
Experience Requirements

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

David J. Callele

c©David J. Callele, February/2011. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Video game development is a high-risk effort with low probability of success. The in-

teractive nature of the resulting artifact increases production complexity, often doing so in

ways that are unexpected. New methodologies are needed to address issues in this domain.

Video game development has two major phases: preproduction and production. During

preproduction, the game designer and other members of the creative team create and capture

a vision of the intended player experience in the game design document. The game design

document tells the story and describes the game – it does not usually explicitly elaborate all

of the details of the intended player experience, particularly with respect to how the player

is intended to feel as the game progresses. Details of the intended experience tend to be

communicated verbally, on an as-needed basis during iterations of the production effort.

During production, the software and media development teams attempt to realize the pre-

production vision in a game artifact. However, the game design document is not traditionally

intended to capture production-ready requirements, particularly for software development.

As a result, there is a communications chasm between preproduction and production ef-

forts that can lead to production issues such as excessive reliance on direct communication

with the game designer, difficulty scoping project elements, and difficulty in determining

reasonably accurate effort estimates.

We posit that defining and capturing the intended player experience in a manner that is

influenced and informed by established requirements engineering principles and techniques

will help cross the communications chasm between preproduction and production. The

proposed experience requirements methodology is a novel contribution composed of:

1. a model for the elements that compose experience requirements,

2. a framework that provides guidance for expressing experience requirements, and

3. an exemplary process for the elicitation, capture, and negotiation of experience re-

quirements.

Experience requirements capture the designer’ s intent for the user experience; they

ii

represent user experience goals for the artifact and constraints upon the implementation

and are not expected to be formal in the mathematical sense. Experience requirements

are evolutionary in intent – they incrementally enhance and extend existing practices in a

relatively lightweight manner using language and representations that are intended to be

mutually acceptable to preproduction and to production.

iii

Acknowledgements

I would like to take this opportunity to acknowledge the many people who have helped

me to complete this work.

First and foremost I would like to thank Dr. Eric Neufeld for his strength and patience

over the many years it took to complete this degree. I have learned far more than I ever

expected from you and you will always have a special place in my heart. You dealt with

three different thesis topics and never once did you complain. You always gave me good

advice – in retrospect I wish I had taken more of it to heart earlier than I did.

I would like to thank Dr. Kevin Schneider for agreeing to be my co-supervisor once I had

embraced topic number three. You helped me to understand the perspectives taken by soft-

ware engineering academia, no matter how unusual they seemed to me on first introduction.

Your guidance has been greatly appreciated.

My thanks to the remaining members of my final committee: Dr. Mark Keil, Dr. Chan-

chal Roy, Dr. Ron Bolton (Cognate), Dr. Samira Sadaoui (External), and Dr. Mark Eramian

(Chair).

To the other members of my committees over the years, official and unofficial, my grati-

tude is yours.

Dedication

Completing this thesis was very challenging. I worked (at least) full time during the entirety

of the thesis, often supplementing my daytime income with contract work in the evenings.

I was a single parent during much of this time and all of the thesis work was done in what

I could facetiously describe as my “spare time”. I had three different thesis topics – I

was beaten to publishing on the first topic, and I was not “at the right University” to get

published on the second topic. However, “third time is the charm” and I have achieved

success with this work.

I dedicate this thesis to my family and friends who stood by me through all of these

iv

challenges.

Most particularly, I dedicate this thesis to my first wife Michele, who passed away from

cancer about five years before I started my studies, and to our daughter Yasmin, who has

grown up watching her Dad working on homework every night, just like her.

I was blessed to fall in love a second time, and even though our marriage ended, I want

to thank Mary for her support in facing many of life’s challenges before starting the thesis

and for her support during the early stages of the thesis.

Finally, I dedicate this thesis to those family members who passed away during the course

of my studies and won’t be able to be there to celebrate with me as I become the first in our

family to receive their doctorate. I miss you still and I will remember you always. . .

Michele Moore Feb. 20, 1961 – Feb. 12, 1995 Wife
Rose Lewis Aug. 20, 1926 – Mar. 2, 1999 Aunt
Sue Andre Oct. 4, 1917 – Dec. 4, 2003 Aunt
Josephine Hassen Feb. 6, 1935 – June 25, 2004 Aunt
Mary Harris May 31, 1919 – July 19, 2005 Aunt
Len Lewis Oct. 11, 1916 – June 3, 2005 Uncle
Michael Wandzura Nov. 3, 1930 – June 13, 2006 Cousin
Victor Held June 14, 1935 – Feb. 7, 2008 Uncle
Raymond (Bob) Schwab Sept. 25, 1951 – Feb. 29, 2008 Cousin
Lynn Callele Sept. 30, 1960 – Apr. 18, 2008 Sister
John Callele July 17, 1931 – Sept. 16, 2008 Father
Catherine Callele Oct. 12, 1931 – Jan. 5, 2009 Aunt
Francis Niemeier Oct. 14, 1947 – Jan. 15, 2009 Cousin
Charles Held July 10, 1914 – Mar. 18, 2009 Cousin
Tony Andre Feb. 2, 1925 – Mar. 4, 2010 Uncle

And to the many other family members who passed away before I started this work –

you are always in our hearts, thoughts, and prayers.

With love to you all, and with tears in my eyes, thank you for all your love and support.

David Callele

v

Contents

Permission to Use i

Abstract ii

Acknowledgements iv

Contents vi

List of Tables xi

List of Figures xii

1 Introduction 1
1.1 Problem Identification, Statement and Investigation: Chapter 2 2
1.2 Introducing Emotional Requirements: Chapters 3, 4 5
1.3 Security Requirements and Emotional Requirements: Chapters 5, 6 6
1.4 Extending the Experience Requirements Framework: Chapters 7, 8 8
1.5 Experience Requirements and Cognitive Gameplay Requirements: Chapters 9, 10 12
1.6 Implementation: Chapter 11 . 16
1.7 Guide to the Document . 16

2 Requirements Engineering and the Creative Process in the Video Game
Industry 17
2.1 Introduction . 18
2.2 Background . 19

2.2.1 Emotional Factors . 20
2.2.2 Language and Ontology . 21
2.2.3 Elicitation, Feedback and Emergence 21

2.3 Video Game Development . 22
2.3.1 Development Process . 22
2.3.2 The Game Design Document . 23

2.4 The Transition from Preproduction to Production 24
2.5 Review of Postmortem Columns . 25
2.6 Examples From Real Games . 29

2.6.1 Documentation Transformation . 29
2.6.2 Implication . 30
2.6.3 Evaluation . 36

2.7 Summary and Conclusions . 36
2.8 Challenges for Requirements Engineering . 38

2.8.1 Media and Technology . 38
2.8.2 The Importance of NFRs . 39

vi

2.8.3 Gameplay . 39
2.9 Future Work . 40
2.10 Acknowledgements . 40

3 Emotional Requirements in Video Games 41
3.1 Introduction . 42
3.2 Related Work . 43
3.3 Emotional Requirements . 43

3.3.1 Designer Intent . 44
3.3.2 Artistic Context . 45

3.4 Representing Emotional Requirements . 47
3.5 Summary and Future Work . 49

4 Emotional Requirements 50
4.1 Introduction . 50
4.2 Requirements Challenges . 51
4.3 Induced Emotional Requirements . 52

4.3.1 Representation . 52
4.3.2 Cultural Conditioning . 53

4.4 Contextual Information Requirements . 53
4.4.1 Positional . 53
4.4.2 Temporal . 54
4.4.3 Relational . 55

4.5 Conclusions . 55

5 Balancing Security Requirements and Emotional Requirements in Video
Games 56
5.1 Introduction . 57
5.2 Related Work . 58
5.3 Evaluating Threats . 58
5.4 Resolving Requirement Conflicts . 59
5.5 Summary and Future Work . 60

6 Requirements in Conflict: Player vs. Designer vs. Cheater 61
6.1 Introduction . 62
6.2 Stakeholders . 63

6.2.1 Producers . 64
6.2.2 Consumers . 65
6.2.3 An Example . 65
6.2.4 The Exception to the Rule . 66

6.3 Related Work . 67
6.3.1 Security Requirements . 67
6.3.2 Misuse, Abuse, and Anti-Requirements 67
6.3.3 Threats and Attacks . 68
6.3.4 Player Types . 68

vii

6.3.5 Cheating . 68
6.3.6 Grief Play and Griefers . 69
6.3.7 Emotions in Requirements . 70
6.3.8 Negotiating Requirements . 70

6.4 Security and Video Games . 70
6.5 The Player’s Perspective . 73

6.5.1 Alternative Play as Threat . 74
6.6 The Developer’s Perspective . 75
6.7 A Process . 77
6.8 Resolving Requirement Conflicts . 77
6.9 Summary and Future Work . 79

7 Augmenting Emotional Requirements with Emotion Markers and Emo-
tion Prototypes 81
7.1 Introduction . 82
7.2 Elicitation and Capture . 84
7.3 Specifying Emotional Requirements . 85
7.4 Conclusions . 86

8 Visualizing Emotional Requirements 87
8.1 Introduction . 88
8.2 Related Work . 90

8.2.1 Storyboards . 90
8.2.2 Film Studies and Cognitive Psychology 90

8.3 Emotion Prototypes and Markers . 91
8.4 Scenario Concept . 92
8.5 Designing the Player Experience . 94

8.5.1 Emotions and Emoticons . 95
8.6 Generating the Emotional Intensity Map . 97
8.7 From Requirements to Design and Implementation 100

8.7.1 Difficulty and Emotional State . 101
8.7.2 Constraints on Emotional Requirements 102

8.8 The Final Product . 103
8.9 Elicitation and Capture . 104
8.10 Specifying Emotional Requirements . 106
8.11 Conclusions . 107
8.12 Future Work . 108

9 An Introduction To Experience Requirements 110
9.1 Introduction . 111
9.2 Experience Requirements . 111
9.3 A Model . 112
9.4 Potential Benefits . 113
9.5 Experience Requirements in Video Games 114
9.6 Conclusions and Future Work . 115

viii

10 A Proposal for Cognitive Gameplay Requirements 116
10.1 Introduction . 117
10.2 Gameplay Requirements . 119
10.3 Related Work . 120
10.4 Cognitive Engagement in Games . 122
10.5 Field Observations of Gameplay Design . 123

10.5.1 General Design . 124
10.5.2 Observations on the Review Meeting 126
10.5.3 Gameplay 1: Platform Maze . 127
10.5.4 Gameplay 2: Sliding Walls . 130
10.5.5 Gameplay 3: Shifting Sands . 131
10.5.6 Summary . 132

10.6 The Elements of Cognitive Gameplay Requirements 133
10.6.1 Preconditions . 135
10.6.2 Cognitive Challenge . 137
10.6.3 Post-Conditions . 138

10.7 Conclusions . 140
10.8 Future Work . 140

11 Physualization: Going Beyond Paper Prototyping 142
11.1 Introduction . 143
11.2 Physualization . 143
11.3 Session Goals . 144
11.4 Session Results . 145
11.5 Resources and Tools . 145
11.6 Questions for Consideration . 146
11.7 Leading a Session . 146
11.8 Some Examples . 147
11.9 Other Work of Interest . 150

11.9.1 Printed Materials . 150
11.9.2 Physical Visualizations . 151
11.9.3 YouTube Videos . 151

12 Applying Experience Requirements and Conclusions 154
12.1 Windblown Adventure . 154
12.2 First Person Shooter (FPS) . 161
12.3 Negotiating Requirements at Runtime . 162

12.3.1 An Exemplary Dispute Resolution Process 164
12.3.2 Player vs. Griefer . 165
12.3.3 Player vs. Publisher . 167
12.3.4 Summary . 169

12.4 Conclusions . 170

References 173

ix

A Emotional Requirements Definition 182

x

List of Tables

2.1 Documentation Transformation . 29

6.1 Emotional Requirements . 71

11.1 Requirements Tasks . 144

xi

List of Figures

2.1 Video game development . 23
2.2 Observational Report Analysis . 27
2.3 Correlation Within a Project . 28
2.4 Akeladoor Puzzle Description, used with permission 32
2.5 Pyramid Puzzle Description, used with permission 34
2.6 Pyramid puzzle prototype, used with permission 35

3.1 First-Person Shooter (a) and Racing Game (b) designs, used with permission 44
3.2 Emotional intensity timeline . 47
3.3 Representing emotional requirements . 48

4.1 Far Vista Studios (www.farvistastudios.com) Run the Gauntlet in-game pro-
motional scenes: The players environment might promote feelings of fear,
relief, or elation. (used with permission) . 52

4.2 An emotional timeline for Far Vista Studios Run the Gauntlet. (used with
permission) . 54

6.1 Generic Video Game Architecture . 72

7.1 Sniper scenario emotional intensity map. Black fill denotes safety, white fill
denotes danger, pattern fill indicates possible locations for emotion markers.
Emoticons represent player emotion. 83

8.1 Sniper scenario pre-visualizations. The upper image is a plan view of the
scene, the lower image is a minimum cost 3D rendering. 93

8.2 Top: A selection of typical emoticons from the EmotRG font. Bottom: Sketch
artist cartoon face samples. Authors unknown. 96

8.3 Sniper scenario emotional intensity map. Black denotes safety, white denotes
danger. 98

8.4 Color in emotional intensity maps . 99
8.5 Sniper scenario emotional intensity map. Pattern fill indicates possible loca-

tions for emotion markers. 101
8.6 Gameplay difficulty in the emotional intensity map. White denotes danger,

black denotes safety. From the top, an easy path, a difficult path, and a
complex path. 102

8.7 Late prototype, plan view. Black arrow indicates Runner danger zone, white
arrows indicate possible Sniper positions. 103

8.8 Three perspectives: (a)Isometric View, (b) Sniper View, (c) Runner View . . 104

10.1 Desert Puzzle concept sketches . 125
10.2 Platform maze concept sketch . 128
10.3 Platform maze design sketches . 129

xii

11.1 Starting to physualize . 148
11.2 Simple gameplay scenarios . 152
11.3 Other game requirements . 153

12.1 Windblown Game Level Design . 155
12.2 Windblown Game Design Review . 155
12.3 WindBlown Adventure Emotional Journey 156
12.4 Windblown Design Review Details . 157
12.5 Capturing the gameplay experience . 158
12.6 Experience requirement production guidance 159
12.7 First-person shooter experience requirements 160
12.8 Emotional requirements . 163

xiii

Chapter 1

Introduction

This manuscript thesis collects a set of publications that together investigate unique soft-

ware production problems in the videogame industry then proposes experience requirements

as a solution model, framework and methodology in response.

The addressed problem can be succinctly summarized. Modern videogames are a com-

plex software artifact subject to significant technical restrictions. However, the appeal, and

subsequent economic success, of the finished product is also dependent on the experience

that it provides to its users. In practice, videogame development has two major but distinct

phases: preproduction and production. Preproduction predominantly involves (so-called)

creative personnel who brainstorm to capture a vision of the intended player experience in

a game design document.

Production receives this document and media and software teams then attempt to realize

the creative vision in a technological artifact - a piece of software. However, given the

different perspectives of the members of the two teams and how such documents are presently

written, many of the experiential features of the game are challenging for those charged with

implementation. Generally, vagaries in the game design document are resolved verbally

as needed. However, communications between preproduction and production breaks down,

leading to production issues such as excessive reliance on direct communication with the

game designer, difficulty scoping project elements, and difficulty in determining reasonably

accurate effort estimates.

Collocating both teams and intertwining the phases may be a solution, but it may not

always be practical, possible, or even desirable (for many reasons that are outside of the

domain of this work). The present work argues that Experience Requirements (ER), a

general term for a variety of methodologies introduced herein to help designers to better

1

capture the intended player experience in the game design document, can greatly mitigate

these problems. After an initial investigation of the problem, the early papers sketch a

methodology that provides a model for the elements that compose experience requirements,

creates a framework that provides guidance for expressing experience requirements, and

demonstrates an exemplary process for the elicitation, capture, and negotiation of experience

requirements. The subsequent papers refine and extend this methodology, demonstrate its

viability, and point the direction to future deployment.

1.1 Problem Identification, Statement and Investiga-

tion: Chapter 2

Video games are a special type of multimedia entertainment application. Unlike movies,

for example, they require active participation by the user, and this ability of the game to

interact creates value for the player. It is difficult to formally draw boundaries between

entertainment categories, or even play categories, but we assume a common understanding

of the nature of this genre.

Games are developed by multi-disciplinary teams, the software engineering process in

video game development is not clearly understood, and the development of reliable prac-

tices and processes for this domain is hindered by these complexities. The importance of

nonfunctional requirements, such as entertaining the user, create unusual demands for the

Requirements Engineering (RE) process, particularly if the team is relying upon RE methods

from the productivity domain. Requirements like ”fun” and ”absorbing” are not well un-

derstood concepts in requirements engineering, compounding communication issues between

game designers and software engineers. More practically, RE relies upon domain experts to

resolve particular communications issues. Complicating matters is the breadth of knowledge

required: game designers may not understand, for example, the limitations of artificial intel-

ligence when designing non-player characters, while software engineers may not understand

the creative vision or they may be too willing to compromise vision to ship the product.

Requirements engineering – the systematic analysis of requirements – within a commu-

2

nity of common interest is difficult. Quantifying, communicating and capturing stakeholder

wants and needs is not an exact science. Zave [113] classifies the problems addressed by

requirements engineering, defining the domain, in part, as “. . . translation from informal

observations of the real world to mathematical specification languages.” Traditional require-

ments engineering techniques [51, 92] assume these communications issues can be overcome

in a few iterations.

In game development, this is true in only a limited way. Many of the tasks (such as

artwork or animation) do not have reasonable translations to a mathematical specification

language and the problem may be further exacerbated by the diverse backgrounds of different

participants in the videogame enterprise.

To quantify our understanding of this problem, we began with the Postmortem columns in

Game Developer magazine [8], some of which are extracted in POSTMORTEMS from Game

Developer [39], as a source of observational reports. The purpose of the Postmortem column

is to help developers understand what succeeded and what failed in a particular venture.

We analyzed 50 such reports, published between May 1999 and June 2004 to identify factors

that led to success or failure. The analysis suggested that project management issues are

the greatest contributors to success or failure, and that in the case of failure, many of these

issues can be traced back to inadequate requirements engineering during the transition from

preproduction to production – an observation that motivated this work. Our study [16] also

identified the need to solve three problems:

1. Documentation must be transformed from its preproduction form to a form that can

be used as a basis for production.

2. It must be possible to identify implicit information in preproduction documents and

make it sufficiently explicit that production decisions can be made.

3. It is necessary to be able to apply domain knowledge to preproduction without hin-

dering the creative process, particularly knowledge of constraints.

Three examples from real video games provided further evidence of the importance of

properly managing the transition from preproduction to production. They illustrated the

3

challenges associated with transforming preproduction documents to production documents,

the importance of detecting implied information as early as possible, and the effects of

applying a priori knowledge from the production domain to the transition from preproduction

to production.

For example, the Pyramid Puzzle investigated in this work showed that when early

versions of preproduction documentation are fed forward to the production team then the

production team may be able to provide important feedback to the preproduction team.

This communication cycle enabled earlier identification of emergent requirements and pro-

duction constraints and may improve the reliability of the transition from preproduction

to production. However, the introduction of production personnel into the preproduction

process may have a negative effect on the creativity of the preproduction team, as the two

groups may have different goals.

A game design document typically contains significant quantities of implicit information.

In the study, we argued that requirements engineers can identify at least three kinds of

implication: those implications that would be derived by nearly all readers, the implications

that would be made by those with experience with the genre, and the implications that would

be made by those with deep knowledge of implementation details of the target architecture.

A common language [52, 105], ontology [60, 105, 14], or vision [60] is often mentioned

as the solution to communications issues between disparate stakeholders. We believe that

such a formal process could provide a solution to manage the transition from preproduction

to production. However, rigorous formalism may introduce problems. For instance, imagine

axiomatizing in a formal language the deep concept of a common substance like water that

can be gathered from the ocean into pails, and then poured back. Then imagine teaching

the design and production teams to work within this structure. Our goal is also pragmatic

– while we seek a formal shared communication system, much of it must be lightweight and

easy to learn by stakeholders.

This work also introduced the technique of datamining post mortem reports to investigate

systemic issues with industrial practices.

4

1.2 Introducing Emotional Requirements: Chapters 3, 4

The requirements process introduced at this stage of the research [17] was called emotional

requirements. Requirements engineering for video games has to address a range of func-

tional and nonfunctional requirements, including the player experience: the means by which

the player’s consciousness is cognitively engaged while simultaneously inducing emotional

responses (which became the cue and action in later work (Section 1.4)) [21, 22]. In a later

paper [24], we generalized this idea to experience requirements (Section 1.5) since not all

experiences in a game are necessarily associated with emotions. We will refer to both emo-

tional requirements and experience requirements with the acronym ER, since the meaning

is clear by context.

A preliminary investigation began to identify the components of this kind of requirement.

Emotional requirements were initially defined as a tuple: the emotion that the designer

intended to induce in the player, and the means by which that emotion was induced. Support

for spatial and temporal annotations were included in the notation.

This work used a first-person shooter game as a testbed. A relatively simple scenario

within the game provided insight to the complexity of the general problem: Emotions are

subjective, which makes identifying, specifying and representing them inherently difficult.

Within the context of the first-person shooter example, we investigated the representa-

tional power of emotional terrain maps, emotional intensity maps, and emotion timelines as

visual mechanisms for capturing and expressing emotional requirements. For example, the

designer may wish a player to feel apprehension on entry to a room and emotional terrain

maps and emotional intensity maps lay out experiences and their properties on the two-

dimensional play terrain. Emoticons can also be placed on the terrain to locate a particular

emotional experience, and other annotations may describe associated sound and lighting

artifacts that induce this feeling. The intensity of the experience is visualized by a gradient

on the terrain. Some details may be left unspecified, providing creative opportunities for the

production team. Finally, an emotional intensity timeline is a separate visualization that

plots the intensity of a player’s experience against time.

These contributions generated considerable interest within the requirements engineering

5

community. The initial paper analyzing requirements engineering and the creative process

in the video game industry resulted in an invited article in IEEE Software that introduced

emotional requirements to a wider audience [19].

1.3 Security Requirements and Emotional Requirements:

Chapters 5, 6

In the typical requirements engineering demarcation between Functional Requirements (FRs)

and Non Functional Requirements (NFRs), emotional requirements are considered NFRs.

Identifying and managing interactions between FRs and NFRs, and prioritizing within and

between categories, are common tasks for the domain practitioner.

Stakeholders often have differing opinions on the relative importance of a requirement.

For productivity applications, the set of stakeholders is typically dominated by the users of

the application and their immediate management. The stakeholder domain for video games

must be more diverse. The entertainment aspect of the product means that emotions are

involved and that there may be interactions that are not necessarily logical. In produc-

tivity software, FRs tend to dominate NFRs. However, videogame NFRs such as fun and

entertainment tend to dominate all other requirements in this application domain. In this

work [18, 20], we investigate the effects of introducing a new (and potentially dominant)

class of NFRs into the requirements process. In particular, we look at interactions between

emotional requirements and security requirements in this domain.

Emotional requirements, as originally envisioned, were a constructively motivated, cre-

ative affordance, used to help deliver the intended emotional experience to a willing audience.

All stakeholders were assumed to be similarly constructively motivated, desiring the best en-

tertainment experience that they could achieve. However, further investigation and analysis

suggested emotional requirements contain other challenges.

Not all players are the ‘good guys’. Not everyone plays fair. In fact, a significant num-

ber cheat and, even worse, some of them actively attempt to disrupt or destroy the game

experience for other players. Certain kinds of gamers (cheaters) appear to enjoy a destruc-

6

tive experience – subverting the game experience of other players. If players are deriving

emotional experiences by subverting the game, and ignoring the experiences intended by the

game, the game may also be a commercial failure. We can model these destructive stake-

holders as security threats of a very particular type: they are willing, but apparently hostile

users. This model led to an exploration of the application of emotional requirements to this

unusual stakeholder class.

Sometimes the negative play is a consequence of a bad playing experience. When the

playing experience goes poorly then player emotions, attitudes, motivations, and actions

change dramatically. The player finds that their emotional requirement for fun is not being

met. For example, they may perceive that their efforts to play are being thwarted, they may

feel betrayed by the game, or they may even feel threatened by other players. The player

now views some element(s) of the game playing experience in an adversarial manner. The

exceptions to this model are the griefers, players who participate in the game only for the

purpose of interacting with other players in a negative manner.

Due consideration of security goals is costly and challenging. Furthermore, security re-

quirements can also conflict with the emotional requirements of an immersive play experience.

For example, authentication can be an intrusive operation. However, if a constructive player

perceives that the game is prone to attack by destructive players, they may feel that there

is sufficient justification for the authentication measures.

Moffet et al [74] state that it is not necessary to know the goals of the individual attackers

when performing risk analysis, just what kind of attack they will mount. We look at the

motivation (the why behind the threats, and security in general) and try to determine if

there are emotional requirements that can be met that mitigate the risk factors. Unlike the

general practice of attempting to resolve all conflicting requirements, emotional requirements

may not be resolvable – all that may be achieved is a set of requirements that lead to a state

of constant, small-scale skirmishes between constructive and destructive stakeholders.

The dominant security goal for most video games is ensuring the integrity of the playing

experience. This goal is shared by all constructive stakeholders; Consalvo [30] and oth-

ers [111, 1, 25] have shown that players need to trust the integrity of the game – the same

rules must apply to all participants and their playing experience should never include attacks

7

by other players unless they have agreed to that playing mode.

In practice, “ensuring the integrity of the playing experience” is excessively vague. More

likely, the actual security requirements would be defined by a document of considerable size

defining legal play, and, unlikely to capture every possible scenario. In the end, the problem

may be best resolved by an economic model that justifies the cost of the security requirement

by its corresponding emotional benefit.

This work further contributes to the domain by showing that emotional requirements can

assist the development of security requirements by identifying the motivation behind security

threats. The emotional irritants that motivate the attacks can be addressed proactively,

potentially reducing the magnitude of the risk. Emotional requirements can also be used

to help prioritize security requirements; strong emotional irritants that require low effort to

overcome are the most likely attack vectors. Addressing the high-risk security requirements

identified in this manner should be prioritized during development.

Failure to meet the player’s emotional requirements can lead to market forces that over-

ride security requirements; details are provided in the published work. If the emotional

requirement failures are as a result of cheating or other threats to the integrity of the game

experience, we have suggested that in-game justice systems could allow the players to act

as a self-correcting mechanism in the face of these security failures. The justice system

places emotional requirement negotiation in the hands of the players, providing them with

a framework wherein their own community values can develop.

1.4 Extending the Experience Requirements Frame-

work: Chapters 7, 8

Investigating the relationship between security requirements and emotional requirements

on an appropriate scale was not feasible, and subsequent research returned to the basic

experience requirements formalism and extensions.

Field work done earlier with Far Vista Studios was reviewed, the participants revisited,

and we found that the adoption of emotional requirements at the studio was lower than

8

expected [21, 22]. While the combination of emotional requirements and emotional intensity

maps were useful, the media production team did not find them sufficiently useful to adopt

them because the emotional intensity maps did not indicate how the target emotion was to

be induced or where the inducing elements were located.

We investigated film-making for potential solutions. Storyboards are a well-known tech-

nique that draw heavily from the comic strip genre as a way of sketching key events in a

movie. We considered the possibility of annotating storyboard frames with both text and

emotional intensity maps to better guide the production team. We also reviewed the film-

studies works presented by Plantinga and Smith (eds.) [84], works that looked at film studies

from a cognitive psychology perspective, where practitioners tend to “discuss emotion states

in terms of goals, objects, characteristics, behaviors, judgments, and motivations.” Smith

further notes that the “concepts such as pleasure, and displeasure, and desire used in film

studies are too broad to provide specific insight into how a particular film makes its emotional

appeal at any given moment”, motivating his work toward gaining the desired precision.

These perspectives have strong parallels with our work and we used Smith [100] as the

exemplar for the application of cognitive psychology to film studies and, by extension, to

our work. Much of Smith’s work that is referenced herein is aimed at performing critical

analysis of the emotions in film in a post hoc manner. One of our goals was to use the same

or similar concepts a priori, in the requirements and design phase.

Smith posits that cognitivists believe that we recognize emotions by pattern matching

against emotion prototypes [84, 100]. Emotion prototypes have three characteristics. They

have an object orientation; the emotion is cued, or triggered, by an object or the action

taken by an object. They demonstrate an action tendency; the emotion spurs us to take

some action. Finally, they demonstrate a goal orientation; there is some purpose to the action

that we take. Smith also identifies an emotion marker as something that will engender a brief

burst of emotion but probably does not affect the narrative or underlying story. Emotion

markers can take any form; they may be sounds, scenes, or even dialog. There may be more

than one emotion marker in a given scene and it is expected that one or more of the emotion

markers is the cue or trigger in the emotion prototype.

As a result, the ER formalism was extended to include Smith’s emotion markers as

9

triggers for intended emotions, and Smith’s emotion prototypes to provide further guidance

to a production team.

This resulted in extending the ER formalism to a (cue, action, goal) triple, and also to

the identification of explicit locations for markers, and the development of techniques for

eliciting, capturing and visualizing the requirements. For this work, we collaborated closely

with industry team members, in the spirit of an action research approach.

Although games have less narrative than film, these ideas proved to inform useful re-

finements of experience requirements. The emotion marker generalizes our earlier use of

emoticons by providing information we had previously identified as belong to the artistic

context, better meeting the guidance needs of the production team. The emotion prototype

and the related emotion marker do cause some issues with representation - the extra infor-

mation is not part of the emoticon, it is not necessarily co-located with the emoticon, and

does not appear to have a suitable, generalizable visualization. It may be that integration

with the storyboard, as discussed earlier, is most appropriate.

As a first step, we began to standardize emotion-specific terminology on a per-project

basis. Emoticons and text are both straightforward and compact ways to represent emotions

on diagrams. We used Parrott’s [83] classification as a starting point, but expect practitioners

to adopt whatever classification meets their needs. Game designers were presented with this

classification and asked to identify the intended emotions for a scenario. Not surprisingly,

experience with the team showed that what Parrott calls basic and secondary emotions are

relatively easy to work with, but the so-called tertiary emotions require significant context,

and probably some experience, for proper interpretation. However, this constraint does not

seem to undermine the promise of the (cue, action, goal) emotional prototype as a means

of concisely and compactly transmitting information across the preproduction/production

boundary. In fact, it confirms that this kind of information is complex, and difficult to

communicate, and offers an argument in support of improving the communication of this

kind of information across the boundary, even if only the primary and secondary aspects are

confidently transmitted.

The final emotional intensity map (which ideally would accompany a (low resolution)

rendering of the actual scene) uses intensities to represent emotional states at places in

10

the terrain, and uses shading to indicate transitions between these emotional states. We

encountered an interesting limitation. Grayscale maps only allow a pair of emotions to be

represented in a single map. One solution is color, but training a team to associate colors

with emotions, and, to then recognize intermediate colors as transitions between a specific

pair of emotions is more problematic still. This is merely a manifestation of the curse

of dimensionality [10] in our particular setting. Humans seem to be able to comfortably

interpret only a relatively small number of dimensions of information from 2D images.

Another contribution of this work is that it is the boundaries between regions that are of

greatest import for the media production process. It is at the boundaries that some form of

emotion marker must be placed to act as a trigger to induce the desired emotion state. For

example, safe zones exist at the boundaries of the emotions of fear and relief. Knowing this,

we used a luminosity thresholding algorithm to identify possible locations for these emotion

marker(s), providing necessary production guidance in a lightweight manner.

Ultimately, however, the sketches used for the layout of the virtual world during the

requirements process were used more as inspiration to the art department than as hard

requirements, and practitioners should be prepared to accept this. The final requirements

specification demonstrated a variety of interesting cue mechanisms. For example, in the

analyzed sniper-runner scenario, brightly lit windows are cues and clues to the runner – used

to draw their attention to the source(s) of danger. These same cues simultaneously draw

attention away from the barrels and boxes scattered about the street that promise a refuge,

however brief, to the runner as they attempt to escape attack from the sniper positions. The

game designer has deliberately created a conflict between the cues.

This work also developed an iterative elicitation process. First, a gameplay experience

is defined in general terms using a text summary and a few sketches of the virtual world.

Then, iterate as follows. Define the actions a player can take, what assets the player can

utilize and the legal interactions of players. Provide enough artistic context that production

can develop the media assets. Finally, define the emotional requirements with the techniques

developed thus far, using the (cue, action, goal) emotional prototypes to help ensure that

production understands the desired player experience.

11

1.5 Experience Requirements and Cognitive Gameplay

Requirements: Chapters 9, 10

The formal aspect of this work culminates with the development of an ontology of expe-

rience requirements [24]. An initial investigation of cognitive gameplay requirements was

performed [23] and a formalism for representing emotional requirements was provided (see

Appendix A for further details).

In this work we explore the contribution that experience requirements can make to the

domain of videogame development. Experience requirements are descriptions of user, player,

and customer experiences that must be met (functional experiences) or are satisfaction goals

(non-functional experiences) for products or services. Experience requirements may be con-

structed using generally accepted requirements engineering principles and techniques or they

may use less traditional techniques such as concept art or sound effect samples. Experience

requirements are not software requirements, although they may result in software require-

ments or may be met by software artifacts.

The following ontology of experience requirements for the videogame domain is based

on the interactions between what the underlying game system can deliver as part of the

experience and what the player can sense and internalize:

1. Emotional requirements (the heart)

2. Gameplay requirements (the intellect)

(a) Cognitive (the head)

(b) Mechanical (the hands)

3. Sensory requirements (the senses)

(a) Visual (the eyes)

(b) Auditory (the ears)

(c) Haptic (if available) (touch)

12

These experience requirements are expected to be contextually situated within their do-

main. For example, while gameplay requirements are appropriate for the videogame domain

they are probably not relevant to the movie domain. However, the screenplay or shooting

script for a movie will likely contain elements that can be represented as emotional require-

ments, sensory requirements, and cognitive requirements and thus shares these aspects with

videogames.

In the videogame domain, defining and capturing the intended player experience as expe-

rience requirements that are influenced and informed by established requirements engineering

principles and techniques can help practitioners bridge the communications chasm between

preproduction and production. Applying requirements engineering principles, in a manner

tailored to the domain, should help the game design document assume more of the attributes

of a software requirements specification, improving the communication between preproduc-

tion and production without negatively impacting the preproduction effort. Rather than

defining a formal language with say, first-order, semantics that may limit the practical ap-

plicability of the methodology, we present an encapsulation of the experience requirements

formalism that provides practitioners with a useful perspective and guide to action.

