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ABSTRACT 

 

Sturgeon are an ancient family of fish which have remained essentially unchanged for 

200 million years, rendering them physiologically distinct from the more modern teleosts. Of the 

26 known species of sturgeons all are likely endangered. North American populations have been 

declining steadily since the 1800s due to factors such as overharvesting, habitat alterations and 

increasing pollution. White sturgeon (Acipenser transmontanus), endemic to Western North 

America, are the largest freshwater fish on the continent. Protecting white sturgeon is of interest 

because nearly all Canadian populations are endangered and they are culturally and economically 

important. Factors such as great size, longevity, position in the food chain and benthic life style 

render white sturgeon particularly susceptible to bioaccumulation of toxicants. They are known 

to be among the most sensitive species to pollutants such as metal ions, dioxin-like compounds 

and endocrine disrupters. However, little is known about their susceptibility to other priority 

contaminants such as selenium (Se). Selenium, in its organic form selenomethionine (SeMet) has 

become a contaminant of particular concern as it is a known toxicant that efficiently 

bioaccumulates and biomagnifies in the food chain. It is also of interest as Se is an essential 

micronutrient that becomes toxic at only marginally greater than optimal doses. Current elevated 

concentrations of SeMet in white sturgeon prey, with predicted increases in anthropogenic 

releases, have made it a contaminant of concern for this species. It is hypothesized that increased 

releases of Se to aquatic environments have contributed in part to sturgeon declines; however, to 

date little is known about its specific effects on this species. Therefore, the purpose of the present 

study was to investigate the sensitivity of three year old white sturgeon to dietary SeMet and to 

link physiological effects to key molecular events of toxicity and to elucidate the mechanism of 

toxicity. Specifically, this thesis focused on oxidative stress in liver tissue as a hypothesized 

primary mechanism of toxicity. For 72 days sturgeon were given either a control diet of 1.4 µg 

Se/g feed or a diet spiked with SeMet (5.6, 22.4 or 104.4 µg Se/g feed dry mass). These doses 

corresponded to an uptake necessary for proper health, two environmentally relevant exposures, 

and a worst-case scenario for industrial Se release, respectively. A subsample of fish was taken 

at day 10 to investigate molecular endpoints. Within 10 days of exposure, pathological effects 

were observed in fish given the high dose. Occurrence of severe edema causing exophthalmos 
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developed within 15, 23 and 52 days in high, medium and low dose group fish, respectively. 

There was a 54% and 22% occurrence of lethal effects in the high and medium dose groups, 

respectively. Se accumulated in a dose dependent manner and reached equilibrium in high dose 

fish after approximately 40 days. Growth, liver weight and hepatosomatic index were all 

significantly lower in the high dose group. Histology of 72 day liver samples showed a 

significant and dose dependent increase in melanomacrophage aggregates and decrease of energy 

stores and cell size. Food avoidance was also observed in sturgeon exposed to the high dose. To 

investigate oxidative stress, 10 day liver samples were tested for changes in gene expression 

coding for glutathione peroxidase (GPx), superoxide dismutase, catalase, glutathione S-

transferase, apoptosis inducing factor and caspase 3, using real-time PCR. Only GPx was 

significantly induced. Day 72 liver samples were tested for the presence of lipid hydroperoxides 

but there were no significant differences between dose groups and controls, which shed doubt on 

oxidative stress being the main driver of toxicity. Taken together the data makes a strong case for 

the sensitivity of white sturgeon to Se accumulation and indicates a general suppression of health 

due to toxic levels of exposure. However, in contrast to other fish species exposed to Se, 

oxidative stress is not likely the main mechanism of toxicity in white sturgeon. Findings from the 

present study could be used for the risk assessment of sturgeon to anthropogenic Se in aquatic 

ecosystems.  
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PREFACE 

 

This thesis is presented in ‘manuscript’ style following the parameters set by the College 

of Graduate Studies and Research. Chapter 1 of this thesis is a general introduction, Chapter 4 is 

a general conclusion, and Chapters 2 and 3 are organized as manuscripts for publication in 

scientific journals. Thus, there is some repetition between the introduction and the materials and 

methods sections in each chapter. Although the publications are coauthored I undertook the 

leadership role in the conceptualization, data collection and analysis, and writing of each paper. 

Chapter 2 has been accepted for publication by Environmental Toxicology and Chemistry and 

has been released online ahead of print, Dec. 3, 2015 DOI: 10.1002/etc.3320. Chapter 3 has been 

submitted for publication to Ecotoxicology and Environmental Safety. 
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CHAPTER 1: GENERAL INTRODUCTION 
 

 

1.1 Sturgeon Life-History  

 

Sturgeon are an ancient family of ray-finned fish that have changed little over hundreds 

of millions of years (LeBreton et al., 2004; Billiard & LeCointre, 2001; Moyle & Cech, 2004). 

Sturgeon evolutionarily branched off from other families of fish approximately 200 million years 

ago (Doroshov, 1985) and are physiologically quite different from the more common modern 

day bony fishes (Bolker, 2004). They are a distinctive family with prehistoric body forms, an 

almost entirely cartilaginous skeleton and rows of large scutes, under scaleless skin, for 

protection (Moyle & Cech, 2004; LeBreton et al., 2004). Depending on the species, they have the 

potential to live for over 100 years and can reach enormous sizes. There are 26 species of 

sturgeon (Acipenseridae) in the world today with 9 species native to North America (Vecsei & 

Peterson, 2004). 

White sturgeon (Acipenser transmontanus) are the largest freshwater fish in North 

America (Wilson & McKinley, 2004) and have been known to grow over 6 meters in length and 

800 kg in weight (Doroshov, 1985) so references to leviathan are understandable. They are 

endemic to western North America (Linville, 2006) and found in the Columbia, Fraser and 

Sacramento River basins (Moyle, 2002). They can be extremely long lived, reaching up to 100 

years of age. They exhibit late sexual maturation, with first spawns occurring between 10-12 

years of age for males and 15-32 years of age for females (Doroshov, 1985; Doroshov et al., 

1997). White sturgeon are a benthic species, spending most of their time near the river bottom 

searching for prey. Juvenile sturgeon eat benthic invertebrates, crustaceans and bivalves while 

adults primarily feed on molluscs, shrimp, amphipods, and other young or dead fish (Gessner & 

Hochleithner, 2001; Linville, 2006; Silvestre et al., 2010). They are considered a highly valuable 

species from a cultural, recreational and economic perspective. Some American states manage 

sport or commercial sturgeon fishing harvests (Linville, 2006; Billiard & LeCointre, 2001), 

while only limited recreational catch and release is allowed on the Canadian Columbia and 

Fraser Rivers.  
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1.2 History of Sturgeon Fishing in North America 

 

Sturgeon species across North America were a staple for many First Nations groups. 

They were a significant food item comparable to buffalo on the plains (Holzkamm & Waisberg, 

2004) and a source of staple goods such as oil, isinglass and tough skin for construction material, 

thus becoming a cultural icon (Holzkamm & Waisberg, 2004; Butterworth & Leonard, 2004). 

While catching sturgeon was often necessary for survival it was a very difficult task with the 

larger species and often involved a great struggle, with fishermen or boats being hauled around 

until the fish tired and could be dragged ashore (Holzkamm & Waisberg, 2004). There are stories 

of some bravados from the Yurok tribe of Northern California attempting to ride white sturgeon 

much like rodeo cowboys on broncos, with minimal landing success (Saffron, 2002). It appears 

that for thousands of years sturgeon populations remained healthy and were self-sustaining, as 

first contact Europeans found rivers teaming with these fish. Intensive settler sturgeon fishing 

began in the late 1800s, and by the 1880s this was nicknamed the “caviar rush”. Increasing 

European demand for caviar by the upper and middle classes had quickly depleted old world 

continental stocks and companies began looking to the New World to fill the void (Saffron, 

2002; Holzkamm & Waisberg, 2004). Due to the sturgeon’s life history, river systems in both 

Europe and North America were decimated within 30 year spans (Holzkamm & Waisberg, 

2004). 

The North American caviar rush began on the more populated East Coast and moved 

West as once teeming rivers were fished out. On the Delaware River, USA, fishermen averaged 

65 sturgeon per haul in the 1870s, 30 per haul in the 1880s and only 8 per haul in 1899 (Saffron, 

2002). In Lake Erie the total catch in 1885 was 5 million lbs and only 200,000 lbs a decade later 

(Saffron, 2004). The St John River, New Brunswick had a total catch of 602,500 lbs in 1880 and 

16,264 lbs in 1886 (Holzkamm & Waisberg, 2004). The Columbia River began to be fished 

commercially in 1888, and the white sturgeon catch peaked in 1892 at 5.5 million lbs total catch 

(Holzkamm & Waisberg, 2004) with an average fish weight of 150 lbs (Binkowski & Doroshov, 

1985). By 1895 the average fish weight was 50-60 lbs and the total harvest was 73,000 lbs 

(Holzkamm & Waisberg, 2004). First Nations chiefs near Chilliwack BC, then relegated to 

reserves, complained to the government in 1894 that they would surely starve from a lack of the 
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essential white sturgeon if settlers continued their rapacious ways. Typical to the time, they were 

ignored and in 1902 the Harrison River (a tributary of the Fraser River) was fished out and no 

longer commercially viable (Saffron, 2004). With European and North American sturgeon on the 

verge of extinction the Caspian Sea has become the main producer of the world’s caviar 

(Saffron, 2002). 

Alongside intensive fishing pressure sturgeon have also faced pollution and intensive 

habitat alteration (Bolker, 2004; Saffron, 2004). Installation of hundreds of river dams affected 

river flow regimes and temperatures which are key sturgeon spawning triggers. Increased 

sediment deposition rates covered spawning gravel beds and may have buried benthic organisms 

needed for food (Jaric & Gessner, 2012; Saffron, 2002; Wilson & McKinley, 2004; Auer, 2004). 

Damming also effectively cut off the highly migratory sturgeon from traditional spawning sites 

and landlocked many fish creating separate populations and preventing ocean access (Auer, 

2004). Log drives, pulp and paper mills, mining operations and their discharges, flood control 

and river channelization changed many North American rivers causing habitat loss (Auer, 2004). 

Because of all these pressures sturgeon population numbers around the world have drastically 

declined over the past 100 years (Holzkamm & Waisberg, 2004; Saffron, 2002) 

 

1.3 Sturgeon Populations Today 

 

According to the International Union for Conservation of Nature (IUCN), of the 26 

species of sturgeon worldwide, 16 are critically endangered, 7 are near threatened - endangered 

and only 3 are species of least concern (IUCN, 2004). The IUCN considers white sturgeon 

generally to be a species of least concern due to large global numbers and reasonably strong 

populations in the Sacramento-San Joaquin and Columbia-Snake river basins. However, five 

subpopulations in the Columbia and Fraser River systems are considered vulnerable, endangered 

or critically endangered (IUCN, 2004; Upper Columbia River and Nechako River - critically 

endangered, Kootenai River and Upper Fraser River – endangered, Fraser regional - vulnerable). 

The province of British Columbia has its own red list ranking system, under which white 

sturgeon are generally considered imperiled (2nd highest rank) and four populations are 

considered critically imperiled (highest rank) (British Columbia Government, 2004). The federal 

Committee on the Status of Endangered Wildlife in Canada (COSEWIC) has classified Canadian 
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white sturgeon as vulnerable since 1990 (UCWSRIa, 2012) and endangered since 2003 

(Fisheries and Oceans Canada, 2016). Four of the populations (Upper Columbia, Kootenay, 

Nechako, Upper Fraser) have been listed as endangered under the federal Species at Risk Act 

since 2006 (Fisheries and Oceans Canada, 2016).  

The transboundary white sturgeon population in the Upper Columbia River, which runs 

between British Columbia, CAN and Washington, USA, and which was the focus of the present 

study, is listed as critically endangered by the IUCN (2004), as endangered by COSEWIC (2003) 

and in Schedule 1 of SARA (2006), and as critically imperiled on BC’s red list (since 1993). In 

1994 white sturgeon harvests on the Canadian portion of the Columbia River were banned and 

First Nations voluntarily stopped sustenance harvests. Although white sturgeon are not officially 

recognized as endangered by the state of Washington, in 2002 the fishery was closed with 

prompting from State and US Tribal fish managers (UCWSRI a, 2012). In 2005 there were 

approximately 3,100 fish remaining in the transboundary Upper Columbia population, 1,100 

individuals on the Canadian side of the border and 2,000 from south of the border to the Grand 

Coulee Dam, WA (UCWSRI b, 2012). The Upper Columbia White Sturgeon Recovery Initiative 

(UCWSRI) has worked to protect this particular population since 2000 by developing both a 

short and long term recovery plan that involves over 25 stakeholders (i.e. federal and provincial 

governments, industry, First Nations, fisheries) (UCWSRI c, 2012).  

Since the mid-1990s sturgeon have been included in a new focus on historic fish stock 

rehabilitation (Auer, 2004). Natural resource agencies, and multiple levels of government, have 

since developed sturgeon protection and rehabilitation plans that include fishing restrictions, 

habitat restoration, aquaculture, restocking programs, genetic registries, and increased public 

awareness (Auer, 2004; Van Eenennaam et al., 2004; Fisheries and Oceans Canada, 2016; 

British Columbia Government, 2004; UCWSRI b, 2012). The shift in conservation practices 

from protecting populations to protecting large tracks of landscape and whole ecosystems has 

also benefitted sturgeon which are highly migratory. Despite their increased protection white 

sturgeon still face some worrying pressures. These include poaching, climate change, continuing 

habitat alteration, pollution and the competing needs of increasing human populations for water, 

energy and food resources (Van Eenennaam et al., 2004). 

 

 



5 
 

1.4 Selenium as a Contaminant of Concern in the Environment 

 

Se is a metalloid or non-metal element that has a chemical behaviour similar to that of 

sulfur (Maher et al., 2009). It is primarily found in rocks and soils (Lemly, 2002b), but is not 

evenly distributed throughout the Earth’s crust. Cretaceous marine sedimentary rocks, marine 

shales, black shales, phosphate rock, coal and crude oils are major sources of Se, while igneous 

rock and limestone are minor sources (Janz, 2012; Maher et al., 2009). Most fresh- and salt-

water environments have around 0.01-0.1 µg Se/L but can have up to 5-50 µg Se/L when in 

contact with highly seleniferous shale deposits (Janz, 2012). Concentrations in the aquatic 

environment may increase as a result of natural geological processes and/or anthropogenic 

disturbances such as irrigation runoff and mining in seleniferous soils. Se is used in many 

consumer products such as coloured glass, antidandruff shampoo, electronics, xerography, 

fungicides, pharmaceuticals and multivitamins/supplements and consequently may end up in 

municipal landfill leachate and municipal effluents (Chapman, 2009; Lemly, 2002b; Janz, 2012; 

Maher et al., 2009). However, the greatest contributors to Se contamination in surface waters are 

mining and smelting operations, fossil fuel by-product waste disposal and agricultural irrigation 

runoff (Lemly, 2002b; Chapman et al., 2009; Janz, 2012; Maher et al., 2009). Some notable case 

studies of industrial contamination illustrate this point: Belews Lake, NC, USA was a cooling 

reservoir for a coal fired plant from 1974-1986 and the subsequent contamination (150-200 µg 

Se/L inputs) wiped out 19 of the 20 resident fish species (Lemly, 1985; Lemly, 2002a). 

Thousands more fish and water birds were poisoned when agricultural drainage via the San Luis 

Drain (300 µg Se/L inputs) terminated at the Kesterson National Wildlife Refuge, CA, USA;  

pond concentrations averaged 122 µg Se/L (Saiki & Lowe, 1987; Lemly, 2002b). Tributaries of 

the Colorado River, CA which receive irrigation runoff can contain up to 400 µg Se/L (Saiki & 

Lowe, 1987). Se contamination has been identified as a concern in countries around the globe 

(Lemly, 2002b; Chapman et al., 2009).  

Se can be found in elemental, inorganic (ex: selenate, selenite), organic (ex: 

selenocysteine, selenomethionine amino acids) or methylated forms. Since it is fairly reactive, 

biochemical intermediates may also be found as organisms accumulate, metabolize, biotransform 

and excrete Se (Maher et al., 2009). Se most commonly enters the aquatic ecosystem as 

inorganic species where it is taken up by primary producers such as microphytes and bacteria. 
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These microorganisms biotransform inorganic Se to its organic species, selenomethionine 

(SeMet), an amino acid analog that can be incorporated into proteins (Fan et al., 2002; Janz et al., 

2009). These low trophic level organisms can tolerate extremely high Se body burdens, 

bioconcentrating Se 102- to 106-fold above water concentrations without apparent harm 

(Chapman et al., 2009; Maher et al., 2009; Stewart et al., 2009). Therefore, although regulatory 

limits for Se concentrations in water (5 µg/L in the USA, USEPA, 2014; 1 µg/L in Canada, 

CCME, 2015) may not be breached, the initial large bioconcentration poses a great risk to higher 

trophic organisms such as sturgeon (Fan et al., 2002).  

SeMet accumulates in the food chain via dietary exposures and is found in organisms at 

all trophic levels (Bakke et al., 2010; Linville, 2006). The amount of Se bioaccumulation and 

sensitivity in an organism varies by species and is dependent on factors such as food choice, 

physiology, and association with sediment (Maher et al., 2009). Multiple studies have shown that 

fish with access to the sediment accumulate greater amounts of Se than those held above 

(Hamilton, 2004). Fish may consume contaminated detritus intentionally or accidentally ingest 

sedimentary particles with adsorbed Se (Hamilton, 2004; Fan et al., 2002). This is an especially 

pertinent exposure pathway for benthic species, such as sturgeon.  

 

1.5 Selenium Toxicity in Fish 

 

Selenium presents a paradox as it is both an essential micronutrient for vertebrates and a 

poison depending on the concentration (Mayland, 1994; Chapman, 2009). Previous studies have 

shown that to maintain normal growth and function a minimum of 0.1-0.5 µg Se/g feed dry mass 

(dm) is required in the diet of Atlantic salmon (Salmo salar) and fingerling channel catfish 

(Ictalurus punctatus) (Gatlin & Wilson 1984, Poston et al., 1976; Hodson & Hilton 1983; Lemly 

1997) and 0.7 µg Se/g feed in the diet of grouper (Epinephelus malabarious) (Stewart et al., 

2009). However at concentrations greater than 3 µg Se/g (dm) dietary exposure, toxic effects 

such as decreased growth, pathological changes in organs, edema, popeye (exophthalmos), 

mortalities, reproductive failure and teratogenesis have been observed in various fish species 

(Lemly, 1997; Lemly, 2002a; Sorensen et al., 1984; Hamilton, 2004; Misra et al, 2012; Finley, 

1985). According to Lemly (2002b), dietary Se concentrations should not exceed 3 µg/g if health 

is to be maintained in the most sensitive species such as rainbow trout (Oncorhynchus mykiss), 
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chinook salmon (Oncorhynchus tshawytscha) and bluegill (Lepomis macrochirus) (Lemly, 

2002b; Hamilton, 2004). Toxic effect thresholds of Se in whole body, muscle, liver and 

egg/ovary tissue of 4 µg/g, 8 µg/g, 12 µg/g and 10 µg/g (dm) respectively, have been 

recommended for freshwater fish by Lemly (2002b). DeForest et al. (2012) recommended whole 

body, ovary, and dietary limits of 6 µg/g, 17 µg/g, and 11 µg/g (dm) respectively, for cold water 

anadromous fishes. The British Columbia Ministry of the Environment updated the provincial 

Water Quality Guideline for Se in 2014 to include fish tissue concentrations of 4 µg/g, 4 µg/g 

and 11 µg/g (dm) for whole body, muscle/muscle plug and egg/ovary respectively. The USEPA 

(2015) is moving towards tissue thresholds of 8.0 µg/g, 11 µg/g and 15.8 µg/g (dm) in whole 

body, muscle and egg/ovary respectively. 

