How do microbes transform plant residues into soil organic matter and, why does it matter?

Dr. Bobbi Helgason

Associate Professor, Soil Science University of Saskatchewan

Soil organic matter

Promotes:

- good soil structure
- aggregate formation and stability

Regulates:

- soil moisture availability
- nutrient cycling
- •climate (carbon storage and GHG)

Is a source of:

nutrients for plants and microbesenergy (food) for microorganisms

Soil organic matter provides resilience to stress

Soil organic matter supports biota

Soil biota: ecosystem services

Decomposition & cycling of organic matter

Regulation of nutrient availability

Suppression of pests and disease

Maintenance of soil structure & hydrology

Gas exchange and carbon storage

Soil Detoxification

Plant growth control

https://www.quartoknows.com/blog/quartohomes/2015/04/22/sustainable-gardensand-organic-matter/

Where does soil organic matter come from?

In agroecosystems most new C comes from plants (and organic amendments).

Energy held by carbon *fuels* other important processes

(e.g. N, P cycling)

Not all soil organic matter is created equally

https://www.freepik.com/premium-photo/fertile-loam-soil-suitableplanting-soil-texture_4882973.htm

Graphic: J. Lavallee

How is soil organic matter retained?

Particulate organic matter (POM):

 protected within aggregates

Mineral-associated organic matter (MAOM):

 protected by binding with clay minerals

Graphic: J. Lavallee

Crop residue decomposition - what controls it?

How do soil properties and environmental conditions affect litter decomposition?

Global Change Biology

Global Change Biology (2016), doi: 10.1111/gcb.13502

Litter decay controlled by temperature, not soil properties, affecting future soil carbon

EDWARD G. GREGORICH¹, HENRY JANZEN², BENJAMIN H. ELLERT², BOBBI L. HELGASON³, BUDONG QIAN¹, BERNIE J. ZEBARTH⁴, DENIS A. ANGERS⁵, RONALD P. BEYAERT⁶, CRAIG F. DRURY⁷, SCOTT D. DUGUID⁸, WILLIAM E. MAY⁹, BRIAN G. McCONKEY¹⁰ and MILES F. DYCK¹¹

Crop residue decomposition

Table 1 Soil classification, texture, organic carbon concentration and pH at the 10 experimental sites

Site	Soil classification (WRB)	Sand (%)	Clay (%)	Organic C (%)	pН	Mean annual air temperature (°C)	Mean annual precipitation (mm)	
Fredericton, NB	Humic Podzol	53	9	1.70	6.2	6.6	1157	
Levis, QC	Mollic, Umbric, Calcic Gleysol	60	15	2.23	5.0	5.6	1231	
Ottawa, ON	Cambisol, Eutric Cambisol	67	12	1.79	6.2	7.4	926	
Delhi, ON	Albic Luvisol, Haplic Luvisol	85	6	0.84	6.5	8.9	970	
Woodslee, ON	Mollic, Umbric, Calcic Gleysol	41	27	2.88	7.1	10.0	875	
Morden, MB	Chernozem	32	36	2.86	6.3	4.1	533	
Indian Head, SK	Chernozem	10	48	2.06	7.8	2.5	431	
Swift Current, SK	Kastanozem (Aridic)	33	29	1.17	6.0	4.2	397	-
Lethbridge, AB	Kastanozem (Haplic)	53	23	1.52	7.7	6.5	467	
Breton, AB	Albic Luvisol, Gleyed Luvisol	36	22	1.66	5.8	3.5	506	

Crop residue decomposition

Barley grown in a chamber with a tracer (¹³CO₂)
•Harvested, chopped, mixed with soil

•¹²C residues added annually (no tracer)

10 atom% ¹³C

•Sampled after 6mo, 1, 2, 3, 5 years

Carbon-13 (6P + 7N) Atomic weight = 13 https://deskarati.com/wpcontent/uploads/2015/07/Carbon-Isotopes.jpg

6 protons 7 neutrons

Crop residue decomposition: primarily controlled by temperature

Temperature ("thermal time")

• Cumulative growing degree days above zero

What about residue C stabilization?

Where did the ¹³C from the

barley end up

- after 6 months?
- after 5 years?

Graphic: J. Lavallee

What about residue C stabilization?

At 6 months, a lot of residue was POM; by 5 years residue C remained as MAOM.

Organic matter supports soil biota

Fig. 4. Graph of best fit model parameters for litter-derived C formation (a; 6 months) and persistence (b; 5 years) in the mineral-associated organic matter (MAOM) fraction.

After 5 years,¹³C oPOM and MAOM best predicted by:

-degree days above $0^{\circ}C$

•soil organic C (%) at time 0

Haddix et al. 2020 Geoderma

How does crop diversity affect SOM?

Crop rotation provides a "balanced diet" = improved fertility?

