
Game Theoretic and Machine Learning

Techniques for Balancing Games

A Thesis Submitted to the

College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

for the degree of Master of Science

in the Department of Computer Science

University of Saskatchewan

Saskatoon

By

Jeff Long

c©Jeff Long, August 2006. All rights reserved.

Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgrad-

uate degree from the University of Saskatchewan, I agree that the Libraries of this

University may make it freely available for inspection. I further agree that permission

for copying of this thesis in any manner, in whole or in part, for scholarly purposes

may be granted by the professor or professors who supervised my thesis work or, in

their absence, by the Head of the Department or the Dean of the College in which

my thesis work was done. It is understood that any copying or publication or use of

this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that due recognition shall be given to me and to the

University of Saskatchewan in any scholarly use which may be made of any material

in my thesis.

Requests for permission to copy or to make other use of material in this thesis in

whole or part should be addressed to:

Head of the Department of Computer Science

176 Thorvaldson Building

110 Science Place

University of Saskatchewan

Saskatoon, Saskatchewan

Canada

S7N 5C9

i

Abstract

Game balance is the problem of determining the fairness of actions or sets of actions

in competitive, multiplayer games. This problem primarily arises in the context of

designing board and video games. Traditionally, balance has been achieved through

large amounts of play-testing and trial-and-error on the part of the designers. In

this thesis, it is our intent to lay down the beginnings of a framework for a formal

and analytical solution to this problem, combining techniques from game theory and

machine learning. We first develop a set of game-theoretic definitions for different

forms of balance, and then introduce the concept of a strategic abstraction. We

show how machine classification techniques can be used to identify high-level player

strategy in games, using the two principal methods of sequence alignment and Naive

Bayes classification. Bioinformatics sequence alignment, when combined with a 3-

nearest neighbor classification approach, can, with only 3 exemplars of each strategy,

correctly identify the strategy used in 55% of cases using all data, and 77% of cases on

data that experts indicated actually had a strategic class. Naive Bayes classification

achieves similar results, with 65% accuracy on all data and 75% accuracy on data

rated to have an actual class. We then show how these game theoretic and machine

learning techniques can be combined to automatically build matrices that can be

used to analyze game balance properties.

ii

Acknowledgements

Many thanks to my supervisor, Michael C. Horsch, for his invaluable support,

advice and for reading this so many times he must surely be bored of it by now.

Thanks also to all participants in the study, and the valuable advice of my thesis

committee.

Thanks also to NSERC for funding the years of study that went into this work.

iii

Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Contents iv

List of Tables vi

List of Figures viii

1 Problem Description and Motivation 1

2 Game Theory 6

2.1 External Balance . 8
2.2 Internal Balance . 10
2.3 Game Theory in Games . 11

3 Machine Learning for Constructing Game Matrices from Data 13

3.1 Machine Learning in Games . 17
3.2 Experimental Methods and Terminology 18

3.2.1 Experimental Testbed . 19
3.2.2 Sequence Alignment . 20
3.2.3 Nearest Neighbors Methods 22
3.2.4 Naive Bayes Classification . 23
3.2.5 Boosting and the ADABoost Algorithm 25

4 An Empirical Study of Abstract Strategy Identification from Data 28

4.1 Pre-Data Survey . 28
4.2 Data Collection . 29
4.3 Data Classification . 32

4.3.1 Structure of Data . 33
4.3.2 Needleman-Wunsch Alignment Methodology 34
4.3.3 3-nearest Neighbor Classification 39
4.3.4 Naive Bayes Classification Methodology 40
4.3.5 Naive Bayes with Boosting Methodology 46

4.4 Constructing Game-Balance Matrices 48
4.5 Results and Analysis . 50

5 Conclusion and Future Work 56

5.1 Conclusion . 56

iv

5.2 Future Work . 57

A The Warcraft III Ladder 65

B Pre-Data Survey 66

C Questionnaire 72

D Sequence Alignment Scoring Matrices 78

v

List of Tables

2.1 A 4x4 matrix game that illustrates internal imbalance, where the first
row and column represent play frequencies for each player’s optimal
mixed strategy. Note that no row or column is dominated by any other. 11

4.1 Results of the pre-data survey issued to participance, showing the
number of participants who agreed that the strategies proposed by
the study’s author were common and viable Warcraft III strategies. . 30

