, we would recommend to

use a value of Tp that minimizes the number of non-matched defects, which, in this case, is around 30% of α.

(8) Based on the previous observations, if we compare the generated taxonomy with Table 3.1, for all of

the last three columns under ‘Properties’, FlexTax will score a strong compliance, as it is strongly orthogonal,

complete and non-redundant. Same observation will be repeated for ‘Scope’s. Also, in the ‘Extensibility’

column, FlexTax will be a strong candidate. Hence, In comparison to taxonomies presented in Table 3.1,

FlexTax will provide the maximum benefit to all taxonomies considered, close to the ODC, but outperforming

ODC in both completeness and flexibility.

57

Table 3.3: Comparison of Effort Requirements for FlexTax with Handpicked and Automated Tax-
onomies

Non-Effort-Intensive Tasks Effort-Intensive Tasks

Responsible Responsible

Task FlexTax Handpicked Automated # Task FlexTax Handpicked Automated

1. Fixing Guidelines User User User 5. Deciding New Class Addition System User System

2. Creating Classes System User System 6. Defect Mapping System User System

3. Determining Class Attributes User User System 7. Reconfiguration System User User

4. Determining Defect Attributes User User User

3.8.4 Improvement on Human Effort

For a taxonomy generated manually, a human supervisor has to design the classes, map the defects, and

carry on any reconfiguration activity on the entire taxonomy should the need arise in any case.

FlexTax removes the burden from the human supervisor to calculate and cross-match the affinity of defects

to the already existing classes, and to determine the point for new class addition. FlexTax also provides a set

of base attributes as obtained from the specific defect that created the need for the new class - thus relieving

the supervisor from the work of figuring them out.

Comparison of FlexTax’s working procedures with handpicked and automated taxonomies are presented

in Table 3.3 with columns ‘Handpicked’ and ‘Automated’ denoting the two cases. Comparing with hand-

picked taxonomies, three of the most effort-worthy tasks, decision on new class addition, defect mapping and

reconfiguration is left to the system in FlexTax, relieving the user of the burden of a large workload.

Automated taxonomies achieve almost the same improvement in terms of effort, with two major differ-

ences. The determination of class attributes requires subjective supervision over objective choices, which

is ignored by the automated taxonomies. Additionally, reconfiguration in an automated taxonomy often

requires the regeneration of the entire generation process, as is the case in DeMillo and Mathud’s taxonomy

[44] - in which FlexTax has a clear advantage of ‘reconfiguring without regeneration’.

3.9 Defect Similarity

According to the best of the knowledge of the author, no research has so far defined defect similarity from

defect class descriptions. As most of the taxonomies are handpicked and depend entirely on subjective

discretion of the developer, it is not often feasible to define the similarities on their structures.

As FlexTax, despite incorporating subjectivity in its generation process, defines defects under strict

mathematical constructs, it is possible to establish multiple measures of similarity among the defect classes.

In this section, an attempt was made to compare the classes of the generated taxonomy with each other

under different similarity metrics.

In describing a defect similarity, two notions have been used. A Strong Similarity between two defect

classes ci and cj indicates that the classes ci and cj share similar features in a way that any defect belonging

58

to ci would certainly have belonged to cj should ci be non-existent, although the opposite might not be true.

A Weak Similarity between the classes indicates that ci and cj contain common features or properties, but

are not so strongly coupled that in the absence of one, the defects belonging to it would get mapped to the

other.

This statement of similarity defines the underlying principle of defect similarities, but leaves the exact

similarity measures open for a variety of adaptations. Considering the vast expanse of the feature comparison

field, it can be assumed that there can be at least as many comparison metrics as there are techniques to

represent the features, which makes the count very large (for example, a recent paper [30] lists 76 comparison

techniques on binary feature vector only). If the customized techniques (like the one adopted for FlexTax)

are added with it, the options become even larger.

In the generated taxonomy, the classes in Perspective 1 (C, L, M, D, S) are generalizations of their

underlying classes (C1-3, L1-8, M1-4, D1-5, S1-2). They are designed to encompass the features of the

Perspective 2 classes that fall under them. Therefore, in designating similarity, the Perspective 1 classes

do not provide any value as they are meant and designed similar to the Perspective 2 classes. To make it

relevant, only Perspective 2 classes were included in the similarity measurement study.

3.9.1 Similarity Coefficients

A similarity coefficient, or similarity score, expresses a quantitative characterization of the similarity between

two artifacts of interest. In the context of FlexTax, the similarity measure is a numerical score that identifies

a defect class’s similarity with another.

To describe this study, the similarity scores were normalized in the range [0, 1]. The normalization

procedure was adopted for easier representation of the outcome from different similarity coefficients under

the same framework (a graph, in this case). The particular range of [0, 1] was chosen for its direct association

to representing percentage values (which was used as the coefficient for one case).

A point to mention is, a defect class’s similarity score to another is the maximum (1.0) does not imply the

two classes are the same, or that they can replace one another. It only specifies that the degree of similarity

in the two class’ design and perception is the maximum as it can be under the current context.

It is expected that defect class similarity expressions shall be able to describe a few properties for the defect

classes. First, as FlexTax explicitly incorporates both subjectivity and objectivity, defect class similarity

measures should be able to cover both dimensions. Second, the similarity measures should be able to predict

how the defects will be redistributed in case of a change in the taxonomy. Finally, the similarity measures

are required to express the semantic associations between the defects, instead of just their mathematical

relations.

Although an overwhelming number of similarity coefficients exist, and customized coefficients can be

designed for FlexTax, using one coefficient to express all the properties is not practical. To account for the

properties expressed above, six different similarity coefficients were used for FlexTax. Of the six, two (Trivial

59

and Distribution) were devised explicitly for FlexTax, one (Modified Hamming) was modified from a popular

coefficient to suit FlexTax and the other three (Hamming, Jaccard-Needham and Tarantula) were adopted

from popular coefficients used in previous research [30, 21].

Trivial Similarity

This similarity is relevant to FlexTax and was developed considering the specific nature of FlexTax. FlexTax

recognizes subjectivity by incorporating the supervisor’s discretion in the feature (attribute) generation and

perspective selection. This method results in a similarity imposed on the different perspectives.

In the most trivial form, defect similarity can be expressed as a defect class’s sharing of description to

other defect classes. For a hierarchical taxonomy, by principle, classes in every level generalizes the classes

immediately below it. Thus, any level can be considered as a group of similar classes under a perspective.

In this approach, the lower a level is in the hierarchy, the stronger similarity it expresses for classes below

it, and for classes under the same level. A problem with this approach is that it often does not apply to

matrices or flat taxonomies.

As FlexTax assigns weight in an incremental way, any two classes sharing similar features are expected

to be neighbours. Considering these facts, the trivial similarity coefficient ST between classes ci and cj is

defined as the compliance to two different situations. (a) if ci and cj are under the same perspective 1 class,

and (b) if ci and cj are neighbours (i.e., they occur in order with one another in consideration of the weights).

To avoid an undefined value problem, every class is considered as a neighbour to itself.

A way to implement such a similarity coefficient is to consider 1 point for compliance to each of the two

cases described above, dividing by the maximum number of points to normalize the result within the range

[0, 1]. For a taxonomy with n levels, there can be at most n-1 ancestral points for a class on the lowest layer.

Additionally, there can be one more point for the neighbourhood of the classes. Considering the present

scenario, the trivial similarity coefficient can be devised as,

ST (ci, cj) =
sn(ci, cj) +

∑n−1
x=1 sa(ci, cj)

n
(3.5)

Where,

ST = Trivial Similarity Score

sn = Similarity by neighbourhood

sa = Similarity by ancestry.

sn(ci, cj) =

1 if ci and cj are neighbours

0 otherwise

(3.6)

and,

60

sa(ci, cj) =

1 if ci and cj have the same ancestor,or if their ancestors belong to the same ancestor

0 otherwise

(3.7)

Table 3.4: Values for the Trivial Similarity Coefficient

ST (Row,Column)

Class C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. C1 1.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2. C2 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3. C3 0.50 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4. L1 0.00 0.00 0.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5. L2 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. L3 0.00 0.00 0.00 0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. L4 0.00 0.00 0.00 0.50 0.50 1.00 1.00 1.00 0.50 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8. L5 0.00 0.00 0.00 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9. L6 0.00 0.00 0.00 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10. L7 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11. L8 0.00 0.00 0.00 0.50 0.50 0.50 0.50 0.50 0.50 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12. M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13. M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14. M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15. M4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16. D1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 0.50 0.50 0.50 0.00 0.00

17. D2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.50 0.50 0.00 0.00

18. D3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 1.00 1.00 0.50 0.00 0.00

19. D4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 1.00 1.00 1.00 0.00 0.00

20. D5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 1.00 1.00 0.00 0.00

21. S1 0.00 1.00 1.00

22. S2 0.00 1.00 1.00

Note: Similarities are ordered by rows.

Table 3.4 shows the values obtained by using the trivial similarity equations over the feature set of the

taxonomy generated using FlexTax.

Similarity by Defect Distribution

As the classes are defined through the same feature space, their relative spatial positioning in the same

prioritized plane is under similar measures. By the definition of strong similarity provided above, a defect

would only be mapped to another class should its present one be absent if the other class is a neighbour

of the present one. Considering these two properties, in addition to the previous trivial coefficient, another

trivial and subjective similarity measure is used for the taxonomy.

This approach for defect similarity was examined by considering the second closest defect class for every

defect. As defects are assigned to the class closest to them by weight, the classes the defects were most likely

to belong to in absence of their present classes make similar classes to the present one.

To assess the similarity in this way, the second closest class for every defect was considered. The similarity

score by distribution, SD, between ci and cj is defined as the percentage of defects under ci that would assign

to cj in absence of ci under the same value of Tp. For any ci, ci combination, the score is at 1.0. Table 3.5

61

presents the data on the similarity by distribution, SD, study.

Table 3.5: Values for the Distribution Similarity Coefficient

SD(Row,Column)

Class C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. C1 1.00 0.21 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2. C2 0.27 1.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3. C3 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4. L1 0.00 0.00 0.00 1.00 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5. L2 0.00 0.00 0.00 0.50 1.00 0.23 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. L3 0.00 0.00 0.00 0.00 0.11 1.00 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. L4 0.00 0.00 0.00 0.00 0.00 0.27 1.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8. L5 0.00 0.00 0.00 0.00 0.00 0.00 0.31 1.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

9. L6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10. L7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

11. L8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.43 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

12. M1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

13. M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14. M3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.35 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15. M4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.21 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16. D1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.50 0.00 0.00 0.00 0.00 0.00

17. D2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.34 1.00 0.70 0.00 0.00 0.00 0.00

18. D3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 1.00 0.17 0.00 0.00 0.00

19. D4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.44 1.00 0.30 0.00 0.00

20. D5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.22 1.00 0.00 0.00

21. S1 0.00 1.00 0.30

22. S2 0.00 0.20 1.00

Note: Similarities are ordered by rows.

Similarity by Shared Features (Hamming Similarity)

Previous two similarities were carried out on the subjective arrangement of the defect classes. As subjectivity

differs for different projects and as FlexTax uses a unique way to incorporate subjectivity, the similarity

measures had to be custom designed.

To provide an objective assessment for different defect class similarities, an established method of compar-

ison is required. As FlexTax represents the defect classes by their features (as expressed through attributes),

and classifies all defect classes under the same feature space, it is possible to apply a number of feature vector

comparison techniques.

Among the many comparison techniques presented in [30], Hamming Similarity (1950) [67] is perhaps

the most preferred method for binary feature vector similarity assessment [30]. Although more than half

a century old, Hamming Similarity was used by a number of research until recent times [164, 21, 30, 42].

However, the range for the Hamming Similarity is [0, ∞]. To scale it down to the preferred range of [0,1],

the Normalized Hamming Similarity based on the Normalized Hamming Distance developed by Sokal and

Michener (1958) [145] for biological studies was used. Hamming Similarity is noted for its straightforward

feature count based comparison and applicability to binary vectors.

Hamming Similarity can be expressed using a variety of mathematical notations. In the context of

FlexTax, considering the notations specified earlier, the Hamming Similarity Coefficient would be,

62

SH(ci, cj) =

m∑
x=1

|{(bx ∈ Bci) = 1} AND {(bx ∈ Bcj) = 1}|
m

(3.8)

Where,

SH(ci, cj) = Hamming Similarity between classes ci and cj .

Bci = Compliance Vector for ci.

m = Number of Attributes.

Table 3.6: Values for the Hamming Similarity Coefficient

SH(Row,Column)

Class C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. C1 0.15 0.03 0.03 0.02 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.02 0.10 0.03 0.00 0.00 0.00 0.00

2. C2 0.03 0.07 0.02 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00

3. C3 0.03 0.02 0.08 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.02 0.02 0.03 0.00 0.00 0.00 0.00 0.00

4. L1 0.02 0.00 0.00 0.10 0.02 0.00 0.08 0.00 0.00 0.02 0.02 0.02 0.00 0.00 0.00 0.00 0.03 0.07 0.00 0.00 0.00 0.00

5. L2 0.00 0.00 0.00 0.02 0.05 0.02 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. L3 0.00 0.00 0.00 0.00 0.02 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. L4 0.03 0.02 0.03 0.08 0.03 0.03 0.59 0.02 0.07 0.00 0.34 0.05 0.00 0.03 0.03 0.08 0.08 0.12 0.03 0.08 0.07 0.03

8. L5 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00

9. L6 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.07 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10. L7 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00

11. L8 0.03 0.02 0.02 0.02 0.00 0.00 0.34 0.02 0.07 0.00 0.39 0.00 0.00 0.00 0.00 0.07 0.07 0.10 0.03 0.07 0.07 0.03

12. M1 0.03 0.02 0.03 0.02 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.00 0.00 0.00

13. M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14. M3 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15. M4 0.00 0.03 0.02 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.07 0.02 0.02 0.00 0.00 0.00 0.00 0.00

16. D1 0.02 0.03 0.02 0.00 0.00 0.00 0.08 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.02 0.10 0.00 0.02 0.00 0.03 0.00 0.00

17. D2 0.10 0.00 0.03 0.03 0.00 0.00 0.08 0.00 0.00 0.00 0.07 0.02 0.00 0.00 0.02 0.00 0.20 0.08 0.00 0.00 0.00 0.00

18. D3 0.03 0.00 0.00 0.07 0.00 0.00 0.12 0.00 0.00 0.02 0.10 0.02 0.00 0.00 0.00 0.02 0.08 0.17 0.00 0.02 0.00 0.00

19. D4 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00

20. D5 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.02 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.08 0.00 0.00

21. S1 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.03

22. S2 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03

Note: Similarities are ordered by rows.

Table 3.6 shows the values for the similarity coefficients obtained from the feature set of the taxonomy

generated by FlexTax.

Similarity by Common Features (Modified Hamming Similarity)

For every defect class, only a few features from the entire set are complied with. Comparing the similarity

with the entire compliance vector thus would result in very low similarity scores and would fail to capture

the actual relationship, as it is apparent from the SH coefficient in the previous section.

To avoid this problem, a modified definition by feature count is used. In this definition, the score is

normalized not by the entire feature vector size, but with the specific defect’s feature vector compliance.

This score, SMH would be,

SMH(ci, cj) =

∑m
x=1 |{(bx ∈ Bci) = 1} AND {(bx ∈ Bcj) = 1}|∑m

x=1 |{(bx ∈ Bci) = 1}|
(3.9)

63

Where,

SMH(ci, cj) = Modified Hamming similarity coefficient between ci and cj

Bci = Compliance Vector for ci

m = Number of Attributes.

Table 3.7: Values for the Modified Hamming Similarity Coefficient

SMH(Row,Column)

Class C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. C1 1.00 0.22 0.22 0.11 0.00 0.00 0.22 0.00 0.00 0.00 0.22 0.22 0.00 0.00 0.00 0.11 0.67 0.22 0.00 0.00 0.00 0.00

2. C2 0.50 1.00 0.25 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.25 0.25 0.00 0.00 0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00

3. C3 0.40 0.20 1.00 0.00 0.00 0.00 0.40 0.00 0.00 0.00 0.20 0.40 0.00 0.00 0.20 0.20 0.40 0.00 0.00 0.00 0.00 0.00

4. L1 0.17 0.00 0.00 1.00 0.17 0.00 0.83 0.00 0.00 0.17 0.17 0.17 0.00 0.00 0.00 0.00 0.33 0.67 0.00 0.00 0.00 0.00

5. L2 0.00 0.00 0.00 0.33 1.00 0.33 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. L3 0.00 0.00 0.00 0.00 0.33 1.00 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. L4 0.06 0.03 0.06 0.14 0.06 0.06 1.00 0.03 0.11 0.00 0.57 0.09 0.00 0.06 0.06 0.14 0.14 0.20 0.06 0.14 0.11 0.06

8. L5 0.00 0.00 0.00 0.00 0.00 0.00 0.33 1.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.33 0.00 0.00

9. L6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10. L7 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00

11. L8 0.09 0.04 0.04 0.04 0.00 0.00 0.87 0.04 0.17 0.00 1.00 0.00 0.00 0.00 0.00 0.17 0.17 0.26 0.09 0.17 0.17 0.09

12. M1 0.40 0.20 0.40 0.20 0.00 0.00 0.60 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.20 0.00 0.20 0.20 0.00 0.00 0.00 0.00

13. M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14. M3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15. M4 0.00 0.50 0.25 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.25 0.00 0.00 1.00 0.25 0.25 0.00 0.00 0.00 0.00 0.00

16. D1 0.17 0.33 0.17 0.00 0.00 0.00 0.83 0.17 0.00 0.00 0.67 0.00 0.00 0.00 0.17 1.00 0.00 0.17 0.00 0.33 0.00 0.00

17. D2 0.50 0.00 0.17 0.17 0.00 0.00 0.42 0.00 0.00 0.00 0.33 0.08 0.00 0.00 0.08 0.00 1.00 0.42 0.00 0.00 0.00 0.00

18. D3 0.20 0.00 0.00 0.40 0.00 0.00 0.70 0.00 0.00 0.10 0.60 0.10 0.00 0.00 0.00 0.10 0.50 1.00 0.00 0.10 0.00 0.00

19. D4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

20. D5 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.20 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.40 0.00 0.20 0.00 1.00 0.00 0.00

21. S1 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.50

22. S2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

Note: Similarities are ordered by rows.

Table 3.7 shows the result of the comparison under the Modified Hamming Similarity Coefficient.

Similarity by Jaccard-Needham Coefficient

The Jaccard-Needham Similarity Coefficient is another measure that was used in different fields of science

for a long time [30, 21]. Jaccard-Needham measure was used in this study for similarity due to its treatment

of the defect vectors as sets, ignoring repetitive patterns. As FlexTax’s attribute set is not a repeated

collection, rather a set containing only unique elements, the Jaccard-Needham coefficient is able to predict

the similarities. The general form of the Jaccard-Needham similarity coefficient is,

SJ(ci, cj) =
|Bci ∩Bcj |
|Bci ∪Bcj |

(3.10)

Where,

SJ(ci, cj) = Jaccard-Needham Similarity Coefficient for classes ci and cj

Bci = Compliance vector for class ci

Table 3.8 shows the similarity score under the Jaccard-Needham Similarity Coefficient.

64

Table 3.8: Values for the Jaccard-Needham Similarity Coefficient

SJ (Row,Column)

Class C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. C1 1.00 0.18 0.17 0.07 0.00 0.00 0.05 0.00 0.00 0.00 0.07 0.17 0.00 0.00 0.00 0.07 0.40 0.12 0.00 0.00 0.00 0.00

2. C2 0.18 1.00 0.13 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.04 0.13 0.00 0.00 0.33 0.25 0.00 0.00 0.00 0.00 0.00 0.00

3. C3 0.17 0.13 1.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.04 0.25 0.00 0.00 0.13 0.10 0.13 0.00 0.00 0.00 0.00 0.00

4. L1 0.07 0.00 0.00 1.00 0.13 0.00 0.14 0.00 0.00 0.10 0.04 0.10 0.00 0.00 0.00 0.00 0.13 0.33 0.00 0.00 0.00 0.00

5. L2 0.00 0.00 0.00 0.13 1.00 0.20 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. L3 0.00 0.00 0.00 0.00 0.20 1.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. L4 0.05 0.03 0.05 0.14 0.06 0.06 1.00 0.03 0.11 0.00 0.53 0.08 0.00 0.06 0.05 0.14 0.12 0.18 0.06 0.14 0.11 0.06

8. L5 0.00 0.00 0.00 0.00 0.00 0.00 0.03 1.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.14 0.00 0.00

9. L6 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 1.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10. L7 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00

11. L8 0.07 0.04 0.04 0.04 0.00 0.00 0.53 0.04 0.17 0.00 1.00 0.00 0.00 0.00 0.00 0.16 0.13 0.22 0.09 0.17 0.17 0.09

12. M1 0.17 0.13 0.25 0.10 0.00 0.00 0.08 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.13 0.00 0.06 0.07 0.00 0.00 0.00 0.00

13. M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14. M3 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15. M4 0.00 0.33 0.13 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.13 0.00 0.00 1.00 0.11 0.07 0.00 0.00 0.00 0.00 0.00

16. D1 0.07 0.25 0.10 0.00 0.00 0.00 0.14 0.13 0.00 0.00 0.16 0.00 0.00 0.00 0.11 1.00 0.00 0.07 0.00 0.22 0.00 0.00

17. D2 0.40 0.00 0.13 0.13 0.00 0.00 0.12 0.00 0.00 0.00 0.13 0.06 0.00 0.00 0.07 0.00 1.00 0.29 0.00 0.00 0.00 0.00

18. D3 0.12 0.00 0.00 0.33 0.00 0.00 0.18 0.00 0.00 0.07 0.22 0.07 0.00 0.00 0.00 0.07 0.29 1.00 0.00 0.07 0.00 0.00

19. D4 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

20. D5 0.00 0.00 0.00 0.00 0.00 0.00 0.14 0.14 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.22 0.00 0.07 0.00 1.00 0.00 0.00

21. S1 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.50

22. S2 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00

Note: Similarities are ordered by rows.

Similarity by the Tarantula Coefficient

Among the established coefficients considered, Tarantula is a recent addition. Tarantula is a defect localization

technique that uses the customized similarity coefficient to differentiate between passed and failed execution

profiles. Although not developed for a binary feature vector comparison tool Tarantula’s workflow requires

comparison the passed and failed profiles as binary feature vectors to determine the failure pattern.

The Tarantula Coefficient was developed to establish a semantic relationship among the passed and failed

execution profiles. The technique was chosen for the current assessment due to this affiliation with semantic

aspects. Tarantula Coefficient is possibly the technique to consider all forms of binary feature vector matches

and mismatches most extensively. The formation of the coefficient is,

STT =
p1

p1 + p2
(3.11)

p1 =

m∑
x=1

|(bx ∈ Bci) = 1 AND (bx ∈ Bcj) = 1|
|(bx ∈ Bci) = 1 AND (bx ∈ Bcj) 6= 1|

(3.12)

p2 =

m∑
x=1

|(bx ∈ Bci) = 1 AND (bx ∈ Bcj) 6= 1|
|(bx ∈ Bci) 6= 1 AND (bx ∈ Bcj) 6= 1|

(3.13)

Where,

m = Number of Attributes

65

bx = One specific dimension in the compliance vector B.

Bci = Compliance vector for class ci.

Table 3.9: Values for the Tarantula Similarity Coefficient

STT (Row,Column)

Class C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. C1 1.00 0.80 0.76 0.52 0.00 0.00 0.16 0.00 0.00 0.00 0.31 0.76 0.00 0.00 0.00 0.52 0.89 0.58 0.00 0.00 0.00 0.00

2. C2 0.85 1.00 0.78 0.00 0.00 0.00 0.19 0.00 0.00 0.00 0.34 0.78 0.00 0.00 0.93 0.90 0.00 0.00 0.00 0.00 0.00 0.00

3. C3 0.79 0.77 1.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.28 0.88 0.00 0.00 0.77 0.69 0.72 0.00 0.00 0.00 0.00 0.00

4. L1 0.53 0.00 0.00 1.00 0.79 0.00 0.77 0.00 0.00 0.68 0.24 0.68 0.00 0.00 0.00 0.00 0.66 0.91 0.00 0.00 0.00 0.00

5. L2 0.00 0.00 0.00 0.82 1.00 0.90 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6. L3 0.00 0.00 0.00 0.00 0.90 1.00 0.58 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

7. L4 0.25 0.29 0.40 0.60 0.53 0.53 1.00 0.35 0.64 0.00 0.68 0.50 0.00 0.63 0.45 0.60 0.39 0.55 0.63 0.64 0.64 0.63

8. L5 0.00 0.00 0.00 0.00 0.00 0.00 0.26 1.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.82 0.00 0.00 0.00 0.84 0.00 0.00

9. L6 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

10. L7 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00 0.00

11. L8 0.35 0.38 0.33 0.29 0.00 0.00 0.82 0.46 0.74 0.00 1.00 0.00 0.00 0.00 0.00 0.65 0.45 0.63 0.73 0.69 0.74 0.73

12. M1 0.79 0.77 0.88 0.69 0.00 0.00 0.51 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.77 0.00 0.49 0.55 0.00 0.00 0.00 0.00

13. M2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14. M3 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15. M4 0.00 0.93 0.78 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.78 0.00 0.00 1.00 0.75 0.57 0.00 0.00 0.00 0.00 0.00

16. D1 0.53 0.87 0.68 0.00 0.00 0.00 0.77 0.79 0.00 0.00 0.76 0.00 0.00 0.00 0.73 1.00 0.00 0.49 0.00 0.84 0.00 0.00

17. D2 0.85 0.00 0.68 0.64 0.00 0.00 0.33 0.00 0.00 0.00 0.44 0.50 0.00 0.00 0.56 0.00 1.00 0.78 0.00 0.00 0.00 0.00

18. D3 0.58 0.00 0.00 0.85 0.00 0.00 0.62 0.00 0.00 0.55 0.70 0.55 0.00 0.00 0.00 0.50 0.80 1.00 0.00 0.55 0.00 0.00

19. D4 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

20. D5 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.82 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.85 0.00 0.55 0.00 1.00 0.00 0.00

21. S1 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.97

22. S2 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 1.00

Note: Similarities are ordered by rows.

Table 3.9 shows the similarity score under the Tarantula Similarity Coefficient.

3.9.2 Similarity in Defect Classes

Figures 3.6 - 3.10 show the defect class similarity over the coefficients presented in earlier sections. The

indicators ST (ST), SD (SD), SH (SH), SMH (SMH), SJ (SJ) and STT (STT) denote the Trivial, Distribution,

Hamming, Modified Hamming, Jaccard-Needham and Tarantula similarity coefficients.

Subjective indices like ST and SD do not rely on the feature space, rather incorporates the subjective

notion used by the taxonomy developer, while SMH , SJ and STT use the objective feature space and / or

semantic association. As can be seen from the graph, the SMH , SJ and STT are more predictive (display

more variance) than the ST and SD. SH ’s performance should be with those of SMH , SJ and STT , but it is

not noticeable due to the low coefficient values typical for Hamming Coefficients (which is the reason SMH

was developed for this study).

The defect class C1 is predicted to have strong association with M1 and D2, with a weak association

with L4, L8, D1 and D3, in addition to being associated with C2 and C3. C2 is associated with C3 by most

coefficients, and with M1, M4 and D1 by some with a weak association with L4. C3’s association is almost

the same as C2.

L1 is connected with a number of classes spanning C, L, M and D groups, as it is the underlying reason

66

Figure 3.6: Defect Class Similarity Over Different Coefficients

for most defects. L2 and L3 are reported to be rather localized over the other logical classes. L4, on the

other hand, can be the underlying cause for most of the defects and is associated with virtually every other

class. Same observation holds for L8, with the exception of M2 and M3. L5 can result in D1 and D5, and

thus is strongly associated with them. For L6, the reports vary as the “Improper Exception Handling” can

be resulted from a variety of other causes. L7 is mostly associated with L8, and L1, as it is a somewhat

special case of L1.

For the memory defects, M1 is associated with a variety of other classes, as an invalid memory reference

can be from a number of issues. M2 is not associated with any defect but itself, while M3 can be a direct

result if L4, and thus is associated with it. M4, again, is possibly one of the most populous defect class in

existence and can be associated with a number of other classes.

67

Figure 3.7: Defect Class Similarity Over Different Coefficients (Continued)

Data related defects are usually associated with C, L and M groups, as they can be the outcome of defects

belonging to the C, L and M groups, as it is reflected by the similarity coefficients.

S1 and S2 are related to each other, with weak relation to the L4 and L8 defects.

One interesting observation can be made from the graphs. The ST and SD coefficients are modelled after

the same subjective interests that were used to develop the two perspectives of the taxonomy. It is expected

for ST and SD to correspond to the classification (that is, grouping C1-3, L1-8, M1-4 and D1-5 and S1-S2

in four separate similarity groups). The other four classifiers rely on the underlying feature set and do not

contain any relation to the subjective discretions. Interestingly, all four of the coefficients, SH , SMH , SJ and

STT showed similarity in the same groups, supporting the incorporation of proper similarity by subjective

means in the development phase.

68

Figure 3.8: Defect Class Similarity Over Different Coefficients (Continued)

3.10 Answering the Research Question

This section answers one of the five research questions presented in Chapter 1.

3.10.1 RQ5: Defect Similarity Criteria and Procedures

The last among the five research question presented in Chapter 1 was stated as, “What are the criteria and

procedure to determine similarity in defect classes?”. To answer this question, the terms ‘defect class’ and

‘similarity’ need to be defined. This chapter described the definition of defect classes, and then detailed a

framework, FlexTax, used for generating defect taxonomies. FlexTax’s representation of defect classes was

based on defect features and feature similarities - facilitating the similarity comparison.

69

Figure 3.9: Defect Class Similarity Over Different Coefficients (Continued)

Although the similarity study conducted in this research was a primary step to the the task, it nevertheless

was able to point out the similarity and dissimilarity in different classes of defects. The similarity study showed

than it is possible to utilize different feature representation and comparison metrics to obtain a measure of

similarity among defect classes, and that this similarity can be expressed quantitatively indicating various

degrees.

In summary, the information presented in this chapter outlined one possible way of finding out defect

similarity. According to the studies reported in this chapter, defect class similarity can be expressed by

representing defect classes by their feature set then by applying established feature comparison metrics to

compute the similarity.

This particular topic is recognized by this research as a open research question that requires further

70

Figure 3.10: Defect Class Similarity Over Different Coefficients (Continued)

investigation. Although a procedure was set up by this research that answers the research question, it still

requires further analysis.

3.11 Summary

This chapter described the state-of-the-art in defect taxonomies, a proposal of a novel taxonomy generation

and defect mapping techniques, experience of using the technique to develop a taxonomy over large scale

real world dataset, evaluation of the taxonomy over multiple strategies, and a study to describe defect

similarity. The chapter started by analyzing notable existing defect taxonomies, selected under defined

criteria and presents a qualitative comparison of the taxonomies - from which the major weaknesses in

existing taxonomies were deducted. The chapter then proceeded on describing a semi-automatic framework

named FlexTax that was developed to address the specific weaknesses of taxonomies and which generates

taxonomies while mapping defects in them. Next, the chapter described a case study conducted to validate

FlexTax, and described the taxonomy generated from the case study. Finally, the chapter described defect

similarity measures and evaluated the taxonomy against the defect similarity measures. The taxonomy

and defect similarity measures described in this chapter are later used in Chapter 4 to compare and assess

existing techniques, in Chapter 5 to design the new technique of defect detection, and in Chapter 6 to provide

a common and consistent framework for comparison and evaluation.

71

Chapter 4

Existing Tools and Techniques

This chapter provides an overview of the state-of-the-art in defect detection through code analysis using

the defect taxonomy established in Chapter 3. The chapter begins by describing different solution strategies

used in defect detection (Section 4.1). Later sections describe the strategies, and techniques under the

strategies. As the focus of the current research is on Symbolic Analysis, this chapter describes Static and

Symbolic Analysis techniques in greater depth. Other techniques, and tools belonging to such techniques, are

mentioned with brief descriptions. The description is ordered with techniques, mentioning a tool under all

relevant techniques. In case a tool employs a number of techniques, its description is split over the sections

covering different techniques, without repeating the same information. General information like the tool’s

structure or capabilities are specified in the first mention of the tool in usual reading order. SRTA, the

technique developed in the current research, is described later in Chapter 5. But considering its relevance,

and to compare it with existing tools, elements of SRTA’s description have been incorporated in this chapter.

4.1 Solution Strategies

Solution Strategies for defect detection fall into three broad categories - Manual Inspection, Static Analysis

and Dynamic Analysis [96]. Static and Dynamic Analyses have been adopted and combined into a number

of other strategies like Symbolic Analysis, Statistical Debugging or Verification.

Figure 4.1 summarizes the broad categorization of techniques that are discussed in this chapter. In the

Figure, solid arrows denote a ‘uses’ relation from the user to the used. Dotted arrows denote a ‘is-a’ relation

from the derived to the source. Subsequent sections describe the techniques (and include the tools) for the

strategies of interest.

4.1.1 Manual Inspection

Manual inspection, or code review, is the process where the software source code is inspected by human

inspectors, with or without the help of automated tools, to check their compliance to preset standards or

common practices. The actual process often involves checking the code against a defined checklist [1]. Despite

its strictly human-centric nature and high requirement for human labour [1], manual inspection is still a major

activity in software quality assurance, especially in modern agile development methodologies.

72

Figure 4.1: Strategies Used in Detecting Defects

Research concerning manual inspection covers three main directions. The first direction concerns assessing

the effectiveness of the inspection process and measuring the impacts of different factors on the inspection

process. A research by Albaryak et al. [1] measured the impact of code styles over the functional defects found

by review, and concluded that the indentation and style have a significant negative impact on the detection

process, although identifier naming, contrary to popular belief, was not reported to have any impact. Prause

et al. measured social impacts of continuous review processes [131, 130], and concluded that collaborating

development aids development quality.

Second of the three directions involves developing different automated tools to aid in the development.

Efforts include a social development platform by Prause et al. [131], a lightweight visualization technique

called NOSEPRINTS by Parnin et al. [125] to inspect code smells1, and another code inspector named

ICICLE, developed by Brothers et al. [18] as one of the first attempts to groupware based code inspection.

Last of the three directions directs towards developing practical code review techniques to improve its

effectiveness. A series of recommendations for effective code reviews have been made by Kelly and Shepard

[78], as determined by three “controlled experiments”. The recommendations outlined the best practices

and effective methodologies for Manual Inspection processes. A recent publication by Bacchelli and Bird [9]

investigated the practice using modern collaborative tools.

This research does not assume a direct position in the debate on the effectiveness of manual inspections,

rather focuses on improving the state-of-the-art of automated defect detection which may or may not be used

by manual inspection processes as supportive aids.

1A symptom in the source code that does not create a problem by itself, but can indicate the presence of a problem. An
example is repeated code that inidicates maintenance problems.

73

4.1.2 Static Analysis

Static analysis analyzes the source code only, without any runtime information. This particular approach

provides a number of advantages over other techniques. First, static analysis can probe any execution path

in the source code, including the ones not reachable at runtime. This particular advantage enables Static

Analysis to detect defects that are not yet encountered, but might surface in future once the execution path

is taken. Second, as it only requires the source code, static analysis can examine software before release, or

even before the software is complete enough to result in a successful build - providing defect detection in the

early stages of development. In specific problems, like Buffer Overflow Detection from large legacy codebase

written in unsafe languages like C and C++, researchers often consider static analysis as the only feasible

approach for proper detection [168].

The most compelling advantage for static analysis is the capability of enumerating and exploring all

execution paths, regardless of their invocation at a particular execution and irrespective of their possibility of

being exploited ever after deployment. This property enables static analysis to be able to detect defects that

might never be exposed at runtime and therefore shall be beyond the scope for Dynamic Analysis. Ironically,

the capability of exploring all paths often poses itself to be the biggest drawback for static analysis in the form

of so-called “path explosion”, that is, the extremely large number of paths the execution has a possibility to

proceed on [91, 23]. Path explosion creates a challenge for static analysis tools to perform their analyses in

reasonable time and often lowers their accuracy - usually exhibited through a high false positive rate. It was

reported that code complexity has a reciprocal relation with the accuracy of the static analysis result [160]

and the same hypothesis was supported by an earlier experiment [168]. Often the false alarm rates for static

detection tools are either difficult to assess, or are simply ignored, “possibly due to the irritation resulted

from seeing too many false alarms” [168]. Sometimes program slicing is used as a countermeasure to the path

explosion problem [91], despite the fact that it does not always provide a good result. Some specialized and

tricky defects that depend on execution order, like concurrency bugs, cannot be detected with satisfactory

accuracy by the application of pure static analysis [79].