Wild caught fish with elevated Se concentrations in tissues, most likely from dietary 

SeMet, have exhibited a host of pathological effects. In Belews Lake, NC, USA, a highly Se 

contaminated water body, green sunfish (Lepomis cyanellus) exhibited pathological alterations in 

many internal organs including swelling of gill lamellae leading to decreased respiratory 

capacity, liver and kidney failure, and a change to blood composition, which suggested 

physiological stress and a change in overall health (Lemly, 1993; Lemly, 2002a). Other fishes in 

the lake exhibited severe pericarditis and myocarditis, damaged egg follicles in ovaries, hatchling 

and larval deformities, cataracts of the lens and cornea, and protruding eyeballs due to internal 

edema (Lemly, 1993; Lemly, 2002a). Chronic Se exposure also leads to various skeletal and 

internal organ pathologies in adult and juvenile fishes (Lemly, 2002a; Janz et al., 2009). 

 

1.6 Toxicity of Se in White Sturgeon 

 

 White sturgeon are believed to be particularly at risk to Se toxicity as they spend most of 

their lives in contact with the sediment, feed on prey that can accumulate large amounts of Se, 

are very long-lived and have been found to be among the most sensitive species to other 

pollutants including metal ions, dioxin like compounds and endocrine disrupters (Vardy et al, 

2011; Vardy et al., 2012; Doering et al., 2012; Doering et al., 2014; Dwyer et al, 2005). Studies 

conducted in San Francisco Bay, CA, USA found that Se concentration in clams (Potamocorbula 

amurensis), a preferred prey of white sturgeon in the area, ranged from 5 – 20 µg/g (dm), 

averaging 15 µg/g (dm) at some sites (Linville et al., 2002; Linville, 2006; Luoma & Presser, 
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2006), and a study conducted by the U.S. Department of the Interior and U.S. Geological Survey 

predicted that Se concentrations in clams could reach >100 µg/g (dm) under certain Se loading 

and climate conditions (Luoma & Presser, 2006). Furthermore, elevated levels of Se have been 

found in white sturgeon tissues. In the San Francisco Bay Delta concentrations of Se of 20.8 ± 

4.11 µg/g, 10.2 ± 1.93 µg/g and 21.8 ± 2.07 µg/g (dm) (mean ± SEM) have been reported in 

ovary, muscle and liver tissues of vitellogenic females, respectively (Linares-Casenave et al., 

2014). Ovarian tissues of white sturgeon from the Kootenay River, BC, CAN contained Se 

concentrations of up to 12 µg/g (average = 1.76 ± 2.02 µg/g) (Kruse, 2000). These 

concentrations exceeded toxic effect thresholds for Se set by the British Columbia Ministry of 

the Environment (2014) and those proposed for fish by Lemly (2002b), and they approached 

levels suggested by DeForest et al. (2012).  

Previous dietary SeMet studies conducted with juvenile white sturgeon have shown that 

SeMet accumulates in kidneys, liver, gill, muscle and blood plasma (Linville, 2006; Tashjian et 

al., 2006; De Riu et al., 2014). Activity and growth were adversely affected when fish were 

exposed to dietary levels ≥ 40 µg Se/g (dm). At dietary doses ≥ 20.5 µg Se/g (dm) 

histopathologies were observed in kidney, liver, muscle and gill tissues although findings have 

been inconsistent (Linville, 2006; Tashjian et al., 2006; De Riu et al., 2014). Decreased whole 

body protein and lipid, as well as decreased glycogen in the liver were also observed at these 

doses (Tashjian et al., 2006; De Riu et al., 2014). Diminished energy stores could lead to a 

reduced ability to forage, avoid predators, swim upstream, and navigate fish ladders around dams 

(Tashjian et al., 2006; De Riu et al., 2014; Cocherell et al, 2010).  

 

1.7 Potential Mechanisms of Toxic Action for Selenomethionine 

 

Multiple mechanisms of action have been proposed for SeMet toxicity. It was initially 

thought that because cellular enzymes are unable to distinguish between methionine and SeMet 

when synthesizing proteins, that these substitutions lead to improper protein structure, function 

and abnormal cellular biochemistry (Lemly, 2002a; Spallholz & Hoffman, 2002), but new 

evidence suggests this hypothesis is not plausible due to the location of Se in the molecule (Janz 

et al., 2009). A pathology that is believed to occur due to distorted membrane proteins is edema 

in the head and body cavity, caused by disrupted cell permeability (Ellis et al., 1937; Lemly, 
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2002a; Lemly, 1993). Another hyposthesized mechanism of action is that excess organic Se 

compounds are detoxified via methylation metabolism that produces hydrogen selenide as an 

intermediate metabolite. If the metabolic pathway is interrupted and hydrogen selenide (H2Se) 

accumulates, liver damage would be expected as it is a known hepatotoxin (Spallholz & 

Hoffman, 2002).  

A third, and possibly dominant, mechanism of Se toxicity is oxidative stress (Palace et 

al., 2004; Miller, 2006; Spallholz & Hoffman, 2002; Hoffman, 2002; Janz et al., 2009). 

Hypothesized pathways of Se causing oxidative stress include: 1) metabolism of SeMet to 

methylselenol (CH3Se-) either via the trans-sulfuration pathway or directly via methionase, 

which initiates redox cycling and generates reactive oxygen species (ROS) that then damage, 

bind or otherwise inhibit important enzymes and proteins (Pacini et al., 2013; Spallholz & 

Hoffman, 2002), 2) Se species react with glutathione (GSH) creating ROS (Miller, 2006), and 3) 

lipid hydroperoxide radicals may cause tissue damage or upset cell permeability (Miller, 2006). 

Spallholz & Hoffman (2002) suggested that selenate (SeVI) and SeMet do not generate ROS; 

however, Palace et al. (2004) showed that rainbow trout embryos exposed to SeMet generated 

increased levels of superoxide radicals. Miller (2006) stated that teratogenicity in fish is 

mediated by oxidative stress. Oxidative stress leads to increased cellular damage, and potentially 

organ damage, as well as increased physiological stress (O’Toole & Raisbeck, 1997; Palace et 

al., 2004). These mechanisms of action could account for the number of pathologies observed in 

both embryos and adults.  

 

1.8 Oxidative Stress and Antioxidant Defense 

 

Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds 

the body’s antioxidant protection and repair capabilities with the consequence of damage to 

cellular components including DNA, proteins and/or lipid membranes (Martinez-Alvarez et al., 

2005; Pacini et al., 2013; Kelly et al., 1998). This can be caused by increased ROS production, 

decreased antioxidant defense, decreased ability to repair damages, or all three. Examples of 

ROS include superoxide radical (O2
.-), hydrogen peroxide (H2O2), hydroxyl radical (HO.), singlet 

oxygen (O2
-) and nitrogen oxide radical (NO.) (Kelly et al., 1998). Redox cycling is a process in 

which a parent molecule, such as methylselenol (CH3Se-), is reduced by a single electron 
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forming a reactive intermediate or radical. This radical then transfers an electron to molecular 

oxygen forming a superoxide radical and regenerating the parent molecule. The superoxide 

radical can then set off a cascade of ROS forming reactions (Eq. 1.1) (Cohen & d’Arcy Doherty, 

1987).  

 

 .………………………………… (Eq. 1.1) 

 

1.8.1 ROS Damage 

 

Cumulative oxidative damage can lead to apoptotic cell death, tissue degeneration, and 

mutagenicity (Skrha, 2012; Mates, 2000; Miller, 2006; Martinez-Alvarez et al., 2005). ROS, 

mainly hydroxyl radicals, can damage DNA by removing or damaging the nitrogenous bases or 

by breaking the sugar-phosphate backbone causing fragmentation, ring opening or 

hydroxylation. Typically, after the first oxidation, secondary reactions such as DNA-protein 

molecule cross-linking are what create lasting lesions. Double DNA strand breaks are often 

mutagenic or lethal for the cell. ROS can also mediate changes in gene expression (Kelly et al., 

1998). Oxidation of proteins can cause fragmenting, modify protein function, or increase 

susceptibility to proteolytic degradation. Different proteins have differing sensitivities to 

oxidative attack but it appears that most have evolved structures that protect sensitive areas as 

misfolded proteins are more susceptible to oxidation (Droge, 2002).  

Cell membrane damage occurs when ROS react with membrane polyunsaturated fatty 

acids in a process called lipid peroxidation (LPO) (Kelly et al., 1998). The weaker carbon-

hydrogen bonds of an unsaturated fatty acid make it a target for an ROS to abstract a hydrogen 

atom. The more unsaturated sites on the lipid chain there are, the more susceptible it is to LPO. 

LPO is a self-propagating process where an ROS such as singlet oxygen, hydroxyl or superoxide 

radical abstracts a hydrogen from a methylene carbon thus creating a carbon centered lipid 

radical (L.) which is itself highly reactive. The procedure is propagated when oxygen (O2) is 

added to the lipid radical producing a lipid peroxyl radical (LOO.) which can then abstract 

another hydrogen creating another lipid radical and a lipid hydroperoxide (LOOH). Alternatively 
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transition metals in the cell can break down lipid hydroperoxides creating lipid radicals. The 

LPO cycle is terminated when two radicals couple and form a nonradical or when an antioxidant, 

such as vitamin E, donates a hydrogen to a ROS, thus creating a neutral molecule (Kelly et al., 

1998). Breaking these sorts of cascades and redox cycling, and repairing damage already done 

can be very resource costly for an organism.  

 

1.8.2 Antioxidants 

 

Besides being produced by xenobiotics, ROS are regularly produced as byproducts of 

various important cellular processes, such as energy production and cellular metabolism. To 

maintain redox homeostasis vertebrates have evolved a complex system of antioxidant defenses 

to prevent oxidative damage (Kelly et al., 1998; Livingstone, 2001; Valavanidis et al., 2005). 

This involves a suite of enzymatic and nonenzymatic antioxidant molecules that scavenge free 

radicals shortly after production, and oxidative damage that does occur in a healthy individual 

can be easily repaired with no lasting consequences (Valavanidis et al., 2005). 

Enzymatic antioxidants include superoxide dismutase (SOD), glutathione peroxidase 

(GPx), catalase (CAT), and glutathione s-transferase (GST). There are various other 

nonenzymatic, low molecular weight, scavenging antioxidants including reduced glutathione 

(GSH), vitamin E (α-tocopherol), vitamin C (ascorbic acid), vitamin K, ubiquinols, carotenoids, 

and uric acid (Miller, 2006; Martinez-Alvarez et al., 2005; Valavanidis et al., 2005; Kelly et al., 

1998; Skrha, 2012; Mates, 2000). Each antioxidant converts a specific ROS to neutral molecules 

(Eq. 1.2). Superoxide dismutase (SOD) scavenges superoxide radical. There are three types of 

SOD: manganese SOD in the mitochondria, copper/zinc SOD in the cytosol, and extracellular 

SOD which is bound to the plasma membrane in the extracellular matrix. In this reaction a 

superoxide radical is converted to hydrogen peroxide and oxygen. Catalase (CAT), found mainly 

in the peroxisomes, converts hydrogen peroxide to water and oxygen. Glutathione peroxidase 

(GPx), a Se containing enzyme, reduces organic peroxides (e.g. lipid peroxide, hydrogen 

peroxide) in the cytosol and extracellular matrix to water and oxygen. GPx is important during 

low levels of oxidative stress, however CAT becomes more important for protecting against high 

levels of oxidative stress (Mates, 2000). Glutathione (GSH – reduced form; GSSG – oxidized 

form) is a nonenzymatic antioxidant that provides the reducing equivalents needed by GPx 
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catalyzed reactions (2GSH + ROOH  GSSG + ROH + H2O). Glutathione reductase is 

important to GPx function as it reduces GSSG to regenerate GSH in an NADPH dependent 

reaction (Kelly et al., 1998; Skrha, 2012; Mates, 2000). Gluthathione S-transferase (GST) 

reduces lipid and hydroperoxides (Hayes & Pulford, 2008) and catalyzes the reaction of 

carcinogens, drugs and other xenobiotics by reduced glutathione (GSH) (Villanueva & Kross, 

2012; Mates, 2000). 

 

    …..……………………………………. (Eq. 1.2) 

 

1.8.3 Selenium and Oxidative stress 

 

Various studies have detected Se induced oxidative stress by measuring antioxidant 

response and/or oxidation end products. Misra et al (2012) showed that rainbow trout 

hepatocytes develop an antioxidant response when cultured in SeMet spiked media over 24 

hours. GPx, CAT, SOD, caspase 3 (Cas3) and caspase 7 activity were all significantly induced 

when cells were exposed to 1000 µM SeMet for 24 hours. Lipid peroxidation (OXI-TEK 

TBARS kit) was increased in a dose dependent manner at both 4 and 24 hrs. As well, the more 

SeMet present in the culture media the greater the GSSG:GSH ratio in hepatocytes which 

indicated that GSH was being oxidized in order to combat ROS. Using chemiluminescence 

produced in the presence or absence of SOD, Palace et al. (2004) showed that rainbow trout 

embryos exposed to SeMet produced superoxide radicals.  

In a review by Hoffman (2002) it was concluded that dietary Se exposures in the 

laboratory (mainly SeMet) and in the wild resulted in oxidative stress or triggered antioxidant 

responses in various aquatic avian species at multiple life stages. Mallard ducklings (Anas 

platyrhynchos), wild avocet ducklings (Recurvirostra Americana) and mallard adults had 

increased malondialdehyde (MDA) levels measured as thiobarbituric acid reactive substances 

(TBARS), increased GSSG:GSH ratio and increased GPx activity in liver when given diets 
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spiked with SeMet. Wild willets (Catoptrophorus semipalmatus), American coots (Fulica 

Americana) and emperor geese (Chen canagica) also showed signs of oxidative stress with 

increases in GPx activity, GSSG:GSH ratios and concentrations of TBARS in the liver as well as 

elevated hepatic Se concentrations. 

Multiple studies have exposed sturgeon species to organic Se via the diet and observed 

markers of oxidative stress. Pacini et al. (2013) fed Siberian sturgeon (Acipenser baerii) 

selenocysteine (SeCys) for 60 days and observed signs of oxidative stress in the liver. Increased 

MDA concentrations in the 20 µg/g dose at 60 days indicated an increase in LPO. There was a 

significant increase in GPx activity in the 20 µg/g dose by day 30 and in all doses greater than 5 

µg/g by day 60. The changes in GPx activity were positively correlated with Se concentration in 

liver tissue. Glutathione reductase (which reduces GSSG back to GSH) activity was significantly 

increased in dose groups greater than 5 µg/g at day 60. There was no significant change in GST 

activity; however, it was positively correlated with Se levels in liver. There was an increase in 

SOD activity in liver in all treatment groups at day 30 and then a return to base levels by day 60.  

De Riu et al. (2014), Linville (2006) and Tashjian et al. (2006) all exposed juvenile white 

sturgeon to similar dietary SeMet concentrations and although they did not test specifically for 

oxidative stress it was hypothesized to be a main mechanism of Se toxicity due to the type of 

pathologies observed. Oxidative damage has been implicated as the cause of histopathological 

liver changes (De Riu et al., 2014; Linville, 2006) and reduced energy reserves (Tashjian et al., 

2006). It was suggested that the need to combat oxidative stress may explain depleted energy 

reserves and slowed growth rates observed (Tashjian et al., 2006). Cross-linking of actin 

filaments due to oxidative damage in muscle was proposed as a reason for decreased swimming 

activity (Tashjian et al., 2006). However, these hypotheses have not been empirically tested in 

white sturgeon. 

 

1.9 Objectives and Hypotheses 

 

The purpose of the present study was to link adverse health effects caused by dietary 

exposure of white sturgeon to SeMet with specific mechanisms of toxicity, with a focus on 

oxidative stress. Although reproductive failure and teratogenic deformities from maternal 

transfer of SeMet to eggs has become the primary endpoint of concern regarding Se toxicity and 
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ecological risk assessments (Janz et al., 2009; Lemly, 1993; Lemly, 1997), for the success of 

restocking programs it is important to understand the effects of SeMet exposure on juvenile 

fishes. While adverse health effects such as reduced growth, decreased swimming activity, 

histopathological liver lesions and decreased glycogen had been previously observed in juvenile 

white sturgeon given diets spiked with SeMet (Linville, 2006; Tashjian et al., 2006; De Riu et 

al., 2014), the causative mechanisms of these symptoms have remained unknown. Specifically, 

the present study exposed white sturgeon to a range of dietary doses known to be 

environmentally relevant and to cause adverse effects. General health effects were observed 

throughout the exposure, and liver tissue was examined for histopathological changes and tested 

for signs of oxidative stress (concentration of lipid hydroperoxides and changes to expression of 

apoptotic signalling genes) and antioxidant response (changes to expression of antioxidant 

genes). Increased knowledge of white sturgeon sensitivity to SeMet and the underlying 

mechanisms may assist risk assessors attempting to balance ecological health with anthropogenic 

activities expected to increase environmental Se concentrations. This was accomplished by 

addressing the following three specific objectives and associated null hypotheses: 

 

Objective 1) Characterize the adverse health effects of subchronic dietary exposure of juvenile 

white sturgeon to SeMet as determined by survival, gross morphological and histological 

analyses. Dietary doses ranged over levels necessary for fish health (1 µg Se/g feed dry mass), 

two environmentally relevant doses (5 and 25 µg/g), and a predicted worst case scenario 

environmentally relevant dose (125 µg/g). It was predicted that if dietary SeMet was toxic to 

white sturgeon, then decreased survival, and morphological and histopathological changes would 

be observed. If the size of the dose mattered, then a dose dependent response was expected. 

 

Null-Hypothesis 1 (Ho1): There are no statistically significant changes in survival, gross 

morphological and/or histopathological endpoints between fish exposed to increasing 

concentrations of dietary SeMet when compared to control fish.  