4.2 Results of game data classification, showing the number of times each
strategy appeared according to human experts. Note that the total
strategies listed will be higher than the total number of games, as
participants were permitted to list more than one strategy per game. 32

4.3 Results of 100 test runs using Needleman-Wunsch sequence alignment
for classification and selecting exemplars at random. 37

4.4 Breakdown of Needleman-Wunsch alignment results by game strategy
using the edit-distance scoring matrix. 37

4.5 Breakdown of Needleman-Wunsch alignment results by game strategy
using the customized scoring matrix. 38

4.6 Results a test run using Needleman-Wunsch sequence alignment for
classification and selecting a set of ‘good’ exemplars according to a
simple heuristic. 39

4.7 Results of 100 test runs using Needleman-Wunsch sequence alignment
with a 3-nearest neighbor approach for classification. 40

4.8 Breakdown of Needleman-Wunsch alignment results with 3-nearest
neighbor approach by game strategy. 41

4.9 Results of 100 test runs using Naive Bayes classification, randomly
selecting half of the data as a training set for each run. 43

4.10 Breakdown of Naive Bayes classifier results by strategy. 44
4.11 Results of 100 test runs using Naive Bayes classification, with the en-

hancement of 10 additional nodes representing the presence or absence
of individual unit types in the build. 44

4.12 Breakdown of Naive Bayes classifier with enhancement of 10 additional
nodes results by strategy. 45

4.13 Results of 100 test runs using Naive Bayes classification, using the
ADABoost boosting algorithm with M equal to 5. 47

4.14 Breakdown of the boosted Naive Bayes classifier M equal to 5 for the
ADABoost boosting algorithm. 47

4.15 A game balance matrix, with rows and columns constructed using
strictly the labelling provided by human experts over 14 games. . . . 50

4.16 A game balance matrix, with rows and columns constructed using the
labelling provided by Needleman-Wunsch sequence alignment over 14
games. 50

vi

4.17 A game balance matrix, with rows and columns constructed using
Naive Bayes classification over 14 games. 50

4.18 A game balance matrix, with rows and columns constructed using the
kNN Needleman-Wunsch alignment classifier, run on 100 unlabelled
Orc vs. Night Elf games. 51

4.19 A measurement of the difference in alignment score and posterior prob-
ability between correctly and incorrectly classified samples, over 100
random test runs. 55

D.1 The character encoding key for Orc and Human military units. 79
D.2 The character encoding key for Undead and Night Elf military units. 80
D.3 The scoring matrix used for Orc strategy classification. 81
D.4 The scoring matrix used for Human strategy classification. 82
D.5 The scoring matrix used for Undead strategy classification. 83
D.6 The scoring matrix used for Night Elf strategy classification. 84

vii

List of Figures

4.1 The structure of the Naive Bayesian classifier for strategy prediction.
Each UnitX node represents the character at position X in the game
description. 42

4.2 The structure of the enhanced Naive Bayesian classifier for strategy
prediction. Each UnitX node represents the character at position X
in the game description, and each TypeX node is a boolean value
representing the presence or absence of a specific unit type. 46

viii

Chapter 1

Problem Description and Motivation

People who play any sort of competitive game on a regular basis have an intuitive

sense of what ‘game balance’ means. Indeed, many a losing player will, sometimes

with justification and sometimes not, blame his impending loss not on his own lack

of skill, but on imbalances present in the game. Take, for example, a game of

chess. The player who is assigned to play black may feel that he has been forced

to play the weaker side in the game, and thus a loss may not be due to his skill,

but rather because the odds were stacked against him. Available online statistics

indicate that such a complaint could be well-founded, and that black is at a significant

disadvantage over white in chess [Chessgames, 2005].

Similarly, players will often come to identify individual game elements with the

monikers ‘overpowered’ or ‘underpowered.’ This is especially prevalent in online

competitive video games. Certain elements of the game — such as a particular

military unit or weapon, for example — may seem overly effective, thus marginalizing

other elements that they overpower. In the same manner, elements that are too weak

will simply go unused by experienced players. Problems of this sort have long plagued

online multiplayer games; the mutalisk unit, from the popular strategy game Starcraft

[Blizzard Entertainment, 1998], has been cited by designers as a prime example of a

game element that was overpowered and difficult to balance [Cadwell, 2002].