The ability of explore all execution paths also provides the way for finding paths relevant to a specific

input set - an idea exploited by the middle phase of the three phase DSD Crasher [39]. Exploiting this idea

reduced the number of execution paths, although is not applicable without the aid of dynamic analysis.

A number of tools have been developed to utilize different flavours of static analysis, having utilized

techniques as diverse as symbolic analysis [163, 158], abstract interpretation [129] and inter-procedural anal-

ysis [129, 163, 158]. Often the conversion of the actual codes into a separate problem domain is applied to

counterbalance various problems with static analysis [163].

Static analysis was exploited in the ARray CHEckeR (ARCHER) by Xie et al. [163]. The tool is reported

to evaluate array access, pointer dereference and function calls against a derived set of constraints to find

violations that might result into an error or an exploitable vulnerability [163]. ARCHER does not require

code annotations, works on C and C++ and is reported to handle multi-million lines of code [163], although

74

the accuracy was in question in large scale experiments [168] and in detecting buffer overflow defects.

SAFE [57] is a tool developed for Java codes that uses both structural checks and inter-procedural flow

sensitive dataflow solving techniques to find defects. In its first phase, the tool tries to detect defect signatures

by constructing an XML model [57] and then proceeds on by using a type-state checking to detect trivial

defects. The tool is distributed as an eclipse plug-in and is also able to function as an ANT-task or a stand

alone command line tool [57]. The tool is reported to have limitations in handling large programs [57].

Lexical Analysis

Lexical analysis, as a static analysis, analyzes software properties through the set of tokens generated from

the source files. This form of analysis can find defects that do not require any inference, or require very

limited inference.

Evans et al. [49] developed LCLint, a tool that uses purely static analysis to detect a number of defects

including violation of abstraction boundaries, data hiding, memory leaks, reference to unallocated memories

and null dereferences [49, 48, 50]. The tool works on C and C++ and relies heavily on code annotation that

puts its applicability to existing codebases in question [163].

Evans et al. [50], in a later work, used what they term as “lightweight static analysis” to find buffer

overrun vulnerabilities from source code with SPLINT, an updated version of LCLint [49]. This tool, like

its predecessor, requires code annotations and detects problems by matching code with annotations [50],

although it is able to work to a degree where no annotation is provided [168]. SPLINT works on C code

only and is known to detect stack and heap based buffer overflow defects - using some trivial heuristics as

well as complex program value analysis to detect the likely candidates to the problem. In the words of the

developers of the tool, the effort requirement for code annotation is significant [50].

Holzmann [68] developed UNO, the tool to detect Undefined outcome, Null pointer dereference and

Overflows. The tool is actually a model verifier that works on C code only. The tool provides intra- and

limited inter-procedural analysis under the names of “Local” and “Global” analyses. Although lightweight (by

requirement) and easily deployable, UNO’s accuracy was put to question by multiple experiments [29, 168].

Due to the limitation on static analysis to ensure accuracy and efficiency at the same time, approaches

were proposed to balance between the two. Viega et al. [154] employed static analysis in detecting race

conditions, buffer violations and other security vulnerabilities through a tool named ITS4. ITS4 works by

breaking the non-preprocessed source code into a set of tokens and then analyzing them against hand-coded

token sequences [154]. The tool rely entirely on code annotation to be able to process likely vulnerabilities.

4.1.3 Problem Domain Transformation

Due to the nature of the large number of program paths to analyze, often static analysis is adapted into

transforming the problem involving source code to another representation specific for the type of defect the

analysis intends to detect.

75

In 2000, Wagner et al. [158] reported a prototype that used static analysis to formulate an integer

constraint problem from the source code. The prototype was intended to detect buffer overflow problems,

and modelled the test subjects as a pair of integers to verify against each other [158]. A violation on the

constraints would result into a potential buffer overflow identification. The prototype is scalable to systems

of varying sizes, but due to the scalability-precision trade-off, the precision is sacrificed [158]. It is able to

detect a subset of off-by-one errors but does not cover the entire set. A disadvantage of the prototype is its

incapability of handing multiple redirection of pointers, array of pointers, function pointers and unions [158],

along with its inaccurate flow-insensitive analysis [158]. The authors also proposed an algorithm to solve the

integer constraint system in an efficient way using a Directed Acyclic Graph (DAG). However, the approach

is reported to have suffered from very high false positive rates [168], an issue that was prevalent on a later

work by Xie et al. that relied on it [163].

Ganapathy et al. [56] presented a tool generated with the combination of several other tools that uses

a linear constraint generation and taint analysis for the detection of buffer overflow defects in flow and

context insensitive manners [56]. Their approach uses CodeSurfer to find points-to information for the code

and associates a four variable set to determine the minimum and maximum size of the allocated and used

memory for a buffer [56]. The approach uses a “taint analysis” to refine the constraint set by removing the

invalid variables from it. The tool used two solver modules in solving the constraints using linear programming

to find the best estimates for their values. The tool is reported to be able to handle an arbitrary level of

dereferencing but suffers considerably from both high false positives and high false negatives [56].

Using a finite state machine (FSM) to analyze dereferencing has been proposed by Chen et al. [24] that

detects the memory dereferencing and double deallocation, and provides assumptions on the undecidable

points-to analysis in representing the pointer states through an FSM. The technique detects null pointer and

wild pointer errors along with a partial coverage with the double deallocation detection [24]. The technique

suffers from context insensitivity and the lack of support for function pointers [24].

4.1.4 Hybrid Analysis

Hybrid analysis tries to address the problems of static and dynamic analyses by combining them into inte-

grated techniques to use on code. Typically the application involves selecting the paths that the program is

more likely to trace for static analysis, based on the data collected by dynamic analysis. A point to note is

that, pure dynamic analysis do not have a way of probing into source code, unless proper instrumentation is

inserted in code to generate a precise enough report. As this study focuses on source code defects, we did

not provide detailed description of the pure dynamic analysis tools, although we have mentioned a few.

Often Static and Dynamic Analyses are used to refine, restrict or verify one another’s outcome. This

technique was utilized in Check and Crash [38], DSD Crasher [36], and HeapMD [26]. In the first two,

static analysis was used to refine the results of a dynamic analysis for better performance, and on the latter,

dynamic analysis results were applied on static analysis to pinpoint the problem.

76

Invariant Analysis

DSD Crasher [39] is a hybrid tool that combines static and dynamic analysis techniques to detect a variety

of defects in source code. On its first phase, the tool detects dynamic invariants from an existing test suite

using Daikon [47], thus being a subject to Daikon’s requirement of a large set of test data to detect the

invariants [17]. Attempts were made to overcome this by using a verification through ESC/Java [51], a tool

developed earlier by two of the authors of DSD Crasher [38]. The tool uses the Daikon generated invariants

in two ways, as an assumption of a method’s formal parameters inside its body, and as a requirement for the

actual parameters that the method is called with at its calling point [36].

Dimitrov and Zhou [45] proposed a framework that is claimed to be applicable on both error protection

and defects detection, based on dynamic detection and enforcement of instruction level invariants. The

approach uses a table structure named LVDV (Limited Variance of Data Values) that keeps the invariant

information as collected from a successful execution of the system under test. The tool then checks the test

run against the invariants to find a potential defect location.

4.1.5 Statistical Debugging

Statistical debugging is a form of dynamic analysis for identification of the cause of failures, i.e., a defect,

by application of statistical models on program profiles. Almost always dependent on instrumentation, a

program is required to generate a profile that can be monitored and analyzed statistically to locate the point

of failure. However, the technique requires multiple program runs, refining the profile incrementally but never

being able to provide complete information in any single run. Choosing proper instrumentation predicates

(i.e. (often) boolean value generators) remain as a key problem in statistical debugging as the effectiveness

of the technique depends largely on it [74]. Often established techniques like machine learning [74] are used

for the selection of the predicates that accurately model the defect. The predicates are usually boolean value

generators, but it was argued [4] that complex value predicates serve a better purpose. However, the approach

is often criticized for introducing large execution overheads [27], and being a poor indicator of the actual

defect predictors [5, 105]. Recent studies claim that it is impossible to identify complex defects automatically

[132] and that, experts are likely to increase their efficiency using the techniques, when the defect is simple

in nature [126].

Statistical debugging has made its way into a number of defect detection efforts. Liblit et al. [105]

proposed a statistical debugging method by instrumenting predicates at particular program execution points

and using a bit vector to summarize the results from all predicates after each program run. The study focuses

on removing logically redundant predicates. The remaining predicates are then used in localizing defects in

source code blocks. The study claims to be extended to all kinds of source code defects, provided proper

predicates are chosen. The approach was more elaborated in a follow up work on adaptive bug isolation [5]

that searches on the control dependence graph of the program to locate defects in the system. The latter

77

approach is reported to significantly reduce the average performance overhead to an order of 1% as compared

to the 87% of the realistic sampling based instrumentation [5].

Jiang and Su [74] proposed a path-sensitive and context-aware statistical debugging methodology with

the use of Random Forests and Support Vector Machines (SVM). Their approach is to assign a classification

score or weight to each predicate to measure its likeliness in predicting a defect [74]. A linear SVM classifier

is employed to perform the task, later random forests are used to permute data values to each classifier.

A k-means clustering algorithm is used to discover the correlation among predicates and then the relevant

predicates are used to execute a branch prediction mechanism that constructs the faulty control flow direc-

tions. The control flow path prediction is a greedy algorithm traversing every possible control flow path and

isolating those relating to the most weighted predicates.

Machine learning approaches were also employed through feature selection techniques by Roychowdhury

and Khurshid [138]. Their approach uses well-known feature selection algorithms like RELIEF and its

derivatives.

Although predicates are the most used candidates for statistical debugging, a tool named HOLMES was

developed by Chilimbi et al. [27] to use path profiles instead of predicate profiles as the instrument for

statistical debugging. The tool relies on the assumption that “only a small portion of the code is related

to a given bug” [27] and reduces the space and execution overheads by inclining towards a defect-centered

approach. The tool allows a program to run without any profiling until it encounters a failure, thus ruling

defect-free programs as “free to run” without any interruption or overhead. The tool combines failure profiles

and static analysis to construct a set of “likely defect containing portions” that are later profiled heavily to

test against the defect. After a sufficient number of profiles are collected, statistical models are used to isolate

the paths that strongly predicts a defect. The tool uses an importance score to paths for the assessment

of their being predictors of the defect y a combination of three statistical metrics, sensitivity, context and

increase. Among these, sensitivity was described as the logarithmic ratio of the failed executions that invoke

a given path to the total failed executions, context is the ratio of the failed executions to total executions

and increase is the increment of the ratio of the failed executions that invoke a given path with the total

executions involving that given path over the context.

SOBER, a statistical defect isolator by Liu et al. [109], used profiles not only from the failure runs, but

also from successful runs to predict a defect’s location. The tool reports a defect probability only if the failure

profiles differ significantly from the successful execution profiles.

One major direction in statistical debugging is improving the effectiveness and efficiency of the process

itself. Zheng et al. [165] proposed an iterative collective voting scheme, influenced by the bi-clustering

algorithms, to judge the suitability of the predicates as being bug predictors. Jiang and Su [75] apart from

their original work on the path-sensitive and context aware methodology exploiting random forests and SVM

[74], used the profiles as a program simplification tool to reduce the complexity of analysis. In a separate

research, Liu and Han [108] proposed a new proximity metric named R-proximity to effectively group multiple

78

related profile information that lead to the same defect.

Due to their completely non-deterministic nature, concurrency bugs remain one of the prime targets for

statistical debugging. In a recent work, Lucia et al. [113] proposed Recon, a graph-based partially context-

aware representation of inter-thread communications to reconstruct executions of concurrent programs for

detecting defects that might have resulted into a failure or abnormal behaviour. According to the claim of the

paper, the tool does not only detect defects, but also attempts to provide insight on why the defect occurred

[113]. The tool is reported to detect single and multi-variable concurrency defects [113]. In an earlier but

recent study, Jin et al. [77] presented the Cooperative Crug Isolation framework (CCI), that isolates “crugs”

(concurrency bugs) using a low overhead framework. The issue of parallel programs was also addressed by

Zhou, Kulkarni and Bagchi [166] through their tool Vrisha that detects defects in large scale software by

using a combination of small-scale models of defect free behaviour.

4.1.6 Symbolic Analysis

Traditionally considered as a static analysis technique, symbolic analysis augments the capabilities of pure

static analysis techniques by providing symbolic execution data. As the exact dataflow cannot be determined

without the aid of dynamic analysis, symbolic analysis attempts to provide a similar data by approximating

information that often involves constraint solving or linear programming. Symbolic analysis converts the

problem into a set of symbolic values or constraints that can be resolved, or at least, guessed to find the

possible outcome. Often the failure to resolve a constraint or to find an anomaly in terms of the symbolic

values and a predefined rule lead to the conclusion of finding an error. Symbolic Analysis can be thought of

as a special case of the Problem Domain Transformation technique mentioned in Section 4.1.3.

In the art of defect detection, probably the use of exclusive Symbolic Analysis for detecting defects started

with the technique by Wagner et al. [158]. Their symbolic domain was composed of integer values derived

from memory bounds, which employed a simplified constraint solver to approximate the values used in the

symbolic arithmetic. Later, in ARCHER, Xie et al. [163] used a symbolic analysis technique to bind the

values to variables and memory sizes. The values are represented in symbolic constraints that determine

whether or not the statement qualifies for a defect [163]. The constraints are then resolved to find the actual

threats. They developed a specialized solver that approximates the values from different conditions.

Li et al. [103] presented an algorithm on effective symbolic analysis using simple rules to detect buffer

overflow vulnerabilities in code. The algorithm focused on data and control dependencies and instead of

checking every execution path, it worked on linearly related control dependencies [103].

Symbolic analysis is exploited in the generalized technique of Structural Abstraction and Refinement

(SAR) that has been employed by a number of defect detection tools [20, 144, 149]. Among them, Sinha

[144] proposed a generalized Structural Abstraction Technique that analyzes program ”regions” corresponding

to modular constructs.

FindBugs, [69, 71, 70] a project that started with an experiment and incrementally developed into a

79

complete product, is cited for being one of the most comprehensive defect detectors [8, 7]. The tool works

for Java only, and uses symbolic analysis with the notion of extending a simple analysis technique and / or

model in detecting multiple defects. Findbugs is cited to detect concurrency bugs, but actually the detection

is limited in ‘suspecting’ a few language specific constructs provided in Java [79].

In the most recent approach, Le and Soffa [97] devised a tool called Marple that relies heavily on Symbolic

Analysis. Marple is effective on four types of defects and is path-sensitive, context-sensitive and inter-

procedural.

Grammatech’s CodeSonar [63] is one of the most cited industry-developed tool that detects a wide variety

of code defects through a symbolic execution engine. Coverity’s SAVE [35] and Klocwork’s Insight[81] are

the two other similar tools. Although details of these tools are not public, they are claimed to have detected

“hundreds of types” of defects through symbolic models.

SRTA, the tool developed in this thesis, employs purely Symbolic Analysis as its working procedure.

Similar to Wagner et al. [158], ARCHER [163], and Li et al.[103], SRTA uses constraint formation and

solving techniques, but differs with all three in its novel application of a 3-tuple of constraints formed as

ranges providing greater flexibility, and in its capability to detect dissimilar classes of defects. Marple [96]

and Findbugs [71] make the propositions SRTA builds on, and SRTA has similarity with them in detecting

multiple defects and in using symbolic analysis, but differs with both in its incorporation of multiple-phases

of an entity’s life cycle and complete path envelopment that, collectively, increase SRTA’s capabilities.

4.1.7 Context Sensitive Analysis

In detecting defects, context sensitivity usually means the analysis relative to a block of code’s calling context.

In extended definitions, it might include the set of all active methods in the stack [16]. It is argued that

context sensitivity helps in reducing false positive by refining the results [163, 96]

ARCHER [163] uses a context sensitive analysis by using a call graph of the functions to keep track of

the calling contexts. The approach utilizes a Depth First Search in transforming the control flow graph into

a set of solver states, checking block by block while selecting a block’s successors in random order. However,

the traversal has a time constraint associated, default to five seconds [163] that breaks the analysis once

exceeded.

Although their approach was not strictly context-sensitive, Ganapathy et al. [56] relied on constraint-

inlining and inter-procedural dataflow analysis to incorporate a degree of context sensitivity.

The approach by Jiang and Su [74] provided an algorithm that used a context-aware statistical model for

debugging using machine learning algorithms. Depending on a number of heuristics, they combined several

machine learning algorithms to construct context aware processing models.

Apart from the tools and techniques that are context sensitive themselves, frameworks are proposed to

add context sensitivity to those that do not already have them. Breadcrumbs [16] is a framework proposed

by Bond et al. that extends dynamic defect detection tools by adding context sensitivity.

80

4.1.8 Path Sensitive Analysis

Path sensitive analyses, in addition to the other methodologies, consider the exact execution path that was

used to reach a statement in assessing the statement’s being a defect. It is argued that path sensitive analysis

cannot be substituted for a scalable and accurate technique [95, 96, 97]

Marple by Le and Soffa [97] provides specific treatment for a path sensitive analysis in its detection

process. The tool is reported to eliminate a number of false positives by path-sensitive analysis [97].

ARCHER [163] uses what the authors call a “traversal module” to check for infeasible paths in a program’s

execution space. The module checks the feasibility of paths using binary constraints and avoids the infeasible

paths to improve efficiency. However, the authors claimed the accuracy to be “considerable” for their test

systems, although not completely sound [163].

Often static analysis adopts one of the two approaches in handling paths. The first approach, detecting

and excluding infeasible paths (e.g., [121, 167, 97]) provides scalable results, but increases the risk of false

negatives in case a faulty path is excluded from the analysis. The second approach, creating summaries at

specific program points instead of excluding paths (e.g., [143]), is theoretically able to provide better false

negative performance, but risks the loss of information in creating summaries. Moreover, it is argued by Wei

Le that summaries are not able to provide a complete analysis [97] which is in disagreement to a degree to

the findings of other researchers [15, 14].

SRTA is not path-sensitive in the traditional way, rather SRTA incorporates path-sensitivity through a

Hybrid Data and Control Flow Graph which is used in the processing, but unlike most other tools described

in this section, do not rely on paths for the entire duration of the analysis, providing less restrictions on

the interpretation of symbolic relations. In handling paths SRTA uses the approach to summarize the path

information, to a degree where sufficient information is retained in summary to find the exact path taken.

4.1.9 Model Checking and Enforcement

Model Checking, or formal verification, involves the checking of the subject system against a defined set of

“properties” under strict formal constraints. Although accurate and efficient, model checking requires a deep

understanding of the system to be able to provide effective analysis results.

Trainin et al. [150] argued that injecting small models of conditions on concurrent program can expose

concurrency defects. A model of conditions is defined as a function that takes a program as an input

and generates a set of suspected conditions on program interleaving as output [150]. The approach was

tested for the improper serialization defect by using two models of conditions in relatively small programs.

Experimenting on their custom designed small programs with intentional concurrency bugs, the authors

reported an accuracy improvement of a factor by 7 and 73, respectively [150]. An implication of this study

is the proposition that having a low false positive rate is not an absolute prerequisite for a combination of

tools.

81

Frama-C [41] is a static analysis framework that provides model checking capabilities. The framework

relies on user supplied specifications to evaluate the test system (written in the C Language) against the

specifications.

4.1.10 Other Techniques

A number of combination of techniques have been developed for the detection of defects that do not fall in

earlier categories, or deserve separate mention for their unusual nature.

ISA is a static code analyzer that focuses on known code defects leading to vulnerabilities based on data

fusion techniques to validate the results [84]. The tool combines the results from a number of known tools

and applies simple reasoning on the data to validate them against each other. Although reported to increase

the accuracy by cross validation, ISA’s achievements are not widely cited and are not free from arguable

contradictions. In case many tools have the same false positive, it will be identified by ISA as a true positive

and a true positive might be identified as a false positive if it is cited by few detection tools. Due to the

flexibility on the choice of detection tools, however, ISA can be applied to detect any type of code defect.

The 2008 dissertation by Csallner [36] presented the idea of the combination of over and under approxi-

mation analyses for testing. In the dissertation, over-approximated processes are reported as the processes

having complete recall, and under approximated processes are the ones having complete precision.

Csallner and Smaragdakis [38] used test generation to refine the results of static analysis (abstract rea-

soning) to develop a tool named Check ’n’ Crash (CnC). The approach used ESC/Java [51] to statically

detect defects from source code and then validated the results using test cases generated via JCrasher [37], a

tool developed earlier by the same authors. The two tools are combined together using a constraint solving

technique that solves the constraints inferred from the ESC/Java output and provides input to the JCrasher.

CnC is developed explicitly for Java code and is reported to detect a number of low level errors in arbi-

trary codes. The paper claims that the combination of the techniques outperform the same techniques used

separately.

Almost at the same time, the idea of Csallner and Smaragdakis [38] had been used in reverse to establish a

path pruning mechanism by Vipindeep and Jalote [157]. Instead of refining the outcome of static analysis by

test cases, their technique used the data from testing to exclude the paths used in static analysis that might

have relatively low possibility of errors [157]. The tool is effective in finding invalid references, initialization

problems and null dereferencing.

The same idea of the combination of static analysis and test generation has been extended into aiding C

program debugging by Cebaro et al. [22] through a framework named SANTE (Static ANalysis and TEsting).

Their approach used the static analyzer Frama-C [52] and the structural test generation tool, PathCrawler

[127].

Jiang et al. [76] explored the completely different approach on defects by analyzing clone related inconsis-

tencies to find defects that might be introduced by cloning (i.e., duplicating code). The approach detects code

82

clones and then extracts inconsistencies-of-interest to generate potential defect reports based on parse trees.

However, in the same paper, the authors reported a false positive rate as high as 90%, attributed to some

fundamental clone detection issues (e.g., same control constructs may not be clones, different drivers may

introduce some clones). The assumption of “clone inconsistencies predicting bugs”, which is one of the same

that was used by CP-Miner [104] (another clone detection tool that directly influenced Jiang’s approach),

is also not beyond considerable doubt. The tool mentions context to describe the control construct of a

particular code artifact [74].

4.1.11 Frameworks

Besides individual tools, a number of frameworks were developed to create tools for defects detection. SUDS

[92] is a multi-stage defect detection framework that provides the testing engineers a mean to create code

defect detection tools based on predetermined or custom built correctness models. SUDS work by four phases,

namely, parsing, simplification, static analysis and instrumentation [92]. Although SUDS uses static analysis

to generate its tools, it generates tools that are dynamically verifiable. SUDS itself does not detect any

defects, rather creates mechanisms that do the detection.

The main notable technique used for SUDS is the source transformation technique [92]. It uses the parser

from CTools [92, 40] and generates statements that are further simplified for analysis through the application

of program slicing techniques. A “tainted propagation algorithm” is used to segregate the variables of interest

and to observe their values, and thus providing an instrumented version of the source code that can then be

run to find the values of interest.

Of the results reported in the paper that describe SUDS [92], it is applied on eight systems and found

sixteen bugs with a few false alarms. An infrastructure like SUDS is a very powerful ally to testers, with

the possible downside of code instrumentation that poses both a security risk and may not be effective in

catching Heisenbugs. The effectiveness of SUDS was not found to be tested with large datasets.

A different approach was exhibited by Lu et al. [112] through PathExpander, an architectural support

for improving the path coverage of the dynamic defect detection tools. The framework increases the coverage

by executing the non visited execution paths in what the authors called a “sandbox”, and thus is able to

predict some of the defects that might exist there. However, the architecture can only resolve defects that

are left undetected for the path coverage problem, and has no way of detecting those that are undetected for

the value coverage problem [112].

Among the few works that address the scalability-accuracy trade-off, Parfait [33] is a multilayer framework

to work on defect detection that utilizes multiple lists to explicitly improve the precision and recall of the

outcome. The framework ensures both precision and scalability by combining a step-by-step approach in

detecting “certainly defective”, “possibly defective” and “safe statements” on C code.

83

Table 4.1: Properties of the Analyzed Tools

Strategy Path Sensitivity Requirements Generality Acc.

Tech./Author S
ta

ti
c

S
y
m

b
o
li
c

D
y
n
a
m

ic

C
o
n
si

d
e
ra

ti
o
n

P
ro

c
e
ss

in
g

P
a
th

S
e
n
si

ti
v
it

y

C
o
n
te

x
t

S
e
n
si

ti
v
it

y

In
te

r-
p
ro

c
e
d
u
ra

l

In
tr

a
-p

ro
c
e
d
u
ra

l

C
o
d
e
/
B

u
il
d

A
n
n
o
ta

ti
o
n

S
p

e
c
ifi

c
a
ti

o
n

S
ty

le

S
tr

u
c
tu

re

L
a
n
g
u
a
g
e
s

A
P

I
/

F
ra

m
e
w

o
rk

s

S
o
u
rc

e
C

o
d
e

In
te

rm
e
d
ia

te
R

e
p
r.

N
a
ti

v
e

C
o
d
e

P
re

c
is

io
n

R
e
c
a
ll

Comment

1. ARCHER [163] # G# G# G# # # # � # G# # # G# G# [163, 168, 96]

2. Check n Crush [38] # G# � # # # # # # � # G# G# # � G# [36]

3. Chen [24] # # G# # # G# G# # # # # � # G# # # � �
4. CCI [77] # # � � # # # # # # # G# # # �
5. DSD Crasher [39] G# # � � # # # G# # # � # G# G# # � G#
6. ESC/Java [51] # # G# G# G# G# G# G# � # # # G# G# [36, 38]

7. Findbugs [71] # # G# G# # G# # # # � G# G# # G# G#
8. Ganapathy [56] # G# G# G# # G# # G# # # � # G# # # � G#
9. HOLMES [27] # # G# G# # # # # � # G# # G# �
10. ITS4 [154] # # G# G# # G# # G# # # G# # G# # # G# G#
11. Jiang [74] # # G# � # # # # � # G#
12. LCLint [49] # # G# G# G# G# G# # G# � # � # G# # # � �
13. Liblit [106] # # � � # # # # # # # �
14. Parfait [103] # G# G# G# G# G# # # # # � # # # G#
15. Recon [113] # # � � # # # # � # G#
16. Roychowdhury [138] # # � � # # # # # # G# # # G# � �
17. SAFE [57] # # G# G# G# # # # � # # # G# G#
18. SOBER [109] # # � � # # # # # G# � # # G# G# G#
19. SPLINT [48] # # G# G# G# G# # G# # # � # # # G# G#
20. Trainin [150] # � � # # # # # # # # � # # � �
21. UNO [68] # G# G# G# G# # G# # # # # � # # # � � [168, 29]

22. Vrisha [166] # # � � # # # # # # # � # # G# �
23. Wagner [158] # # G# G# G# # # # # � # # # � �

24. SRTA # G# G# # # # # # # # Chapter 5

Strategy: = Used as the main technique, G#= Used as auxiliary means, #= Not used

Path: = All paths, G#= Most paths, � = Minimum paths

Sensitivity: = Exclusively addresses, G#= Implies, #= Does not address

Requirements: = Requires, G#= Does not require, but can use and derive benefits from, #= No use

Code/Build: = Requires complete implementation, G#= Able to use partial code , #= No mention

Generality: = Considers all, G#= Considers partly, #= Does not Consider

Language: = General specification based, G#= Multiple Language, � = Single Language

Accuracy: = ≥ 75%, G#= ≥ 50%, � = ≥ 25%, #= < 25%, � = Not enough data / undecidable

4.2 Defect Detectors Evaluation and Comparison

In the literature we analyzed, evaluation and comparison of defect detectors were done using one of the two

ways. Most of the comparative studies developed benchmarks to evaluate the tools. In the second approach,

either the benchmarks or other experimental methodology was used to compare a set of tools.

4.2.1 Benchmarks

Not many benchmarks exist in the field of defect detection. In their attempt to evaluate static analysis tools,

Zitser et al. [168] used open source code as a benchmark for evaluation. Although their target was not to

establish a benchmark, their approach constructed one. Lu et al. [112] constructed another benchmark for

memory related vulnerabilities under the name BugBench.

Cifuentes et al. [32] proposed a benchmark suite to evaluate defect detection tools for systems developed

84

in C. The benchmark, named BegBench, contains two sets of open source software to measure the accuracy

and scalability of the defect detection software [32]. It was evaluated with the tools Parfait, Splint, Clang

and UNO [32].

iBUGS, an automated benchmark extractor from development history, was constructed by Dallmeier and

Zimmermann [43]. Instead of being a benchmark itself, the tool constructs benchmarks by extracting codes

from existing codebases before and after fixing a defect (as identified by log messages) and uses them to

construct the benchmark itself [43].

4.2.2 Evaluative and Comparative Studies

Shahriar and Zulkernine [141] classified static buffer overflow detectors over six characteristics, inference

technique, analysis sensitivity, analysis granularity, soundness, completeness and supported language. Their

assessment was on twelve tools that represented the state-of-the-art at present.

In a separate work, Zitser et al. [168] evaluated five static analysis buffer overflow detectors using open-

source code as benchmarks. This study pointed out a number of issues in present systems, as was described

in earlier sections in this Chapter. One particular contribution of this study was the representation of results

using an ROC-type plot which was adopted in this dissertation for the presentation of results.

4.3 A Scenario Based Comparison of Defect Detection Tools

Table 4.1 summarizes the properties of the tools and techniques presented in this chapter, with a row dedicated

to the later described SRTA (Symbolic Range Tuple Analyzer), the tool developed as a part of this thesis.

The table presents the information in six different groups. ‘Strategy’ identifies the solution’s strategy in a

combination of three major techniques, static, dynamic and symbolic analysis. The ‘Path’ group expresses

the tool’s consideration and treatment to the set of execution paths. ‘Sensitivity’ identifies the tool’s analysis

from the perspectives of path sensitivity, context sensitivity, inter-procedural analysis and intra-procedural

analysis. The ‘Requirements’ group, in order, specifies the requirement of build-able or complete systems,

requirement of annotation, and the requirement of specification, specific type or structure in the subject

system. ‘Generality’ expresses the tool’s adaptability across different granularities. Finally, the ‘Acc.’ column

specifies the Precision and Recall of the tools, as can be found in literature. A point to mention is, this table

does not describe every tool mentioned in this chapter. It only described the ones directly comparable to

SRTA, the technique developed in this research.

Table 4.1 can be used in four different ways. First, it provides a snapshot of a particular tool if read in a

row-wise order. Second, it can provide the overview across particular perspectives, if read in a column-wise

order. Third, it can provide a qualitative comparison of different tools under different perspectives. Fourth,

it can identify the major issues and challenges present in the trade by analyzing the specific column values.

This section provides three scenarios that describe the use of the information summarized in Table 4.1

85

and Table 4.2. Instead of relying on hypothetical scenarios, the author’s specific experience while doing the

literature survey for this dissertation was expressed. The three scenarios describe the first three of the uses

described in the previous paragraph. As the fourth use, identification of major issues and challenges, is

specifically important for such a study, it is reported under a different section.

For the evaluation of the technique proposed in this thesis, different tools were required to compare the

technique. Three different tools were planned for evaluation. The information presented in Table 4.1 and

Table 4.2 was used to make the decision.

4.3.1 Scenario 1: Finding Tools Matching Perspectives

This thesis focuses on static analysis, and specifically, symbolic analysis. dynamic or hybrid analysis tools

therefore do not make relevant candidates for comparison as the set of strengths and weaknesses for Static

and Dynamic Analyses are often complementary to each other.

A look at the tools specified in Table 4.1 under the column group ‘Strategy’ specified the tools ARCHER,

Chen’s Tool, ESC/Java, Ganapathy’s Tool, FindBugs, ITS4, LCLint, Parfait, SAFE, SPLINT, UNO, and

Wagner’s Tool as the potential candidates. Other tools could safely be excluded from the candidacy list for

their strong reliance to dynamic analysis, which would make the comparison improper.

4.3.2 Scenario 2: Finding Information About a Tool

Scanning the Table 4.1 row-wise, it was found that ARCHER, Chen’s Tool and Wagner’s Tool considers all

paths, same as SRTA. But only Chen’s Tool processes all paths. On the other hand, Chen’s Tool lacks the

sensitivities required for SRTA, while ARCHER, ESC/Java, Ganapathy’s Tool, FindBugs, LCLint, Parfait,

SAFE, SPLINT, UNO and Wagner’s tool provide more comprehensive treatments. Considering these facts,

other tools were preferred over Chen’s Tool for comparison.

All of the tools considered in this list required complete code, as expressed in Table 4.1. Therefore no

advantage could be gained by selecting one over the other. But for the requirements of style and specific

structure, ESC/Java and LCLint provide less compelling information. Other tools, however, do not have the

extra burden of style and structure as ESC/Java and LCLint do. In consideration of these factors, ESC/Java

and LCLint were not preferred over the rest of the tools for comparison.

Although SPLINT, FindBugs and Ganapathy’s Tool require annotation that ARCHER, SAFE, UNO and

Wagner’s Tool did not, it was not considered a determining factor due to the existence of this requirement

for many of the tools.

4.3.3 Scenario 3: Qualitative Tool Comparison

Considering the Table 4.1, it can be seen that, according to the literature, Ganapathy’s Tool performs

poorly in precision in comparison with other tools, although the recall performance is considerable. A

86

further examination by Table 4.2 shows that Ganapathy’s tool’s defect coverage, in comparison with the

others considered, is minimal. Same issue extends to Parfait. Considering these two facts, other tools were

preferred over Ganapathy’s Tool and Parfait.

The same factor of low precision and recall exists for Wagner’s Tool and UNO, but UNO provides more

defect coverage that Wagner’s Tool. Table 4.2 also demonstrates SPLINT’s strong association to multiple

defect types, while ARCHER, and Wagner’s Tool usually have weak association. Although SAFE’s defect

coverage is more numerous than the rest, the association to no defect class is strong. Considering these facts,

FindBugs, SPLINT and UNO were considered as the final set of tools for comparison. The comparison was

presented in Chapter 6, along with the details of experiments and evaluation.

4.4 Issues and Challenges

Despite the fact that a lot of efforts were indulged into the detection of defects, an equally large barrier of

issues and challenges still remain. The generalized track for defect detection still has a lot of open problems

to explore, as well as having scopes for improvement of present techniques to provide better results.

4.4.1 Defect Type Coverage

Table 4.2 shows the defect class coverage of the analyzed tools. For any defect type, a strong indicator is

used if the tool explicitly aimed at that defect class, and does not exclude any defect type that has been

found to be belonging to the class. A weak indicator is used if either the tool does not provide an explicit

coverage to the class, or if it considers defect types to only part of the class.

As shown in Table 4.2, there are a number of defect classes that are focused heavily by the detection tools

and thereare classes that are almost untouched. One of the heavily focused groups is the group for memory

related defect classes that was covered by a number of tools (e.g., [163, 49, 50, 154, 57, 158, 56, 51, 36, 38]).

Although most of the tools are vulnerability detectors, they often treat memory issues as vulnerabilities.

Apart from the concurrency problems that require special techniques to be employed, types requiring

generalized techniques or extensions of present tools are still not covered much. For example, computation

defects are investigated by only a few tools [154, 51, 36, 38], as well as those of data related ones [51, 36, 38],

while Logical Defects stay mostly untouched.

Computation and data related defects largely fall into the categories where constraint checking can detect

or infer the presence of errors. Thus a number of existing tools [163, 49, 50] that do not address these defects

can be adjusted to work with them. Also, specific broad symbolic techniques [103] can be brought to work

with these using their standard rule-set by defining rules for the types of errors.

The data from SRTA are presented in a shaded row at the bottom for comparison with other tools. As

it is apparent from the table, SRTA provides a more comprehensive defect coverage than most of the tools

analyzed in this chapter.