Maintaining a constructivist stance, we assume a stimulus-perception-response model

guides the design of the user experience: First, the desired user response is specified. A

stimulus, that is (to be) perceived by the user, is then designed to engender the desired

response. The stimulus-perception-response model is a representation of the ways in which

the designer can affect the user – informally, via the emotions, the intellect, and the senses.

We find that, for each element of this model, there are tangible and intangible elements.

As regards stimuli, tangible elements are physical objects in time, intangible elements can

arise through the interaction of physical objects, sound and perhaps force feedback. As

regards perception, it is straightforward that humans receive certain kinds of information

through sensory receptors, but these also combine in ways that remain difficult to capture.

Finally, the response of a player may be tangible (measurable) to the game in some ways,

but intangible in others (experience).

There would be a clear benefit in being able to create a mechanistic definition of (for

example) fear that would let us induce exactly a certain amount of fear, or precisely measure

13

the degree of fear. However, the current state of the art in most theories of measurement

suggests that we must settle for crude proxies - for example, facial expresssion as a measure of

degree of fear. This does not prevent us from having meaningful discourse about such topics,

however, and that is what we propose to do here. Thus, we produced an ontology of types

of experiences for the video game domain that reflect what we believe to be shared under-

standings or common intuitions of these experiences. This ontology begins with emotional

requirements (experiences of fear or joy), gameplay requirements (intellectual satisfaction

obtained from solving puzzles, or from receiving a good cognitive experience), and sensory

requirements (visual, auditory, and increasingly, tactile experiences of playing.)

There is a considerable literature on this referenced in our published work. The trade

press associated with game design is rich with pragmatic advice. Game designers like Rollings

and Adams [93], Crawford [31] and Koster [61] and academics like Salen and Zimmerman [95]

present their perspectives on a field that is generally considered to be more of an art than

a science. Each author presents their perspective on the act of game design, but none of

the authors comments on software engineering processes that could support the activity.

The anthology of project post mortem reports presented by Saltzzman [96] provides signifi-

cant anecdotal evidence of the issues involved in video game production. The anthology of

commentaries by well-known industry professionals compiled by Laramee [64] also provides

further insight into video game production. Despite the breadth of these works, none of the

authors advocates a structured approach to capturing gameplay as requirements or utilizing

requirement engineering principles.

In general, the work in the requirements engineering research literature is only slightly

related. A traditional perspective on requirements is likely to consider cognitive gameplay re-

quirements to be some form of non-functional requirements. In his analysis of non-functional

requirements, Glinz [49] notes that there are significant issues with defining, representing,

and classifying non-functional requirements. He proposes a solution based on the concept of

a concern, defined as ”a matter of interest in a system”. A concerns-based taxonomy is pre-

sented, along with a series of questions that can be applied by the practitioner to guide them

in applying the taxonomy. It is unclear whether this taxonomy covers, for example, cogni-

tive gameplay requirements or emotional requirements. While “matters of interest”, whether

14

they qualify as ’concerns’ would depend upon whether one accepts cognitive gameplay as an

appropriate target for requirements efforts.

The preproduction requirements that define the player experience are conceptually more

like design requirements, as discussed in the collected works of “Design Requirements Engi-

neering: A Ten-Year Perspective” [67].

Finally, our own works made a modest, but practically situated, contribution to this

body of knowledge. In another informal field study with Far Vista Studios, we participated

in a preproduction effort response to a third-party request for proposal for a Massively Mul-

tiplayer Online Role Playing Game (MMORPG) situated in ancient Egypt. The proposed

gameplay scenario had the following requirements. The scenario must require the player to

solve one or more puzzles. The game is located in a desert. The gameplay must support

individual and team play, and the player navigates using a click-on-destination paradigm.

The included publication [23] reports considerable detail on the design process, both

on the concept and on the details surrounding traps, puzzles, and penalties of gameplay

components. However, the experience confirmed again the problems of capturing sufficient

information during preproduction, the practical technical problems (for example, rendering

load) that must be addressed and the complexity of the experience issues (for example,

planning for, and measuring, the enjoyability of repeat play).

These field observations helped us to identify elements that are necessary to elicit, cap-

ture, and represent during the requirements specification activity for cognitive gameplay

requirements. To facilitate the expression and discussion of the elements of cognitive game-

play requirements, these are presented as a definition. Consistent with the exploratory nature

of this work, this definition is not formal in a semantic sense, nor is it complete. Confirming

the observations with other teams is necessary before the results can be generalized.

Summarizing the proposed conceptual framework, we defined cognitive gameplay require-

ments as challenges, bracketed by pre- and post-conditions. The preconditions consist of

assets, clues, infrastructure, player state and puzzle state, possibly annotated by a gameplay

context and possibly a link to a narrative. These are tangible objects that can be tracked in

straightforward fashion.

A cognitive challenge is cast as a learning exercise. If the pre-conditions are satisfied,

15

the challenge is described with text or symbolic description, typically using flow charts or

finite state machines. Solving the problem generates side effects - mostly changes to the

player, puzzle, and world state. The post-conditions include the updated states mentioned

above, and changes to player’s knowledge, and changes to the game engine’s knowledge of

the player.

1.6 Implementation: Chapter 11

The ideas presented herein are particularly challenging to validate in any short term study.

If they are adopted, requirements engineers will likely find new problems during deployment.

These problems may then be addressed by both industry experts, who tend to be situated

in and have a deep experience with a fixed work culture, and academics, who have the

opportunity to study a variety of experiences and share some of them, but who may not be

able to experience long hours in production.

Nevertheless, experience requirements appear to be a useful starting point for further

work in the field. In the style of paper prototyping, we demonstrated a process for expressing

experience requirements using ordinary office materials at an interactive session [15], where

the requirements for a side scrolling game racing game were demonstrated. In our Future

Work (Chapter 12), we illustrate the potential of the formalism for more complex games.

1.7 Guide to the Document

This introductory chapter provides an overview of the work from the inception of a new

idea, its growth in the course of exploratory field work with a small game development firm

to a conceptual framework, and a proof of concept. Details appear in the publications that

follow. The final chapter presents conclusions and illustrates the future potential of this

work in other settings.

16

Chapter 2

Requirements Engineering and the Creative

Process in the Video Game Industry

To quantify our understanding of this problem, we began with the Postmortem columns

in Game Developer magazine [8], some of which are extracted in POSTMORTEMS from

Game Developer [39], as a source of observational reports. We analyzed 50 such reports,

published between May 1999 and June 2004 to identify factors that led to success or failure.

The analysis suggested that project management issues are the greatest contributors to

success or failure, and that in the case of failure, many of these issues can be traced back to

inadequate requirements engineering during the transition from preproduction to production.

Our study also identified the need to solve three problems:

1. Documentation must be transformed from its preproduction form to a form that can

be used as a basis for production.

2. It must be possible to identify implicit information in preproduction documents and

make it sufficiently explicit that production decisions can be made.

3. It is necessary to be able to apply domain knowledge to preproduction without hin-

dering the creative process, particularly knowledge of constraints.

Three examples from real video games provided further evidence of the importance of

properly managing the transition from preproduction to production. They illustrated the

challenges associated with transforming preproduction documents to production documents,

the importance of detecting implied information as early as possible, and the effects of

applying a priori knowledge from the production domain to the transition from preproduction

to production.

17

The observations within this work motivated the rest of the dissertation. Originally

published as an extra-length paper at the request of the Program Committee.

David Callele, Eric Neufeld, and Kevin Schneider. Requirements Engineering
and the Creative Process in the Video Game Industry. In RE 05: Proceedings
of the 13th IEEE International Conference on Requirements Engineering (RE
2005), pages 240 250, Paris, France, 2005. IEEE Computer Society [16].

Abstract: The software engineering process in video game development is not
clearly understood, hindering the development of reliable practices and processes
for this field. An investigation of factors leading to success or failure in video
game development suggests that many failures can be traced to problems with
the transition from preproduction to production. Three examples, drawn from
real video games, illustrate specific problems: 1) how to transform documen-
tation from its preproduction form to a form that can be used as a basis for
production, 2) how to identify implied information in preproduction documents,
and 3) how to apply domain knowledge without hindering the creative process.
We identify 3 levels of implication and show that there is a strong correlation
between experience and the ability to identify issues at each level.

The accumulated evidence clearly identifies the need to extend traditional re-
quirements engineering techniques to support the creative process in video game
development.

Keywords: Non-functional requirements, elicitation, video game development,
game design document, preproduction, production, domain-specific terminology.

c©2005 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Requirements Engineering and the Creative Process in the Video Game Indus-

try, Proceedings of the 13th IEEE International Conference on Requirements Engineering,

September 2005.

2.1 Introduction

Video games are a special type of multimedia application – an entertainment product that

requires active participation by the user. Developed by a multi-disciplinary team, non-

functional requirements such as entertaining the user create special demands on the require-

ments engineering process. Requirements like fun and absorbing are not well understood

from the perspective of requirements engineering, compounding communication issues be-

tween game designers and software engineers. Game designers may not understand, for

18

example, the limitations of artificial intelligence when designing non-player characters while

software engineers may not understand the creative vision or they may be too willing to

compromise that vision in the rush to ship the product.

It may be that nothing can qualitatively change this. However, it should be possible to

decrease the cost of delays caused by communication errors in such a heterogeneous group.

As a first step toward the development of a formal process, we have attempted to locate the

causes of the most costly errors. By way of background, we first review the requirements

engineering literature applied to multimedia development and introduce the video game in-

dustry and the video game development process, with attention to the roles of preproduction

and the game design document (as a deliverable artifact of the preproduction process). We

analyze the observational reports from the Postmortem column in Game Developer mag-

azine, categorize the information therein, and present the results. Three examples, drawn

from real video games, illustrate particular issues that must be addressed in a formal process.

We follow with our conclusions, an analysis of the role of requirements engineering in video

game development, and directions for future work.

2.2 Background

Requirements engineering within a community of common interest is difficult – the ability

to precisely communicate and capture stakeholder wants and needs is rare. Traditional

requirements engineering techniques [51, 92] assume these communications issues can be

overcome in a few iterations. However, we are unaware of any work that directly addresses

the validity of this assumption in a multi-disciplinary development effort. While goal [5, 34]

and scenario [54] based techniques can be used to alleviate communications issues, their

efficacy when development efforts include a strong artistic or inventive element [91] (such as

in video game design, multimedia web sites, or the movie industry) remains unproven.

Members of video game development teams include practitioners from such diverse back-

grounds as art, music, graphics, human factors, psychology, computer science, and engineer-

ing. Individuals who, in other circumstances, would be unlikely to interact with each other

on a professional basis unite in their economic goal of creating a commercially successful

19

product. Requirements engineering in the face of such diversity requires the creation of a

common (domain) language (and implied world model) specific to the task at hand. Once all

stakeholders fully commit to the domain language, then a set of requirements that captures

the stakeholders wants and needs can be generated.

Given the dearth of directly related work, we performed a more extensive literature re-

view, focussing on: (1) requirements engineering and emotional factors (including fun in

games), (2) issues of language and the creation of a common language or domain ontol-

ogy, and (3) requirements elicitation and the effects of feedback on emergent requirements,

particularly in multimedia development.

2.2.1 Emotional Factors

While emotion in human-computer interaction is coming under ever increasing scrutiny [68],

few researchers have investigated emotional factors in requirements engineering. Draper [36]

looked at fun as a candidate software requirement, attempting to identify what it is that

makes play fun. He concluded that “fun is not a property of software, but a relationship

between the software and the users goals at that moment” and that “providing enjoyment

is now a defining requirement of an important class of software, and this has not been

sufficiently recognized in our analyses and design methods”. These conclusions are consistent

with our experience.

Hassenzahl et al. [55] introduced hedonic qualities (those that are unrelated to the

current task but present for emotional reasons) and associated repertory grid techniques for

measuring them. Bentley et al. [11] investigated emotional (affective) factors in computer

games, noting that “software requirements for these and other affective factors are never truly

captured in an official manner”. In particular, usability, immersion, and motivation were

considered via a user survey mechanism. They note that there are no established techniques

for eliciting emotional requirements. Even Chung, in his detailed analysis of non-functional

requirements [27], does not substantively address emotional issues.

At their best, video games stimulate a state of flow in the player, engendering concentra-

tion so intense that their perception of time and sense of self become distorted or forgotten

[33]. In the field of game design, Salen and Zimmerman [95], Laramee [64], and Saltzzman

20

[96] address issues of emotions and emotional response in game players. While these works

do not directly address requirements engineering practices, the techniques that they describe

for game design and eliciting feedback from players may increase the range of elicitation tech-

niques available to practitioners. In a more general sense, Norman [80] describes numerous

human factors practices that could be readily incorporated into requirements engineering for

video games.

2.2.2 Language and Ontology

Zave [113] classifies the problems addressed by requirements engineering, defining the do-

main, in part, as “. . . translation from informal observations of the real world to mathematical

specification languages.” In game development, this is only partially true. In many cases, the

game designer, an individual who may have little or no interest in a mathematical represen-

tation, is also tasked with generating the requirements. Unable to generate the requirements

in isolation, the game designer works with the production team to translate the vision to re-

quirements – usually stated in natural language complete with domain specific terminology.

Once captured, the requirements may be formalized in place or, more likely, formalized as

they are translated into specifications.

A common language [52, 105], ontology [60, 105, 14], or vision [60] is often mentioned as

the solution to communications issues between disparate stakeholders. Natt och Dag et al.

[81] have demonstrated the application of statistical natural language processing techniques

to managing and understanding requirements generated by a multitude of sources. Their

results may be applicable to the documentation transition issues studied further in Section

2.6.1.

2.2.3 Elicitation, Feedback and Emergence

Goguen [52] emphasizes that “feedback and feedforward go on all the time, at least in

successful large projects” and that “requirements are emergent”. Emergent requirements

discovered during the transition from preproduction to production are a significant aspect

of the creative design process.

21

Zave [113] presents a classification scheme that assumes that “. . . as software engineers, we

can seek to understand social factors but we can only hope to influence technical practices.”

We posit that requirements engineering can be more proactive in video game development by

providing feedback from production to preproduction in response to a feedforward of early

versions of preproduction documentation. The resultant influence on the creative process

escapes Zave’s technical practices restriction. Specific feedforward and feedback examples

appear in Section 2.6.2.

2.3 Video Game Development

Video games are a significant element of the entertainment industry. The Consumer Elec-

tronics Association [7] reports that entertainment software sales rose from $5.1 billion in 1999

to $7.7 billion in 2003 and that hardware sales increased from $2.3 billion in 1999 to $3.2

billion in 2003. Combined hardware and software sales in the video game industry exceed

the 2003 $9.42 billion gate receipts of theatrical release movies in North America [46].

However, for every advertisement for a newly released game, the trade press reports a

disproportionately large number of projects that fail to reach the market. The present work

begins an investigation into the causes of these failures. The multidisciplinary nature of the

video game development process – with art, sound, gameplay, control systems, human factors

(and many others) interacting with traditional software development creates complexities

that may recommend a specialized software engineering methodology for this domain.

2.3.1 Development Process

Figure 2.1 models the game development process as two consecutive efforts. The left hand

side of the diagram depicts the preproduction phase, resulting in a Game Design Document

(GDD). Preproduction loosely corresponds to a customer’s internal efforts to define their

wants and needs before meeting with the development team.

The right hand side of the diagram, derived from Medvidovich and Rosenblum [71],

depicts the production phase. Requirements engineering, with the assistance of the game

designer(s), transforms the GDD to a specification (see Section 2.3.2). Once the specification

22

Figure 2.1: Video game development

is complete, a traditional software development process begins (often using an iterative

development effort of some form), resulting in the game artifact.

Moving from preproduction to production is particularly difficult in video game devel-

opment. A wide range of factors (e.g. artistic, emotive, and immersive factors) must be

addressed by the requirements engineering effort. These factors are captured in the game

design document.

2.3.2 The Game Design Document

The game design document is a creative work written by the game designer (or game design

team). The GDD must be thorough, but not necessarily formal (in the sense of structure or

from a mathematical perspective). In fact, one could argue that imposing too much structure

on the creative process may be highly detrimental – constraining expression, reducing cre-

ativity, and impairing the intangibles that create an enjoyable experience for the customer.

In a sense, the GDD is the requirements document as defined by the preproduction team.

The form of the game design document varies widely across genres and studios. Typically,

a GDD (drawing loosely from Bethke [12]) includes a concept statement and tagline, the

genre of the game, the story behind the game, the characters within the game, and the

23

character dialogue. It will also include descriptions of how the game is played, the look, feel,

and sound of the game, the levels or missions, the cutscenes (short animated movie clips),

puzzles, animations, special effects, and other elements as required.

A game design document is a preproduction artifact designed to capture a creative vision.

It is not designed to meet the needs of a production effort. If a GDD is being used as a

source document in the production phase, there are two possible explanations. The game

design document may contain the information required for the production phase. In this

case, the game design document is malformed and should be restructured and maintained

as independent preproduction and production documents. Or, it may be that, even though

the game design document does not contain production information, the production team

is performing requirements engineering, specification, and possibly even design, on an ad

hoc basis. The greatest danger associated with such ad hoc activities is the dependence on

human memory for capturing decisions and their justifications.

There are issues associated with managing the game design document to requirements

document transition. Two sets of documentation must be created and maintained. The writ-

ing styles associated with the two sets of documentation are very different – is it reasonable to

expect that a single individual can perform both tasks in an efficient and acceptable manner,

particularly in the absence of generally accepted practices for performing this translation? In

general, we found little evidence of structured application of generally accepted requirements

engineering principles in our review of observational reports on industrial practices (Section

2.5).

2.4 The Transition from Preproduction to Production

Requirements errors are some of the most costly to fix; Boehm and Basili [13] estimate that

errors of this type can cost up to 100 times more to fix after delivery than if caught at

the start of the project. Despite the available evidence and accumulated experience, many

projects still suffer from failures due to inadequate requirements engineering.

Game designer and producer Eric Bethke [12] states

. . . too many projects violate their preproduction phases and move straight

24

to production. . . . In my opinion, preproduction is the most important stage of
the project. I would like to see the day when a project spends a full 25 to 40%
of its overall prerelease time in preproduction. During production there should
to be relatively few surprises. [p.26]

He promotes the use of UML based tools as a way to manage the transition but a formal

(or semi-formal) transition process is not presented. Many of the requisite elements for

production management (such as requirements capture, requirement analysis, task analysis,

time estimation, project plans and technical design) are discussed in an informal manner.

Other producers and consultants, such as Rollings [94] and Michael [73], also identify

many of the requisite elements for production management but do not provide formal or

semi-formal guidelines for managing the transition.

When discussing game design documents, Bethke [12] comments “. . . I have never seen a

completed design document, and one of the reasons is that game design documents need to be

maintained through the course of production.” With time-to-market pressures so prevalent,

it is easy to see how documentation maintenance is given low priority.

Despite the recognized need, we have discovered no evidence that a process for managing

the transition from preproduction to production has been proposed (recognizing that such a

process may exist within an organization but remain unreported in the literature).

2.5 Review of Postmortem Columns

The video game industry is competitive and management processes are significant corporate

assets and generally inaccessible to the researcher. Therefore, we use the Postmortems

columns in Game Developer magazine [8], some of which are extracted in POSTMORTEMS

from Game Developer [39], as a source of observational reports on this issue.

From the author’s guide provided by the publisher:

. . . Explain what 5 goals, features or aspects of the project went off without
a hitch or better than planned. . . . Explain what 5 goals, features or aspects of
the project were problematic or failed completely. . . . Important: try to come up
with things that went right/wrong during project that are likely unique to your
project. Stay away from common and well understood problems and solutions
(e.g., “communication between the team members wasn’t good” – that’s been
true of most games), and focus on what made your project different from others.

25

The reports presented in the Postmortem column potentially capture what makes video

game development unique. They are typically attributed to members of the project manage-

ment team or middle to upper management within the development organization. As such,

one can reasonably assume that the reports reflect issues of particular import to the authors.

While there may be an observer effect, particularly with respect to those items that went

wrong, we assume the information presented has a strong basis in fact.

Fifty postmortem reports [8], published between May 1999 and June 2004, were analyzed

in an attempt to identify factors that lead to success or failure in video game development.

Each report contained 5 entries in the “what went right” and “what went wrong” sections.

These entries were reviewed and classified according to the following scheme1.

The classifications scheme has five categories: (1) preproduction, issues outside of the

traditional software development process such as inadequate game design or inadequate

storyboarding, (2) internal, issues related to project management and personnel, (3) external,

issues outside of the control of the development team such as changes in the marketplace

and financial conditions, (4) technology, issues related to the creation or adoption of new

technologies, and (5) schedule, issues related to time estimates and overruns. Schedule issues

are a subset of internal issues, but were uniquely identified in an effort to determine if

scheduling was a significant issue. Any pair of the five categories was also possible (e.g.,

“internal and technology”) if the entry was that precise.

Figure 2.2 is a normalized representation of the results of the categorization process; of

the 15 possible categories (singles and pairs), only those categories that represent 10% or

more of the final result are shown. Internal factors dominate any other category by a factor

of approximately 300%.

Closer inspection of points classified as internal or schedule factors reveals that many,

if not most, of the entries are related to classic project management issues. For example,

PM4W52 notes “inadequate planning”, PM20W3 claims a lack of success due to “underes-

timating the scope of tasks” PM9W3 calls their schedule “too aggressive”, PM18W2 states

1In an attempt to reduce possible bias, entries were reviewed with minimal identifying information and
categorization of the “what went right” entries was performed independently of the “what went wrong”
entries.

2Project coding: PM[Project number 1..50][Right | Wrong][Entry 1..5]

26

Figure 2.2: Observational Report Analysis

that “clear goals are great - when they are realistic” and PM21W1 states that “an unrealistic

schedule can’t be saved without pain”. It appears that these issues could be addressed by a

RE process that better manages the transition from preproduction to production.

Of interest is the balance in the categorization results. Across all categories, across all

projects, the maximum deviation from the mean is only 7.7% – a category was perceived as

likely to contribute to the success of a project as it was to the failure of the project. The

high degree of correlation between the “what went right” and “what went wrong” entries

could be a result of the granularity of the categorization scheme – approximately 60% of all

entries are categorized within the (major) internal category or related minor categories.

In general, the management of different aspects of the production process was often listed

both as an element that went right and an element that went wrong within a given project.

For example, in the internal category, PM3 considered their ability to focus on the task

at hand as a success, while stating that “inadequate planning” caused significant issues.

PM21 felt that experienced personnel and internal communication contributed to success,

yet stated that their “Conventions should have been better documented, communicated, and

adhered to.” PM27 had “strong quality assurance” yet asserted that they were weak when

27

documenting their internal standards and processes, claiming that the “Design document

(was) not implemented effectively”. These apparent contradictions (such as strong QA but

weak internal standards) are a common theme in the observational reports.

Figure 2.3: Correlation Within a Project

The degree of correlation between the “what went right” and “what went wrong” entries

within a given project is also significant. We assumed that the order in which the entries were

presented was irrelevant and then cross-checked the results of the categorization process to

see if the same categories were being reported as success and as failures. It appears (Figure

2.3) that individual categories are just as likely to be viewed, within a given project, as a

contributor to success as to failure.

In an effort to determine whether these strong correlations are related to the categoriza-

tion process or are inherent within the data, we are currently performing a more detailed

analysis of these reports. The current analysis has identified particular challenges for re-

quirements engineering in this domain, presented for discussion in Section 2.8.

For the interested reader, the postmortem columns provide further details. Domain

specific successes included: PM11R1 “maintained . . . style of gameplay”, PM27R2 has “

gameplay driven design”, PM28R1 “created deep characters”, PM40R1 focused on “great

28

Table 2.1: Documentation Transformation

1 Story After her father, Bernard, died, Crystal did not know which way to
turn – paralyzed by her loss until the fateful day when his Will was
read.

2 Gameplay The Player must visit Anna the Lawyer to receive a copy of Bernard’s
Last Will and Testament, thereby obtaining the information necessary
to progress to the next goal.

3 Requirements The Player must be represented by an avatar.
Female Non Player Character required: Anna the Lawyer
Inventory Item: Last Will and Testament (LWT)
Player can not progress beyond Game State XYZ until LWT added
to Inventory

4 Specifications Could easily reach 50 pages

art”. Examples of issues in preproduction included: PM2W1 “(there was a) lack of up-front

design”, PM6W2 “(the) game was too hard”, and PM28W3 “(too much) gee-whiz factor”.

2.6 Examples From Real Games

The initial results from our analysis of the Postmortem columns led us to conclude that

weak management of the transition from preproduction to production was a source of many

issues in video game development. We now look at some examples from real games that have

either been published or are currently in development3 to establish further support for this

conclusion. We look at 3 issues in particular: documentation transformation, implication

creating emergent requirements, and the effects of a priori knowledge, to situate them within

the domain and within the larger realm of requirements engineering.

2.6.1 Documentation Transformation

A microcosm of the documentation transformation issue is shown in Table 2.1. The game

designer begins (1) with a story written in a narrative style. That story is then translated

(elsewhere in the game design document) to a more formal form (2) that describes the

3In the first example, minor changes have been made to the material to obfuscate the source.

29

action as a task and a justification for that task. The requirements engineer analyzes this

information, in context (3), to determine a set of requirements: identifying in-game assets

such as the player avatar, Anna (a Non-Player Character (NPC)) and an inventory item. A

state that controls the player’s progress through the game is also identified and captured.

Depending on the in-house process used, the detailed description (4) of these in-game assets

may be part of the requirements document or part of a specification document. Independent

of where the detailed descriptions are located, they could easily reach 50 pages once issues

like artistic style, animation, and game state are included.

Performing and managing this transformation is complex. Each of these documents re-

quires a different writing style and a single individual may not have the requisite writing

skills to author materials for all purposes. In addition, creating the requirements document

or specification document often requires considerable a priori knowledge of the available

technology so that the requirements can be presented in context. There is also a multi-

plicative effect: each successive document is larger than the prior document as the author(s)

attempt to precisely capture the required information. The authors must manage multiple

stakeholder viewpoints, synthesizing a common domain language, numerous nonfunctional

requirements, and inconsistencies as the project evolves.

The list of required skills is long (e.g. game design, requirements engineering, and techni-

cal communications) and implies a team effort. The associated costs are significant, leading

to a strong management bias toward minimizing the documentation effort.

2.6.2 Implication

By its nature as a creative work, a game design document is replete with implied information.

Identifying these implications requires careful analysis, understanding the ramifications of

the implications requires significant domain knowledge.

To expand on the importance of domain knowledge, we revisit Table 2.1. This table

captures what we call first-level implications: those implications that can be derived directly

from the materials presented. Almost all development teams, independent of their experience

levels, capture these implications. Missing implications at this level is usually an oversight

on the part of the team.

30

The second level of implication requires general knowledge of the domain – in this case,

the adventure game genre. These implications are generally captured by teams with mem-

bers who have experience with non-trivial software development projects in the domain. In

this case, the description contains significant implications regarding the game world: the

characters must be situated within the appropriate environment(s). Therefore, there is an

environment surrounding the player when they receive the information, there is Anna’s of-

fice, perhaps an office building with other office interiors, background sounds, and possibly

even other NPCs in the office areas. And, if there are other NPCs, do the NPCs interact

with the Player?

These second level implications could easily amount to many person-months of develop-

ment effort by modelers, artists, animators, and other members of the production team.

The third level of implication requires knowledge of implementation details such as the

target architecture. These implications are captured by experienced teams, particularly when

the present project is a sequel of some form. The requirement for the player to visit Anna

raises questions about the connectivity between the elements (locales) of the virtual world

– is there more than one way the Player can get to Anna the Lawyer? How does the player

experience the journey – via a scene change? Or, must they guide their avatar through the

virtual world (implying the creation of all the media assets to represent the world)?

Perhaps more importantly, does the connectivity change over time? Dynamic connectiv-

ity has significant implications for representing game state (the current state of the world

simulation). Designing, verifying, and maintaining a stateful world is more complex than a

stateless world.

A question is raised by identifying these three levels of implication: Is it more appropriate

to follow a traditional iterative process and allow these issues to surface later, or should this

feedback be applied as early as possible in the process? Intuitively, early feedback is better.

However, early feedback could have a negative effect on the creative process: if the game

design team feels that the production team is going to reject their proposals then they may

become conditioned to be less creative. The effects of early production feedback on the

preproduction process merits further investigation.

31

A Priori Knowledge

Building on the analysis of the prior section, we now look more closely at the effect of a

priori knowledge on the requirements engineering process.

Figure 2.4: Akeladoor Puzzle Description, used with permission

Domain specific terms, particularly abbreviations and acronyms, are common in working

papers. Figure 2.4 is the game designer’s description of the Akeladoor Release Puzzle from the

game Apocalypse Spell, currently under development by Far Vista Studios. Upon inspection,

we see PV Movie: Partial Video, a less than full screen video clip, puzzle HS: a puzzle Hot

Spot, an interaction point for the player, FSM: Finite State Machine, MG: Master Guidelines

32

(the game uses a model driven architecture whose repository is called the Master Guidelines

by the team).

If one attempts to formalize this document, they must understand large portions of both

the preproduction and production realms. In a typical studio, this implies senior personnel

from the preproduction or production staff but they are usually “too busy” to perform the

task. Documentation is often assigned to a junior staff member with the rationalization that

this task will “bring them up to speed”.

Another alternative is to add professional technical writing resources to the projects.

However, there is often a perception that it takes more time to explain it to the technical

writer than it does to just write it oneself. Once this excuse is in place, no writer is hired,

and soon, little or no documentation is maintained.

Significant elements of the game design documentation are informal, often with substan-

tial visual content. Visual content is particularly difficult to represent in a formal manner:

iterations are often sketched as shown in the Pyramid Puzzle description of Figure 2.5. Care-

ful examination of Figure 2.5 reveals evidence of prior iterations that were simply erased.

Maintaining an iteration history of sketches, such as this working paper, is challenging. An

electronic form of the working paper may have captured the revisions, but probably would

not have captured the justifications for making the changes – often an important piece of

information later in the development cycle. These justifications could lead to evolutionary

changes in the game engine, perhaps even to a product family architecture.

A detailed explanation of the puzzle is beyond the scope of this paper – suffice it to say

that it is a combinational puzzle that requires the player to generate the correct sequence of

symbols on the screens below the pyramid, one sequence for each corner of the base of the

pyramid. However, application of domain knowledge during the requirements capture phase

led to significant changes in the design of the puzzle.

The first issue was puzzle complexity. Solution hints were provided in the form of inven-

tory items that looked like papyrus scrolls but there was no way for the player to show the

scroll and the puzzle at the same time – the game engine simply did not support simultaneous

operation of inventory inspection and puzzle modes.

The game designer was informed of this restriction and it was suggested that a place be

33

Figure 2.5: Pyramid Puzzle Description, used with permission

made on the puzzle for the player to “hang” the scrolls so that they could see them while

playing the puzzle. The result of this feedback was the layout of Figure 2.5 where the scrolls

for each corner had a specific location (shown as Inv Placement Blocks).

This new layout raised an issue of screen resolution. The puzzle design called for an

upper region for special effects, a middle region for puzzle input, and a lower region for

puzzle solution hints. Unfortunately, this layout was beyond the resolution of the target

platform so an alternative layout was required.

The final layout, shown in Figure 2.6, is a compromise between the game designer’s vision,

the technical capabilities of the game engine, and the technology constraints of the target

34

platform. Only one hints scroll is visible at a time, requiring the player to shift between

inventory and puzzle modes for each corner of the pyramid – not an ideal solution from a

human factors perspective, but the best that could be achieved within the constraints.

Figure 2.6: Pyramid puzzle prototype, used with permission

In this example, success was achieved through dialog between team members. Unfortu-

nately, the revised requirements and specifications for the final product were never formally

captured. Given that this is one of approximately 100 puzzles in the game, the cost of formal

capture for all puzzles is significant.

The single sheet description of the puzzle resulted in the creation of the following assets:

four new inventory items, 12 secondary screen elements for user interaction, three animation

sequences of four seconds duration, and sound effects for user interaction and animation

support. On the software side, four state machines for validating user input and three state

machines for the individual corner puzzles were required. Interactions with the game world

state, the current player state, inventory management, and the save game subsystem also had

to be managed. None of these assets were explicitly identified by the designer; rather, they

were implied in the description of the puzzle. It can be argued that identifying these implied

35

assets if a function of the design process. However, accurately predicting the magnitude of

the production effort requires their identification at the earliest possible stage in the process.

Given that this was just was one of approximately 100 puzzles in the game, it is highly

desirable that the process for identifying the implied assets and side-effects be efficient.

However, we are unaware of any work in this area.

2.6.3 Evaluation

The challenges associated with the Pyramid Puzzle are typical of the issues reported in the

Postmortem columns. Using the same categories as Section 2.5, the terse puzzle description

(assuming significant domain knowledge) is a preproduction issue. The puzzle description

called for features that the underlying technology could not deliver. The technology con-

straints of the target platform (as defined by external market forces) caused a number of

game design iterations. Internal issues, such as design complexity, design iteration, and

emergent requirements interfering with test plan development, made it difficult to predict a

schedule for this task with reasonable accuracy. The interactions are non-trivial and, when

coupled with the complexities of media production, bring a unique flavor to requirements

engineering in this domain.

2.7 Summary and Conclusions

We have analyzed the video game development process from the perspective of requirements

engineering, presented a model for video game development that integrates preproduction

with production, and situated the game design document as an artifact of the preproduction

process. Our analysis of 50 observational reports from the Postmortem column in Game

Developer magazine showed that project management issues are the greatest contributors

to success or failure in video game development. In the case of failure, many of these

issues can be traced back to inadequate requirements engineering during the transition from

preproduction to production.

Three examples from real video games provide further evidence of the importance of

properly managing the transition from preproduction to production. These examples illus-

36

trate the challenges associated with transforming preproduction documents to production

documents, the importance of detecting implied information as early as possible, and the

effects of applying a priori knowledge from the production domain to the transition from

preproduction to production.