However, while players are intuitively familiar with the concepts brieftly sketched

above, intuition is generally where the familiarity ends. While some classical games

have been modeled from a complexity theory standpoint (chess, for instance, is

EXPTIME-complete [Fraenkel and Lichtenstein, 1981]), to my knowledge there has

been no formal definition of these particular problems in an academic setting, espe-

1

cially coming from the perspective of a design standpoint. Some expertise and advice

on ‘rules of thumb’ exist in industry, of which Cadwell [Cadwell, 2002] is a prime ex-

ample. Carpenter [Carpenter, 2003] uses risk analysis and spread-sheeting techniques

to balance individual elements of multiplayer role-playing games, and Kennerly [Ken-

nerly, 2003] suggests the use of data mining for improving game design. A few other

tips and tricks are available [Adams, 1998, 2002, Rouse III, 2005], and usually con-

sists mainly of the author’s personal advice and experiences. Furthermore, none of

these articles demonstrate rigorous proof or testing of the suggested techniques, nor

do they suggest a formal and general-purpose framework for discussing game-balance

and its most important properties.

For the purposes of this thesis, the term game is used to refer primarily to so-called

parlor games - often manifested by board games such as chess, and card games such

as Blackjack - and multiplayer computer games. However, many of the concepts and

issues raised are applicable to an even wider variety of competitive domains, such

as professional sports. We also restrict our attention to games of the two-player

variety, though in general the principles discussed are intended to apply to games

with numerous players.

To further examine and codify the problem of balance, which at this point has

only been discussed as an informal concept, we divide it into two distinct categories:

external balance and internal balance. We will formalize both of these concepts in

Chapter 2. External balance refers to the balance between two opposing players in

an asymmetric game who are assigned different roles, or action sets, at the game’s

outset. Many games exhibit this asymmetric property; the example of chess, in which

white moves first, has already been mentioned. In the domain of online games, it is

extremely common for players to choose a role or faction at the game’s outset that

dictates their available action set for the remainder of the game. The game is said to

be externally balanced if neither player has an advantage over the other due simply

to the role initially assigned or chosen.

Internal balance refers to the balance between different available actions or ele-

ments of an individual player. If a given action is too weak, then the optimal strategy

2

may be to never use it. Similarly, an action that is too strong may be overused, and

could in fact become the game’s only viable course of action. Unlike problems of ex-

ternal balance, internal balance problems can exist even in symmetric games where

both players have identical action sets available. For instance, online real-time strat-

egy games are symmetric so long as both players select the same initial faction, but

the players may have military units available to them that should never be built

under optimal play. This is an internal balance problem.

Cadwell [Cadwell, 2002] contends that all forms of imbalance boil down to an

elimination of choices. We see that the definitions given here agree with that claim.

In the case of internal balance, it is evident that if the effectiveness of available

actions is too disparate, several player choices have been eliminated. In the case of

external balance, if one role in the game is stronger than the other, then that role

should always be selected first, if a player is permitted to choose her own role. Again,

assuming both players are trying their utmost to win the game, it seems reasonable

to say that a player choice exists only if the two sides of the game, although different,

are equally likely to win the game.

On the point of external balance, it should be noted that in many games a

handicap is sometimes desirable so as to even the playing field between two players

of disparate skill. Therefore, it might sometimes be argued that factions of different

strengths are desirable so as to provide such a handicap, so that one player can

volunteer to play the ‘harder’ side. However, it is our opinion that a handicap

should be an explicit element of a game, configurable by the players, rather than

hidden away in the game’s opposing roles. A handicap is of little use, after all, if

players must first be experts at the game to even realize that the handicap exists.

Both forms of imbalance are highly undesirable in a competitive game. Cadwell

[Cadwell, 2002] describes poor game balance as the factor that often stands in be-

tween a good design and a good game; Carpenter goes so far as to call it the “holy

grail” of game design [Carpenter, 2003]. External imbalance can create discontent

and frustration among players before the game has even begun, particularly for the

player who is forced into the weaker role. Internal imbalance means that the game

3

contains extraneous elements, that exist only to frustrate and confuse inexperienced

players. From a designer’s point of view, it makes little sense to devote resources to

creating a game element that expert players will quickly come to ignore.