87

Table 4.2: Defect Coverage of Different Tools (with respect to the Taxonomy Developed in Chapter
3)

Comp Logic Memory Data Sync.

Tool/Author C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2

1. ARCHER [163] G# # G# # # # # # # # # G# # # # # # # # # # [163, 168, 96]

2. Check ’n’ Crash [38] G# G# # # # # # # # # # G# # # G# G# G# G# # # # # [36]

3. Chen [24] # # # # # # # # # # # G# # # # # # # # # # #
4. CCI [77] # G#
5. DSD Crasher [39] G# G# # # # # # # # # # G# # # G# G# G# G# # # # #
6. ESC/Java [51] G# G# # # # # # # # # # G# # # G# G# G# G# # # # # [36, 38]

7. FindBugs [71] G# G# G# G# # G# # G# # G# # G# # # # G# G# G# # # # # [8, 8, 69, 71]

8. Ganapathy [56] G# # # # # # # # # # # # # # G# # # # # # # #
9. HOLMES [27] # # # # # # # # # # # # # # # # G# # # # # #
10. ITS4 [154] G# # G# # # # # # # # # # # # G# G# G# # # # # #
11. Jiang [74] # # # G# # # # # # G# # G# # # G# # # # # # # #
12. LCLint [49] # # # # # # # # # # # G# G# # # # # # # # [163, 49, 48]

13. Liblit [106] # # # # # # # # # # # G# G# G# G# G# G# # G# # # #
14. Parfait [103] # # # # # # # # # # # # # # # # # # # # #
15. Recon [113] #
16. Roychowdhury [138] # # # # # # # # # G# # G# # # G# # # # # # # #
17. SAFE [57] G# G# G# # # # # # # # # G# # G# G# G# G# G# # # # #
18. SOBER [109] # # # # # # # # # # # G# G# # G# # G# # # # � �
19. SPLINT [48] # # # # # # # # # # # G# # # # # # # #
20. Trainin [150] # G#
21. UNO [68] # # # # # # # # # # G# # # # # # # # # # [168, 29]

22. Vrisha [166] # G# G#
23. Wagner [158] # # # # # # # # # # # G# # # # # # # # # #

24. SRTA G# # G# # G# G# G# # # Chapter 5, Chapter 6

 = Strong Support, G#= Weak Support, #= No Support

4.4.2 Complete System Requirement

Although one of the strongest points in favour of static analysis is its ability to process incomplete code, this

is often not utilized by the techniques. Prominent tools that utilize only static analysis [163, 51, 49, 48, 154]

require complete systems to process, as apparent in the “Code/Build” column in Table 4.1. For any system

to undergo a defect detection activity by these tools, the developer has to wait till a build-able complete

system is at hand, forcing the detection to the later phase of development. Among the tools analyzed in this

chapter, only SRTA and Chen’s Tool skip the requirement of complete system.

4.4.3 Annotation

Tools to exploit dynamic analysis require source code instrumentation as a prerequisite for the application

of the technique. Static analysis does not have the limitation of enforcing instrumentation, still a lot of

static analysis tools rely on instrumentation or annotation. These instrumentations or annotations are often

done by hand, involving significant human effort on the part of the developers. Often the developers of the

tools report the significant overhead associated with the tool [38], which is supported by other researchers

[163, 168].

Table 4.1 show the tool’s annotation requirement under Column “Annotation”. As it can be seen from

the table, most tools require annotation as a requirement, while others consider it as supporting mechanisms.

Only a handful of tools (Chen’s Tool, Ganapathy’s Tool, Parfait, SAFE, Wagner’s Tool) exclude the require-

88

ment altogether. SRTA, the tool developed in this thesis, avoids the annotation requirement to provide for

a more practical solution, as it can be observed in the shaded row of the table.

4.4.4 Accuracy

As presented under the columns Precision and Recall in Table 4.1, the precision and recall for most of the

tools, especially those employing static analysis, are often in the order of 50%, with some performing in as

low as in the order of 25%. In balancing the trade-off between scalability and accuracy, most tools often

ensure scalability at the expense of accuracy [163, 158, 36], resulting in large number of false positives, and

often having a large false negative rate.

4.5 Summary

This chapter provides an overview of the state-of-the-art with their comparisons with each other and with

the technique developed in this research. The descriptions provided in this chapter is used to shape the

development of SRTA, as described in Chapter 5. The chapter started by providing information on the tools

and techniques categorized by their strategies, and then provided a qualitative comparison of the relevant

ones. The tools and techniques were evaluated using the taxonomy developed in Chapter 3. The chapter then

proceeded on describing a case study to demonstrate the use of the information contained in this chapter.

Finally, the chapter described the prominent issues as were apparent from the information presented.

89

Chapter 5

Using Symbolic Range Tuples in Defect Detection

This chapter provides details on SRTA (Symbolic Range Tuple Analysis), the technique developed under

this research to detect dissimilar classes of source code defects. SRTA builds on the concepts of defect

similarity as outlined in Chapter 3 and uses the analyses provided in Chapter 4. This chapter begins by

providing chapter-specific background information (Section 5.1) followed by a description of the propositions

made by other researchers that drove SRTA’s development (Section 5.3) and a description of the conceptual

architecture of SRTA (Section 5.4). Next, the solution provided by SRTA, that utilized the propositions,

was described (Section 5.5) along with the rationale behind specific design decisions. The Symbolic Domain,

notations, rules and Symbolic Algebra associated with the solution are described next (Section 5.6). The

chapter then continues with the details of application of SRTA for defect detection (Section 5.7). Finally, a

prototype implementation of SRTA is described in brief (Section 5.13). This chapter answers the Research

Questions RQ1 (“Can a specific abstraction provide sufficient means for detecting multiple dissimilar classes

of defects?”) and RQ2 (“To what length can such a technique go in terms of dissimilar classes of defects?”).

5.1 Chapter-specific Background

This section provides the background for this chapter.

SRTA: Abbreviation for Symbolic Range Tuple Analysis. It is a dissimilar defect detection technique that

was developed as the outcome of this research and is described in this chapter.

Path Envelopment: This term is used throughout this chapter to mean the actual expanse of the technique

in probing the execution paths. A partial path envelopment is used to denote the situation where a technique

does not process all possible execution paths across a program execution point, rather selects a subset of it.

A Complete Path Envelopment is the situation where a technique considers each and every execution path

that might have resulted in reaching a particular program point.

Path Summarization: The process of creating path summaries. Path summaries, in the context of this

research, is the technique of creating a summarized representation of an entity’s states in a program execution

point, across all execution paths that have passed through that particular program execution point.

90

5.2 The Need for Detecting Dissimilar Defects

A single software project usually contains multiple classes of defects, some of which may belong to similar

classes (e.g., different memory problems), and some in completely different classes (e.g., memory problems

and computation errors). Regardless of their affiliations, even trivial defects are known to create complicate

problems. One such case was the Mars Polar Orbiter Accident [100], the crash of a spacecraft that is

attributed to a very simple error involving only units of measurement (NASA ground control team used the

Metric Newton-Second as the unit of impulse, while the spacecraft’s control software interpreted it as the

Imperial Pound-Second unit, causing a discrepancy in its impulse estimation at a factor of 4.45) [146, 110].

Apart from the specialized Mars Orbiter Project, one other trivial defect caused human casualties in Canada

and the U.S.A. by overdosing radiation patients with 100 times the intended value due to a unchecked

keystroke sequence [101].

Considering an everyday software, this research found the popular browser Mozilla Firefox alone to be a

container of twelve different classes of defects (Table 6.7 in Chapter 6). The classes belong to at least four

different dissimilar groups, even under the most liberal estimation of similarity.

To provide a complete detection coverage on software projects, a software management team has two

alternative solutions. First, a set of different tools providing specialized coverage to different defect types

can be applied. This technique often fails to guarantee high quality software, as specialized tools focus more

on scalability than accuracy (e.g., [163]). If only high accuracy tools are chosen, being originated in different

sources, the tools still differ in their input specifications and reporting. Using the strategy effectively thus

requires specialized and dedicated manpower, increasing project overhead.

The second approach is to use one of the available industry tools that provide coverage over different

defect types (e.g., Coverity SAVE [35], Grammatech CodeSonar [63], Polyspace [129]), that, in addition to

being expensive [86, 85, 64], require high configuration of the experimental environment to be able to conduct

their massive analyses (as reported in [29]).

If multiple dissimilar defects can be detected by a tool with reasonable accuracy, it can provide a substitute

to the multi-tool strategy of the first approach described above, as it is already provided by the tools

mentioned for the second approach. If such a tool can retain its accuracy and scalability using a single

simplified model, it should be able to reduce its internal structural complexity, thus relieving the requirement

of high-resource experimental environments. Using such a tool shall be able to provide the benefits of the

second approach, without the associated drawback of resource intensive requirements, and probably without

the high acquisition cost. This particular motivation was the driving force behind SRTA.

5.2.1 Defect Classes Revisited

To make this chapter self-contained, a summary of the Taxonomy described in Chapter 3 is provided in this

section in Table 5.1. The table does not contain examples or details of the defect classes. A summary of the

91

identifying property is mentioned along with defect class identifier and the defect class’s descriptive name.

Table 5.1: Summary of Defect Classes Described in Chapter 3

Class Name Description

1. C1 Value Representation Defect An entity is assigned a value it is unable to represent.

2. C2 Value Offset Defect An entity’s value is off by a specific constant.

3. C3 Undefined Outcome An operation’s outcome becomes non-determinable.

4. L1 Improper Checks Absent, or wrong, check at any point in code.

5. L2 Improper Terminal Condition Absent, or wrong, condition for loop or recursive function termination.

6. L3 Wrong Operation Using one operation / operator in place of another.

7. L4 Flaws in Algorithm Any error in algorithm.

8. L5 Performance Issues Presence of any code structure that could be replaced with a better performing one.

9. L6 Improper Exception Handling Not handling proper exception.

10. L7 Improper Control Flow Creating a control flow improper for the context.

11. L8 Design Non-conformance Deviation from design / algorithm.

12. M1 Invalid Memory Reference Accessing a memory location that should not be accessed.

13. M2 Improper Deallocation Deallocating wrong entity, or deallocating in the wrong way.

14. M3 Memory Leaks Not releasing allocated memory.

15. M4 Over / Underflow Accessing a memory out of the defined boundary.

16. D1 Interface Mismatch Using mismatching data types / other specifications in interfaces

17. D2 Data Mismatch Using mismatching data values in interfaces.

18. D3 Improper Input Validation Missing, or making error in, input validation.

19. D4 Missing / Extra Inputs Self-explanatory.

20. D5 Improper Abstraction Improper representation of an entity (not the value).

21. S1 Prohibitive States Multi-process situation that halts execution and cannot be resolved.

22. S2 Improper Sequencing Multi-process situation with wrong sequencing of events.

5.2.2 Single Model Representation of Dissimilar Defect Classes

Defect features simplify over abstractions. The higher one goes in the abstraction levels, the more simplified

the feature set becomes. However, more abstraction also specifies less details - which limits the detection

capabilities. If a specific abstraction can be provided over the source code to represent the entities in a form

that can express multiple defects under the same structure, while preserving sufficient information for their

detection and distinction, dissimilar defect detection from a single model becomes a reality.

Four illustrative cases, taken from simple examples, are shown in Figure 5.1. Of the four cases, the first

three belong to one class of defect, the value representation problem, and the fourth belongs to a completely

different class, buffer overflow. The four levels of abstraction show how the features converge over higher

abstractions, facilitating the employment of single model.

The source code, including its entire token sequence can be represented using a Parse Tree (PT), as it is

done for all software building processes. However, the source code contains defect instances, not defect types

or classes. Therefore, detecting every single instance from a Parse Tree would require specialized treatment

for different defect instances. In Figure 5.1, Case 2 and Case 3 are two instance of the same defect, although

their parse trees differ. Any pattern matching algorithm that works on parse trees, unless it incorporates

customized inference modules for such cases, will treat the two instances as two different defects. Although

the trees have common subtrees, it cannot be used for the inference due to the fact that there are different

non-terminals involved in the mismatching part of the trees.

The Abstract Syntax Tree, or AST, provides an abstract mechanism over the Parse Trees (which, in

92

Figure 5.1: Representation of Four Defects over Four Levels of Abstraction

contrast, are often called the Concrete Syntax Trees), although it is not much different than a parse tree.

ASTs can generalize the defect instances to defect types, although cannot extend to different defect types

represented under the same defect class. In the figure, Cases 2 and 3 are represented by different tree

structures, but the information can be obtained from either one as the differing parts of the sub-trees do not

contain any non-terminal values, making the non-matching part deterministic and thus inferable.

Moving up one more step on the abstraction, if a dataflow module is used on top of the AST to comprehend

the context of the information represented by the AST, different defect types corresponding to the same

context can be generalized into one unit, effectively summarizing a defect class. If an analyzer performs at

this level, it is able to detect a single, or a few related, defect classes using a single model or technique,

although cannot generalize to dissimilar classes. In the figure, Cases 1, 2 and 3 result in identical dataflow

93

anomalies each involving , although the Case 2 defect cannot be detected by dataflow analysis because the

change in data occurred before the assignment to the receiver.

If the representation can be abstracted even further, then the defect classes can be represented by a set of

features. At this point, the representation problem reduces to an abstract feature set, instead of the instance,

type or class-specific representations of less abstract methodologies. If the source code’s representation can

be converged into the same abstract feature set, this set can be used as the model for the detection. The

figure shows the situation on Level 4, where all five situations of the four example cases are represented using

the same structure. SRTA utilizes this concept.

5.3 Existing Propositions

SRTA is built on five major propositions that were published over a period from 1995 [44] to 2011 [60].

Proposition 1: Source Code Contains Most of the Defects

Studies show that source code alone contains the origination and exhibition of 75% of the defects existing in

software systems [99]. For the defects that are not originated in source code, often the footprint is contained

in the source [44].

Proposition 2: Dissimilar Defects Show Similar Characteristics over Arbitrary Abstraction

Virtually all defect taxonomies are built on this concept that different defects can be expressed through

common properties. The work by DeMillo and Mathur [44] used this fact to use the grammar as an abstraction

to categorize defects. Although their work is not directly related to this research, differing from objectives,

processes and experiments, it established the grammar based defect generalization principles that are directly

utilized by this research in defect detection.

A 2010 study by Le and Soffa [96] has utilized the same principles, although through different realizations

and procedures, into detecting multiple similar classes of defects using a simplified representation.

Proposition 3: Summarization Techniques can Alleviate Path Explosion Problems

As proven by Godefroid et al. [59, 60], compositional symbolic analysis effectively alleviates path explosion

problems associated with static and symbolic analyses. In a later work, Li et. al. [103] used the summarized

ranges in detecting buffer overflows through a tool named Parfait. Their argument proved the general

technique of summarization to be practical and effective when analyzing large systems.

Proposition 4: Path Summarizations Preserve Defective Path Information

As demonstrated by Blume and Eigenmann [15, 14] and later applied by Wagner et al. [158] and Xie et al.

[163], it is possible to convert code features into numerical ranges that can be analyzed to infer defects. In a

recent study, Le and Soffa [93] has proven that, if a given program point contains a defect, any path traversing

through that point contains properties relevant to that defect. The general argument of Le and Soffa [93] was

against the use of summaries due to the fact that summaries do not retain enough information for effective

detection. Recognizing this argument, this research used multiple summaries to resolve this issue.

94

Proposition 5: State-Space Holds Information for Defects

Le and Soffa [94, 95] have demonstrated that “faults exhibit locality”. A generalization of this statement can

be used to infer that defects exhibit features that are distinguishable in their local context.

5.4 An Overview of Symbolic Range Tuple Analysis

SRTA, or Symbolic Range Tuple Analysis, was aimed to be general, scalable, practical and accurate. To

achieve generality, SRTA was designed with provisions for as much soft-coded specifications as possible. Figure

5.2 shows the conceptual structure of SRTA. In the figure, the external data (i.e., Source Code, Specifications

and Grammar) are shown using a document symbol. The dotted rectangle denotes the boundary of SRTA

and the solid rectangles denote the three functional phases, with their specific tasks listed inside.

Figure 5.2: Conceptual Architecture of SRTA

For the analysis of a software system, the input to SRTA is the collection of source files that make up the

software system. No extra information on the system or annotation is required. SRTA is composed of three

sequential phases, shown in Figure 5.2.

5.4.1 The Preprocessing Phase

The first phase, ‘Preprocessing’, prepares the input data stream for processing by SRTA. This phase is not

to be confused with the C/C++ Preprocessing, although the C/C++ Preprocessing is a part of SRTA’s

preprocessing phase. The functional tasks for the preprocessing phase is to tokenize the input according

to the Language-Specific Lexical Specifications and to match the sequence of tokens into grammar patterns

of interest, which is recognized from the Grammar supplied as external data. Both the Lexical Specifica-

tions and Grammar were incorporated as external components to ensure SRTA’s applicability over different

programming languages.

95

5.4.2 The Model Building Phase

The next phase is named ‘Model Building’. In this phase, SRTA analyzes the token sequence resulting from

specific grammar patterns, and creates a Hybrid Data and Control Flow Graph (HFG). The HFG is used

to approximate the symbolic ranges SRTA uses. The Range Tuples, which are the main model components

for SRTA, are inferred in this phase. This phase outputs the internal model for SRTA which is described in

details in later sections of this chapter.

5.4.3 The Analysis and Reporting Phase

The third, and final, phase, named ‘Analysis and Reporting’, analyzes the information obtained from the

model with respect to user supplied specifications on defects, and reports the outcome.

Later sections of this chapter details the model, the ranges, inference procedures, tuple description and

the defect specifications, along with the description of a prototype to implement the concepts of SRTA.

5.4.4 Example Workflow

To demonstrate how SRTA works, the fourth case as represented in Figure 5.1 is used. This example is

included in this section with the intention to provide an overview of SRTA’s working procedures only, exact

technical details and model specifications are provided later in this chapter.

Figure 5.3 shows the summarized workflow. In the preprocessing phase, SRTA breaks down the source

code into tokens, determines the types of identifiers, and determines values for the literals.

Figure 5.3: Example Workflow of SRTA Over a Simple Example

On the next phase, model building, SRTA builds a hybrid data and control flow graph (HFG) that

represents the flow in the code. Using this graph, and the external specifications provided, SRTA assumes

the range of values associated in each execution point, which is represented by one or more nodes in the graph.

In this particular example, integers were assumed to be 2-byte entities. In every node, all possible values for

an entity is considered. When x was declared (before initialization) at Node 1, its value was encompassing

the entire range possible. At node 2, when the allocation was done, the range was restricted to [0, 9].

96

Using the HFG’s flow information, SRTA constructs a 3-tuple of ranges, signifying the absolute possible

range of values, the imposed (through external checks) range of values, and the applied range of values for

an entity. In this example, there was no imposed range (they require conditional branches). The other two

ranges were specified.

In the analysis phase, an anomaly is detected when a disagreement between ranges is found. In this case,

at Node 3, x was accessed with a range of values [10, 10], where its permitted range was [0, 9], thus indicating

an anomaly. On the other hand, the single element of x, being an uninitialized integer, has the permitted

range [-32768, 32767] and was accessed using the range of values [0, 0], which fall within the permitted range.

Therefore it was marked as safe.

Later sections provide the technical details of mathematical approximations, tuple description, tuple

formation, range estimation and the detection procedure.

5.5 Solution Description

SRTA detects dissimilar defects by analyzing a single model. The model is built using symbolic values

obtained using static analysis, through the application of path summarization and complete path envelopment

techniques in the form of a 3-tuple containing symbolic ranges.

5.5.1 Rationale

In detecting dissimilar defects, the first problem arises in defining what defect similarity is, and which defects

are similar or dissimilar under what conditions. Chapter 3, through the established framework, attempts

to define defect similarity. The proposition that different defects can be similar with respect to arbitrary

abstraction (Proposition 2), provides a possibility to model dissimilar defects into a simplified construct that

can be analyzed for the detection.

Source code is selected for the processing because of the fact that it is the container of most defects

(Proposition 1). As source code exhibits strict formal constructs, it is possible to apply automated techniques

in analyzing source code and to find the defects. Moreover, the defects that are uncovered in earlier phase of

development often require lower fixing overhead. Also, as dynamic analysis, being the other possible choice,

cannot analyze paths that are not taken during the execution of the software, it often has high false negative

rates for the defects that exist in the non-taken paths. Static analysis can uncover defects in all paths, thus

resulting into lower false negative rates. Considering the advantages, and the objectives of the research, static

analysis was chosen as the proper technique to be adopted.

Defects often exhibit themselves through the interactions of different code artifacts. Detection of defects

often requires information on the inter-relation of different artifacts, as well as on the order and probability of

invoking particular statements. It is difficult for a pure static analysis to analyze these information. Symbolic

analysis aids in such situations by simulating execution or by inferring constructs that provide the information

97

or approximations of runtime behaviour. To attain the objectives of this research, symbolic analysis was thus

chosen as the technique of selection.

Usually the path explosion problem is attacked using two methodologies, exclusion of infeasible paths

[121, 147, 167] and path summarization [31]. Exclusions are able to reduce the search domain for the analyzer

to a great deal and are employed in different flavours, but they suffer from very prominent drawbacks. First,

the general solution to the problem of finding infeasible paths is undecidable [121, 94] - thus the best outcome

is bounded by a good approximation only. Second, often the required information is localized in statements

under particular context [147], and are not decidable through pure static analysis. Third, the number of

included paths, regardless of the soundness of the exclusion approximations, increases with the increase of

total available program paths and puts a practical limit on the scalability.

Summaries do not exclude paths, but the specific summary technique may drop information required to

detect the defects. Despite their lossy representation, summarizations are effective techniques to counteract

path explosions (Proposition 3), because, as the set of paths is summarized, the size of the summary set

does not increase with the increment of paths. Additionally, path summarizations can be devised to contain

required information if the objective of summarization is defined (Proposition 4). For SRTA, the objective

was predefined, and the summaries were constructed of multiple parts.

5.5.2 Statement Ordering

In SRTA, symbolic range tuples are used to model the state-space. The components (i.e., ranges) of the tuples

are derived from the source code. Statement orders were used to model the relations among the components

of the tuple, and among different tuples. The statement ordering was determined with the following principles

(i) Statement orders have arbitrary start points.

(ii) From the start point, statements have an ascending integer number associated with them to denote

their location in the code.

(iii) In case of a procedure call, the statements continue inside the procedure code from the calling point,

and return to the called point after completing the procedure.

5.5.3 State-space Modelling

A software’s states are the different instantaneous situations of the software along its execution. A state-space

is the collection of all states the software may encounter in its course of execution. The concepts related

to state-space, and different modelling of the state-space, are frequently used in type systems and model

checking. The same concepts for software state-space can be applied to individual entities like variables or

constants.

For a primitive entity (e.g., an integer variable), the states are different values the entity may assume. For

example, for a one byte signed integer value, the state space consists of all values from -128 to +127. States

98

Figure 5.4: Generic State-space for an Atomic Entity

change with execution phases, where an execution phase is defined as a set of instructions that perform any

change in the software or accesses any entity in any way. The exact machine level details of an execution

phase may vary with different levels of abstraction but for the current analysis, considering only the change

inducing instruction(s) as a single execution phase is sufficient (that is, more than one variable declaration

statements may comprise to a single execution phase). At any execution phase, an entity has exactly one

state out of a set of possible states.

Figure 5.4 shows a generic state-space for an entity. Execution phases are defined as e0, e1, e2..., with e0

being the initial state and e1, e2, e3, ... being subsequent execution phases. The states for the identifier are

denoted as si±n, n ≥ 0, with si as the initial state. At the initial phase of execution, e0, the state of the

identifier is at si. As execution progresses, at the first phase, e1, depending on the situation in the software,

the identifier may have any one of the states si+1, si−1. If the identifier was at state si+1 in e1, it may assume

any one of the states si, si+1, si+4 in e2, and in case it was at state si−1, it may have any one of the states

si−3, si−2, si, si+2 at e2. The execution thus proceeds on, if the identifier is at any specific state s at an

execution phase, in the next execution phase it either remains there, or has a transition to any of the states

connected by lines with s. The range [si−3, si+4] thus encompasses all values the identifier may assume over

the course of the execution. The ‘Phase of Initiation’ is the execution phase where the entity comes into

being - through declaration or allocation. The ‘Phase of Termination’ is the execution phase where the entity

ceases to exist.

A few properties of the state-space becomes apparent from the diagram. First, when increasing values of

i denote subsequent execution phases, there can only be a transition from phase ei to phase ei+1 and not the

opposite. The reason for this phenomenon is, if a defect occurs in a particular statement, there may not be

a decidable relation of the defect with an earlier version of the same statement. To account for this fact, the

execution is modelled as linear and not repetitive. For a recurrent structure that runs n-times and induces

some change in an entity, there are n execution phases arranged in a linear construct where the transition to

99

Figure 5.5: State-space for Entities in Listing 5.1

a new state depends only on the present state of the entity without any dependency on the previous states.

As execution does not roll backwards, it is not possible for a state to go to another state in a previous phase

although it might assume one of the previously assumed states in a later execution phase.

The second property is that, a transition from execution phase ei occurs only to execution phase ei+1,

and not to any later state. This phenomenon realizes that if an entity is not changed by an execution phase,

unless it is destroyed, it retains the same state it was in before proceeding into that execution phase and it

does not become stateless or undefined. For the same reason, if an entity is created in eI and destroyed in

eT , for every intermediate execution phase ei, I ≤ i ≤ T it has at least one transition. For any transition,

the destination state may be the same as the state of origin (although under a different execution phase), or

it may be a different state.

A more specific example is shown in Figure 5.5, following the Code Listing 5.1. The figure shows the

state-space for entities n, r, i, f, s and cards in the function Shuffle() under the specified calling context. In

the subfigures under Figure 5.5, execution phases are marked downward on the vertical axis and states, i.e.,

the values of the identifiers, are on the horizontal. The initial execution phase, e0, is the invocation of the

function. The next execution phase, e1 includes the variable declaration statement as it does not change any

other value in the statement. e2 to e6 includes the loop iterations, with e7 marking the return statement.

The states are formed using different possible values of the identifiers - that is, in state sb entity a assumes

the value b.

100

The constants n and r were created at e0, when the function was entered and their values did not change

over any execution phase. Both entities retained the same state throughout all execution phases, as shown

in Figure 5.4(n) and Figure 5.4(r). The entities i, f and s were declared at e1, but were not initialized. Their

initial state can be any of the possible ones. For simplicity, the figure does not include states beyond s6 but

in reality, the initial states for i, f and s span the range of all possible states for the int-type (i.e., a total

of 65536 states for 2-byte integers). In e2, the value i, regardless of its state at e2 moves to state s0 due to

the initialization inside the loop and steadily moves to the next states over the next execution phases. The

values f and s, in execution phases e2 to e6, may assume any state from the set {s0, s1, s2, s3, s4} in any of

the phases.

Listing 5.1: Example Code to Demonstrate the State-space

1 void S h u f f l e (int cards [] , const int n , const int r)

2 {

3 int i , f , s ;

4 for (i = 0 ; i < r ; i++)

5 {

6 f = rand () % n ;

7 s = rand () % n ;

8 //Swap cards [f] and cards [s]

9 }

10 return ;

11 }

12

13 int main (void)

14 {

15 int cards [5] ;

16 . . .

17 S h u f f l e (cards , 5 , 5) ;

18 . . .

19 }

For SRTA, the state-space is modelled as three ranges signifying the three situations that can occur in the

state-space. Usually, a state-space is conceptually modelled over a two dimensional plane with one direction

denoting the states and the other denoting the execution phases that result into that state, as shown in

Figure 5.4 and Figure 5.5. In SRTA, however, only summaries over execution paths are used, therefore a

single range can signify the states over all execution paths. The three ranges are used to characterize the

absolute allowed value of the state-space (the Constraint), any implied boundary within the state-space (the

Resolution) and the actual state space-covered by an entity (the Application) in the course of the software

being analyzed. Details on the tuple are provided later.

Considering the example code Listing of 5.1, the array cards, the absolute boundary for the state-space

for the symbolic array indices is [0, 4]. When this array is passed into the function, the applied values for the

101

state-space become the values bounded by rand()%n, which is [0, n− 1], or, in this context, the range [0, 4]

that coincides with the absolute range. If, in the declaration of cards, its size was set to less than 5, or if n

was set as greater than 5 in calling the function, reachable states for the array would have contained states

that are invalid in its declaration - indicating a problem in the code.

The three-tuple representation of the state-space is applicable to atomic entities. For collective entities,

each member of the collective entity contains its own state-space, with an additional state-space dedicated

to the collective entity itself. The state-space for composite entities is a collection of state-spaces for the

different collective and atomic entities it may contain.

5.6 The Symbolic Domain

This section describes the symbolic domain that SRTA operates on. The descriptions of the range tuple,

ranges, their properties and interaction are provided.

5.6.1 Notations and Specific Values

To clearly convey the ideas, a set of specific notations were adopted from programming languages and

mathematics. Although most of them were used in congruence with their conventional meanings, some of

the symbols have been customized according to the need of this dissertation. The notations were adopted

for specific values and operations. Table 5.3 provides a summary of the notations and specific values.

Absolute Limits

Two symbolic absolute limits have been used in the expressions. The limits, −∞type and +∞type denotes the

theoretical minimum and maximum range of values accommodated by an entity that belongs to type. The

+ and − in front of the notation are not used strictly to denote values greater or less than zero, rather they

are used to denote the position of one with respect to another (i.e., they denote the maximum and minimum

of the range, both may have the same sign in their absolute values).

For any kind of literal (i.e., constant value), both absolutes are equal to the value of the literal. Table 5.2

shows the absolute limits for a few atomic and collective data types.

Symbolic Value and Set of Values

A Symbolic Value is a value assigned to an entity through a symbolic analysis or inference procedure. The

value may or may not be the actual value that occurs in the entity during execution. It may or may not be

the value assigned to the entity in its static context.

A Set of Values for an entity is the set of all possible symbolic values that could have been assigned to

that entity in any point of execution.

102

Table 5.2: Examples of Absolute Limits for Different Entities

Type Entity Size −∞ +∞ Comment

1. char Atomic 1 byte -128 +127
2. unsigned char Atomic 1 byte 0 +255
3. int Atomic 2 bytes -32768 +32767
4. unsigned int Atomic 2 bytes 0 +65536
5. int[n] Collective N/A 0 n-1
6. const int n = 5; atomic 2 bytes 5 5

Table 5.3: Notations, Values and Symbols

Symbol Example Explanation

Sets, Values and Generic Symbols

1.1. ±∞type +∞int Absolute limits for values under the type. Unconventional.
1.2. ε, E Symbolic expression and set of all symbolic expressions. Unconventional.
1.3. v, V Generic single symbolic value and set of symbolic values.
1.4. R,Ri Generic range of values.

Operations

2.1. ← R1 ← R2 Assignment. Conventional.
2.2. +,−, ∗, /,% R1 + R2 Arithmetic operations. Conventional.
2.3. <<,>> R1 << V Bit shift. Conventional
2.4. ∪ R1 ∪ R2 Union. Conventional.
2.5. ∩ R1 ∩ R2 Intersection. Conventional.

Relations

3.1. ∈ R1 ∈ R2 Set inclusion. True if every elements of R1 is also an element of R2.
3.2. > R1>R2 Containment. True if R1 is contained-over-maximum in R2.
3.3. ⊥ R1⊥R2 Containment. True if R1 is contained-over-minimum in R2.
3.4. >⊥ R1 >⊥ R2 Containment. True if R1 is completely contained in R2.
3.5. | | |R| Cardinality. Conventional.
3.5. || || ||R|| Cardinality of subrange. Unconventional.

Symbolic Expression and Set of Expressions

A Symbolic Expression, ε is an expression that uses symbolic values instead of the actual values. The set of

expressions, E is the set of all symbolic expressions in the context of the entire software.

5.6.2 The Range Tuple

The range tuple is defined to reflect the model of the state-space and contains three parts - namely, the

Constraint, the Resolution and the Application. That is, for any entity x, at statement i, there is a range

tuple,

Tx(i) =

{Cx(j), Rx(k), Ax(i)} if x is an atomic or collective entity⋃
∀y{Ty(i)|y is a member of x} if x is a composite entity

(5.1)

Where,

Cx(j) = the Constraint, or absolute boundary of x’s state-space as defined on statement j.

Rx(k) = the Resolution, or the implied restriction on x’s state-space as defined on statement k.

Ax(i) = the Application, or the actually applied value on x on statement i.

Of the statement numbers, following relations can be obtained,

j ≤ i, because the Constraint is fixed at the time of declaration / reallocation.

103

k ≤ i, because checks and bounding constructs always work before the entity is accessed.

To elaborate the ranges further, the Constraint can be expressed as a continuous range of a minimum

and maximum. The elaboration of Constraint thus is,

Cx(j) = [min(Cx(j)),max(Cx(j))] (5.2)

where, max() and min() denote the maximum and minimum value for the range, respectively.

For the Resolution, the range may not be continuous, rather may contain disjoint subranges. The Reso-

lution can be expressed as,

Rx(k) = {Rx1(k), Rx2(k)...Rxn(k)} (5.3)

where every single Rxi(k) is a disjoint subrange of the values. And for every Rxi(k)

Rxi(k) = [min(Rxi(k)),max(Rxi(k))] (5.4)

If Rx contains more than one subrange, the extremes of Rx is defined as the extremes of all the subranges.

For the lowest extreme,

min(Rx(k)) = min(∀(Rxi(k)⊂Rx(k))(min(Rxi(k))) (5.5)

and the highest extreme becomes the highest of the highest extremes of all subranges, i.e,

max(Rx(k)) = max(∀(Rxi(k)⊂Rx(k))(max(Rxi(k))) (5.6)

For the Application, the same issues of the Resolution applies, thus

Ax(i) = {Ax1(i), Ax2(i)...Axn(i)} (5.7)

Where, every Axi(i) is a subrange of the values,

Axi(i) = [min(Axi(i)),max(Axi(i))] (5.8)

The lowest and highest extremes of Ax also follow the same definitions as those of Rx, that is,

min(Ax(i)) = min(∀(Axi(i)⊂Ax(i))(min(Axi(i))) (5.9)

max(Ax(i)) = max(∀(Axi(i)⊂Ax(i))(max(Axi(i))) (5.10)

By definition, the Resolution is simply a restriction imposed on the Constraint. If an entity is not used

inside the bounding block of a recurrent structure or a decision making construct, it does not have a defined

range to signify Resolution. Most analyses performed by SRTA can proceed in the absence of the Resolution.

104

Considering this, the Resolution could be merged with the Constraint, or could replace the Constraint when

present. It is kept as a separate range because in cases where a Resolution is present, it may disagree with

the Constraint due to a defect in the validation constructs, and without a separate range for Resolution, such

defects cannot be detected.

5.6.3 The Constraint

The Constraint is the range that denotes the absolute state-space for any identifier, i.e., it denotes the set of

permitted values for any identifier. For example, for the most basic numeric type, it is the exact minimum

and maximum values an identifier of that type can assume over a specific build system. Such ranges tend to

vary across compilers and different builds of the compilers, making it necessary to incorporate build system

data in the analysis. Table 5.2 details the values of the Constraint for primitive types of a C++ software

under different representations.

Properties of the Constraint

The Constraint has a few significant properties.

Finite: The state-space for any entity is finite for all types in all platforms. As the Constraint signifies the

absolute boundary of the state-space, it is finite too.

Continuous: The state-space is not discrete. Some states may never be achieved during a software’s

execution but it indeed is possible to reach these states.

Constant: For a given entity, the Constraint does not change unless the object is reallocated or redefined.

Must Exist: For the programming languages we have considered, strict type systems are enforced. No

entity is possible without a type, and thus an absolute range is associated with every entity.

5.6.4 The Resolution

The Resolution signifies further restrictions put on the state-space through any validation statement. Any

branching statement, loop or similar construct will contribute into shaping the state-space into a different

and more restrictive one one, and will be summarized with the Resolution. In congruence to the definitions

outlined in Chapter 3, the Resolution signifies the set of expected values for any entity.

Properties of the Resolution

May not be Finite: Resolution comes from the code, and is not defined by the environment. Thus it can

contain defects in itself, coming from the problems in validation and loops. Wrong conditions in any loop or

branching statement can cause Resolution to become an infinite range.