Tiemann et al. 2015 Ecology Letters

How does crop diversity affect SOM? Long-term cereal monoculture vs. diverse rotations

AAFC New Rotation Experiment (Swift Current est. 1987) continuous wheat vs. wheat-canola-wheat-pea (n=3)

AAFC Totten Rotation Experiment (Harrow est. 2001) continuous corn vs. corn-soybean-winter wheat (n=4)

Dr. Jennifer Town AAFC, Saskatoon RDC

How does crop diversity affect microbial communities?

Location S		Stage		ate		
Harrow, ON	Early Veg	Early Vegetative (EV)		June 21		
	Anthe	Anthesis (AN)		just 3		
	Post-harvest (PH)		Dece	mber 5		
Swift Current, SK	Early Vegetative Anthesis		Ju Jul	ne 6 v 20		
	Post-harvest		Septer			
Organic Mat Characterizat	ter tion	Biogeocl	nemistry	Microbia charao	l community cterization	
 Lignin (lignin p Amino sugars Available C (CC respiration; 380) 	henols) 0 ₂ d)	 PO₄, NO total an C Microbia activitie 	al enzyme	 DNA seque Phosphol 	encing ipid fatty acid	

/ acids

Crop rotation affected SOM quality

EContinuous Wheat Heat after Pea Heat after Canola Total VSC S:V **Cinnamyl Phenols** Syringyl Phenols 140-30 1.3а 130 -25а 55 а 1.2 -120 -DO **b**/**b**u a 20 20 DO 8 mg/g b b b b b 50 b b 110-1.1 -15 -100 -45 1.0 -10

Continuous Corn Corn in Rotation

Mineralizeable C

Diverse crop rotations resulted in different soil *functioning*

Diverse crop rotations in both systems resulted in different soil *function*

Aboveground diversity interact to improve fertility and soil organic matter

Belowground diversity function

Plant matter quality is important for fertility

Diverse crop rotations improve system resilience to adverse conditions

Bowles et al. 2020 doi.org/10.1016/j.oneear.2020.02.007

347 site years from 11 corn experiment.

Rotation diversity increased yields by an average of 28.1%.

Positive effects were most notable under unfavorable conditions (e.g. drought).

Figure 3. Probability Analysis of Low and High Yields in Simple versus Complex Rotations

Organic matter quality: what is the big deal with roots?

upload.wikimedia.org/wikipedia/commons/a/a7/4_Seasons_Roots.jpg

Roots can contribute up to 80% as much C as aboveground biomass (Fan et al. 2019).

What is the big deal with roots?

Rhizodeposition can account for 1-10% of net photosynthate C stored

Figure 2 | The rhizosphere. The rhizosphere is a narrow zone of soil (a few millimetres wide) that surrounds and is influenced by plant roots. The schematic shows magnified pictures of the rhizosphere, containing saprophytic and symbiotic bacteria and fungi, including arbuscular mycorrhizal fungi (AMF). AMF inset modified, with permission, from REF. 158 © (2008) Macmillan Publishers Ltd. All rights reserved.

Philippot et al. 2013. Nat Rev Microbiol 11:789-799

What is the big deal with roots?

Emerging evidence that root C is preferentially stabilized.

(Rasse et al. 2005, Sokol et al. 2019).

Graphic: J. Lavallee

Soil organic matter

Promotes:

- good soil structure
- aggregate formation and stability

Regulates:

- soil moisture availability
- nutrient cycling
- •climate (carbon storage and GHG)

Is a source of:

nutrients for plants and microbesenergy (food) for microorganisms

Soil organic matter provides resilience to stress

Acknowledgements

Agriculture and Agriculture et Agri-Food Canada Agroalimentaire Canada

AAFC Collaborators: Harrow: Craig Drury, Lori Phillips, et al. Swift Current: Mervin St. Luce, Kelsey Brandt, et al. Saskatoon: Reynald Lemke

Research Assistants: Steven Kessler, Min Yu

Undergraduate students: Ryan LaBossiere, Veronica Wang, Kyle LeBlanc

College of Agriculture and Bioresources

DEPARTMENT OF SOIL SCIENCE AGBIO.USASK.CA

Thank you

Soil Microbial Ecology Program

Soil carbon stabilization/ destabilization

microorganisms

Nutrient cycling and prevention of losses (improved efficiency)

Plant-microbe interactions

Bobbi.Helgason@usask.ca

How is soil organic matter retained?

- 3 destabilizing factors:
- 1) Release from aggregates
 - Tillage, freeze-thaw, wet-dry cycles, bioturbation
- 2) Desorption from minerals
 - Soil pH, increased moisture
- 3) Increased biotic metabolism
 - Quality of litter, quality of soil organic matter, microbial carbon use efficiency

<u>Outputs</u>

 Respiration (CO₂ & CH₄)
 Physical transport (erosion, leaching) *relocation

Crop residue decomposition: most plant C turns over quickly

Less residue remained:

- in sandy soil
- in warmer, wetter climates

How do we *predict* decomposition?

Crop residue decomposition: what if our soils get warmer?

Time to 50% decomposition (labile carbon):

• 1-4 months less

Time to 90% decomposition (stable carbon):

- 1 year faster @cool sites
- 2 years faster @ warm sites