 

Objective 2) Investigate the occurrence of oxidative stress and antioxidant response in the liver 

of juvenile white sturgeon exposed to dietary concentrations of SeMet representing a level 

necessary for proper health, two environmentally relevant exposures and a predicted worst case 
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scenario exposure. It was expected that if dietary SeMet caused oxidative stress in liver of white 

sturgeon, then an increase in oxidative endpoints (i.e. lipid peroxides and apoptotic signaling), or 

an increase in antioxidant response (i.e. expression of GPx, CAT, SOD, and GST genes) would 

be measureable in this tissue. If the size of the dose mattered, then a dose dependent response 

was expected. 

 

Null-Hypothesis 2 (Ho2): There are no statistically significant changes in oxidative endpoints or 

antioxidant response in liver tissue of fish exposed to increasing concentrations of dietary SeMet 

compared to control fish. 

 

Objective 3) Determine association between symptoms of Se toxicosis (i.e. survival, gross 

morphological and histological changes) and occurrence of oxidative stress in liver tissue. It was 

expected that if oxidative stress was a main driver of selenium toxicity, then incidence of tissue 

damage and occurrence of oxidative stress parameters would increase concurrently. 

 

Null-Hypothesis 3 (Ho3): There are no correlations among symptoms of toxicity and oxidative 

stress parameters in juvenile white sturgeon exposed to increasing concentrations of dietary 

SeMet. 
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CHAPTER 2: ADVERSE HEALTH EFFECTS AND  

HISTOLOGICAL CHANGES IN WHITE STURGEON  

(ACIPENSER TRANSMONTANUS) EXPOSED TO  
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1This chapter has been accepted for publication in Environmental Toxicology and Chemistry 

(10.1002/etc.3320) under joint authorship with Sarah Patterson (University of Saskatchewan), 

Danielle Gagnon (University of Saskatchewan), and Markus Hecker (University of 

Saskatchewan). The tables, figures and references cited in this article have been re-formatted 

here to the thesis style. Any edits required by the defense committee since publication have been 

indicated in footnotes. References cited in this chapter are listed in the references section of this 

thesis. Supplementary material submitted to the journal has been included in Appendix A. 
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2.1 Abstract 

 

It has been shown that selenium (Se) released to the aquatic environment can have 

devastating effects on local wildlife. White sturgeon (Acipenser transmontanus) have a life 

history particularly susceptible to contaminants, and their protection is of interest as they are 

culturally and economically important, and many populations are classified as endangered. 

During the present 72 d dietary study, multiple signs of decreased health and Se lethality were 

observed. Juvenile white sturgeon were given diets containing 1.4mg, 5.6 mg, 22.4mg, or 

104.4mg selenomethionine/g food (dry mass). Se accumulated in muscle and liver tissue in a 

dose dependent manner. Edema causing exophthalmos developed within 15 d and 23 d, and 

lethal effects occurred in 54% and 22% of fish in the high and medium dose groups, respectively. 

Growth and hepatosomatic index were significantly lower in the high dose group, which also had 

a high incidence of food avoidance. Histology of the liver revealed a dose dependent increase in 

melanomacrophage aggregates and decrease of energy stores, which indicated toxicity. These 

results indicate that white sturgeon are susceptible to the effects of Se accumulation over 

relatively short time periods. This stresses the need for continued sturgeon research, and studies 

looking into the environmental fate and regulation of released Se.  

 

2.2 Introduction 

 

Selenium (Se), a metalloid found naturally in varying concentrations in rocks and soil, is 

considered a contaminant of concern for higher level aquatic consumers because it can be highly 

persistent in the environment, bioaccumulative, and toxic (Lemly, 2002b). Concentrations of Se 

in aquatic environments may increase as a result of natural geological processes and 

anthropogenic disturbances. It is used in many consumer products and therefore may end up in 

municipal wastewater and landfill leachate. However, the greatest contributors to Se 

contamination in surface waters are mining and smelting operations, fossil fuel by-product waste 

disposal, and irrigation runoff from seleniferous soils (Lemly, 2002b; Chapman et al., 2009; 

Janz, 2012; Maher et al., 2009).  
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Se presents a toxicological paradox for aquatic organisms as it is both an essential 

micronutrient and a poison depending on the concentration (Chapman et al., 2009; Mayland, 

1994). Fish require a minimum of 0.1- 0.5 µg Se/g feed in their diets to maintain normal growth 

and function (Gatlin & Wilson, 1984; Poston et al., 1976; Hodson & Hilton, 1983; Lemly, 1997). 

However, at dietary concentrations greater than 3 µg Se/g, toxic effects such as decreased 

growth, pathological changes in organs, edema, popeye (exophthalmos), mortalities, 

reproductive failure and teratogenesis have been observed (Lemly, 1997; Lemly, 2002a; 

Sorensen et al., 1984; Hamilton, 2004).  

The most soluble and dominant form of Se in the water column is inorganic Se (selenite 

and selenate). Although relatively unavailable to fish, inorganic Se is readily taken up by primary 

producers and biotransformed to the organic form selenomethionine (SeMet), an amino acid 

analog (Maher et al., 2009; Fan et al., 2002; Janz et al., 2009). SeMet is a dominant form of Se 

found in tissues at all trophic levels and transfers efficiently through the food chain via dietary 

exposures (Lemly, 2002b; Bakke et al., 2010; Linville, 2006). Low trophic level organisms such 

as microphytes and bacteria1 can tolerate high Se body burdens (Fan et al., 2002; Janz et al., 

2009) which may then be efficiently transferred to higher trophic level consumers, such as fish 

and birds, that are less tolerant; although sensitivity to Se exposure is species specific2 (Chapman 

et al., 2009; Maher et al., 2009; Fan et al., 2002). Another potentially important Se exposure 

pathway is via sediment. Multiple cage studies have shown that fish with access to sediments 

accumulate greater amounts of Se than those held in the water column (Hamilton, 2004). 

Contaminated detritus may be consumed intentionally, or Se adsorbed to sedimentary particles 

may be ingested accidentally, leading to elevated Se exposure and accumulation (Hamilton, 

2004; Fan et al., 2002).  

The amount of Se bioaccumulation and sensitivity of an organism varies greatly by 

species and is dependent on factors such as food choice, physiology, and association with 

sediments (Maher et al., 2009). White sturgeon (Acipenser transmontanus), a benthic species 

endemic to Western North America, are believed to be particularly at risk from exposure to Se as 

they spend most of their lives in contact with the sediment, feed on prey that can accumulate 

                                                           
1 Published version: “Low trophic level organisms such as phytoplankton, zooplankton, cyanobacteria and protozoa 
can tolerate high Se body burdens (Chapman et al., 2009)…”. This statement has been edited for greater accuracy.  
2 Published version: “although sensitivity to Se exposure is highly species specific”. This statement has been edited 
for greater accuracy.  
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large amounts of Se, and are very long-lived (Linville, 2006; Moyle, 2002; Doroshov et al., 

1997). White sturgeon are of particular interest to researchers and conservationists as they are a 

physiologically unique species, being evolutionary distinct from teleost fishes, and most 

populations are critically endangered (Fisheries and Oceans Canada, 2011; US Fish and Wildlife 

Service, 2015). Reasons for the decline of white sturgeon populations are not fully understood to 

date but factors such as overfishing, extensive habitat alteration and fragmentation, late sexual 

maturation, and pollution are considered main contributors to poor recruitment during past 

decades (Doroshov et al., 1997; Billard & Lecointre, 2001; LeBreton et al., 2004; Hildebrand et 

al., 1999; Doroshov, 1985). In this context, contamination of surface waters and sediments 

constitutes a particular concern as white sturgeon are among the most sensitive fish to other 

environmental pollutants, such as metal ions and dioxin-like compounds (Vardy et al., 2011; 

Vardy et al., 2012; Doering et al., 2012; Doering et al., 2014). Increased knowledge regarding 

the sensitivity of this species to priority contaminants such as SeMet is key to conducting 

meaningful ecological risk assessments, and has become a priority for North American 

governments and industries operating within white sturgeon habitats. 

White sturgeon fry feed on zooplankton, periphyton and detritus, juveniles on benthic 

invertebrates, crustaceans and bivalves, and adults on mollusks, shrimp, amphipods, and other 

young or dead fish (Linville, 2006; Billard & Lecointre, 2001; LeBreton et al., 2004; Doroshov, 

1985). Studies conducted in San Francisco Bay (CA, USA) found that Se concentration in clams 

(Potamocorbula amurensis), a preferred prey of white sturgeon, range from 5 – 20 µg/g dry mass 

(dm), averaging 15 µg/g (dm) in some areas (Linville, 2006; Linville et al., 2002; Luoma & 

Presser, 2006), and a study conducted by the U.S. Department of the Interior and U.S. 

Geological Survey predicted that Se concentrations in clams could reach >100 µg/g (dm) under 

certain Se loading and climate conditions (Luoma & Presser, 2006). Furthermore, elevated levels 

of Se have been found in white sturgeon tissues. In the San Francisco Bay Delta, concentrations 

of Se of 20.8 ± 4.11 µg/g, 10.2 ± 1.93 µg/g and 21.8 ± 2.07 µg/g (dm) (mean ± standard error of 

the mean [SEM]) have been reported in ovary, muscle and liver tissues of vitellogenic females 

respectively (Linares-Casenve et al., 2014). Ovarian tissues of white sturgeon from the Kootenay 

River (BC, Canada) contained Se concentrations of up to 12 µg/g (average: 1.76 ± 2.02 µg/g) 

(Kruse, 2000). These concentrations exceed the toxic effect thresholds of Se in whole body, 

muscle, liver and egg/ovary tissue of approximately 4 µg/g, 8 µg/g, 12 µg/g and 10 µg/g, 
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respectively, for freshwater fish as recommended by Lemly (2002b). Furthermore, according to 

Lemly (2002b) dietary Se concentrations should not exceed 3 µg/g if health is to be maintained 

in the most sensitive species such as rainbow trout (Oncorhynchus mykiss), chinook salmon 

(Oncorhynchus tshawytscha) and bluegill (Lepomis macrochirus) (Lemly, 2002b; Hamilton, 

2004). 

Previous dietary SeMet studies conducted with juvenile white sturgeon have shown that 

SeMet accumulates in kidneys, liver, gill, muscle and blood plasma (Linville, 2006; Tashjian et 

al., 2006; De Riu et al., 2014). Activity and growth were adversely affected when fish were 

exposed to ≥ 40 µg Se/g (dm). At dietary doses ≥ 20.5 µg Se/g (dm) pathologies were observed 

in kidney, liver, muscle and gill tissues, although findings have been inconsistent among studies 

(Linville, 2006; Tashjian et al., 2006; De Riu et al., 2014). Decreased whole body protein and 

lipid, as well as decreased glycogen in the liver, was also observed at these doses (Tashjian et al., 

2006; De Riu et al., 2014). Diminished energy stores may lead to3 a reduced ability to forage, 

avoid predators, swim upstream, and navigate fish ladders around dams (Tashjian et al., 2006; 

Cocherell et al., 2010).  

The overall aim of the present study was to assess the toxicological effects of subchronic 

dietary SeMet exposure to juvenile white sturgeon raised from parental stock originating from 

the USA-Canada transboundary reach of the Columbia River. This Canadian population is 

landlocked and therefore geographically and genetically separated from the Sacramento River, 

(USA) population (Hildebrand et al., 1999), which has featured in all previous studies (Linville, 

2006; Tashjian et al., 2006; De Riu et al., 2014). The present study discusses 1) the 

characterization of subchronic toxicity of dietary SeMet to Columbia River juvenile white 

sturgeon; 2) the differences in histolopathological responses between various white sturgeon 

dietary SeMet exposures; and 3) previously unreported endpoints such as food avoidance, 

prevalence of edema, and mortality during the exposure. Future work using the same samples 

will include analysis of oxidative stress in the liver, changes in stress response (blood cortisol, 

glucose, and lactate concentrations), and alteration of gene expression patterns in the liver using 

Illumina next generation whole transcriptomic sequencing. Together these studies will provide a 

                                                           
3 Published version: “Diminished energy stores may indicate a reduced ability to forage…”. This statement has 
been edited for greater accuracy. 
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clearer understanding of the sensitivity of white sturgeon to dietary SeMet exposure and the 

underlying mechanism of toxicity.  

 

2.3 Methods 

 

2.3.1 Fish 

 

Fertilized white sturgeon eggs, from wild brood stock, were obtained from the Kootenay 

Trout Hatchery (Fort Steele, BC, Canada). Eggs were hatched and fish were raised under 

standardized conditions in the Aquatic Toxicology Research Facility at the University of 

Saskatchewan (Saskatoon, SK, Canada) (Vardy et al., 2012; Conte et al., 1988) until they were 

approximately 3 years old. Ten days after initiation of exposure4 fish were 124 ± 44.5 g and 26.0 

± 2.8 cm fork length (mean ± standard deviation [SD]). To minimize handling stress, fish were 

not weighed and measured at the start of the present study. Fish were raised on commercial trout 

chow (Martin, Profishent Aquaculture Nutrition, 6PT; Elmira, ON, Canada). All procedures 

involving live animals were approved by the University of Saskatchewan's Animal Research 

Ethics Board (Animal Use Protocol #20070049). 

 

2.3.2 Experimental Diets 

 

SeMet concentrations in diets were chosen to represent the range of current 

environmentally relevant exposures experienced by some white sturgeon populations (5 and 25 

µg Se/g) and a predicted worst-case exposure scenario (125 µg Se/g). Four diets were prepared: a 

control containing 1 µg Se / g feed, and three treatments containing 5, 25 and 125 µg Se/g feed 

(dm). Doses of seleno-L-methionine (SeMet) (Sigma-Aldrich; Oakville, ON, Canada) were 

dissolved in nanopure water and thoroughly mixed into fine grain commercial trout chow 

(Proform Aquaculture Feed, Aqua-Balance Trout 52:19 Starter #2 Crumble, Viterra Feed 

Products; Okatoks, AB, Canada) with a Hobart industrial mixer. The mixture was compacted 

into larger pellets using a Hobart extruder with a 33 mm hole size, and dried in an oven at 55°C 

                                                           
4 Published version: “At ten days fish were 124…”. This statement has been edited for greater clarity. 
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for 18 hrs. No SeMet was added to the control diet since this commercial trout chow came with 

the trace amounts of Se necessary for fish health.   

 

2.3.3 Exposure Study Design 

 

Fish were exposed to SeMet through the diet for 72 days (control, low, medium dose 

groups) or 65 days (high dose group) under flow-through conditions in carbon filtered municipal 

water in accordance with loading densities recommended by ASTM International (2007). Due to 

high mortality rates the high dose treatment group was taken down a week early; however 

throughout the present study’s report, final take downs of all groups will be referred to as day 72. 

Five fish were randomly assigned to seven replicate tanks per treatment group (35 

fish/treatment). Photoperiod was kept at 16:8 hrs light:dark. Water quality was monitored daily 

and maintained in all tanks as follows (mean ± SD): temperature, 13.4 ± 0.4oC; pH 7.5 ± 0.2; 

dissolved oxygen, 82 ± 6.4%. Alkalinity (CaCO3 ppm), hardness (CaCO3 ppm), nitrate, nitrite 

and ammonia were measured periodically and the results averaged 140 ± 9 ppm, 172 ± 10 ppm, 

0.48 ± 0.2 ppm, less than the limit of detection (< LOD) and < LOD respectively.  

All fish were transitioned to the control diet 2 weeks prior to initiation of exposure. Fish 

were fed 1.5% of their body weight daily, which is within an optimal range for sturgeon health 

(Hung & Lutes, 1987), six days a week. Approximately one hour after feeding, fish waste and 

uneaten feed were syphoned from tanks. Fish were monitored daily for changes in feeding 

behaviour, gross morphological changes and mortalities. The predominant gross morphological 

effect observed was edema, and fish were categorized based on edema severity as follows: 

normal (0) – normal appearance with eyes flush to the skull; slight (1) – eyes appeared slightly 

raised from the skull - a minor variation from the classified normal state; moderate (2) – definite 

protruding of eyes from skull; strong (3) – greater protruding of eyes from skull and often 

noticeable bloating of the abdomen; and severe (4) – severe protruding of eyes and severe 

abdominal bloating (Fig. 2.1). Fish in stage 3 or greater were considered to be moribund as no 

fish recovered from such a state during the present study and stage 3 edema impaired normal 

functioning such as eating and swimming proficiency. Fish in stage 4 were euthanized when loss 

of equilibrium occurred.  



23 
 

On day 72 and when classified as moribund, fish were euthanized with a sharp blow to 

the head, and weight and fork length were determined. Immediately thereafter blood was 

collected from the caudal vein and/or heart and centrifuged at 5000 rpm for 15 minutes. The 

resulting plasma was frozen at -80°C for use in a parallel study. The entire liver was removed5 

and weighed for hepatosomatic index (HSI) determination. Portions of liver, kidney, heart, gill, 

intestine, spleen, brain, eye and muscle were snap-frozen in liquid nitrogen and stored at -80°C. 

Another portion of each tissue was fixed in 10% buffered formalin for histopathological analysis. 

Additionally, a random subset of one fish per tank was sampled after 10 days of exposure. Fish 

were euthanized, processed and analyzed as described for the 72 day sampling. Condition factor 

(Eq. 2.1), hepatosomatic index (HSI; Eq. 2.2), and trophic transfer factor (Eq. 2.3) were 

calculated as follows: 

 

Condition factor = (body weight/length3) x 100 ………………………………………… (Eq. 2.1) 

HSI = (liver weight/body weight) x 100 ………………………………………………… (Eq. 2.2) 

Trophic transfer factor = Se concentration in tissue / Se concentration in diet …………. (Eq. 2.3) 

 

2.3.4 Se Analysis 

 

Total Se was analyzed in feed, as well as in white sturgeon tissues collected at day 10, 

day 72, and from moribund fish throughout the study. Muscle and liver tissues were freeze-dried 

before extraction. Homogenized samples were cold-digested in Teflon vials (100 mg sample in 5 

mL ultra-pure nitric acid and 1.5 mL hydrogen peroxide), concentrated on a hot plate (<75°C), 

reconstituted in 5 mL of 2% ultrapure nitric acid and stored at 4°C until analysis. Total Se 

concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS) 

following US EPA method ILM05.2D (Creed et al., 1994; McPhee & Janz, 2014; Wiseman et 

al., 2011). All samples were measured in triplicate, along with blanks, and Se recovery was 

determined using a certified reference material (TORT-2, lobster hepatopancreas, NRC, Ottawa, 

ON, Canada). The average method detection limit was 0.37 ± 0.29 µg/kg (mean ± SD). The 

average percent recovery of Se for instrumental and method certified reference material was 100 

                                                           
5 Published version: “The entire liver was dissected and weighed…”. This statement has been edited for clarity. 
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± 5.29% and 97 ± 8.66%, respectively. Analysis of each of the diets revealed that actual Se 

concentrations were 1.4 ± 0.06 µg/g, 5.6 ± 0.02 µg/g, 22.4 ± 0.37 µg/g and 104.4 ± 4.81 µg/g 

(mean ± SD) in the control, low, medium and high diets respectively.  