The most formal of publicly available industry methods of which we are aware for

dealing with these problems is the Risk Analysis method by Carpenter [Carpenter,

2003]. This is essentially a probabilistic sampling method which simulates the pitting

of game elements against one another and generates a probabilistic model of the

outcome using multiple iterations. This method requires an extensive user-defined

description of the process being simulated, as well as a knowledge of ’average’ player

statistics. The method provides a pair-wise comparison of game elements, but for

truly complex systems, the number of iterations required to obtain a meaningful

output will be significant. Kennerly advocates the use of data mining techniques

[Kennerly, 2003], involving simple comparisons of statistics and rates of change.

Such techniques can inform a designer that a given aggregated rate (such as the

rate at which a certain character class improves in an online role-playing game, for

instance) needs to be changed, although how to change the rate or by how much is

left to the discretion of the designer.

Beyond the above methods, it appears for the most part that game balance is

achieved through extensive amounts of play-testing and trial-and-error on the part of

designers. Companies such as Blizzard Entertainment run extensive beta tests that

last for months and involve thousands of players, in part to obtain data on game

balance issues Blizzard Entertainment [2005]. Balance patches for online strategy

games continue to be released for months or even years after a game goes public.

Board games and card games generally do not have this option, and so it is even more

imperative they be properly balanced before a commercial release. An analytical

method for extracting balance problems and principles from game data, or better

yet identifying and correcting game balance issues without the need for generating

large amounts of data, would be a significant contribution in both domains.

The contributions of this thesis are twofold. First, we reframe and formalize the

problems of game balance using the language of economic game theory. We show

4

how game theoretic concepts and tools can be used to analyze games in extensional

form and extract properties relating to game balance. Secondly, we propose building

formal game models of manageable size through the use of strategic abstractions, i.e.,

a high-level strategy implemented by the player. We provide and evaluate several

different machine learning techniques for automatically classifying these high-level

strategies from real game data, and then show how the results can be used to build

game theoretic matrices.

The remainder of this thesis is organized as follows. Chapter 2 gives a brief

overview of the game theory used in this work and presents game theoretic definitions

of balance, as well as a brief overview of the general application of game theory to

games. Chapter 3 presents a general overview of the machine learning approach

used in this thesis, as well as describing all of the individual technologies used for

experiments. Chapter 4 describes in detail the experimental work of this thesis in

automatically classifying strategies from game data, and presents an analysis of the

results. Finally, Chapter 5 suggests directions of future work and concludes the

thesis.

5

Chapter 2

Game Theory

In this chapter, we first present the game theoretic notation used in this thesis

and then go on to formally define the concepts of external and internal balance and

show how they can be identified once a game has been reduced to a normal form

matrix.

As discussed in Chapter 1, game balance for competitive, multi-player games is

essentially ensuring that the following two broad properties hold. The first property

we call external balance. For a 2-person game to be externally balanced, we require

that both players have an equal chance at winning the game regardless of the game’s

potential starting conditions. This means we do not want the starting conditions of

the game to give an inherent advantage to one player. A symmetric game is trivially

externally balanced, because the starting conditions are identical for both players.

The second property we call internal balance. For a 2-person game to be internally

balanced, we require that for each available action or game element available to a

player, it is useful in at least one circumstance. In other words, we do not want to

confuse players with options that should never sensibly be taken.

For the subsequent work of this thesis, it is necessary to formalize these concepts.

To do so, we turn to the language of game theory, as commonly used in the economic

sciences. In spite of its name, game theory has rarely been applied to actual games,

especially in the context of the game balance problem studied here. We will use game

theory to describe the formalisms that will be our objects of study and analysis.

A game, G, consists of an n-dimensional array of payoff elements, where n is the

number of players in the game. This matrix representation is said to be the normal

form of the game. The rows and columns of the matrix represent actions or strategies

6

that are available to the players. Each payoff element is an n-tuple, which specifies

the payoffs to each of the n players. A payoff is the reward given to a player for the

outcome that a particular array element represents. Usually, these payoffs may be

any element of the set of real numbers; sometimes they can even be qualitative in

nature. It is assumed that each player’s preference is to maximize this payoff.

In this thesis, we consider only 2-player games, in which case the array is a

2-dimensional matrix M , in which the rows represent possible actions of player 1

(termed the row player) and the columns represent the actions of player 2 (termed

the column player). The element M(i, j) is a pair of payoff values, indicating the

payoff for each player when player 1 selects action i and player 2 selects action j.