The Pyramid Puzzle example showed that, if early versions of preproduction documenta-

tion are fed forward to the production team then the production team can provide important

feedback to the preproduction team. This communication cycle enables earlier identifica-

tion of emergent requirements and production constraints and may improve the reliability of

the transition from preproduction to production. However, the introduction of production

personnel into the preproduction process may have a negative effect on the creativity of the

preproduction team.

We show that requirements engineering practitioners can identify at least three levels of

implication: (1) those implications that can be derived directly from the materials presented,

(2) those implications that can only be derived with the introduction of general knowledge

of the domain, and (3) those implications that can only be derived with the introduction of

implementation details such as the target architecture. There is a strong relationship between

experience and the ability to identify issues at each level of implication – indicating that a

formal process for identifying implied information would not necessarily enable individuals

with lesser experience to handle higher levels of implication without further guidance.

We postulate that the exploratory nature of attempts to capture the game design vision

and the consequent number of production iterations is due to a lack of formal process for

managing the preproduction to production transition. As project complexity increases, we

predict that studios will shift to more formal processes to increase the probability of success

in their development efforts despite internal resistance to this formalization.

We conclude that creating documentation to support the transition from game design

document through formal requirements and specifications is difficult, requiring significant

preproduction and production domain knowledge to perform successfully. A formal process

to support this transition would likely increase the reliability of the process.

37

2.8 Challenges for Requirements Engineering

Is requirements engineering for video games unique? Analysis of the postmortem docu-

ments and game examples reveals that the video game industry could learn a great deal

from current research and practice in requirements engineering and project management.

Issues particularly notable due to their significance to game development success, and their

relevance to requirements engineering, include: (1) communication between stakeholders of

disparate background, (2) remaining focused on the goal and resisting feature creep, (3) in-

fluence of prior work (e.g., building a new game on top of an existing game), (4) media and

technology interaction and integration, (5) the importance of non-functional requirements,

and (6) gameplay requirements.

Communication, focus, and prior work issues are relatively common in requirements

engineering. Media and technology interaction, and the dominance of NFRs are also experi-

enced (to a lesser extent) in other multimedia development efforts. Gameplay requirements

are unique to video games.

2.8.1 Media and Technology

Creating a video game requires the creation of numerous software artifacts. Not only must

the game engine be developed but a media production pipeline is also required. The pipeline

must be designed and the tools associated with the pipeline must be built while keeping in

mind that these are tools for artists and animators as well as for technical personnel.

Technology requirements often emerge as media assets are integrated into the game en-

gine. The actual player experience delivered by the game engine may not meet the require-

ments of the game designer and publishers. Minimum platform targets may change due to

technological advances and marketplace pressures - it is not uncommon to have to rework

media assets developed early in a project to make them appear less dated by the end of the

project.

Requirements engineering for media production in video game development is particularly

challenging due to the interactions between the requirements of the video game artifact,

38

the requirements of the tools needed to create the video game artifact, and the strongly

differentiated user groups.

2.8.2 The Importance of NFRs

Video games are designed to entertain. Therefore, non-functional requirements such as fun,

storyline, continuity, aesthetics, and flow must dominate their requirements specification.

However, there are no established practices for capturing and specifying such NFRs – re-

quirements engineering can make a significant contribution in this area.

Validation of gaming NFRs is very complex. Generally, an abstract NFR like fun is

highly dependent on the target market - something that is fun for a young child may be

annoying to an adult. The link between NFRs and target markets or user demographics has

not yet been explored by RE in this domain.

Verification of gaming NFRs, and functional requirements related to media assets, is also

complex. Requirement verification via test is particularly difficult when the requirement is

to engender emotions in the user.

2.8.3 Gameplay

It is usually through gameplay that NFRs like fun and flow are achieved. One can argue

that it is the NFRs and gameplay that make each video game unique. For example, the

dominant video game genre is the first person shooter, made famous by the Doom and

Quake series from id Software. All first person shooter video games share a common set of

core technologies required by that genre: protagonist avatar(s), antagonist(s), the ability to

move the protagonist avatar within the virtual world in an acceptably realistic manner, and

the ability for the protagonist avatar to choose and use a weapon to wreak mayhem upon

the antagonists. It is the presentation of these core technologies to the user (via gameplay,

storyline, and aesthetic elements such as art and sound) that makes each game unique.

Storyboards in video game development are more closely related to storyboards in ani-

mated movie production (evaluating aesthetics and storyline) than the typical user-interaction

scenario development in productivity application software development. Storyboards are also

39

used by some developers as a first step in prototyping gameplay – a means for assessing the

player experience.

Prototyping gameplay is particularly challenging. It is difficult to assess the player ex-

perience early in the development cycle for significant progress must be made on building

the underlying game engine infrastructure before gameplay testing can begin. This is a

particularly high-risk scenario due to the likelihood that new requirements will emerge as

gameplay testing continues, new requirements that must be tracked, and for which test plans

must be developed. The emerging requirements may even force significant changes to the

fundamental architecture of the system that, in extreme cases, may cause project failure.

2.9 Future Work

We are currently performing a more detailed analysis of observational reports from Game

Developer magazine and other sources. We expect this information to further guide the

development of a process for managing the transition between preproduction and production.

Mechanisms for capturing and stating non-functional requirements, such as fun, in a manner

that can be validated, measured, and verified are also required.

Involving production personnel in the preproduction process may lead to more efficient

development or it may lead to reduced creativity. Further investigation is needed to quantify

the tradeoffs.

2.10 Acknowledgements

We wish to thank Game Developer magazine for continuing the Postmortem column over

the years. The first author thanks Electronic Arts for the opportunity to present an early

version of this (and related) work at their British Columbia studios and for the valuable

feedback he received. We also thank Richard Buckley of Far Vista Studios for access to

internal game design documentation prior to release of their game.

40

Chapter 3

Emotional Requirements in Video Games

This paper introduced the novel concept of emotional requirements to the field of require-

ments engineering. Requirements engineering practitioners were challenged by the work,

asked to consider non-functional requirements from far outside their traditional domain.

This work begins suggest that requirements engineering techniques could be more-widely

applicable than previously considered, pushing them into realms such as human factors and

industrial design.

Originally published as follows.

David Callele, Eric Neufeld, and Kevin Schneider. Emotional Requirements
in Video Games. In Proceedings of the 14th IEEE International Requirements
Engineering Conference (RE 2006), pages 292 295, Minneapolis, MN, USA, 2006.
IEEE Computer Society [17].

Abstract: Requirements engineering for video games must address a wide range
of functional and non-functional requirements. Video game designers are most
concerned with capturing and representing the player experience: the means
by which the player’s consciousness is cognitively engaged while simultaneously
inducing emotional responses. We show that emotional requirements can be ex-
pressed in two parts: as the emotional intent of the designer and the means by
which the designer expects to induce the target emotional state. Spatial and
temporal qualifiers on intent and means may also be required.

We introduce emotional terrain maps, emotional intensity maps, and emotion
timelines as visual mechanisms for capturing and expressing emotional require-
ments. Using a first-person shooter example, we show that these mechanisms can
express the desired emotional requirements while providing support for spatial
and temporal qualifiers.

Keywords: Non-functional requirements, emotion, emotional requirements, video
game.

c©2006 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

41

Schneider, Emotional Requirements in Video Games, Proceedings of the 14th IEEE Inter-

national Conference on Requirements Engineering, September 2006.

3.1 Introduction

In prior work [16] we showed that the most probable source of failures in video game de-

velopment is in the transition from pre-production (capturing the game designer’s vision in

a game design document) to production (implementation). The game design document is

often mis-used as a system design document even though it is principally a set of require-

ments that the software artifacts and media assets must meet in order to capture the game

designer’s vision.

Video games are unique among software artifacts in the breadth of their requirements.

The software implementation of a video game has a set of functional requirements. The

“game” within the video game also has a set of functional requirements governing the rules

that create the player’s cognitive engagement. Finally, there is a set of non-functional re-

quirements for the emotions that are to be induced in the player at each stage of the game

or by each game element.

Emotions and emotional impact are not generally considered critical to the implementa-

tion of a software artifact. Their highly subjective nature resists quantification; yet, from

the player’s perspective, the induced emotional state is the most important deliverable re-

quirement. Any functionality that exists, exists only to further that emotional goal: player

acceptance, and market success, is driven by the realization of this set of non-functional

requirements.

This paper investigates the application of requirements engineering techniques to emo-

tions in video game design. We characterize emotional requirements and, using examples, we

investigate issues associated with representing emotional requirements. We identify mecha-

nisms for expressing emotional requirements in context and conclude with a summary and

directions for future work.

42

3.2 Related Work

There has been relatively little work on emotion in the requirements engineering literature

[11, 36, 55]. The fields of HCI [68], industrial design [80] and emotionally intelligent software

agents [9] have pursued emotion more aggressively.

Representing or specifying non-functional requirements is challenging. Ekman’s Facial

Action Coding System (FACS) [40] is exemplary of a visual approach to representing emotion.

The Cognitive Affinity project at the University of Birmingham [41] presents an ontological

and architectural alternative.

3.3 Emotional Requirements

The subjective nature of emotions makes identifying, specifying, and representing them

inherently difficult. Providing appropriate support for emotional requirements means we

must understand what the game designer needs to capture and represent. Figures 3.1(a)

and 3.1(b) are game design working drawings illustrative of the design process used at Far

Vista Studios1. Figure 3.1(a) is a floor plan view of a portion of a virtual world. An internal

room, in the lower left, contains two enemy characters, a directional sound source, and a

lighting source that varies with time. A window to the outside world (labeled EXT) provides

spatial orientation clues and ambient light for the scene. Figure 3.1(b) is a fragment of an

aerial view of a racing track.

Note the high degree of abstraction in both diagrams: significant domain knowledge is

assumed. In fact, both diagrams are more detailed than those usually used – many of the

annotations were only added by the game designer in response to our questions.

To be useful to the game designer, we assert that an emotional requirement must capture:

1. the intent of the designer: I want the player to feel apprehensive as they approach the

entry to this room.

2. the means by which the designer expects to induce the target emotional state, the

1These diagrams have been redrawn for publication

43

Figure 3.1: First-Person Shooter (a) and Racing Game (b) designs, used with per-
mission

artistic context: The player will feel apprehensive because the lighting is very dim and

throbbing slowly. A soft, but deep and menacing sound fades in and out as the player

nears the entrance to the room.

3.3.1 Designer Intent

The designer’s intent expresses a target emotional state to be induced in the player; this is

the primary goal, the reason for the existence of this scenario. The intent may also express a

(physical) location in virtual reality (a spatial qualifier) and/or a temporal qualifier of some

form. In the example of Figure 3.1(a), the target emotional state is apprehension, with a

spatial qualifier of “the entry to the specified room”; no temporal qualifier is provided.

Temporal qualifiers could be provided: If the player reaches the entry to this room within 5

minutes of the start of gameplay, the player is obviously very skilled so increase the intensity.

However, this is still not a traditional software requirement. We can, however, restructure

44

the combined statement of the designer’s intent in a more traditional manner: If the player

reaches the entry to this room within 5 minutes of starting the game, induce a highly appre-

hensive emotional state in the player. Otherwise, induce a state of mild apprehension in the

player.

The emotional requirement has now been stated in a relatively quantitative manner.

However, there are still qualitative descriptors for the intensity of the emotional state. In

production, the design and development team can replace the qualitative descriptors with

quantitative constraints. For example, the team could use well-established techniques for

focus group testing as a replacement metric. During focus group post-gameplay interviews, a

minimum of 70% of the players that reach the room within five minutes of starting the game

must indicate that either their emotional state was ”scared” with a minimum rating of five

on a scale of one to 10, or that their tension level exceeded five on the same scale. However,

this level of precision may be more than required and simpler metrics may be sufficient.

Using requirements engineering techniques, we have translated the game designer’s intent

for the emotional experience into a traditional functional software requirement. From this

example we may conclude that capturing the designer’s intent requires a mechanism for

representing the induced emotional state. We should also be able to express spatial and

temporal qualifiers.

3.3.2 Artistic Context

The designer must also be able to express the means by which the emotional state is induced

as part of the emotional requirements. Traditionally, this might be viewed as a design or

implementation detail that has no place in the requirements engineering process. However,

within this context, we are capturing the game designer’s vision. As such, the means by which

a specific emotion is to be induced is a requirement and not a design or implementation detail.

Temporal and spatial qualifiers also apply to artistic context. In Figure 3.1(a), when asked

about immersion in the context of the sound source, the game designer added the rebound

path for the sound in the top right corner of the figure and indicated an approximate limit

for the distance the sound could travel (and, therefore, be detected by the player). The

designer was indicating an experiential requirement (here, a spatial qualifier on the intensity

45

of the sound source), a means of capturing their vision, and not an implementation detail.

In contrast, Figure 3.1(b) is a portion of a race track for a racing game. The game designer

began by tracing the path of the racetrack as shown and concluded the design as soon as the

heavy black line was drawn. Discussion indicated that the designer felt that this particular

geometry would be greatly enjoyed by the game player. There was no indication of direction

of travel or purpose for any of the geometric elements. When asked, the designer indicated

the direction of travel and seemed to feel that the purpose of each of the regions was obvious.

Upon request, the designer added the annotations visible in the figure. For this segment of

the race track the designer had, by implication, created eight separate experiential regions.

The game designer was then asked to assign an intensity level to each of the experiential

regions. The results are shown in Figure 3.2, where the raw data is presented as a smoothed

curve. The game designer explained that, in his opinion, it was very important to provide

periods of increasing intensity followed by recovery periods: “. . . you can only stay on the

edge of your seat for so long.” The overall design of this segment of the race track clearly

follows this philosophy – brief periods of tension followed by recovery periods with an overall

trend toward ever increasing levels of tension.

Temporal qualifiers are very important in this racing game design: the purpose of the

game is to complete the traversal of the virtual world in the minimum time. The intent of the

designer is to control the intensity of the induced emotion (tension) as the player proceeds

around the track. The means by which the designer controls the intensity of the emotional

experience is through the nature of the challenges in each experiential region.

A first-person shooter and a racing game are fundamentally different constructs. In a

first-person shooter, the player has much greater control over the time spent in each section

of the world. Therefore, the spatial qualifiers tend to have greater relevance to the emotional

requirements – it is only once a player enters a given experiential region that the rate at which

the player’s interactions with the game world unfold can be locally controlled. However, it

may not be possible to force the player to enter an experiential region without irreparably

damaging the sense of immersion. As noted above, in a racing game the temporal qualifiers

tend to dominate the emotional requirements – the player has very little choice over where

they travel within the virtual world.

46

Figure 3.2: Emotional intensity timeline

3.4 Representing Emotional Requirements

Applying requirements engineering techniques to video game design can lead to significant

resistance from game designers. From their perspective, we propose to take a essentially

artistic activity and convert it to an engineering process. However, we can take advantage

of the intensely graphical nature of the final software artifact to overcome this resistance by

building on the familiar scenario [101] and storyboard [4] paradigms.

We initially proposed the emotional terrain (Figure 3.3(a)) for requirements whose artis-

tic expression is strongly affected by spatial qualifiers. In an emotional terrain, the target

emotion is linked to a spatial representation of the world, the emotion is color-coded, and

the intensity of the emotion is associated with the luminance or perceived intensity of that

color. Stereotypically, red can be used for danger, green for safety, and black or gray for

neutral. In practice, color alone was insufficient to capture the necessary information.

47

Figure 3.3: Representing emotional requirements

As an alternative, we then proposed the emotional intensity map (Figure 3.3(b)). Lumi-

nance (rather than color) is used to quantify intensity while the identity of the local emotion

is indicated via a graphic symbol like an emoticon, a Chernoff face [26], or some derivative of

Ekman’s Facial Action Coding System [40]. The addition of the facial icon allows the artist

to quickly express the desired emotion in a way that transcends typical societal barriers since

most facial expressions are (effectively) universal [40].

For both emotional terrains and emotional intensity maps, spatial regions are quickly

sketched and intensity can be quickly approximated with an airbrush style graphics tool.

The graphic symbol for the emotion can be sketched or instantiated as text from a special

symbol set.

We can also draw upon the film industry paradigm of the video editing timeline as an

alternative for games that are dominated by their temporal qualifiers. Rather than applying

audio tracks to a filmstrip, we can apply emotion tracks to an emotion timeline instead. Each

track can capture the designers intent for a given emotion. For example, emotion tracks for

tension, frustration, fear, relief, accomplishment, etc. could be associated with progress

through the game. The timeline can be sketched as a simple graph within an experiential

region, as shown in Figure 3.3(c). In a special-purpose software tool, a timeline editor could

be accessed by interacting with the symbol and overlays could be used for display purposes.

48

3.5 Summary and Future Work

We have shown that video game design requires the capture and expression of emotional

requirements: how the player is supposed to feel while playing the game. Emotional require-

ments express the emotional intent of the designer and the means by which the designer

expects to induce the target emotional state. Analyzing game design fragments illustrated

the further need for spatial and temporal qualifiers on both intent and means.

We introduced emotional terrain maps, emotional intensity maps, and emotion timelines

as in-context visual mechanisms for capturing and expressing emotional requirements. Us-

ing a first-person shooter example, we showed that emotional requirements for intent can

be readily expressed, including spatial and temporal qualifiers, using this low-fidelity mech-

anism.

In the future, we plan to evaluate the proposed techniques with a larger body of game

designers. We shall continue our efforts to apply requirements engineering techniques to

all aspects of video game design and the pre-production phase of video game development.

Techniques for capturing artistic context, such as an artistic “look and feel” are still needed,

as is their integration with emotional intensity maps.

49

Chapter 4

Emotional Requirements

The following paper was an invited contribution by the editor of the Requirements column

and appeared in the January/February 2008 issue of IEEE Software. The IEEE Software

paper greatly increased the awareness of the work.

Originally published as follows.

David Callele, Eric Neufeld, and Kevin Schneider. Emotional Requirements.
IEEE Software, 25(1):43 45, 2008 [19] (with permission).

c©2008 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Emotional Requirements, IEEE Software, January 2008.

4.1 Introduction

Imagine that you are a software developer working on a video game. One morning, your

boss comes in and says, “Make sure the new game is fun or were all out of a job! Our last

game just got savaged by the reviewers!” Now, what can you as a developer do to help make

this happen? Before you panic, begin by remembering that video game software exists to

entertain, to actively engage the players cognitive and emotive processes while delivering

a satisfying playing experience. This experience is what customers are purchasing. They

care about the games functional aspects, such as the engine and control interfaces, only so

much as they affect the player experience. The functional aspects are simply the expected

minimum requirements that must be met before delivering the game.

The game designer crafts the playing experience – how the player should feel at certain

points in the game. In “Requirements Engineering and the Creative Process in the Video

Game Industry,” a paper for the 2005 Requirements Engineering Conference, we showed

50

that its not easy to effectively communicate the game design vision to the production team.

New techniques were needed to ensure that the production team captured, understood, and

implemented the intended player experience.

Like a movie director instructing the technical crew on implementing nuanced set design,

lighting, sound, and acting, a game development team must work together to implement the

game designer’s vision. In “Emotional Requirements in Video Games,” a paper for the 2006

Requirements Engineering Conference, we introduced emotional requirements to assist game

developers with this task. Just as with functional requirements, emotional requirements have

attributes that you must describe and model, and those attributes sometimes require careful

balancing.

4.2 Requirements Challenges

Emotional requirements must contain at least two elements: the game designers intent (that

is, the target emotional state) and the means by which the game designer expects (requires)

the production team to induce that emotional state in the player. We can consider an

emotional state such as happiness as universal, but the way you induce happiness isn’t.

Emotional requirements need context: classic pratfalls from vaudevillian theater can induce

gales of laughter in a viewer who also feels horror at seeing a loved one fall. Unanticipated

interactions between what the player sees, hears, and feels before or during the game can

also affect the players emotional response to stimulus, which is further conditioned by the

individuals personality, culture, and life experiences.

Emotional requirements blur the lines between requirement and specification. They re-

quire significant contextual information, possibly more than any other form of requirement.

It’s not as simple as stating “The player should be scared.” In this domain, vaguely un-

derstood emotions interact with well-understood engineering constructs, generating require-

ments engineering challenges.

51

(a) Fear (b) Relief (c) Elation

Figure 4.1: Far Vista Studios (www.farvistastudios.com) Run the Gauntlet in-game
promotional scenes: The players environment might promote feelings of fear, relief, or
elation. (used with permission)

4.3 Induced Emotional Requirements

Its easy to generate emotional requirements that seem reasonable to the game designer but

have no value to the player. For example, you might decide to dynamically adjust the

games difficulty. In a real-world example, the designers modified a video games control

systems to adapt to the users skill level, effectively enabling two players of significantly

different skill levels to achieve the same score. This sparked accusations of cheating and

unfair play from the player community. The game designer and developers had set an

emotional requirement of “Make the player feel successful, independent of their skill level,”

but the player audience had a conflicting emotional requirement: “Validate my self-worth

on the basis of my performance in this video game – relative to others.” Game developers

should validate such complex emotional requirements through user testing to ensure that

the player shares (or derives value from) the game designers goals.

4.3.1 Representation

How do you represent the emotional state envisioned by the game designer? In the “Basic

Emotions” chapter of the Handbook of Cognition and Emotion (John Wiley, 1999), Paul

Ekman provides a list of culture-independent (universal) emotions (amusement, anger, con-

tempt, contentment, disgust, embarrassment, excitement, fear, guilt, pride in achievement,

relief, sadness/distress, satisfaction, sensory pleasure, and shame) that you can use as a basic

52

emotional vocabulary for representing these states.

To illustrate, Figure 4.1 shows three scenes from Far Vista Studios game Run the Gaunt-

let. In Figure 4.1a, the central player is totally exposed to attack from all sides; the game

designer wants the player to be nervous or fearful at this location. In Figure 4.1b, the central

player has found a structure to hide behind; the game designer wants the player to feel relief

from gaining some degree of safety from attack. While purely textual descriptions suffice,

theyre difficult to maintain and don’t align with the game’s graphical paradigm. Previously,

we successfully overlaid cartoon faces and emoticons on the game graphics (see Figures 4.1a

and 4.1b) as a simple, graphical representation of the desired emotion and recommend this

practice for economy and ease of use.

4.3.2 Cultural Conditioning

Emotional requirements can require localization efforts. International audiences (and mem-

bers of international teams) might interpret the same symbols and events differently. Test

your scenarios on your target markets to ensure that they don’t elicit inadvertent interpre-

tations. Perhaps the most cited example is the color red, which in North America means

danger, whereas in China, red means good fortune.

4.4 Contextual Information Requirements

You should also consider how abstract contextual elements produce or affect player emotions.

4.4.1 Positional

An effective emotional requirement identifies where, in the virtual world, the player should

feel a given emotion. In Figure 4.1c, we see a player leaping off a roof to perform an aerial

attack on the street-level players below. Discovering this tactical advantage, which exists

only at this location within the game, is intended to induce feelings of success (pride in

achievement). Because it’s expensive to create a virtual world, use emotional requirements

to ensure that every element contributes to how the player is supposed to feel in that setting.

53

Figure 4.2: An emotional timeline for Far Vista Studios Run the Gauntlet. (used
with permission)

4.4.2 Temporal

Context can vary with time. In Figure 4.1c, jumping off the roof elates the player. This

feeling of success increases as the player approaches street level because the distance between

the player and the enemy decreases and the probability of hitting the enemy consequently

improves. However, this elation ends on landing because the game designer has set a trap –

the fall impact actually causes the character to die and regenerate elsewhere. This emotional

roller coaster is a staple of the action and suspense genres and delivers great satisfaction to

the target audience.

Supporting the development of the game’s story arc over time, the game designer could

also block access to the roof for certain periods, deliberately inducing frustration in the

players as they attempt to use the roof as a sniping position and find that they can’t. The

designer could then use the roof access as a trap to force a transition from frustration to fear.

54

Figure 4.2 shows the emotional timeline, which depicts players’ emotions as they experience

the game’s story arc. Effective use of emotional requirements requires understanding how

your audience reacts to emotional intensity. Players, just like movie-goers, generally react

better to a change in intensity than to long-term exposure to high-intensity emotions. For

example, you can only expose players to high-intensity emotions for a relatively brief period

before they begin to become immune to the stimulus.

4.4.3 Relational

Gamers play because they want to have particular emotional experiences. If a game delivers

those experiences, they play it again and again until they no longer achieve their emotional

fix. Game designers must remember that this emotional experience is the player’s definition

of a successful game, and it might not match the emotions they’ve specified in their game

design document. As gameplay progresses, players accumulate experiences that can lead

to positive and negative prejudices. Development teams should attempt to consider these

accumulated experiences. Which would you rather hear: “I am so angry; I just can’t get

past that enemy!” or “This game is worth every minute that you invest in it!” You can

use extensive play testing to identify these emotional biases, but consider whether player

perceptions are being skewed by prior experiences with the game.

4.5 Conclusions

Emotional-requirements techniques can help improve player experience and reduce devel-

opment uncertainties. Focusing on entertainment software is a logical starting point, but

we plan to extend our application of emotional requirements to other areas. Emotional

requirements add the human element to engineering practice. This combination helps and

encourages us to better understand those around us and might even help those around us

better understand our practice.

55

Chapter 5

Balancing Security Requirements and Emo-

tional Requirements in Video Games

In the traditional requirements engineering demarcation between Functional Require-

ments (FRs) and Non Functional Requirements (NFRs), emotional requirements are consid-

ers NFRs. Identifying and managing interactions between the categories, and prioritizing

within and between categories, are common tasks for the domain practitioner. Videogame

NFRs such as fun and entertainment tend to dominate all other requirements for this appli-

cation domain. In this work, we investigate the effects of introducing a new (and dominant)

class of NFRs into the requirements process. In particular, we look at interactions between

emotional requirements and security requirements.

Emotional requirements, as originally envisioned, were a constructively motivated, cre-

ative affordance, used to help deliver the intended emotional experience to a willing audience.

All stakeholders were assumed to be similarly constructively motivated. However, not all

players are the ‘good guys’; not everyone plays fair. A significant number cheat and, even

worse, some of them actively attempt to disrupt or destroy the game experience for other

players. We can model these destructive stakeholders as security threats of a particular

type: they are willing, but apparently hostile users. This model led to an exploration of the

application of emotional requirements to this unusual stakeholder class.

The poster Balancing security requirements and emotional requirements in video games

won the Best Poster Award for Requirements Engineering 2008. Of particular interest to the

judging panel was the introduction of in-game justice systems as a mechanism for negotiating

requirements at runtime.

Originally published as follows.

56

David Callele, Eric Neufeld, and Kevin Schneider. Balancing Security Re-
quirements and Emotional Requirements in Video Games. In RE 08: Proceed-
ings of the 2008 16th IEEE International Requirements Engineering Conference,
pages 319 320, Barcelona, Spain, 2008. IEEE Computer Society [18].

Abstract: A fundamental conflict exists between designers, players, and cheaters:
Who has control over how the game is played? Resolving this conflict, by bal-
ancing the associated emotional and security requirements is challenging.

Emotional requirements can assist the development of security requirements
and to prioritize their development. Failure to meet the player’s emotional re-
quirements can lead to market forces that override security requirements. We
suggest that in-game justice systems would allow the players to act as a self-
correcting mechanism for emotional requirement failures that lead to cheating or
other threats to the integrity of the game experience. Further investigation into
this form of just-in-time requirements negotiation is ongoing.

Keywords: Non-functional requirements, emotion, emotional requirements, se-
curity, security requirements, video game.

c©2008 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Balancing Security Requirements and Emotional Requirements in Video Games,

Proceedings of the 16th IEEE International Requirements Engineering Conference, Septem-

ber 2008.

5.1 Introduction

The dominant security goal for most video games is ensuring the integrity of the playing

experience. This goal is shared by all constructive stakeholders; Consalvo [30] and others

have shown that players need to trust the integrity of the game – the same rules must apply

to all participants and no player should have an unfair advantage over another.

A developer might define the corresponding security requirement as “All players shall

play the game only as the designer intended the game to be played.” However, if players

don’t enjoy the approved method of gameplay they will turn to cheating in an attempt to

get at least some value from their investment. And as Consalvo [ibid.] notes “. . . cheating

isn’t just about subverting the (game) system; it’s also about augmenting the system. It’s

a way for individuals to keep playing through boredom, difficulty, limited scenarios, rough

57

patches or just bad games.”

These comments illuminate the fundamental conflict between the player and the designer:

Who has control over how the game is played? Is the player only allowed to play the game

as designed? Or does the player control how the game is played? Perhaps the answer lies

somewhere in-between.

In this work, we explore the intersection of security requirements and emotional re-

quirements, investigating the use of emotional requirements to assist in the development of

security requirements and identifying justifications for overriding security requirements with

emotional requirements.

5.2 Related Work

While there is no universal definition for cheating [62, 30], Yan provides a cheating classi-

fication [109] that builds on prior work in security issues, extending Pritchard’s work [86]

while relating it to more traditional mechanisms for understanding and defining security

requirements and security design. The most detailed analyses of cheating in video games

is that by Consalvo [30], broadening our understanding of player motivations for cheating.

The motivating factors for grief play (play that deliberately disrupts other players) have

been most extensively studied by Foo [44], and to a lesser extent, Consalvo [30] while justice

systems [97] remain relatively ignored.

5.3 Evaluating Threats

Players are not usually a traditional security threat such as a disgruntled employee in search

of revenge. They are more like a frustrated employee who attempts to use unauthorized (if

not illegal) means to bypass what they perceive to be obstacles to the proper discharge of

their duties.

Emotional requirements can assist in evaluating the risk levels of these security threats.

Identifying the sources of greatest frustration to the player, the emotional irritants (a nega-

tive emotional requirement, or a failure to meet an emotional requirement) will identify those

58

issues most likely to sufficiently motivate the player to attack the game. The risk factor for

an emotional irritant can be expressed as:

Risk Factor(Emotional Irritant) =
Level of Irritation

Cost of Attack

Those security requirements associated with high risk emotional irritants should receive

high priority in the development plan.

5.4 Resolving Requirement Conflicts

If the ‘approved’ method of gameplay is not actually fun for the players, the game may be a

sales disaster. At this point, the developer and publisher will be strongly motivated to salvage

some form of revenue stream – even if it means arbitrarily relaxing the security restrictions

via a source code patch, or the publication of means for accessing alternative operating

modes (e.g. developer shortcuts, a.k.a cheat codes). The initial security requirements are

overridden in an attempt to salvage a flawed game – demonstrating that there do exist

situations where emotional requirements can override security requirements.

There does not appear to be an optimal resolution to the conflict between security require-

ments and emotional requirements – the security goal of ensuring the integrity of gameplay

is unlikely to be achieved. Instead, a negotiation process is needed that eliminates the re-

quirement to identify and resolve all problems a priori yet allows them to be resolved as

they occur and in a manner that addresses the emotional requirements of the stakeholders.

This resolution can be provided just-in-time by introducing an in-game justice system to

apply corrective action to those who corrupt the integrity of the game experience. Sanderson

[97] provides an informative view of such justice systems. For an in-game justice system to

be effective, it must address issues of judicial authority, the penalties associated with various

‘crimes’, enforcement mechanisms, and whether enforcement has real-world consequences.

An in-game justice system can be used as a fall-back, catching those cases that were not

considered in the requirements. Determining the requirements for a justice system, then

developing and implementing it is expensive but we expect that some of the cost may be

offset by reducing the number or scope of the initial security requirements.

59

Experience has shown that if griefing is not addressed, the griefers will come. Placing

justice in the hands of the players means that they can act as dynamic systems that are able

to adapt to, and counter, griefing tactics. We expect that the griefers will tire of victims

that fight back and will move on to easier prey (in other systems).

5.5 Summary and Future Work

We have shown that emotional requirements can assist the development of security require-

ments by identifying the motivation behind security threats. The emotional irritants that

motivate the attacks can be addressed proactively, potentially reducing the magnitude of

the risk. Emotional requirements can also be used to help prioritize security requirements;

strong emotional irritants that require low effort to overcome are the most likely attack

vectors. The high-risk security requirements identified in this manner should be prioritized

during development.

Failure to meet the player’s emotional requirements can lead to market forces that over-

ride security requirements. If the emotional requirement failures are as a result of cheating

or other threats to the integrity of the game experience, we suggest that in-game justice

systems would allow the players to act as a self-correcting mechanism in the face of these

security failures. The justice system places further requirement negotiation in the hands

of the players, providing them with a framework wherein their own community values can

develop.

Further investigation into the use of in-game justice systems as a form of just-in-time

requirements negotiation is warranted and ongoing. The role of the community as a self-

policing entity is worthy of further investigation, particularly with respect to the effects on

the stringency necessary for the security requirements for that community: if the players

will self-correct, it may not be necessary to invest as heavily in security infrastructure.

60

Chapter 6

Requirements in Conflict: Player vs. De-

signer vs. Cheater

The related workshop paper looked more deeply at the issues associated with the inter-

actions between emotional requirements and other requirements, security requirements in

particular.

Originally published as follows.

David Callele, Eric Neufeld, and Kevin Schneider. Requirements in Conflict:
Player vs. Designer vs. Cheater. In Multimedia and Enjoyable Requirements
Engineering - Beyond Mere Descriptions and with More Fun and Games, 2008.
MERE 08. Third International Workshop on, pages 12 21, Barcelona, Spain,
2008. IEEE Computer Society [20].

Abstract: There are significant interactions between video game stakeholder emo-
tional requirements and security requirements. Counter-intuitively, some tradi-
tional security requirements are not necessarily met by the game implementation
– some forms of security breaches are condoned by the stakeholders (if not actu-
ally demanded by them) and the requirements engineering process must support
these contradictions.

We present an overview of security requirements for video games and show
how stakeholder diversity introduces significant complexities to the requirements
negotiation process. Our analysis of certain security threats, and their emo-
tional motivations, shows that these motivations form an important element of
the emotional requirements and that significant context is necessary for properly
capturing the emotional requirements related to security. Finally, we show how
emotional requirements can be used to guide security goal development for this
domain and propose the use of in-game justice systems to allow players to address
security violations in realtime.

Keywords: Non-functional requirements, emotion, emotional requirements, se-
curity, security requirements, video game.

61

c©2008 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Requirements in Conflict: Player vs. Designer vs. Cheater, Multimedia and

Enjoyable Requirements Engineering - Beyond Mere Descriptions and with More Fun and

Games, September 2008.