 

 

 

   

  

 

Figure 2.1. Characteristic pictures of each edema category. From left to right: normal (0), slight 

(1), moderate (2), strong (3), and severe (4). 
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2.3.5 Histological Analysis 

 

Excised tissues were fixed in 10% buffered neutral formalin (VWR International, West 

Chester, PA, USA) for 24 hrs and then transferred to and stored in 70% ethanol. Liver was 

chosen as the organ of interest for histopathological analyses (72 day samples only) as it is one 

of the major detoxifying organs, is involved in metabolism of xenobiotics (Passantino et al., 

2014) and is one of the tissues where greatest Se accumulation occurs (Linville, 2006; Linares-

Casenave et al., 2014; Tashjian et al., 2006). After paraffin embedding (Appendix C) histological 

sections were cut 5 µm thick on a Microm HM model 310 microtome (Germany), fixed to slides 

(Eukitt, Fluka mounting fluid, Sigma-Aldrich, St. Louis, USA) and stained with either 

hematoxylin and eosin (H&E), periodic acid Schiff’s (PAS) or best carmine (Luna, 1968; Clark, 

1981; Appendix C). These stains were chosen to highlight various aspects of the tissue. H&E is a 

routine stain for analysis of cellular structures. Best carmine stains glycogen granules bright red. 

PAS stains lipofuscin, which is a product of oxidative polymerization of polyunsaturated fatty 

acids and is found in melanomacrophages (Passantino et al., 2014). Melanin is a third component 

of melanomacrophages however due to its dark colouration it is visible without staining.  

Slides were coded and a blind review was done for all analyses. Slides were qualitatively 

analyzed for vacuolar degeneration, apoptosis, necrosis and general cell health (H&E), size and 

frequency of melanomacrophage aggregates (MMAs) (H&E, PAS), and glycogen depletion (best 

carmine). Three views per fish (H&E) were analyzed at 10x and 40x magnification (Olympus 

BH-2 microscope, Japan) using the following scoring system: - = normal state, + = mild change, 

++ = moderate change, and +++ = severe change. To quantify lipid depletion the surface area 

(µm2) of 10 randomly choses parenchymal cells, of one fish per tank, were measured using Zeiss 

software (Munich, Germany) to obtain an average per dose group. To validate that the 

measurement of 10 cells was representative of the organ, the surface area of 50 randomly chosen 

cells were measured in a subset of samples (2 fish per dose group). The averages were 

comparable (Fig. C2.S1 & Table C2.S1). 

Strong contrasts between PAS stained MMA components (lipofuscin and melanin) and 

other unstained structures allowed for quantitative analysis using ImageJ (IJ 1.46r) software 

(Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 

http://imagej.nih.gov/ij/, 1997-2014). PAS stained slides were blinded and a targeted analysis 
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was done. Non-overlapping images were taken of the three most affected areas (i.e. with the 

most and/or largest MMAs) of one section per fish using a Zeiss Axio Observer.Z1 microscope 

(Goettingen, Germany) at 40x magnification (oil immersion). Since previous subjective analysis 

in H&E had shown trends towards increasing size and frequency of MMAs with increasing 

dietary Se it was decided that a targeted analysis was the most effective way of representing this 

trend. Using ImageJ, images were size calibrated, converted from colour to black and white RGB 

Stack, and thresholded so that only the dark MMAs were highlighted. Area (µm2) of highlighted 

MMAs was then automatically measured. Best carmine stained slides were analyzed visually for 

glycogen content and scored qualitatively.  

 

2.3.6 Statistics 

 

Statistical evaluation of the data was conducted using IBM SPSS Statistics V20 (IBM 

Corp., Armonk, NY). Comparisons of weight, length and HSI at both the 10 day and 72 day time 

points were conducted using a one-way analysis of variance (ANOVA, p = 0.05) with a Tukey’s 

Highly Significant Differences (HSD) post hoc test. Comparisons of Se concentrations in liver 

and muscle at day 72 and the size of MMAs were conducted with log-transformed data using a 

one-way ANOVA followed by Tukey’s HSD post hoc test. All other data were analyzed using a 

Kruskal-Wallis (KW, p = 0.05) test followed by a Mann Whitney U (MU) post hoc test with a 

Bonferroni correction (BC) where necessary.  

 

2.4 Results 

 

2.4.1 Selenium Accumulation 

 

Se concentrations in muscle showed a non-significant, dose dependent, increasing trend 

at day 10, while at day 72 Se concentrations in muscle were significantly different among 

treatment groups (ANOVA, p < 0.001), averaging 1.1 ± 0.1 µg/g, 5.3 ± 0.90 µg/g, 23.5 ± 3.38 

µg/g, and 64.1 ± 17.02 µg/g (dm) (mean ± SD) in the control, low, medium and high treatment 

groups respectively (Fig. 2.2). Se concentrations in livers were significantly different (ANOVA, 
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p < 0.001) among treatment groups at day 72 with averages of 0.7 ± 0.28 µg/g, 2.9 ± 0.45 µg/g, 

9.3 ± 1.42 µg/g and 91.7 ± 32.91 µg/g (dm) (mean ± SD) in the control, low, medium and high 

treatment groups respectively (Fig. 2.2). Based on data collected throughout the present study 

from high treatment group mortalities, it was estimated that Se concentrations in muscle reached 

a plateau between 60 and 70 µg/g (dm) around day 40 (Fig. 2.2 inset). Trophic transfer factors 

were 0.7, 0.9, 1.1 and 0.6 in muscle and 0.5, 0.5, 0.4, and 0.9 in liver in the control, low, medium 

and high treatment groups respectively (Table C2.S2). 

 

 

 

Figure 2.2. Se concentrations in liver and muscle tissues after 10 and 72 days of exposure (65 

days for high treatment). Letters indicate statistical differences between dose groups and/or time 

points. Lower case letters for muscle tissue data and upper case for liver tissue data. Error bars 

indicate SEM. Inset: Accumulation of Se in muscle over time in the high dose group.  
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2.4.2 Feeding Behaviour 

 

At initiation of the study, fish in all treatment groups devoured their feed in under 2 

minutes. However by day 21 fish in all high dose tanks were showing clear signs of food 

avoidance. A common behaviour was for high dose fish to swim slowly over the feed as if they 

were hungry but then to leave it untouched and return to rest. Conversely, fish in control, low 

and medium dose tanks would actively search out feed for a few minutes even after it was 

entirely consumed. Regardless of the occurrence of food avoidance in the high dose group fish 

continued to accumulate Se over time (Fig. 2.2).  

 

2.4.3 Mortality, Euthanizations and Edema 

 

Over the course of the present study there were three mortalities and seven euthanizations 

(due to loss of equilibrium) in the high dose group. There were no mortalities or euthanizations 

in the other dose groups. High dose group mortalities/euthanizations averaged 36 ± 9.2% per 

tank (mean ± SD). All mortality/euthanized fish suffered from severe edema with an average of 

27 ± 11.0 mL (mean ± SD) of measured abdominal fluid (Fig. 2.4 & Table C2.S3). Interestingly, 

there was no correlation between the level of edema and the concentration of Se in muscle and/or 

liver.  

At take down, fish with an edema score of stage 3 or greater were considered moribund. 

At take down there were five and six moribund fish in the high and medium dose groups 

respectively. Moribund fish appeared to have less muscle mass compared to control fish sampled 

at the same time (Fig. 2.4). There were no fish in the low dose group with stage 3 edema or 

greater and no edema was observed in any of the control fish during the study. Occurrence of 

lethal effects was calculated by adding the number of fish within a treatment group that 

died/were euthanized with the number of fish with strong to severe edema (≥ stage 3), and 

dividing by the number of fish in the treatment group (excluding fish subsampled at day 10). 

There was a 54% (36% mortality/euthanization, 18% morbidity) and 22% (morbidity) 

occurrence of lethal effects in the high and medium dose groups respectively (nhigh = 28,    

nmedium = 27).  
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Edema began to develop very early among fish in the high treatment group. By day 10, 

three of the seven sampled high dose fish had body cavities full of fluid (up to 50 mL, Table 

C2.S3). As the study progressed the number of fish affected in all treatment groups, as well as 

the severity of the popeye, increased in a dose dependent manner. At day 72 control, low, 

medium and high dose groups had 0%, 23 ± 18%, 41 ± 35% and 75 ± 25% (mean ± SD) 

incidences of stage 2 edema or greater in each tank, respectively (Fig. 2.3). At day 72 average 

edema severity scores were significantly greater in all dose groups compared to control (MU, all 

dose group p values ≤ 0.003 compared to control, BC, p = 0.013) and high dose fish had 

significantly greater edema severity scores than medium dose fish (MU, p = 0.012, Fig. C2.S2). 

Fish did not regain homeostasis from stage 2 edema or greater and in the medium and high 

treatment groups often worsened progressively unto death.  

 

 

 

 

Figure 2.3. Percent of fish with an edema score ranking greater than or equal to 2 at day 72. Bars 

represent average of edema prevalence from 7 tanks per group. Error bars indicate the SEM. 

Letters indicate significant differences among dose groups. 
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Figure 2.4. Top and Central: A control (left) and moribund high dose (right) fish, day 22. 

Bottom: shows the fluid collected from the abdomen of the high dose fish as well as the thinness 

of side muscle.  
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2.2.4 Growth and Condition Factor 

 

To minimize handling stress fish were not weighed and measured at the start of the 

present study. Thus, we used the gain in length and mass between the day 10 subsampling and 

termination of the study as a proxy for growth, assuming similar initial body sizes among 

treatments. Subsamples collected on day 10 averaged 124 ± 46.5 g and 26.0 ± 2.8 cm fork length 

(mean ± SD) across all treatment groups, with no significant differences among treatment groups 

(ANOVA, p = 0.294). By day 72 fish in control, low, medium and high doses weighed on 

average 232 ± 71.8 g, 216 ± 60.1 g, 226 ± 64.2 g, and 129 ± 44.5 g respectively and had fork 

lengths of 31.5 ± 3.6 cm, 31.2 ± 2.7 cm, 31.2 ± 3.6 cm and 26.4 ± 2.8 cm respectively (Fig. 

C2.S3). High dose group fish were significantly lighter and shorter than those from all other 

treatment groups at day 72 (ANOVA, p < 0.001) and were not significantly different than high 

dose fish at day 10 (ANOVA, p = 1.00). Fish from the control, low and medium treatment 

groups were significantly heavier and longer compared to those sampled on day 10 (ANOVA, p 

≤ 0.013). Condition factor (CF) was not different among dose groups at day 10 or day 72, or 

within dose groups between the two time points (KW, p = 0.653). 

 

2.4.5 Histopathology and Hepatosomatic Index 

 

Hepatosomatic indices (HSI) were not different among dose groups at day 10 (ANOVA, 

p ≥ 0.703) and were not different among control (2.5 ± 0.8), low (2.8 ± 0.5) and medium (2.6 ± 

0.8) (mean ± SD) dose groups at day 72 (ANOVA, p ≥ 0.792). However, HSIs were significantly 

lesser in the high dose group (1.3 ± 0.8) (mean ± SD) compared to all other groups at day 72 

(ANOVA, p < 0.001) and compared to HSI at day 10 in the high dose group (ANOVA, p = 

0.019) (Fig. 2.5A). High dose fish showed a decrease in liver lipid stores measured as a 

significant reduction in cell surface area (MU, p = 0.007, BC p = 0.017) (Fig. 2.5B & Fig. 2.6). 

Average cell surface area was 601.2 ± 92.0 µm2, 595.3 ± 87.4 µm2, 599.9 ± 76.0 µm2 and 251.5 

± 65.0 µm2 (mean ± SD) in the control, low, medium and high dose groups respectively.  

Visual inspection indicated a trend toward an increase in frequency and size of MMAs 

(Fig. 2.6). Targeted analysis of the most affected areas using ImageJ showed a significant 
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increase in surface area covered by MMAs in livers of high dose group fish compared to control 

fish (ANOVA, Tukey HSD, p = 0.014). Average MMA surface area was 340.0 ± 118.7 µm2, 

420.0 ± 181.3 µm2, 354.1 ± 99.2 µm2 and 867.9 ± 214.7 µm2 (± SD) in control, low, medium and 

high dose groups respectively. There was no difference among treatment groups in the categories 

of apoptosis, necrosis and general cell health. Although reported in similar studies, vacuolar 

degeneration and glycogen depletion were not observed in fish from any of the treatment groups 

in the present study (Table C2.S4). 

 

 

 

 

Figure 2.5. Top (A): Average HSI at day 10 and 72, and Bottom (B): Average surface area of 

liver cells at day 72. Error bars indicate SEM. Letters indicate statistical differences between 

dose groups.  
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Figure 2.6. PAS stained sections of a control (top) and high (bottom) dose group liver section at 

40x magnification (oil immersion). A and B indicate lipofuscin and melanin respectively in 

melanomacrophage aggregates (MMAs). The dashed line outlines a cell with surface area 

indicated beside. The high dose parenchymal cells were much smaller and more darkly stained as 

cytoplasmic lipid droplets had disappeared. 
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2.5 Discussion 

 

The present study demonstrated that exposure of juvenile white sturgeon to dietary SeMet 

resulted in a significant and dose dependent increase of Se in liver and muscle tissues and 

significant adverse health effects, and histological changes. Over 72 days, adverse health effects 

linked to increasing dietary SeMet included edema (low, medium and high dose group) leading 

to morbidity (medium and high dose group), mortality (high dose group), cessation of growth 

(high dose group), and a significant decrease in HSI (high dose group). Histological analysis of 

the liver revealed a dose dependent increase in frequency and size of MMAs and decrease of 

lipid energy stores (high dose group). These findings indicate that Se pollution leading to dietary 

doses ≥ 22 µg/g (dm) (muscle concentrations ≥ 23.5 µg/g; liver concentrations ≥ 9.2 µg/g) has a 

negative impact on white sturgeon health. Stage 2 edema was observed at a lowest observable 

adverse effect concentration (LOAEC) of 5.6 ± 0.02 µg/g (dm) (muscle concentration 5.3 ± 0.90 

µg/g; liver concentration 2.9 ± 0.45 µg/g) which places white sturgeon among the most sensitive 

fish species. However, the biological relevance of stage 2 edema is unknown and further studies 

are needed to assess the potential impact this phenomenon may have on fish health.  

The most predominant and surprising finding was the early onset of edema and the high 

rate of morbidity and/or mortality in the medium and high treatment groups. Edema severity and 

frequency increased with dietary dose and over time (Table C2.S3 & Fig. C2.S2). Edema may be 

caused by altered6 cell permeability resulting in ‘leaky’ organs (Lemly, 2002a). It has also been 

suggested that excess Se causes oxidative stress (De Riu et al., 2014; Palace et al., 2004) which 

could lead to membrane damage and possibly edema. Reports in the literature are inconsistent 

with regard to this edema endpoint in fish exposed to dietary SeMet. Subchronic dietary 

exposure studies conducted with white sturgeon over 8 weeks (Tashjian et al., 2006; De Riu et 

al., 2014) and 23 weeks (Linville, 2006) using comparable doses (0.4 – 191.1 µg/g dm) with 

Sacramento River white sturgeon reported no signs of edema and essentially no mortalities. In 

contrast, edema causing popeye and distension of the abdomen have been observed in studies 

with wild juvenile white crappie (Pomoxis annularis) and other fish species in a Se polluted lake 

                                                           
6 Published version: “Edema may be caused by distortion of selenoproteins in cell membrane structures, which 
disrupts cell permeability resulting in ‘leaky’ organs (Lemly, 2002a)”. This statement has been edited for greater 
accuracy.  
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(Lemly, 2002a), in Se exposed catfish in a laboratory study (Ellis et al., 1937) and in bluegill 

used in two separate cage and laboratory Se exposure studies (Table 2.1) (Finley, 1985). In the 

laboratory study, bluegill suffering from edema, abdominal distention and popeye after exposure 

to dietary Se, showed symptom remission after refusing all food for 4 - 11 days. However despite 

the initial remission, once feeding resumed symptoms returned. Over the 44 day exposure period, 

75% of the Se treated bluegill (given wild mayflies, 54.4 µg Se/g) died, while there were no 

mortalities among the controls (Finley, 1985). In contrast, no comparable remission of symptoms 

was observed in white sturgeon that avoided food in the present study. 

Food avoidance can be a confounding factor in dietary Se studies and has been observed 

in other species of fish and mammals (e.g. cattle, National Research Council, 1983; rainbow 

trout, Hilton et al., 1980 and Hamilton, 2004). Interestingly no food avoidance was observed in 

other white sturgeon studies (Linville, 2006; Tashjian et al., 2006; De Riu et al., 2014), although  

Tashjian et al. (2006) did observe that swim activity decreased in groups fed Se at concentrations 

> 40 µg/g (Table 2.1). In the present study, food avoidance was notable in some high dose tanks 

by day 13, and by day 21 all fish in the high dose tanks had stopped eating. This makes it 

difficult to attribute the observed mortalities, decreases in growth, and reduction of lipid stores in 

the liver to Se toxicosis, self-enforced starvation or a combination of the two. However, since Se 

accumulation continued throughout the present study, regardless of food avoidance (Fig. 2.2), 

observed effects are most likely due to selenosis. Perhaps some residual uptake of feed, that was 

not visually observed, occurred and was sufficient to maintain exposure levels. Fish accumulated 

Se in a dose dependent manner with average TTFs of 0.9 and 0.6 in muscle and liver 

respectively, across doses. This is similar to other selenium exposure studies with white sturgeon 

that found TTFs of approximately 1.0 in muscle and liver (Table C2.S2) (Linville, 2006; 

Tashjian et al., 2006; De Riu et al., 2014). The avoidance of highly seleniferous feed in the 

laboratory suggests that sturgeon may be able to detect and avoid toxic food stuffs successfully 

in the wild.  

Histological analysis of the liver showed only a low degree of tissue damage, which is in 

contrast to what was expected based on the observed severe edema and mortalities in the present 

study and earlier reports of white sturgeon exposures to SeMet (Linville, 2006; Tashjian et al., 

2006; De Riu et al., 2014). Glycogen depletion, vacuolar degeneration, necrosis, apoptosis, 

changes in vein and canaliculi structures, biliary hyperplasia and biliary stasis have previously 
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been reported for white sturgeon exposed to > 20 µg Se/g (dm) through the diet but were not 

observed in the present study (Linville, 2006; Tashjian et al., 2006; De Riu et al., 2014).  