We also restrict our attention to zero-sum games; that is to say, games that

require that the sum of the payoffs in each particular matrix cell is zero. This model

is an accurate reflection of competitive games, since in such games one player winning

requires that the other has lost. In fact, two-player, zero-sum games are often termed

“strictly competitive” in game theoretic language. In this thesis, we represent the

payoff value of a win as 1, the value of a loss as -1, and a draw (in games where

such is permitted) as 0. Payoff tables throughout this thesis show only the payoff for

the row player; the column player’s payoff is of course the negation of these payoff

elements.

The solution concept used in this thesis is that of mixed strategy Nash equilib-

rium. A set of strategies is said to be in Nash equilibrium if no player can improve

her expected payoff by changing strategies, provided that the other players also do

not change strategies. Each row in the payoff matrix is said to represent a pure strat-

egy for the row player (and similarly with columns for the column player). A mixed

strategy for a player is a probability distribution over the set of his pure strategies,

that defines the probabilistic frequency that each pure-strategy will be selected by

the player. While many games will not contain a pure-strategy Nash equilibrium, at

least one mixed strategy Nash equilibrium is guaranteed to exist. This mixed strat-

egy will often be referred to as a player’s optimal strategy. The standard method of

finding the optimal mixed strategy for a matrix game is the Simplex algorithm, a

7

good description of which can be found in Owen [Owen, 1995] or Papadimitriou and

Steiglitz [Papadimitriou and Steiglitz, 1998].

The value of a game, v, is the expected payoff that player 1 will receive upon

playing her optimal strategy; player 2 will receive its negation. In the case of two-

player, zero-sum games, this value will be unique. Calculating the value of a game

is straightforward once the optimal strategies of the game are known; usually it can

be obtained simply as a byproduct of calculating these strategies via the Simplex

method.

It should be noted that while probably the most common, Nash equilibrium is

not the only solution concept in game theory. There are others that exist as well;

Azhar, McLennan and Reif [Azhar et al., 1992] and Papadimitriou [Papadimitriou,

2005] discuss some of them, as well as some of the shortcomings of Nash equilibrium.

Perhaps the most significant short-coming is that in the general case, multiple Nash

equilibria may exist, and there is no known efficient means to find all equilibria points.

However, two convenient properties of Nash equilibria are obtained by restricting the

proposed model to two-person, zero-sum games. The first is that while it is possible

for multiple equilibrium mixed strategies to exist, they are all guaranteed to result in

the same expected payoff. Secondly, all equilibrium strategies are interchangeable;

that is to say, if (σ1, σ2) is an equilibrium pair, that is to say σ1 is an optimal mixed

strategy for player 1 and σ2 is an optimal mixed strategy for player 2, and (τ1, τ2) is

also an equilibrium pair, then so are (σ1, τ2) and (τ1, σ2) [Owen, 1995].

2.1 External Balance

To define external balance in game theoretic terms, we relate it to the concept of the

value of a two-person, zero-sum game.

Definition 2.1 A two-player competitive game is externally balanced if neither player,

given perfect skill, has a higher probability of winning the game than the other.

We will now show how this definition relates to the game-theoretic value of the

game through the following theorem.

8

Theorem 2.1 A two-player competitive game G is externally balanced if and only

if the corresponding zero-sum matrix game has a value of 0.

Proof 2.1 The following equivalences can be used to obtain both directions of the

proof.

Let G be an n×m zero-sum matrix game where n and m are the number of pure

strategies available to players 1 and 2 respectively, and where element gij is 1 if player

1 wins the game when her action is i and player 2’s action is j, and -1 if player 1

loses. A payoff of 0 indicates a draw. Let x and y be the optimal mixed strategies

for players 1 and 2 respectively, where xi and yi represent the players’ frequency of

play for pure strategy i. G has a value of 0 if and only if the following sum holds:

n∑

i=1

m∑

j=1

xiyjgij = 0 (2.1)

As previously defined, gij ∈ {−1, 0, 1}, with 1 representing a win for player 1, −1

representing a loss, or 0 representing a draw. We can partition this sum according

to the values of gij.