105

May not be Continuous: Resolution may not have a continuous range of values for its existence. In case

of a multiple branching statement (e.g., C++ switch statement) it can have discrete values.

Variable: Resolution changes with every level of conditional statement a software’s execution has to en-

counter, and thus can be variable.

May Not Exist: In case no conditional construct enforces any boundary on the state-space, the Resolution

shall not exist.

5.6.5 The Application

The Application is the set of actual values applied on or extracted from an entity. For any entity, Application

changes at every execution phase that modifies the entity.

Properties of the Application

May not be Finite: As Application signifies the values applied to the entity, it may not be finite. An

infinite value is almost always an indication of a problem.

May not be Continuous: Like the Resolution, Application may consist of discrete values.

Variable: Application changes for any statement concerning a read or write of the entity.

May not Exist: Declaration of an entity does not guarantee its usage. Thus, Application may not exist

for an entity. However, in case Application does not exist, it proves a problem in code.

5.6.6 Formation of the Constraint

The Constraint is formed only with the creation and destruction of entities, and remains unchanged as long

as the existence of the entity is not changed.

For any single entity, the Constraint is the two extreme values the entity may assume under its build

environment. For example, for a system with 2-byte integer values, a signed integer may assume values from

-32768 to +32767, and an unsigned integer may assume values from 0 to 65535. The two extremes are marked

by symbolic values −∞type and +∞type. The exact values for the extremes are dependent on the system.

Entries 1-4 in Table 5.4 show the situation. For pointers however, as they represent memory locations instead

of variables, 0 is used as a symbolic value as the Constraint.

For entities acting as collections of other entities, like arrays (both statically and dynamically allocated),

every single item in the collection has the extremes noted by its type, as described for the single entities.

Additionally, the collection has an additional Constraint for its access - that is, the minimum and maximum

values for indexing or access operations that specifies a valid item. For example, for an array of n elements

106

Table 5.4: Example Range Formations for Different Statements in C++

Ranges

Statement Cx Rx Ax Comment

1. int x; [−∞int,+∞int]
2. unsigned int x; [0,+∞unsigned int]
3. int x = 0; [−∞int,+∞int] [0, 0]
4. const int x = value; [−∞int,+∞int] Avalue
5. int *x; [−∞int,+∞int]
6. x = new int [0, 0]
7. x = new int[SIZE] [0, SIZE − 1]

8. for(int i = 0; i < SIZE;
i++)

[+∞int,−∞int] [0, SIZE − 1] [0, SIZE − 1]

9. if(x <VAL) [−∞int,max(AVAL)− 1] int x;
10. if(x <= VAL) [−∞int,max(AVAL)] int x;
11. if(x != VAL) [[−∞int,min(AVAL − 1)],

[max(AVAL + 1),+∞int]]
int x;

12. if(x < VAL1 || x >
VAL2)

[[−∞int,min(AVAL1 − 1)],
[max(AVAL2 + 1),+∞int]]

int x;

13. x = y; Ay
14. x = y+z; [[min(Ay) +min(Az),

max(Ay) +max(Az)]]
15. x++; [min(Ax),max(Ax) + 1] Context Dependent
16. x; [min(Ax)− 1,max(Ax)] Context Dependent
17. x = y; Cy Ay x, y pointers to collections.

in C++ or Java, the Constraint on the array entity is [0, n− 1], while for some versions of Microsoft’s Visual

Basic, it is [1, n].

5.6.7 Formation of the Resolution

The Resolution is formed through any imposed condition on any entity that restricts the entity’s state-space

into a subset of the possible state-space. The restriction is enforced by checks or loop’s terminal conditions.

For any conditional construct, the Resolution is formed by considering the bound(s) specified by the

condition. In case a condition specifies one end, the other end is kept to the maximum reach as specified

by the Constraint. If a condition, or a set of nested or sequential conditions specify both bounds, then the

Resolution is formed using both bounds.

For a loop, the Resolution is inferred from the loop’s initialization and condition. If the loop condition

involves a complex parameter, the range, until it can be inferred correctly, is considered as the extremes.

All Resolutions must fit within the Constraint. If a situation exists where the Resolution violates the

Constraint, it is a certain indication that the conditions that formed the Resolution have at least one defect.

5.6.8 Formation of the Application

The Application signifies the actual range of values an entity assumes over its course of execution. An entity

assumes a value under any assignment or operation.

There are some cases, especially those that involve user-supplied values, that cannot be determined

correctly without the actual program execution. In such cases the Application is approximated to the

maximum possible values (i.e., worst case approximation is used).

107

5.6.9 The Symbolic Algebra

This section describes the symbolic algebra as it is used for the analysis. The description is organized in

sections that describe particular operation and their effect on the ranges and range tuples.

Assignment

For any range to be assigned to another, regardless of the entity type they correspond to, the values in one

range is copied into another. That is,

(R1 ← R2) =

R1 ← [min(R2),max(R2)], if ||R2|| = 1

R1 ←
⋃
∀(Rx2⊂R2)

[min(Rx2),max(Rx2)], otherwise

(5.11)

For a statically typed programming language, when an atomic entity is assigned to another, the type

or context of the receiver entity does not change, only the value is copied between entities. However, for

languages like C, C++ that allows the assignment of pointers, which can be collective entities, the absolute

range represented by the entities are transferred. This phenomenon is the reason to result into memory leaks.

To account for this fact, for SRTA, assignments are modelled in different ways for atomic and collective

entities. Therefore, for any entity y to be assigned to x, we have,

(Tx ← Ty) =


Ax ← Ay, if x is an atomic entity

Cx ← Cy, Ax ← Ay if x is a collective entity

Tx ←
⋃
∀z{Tz|z is a member of y} if x is a composite entity

(5.12)

Union

As ranges are effectively descriptions of sets, the range union operation works much the same way as set

union.

(R1 ∪R2) =

{R1, R2}, if ||R2|| = 1

{R1,
⋃
∀(R2x⊂R2)

R2x}, otherwise

(5.13)

Intersection

Intersection expresses the overlapping between ranges. The intersection of two ranges consist of the range

that is common between them, and an empty range if no common range exists. The ranges are overlapped

if the intersection does not produce an empty range.

108

(R1 ∩R2) =


[min(R2),max(R1)], if R1⊥R2 and ||R2|| = 1

[min(R1),max(R2)], if R1>R1 and ||R2|| = 1⋃
∀(R2x⊂R2)R2x, if ||R2|| > 1

(5.14)

Arithmetic Operations

Arithmetic operations on any range applies on both extremes of the range, and only on the extremes of the

range. If the range contains subranges, arithmetic operation does not have any effect on any but the terminal

range.

Arithmetic operations are carried out on the Application range only. This is because, for any statically

typed programming language, an arithmetic operation does not change the type of the resultant entity,

although it may create a temporary entity based on the type of its operands.

(R1 +R2) =

[min(R1) +min(R2),max(R1) +max(R2)], if ||R1|| = 1

∀(R1x⊂R1)[min(R1x) +min(R2),max(R1x) +max(R2)], otherwise

(5.15)

(R1 −R2) =

[min(R1)−min(R2),max(R1)−max(R2)], if ||R1|| = 1

∀(R1x⊂R1)[min(R1x)−min(R2),max(R1x)−max(R2)], otherwise

(5.16)

(R1 ∗R2) =

[min(R1) ∗min(R2),max(R1) ∗max(R2)], if ||R1|| = 1

∀(R1x⊂R1)[min(R1x) ∗min(R2),max(R1x) ∗max(R2)], otherwise

(5.17)

(R1/R2) =

[min(R1)/min(R2),max(R1)/max(R2)], if ||R1|| = 1

∀(R1x⊂R1)[min(R1x)/min(R2),max(R1x)/max(R2)], otherwise

(5.18)

The rules are the same for values instead of ranges.

The remainder, or modulus, operator works in a different way. As this operator returns the remainder

of an entity, it does not go beyond 0 in its minimum value. The maximum value differs in relation of the

two entities. If the divisor is bigger than the dividend, the maximum becomes the maximum of the divided,

otherwise, it is one less than the divisor. Formally,

(R1%R2) =

[0,max(R1)], if max(R1) < min(R2)

[0,max(R2)− 1], otherwise

(5.19)

5.6.10 Range Inter-relation

This section describes the part of the symbolic algebra that governs the relation between ranges.

109

Range Containment

The term range containment, in context of SRTA, is used to denote the associativity of one range within

another. A range is considered contained in another with respect to a particular extreme if that particular

extreme of the contained range falls within the extremes of the container.

For any two ranges R1 and R2,

• R1 is contained-over-minimum in R2 if min(R2i) ≤ min(R1) ≤ max(R2i) is satisfied for any subrange

R2i ⊂ R2. This relation is expressed using R2⊥R1 and its negation is expressed using R2 6⊥ R1.

• R1 is contained-over-maximum in R2 if min(R2i) ≤ max(R1) ≤ max(R2i) is satisfied for any subrange

R2i ⊂ R2.This relation is expressed using R2>R1 and its negation is expressed using R2 6> R1.

• R1 is completely contained in R2 if R2>R1 and R2⊥R1. This relation is expressed using B >⊥ A and

its negation is expressed using B 6>⊥ A.

• R1>R2 implies R2⊥R1 and R1⊥R2 implies R2>R1.

Value Containment

The containment of a value with a range is used to express whether the value is included in the range of not.

A value is contained in a range if the value falls within the bounds of any subrange the range is made of, and

it is considered not-contained in a range if it does not fall into any subrange the range is made of.

That is, for any value v and a range R,

• v is contained in R if (v ≥ min(Ri) and v ≤ max(Ri)) for any Ri ⊆ R. Such containment is expressed

using the usual set notation, v ∈ R.

• v is not contained in R if (v ≤ min(Ri) or v ≥ max(Ri)) for all Ri ⊆ R. Such containment is expressed

using the usual set notation, v 6∈ R.

Equality

Two ranges are equal if they have exactly the same expanse. That is, if both of the extremes coincide with

each other for each subrange they may contain.

(R1 = R2) =

max(R1) = max(R2),min(R1) = min(R2), if ||R2|| = 1

∀(R1x⊂R1)∃(R2x⊂R2)(R1x = R2x), otherwise

(5.20)

Adjacency

Two ranges are adjacent to each other if their opposite extremes coincide and they do not have an overlap.

110

Figure 5.6: Example State-space Models with Different Violations

(R1 on R2) =

max(R1) = min(R2), if min(R1) ≤ min(R2)

min(R1) = max(R2), if min(R2) ≤ min(R1)

(5.21)

5.7 Defect Detection from the Ranges

The model constructed with the three ranges contain the information that can be used to infer anomalies.

The model is a hard-coded element, while the rules to infer defects are soft-coded, allowing the users to

specify their own defect definitions. One key advantage of SRTA is to put the complexity into the hard-

coded model building portion, making the specifications simple and manageable, adding to the practicality

of the approach.

5.7.1 Defect Indication

At any point, any mismatch among the three ranges denotes the presence of a defect. In case no mismatch

is among the ranges of a tuple, sometimes the evolution of the tuple is an indicator of a defect.

In case an Application does not agree with a Resolution, it indicates that there is a problem in either the

formation of Resolution (i.e., any validation or loop construct) or in the application of the entity. The actual

defect can be an integer overflow, a buffer overflow, a data mismatch or a wrong logic. In case a any other

range does not agree with the Constraint, the problem is always in the range that does not agree with the

Constraint.

Figure 5.6 shows examples of the defect indicators. Instead of showing the different states, the expanse of

the states are shown using its boundary (triangular, as the expanse of the state-space tend to increase with

execution, unless the entity is uninitialized, the Constraint is rectangular for its being a constant). Figure

111

Table 5.5: Defect Coverage of SRTA (with respect to the Taxonomy Developed in Chapter 3)

Defect Description Detection Comment

1. C1 Value Representation Defect Full
2. C2 Value Offset Full
3. C3 Undefined Outcome Full

4. L1 Improper Checks Full
5. L2 Improper Terminal Condition Full
6. L3 Wrong Operation Partial Most cases can be detected, but some require design information.
7. L4 Flaws in Algorithm None All cases require design information.
8. L5 Performance Issues Partial
9. L6 Improper Exception Handling Full
10. L7 Control Flow Error Full
11. L8 Design Non-conformance None All cases requires design information.

12. M1 Invalid Memory Reference Full
13. M2 Improper Deallocation Full
14. M3 Memory Leak Full
15. M4 Overflow / Underflow Full

16. D1 Interface Mismatch Partial Some cases require architectural/design information.
17. D2 Data Mismatch Partial Some cases require architectural/design information.
18. D3 Improper Input Validation Full
19. D4 Missing or Extra Input Full
20. D5 Improper Abstraction Partial Some cases require architectural/design information.

21. S1 Prohibitive States None All cases require runtime information.
22. S2 Improper Synchronization None All cases require runtime information.

5.6(a) shows an ideal situation without any anomaly, as the Resolution is contained in the Constraint, and the

Application is contained in the Resolution. In Figure 5.6(b), both the Resolution and the Application stay

within limits, but their occupation of the entire limit of Constraint is a potential (not certain) problem. In

Figure 5.6(c), the Resolution and Application do not encompass the same range, denoting a certain problem,

with another instance of the same problem being displayed in Figure 5.6(g). In Figure 5.6(d), The Resolution

surpasses the Constraint, indicating a certain problem, with the same occurring in a different way in 5.6(f).

Figure 5.6(e) shows a situation where the Application surpasses the Resolution, denoting a certain problem.

5.7.2 Coverage

Although most defects leave traces in code, not all of them can be detected from source code alone. In the

taxonomy generated in Chapter 3, all listed defects are ones that place their footprint in the source code, but

some require other information like design data or architectural information to be detected. In this analysis

technique, the focus is made only on defects that are contained in source code in their entirety and do not

require any information from outside of source code for their detection. Table 5.5 lists SRTA’s coverage of

the developed taxonomy.

Among the defect classes, SRTA can detect all defects that are contained entirely within the source

code (C1-3; L1, 2, 6, 7; M1-4; D3, 4). The defect L8 (Design Non-conformance) is the deviation from

the design of the software and requires design information for its detection, making it out of the scope of

SRTA. The two synchronization defects S1 and S2 require runtime information as the synchronization is a

dynamic phenomenon. Synchronization defects are often out-of-reach for static analysis tools due to the lack

of interleaving information [79] and SRTA, being a static analyzer, does not cover them.

Some defect classes include defects that do not have external information as a requirement, but often

112

involve such information. SRTA can address the detection of these defects as long as they do not involve

external information. From Table 5.5, the defect L3 (Wrong Operation) can be detected when the operation

is incorrect based on the context (e.g., a loop’s counter update involves an increment operation but the

terminal condition requires the counter to be less than the initial value). In cases where the value requires an

understanding of the underlying principles (e.g., wrong precedence), SRTA cannot detect the values correctly.

However, as the L3 defects are mostly context-dependent, SRTA applies to most of them.

The defects under class L4 (Flaws in Algorithm) rely heavily on the design specifications and are mostly

out of scope for SRTA. Only the very trivial defects of this type may be detected by SRTA (e.g., not updating

a loop controller variable inside the loop, or updating through a branch that will never be reached). However,

there is no way to conclusively state that a code fault is initiated from a flaw in the algorithm without knowing

what the algorithm is. SRTA detects the defects introduced by L4 under other classes, but cannot report

them as being under L4.

The defects under class L5 (Performance Issues), like the L4, mostly require program comprehension and

algorithm revision to be detected, thus are out of scope for SRTA. Still, SRTA can detect the portion of such

defects that stay entirely in code (e.g., checking for values that will never be used).

The defect D1 (Interface Mismatch) often involves using interfaces with wrong values but the right data

types, thus are detected by SRTA. But some of the Interface Mismatch involve architectural or design

specifications, and are out of scope for SRTA. For defect D2 (Data Mismatch), the same situation occurs. In

case a mismatching data value is supplied by the calling context, it can be detected by SRTA, but it cannot

be detected if the supplied data is wrong with respect to the algorithm, or design. The defect D5 (Improper

Abstraction) is almost always a defect with explicit relation to design. SRTA can catch it only in cases where

the abstraction problem is evident from code construction (e.g., a public interface returning a reference to a

private property).

5.7.3 Detection Accuracy

SRTA detects all defects present in the form of anomalies by analyzing the range tuples. However, due to the

nature of symbolic analysis, the range tuples may not be accurate, rather approximated. For example, if a

range tuple depends on a user supplied value, there is no technique to determine the range tuple accurately

without running the program. But if, after the input, a value is tested and allowed to proceed only in case

it falls within the allowed range, the range can be determined accurately.

SRTA is able to detect certain and probable defects by using worst case approximations. If an user is

expected to enter any value, the value is approximated to the extremes of its type - making the cases of

problematic values inclusive to the range. Although this approach might increase the false positive rate,

unless it is adopted, probable defects will remain undetected.

113

5.8 Detecting Computation Defects

SRTA can detect defects belonging to all three of the computation defect classes. The detection is performed

with full coverage (i.e., any defect in any of the three classes fall within the scope of SRTA’s detection

capabilities).

5.8.1 C1: Value Representation Defect

A value representation defect occurs when an attempt is made to fit a value into an entity incapable of

holding the value. The situation may arise from multiple causes. The value of an entity, or the outcome

of an expression, can be assigned into another entity where the destination is not large enough to hold the

value, or an entity’s value can be modified in a way that the entity’s capacity is rendered insufficient for

holding it. The resultant phenomenon can be detected by checking an entity’s change of Application range

over subsequent statements and by checking the assignment operations for the violation of the ranges.

To detect the presence of such defects, it is required to check if the Application range of a an atomic

entity is being fit into another entity for which the Constraint is not capable of accommodating the value.

To check for the anomaly, tuples formed in the following construct are checked, in statement i,

Tx(i)← Ty(i) (5.22)

For the violation of the inter-tuple relation,

Cx(i) >⊥ Ay(i) (5.23)

If a violation is detected, that is, if any bound of the Ay(i) crosses those of Cx(i), or if Ay(i) contains a

value that does not fit inside Cx(i), the statement is marked as a defect.

A second indication of the defect is when an entity itself is changed beyond the range it can accommodate.

In this case, the identifying anomaly is detected in any constructs in statement i, if it is detected that,

Cx(i) 6>⊥ Ax(i) (5.24)

where, for any previous statement, the opposite to the relation holds.

∃(j<i), Cx(j) >⊥ Ax(j) (5.25)

In case of a value truncation or cast-down, a temporary entity shall receive the value from the symbolic

expression, creating an instance of the first anomaly.

Most of the modern C, C++ and Java compilers report any type casting to lower storage types as a

warning. However, SRTA differs with such detection in that, compilers do not provide any discrimination for

a case being an actual problem, a potential problem, or not a problem. SRTA is able to differentiate among

all three.

114

5.8.2 C2: Value Offset Defect

The value offset defect occurs when either or both of the limits of a range is a certain offset away from where

it should be. These defects are mostly associated with conditional statements, either as normal conditional

branches or inside a loop statement’s header.

As these defects are defined through the conditional statements, they involve the Resolution for all

instances. One simple way to infer the presence of such defects is if the disagreement between the Constraint

and Resolution, or Resolution and Application is found only in one or both of the extremes.

One point to note with value offset defects is their nature to occur adjacent to the expected range of

values. Hence, these defects can be characterized by the following anomalies that hold for any atomic or

collective entity x,

Ax(i) 6>⊥ Rx(i) and Ax(i) ∩Rx(i) 6= ∅ (5.26)

or,

where it holds that,

Cx(i) 6>⊥ Rx(i) and Cx(i) ∩Rx(i) 6= ∅ (5.27)

If either of the conditions hold, it will identify that one of the two ranges (Constraint, Resolution or

Resolution, Application) is encompassing an invalid region close to the valid regions, identifying the problem.

5.8.3 C3: Undefined Outcome

This defect occurs when the outcome of an operation cannot be predicted. Two situations may give rise

to the situation, (a) if a participating entity for an operation contains an unexplained value and (b) if the

entities all contain defined and determined values but their interaction is undefined.

To model scenario (a), it is difficult to model all problematic values as they change with the specific

application of the entity in the software (for example, a 0 (zero) causes a problem as the denominator of an

arithmetic operation, but not as a multiplier). However, the situations that correspond to such scenarios

is not diverse as their outcome. Over the cases investigated for this research, the problem almost always

was created by using an uninitialized value or a value that has experienced a C1 defect before its use in a

statement.

Two phenomena indicate an entity’s being used without initialization. The first, is having no Application

range (as it occurs for collective entities) and the second is having the Application range spanning the

maximum of the Constraint (as it happens for atomic entities). Therefore, a C3 defect is found for an entity

if one of the following holds,

Ax(i) = Cx(i) (5.28)

115

or,

Ax(i) = ∅ (5.29)

In case of the first anomaly, the Application range is either not set, or it is used to the entire range as

the Constraint, indicating that an unchecked value is used for the Application.

Scenario (b) mainly occurs from the division-by-zero error in programming, but generalizes to other values.

To detect it, the following construct needs to be addressed for atomic entities,

Tx(i) OP Ty(i) (5.30)

Where the entity y can be an atomic entity or the result of an expression, OP is an operation. To indicate

a defect, the following needs to hold,

yi ∈ Ay(i) (5.31)

where yi is an invalid value for the identifier y. This same definition can be extended by the user for any

specific value for any identifier. In case of checking for the division-by-zero, the expressions need to be tuned

as, yi = 0 and OP = /.

5.9 Detecting Logical Defects

Of the eight defect classes under logical defects, SRTA can detect any defect belonging to four of the classes

(L1, L2, L6, and L7), and most of the defects belonging to two classes (L3 and L5). Due to the necessity of

using architectural or design data, the other two classes (L4 and L8) do not fall within the scope of detection.

5.9.1 L1: Improper Validation

The Improper Validation defect occur for the absence of, or the mistake in, the validating constructs for any

identifier before its use. The absence of validation can be detected by assessing the Resolution alone. If an

entity misses a Resolution range before the first Application range is introduced, it is without a validation.

A mistake in validation is characterized by one of the two scenarios - first, if a validation does not provide

a Resolution agreeable to the Constraint it is a flaw in the validation, and second, if a validation does not

provide a Resolution agreeable to the Application, it may indicate a flaw in the validation.

The first scenario, or absence of validation, can be detected as, for any identifier x in statement i,

Rx(i) = ∅ and Ax(i) 6= ∅ (5.32)

The second scenario, comparisons between Constraint, Resolution and Application is,

116

Cx(i) 6>⊥ Rx(i) (5.33)

or,

Rx(i) 6>⊥ Ax(i) (5.34)

The absence of validation anomaly is self-descriptive. The other two denote the cases where the Resolution,

that is, the range formation coming from the validation is not in congruence of the other two ranges.

5.9.2 L2: Improper Terminal Conditions

The improper terminal condition, for any recurrent structure, occurs when the validation used as the terminal

condition is wrong. Most of such cases will be caught as parts of C2 and L1 defects. As a generic form, this

validation is indicated by the presence of any defect in the control variable for any recurrent structure. To

detect it, the same procedure of C2 and L1 are applied for entities in the role of recurrence controllers.

5.9.3 L3: Wrong Operation

Wrong operations happen when the result of an operation becomes completely out-of-scope of what it should

be. It is characterized by either of the two scenarios, for any entity x at statement i,

Ax(i) on Rx(i) (5.35)

or,

Rx(i) ∩Ax(i) = ∅ (5.36)

The first anomaly signifies where the two ranges are adjacent, with at most one common element, while

the second identifies where the two do not share any common elements.

5.9.4 L5: Performance Issues

SRTA cannot detect all performance issues as they often require design and architectural knowledge. The

specific defects that SRTA can detect are,

(a) A variable was declared but never used: Detecting this defect is straightforward. For any entity that

has no Resolution or Application range associated with it between its point of origination and termination is

an extra and unused entity. (b) An entity was declared with wrong type. (c) Part of a collective entity was

never used.

An extra variable can be detected by checking the construct,

117

∀(j>i), Ax(j) = ∅ (5.37)

where i is the statement of initiation of the entity.

For Atomic entities, it can be characterized by checking the situation where, for any atomic entity x

Cx(i) >⊥ Ax(i) (5.38)

but, there exists another data type d for which,

Cx(i) >⊥ Cd (5.39)

and,

Cd >⊥ Ax(i) (5.40)

For collective entities, any disagreement between the ranges indicates an unused portion. That is, for any

collective entity x, if the following holds,

∀(j>i), Cx(i) 6= Ax(i) (5.41)

it denotes a performance issue.

5.9.5 L6: Improper Exception Handling

Exception data are not straightforward entities that can be represented by the state-space. To check for the

exception handling capabilities in language that support them, an intermediate representation is required to

transfer the information into the symbolic domain.

A convenient workaround is to represent all exceptions thrown in a piece of code as a collective entity

with indices denoting different member exceptions. Any processing of the exceptions is then modelled as an

access to that collective entity with the same index translations. If a wrong exception is processed, or an

exception is not processed, it is indicated by an invalid reference to that exception. That is, to formulate, if

entity e holds the translated exception data, any anomaly in the formulation,

∀(j>i), Ce(i) 6>⊥ Ae(j), (5.42)

and,

∀(j>i), Ce(i) 6= Ae(j), (5.43)

will denote a problem in exception handling. First of the two anomalies identifies a situation where

at least one exception handled wrong. The second anomaly identifies that there is at least one unhandled

exception in code.

118

5.9.6 L7: Control Flow Error

The control flow defects are characterized by situations for which the control flow is always directed towards

a branch statement, or never directed to one. Detecting this defect is straightforward in the scope of any

entity. For any entity x, the defect is indicated by the following constructs,

∀(j>i),∪Rx(j) 6= ∪Ax(j) (5.44)

If this anomaly is present in code, it means that either the control flow is localized for a portion of the

total space (in case Rx(j) has more expanse that Ax(j)) or that a portion of code is never executed (if Ax(j)

has more expanse than Rx(j))

5.10 Detecting Memory Defects

SRTA can provide full coverage to each of the four defect classes for memory defects.

5.10.1 M1: Invalid Memory Reference

An Invalid Memory Reference occurs if a memory access attempt is made for a piece of memory that does

not exist. The access can be marked by a null-referrer, by an uninitialized referrer or by a referrer that holds

the address to a memory already deallocated or out-of-scope.

By nature, initiation and features, this defect is similar to the C3 defect. Detecting this defect, therefore,

requires similar constructs. For the detection of null pointer dereference, for any entity x representing memory,

the following conditions are analyzed,

Tx (5.45)

for the presence of the anomaly,

Cx = ∅ (5.46)

or,

Cx = [0, 0] (5.47)

A major difference with the C3 defect is that, C3 defect applies to atomic entities, but memory entities

are almost always collective. To check the entity x for an uninitialized value, it has to be checked,

Cx = [−∞max,+∞max] (5.48)

which, if satisfied, indicates a defect.

119

5.10.2 M2: Improper Deallocation

An improper deallocation occurs when a piece of memory is deallocated that is not meant for deallocation.

The same situations that give rise to an Invalid Memory Reference, may create an improper deallocation if

used in a deallocation statement instead of memory access.

To check for the defect, following anomalies are checked for any memory entity, for any memory entity x

deallocated at statement i

Cx(i) = ∅ (5.49)

or,

Cx(i) = [0, 0] (5.50)

or,

Cx(i) >⊥ [−∞max,+∞max] (5.51)

All first three of the anomalies, identical to the anomalies for M1 defects, show the situation where an

invalid memory reference is tried to be deallocated. Last of the anomalies

5.10.3 M3: Memory Leaks

Memory leaks occur when an allocated memory is not deallocated at the end of its usage. Thus, for any entity

representing a reference to a memory, if the following condition exists, for any memory entity x subjected to

a deallocation at statement i, or if i is the point of termination for the program,

∃(j>i), Cx(j) 6= ∅ (5.52)

it denotes a memory leak.

5.10.4 M4: Overflows / Underflows

Memory overflows and underflows occur when a memory access is attempted beyond the permitted range of

the memory. Technically, it is an invalid memory reference, done adjacent to a range of valid memory. This

defect can be originated both in the validating constructs and the access statements, and hence involves the

Resolution and the Application. To detect this defect, for an entity x representing a memory region, the

following has to hold,

Cx 6>⊥ Rx (5.53)

where, either,

120

Cx>Rx (5.54)

or,

Cx⊥Rx (5.55)

or,

Cx on Rx (5.56)

The same applies for the Application range with the Constraint. That is, if the Ax holds the same relation

with the Cx, it also indicates the same defect.

5.11 Detecting Data, Interface and I/O Defects

Among the five defect classes of this group, SRTA can provide full detection coverage to two (D3 and D4)

and partial coverage to the other three (D1, D2 and D5). The partial coverage to each of the classes is able

to detect most of the defects belonging to the classes.

5.11.1 D1: Interface Mismatch

In an interface mismatch, an interface is used with wrong values for data. For most cases, this defect is an

instance of C1 or C3 applied to formal parameters. To detect this defect, the following constructs need to be

checked. For any actual parameter y and a formal parameter x,

Cx(i) 6>⊥ Cy(i) (5.57)

This particular anomaly denotes that the type of the parameters did not match, and actual parameter is

not able to hold all the values supplied to it, although it may not run into a defect at present. Other types

of this defect requires the knowledge of the design for detection.

5.11.2 D2: Data Mismatch

The data mismatch defect occurs when the interface is used with proper data types, but not with proper

data values. Any value supplied beyond the capability of the formal parameter is a certain indication of such

defect. If the value is not beyond the capability of the formal parameter, but is never used throughout the

interface, it also denotes the same defect.

Detection of this defect requires checking of the following condition, for any formal parameter x and

actual parameter y

121

Cx(i) 6>⊥ Ay(i) (5.58)

if this does not hold, then, for all subsequent use for the entity x in the code that follows, an anomaly of

∃(j>i), Rx(j) 6>⊥ Ax(i) (5.59)

indicates this problem.

5.11.3 D3: Improper Input Validation

The improper input validation defect contains the same characteristics as the L1 defect, only applied to the

inputs of a module or the program. If the entity x is used as an input for any module or the full software

itself, and it lacks validation, the situation is characterized by,

Ty(i)>Tx(i) (5.60)

where,

∀j>i, Rx(j) = ∅ (5.61)

5.11.4 D4: Missing or Extra Inputs

The missing or extra inputs defect occurs when an interface is used with insufficient or over-sufficient data.

To detect the defect, following situations are analyzed,

∀f :formal parameterCf 6= ∀a:actual parameterCa (5.62)

where f is the set of all formal parameters and a is the set of all actual parameters.

For a missing input defect, in addition to the indication presented above, the following anomaly shall be

in force,

|Cf | > |Ca| (5.63)

or,

||Cf || > ||Ca|| (5.64)

The opposite will hold for an extra input defect

|Cf | < |Ca| (5.65)

or,

122

||Cf || < ||Ca|| (5.66)

5.11.5 D5: Improper Abstraction

SRTA can detect improper abstractions when they are directly apparent from code. The most severe case

that occurs in code is providing a reference to a private member of a class through a public function.

Under the scope of SRTA, this defect cannot be checked directly as the other ones. However, a workaround

exists. If any member entity to any piece of code is reset to have the range [∅] (empty) once out of scope.

This situation then shall give rise to the other errors once accessed. Thus, the identifying signature for such

defects becomes,

For any statement

Ty(i)← Tx(i) (5.67)

if,

Cx(i) = ∅ (5.68)

but,

∃(j<i), Cx(j) 6= ∅ (5.69)

then the defect denotes an improper abstraction.

5.12 Answering the Research Questions

This section attempts to answer the research questions mentioned in Chapter 1. In particular, two research

questions (RQ1 and RQ2) are answered in this chapter, with both answers reinforced with experimental

evidence in the next chapter.

5.12.1 RQ1: Detecting Multiple Dissimilar Classes of Defects

The first research question for this research was stated as, “Can a specific abstraction provide sufficient

means for detecting multiple dissimilar classes of defects?” The answer to this question is presented using

the materials provided in this chapter. As it was presented in earlier sections, SRTA represents the entities

from source code using the range-tuples. The three ranges in the tuple corresponds to three phases of an

entity’s life-cycle. For different classes, the rules of detection were presented in the previous section.

To illustrate the objective of the research, that is, to detect multiple dissimilar classes of defects using a

single model, the rules are applied together. Each program statement passes through SRTA’s detector that

123

Figure 5.7: Detection Mechanism for Dissimilar Classes of Defects

checks if the statement conforms to any of the specifications. One common point that has been established

in this chapter so far is that, all detection mechanisms performed on the three ranges that form the range

tuple only - thus creating a single model.

Figure 5.7 illustrates the detection of dissimilar classes of defects. In Figure 5.7(a) three dissimilar defect

classes are shown. Defects belonging to these three classes, once they are passed through SRTA’s model

builder, are expressed by using the range tuples. The range tuples have exactly the same structure for

all defects - enforcing the single model methodology. The similar-in-construct range tuples coming from

dissimilar defects are then checked by SRTA against specific conditions and a defect is reported once a

violation is detected.

If this three-defect-case is extrapolated further, as is shown in Figure 5.7(b), we have n dissimilar defect

classes, all of which are represented by SRTA using the same model (i.e., the range-tuples). The model is then

checked for specifications concerning one of the four aspects, Range Formation, Range Evolution, Inter-Tuple

Relation and Intra-Tuple Relation (Not all aspects are applicable to all defect classes). If an anomaly is

detected in the checking, it is reported as a defect.

In summary, this process proves the ability of presenting a specific abstraction, that is, the use of range-

tuples to represent and detect multiple dissimilar classes of defects.

5.12.2 RQ2: Scope of Detection

The second research question was stated as, provided a specific abstraction is possible and existent to represent

multiple dissimilar classes of defects, “To what length can such a technique go in terms of dissimilar classes

of defects?”.

The information presented in Figure 5.7, provides the answer to this question. As it can be seen from the

124

figure, and as it was established in the arguments presented in earlier sections, SRTA can detect dissimilar

defects by representing them in its own model of range tuples, and then by applying analyses belonging to

one of the four aspects to find the anomalies. The detection process is based on the model construction.

This statement can be generalized into stating that SRTA can detect the dissimilar defects as long as they

are represented using SRTA’s model. SRTA’s model uses

In summary, this chapter hypothesizes that as long as the defects are contained in source code, they

can be represented using SRTA’s model and can be detected. If the defects require external data like the

architecture or design, it is not possible for SRTA to represent them in a model suitable for detection.

5.13 The SRTA Prototype

To test SRTA over real-world systems, a fully functional prototype was implemented. This section describes

the prototype’s architecture and implementation-specific information. Due to the large volume of information

related to the design and construction of the prototype, it is not described in full. Full description, along

with the details on specification languages, are provided as a supplement to this dissertation [11].

5.13.1 Prototype Architecture

Figure 5.8 shows the structural view of the prototype. In the figure, the corner-folded document symbols

represent external data and the standard flowchart document symbols represent internal data. Rectangles

denote the structural components. Circles inside rectangles represent configurable components that depend

on external specifications, and bounded rectangles represent pluggable modules as developed by users’ spec-

ifications. To keep the diagram less cluttered, internal data is shown at its origination / modification point.

It is to be assumed that the same internal data flows through all components that come after its origination.

5.13.2 Components

Components of the SRTA prototype are shown in Figure 5.8. The components Lexical Analyzer (LA), Token

Recognizer (TR), and Token Sequence Mapper (TSM) correspond to the Preprocessing Phase. Graph Builder

(GB), Range Approximator (RA), and Tuple Builder (TB) correspond to the Model Building Phase. Finally,

Analyzer (AZ) and Report Generator (RG) constitute to the Analysis and Reporting Phase.

Preprocessing Phase

This phase of the prototype, corresponding to the preprocessing phase of the technique, prepares the input

for processing. It includes the components for lexical analysis and token sequence mapping.

125

Figure 5.8: Structural Model of the SRTA Prototype

The Lexical Analyzer (LA)

Once the system reads the Source Code, the first processing unit is the Lexical Analyzer (LA) which breaks

the code down into a set of tokens, based on the Language-Specific Lexical Specifications provided as external

data. The token stream is then passed through a Recognizer that segregates the identifiers, using the same

set of specifications.