6.1 Introduction

Stakeholders often have differing opinions on the relative importance of a requirement. For

productivity applications, the set of stakeholders is typically dominated by the users of the

application and their immediate management. The stakeholder domain for video games must

be more diverse. The entertainment aspect of the product means that emotions are involved

and that there may be interactions that are not necessarily logical.

The stakeholders range from financiers to players and they share the common desire

for a great game. However, great games are not easy to create. In prior work we showed

that capturing the game designer’s vision was difficult [16] and we introduced emotional

requirements, emotion timelines, and emotion terrains [17, 19] to help capture that vision.

Using a detailed case study performed with an industrial partner, Alves et al [3] elaborate

on the challenges faced in requirements engineering for mobile video games, extending our

work on requirements engineering for video games[16].

Emotional requirements, as originally envisioned, were a constructively motivated, cre-

ative affordance, used to help deliver the intended emotional experience to a willing audience.

All stakeholders were assumed to be similarly constructively motivated, desiring the best en-

tertainment experience that they could achieve.

But not all players are the ‘good guys’. Not everyone plays fair. In fact, a significant

number cheat and, even worse, some of them actively attempt to disrupt or destroy the game

experience for other players. We can model these stakeholders as security threats of a very

particular type: they are willing, but apparently hostile and destructive, users.

These destructive stakeholders are motivated in some way to act as they do. It is these

motivations that we capture as (perhaps unfulfilled) emotional requirements. Rather than

adopting a simple “all destructive stakeholders are the enemy” attitude, in this paper we

62

explore the intersection of security requirements and emotional requirements, asking:

• Can we use emotional requirements to assist in the development of security require-

ments?

• Can emotional requirements be used proactively, to identify the motivations behind

the security threat?

• Can emotional requirements be used to ameliorate security risks by providing insight

into threat motivation?

• Are there situations where emotional requirements can override security requirements?

And if so, with what justification?

To begin, we identify the constructive and destructive stakeholders and briefly explore

their motivations. We review the related work and then present an overview of a generic

security model for a typical multiplayer video game. A threat analysis is performed and

possible attack vectors are explored to demonstrate how the related security requirements can

be enhanced by emotional requirements. Conflicting emotional requirements are investigated

to determine how they impact security requirements, and how the various demands can be

balanced. We conclude with a demonstration of guiding security goal development for this

domain with emotional requirements by deploying an in-game justice system then provide

directions for future work.

6.2 Stakeholders

Consalvo [30] introduced the concept of gaming capital as a motivator for, and means of

valuing, interactions between stakeholders in the gaming domain. Gaming capital is based

upon economic principles, with capital an abstract representation of value or worth that has

the (potential) ability to be exchanged between stakeholders. We motivate the stakeholder

identification process with a simple producer / consumer model.

63

6.2.1 Producers

A functional analysis of the production process identifies the following primary contributors.

The Designer works for a Developer that has a publication agreement with a Publisher. The

Publisher arranges distribution with a Distributor that delivers the game to a Vendor who

sells it to the final consumer. The secondary contributors include the Financier, who provides

the necessary financial capital to all parties, the Marketer, who stimulates demand for the

product, often working closely with the Media, who report upon the product. There are also

After-market suppliers, providers of information, software, and hardware that interacts with

the product and Regulators, that ensure compliance with regulations imposed by Society,

an abstraction that exhibits (often contradictory and unpredictable) emotional responses to

the product.

The supply side of the model is relatively straightforward and follows well-established free-

market principles. The supply chain starts with a designer that we shall denote as principally

artistically motivated. The developer, representing the studio that transforms the game

from concept to product is denoted as motivated both artistically and economically, with

the economic motivation dominant (those studios that are principally artistically motivated

rarely survive for long). It is worth noting that, in the domain of multiplayer gaming, the

Developer also has a long-term economic commitment to operating a game related service

of some form.

The remainder of the primary supply side contributors are fundamentally economically

motivated. So are the secondary supply side contributors, with the exception of society

which we denote as emotionally motivated, but in a manner that we can not predict.

The economically motivated stakeholders are modeled here as perfect capitalists. Their

sole emotional requirement is for success, as measured by their ability to make a profit.

While this abstraction may ignore the contributions of their other emotional factors, it is

sufficient for this work.

64

6.2.2 Consumers

The consumer stakeholders do not always follow the traditional user behavior patterns. Their

behavior is complicated by the fact that they expect that their (non-functional) emotional

requirements for entertainment will be satisfied.

However, when the playing experience goes poorly then player emotions, attitudes, moti-

vations, and actions change dramatically. The player finds that their emotional requirement

for fun is not being met. For example, they may perceive that their efforts to play are

being thwarted, they may feel betrayed by the game, or they may even feel threatened by

other players. The player now views some element(s) of the game playing experience in an

adversarial manner.

Independent of the reason for the shift, while the player maintains this attitude we

consider them a destructive stakeholder. However, the player still wants to play – it is just

that they can not find satisfaction so they turn to alternatives that many would consider

cheating.

Since the player still wants to fulfill their emotional requirement for fun, they should

not be considered a traditional security threat. They are not, for example, a disgruntled

employee in search of revenge. They are more like a frustrated employee who attempts to

use unauthorized (if not illegal) means to bypass what they perceive to be obstacles to the

proper discharge of their duties.

Within our economic model, these players are consumers that are willing to invest in

purchasing the product. However, if the product fails to deliver its promised utility, they are

willing to ‘do what it takes’ to get what they perceive to be value for their money (even if

that means bending or breaking the ‘law’ as a last resort).

6.2.3 An Example

The relative nature of the definition of a destructive stakeholder (judged by intent rather

than perception) means that we are exposed to observational error. However, in this work, we

are looking for ways to be proactive, not reactive, so the temporal accuracy of an observation

is not as important, just whether or not the player entered an adversarial attitude.

65

For example, assume that the player is unable to progress beyond a certain point in

a game because they can not solve a particular puzzle[16]. They are unable to find any

clues in the game as to how to proceed and their frustration level is very high. From their

perspective, the game is a failure. In order to salvage their investment, they turn to the

Internet for help. After a few minutes of searching, they find a guide (commonly termed a

walkthrough) that explains how to get past this puzzle. Using this advice, they are finally

able to continue with the game.

Did the player cheat?

For now, at least, the answer is irrelevant. What is relevant is the difference between

intent and perception. The player perceives that the game is flawed: the puzzle was too

difficult, and the designer neglected to provide a support mechanism of some form. Their

emotional requirements for “fun”, and for “receiving value for my money” dictate that they

go out-of-game to meet their requirements.

Contrast this with the perception of the game designer: the player cheated, they went

outside of the game for help and the player has broken the implied contract to “play the game

as intended”. The player has violated the designer’s emotional requirement for maintaining

the integrity of their artistic vision.

The emotional requirements for the designer and the player are in conflict; the designer

now considers the player to be a cheater and the player feels that the designer has betrayed

them. The reason for the conflict is always important, knowing when the conflict occurred

is important only if the designer wants to reduce or eliminate a specific conflict.

6.2.4 The Exception to the Rule

It should be noted that there exists a class of players that do not fit well into this economic

model. These are the griefers (players who participate in the game for the purpose of

interacting with other players in a negative manner, see Section 6.3.6 for further details).

They have no apparent rational economic basis for their actions; their behavior appears to be

a manifestation of an emotional requirement for power (over others). As such, they appear

willing to perform a direct exchange of game capital for emotional capital (gratification) – a

currency exchange not willingly shared by the other stakeholders.

66

6.3 Related Work

We now review the security requirements literature, literature on player types, motivations,

and their attributes as destructive stakeholders. We close with related work on negotiating

conflicting requirements.

6.3.1 Security Requirements

Due consideration of security goals within the requirements engineering process is expensive

and an informed cost-benefit decision is strongly recommended. Crafting security require-

ments is challenging [58, 43, 70] and many factors [74, 82] should be considered. Prioritizing

security requirements [70] for video games is made even more difficult by problems with

determining the economic value of play.

Security requirements also conflict with the emotional requirements of an immersive

play experience. For example, authentication can be an intrusive operation. However, if a

constructive player perceives that the game is prone to attack by destructive players, they

may feel that there is sufficient justification for the authentication measures.

Moffet et al [74] state that it is not necessary to know the goals of the individual attackers

when performing risk analysis, just what kind of attack they will mount. We substantively

differ in this work: we look directly at motivation (the why behind the threats, and security

in general) and try to determine if there are emotional requirements that can be met that

mitigate the risk factors. Unlike the general practice of attempting to resolve all conflicting

requirements, emotional requirements may not be resolvable – all that may be achieved

is a set of requirements that lead to a state of constant, small-scale skirmishes between

constructive and destructive stakeholders.

6.3.2 Misuse, Abuse, and Anti-Requirements

We have identified destructive stakeholders by their behavior patterns. These behavior

patterns have strong parallels in the requirements engineering literature. Misuse and abuse

cases [69, 99, 2, 57] are use cases that explicitly identify threatening scenarios (such as

67

cheating) so that they may be proactively considered during systems design. The role of

griefers and grief play is most similar to anti-requirements [32], a “requirement of a malicious

user that subverts an existing requirement.”

Emotional requirement failures are closely related to Pott’s obstacles [85, 106]. The

player’s goal (to have fun) is blocked by failures in the game design [1].

6.3.3 Threats and Attacks

Attacks can be modeled [76] in many ways – most commonly in scenario form [77]. Difficulties

[76] include organizing, managing, and prioritizing.

Resources detailing known attacks on games are readily available [25, 56]. These attacks

have been roughly categorized [66] as cheating against the provider, other players, or the

virtual society. There are active efforts [86, 53] to reduce the effectiveness of such attacks.

However, Golle [53] notes that “. . . no defense appears possible against an adversary who

has more intrinsic utility for using a bot than for winning the game.” In other words, if the

player is simply being destructive, with no rationale consistent with the game, then there is

no protection against their actions.

6.3.4 Player Types

Numerous researchers have studied players in attempts to provide taxonomies of player

types and player motivations. In particular, Yee [111, 110] has extensively studied players in

massively-multiplayer online games. While most of the player types and their motivations

are constructive, his analysis has confirmed the presence (and disruptive capabilities) of grief

players but does not investigate cheating behaviors in detail.

6.3.5 Cheating

While there is no universal definition for cheating [63, 62], Yan provides a cheating classifi-

cation [109] that builds on prior work in security issues [108, 107]. Yan extends Pritchard’s

work [86], relating it to more traditional mechanisms for understanding and defining security

requirements and security design.

68

The most detailed analyses of cheating in video games is that by Consalvo [28, 29, 30]

broadening our understanding of player motivations for cheating. These motivations have

strong parallels with emotional requirements and form the basis for parts of this work

Most research into cheating does not address justice systems [97] although some do report

on common practice at the time [107, 30].

Issues of morality and ethics have been addressed [90, 78, 30] and it is instructive to

understand what mechanisms can be used to evaluate good vs. bad or right vs. wrong. Only

then can questions like this be answered: If there are no consequences to breaking the rules,

can an act be called cheating? Can a player cheat in a single-player game?

6.3.6 Grief Play and Griefers

Grief play (play that is intentionally disruptive of the game and other player’s game expe-

riences) and griefers (those who perpetuate grief play) have come to significantly greater

attention with the advent of multiplayer online games. While there have always been those

who play in this manner, they could only affect those in physical proximity; their actions

were self-limiting. With the Internet, griefers can disrupt players anywhere in the world.

The motivating factors for grief play have been most extensively studied by Foo, and to a

lesser extent, Consalvo [30]. Foo [44] reviews the prior work, compares it with other research

into bullying and teasing and identifies four motivating influences: game (and game manage-

ment) influenced, player influenced, (other) griefer influenced and self (griefer) influenced.

In later work, Foo [45] presents a more detailed analysis of the concept of grief play,

looking at intention, perception, and side-effects. Three rule classes are identified: those in

the code, those in the service contract (including game rules), and those implied by the game

community via social etiquette. The importance of perception, particularly of motivation,

is brought forward and is related to our work on stakeholder differences. As above, there

remains an open question of rule enforcement and justice systems: Who has authority and

what are the penalties?

69

6.3.7 Emotions in Requirements

Now that we have broadened the applicability of emotional requirements, we note that Ramos

et al [88] performed earlier investigations into the interactions between change (organiza-

tional transformation, most particularly in Information Technology systems), requirements

engineering, and the emotions of those affected by the change(s). In particular, they address

the issue of including the users emotional responses into deployment planning, attempting

to mitigate any issues before they become blockers – a proactive approach similar to our

current work.

6.3.8 Negotiating Requirements

Easterbrook et al [38] describe a development environment quite similar to game develop-

ment. The different viewpoints utilized in this work correspond to the perspectives of the

constructive stakeholders in this work and consistency checking within a viewpoint is anal-

ogous to resolving emotional requirement conflicts. Of particular interest is the observation

that requirements inconsistencies are not failures, they only need to be resolved if the owner

of one of the inconsistencies requires resolution.

Menzies et al [72] describe a negotiation process whereby the mutually agreeable set of

common viewpoints are identified such that a group can constructively work together. They

note the importance of buy-in, an emotional commitment to the success of the endeavor. By

adjusting perspectives, they show that the common set of requirements can be larger than

anticipated.

The multi-disciplinary nature of the present work has been reflected in the breadth of the

related work. It represents a synthesis of security analysis, security requirements, emotional

requirements, requirements negotiation, and motivational psychology.

6.4 Security and Video Games

The dominant security goal for most video games is ensuring the integrity of the playing

experience. This goal is shared by all constructive stakeholders; Consalvo and others (see

70

Table 6.1: Emotional Requirements

Emotional Re-
quirement

Description Player Comments

Escape, Experience Distraction from (pressures and in-
fluences of) physical reality

I like to explore, especially in God
mode. I want to be anonymous. I
want to do things I can’t do in real
life.

Reward Need for immediate feedback (of
success or failure)

I love finding hidden rooms! The
feeling when I finally mastered that
move. . .

Posture, Image How the player believes they are
perceived by others

I love being the hero; It’s cool to be
bad!

Acceptance Finding and becoming part of a
community

These are my real friends. . .

Power, Control Exercise power, control and influ-
ence

I love being able to dispense justice!

Accomplishment Long-term accumulation of experi-
ence and reward

Figuring out how to advance my
character, all the way to the high-
est levels – that’s what I play for. . .

Section 6.3.5) have shown that players need to trust the integrity of the game – the same rules

must apply to all participants and their playing experience should never include attacks by

other players unless they have agreed to that playing mode1. We restrict our current analysis

to this single goal.

In practice, “ensuring the integrity of the playing experience” is an excessively vague

goal. The Developer may define the corresponding security requirement as:

The player shall play the game as the Designer intended the game to be played.

Once the requirements engineering team is done with it, the same requirement might look

like:

All inputs to the system must be validated according to the Input Validation
Rules as defined in Appendix A: Acceptable Game Play.

where Appendix A is a formidable document that, given the complexities of the typical video

game, would be unlikely to provide complete coverage of all potential interactions.

1In gaming parlance, the two most common playing styles are PvG : Player vs. Game and PvP : Player
vs. Player. PvP can also allow Pk : Player killing by other players.

71

Figure 6.1: Generic Video Game Architecture

The cost/benefit analysis for this scenario is complex. What is the value associated with

ensuring that the game is played only in the intended manner? Such a constraint might

benefit the rest of the production channel by reducing support costs after the game is sold.

However, if the approved method of gameplay is not actually fun for the players then the

game may be a sales disaster. At this point, the Developer and Publisher will be strongly

motivated to salvage some form of revenue stream – even if it means arbitrarily relaxing

the security restrictions via a source code patch, or the publication of means for accessing

alternative operating modes (e.g. developer shortcuts).

The player, of course, doesn’t care about any of this, they only care about having fun.

If relaxing the security restrictions to allow alternative gameplay means that players can

72

enjoy the game, it may become a success simply by word of mouth about the “player-first”

attitude of the Developer and Publisher.

6.5 The Player’s Perspective

A sample of typical player emotional requirements for this context, condensed from experi-

ence and the cited literature, is presented in Table 6.1. The underlying emotions are heavily

abstracted and are best interpreted as a motivating factor, as a need that the player attempts

to satisfy by playing the game.

When these (and other) emotional requirements are not met, then otherwise constructive

players may become destructive stakeholders. They are more likely to turn to some form

of cheating and their observable actions may become beligerent toward other players. As

Consalvo notes “. . . cheating isn’t just about subverting the (game) system; it’s also about

augmenting the system. It’s a way for individuals to keep playing through boredom, difficulty,

limited scenarios, rough patches or just bad games”. Some players make comments that

indicate they cheated only because they were stuck, that they wanted to play the game in a

different way (for the alternative experience), or because they were facing time constraints

(they couldn’t spend hours performing repetitive tasks just to meet the Designer’s vision).

We note that the player comments indicate conflict between the Player and the Designer.

The players do not share the designer’s vision and demand the freedom to play the game in

a manner of their choice. Thus we arrive at the fundamental requirements conflict for all

video games:

Who has control over how the game is played? Is the player only allowed to
play the game as designed? Or does the player control how the game is played?
Or is the answer somewhere in-between?

Ensuring that the game can be played, only as designed, requires significant investment in

security infrastructure (and the associated demands on algorithmic correctness). As noted

earlier, market forces can override the Designer’s intent. Because a game is experiential,

absolute control over the player’s experience is only a goal, it can not be guaranteed and

there may be real world moral or legal issues associated with fine control over the player

experience – blatantly manipulating the player may not be socially acceptable.

73

6.5.1 Alternative Play as Threat

For discussion, we classify any deviation from the intended play experience as a threat. Not

all threats must be addressed; their severity can vary greatly.

From the gameplay perspective, these threats manifest as follows:

• Conferring an unfair advantage; (deliberately) breaking a rule and deriving a benefit2.

Examples include using cheat codes to bypass parts of the gameplay and programmatic

assistance such as macros or bots (from robot, an automated assistant).

• Using information from outside the game. Examples include employing hints, guides,

and walkthroughs. The game is played as intended, but the player doesn’t do the

‘work’.

• Exploiting the implementation, gaming the game. Includes breaking the rules of the

game (because the rule was not enforced), taking advantage of bugs, emergent gameplay

(particularly taking advantage in a covert vs. an overt manner)

• Technological Cheating. The hardware or communication channels are modified in

some manner.

• Hacks. The binary expression of the rules, communications, the game engine itself, are

modified to change the play experience.

Consalvo [29] notes that “. . . much of the time, cheating actually implies a player is

actively engaged in a game and wants to do well, even when the game fails them.” Given

that the the player’s feelings convert them to a security threat, emotional requirements are

a useful means for capturing player motivation, even when it is destructively focused. We

conclude that emotional requirements can be used to ameliorate security risks by providing

insight into threat motivation.

2Implies a zero-sum game, that one player cheating causes another player harm. This is not always true:
what about single-player games? Is it even possible to cheat against a “game as opponent”?

74

6.6 The Developer’s Perspective

There are many ways that the integrity of the play experience can be compromised. We

classify these threats as follows.

1. Physical. Attacks upon, or requiring access to, the physical devices used in gameplay.

This can include player computers, controllers, communications links, servers, etc.

2. Logical. Attacks upon the rules of the game, principally exploits on unexpected inter-

actions.

3. Temporal. Attacks that manipulate time, calibration, or sequencing – both within the

virtual reality as well as in physical reality.

4. State (information). Attacks upon the information used to control the game. Typically

performed in realtime but may also be attacks upon data repositories between games.

5. Social (player). Out-of-game attacks upon the players themselves. Also known as

social-engineering attacks.

All of these threats distort the virtual reality in some way.

To better understand these threats, they shall be addressed in the context of the generic,

multiplayer video game architecture shown in Figure 6.1 (loosely based upon the OSI network

model). One or more Virtual Realities are situated within a Physical Reality. Each computer

is composed of a Physical aspect that includes the associated operating system, and these

computers are connected via some form of communications Network. The Game is a software

artifact composed of Code and Data elements.

The integrity of the game can be threatened in many ways (see Sections 6.3.5, 6.3.6). In

practice, the actual techniques most often used compromise the integrity of one or more of

the interfaces shown in Figure 6.1. Hoglund and McGraw [56] use a set of prepositions (over,

under, into, outside) to denote how the attack is made. For example, the Game relies upon

the Hardware to perform certain tasks such as rendering the virtual world. If the expected

video drivers are replaced with new video drivers that render all walls translucent (thus

75

enabling the player to see oncoming attackers through the walls) then this attack occurs

under the game. . . the integrity of the under lying infrastructure was compromised.

The four attack modes exploit assumptions about the integrity of the system on the other

side of the interface. An attack positioned over a layer manipulates the input channels, under

a layer manipulates the output channels. An outside attack is directed at a specific layer

but is launched from at least one layer away (e.g. an outside attack on a Game is launched

from the Network or from another Physical location). The final attack position, into, refers

to manipulating the internals of the Game as represented by the Code and Data.

We also extend this paradigm to include an inside attack. An inside attack “games the

game” by attempting to exploit the rules of the game in some way. As such, an inside attack

is a meta form of an attack that gets into the game internals but does not rely upon direct

manipulation of code or data representations in memory.

Given this context for attacks upon this architectural model, security requirements are

most likely to focus on the integrity of the interfaces. A complete analysis would result in

security requirements for each interface, addressing each attack mode.

Implementing such a thorough set of requirements may be prohibitively expensive. While

emotional requirements do not appear to have a role in formulating security requirements

(security requirements should manifest from security goals), they can be used to guide the

prioritization process. Identifying the sources of greatest frustration to the player, the emo-

tional irritants (a negative emotional requirement, or a failure to meet an emotional require-

ment will identify those issues most likely to sufficiently motivate the player to become a

destructive stakeholder.

Removing or defeating these emotional irritants will require attacking the system in some

way. If the player is willing to pay the cost of successfully attacking the system, they will do

so. It follows that inexpensive attacks on significant irritants are the most likely to proceed

so the risk factor for an emotional irritant is expressed as

Risk Factor(Emotional Irritant) =
Irritant Factor

Cost of Attack

76

We recognize that it is difficult to be precise in a matter such as this. However, we feel

that even informed estimates based on prior experience are better than no guidance at all.

Those security requirements associated with emotional irritants with high risk factors should

receive high priority in the development plan.

6.7 A Process

The model presented herein has been relatively simple: Play is going well but something

bad happens and the player becomes a threat to the integrity of the game. If the irritant is

sufficiently large, and the player is willing to pay the cost of attacking the game, then they

will do so.

The provider of the game can attempt to ensure that this scenario does not come to pass

by following this process.

1. Identify the player’s generic emotional requirements – for your studio and/or the genre

of the game.

2. Quantify the relative importance of each emotional requirement, even if it is just an

informed estimate.

3. Identify corresponding emotional irritants, failures to meet the emotional requirements.

4. Identify the emotional irritants associated with gameplay elements specific and/or

unique to this game.

5. Quantify the magnitude of the irritants and determine the associated risk factors.

6. Identify security requirements corresponding to the emotional irritants.

7. Prioritize corresponding security requirements according to the risk factors.

6.8 Resolving Requirement Conflicts

We noted earlier that a Developer or Publisher may override security requirements in order

to salvage a flawed game. Given that this action is in response to the player’s reactions to

77

the game, there exist situations where emotional requirements can override security require-

ments. From a pragmatic financial standpoint, positive emotional reactions sell the game

while negative reactions will kill it.

The addition of mechanisms that satisfy the player’s emotional requirement for instant

gratification via reward systems, by definition, weaken the security requirements for the main

game by introducing complexity.

As noted earlier, there does not appear to be an optimal resolution to these conflicts –

the security goal of ensuring the integrity of gameplay is unlikely to be achieved. Instead,

a negotiation process is needed that eliminates the requirement to resolve all problems a

priori yet allows the problems to be resolved as they occur and in a manner that addresses

the emotional requirements of the stakeholders.

This just-in-time conflict resolution can be provided by introducing an in-game justice

system. This justice system is then used to apply corrective action to those who corrupt the

integrity of the game experience.

Sanderson [97] provides an informative view of such justice systems. These systems

range from those where the Developer is also a Service Provider who acts as judge, jury, and

executioner through to player policing systems wherein players are allowed to administer

‘justice’ upon each other.

Unfortunately, in-game justice systems suffer from the same issues as our real justice

systems including false accusation, atonement, recidivism, and the need for appellate review.

However, linking the justice system to the game capital system has been shown [97] to act as

a deterrent to abuse, particularly if the cost is proportional to a player’s wealth (to prevent

the wealthy from preying upon the poor).

For an in-game justice system to be effective, it must address these issues:

• Who has judicial authority?

• What are the penalties associated with various crimes?

• What enforcement mechanisms are available?

• Does enforcement have real-world consequences?

78

A justice system can be used as a fall-back, catching those cases that were not considered

in the requirements. Determining the requirements for a justice system, then developing and

implementing it is expensive but we expect that some of the cost may be offset by reducing

the number or scope of the security requirements.

Griefers and grief play remain an issue for it is difficult to judge the value of protecting

other players. If there are few incidents of grief play then it may not be worth investing

heavily. However, past experience [63] has shown that if griefing is not addressed, the

griefers will come. Placing justice in the hands of the players means that they can act as

dynamic systems that are able to adapt to griefing tactics. We expect that, eventually, the

griefers will tire of victims that fight back and will move on to easier prey.

6.9 Summary and Future Work

We have shown that emotional requirements can assist the development of security require-

ments by identifying the motivation behind security threats. The emotional irritants that

motivate the attacks can be addressed proactively, potentially reducing the magnitude of

the risk. Emotional requirements can also be used to help prioritize security requirements;

strong emotional irritants that require low effort to overcome are the most likely attack

vectors. The high-risk security requirements identified in this manner should be prioritized

during development.

Failure to meet the player’s emotional requirements can lead to market forces that over-

ride security requirements. If the emotional requirement failures are as a result of cheating

or other threats to the integrity of the game experience, we have suggested that in-game

justice systems would allow the players to act as a self-correcting mechanism in the face of

these security failures. The justice system places emotional requirement negotiation in the

hands of the players, providing them with a framework wherein their own community values

can develop.

In the future, we hope to extend the economic model begun here to provide more concrete

mechanisms for valuing fun and irritation. Interactions with gambling research and decision-

theoretic frameworks appear promising.

79

The risk factor analysis mechanism could then be extended by a detailed case study that

compares the predicted attacks against actual attacks once the game is in production.

The role of the community as a self-policing entity is worthy of further investigation,

particularly with respect to the effects on the stringency necessary for the security require-

ments for that community: if the players will self-correct, it may not be necessary to invest

so heavily in security infrastructure.

80

Chapter 7

Augmenting Emotional Requirements with

Emotion Markers and Emotion Prototypes

Field work done earlier with Far Vista Studios was reviewed, the participants revisited,

and we found that the adoption of emotional requirements at the studio was lower than

expected. While the combination of emotional requirements and emotional intensity maps

were useful, the media production team did not find them sufficiently useful to adopt them,

because the emotional intensity maps did not indicate how the target emotion was to be

induced or where the inducing elements were located.

Drawing upon the work of Smith in the application of cognitive psychology to film-

making [84, 100], we adopted Smith’s emotion prototypes to provide further guidance to the

production team and emotion markers as triggers for intended emotions. Emotion prototypes

have three characteristics: They have an object orientation; the emotion is cued, or triggered,

by an object or the action taken by an object. They demonstrate an action tendency; the

emotion spurs us to take some action. Finally, they demonstrate a goal orientation; there

is some purpose to the action that we take. Smith also identifies an emotion marker as

something that will engender a brief burst of emotion but probably does not affect the

narrative or underlying story. Emotion markers can take any form; they may be sounds,

scenes, or even dialog. There may be more than one emotion marker in a given scene and

it is expected that one or more of the emotion markers is the cue or trigger in the emotion

prototype.

This resulted in extending the ER formalism to a (cue, action, goal) triple, to the identi-

fication of explicit locations for markers, and to the development of techniques for eliciting,

capturing and visualizing the requirements. For this work, we collaborated closely with Far

81

Vista Studios team members, in the spirit of an action research approach.

This work was originally published in two parts. The poster is presented first, followed

by the paper.

David Callele, Eric Neufeld, and Kevin Schneider. Augmenting Emotional
Requirements with Emotion Markers and Emotion Prototypes. In RE 09: Pro-
ceedings of the 2009 17th IEEE International Requirements Engineering Confer-
ence, pages 373 374, Atlanta, GA, USA, 2009. IEEE Computer Society [21].

Abstract:A production-phase weakness in emotional requirements was identified
and resolved during a follow-up study. The definition of emotional requirements
was extended to include emotion prototypes and emotion markers. Improved
practices for identifying media assets for emotional requirements were developed,
enhancing their utility to the production process.

Keywords: Non-functional requirements, emotional requirements, emotion, video
game.

c©2009 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Augmenting Emotional Requirements with Emotion Markers and Emotion Pro-

totypes, Proceedings of the 17th IEEE International Requirements Engineering Conference,

September 2009.

7.1 Introduction

Our research program is motivated by a desire to reduce the risks in video game development.

An evaluation of development processes in the video game industry identified a problem with

the transition between the pre-production and production phases of game development [16].

Emotional requirements (capturing the intended emotional experience for the player) and

emotional intensity maps (a graphical representation of the intended player experience within

the game world) were developed [17] to improve the transition and then introduced into the

development process for the game Run the Gauntlet by Far Vista Studios.

A follow-up investigation with the lead game designer at Far Vista Studios identified that

the adoption of emotional requirements at the studio had been lower than expected. While

the combination of emotional requirements and emotional intensity maps were useful to the

82

game designer, the media production team did not find them sufficiently useful to trigger

adoption – the emotional intensity maps did not indicate how the target emotion was to be

induced or where the inducing elements were located.

The production team identified that some form of indicator must be placed within the

game world to act as a trigger to induce the desired emotional state in the player. In response

to this observation, the definition of emotional requirements was extended to include Smith’s

emotion markers (as triggers for the intended emotion) and the associated documentation

was enhanced to include the three characteristics (cue, action, and goal) of Smith’s emotion

prototype [100] to provide further guidance to the media production team.

Figure 7.1: Sniper scenario emotional intensity map. Black fill denotes safety, white
fill denotes danger, pattern fill indicates possible locations for emotion markers. Emoti-
cons represent player emotion.

Figure 7.1 is a plan view diagram for a sniper scenario in the combat game Run The

83

Gauntlet, constructed by the game designer using a simple graphics editor. The Sniper may

take a position in the buildings marked A and B while the Runner must attempt to pass

through the shaded region between the buildings. The safe zones (darker means safer) imply

that there are aspects of the virtual world that make these zones safe – most likely physical

constructs used as emotion markers. In this figure, a luminosity thresholding algorithm was

used on the shaded region to identify possible locations for the emotion marker(s). These

locations, identified with a pattern fill, thereby provide the location guidance for the media

production team. Accompanying notes identified the nature of the cue (e.g. barriers to hide

behind), the expected player action (hide behind the barriers), and the player’s goal (to rest

in safety while trying to decide what to do next).

7.2 Elicitation and Capture

The elicitation and capture process is as follows.

1. Create the scenario concept and capture a textual summary and a few sketches of the

virtual world.

2. Iterate as necessary:

(a) Define the gameplay experience. What actions can each player take, what assets

can the players utilize, how can the players interact?

(b) Define the artistic context, the virtual world, in sufficient detail that the definition

can be given to the media department for implementation.

(c) Capture the emotional requirements using the definition of Section 7.3.

(d) Iterate as necessary, within the context of (cue, action, goal), to ensure that the

desired player experience will be created:

i. Evaluate interactions with the artistic context.

ii. Evaluate interactions with the defined gameplay experience.

Evaluating the interactions with gameplay and artistic elements often presented oppor-

tunities to define new interactions – in essence, to invent new requirements. The following

84

interaction patterns were identified: Spatial – The location of the element within the virtual

world; Temporal – The interaction pattern is dependent only on time, or on a (readily)

discernible or deducible function that includes time; Engine Attributes – manipulating

the physics of the virtual world; Game Attributes – those aspects that are unique or

defining elements of the game.

After exploring the possibilities for realizing the scenario, a pseudo-verification phase

should be performed to verify that the value proposition for each artifact is sufficient to

justify expending the necessary resources.

7.3 Specifying Emotional Requirements

An emotional requirement, a guideline that provides sufficient information about the rela-

tionship between the intended emotion and the virtual world such that the communication

and specification needs of the game designer and the media production team are met, is

defined as follows.

1. The intended emotion. Use of a reference list or ontology (e.g. [83]), standardized for

the project or organization, is recommended. Emoticons, or local artwork, can be used

as placeholders.

2. The artistic context, e.g. the look-and-feel.

3. The emotion prototype.

(a) The cue, or trigger (emotion prototype). The objects, animations, sounds, lighting

changes, or other elements of the virtual world that are used to trigger the player’s

emotional response.

(b) The action that the player is expected to take. This action is specified relative to

the cue.

(c) The purpose or goal of the player’s response. The goal integrates the emotional

requirement with the gameplay requirements and design.

85

4. The emotion timeline. One or more elements of the emotion prototype may be time-

dependent [17].

7.4 Conclusions

Weaknesses in the prior definition of emotional requirements and emotional intensity maps

were addressed by the addition of (cue, action, goal) information to the emotional require-

ments and by the explicit identification of potential locations for the emotion markers (cues).

An enhanced elicitation, capture and specification process for emotional requirements,

that better meets the needs of the production team, was developed and tested. Four in-

teraction patterns that may be used to identify new opportunities for enhancing the player

experience were also identified.

86

Chapter 8

Visualizing Emotional Requirements

The poster from the previous chapter was also published as a full length paper, presented

here.

The definition for emotionally requirements continues to evolve as we gain field experience

with the techniques. The current (working) definition for emotional requirements is given in

Appendix A.

David Callele, Eric Neufeld, and Kevin Schneider. Visualizing Emotional
Requirements. In Requirements Engineering Visualization (REV), 2009 Fourth
International Workshop on, pages 110, Atlanta, GA, USA, 2009. IEEE Com-
puter Society [22].

Abstract: Emotional requirements capture the game designer’s vision for the
player’s emotional experience and are used to facilitate communication between
pre-production and production teams. However, production-phase deficiencies
in emotional requirements have been identified. In this work, we extend the
definition of emotional requirements to include emotion prototypes and emotion
markers and present improved techniques for eliciting, capturing and visualiz-
ing emotional requirements. A detailed investigation of one gameplay scenario
is presented, with a focus on evaluating visualization techniques for emotional
requirements. The solutions developed in this work met the needs of all devel-
opment team members and appear to be general solutions for the domain.