 

 

Table 2.1. Selenium exposures and resultant effects in various fish species, including white 

sturgeon, expanded from Hamilton, 2004 

 

 

 

However, the previous three studies were inconsistent in terms of the type of pathologies 

described as well as their severity (Table C2.S4). Tashjian et al. (2006) noted statistically 

significant differences in the categories of vacuolar degeneration, biliary stasis, biliary 

hyperplasia and glycogen depletion. De Riu et al. (2014) qualitatively observed vacuolar 

Species
Selenium 

Species

Dietary 

Concentration      

(ug/g dm)

Tissue 

Concentration (ug/g 

dm)

Parameter Affected Reference

Rainbow trout SeVI 9 Mortality Hamilton, 2004 review

11 - 12 4.0 - 4.5 (WB) Kidney, weight

13 5.2 (WB) Mortality, growth, food aversion

Rainbow trout SeMet 18.16* 8.84 (M) Growth Wiseman et al., 2011 

Chinook salmon SeMet 9.6 5.4 (WB) Mortality Hamilton, 2004 review

18.2 10.8 (WB) Growth

Bluegill SeMet 6.5 4.3 (WB) Mortality Hamilton, 2004 review

5.1 5.5 (WB) Mortality

33 19 (WB) Reproduction

Bluegill
Wild caught 

mayflies
54.4* 26* (M), 178.8* (L)

Mortality, edema, food aversion, 

loss of equilibrium
Finley, 1985

White sturgeon SeMet ≥ 22.4 23.5 (M), 9.3 (L) Mortality/morbidity The present study

> 5.6 5.3 (M), 2.9 (L) Edema

≥ 104.4 64.1 (M), 91.7 (L)
Growth, energy stores, liver 

histopathologies, food aversion

White sturgeon SeMet ≥ 20 21.6 (M), 19.5 (L) Liver histopathologies Linville, 2006

White sturgeon SeMet ≥ 20.5 22.9 (M), 22.0 (L) Kidney histopathologies Tashjian et al., 2006

≥ 41.7 36.8 (M), 37.4 (L)
Growth, liver histopathologies, 

swim activity

White sturgeon SeMet ≥ 40.1 41.3 (M), 30.1 (M)
Growth, energy stores, kidney 

histopathologies
De Riu et al., 2014

Zebra fish SeMet ≥ 3.7 7.2 (WB)
Swim performance, increased 

energy stores, increased growth
Thomas & Janz, 2011

≥ 26.6 18.6 (WB) Mortality

Fathead minnow SeMet ≥ 9.9 9.4 (WB) Swim performance McPhee & Janz, 2014

WB = whole body SeIV = selenite

L = liver

M = muscle * = converted from wet weight assuming 75% moisture (Lemly, 2002)

SeMeth = selenomethionine
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degeneration and glycogen depletion but made no mention of biliary statis or hyperplasia. 

Linville (2006) qualitatively found an increase in vacuolar degeneration, biliary stasis and biliary 

hyperplasia but did not mention glycogen depletion, even though glycogen was pointed out in 

histological figures. Linville (2006) also found increases in focal necrosis and immune cells 

while Tashjian et al. (2006) and De Riu et al. (2014) did not investigate these pathologies. The 

present study did not find any of the liver pathologies listed above. Although the exact reason for 

the inconsistencies in histological lesions remains unknown, the lack of repeatability may be 

because little baseline information regarding sturgeon liver histology is available and normal 

tissue morphology has yet to be established.  

A prevalent histopathological change observed in the present study was the increase in 

size and frequency of melanomacrophage aggregates (MMAs) in exposed fish. Similar 

observations were reported by Linville (2006) and De Riu et al. (2014) but not Tashjian et al. 

(2006). MMAs are believed to function as part of the immune response system, in cell debris 

clean up, in storage for recyclable molecules, and in permanent storage for molecules that cannot 

be broken down and disposed of further (Passantino et al., 2014; Agius & Roberts, 2003; Wolke, 

1992; Fournie et al., 2001). The observed increase in size and frequency of MMAs in the liver 

suggest that there is increased cellular damage occurring and/or a greater need to protect against 

oxidative stress and/or direct Se toxicity (Passantino et al., 2014; Agius & Roberts, 2003; Wolke, 

1992; Fournie et al., 2001; Blazer et al., 1987). Therefore the absence of other signs of cellular 

damage such as apoptosis and necrosis was surprising. It has been suggested that MMAs can be 

used as a general indicator for toxic exposures (Agius & Roberts, 2003; Wolke, 1992; Fournie et 

al., 2001). However, they should not be used as specific indicators of Se exposure as they also 

increase in fish due to aging, nutritional status, infectious disease, and various contaminant 

exposures, and are therefore considered a generalized response (Passantino et al., 2014; Agius & 

Roberts, 2003; Fournie et al., 2001). MMAs do however add to the body of evidence in the 

present study supporting the case that SeMet in excess amounts is toxic to white sturgeon 

(Passantino et al., 2014; Fournie et al., 2001). 

White sturgeon liver tissue is naturally more lipid dense than that of other fish species 

(Linville, 2006), with lipid droplets filling up most of the parenchymal cell cytoplasm. In the 

present study, significant depletion of lipid energy stores was observed in the high treatment 

group (Fig. 2.5B & 2.6) and HSI was also significantly lower (Fig. 2.5A), likely driven by lipid 
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depletion. While this was not specifically discussed by Linville (2006), images included in that 

dissertation suggest similar lipid depletion may have occurred in fish fed 52.5 µg Se/g. In 

proximate composition analyses Tashjian et al. (2006) found that lipid content was negatively 

correlated with Se concentration, and De Riu et al. (2014) found a significant decrease in lipid 

content of fish fed ≥ 40 µg/g. The depletion of lipid stores suggests that energy was being used to 

compensate for and repair damage caused by toxic assault.  

Toxicity thresholds for dietary Se exposure of the most sensitive species are between 3 

µg Se/g (juvenile salmonids) and 6.5 µg Se/g (centrarchids) (Lemly, 2002b). According to 

Lemly (2002b), the most sensitive fish species have toxicity thresholds of 8 µg Se/g in muscle 

and 12 µg Se/g in liver tissue when considering reproductive, growth and mortality endpoints 

(Table 2.1). Following these suggestions for sensitivity thresholds, previous white sturgeon 

studies have found this species to be relatively tolerant (Linville, 2006; Tashjian et al., 2006; De 

Riu et al., 2014).  

Results of the present study place white sturgeon as widely ranging from tolerant to 

sensitive depending on the endpoint considered. Based on growth and mortality endpoints white 

sturgeon were found to be moderately sensitive to SeMet exposure. For growth, they were less 

sensitive than rainbow trout (Hamilton, 2004; Wiseman et al., 2011) and bluegill (Hamilton, 

2004), but more sensitive than fathead minnow (Pimephales promelas) (McPhee & Janz, 2014) 

and zebrafish (Danio rerio) (Thomas & Janz, 2011). Other white sturgeon studies found 

decreased growth rates when fish were fed ≥ 40 µg Se/g (dm) (Linville, 2006; Tashjian et al., 

2006; De Riu et al., 2014). Data from the present study can be considered consistent with 

previous white sturgeon study findings as no change in growth at 22.4 µg/g was observed and a 

decreased growth rate at 104.4 µg/g was observed with no intermediate dosage tested. Based on 

rates of mortality, the present study found white sturgeon to be less sensitive than rainbow trout, 

bluegill and chinook salmon (Hamilton, 2004), but more sensitive than fathead minnow (McPhee 

& Janz, 2014) and white sturgeon tested in other studies (Linville, 2006; Tashjian et al., 2006; 

De Riu et al., 2014). Sensitivity was approximately the same as that reported for zebrafish 

(Thomas & Janz, 2011), with significant increases in morbidity in the present study at LOAECs 

of 22.4 µg Se/g in the diet, 23.5 µg Se/g in muscle tissue, and 9.3 µg Se/g (dm) in liver tissue. 

Results of the present study place white sturgeon among the most sensitive species to 

SeMet exposure when edema is used as the endpoint. By day 72 edema was occurring in the low 
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dose treatment group (21% of fish exhibited stage 2 edema), which had concentrations of 5.6 µg 

Se/g in the diet, 5.3 µg Se/g in muscle tissue, and 2.9 µg Se/g (dm) in liver tissue. The sensitivity 

of white sturgeon to developing edema may be of concern as recent studies have reported that 

common prey exceed this dietary concentration in some white sturgeon habitats (e.g. an average 

15 µg Se/g [dm] in clams in the San Francisco Bay) (Linville, 2006; Linville et al., 2002; Luoma 

& Presser, 2006). However, the biological relevance of the various stages of edema is still 

unknown and warrants further research. Of the other fish species tested in the laboratory only 

bluegill has also been shown to develop edema at comparable dietary Se concentrations (54.4 µg 

Se/g food [wild mayflies]) (Finley, 1985). 

There are a number of possible reasons for the differences between the responses 

observed in the present study and those in other studies conducted with white sturgeon. Other 

studies have used juvenile white sturgeon raised from (potentially multigenerational) captive 

brood stock from farms based in Sacramento (CA, USA) (Linville, 2006; Tashjian et al., 2006; 

De Riu et al., 2014), whereas the present study used wild brood stock from the Upper Columbia 

River. Potentially differing histories of parental exposures and the number of generations in 

hatchery conditions may account for differing Se tolerances. Also, the wild Sacramento and 

Columbia populations have been geographically separated since 1938 by the Bonneville dam 

(Hildebrand et al., 1999) which may have caused the development of greater or lesser tolerances 

to Se. Especially as California is known for naturally seleniferous soil, thus likely resulting in 

higher background Se levels. Alternatively, the size and developmental stages of the fish used 

may have had an effect on Se tolerance, although this is unlikely as earlier life stages of fish are 

generally more sensitive to contaminant exposures than older fish (present study, 124g; Linville, 

2006, 575g; Tashjian et al., 2006, 30g; De Riu et al., 2014, 30g). Laboratory water quality 

differences could also have affected fish tolerance. Laboratory water hardness and alkalinity 

were 220 mg/L CaCO3 and 180 mg/L CaCO3, respectively, in a prior study (Linville, 2006) and 

172 mg/L CaCO3 and 140 mg/L CaCO3, respectively, in the present study. Regardless, the exact 

reasons for the differences in sensitivities observed among white sturgeon studies are unknown 

and further experiments are required to investigate the specific causes for these differences.  

Taken together, results of the present study and those of previous studies indicate that 

excess dietary SeMet could reduce the fitness of juvenile white sturgeon at environmentally 

relevant concentrations. The large variation in tolerances according to different endpoints 
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suggests a high degree of complexity in the mechanism(s) of Se toxicity to this species. As an 

extension of the present study, ongoing research with samples collected from the same fish is 

investigating oxidative stress in the liver, changes in blood chemistry (cortisol response, 

steroidogenesis), and alterations in gene expression patterns across the whole transcriptome to 

further elucidate the specific mechanism(s) of SeMet toxicity in white sturgeon.  
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CHAPTER 3: IS HEPATIC OXIDATIVE STRESS A  

MAIN DRIVER OF DIETARY SELENIUM TOXICITY IN  

WHITE STURGEON (ACIPENSER TRANSMONTANUS)?2 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 This chapter has been submitted to Environmental Toxicology and Safety under joint 

authorship with Sarah Patterson (University of Saskatchewan), Steve Wiseman (University of 

Saskatchewan), and Markus Hecker (University of Saskatchewan). The tables, figures and 

references cited in this article have been re-formatted here to the thesis style. References cited in 

this chapter are listed in the references section of this thesis. Supplementary material submitted 

to the journal have been included in Appendix A.  
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3.1 Abstract 

 

Most species of sturgeon have experienced significant population declines and poor 

recruitment over the past decades, leading many species, including white sturgeon (Acipenser 

transmontanus), to be listed as endangered. While the reasons for these declines are not yet fully 

understood, benthic lifestyle, longevity, and delayed sexual maturation likely render them 

particularly susceptible to factors such as habitat alteration and contaminant exposures. Toxicity 

studies have shown white sturgeon to be among the most sensitive species of fish to pollutants 

such as metals, dioxin-like chemicals and endocrine disrupters. Selenium (Se) in the aquatic 

ecosystem is of particular concern, especially in its more bioavailable form selenomethionine 

(SeMet), because it is known to efficiently bioaccumulate in the food chain. The toxic effects of 

Se have been observed in the wild and in laboratory settings. Therefore, the aim of the present 

study was to link physiological effects observed in a previous laboratory study to key molecular 

events of toxicity. Oxidative stress in liver tissue was focused on as it was hypothesized to be a 

primary mode of toxicity. Specifically, 4 year old white sturgeon were exposed for 72 days to 

1.4, 5.6, 22.4 or 104.4 µg SeMet (dm) per g feed. Doses were chosen to range over a necessary 

Se intake level, current environmentally relevant intakes and an intake representing possible 

scenarios of Se release. Lipid hydroperoxides, end products of lipid oxidation, were measured 

using a standard assay kit. Antioxidant response was measured via changes in gene expression of 

glutathione peroxidase (GPx), superoxide dismutase, catalase, glutathione S-transferase, 

apoptosis inducing factor and caspase 3 using real-time PCR. Results of the lipid hydroperoxide 

assay were highly variable within dose groups and therefore no dose response was observed. 

GPx expression was significantly increased in the low dose group indicating an induced 

antioxidant response. No other genes were significantly induced or suppressed. Overall, 

indicators of oxidative stress were few and therefore oxidative stress is not believed to be a main 

driver of toxicity in white sturgeon exposed to selenium. 
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3.2 Introduction 

 

For oviparous vertebrates, selenium (Se) is both an essential micronutrient and a toxicant 

depending on the concentration (Chapman et al., 2009; Mayland, 1994). In surface waters, Se 

contamination increases as a result of natural geological processes and/or anthropogenic 

disturbances such as mining, smelting operations, fossil fuel by-product waste disposal and 

irrigation runoff (Lemly, 2002b; Chapman et al., 2009; Janz, 2012; Maher et al., 2009). Once in 

the aquatic ecosystem elemental and inorganic Se are biotransformed to selenomethionine 

(SeMet), an amino acid analogue, by bacteria, phytoplankton and other low trophic level 

organisms. These organisms can tolerate relatively high Se body burdens, which are then 

transferred to higher trophic level consumers that are less tolerant; although sensitivity to Se 

exposure is species specific (Fan et al., 2002; Chapman et al., 2009; Maher et al., 2009). Among 

aquatic organisms, fish are particularly sensitive to SeMet exposures, and one species that 

recently has received much attention with regard to their vulnerability is the white sturgeon 

(Acipenser transmontanus). White sturgeon are believed to be at risk due to their benthic life-

style, longevity, and the adult’s position at the top of the food chain (Linville, 2006; Moyle, 

2002; Doroshov et al., 1997). They are known to be among the most sensitive species of fish to 

other environmental pollutants such as metal ions and dioxin-like compounds (Vardy et al., 

2011; Vardy et al., 2012; Doering et al., 2012; Doering et al., 2014), and previous studies have 

found elevated levels of Se in wild white sturgeon (Linares-Casenave et al., 2014; Kruse, 2000). 

Exposure to elevated doses of SeMet causes adverse health effects in vertebrates 

including mammals (National Research Council, 1983), aquatic birds (Hoffman, 2002) and a 

wide range of fish species (Oncorhynchus mykiss Wiseman et al., 2011; Lepomis cyanellus, 

Pomoxis annularis, Micropterus salmoides, Gamusia affinis, Notropis lutrensis, Ictalurus 

punctatus, Lemly, 2002a; Lepomis microlophus, Sorensen, 1988 and Sorensen & Bauer, 1984; 

Oncorhynchus tshawytscha, Hamilton, 2004; Lepomis macrochirus, Finley, 1985; Danio rerio, 

Thomas & Janz, 2011; Pimephales promelas, McPhee & Janz, 2014; Acipenser transmontanus, 

Tashjian et al., 2006, Linville, 2006, De Riu et al., 2014 and Zee et al., 2015; Acipenser 

medirostris, De Riu et al., 2014). The most common route of Se uptake is through the diet. Fish 

require 0.1-0.5 µg Se/g feed for proper health; however, toxic effects have been reported at > 3 

µg Se/g feed in some fish species (Gaitlin & Wilson, 1984; Poston et al., 1976; Hodson & 
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Hilton, 1983; Lemly, 1997). Symptoms caused by elevated Se body burdens in fish include 

changes to concentrations of sex steroid hormones and cortisol in the blood (Wiseman et al., 

2011), reproductive failure, teratogenesis (Lemly, 2002a; Sorensen, 1988), pathological lesions 

in gills, liver, kidney, heart and ovary (Zee et al., 2015; Tashjian et al., 2006, De Riu et al., 2014; 

Linville, 2006; Lemly, 2002a; Sorensen et al., 1984; Sorensen & Bauer, 1984; Sorensen, 1988), 

decreased energy reserves (Zee et al., 2015; Tashjian et al., 2006), impaired swim performance 

(McPhee & Janz, 2014; Tashjian et al., 2006) and growth (Zee et al., 2015; Tashjian et al., 2006), 

cataracts (Lemly, 2002a), edema leading to popeye (exophthalmos) (Zee et al., 2015; Lemly, 

2002a; Finley, 1985; Sorensen et al., 1984; Ellis et al., 1937) and mortality (Zee et al., 2015; 

Finley, 1985; Lemly, 2002b; Hamilton, 2004). Four studies have exposed juvenile white 

sturgeon to dietary SeMet in the laboratory and various toxic symptoms were observed including 

histopathological liver changes (Zee et al., 2015; De Riu et al., 2014; Linville, 2006), reduced 

energy reserves (Zee et al., 2015; Tashjian et al., 2006), reduced swimming activity (Tashjian et 

al., 2006), slowed growth rates (Zee et al., 2015; Tashjian et al., 2006), and severe edema and 

mortality (Zee et al., 2015).  

One of the possible explanations for some of the pathologies, such as the severe edema, 

observed in fishes exposed to Se in previous studies (Zee et al., 2015; Lemly, 2002a; Sorensen et 

al., 1984; Sorensen & Bauer, 1984; Ellis et al., 1937) could be an increase in oxidative damage, 

which can alter cell membrane permeability and fluidity causing organs and/or capillaries to 

become ‘leaky’. This hypothesis is supported by the increases in size and frequency of 

melanomacrophage aggregates in liver (Zee et al. 2015; Linville, 2006; De Riu et al., 2014), 

which suggested that there was increased cellular damage occurring and/or a greater need to 

protect against oxidative stress. The need to combat oxidative stress may also explain depleted 

energy reserves and slowed growth rates observed in white sturgeon (Tashjian et al., 2006; Zee 

et al., 2015). Cross-linking of actin filaments due to oxidative damage in muscle was proposed as 

a reason for decreased swimming activity in white sturgeon given excess dietary SeMet 

(Tashjian et al., 2006). Studies that exposed Siberian sturgeon (Acipenser baerii) to dietary 

selenocysteine (SeCys) for 60 or 90 days observed signs of antioxidant response in the liver, 

including increased glutathione peroxidase, superoxide dismutase, glutathione reductase and 

catalase activity, and a positive correlation between glutathione s-transferase activity and Se 

concentration (Pacini et al., 2013; Elia et al., 2014). A significant increase in oxidized 
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glutathione (GSSG) concentration and the ratio of oxidized glutathione to reduced glutathione 

(GSSG:GSH) was observed in the liver of rainbow trout given 20 µ Se/g dietary SeMet for ≥ 120 

days, indicating an increase in oxidative stress (Holm, 2002). Palace et al. (2004) demonstrated 

that rainbow trout embryos exposed to SeMet had significantly increased production of 

superoxide radicals, while Misra et al. (2012) showed that rainbow trout hepatocytes develop an 

antioxidant response as well as signs of increased oxidative stress when cultured in SeMet spiked 

media. Miller (2006) and Janz et al. (2009) both propose oxidative stress to be involved in Se 

related teratogenesis in oviparous animals and other pathologies observed in adults. Symptoms 

of oxidative stress have also been observed in aquatic birds (Spallholz & Hoffman, 2002; 

Hoffman, 2002; Janz et al., 2009). In mallards (Anas platyrhynchos), willets (Catoptrophorus 

semipalmatus), American coots (Fulica Americana) and emperor geese (Chen canagica) 

exposed to Se in the wild or fed SeMet in the laboratory, increases in reactive oxygen species 

(ROS) and antioxidant activity have been observed (Hoffman, 2002). While oxidative 

stress/antioxidant response is known to be an important mechanism of toxicity/protection in 

other species only a handful of studies have researched its role in sturgeon species exposed to 

contaminants (Pacini et al., 2013; Elia et al., 2014; Palace et al., 1996; Martinez-Alverez et al., 

2002; Song et al., submitted). 