The reason for implementing the LA, instead of using a Lexer developed by a Generator like Flex [58, 102]

is that, SRTA’s aim of being generally applicable is realized through its capability of processing test systems

developed in different programming languages. The scanner generators develop scanners that are specific

to one set of specifications only. It indeed was possible to use such scanner generators for SRTA, but it

would have required source regeneration and recompiling every time a specification was changed, creating

dependency on the scanner generator and on an external compiler. In the current approach, SRTA uses

its own reconfigurable lexical analyzer, which does not extend beyond programming languages (unlike the

scanner generators). The advantage of such a reconfigurable analyzer is that, it does not require any source

modification or recompiling if the specifications are changed.

126

The LA passes a set of tokens, as derived from the source code, to the Token Recognizer (TR). The

set contains the tokens and their location information in code. The specifications to the LA are passed as

external input, which are detailed later in this chapter.

The Token Recognizer (TR)

The Token Recognizer (TR) was introduced because SRTA does not use conventional parsing, requiring a

forward recognition mechanism before the tokens can be used in further processing. The application of a

conventional parser could eliminate the need, but would have introduced problems of generality.

The TR accepts the set of tokens from the LA, and adds token specific information to the set, including

the type of token and its location in code (File, Line, Statement). The TR passes the token sequence to the

Token Sequence Mapper (TSM). The TR uses the same specifications as the Lexical Analyzer.

The Token Sequence Mapper (TSM)

After the TR processes the token set, the Token Sequence Mapper (TSM) maps the token sequences of

interest. The TSM is a collection of n Finite State Machines (FSM), that identify specific patterns in the

token stream as specified by the Grammar. This specific matching is similar to the LALR Parsing mechanism,

but is not identical to it. Unlike conventional parsers, SRTA does not require a complete grammar. Rather,

it requires only specific patterns of interest (e.g., variable declaration, initialization, assignment, increment).

A conventional parser could be used for SRTA, replacing the TR and TSM components, but it would have

required a complete, or at least, parsing-error-free program for analysis. In its current form, SRTA can

process code that cannot be compiled due to the presence of compile-time errors, up to a point where the

error does not affect the actual defective code. This specific strategy made SRTA capable of analyzing code

as they are being developed, providing a strong advantage over most other static analysis tools.

The TSM builds a Symbol Table and a Composition Table. The Symbol Table, as it is used in the field

of compiler design, is the table with the data of all identifiers present in the test system, along with their

scope and type information. The Composition Table is unique to SRTA, it holds the detailed breakdown of

composite entities with reference to the Symbol Table.

The prototype implemented the TSM as a set of seven Finite State Machines (FSM). Each FSM recognizes

one token sequence from the set - declaration and initialization, composite entity creation, array/memory

access, expression, assignment, allocation/deallocation and all other statements. The same token set is passed

along the seven FSMs that are connected as a chain. The Symbol and Composition Tables are implemented

as relations in a mysql database.

5.13.3 Model Building Phase

In the Model Building Phase, the components of the model are built using the data provided by the Prepro-

cessing Phase.

127

The Graph Builder(GB)

In the Model Building Phase, the Symbol Table and Composition Table, along with the Recognized Token

Sequences, are used by a Graph Builder to create a Hybrid Data and Control Flow Graph (HFG). This graph

expresses the dataflow and control transfer among the entities.

Each node of the graph is the representation of an entity’s state in code. In case a statement changes mul-

tiple entities, the graph contains multiple nodes for the same statement. Conditional branches are represented

as forking structures in the graph, while recurrent structures are represented with loopbacks.

The Range Approximator(RA)

A Range Approximator (RA) takes over after the HFG is created, and uses the HFG, along with the Sym-

bol Table, Composition Table and the Token Sequences to determine or approximate the range of values

associated with each entity at its particular location in code. The RA uses simple mathematical relations

(as described in Chapter 5) to find the values. As the values for an unbound variable are not decidable in

static analysis, the RA uses a Solver Module (SV) to approximate the worst case values in such cases. The

Solver Module approximates values by evaluating a series of arithmetic operations that the value had to pass

through. The RA outputs a set of ranges for each identifier.

In this phase, the HFG is ‘Flattened’ to contain only the summarized representations. In case of forks

present in the graph, all possible values of the entities involved are summarized into a single node. Recurrent

structures are flattened in the same way.

The Solver (SV)

The solver accepts an expression for an entity from the RA and, consulting the HFG, Symbol Table and

Composition Table, provides the range of values the entity may assume at the point of interest. In case

the values cannot be determined, the solver approximates the worst possible scenario for the entities. For

example, if, at any point of the program, an entity is expected to read a string from the user, its length will

be approximated as infinite.

The Tuple Builder (TB)

The Tuple Builder (TB) uses this set of ranges, along with the HFG, the Symbol and Composition Tables and

the token set, to infer range tuples for different entities in different points in code. TB decides the placement

of ranges (operations concerning Constraint, Resolution, and Application) and processes them accordingly.

At this point, SRTA’s internal model building completes, and the HFG, Symbol Table, Composition Table

and Tokenset are not used anymore.

128

5.13.4 Analysis and Reporting Phase

This phase uses multiple analyzer modules, built under users’ specifications, and a reporting module that

formats the output of the analyzers.

The Analyzer (AZ)

In the Analysis and Reporting Phase, the Analyzer Module (AZ) accepts the input from the Tuple Builder

and checks the Range Tuples for specific patterns as specified by the Defect Specifications supplied to it. The

Specifications are created to represent the defect mapping procedures described earlier in this chapter. As

the specifications can be different in number and type, they can be thought of as pluggable modules for the

AZ. Each of these Modules conducts exactly one specification check, although one might depend on others

for its checking. The result from the AZ is a set of defects identified from the source code.

Analyzers use a certain specification for defect detection. The format of the specification, as used by

SRTA, is described in brief later in this chapter.

The Report Generator (RG)

The defects are accepted in a Report Generator that formats and outputs them in one of the three supported

formats (at present). The reports can be generated as Plain Text, as formatted HTML or as XML files.

5.14 User-Defined Artifacts

SRTA requires three user-defined specifications. However, none of the specifications are restricted in format

by this research, as particular implementers of the tool may prefer a different representation. This section

describes the contents of the specifications, not the format of the specification file.

5.14.1 Lexical Specification

The language specific lexical specifications specify the token types of the language used for the development

of the test system. The objective for the specifications is to provide language specific information to the

Lexical Analyzer and the Token Recognizer.

The prototype implemented the specification in three parts. First part is a set of keywords, along with

a numeric type identifier for each, second part is a set of operators with associated numeric type identifiers

and the third part is a set of delimiters (spaces, tabs, newlines etc.).

This specification is not a part of SRTA and may change depending on the particular implementation of

the Lexical Analyzer. For example, if one decides to use a Lexer generated from Flex, it will correspond to

the Flex specification.

129

5.14.2 Grammar Specification

The prototype uses a partial sequence mapper based on Finite State Machines, instead of a conventional

parser. Grammar implementations may differ for different implementations, for this prototype, a seven-

phase partial token sequence recognition mechanism was used.

5.14.3 Defect Specification

SRTA requires two information from the defect specifications. The first is the symbolic pattern to look for,

and the second is the description of anomaly expected in the pattern

The patterns use a form of high-level specification language similar to the Tool Command Language

(TCL). One of the main objectives of SRTA is to provide the user with the option to write simple specifica-

tions, relieving the user from complex decision making processes. The specification constructs are designed to

reflect this objective. The specification has two parts. The first part contains a set of patterns represented in

the symbolic analysis form, and the second part is the description of the anomalies that should be identified

as defects should they occur. As an example, the C1 Defect as described earlier is specified as,

Pattern: assign identifier1 identifier2

Anomaly: not {contained {application identifier2} {constraint identifier1}}

The pattern indicates to look for the assignment of identifier2 to identifier1 (in the usual postfix notation

typical to Tcl), and to check for the specific anomaly that the Application of identifier2 is not contained in

the constraint of identifier1.

The specification language contains a set of keywords and specification rules which are not presented in

this chapter (due to the large volume). As the exact specifications are required to use the prototype, details

are provided as a user manual to the prototype. It is available as a supplement to this dissertation [11].

5.14.4 Implementation Notes

Through its own specialized Lexical Analyzer, Token Recognizer and Token Sequence Mapper, the prototype

can be extended to systems developed in any programming language that can be expressed in a context-free

grammar. However, as the aim for developing this prototype was to test SRTA, and not to deliver a full-scale

product, only C++ and Java Grammars were implemented for the experiments (C systems were processed

using the C++ grammar).

The prototype employed mechanisms not commonly found in other tools - like the multi-phase token

sequence recognition or not using a conventional lexical analyzer and parser. Also the specifications were

custom designed for the prototype. The implementation and specifications are not standardized, and can be

reimplemented.

130

5.15 Summary

This chapter details SRTA, or the Symbolic Range Tuple Analysis, technique. The chapter started by outlin-

ing the underlying propositions of SRTA, and then described the representation used by SRTA. The chapter

then proceeded on describing the mathematical framework of SRTA, followed by the detection techniques for

multiple dissimilar classes of defects. As the final note, the chapter described a prototype implemented to

test SRTA. The next chapter Chapter 6 describes the experiments conducted to evaluate the technique.

131

Chapter 6

Experiments and Discussion

This chapter provides detailed information on the experiments conducted to validate and compare the

technique, SRTA, as it was described in Chapter 5. The evaluations were carried out using a prototype

implementation of SRTA described in the same chapter. This chapter begins with chapter specific background

information (Section 6.1) and an overview of the Evaluation Activities (Section 6.2). The chapter then

proceeds on describing the experimental setup for the four experiments conducted (Section 6.3). The data

and analyses are presented next (Section 6.5). Finally, the chapter concludes with a summary of outcome

from the experiments (Section 6.6).

6.1 Chapter-specific Background

This section provides the chapter-specific background to the evaluation of the research.

6.1.1 Accuracy

Accuracy expresses an analyzer’s capability to detect as many of the relevant artifacts as possible, with the

least quantity of non-relevant artifacts detected along with the relevant ones. Two popular metrics, Precision

and Recall, are used to measure accuracy.

To define precision and recall, a number of background elements need to be defined. In these definition,

the generic term ‘Tool’ is used to mean the defect analyzer being evaluated.

Let,

1. D = {d1, d2, d3, ...dn} a collection of defective artifacts existing in the test system. The collection may

contain repeated artifacts.

2. C = {c1, c2, c3, ...cm} a set of defect classes. The set contains only unique classes.

3. A = {a1, a2, a3, ...ap} a collection of artifacts detected by the tool as defects. The collection may contain

repeated artifacts.

4. c = M(d) : D → C is the actual mapping of a defective artifact d ∈ D to the defect class c ∈ C, known

through previous detection or manual inspection.

132

5. c = S(a) : A → C is the mapping reported by the tool for detected defective artifact a ∈ A to defect

class c ∈ C.

6. N = Defect count. It is the total number of defects in the test system. This number is equal to the

element count of the collection D. This count does not signify the unique defects existing in the system,

rather counts the total number of defects, including repetition. The reason for treating repetitions as

different instances is that, the same defect can be present in different flavours in different code constructs

and an effective system should detect all these different flavours. If repetitions are not counted, only a

generic estimate of a system’s accuracy can be obtained.

7. TD = Detection Count. It is the total number of artifacts detected by the tool as defects. This number

is equal to the count of elements in the collection A. The more accurate a detection system is, the

closer shall TD be to N , but the opposite is not guaranteed.

8. TP = True positive. It is the number of defective artifacts that are detected by the tool and are actually

existing in the system. That is, this number is equal to the element count of the intersection of the

collections D and A.

9. FP = False positive. It is the number of artifacts detected as defects, but in reality are not defects.

This number is equal to the element count for the set difference from A to D.

10. FN = False negative. It is the number of defective artifacts actually existing in the system, but are not

detected by the tool as defective artifacts.

Precision

Precision is the probability of a detected artifact’s being relevant [61]. Traditionally, it is expressed as

the percentage of the correctly detected artifacts with respect to all detected artifacts. To assess the tool’s

(specifically, SRTA’s) capability in more details, two variations of precision are considered in this experiment.

Precision 1 (Lenient Estimation): In the liberal or lenient variation, the precision is considered to be

the correctly detected artifacts over all artifacts. That is, a detection is considered as a true positive if the

detected artifact is found to be a defect, regardless of whether the class it was reported in is the actual defect

class it belongs to. This definition was used to assess the accuracy of SRTA in finding the anomalies that

lead to defects, regardless of its capability of correctly interpreting them. Often the precisions reported by

techniques in literature fall in this category. The expression for the lenient precision PL, is,

PL =
|{x : x ∈ A and x ∈ D}|

|A|
(6.1)

Alternatively,

PL = 1− |{x : x ∈ A and p 6∈ D}|
|A|

(6.2)

133

Precision 2 (Strict Estimation): In the strict variation, the precision was considered to be the correctly

detected artifacts under correct class over all artifacts. That is, a detection is considered as a true positive if

the detected artifact is found to be a defect, and is of the same class as it was reported to be. This version

of precision is used to assess SRTA’s capability to correctly interpret the anomalies once they are detected.

The expression for the strict precision PS , is,

PS =
|{p : p ∈ A and p ∈ P and M(p) = S(p)}|

|A|
(6.3)

Or, alternatively,

PS = 1− |{p : p ∈ A and (p 6∈ P or M(p) 6= S(p))}|
|A|

(6.4)

The two variants of precision signify two different aspects of the process. Precision 1 (PL) expresses

the effectiveness of the detection of anomalies, while Precision 2 (PS) signifies the correct interpretation of

anomalies. For any test system, PS ≤ PL.

Recall

Recall is the probability that a relevant item has been detected by the analyzer [61]. Traditionally, recall is

expressed as the percentage of the detected artifacts over all actually present artifacts. In congruence with

the same definitions for precision, we have considered two different recall measures in this experiment.

Recall 1 (Lenient Estimation): In its lenient or liberal variant, a recall is the proportion of the detected

defects, regardless of the class they are detected in, to the total existing defects in the test system. That is,

RL =
|{p : p ∈ A and p ∈ D}|

|D|
(6.5)

Or, alternatively,

RL = 1− |{p : p ∈ D and p 6∈ A}|
|D|

(6.6)

Recall 2 (Strict Estimation): In the strict variant, the recall is defined as the proportion of defects

detected under the correct class, to the total existing defects in the test systems.

RS =
|{p : p ∈ A and p ∈ P and M(p) = S(p)}|

|D|
(6.7)

Or, alternatively,

RS = 1− |{p : p ∈ A and (p 6∈ P or M(p) 6= S(p))}|
|D|

(6.8)

Like precision, the two versions of recall signify the recall in detecting anomalies and the recall in inter-

preting the anomalies. For any test system, RS ≤ RL.

134

A point to note is, the words ‘Strict’ and ‘Lenient’ or ‘Liberal’ are used in the precision and recall

specifications to indicate the relative difference in the two versions, and not to impose any general quality.

The precision and recall reported by literature, which were used for comparison with other tools, all belong

to the Lenient estimate.

6.1.2 Scalability

Scalability of an analyzer denotes the ability to retain its qualities against a varying range of properties of

the test systems. In the context of this research, scalability is used to denote the capability of successful

processing with codebases of various sizes, and with various degrees of information that can be inferred from

the codebases.

A scalable technique should be able to function with codebases of varying sizes and complexities, with

reasonable accuracies for each.

6.1.3 Generality

Generality is used to describe the technique’s ability to be adapted in different situations. In the context of

this research, these situations are considered as different input specifications, subject system diversity, and

extension of the capability of detection over multiple dimensions with similar efficiency.

In the context of this research, a technique is considered to be general if it is able to process test systems

of differing technologies (e.g., programming languages, frameworks, specifications) but not necessarily of

different size or complexity, which are covered under scalability.

6.1.4 Practicality

Practicality is the applicability of the technique over real-world scenarios, that is, the ability to function

within reasonable environmental bounds. In this research we consider practicality to be the generic and

attainable requirement for the technique to function.

In the context of this research, a technique is considered to be practical if it does not put any special

requirement (e.g., extra large memory, specialized hardware, special annotations) on the test system or the

experimental environment, adapts itself in varying resource constraints (e.g., memory, processing power) and

is able to complete its analysis in a reasonable time frame in comparison with other notable tools.

6.2 Evaluation Overview

SRTA was evaluated to assess the four aspects of its features as described in the previous section. The

assessment was carried out using four different experiments (although the feature-experiment relation is

not exclusive). Table 6.1 summarizes the experiment and their objectives of assessment. Details of the

experiments are provided in the next section.

135

Table 6.1: Summary of Assessment Procedures for SRTA’s Evaluation

Experiment Description A
c
c
u
ra

c
y

S
c
a
la

b
il
it

y

G
e
n
e
ra

li
ty

P
ra

c
ti

c
a
li
ty

Relevant Sections

1. Experiment 1 (a) Application of SRTA over Six real-world test systems. X X X 6.4.1, 6.5.1

(b) Application of three state-of-the-art tools over the same test systems. X X 6.4.1, 6.5.3

2. Experiment 2 (a) Application of SRTA over a Benchmark Suite. X 6.4.2, 6.5.2

3. Experiment 3 (a) Application of SRTA a large-scale fault-injection experiment. X 6.4.3, 6.5.2

(b) Application of three state-of-the-art tools to a large-scale fault-injection experiment. X 6.4.3, 6.5.2, 6.5.3

4. Experiment 4 (a) Application of SRTA in a controlled experiment. X X 6.4.4, 6.5.4

(b) Comparison of SRTA with secondary data on seven tools. X X 6.5.3

6.3 Experimental Setup

This section describes the experimental setup used to carry out the evaluation activities for SRTA.

6.3.1 Experimental Environments

All of the experiments were carried out in two different computer systems, both used for general purpose

computing. No specialized hardware or software components have been used to test SRTA.

Among the two systems, the first system (System 1) was used only to measure the effect of scalability

and practicality of SRTA. All of the experiments to measure accuracy and generality were conducted on the

second system (System 2). The two systems’ properties are summarized in Table 6.2.

Table 6.2: Description of Experimental Environments

System Property Description Comment

1.

System 1

Processor Intel Core i5 4 Cores
2. Memory 2GB
3. Operating System Fedora 17 64-bit
4. Available Secondary Memory 200GB

5.

System 2

Processor Intel Core i7 8 Cores
6. Memory 4GB
7. Operating System Fedora 17 64-bit
8. Available Secondary Memory 200GB

6.3.2 Test Systems

The test systems were chosen from real-world open source systems that correspond to varying domains, and

are implemented in three different programming languages. Table 6.3 lists their properties.

Firefox, the popular web browser, was chosen for multiple reasons. Firefox is widely used as a browser. It

is a community project that accommodates different styles, specifications and standards. Moreover, Firefox

has a structured and extensive bug repository that can be used to verify the detection outcomes. Same

reasons were behind the selection of Thunderbird, the email client from Mozilla.

136

Table 6.3: Description of the Test Systems

System Version S-LOC Language(s) Comment

1. Firefox 12.0 3.4M C, C++,Java Well known for a lot of defects
2. Thunderbird 12.0.1 3.8M C++, Java Well known for a lot of defects
3. Linux Kernel 3.1.8 9.5M C, C++ To test scalability
4. Sendmail 8.12.11 86K C To test scalability
5. Notepad++ 5.8.3 121K C++ Stable System
6. BlueJ 3.0.9 103K Java Stable System

S-LOC was reported for the portions that fall under SRTA’s processing scope.
Languages specify the languages for developing the major portions (at least 1% of total LOC).

Linux Kernel was added to the test systems to assess SRTA’s scalability over a large system. Linux

Kernel contains inter-related modules, providing a complex and massive software system ideal for scalability

verification.

Sendmail, the mailing demon from Unix, was used in a number of experiments by other researchers. It

was incorporated in the test suite to be able to compare SRTA’s outcome with other research described in

literature.

Notepad++ and BlueJ are two code editors implemented in C++ and Java respectively. Both are well

known for their stability, indirectly stating their high quality. The systems were incorporated to assess

SRTA’s capability of detecting tricky defects. A second reason for incorporating BlueJ was to provide means

for comparison with FindBugs, one of the tools used for comparison.

6.3.3 Tools for Comparison

SRTA was compared against three tools. Each of the three tools came from Academia and is available as

gratis.

UNO

UNO is a tool developed by Holzmann [68]. It is lightweight and performs local and global (i.e., intra- and

inter-procedural) analysis. The tool works on C only and does not require any source annotation, specific

formatting, specific structure or paradigm.

FindBugs

FindBugs, developed in the University of Maryland, is one of the most widely cited multiple defect detection

tool. The tool is reported to find more than 300 defect inducing patterns in code. Despite the fact not all of

these patterns are considered defective in the context of present research, and that the patterns matched by

FindBugs are all from code directly, it was included to compare with SRTA due to its closest resemblance to

a multiple-dissimilar defect detection tool. FindBugs works on Java Only.

137

SPLINT

Developed by Evans et al., SPLINT [48] has been used in a number of experiments over the years. The tool

is an upgrade of the widely successful LCLint [48], and is able to detect memory defects from C code only.

6.4 Experiment Descriptions

This section provides the description of the experiments. The data are provided in the next section.

6.4.1 Experiment 1: Application on Test Systems

SRTA was applied on the six test systems as described in Table 6.3. For each of the six cases, SRTA’s reports

were verified using manually checking every single defect SRTA reported. For every reported defect, it was

categorized in one of the three cases

Reported Under Correct Class (CC): a reported defect belongs to this class if it is a indeed a defect,

and that the class reported by SRTA is the correct class the defect belongs to, according to the Taxonomy

provided in Chapter 3.

Reported Under Incorrect Class (IC): a reported defect belongs to this class if it is a indeed a defect,

but the class reported by SRTA is not the correct class the defect belongs to, according to the Taxonomy

provided in Chapter 3.

Not a Defect (ND): a reported defect is not a defect.

The three tools, UNO, FindBugs and SPLINT were applied on two of the same test systems, Sendmail

and BlueJ. UNO and SPLINT were applied on Sendmail because of their capability to process the C language

only, and because Sendmail is the only system among the test systems to implemented using only C. BlueJ

was processed using FindBugs, as FindBugs can process only Java Code and BlueJ was the only system

among the test systems that was implemented using only Java.

6.4.2 Experiment 2: Application over Benchmark

BugBench is a benchmark developed by Lu et al. [112]. The benchmark contains a collection test systems

written in C and documented defects present in them. The benchmark was used to determine the recall of

SRTA. For every defect SRTA failed to detect, the reason for the failure was investigated by manual inspection

of the source code. The benchmark supports L3, M2, M4 and S1 defects, as shown in Table 6.4.

Unfortunately, no benchmark could be found that encompasses the entire range of defects SRTA is able

to detect. To make a comprehensive assessment of recall, Experiment 3 was used. Due to the limited defect

coverage of the benchmark, it was not used to compare SRTA with the other tools.

138

Table 6.4: Properties of the BugBench Benchmark version 1.1

Defect Count in BugBench Under Different Defect Classes

System LOC C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1. bc 1.06 15k 3
2. cvs 1.11.4 110k 1
3. gzip 1.2.4 7k 1
4. httpd 2.0.48 319k 1
5. man 1.5.h1 11k 1 1
6. mysql 3.23.56 508k 1
7. mysql 4.1.1.α 739k 1
8. ncompress 4.2.4 1.4k 1
9. polymorph 0.4.0 3.7k 2
10. Squid 2.3. 73k 1

LOC = Lines of Code

Figure 6.1: Generation Phase of the Mutation-Injection Framework

6.4.3 Experiment 3: Large-scale Fault-Injection Experiment

To evaluate the recall through the fault-injection experiment, the adaptation of an established Mutation-

Injection Framework by Roy and Cordy [136, 148] for evaluating code clone detectors [137] (in particular,

for evaluating the NiCad clone detector [34, 134]) was used. The framework is composed of two phases,

Generation and Evaluation.

Generation phase of the framework generates the mutants (i.e., versions of the test system with induced

changes), following the process as depicted in Figure 6.1 which are later used for assessment in the evaluation

phase. The defect Taxonomy developed in Chapter 3 was used to develop mutation rules (i.e., Mutation

Operators) by following a similar strategy of a clone taxonomy [135] that were specified using constructs

of the TXL programming language. Three different sets of mutation operators were developed for C, C++

and Java, with minor difference to each other. The set of operators for C is summarized in Table 6.5. The

operators for C++ and Java are provided in Appendix B. The table shows the mutation operators that

apply on single statements. The operators for defects D3, D4 and D5, being interprocedural in nature,

139

Figure 6.2: Evaluation Phase of the Mutation-Injection Framework

require complex structures and are shown separately in Appendix B.

A question may arise on the use of the operator mL6, as Sendmail is a system developed in C and exception

patterns are not valid in C. Among the tools evaluated, L6 pattern was supported by SRTA only. Due to

the complete containment of the C constructs as valid C++ constructs, SRTA processed the C systems using

C++ grammar, and thus this construct becomes valid in context with SRTA. For UNO and SPLINT, the

other two tools that were applied on the same set of mutants, L6 is an out-of-scope defect class.

The un-mutated test system, shown as the ‘Original System’ in Figure 6.1, is mutated by choosing a

random source file from the set of all files of the original system, and then by applying a mutation operator

at a random position of the file. The mutation operator either changes a specific construct of the programming

language to make it faulty, or introduces a new line of code to induce faults. The resultant system after the

application of the mutation operator is called the Mutant. For every mutation operator, the generation

process was repeated 1000 times.

In the Evaluation Phase, the mutants are processed using the analyzer under assessment and the reports

are checked to determine if the analyzer was able to detect the induced defects. Due to the large number

of mutants, it is often impractical to check every detection report manually. For this experiment, a specific

automated procedure was developed. Figure 6.2 shows the procedure for evaluation of SRTA.

The procedure for the evaluation can be described step-by-step as,

(i) SRTA was applied on the un-mutated Sendmail. The report was marked as the Original Report, or R0.

(ii) For every mutant i, 1 ≤ i ≤ 1000, following procedure was performed

(a) SRTA was applied on the mutant and the report was marked as Ri.

140

Table 6.5: Single-mutation Operators Used in this Experiment (developed for C)

Cls mOP Mutation Example Comment

1. C1 mC1
TP < id ><=>< num ><;> x = 10;

MP< id ><=>< num1 ><;> x = 10 + 99999999999999; num1 = a large number

2. C2 mC2
TP < id >< OP >< num > x < 100; OP = {<,>,<=, >=, ! =

,==}

MP< id >< OP >< num > + < num1 > x < 100 + 10; num1 = [1, 10]

3. C3 mC3
TP < type >< id ><=>< num ><;> int x = 0; type =

int|float|double|long

MP< type >< id ><;> int x;

4. L1 mL1
TP < if >< (>< id ><==>< expr ><) > if(id == 10)

MP< if >< (>< id ><=>< expr ><) > if(id = 10)

5. L2 mL2
TP < for >< (> ... < id >< OP1 >< num > ... <) > for(x = 0; x < 100; x+ +) {OP1,OP2} = {<,>},{>

,<},

MP< for >< (> ... < id >< OP2 >< num > ... <) > for(x = 0; x > 100; x+ +) {<=, >=},{>=, <=},{<
,<=}

6. L3 mL3
TP < for >< (> ... < id >< OP1 ><) > for(x = 0; x < 100; x+ +) {OP1,OP2} =

{++,−−},{−−,++}

MP< for >< (> ... < id >< OP2 ><) > for(x = 0; x < 100; x−−)

7. L5 mL5
TP N/A

MP< type >< id >; intx;

8. L6 mL6
TP N/A N/A Inject.

MP< try >< {>< throw >< new >< type ><} ><
catch >< (>< type1 >< id ><) >

try{throw new MyException}
catch(Exception e)

Note 1.

9. L7 mL7
TP < if >< (> ... <) > if(x < 100)

MP< if >< (1) > if(1)

10. M1mM1
TP < id ><=>< malloc >< (>< expr ><) ><;> p = malloc(100);

MP< id ><=>< 0 > p = 0;

11. M2mM2
TP < free >< (>< id ><) ><;> free(p);

MP< free >< (>< id ><) ><;>< free >< (><
id ><) ><;>

free(p); free(p);

12. M3mM3
TP < free >< (>< id ><) ><;> free(p);

MP< / >< / >< free >< (>< id ><) ><;> //free(p);

13. M4mM4
TP < id >< [>< num ><] > p[30];

MP< id >< [>< num >< + >< num1 ><] > p[30+10];

14. D1 mD1
TP < id >< (>< id1 ><,>< id2 > ... <,>< idn ><

) >
function(x, y, z);

MP< id >< (>< id1 ><,>< id1 > ... <,>< id1 ><
) >

function(x, x, x);

15. D2 mD2
TP < id >< (> ... < num > ... <) > function(10, 20, 30);

MP< id >< (> ... < num1 > ... <) > function(10, 0, 30);

16. D3 mD3 Complex Operator. Shown in Appendix B

17. D4 mD4 Complex Operator. Shown in Appendix B

18. D5 mD5 Complex Operator. Shown in Appendix B

Cls = Defect Class mOP = Mutation Operator
TP = Token Pattern MP = Mutation Pattern
<> = Token

Note 1: Although it is not recognized for C, as SRTA processed the C Systems using C++ grammar, it counts as a valid construct.

141

(b) If Ri is the same as R0, SRTA is considered to have missed the defect.

(c) If Ri is the not the same as R0, but SRTA’s report does not mention the defect class in the

mismatching portion, SRTA is considered to have detected the defect in a different category than

it should be reported into.

(d) Otherwise, SRTA is considered to have detected the defect correctly.

Same set of mutants were used with SPLINT and UNO to assess their recall to compare with SRTA.

For FindBugs, another set of mutants were generated using BlueJ as the test system, and both SRTA and

FindBugs were applied on the same set of mutants for the comparison of results.

To compare the reports R0 and Ri, the plain diff utility was used for SRTA. The utility reports a

line-by-line match or mismatch on the source files compared. In case the reports are the same, it is taken

as an indication of SRTA’s failure to detect the defect. In case diff reported a mismatch, the mismatching

report fragment from Ri is checked for the mention of the defect class the mutant was developed for. If the

class is found in this portion, SRTA is considered to have detected the defect correctly, if not, then SRTA is

considered to have detected the defect in an incorrect class.

SRTA provides an added advantage over the other three tools in that, SRTA does not involve a con-

ventional compiler like gcc to build the code. This feature provides SRTA with the capability to process

incomplete code, and relieves it from another problem present in the other systems. In case of multi-file

compilation, the exact compilation order of the files are not usually decidable for gcc. This problem can

cause UNO and SPLINT, when applied on the same subject system more than once, to generate reports that

are same in content, but different in ordering. Although the problem was not observed for FindBugs, no

information was found to guarantee its absence.

As a workaround to this problem, the tools were used to generated plain text reports, which were then

converted to XML using a custom script. The XML report contents were then compared using an evaluation

version of the XML DiffDog by Altova [3].

6.4.4 Experiment 4: Controlled Experiment

SRTA was implemented to balance between available memories. SRTA uses the available primary memory

as much as possible. If it runs out of memory, it moves the data to secondary memory and loads them as

required. The data unit granularities can be as small as the set of tokens from a single file. By design, SRTA

is guaranteed to run as long as the primary and secondary memories of the computer system it is executed

on do not run out together, contrary to most other tools that only rely on the primary memory.

To test the scalability of SRTA, two different execution systems, as described earlier in this chapter, were

used. In each of the systems, five small subject systems were processed. As these systems were only used

to check scalability and practicality, and as SRTA’s processing accuracy does not depend on the size of the

subject system (as was apparent from the precision experiment), the accuracy for these systems were not

142

verified. Default Linux profiling tools time and vmstat were used to log the execution information.

As the target of this exercise was only to verify SRTA’s scalability and resource usage, instead of an

independent software, five collections of SRTA’s own source code (including repetition) were used. To estimate

the least requirement for the software, the smallest possible C++ code was used (that is, the one that contains

a main function and a return statement inside). From SRTA’s Source Code, a collection was formed with 13

source files, containing a total of 3402 source lines excluding comments. Multiple copies of these files were

used to form five small collections that were used to evaluate SRTA’s processing time and memory over two

execution systems. The size for the test systems are shown in Table 6.6.

The reason to use SRTA’s own code in repetitive collections, instead of a set of established software is to

have better control over the number of tokens and the codebase sizes. Instead of the entire code of SRTA,

the 13 files that constitute to the common components utilized by SRTA were used because the code in these

files, being generic in nature, provides greater complexity than the rest of the system.

Table 6.6: System Metrics for Scalability Test

Name Files LOC Tokens Comment

1. Base 1 3 10 Baseline. Almost no processing.
2. TS1 13 3,402 12,062
3. TS2 26 6,804 24,124 2xTS1
4. TS3 65 17,010 60,310 5xTS1
5. TS4 130 34,020 1,200,620 10xTS1
6. TS5 1300 3,40,200 1,20,06,200 100xTS1

6.5 Results and Analysis

This section provide the results and analysis obtained from the four experiment as described in the previous

section. In presenting the data, experiment-wise grouping was not used due to the same aspect being verified

in multiple experiments.

6.5.1 Precision

Table 6.7 shows the results from Experiment 1. As it is apparent from Table 6.7, SRTA performs particularly

well for memory and computation defects, but not so well for logical and data related defects. The reason for

the performance loss in Logical and Data related defects is their dependence on artifacts external to code.

Computation and Memory defects can be completely traced from code, a task SRTA is specifically designed

to do. Analysis of the false positives yielded three major reasons behind SRTA’s failure to detect them.

Worst-case Approximations: Worst-case approximations resulted in a number of false positives in the

processing. In C1 defects, SRTA produced two false positives for each of Firefox, Thunderbird and Linux

Kernel. All six of the false positives included user supplied values, and thus were approximated using the

worst-case estimation which included infeasible states. Same reason was behind one false positive in C2, all

143

Table 6.7: Precision of SRTA in Processing the Test Systems

Test Systems

Firefox Thunderbird Notepad++ Sendmail Linux BlueJ

Class PS PL FP PS PL FP PS PL FP PS PL FP PS PL FP PS PL FP Comment

1. C1 0.67 0.83 0.17 0.73 0.87 0.13 1.00 1.00 0.00 0.75 1.00 0.00 0.75 0.93 0.07 1.00 1.00 0.00

2. C2 0.70 0.80 0.20 0.76 0.82 0.18 - - - 0.50 0.50 0.50 0.86 0.93 0.07 1.00 1.00 0.00

3. C3 1.00 1.00 0.00 0.77 0.82 0.18 0.50 1.00 0.00 0.83 0.83 0.17 0.74 0.84 0.16 0.67 1.00 0.00

4. L1 0.33 0.33 0.67 0.40 0.60 0.40 - - - 0.50 0.75 0.25 0.64 0.79 0.21 0.56 0.67 0.33

5. L2 0.25 0.50 0.50 - - - - - - - - - 0.70 0.80 0.20 1.00 1.00 0.00

6. L3 - - - - - - - - - - - - 0.67 0.83 0.17 1.00 1.00 0.00

7. L5 - - - 0.60 0.60 0.40 0.67 0.67 0.33 0.67 0.67 0.33 0.76 0.76 0.24 0.50 1.00 0.00

8. L6 - - - - - - - - - - - - 0.75 0.75 0.25 1.00 1.00 0.00

9. L7 0.67 0.67 0.33 1.00 1.00 0.00 1.00 1.00 0.00 - - - - - - 0.50 0.75 0.25

10. M1 0.71 0.82 0.18 0.33 0.67 0.33 0.50 1.00 0.00 0.40 0.60 0.40 0.73 0.82 0.18 0.86 0.86 0.14

11. M2 0.67 0.67 0.33 1.00 1.00 0.00 - - - - - - 0.75 0.75 0.25 - - -

12. M3 0.67 0.83 0.17 0.67 0.67 0.33 1.00 1.00 0.00 0.50 1.00 0.00 0.74 0.78 0.22 - - -

13. M4 0.75 0.75 0.25 0.75 0.75 0.25 - - - 0.60 0.80 0.20 0.64 0.71 0.29 0.67 0.83 0.17

14. D1 - - - - - - - - - 0.50 1.00 0.00 0.43 0.57 0.43 0.67 1.00 0.00

15. D2 - - - - - - 0.00 0.00 1.00 0.00 0.00 1.00 0.54 0.92 0.08 0.50 0.50 0.50

16. D3 0.70 0.85 0.15 - - - 1.00 1.00 0.00 0.50 0.50 0.50 0.82 0.91 0.09 0.75 1.00 0.00

17. D4 0.50 0.50 0.50 - - - - - - - - - 0.80 0.80 0.20 - - -

18. D5 - - - - - - 1.00 1.00 0.00 - - - 1.00 1.00 0.00 - - -

PS = Precision (Strict Estimation)

PL = Precision (Lenient Estimation)

FP = False Positive Rate

in L1, all in L2, six in M1, twenty in M3, four in M4, and most in D1-5. Incorporation of simple heuristics

in the solver and in the range tuple inference module can act against this problem.