∑

i,j:gij=1

xiyjgij +
∑

i,j:gij=−1

xiyjgij +
∑

i,j:gij=0

xiyjgij = 0 (2.2)

Clearly, the terms where gij = 0 can all be dropped, as they do not affect the

equality. Furthermore, since the gij are constant in both the other sums (1 for the

first sum, and -1 for the second), they can be factored from the summation, yielding

the following:

∑

i,j:gij=1

xiyj −
∑

i,j:gij=−1

xiyj = 0 (2.3)

∑

i,j:gij=1

xiyj =
∑

i,j:gij=−1

xiyj (2.4)

Now, let p1 be the probability that player 1 wins the game, and p2 be the probability

that player 2 wins the game, given perfect play by both sides. Since by the definition of

9

G, player 1 wins the game when gij = 1, and the xiyi define a probability distribution

over these possible outcomes, we see that:

p1 =
∑

i,j:gij=1

xiyj (2.5)

p2 =
∑

i,j:gij=−1

xiyj (2.6)

By equation 2.4, this is true if and only if:

p1 = p2 (2.7)

2.2 Internal Balance

Next we consider the issue of internal balance in game theoretic terms.

Definition 2.2 A two-player competitive game is said to be internally balanced if

for every available action i, there exists some optimal strategy x for which xi has a

non-zero frequency of play.

One obvious method of determining this is simply to find a player’s optimal

mixed strategy, x. If xi > 0 for all i, then the definition of internal balance is

immediately satisfied. Since optimal strategies are interchangeable in a two-player,

zero-sum game, we need not concern ourselves with finding all possible optimal

strategies; finding a single one for which this property holds is sufficient. However,

while finding a single strategy could prove that the property does hold, we would

have to find all optimal strategies to prove that it does not, and in general there is

no known method for doing this [Owen, 1995].

Therefore, it would be convenient if an even simpler criteria could be found

for determining internal imbalance. One such game-theoretic concept that seems

intuitively plausible is that of domination. We say that the ith row dominates the

kth row if, in a matrix game G, gij ≥ gkj for all j and gij > gkj for at least one j.

The situation is similar for columns. A dominated row or column can be eliminated

from the game without affecting optimal strategies for either player.

10

Table 2.1: A 4x4 matrix game that illustrates internal imbalance, where the first
row and column represent play frequencies for each player’s optimal mixed strategy.
Note that no row or column is dominated by any other.

// 0% 33% 33% 33%

0% -1 1 0 -1

0% 0 -1 -1 1

100% 1 0 0 0

0% -1 0 -1 1

However, while it is evident that a game is not internally balanced if it contains

a dominated row or column, the converse does not hold. The proof is through the

following simple counter-example in Table 2.1.

It can be found through standard means that the optimal strategy profile x for

player 1 consists of the vector (0, 0, 1.0, 0), whereas the profile y for player 2 consists

of (0, 0.33, 0.33, 0.33). Both players have one or more options available that should

never be played under their optimal strategies. However, an examination of the

matrix reveals that no row or column is dominated by any other. This means that

a lack of domination is not sufficient to demonstrate internal balance in a game.

Therefore, for this thesis, we must resort to calculating a strategy profile for each

player, and ensuring that no action has a zero-frequency of play. Should we find an

optimal strategy such that this property holds, we call the game internally balanced.

Should we find a dominated action, we say the game is internally imbalanced. Should

we fail to find either a strategy where no action has a zero-frequency of play or a

dominated action, we cannot say whether or not the game is internally balanced.

Therefore, the problem of determining internal balance is a semi-decidable problem.

2.3 Game Theory in Games

In spite of its name, as a modelling tool game theory has more often been used

to describe economic, social and political situations than actual games. However,

the most basic and famous game-playing algorithm, minimax search, is based upon

11

game theoretic principles, and with the computational enhancement of alpha-beta

pruning [Knuth and Moore, 1975], has long been used for playing well-known, perfect

information games such as chess [Shannon, 1950]. A perfect information game is

one in which all the events that have thus far occurred in the game are visible to

all players. Berlekamp, Conway and Guy [Berlekamp et al., 1982] apply a game

theoretic, mathematical analysis to a wide variety of puzzles and classical games,

but as with chess, the focus of the work remains solving for optimal play, not game

design. Ernst [Ernst, 1995] provides a deep, combinatorial game theoretic analysis of

the ancient Hawaiian game of konane, but contends that such an approach is unlikely

to be practical for games that do not fit the alternating-move, perfect information

model. To our knowledge, there is no specific work in applying game theory to

provide a general framework for describing design properties of modern games.