The purpose of the present study was to investigate whether histopathological changes in 

the liver, reduced energy reserves, edema and mortality, which were previously observed in 

juvenile white sturgeon exposed to elevated concentrations of dietary SeMet (Zee et al., 2015), 

can be explained by oxidative stress as a mechanism of toxicity. To this end, markers of 

oxidative stress were assessed by quantification of concentrations of lipid hydroperoxides 

(LHPs) and expression of genes that are important for responding to oxidative stress. All tests 

were conducted with liver samples as this is a main organ of detoxification, and is one of the 

tissues where greatest Se accumulation occurs during dietary exposures (Linville, 2006; Tashjian 

et al., 2006; Linares-Casenave et al., 2014). 
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3.3 Methods 

 

3.3.1 Exposure 

 

Three-year-old juvenile white sturgeon were exposed to various concentrations of dietary 

SeMet as described in Zee et al. (2015). All procedures involving live animals were approved by 

the University of Saskatchewan's Animal Research Ethics Board (Animal Use Protocol 

#20070049). Briefly, five fish were randomly assigned to seven replicate tanks per treatment 

group (35 fish/treatment) supplied with carbon filtered municipal water under flow-through 

conditions in accordance with loading densities recommended by the American Society for 

Testing and Materials (ASTM) guidelines for testing early life-stage of fishes (ASTM, 2007). 

For 72 days fish were given diets of commercial trout chow (Proform Aquaculture Feed, Aqua-

Balance Trout 52:19 Starter #2 Crumble, Viterra Feed Products; Okatoks, AB, Canada) spiked 

with either 5.6 ± 0.02 µg/g, 22.4 ± 0.37 µg/g or 104.4 ± 4.81 µg/g seleno-L-methionine (Sigma-

Aldrich; Oakville, ON, Canada). No SeMet was added to control diets, which contained 1.4 ± 

0.06 µg/g (dm) that was added by the manufacturer as a dietary supplement (nominal 

concentrations, mean ± SD). A subsample of one fish per tank was taken at day ten and used for 

gene expression analysis. Remaining fish were sampled on or near day 72 and their livers were 

analysed for concentrations of lipid hydroperoxides. The exception was the fish in the high-dose 

group that were euthanized and sampled at day 65 due to high mortality rates and to avoid 

unnecessary suffering of animals.  

 

3.3.2 Quantitative Real-Time Polymerase Chain Reaction 

 

Expression of genes encoding for antioxidant enzymes and enzymes that mediate 

apoptosis were quantified in liver samples of white sturgeon after 10 days of exposure. Genes 

associated with response to oxidative stress were glutathione peroxidase (GPx), catalase (CAT), 

superoxide dismutase (SOD), and glutathione S-transferase (GST). Genes involved with 

apoptotic signaling were caspase 3 (Cas3) and apoptosis inducing factor (AIF), which are key 
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mediators of caspase-dependent and -independent apoptosis, respectively. Total RNA was 

extracted from approximately 100 mg liver tissue from each fish using an RNeasy Lipid Tissue 

Mini Kit (Qiagen, Mississauga, ON, Canada), according to the manufacturer’s protocol. 

Concentrations of RNA were determined by use of a NanoDrop ND-1000 Spectrophotometer 

(Nanodrop Technologies, Wilmington, DE, USA) and samples of RNA were stored at −80°C 

until analysis. First-strand cDNA was synthesised from 1 µg of total RNA using the QuantiTect 

Reverse Transcription Kit (Qiagen) according to the manufacturer’s protocol. Samples of cDNA 

were stored at −20°C until analysis (Doering et al., 2014).  

Quantitative real-time PCR (qPCR) was performed in 96-well plates using an ABI 7300 

Real-Time PCR System (Applied Biosystems, Foster City, CA, USA). A 70 µl reaction mixture 

of 2× concentrated Power SYBR Green master mix (Qiagen), 3.5 µl cDNA, 10 pmol of gene-

specific qPCR primers, and nuclease free water was prepared for each cDNA sample and primer 

combination. Reactions were conducted in triplicate with 20 µl reaction volumes per well. The 

reaction mixture for PCR was denatured at 95°C for 10 min followed by a thermal cycle profile 

consisting of denaturing at 95°C for 10 s and extension for 1 min at 60°C for a total of 40 PCR 

cycles. Target gene transcript abundance was quantified by normalizing to β-actin according to 

the method described by Simon (2003). A dissociation step was added to ensure only a single 

product was amplified. Primers against β-actin of white sturgeon were from Doering et al. 

(2012). Primers against GST, GPx, Cas3, CAT, AIF, and SOD of white sturgeon were designed 

from a database of the transcriptome of the liver of white sturgeon that was generated by de novo 

assembly of paired-end sequencing reads generated on Illumina MiSeq and HiSeq 2000 

sequencing platforms (Illumina, San Diego, CA, USA) (unpublished data). Primers (Table 3.1) 

were designed by use of Primer 3 software (Koressaar and Remm, 2007; Untergrasser et al., 

2012) and were from Invitrogen (Burlington, ON, Canada) (Doering et al., 2014).  
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Table 3.1. Gene primer sequences, annealing temperatures and efficiencies. 

 

 

3.3.3 Lipid Hydroperoxide Assay 

 

Lipid peroxidation of liver tissue from white sturgeon at termination of the exposure 

experiments was analyzed using a Lipid Hydroperoxide Assay Kit following the manufacturer’s 

protocol (Cat # 705002, Cayman Chemical Company, Ann Arbor, MI, USA). This kit directly 

measures lipid hydroperoxides (LHP), rather than malondialdehyde (MDA) degradation 

products. Concentration of hydroperoxides (nmol/g) were quantified in 100mg (wet mass) of 

liver tissue by use of a standard curve of LHP and normalizing data by the wet mass of tissue in 

each sample. Absorbance was measured at 500 nm with a SpectraMax 190 Absorbance 

Microplate Reader (Molecular Devices, Sunnyvale, CA, USA). 

 

3.3.4 Statistics 

 

Statistical evaluation of the data was conducted using IBM SPSS Statistics V20 (IBM 

Corp., Armonk, NY). All data were tested for normality (Shapiro Wilk test) and homogeneity of 

variance (Levene’s test). One-way analysis of variance (ANOVA) followed by a Tukey’s post 

Target Transcript Accession # Primer Sequence (5'-3')
Annealing 

Temp. (⁰C) 
Efficiency (%)

F: CCGAGCACAATGAAAATCAA

R: ACATCTGCTGGAAGGTGGAC

F : AGTTGATGTGAACGGGAAGG

R: ACTTGGGGTCAGTCATCAGG

F: CTCCAGGATGAAAACCTTGG

R: ACTCAATCCCATGCAAAAGG

F: GAACGAAGAAGAGCGCCAG

R: GATGCGGCTCCCATAGTCT

F: GCAGGTCCGTGGTGATTCAT

R: TTCCGATGACACAGCAAGCT

F: TCACACAGGGACTGGATGAA

R: AGTGACAGCTCTCCCCAGAA

F: ATCGTGGGTGGAGGATTTG

R: GCCCCTACGTTGTGATGGA

Glutathione                            

S-transferase theta

Glutathione Peroxidase 1

Superoxide Dismutase 3

Apoptosis Inducing Factor

βeta Actin

Catalase

Caspase 3

 FJ205611 60

60

60

60

60

60

60

96

109

107

107

99

104

104
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hoc test was used to determine significant differences in gene expression among treatment 

groups. Data for expression of CAT, and LHP did not meet assumptions for parametric statistical 

tests and therefore were tested for significance using a Kruskal-Wallis (KW) one-way ANOVA 

followed by a Mann Whitney U (MU) post-hoc test. Statistical significance was accepted when p 

< 0.05. The sample size for LHP and qPCR was n=7. For previously reported details on statistics 

done on Se concentrations in muscle and liver tissue see Zee et al. (2015). 

 

3.4 Results 

 

3.4.1 Gene Expression 

 

After 10 days of exposure, expression of GPx in liver samples was significantly increased 

by three-fold in the low dose group compared with the control (p = 0.002) (Fig. 3.1) but was not 

significantly increased in the medium-dose or high-dose groups. Expression of SOD and GST, 

while not significantly different among dose groups, followed similar trends with greatest 

expression in the low dose group. There was a trend towards higher expression of CAT in the 

low and medium dose groups, but effects were not statistically significant because of high 

variability within treatment groups. Expression of Cas3 and AIF were not significantly different 

among dose groups, nor were there any trends of increased or decreased expression of these 

genes (Fig. C3.S1).  
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Figure 3.1. Expression of genes responsive to oxidative stress in livers from white sturgeon 

exposed to dietary SeMet. Bars represent mean ± SD of transcript abundance for each dose group 

(left to right: control, low, medium, high, n = 7). Different letters indicate significant differences 

among dose groups.  
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3.4.2 Lipid Hydroperoxides 

 

LHP concentrations in livers from fish sampled at day 72 and 65 were highly variable 

within dose groups and there were no statistically significant differences among dose groups 

(KW, p = 0.725) (Fig. 3.2 & Table C3.S1). There was no relationship between Se concentration 

and LHP concentration in liver tissue at termination of exposure (Fig. 3.3). 

 

 

 

 

 

Figure 3.2. Concentration of lipid hydroperoxide in liver tissue. Error bars represent SEM. 
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Figure 3.3. Lipid hydroperoxide concentration in liver vs selenium concentration in liver (circle; 

solid trend line) or muscle (triangle; dashed trend line) tissue after 72 days exposure to dietary 

selenomethionine. Each point represents a single fish.  
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3.5 Discussion 

 

Based on a wealth of information from previous studies it was hypothesized that 

oxidative stress would be a main driver for the toxicosis observed in juvenile white sturgeon 

exposed to increasing concentrations of dietary SeMet (Zee et al., 2015; Tashjian et al, 2006; De 

Riu et al., 2014; Linville, 2006). Contrary to this hypothesis overt signs of oxidative stress were 

not evident in livers, despite the many adverse health effects observed in a companion study (Zee 

et al., 2015). There was a high degree of variation in the amount of lipid peroxidation in liver 

within dose groups, which explains the lack of statistically significant differences between dose 

groups. While there was a trend towards greater expression of GST and CAT in the low and 

medium dose groups respectively, only GPx had significantly increased expression. Fish given 

the highest dose of SeMet were already showing signs of severe edema after 10 days of exposure 

(Zee et al. 2015) which is an indication that normal bodily systems were overwhelmed. An 

overwhelmed antioxidant system could explain the limited antioxidant gene response in high 

dose fish while a parallel increase in LHPs was not detected due to a high variability among 

samples, although there might have been a slight trend towards greater LHP concentration in 

high dose fish.  

A dose dependent relationship between LHP concentration and dietary SeMet had been 

expected, with ROS hypothesized to be the cause of severe adverse health effects observed 

during the same study. These effects included mortality, severe edema, decreased hepatic lipid 

stores and increased hepatic melanomacrophage aggregates (MMAs) (Zee et al, 2015). In a 

similar study, De Riu et al. (2014) also hypothesized that histopathological changes in livers 

from white sturgeon given excess dietary SeMet were due to oxidative stress. Other studies 

conducted with aquatic birds exposed to SeMet found increases in concentrations of a lipid 

oxidation end product, malondialdehyde (MDA), measured as thiobarbituric acid reactive 

substances (TBARS) (Hoffman, 2002), as did a study using rainbow trout hepatocyte cells 

exposed to SeMet (Misra et al., 2012). Contrary to our hypothesis and results from these 

previous studies, no increase in concentration of LHP was found in white sturgeon 

subchronically exposed to dietary SeMet. 

Studies exposing Siberian sturgeon to excess dietary SeCys also found no differences in 

concentrations of MDA in liver (Pacini et al., 2013; Elia et al., 2014). These studies found high 
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variability in MDA levels within dose groups (Control MDA levels: Elia et al., 84.44 ± 24.16; 

Pacini et al., 80.48 ± 15.62), which is in agreement with the large variability in concentrations of 

LHP within dose groups of the present study (Control LHP level: Zee et al., 112.74 ± 67.99). 

This high variability within dose groups could be due to inherent heterogeneity within liver 

tissue (which is unlikely as liver is a very homogenous tissue), or the instability of these end 

products, which makes measurement difficult. There is a possibility that this high variability 

obscured any relationships between average Se concentration and average amount of LHP. 

However given the general lack of a trend across SeMet treatment groups, with exception of the 

high dose group that showed a minor increasing trend, it is unlikely that an increase in lipid 

peroxidation in liver contributed to the toxic effects observed in these fish (Zee et al., 2015).  

With the exception of greater expression of GPx, no statistically significant changes in 

expression of antioxidant genes were identified. Although there was a trend towards greater 

expression of GST and CAT in the low and medium dose groups respectively, these effects were 

not statistically significant. Greater GPx enzyme activity has been reported in fish given diets 

with elevated concentrations of Se. Elia et al (2014) and Pacini et al (2013) found an increase in 

GPx activity in livers of Siberian sturgeon given 5 and 20 µg SeCys/g feed after 90 and 60 days 

exposure respectively. Miller (2006) observed that GPx activity in liver tissue increased in brook 

trout (Salvelinus fontinalis) but decreased in rainbow trout with increasing Se concentrations in 

muscle. Misra et al. (2012) found a significant increase in GPx activity in rainbow trout 

hetapocytes treated with 1000uM SeMet. Increasing Se concentrations in diet or tissue 

commonly led to an increase in GPx activity in blood plasma and/or liver tissue of mallards and 

other aquatic bird species after exposure to SeMet (Hoffman, 2002). Therefore, the increased 

expression of GPx in livers from white sturgeon exposed to low dose Se is consistent with other 

studies and indicates a response to oxidative stress. The lack of upregulation of GPx expression 

in livers from fish given the medium and high dose of SeMet might indicate that the antioxidant 

systems had been overwhelmed, although if this was the case then a corresponding increase in 

LHP would have then been expected. It is possible that the increase in expression of CAT, which 

also acts on hydrogen peroxides, may have compensated for the lack of greater expression of 

GPx in fish given the medium dose as it has been observed that CAT is more significant than 

GPx in combating severe oxidative stress (Mates, 2000).  
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An alternative explanation for the lack of greater expression of genes important for the 

response to oxidative stress could be that peak responses to SeMet occurred prior to day 10, thus 

significant changes were not observed. It has been proposed that fish respond to a toxic assault at 

the transcription level in less than 24 hrs and changes are most pronounced after the first 2 days 

of exposure (Ankley & Villeneuve, 2015). However the lack of greater concentrations of LHP in 

the fish given the high dose of SeMet, despite severe edema by day 10 (Zee et al., 2015), coupled 

with the lack of transcriptional response renders it an unlikely scenario. It is more likely that 

oxidative stress in not a main driver of SeMet toxicosis in white sturgeon. 

There are great intra- and interspecies differences in the response to oxidative stress in 

fishes exposed to SeMet. In the present study, expression of CAT was only marginally increased 

in fish given the medium dose. The lack of statistical significance is most likely due to the large 

variability among samples within this dose. Studies of Siberian sturgeon (Acipenser baerii) 

reported a dose dependent decrease in CAT activity in livers of fish exposed to 5 and 20 µg/g of 

dietary SeCys at 30 and 60 days of exposure (Pacini et al., 2013) but significantly greater activity 

at 90 days of exposure (Elia et al., 2014). Misra et al. (2012) found a significant increase in CAT 

activity in rainbow trout hetapocytes treated with 1000 µM of SeMet for 24 hours. For SOD, we 

observed no significant induction in livers of white sturgeon after 10 days exposure to SeMet. 

Hepatic SOD activity in Siberian sturgeon either did not change over 90 days of exposure (Elia 

et al., 2014) or, in fish exposed to ≥ 1.25 µg/g, was significantly greater after 30 days before 

returning to control levels by 60 days (Pacini et al., 2013). Pacini et al. (2013) found that SOD 

activity was positively correlated with Se concentration. Misra et al. (2012) observed a 

significant increase in SOD activity in rainbow trout hetapocytes treated with 1000uM for 24 

hours. For GST, gene expression increased slightly but non-significantly in liver tissue of 

exposed white sturgeon, with the greatest increase observed in the low dose group. Again, lack 

of significance may be due to the large variability between samples within each dose group. GST 

activity levels also did not change in Siberian sturgeon liver tissue (Pacini et al., 2013) after 

dietary SeCys exposure. Taken together, the varying results of this and other studies point to a 

complicated array of factors involved in the response to oxidative stress and its measurement. 

Since multiple, interrelated pathways are involved in combating oxidative stress and the 

contribution of each pathway can vary with tissue type, species, age, gender, season and/or 

health, nutrition, reproductive and developmental status, cross study comparisons are difficult 
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(Miller, 2006; Van der Oost et al., 2003). While oxidative stress in response to SeMet exposure 

has been shown in other species of fish and aquatic birds, it has not previously been tested for in 

white sturgeon. Perhaps the unique physiology of white sturgeon makes oxidative stress a less 

relevant mechanism of toxicity than in other species.  

Overall it does not appear that oxidative stress in hepatic tissue is a main driver of SeMet 

mediated toxicity in white sturgeon, despite being detected in a variety of other species. 