Insufficient Library Function Models: Three of the false positives in C2 defects were due to function-

dependent conditions used in checks, for which SRTA did not have the model of the functions (as they were

standard library functions, source code was not provided), and therefore created the worst-case approxima-

tions. Same reason created one false positive in L2, eight in L5, one in L7, ten in M1, and seven in M3. This

problem can be resolved if user-defined models of library functions can be provided to SRTA. As SRTA only

deals with range tuples, it is possible to provide library function models by specifying the input and output

ranges. However, this functionality was not implemented for the prototype.

Dataflow Problems: SRTA failed to properly process the cases where one entity is reused multiple

times. In case a variable is declared as a loop index, and used in more than one loops in the same block of

code, SRTA marked it as a defect. This situation occurred for one false positive in L2, two in L3, seven in

M1, two in M2, three in M3, three in M4, two in D1, one in D2, one in D3 and one in D4. Resolution of this

problem requires remodelling of dataflow, which we leave as a future research direction.

Comparing with UNO, FindBugs and SPLINT, the precisions are reported in Table 6.8.

As it can be seen from Table 6.7 and Table 6.8, SRTA outperforms UNO in all directions. The reason

behind it is the same as it was reported by previous research [168, 141]. UNO only can process straightforward

expressions that do not require any inference. SRTA, on the other hand, can process inferred information,

and can consequently, can detect more defects than UNO.

FindBugs is a generally well performing tool that matches bug patterns and is reportedly able to find 300

“patterns” [8]. In case of L1 and L5 defects, FindBugs outperformed SRTA, although the performance was

144

Table 6.8: Precision of UNO, FindBugs and SPLINT Using Direct Experimental Data

Sendmail BlueJ

Tool Language Class PS PL FP PS PL FP Comment

1. UNO C C3 0.75 0.75 0.25

M1 0.00 0.00 1.00

M4 0.25 0.25 0.75

2. FindBugs Java C1 1.00 1.00 0.00

C2 1.00 1.00 0.00

C3 0.67 0.67 0.33

L1 0.71 0.71 0.29

L3 0.67 0.67 0.33

L5 1.00 1.00 0.00

L7 0.67 0.67 0.33

M1 0.80 0.80 0.20

D1 0.50 0.50 0.50

D2 0.33 0.33 0.67

D3 0.75 0.75 0.25

3. SPLINT C M1 0.50 0.50 0.50

M2 - - - None was present

M3 0.50 0.50 0.50

M4 0.38 0.38 0.62

PS = Precision (Strict Estimation)

PL = Precision (Lenient Estimation)

FP = False Positive Rate

close in other defects. The reason can be attributed to FindBug’s specialized treatment of Java, which SRTA

had to give up to become a general tool. Many of the patterns FindBug reported (e.g., dead parameter) are

specific to Java, for which SRTA does not provide specialized treatments.

SPLINT’s performance over Sendmail was not above SRTA. For all categories, SRTA performed well

above SPLINT. The reason for this is SRTA’s incorporation of defect information from multiple phases of

the entity’s life-cycle, which helped to reduce false positive and false negative. This reason was found by

inspecting two of the defects that SRTA detected, but SPLINT missed. For both cases, it was found that

local information did not suffice in identifying the defects, but compared to their immediate conditional block

(i.e., if statement), the defect became apparent.

6.5.2 Recall

The data from SRTA’s application on the benchmark is presented in Table 6.9. Detailed detection counts

are presented in Appendix C.

Table 6.9: SRTA’s Recall Assessment by Application on BugBench

bc cvs gzip man ncompress polymorph squid

ClassRC RL FN RC RL FN RC RL FN RC RL FN RC RL FN RC RL FN RC RL FN Comment

1. L3 - - - - - - - - - 1.00 1.00 0.00 - - - - - - - - -

2. M2 - - - 1.00 1.00 0.00 - - - - - - - - - - - - - - -

3. M4 0.75 1.00 0.00 - - - 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.50 1.00 0.00 1.00 1.00 0.00

Avg 0.75 1.00 0.00 1.00 1.00 0.00 0.50 1.00 0.00 0.50 0.50 0.50 1.00 1.00 0.00 0.50 1.00 0.00 1.00 1.00 0.00

RS = Recall (Strict Estimation)

RL = Recall (Lenient Estimation)

FN = False Negative Rate

145

As can be seen from the table, SRTA provided high recall in all cases except the one defect in man. The

defect was caused by having a buffer overflow in line 979 of the file man.c, where the estimate of a loop exit

condition was set 4 times higher than it should have been in the expression,

“if(end == NULL||i+ 1 == sizeof(tmp section list))”

, which, in a correct version, should have been,

“if(end == NULL||i+ 1 = sizeof(tmp section list)/sizeof(char∗))”

, as specified in BugBench’s descriptions. However, in SRTA’s symbolic execution, the first condition eval-

uated to false only, minimizing the need to evaluate the second condition. This lazy evaluation technique,

introduced to increase the prototype’s performance, was the underlying reason for missing this defect.

The data from the fault-injection experiment is presented in Table 6.10.

Table 6.10: SRTA’s Recall Assessment from the Mutation-Injection Experiment

Sendmail BlueJ

Defect mOP Mutants RS RL FN RS RL FN Comment

1. C1 mC1 1000 0.89 0.89 0.11 0.89 0.90 0.10
2. C2 mC2 1000 0.86 0.91 0.09 0.86 0.87 0.13
3. C3 mC3 1000 0.88 0.88 0.12 0.78 0.79 0.21
4. L1 mL1 1000 0.62 0.73 0.27 0.63 0.64 0.36
5. L2 mL2 1000 0.77 0.88 0.12 0.81 0.85 0.15
6. L3 mL3 1000 0.71 0.79 0.21 0.73 0.75 0.25
7. L5 mL5 1000 0.73 0.85 0.15 0.69 0.71 0.29
8. L6 mL6 1000 0.67 0.85 0.15 0.75 0.77 0.23
9. L7 mL7 1000 0.79 0.96 0.04 0.79 0.80 0.20
10. M1 mM1 1000 0.82 0.88 0.12 0.90 0.90 0.10
11. M2 mM2 1000 0.79 0.88 0.12 - - - Not Defined for Java.
12. M3 mM3 1000 0.84 0.92 0.08 - - - Not Defined for Java.
13. M4 mM4 1000 0.82 0.90 0.10 0.89 0.93 0.07
14. D1 mD1 1000 0.71 0.81 0.19 0.73 0.74 0.26
15. D2 mD2 1000 0.75 0.85 0.15 0.67 0.68 0.32
16. D3 mD3 1000 0.62 0.78 0.22 0.60 0.70 0.30
17. D4 mD4 1000 0.70 0.82 0.18 0.75 0.91 0.09
18. D5 mD5 1000 0.69 0.83 0.17 0.59 0.70 0.30

Average 1000 0.76 0.86 0.14 0.78 0.81 0.19

mOP = Mutation Operator
RS = Recall (Strict Estimation)
RL = Recall (Lenient Estimation)
FN = False Negative Rate

On an average, SRTA detected 86% of the defects injected in Sendmail, and correctly interpreted 76%

included in those 86%. For BlueJ, the detection performance is 81%, with correct interpretation of 78%. This

recall performance is considerably high for a unified detection tool and is better than some of the specialized

tools as well (as described in later sections).

As a general trend, SRTA showed a better recall performance in the Memory Defects (M1-M4) and on

the Computation Defects (C1-C3). For both, the detection accuracies are higher, with lower misclassification

problems. The reason can be traced to the structure of these defects that make the anomaly apparent.

All of the computation defects are intra-procedural, and therefore do not require complex reasoning over

procedural boundaries. The memory defects are sometimes inter-procedural, but are always local to the

place of occurrence. Logical Defects, on the other hand, require inter-procedural analysis, often relying

heavily on the context and specific execution path. In most cases, Logical Defects require a combination of

146

the context and path for their determination, giving rise to confusion in the analysis.

For the defects under the class C1, the mutation rule was a certain one to introduce a defect. For Sendmail,

SRTA did not mis-classify any of the defects from this category, but failed to capture 11% of the total injected

values. For BlueJ, SRTA mis-classified 1% of injected defects, and missed 10%. Checking ten random missed

defects confirmed all of them to be in function declarations in Sendmail, where the assignment of the value

only becomes a default value for the function parameter. If the function is not called with this value, the

context will override the defect into a safe statement, which happened for all the checked cases for these

defects. The mis-classified defects in BlueJ were all classified as Invalid Memory References (M1). Manual

verification of the 12 missed defects found all mutations to be implemented in variables that were used as

array indices, thus actually causing the Invalid Memory References.

For the defects under the class C2, SRTA was able to find 91% of the defects in Sendmail, and correctly

identified 86% of the total defects with the rest 9% as false negatives. For Bluej the detection performance

was 87%, identification 86% and false negatives 13%. However, these false negative rates are not guaranteed

as the mutation rule may introduce mutations that do not result into a defect. Ten random samples of the

missed defect instances were checked, of which three were found to be non-defects (two in BlueJ and one in

Sendmail). For the other seven, SRTA missed the defects due to the extra complex nature of the loop control

structures that contained the defects. The structures involved composite entities and / or values from inside

the loop’s body that skipped detection.

For the defects under the class C3, like those under the class C1, SRTA did not mis-classify any defect

for Sendmail, detected 88% and missed 12%. For BlueJ detection performance was 79%, with 78% identified

correctly and 21% false negatives. However, the mutation rule was not certain to introduce a defect. There-

fore, the missed 12% and 21% can not be considered as the actual false negative rate. Ten random defects

were checked from among the missed defect instances, and it was found that for all instances, although the

entities were initialized (which were changed to ‘uninitialized’ by the mutation operator), the uninitialized

entities were not used in any of the computations, rendering the defective mutations into safe ones.

For the defects under the class L1, SRTA had a relatively high false negative rate of 27% for Sendmail and

36% in BlueJ. However, this defect class is another where the mutation operator is guaranteed to produce a

defect. A random check of ten missed defects verified that the mutation operator changed the operators in

complex arithmetic expressions involving true/false values, which were set to tautologies and thus skipped

detection.

For the defects of the class L2, SRTA had a false negative rate of 12% for Sendmail and 15% for BlueJ.

However, the mutation operator was not certain to inject a fault in this case. The mutation operator for this

particular defect changes an operator with another, creating an improper validation statement. Of the ten

randomly selected defect instances from among the ones SRTA failed to detect, two were not defects despite

the change in operators. For the others, the operators were replaced in complex comparison operations that

did not register as anomalies for SRTA.

147

For the defects of the class L3, SRTA’s false negative rate was 21% for Sendmail and 25% for BlueJ, but

the mutation operator was not guaranteed to insert a fault. Of the ten randomly chosen defects from the

ones SRTA failed to detect, four were not defects, for the others, SRTA failed to detect the defects due to

the ambiguity used in the precedence of the operators.

For the defects of the class L5, SRTA had a 15% false negative rate for Sendmail and 29% in BlueJ. Of

the ten randomly chosen defects checked from here, eight were found to be defined later in the program and

therefore were not defects. The other two SRTA missed because of their insertion in wrong places. Both of

these two cases were errors to stop building the system. SRTA does not involve a compiler to be able to

parse incomplete code, and thus was not able to find these cases.

For the defects of the class L6, SRTA’s false negative rate was 15% for Sendmail and 23% for BlueJ.

Verification with the 10 randomly sampled defects pointed out the cause for missing the defects to be the

possibility of automatic conversion of the exception classes which rendered them improper for classification

as defects. This particular incident was more prominent in BlueJ.

For the defects of the class L7, false negative rate was 4% only for Sendmail, but 20% for BlueJ. Of the

40 defects that SRTA failed to classify for Sendmail were due to the involvement of outer-nested conditions

that rendered the inside ones improper. In case of BlueJ, ten randomly verified defects identified three of

them to be from the same loop nesting conditions, and the rest due to the use of user-specified variables.

For the defects belonging to the M1 class, false negative rate was 12% for Sendmail and 10% for BlueJ.

An analysis of the random sampled 10 defects revealed that for four of them, there was no defect as the

values, although were initialized at the beginning which the mutant changed, was re-initialized through a

validation statement and thus nullified the defect.

For the defects belonging to the M2 class, with a false negative rate of 12% for Sendmail, SRTA failed to

detect all of the defects that were checked, primarily due to the multiple branching deallocation statements.

This particular defect class is not valid for Java, which involves automatic garbage collection, and therefore

this particular set of mutation was not performed for BlueJ.

For the defects under the class M3, with a false negative rate of 8%, all of the randomly checked ten

missed defects were actually defects. SRTA missed the trivial memory leaks due to their occurrence in very

complex code structures (one with a four-level nesting). This defect class, also, is not valid for Java, and was

omitted for BlueJ.

For the defects under the class M4, with a false negative rate of 10% for Sendmail and 7% for BlueJ, none

of the ten randomly checked defects were actually defects. The buffer size for these cases were large enough

to accommodate the increased access induced by the mutant.

For the defects under the class D1, the false negative rate was 19% for Sendmail and 26% for BlueJ. Of

the ten randomly checked defects it was found that nine of the defects were not actually defects as the data

provided to the functions were valid. The last one had an implicit type casting, which SRTA missed.

For the defects of the class D2, none of the ten random sampled missed defects were found to be defects.

148

The mutant was not guaranteed to include a defect in this case.

For the defects of the class D3, with a false negative rate of 22% for Sendmail and 30% for BlueJ, the

ten randomly checked missed defects were due to three different causes. First, three of the mutations were

reverted by the later code constructs. Second, two of the mutations did not induce defects because the calling

context of the function validated the values and the rest were due to not using all the function parameters.

For the defects belonging to class D4, with an 18% false negative for Sendmail and 9% for BlueJ, the ten

randomly verified missed defects were found to be actual defects, which SRTA missed due to the composite

entities involved.

The the defects belonging to the class D5, with 17% false negative rate for Sendmail and a high 30%

for BlueJ, the ten randomly verified defects were found to be actual defects. For BlueJ, the defects avoided

detection due to the static declaration context, which made their values reset right after the mutation.

The same experiment, repeated on the three other tools, resulted in the data provided in Table 6.11

Table 6.11: Recall of UNO, FindBugs and SPLINT Using the Mutation-Injection Experiment

Sendmail BlueJ

Tool System Lang. LOC Class mOP Count RS RL FN RS RL FN Comment

1. UNO Sendmail-8.12.11 C 102k C3 mC3 1000 0.66 0.66 0.34

M1 mM1 1000 0.43 0.43 0.37

M4 mM4 1000 0.00 0.00 1.00

2. FindBugs BlueJ-3.0.9 Java 86k C1 mC1 1000 0.90 0.90 0.10

C2 mC2 1000 0.87 0.87 0.13

C3 mC3 1000 0.79 0.79 0.21

L1 mL1 1000 0.68 0.68 0.32

L3 mL3 1000 0.70 0.70 0.30

L5 mL5 1000 0.70 0.70 0.30

L7 mL7 1000 0.68 0.68 0.32

M1 mM1 1000 0.88 0.88 0.12

D1 mD1 1000 0.65 0.65 0.35

D2 mD2 1000 0.79 0.79 0.21

D3 mD3 1000 0.77 0.77 0.23

3. SPLINT Sendmail-8.12.11 C 102k M1 mM1 1000 0.61 0.61 0.39

M2 mM2 1000 0.57 0.57 0.43

M3 mM3 1000 0.60 0.60 0.40

M4 mM4 1000 0.51 0.51 0.49

RS = Recall (Strict Estimation)

RL = Recall (Lenient Estimation)

FN = False Negative Rate

As it can be seen from the table, despite missing a number of defects in the experiment, SRTA’s perfor-

mance is not behind the other three tools in any of the cases. SRTA outperformed UNO and SPLINT in

almost all cases, and performed either above or equal to findbugs in most cases.

6.5.3 Comparison with Other Tools

This section describes SRTA’s comparison with other tools. The evaluation was carried out in two phases.

First, SRTA was compared against the three tools mentioned earlier using experimental data. Second, the

data obtained from the experiments were compared against the data reported in literature for seven tools,

five of which were not used in the direct comparison.

149

Comparison Using Data Obtained from Experiment

The results of the direct comparison, using all defect classes described in the Taxonomy in Chapter 3, are

presented in Table 6.12. In the table, as SRTA was involved in two Mutation-Injection experiments, the data

was used from two different tables. If, under a defect class, a direct comparison was made with other tools,

the average of the direct comparison data was used for SRTA. In absence of such comparison, the data from

Table 6.7 and Table 6.10 was used. For the other three tools, the precision and recall were taken from Tables

6.8 and 6.11.

In Table 6.12, it can be observed that SRTA clearly covers more defect classes than the other three

tools. Compared to UNO’s support to three classes under two groups, FindBug’s 11 defect classes under

three groups, and SPLINT’s four under one group, SRTA supports 18 defect classes in three groups, with

individual precision and recall as good as, if not better, than the other three tools in different classes. Only

FindBugs performed better than SRTA in both precision and recall for the L1 defect class, in addition to

having slightly better precision in M1 and better recall in D2. The defect classes L4, L8, S1 and S2 were

not supported by any of the tools. In case of SRTA it was due to the requirement of design involvement for

L4 and L8, and the infeasibility of detecting S1 and S2 using static analysis. Classes L6, D4 and D5 were

covered by SRTA alone. Thus, in comparison to the three other tools, SRTA is found to be covering more

defect classes, with precision and recall higher than others in most cases, and close to the other tools in the

few other cases.

To provide an additional view on the results, we have presented the data from Table 6.12 using an

ROC-type plot as used by Zitser et al. [168]. The ROC-type plots, abbreviated from Receiver Operating

Characteristics plots, are borrowed from wireless transmission analysis where they are used frequently to

compare receiver peroformances. Following the procedure of Zitser et al. [168], we identified the Probability

of Detection, P(d), and the Probability of False Alarms, P(f), as the following:

P (d) =
DD

N
(6.9)

where,

DD = Defects detected correctly.

N = Total number of defects.

P (d) =
ND

N
(6.10)

ND = Detection of non-defects as defects.

N = Total number of defects.

150

Table 6.12: Summary of Experimental Comparison of SRTA with UNO, SPLINT and FindBugs

SRTA UNO FindBugs SPLINT

Class Precision* Recall* Precision Recall Precision Recall Precision Recall Comment

1. C1 0.94 0.93 - - 1.00 0.90 - -

2. C2 0.81 0.89 - - 1.00 0.87 - -

3. C3 0.92 0.84 0.75 0.66 0.67 0.79 - -

C 0.89 0.89 0.75 0.66 0.89 0.85 - -

4. L1 0.63 0.69 - - 0.71 0.68 - -

5. L2 0.77 0.87 - - - - - -

6. L3 0.92 0.77 - - 0.67 0.70 - -

7. L4 - - - - - - - - Not supported

8. L5 0.74 0.81 - - 1.00 0.70 - -

9. L6 0.88 0.81 - - - - - -

10. L7 0.86 0.88 0.67 0.68 - -

11. L8 - - - - - - - - Not supported

L 0.80 0.81 - - 0.79 0.69 - -

12. M1 0.80 0.89 0.00 0.43 0.80 0.88 0.50 0.61

13. M2 0.81 0.88 - - - - / 0.57 Note 1

14. M3 0.86 0.92 - - - - 0.50 0.60

15. M4 0.77 0.92 0.25 0.00 - - 0.38 0.51

M 0.81 0.90 0.13 0.22 0.8 0.88 0.46 0.57

16. D1 0.86 0.78 - - 0.50 0.65 - -

17. D2 0.36 0.77 - - 0.33 0.79 - -

18. D3 0.85 0.74 - - 0.75 0.77 - -

19. D4 0.65 0.87 - - - - - -

20. D5 1.00 0.77 - - - - - -

D 0.74 0.79 - - 0.53 0.74 - -

21. S1 - - - - - - - - Not supported

22. S2 - - - - - - - - Not supported

S - - - - - - - - Not supported

Average (over C, L, M, and D) 0.81 0.85 0.43 0.44 0.75 0.79 0.46 0.57

*Lenient variant used

/ = Supported but data is not available

- = Not Supported

Note 1: Neither SPLINT nor SRTA detected any defect of class M2 in Sendmail.

As the same systems were used in both the precision and recall measurements, and the recall measurement

systems only had one injected fault per system (repeated 1000 times), it can be assumed that the false

positives were the same as they were for the precision assessment. In other words, although for the mutation

experiment, we generated 1000 different variations of the same system with one defect injected to each,

this approach was adopted only to facilitate accurate comparison. From a defect detector’s point-of-view,

injecting one fault in each of 1000 identical systems and injecting 1000 faults in one system have the same

consequences.

Figure 6.3 shows the results presented in Table 6.12 in the ROC-type plot. SRTA’s instance was marked

as SRTALL to indicate that the Lenient Variant of precision and Recall were used in this comparison. The

horizontal axis shows the probability of false alarms, while the vertical shows the probability of detection.

The diagonal line represents the probabilities where P(d) = P(f), signifying the performance of a purely

random detection procedure. To be considered as a tool with reasonable performance, the performance of

the tool has to be significantly above this random guessing line. To compute the significance, we have used

151

Figure 6.3: ROC-type Plot to Compare SRTA, UNO, FindBugs and SPLINT

the simple variance calculation, again following Zitser et al. [168]. The formula computes,

σ2 =
p(d)(1− p(d))

N
(6.11)

where,

σ2 = The variance in estimation.

N = Total number of defects existing in the system.

The figure shows the significant distance using a ±σ error bar shown above and below the random guess

line. The error bars are small in expanse due to the large sample set involved. The representation shows, that

SPLINT, under our experiments, performed below the random guess line, and therefore is not considered

a tool with significant performance. Same fact is observed for UNO. FindBugs and SRTA both perform

significantly well above the line, with SRTA showing slightly better performance than FindBugs in both

precision (as indicated by low false alarm rates) and recall (as indicated by high probability of detection).

Comparison Using Data from Literature

Table 6.13 shows the precision and recall data on the tools selected, along with their sources. In case a

tool’s precision or recall was reported by more than one sources, an average was taken into consideration.

152

Table 6.13: Comparison of SRTA’s Precision with Other Tools Using Data from Literature

Tool/Author Precision Recall Source Comment

1. SRTASS 0.65 0.76 This Experiment Strict Precision and Recall

2. SRTASL 0.65 0.85 This Experiment Strict Precision

3. SRTALS 0.81 0.76 This Experiment Strict Recall

4. SRTALL 0.81 0.85 This Experiment

5. ARCHER 0.56 0.01 [163, 168]

6. SPLINT 0.48 0.52 [50, 103, 168]

7. Marple 0.71 0.95 [97]

8. UNO 0.43 0.12 [103, 29, 168]

9. Parfait 1.00 0.75 [103]

10. Polyspace 0.67 0.94 [29, 168]

11. Coverity 0.80 0.48 [29]

For SRTA, four different precision-recall sets were considered, using the four combinations of the lenient and

strict variants of the precision and recall measurements. None of these tools, except Coverity, considers so

many defect classes as SRTA. Most of them focuses on memory defects only. Comparing SRTA’s performance

in only the common defect classes with every tool would have guaranteed a better stand for SRTA, owing

to the fact that the lower performance counts for SRTA comes from the logical defects, which none of these

tools even consider. Still, instead of the common defects, the entire SRTA’s performance was chosen to be

compared with the entire performance of these tools to estimate the benefit of the technique as a whole.

The findings from Table 6.13 are presented in Figure 6.4 in another ROC-type plot. Although this

representation differs with the previous ROC plot in one point - unlike the previous plot, a test of statistical

significance could not be incorporated in this particular plot due to the secondary nature of the data, as

the sample size could not be determined. Four versions of SRTA were presented in the table using the four

variants of the precision and recall (over strict and lenient).

Intuitively, it can be said that the ideal tool should have the position (0.0, 1.0), showing zero false positives

and detecting all defects that are present. Of the tools that have been compared, ARCHER and UNO clearly

had performance below the random guess lines. SPLINT’s characteristics was on the random guess line.

SRTA, Polyspace, Coverity, Parfait and Marple performed well above the random guess line. With

Polyspace and Marple performing better than SRTA in terms of Recall. A closer look at Marple’s evaluation

[96] revealed its individual precision and recall measurement for different classes as, C1 = (0.80, 0.97), M1

= (0.8, 0.8), M3 = (0.5, 1.0) M4 = (0.87, 1.0), as it was reported by Le and Soffa [96]. This evaluation

was obtained over Zitser’s Benchmark [168] only. In comparison, assessing over a large-scale automated fault

injection framework, on the BugBench Benchmark and on six industry applications, SRTA’s corresponding

precision and recall are found as C1 = (0.94, 0.93), M1 = (0.80, 0.89), M3 = (0.86, 0.92), M4 = (0.77, 0.92),

as presented in earlier sections. The specific performance of SRTA was close with Marple in the specific

common defect classes, although SRTA’s evaluation was performed in a much larger scale. SRTA’s average

precision and recall were lowered by the performance in Logical and Data related defects, which Marple does

not consider. This argument adds to SRTA’s favour as an accurate tool.

For the tool Polyspace, little information is available on the detailed internal structure except that it is

153

Figure 6.4: ROC-type Plot for Tool Performance Comparison

based on abstract interpretation and can detect C1, C3 and M4 defects [168, 29]. The average precision and

recall, as reported by two studies [168, 29], were (0.75, 0.80), while against the same three defect classes,

SRTA’s average precision and recall are measured as (0.81, 0.85), almost at the same point as Polyspace,

with a better recall. Like Marple, Polyspace does not consider the defect classes that lowered the average

precision and recall of SRTA (i.e., Logic and Data related defects).

6.5.4 Practicality

Figure 6.5 shows the measures obtained from the controlled experiment. The graphs PMn, SMn, PMnC and

Tn expresses the Primary Memory, Secondary Memory, Primary Memory Limit and Time, respectively, for

System n. The scale in the vertical axis shows the memory units as multiples of 50MB and Time units as

multiples of five minutes.

As apparent from the observations of the graphs, the system memory consumption, for both System 1

and System 2, are increasing with the increase of software size (although not in a linear trend). But as soon

as the primary memory reaches the limiting capacity, the consumption on secondary memory increases more

dramatically. This same pattern is displayed on both Systems. For TS3, System 1 reaches the limit but

System 2 does not. As expected, System 1’s secondary memory consumption graph matches the increasing

154

Figure 6.5: Different Performance Measures for Scalability and Practicality Assessment

requirement for secondary memory, while System 2’s graph continues its previous gradual increment.

The graphs show that SRTA can balance itself on limiting resources, provided the secondary backup is

sufficient. Also, as the processing power of System 1 is more limiting than System 2, the timing graph shows

a more steep trend of increment. This observation can be substantiated into the conclusion that SRTA does

not stop working for low-capacity systems, but requires more memory and time. On the other hand, using

more processing power shall allow SRTA to run in less memory requirement.

6.6 Evaluation Outcome

Through direct experiment and the experiment involving the Mutation-Injection Framework, SRTA was

found to exhibit high precision and recall, proving the point on its accuracy. In comparison with three other

tools SRTA was found to be performing better than the others in most cases both in terms of precision and

recall, and close to the others in the few exceptions. A controlled experiment verified SRTA’s scalability

and practicality, as well as all of the experiments establishing the argument in favour of its generality. If

the outcome of all the experiments described in this chapter are combined together, the case for SRTA is

established in that, it is highly accurate, scalable to systems of varying sizes, practical to perform within

reasonably strict environmental constraints and general to detect multiple dissimilar classes of defects over

widely varied test systems (by programming language, purpose, structure and complexity).

155

6.7 Answering the Research Questions

This section attempts to answer the research questions mentioned in Chapter 1. Answers to two research

questions (RQ1 and RQ2), as provided in the previous chapter, are reinforced using experimental evidence

in this section. In addition, this section answers two more research questions (RQ3 and RQ4).

6.7.1 RQ1: Detecting Multiple Dissimilar Classes of Defects

In answering the question “Can a specific abstraction provide sufficient means for detecting multiple dissimilar

classes of defects?”, this chapter extends the statement provided by Chapter 5. Of the four experiments

conducted in this research, three concerned on multiple defect classes.

As it is presented in Section 6.5, SRTA was able to detect 18 out of 22 classes of defects belonging to

different similarity groups. The implementation worked entirely on the abstraction created by SRTA using

the range tuples. The range tuples, and the four aspects of detection as were identifier by the previous

chapter, was able to result into these multiple detections.

In summary, the experiments conducted proves three points - (a) SRTA is able to detect multiple dissimilar

classes of defects, (b) the detection is carried out over a specific abstraction, instead of the source code, as

outlined in Chapter 5, and (c) dissimilar defects can be represented by the same abstraction, proved by

SRTA’s ability to detect them. When combined, the three points confirms the claim that it is possible to

represent multiple dissimilar classes of defects over specific abstractions.

6.7.2 RQ2: Scope of Detection

The second research question, provided the first research question is answered affirmative, was stated as

“To what length can such a technique go in terms of dissimilar classes of defects?”. This chaper provides

the answer to this question by presenting the specific defect detection data. Of the 18 out of 22 defect

classes SRTA detected, 13 defect classes were covered fully, as the defects belonging to these 13 classes were

completely contained in the source code. The five other classes contained defects that, in some cases, are

contained entirely in the source code but require architectural and design information in other cases and thus

were partially covered. For the four classes of defects SRTA did not cover, two required runtime information

and two required exclusive design information.

In summary, the experimental results described in this chapter confirms two points - (a) SRTA can detect

the defects that are completely contained in source code in full, and (b) SRTA can sometimes detect defects

that are not completely contained in source code, but whose footprint is prominent in source code. These

two points collectively prove the hypothesis established in Chapter 5 that SRTA is able to detect defects that

are contained in souce code.

156

6.7.3 RQ3: Accuracy and Performance

The third research question, provided the first research question is answered affirmative, was stated as,

“What is the general effectiveness of such a technique in terms of accuracy and performance?”. To answer

this question, extensive experiments were conducted. The outcomes of the experiments are reported in this

chapter.

Three of the four experiments reported the accuracy of detection in using different input set that contained

six real world systems, 34000 mutated systems and one benchmark. Of all the detections, average precision

was found to be 0.81 with the five-number statistical summary1 for average precisions per defect class located

in [0.36, 0.77, 0.83, 0.88, 1.00]. Average recall was found to be 0.85 with the five-number statistical summary

for average recall per defect class located in [0.64, 0.77, 0.85, 0.89, 0.96]. The five-number summary expresses

two qualities of the dataset. First, the more even are the distances among the the five components, the more

evenly distributed are the data. Conversely, the less the distance among Q1, Q2 and Q3 are from the even

value, the more the data are clustered around a region. Second, if the data is clustered, the location of the

Q1, Q2 and Q3 determines the region of clustering. From the results presented in this section, it can be

concluded that the data is clustered, and the clustering is towards the higer end of the spectrum.

To answer the research question, two points need to be considered from the data - (a) average precision

and recall are high, as proven by the direct average and the five-point summary and (b) most of the data

lie in the high end of the spectrum of all precisions and recalls measured - with 67% values over median for

precision and 66% for recall. Both points considered together states that SRTA is a generally high performing

tool for different defect classes, answering the first part of the research question.

To measure the performance, a controlled experiment was conducted. The performance was found to be,

(a) almost linerarly increasing with the increase of code size, and (b) not limited by the primary memory of the

computer SRTA runs on. The outcome of the controlled experiment confirmed SRTA to be a well performing

tool under different environmental and input constraints, answering the second part of the research question.

6.7.4 RQ4: Effect of System Complexity

The fourth research question was stated as, provided a technique utilizing a specific abstraction to detect

multiple dissimilar classes of defect exists, “What is the effect of system complexity on the applicability of

such a Technique?”. Relevant data to answer this question comes from all four of the experiments. SRTA

was able to process systems with varying sizes - from small IDEs to the massive Linux Kernel. If the recall

for specific systems are considered, SRTA was tested with 2000 mutated variants of two systems (Sendmail

and BlueJ) that came from different domains (mailing demon and IDE), were implemented under different

1The five-number summary for a dataset D = d1, d2, d3, ...dn is defined as the five-number set [Limitmin, Q1, Q2, Q3,
Limitmax]. Limitmin and Limitmax are the minimum and maximum values in the dataset. Q1 is the value that segregates the
dataset in two portions, with 25% of the data at or below it. Q2 splits the dataset into half and Q3 splits the dataset with 75%
values below it. This particular number-collection is used to measure the bias in a dataset.

157

languages (C and Java), and used different technologies (Sendmail is a system demon, BlueJ is an application

software). The different coefficients of variation of recall over these two systems using different defect classes

were found to be in the range 0.05 to 0.07. Although the experiment to measure precision was not so

extensive, it included six systems and the coefficient of variation of precision over the six systems for different

defect classes were found to be in the range 0.08 to 0.21.

To answer the question, the specific point that needs to be considered is, the coefficients of variation are

smaller than one and are closer to zero in the range [0, 1]. This observation signifies that the precision and

recall did not vary widely over different system types for the same defect class. Therefore, it can be concluded

that SRTA is able to retain its processing accuracy over varying system complexities.

6.8 Summary

This chapter provides the data and analyses from the experiments conducted to evaluate SRTA. The chapter

started by establishing the mathematical framework used for evaluation and then described the four exper-

iments conducted to evaluate SRTA. In the next section, the chapter described the evaluation outcome on

the four perspectives - Accuracy, Scalability, Generality and Practicality. The analyses showed that SRTA

is able to keep an average precision 0.81 and an average recall of 0.85, both high in comparison with the

state-of-the-art, while generally applicable to multiple dissimilar defect classes, practical to work without

special requirements or overhead and scalable to systems of arbitrary complexity. The data was provided in

in this chapter in only the most relevant format required for establishing the points, the details are provided

in Appendix C and B. The next chapter concludes the dissertation.

158

Chapter 7

Conclusion

This chapter contains the conclusive remarks to the dissertation, continuing the discussion from Chapters

3, 5, and 6. The chapter begins by describing the anticipated impacts of the research (Section 7.1), continues

on describing the threats to validity of this research (Section 7.2) and finally describes the future work

(Section 7.3)

7.1 Impact

This research demonstrated the possibility of using symbolic analysis, path summarization and state-space

modelling through range analysis in the detection of multiple dissimilar classes of defects. The expectations

from this research is to improve the trade of software maintenance, especially, the task of quality assurance.

Subsequent sections specify the detailed outcome and expectations.

7.1.1 The Defect Model

Using symbolic analysis, path summaries and range analysis, a new symbolic model was built that captures

the source code artifacts and their interactions. The model uses a three-tuple of symbolic range values derived

from the state-space of the software. The 3-tuple signifies the three different phases of an entity’s life cycle.

The model provides a few key benefits,

(i) It is scalable to large systems, as it was demonstrated through the experiments in Chapter 6. The

model successfully processed systems as large as the Linux Kernel.

(ii) The model is able to process incomplete code, as it is apparent from its construction. The model uses

abstractions over source code that can ignore ambiguity at the code level. Two supportive cases were

discovered while verifying false negatives in Chapter 6

(iii) It has Low False Positives, as it was demonstrated in the experiments described in Chapter 6

(iv) It has Low False Negatives, as it was demonstrated in the experiments described in Chapter 6

(v) It is Practical, as it was evident from the controlled experiment described in Chapter 6

159

(vi) It is General, as it was demonstrated by processing software systems implemented in three different

languages (C, C++ and Java), and by comparison with other tools.