12

Chapter 3

Machine Learning for Constructing Game

Matrices from Data

Chapter 2 makes a rather cavalier assumption: namely, that the real-life game

in question has already been converted into its normal form matrix, and that payoff

values for this matrix are readily available. In reality, it is difficult to imagine a real

world game as a simple matrix of payoffs, even for designers well-versed in game

theory. It is also difficult to imagine the effects that changing some payoff in the

formal matrix representation, which a designer might like to do to correct detected

imbalances, might have on the actual game. The concern of this chapter is to examine

methods for automatically building a normal form game directly from game data.

A fundamental problem of the normal form is size. No interesting game is simple

enough that every possible exact line of play can be enumerated in the game matrix,

because if it were small enough, we would be able to find the game’s optimal strategy

and the game would be solved and thus no longer interesting, in the same way that

tic-tac-toe is a solved game. Even if such a matrix could be built, the computational

costs for computing the required balance properties would be prohibitive, as the

Simplex algorithm is exponential in the worst case [Owen, 1995]. And furthermore,

any results that did arise from such a huge matrix would be of little use to game

designers, since it is difficult to interpret the meaning of individual payoff values

when there are many millions of them in the matrix.

Therefore, in order to make use of the definitions in Chapter 2, designers need two

things. First, they will require tools, techniques and guidelines for mapping a real-

world game into a normal matrix form, a process which is possibly quite unintuitive

13

for designers unfamiliar with formal game theory. Secondly, the size of the resulting

matrix must be limited so as to be manageable, both for reasons of complexity and

meaningfulness of results, while still capturing the essential balance dynamics of the

game.

One approach to the problem of balance that might be imagined is to construct

some form of database listing all game elements and their numeric properties, over

which the designer presumably has control. Designers could make changes to various

quantities in the table and ask the system for some kind of prediction on the outcome,

similar to the value of the game that we present in Chapter 2. However, we are aware

of no known computational method for predicting game results from such a table.

Such a table might still be unmanageably large and predicting the outcome of a single

change seems a very difficult task. Furthermore, a table that compares game elements

only on an individual basis fails to capture potential synergy between elements, as

well as intangible variables such as ease of use, or how easy it is for a human player

to make use of a particular element. Modelling these factors purely from table seems

impossible without a fully-featured automated player which is competitive with high-

level human play, which of course does not exist for almost all modern competitive

games.

In this thesis, we instead propose using machine learning techniques to build what

we call ‘strategic abstractions.’ We use the term strategic abstraction to refer to the

higher-level intent behind individual lines of play, which results in general strategies

that are very often recognizable by human experts. For instance, among professional

chess players, there are a reasonably small number of ‘standard’ openings. If we

treat these openings as ‘strategies’ in the game theoretic sense, they could serve as

the rows and columns of the matrix necessary for the analysis of Chapter 2, although

we would of course prefer an abstraction that captures the entire game, not just the

opening. Similarly, players of modern online games often develop and use high-level

strategies that can be used as abstractions of the game’s state space.

These high-level strategies seem well-suited to our purposes of building a game

matrix. First, they seem to satisfy in general the game theoretic assumption that the

14

row and column of the normal form game are selected secretly and simultaneously,

and therefore map well into the formalism proposed in Chapter 2. Secondly, in

some cases the number of such strategies is quite manageable, leading to a small

matrix easily amenable to analysis. Furthermore, we conjecture that balance results

expressed in terms of human-identifiable strategies would offer much more insight

to designers than balance results about long and complex individual sequences of

moves.

There are some potential drawbacks to the use of these strategic abstractions.

The first is that an individual game example may exhibit no general high-level strat-

egy at all. Sometimes the implementation of the strategy may be less clear or have

variations, in which case human experts might disagree on the general strategy used.

Secondly, the strategy is not something explicitly stored in a game’s description, and

thus automated methods must be developed for inferring this strategy from other

game data. We examine these issues further as part of our experiment in Chapter 4.