Although significant adverse effects, such as severe edema, morbidity and mortality, were 

observed throughout the exposure (Zee et al., 2015) only GPx expression was significantly 

upregulated and no increase in LHP was detected. Furthermore, histological analysis of livers 

revealed no differences among treatment groups in the categories of apoptosis, necrosis and 

general cell health (Zee et al., 2015). This absence of tissue damage supports the notion that 

oxidative stress is not the main driver of Se toxicosis in these fish. Since oxidative stress in liver 

tissue does not appear to be the main mechanism of SeMet toxicity additional studies are 

required to identify the mechanism of toxic action of SeMet to white sturgeon. 
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CHAPTER 4: GENERAL DISCUSSION 

 

 

4.1 Summary 

 

The purpose of the present study was to characterize adverse health effects in white 

sturgeon exposed to dietary SeMet, and to link physiological effects to oxidative stress – the 

hypothesized mechanism of toxicity. Earlier studies have pointed to oxidative stress as a critical 

mechanism of action (MOA) for dietary Se in various species, but this had not yet been 

confirmed in sturgeon. Furthermore, the present study aimed to characterize the sensitivity of 

geographically distinct populations by comparing effects observed in juvenile white sturgeon 

originating from brood stock of a landlocked, wild population in the transboundary reach of the 

Columbia River to juveniles from farmed brood stock (Sacramento River basin origins) used in 

previous studies (Tashjian et al., 2006; Linville, 2006; De Riu et al., 2014).  

Over the past 100 years sturgeon populations have been severely depleted due to 

overharvesting, poor recruitment, habitat alteration and pollution. White sturgeon populations in 

the Columbia River are considered endangered by most conservation bodies and Se, especially in 

the organic form of SeMet, has become a contaminant of concern as it is known to 

bioaccumulate in preferred prey items of white sturgeon. It is important to study white sturgeon 

directly as Acipenseriformes are quite different physiologically from modern teleosts, having 

branched off hundreds of millions of years ago. Therefore, common fish models in 

ecotoxicology, such as rainbow trout, zebrafish and fathead minnow, are likely not appropriate 

for predicting the vulnerability of ancient fishes to environmental contaminants. Discovering the 

MOA for SeMet is of interest to the academic community, while protection of endangered white 

sturgeon is of interest to conservationists, and governments and industries operating in critical 

habitats.  

White sturgeon are benthivores and their food preferences at most life stages are known 

to be able to bioaccumulate high concentrations of SeMet. This puts them at risk of Se poisoning. 

Fish in the present study accumulated Se at rates similar to previous studies (Table C2.S2) with a 

trophic transfer factor (TTF) of around 1. A TTF of 1 indicates they are not likely to biomagnify 
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Se but will mirror the Se concentrations found in their diets. This suggests that predictions of 

accumulation of Se in sturgeon can be based on dietary concentrations rather than extensive 

tissue samples in endangered populations. For this reason it is important to understand and 

monitor how Se is moving through lower levels of the food web. 

Early in the exposure visible signs of edema began to occur. While edema is a known 

effect of Se toxicosis it was unexpected, as similar white sturgeon studies had not reported any 

edema. It is unlikely that the edema is an artifact of study design as edema is a known symptom 

of Se toxicity in other fish species. The presence of edema and popeye in the low dose group in 

the present study is of concern because this places the genetically distinct transboundary reach 

white sturgeon among the most sensitive and vulnerable fish species to dietary SeMet exposures. 

The greater sensitivity of this and potentially other populations in the Columbia and Fraser 

rivers, is important information for the accurate assessment of risk as human development moves 

forward in the Columbia and Fraser watersheds. 

While edema was a significant finding in the present laboratory study, what its impact on 

wild populations would be is unknown. Edema in wild white sturgeon has not been reported. In 

the wild, fish freely move into and out of contaminated areas varying their exposure, however 

populations restricted by dams may not have this option depending on the extent of 

contamination. In the present study fish in all high dose tanks exhibited food avoidance by day 

21. This suggests that white sturgeon are able to detect toxic levels of SeMet in their feed via 

chemoreception, which makes sense since the high dose feed had an obvious odour to 

researchers dispensing it. Perhaps low and medium dose fish could also detect toxic levels of Se 

but the trade-off between toxicity and starvation was not yet great enough to cause food 

avoidance. 

A significant reduction of hepatic lipid stores was observed in high dose fish and 

measured as a decrease in average cell surface area. Food avoidance in the high dose group made 

it difficult to attribute the reduction of lipid stores to Se toxicosis, self-enforced starvation or a 

combination of the two. However, since Se accumulation continued throughout the present 

study, regardless of food avoidance (Fig. 2.2), observed effects were most likely due to selenosis. 

The reduction in lipid stores suggests that energy was needed to fight toxicity and to repair 

consequent cellular damage. The significantly lesser average HSI in the high dose group at day 
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72 compared to other dose groups at day 72, and to the high dose subsample at day 10, was 

likely a reflection of the decreased hepatic lipid stores. 

Cessation of growth occurred in the high dose group, which resulted in significantly 

smaller size (length and weight) compared to all other dose groups, and was likely due to energy 

resources being allocated to detoxifying the large amounts of Se ingested as well as repairing 

damage caused by toxicity. Food avoidance would have exacerbated the energy depletion by 

reducing energy intake. Besides growth rate, reduced energy reserves may affect wild sturgeon’s 

ability to escape predators, find food, migrate, and reproduce. Since the concentration at which 

growth suppression occurred (high dose) is not yet environmentally relevant the ecological 

relevance of this end point remains uncertain.  

A number of histopathological alterations were expected to occur in white sturgeon due 

to the high rate of mortality and prevalence of edema observed in the same fish, as well as based 

on earlier reports of SeMet toxicity in white sturgeon (Table C2.S4) and other fish species 

(Lemly, 2002a, Sorensen, 1986). However, no significant differences in apoptosis, necrosis, 

vacuolar degeneration, biliary stasis or general cell health were detected among dose groups as 

they had been in other white sturgeon studies (Table C2.S4). A trend towards a dose dependent 

increase in frequency and size (surface area) of MMAs was observed however, with a significant 

increase in the high dose group compared to the control. An increase in size and frequency of 

MMAs suggested that chronic liver damage was occurring. The lack of dose dependent damage 

in the categories of vacuolar degeneration, apoptosis, necrosis, pyknosis, and cell wall 

degradation was surprising considering the other morphological changes and high rate of 

mortality. If oxidative stress was a MOA occurring in the liver, more histopathological lesions 

would have been expected, unless damages were being repaired expediently. One reason for the 

inconsistencies in histopathological findings between studies may be that, to my knowledge, 

there are no atlases of sturgeon liver diseases by which to vet results. Overall greater 

histopathological changes were expected due to the adverse health effects observed during the 

exposure and the hypothesis of oxidative stress in the liver being a main MOA. 

Definitive signs of oxidative stress have been observed in the liver of other species 

exposed to SeMet (Pacini et al., 2013; Elia et al., 2014; Palace et al., 2004; Misra et al., 2012; 

Hoffman, 2002) and therefore oxidative stress was expected to be a key MOA in the present 

study. Liver, as a detoxifying organ known to accumulate comparatively high concentrations of 
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Se, was hypothesized to sustain high levels of oxidative damage, or to produce high levels of 

ROS combative antioxidant enzymes. Therefore liver tissue was tested for signs of lipid 

peroxidation, and changes in expression of genes involved in apoptotic signaling; however, only 

limited signs of oxidative damage were observed. An assay for lipid hydroperoxides, end 

products of lipid peroxidation, found no significant differences or trends between dose groups. 

Similarly, no significant changes in the expression of AIF and Cas3 were observed, which 

suggested that the apoptotic pathway had not been affected by SeMet accumulation. If extensive 

oxidative damage had occurred LHP concentrations would have increased in a dose dependent 

manner as would have expression of genes involved in caspase-independent (AIF) and -

dependent (Cas3) apoptotic signaling. When cells are severely damaged they self-destruct in a 

process called apoptosis. Since oxidative damage was not observed either oxidative stress was 

not occurring or the antioxidant response system was able to control the damage. Therefore 

tissues were tested for changes in gene expression of antioxidant enzymes. Of the antioxidant 

genes tested, only GPx in the low dose group was significantly induced. SOD and GST followed 

similar trends with greatest expression in the low dose group but this effect was not significant. 

CAT was not significantly induced but did have greater expression in the low and medium dose 

groups. The induction of GPx indicated that some level of oxidative stress did occur, however 

the lack of change in the expression of SOD, CAT and GST suggested that this stress is likely 

minimal and could be neutralized with only small physiological changes.  

The results of the lipid hydroperoxide assay and expression of all six genes were highly 

variable within each dose group. This variability could have obscured small relationships 

between Se concentration and the tested endpoints. Alternatively, multiple, interrelated 

antioxidant pathways may have worked together to combat oxidative stress without obvious 

large inductions in the gene expression endpoints tested. Since only six genes were tested 

changes to other pathways or individual genes may have been missed. However considering the 

lack of histopathological damage, limited presence of LHP and modest changes in expression of 

genes encoding important antioxidant enzymes it seems most likely that oxidative stress was not 

a main driver of toxicity. Contrary to our hypothesis, overt signs of oxidative stress were not 

evident in white sturgeon liver, despite the many adverse health effects observed. 
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4.2 Conclusions and Future work 

 

The present study showed that white sturgeon from the transboundary region of the 

Columbia River are susceptible to Se toxicity when faced with elevated concentrations of SeMet 

in the diet. Adverse health effects included mortality/morbidity, edema, decreased growth, and 

food avoidance. Surprisingly, the only significant histopathological changes in the liver were a 

dose dependent increase in melanomacrophage aggregates and a decrease in lipid stores. 

Although oxidative stress was hypothesized by other studies to be a main mechanism of Se 

toxicity, the work presented here demonstrated a lack of a clear antioxidant response or oxidative 

damage. Only GPx gene expression was significantly upregulated in response to SeMet 

accumulation and LHP concentrations were not different among dose groups. If oxidative stress 

had been a main driver of toxicity then we would have expected either an increase in expression 

of antioxidant enzymes or, an increase in LHP concentrations and expression of caspase-

dependent and -independent apoptotic genes. Since neither of these responses occurred it can be 

surmised that SeMet accumulation did not greatly increase oxidative stress in juvenile white 

sturgeon liver. Further work needs to be conducted in order to elucidate the specific 

mechanism(s) driving Se toxicity in this species, especially with respect to the severe edema and 

mortality observed in the present study.  

One recently developed approach that may be helpful in discovering MOAs not 

previously considered is the use of novel sequence-by-synthesis technology such as whole 

transcriptome sequencing (RNAseq). Comparing the entire transcriptome of treated and control 

fish would allow for unbiased and thorough investigation of effects of SeMet on the expression 

of all genes in an organism. It could also help narrow down the search by highlighting or 

eliminating pathways of concern. Since such severe adverse health effects were observed it is 

likely that there were also histopathological damages in organs other than the liver. Looking into 

histopathologies of kidney and gill tissue might help explain problems with osmotic regulation, 

which could have been involved in formation of the edema reported here. Investigating kidney 

and intestinal tissue could give clues to the uptake/excretion routes of Se, and therefore, possibly 

the MOA. A better overall understanding of sturgeon physiology as compared to teleost 
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physiology would be helpful in understanding how Se and other contaminants act on sturgeon 

body systems.  

Future research should also include a refined dose range by including dietary doses 

between 20 and 40 µg Se/g as a number of pathologies observed in the present and other studies 

first occurred in this range. Understanding toxicities in the low dose range (5 µg/g) will help 

conservationists set dietary limits. There were some significant differences between the present 

study and previous studies conducted with white sturgeon. Firstly the present study observed 

severe edema, morbidity and high mortality rates, which had not been observed previously. 

There were also differences in the presence/absence of various hepatic lesions between studies. 

The discrepancies between studies could have been due to differences in genetics, or parental 

exposure. Fish in the present study came from wild brood stocks from the transboundary reach of 

the Columbia River while previous studies used farmed fish from the Sacramento watershed. For 

risk assessment purposes it will be important to come to grips with the differences between the 

Upper Columbia and Sacramento populations as it appears that they have differing sensitivities 

and should not be used as representative of one another. In general industries and 

conservationists should be cautious about the amount of Se that enters the food web and work to 

understand its movements at the low trophic levels. For what happens at these lower trophic 

levels has the greatest impact on white sturgeon.  

In order to recreate and maintain sustainable white sturgeon populations north of the 

Sacramento river basin some of the past damage caused by overharvesting and habitat alteration 

needs to be reversed. Attention should be given to the contaminants that enter surface waters, 

and anticipation of their effects are necessary. Studying the effects of SeMet pollution on white 

sturgeon is a small piece of the conservation puzzle.  
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APPENDICES 

Appendix A: Supplementary Materials 

 

Supplementary materials submitted with manuscripts are included here. The figure or 

table number is presented as Cx.Sy format, where ‘Cx’ indicates chapter number and ‘Sy’ 

indicates figure or table number. 

 

 

 

Figure C2.S1. Validation of cell surface area measurements. The same slides were used for both 

the 10 cell and 50 cell analyses. Slides were coded as follows: dose group, tank number – fish 

number, slide identification. 
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Table C2.S1. Validation of cell surface area measurements. Slide (A) 10 cell surface areas were 

measured. Slide (B) 50 cell surface areas were measured. Slides were coded as follows: dose 

group, tank number – fish number, slide identification. 

 

 

 

 

 

 

Slide  
Average Surface 

Area (µm
2
)

SD

C4-2e (A) 792.20 354.76

C4-2e (B) 823.08 316.14

C5-5a (A) 515.11 216.41

C5-5a (B) 569.61 135.37

L1-4f (A) 479.12 195.29

L1-4f (B) 602.21 217.99

L6-3k (A) 532.61 197.86

L6-3k (B) 687.98 185.48

M3-3f (A) 665.82 256.97

M3-3f (B) 730.34 219.51

M6-5e (A) 448.78 165.36

M6-5e (B) 502.75 155.06

H2-2c (A) 210.88 62.28

H2-2c (B) 211.72 60.59

H7-4a (A) 250.32 80.89

H7-4a (B) 311.42 75.81
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Tissue Permeating Procedure (Paraffin) 

45 min 70% alcohol room temperature, no vacuum 

45 min 70% alcohol room temperature, under vacuum  

45 min 70% alcohol room temperature, under vacuum  

45 min 80% alcohol room temperature, under vacuum  

45 min 95% alcohol room temperature, under vacuum  

45 min 100% alcohol room temperature, under vacuum  

45 min 100% alcohol room temperature, under vacuum  

45 min 100% alcohol room temperature, under vacuum  

45 min clearant room temperature, under vacuum 

45 min clearant room temperature, under vacuum 

1 hr paraffin 60°C, under vacuum 

1 hr paraffin 60°C, under vacuum 

 

 

Table C2.S2. Comparison of trophic transfer factors from various studies exposing white 

sturgeon to dietary SeMet. 

 

Diet Muscle Liver Muscle Liver

1.0 2.1 2.9 2.0 2.7

Linville, 2006 20.1 21.6 19.5 1.1 1.0

Median 35.6 39.7 40.2 1.1 1.1

52.5 53.0 69.8 1.0 1.3

0.4 8.2 ± 0.6 15.7 ± 0.7 20.5 39.3

9.6 17.2 ± 0.7 18.8 ± 1.2 1.8 2.0

Tashjian et al., 2006 20.5 22.9 ± 1.5 22.0 ± 1.2 1.1 1.1

Mean ± SEM 41.7 36.8 ± 1.8 37.4 ± 1.7 0.9 0.9

89.8 52.9 ± 3.2 53.1 ± 8.3 0.6 0.6

191.1 54.8 ± 2.8 82.7 ± 12.7 0.3 0.4

2.2 9.2 ± 0.7 4.2 ± 0.1 4.2 1.9

De Riu et al., 2014 19.7 27.0 ± 1.1 28.0 ± 10.4 1.4 1.4

Mean ± SEM 40.1 41.3 ± 0.6 30.1 ± 1.0 1.0 0.8

77.7 57.9 ± 1.2 56.3 ± 2.6 0.7 0.7

1.4 1.1 ± 0.1 0.7 ± 0.1 0.80 0.5

Zee et al. 5.6 5.3 ± 0.4 2.9 ± 0.2 1.00 0.5

Mean ± SEM 22.4 23.5 ± 1.7 9.2 ± 0.5 1.10 0.4

104.4 64.1 ± 6.4 91.7 ± 12.4 0.60 0.9

Trophic Transfer FactorSe Concentration (ug/g)
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Table C2.S3. Fate and fluid volume in all high dose group fish. Fish were labeled with a letter 

denoting the treatment group followed by the tank number – fish number. Fish were numbered in 

order sampled. No fish tags were employed while in the tanks. Where fluid volume was not 

measured notes were included in as written in the lab book. “Little fluid” indicates that the fluid 

volume present was too small to collect in a vial. Blank spaces indicate no notes were written 

and it can be assumed there was no fluid present. 

 

Fish Fate

Fluid volume (mL) or 

observational notes Weight (g) Weight - Fluid (g)

H2-1 10 day subsample 50 120 70

H7-1 10 day subsample Full of fluid 152.5 152.5

H8-1 10 day subsample Full of fluid 126 126

H12-1 10 day subsample 217.5 217.5

H15-1 10 day subsample 62.5 62.5

H24-1 10 day subsample 204 204

H25-1 10 day subsample 141.5 141.5

H25-2 Euthanize day 22 Full of fluid - 264.5

H7-2 Euthanize day 22 40 149 109

H8-2 Mortality day 25 20 174 154

H24-2 Mortality day 25 20 189.5 169.5

H24-3 Euthanize day 28 35 161.5 126.5

H15-2 Mortality day 35 Extremely bloated 144 103.5

H12-2 Euthanize day 43 27 139.5 102.5

H24-4 Euthanize day 43 9 178 154

H8-3 Euthanize day 43 223 200

H12-3 Euthanize day 57 Extremely bloated 219.5 -

H2-2 65 day take down No fluid 112 112

H2-3 65 day take down 0.85 160.5 159.65

H2-4 65 day take down Little fluid 100 100

H2-5 65 day take down 112 112

H7-3 65 day take down No fluid 156 156

H7-4 65 day take down 20 187 167

H7-5 65 day take down Little fluid 61.5 61.5

H8-4 65 day take down Little fluid 58.5 58.5

H8-5 65 day take down 174 174

H12-4 65 day take down 58 58

H12-5 65 day take down 101.5 101.5

H15-3 65 day take down 113.5 113.5

H15-4 65 day take down 204 204

H15-5 65 day take down 25.5 198 172.5

H24-5 65 day take down 151.5 151.5

H25-3 65 day take down 101.5 101.5

H25-4 65 day take down 192 192

H25-5 65 day take down 152.5 152.5

H25-6 65 day take down 7 119.5 112.5
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Figure C2.S2. Average edema severity rankings over time. Data points represent averages of 

edema scores at a given time point. The high dose group was taken down on day 65 due to the 

high rate of mortalities. Error bars indicate the SEM.  
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Figure C2.S3. Average weight (top) and length (bottom) of fish at day 10 and day 72. Error bars 

indicate SEM and letters indicate significant differences.  
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Table C2.S4. Comparison of histopathological changes in white sturgeon liver observed in 

various studies. 

 

 

 

 

 

 

 

Observed Effect

Linville, 

2006

Tashjian et 

al., 2006

De Riu et 

al., 2014 Zee et al.