7.1.2 Multiple Defect Detection

Analysis techniques were developed to analyze the defect model to find anomalies as indications of defects.

As the model is a simplified summarized representation, analysis techniques were free from the complexities

associated with such detection, and thus became more manageable for the users.

The collective system of the model and the analysis techniques, specified under the name SRTA, was

found to be accurate and scalable. A prototype tool under the same name was implemented and used in

experiments.

7.1.3 FlexTax

As a prerequisite to this research, FlexTax was developed as a User-Driven Automated Framework for Defect

Classification. FlexTax is aimed at balancing the human supervision and automated approach in taxonomy

generation and is specifically designed to address the problems of inflexibility and non-extensibility in tax-

onomies. FlexTax utilizes the concepts from feature representation and comparison, and takes advantage of

the accuracy of objective generation and mapping techniques, while providing for the flexibilities of human

judgement through the user-driven nature.

Through a case study that involved more than 25000 real world defects, FlexTax was found to be capable

of developing defect taxonomies that are complete, orthogonal, non-redundant, flexible and extensible. Ad-

ditionally, FlexTax is a practical approach, as proven by the large number of defects it was able to map in a

practically feasible time.

FlexTax can serve in the industry as it is and reduce maintenance overhead associated with defect mapping

and taxonomy generation. FlexTax shifts the effort intensive tasks from the user to the automated system,

allowing the mapping and / or remapping of a large number of defects in a fast and effective manner that

can have a direct impact on the maintenance activities associated with re-creation of taxonomies.

7.1.4 The Defect Taxonomy

FlexTax was applied on the more than 25000 real world defect data as collected from CVE. The result was

a defect taxonomy comprising of 27 defect classes organized in two hierarchical layers.

The taxonomy generated by FlexTax is generic in a sense that it was developed from the defect data

coming from multiple projects that follow multiple languages, development paradigms, styles and structure.

The taxonomy generated from this diverse set of defects, under the same formal framework as FlexTax, is

thus applicable to general software defect scenarios.

The taxonomy can be readily adopted, adapted or extended as needed for the industry. This taxonomy is

160

able to have a direct impact on reducing maintenance overhead as a ready solution to many software defect

classification scenarios.

7.1.5 Defect Similarity

Using the underlying principles of FlexTax that rely on feature representation, different feature comparison

metrics were compared to measure defect similarity. Although performed in the most basic form, these

similarity metrics were able to provide different similarity measures towards the real-world defects. These

similarity metrics can be applied as they are, and pave a direction for further development in the field.

7.2 Threats to Validity

• SRTA performs well above most tools, but there are a few specialized detection tools (as presented

in Chapter 6) that outperform SRTA. This point needs to be considered from three aspects. First,

although SRTA performs lower than some tools in specific cases, the general accuracy of SRTA is not

low. Second, in the specific performance points where SRTA performed not as good as some other

tools, SRTA did not perform significantly below the other tools. In fact, the difference was small for

all cases. And Third, SRTA provides multiple defect detection capabilities which are not implemented

by the other tools SRTA was compared against.

• A question may arise about the necessity of SRTA, where there are multiple specialized tools available

for the task. If defect detection in software maintenance is carried out by a collection of specialized tools,

two problems arise. First, the acquisition and maintenance of the multiple tools require maintenance

overhead, and second, as different tools are different in their input specifications and requirements,

they claim specialized human effort for their application. SRTA resolves both problems, as it covers

the same defect types using one simple model.

• Another concern about the working principle of SRTA can be raised on the consideration of three

different phases of an entity’s life-cycle. Although it provides a better accuracy, as it was demonstrated

in Chapter 6, there can be other intermediate or transient phases of an entity’s life cycle that can have

equally important effect on the detection. We recognize this question, and put the investigation on the

topic as a future research direction.

• About the Taxonomy generated by FlexTax, which was the basis for the development for SRTA, a

question may arise on the future processing capabilities of SRTA if the taxonomy is extended. In

reality, SRTA’s specification mechanism is soft-coded. As long as a new defect can be represented

through static range analysis, SRTA can be configured to detect the defect.

161

7.3 Future Work

It is expected that the research presented in this dissertation shall be able to reduce maintenance overhead

associated with the defect detection activity. Despite its rate of high accuracy, scalability, practicality and

generality, there are multiple scopes for improvement for this research.

• The three-tuple used for SRTA has the capability to extend to multiple, but not all, defect types. The

three-tuple signifies the three important phases of an entity’s life cycle. The impact of other non-

major phases of the entity’s life cycle in its probability of being a defect is established, but extensive

experiments on this topic can also be conducted. Research needs to be conducted into finding further

extensions to the tuple, and to find whether additional phases, or especially, transition phases, can have

an impact on the defects.

• SRTA, although general in specifications to process code from almost any statically-typed languages,

was tested only on systems written in C++ and Java, further experiments can be performed to evaluate

SRTA on systems developed using other industry adopted languages.

• This research specifies a defect taxonomy and evaluates the taxonomy against multiple procedures. The

taxonomy, although is readily applicable to real-world systems, can be used to analyze defect impacts

and distribution.

• This study provides introductory treatment to defect similarity assessment. The concept of similarity,

as outlined in this dissertation, can be extended to large scale studies on defect similarity.

• The symbolic model developed and used in this research can be modified into detecting a challenging

types of code clones, namely, the semantic clones [137]. A specific future plan for this research is to

extend the model into developing a semantic clone detector, in collaboration with the state-of-the-art

clone detectors like NiCad and SimCad [152, 151].

7.4 Additional Information

The SRTA prototype, the FlexTax prototype, data from the experiments, the specifications to use the pro-

totypes, and other supplementary materials to this dissertation are provided through the website of the

Software Research Lab of the University of Saskatchewan [11].

7.5 Summary

This chapter describes the expected impact, threats to validity and future works regarding the principles

and techniques outlined in this dissertation in Chapters 3, 5 and 6. The chapter started with a statement

162

of expected impact of FlexTax, SRTA, the Taxonomy and Defect Similarity in the current state-of-the-art.

The chapter then described the specific problems encountered on the research, and the approach to their

solution. Next, the chapter provided a summary of future works planned as continuation of this research.

This Chapter concludes this dissertation.

163

References

[1] Albayrak, O., and Davenport, D. Impact of maintainability defects on code inspections. In
Proceedings of the 2010 ACM-IEEE International Symposium on Empirical Software Engineering and
Measurement (New York, NY, USA, 2010), ESEM ’10, ACM, pp. 50:1–50:4.

[2] Alkhatib, G. The maintenance problem of application software: an empirical analysis. Journal of
Software Maintenance 4, 2 (June 1992), 83–104.

[3] Altova. Xml diffdog. http://www.altova.com/diffdog.html.

[4] Arumuga Nainar, P., Chen, T., Rosin, J., and Liblit, B. Statistical debugging using compound
boolean predicates. In Proceedings of the 2007 international symposium on Software testing and analysis
(New York, NY, USA, 2007), ISSTA ’07, ACM, pp. 5–15.

[5] Arumuga Nainar, P., and Liblit, B. Adaptive bug isolation. In Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1 (New York, NY, USA, 2010), ICSE ’10,
ACM, pp. 255–264.

[6] Aslam, T. A taxonomy of security faults in the unix operating system. Master’s thesis, Purdue
University, august 1995.

[7] Ayewah, N., Hovemeyer, D., Morgenthaler, J., Penix, J., and Pugh, W. Using static
analysis to find bugs. Software, IEEE 25, 5 (2008), 22–29.

[8] Ayewah, N., Pugh, W., Morgenthaler, J. D., Penix, J., and Zhou, Y. Evaluating static
analysis defect warnings on production software. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering (New York, NY, USA, 2007), PASTE
’07, ACM, pp. 1–8.

[9] Bacchelli, A., and Bird, C. Expectations, outcomes, and challenges of modern code review.
In Proceedings of the 2013 International Conference on Software Engineering (Piscataway, NJ, USA,
2013), ICSE ’13, IEEE Press, pp. 712–721.

[10] Basili, V. R., and Perricone, B. T. Software errors and complexity: an empirical investigation0.
Commun. ACM 27 (January 1984), 42–52.

[11] Billah, K., and Roy, C. Supporting materials for this dissertation. Available Online: http:

//homepage.usask.ca/kab117/Data/ResearchData.html.

[12] Bishop, M. A taxonomy of UNIX system and network vulnerabilities. Tech. Rep. CSE-9510, Depart-
ment of Computer Science, University of California at Davis, May 1995.

[13] Bishop, M., and Bailey, D. A critical analysis of vulnerability taxonomies. Tech. Rep. CSE-96-11,
Department of Computer Science, University of California at Davis, 1996.

[14] Blume, W., and Eigenmann, R. Symbolic range propagation. In Proceedings of the 9th International
Symposium on Parallel Processing (Washington, DC, USA, 1995), IPPS ’95, IEEE Computer Society,
pp. 357–363.

[15] Blume, W., and Eigenmann, R. Demand-driven, symbolic range propagation. In Proceedings of the
8th International Workshop on Languages and Compilers for Parallel Computing (London, UK, UK,
1996), LCPC ’95, Springer-Verlag, pp. 141–160.

164

[16] Bond, M. D., Baker, G. Z., and Guyer, S. Z. Breadcrumbs: efficient context sensitivity for dy-
namic bug detection analyses. In Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA, 2010), PLDI ’10, ACM, pp. 13–24.

[17] Boshernitsan, M., Doong, R., and Savoia, A. From daikon to agitator: lessons and challenges in
building a commercial tool for developer testing. In Proceedings of the 2006 international symposium
on Software testing and analysis (New York, NY, USA, 2006), ISSTA ’06, ACM, pp. 169–180.

[18] Brothers, L., Sembugamoorthy, V., and Muller, M. Icicle: groupware for code inspection.
In Proceedings of the 1990 ACM conference on Computer-supported cooperative work (New York, NY,
USA, 1990), CSCW ’90, ACM, pp. 169–181.

[19] Budgen, D., and Brereton, P. Performing systematic literature reviews in software engineering. In
Proceedings of the 28th international conference on Software engineering (New York, NY, USA, 2006),
ICSE ’06, ACM, pp. 1051–1052.

[20] Bush, W. R., Pincus, J. D., and Sielaff, D. J. A static analyzer for finding dynamic programming
errors. Softw. Pract. Exper. 30 (June 2000), 775–802.

[21] Cha, S.-H., Tappert, C. C., and Yoon, S. Enhancing binary feature vector similarity measures.
Journal of Pattern Recognition Research 1, 1 (2006), 63–77.

[22] Chebaro, O., Kosmatov, N., Giorgetti, A., and Julliand, J. Combining static analysis and
test generation for c program debugging. In Proceedings of the 4th international conference on Tests
and proofs (Berlin, Heidelberg, 2010), TAP’10, Springer-Verlag, pp. 94–100.

[23] Chen, Z.-X., Zhan, J.-Y., and Hao, Z.-B. A new static pointer dereference detecting method
based on finite-state machine. In Apperceiving Computing and Intelligence Analysis (ICACIA), 2010
International Conference on (dec. 2010), pp. 392 –397.

[24] Chen, Z.-X., Zhan, J.-Y., and Hao, Z.-B. A new static pointer dereference detecting method
based on finite-state machine. In Apperceiving Computing and Intelligence Analysis (ICACIA), 2010
International Conference on (December 2010), pp. 392–397.

[25] Chess, B., and West, J. Secure Programming with Static Analysis. Pearson Education Ltd., 2007.

[26] Chilimbi, T. M., and Ganapathy, V. Heapmd: identifying heap-based bugs using anomaly detec-
tion. SIGPLAN Not. 41 (October 2006), 219–228.

[27] Chilimbi, T. M., Liblit, B., Mehra, K., Nori, A. V., and Vaswani, K. Holmes: Effective
statistical debugging via efficient path profiling. In Proceedings of the 31st International Conference on
Software Engineering (Washington, DC, USA, 2009), ICSE ’09, IEEE Computer Society, pp. 34–44.

[28] Chillarege, R., Bhandari, I., Chaar, J., Halliday, M., Moebus, D., Ray, B., and Wong,
M.-Y. Orthogonal defect classification-a concept for in-process measurements. IEEE Transactions on
Software Engineering 18, 11 (nov 1992), 943 –956.

[29] Chimdyalwar, B. Survey of array out of bound access checkers for c code. In Proceedings of the 5th
India Software Engineering Conference (New York, NY, USA, 2012), ISEC ’12, ACM, pp. 45–48.

[30] Choi, S.-S., Cha, S.-H., and Tappert, C. C. A survey of binary similarity and distance measures.
Journal of Systemics, Cybernetics and Informatics 8, 1 (2010), 43–48.

[31] Chu, D.-H., and Jaffar, J. Symbolic simulation on complicated loops for wcet path analysis. In
Proceedings of the ninth ACM international conference on Embedded software (New York, NY, USA,
2011), EMSOFT ’11, ACM, pp. 319–328.

165

[32] Cifuentes, C., Hoermann, C., Keynes, N., Li, L., Long, S., Mealy, E., Mounteney, M.,
and Scholz, B. Begbunch: benchmarking for c bug detection tools. In Proceedings of the 2nd
International Workshop on Defects in Large Software Systems: Held in conjunction with the ACM
SIGSOFT International Symposium on Software Testing and Analysis (ISSTA 2009) (New York, NY,
USA, 2009), DEFECTS ’09, ACM, pp. 16–20.

[33] Cifuentes, C., Keynes, N., Li, L., and Scholz, B. Program analysis for bug detection using
parfait: invited talk. In Proceedings of the 2009 ACM SIGPLAN workshop on Partial evaluation and
program manipulation (New York, NY, USA, 2009), PEPM ’09, ACM, pp. 7–8.

[34] Cordy, J. R., and Roy, C. K. The nicad clone detector. In Proceedings of the Tool Demo Track of
the 19th International Conference on Program Comprehension (June 2011), ICPC 2011, IEEE Press,
Kingston, Canada, pp. 219–220.

[35] Coverity Inc. Coverity SAVE. http://www.coverity.com/products/coverity-save.html.

[36] Csallner, C. Combining over- and under-approximating program analyses for automatic software
testing. Ph.D., Georgia Tech, August 2008.

[37] Csallner, C., and Smaragdakis, Y. Jcrasher: an automatic robustness tester for java. Softw.
Pract. Exper. 34 (September 2004), 1025–1050.

[38] Csallner, C., and Smaragdakis, Y. Check ’n’ crash: combining static checking and testing. In
Proceedings of the 27th international conference on Software engineering (New York, NY, USA, 2005),
ICSE ’05, ACM, pp. 422–431.

[39] Csallner, C., Smaragdakis, Y., and Xie, T. DSD-Crasher: A hybrid analysis tool for bug finding.
ACM Trans. Softw. Eng. Methodol. 17, 2 (May 2008), 8:1–8:37.

[40] CTools Inc. The ctools libary. http://sourceforge.net/projects/ctool/.

[41] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., and Yakobowski,
B. Frama-C: a software analysis perspective. In Proceedings of the 10th international conference
on Software Engineering and Formal Methods (Berlin, Heidelberg, 2012), SEFM’12, Springer-Verlag,
pp. 233–247.

[42] da Silva Villaca, R., de Paula, L., Pasquini, R., and Magalhaes, M. Hamming dht: Taming
the similarity search. In Consumer Communications and Networking Conference (CCNC), 2013 IEEE
(2013), pp. 7–12.

[43] Dallmeier, V., and Zimmermann, T. Extraction of bug localization benchmarks from history. In
Proceedings of the twenty-second IEEE/ACM international conference on Automated software engi-
neering (New York, NY, USA, 2007), ASE ’07, ACM, pp. 433–436.

[44] DeMillo, R. A., and Mathur, A. P. A grammar based fault classification scheme and its application
to the classification of the errors of TeX. Tech. Rep. SERC-TR165-P, Software Engineering Research
Center, Purdue University, September 1995.

[45] Dimitrov, M., and Zhou, H. Unified architectural support for soft-error protection or software bug
detection. In Proceedings of the 16th International Conference on Parallel Architecture and Compilation
Techniques (Washington, DC, USA, 2007), PACT ’07, IEEE Computer Society, pp. 73–82.

[46] Duboc, L., Rosenblum, D., and Wicks, T. A framework for characterization and analysis of soft-
ware system scalability. In Proceedings of the the 6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The foundations of software engineering (New York,
NY, USA, 2007), ESEC-FSE ’07, ACM, pp. 375–384.

[47] Ernst, M., Cockrell, J., Griswold, W., and Notkin, D. Dynamically discovering likely program
invariants to support program evolution. In Software Engineering, 1999. Proceedings of the 1999
International Conference on (may 1999), pp. 213 –224.

166

[48] Evans, D. Static detection of dynamic memory errors. In Proceedings of the ACM SIGPLAN 1996
conference on Programming language design and implementation (New York, NY, USA, 1996), PLDI
’96, ACM, pp. 44–53.

[49] Evans, D., Guttag, J., Horning, J., and Tan, Y. M. Lclint: a tool for using specifications to check
code. In Proceedings of the 2nd ACM SIGSOFT symposium on Foundations of software engineering
(New York, NY, USA, 1994), SIGSOFT ’94, ACM, pp. 87–96.

[50] Evans, D., and Larochelle, D. Improving security using extensible lightweight static analysis.
Software, IEEE 19, 1 (January 2002), 42 –51.

[51] Flanagan, C., Leino, K. R. M., Lillibridge, M., Nelson, G., Saxe, J. B., and Stata,
R. Extended static checking for java. In Proceedings of the ACM SIGPLAN 2002 Conference on
Programming language design and implementation (New York, NY, USA, 2002), PLDI ’02, ACM,
pp. 234–245.

[52] Frama-C. Frama-c. http://frama-c.com/what_is.html.

[53] Freimut, B. Developing and using defect classification schemes. Tech. Rep. IESE-Report 072.01/E,
Fraunhofer Institut für Experimentelles Software Engineering, 2001.

[54] Freimut, B., Denger, C., and Ketterer, M. An industrial case study of implementing and
validating defect classification for process improvement and quality management. In Software Metrics,
2005. 11th IEEE International Symposium (sept. 2005), pp. 10–19.

[55] Freimut, B., Klein, B., Laitenberger, O., , and Ruhe, G. Experiencepackage from the essi
process improvement experiment hyper. Tech. Rep. IESE-Report 015.00/E, Fraunhofer Institut für
Experimentelles Software Engineering, 2000.

[56] Ganapathy, V., Jha, S., Chandler, D., Melski, D., and Vitek, D. Buffer overrun detection
using linear programming and static analysis. In Proceedings of the 10th ACM conference on Computer
and communications security (New York, NY, USA, 2003), CCS ’03, ACM, pp. 345–354.

[57] Geay, E., Yahav, E., and Fink, S. Continuous code-quality assurance with safe. In Proceedings of
the 2006 ACM SIGPLAN symposium on Partial evaluation and semantics-based program manipulation
(New York, NY, USA, 2006), PEPM ’06, ACM, pp. 145–149.

[58] GNU. The fast lexical analyzer generator. http://flex.sourceforge.net/.

[59] Godefroid, P. Compositional dynamic test generation. In Proceedings of the 34th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (New York, NY, USA, 2007),
POPL ’07, ACM, pp. 47–54.

[60] Godefroid, P., and Luchaup, D. Automatic partial loop summarization in dynamic test generation.
In Proceedings of the 2011 International Symposium on Software Testing and Analysis (New York, NY,
USA, 2011), ISSTA ’11, ACM, pp. 23–33.

[61] Goutte, C., and Gaussier, E. A probabilistic interpretation of precision, recall and f-score, with
implication for evaluation. In Proceedings of the 27th European conference on Advances in Information
Retrieval Research (Berlin, Heidelberg, 2005), ECIR’05, Springer-Verlag, pp. 345–359.

[62] Grady, R. B. Practical Software Metrics For Project Management and Process Improvement. Hewlett-
Packard, 1992.

[63] Grammatech Inc. Codesonar. http://www.grammatech.com/products/codesonar/overview.

html.

[64] Grammatech Inc. Codesonar price list. http://www.grammatech.com/products/codesonar/

pricelist.html.

167

[65] Gray, J. Why do computers stop and what can be done about it? Office 3 (June 1985).

[66] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. The
weka data mining software: an update. SIGKDD Explor. Newsl. 11, 1 (Nov. 2009), 10–18.

[67] Hamming, R. V. Error detecting and error correcting codes. Bell Systems Technical Journal 29
(1950), 147–160.

[68] Holzmann, G. J. Static source code checking for user-defined properties. In Proc IDPT 2002
(Pasadena, CA, USA, 2002).

[69] Hovemeyer, D., and Pugh, W. Finding bugs is easy. In Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming systems, languages, and applications (New York,
NY, USA, 2004), OOPSLA ’04, ACM, pp. 132–136.

[70] Hovemeyer, D., and Pugh, W. Finding more null pointer bugs, but not too many. In Proceedings
of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for software tools and engineering
(New York, NY, USA, 2007), PASTE ’07, ACM, pp. 9–14.

[71] Hovemeyer, D., Spacco, J., and Pugh, W. Evaluating and tuning a static analysis to find null
pointer bugs. In Proceedings of the 6th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering (New York, NY, USA, 2005), PASTE ’05, ACM, pp. 13–19.

[72] Howard, J. D. An analysis of security incidents on the Internet 1989-1995. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA, 1998. UMI Order No. GAX98-02539.

[73] IEEE. IEEE standard dictionary of measures to produce reliable software. IEEE Standard 982.1-1988
(1989), 0–1.

[74] Jiang, L., and Su, Z. Context-aware statistical debugging: from bug predictors to faulty control
flow paths. In Proceedings of the twenty-second IEEE/ACM international conference on Automated
software engineering (New York, NY, USA, 2007), ASE ’07, ACM, pp. 184–193.

[75] Jiang, L., and Su, Z. Profile-guided program simplification for effective testing and analysis. In Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering
(New York, NY, USA, 2008), SIGSOFT ’08/FSE-16, ACM, pp. 48–58.

[76] Jiang, L., Su, Z., and Chiu, E. Context-based detection of clone-related bugs. In Proceedings of
the the 6th joint meeting of the European software engineering conference and the ACM SIGSOFT
symposium on The foundations of software engineering (New York, NY, USA, 2007), ESEC-FSE ’07,
ACM, pp. 55–64.

[77] Jin, G., Thakur, A., Liblit, B., and Lu, S. Instrumentation and sampling strategies for cooperative
concurrency bug isolation. In Proceedings of the ACM international conference on Object oriented
programming systems languages and applications (New York, NY, USA, 2010), OOPSLA ’10, ACM,
pp. 241–255.

[78] Kelly, D., and Shepard, T. Qualitative observations from software code inspection experiments. In
Proceedings of the 2002 conference of the Centre for Advanced Studies on Collaborative research (2002),
CASCON ’02, IBM Press, pp. 5–.

[79] Kester, D., Mwebesa, M., and Bradbury, J. How good is static analysis at finding concurrency
bugs? In Source Code Analysis and Manipulation (SCAM), 2010 10th IEEE Working Conference on
(September 2010), pp. 115–124.

[80] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., and Linkman,
S. Systematic literature reviews in software engineering - a systematic literature review. Inf. Softw.
Technol. 51 (January 2009), 7–15.

168

[81] Klocwork Inc. Klocwork insight. http://www.klocwork.com/products/insight/?source=

feature.

[82] Knuth, D. E. The errors of tex. Softw. Pract. Exper. 19, 7 (July 1989), 607–685.

[83] Kola, G., Kosar, T., and Livny, M. Phoenix: Making data-intensive grid applications fault-
tolerant. In Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (Washing-
ton, DC, USA, 2004), GRID ’04, IEEE Computer Society, pp. 251–258.

[84] Kong, D., Zheng, Q., Chen, C., Shuai, J., and Zhu, M. Isa: a source code static vulnerability
detection system based on data fusion. In Proceedings of the 2nd international conference on Scalable
information systems (ICST, Brussels, Belgium, Belgium, 2007), InfoScale ’07, ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), pp. 55:1–55:7.

[85] Krill, P. Klocwork tunes software code analysis suite for agile projects. http://www.infoworld.com/
d/developer-world/klocwork-tunes-software-code-analysis-suite-agile-projects-401,
2009.

[86] Krill, P. Coverity offers integrity control to help manage
code quality. http://www.infoworld.com/d/application-development/

coverity-offers-integrity-control-help-manage-code-quality-016?source=footer, 2011.

[87] Krsul, I. V. Software vulnerability analysis. PhD thesis, Purdue University, West Lafayette, IN, USA,
1998. AAI9900214.

[88] Lal, S., and Sureka, A. A static technique for fault localization using character n-gram based
information retrieval model. In Proceedings of the 5th India Software Engineering Conference (New
York, NY, USA, 2012), ISEC ’12, ACM, pp. 109–118.

[89] Landwehr, C. E., Bull, A. R., McDermott, J. P., and Choi, W. S. A taxonomy of computer
program security flaws. ACM Comput. Surv. 26 (September 1994), 211–254.

[90] Lanubile, F., Shull, F., and Basili, V. Experimenting with error abstraction in requirements
documents. In Software Metrics Symposium, 1998. Metrics 1998. Proceedings. Fifth International (nov
1998), pp. 114 –121.

[91] Larson, E. Assessing work for static software bug detection. In Proceedings of the 1st ACM interna-
tional workshop on Empirical assessment of software engineering languages and technologies: held in
conjunction with the 22nd IEEE/ACM International Conference on Automated Software Engineering
(ASE) 2007 (New York, NY, USA, 2007), WEASELTech ’07, ACM, pp. 7–12.

[92] Larson, E. Suds: An infrastructure for creating bug detection tools. In Proceedings of the Seventh
IEEE International Working Conference on Source Code Analysis and Manipulation (Washington, DC,
USA, 2007), IEEE Computer Society, pp. 123–132.

[93] Le, W. Toward a Practical, Path-Based Framework for Detecting and Diagnosing Software Faults.
PhD thesis, University of Virginia, 2010.

[94] Le, W., and Soffa, M. L. Refining buffer overflow detection via demand-driven path-sensitive
analysis. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools and engineering (New York, NY, USA, 2007), PASTE ’07, ACM, pp. 63–68.

[95] Le, W., and Soffa, M. L. Marple: a demand-driven path-sensitive buffer overflow detector. In Pro-
ceedings of the 16th ACM SIGSOFT International Symposium on Foundations of software engineering
(New York, NY, USA, 2008), SIGSOFT ’08/FSE-16, ACM, pp. 272–282.

[96] Le, W., and Soffa, M. L. Path-based fault correlations. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering (New York, NY, USA,
2010), FSE ’10, ACM, pp. 307–316.

169

[97] Le, W., and Soffa, M. L. Generating analyses for detecting faults in path segments. In Proceedings
of the 2011 International Symposium on Software Testing and Analysis (New York, NY, USA, 2011),
ISSTA ’11, ACM, pp. 320–330.

[98] Lehman, M. Programs, life cycles, and laws of software evolution. Proceedings of the IEEE special
issue on Software Engineering 68, 9 (sept. 1980), 1060 – 1076.

[99] Leszak, M., Perry, D. E., and Stoll, D. Classification and evaluation of defects in a project
retrospective. J. Syst. Softw. 61 (April 2002), 173–187.

[100] Leveson, N. G. The role of software in spacecraft accidents. AIAA Journal of Spacecraft and Rockets
41 (2004), 564–575.

[101] Leveson, N. G., and Turner, C. S. An investigation of the therac-25 accidents. Computer 26, 7
(jul 1993), 18–41.

[102] Levine, J. Flex and Bison. O’Reilly Media, 2009.

[103] Li, L., Cifuentes, C., and Keynes, N. Practical and effective symbolic analysis for buffer overflow
detection. In Proceedings of the eighteenth ACM SIGSOFT international symposium on Foundations
of software engineering (New York, NY, USA, 2010), FSE ’10, ACM, pp. 317–326.

[104] Li, Z., Lu, S., Myagmar, S., and Zhou, Y. Cp-miner: finding copy-paste and related bugs in
large-scale software code. Software Engineering, IEEE Transactions on 32, 3 (2006), 176–192.

[105] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I. Scalable statistical bug
isolation. SIGPLAN Not. 40, 6 (June 2005), 15–26.

[106] Liblit, B., Naik, M., Zheng, A. X., Aiken, A., and Jordan, M. I. Scalable statistical bug
isolation. In Proceedings of the 2005 ACM SIGPLAN conference on Programming language design and
implementation (New York, NY, USA, 2005), PLDI ’05, ACM, pp. 15–26.

[107] Lindqvist, U., and Jonsson, E. How to systematically classify computer security intrusions. In
Security and Privacy, 1997. Proceedings., 1997 IEEE Symposium on (may 1997), pp. 154 –163.

[108] Liu, C., and Han, J. Failure proximity: a fault localization-based approach. In Proceedings of the
14th ACM SIGSOFT international symposium on Foundations of software engineering (New York, NY,
USA, 2006), SIGSOFT ’06/FSE-14, ACM, pp. 46–56.

[109] Liu, C., Yan, X., Fei, L., Han, J., and Midkiff, S. P. Sober: statistical model-based bug
localization. In Proceedings of the 10th European software engineering conference held jointly with 13th
ACM SIGSOFT international symposium on Foundations of software engineering (New York, NY,
USA, 2005), ESEC/FSE-13, ACM, pp. 286–295.

[110] Lloyd, R. Metric mishap caused loss of nasa orbiter. http://www.cnn.com/TECH/space/9909/30/

mars.metric.02/index.html?_s=PM:TECH, 1999.

[111] Lough, D. L. A taxonomy of computer attacks with applications to wireless networks. PhD thesis,
Virginia Polytechnic Institute and State University, 2001. AAI3006082.

[112] Lu, S., Zhou, P., Liu, W., Zhou, Y., and Torrellas, J. Pathexpander: Architectural sup-
port for increasing the path coverage of dynamic bug detection. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture (Washington, DC, USA, 2006), MICRO
39, IEEE Computer Society, pp. 38–52.

[113] Lucia, B., Wood, B. P., and Ceze, L. Isolating and understanding concurrency errors using recon-
structed execution fragments. In Proceedings of the 32nd ACM SIGPLAN conference on Programming
language design and implementation (New York, NY, USA, 2011), PLDI ’11, ACM, pp. 378–388.

170

[114] Ma, L., and Tian, J. Analyzing errors and referral pairs to characterize common problems and
improve web reliability. In Proceedings of the 2003 international conference on Web engineering (Berlin,
Heidelberg, 2003), ICWE’03, Springer-Verlag, pp. 314–323.

[115] Ma, L., and Tian, J. Web error classification and analysis for reliability improvement. J. Syst. Softw.
80 (June 2007), 795–804.

[116] Mariani, L. A fault taxonomy for component-based software. In International Workshop on Test and
Analysis of Component-Based Systems (2003), vol. 83, pp. 55–65.

[117] McGraw, G. Software Security: Building Security In. Addision-Wesley, 2006.

[118] Mian, P., Conte, T., Natali, A., Biolchini, J., and Travassos, G. A Systematic Review
Process for Software Engineering. In ESELAW ’05: 2nd Experimental Software Engineering Latin
American Workshop (2005).

[119] Mitre Corporation. Common vulnerabilities and exposure. http://cve.mitre.org.

[120] Nakamura, T., Hochstein, L., and Basili, V. R. Identifying domain-specific defect classes using
inspections and change history. In Proceedings of the 2006 ACM/IEEE international symposium on
Empirical software engineering (New York, NY, USA, 2006), ISESE ’06, ACM, pp. 346–355.

[121] Ngo, M. N., and Tan, H. B. K. Detecting large number of infeasible paths through recognizing their
patterns. In Proceedings of the the 6th joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on The foundations of software engineering (New York, NY, USA,
2007), ESEC-FSE ’07, ACM, pp. 215–224.

[122] Nikora, A. P. Software system defect content prediction from development process and product char-
acteristics. PhD thesis, University of Southern California, Los Angeles, CA, USA, 1998. AAI9902853.

[123] Ordonez, M. J., and Haddad, H. M. The state of metrics in software industry. In Proceedings
of the Fifth International Conference on Information Technology: New Generations (Washington, DC,
USA, 2008), ITNG ’08, IEEE Computer Society, pp. 453–458.

[124] Ostrand, T. J., and Weyuker, E. J. Collecting and categorizing software error data in an industrial
environment. Journal of Systems and Software 4 (1984), 289–300.

[125] Parnin, C., Görg, C., and Nnadi, O. A catalogue of lightweight visualizations to support code
smell inspection. In Proceedings of the 4th ACM symposium on Software visualization (New York, NY,
USA, 2008), SoftVis ’08, ACM, pp. 77–86.

[126] Parnin, C., and Orso, A. Are automated debugging techniques actually helping programmers? In
Proceedings of the 2011 International Symposium on Software Testing and Analysis (New York, NY,
USA, 2011), ISSTA ’11, ACM, pp. 199–209.

[127] PathCrawler. Pathcrawler. http://pathcrawler-online.com/doDocumentation.

[128] Ploski, J., Rohr, M., Schwenkenberg, P., and Hasselbring, W. Research issues in software
fault categorization. SIGSOFT Softw. Eng. Notes 32, 6 (November 2007).

[129] Polyspace Inc. Polyspace embedded software verification. http://www.mathworks.com/products/

polyspace/.

[130] Prause, C. R., and Apelt, S. An approach for continuous inspection of source code. In Proceedings
of the 6th international workshop on Software quality (New York, NY, USA, 2008), WoSQ ’08, ACM,
pp. 17–22.

[131] Prause, C. R., and Eisenhauer, M. Social aspects of a continuous inspection platform for software
source code. In Proceedings of the 2008 international workshop on Cooperative and human aspects of
software engineering (New York, NY, USA, 2008), CHASE ’08, ACM, pp. 85–88.

171

[132] Rößler, J. Understanding failures through facts. In Proceedings of the 19th ACM SIGSOFT sympo-
sium and the 13th European conference on Foundations of software ngineering (New York, NY, USA,
2011), ESEC/FSE ’11, ACM, pp. 404–407.

[133] Roy, C. K. Detection and analysis of near-miss software clones. In Proceedings of the Doctoral
Symposium Track of the 25th IEEE International Conference on Software Maintenance (September
2009), ICSM 2009, pp. 447–450.

[134] Roy, C. K., and Cordy, J. R. Nicad: Accurate detection of near-miss intentional clones using flexible
pretty-printing and code normalization. In Proceedings of the 16th IEEE International Conference on
Program Comprehension (June 2008), ICPC 2008, IEEE Press, Amsterdam, The Netherlands, pp. 172–
181.

[135] Roy, C. K., and Cordy, J. R. Towards a mutation-based automatic framework for evaluating
code clone detection tools. In Proceedings of the Poster Paper Track of the Canadian Conference on
Computer Science and Software Engineering (May 2008), C3S2E 2008, ACM Press, Montreal, Canada,
pp. 137–140.

[136] Roy, C. K., and Cordy, J. R. A mutation/injection-based automatic framework for evaluating
code clone detection tools. In Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation Workshops (Washington, DC, USA, 2009), ICSTW ’09, IEEE Computer
Society, pp. 157–166.

[137] Roy, C. K., Cordy, J. R., and Koschke, R. Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. 470–495.

[138] Roychowdhury, S., and Khurshid, S. Software fault localization using feature selection. In
Proceedings of the International Workshop on Machine Learning Technologies in Software Engineering
(New York, NY, USA, 2011), MALETS ’11, ACM, pp. 11–18.

[139] Saha, R. Detection and analysis of near miss clone genealogies. Master’s thesis, University of
Saskatchewan, august 2011.

[140] Seaman, C. B., Shull, F., Regardie, M., Elbert, D., Feldmann, R. L., Guo, Y., and
Godfrey, S. Defect categorization: making use of a decade of widely varying historical data. In
Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and
measurement (New York, NY, USA, 2008), ESEM ’08, ACM, pp. 149–157.

[141] Shahriar, H., and Zulkernine, M. Classification of static analysis-based buffer overflow detec-
tors. In Secure Software Integration and Reliability Improvement Companion (SSIRI-C), 2010 Fourth
International Conference on (june 2010), pp. 94–101.