Keywords: Requirements visualization, non-functional requirements, emotion,
emotional requirements, video game.

c©2009 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Visualizing Emotional Requirements, Fourth International Workshop on Require-

ments Engineering Visualization, September 2009.

87

8.1 Introduction

Our research program is motivated by a desire to reduce the risks in video game development.

Our evaluation of development processes in the video game industry [16] identified commu-

nicating the game designer’s vision across the transition between the pre-production and

production phases of game development as a source of development risk. We developed emo-

tional requirements and emotional intensity maps [17] to capture the intended emotional

experience for this vision and showed how they can alleviate some of the communication

challenges that occur between pre-production and production teams.

An emotional requirement captures the emotional state that the designer intends to

induce in the player, and the artistic context (the look and feel) within which the emotional

experience is to occur. An emotional intensity map is a lightweight visualization technique

that allows the game designer to situate the intended emotional experience within the virtual

world (see Figure 8.3 for an example). Emoticons are used to identify the player’s intended

emotional state within simplified representations of the virtual world and grayscale shading

is used to describe the changes in the player’s emotional state within different parts of the

virtual world.

Emotional requirements were introduced into the development process for the game Run

the Gauntlet by Far Vista Studios for further evaluation within an industrial setting. During

a follow-up interview with the lead game designer at Far Vista Studios, we learned that

the adoption of emotional requirements at the studio had been lower than expected. The

game designer self-identified the principal reason for the reduced usage as “they [emotional

requirements] did not provide the expected benefits”. When queried further, he noted that

the combination of emotional requirements and emotional intensity maps were useful in his

role as a game designer but that the media production team did not find them sufficiently

useful to trigger adoption. Followup with the production team identified two weaknesses:

the emotional intensity maps did not identify how the target emotion was to be induced

in the player nor did the map identify where the inducing elements were located. In this

work we show how how we have augmented the definition of emotional requirements with

emotion prototypes and emotion markers to address these shortcomings and report on our

88

investigations into visualizing these emotional requirements.

We used an action research approach [37] for our investigation so that we could collaborate

closely with the team members to critically study how they used emotional requirements.

While this is not a strict action-research study due to resource constraints, we followed

the guidelines for this approach as much as possible for our work. We observed the issues

hindering greater adoption by the production team and actively engaged both the game

designer and members of the production team in the refinement of the proposed solution.

This study was limited to a single development team and the results met all of their needs.

The proposed solution appears to be general and has support from prior work in other fields

but has not yet been validated with other teams.

The study focused on a single scenario used in the game Run the Gauntlet by Far Vista

Studios, from conception through to virtual world implementation and the initial stages of

gameplay testing and balancing. The requirements portion of this study was performed

over a two week period. There were two in-person sessions of approximately six hours each

and numerous telephone conversations of more than 10 hours total length. Ongoing media

production lasted approximately three more weeks.

In the remainder of this work, we present a review of related work and the context for

the study1. We report upon the extensions made to emotional requirements as a result of

the study and techniques for visualizing the augmented emotional requirements. We review

the results of a design effort that utilized the revised emotional requirements and propose

mechanisms for integrating emotional requirements into the development workflow. Finally,

we present a revised definition for an emotional requirement then present our conclusions

and make recommendations for future work.

1A poster version of related elements of the same study is available in the Proceedings of Requirements
Engineering 2009

89

8.2 Related Work

8.2.1 Storyboards

Storyboards are a well-recognized prototyping tool, originally developed for the movie indus-

try where they are used for planning and communication as a film is prepared for production.

These prototypes, quick sketches that draw heavily from comic strip techniques to convey the

sense of the planned shots and their sequence, are also in common use in the game industry.

Storyboards have also been used in requirements engineering, Andriole [4] introduced them

to the domain over 20 years ago as a tool for requirements verification during customer ses-

sions. More recently, Thronesbery [104] proposed the use of storyboards during requirements

elicitation to also capture design knowledge from the domain experts. Reeder [89] showed

how the requirements engineering phase of an industrial design process can be enhanced by

the application of storyboarding techniques based on photographic images rather than the

work of a sketch artist.

Extending storyboard tools such that they support emotional requirements could assist

game designers that utilize storyboards in their work. For example, the image captured

within the storyboard could be the emotional intensity map. The accompanying textual

information could capture the specific instructions of the game designer as to how to induce

the desired emotional state in the player and provide further guidance regarding the artistic

context.

8.2.2 Film Studies and Cognitive Psychology

In their collection of film studies essays written from a cognitive psychology perspective,

Plantinga and Smith (Eds.) [84] note that cognitive psychology practitioners tend to “dis-

cuss emotion states in terms of goals, objects, characteristics, behaviors, judgments, and

motivations.” Smith further notes in a later essay in the same work that the “concepts

such as pleasure, and displeasure, and desire used in film studies are too broad to provide

specific insight into how a particular film makes its emotional appeal at any given moment”,

motivating his work toward gaining the desired precision.

90

These perspectives have strong parallels with our work and we are able to use Smith’s

work as the exemplar for the application of cognitive psychology to film studies and, by

extension, to our work. Much of Smith’s work that is referenced herein is aimed at performing

critical analysis of the emotions in film in a post hoc manner – one of our goals is to use the

same or similar concepts a priori, in the requirements and design phase.

In games, we are limited by a lack of controlled dialog between players, particularly in

Player versus Player (PvP) games. Typically, the only player to player communication is

unmoderated, via some form of textual or vocal chat channel. Therefore, the artistic context

is relatively more important in games than in film and Smith’s perspective has greater

immediate relevance than the work of the other researchers.

Smith posits that cognitivists believe that we recognize emotions by pattern matching

against emotion prototypes [84, 100]. Emotion prototypes have three characteristics. They

have an object orientation; the emotion is cued, or triggered, by an object or the action

taken by an object. They demonstrate an action tendency; the emotion spurs us to take

some action. Finally, they demonstrate a goal orientation; there is some purpose to the

action that we take.

Smith identifies an emotion marker as something that will engender a brief burst of

emotion but probably does not affect the narrative or underlying story. Emotion markers

can take any form; they may be sounds, scenes, or even dialogue. There may be more than

one emotion marker in a given scene and it is expected that one or more of the emotion

markers is the cue or trigger in the emotion prototype2.

Emotion prototypes and emotion markers, as described by Smith, illustrate how the

questions raised by the production team have been addressed in other fields.

8.3 Emotion Prototypes and Markers

The three characteristics of the emotion prototype are useful refinements upon the emo-

tional requirement; explicitly providing this information could provide some of the guidance

2For the remainder of this work, we shall refer to the emotion marker as singular, understanding that the
plural is also supported

91

requested by the production team as to how the emotion is to be induced. The character-

istics can also be used in formulating metrics for evaluating the quality of the emotional

requirements: Does the emotional requirement sufficiently exhibit these characteristics such

that the requirement provides appropriate guidance for the production team?

While our earlier work [17] proposed the use of emoticons as a lightweight mechanism for

identifying the intended emotion, the concept of the emotion marker augments the emoticon

by providing specific information that we had generally identified as belonging to the artistic

context. The addition of a direct link between the emoticon (target emotion) and the emotion

marker (emotion-inducing element) meets the guidance needs of the production team.

The emotion prototype and the related emotion marker do cause some issues with repre-

sentation - the extra information is not part of the emoticon, it is not necessarily co-located

with the emoticon, and does not appear to have a suitable visualization. It may be that inte-

gration with the storyboard, as discussed earlier, is most appropriate and this issue remains

under investigation.

Despite the additional complexity that was introduced, we decided to address the identi-

fied weaknesses in the prior definition of emotional requirements by extending their definition

to include Smith’s emotion markers and enhancing their internal documentation using the

three characteristics (cue, action, and goal) of the emotion prototype.

While we gain insight from Smith’s work, we must also remember that games are less

narrative than film; the game designer is unable to absolutely control the narrative journey

in the same manner as a writer/director for film. This lack of narrative control is replaced

by interaction with a set of designed experiences that are used by the game designer to

emotionally manipulate the player into the path of the desired emotional and narrative

journeys.

8.4 Scenario Concept

Run The Gauntlet is a player vs. player combat game. One of the most important scenarios

in this genre is the sniper scenario: There are two players, the Sniper and the Runner, and

they embody the classic antagonist v.s. protagonist narrative model. The fundamental goal

92

of the Runner (protagonist) is to survive contact with the Sniper (antagonist) while the

fundamental goal of the Sniper is to prevent the Runner from achieving their goal. Both

of the players also share the goals of surviving the scenario, maximizing their gains, and

minimizing their losses.

Figure 8.1: Sniper scenario pre-visualizations. The upper image is a plan view of the
scene, the lower image is a minimum cost 3D rendering.

In the study scenario, the Sniper can take a position in one of the buildings marked A, B

or C in the top half of Figure 8.1, a plan view of the relevant portion of the game world. The

Runner is free to move about on the streets below and must successfully transit the shaded

danger zone, while under attack from the Sniper, to continue onward to other gameplay

regions and other gameplay experiences. The bottom half of Figure 8.1 is a low-fidelity 3D

prototype of the same scene, typical of those used at the beginning of what is referred to as

93

the “pre-visualization phase” of game design.

Capturing an intended emotional experience in the form of requirements is challenging.

For example, the intended emotional experience for the Runner can be described in narrative

form as follows.

I approach the area with nervousness because I expect to be surprised in some
way. When the attacks begin, I am afraid but I am optimistic that I can survive
and I am excited by the challenge. I recognize a puzzle that I have to solve and
when I do survive, I feel relieved and satisfied. When I fail, I am disappointed
and if I fail too often then my annoyance can turn to frustration and anger.

Mechanisms for performing this conversion are part of our current research effort. Com-

pared to functional requirements, a significant challenge with emotional requirements is pre-

cision: what emotions exist within the game design, what do we call them, and do the labels

for the emotions mean the same thing to all members of the development team? Another

challenge is to convert this description of an emotional experience to emotional requirements

that are situated within the game world, under the assumption that doing so will reduce

the chance of miscommunication between the team members. Finally, are there elements of

emotional requirements that can and should be visually expressed and some that are more

appropriately expressed via another mechanism?

8.5 Designing the Player Experience

For practical reasons, we need to standardize emotion-specific terminology – at least on

a per-project basis. Emotions and their categorization have been intensively studied and

there are many results available. In this study, we used the (primary, secondary, tertiary)

categorization developed by Parrott [83]. We note that we employ this categorization as

a language reference and ontology without making judgment as to its absolute accuracy

since it’s role is to facilitate communication within a team and it is not used to perform

comparative analyses between teams.

In Parrott’s classification, the primary emotions are the primitive emotion states. Sec-

ondary emotions are those generated by some form of deliberation upon the primary emotion

94

and the generating stimuli. Tertiary emotions are similar to secondary emotions but there

is also an element of loss of control or attention. . . to some degree, an involuntary response.

The game designer was presented with this categorization and asked to identify the in-

tended emotions for this scenario. The chosen emotions included (among others) elation,

satisfaction, joy, excitement, exhilaration, relief, surprise, disappointment, nervousness, sad-

ness, and fear. A review of the chosen emotions identified a pairing between emotions such

as nervousness and surprise and also between joy and anger/sadness. While not truly oppo-

sites, these pairings are strongly contrasting and we feel that there is an underlying principle

at work: Satisfactory player experiences for this genre appear to be derived from enforced

shifts between strongly contrasting emotional states. In this scenario, as the player becomes

aware of the obstacle, they become nervous. When the threat is finally exposed, they are

surprised. If the player overcomes the obstacle, their mood is directed toward an emotion in

the joy category. If they fail to overcome the obstacle, they experience one of the emotions

identified in the anger or sadness categories and they tend in that direction.

8.5.1 Emotions and Emoticons

A visual representation for emotions is necessary to meet the goal of situating the require-

ments within the game world. Further, given the traditional business requirement for archival

storage of production documentation, we would prefer a mechanism that survives the tran-

sition from interactive query or inspection within the game world to print media. Emoticons

can act as useful placeholders but they do not necessarily provide the resolution required

to support the designer’s choices – we found ourselves searching for an expression that was

“just right”.

In Figure 8.2 we see two examples of abstraction. In the top half of the figure, we see

a selection of emoticons from a font freely available on the Internet. In general, there is

insufficient information in these images to be able to readily discern the difference between

any but the primary emotions. In the bottom half of the image, we see a selection of

sketch artist cartoon faces. If sketches of this quality were converted to a font, then there

would be less opportunity for misunderstanding (there were some issues associated with

members of the production team relating the emoticon to the underlying emotion across all

95

aspects of the production process). Detailed and expressive emoticons, implemented as a

font, would greatly facilitate inclusion or adoption within standard production tools used in

the production process, at little or no cost.

Figure 8.2: Top: A selection of typical emoticons from the EmotRG font. Bottom:
Sketch artist cartoon face samples. Authors unknown.

We recommend that each team develop their own emoticons, or equivalent images, for

their use so that all team members instantly recognize the intended emotions. If this proves

impractical, a simple text label could be used but a text-based approach suffers when images

are significantly reduced in size.

Our experience has shown that we can capture and represent the primary emotions,

and some secondary emotions, with a well-designed set of emoticons. However, tertiary

emotions require significant context for proper interpretation and may not be amenable to

this technique. If game design progresses to the point where designers are actively identifying

tertiary emotions, we expect that the emoticon would be used somewhat like the actor symbol

in a use-case diagram – as a placeholder that indicates the presence of further information,

such as our earlier suggestion [17] to bind the emotion timeline (a graph that illustrates the

96

relationship between emotional intensity and time) to the emoticon. Given that we are now

extending the emotional requirement to include the characteristics drawn from the emotion

prototype (a cue that identifies the relevant emotion marker(s), an action describing the

expected player response, and a goal that captures the interactions with the world), this

information should also be bound to the emoticon.

Once the desired emotions were identified from the categorization, the corresponding

emotional intensity map (Figure 8.3) was generated for this scenario using standard graphics

tools on the same plan-view template used in the upper image of Figure 8.1. The dark zones

represent relatively safe areas (happy, relief) for the Runner while the white zones are the

zones of highest danger (fear). The game designer’s intended player emotion is identified

by an embedded emoticon within each zone.

8.6 Generating the Emotional Intensity Map

In Figure 8.3, the game designer has specified that there is a large Y-shaped region where

the Runner is in greatest danger and two smaller regions near the corners of buildings A

and B that are almost as dangerous. The designer has also specified that there is a region

of safety within the Y-shaped zone. This safe zone implies that there is something in the

virtual world that makes this zone safe – most likely a physical construct.

Grayscale shading is used to characterize transitions between two emotional states such

as fear and relief. The luminosity indicates the relative strengths of the states and the

background mood is assumed (externally documented). However, this model breaks down

if we want to indicate transitions between more than two states. For example, a transition

between fear and a combination of relief and resentment (e.g. I made it, but curse

the game designer for making it so hard!) is not supported for we have no way to allocate

the respective contribution of relief and resentment.

A multi-layer compositing technique, using controls for translucency and visibility could

be used to simultaneously support multiple emotions. However, such a technique may only

be feasible in the interactive medium of the computer and does not readily support the

transition to print media, especially grayscale printing.

97

Figure 8.3: Sniper scenario emotional intensity map. Black denotes safety, white
denotes danger.

Even with interactive support, multiple color encoding for requirements is problematic.

Figure 8.4 illustrates some of the issues. In the color portion of Figure 8.4, red denotes fear,

yellow denotes resentment and blue denotes relief. The saturation of each color denotes

the intensity of the emotion: red and blue are at 100%, yellow is at 50%. In words, the

goal is to transition the player’s emotions from very afraid to very relieved while deliberately

engendering a mid-level feeling of resentment toward the game designer - possibly to create

a feeling of competition between the player and the designer.

The top color bar is for the transition from fear to resentment. The bottom color

bar is for the transition for fear to relief. The middle color bar is the luminance blend of

the two transitions. For the color blend to act as an effective media for requirements capture

and representation, all users of the representation must be capable of recognizing that the

98

Figure 8.4: Color in emotional intensity maps

blended color at the right hand side of the middle bar of the image is a composite of 50%

yellow and 100% blue. While this may be possible given that we have deliberately chosen

primary colors for illustration, what happens when other colors are used?

It is reasonable to expect that, if every emotion is assigned a unique color, the team could

come to recognize those colors – in isolation. However, given that there are only three primary

and three secondary colors, we are less comfortable in believing that the combinations of the

colors will be easy to recognize and translate to appropriately precise specifications.

The grayscale portion of Figure 8.4 shows the same transitions between emotions after

they have have been converted to luminance. It may be dangerous to assume that the typical

asset developer could successfully reason from the grayscale image back to the information

99

contained within the color image. Further complications are illustrated in the bottom band

of the grayscale image – there is a significantly darker band at approximately the midpoint

in the transition. This occurs because we are collapsing three degrees of freedom (Red,

Green, Blue (RGB)) down to one (Luminance, L). As a result, there is no longer a one-one

mapping between the visual representation and the information it is meant to convey; many

combinations of (RGB) map to the same value of L. Further, there is more than one algorithm

for the conversion of color images to grayscale images which can also lead to problems with

interpretation.

8.7 From Requirements to Design and Implementation

Prior to this study, our focus was on capturing the regions and on the emotions themselves.

However, we now understand that it is the boundaries between regions that are of greatest

import for the media production process. It is at the boundaries that some form of emotion

marker must be placed to act as a trigger to induce the desired emotion state. The safe zones

of Figure 8.3 imply that there are aspects of the virtual world that make these zones safe

– most likely physical constructs that act as emotion markers. In Figure 8.5, a luminosity

thresholding algorithm was used to identify possible locations for these emotion marker(s),

identified here with a pattern fill, thereby providing the appropriate guidance for the media

production team.

The game designer would typically explicitly identify the emotion markers, and their

locations, during the requirements phase to ensure that the desired control over the artistic

context is maintained. As a consequence of this specification effort, appropriate guidance is

provided for media production from the beginning of the development process, potentially

reducing the number of development iterations. However, the exact mechanism for imple-

menting the emotion marker could be left to the production team – thereby allowing them

to make their own creative contribution, within the constraints of the production budget

and the artistic context.

100

Figure 8.5: Sniper scenario emotional intensity map. Pattern fill indicates possible
locations for emotion markers.

8.7.1 Difficulty and Emotional State

While difficulty is actually a gameplay requirement, the difficulty level has strong emotional

interactions, engendering emotions such as frustration and accomplishment. Figure

8.6 illustrates how the game designer could, if there is a one-one mapping between emotion

and difficulty, also indicate relative difficulty using an emotional intensity map. There are

three gradients shown; in each case white denotes fear, black denotes relief, and the

player experience starts from the left and proceeds to the right within each gradient. This

overloading allows the emotional intensity map to serve a dual purpose. The top gradient

represents an easy path – the luminance of much of the path is closer to black than to

white. The middle gradient is a relatively difficult path; only near the end of the path

does the intended emotion substantially move from fear to relief. The bottom gradient

represents a relatively complex, yet safe, path; a path with some obstacles and one point

of greater perceived danger, but without significant elements of fear over most of the path.

101

The bottom path might represent, for example, the emotions of a player as they traverse a

maze-like scenario.

Figure 8.6: Gameplay difficulty in the emotional intensity map. White denotes
danger, black denotes safety. From the top, an easy path, a difficult path, and a
complex path.

Difficulty can also be controlled, to some degree, via the threshold setting for the tech-

nique of Figure 8.5. In this example, increasing the threshold value would move the potential

locations for the emotion markers closer to the central safety zone. As a result, the Runner

would remain exposed to the Sniper for more of the playing area and the Runner player

would perceive this as increased difficulty.

8.7.2 Constraints on Emotional Requirements

A noteworthy characteristic of the sniper scenario is the lack of face-to-face, personal contact

between the players (or rather, their avatars). While traditional cognitive psychology draws

heavily upon the concept of facial feedback (the presentation of facial cues indicating the

internal emotional state of an individual), video games do not always have this option. The

low resolution of the player avatars and the lack of feedback paths between the players and

their avatars in the world make facial feedback difficult; the game designer is deprived of

this most-familiar interaction mechanism. In addition, there are many scenarios, such as the

one studied in detail in this work, where one player cannot necessarily see or perceive the

102

location of the other player. Finally, interactivity allows the game designer to introduce the

faceless opponent – the rules embedded in the game engine can act as the replacement for a

visible character, further complicating matters.

Therefore, constructing emotional requirements that include facial cues may be inappro-

priate, if not impossible. It may be better for the game designer to assume that they must

design the emotional experience within the constraints of employing only environmental

visuals, sounds, and observable actions within the virtual world.

8.8 The Final Product

The sketches used for the layout of the virtual world during the requirements process acted

more as inspiration to the art department than as hard requirements and practitioners should

be prepared to accept this behavior pattern. Figure 8.7 is a plan view of the final prototype

from the artists and modelers, prior to the placement of the emotion markers, and is an

innovative interpretation of the requirements created during the study. The black arrow in

the image points to the danger zone for the Runner and the white arrows point to the Sniper

positions in the three buildings.

Figure 8.7: Late prototype, plan view. Black arrow indicates Runner danger zone,
white arrows indicate possible Sniper positions.

103

In Figure 8.8 we see, from three perspectives, a late-stage prototype of the region of

interest that is almost ready for play testing. The top row of images is the scene rendered

with full illumination and no special effects. The bottom row of images is what the players

perceive in-game, under low illumination and with active fog effects, a significantly different

experience.

Figure 8.8: Three perspectives: (a)Isometric View, (b) Sniper View, (c) Runner View

There are numerous emotion markers in the scene. The brightly lit windows are cues and

clues for the Runner, used to draw their attention to the source(s) of danger, while drawing

their attention away from the barrels and boxes scattered about the street that promise

a refuge, however brief, to the Runner as they attempt to escape attack from the Sniper

positions. Column (a) is a view of the scene from an arbitrarily placed camera. Column

(b) is the scene from the Sniper perspective in building C while column (c) is the Runner’s

perspective as they (carefully) look back toward the Sniper position of column (b).

8.9 Elicitation and Capture

In earlier work with emotional requirements, we were including the scenario concept infor-

mation (a summary of the scene) within the emotional requirement. However, we found it

useful to extract this information since it was shared by all emotional requirements within a

given scene. The final form of the process is as follows.

104

1. Create the scenario concept. Capture a textual summary and a few sketches of the

virtual world.

2. Iterate as necessary:

(a) Define the gameplay experience. What actions can each player take, what assets

can the players utilize, how can the players interact?

(b) Define the artistic context, the virtual world, in sufficient detail that the definition

can be given to the media department for implementation.

(c) Define the emotional requirements using the suggested techniques.

(d) Iterate as necessary, within the context of (cue, action, goal), to ensure that the

desired player experience will be created:

i. Evaluate interactions with the artistic context.

ii. Evaluate interactions with the defined gameplay experience.

When evaluating the interactions with gameplay and artistic elements, we found that we

were often presented with opportunities to define new interactions – in essence, inventing

new requirements. After exploring the possibilities, we abstracted the following interaction

patterns.

• Spatial: The location of the element within the virtual world. For example, spatial

interaction patterns were typically based upon the relative position between players or

between a player and an artifact in the virtual world.

• Temporal: The interaction pattern is dependent only on time, or on a (readily) dis-

cernible or deducible function that includes time.

• Engine attributes: Engine services such as collision detection and visibility calculation

– the physics of the virtual world can be defined and manipulated.

• Game attributes: Those things that are unique or defining elements of the game; for

example, the slow-motion effect now known as bullet-time, popularized in the Matrix

movie series.

105

Spatial and temporal interactions can probably be captured by static visuals in the

requirements process but engine and game attributes are more likely to require additional

textual information.

8.10 Specifying Emotional Requirements

The complexity of an emotional requirement is greater than we realized during our prior

work. An emotional requirement that provides sufficient information about the relationship

between the emotional requirement and the virtual world, such that the needs of the game

designer and the media production team are met, is specified as follows.

1. The intended emotion. Use of a reference list, standardized for the project or organiza-

tion, is recommended (Section 8.5.1). The emotion can be situated within the virtual

wold using an emoticon or other abstraction.

2. The artistic context (discussed further below).

3. The emotion prototype.

(a) The cue (trigger), the emotion marker. The objects, animations, sounds, lighting

changes, or other elements of the virtual world that are used to trigger the player’s

emotional response.

(b) The action that the player is expected to take. This action is specified relative to

the cue.

(c) The purpose or goal of the player’s response. The goal integrates the emotional

requirement with the gameplay requirements and design.

4. A means, such as an emotion intensity map, to situate the emotion within the virtual

world and to provide guidance as to the spatial relationships between the emotion and

the virtual world.

5. A means, such as an emotion timeline, to provide guidance as to the temporal rela-

tionships between the emotion and the virtual world.

106

The original designation of the “artistic context” proved to be too vague for production

purposes. While the artistic context describes the look and feel for a given setting (including

such information as the period, genre, architectural style, the color palette used, the lighting

conditions, and descriptions of the ambient sounds), this information was already available

within the general artistic guidelines used by the media production team for each scene.

Including the same information within the emotional requirement, rather than simply refer-

encing the relevant artistic guidelines, may lead to greater specification maintenance costs

as document versions must remain synchronized.

As in the current scenario, there may be multiple cues. If there are multiple cues, there

may also be multiple goals. Further, some of the cues may be intended for emotional require-

ments and some of the cues may be intended for gameplay requirements. The requirements

must clearly identify whether a given cue is related to an emotional requirement or to a

gameplay requirement.

The game designer must be careful to avoid creating too many trigger requirements. The

player may not recognize the triggers as triggers, which can lead to player frustration. If

there are too many simultaneous triggers, the player may not be able to respond to them in

a timely manner, leading to a far different experience than expected. Finally, triggers that

are unused or malformed waste development and testing effort.

8.11 Conclusions

The study identified weaknesses in the prior definition of emotional requirements and emo-

tional intensity maps that were impediments to adoption at the development studio partic-

ipant. The addition of emotion prototype (cue, action, goal) information to the emotional

requirements, and the explicit identification of potential locations for the cues (emotion

markers), have addressed the known issues and the study participants expressed satisfaction

with the results. Independent corroboration of the principles underlying our work was also

identified in the work of Smith and other members of the cognitive psychology and film

studies communities.

The use of color in emotional intensity maps was investigated. Techniques that support

107

interactive queries show some promise but there is significant potential for misinterpretation

by the user. Further, the need for archival storage in black and white print media is a

significant barrier to the adoption of color in emotional intensity maps.

The study has elaborated an enhanced elicitation and capture process that better meets

the needs of the production team. Additionally, four interaction patterns were derived then

used to identify new opportunities for enhancing the player experience.

The action research methodology was well-suited to this problem. Engaging the game

designer and media production team as an integral part of the research program helped to

ensure that proposed solutions received timely critical feedback and progress was very rapid.

Unfortunately, this rapid progress came with reduced control over the research agenda. While

we feel that we effectively addressed the immediate issues with emotional requirements, we

did not explicitly answer all of our motivating questions and the study would have been

strengthened with more participants.

8.12 Future Work

A stronger understanding of emotion prototypes and emotion markers has the potential

to further reduce risk in the production process. If we can identify libraries of emotion

prototypes and emotion markers that are known to induce the desired emotional response,

effectively identifying emotion patterns, then we can reduce the associated risks. However,

such a library can quickly become recognizable by the target audience and, therefore, useless.

In addition, any form of risk reduction must not impair the creative process or it will do

more harm than good.

We have shown that we can readily identify the desired emotions from a reference cate-

gorization. However, we do not feel that we have sufficient control to discriminate between

these emotions beyond some instances of the secondary emotions. Further work is necessary

to identify techniques that will allow us to craft experiences that are defined in terms of

all of the secondary emotions and even the tertiary emotions. Increasing the number of

emotions simultaneously supported in an emotional intensity map would allow us to remain

with a relatively simple, graphical representation for emotional requirements. Techniques

108

that survive the transition between the virtual world and print media are most desired.

Developing extensions to one or more artists tools, level-editing tools, or storyboarding

tools such that they provide integrated support for emotional requirements would allow us

to broaden our research base and enhance adoption of the research outcomes.

109

Chapter 9

An Introduction To Experience Requirements

Knowledge developed over the course of the research effort led to the definition of expe-

rience requirements and an accompanying ontology of types of experience requirements in

videogames. Experience requirements are descriptions of user, player, and customer expe-

riences that must be met (functional experiences) or are satisfaction goals (non-functional

experiences) for products or services. Experience requirements may be constructed using

generally accepted requirements engineering principles and techniques or they may use less

traditional techniques such as concept art or sound effect samples. Experience requirements

are not software requirements, although they may result in software requirements or may be

met by software artifacts.

Originally published as follows.

David Callele, Eric Neufeld, and Kevin Schneider. Introducing Experience
Requirements. In RE 10: Proceedings of the 2010 18th IEEE International Re-
quirements Engineering Conference, Sydney, Australia, 2010. IEEE Computer
Society [24].

Abstract: We consider the application of requirements engineering principles and
techniques to the elicitation, capture, and representation of the output of the user
experience design process. A stimulus-perception-response model is used to mo-
tivate experience requirements, defined as descriptions of user experiences that
must be met (functional experiences) or are satisfaction goals (non-functional
experiences). We identify potential benefits and look at experience requirements
in video games.

Keywords: Experience requirements, user experience design, non-functional re-
quirements.

c©2010 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Introducing Experience Requirements, Proceedings of the 18th IEEE Interna-

110

tional Requirements Engineering Conference, September 2010.

9.1 Introduction

User eXperience Design (UXD) is the deliberate creation of one or more aspects of the user

experience. An intersection of many schools of design, one could consider UXD a superset

of HCI, industrial design, and the fine arts.

The field of Requirements Engineering (RE) is based, in part, upon the premise that if

one sets out to design something (anything), it is best to know a priori what that thing is

for and what it should do – i.e the requirements are defined. In this work, we present early

results of our investigations into the intersection between UXD and RE.

9.2 Experience Requirements

We define the application of RE to UXD as experience requirements. Experience requirements

are descriptions of user, player, and customer experiences that must be met (functional

experiences) or are satisfaction goals (non-functional experiences), for products or services.

These experience descriptions may be constructed using generally accepted requirements

engineering principles and techniques or they may use less traditional techniques such as

concept art or sound effect samples. We note that even though the customer experience is

considered a basic tenet of product quality (for example, as aesthetics in Garvin’s “Eight

Dimensions of Product Quality” [47]), it is not addressed by the section on software quality in

the ISO 9126 standard [59] (except, perhaps as an element of usability) despite the standard’s

attempts to be exhaustive.

It appears that a new model could be useful. We follow a relatively strict constructivist

approach, rooted in classic engineering principles, when defining this model: we identify

the domain of interaction, then use decomposition and refinement to create the model.

Then, using a thought experiment process, we apply the model to a domain to see how

well it works, possibly identifying particular strengths and weaknesses. To date, we have

investigated elements of expressiveness – the ability to elicit, capture, and represent the user

111

experience. The model’s success as an expressive medium will determine whether deeper

investigation is warranted.

9.3 A Model

Maintaining the constructivist stance, we assume a stimulus-perception-response model

guides the design of the user experience: First, the desired user response is specified. A

stimulus, that is (to be) perceived by the user, is then designed to engender the desired

response. We note that the stimulus-perception-response model is a representation of the

ways in which the designer can affect the user – informally, we could say via the emotions,

the intellect, and the senses. We find that, for each element of this model, there are tangible

and intangible elements, examples are noted below.

STIMULUS Tangible stimuli exist in the world around us – they can have physical and

temporal aspects. Intangible stimuli affect our conscious and unconscious selves, cognitive

and emotional responses are examples. While tangible stimuli exist in the four dimensions

that we perceive in the world around us, we note that intangible stimuli allow an effectively

infinite expansion of the dimensions.

PERCEPTION The user can only perceive the stimulus via their five senses. However,

the stimuli may generate a meta-level perception. For example, the stimulus may be a block

of text that is read by the user. The block of text actually contains a message to the user –

it is this message that we want the user to perceive and not the block of text as a block of

text.

RESPONSE The user may generate a tangible (observable) response. They may also

have an intangible response such as learning a new fact, or entering a new emotional state;

responses that we can not directly observe.

Experience requirements could be considered a type of non-functional requirement (even

though our definition notes that experience requirements can capture functional experi-

ences). Non-functional requirements are often referred to as the “-ilities”: reliability, usabil-

112

ity, maintainability, etc. Except for usability, even the most extensive investigations into

non-functional requirements such as that by Chung [27] do not appear to address the in-

tended user experience. It appears that the field of requirements engineering could take a

more holistic approach to the user experience and that experience requirements may be a

worthwhile addition to the domain.

9.4 Potential Benefits

Extending existing development practices to include experience requirements could provide

a number of benefits. For example, any media or software element identified in an experience

requirement is an element that must be implemented by the production team – experience

requirements could reduce the risk that the existence of the element has only been inferred

in the specifications or can only be identified by implication. Any element identified in an

experience requirements is also a mission-critical element, necessary for creating the intended

user experience, and the implementation of the element can be prioritized.

Design reviews are facilitated by the explicit identification of the critical elements and

appropriate test plans can be devised earlier in the process and with greater certainty. Expe-

rience requirements can also provide guidance for play testing and player satisfaction testing.

By more explicitly capturing the designer’s intent for an experience, we enable greater cer-

tainty in design reviews, and the design and development of tests for both verification and

validation. (For example, if the designer has specified that a particular use-case is expected

to make the user laugh, then the test team can monitor users for the expected response.)

The documented experience requirements may reduce production’s dependence upon the

designer’s availability and we anticipate that the more structured representation could en-

able greater certainty in development planning, project estimation, and project scheduling.

Finally, prioritizing experience requirements during requirements negotiation efforts may

also lead to increased customer satisfaction, potentially improving the quality of the user

experience.

Focusing on experience requirements during product conceptualization and design means

that experience requirements will be captured before other (more traditional) requirements

113

(i.e. functional or non-functional). We expect that this temporal precedence will tend to

subordinate the traditional production requirements during requirements negotiation activ-

ities.