Glycogen depletion ≥ 42 ug/g 78 ug/g 

Hepatocellular vacuolar 

degeneration
≥ 42 ug/g 78 ug/g 

Deformed cell nuclei

Necrosis or cell swelling ≥ 20 ug/g ≥ 42 ug/g

Swollen central veins ≥ 20 ug/g 

Changes to bile ducts 

and canaliculi
≥ 20 ug/g ≥ 42 ug/g

Biliary stasis ≥ 20 ug/g 

Increased immune cells 36 ug/g

Increase in 

Melanomacrophage 

aggregates

≥ 36 ug/g 78 ug/g 104 ug/g

Decrease in 

perisinusoidal lipid 

droplets

104 ug/g

Dietary Selenium Concentrations (dm)
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Table C2.S5. Comparison of various dietary SeMet studies with white sturgeon. When there was 

no mention of a certain parameter in the paper the square was left blank. 

 

 

 

 

 

 

Parameters Linville, 2006 Tashjian et al., 2006 De Riu et al., 2014 The present study

Selenium source
Selenized yeast -SeMet 

predominates
L-selenomethionine L-selenomethionine L-selenomethionine

Age 47 weeks post hatch 3 yrs

Weight at Initiation 575 g 30 g 30 g 124 g

Length of Study 23 weeks 8 weeks 8 weeks 10 weeks

Doses
1.0, 20.1, 35.6, 52.5 

ug/g

0.4, 9.6, 20.5, 41.7, 

89.8, 191.1 ug/g

2.2, 19.7, 40.1, 77.7 

ug/g

1.4, 5.6, 22.4, 104.4 

ug/g

Lethal Effect none
1

none
2 none

54% at 104.4 ug/g       

22% at 22.4 ug/g

Growth Rate
Decreasing trend in 

high dose

Significant decline in 

the 41.4-191.1 ug/g 

treatments (BWI)

Significant decrease in 

40.1 -77.7 ug/g 

treatments (%BWI/d)

Significant decrease in 

104.4 ug/g treatment

CF
Significantly lower in 

191.1 ug/g treatment
No change

HSI
Significantly lower in 

191.1 ug/g treatment

Significantly lower in 

104.4 ug/g treatment

Edema none none none 104.4 ug/g by 10 days

1 
One death in the high and low group

2
 99 ± 0.43% survival

3
 Lethal effects include morality and morbidity (severe edema, loss of equilibrium)
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Figure C3.S1. Fold change in gene expression of apoptosis inducing factor (AIF) and caspase 3 

(Cas3). Error bars represent SD. 
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Table C3.S1. Lipid hydroperoxides and selenium concentrations in individual fish. n/a indicates 

that this data was not available. Fish were labeled as follows: dose, tank – fish. 

 

 

Table C3.S2. Mean fold change, standard deviation and stand error of the mean for various 

antioxidant genes. 

 

 

Control

LHP 

nmol/g

Liver [Se] 

ug/g Low

LHP 

nmol/g

Liver [Se] 

ug/g Medium

LHP 

nmol/g

Liver [Se] 

ug/g High

LHP 

nmol/g

Liver [Se] 

ug/g

C4-2 93.92 0.41 L1-4 104.88 2.39 M3-3 66.08 10.84 H2-2 329.04 87.30

C5-5 128.64 0.81 L6-3 90.64 3.63 M9-3 102.08 8.14 H7-4 422.16 115.50

C10-5 103.36 1.05 L11-3 105.12 2.66 M13-5 57.76 9.63 H8-5 37.36 101.03

C17-3 61.76 0.54 L14-4 38.64 3.23 M16-5 186.80 8.11 H12-5 84.56 86.72

C18-5 90.48 0.91 L19-5 51.04 2.77 M21-4 54.16 10.43 H15-5 26.88 137.16

C20-5 256.24 n/a L23-2 86.32 2.74 M22-3 55.04 7.20 H24-5 128.32 82.74

C26-2 54.80 0.39 L27-2 54.32 n/a M28-3 107.04 10.36 H25-5 57.92 n/a

Averages 112.74 0.69 75.85 2.90 89.85 9.24 155.18 101.74

SD 67.99 0.28 27.36 0.45 48.17 1.42 156.53 21.16

Median 93.92 86.32 66.08 84.56

Mean fold change SD SEM Mean fold change SD SEM

Control 1.00 0.29 0.11 1.00 0.42 0.16

Low 2.95 0.40 0.15 1.63 0.50 0.19

Medium 1.66 0.27 0.10 0.92 0.18 0.07

High 1.56 0.34 0.13 0.88 0.34 0.13

Mean fold change SD SEM Mean fold change SD SEM

Control 1.00 0.27 0.10 1.00 0.49 0.19

Low 3.85 1.14 0.43 1.80 0.48 0.18

Medium 1.93 0.24 0.09 3.39 1.64 0.62

High 2.16 0.82 0.31 1.37 0.46 0.17

Mean fold change SD SEM Mean fold change SD SEM

Control 1.00 0.40 0.15 1.00 0.25 0.09

Low 0.90 0.24 0.09 1.15 0.43 0.16

Medium 0.87 0.13 0.05 1.13 0.16 0.06

High 0.54 0.17 0.06 0.95 0.38 0.14

GPx SOD

GST CAT

AIFCas3
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Appendix B: Tank Set – up 

 

The tanks used were the same ones used by Vardy et al. (2015), constructed from high 

density polyethylene (HDPE) and screens were fabricated from plexi-glass with fiberglass mesh. 

The tanks were developed specifically to minimize “dead spaces” and create uniform flow. The 

baffles used by Vardy et al. not used in this experiment. Tanks were arranged in 6 rows of 5 with 

1 unused tank in both the first and last row. Each row of tanks was arranged as shown (see 

following schematic). Water came from a single head tank chilled to 12⁰C and delivered to each 

tank via manifolds. Circulating pumps and air bubblers were installed utilized.  

 

Vardy DW, Doering JA, Santore R, Ryan A, Geisy JP, Hecker M. 2015. Assessment of 

Columbia River Sediment Toxicity to White Sturgeon: Concentrations of Metals in Sediment, 

Pore water and Overlying water. Supplementary Material. Journal of Environmental and 

Analytical Toxicology 5:2. 
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Appendix C: Histological Staining 

Permeating with Parffin 

Permeated with paraffin in an automated MVPI Modular Vacuum Processor. 

45 min 70% alcohol no temperature, no vacuum 

45 min 70% alcohol no temperature, vacuum  

45 min 70% alcohol no temperature, vacuum 

45 min 80% alcohol no temperature, vacuum 

45 min 95% alcohol no temperature, vacuum 

45 min 100% alcohol no temperature, vacuum 

45 min 100% alcohol no temperature, vacuum 

45 min 100% alcohol no temperature, vacuum 

45 min clearant no temperature, vacuum 

45 min clearant no temperature, vacuum 

1 hr paraffin 60C, vacuum 

1 hr paraffin 60C, vacuum 

 

Haematoxylin and Eosin  

Solutions and procedure provided by histology technicians of the Western College of Veterinary 

Medicine, University of Saskatchewan. 

 

2 min xylene 1 

2 min xylene 2 

3 min absolute (100%) alcohol 1 

2 min absolute (100%) alcohol 2 

2 min absolute (100%) alcohol 3 

2 min 95% alcohol 

2 min 70% alcohol 

Dip into running tap water (few seconds) 

Dip into distilled water (few seconds) 

5 min haematoxylin  

Wash off with running tap water (remove excess stain) 
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Dip into acid alcohol (2 seconds) 

10 min running tap water 

Dip distilled water (few seconds) 

3 min eosin 

Dip in running water (remove excess stain) 

Dip in each alcohol once 70%, 95%, 100% alcohol 3, 100% alcohol 2 

1 min 100% alcohol 1 

2 min xylene 

 

Results 

Nuclei – blue 

Background - pink 

 

1% acid alcohol solution 

1000 mL 70% alcohol 

10 mL concentrated hydrochloric acid 

 

Best Carmine 

Luna LG, ed. 1968. Best’s Carmine Method for Glycogen. Manual of Histological Staining 

Methods of the Armed Forces Institute of Pathology 3rd Edition. American Registry of 

Pathology. Toronto, ON, Canada: McGraw-Hill Inc. 

 

1) Deparaffinize and hydrate to distilled water  

2 min xylene 1 

2 min xylene 2 

3 min absolute (100%) alcohol 1 

3 min absolute (100%) alcohol 2 

2 min 95% alcohol 

2 min 70% alcohol 

Dip into running tap water (few seconds) 

Dip into distilled water (few seconds) 
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2) Staining 

Harrison’s hematoxylin solution (1 hematoxylin: 1 distilled water) for 15 min. 

Wash in running water for 15 min. 

Working carmine solution for 30 min. 

Differentiating solution for a few seconds 

Rinse quickly in 70% alcohol 

 

3) Dehydrate 

Dip in each alcohol once 70%, 95%, 100% alcohol 3, 100% alcohol 2 

1 min 100% alcohol 1 

2 min xylene 

 

Results 

Glycogen – pink to red 

Nuclei – blue 

 

Carmine stock solution 

2 g carmine 

1 g potassium carbonate 

5 g potassium chloride  

60 mL distilled water  

Boil in an evaporating dish gently and cautiously for several minutes. When cool (room 

temperature) add 20 mL of 28% ammonium hydroxide. Store in refrigerator. 

 

Carmine working solution 

10 mL carmine stock solution 

15 mL ammonium hydroxide, 28% 

15 mL methanol 
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Differentiating solution 

20 mL alcohol, 100% 

10 mL methanol 

25 mL distilled water 

 

Prussian Blue Method for Hemosiderin  

Clark G, ed. 1981. Staining Procedures 4th Edition. Published for the Biological Stain 

Commission. Baltimore, MD, USA: Williams & Wilkins, Waverly Press Inc. 

 

1) Deparaffinize and hydrate to distilled water  

2 min xylene 1 

2 min xylene 2 

2 min absolute (100%) alcohol 1 

2 min absolute (100%) alcohol 2 

2 min absolute (100%) alcohol 3 

2 min 95% alcohol 

2 min 70% alcohol 

Dip into running tap water (few seconds) 

Dip into distilled water (few seconds) 

 

2) Stain 

Prussian blue staining solution for 1 hr at room temperature 

Counterstain for 2 min in 0.2% safranin O in 1% acetic acid 

Wash in 1% acetic acid 

 

3) Dehydrate 

Dehydrate with 95% and 100% alcohol 

Clear in xylene 

 

Results 

Hemosiderin – blue or green 
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Nuclei – red 

Background – pink 

 

Prussian blue solution freshly made (light sensitive) 

1 g potassium ferrocyanide 

50 mL distilled water 

50 mL 2% hydrochloric acid, C.P. (or 5% acetic acid) 

 

Safranin O (0.2%) 

0.2 g safranin O in 100 mL 1% acetic acid 

 

Periodic Acid Schiff’s 

Schiff’s reagent was provided by technician Jim Gibbons of the Western College of Veterinary 

Medicine, University of Saskatchewan. 

 

Method was modified from IHCWorld. PAS (Periodic Acid Schiff) Staining Protocol. 

http://www.ihcworld.com/_protocols/special_stains/pas.htm 

 

1) Deparaffinize and hydrate to distilled water  

2 min xylene 1 

2 min xylene 2 

2 min absolute (100%) alcohol 1 

2 min absolute (100%) alcohol 2 

2 min absolute (100%) alcohol 3 

2 min 95% alcohol 

2 min 70% alcohol 

Dip into running tap water (5 second dip) 

Dip into distilled water (5 second dip) 

 

2) Staining 

5 min 0.5% periodic acid 
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Rinse in distilled water 

30 min Schiff’s reagent at room temperature 

5 min lukewarm running tap water 

1 min Harrison’s hematoxylin counterstain (1 hematoxylin:1 distilled water) 

5 min wash in tap water 

Rinse in distilled water 

 

3) Dehydrate 

Dip in each alcohol once 70%, 95%, 100% alcohol 3, 100% alcohol 2 

1 min 100% alcohol 1 

2 min xylene 

 

Results 

Lipofuscin – pink 

Nuclei – blue   

 

Periodic Acid 

5 g periodic acid 

100 mL distilled water 
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Appendix D: Histological Images 

 

 

Control (C20-5l) (top) and High dose (H15-5q) (bottom) liver sections stained with PAS at 40x 

magnification. A indicates lipofuscin and B indicates melanin within a melanomacrophage 

aggregate. C indicates a single cell with a measured surface area (Zeiss software). Clear spaces 

within the cells are from lipid stores that dissolved in slide processing.  
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Control (C4-2b) (top) and High dose (H24-5e) (bottom) liver sections stained with H&E at 40x 

magnification. A - vein; B - endothelial cell; C - bile duct; D – canaliculus; E – 

melanomacrophage aggregate; F – parenchymal nucleus; G - hematopoeitic cells; H - a single 

cell with a measured surface area (Zeiss software); I - nucleated red blood cell. 
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Appendix E: Lipid Hydroperoxide (LPO) Assay Kit protocol (Cayman Chemical) 

 

Procedure 

Tried to keep everything on ice as much as possible when extracting 

Liver tissues were snap frozen and stored at -80⁰C.  

 

Small tubes containing liver tissue were taken from the freezer and put on ice 

~100 mg sections were cut off with a scalpel 

Tissue was homogenized in HPLC-grade water as per instruction manual (used nanopure water) 

100 mg tissue + 2mL water -> homogenize 

 

Preparation: 

Aliquot 500 µL sample into a glass tube 

Add 500 µL Extract R (from kit) saturated methanol 

Add 1 mL cold, deoxygenated chloroform (bubbled with nitrogen to remove oxygen) 

Vortex 10 sec 

Centrifuge at 1,500 x g for 5 min at 0⁰C 

Collect the bottom chloroform layer and store on ice  

There was a thick lipid layer on the top and it was difficult to avoid at least a little water. 

To avoid this the collected chloroform was centrifuged again and 500 µL chloroform was 

put in a new tube. 

 

Standard curve (chloroform: methanol blank) and water blank. 

 

Assay: 

500 µL chloroform 

Add 450 µL chloroform: methanol solvent (2:1) (deoxygenated the chloroform and methanol 

first) 

Add 50 µL fresh chromogen 

Vortex  

Let stand at room temperature for 5 min 
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Transfer 300 µL from each tube into the 96 well plate (3 wells per sample) 

Read the absorbance at 500 nm using a plate reader 

 Colour is stable for 2 hours. Beware evaporation  

 

Lipid Hydroperoxide nmol/g Calculation 

1) 0.1 g tissue / 2.0 mL nanopure = 0.05 g/mL 

2) 0.05 g/mL * 0.5 mL homogenate used = 0.025 g tissue in tube 

Add 0.5 mL extract R and 1 mL chloroform to 0.5 mL homogenate 

3) 0.025 g/ 2 mL total volume = 0.0125 g tissue/mL 

There is now 0.0125 g of “liver tissue” (aka hydroperoxides = HPO) in the 1 mL chloroform 

layer 

Take 500 µL of the chloroform layer 

4) 0.0125 g/mL * 0.5 mL = 0.00625 g  

There is 0.00625 g “liver” (HPO) in each assay tube 

5) X nmol / 0.00625 g = ??? nmol HPO/g liver 
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Appendix F: Edema Data 

 

Fish were subjectively categorized based on edema severity by a single observer based on 

the following system: normal (0) – normal appearance with eyes flush to the skull; slight (1) – 

eyes appeared slightly raised from the skull - a minor variation from the classified normal state; 

moderate (2) – definite protruding of eyes from skull; strong (3) – greater protruding of eyes 

from skull and often noticeable bloating of the abdomen; and severe (4) – severe protruding of 

eyes and severe abdominal bloating. Fish were not tagged, therefore the data is representative of 

the tank only, not of specific individual fish within the tank. Fish were observed daily during 

feeding and edema stages were compared to the previous day. Data was recorded when changes 

were observed. For example when a tank which previously contained four stage 1 fish was found 

to contain one stage 2 fish and three category 1 fish. Tanks were labeled by letter denoting dose 

group and number. “Jumper” indicates that the fish was found on the floor having jumped out of 

the tank. Mesh covers were put in place after this occurred.   

 

 

 

Tank 13-Jun 15-Jun 17-Jun 18-Jun 19-Jun 20-Jun 24-Jun 1-Jul 12-Jul 18-Jul 20-Jul 24-Jul 1-Aug

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 2 2 2 2 2 2 2 2 2 2

1 1 2 2 2 2 2 2 2 2 2 2

1 2 2 2 2 2 3 3 3 3 3 3

2 2 3 3 3 3 3 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2 2 2 3

2 2 2 2 2 2 2 2 2 2 2 2 3

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2 2

L1

M3

H2

L6

C5

C4
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Tank 13-Jun 15-Jun 17-Jun 18-Jun 19-Jun 20-Jun 24-Jun 1-Jul 12-Jul 18-Jul 20-Jul 24-Jul 1-Aug

1 1 2 2 2 2 3 3 3 3 3 3

1 1 3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3 3 3

5 5 5 5 5 5 5 5 5 5 5 5

0 0 2 2 2 2 2 1 1 1 1 1

1 2 2 2 2 2 3 2 2 2 2 2

1 5 4 4 4 4 4 4 5 5 5 5

3 3 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 2 2 2 2 2

0 0 0 0 0 0 0 1 2 2 2 2 2

1 1 1 1 1 1 2 2 3 3 3 3 3

2 2 2 2 2 2 3 3 3 3 3 4 4

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1

0 1 1 1 1 1 1 1 2 2 2 2 2

0 0 1 1 1 1 1 1 1 1 1 1

0 0 2 2 2 2 2 2 2 2 2 2

1 1 2 2 2 2 2 2 4 5 5 5

2 2 2 2 2 2 3 4 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0 0 1 1 2 2 2

1 1 1 1 1 1 1 1 2 2 Jumper 5 Jumper 5 Jumper 5

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 3 3 4 4 4 1

0 0 0 2 3 4 4 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

H15

L14

M13

C17

M16

L11

C10

M9

H8

H7

H12
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Tank 13-Jun 15-Jun 17-Jun 18-Jun 19-Jun 20-Jun 24-Jun 1-Jul 12-Jul 18-Jul 20-Jul 24-Jul 1-Aug

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 2 2 2 2 2 2 2 2 2 2 2

1 1 2 2 2 2 2 2 3 3 3 3 3

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 1 1 1 2 2 2 2

0 1 1 1 1 1 2 2 2 Jumper 5 Jumper 5 Jumper 5 Jumper 5

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 4 5 5 5 5

2 5 5 5 5 5 5 5 5 5 5 5

2 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0

0 2 2 2 2 2 2 2 2 2 2 2

1 2 2 2 3 3 3 2 2 2 2 2

5 5 5 5 5 5 5 5 5 5 5 5

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 1 2 2 2 2 2

1 1 1 1 1 1 1 1 2 2 2 2 3

H24

L23

M22

M28

L27

C26

H25

M21

C20

L19

C18