[142] Shukla, R., and Misra, A. K. Estimating software maintenance effort: a neural network approach.
In Proceedings of the 1st India software engineering conference (New York, NY, USA, 2008), ISEC ’08,
ACM, pp. 107–112.

[143] Siddiqui, J. H., and Khurshid, S. Scaling symbolic execution using ranged analysis. In Proceedings
of the ACM international conference on Object oriented programming systems languages and applica-
tions (New York, NY, USA, 2012), OOPSLA ’12, ACM, pp. 523–536.

[144] Sinha, N. Modular bug detection with inertial refinement. In Proceedings of the 2010 Conference on
Formal Methods in Computer-Aided Design (Austin, TX, 2010), FMCAD ’10, FMCAD Inc, pp. 199–
206.

[145] Sokal, R. R., and Michener, C. D. A statistical method for evaluating systematic relationships.
University of Kansas Scientific Bulletin 28 (1958), 1409–1438.

[146] Stephenson, A. G., LaPiana, L. S., Mulville, D. R., Rutledge, P. J., Bauer, F. H., Folta,
D., Dukeman, G. A., and Sackheim, R. Mars climate orbiter mishap investigation board phase i
report. Mars Climate Orbiter Mishap Investigation Board Phase I Report (1999).

172

[147] Suhendra, V., Mitra, T., Roychoudhury, A., and Chen, T. Efficient detection and exploitation
of infeasible paths for software timing analysis. In Proceedings of the 43rd annual Design Automation
Conference (New York, NY, USA, 2006), DAC ’06, ACM, pp. 358–363.

[148] Svajlenko, J., Roy, C., and Cordy, J. A mutation analysis based benchmarking framework for
clone detectors. In Proceedings of Short/Tool Papers Track of the ICSE 7th International Workshop
on Software Clones (May 2013), IWSC 2013, pp. 8–9.

[149] Taghdiri, M., and Jackson, D. Inferring specifications to detect errors in code. Automated Software
Engg. 14 (March 2007), 87–121.

[150] Trainin, E., Nir-Buchbinder, Y., Tzoref-Brill, R., Zlotnick, A., Ur, S., and Farchi,
E. Forcing small models of conditions on program interleaving for detection of concurrent bugs. In
Proceedings of the 7th Workshop on Parallel and Distributed Systems: Testing, Analysis, and Debugging
(New York, NY, USA, 2009), PADTAD ’09, ACM, pp. 7:1–7:6.

[151] Uddin, S., Roy, C. K., and Schneider, K. Simcad : An extensible and faster clone detection
tool for large scale software systems. In Proceedings of the Tool Demonstration Track of the 21st IEEE
International Conference on Program Comprehension (May 2013), ICPC 2013, pp. 236–238.

[152] Uddin, S., Roy, C. K., Schneider, K. A., and Hindle, A. On the effectiveness of simhash for
detecting near-miss clones in large scale software systems. In Proceedings of the 18th IEEE Working
Conference on Reverse Engineering (October 2011), WCRE 2011, IEEE Press, Lero, Limerick, Ireland,
pp. 13–22.

[153] Vallespir, D., Grazioli, F., and Herbert, J. A framework to evaluate defect taxonomies. In
Proceedings of the CACIC 2009 (October 2009), pp. 643–652.

[154] Viega, J., Bloch, J. T., Kohno, T., and McGraw, G. Token-based scanning of source code for
security problems. ACM Trans. Inf. Syst. Secur. 5 (August 2002), 238–261.

[155] Vijayaraghavan, G. A taxonomy of e-commerce risks and failures. Master’s thesis, Florida Institute
of Technology, the USA, 2003.

[156] Vijayaraghavan, G., and Kaner, C. Bug taxonomies: Use them to generate better tests. In
Software Testing, Analysis and Review Conference (STAR) East (2003).

[157] Vipindeep, V., and Jalote, P. Efficient static analysis with path pruning using coverage data.
SIGSOFT Softw. Eng. Notes 30, 4 (May 2005), 1–6.

[158] Wagner, D., Foster, J. S., Brewer, E. A., and Aiken, A. A first step towards automated
detection of buffer overrun vulnerabilities. In In Network and Distributed System Security Symposium
(2000), pp. 3–17.

[159] Wagner, S. Defect classification and defect types revisited. In Proceedings of the 2008 workshop on
Defects in large software systems (New York, NY, USA, 2008), DEFECTS ’08, ACM, pp. 39–40.

[160] Walden, J., Messer, A., and Kuhl, A. Idea: Measuring the effect of code complexity on static
analysis results. In Proceedings of the 1st International Symposium on Engineering Secure Software
and Systems (Berlin, Heidelberg, 2009), ESSoS ’09, Springer-Verlag, pp. 195–199.

[161] Ward, W. T. Calculating the real cost of software defects. Hewlett-Packard Journal (October 1991),
55–58.

[162] Weber, S., Karger, P. A., and Paradkar, A. A software flaw taxonomy: aiming tools at security.
In Proceedings of the 2005 workshop on Software engineering for secure systems - building trustworthy
applications (New York, NY, USA, 2005), SESS ’05, ACM, pp. 1–7.

173

[163] Xie, Y., Chou, A., and Engler, D. Archer: using symbolic, path-sensitive analysis to detect
memory access errors. In Proceedings of the 9th European software engineering conference held jointly
with 11th ACM SIGSOFT international symposium on Foundations of software engineering (New York,
NY, USA, 2003), ESEC/FSE-11, ACM, pp. 327–336.

[164] Zhang, B., and Srihari, S. N. Properties of binary vector dissimilarity measures. In Proc. JCIS
Intl Conf. Computer Vision, Pattern Recognition, and Image Processing (2003), vol. 1.

[165] Zheng, A. X., Jordan, M. I., Liblit, B., Naik, M., and Aiken, A. Statistical debugging:
simultaneous identification of multiple bugs. In Proceedings of the 23rd international conference on
Machine learning (New York, NY, USA, 2006), ICML ’06, ACM, pp. 1105–1112.

[166] Zhou, B., Kulkarni, M., and Bagchi, S. Vrisha: using scaling properties of parallel programs for
bug detection and localization. In Proceedings of the 20th international symposium on High performance
distributed computing (New York, NY, USA, 2011), HPDC ’11, ACM, pp. 85–96.

[167] Zhuang, X., Zhang, T., and Pande, S. Using branch correlation to identify infeasible paths
for anomaly detection. In Proceedings of the 39th Annual IEEE/ACM International Symposium on
Microarchitecture (Washington, DC, USA, 2006), MICRO 39, IEEE Computer Society, pp. 113–122.

[168] Zitser, M., Lippmann, R., and Leek, T. Testing static analysis tools using exploitable buffer
overflows from open source code. In Proceedings of the 12th ACM SIGSOFT twelfth international
symposium on Foundations of software engineering (New York, NY, USA, 2004), SIGSOFT ’04/FSE-
12, ACM, pp. 97–106.

174

Appendix A

Taxonomy Framework Parameters

This appendix provides a list of the parameters used in generating the taxonomy in Chapter 3.

A.1 Perspectives

Unlike most defect repositories, CVE data is reported by personnel directly connected to the development
and usage of the software. The reporters include systems analysis personnel, software engineers, security
analysts, programmers and other personnel connected to the development of the system, or in its use in
different places. These defect data are interpreted by people of the same trade. This unique nature of CVE
makes it a repository where developers communicate defect data to the developers.

Despite being more technically oriented than general user groups, developers acting as users have the
same limitation for closed source systems, and often with open source ones. Their communication tends to
be using a black-box approach. The interpreters, however, have white-box access to the components.

A.2 Perspective 1

To model the reporting entities, the first perspective is chosen as the one describing the affiliation of the
defect to the most visible major software component.

This perspective was chosen to consider CVE’s defect reporters, who are usually technical professionals
like System Analysts, Programmers or Security Analysts. Their description becomes detailed in technicality,
but is limited only to the visible phenomena as the reporters do not usually have access to code.

A.3 Perspective 2

The second perspective was chosen as the one describing the exact technical issue that acted as the root
cause for the defect.

This perspective was chosen to model the descriptions of CVE’s developers who interpret the defect
information as reported by the reporters. Being the professionals with access to the code, the developers are
able to use more precise description of the defect with its detailed technical cause.

175

Table A.1: List of Attributes and Their Compliance to Defect Classes Developed in Chapter 3

W
e
ig

h
t P1 P2

Comp. Logic Memory Data Sync.

Attribute C L M D S C1 C2 C3 L1 L2 L3 L4 L5 L6 L7 L8 M1 M2 M3 M4 D1 D2 D3 D4 D5 S1 S2 Comment

1.1. Wrong Output 10 # # ## #
1.2. Wrong Format 20# # ## #
1.3. Memory Error 30## ## #
1.4. Involves multiple entities 40## # #
1.5. Involves multiple processes 50## #

2.1 Truncated Values 5 ## # ## # # # # # # # # # # # # # # # G# # # # # #
2.2. Expanded Values 1 ## # ## G# # # # # # # # # # # # # # # # G# # # # # #
2.3. Rounded Values 5 ## # ## # # # # # # # # # # # # # # # G# # # # # #
2.4. Specific Offset 10## # ## # # # # # # # # # # # # # G# G# # # # # # #
2.5. Unpredictable Values 20## # ## # # # # # G# # # # # G# # # G# # G# # # # # #
2.6. Garbage Values 1 ## # ## # # G# # # # # # # # # G# # # # # G# # # # # #
2.7. Missed a check 5 ## # ## # # # # # G# # # # # # # # # # # G# # # # #
2.8. Wrong condition in an if 5 ## # ## # # # # # G# # # # # G# # # # # # G# # # # #
2.9. Wrong terminal in a loop 20## # ## # # # # # # # # # # # # # # # # # # # # #
2.10. No terminal condition 1 ## # ## # # # G# G# # G# # # # # # # # # # # # # # # #
2.11. Wrong Operator 30## # ## # # # # # G# # # # # # # # # # # # # # # #
2.12. Wrong precedence 1 ## # ## # # # # G# G# G# # # # # # # # # # # # # # # #
2.13. Wrong operand 1 ## # ## # # # # # G# # # # # # # # # # # # # # # # #
2.14. Failed to save 14## # ## # # # # # # # # # # # # # # # # # # # # #
2.15. Failed to update 14## # ## # # # # # # # # # # # # # # # # # # # # #
2.16. Failed to set 14## # ## # # # # # # # # # # # # # # # # # # # # #
2.17. Missed / misinterpreted relation 1 ## # ## # # # # # # G# G# # # G# # # # # G# # # # G# # #
2.18. Extra complex logic 1 ## # ## # # # G# # # G# # # # # # # # # # G# # # # # #
2.19. Failed to terminate a loop 15## # ## # # # # # # # # # # # # # # # # # # # # #
2.20. Terminated a loop early 15## # ## # # # # # # # # # # # # # # # # # # # # #
2.21. Made a tautology/contradiction 15## # ## # # # G# # # # # # # # # # # # # G# # # # #
2.22. Made more than required checks 26## # ## # # # # # # # # # # # # # # # # # # # # #
2.23. Made invalid extra checks 26## # ## # # # # # # # # # # # # # # # # # # # # #
2.24. Didn’t catch an exception 16## # ## # # # # # # G# # # G# # # # # # # # # # # #
2.25. Caught wrong exception 16## # ## # # # # # # G# # # G# # # # # # # # # # # #
2.26. Caught exception, didn’t handle 16## # ## # # # # # # G# # # G# # # # # # # # # # # #
2.27. Caught exception, handled wrong 16## # ## # # # # # # G# # # G# # # # # # # # # # # #
2.28. Made never-taken branch 15## # ## # # # # # # # # # # # # # # # # # # # # #
2.29. Made always-taken branch 15## # ## # # # # # # # # # # # # # # # # # # # # #
2.30. Wrong connections 4 ## # ## # # # # # # G# # # # # # # # # # # # G# # #
2.31. Wrong interactions 1 ## # ## # # # # # # G# # # # G# # # # # # # G# # G# # #
2.32. Changed algorithm in code 43## # ## # # # # # # # # # # # # # # # # # # # # #
2.33. Changed implementation 43## # ## # # # # # # # # # # # # # # # # # # # # #
2.34. Access non-allocated memory 4 ## # ## # G# G# # # # # # # # # # # # # # # # # # #
2.35. Access memory out of valid range 22## # ## # G# # # # # # # # # # # # # # # # # # # #
2.36. Access memory with wrong attitude 4 ## # ## G# # G# # # # # # # # # # # # # # # # # # #
2.37. Deallocated deallocated memory 8 ## # ## # # # # # # # # # # # # # # # # # # # # #
2.38. Deallocated unallocated memory 8 ## # ## # # G# # # # # # # # # # # # # # # # # # #
2.39. Tried improper deallocation 8 ## # ## G# # # # # # # # # # # # # # # # # # # # #
2.40. Failed to deallocated 17## # ## # # # # # # G# # # # # # # # # # # # # # #
2.41 Failed to allocate 4 ## # ## # # # # # # G# # # # # # # # # # # # # # #
2.42. Deallocated parts 17## # ## # # # # # # G# # # # # # # # # # # # # # #
2.43. Allocated less than required 22## # ## # # # # # # G# # # # # # # # # # # # # # #
2.44. Wrong interface values 4 ## # ## G# G# G# # # # G# # # # G# # # # # # # # # # #
2.45. Wrong interface types 4 ## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.46. Default interface values 4 ## # ## # # # # # # G# # # # G# # # # # # G# # # # #
2.47. Use interface without enough data 8 ## # ## # # # # # # G# # # # G# # # # # # G# # # # #
2.48. Assign non-matching data 8 ## # ## # # # # # # G# # # # G# # # # # # G# # # # #
2.49. Cast up or down 17G## # ## G# # # # # # # # # # # # # # # # G# # # # #
2.50. Changed data to meet requirements 17## # ## # # # # # # # # # # G# # # # # # G# # # # #
2.51. Extra inputs supplied 22## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.52. Insufficient input supplied 22## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.53. Wrong data format 8 ## # ## G# # # G# # # G# # # # G# # # # # # G# # # # #
2.54. Wrong access to members 27## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.55. Failed to provide access 27## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.56. Deadlock 5 ## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.57. Race 5 ## # ## # # # # # # G# # # # G# # # # # # # # # # #
2.58. Out of Sync 10## # ## # # # # # # G# # # # G# # # # # # # # # # G#
2.59. Lock and release problem 10## # ## # # # # # # G# # # # G# # # # # # # # # # G#

 = Compliant as an essential attribute
G#= Compliant as an optional attribute
#= Non-Compliant

176

Appendix B

Additional Mutation Operators

Table B.1: Mutation Operators for the Three Complex Defect Classes (D3, D4, D5)

Defect mOP Language Element Mutation Construct Example Comment

1. D3 mD3 C, C++, Java TP < if >< (>< expr ><) > if(x > 0)
ST < expr > contains idn x > 0
ST < type >< id >< (> ... < type >< idn > ... <) > void function(int x)
MP < if >< (>< 1 ><) > if(1)

D3: The mutation changes a validation of a function parameter inside the function. The first subject-to condition ensures that a
parameter is validated, and the second condition ensures that it is done inside a function.

2. D4 mD4 C, C++ TP < struct >< type1 >< {> ... < type >< idn > ... <} >
ST < type >< id >< (> ... < type1 >< id1 > ... <) > void Shuffle(Cards cards[])
ST < expr > contains idn
MP // < type >< idn >

3. D4 mD4 Java TP < class >< type1 >< {> ... < public >< type >< idn >
... <} >

ST < type >< id >< (> ... < type1 >< id1 > ... <) > void Shuffle(Cards cards[])
ST < expr > contains idn
MP // < public >< type >< idn >

D4: The mutation creates an insufficient input problem. The first subject-to condition ensures that a composite structure is passed as
a parameter, with the second condition ensuring that the specific value from the parameter is being used inside the function.

4. D5 mD5 C, C++ ST < type >< id1 >< (> ... <) > int ∗ function()
ST < class >< id >< {> ... < public :>< type >< id1 >< (>

... <) > ... <} >
ST < class >< id >< {... < private :> ... < type >< id >

... ><} >
private : int x;

MP < return >< id > return x; Inject.

5. D5 mD5 Java ST < public >< type >< id1 >< (> ... <) > int ∗ function()
ST < private > ... < type1 >< id > ... > private : Item x;
MP < type1 >< id2 ><=>< id >< return >< id2 > Item y = x; return y; Inject.

D5: The mutation injects an improper access to a member entity to outside entitites. For Java, the matter is tricky due to the security
already enforced by its constructs. The reference to a mutable item is created using the assignment which was then used to return the
values, exposing the private member to the outside.

TP = Token Pattern
MP = Mutation Pattern
ST = Subject to the existence of (condition)
<> = Token

177

Table B.2: Mutation Operators Developed for C++

Cls mOP Mutation Example Comment

1. C1 mC1
TP < id ><=>< num ><;> x = 10;

MP< id ><=>< num1 ><;> x = 10 + 99999999999999; num1 = a large number

2. C2 mC2
TP < id >< OP >< num > x < 100; OP = {<,>,<=, >=, ! =

,==}

MP< id >< OP >< num1 >< + >< num2 > x <= 100 + 10; num1 = [1, 10]

3. C3 mC3
TP < type >< id ><=>< num ><;> int x = 0; type =

int|float|double|long

MP< type >< id ><;> int x;

4. L1 mL1
TP < if >< (>< id ><==>< expr ><) > if(id == 10)

MP< if >< (>< id ><=>< expr ><) > if(id = 10)

5. L2 mL2
TP < for >< (> ... < id >< OP1 >< num > ... <) > for(x = 0; x < 100; x+ +) {OP1,OP2} = {<,>},{>

,<},

MP< for >< (> ... < id >< OP2 >< num > ... <) > for(x = 0; x > 100; x+ +) {<=, >=},{>=, <=},{<
,<=}

6. L3 mL3
TP < for >< (> ... < id >< OP1 ><) > for(x = 0; x < 100; x+ +) {OP1,OP2} =

{++,−−},{−−,++}

MP< for >< (> ... < id >< OP2 ><) > for(x = 0; x < 100; x−−)

7. L5 mL5
TP N/A

MP< type >< id >; intx;

8. L6 mL6
TP N/A N/A Inject.

MP< try >< {>< throw >< new >< type ><} ><
catch >< (>< type1 >< id ><) >

try{throw new MyException}
catch(Exception e)

9. L7 mL7
TP < if >< (> ... <) > if(x < 100)

MP< if >< (1) > if(1)

10. M1mM1
TP < id ><=>< new >< type >< [>< num ><

] ><;>
p = newchar[100];

MP< id ><=>< 0 > p = 0;

11. M2mM2
TP < delete >< id ><;> delete p;

MP< delete >< id ><;>< delete >< id ><;> delete p; delete p;

12. M3mM3
TP < delete >< id ><;> delete p;

MP< / >< / >< delete >< id ><;> //delete p;

13. M4mM4
TP < id >< [>< num ><] > p[30];

MP< id >< [>< num >< + >< num1 ><] > p[30+10];

14. D1 mD1
TP < id >< (>< id1 ><,>< id2 > ... <,>< idn ><

) >
function(x, y, z);

MP< id >< (>< id1 ><,>< id1 > ... <,>< id1 ><
) >

function(x, x, x);

15. D2 mD2
TP < id >< (> ... < num > ... <) > function(10, 20, 30);

MP< id >< (> ... < num1 > ... <) > function(10, 0, 30);

Cls = Defect Class mOP = Mutation Operator
TP = Token Pattern MP = Mutation Pattern
<> = Token

178

Table B.3: Mutation Operators Developed for Java

Cls mOP Mutation Example Comment

1. C1 mC1
TP < id ><=>< num ><;> x = 10;

MP< id ><=>< num1 ><;> x = 10 + 99999999999999; num1 = a large number

2. C2 mC2
TP < id >< OP >< num > x < 100; OP = {<,>,<=, >=, ! =

,==}

MP< id >< OP >< num1 >< + >< num2 > x <= 100; num1 = [1, 10]

3. C3 mC3
TP < type >< id ><=>< num ><;> int x = 0; type =

int|float|double|long

MP< type >< id ><;> int x;

4. L1 mL1
TP < if >< (>< id ><==>< expr ><) > if(id == 10)

MP< if >< (>< id ><=>< expr ><) > if(id = 10)

5. L2 mL2
TP < for >< (> ... < id >< OP1 >< num > ... <) > for(x = 0; x < 100; x+ +) {OP1,OP2} = {<,>},{>

,<},

MP< for >< (> ... < id >< OP2 >< num > ... <) > for(x = 0; x > 100; x+ +) {<=, >=},{>=, <=},{<
,<=}

6. L3 mL3
TP < for >< (> ... < id >< OP1 ><) > for(x = 0; x < 100; x+ +) {OP1,OP2} =

{++,−−},{−−,++}

MP< for >< (> ... < id >< OP2 ><) > for(x = 0; x < 100; x−−)

7. L5 mL5
TP N/A

MP< type >< id >; intx;

8. L6 mL6
TP N/A N/A Inject.

MP< try >< {>< throw >< new >< type ><} ><
catch >< (>< type1 >< id ><) >

try{throw new MyException}
catch(Exception e)

9. L7 mL7
TP < if >< (> ... <) > if(x < 100)

MP< if >< (1) > if(1)

10. M1mM1
TP < id ><=>< new >< id >< [>< num ><] ><

;>
p = newchar[100];

MP< id ><=>< 0 > p = 0;

13. M4mM4
TP < id >< [>< num ><] > p[30];

MP< id >< [>< num >< + >< num1 ><] > p[30+10];

14. D1 mD1
TP < id >< (>< id1 ><,>< id2 > ... <,>< idn ><

) >
function(x, y, z);

MP< id >< (>< id1 ><,>< id1 > ... <,>< id1 ><
) >

function(x, x, x);

15. D2 mD2
TP < id >< (> ... < num > ... <) > function(10, 20, 30);

MP< id >< (> ... < num1 > ... <) > function(10, 0, 30);

Cls = Defect Class mOP = Mutation Operator
TP = Token Pattern MP = Mutation Pattern
<> = Token

179

Appendix C

Detailed Evaluation Data

Table C.1: Precision of SRTA in Processing the Test Systems

Detection Data

Firefox Thunderbird Notepad++ Sendmail Linux BlueJ

Class CC IC ND CC IC ND CC IC ND CC IC ND CC IC ND CC IC ND Comment

1. C1 8 2 2 11 2 2 2 0 0 3 1 0 21 5 2 2 0 0

2. C2 7 1 2 13 1 3 0 0 0 1 0 1 12 1 1 1 0 0

3. C3 2 0 0 17 1 4 1 1 0 5 0 1 14 2 3 2 1 0

4. L1 1 0 2 2 1 2 0 0 0 4 2 2 9 2 3 5 1 3

5. L2 1 1 2 0 0 0 0 0 0 0 0 0 7 1 2 1 0 0

6. L3 0 0 0 0 0 0 0 0 0 0 0 0 8 2 2 3 0 0

7. L5 0 0 0 3 0 2 2 0 1 2 0 1 28 0 9 1 1 0

8. L6 0 0 0 0 0 0 0 0 0 0 0 0 3 0 1 1 0 0

9. L7 2 0 1 1 0 0 1 0 0 0 0 0 0 0 0 2 1 1

10. M1 12 2 3 1 1 1 1 1 0 2 1 2 68 8 17 6 0 1

11. M2 2 0 1 1 0 0 0 0 0 0 0 0 3 0 1 - - -

12. M3 4 1 1 6 0 3 1 0 0 1 1 0 87 5 26 - - -

13. M4 6 0 2 3 0 1 0 0 0 3 1 1 102 12 46 4 1 1

14. D1 0 0 0 0 0 0 0 0 0 1 1 0 9 3 9 2 1 0

15. D2 0 0 0 0 0 0 0 0 2 0 0 1 7 5 1 1 0 1

16. D3 19 4 4 0 0 0 1 0 0 2 0 2 18 2 2 3 1 0

17. D4 1 0 1 0 0 0 0 0 0 0 0 0 4 0 1 0 0 0

18. D5 0 0 0 0 0 0 1 0 0 0 0 0 6 0 0 0 0 0

Precision

Firefox Thunderbird Notepad Sendmail Linux BlueJ

Class PS PL FP PS PL FP PS PL FP PS PL FP PS PL FP PS PL FP Comment

1. C1 0.67 0.83 0.17 0.73 0.87 0.13 1.00 1.00 0.00 0.75 1.00 0.00 0.75 0.93 0.07 1.00 1.00 0.00

2. C2 0.70 0.80 0.20 0.76 0.82 0.18 - - - 0.50 0.50 0.50 0.86 0.93 0.07 1.00 1.00 0.00

3. C3 1.00 1.00 0.00 0.77 0.82 0.18 0.50 1.00 0.00 0.83 0.83 0.17 0.74 0.84 0.16 0.67 1.00 0.00

4. L1 0.33 0.33 0.67 0.40 0.60 0.40 - - - 0.50 0.75 0.25 0.64 0.79 0.21 0.56 0.67 0.33

5. L2 0.25 0.50 0.50 - - - - - - - - - 0.70 0.80 0.20 1.00 1.00 0.00

6. L3 - - - - - - - - - - - - 0.67 0.83 0.17 1.00 1.00 0.00

7. L5 - - - 0.60 0.60 0.40 0.67 0.67 0.33 0.67 0.67 0.33 0.76 0.76 0.24 0.50 1.00 0.00

8. L6 - - - - - - - - - - - - 0.75 0.75 0.25 1.00 1.00 0.00

9. L7 0.67 0.67 0.33 1.00 1.00 0.00 1.00 1.00 0.00 - - - - - - 0.50 0.75 0.25

10. M1 0.71 0.82 0.18 0.33 0.67 0.33 0.50 1.00 0.00 0.40 0.60 0.40 0.73 0.82 0.18 0.86 0.86 0.14

11. M2 0.67 0.67 0.33 1.00 1.00 0.00 - - - - - - 0.75 0.75 0.25 - - -

12. M3 0.67 0.83 0.17 0.67 0.67 0.33 1.00 1.00 0.00 0.50 1.00 0.00 0.74 0.78 0.22 - - -

13. M4 0.75 0.75 0.25 0.75 0.75 0.25 - - - 0.60 0.80 0.20 0.64 0.71 0.29 0.67 0.83 0.17

14. D1 - - - - - - - - - 0.50 1.00 0.00 0.43 0.57 0.43 0.67 1.00 0.00

15. D2 - - - - - - 0.00 0.00 1.00 0.00 0.00 1.00 0.54 0.92 0.08 0.50 0.50 0.50

16. D3 0.70 0.85 0.15 - - - 1.00 1.00 0.00 0.50 0.50 0.50 0.82 0.91 0.09 0.75 1.00 0.00

17. D4 0.50 0.50 0.50 - - - - - - - - - 0.80 0.80 0.20 - - -

18. D5 - - - - - - 1.00 1.00 0.00 - - - 1.00 1.00 0.00 - - -

CC = Detected under the Correct Class PS = Precision (Strict Estimation)

IC = Detected under Incorrect Class PL = Precision (Lenient Estimation)

ND = Detected, but not a defect FP = False Positive Rate

180

Table C.2: SRTA’s Recall Assessment from the Mutation-Injection Experiment

Detection Count Recall

Sendmail BlueJ Sendmail BlueJ

Defect mOP Mutants CC IC ND CC IC ND RS RL FN RS RL FN Comment

1. C1 mC1 1000 896 0 104 892 12 96 0.89 0.89 0.11 0.89 0.90 0.10

2. C2 mC2 1000 856 52 92 857 17 126 0.86 0.91 0.09 0.86 0.87 0.13

3. C3 mC3 1000 878 0 122 780 8 212 0.88 0.88 0.12 0.78 0.79 0.21

4. L1 mL1 1000 619 112 269 634 12 354 0.62 0.73 0.27 0.63 0.64 0.36

5. L2 mL2 1000 773 103 124 812 36 152 0.77 0.88 0.12 0.81 0.85 0.15

6. L3 mL3 1000 711 81 208 732 21 257 0.71 0.79 0.21 0.73 0.75 0.25

7. L5 mL5 1000 726 127 147 691 19 290 0.73 0.85 0.15 0.69 0.71 0.29

8. L6 mL6 1000 667 187 146 751 18 231 0.67 0.85 0.15 0.75 0.77 0.23

9. L7 mL7 1000 794 166 40 791 6 203 0.79 0.96 0.04 0.79 0.80 0.20

10. M1 mM1 1000 815 68 117 896 2 102 0.82 0.88 0.12 0.90 0.90 0.10

11. M2 mM2 1000 791 89 120 - - - 0.79 0.88 0.12 - - -

12. M3 mM3 1000 839 76 85 - - - 0.84 0.92 0.08 - - -

13. M4 mM4 1000 817 81 102 890 42 68 0.82 0.90 0.10 0.89 0.93 0.07

14. D1 mD1 1000 709 98 193 729 10 261 0.71 0.81 0.19 0.73 0.74 0.26

15. D2 mD2 1000 751 102 147 672 9 319 0.75 0.85 0.15 0.67 0.68 0.32

16. D3 mD3 1000 618 162 220 599 100 301 0.62 0.78 0.22 0.60 0.70 0.30

17. D4 mD4 1000 702 119 179 753 152 95 0.70 0.82 0.18 0.75 0.91 0.09

18. D5 mD5 1000 686 139 175 594 103 303 0.69 0.83 0.17 0.59 0.70 0.30

Average 1000 758 98 144 782 32 187 0.76 0.86 0.14 0.78 0.81 0.19

mOP = Mutation Operator RS = Recall (Strict Estimation)

CC = Detected under Correct Class RL = Recall (Lenient Estimation)

IC = Detected under Incorrect Class FN = False Negative

ND = Not Detected

Table C.3: SRTA’s Recall Assessment by Application on BugBench

Detection Data

bc cvs gzip man ncompress polymorph squid

Class CC IC ND CC IC ND CC IC ND CC IC ND CC IC ND CC IC ND CC IC ND Comment

1. L3 - - - - - - - - - 1 0 0 - - - - - - - - -

2. M2 - - - 1 0 0 - - - - - - - - - - - - - - -

3. M4 3 1 0 - - - 1 0 0 0 0 1 1 0 0 1 1 0 1 0 0

Recall

bc cvs gzip man ncompress polymorph squid

Class RC RL FN RC RL FN RC RL FN RC RL FN RC RL FN RC RL FN RC RL FN Comment

1. L3 - - - - - - - - - 1.00 1.00 0.00 - - - - - - - - -

2. M2 - - - 1.00 1.00 0.00 - - - - - - - - - - - - - - -

3. M4 0.75 1.00 0.00 - - - 1.00 1.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.50 1.00 0.00 1.00 1.00 0.00

Avg 0.75 1.00 0.00 1.00 1.00 0.00 0.50 1.00 0.00 0.50 0.50 0.50 1.00 1.00 0.00 0.50 1.00 0.00 1.00 1.00 0.00

CC = Detected under correct class RC = Recall (Strict Estimation)

IC = Detected under Incorrect Class RL = Recall (Lenient Estimation)

ND = Not Detected FN = False Negative

181

Table C.4: Comparison of SRTA’s Precision with UNO, FindBugs and SPLINT Using Experimental
Data

Tool SRTA

Tool System Language LOC Class CC IC ND PS PL FP CC IC ND PS PL FP Comment

1. UNO Sendmail-8.12.11 C 102k C3 3 0 1 0.75 0.75 0.25 5 0 1 0.83 0.83 0.17 SRTA: Table C.1

M1 2 0 2 0.00 0.00 1.00 2 1 2 0.40 0.60 0.40 SRTA: Table C.1

M4 4 0 3 0.25 0.25 0.75 3 1 1 0.60 0.80 0.20 SRTA: Table C.1

2. Findbugs BlueJ-3.0.9 Java 86k C1 2 0 0 1.00 1.00 0.00 2 0 0 1.00 1.00 0.00

C2 1 0 0 1.00 1.00 0.00 1 0 0 1.00 1.00 0.00

C3 2 0 1 0.67 0.67 0.33 2 1 0 0.67 1.00 0.00

L1 5 0 2 0.71 0.71 0.29 5 1 3 0.56 0.67 0.33

L3 2 0 1 0.67 0.67 0.33 3 0 0 1.00 1.00 0.00

L5 1 0 0 1.00 1.00 0.00 1 1 0 0.50 1.00 0.00

L7 2 0 1 0.67 0.67 0.33 2 1 1 0.50 0.75 0.25

M1 4 0 1 0.80 0.80 0.20 6 0 1 0.86 0.86 0.14

D1 2 0 2 0.50 0.50 0.50 2 1 0 0.67 1.00 0.00

D2 1 0 2 0.33 0.33 0.67 1 0 1 0.50 0.50 0.50

D3 3 0 1 0.75 0.75 0.25 3 1 0 0.75 1.00 0.00

3. SPLINT Sendmail-8.12.11 C 102k M1 1 0 1 0.50 0.50 0.50 2 1 2 0.40 0.60 0.40 SRTA: Table C.1

M2 0 0 0 - - - 0 0 0 - - - None was present

M3 3 0 3 0.50 0.50 0.50 1 1 0 0.50 1.00 0.00 SRTA: Table C.1

M4 5 0 8 0.38 0.38 0.62 3 1 1 0.60 0.80 0.20 SRTA: Table C.1

CC = Detected under Correct Class PS = Precision (Strict Estimation)

IC = Detected under Incorrect Class PL = Precision (Lenient Estimation)

ND = Not a Defect FP = False Positive

Table C.5: Comparison of SRTA’s Recall with UNO, FindBugs and SPLINT Using Experimental
Data

Tool SRTA

Tool System Lang. LOC Class mOP Count CC IC ND RS RL FN CC IC ND RS RL FN Comment

1. UNO Sendmail-8.12.11 C 102k C3 mC3 1000 661 0 339 0.66 0.66 0.34 896 0 104 0.88 0.88 0.12 SRTA: Table C.2

M1 mM1 1000 434 0 366 0.43 0.43 0.37 815 68 117 0.82 0.88 0.12 SRTA: Table C.2

M4 mM4 1000 5 0 1000 0.00 0.00 1.00 817 81 102 0.82 0.90 0.10 SRTA: Table C.2

2. FindBugs BlueJ-3.0.9 Java 86k C1 mC1 1000 896 0 104 0.90 0.90 0.10 892 12 96 0.89 0.90 0.10

C2 mC2 1000 871 0 129 0.87 0.87 0.13 857 17 126 0.86 0.87 0.13

C3 mC3 1000 792 0 208 0.79 0.79 0.21 780 8 212 0.78 0.79 0.21

L1 mL1 1000 681 0 319 0.68 0.68 0.32 634 12 354 0.63 0.64 0.36

L3 mL3 1000 702 0 298 0.70 0.70 0.30 732 21 257 0.73 0.75 0.25

L5 mL5 1000 698 0 302 0.70 0.70 0.30 751 18 769 0.69 0.71 0.29

L7 mL7 1000 678 0 322 0.68 0.68 0.32 791 6 203 0.79 0.80 0.20

M1 mM1 1000 887 0 113 0.88 0.88 0.12 896 2 102 0.90 0.90 0.10

D1 mD1 1000 652 0 348 0.65 0.65 0.35 729 10 261 0.73 0.74 0.26

D2 mD2 1000 791 0 209 0.79 0.79 0.21 672 9 319 0.67 0.68 0.32

D3 mD3 1000 772 0 228 0.77 0.77 0.23 599 100 301 0.60 0.70 0.30

3. SPLINT Sendmail-8.12.11 C 102k M1 mM1 1000 609 0 391 0.61 0.61 0.39 815 68 117 0.82 0.88 0.12 SRTA: Table C.2

M2 mM2 1000 568 0 432 0.57 0.57 0.43 791 89 120 0.79 0.88 0.12 SRTA: Table C.2

M3 mM3 1000 602 0 398 0.60 0.60 0.40 839 76 84 0.84 0.92 0.08 SRTA: Table C.2

M4 mM4 1000 507 0 493 0.51 0.51 0.49 817 81 102 0.82 0.90 0.10 SRTA: Table C.2

CC = Detected under Correct Class RS = Recall (Strict Estimation)

IC = Detected under Incorrect Class RL = Recall (Lenient Estimation)

ND = Not a Defect FN = False Negative

182