9.5 Experience Requirements in Video Games

We have been exploring the use of experience requirements as a mechanism for capturing

the game designer’s vision for the player’s experience. To date, our work has shown that the

user experience for this domain, when captured as experience requirements, will address one

or more of the following items:

1. Emotional experience

2. Gameplay experience

(a) Cognitive experience (e.g. puzzles or quests)

(b) Mechanical experience (e.g. command sequences, combat ‘combos’)

3. Sensory experience

(a) Visual experience

(b) Auditory experience

(c) Haptic experience (if available)

Our prior reported work focused on the emotional experience, represented by emotional

requirements [17]. We have found that our emotional requirement techniques have been effec-

tive for capturing the intended player experience in a side-scrolling platform-jumping game,

in a racing game, and in multiple scenarios within a first-person-shooter game. There are

some restrictions: our visualization techniques only support transitions between one emotion

at a time (for example, from happy to sad and do not support, for example, transitions from

a mix of anger and fear to sad. Our current work is addressing the gameplay experience.

While results to date are showing promise, the complexities of capturing and representing

cognitive gameplay experiences are greater than anticipated.

114

9.6 Conclusions and Future Work

Our initial results with experience requirements indicate that it may be possible to use

experience requirements in user experience design efforts. Experience requirements apply

requirements engineering techniques very early in the typical product definition process and,

as with all methodologies, their application to the creative phase should be carefully managed

to ensure that creativity is not negatively impacted. Initial results in the video game domain

show promise, but the complexities are greater than anticipated. Further work appears

warranted, based on results to date.

115

Chapter 10

A Proposal for Cognitive Gameplay Require-

ments

In another informal field study with Far Vista Studios, we participated in a preproduction

effort response to a third-party request for proposal for a massively multiplayer online role

playing game (MMORPG) situated in ancient Egypt. The work reports considerable detail

on the design process, both on the concept and on the details surrounding traps, puzzles, and

penalties of gameplay components. However, the experience confirmed again the problems

of capturing sufficient information during preproduction, the practical technical problems

(for example, rendering load) that must be addressed and the complexity of the experience

issues (for example, planning for, and measuring, the enjoyability of repeat play).

These field observations helped us to identify elements that are necessary to elicit, cap-

ture, and represent during the requirements specification activity for cognitive gameplay

requirements. To facilitate the expression and discussion of the elements of cognitive game-

play requirements, these are presented as a definition. Consistent with the exploratory nature

of this work, this definition is not formal in a semantic sense, nor is it complete. Confirming

the observations with other teams is necessary before the results can be generalized.

Originally published as follows.

David Callele, Eric Neufeld, and Kevin Schneider. Cognitive Gameplay Re-
quirements. In MERE 10: Proceedings of the 4th International Workshop on
Multimedia and Enjoyable Requirements Engineering, Sydney, Australia, 2010.
IEEE Computer Society [23].

Abstract: In cognitive gameplay, players must identify inputs, classify and in-
tegrate them in a contextually appropriate manner, then draw conclusions and
provide feedback to the game engine to demonstrate their mastery of the chal-
lenge. Established requirements practices do not exist for this domain and game

116

development teams rely upon ad hoc approaches to specification and iterative
requirements-through-implementation-and-test techniques to achieve their goals.

In this work we report our observations of a game development team as they
prepared a game design in response to a third-party commercial request for pro-
posal. We report upon three examples of cognitive gameplay definition and
propose a definition for cognitive gameplay requirements, capable of capturing
the requirements from within the case study, that can be used as the basis for
further investigations.

Keywords: Experience requirements, design requirements, non-functional re-
quirements, gameplay requirements, cognitive requirements, videogame.

c©2010 IEEE. Reprinted, with permission, from David Callele, Eric Neufeld, and Kevin

Schneider, Cognitive Gameplay Requirements, Proceedings of the 4th International Work-

shop on Multimedia and Enjoyable Requirements Engineering, September 2010.

10.1 Introduction

Game development is typically a two phase effort consisting of iterations between a pre-

production phase in which the game is designed and elements prototyped followed by a

production phase in which the game is implemented. Production is guided by a game design

document, the output of the preproduction efforts that focuses on telling the story behind

the game and describing the game itself (the look and feel, the gameplay). The game design

document does not usually explicitly elaborate all of the details of the intended player expe-

rience, particularly with respect to how the player is intended to feel as the game progresses.

Details of the intended experience tend to be communicated verbally, on an as-needed basis

during iterations of the production effort.

In prior work, our analysis of post-mortem project reports from the video game industry

showed that game development is difficult; the two phase, multi-disciplinary task is complex

and fraught with opportunity for error [16]. We posit that focusing on mechanisms for

defining and capturing the player experience will lead to improvements in the preproduction

process and in the transition from preproduction to production, reducing, for example, the

threats associated with implication in communication [16].

We define experience requirements [24] as descriptions of user, player, and customer

117

experiences that must be met (functional experiences) or descriptions of satisfaction goals

(non-functional experiences), for products or services. We believe that, in the video game

domain, defining and capturing the intended player experience as experience requirements

that are influenced and informed by established requirements engineering principles and

techniques will help practitioners bridge the communications chasm between preproduction

and production. Our goal is to extend our work on requirements in videogame development

into a more general experience requirements methodology composed of:

1. a model for the elements that compose experience requirements,

2. a framework that provides guidance for expressing experience requirements, and

3. an exemplary process for the elicitation, capture, and negotiation of experience re-

quirements.

that can complement and extend traditional requirements engineering techniques such as

goals and scenarios.

We developed the following ontology of types of experience requirements for the video

game domain based on the interactions between what the underlying game system can deliver

as part of the experience and what the player can sense and internalize.

1. Emotional requirements (the heart)

2. Gameplay requirements (the intellect)

(a) Cognitive (the head)

(b) Mechanical (the hands)

3. Sensory (the senses)

(a) Visual (the eyes)

(b) Auditory (the ears)

(c) Haptic (if available) (touch)

118

In prior work, we focused on capturing and representing the intended emotional ex-

perience for the player [17] via the emotional requirement. In the current work, we turn

our attention to issues associated with gameplay requirements. We provide a definition for

gameplay requirements and review the related work then look more closely at cognitive en-

gagement in games. We report our field observations of three gameplay definition examples

from an industry case study then present our proposal for the elements that compose cog-

nitive gameplay requirements. Each element is accompanied by an example from one of the

gameplay definitions. We conclude with final comments and suggestions for further work.

10.2 Gameplay Requirements

We define gameplay requirements as requirements that identify, capture, and represent those

elements critical to crafting the intended gameplay experience. These requirements include

elements as diverse as game rules, commands for various actions, sequences of actions that

the player must master for success, and puzzles and their associated clues. In traditional

requirements engineering terms, experience requirements encompass both functional and

non-functional aspects – even though most practitioners would likely consider gameplay

requirements a type of non-functional requirement. However, within the context of a game,

one can argue that gameplay requirements are the functional requirements for the game

itself. The interested reader can also review our prior work on the interactions between

emotional requirements and security requirements [20] which provides example scenarios

where emotional requirements can dominate and override security requirements – even after

the game has been released.

To simplify our analytic efforts, we choose to classify gameplay requirements into me-

chanical and cognitive aspects. This physical-intellectual classification roughly follows the

two dominant gameplay styles. While we choose to classify these requirements into two

categories for our research, they are synergistic in practice and do not exist in isolation from

each other.

Gameplay requirements are not expected to be formal in the mathematical sense, at

least as developed by the game designer. Rather, gameplay requirements are descriptions

119

of the intended player experience. By more explicitly capturing the game designer’s intent

for an experience, we expect greater certainty in design reviews, project estimation, play

testing, player satisfaction testing, and test design and development for both verification

and validation.

In mechanical gameplay, the focus is on mechanical operations upon the game controller

that players must perform in response to visual and auditory stimuli. Games where one

plays simulated instruments, performs dance moves, racing games, and the combat elements

within many games, all emphasize mechanical gameplay.

The cognitive aspects of gameplay include facts and rules about the game world and the

game challenge(s) faced by the player. In cognitive gameplay, players must identify inputs,

classify and integrate them in a contextually appropriate manner, then draw conclusions and

provide feedback to the game to demonstrate their mastery.

Quest and puzzle games emphasize cognitive gameplay. For example, in a typical puzzle

from a quest game the player must interact with non-player characters within the game to

obtain clues as to the locations of items within the game world and the purpose to which

these items are to be put. Locating, identifying, and obtaining these items are supporting

cognitive puzzles within the larger context of the cognitive puzzle of determining the moti-

vating purpose behind the items. Finally, the player must also solve the cognitive puzzle of

how to successfully utilize the items for their intended purpose in order to gain their reward.

Successfully structuring these puzzles is challenging (see [16] for examples of the difficulties

faced) and the cognitive gameplay requirements described in greater detail in Section 10.6

are aimed at addressing some of these challenges.

10.3 Related Work

The trade press associated with game design is rich with pragmatic advice. Game designers

like Rollings and Adams [93], Crawford [31] and Koster [61] and academics like Salen and

Zimmerman [95] present their perspectives on a field that is generally considered to be more

of an art than a science. Each author presents their perspective on the act of game design,

but none of the authors comments on software engineering processes that could support

120

the activity. The anthology of project post mortem reports presented by Saltzzman [96]

provides significant anecdotal evidence of the issues involved in video game production. In

prior work [16] we analyzed these reports and concluded that there were significant issues

associated with capturing the game designers’s vision and communicating it to the production

team. The anthology of commentaries by well-known industry professionals compiled by

Laramee [64] also provides further insight into video game production. Despite the breadth

of these works, none of the authors advocates a structured approach to capturing gameplay

as requirements or utilizing requirement engineering principles.

In general, the work in the requirements research literature is not strongly related. A tra-

ditional perspective on requirements is likely to consider cognitive gameplay requirements to

be some form of non-functional requirements. In his analysis of non-functional requirements,

Glinz [50] notes that there are significant issues with defining, representing, and classifying

non-functional requirements. He proposes a solution based on the concept of a concern, de-

fined as “a matter of interest in a system”. A concerns-based taxonomy is presented, along

with a series of questions that can be applied by the practitioner to guide them in applying

the taxonomy. It is unclear whether this taxonomy covers, for example, cognitive gameplay

requirements or emotional requirements. While “matters of interest”, whether they qualify

as ‘concerns’ would depend upon whether one accepts cognitive gameplay as an appropriate

target for requirements efforts.

The preproduction requirements that define the player experience are conceptually more

like design requirements, as discussed in the collected works of “Design Requirements Engi-

neering: A Ten-Year Perspective” [79]. For example, Loucopoulos and Garfield [65] describe

requirements engineering practices and principles within the context of the overall enter-

prise strategy. They note that the interaction between strategy and requirements contains

elements of co-design and co-development, and that maintaining the “designing stance” de-

scribed by Gehry [48] is critical when considering requirements in this domain:

The term designing stance is used in this chapter to mean that the process
should involve reflection, exploration, negotiation, compromise and revision. It
seems that these are the activities in which top class designers engage when
considering complex projects in uncertain situations. [65]

We shall see in Section 10.5 that the observed behavior patterns in preproduction for video

121

game development are similarly suggestive of those reportedly observed in co-design and

co-development efforts.

Scacchi [98] investigates a number of open-source software development efforts, including

an example from the mod1 community for first-person shooter games. He notes that the

requirements engineering challenges in mod development are significant: the aspiring mod

developer must harvest information from many sources that tend to present technical infor-

mation as narratives in order to set their requirements within the appropriate context. The

mod developer must also deduce the requirements for the existing game infrastructure. He

also notes that challenges associated with creating a viable mod are not just technical, but

social as well, and that the expectations of the player community, as stakeholders, must be

met if the mod is to be a success. These observations are consistent with our own observa-

tions of both open-source and commercial game developers over the years but the work does

not provide any direct guidance applicable to cognitive gameplay requirements.

Finally, Aoyama [6] investigates the use of personality constructs (personas) as surro-

gates for unknown stakeholders in the context of mass-market consumer electronic devices.

These personas may be useful in the context of videogame development, particularly when

evaluating requirements and designs for acceptance by the target market. In the current

context, if the personas included information about the cognitive skills of the target market

then they could be used in puzzle design and in requirements validation and verification

efforts.

In summary, the related research work is sparse and only generally related to the focus

of this work.

10.4 Cognitive Engagement in Games

Cognitive gameplay requirements are a mechanism for capturing the designed and intended

cognitive engagement for the player. To set the context from the perspective of the game

designer, we present comments from Raph Koster’s introductory critical analysis of the

1mod – for mod ification, or extension, of the video game through the use of scripting, changes to artwork
and animation, rules, etc.

122

cognitive engagement process in “A Theory of Fun” [61]. A leading game designer, Koster 2

maintains that the primary motivator for the cognitive engagement between the player and

the virtual reality created by the game designer is the learning process:

Fun is primarily about practicing and learning, not about exercising mastery.
[p.96]

Once you learn something, it’s over. You don’t get to learn it again. [p.126]
The definition of a good game is therefore “one that teaches everything it has

to offer before the player stops playing.” [p.46]

A game designer wants to keep the player learning about the cognitive elements of the game

for as long as possible (and have the player desire to continue learning) because when the

learning is done, much of the motivation for remaining cognitively engaged with the game

is gone (as compared to improving the performance of mechanical gameplay elements over

numerous practice and training sessions).

Koster follows a relatively constructivist learning philosophy [35] when he asserts that

the player’s cognitive engagement is driven by the brain seeking to identify patterns. It

follows that the game designer should be able to explicitly identify all of these patterns as

part of the requirements process. But it is still unknown as to whether they need to do so

and this will be the subject of future work. In the next section, we investigate the manner

in which one game designer addresses the issue and in following sections present a model for

identifying the necessary elements for capturing cognitive gameplay requirements.

10.5 Field Observations of Gameplay Design

In this section we present slightly redacted elements of a preproduction effort by Far Vista

Studios in response to a third-party Request-For-Proposal (RFP) for a Massively Multiplayer

Online Role Playing Game (MMORPG). We report here on our opportunity to observe a

game designer as they designed three cognitive gameplay elements (puzzles) within a given

scenario. The observations were gathered during approximately 15 hours of meetings, held

on three separate days across a two week period in a meeting room at the game company. In

2While Koster’s theory is not the only one available, it appears to work well within a requirements
engineering framework.

123

addition to the cognitive gameplay elements reported here, the participants generated many

concept sketches and exerted effort developing the story behind the game.

Any sketches developed by the game designer and presented here were redrawn by the

first author to protect certain confidential information; an effort was made to capture the

look and feel of the original diagrams. The preproduction process is reported in chronological

order to give the reader a sense of the evolving effort and result. We use the results of our

analysis of the process that they followed and the output they produced to formulate a

definition for cognitive gameplay requirements.

As part of the response to the RFP, the game designer generated a gameplay scenario to

meet the following requirements.

1. The scenario must require the player(s) to solve one or more puzzles.

2. Gameplay is located in a desert setting.

3. The puzzle(s) must support play modes for individual and team play.

4. The player navigates their avatar through the world using a click-on-destination paradigm:

The player clicks on the destination and the player’s avatar automatically moves to

that location, traversing the virtual world in a context-appropriate manner.

The overall artistic context was set by the third-party, but only in the most general sense:

Egypt, in the time of the Pharaohs.

10.5.1 General Design

The game designer approached the puzzle design in a relatively ordered manner. At the

beginning, the game designer quickly sketched a plan view of the environment for a single

player puzzle (Figure 10.1a).

The environment contained the start location, an end location, and three experiential

regions bounded on the sides by barriers.

The first experiential region was identified as a moving platform maze. The second

experiential region was identified as a series of moving barriers that significantly changed

124

(a) Desert Puzzle concept sketch
1

(b) Desert Puzzle concept sketch 2

Figure 10.1: Desert Puzzle concept sketches

the apparent length of a player’s path. The third experiential region was identified as a series

of quicksand traps.

The designer then created a revised version of the puzzle layout, shown in Figure 10.1b.

Comments were added to the diagram to provide further guidance to the production team

and as reminders to the game designer (not shown on this simplified diagram).

Note that the shape of the path was changed to an exaggerated S shape. When asked to

explain, the game designer stated that it was necessary to restrict how much of the scene the

camera could see at one time in order to keep the scene rendering rates acceptable. The game

designer used the rock barriers on each side to act as artificial clipping planes to manage

scene rendering complexity – a case of implementation constraints being fed forward to the

conceptual design phase of preproduction and directly impacting the creative process.

The game designer then turned their attention to the scoring/reward structure for the

scenario. Only two notes were made. The first note dealt with the penalty structure: what

happens when the player fails to solve the puzzle? In this case, the note stated that the

player was simply sent back to the starting position for the scenario. The second note dealt

with scoring: how do players receive feedback about their performance or compare their

125

performance with others? The note stated that this was a combination race/accuracy test –

the lowest number of moves wins.

Further design details, elaborated in the section associated with each puzzle, were added

and the game designer completed this revision of the game design document – dominated

by annotated sketches of this type with relatively little prose. A design review meeting was

held a few days later with representatives of the production team, production feedback was

received by the game designer, design changes were discussed and verbally agreed upon, and

a revised version of the preproduction design was promised. Our direct observations ceased

at that time but we were assured that the same process would be followed in subsequent

iterations.

10.5.2 Observations on the Review Meeting

The review meeting was informative for our purposes because it clearly identified numer-

ous instances where the current revision of the game design document was insufficient to

the needs of production. It also identified numerous instances where an internal review, by

the preproduction team, of the elements of the game design against known production con-

straints would have made much of the meeting unnecessary (thereby saving meeting costs

and reducing review efforts). For example, questions like the following are typical (these

questions are highly abstracted; the observed questions were more specifically focused):

1. Is the rendering load budget met? What can be built within the polygon-count restric-

tion? The production reviewer is evaluating the requirements, attempting to identify

performance constraints. It is important to note that the effect of performance con-

straints upon algorithm design in video games is significantly different from that in

many productivity applications. It is often unnecessary to have an algorithm that de-

livers an absolutely correct answer for many problems (An analogy: In a videogame, a

phonetic spelling may be acceptable, whereas in a spelling-checker, the spelling must

be correct.). Instead, iterative algorithms that converge upon an acceptable (good

enough) solution are often used and are, in some cases, the only viable means of man-

aging computational loads. Production reviewers were actively looking for this issue

126

and identifying high-risk areas.

2. Is the gameplay repeatable? Repeatability is necessary for customer satisfaction, oth-

erwise the player does not feel like they are making progress. The game designer must

ensure that there is consistency within the game world in order to maintain the player’s

sense of immersion.

Testing for repeatability requires identifying gameplay pre-conditions and post-conditions

and ensuring that all other elements are ignored. Emergent behavior is particularly

difficult to manage, especially if it is the result of unintended interactions between

subsystems.

3. What do we have to build to support this [concept]? The production team is inves-

tigating overall project feasibility and performing rudimentary project management.

Estimates of production effort can reduce waste in preproduction efforts – before com-

mitting excessive resources to refinement and decomposition activities in preproduc-

tion, ensure that there is an acceptable probability that the concept will make it past

the requirements phase.

These review meetings are highly interactive, with many differing perspectives, hand-

written notes, and verbal commitments. There are few (if any) formal minutes and trace-

ability is very difficult. However, how much traceability is necessary remains an open ques-

tion. This is a relatively small group, with the major design decisions effectively dictated

by the designer, and the triumvirate of designer, director and producer shares near abso-

lute authority and responsibility in their respective domains. With a larger development

team, particularly if geographically distributed, we expect that traceability would be more

important.

10.5.3 Gameplay 1: Platform Maze

This puzzle is simple in concept and a sketch of the platform puzzle region was developed

in situ (Figure 10.2). The player must traverse a maze to be able to proceed onward in the

game. However, there is nothing obvious that makes this region a maze. Visually, it is simply

127

a flat region between the rocks – until the player tries to cross it. Then, the region becomes

a series of platforms that may suddenly drop down beneath the level of the remainder of the

region. If the player is located on a platform as it drops down, their avatar is transported

back to the beginning of the area and forced to start again.

Figure 10.2: Platform maze concept sketch

The game designer noted that there are many ways to modify this cognitive puzzle.

Examples include changing the rate at which the platforms descend to allow the alert player

time to attempt to escape the platform, changing the mobility of the player, modifying the

location at which the player is forced to restart, and modifying the time delay (penalty)

before the restart occurs. Combinations of these, and other modifications are also possible.

These observations may illustrate the need to ensure that the requirements process pays

particular attention to exposing the attributes that control the gameplay experience and to

facilitating their ongoing modification as development progresses.

It is the combinatorial explosion of the combinations made possible by the gameplay

attributes that can lead to high re-playability. However, it can also lead to unexpected

emergent behaviors that can put the integrity of the gameplay experience at risk.

Figure 10.3(a) provides a view of the first detailed description of the platform maze.

128

Figure 10.3: Platform maze design sketches

Each of the squares in the grid underlying the image can be considered a “platform unit”.

The puzzle area is approximately 17 units wide by 24 units deep – 408 platform units in

total. Only those platform units without black fill are actually capable of motion. The black

regions denote invisible barriers that constrain the player’s motion; the player must navigate

the maze using the visible walls as reference points.

Review of the design by the preproduction and production teams raised concerns about

development costs and computational complexity. The teams investigated implementation

strategies other than moving platforms but none delivered the desired player experience.

The game designer then proposed the alternative presented in Figure 10.3(b). There are

no invisible barriers in this alternative and there are only 12 platform units in total, all of

which can move. In this version, the game designer explicitly identified the path that the

player must follow to successfully traverse the region.

129

Capturing this puzzle design as a set of cognitive requirements is facilitated with ap-

propriate use of visualizations. For example, Figure 10.3(b) captures the number of puzzle

elements and the proposed puzzle solution. However, this visualization needs to be aug-

mented with significant further details. These details include identifying the fundamental

building blocks of the puzzle (the moving platforms) and their characteristics, the clues that

the player will receive (including the spatial and temporal locations of the clues) and what

the player should learn from these clues (for guiding verification efforts). It should also

include information about degree of difficulty, and interaction with mechanical gameplay

requirements (such as the speed at which the player can command their avatar vs. the rate

at which the platforms descend).

The final preproduction document for the game design was not significantly more detailed

than Figure 10.3(b). Approximately 15 point-form notes were made to accompany the

description given above. The general form of the process was to describe the experience then

refine the design with the assistance of the other team members, particularly employing

knowledge of known production constraints. Many of the details reached (undocumented)

consensus through discussion or were left to the production team to resolve at the time the

puzzle elements were implemented and play-tested. From a classic, productivity-application-

oriented requirements engineering perspective, the system was severely under-specified.

10.5.4 Gameplay 2: Sliding Walls

The sliding walls puzzle (Figure 10.1b) is composed of sliding barriers that impede the

player’s forward motion. The barriers come out of the side walls and cross the player’s

forward path. By observation, the player can deduce that there is an interlocking pattern

to the barrier paths. The player can pass through the region by traversing from side wall to

side wall in a serpentine path, slowly advancing toward their destination but costing them

valuable time in their race to the finish. The game designer wants the player to experience

fear when in the path of any of the barriers; as the barriers move in and out of the walls the

accompanying sound effects should exude a sense of menace or danger.

Under close examination, the player can identify a symbol etched into the side wall at

the end of travel for the first barrier. If the player clicks on the symbol with the pointer, the

130

barriers retract into the walls, leaving the path clear for a limited time, a time sufficient for

a player to traverse the danger region if they react quickly enough.

We note that the middle experiential region is initially captioned “barriers” (Figure

10.1a) and later annotated to “thrusting knives” (Figure 10.1b). How did the requirement

for “barriers” become “knives”, and why?

The answer lies in a production constraint. The game designer explained that if the puzzle

was left with sliding barriers, like hidden walls that slide out of the rocks to block passage,

then the game engine must support the case where the player avatar is stationary and in the

path of the leading edge of the sliding wall. In this case, when the wall touches the avatar,

the avatar should be pushed along the ground in a believable manner. The believability

requirement would require either a physics model for the character (and the world) to force

translation along an appropriate vector or the introduction of some kind of special effect to

knock the character out of the way. The alternative, knives, simply kill the character. Avatar

death and re-spawn (forcing the avatar to restart at a re-spawn location) is a well-established

videogame paradigm and as such, is deemed a ‘believable’ alternative (to the sliding barriers)

that can be utilized by the game designer to achieve their experience goal at significantly

lower production cost (yet another implementation constraint). We note also that knives

are more in keeping with the emotional states expressed in the puzzle description – changing

from barriers to knives is a refinement of these experience requirements that addresses a

realization cost constraint.

10.5.5 Gameplay 3: Shifting Sands

The shifting sands puzzle (Figure 10.1b) is similar to the moving platform puzzle at the

start of the scenario (Figure 10.2). The player must traverse an invisible maze that is full of

quicksand traps. The ground is not composed of platforms; instead if the player steps into

a trap they slowly sink out of sight, swallowed by the shifting sands.

To differentiate between the two puzzles, the game designer allows the player to toss

inventory items onto the sand to help probe their way. If the inventory item lands on a

quicksand trap, it will be swallowed by the shifting sands rather than the player. Once

the item is swallowed by the sands, it is lost forever – therefore the player must not waste

131

valuable items by using them as probes and the game must contain items that can support

this design.

During review with the production team, numerous options were discussed such as special

effects and total number of quicksand traps. The topic that caused the most concern was

inventory management. Questions were raised about the need to create multiple copies

of certain items that would now have to be ‘throw-away’ and serve no other purpose than

probing the shifting sands. Rather than confusing the player even further, the game designer

suggested that one of the inventory items be a bag of figs that could be tossed out, one at a

time.

As a result of the design of this puzzle, the implications and repercussions are many.

Some of the comments, concerns, and questions include:

• The inventory item class of game elements must now support sub-items and quantity

management.

• The player must be able to add and extract sub-items one at a time. Is extracting n

items at a time also supported?

• The sub-items require independent models. What fidelity is required?

• Must we provide visual feedback to the player (can they look in the sack of figs)?

• Can the player inspect the container (bag of figs), perhaps to get the quantity remaining

in the sack?

Such a simple concept, with such significant production consequences.

10.5.6 Summary

There were many more requirements, such as sensory requirements for the look-and-feel of

the game world and the mechanical gameplay requirements for the controllers, that were

developed during the puzzle design phase but these requirements were not developed within

a framework informed by requirements engineering principles and practices. We observed

132

elements of co-design and co-development behavior throughout the process e.g. the appli-

cation of engine and production constraints on the game design, by the game designer, in

response to production feedback in review meetings.

The strong impact of production needs and opinions, particularly with respect to fea-

sibility, scope, and testability, is considered in our definition of the elements of cognitive

gameplay requirements in the next Section.

10.6 The Elements of Cognitive Gameplay Require-

ments

In this section, we elaborate the elements that we have identified in our field observations as

necessary to elicit, capture, and represent during the requirements specification activity. To

meet the needs of practitioners in the videogame domain, cognitive gameplay requirements

should be lightweight, situated within existing workflows, and must not unduly disturb the

highly creative, highly iterative workplace. Many of the defined elements exist to ensure that

the production team can develop appropriate design, verification, and validation strategies.

To facilitate the expression and discussion of the elements of cognitive gameplay require-

ments, we present them in the form of a definition, however, we note that this definition

is neither formally correct nor necessarily complete and is used only as a matter of conve-

nience. This work reports on experiences with a single development team; confirming the

observations with other teams is necessary before we can claim to be able to generalize these

results.

While we do not explicitly capture the following information in cognitive gameplay re-

quirements, we must remain aware that game design operates on two levels. The first level is

the software artifact that implements the functionality that presents the cognitive challenge.

The second level is the game part of cognitive gameplay. Particular elements of the virtual

world are overloaded with meanings contextually significant only within the context of the

cognitive gameplay. Gameplay occurs in the interaction between these players and these

contextually significant elements (such as clues or weapons). The remaining elements are

133

part of the context for the gameplay and do not directly contribute to gameplay.

We shall continue to use the learning paradigm as espoused by Koster [61] – we shall

speak of the player learning a lesson or solving a puzzle, attempting to solve a cognitive

challenge of some form. This is a matter of convenience, and does not affect the definition.

For example, the player may need to solve a puzzle by identifying a path through a maze

(Section 10.5.3) or via manipulation of in-game artifacts in order to continue to progress

through the game (Section 10.5.4). The cognitive challenge can be relatively passive, such

as observation only, or relatively active (guide the avatar through the maze) – it does not

appear to be necessary to discriminate across the range of activities.

Given our current knowledge, we define the ith cognitive gameplay requirement CGRi as

a vector composed of elements of three types:

1. Pre-Conditions

2. Cognitive Challenge

3. Post-Conditions

such that

CGRi = < Prei, Cogi, Posti >

We choose a vector representation to allow the user to specify the gameplay requirements

with as many elements of each type as they feel is necessary, but this decision may change

with greater experience.

We define each element of the vector in turn. The presented definitions are pragmatic,

constructed in a manner that reflects the observed practices, and may be modified to meet

the needs of a given project.

We now present an example to help understand why we do not yet see a need for the

definition to be mathematically optimal or mathematically correct. Imagine that one part

of a cognitive gameplay scenario requires that the player knock down a brick wall. Further,

as the bricks tumble down, their paths are probabilistically determined. One of the elements

that forms the post-condition is the Player State. Another element of the post condition is

134

Side Effect. As software developers, we would generally expect any side effects to be captured

by the world state, yet we have chosen to separate the two aspects. We choose to capture the

player’s success or failure at the task of knocking down the wall via an attribute in the Player

State. However, since the final configuration of the bricks is probabilistic, it is unrealistic to

expect the game designer to specify the location and orientation of every brick in the wall.

Instead, we note that there is an expected side effect: that the wall collapses in an acceptably

realistic manner and that the final configuration of the bricks, whatever that may be, is also

acceptable as long as the final configuration is also acceptably realistic. Loosely, one could

consider the Side Effect as a quality requirement compared to the functional requirement for

success or failure at the task of demolishing the brick wall.

For each element of the definition, at the end of the definition we give an abbreviated

example (in italics) of the captured requirements information within the context of the

Sliding Walls puzzle in Section 10.5.4.

10.6.1 Preconditions

Cognitive gameplay requirements are an integral part of a learning exercise that is designed

to challenge the player, a learning exercise that the player is expected or required to master.

We must ensure that the player has the necessary elements in place to be able to address

the cognitive challenge.

A clear definition of the preconditions for a cognitive challenge helps to ensure that the

production team constructs the necessary assets and that the software team can develop

appropriate design, verification, and validation strategies. The preconditions for a cognitive

gameplay requirement are defined as follows.

1. Assets: Those specific elements of the game world that can be perceived by the player

and that are necessary components of the cognitive challenge. Assets may include

assets that the player has accumulated in their inventory, visual elements, auditory

elements, and in some cases, haptic elements. Sliding walls, side-wall symbol, sounds

of wall sliding.

2. Clues: The cognitive-level meaning associated with assets in the game world; a class of

135

assets that have special meaning to the gameplay and are not just part of the ambiance.

For example, a sign in the game world can advertise the location of a item needed in a

quest. The sliding walls are a barrier to progress. The symbol etched into the side-wall

disables the threat.

3. Game Infrastructure: Hardware or software elements that the player must have, such

as specialized controllers or subscriptions to pay-to-play services. No elements specific

to this cognitive gameplay requirement.

4. Player State: Player-specific attributes that the game engine is tracking, controlling,

and manipulating. Specific attributes, such as health, skills, or puzzles successfully

completed, and their values, are typical. Player must have successfully completed the

Platform Maze puzzle.

5. World State: Attributes that the game engine can track, control, and manipulate, other

than those of the player. No elements specific to this cognitive gameplay requirement.

6. Puzzle State: This may not be the first time that the player has attempted this cognitive

challenge. Records the puzzle state as a consequence of attempting the cognitive

challenge. It is critical to identify positive, negative, and intermediate outcomes for

testing purposes. Current puzzle state = Old puzzle state.

7. The following terms are optional, but recommended. There may be significant costs

associated with managing these items. As per description in Section 10.5.4.

(a) Description of the game world context that the cognitive gameplay requirement

expects to exist.

(b) Link to narrative (backstory); can help in the design of test routines.

such that

Prei = < Assetsi, Cluesi, Infrastructurei,

P layerState,WorldState, PuzzleState,

[Contexti, Narrativei] >

136

10.6.2 Cognitive Challenge

We describe the cognitive challenge in terms of a learning exercise. The player is required

to observe the world, deduce the nature of the cognitive challenge, devise a solution to the

cognitive challenge, and perform experiments to validate their proposed solution by taking

appropriate actions in the virtual world via their avatar. The process iterates until the player

solves the cognitive challenge and continues onward in the game, or until the player tires of

attempting to solve the cognitive challenge. We note that the act of solving the challenge

‘consumes’ the puzzle – the player can not ‘un-learn’ the solution, but the speed at which

they solve the puzzle can increase with practice.

The three observed gameplay designs illustrated that flow charts and finite state ma-

chine representations are typical mechanisms already in common use by this game designer

for capturing the cognitive challenge and appear to suffice for the task. Possible reasons in-

clude information density (they are efficient mechanisms for capturing the gameplay), their

inherent self-limits (on diagrammatic complexity) help to ensure that gameplay is accept-

ably complex (but not overly complex), and they are readily accepted by members of the

production team since they are already familiar with these representations.

The cognitive challenge element of the cognitive gameplay requirement is defined as

follows.

1. Clues: The inputs that the player must recognize as relevant to solving the cognitive

challenge. Clues bear strong resemblance to the cues in emotional requirements [22].

Pattern and paths of sliding walls. Side-wall symbol to disable. Sound-effects.

2. Challenge: A description or symbolic representation of the cognitive challenge. Flow

chart and finite state machine representations are typical. The description should also

describe player feedback mechanisms (such as clues), if they are available. As per

description in Section 10.5.4.

3. Verification and Validation:

(a) Solution Strategy: Description for design review and test. Includes descriptions

of the winning condition(s), the optimal solution strategy, and the algorithm used

137

for evaluating partial success (if supported). As per description in Section 10.5.4.

(b) Side Effects: Explicit identification of the expected side effects on the player

and world states that are as a consequence of attempting the cognitive challenge,

but do not affect the cognitive challenge. If necessary, explicitly identifies those

attributes that must not be modified as a result of this cognitive challenge.

i. Player State If player is touched by a sliding wall, player health is decremented

10 points and player location is set to the respawn point between the Platform

Maze and Sliding Walls puzzles. If successful, player points incremented by

100.

ii. World State All aspects of the Sliding Wall puzzle are reset to their initial

state.

iii. Puzzle State – Puzzles can be left in intermediate states. Mark puzzle state

as one of Completed, Attempted, Failed.

such that

Cogi =< Cluesi, Challengei,

V andVi (SolutionStrategyi, SideEffectsi)

where SideEffectsi is composed of side effects on the player, world, and game states, as a

result of attempting this cognitive challenge.

The complexity of the cognitive challenge must be carefully managed. Excessive com-

plexity, through combinatorial explosion of possible solutions, is a typical issue that must

be addressed. Game designers are cautioned to ensure that the player’s emotional needs

for accomplishment are met [20] or an otherwise satisfied player can turn into an individual

intent upon disrupting the play experience for themselves and others.

10.6.3 Post-Conditions

Defining post conditions helps to ensure that the player state and the world state are known,

and consistent with design expectations, in the period between cognitive challenges. If these

138

states are not carefully managed, a cascading error effect can occur that can be very difficult

to trace and address.

Some games keep an explicit model of the player, most commonly to manage adaptive

gameplay – gameplay that adjusts in difficulty according to the perceived skill level of the

player. The next most common reason is for the game itself to perform a type of self-policing

effort to ensure that the player is not cheating.

The post-conditions for a cognitive gameplay requirement are defined as follows.

1. Player State: See Section 10.6.1. Updated to reflect player performance.

2. World State: See Section 10.6.1. Updated to reflect player performance.

3. Puzzle State: See Section 10.6.1. Updated to reflect player performance.

4. Player Knowledge: Player knowledge includes what the player has learned from this

puzzle, what is the expected learning outcome. Recognize that elements inconsistent

with their context, such as symbols etched onto walls, may have special meaning.

5. Game engine knowledge of the player: Game engine knowledge of the player includes

what the game engine has learned about the player from this puzzle, how has the player

model been updated? Includes metrics visible to the player (e.g. health, abilities) and

hidden metrics (e.g. performance on tasks to date). Health, score.

6. Side effects:

(a) Player state Updated to reflect player performance.

(b) World state Updated to reflect player performance.

(c) Puzzle state Updated to reflect player performance.

such that

Posti = < PlayerState,WorldState, PuzzleState

P layerKnowledge,GameEngineKnowledge,

SideEffectsi >

139

where SideEffectsi is composed of side effects on the player, world, and game state, as a

result of attempting this computational challenge.

10.7 Conclusions

Our observations of a game development team as they prepared a game design in response

to a third-party commercial request for proposal have lead to a better understanding of

the game design process. We note that the gameplay definition process is highly iterative,

with extensive use of top-down and bottom-up analysis and design patterns, and with team

interactions and work patterns suggestive of those observed in co-design and co-development

efforts.

Three examples of cognitive gameplay definition were observed and a pragmatic defini-

tion for cognitive gameplay requirements, capable of capturing the requirements from within

the case study, was derived. Cognitive gameplay requirements captured using this definition

should more explicitly capture the game designer’s intent for cognitive gameplay than ob-

served practice. Further studies with other game designers and multiple game designs are

needed to further mitigate this single-source threat to validity.

The strong impact of production needs and opinions, particularly with respect to feasibil-

ity, scope, and testability, was addressed in our definition of cognitive gameplay requirements

but the effects of this impact upon the requirements process need further investigation. We

expect that cognitive gameplay requirements will enable greater certainty in design reviews,

project estimation, play testing, player satisfaction testing, and test design and development

for both verification and validation.

10.8 Future Work

The cognitive and emotional issues identified in the first three sections of this work are

relatively open domains for requirements engineering research. Investigations into the their

role in the requirements process and their return on investment are some of the directions

that could be pursued. Further, could the same techniques be applicable to the design of

140

other experience artifacts such as movies or advertising?

To be able to generalize our results, we need to observe other game developers and

teams to determine whether our initial observations are upheld. We can then formalize

the defined attributes for cognitive gameplay requirements and verify the suitability of the

approach by using it with other teams. Ideally, some elements of a production game could

be specified using cognitive gameplay requirements and the various production artifacts

could be inspected to determine the validity of our hypothesis that using cognitive gameplay

requirements will reduce production issues and improve the quality of the delivered artifact.

There are many opportunities to develop tools to support this domain. Of particular

interest are tools that support traceability (although the degree of traceability that is needed

is unknown) and capture rationale (for making design choices) without unduly disturbing the

creative process. Other tools could provide support for early evaluation of the development

effort (e.g. computational and rendering complexity) associated with a given requirement:

creativity without a reality check on production constraints can lead to features (and chains

of dependencies) that are not technically feasible.

Acknowledgments

The first author would like to thank Krzysztof Wnuk and Birgit Penzenstadler for their

feedback on this paper.

141

Chapter 11

Physualization: Going Beyond Paper Proto-

typing

The ideas presented to this point are difficult to validate in any short term study. If they

are adopted in the market, requirements engineers will find new problems in deployment that

must be addressed by both industry experts, who tend to be situated in and have a deep

experience with a fixed work culture, and academics, who have the opportunity to study a

variety of experiences and share some of them, but who may not be able to experience long

hours in production.

Nevertheless, experience requirements appear to be a useful starting point for further

work in the field. We demonstrated a process for expressing requirements of all types using

ordinary office materials at an interactive session at the Requirements Engineering Visualiza-

tion Workshop 2010. We further demonstrated the techniques at Requirements Engineering

2010, where experience requirements, the process, and the final side-scrolling racing game

were all presented.

Demonstrations were not published but are available upon request. Originally published

as follows.

David Callele. Physualization: Going Beyond Paper Prototyping. In RE
10: Proceedings of the 2010 18th IEEE International Requirements Engineering
Conference, Sydney, Australia, 2010. IEEE Computer Society [15].

Abstract: We present physualization, the deliberate physical manipulation of
visualization entities, as a means of helping stakeholders explore possibilities in
the requirement and design spaces. By engaging more of the stakeholder’s sen-
sory and cognitive processes, our goal is to provide a means to enhance the re-
quirements process and the resulting artifacts. Physualization relies upon readily
available materials and ad hoc techniques to facilitate a lightweight requirements

142

process.
This work provides guidance for an interactive session that explores physual-

ization support for specific requirements engineering topics; developing paradigms
for supporting these tasks using materials like stickies, transparencies, markers,
and sketchpads as building blocks.

Keywords: Requirements process, requirements methodology, requirements vi-
sualization.

c©2010 IEEE. Reprinted, with permission, from David Callele, Physualization: Going

Beyond Paper Prototyping, Proceedings of the 2010 18th IEEE International Requirements

Engineering Conference, September 2010.

11.1 Introduction

Over the years we have investigated many rapid prototyping techniques for their utility in

the requirements process: storyboards [4], paper prototyping [87], rich pictures [75] and rich

media [112] to name a few.

Paper prototyping is possibly the most common form of rapid prototyping technique

and is particularly adept at rapid exploration of the visual aspects of software applications,

particularly user interfaces. However, there are more aspects to requirements than the user

interface – support for aspects of requirements such as negotiation, traceability and rationale

is needed and mechanisms for the rapid capture and representation of spatial options and

temporal activities is desirable. These aspects have varying degrees of support in tools such

as Doors and RequisitePro but what about lighter-weight alternatives?

11.2 Physualization

We define physualization as the physical manipulation of visualization entities – this is not

just visualization for the sake of communicating or creating a record. Physualization actively

promotes physical manipulation to help participants explore possibilities in the requirement

and design spaces by engaging more of their sensory and cognitive processes – possibly

leading to improvements in the requirements process and resulting artifacts. Because of its

143

reliance on materials at hand and ad hoc techniques, physualization is most likely to be

considered a form of agile requirements process.

This interactive session explores the extension of traditional paper prototyping to physu-

alization with the goal of improving support for requirements activities such as those listed

in Table 11.1. The session explores support for specific requirements engineering topics,

developing paradigms for supporting these tasks using materials like stickies, transparencies,

markers, and sketchpads as building blocks.

Elicitation Capture Representation
Specification Verification Validation

Triage Negotiation Prioritization
Traceability Rationale Invention
Revisions Modeling Constraints

Table 11.1: Requirements Tasks

In Section 11.6 we provide suggestions for possible techniques and in Section 11.8 we

document example physualization output.

11.3 Session Goals

Participants in a physualization session explore how to use common office materials to sym-

bolically represent many of the design paradigms and patterns used in their domain. Partic-

ipants are challenged to develop physical visualization metaphors to support requirements

activities such as those listed in Table 11.1. That is, what tools and techniques can be used

to capture and represent RE tasks and principles? These metaphors can be broadly grouped

in artifacts (what can be produced, captured) and activities (how are they represented e.g.

how to represent negotiation, prioritization).

Participants are further encouraged to explore whether other computing concepts and

tasks such as objects, database records, or even the database normalization process can be

readily supported.

144

11.4 Session Results

Session participants are expected to

• Develop specific techniques to support their requirements activities.

• Develop increased appreciation for the utility of common office materials in support of

their requirements activities.

• Develop a shared language and methodology for communication using these materials.

• Develop a better understanding of how increasing the number of sensory inputs that

are actively engaged in a process can enhance creativity and improve participation.

A typical session will occupy 60 to 90 minutes for the participants – be prepared to have

pressure to continue, some groups have kept investigating for far longer!

11.5 Resources and Tools

The suggested resources and tools for physualization are typical office materials.

• Large sketchpads for use as a work surface.

• Sticky notes of different colors and sizes – we have found extra large sticky notes to be

quite useful.

• Writing instruments of various colors and sizes.

• Transparency sheets of the type used for overhead projection.

• Permanent and washable markers of the type used for transparency sheets.

Any other items that may be available may also be employed.

145

11.6 Questions for Consideration

The following points suggest some questions that participants can keep in mind when at-

tempting to generate new techniques.

• What meanings can be encoded into color, size, and other visual attributes?

• Are the X and Y dimensions on the work surface the only ones available? Consider

stacking elements rather than replacing them.

• What can transparency sheets be used for?

• How to represent invariates vs. variates?

• Can items (such as stickies) be reused?

• Are there patterns or building blocks inherent in what you are attempting to accom-

plish? Can the pattens be abstracted? Into the materials?

• How to communicate that items are associated?

• How to communicate that items are part of a collection?

• Is there value in generating a record of Work In Progress (WIP)?

• How are you going to generate a record of WIP and final results?

• How to express the elements of a given modeling language?

11.7 Leading a Session

The following outline should help organizers to lead a session.

1. Prepare working materials such as sketchpads, stickies, transparencies, etc. and par-

tition materials into packages for distribution to each working group. Ensure that

contribution recording forms, used to capture submissions, are part of each package.

146

2. Introduce concepts to the participants.

3. Demonstrate sample metaphors.

4. Partition attendees into working groups.

5. Assign topics to working groups.

6. Distribute materials to working groups.

7. Distribute contribution recording forms to working groups. Explain how to record

contributions.

8. Allow work period. Attempt to record intermediate results via camera or video.

9. Allow each working group to present and demonstrate their results, allowing time for

discussion of each group’s results.

10. Present summary comments.

11. Mediate discussion of strengths, weaknesses, suggestions for improvement. Record

comments.

12. Gather recording forms to composite summary record.

13. Distribute copies of summary report to participants.

11.8 Some Examples

The following examples are taken from work performed in gathering requirements for video

games. The focus in these sessions was on capturing the intended user experience, in gen-

eral, and the intended emotional experience in particular. In Figure 11.1a we see a template

description for emotional requirements and a covering sticky note with layers of stickies and

handwriting. The yellow sticky note is for a gameElement titled SALT CONTAINER and

it has an associated image to provide artistic guidance to the production team. From the

background template description, we see that a gameElement has associated mediaAttributes

147

and gameAttributes. These attributes are on secondary, supporting stickies that are them-

selves color-coded. The use of secondary stickies allows the requirements elicitation process

to be very dynamic - there are no concerns with rapid iterations and complexities of erasing

and replacing, simply peel off and replace with a new iteration.

(a) Emotional requirement specification format,
getting started

(b) A closer look at a gameElement

(c) Reusable emotion icons

Figure 11.1: Starting to physualize

The sticky notes also allow us to bind together requirements elements; the mediaAt-

tributes and gameAttributes are clearly bound to the larger gameElement. Figure 11.1c

shows a selection of intended emotional states. The iconic nature of the elements shows that

they are intended to act as library elements, promoting reuse during sessions.

148

In Figure 2, we see portions of workspaces associated with simple gameplay elements from

a 2D side-scrolling game. These scenarios make use of a number of principles. The invariate

element is sketched on a background workspace. The player avatar is iconified in various

actions (jumping, in this example) and the intended emotional states for the player are drawn

from the library previously introduced. Patterns for gameplay activity, such as repetition and

challenge followed by mastery are also used and shown in contextually appropriate locations

across the bottom of the background workspace. Success (Figure 11.2a) and failure (Figure

11.2b) modes are shown and the player’s emotional state is indicated. For example, the

player experiences an alternating emotional state, passing between JOY and FEAR as the

oranges roll toward them. JOY is associated with successfully jumping over the orange,

FEAR is associated with the recognition that the orange is rolling ever closer and that the

player must soon successfully jump, or have their player killed. The Challenge followed

by Mastery pattern identifies the type of challenge – the player must repeatedly meet the

challenge but they eventually master the technique. The amplitude of the the sine wave

represents the decreasing intensity of the experience.

Figure 11.2c illustrates alternative gameplay in the same scenario. In this example, two

elements have changed: the challenge is now a banana which has more difficult gameplay

than an orange (Increasing Challenge sticky) and the player is punching the banana rather

than jumping over it. Note that the banana sticky is layered on top of the (partially hidden)

orange sticky. The underlying sticky is deliberately exposed to indicate that the banana

and orange are options, each of which can occur during gameplay. If the orange sticky was

completely hidden by the banana, then this would indicate that the original design decision

to use an orange has been changed to that of a banana.

The metaphor chosen: partial vs. full overlap to indicate the difference between runtime

gameplay options and gameplay design history was arrived at by the participants in an

earlier session. The design history metaphor supports the common requirements task of

maintaining a revision history. Partial overlap is a concise representation of the conjunction

of requirements.

The basic principle of placing the invariates on the background of the workspace are

also illustrated in Figure 3. Figures 11.3b and 11.3c illustrate the use of transparencies to

149

present gameplay requirements for different gameplay scenarios. Each gameplay scenario is

described on the transparent overlay and different options can be explored with ease. Figure

11.3b also illustrates that validation and verification activities can be added with another

color of sticky.

11.9 Other Work of Interest

In addition to the traditional bibliography, we include links to a small selection of related

materials on the Internet and links to a selection of YouTube video clips presenting related

work on the use of paper prototyping.

11.9.1 Printed Materials

• Paper Prototyping by Carolyn Snyder http://www.paperprototyping.com/index.html

• Paper prototyping (a general introduction to the process)

http://www.usabilitynet.org/tools/prototyping.htm

• Hipster PDA http://en.wikipedia.org/wiki/Hipster PDA

• Post-it Note Design Docs

http://www.lostgarden.com/2008/12/post-it-note-design-docs.html

• Paper Prototyping by Shawn Medero, A Basic Introduction

http://www.alistapart.com/articles/paperprototyping/

• Considering Prototypes http://www.uxbooth.com/blog/considering-prototypes/

• Data Sculpture Zhao, Jack and Moere, Andrew Vande. Embodiment in data

sculpture: a model of the physical visualization of information. In DIMEA ’08:

Proceedings of the 3rd international conference on Digital Interactive Media in

Entertainment and Arts, 2008, pp. 343-350, ACM, New York, NY, USA

150

11.9.2 Physical Visualizations

• Glowing temperature sink fixtures

http://www.boingboing.net/2005/07/13/glowing temperatures.html

• Waveform display of a musical piece

http://well-formed-data.net/archives/150/physical-visualization

• Visualization Problems? Get Physical!

http://ezinearticles.com/?Visualization-Problems?–Get-Physical!&id=1383153

• Physical Data Art by Willem Besselink (by Maria Popova)

http://www.brainpickings.org/index.php/2009/11/11/willem-besselink/ and

http://www.willembesselink.nl/read/willem besselink–portfolio

11.9.3 YouTube Videos

• iPhone Paper Prototype Post-it http://www.youtube.com/watch?v=If2iRj1GWzk

• Trouble (Game) Paper Prototyping

http://www.youtube.com/watch?v=dTR7gbsF7Os

• Paper Prototype for Mobile Journalism

http://www.youtube.com/watch?v=3-UWIVMhYkA

• Paper prototype created by using the Scrum process.

http://www.youtube.com/watch?v=ykJ60H4Qkvg

• IAT 410 paper prototype, game design

http://www.youtube.com/watch?v=4ROZqOwHyWo

• DAC 300 Paper Prototype - Tap That!

http://www.youtube.com/watch?v=EiMyMk10d0I

• Paper prototyping: Game design http://www.youtube.com/watch?v=k-9pkB05IlQ

• Have Paper, Will Prototype http://www.youtube.com/watch?v=L3yl9vaJuFE

151

(a) A simple gameplay scenario (b) Visualization of a failure mode for the same
gameplay scenario

(c) Visualization of alternate gameplay for the
same scenario

Figure 11.2: Simple gameplay scenarios

152

(a) Racing game track with experience region
identifiers

(b) A closer look at experience requirements in a
racing game scenario

(c) A closer look at experience requirements in a
first person shooter game scenario

Figure 11.3: Other game requirements

153

Chapter 12

Applying Experience Requirements and Con-

clusions

The models and techniques presented in this document have the potential to help cross

the communications chasm between preproduction and production identified in Chapter 2.

To illustrate the potential, we present preliminary details of work on two games not discussed

in our published articles, The Windblown Adventure and a scenario from a published first

person shooter, DOOMTM by id Software.

These games were chosen because both games have published online game design doc-

uments that we can analyze and use to compare and contrast with our efforts. In both

cases, we have annotated or extended parts of these documents using the formalisms and

techniques presented in the body of this work, concentrating on emotional requirements and

the player experience.

This preliminary work is presented to provide the reader demonstrations of how emotional

requirements can be used in practice and the benefits that they can deliver.

After the DoomTM example, we then take a closer look at negotiating requirements at

runtime as proposed in Chapter 6, providing examples for both player vs. griefer and player

vs. publisher conflicts.

12.1 Windblown Adventure

The Windblown Adventure was created by students at DADIU, The National Academy of

Digital Interactive Entertainment in Denmark. It is a 2.5D side-scrolling platform jumping

game targeted at a (primarily female) 8 year old demographic.

154

Figure 12.1: Windblown Game Level Design

Figure 12.2: Windblown Game Design Review

The game concept is straightforward. The player is represented by a rag-doll-like char-

acter situated within a kitchen environment. The player is building a castle out of dry flour

when their creation is threatened by a strong breeze coming through an open kitchen win-

dow. The player’s goal is to cross the kitchen and close the window before their castle is

destroyed by the wind - a task complicated by the fact that their avatar is quite small so

crossing the kitchen becomes an obstacle race against time.

This example was chosen for the following reasons.

1. The game development effort had a published game design document [102].

155

Opening Cut‐Scene: Provide back‐story and set the mood

2. Character with a scared,

3. Character with
convinced, ready to “go
for it” facial expression.

1. Character and
flour castle on
kitchen table
with a radio

surprised facial expression.

Thinking bubble showing
her fear of how the storm
will destroy the castle

for it facial expression.

Thinking bubble with
text “I need to go and
close the window
before the storm

4. Character
looks

determinedly
towards

the far‐away

A
H

B
P l

C
E ti

Storm warning
from radio

Character finds
her inner fighting

power‐girl

Character
enters spring

mode

destroys my castle!” window.

D
Happy

Oblivious
Powerless
Vulnerable

Energetic
Optimistic

Determined

Gameplay Challenge: Close window in race against time, low penalty for failure.

Character progresses
through challenge Ch l

A
Determined

C
Joy

D
Self‐

Validation

Player chooses
to play

Initial challenge
through challenge Character closes

window

B
Fear

Foreboding radio
message at each
major challenge

Figure 12.3: WindBlown Adventure Emotional Journey

2. The game development effort completed and a demonstration of the final product was

available (in the form of a gameplay video [103]) that could be compared to the game

design document.

3. The game genre is a side-scrolling platform-jumper, one of the simplest game genres

to define. The game is intended to induce strong emotional experiences and contains

requirements for mastery of both mechanical gameplay and cognitive gameplay chal-

lenges.

The project was successfully completed and that the development team addressed every

issue noted in our review. The methodologies used by the development team are typical of

those we have observed in active use in other commercial development efforts and do not

represent inherent deficiencies in the team that threaten the validity of the results.

Figure 12.1 is copied from The Windblown Adventure Design Document and represents

156

(a) Windblown Emotional Intensity Timeline Overlay

(b) Design review, all layers enabled

Figure 12.4: Windblown Design Review Details

the level design concept art for a portion of the gameplay environment 1.

Figure 12.2 has the same content, marked up as would occur in a typical production

design review process. The list of questions is lengthy, identifying challenges typical of

the issues identified in our analysis of the post mortem reports associated with other game

development projects [16].

The first challenge faced by the game development documentation process is demon-

strated in these two figures - a large part of the specification for a videogame is visual, yet

1The gameplay environment is commonly partitioned into scenarios related by the storyline where these
partitions are individually referred to as a level.

157

(a) The base scenario (b) The emotion prototype

(c) The action (d) The result

Figure 12.5: Capturing the gameplay experience

the visualization by itself is insufficient to capture the information needed by production. Ex-

tensive supporting information is required and automatically maintaining the links between

the visualizations and supporting text through tool support may be a solution. However,

these tools must be as unobtrusive as possible during preproduction to ensure that they do

not have a negative impact upon the creative process and the nature of an appropriate user

interface remains an open question.

Emotional requirements are situated within the game world via an emotional intensity

map and communicate the designer’s intended emotion at that location. For (relatively

linear) games like side-scrollers or races, the emotional intensity map can be visualized in 2D

using an X-Y graph where the X axis represents location and the Y axis illustrates intensity

of the emotional experience. The map can be annotated to ensure that the viewer can clearly

identify the intended emotion at that time.

Identifying and resolving inconsistencies is a core requirements engineering task and re-

sponsibility. For example, Figure 12.1 shows various arrows that indicate wind direction.

Unfortunately, these arrows are pointing in different directions (see Question 10 on Fig-

ure 12.2) and a review of the text in the game design document shows that the document

does not contain any further clarification as to why the arrows point in different directions.

The opening cut-scene is expected to help the player to identify with their on-screen

avatar. The player’s intended emotional experience is shown in Figure 12.3, a visual rep-

resentation of the experience that was derived from the quoted text. If this were a screen-

158

(a) Summary for success (b) Failure mode

(c) Adding further production guidance

Figure 12.6: Experience requirement production guidance

play, or stage play, this diagram would represent the player’s emotional journey during the

preamble [42]. While not explicitly identified in the design document, we also visualize

our interpretation of the intended gameplay emotional experience in the lower half of the

diagram.

The diagram facilitates design review, provides production guidance, and also facilitates

the identification of tests for states and tests for transitions. For example, the test team

could choose to evaluate whether the preamble succeeded at inducing the desire emotional

state in the player as they start the game.

The intensity of the emotional experience can be visualized using an emotional intensity

map. In this genre, a 2D representation suffices to represent the designer’s intent. Unfor-

tunately, the game design document does not contain the information necessary for us to

construct the designer’s intended emotional intensity map, so we assumed the role of de-

signer for that purpose. Based upon the known design details, we inferred the hypothetical

emotional intensity map shown in Figure 12.4a and overlay it upon the level diagram. In

Figure 12.4b we enable all comments and design guidance.

159

(a) Floor plan of scenario (b) Identifying the type and location of cues

(c) Intended emotions added (d) Emotional intensity map

Figure 12.7: First-person shooter experience requirements

160

Figures 12.5a through 12.5d illustrate stages in capturing the gameplay experience.

Figure 12.5a captures the base scenario. In the background we identify the obstacle injection

point and provide points of reference (the pit in red and platform in black) to situate the

location within the larger level. The orange is shown at the injection point and the player is

shown at the start point. Figure 12.5b captures the emotion (Fear of the orange) and the

cue (the orange) elements of the emotion prototype. The action could be captured as shown

in Figure 12.5c; if necessary the player trajectory could be shown using arrows. Finally, the

expected player emotional state is captured in Figure 12.5d, Joy at successfully overcoming

the challenge

Figure 12.6a captures further details of the gameplay experience. It shows that the player

is expected to alternate between emotional states of Fear and Joy, in a Repetition

pattern, where the emotional states are induced by the presentation of obstacles that induce

Fear in the player as they approach and induce Joy as they are overcome. Figure 12.6b

illustrates a failure mode for the player. The player experiences Sadness upon contact with

the obstacle because their avatar is ‘killed’ and they must restart the gameplay scenario. The

designer specifically identifies that the emotional state change is deliberate via the Forced

Transition token.

More subtle gameplay experiences can be captured as shown in Figure 12.6c. In this

case, production is advised that the overall gameplay pattern is one of Challenge then

Mastery. In other words, continue to inject obstacles into the scenario until the game

engine has determined that the player has mastered the necessary skills (e.g. by successfully

jumping over N successive obstacles), then taper off the injection of obstacles to zero to

allow the player to go on to other scenarios.

12.2 First Person Shooter (FPS)

This example is loosely based upon the E1M1 map from the original DOOM TMgame by

iD Software. Figure 12.7a shows a plan view of the location for the experience scenario. In

Figure 12.7b, the types and locations of the cues are added – note that all but one of the

cues is a visual cue. The emotions that the cues are expected to trigger in the player are

161

added in Figure 12.7c. Figure 12.7d shows the beginning of adding the emotional intensity

map to the scenario. One of the basic tenets of the emotional intensity map is the use of

grayscale shading to indicate relative intensity between emotions in a region (done in yellow

in this example for publication clarity). These regions do not have to follow any form of

real-world physics, so arbitrary shapes like those shown are possible.

Figure 12.8 adds the remaining information necessary to capture the emotional require-

ments, the details for the actions and goals. Note how the relationship between the two cues

at the top of the diagram is explicitly identified: In the accompanying narrative description,

while the player is inspecting the remains of their dead teammate, the monster responsible

for their demise is stalking them.

12.3 Negotiating Requirements at Runtime

In Chapter 6 we looked at the interactions between emotional requirements and security

requirements, noting that there are cases where the emotional requirements can dominate

the security requirements. In other words, there are cases where security requirements may

be relaxed, or even set aside, to accommodate the emotional needs of the stakeholder. We

also observed that there may not be an optimal resolution to these conflicting requirements

and that negotiation may be ongoing. For example, there may be a security goal for ensuring

the integrity of gameplay. However, the player (customer) may find that they do not enjoy

playing the game as designed – but with some (unauthorized) gameplay changes their satis-

faction is greatly increased. The publisher can authorize a change in gameplay to meet the

immediate player requirements but this may not be the end; there may be further changes

demanded at a later time.

It appears that a negotiation process that eliminates the requirement to resolve all re-

quirements conflicts a priori yet allows the conflicts to be resolved as they occur and in a

manner that addresses the emotional requirements of the stakeholders could be very useful.

162

F
ig

u
re

1
2
.8

:
E

m
ot

io
n
al

re
q
u
ir

em
en

ts

163

12.3.1 An Exemplary Dispute Resolution Process

We have proposed that just-in-time resolution of these conflicting requirements can be pro-

vided by introducing the metaphor of an in-game justice system [20]. While this metaphor is

used in some games, in this discussion we are going to use the less emotionally-loaded term

dispute resolution.

We discuss herein two example scenarios: conflicting requirements between a player and

a griefer and conflicting requirements between the player community and the publisher. For

these discussions to have meaning, we must assume that there is some form of deciding

authority to which the conflict can be referred for resolution. In other words, there was

a requirement for a dispute resolution mechanism as part of the experience requirements

developed during preproduction. In each case, the discussion shall address the following

points.

1. Accusation

2. Identification

3. Advocacy

4. Resolution

5. Implementation

6. Implications: Virtual World and Real World

Dispute resolution mechanisms tend to rely upon a recognized authority that has the

final say on disputes; examples include the publisher, developer, and other game players.

In the case where other game players form the recognized authority, their selection may be

random (like real-world jury selection) or deliberate such as by peer nomination or even

formal elections.

164

12.3.2 Player vs. Griefer

This scenario addresses the relatively common griefing behavior pattern where one player is

accused of repeatedly stalking and killing another player. We refer to the participants as the

griefer and the player.

Accusation The player accuses the griefer of taking actions that are unacceptable. The

arguments are that the behavior pattern is against the rules of the game, either real rules

as defined in the game rules or Terms Of Service (the participation contract) or rules that

have been implied and accepted by the greater community of players.

Identification While the player and griefer are obvious stakeholders, every other partici-

pant in the game ecosystem may also be affected by a decision made in this particular case.

While the desired consequences may be achieved, the possibility of emergent behavior in the

game world may result in unintended consequences.

Advocacy Advocacy on behalf of the stakeholders is a significant challenge and parallels

those challenges faced in real world legal systems: How is this advocacy to be achieved? Is

it via some form of realtime communication between the parties? Are there anonymity and

privacy concerns? Can alternative (possibly professional) advocates be employed?

Resolution Someone or something must have the ability and authority to force a resolution

of the matter.

Implementation If we assume that the dispute resolution system incorporates real-world

concepts such as punishment, restitution and rehabilitation then there may be parallels in

the game world. Punishments could include banishing a player from a particular game area,

perhaps for a given period, or they may be assessed fines in terms of their in-game wealth

or experience points. Restitution could also be economic or it could be achieved by putting

the player on a “watch list” and identifying them, in some way, to other players in the game

world.

165

Implications: Virtual World and Real World The points just presented represent

only a small sample of the things that could be done in the scenario. However, requirements

engineering is a pragmatic discipline and there are significant constraints on any dispute

resolution mechanism that must be addressed.

The first constraint is that the griefer must be a willing participant in any corrective

action that is designed to illustrate (to them) why the behavior was unacceptable and to

punish them for this behavior with the expectation that they will modify their behavior in

the future. While this approach may work for some participants, it is unlikely to work for

others.

Taken further, such an approach may only work within communities of interest, in-game

communities where the participants have some motivating reason to stay, and potentially

succeed, within the community. Under this assumption, we can then turn our attention to

the challenge of advocacy.

Given the potentially geographically distributed nature of the player community, practical

implementations imply that realtime resolutions will be difficult. Therefore, there may be a

need for support for written submissions, etc. if anyone but those players “in the area at the

time of the incident” are involved. Further, if this is a paid service, then there are real world

contract issues that may be involved (there may even be issues for an unpaid service) – who

decides whether there is a breach of contract on the terms-of-service? Can that authority be

(legally) delegated to anyone other than the service provider?

166

Example We now present a more definite example for a player vs. player dispute scenario.

Accusation Camping. The griefer is stationed near the new player spawn (start)
point and killing the other players as they enter the world.

Identification Victims of the griefer (usually novice players). The griefer.
Advocacy Individual stakeholders act as their own advocates.
Resolution Publisher issues a rule change: If camping is detected, the camper will

be penalized with the loss of all weapons and ammunition. Camping
is defined as the killing of players as they enter (re-enter) the world at
the spawn point, and within 100m of the spawn point, in the virtual
world.

Implementation The rules of the game are embedded in configuration files since the
developer planned for runtime dispute resolution. New configuration
files are pushed to the community but no software patches are re-
quired.

Implications Griefers / campers lose their desired experience of an easy kill as play-
ers spawn. Player satisfaction in the rest of the community improves.

12.3.3 Player vs. Publisher

In comparison, we now look at conflict between the player and the publisher. Player vs.

publisher conflicts are typically over who has the right to control the gaming experience.

Must the game be played as designed? Can the game be played any way the player wants to

play since they bought the game? Or, may there be instances where the answer is somewhere

between the two extremes? In the following discussion, we will assume that it is the player

(customer) that wants to force a change.

Accusation For some reason, the customer is unhappy with the game that they purchased.

It could be that the opponents are too difficult to overcome. Or, the player feels that they

have to spend too much time performing tasks (such as farming) that they do not want

to do before they are allowed to go and do what they want to do (e.g. go on epic quests

for riches and enlightenment). In both cases, we assume that the player is satisfied with

the game engine and the game implementation – the player is dissatisfied with the game

experience. We shall look at the case of gameplay imbalance (opponents are too difficult)

for the remainder of the discussion.

167

Identification The game experience is unsatisfactory to the player. If there is just one

player that feels this way, or even a small number of like-minded players then the publisher

can safely ignore them. However, when a sufficiently large portion of their customer base

shares this negative opinion then the publisher may be forced to act before substantial

damage is done to their reputation or to sales of the game.

Advocacy Advocacy for change can be swift and obvious. Submissions from the players

directly to the publisher, complaints to support lines and discussions on user groups are all

widely available.

Resolution In the absence of an in-game resolution mechanism, the publisher is forced

to try to determine what changes to make by observing the customer base. However, the

same mechanics that allow a “jury of one’s peers” to vote on whether a player should be

banned from the community can also be used to allow the community to vote on the type

and magnitude of the changes.

Implementation One implementation option is to simply allow the community to make

their desired modifications to the rules and attempt to play within the new environment.

Alternatively, the player community could choose modifications to the rules then forward

the change requests to the publisher for implementation.

Implications: Virtual World and Real World The player community, as a whole, is

unlikely to be familiar with large-scale simulation theory and practice or with the challenges

associated with managing unexpected emergent behavior in these systems. By allowing the

player community to change how gameplay is ruled, it could be that the entire game world

is ruined rather than improved. Who would ‘take the blame’ at that point is unclear.

From the experience requirements perspective, the game designer should identify the

attributes that control the experience during the requirements phase. These attributes can

then be governed by the runtime dispute resolution mechanism. If the game designer is aware

of the potential for emergent behavior causing failure, they can also specify requirements for

checkpointing game state before the attributes are modified. As a result of this backup, if the

168

proposed changes are a failure, the system can be restored to its prior state and alternatives

pursued.

Example We now present a more definite example for a player community vs. publisher

dispute scenario.

Accusation The game isn’t any fun for anyone who isn’t already at level 20 or
higher. Given that higher level players (level 20 or higher) can engage
in player vs. player combat, how do those of us who want to just
explore and quest continue to participate in the game after we reach
level 20? As it is, if we don’t want to enter combat, we just get killed
and we are being forced to restart.

Identification Game designer, developer and publisher have a vision for a world
that graduates players from quests to combat. One group of play-
ers strongly endorses this vision, one group of players accepts (or is
ambivalent about) this vision, and a third group of players strongly
opposes the resulting experience.

Advocacy The situation was severe enough that the Publisher commissioned
focus groups to evaluate possible solutions. The focus groups were
principally drawn from the active player population but were also
seeded with members of the game design team to gain an insider’s
perspective.

Resolution Analysis of the results of the focus group lead to a new requirement
for a future release of the code base.

Implementation Game engine was modified to support partitioning players into N
classes, with separate rule sets for conduct within a class and between
that class and other classes.

Implications Player population is divided into recognizable (visually identifiable)
classes of players that form their own sub-communities. The first
three communities are (1) those who participate in player vs. player
combat, (2) those who participate in player vs. game (e.g. monster)
combat, and (3) those who participate in puzzle related quests with-
out any combat modes. New codebase had to be developed, tested,
and pushed out to the customers. Customer support costs surged
during the transition.

12.3.4 Summary

Negotiating requirements at run-time poses a number of challenges, including practical con-

cerns around advocacy and real-time resolution, and needs to be constrained. In this section

169

we focused on a dispute resolution model to provide some opportunity to balance require-

ments at run-time.

In the case of player vs. griefer conflict, experience requirements have shown us that we

should support communities of interest, and provide players with the ability to self-identify.

There are risks – the feeling of a larger community may break down, and the community

may fragment into special interest groups that may not be large enough to be self-sustaining.

The discussion has shown that, if a runtime dispute resolution system is desired, that the

requirements process must support requirements (at least for some aspects of the system)

that are malleable, even after delivery. For example, these requirements might look like the

following, where each requirement depends upon the prior requirements.

1. All requirements that affect the player experience give priority to player satisfaction

as long as player satisfaction does contradict corporate (developer) policy.

2. All requirements that affect the player experience are written to support dynamic

modification.

3. There shall be a set of rules that govern player behavior.

4. There shall be a set of rules that govern player vs. player combat.

5. A player shall have a set of attributes that capture the player state. The player state

shall include, at least, the player’s health, strength and agility.

Then, the relationships between the player attributes of health, strength and agility and

player’s chance of success in the game can be negotiated within the player community and

adjusted after delivery. The space in which the modifications can occur has been constrained

and the risks associated with emergent behavior have been managed, at least to a degree.

12.4 Conclusions

The publications collected in this manuscript thesis have described the introduction and

development of a new requirements engineering methodology called experience requirements.

170

Originally called emotional requirements, the concept arose from observations that many

failures in game design arise due to problems in project management. In particular, there

are issues with the transmission of information across the boundary from preproduction,

mostly the domain of artists, to production, mostly the domain of scientists and engineers.

Collocating preproduction and production throughout the lifetime of the project may

resolve these communications issues, but this may be infeasible. For example, different

parts of a game project may be subcontracted. Thus, an alternative is to transmit better

information across that boundary via experience requirements.

Field experience permitted several development directions of the formalism for experience

requirements. An experience requirement began as a pair - an emotion, and the means of

inducing that emotion. We developed the concepts of emotional terrains, emotional intensity

maps, and emotional timelines as mechanisms for visualizing these requirements.

Upon further feedback from industry, the work was extended to include emotion markers

(elements of the game world that trigger the experience, situated within the world) and

emotional prototypes, which extended the earlier emotional requirement to a (cue, action,

goal) triple. Emotion markers typically form the cue in the triple, and the player is expected

to take some action in response to the stimuli in pursuit of a goal. When combined with

testing suggestions from preproduction, significant critical information is captured for the

production team.

Further work showed that there can be significant interactions between emotional re-

quirements and security requirements – experience requirements can even dominate security

requirements in some cases. Experience requirements can also be used to capture player mo-

tivations, their attitudes toward the game, and their attitudes toward other players. In each

example, experience requirements can be used to proactively address player needs before

they become issues.

Emotional requirements were recognized as a specific type of a more general concept of ex-

perience requirements and this work has proposed an initial definition for experience require-

ments as well as an accompanying ontology of experience requirements for the videogame

domain. Initial investigations into another type of experience requirement, the cognitive

gameplay requirement, have been performed and a proposed definition has been presented.

171

Finally, a framework and methodology for expressing emotional requirements has been

developed and presented in a manner that facilitates adoption with little or no investment in

software tool support. Extending paper prototyping, physualization employs common office

materials to support lightweight capture of emotional requirements.

The exploratory research captured herein has provided a greater understand of problem

domain and has provided both a rich conceptual framework and initial results for the area.

The proposed solution, the experience requirements methodology, is a novel contribution

composed of:

• a model for the elements that compose experience requirements,

• a framework that provides guidance for expressing experience requirements, and

• an exemplary process for the elicitation, capture, and negotiation of experience re-

quirements.

This is a rich start for an exciting domain. As our understanding continues to evolve there

will be many interesting opportunities for future work. For example, breadth investigations

with other game developers will help us to evaluate generalizations of the methodology. The

other experience requirements that have been identified can also be investigated to develop

models and frameworks for their areas.

Tool support is a promising research direction and detailed case studies of expressiveness,

completeness, workflow and usability would advance our knowledge. Finally, using experi-

ence requirements to automatically implement specific player experiences, or to tune these

experiences at runtime, would be challenging but rewarding.

172

References

[1] Ernest Adams. The No Twinkie Database. http://www.designersnotebook.com/
Design Resources/No Twinkie Database/no twinkie database.htm, Accessed January,
2008.

[2] Ian Alexander. Misuse cases: Use cases with hostile intent. IEEE Software, 20(1):58–
66, 2003.

[3] Carina Alves, Geber Ramalho, and Alexandre Damasceno. Challenges in requirements
engineering for mobile games development: The meantime case study. In Proceedings
of the 15th IEEE International Conference on Requirements Engineering (RE 2007),
pages 275–280, Washington, DC, USA, 2007. IEEE Computer Society.

[4] S. Andriole. Storyboard prototyping for requirements verification. Large Scale Systems
in Information and Decision Technologies, 12(3):231–247, 1987.

[5] Annie I. Anton. Goal-based requirements analysis. In ICRE ’96: Proceedings of the
2nd International Conference on Requirements Engineering (ICRE ’96), page 136,
Washington, DC, USA, 1996. IEEE Computer Society.

[6] M. Aoyama. Persona-and-scenario based requirements engineering for software em-
bedded in digital consumer products. In Requirements Engineering, 2005. Proceedings.
13th IEEE International Conference on, pages 85 – 94, 29 2005.

[7] Consumer Electronics Association. Digital America. Published electronically at
http://www.ce.org, 2003.

[8] Various Authors. Postmortem column. Game Developer, 6(5) through 11(6), May 1999
- June 2004.

[9] Joseph Bates. The role of emotion in believable agents. Communications of the ACM,
37:122–125, 1994.

[10] R. Bellman. Adaptive Control Processes: A Guided Tour. Princeton University Press,
1961.

[11] Todd Bentley, Lorraine Johnston, and Karola von Baggo. Putting some emotion into
requirements engineering. In Proceedings of the 7th Australian Workshop on Require-
ments Engineering, 2002.

[12] Eric Bethke. Game Development and Production. Wordware Publishing, Inc., 2003.

173

[13] B. Boehm and V. Basili. Software defect reduction top 10 list. IEEE Computer,
34(1):135–137, January 2001.

[14] Karin Breitman and Julio Cesar Sampaio do Prado Leite. Ontology as a requirements
engineering product. In Requirements Engineering, pages 309–319, 2003.

[15] David Callele. Physualization: Going beyond paper prototyping. In MERE ’10: Pro-
ceedings of the 5th International Workshop on Multimedia and Enjoyable Requirements
Engineering, pages 1–10, Sydney, Australia, 1-1 2010. IEEE Computer Society.

[16] David Callele, Eric Neufeld, and Kevin Schneider. Requirements engineering and the
creative process in the video game industry. In RE ’05: Proceedings of the 2005
13th IEEE International Requirements Engineering Conference, pages 240–250, Paris,
France, 2005. IEEE Computer Society.

[17] David Callele, Eric Neufeld, and Kevin Schneider. Emotional requirements in video
games. In RE ’06: Proceedings of the 2006 14th IEEE International Requirements En-
gineering Conference, pages 292–295, Minneapolis, MN, USA, 2006. IEEE Computer
Society.

[18] David Callele, Eric Neufeld, and Kevin Schneider. Balancing security requirements
and emotional requirements in video games. In RE ’08: Proceedings of the 2008 16th
IEEE International Requirements Engineering Conference, pages 319–320, Barcelona,
Spain, 2008. IEEE Computer Society.

[19] David Callele, Eric Neufeld, and Kevin Schneider. Emotional Requirements. IEEE
Software, 25(1):43–45, 2008.

[20] David Callele, Eric Neufeld, and Kevin Schneider. Requirements in conflict: Player vs.
designer vs. cheater. In MERE ’08: Proceedings of the 3rd International Workshop on
Multimedia and Enjoyable Requirements Engineering, pages 12 –21, Barcelona, Spain,
9-9 2008. IEEE Computer Society.

[21] David Callele, Eric Neufeld, and Kevin Schneider. Augmenting emotional requirements
with emotion markers and emotion prototypes. In RE ’09: Proceedings of the 2009 17th
IEEE International Requirements Engineering Conference, pages 373 –374, Atlanta,
GA, USA, August 2009. IEEE Computer Society.

[22] David Callele, Eric Neufeld, and Kevin Schneider. Visualizing emotional requirements.
In Requirements Engineering Visualization (REV), 2009 Fourth International Work-
shop on, pages 1 –10, Atlanta, GA, USA, 1-1 2009. IEEE Computer Society.

[23] David Callele, Eric Neufeld, and Kevin Schneider. Cognitive gameplay requirements.
In MERE ’10: Proceedings of the 5th International Workshop on Multimedia and En-
joyable Requirements Engineering, Sydney, Australia, 2010. IEEE Computer Society.

[24] David Callele, Eric Neufeld, and Kevin Schneider. Introducing experience require-
ments. In RE ’10: Proceedings of the 2010 18th IEEE International Requirements
Engineering Conference, Sydney, Australia, 2010. IEEE Computer Society.

174

[25] Simon Carless. Gaming Hacks. O’Reilly Media, Inc., 2004.

[26] Herman Chernoff. The use of faces to represent points in k-dimensional space graphi-
cally. Journal of the American Stat. Association, 68:361–368, 1973.

[27] Lawrence Chung. Non-Functional Requirements in Software Engineering. Kluwer Aca-
demic Publishers, 2000.

[28] Mia Consalvo. Gaining Advantage: How videogame players define and negotiate cheat-
ing. In Proceedings of the Second Annual conference of the Digital Games Research
Association, page Online. IT University of Copenhagen, 2005.

[29] Mia Consalvo. Cheating Is Good For You. Forbes Magazine, 12, 2006.

[30] Mia Consalvo. Cheating: Gaining Advantage in Videogames. The MIT Press, 2007.

[31] Chris Crawford. Chris Crawford on Game Design. New Riders Publishing, 2003.

[32] Robert Crook, Darrel Ince, Luncheng Lin, and Bashar Nuseibeh. Security requirements
engineering: When anti-requirements hit the fan. In Proceedings of IEEE International
Requirements Engineering Conference (RE 2002), Washington, DC, USA, 2002. IEEE
Computer Society.

[33] Mihaly Csikszenthmihalyi. Flow: The Psychology of Optimal Experience. Harper
Perennial, 1990.

[34] Anne Dardenne, Axel van Lamsweerde, and Stephen Fickas. Goal-directed require-
ments acquisition. In 6IWSSD: Selected Papers of the Sixth International Workshop
on Software Specification and Design, pages 3–50, Amsterdam, The Netherlands, The
Netherlands, 1993. Elsevier Science Publishers B. V.

[35] Peter E. Doolittle. Constructivism and Online Education. In 1999 Online Conference
on Teaching Online in Higher Education, pages 1–13, 1999.

[36] Stephen W. Draper. Analysing fun as a candidate software requirement. Personal
Technology, 3(1):1–6, 1999.

[37] S. Easterbrook, S. Singer, J. Storey, and D. Damian. Selecting empirical methods for
software engineering research. In Guide to Advanced Empirical Software Engineering,
F. Shull and J. Singer Eds. Springer, 2007.

[38] Steve Easterbrook, Anthony Finkelstein, Jeff Kramer, and Bashar Nuseibeh. Coor-
dinating distributed viewpoints: The anatomy of a consistency check. Concurrent
Engineering: Research and Applications, 2(3):209–222, 1994.

[39] Auston Grossman Editor. POSTMORTEMS from Game Developer. CMP Books, 2003.

[40] Paul Ekman and W Friesen. Measuring facial movement. Environmental Psychology
and Nonverbal Behavior, 1(1):56–75, 1976.

175

[41] Andrew Sloman et al. The Cognitive Affinity Project.
http://www.cs.bham.ac.uk/research/cogaff/cogaff.html.

[42] S. Field. Screenplay: the foundations of screenwriting. A Delta book. Delta Trade
Paperbacks, 2005.

[43] Donald Firesmith. Engineering security requirements. Journal of Object Technology,
2(1):53–68, 2003.

[44] Chek Yang Foo and Elina Koivisto. Grief Player Motivations. In Proceedings of the
Other Players conference, page Online, Copenhagen, Denmark, 2004. IT University of
Copenhagen.

[45] Chek Yang Foo and Elina Koivisto. Redefining Grief Play. In Proceedings of the
Other Players conference, page Online, Copenhagen, Denmark, 2004. IT University of
Copenhagen.

[46] Brian Fuson. 2003 Top Boxoffice. Published electronically at
http://www.hollywoodreporter.com, 2003.

[47] David A. Garvin. Competing on the eight dimensions of quality. Harvard Business
Review, 65(6):101–119, 1987.

[48] F. O. Gehry. Reflections on designing and architectural practice. Managing as Design-
ing, 2004.

[49] M. Glinz. On non-functional requirements. In Proc. RE, volume 7, pages 21–26.
Springer, 2007.

[50] Martin Glinz. On non-functional requirements. Requirements Engineering, IEEE In-
ternational Conference on, 0:21–26, 2007.

[51] J. A. Goguen and C. Linde. Techniques for requirements elicitation. In Proceedings of
the International Symposium on Requirements Engineering, pages 152–164, Los Alami-
tos, California, 1993. IEEE CS Press.

[52] Joseph A. Goguen. The dry and the wet. In ISCO, pages 1–17, 1992.

[53] Philippe Golle and Nicolas Ducheneaut. Keeping bots out of online games. In ACE
’05: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in
computer entertainment technology, pages 262–265, New York, NY, USA, 2005. ACM.

[54] III H. Holbrook. A scenario-based methodology for conducting requirements elicitation.
SIGSOFT Softw. Eng. Notes, 15(1):95–104, 1990.

[55] Marc Hassenzahl, Andreas Beu, and Michael Burmester. Engineering joy. IEEE Soft-
ware, 18(1):70–76, 2001.

176

[56] Greg Hoglund and Gary McGraw. Exploiting Online Games: Cheating Massively
Distributed Systems (Addison-Wesley Software Security Series). Addison-Wesley Pro-
fessional, 2007.

[57] Paco Hope, Gary McGraw, and Annie I. Antón. Misuse and abuse cases: Getting past
the positive. IEEE Security and Privacy, 2(3):90–92, 2004.

[58] Cynthia Irvine, Timothy Levin, Jeffery Wilsonz, David Shifflett, and Barbara Pereira.
A Case Study in Security Requirements Engineering for a High Assurance System.
In Symposium on Requirements Engineering for Information Security, Held in con-
junction with the 9th IEEE International Conference on Requirements Engineering
(RE’01). Online, 2001.

[59] ISO/IEC. ISO/IEC 9126: Information technology – Software product evaluation
– Quality characteristics and guidelines for their use. International Organization
for Standardization, International Electrotechnical Commission, Geneva, Switzerland,
2006. 1991.

[60] M. Jarke, K. Pohl, R. Doemges, S. Jacobs, and H. Nissen. Requirements informa-
tion management: The NATURE approach. Ingenerie des Systemes d’Informations,
2(6):609–637, 1994.

[61] Raph Koster. A Theory of Fun. Paraglyph Press, 2005.

[62] Julian Kuecklich. Other playings: cheating in computer games. In Proceedings of the
Other Players conference, page Online, Copenhagen, Denmark, 2004. IT University of
Copenhagen.

[63] Andy Kuo. A (very) brief history of cheating.
http://shl.stanford.edu/Game archive/StudentPapers
/BySubject/AI/ C/Cheating/Kuo Andy.pdf, 2001.

[64] Francois Dominic Laramee, editor. Game Design Perspectives. Charles River Media,
Inc., 2002.

[65] Pericles Loucopoulos and Joy Garfield. The intertwining of enterprise strategy and re-
quirements. In John Mylopoulos, Kalle Lyytinen, Nicholas Berente, Pericles Loucopou-
los, and Sean Hansen, editors, Design Requirements Engineering: A Ten-Year Perspec-
tive, volume 14, Geneva, Switzerland, 2009.

[66] Y Lyhyaoui, A Lyhyaoui, and S Natkin. Online games: Categorization of attacks. In
Proceedings of EUROCON 2005, pages 1340–1343, Washington, DC, USA, 2005. IEEE
Computer Society.

[67] K. Lyytinen, P. Loucopoulos, J. Mylopoulos, and B. Robinson, editors. Design Require-
ments Engineering: A Ten-Year Perspective. Lecture Notes in Business Information
Processing. Springer, 2009.

[68] Aaron Marcus. The emotion commotion. interactions, 10(6):28–34, 2003.

177

[69] John McDermott and Chris Fox. Using abuse case models for security requirements
analysis. In ACSAC ’99: Proceedings of the 15th Annual Computer Security Applica-
tions Conference, page 55, Washington, DC, USA, 1999. IEEE Computer Society.

[70] Nancy Mead and Ted Stehney. Security quality requirements engineering (square)
methodology. In SESS ’05: Proceedings of the 2005 workshop on Software engineering
for secure systems − building trustworthy applications, pages 1–7, New York, NY, USA,
2005. ACM Press.

[71] Nenad Medvidovic and David S. Rosenblum. Domains of concern in software archi-
tectures and architecture description languages. In Proceedings of the 1997 USENIX
Conference on Domain-Specific Languages, 1997.

[72] Tim Menzies, Steve M. Easterbrook, Bashar Nuseibeh, and Sam Waugh. An empirical
investigation of multiple viewpoint reasoning in requirements engineering. In RE ’99:
Proceedings of the 4th IEEE International Symposium on Requirements Engineering,
page 100, Washington, DC, USA, 1999. IEEE Computer Society.

[73] David Michael. The Indie Game Development Survival Guide. Charles River Media,
Inc., 2003.

[74] Jonathan Moffett, Charles Haley, and Bashar Nuseibeh. Core security requirements
artefacts. Spiral Development Workshop Technical Report 2004/23, The Open Uni-
versity, Department of Computing, June 2004. Edited by Wilfred J. Hansen.

[75] Andrew Monk and Steve Howard. Methods & tools: the rich picture: a tool for
reasoning about work context. interactions, 5(2):21–30, 1998.

[76] A. Moore, R. Ellison, and R. Linger. Attack modeling for information security and
survivability. Technical Report CMU/SEI-2001-TN-001, CMU/SEI, 2001.

[77] Andrew Moore. Security Requirements Engineering through Iterative Intrusion-Aware
Design. In Symposium on Requirements Engineering for Information Security, Held in
conjunction with the 9th IEEE International Conference on Requirements Engineering
(RE’01). Online, 2001.

[78] David Myers. What’s good about bad play? In IE2005: Proceedings of the second Aus-
tralasian conference on Interactive entertainment, pages 133–140, Sydney, Australia,
Australia, 2005. Creativity & Cognition Studios Press.

[79] John Mylopoulos, Kalle Lyytinen, Nicholas Berente, Pericles Loucopoulos, and Sean
Hansen. Design Requirements Engineering: A Ten-Year Perspective, volume 14.
Springer Berlin Heidelberg, Geneva, Switzerland, 2009.

[80] Donald A. Norman. The Design of Everyday Things. Doubleday Books by permission
of Basic Books, 1988.

178

[81] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, and Björn Regnell. Speed-
ing up requirements management in a product software company: Linking customer
wishes to product requirements through linguistic engineering. In RE, pages 283–294,
2004.

[82] U.S. Department of Homeland Security. Build security in: Setting a higher standard
for software assurance, Accessed January, 2008.

[83] W. Gerrod Parrott, editor. Emotions in Social Psychology. Psychology Press, Philadel-
phia, 2000.

[84] Carl Plantinga and Greg M. Smith, editors. Passionate Views: Film, Cognition, and
Emotion. Johns Hopkins University Press, 1999.

[85] Colin Potts. Using schematic scenarios to understand user needs. In DIS ’95: Pro-
ceedings of the 1st conference on Designing interactive systems, pages 247–256, New
York, NY, USA, 1995. ACM.

[86] Matt Pritchard. How to Hurt the Hackers: The Scoop on Internet Cheating and How
You Can Combat It. Gamasutra, 2000.

[87] Paper Prototyping. Carolyn Snyder. Morgan Kaufmann, 2003.

[88] Isabel Ramos, Daniel M. Berry, and João Alvaro Carvalho. Requirements engineering
for organizational transformation. Information & Software Technology, 47(7):479–495,
2005.

[89] Kevin Reeder. Visual storyboarding: Anthropometrics, innovation, and designing the
process. In Proceedings of the 2004 National Education Conference, Dulles, VA, USA,
2004. Industrial Designers Society of America.

[90] Ben Reynolds. Playing a ”good” game: A philosophical approach to understanding
the morality of games. http://www.igda.org/articles/rreynolds ethics.php, 2002.

[91] James Robertson. Point/counterpoint: Requirements analysts must also be inventors.
IEEE Software, 22(1):48–51, January 2005.

[92] Suzane Robertson. Requirements trawling: techniques
for discovering requirements. Published electronically at
http://www.systemsguild.com/GuildSite/Robs/trawling.html, Accessed January
2008.

[93] Andrew Rollings and Ernest Adams. Andrew Rollings and Ernest Adams on Game
Design”. New Riders Publishing, 2003.

[94] Andrew Rollings and Dave Morris. Game Architecture and Design, A New Edition.
New Riders Publishing, 2004.

[95] Katie Salen and Eric Zimmerman. Rules of Play: Game Design Fundamentals. MIT
Press, 2004.

179

[96] Marc Saltzzman, editor. Game Design Secrets of the Sages. Macmillan Publishing
USA, 2000.

[97] Derek Sanderson. Online Justice Systems. http://www.gamasutra.com/features/
20000321/sanderson 01.htm, 2001.

[98] Walt Scacchi. Understanding requirements for open source software. In John Mylopou-
los, Kalle Lyytinen, Nicholas Berente, Pericles Loucopoulos, and Sean Hansen, edi-
tors, Design Requirements Engineering: A Ten-Year Perspective, volume 14, Geneva,
Switzerland, 2009.

[99] Guttorm Sindre and Andreas L. Opdahl. Eliciting security requirements by misuse
cases. In TOOLS (37), pages 120–131, 2000.

[100] Greg M. Smith. Film Structure and the Emotion System. Cambridge University Press,
2007.

[101] Alistair G. Sutcliffe, Neil A.M. Maiden, Shailey Minocha, and Darrel Manuel. Sup-
porting Scenario-Based Requirements Engineering. Communications of the ACM,
24(12):1072–1088, 1998.

[102] Windblown Adventure Production Team. The Windblown Adventure, Game Design
Document. Windblown Adventure Production Team, 2008, Last access July 11, 2010.

[103] Windblown Adventure Production Team. The Windblown Adventure, YouTube video
upload, http://www.youtube.com/watch?v=Gs5hEq21lQI, 2008, Last access July 11,
2010.

[104] Carroll Thronesbery, Debra Schreckenghost, and Arthur Molin. Storyboards: A
medium for stealth knowledge capture. National Aeronautics and Space Adminis-
tration, Knowledge Management, Internal Presentation, 2006.

[105] Axel van Lamsweerde. Requirements engineering in the year 00: a research perspective.
In International Conference on Software Engineering, pages 5–19, 2000.

[106] Axel van Lamsweerde and Emmanuel Letier. Handling obstacles in goal-oriented re-
quirements engineering. Software Engineering, 26(10):978–1005, 2000.

[107] Jeff Yan. Security design in online games. In ACSAC ’03: Proceedings of the 19th
Annual Computer Security Applications Conference, page 286, Washington, DC, USA,
2003. IEEE Computer Society.

[108] Jeff Yan and Hyun-Jin Choi. Security issues in online games. The Electronic Library,
20(2), 2002.

[109] Jeff Yan and Brian Randell. A systematic classification of cheating in online games. In
NetGames ’05: Proceedings of 4th ACM SIGCOMM workshop on Network and system
support for games, pages 1–9, New York, NY, USA, 2005. ACM.

180

[110] Nick Yee. Unmasking the Avatar: The Demographics of MMO Player Motivations,
In-Game Preferences, and Attrition. Gamasutra, 2004.

[111] Nick Yee. Motivations of Play in MMORPGs: Results from a Factor Analytic Ap-
proach. http://www.nickyee.com/daedalus/motivations.pdf, Accessed January, 2008.

[112] Konstantinos Zachos, Neil Maiden, and Amit Tosar. Rich-media scenarios for discov-
ering requirements. IEEE Software, 22(5):89–97, 2005.

[113] Pamela Zave. Classification of research efforts in requirements engineering. ACM
Computing Surveys, 29(4):315–321, 1997.

181

Appendix A

Emotional Requirements Definition

182

An Emotional Requirement SPECification (ERSPEC) is defined
as:

ERSPEC = 〈emotionalRequirements, gameElements〉

Where the individual components are defined as follows.

The emotional requirements are defined as:
emotionalRequirements= {〈emotion, cues, action, goal [, rationale] [, authorID]〉}

The emotion is defined as:
emotion = 〈[emoticon,] intendedEmotion, intensity [, temporalDescription] [, spatialDescription]〉
emoticon = The emotion may be depicted in pictorial form, such as via an emoticon,

particularly when the emotion is identified within pictorial representations
of the game world.

intendedEmotion = Textual label, used for communication between team members and project
management. In this work, the intended emotions are drawn from Parrott’s
classification. The syntax p[.s[.t]] is used for textual communication, where
p is a primary emotion, s is a secondary emotion, and t is a tertiary emotion
(e.g. surprise, fear.nervousness, joy.pride.triumph). This label identifies the
emotion that the designer intends to induce in the player via the cue.

intensity = A relative value for communicating about the intensity of the player experi-
ence. A value of 0 denotes the absence of the emotion, or a lack of concern
for the intensity of the emotion. Scales can be numeric (such as values from
0 to 10) or descriptive (e.g. low, medium, high). The intensity is partic-
ularly useful when designing focus-group tests to validate that the player
experience is as intended.

temporalDescription = A description of how the emotional intensity varies with time, in the sce-
nario. The Emotional Intensity Timeline (EIT) is an example mechanism
for capturing the temporal description in a compact visual representation.

spatialDescription = A description of how the emotional intensity varies with location, in the
scenario. The Emotional Intensity Map (EIM) is an example mechanism for
capturing the spatial description in a compact visual representation.

The cues are defined as:
cues = {〈[cueType,] gameElement [, gameAttributes] [,mediaAttributes]〉} Any

gameElement may be used as a cue to induce an emotional response in the
player. Each gameElement has associated attributes for which the game
designer may provide specific direction (e.g. the game designer may direct
that a door in the scenario must have a specific openDoor sound and a
specific closeDoor sound). There may be more than one cue in a given
scenario.

cueType = An indicator of the way in which the gameElement is recognized as a cue.
The mechanism may be via any one or more of the senses. In practice, for
videogames, this means visual or auditory recognition - touch (haptic) may
be employed but support for haptic feedback is relatively rare.

183

The action and goal are defined as:
action = 〈actionDescription, actionTestDescription〉
actionDescription = A textual description of the action that the game designer expects that

player to take in response to the cue. The action may provide a link to
the corresponding mechanical gameplay requirement(s). (See Chapter 9 for
further details of mechanical gameplay requirements.) There may not be
an expected action, but if that is the case then the requirement is likely
being misused to provide artistic direction. Cues without actions should be
avoided.

actionTestDescription = A textual description of one or more example tests that can be used to vali-
date that the specified actions are taken by the play testers during gameplay
testing.

goal = 〈goalDescription, goalTestDescription〉
goalDescription = A textual description of the goal that the player is expected to formulate

in response to the cue. The goal is typically related to the action via the
cue (e.g. dodge (action) the oncoming vehicle (cue) to reach the finish line
(goal)). The goal may provide a link to the corresponding cognitive game-
play requirement(s).(See Chapter 9 for further details of cognitive gameplay
requirement.)

goalTestDescription = A textual description of one or more example tests that can be used to vali-
date that the specified goals are being formulated by the play testers during
gameplay testing. Passive (observation only) testing of goal formulation may
not be possible. Invasive techniques, such as play-tester interviews, may be
required.

Other attributes:
rationale = Optional Provides the ability to explicitly capture the rationale associated

with the requirement, most likely the rationale associated with the action
or goal elements.

authorID = Optional If the requirement is part of a specification generated by multi-
ple authors, then each requirement can have an associated author. The
authorID is should identify the individual responsible for this requirement.

The game elements are defined as:
gameElements = {〈mediaAsset [, gameAttributes] [,mediaAttributes]〉}

A gameElement, or the set of gameElements, may provide a link to the
corresponding sensory requirement(s). (See Chapter 9 for further details of
sensory requirements.)

mediaAsset = An element of the game world, built by the production team. For example,
elements of the world like the terrain, building, characters, sounds, and
special effects are all mediaAssets.

gameAttributes = Attributes associated with a mediaAsset, associated with gameplay. For ex-
ample, a weapon mediaAsset such as a sword may have associated gameAt-
tributes of cost (to the player to acquire), useCost (how much energy is
drained from the player with each stroke) and damage (how much energy is
drained from the opponent with each stroke).

mediaAttributes = Attributes associated with a mediaAsset, associated with the “look and feel”
of the asset. For example, a mediaAsset may be built in a certain style (e.g.
a Gothic castle) or it may have a set of associated animations (e.g. walk
cycle, run cycle).

184

	Permission to Use
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Introduction
	Problem Identification, Statement and Investigation: Chapter 2
	Introducing Emotional Requirements: Chapters 3, 4
	Security Requirements and Emotional Requirements: Chapters 5, 6
	Extending the Experience Requirements Framework: Chapters 7, 8
	Experience Requirements and Cognitive Gameplay Requirements: Chapters 9, 10
	Implementation: Chapter 11
	Guide to the Document

	Requirements Engineering and the Creative Process in the Video Game Industry
	Introduction
	Background
	Emotional Factors
	Language and Ontology
	Elicitation, Feedback and Emergence

	Video Game Development
	Development Process
	The Game Design Document

	The Transition from Preproduction to Production
	Review of Postmortem Columns
	Examples From Real Games
	Documentation Transformation
	Implication
	Evaluation

	Summary and Conclusions
	Challenges for Requirements Engineering
	Media and Technology
	The Importance of NFRs
	Gameplay

	Future Work
	Acknowledgements

	Emotional Requirements in Video Games
	Introduction
	Related Work
	Emotional Requirements
	Designer Intent
	Artistic Context

	Representing Emotional Requirements
	Summary and Future Work

	Emotional Requirements
	Introduction
	Requirements Challenges
	Induced Emotional Requirements
	Representation
	Cultural Conditioning

	Contextual Information Requirements
	Positional
	Temporal
	Relational

	Conclusions

	Balancing Security Requirements and Emotional Requirements in Video Games
	Introduction
	Related Work
	Evaluating Threats
	Resolving Requirement Conflicts
	Summary and Future Work

	Requirements in Conflict: Player vs. Designer vs. Cheater
	Introduction
	Stakeholders
	Producers
	Consumers
	An Example
	The Exception to the Rule

	Related Work
	Security Requirements
	Misuse, Abuse, and Anti-Requirements
	Threats and Attacks
	Player Types
	Cheating
	Grief Play and Griefers
	Emotions in Requirements
	Negotiating Requirements

	Security and Video Games
	The Player's Perspective
	Alternative Play as Threat

	The Developer's Perspective
	A Process
	Resolving Requirement Conflicts
	Summary and Future Work

	Augmenting Emotional Requirements with Emotion Markers and Emotion Prototypes
	Introduction
	Elicitation and Capture
	Specifying Emotional Requirements
	Conclusions

	Visualizing Emotional Requirements
	Introduction
	Related Work
	Storyboards
	Film Studies and Cognitive Psychology

	Emotion Prototypes and Markers
	Scenario Concept
	Designing the Player Experience
	Emotions and Emoticons

	Generating the Emotional Intensity Map
	From Requirements to Design and Implementation
	Difficulty and Emotional State
	Constraints on Emotional Requirements

	The Final Product
	Elicitation and Capture
	Specifying Emotional Requirements
	Conclusions
	Future Work

	An Introduction To Experience Requirements
	Introduction
	Experience Requirements
	A Model
	Potential Benefits
	Experience Requirements in Video Games
	Conclusions and Future Work

	A Proposal for Cognitive Gameplay Requirements
	Introduction
	Gameplay Requirements
	Related Work
	Cognitive Engagement in Games
	Field Observations of Gameplay Design
	General Design
	Observations on the Review Meeting
	Gameplay 1: Platform Maze
	Gameplay 2: Sliding Walls
	Gameplay 3: Shifting Sands
	Summary

	The Elements of Cognitive Gameplay Requirements
	Preconditions
	Cognitive Challenge
	Post-Conditions

	Conclusions
	Future Work

	Physualization: Going Beyond Paper Prototyping
	Introduction
	Physualization
	Session Goals
	Session Results
	Resources and Tools
	Questions for Consideration
	Leading a Session
	Some Examples
	Other Work of Interest
	Printed Materials
	Physical Visualizations
	YouTube Videos

	Applying Experience Requirements and Conclusions
	Windblown Adventure
	First Person Shooter (FPS)
	Negotiating Requirements at Runtime
	An Exemplary Dispute Resolution Process
	Player vs. Griefer
	Player vs. Publisher
	Summary

	Conclusions

	References
	Emotional Requirements Definition