The word “abstraction” is very often used in Computer Science and Artificial

Intelligence. A complete review is impossible, so we mention a few topical and

important uses and later show how they differ from our intended use. Knoblock

[Knoblock, 1994] discusses abstractions in the planning domain, and develops a

context-independent abstraction generator for planning problems. His abstractions

are obtained by dropping literals from the conditions, essentially allowing the planner

to build its plan around the more ‘important’ or difficult attributes of the problem

domain. Thus, each state in the abstract search space corresponds to one or more

states in the original space, but with certain details omitted. In generating his ab-

stractions, Knoblock enforces the ordered monotonicity property, guaranteeing that

operations identified at a higher level of abstraction will be left unchanged as the

plan is further refined in detail.

Holte et al. [Holte et al., 1996] use a similar approach in the context of the well-

known A* search algorithm. They create an abstraction of the original search space

S, thereby allowing distances in the abstract space to serve as the heuristic in the

original space. The abstraction is simply created by amalgamating states within a

15

certain edge radius of each other into a single abstract state. This is done repeatedly

and hierarchically so that the search space may be examined at different levels of

granularity.

These abstractions by Holte and Knoblock are similar to the strategic abstrac-

tions we discuss here in that they are homomorphic transformations: one state in the

abstract space corresponds to several states in the more detailed, original space. The

crucial difference is in the criterion for the grouping of states. Both Knoblock and

Holte have as a goal to speed up the process of search. However, planning and search

are non-adversarial environments. For the strategic abstractions that we define here,

the link between states in the original space is what seems to be their general strate-

gic equivalence against an adversary. The abstractions exist because they facilitate

discussion and understanding of the game’s strategic properties, as often seen on

gaming discussion websites WCStrategy [2006]. Ultimately, though, this classifica-

tion is one of opinion, and different experts might very well disagree in some cases

as to whether a given game followed one strategy or another. Thus, an appropriate

grouping into abstract states is not as straight-forward as simply grouping together

states that are within n edges of each other in the original space. Furthermore, the

search space of the games we examine is far too large to be fully surveyed, making

an automatic amalgamation of search states impossible. We therefore instead rely

on domain-specific knowledge to create meaningful strategic abstractions.

Therefore, in this thesis we propose the use of machine learning techniques to de-

tect high-level player strategies from raw game data. The ultimate goal is to provide

a four stage process of balancing games. First, strategic abstractions of the game

are developed and machine learning models are trained to recognize strategies in

data. Secondly, these strategies are used to construct a matrix in the normal form as

described in Chapter 2. Thirdly, balance properties of this matrix are automatically

detected and abstracted, again using the definitions of Chapter 2. Finally, problems

are reported back to designers in terms of the over or under effectiveness of high-level

strategies.

Although machine learning has the obvious disadvantage of requiring at least

16

some amount of data, usually at least some of which must be labelled, it otherwise

seems well-suited for this task. First of all, a machine learning approach allows for

the game matrices of our method to be built almost automatically, without the need

for a formal model of the game constructed by the designer. Secondly, it provides

an easy method for obtaining matrix payoff elements, which can easily be obtained

from data once it has been partitioned into strategies. Thirdly, it captures what

players of the game are actually doing, rather than what game designers think they

should be doing.

3.1 Machine Learning in Games

There has been a vast array of work in applying machine-learning techniques to the

playing of games. Among the most famous is Tesauro’s work in training a system

to play backgammon [Tesauro and Sejnowski, 1989] [Tesauro, 1995]. Learning of

various forms has also been applied to checkers [Samuel, 1959], chess [Thrun, 1995]

and othello [Buro, 1999]. Much of this work has been phenomenally successful and

has resulted in computer players that rival or defeat human world champions. In

these games, learning is often used to develop intermediate state evaluations for

use in more traditional minimax search trees. All of these games, however, have

benefitted from years of study and in many cases centuries of playtesting; there is

no real question about the ‘design properties’ of these games. The concern is only

to find a winning strategy for the game, not to extract properties of the game itself

for design purposes.

An exception to this is the work by Kalles and Kanellopoulos [Kalles and Kanel-

lopoulos, 2001], who specifically mention the problem of game design in applying a

reinforcement learning algorithm to a simple abstract strategy game. The machine

is given only the rules of the game, and is then subjected to a reinforcement learn-

ing algorithm in which it repeatedly plays against itself. The goals of this process

are to quickly develop a competent computer player for the game, and to expose

possible design flaws in the game itself. They posit that their approach can substan-

17

tially speed up the game design process by allowing designers to rapidly test rule

variations. Kalles and Kanellopoulos informally mention many of the concepts we

formalize here, particularly the ‘fairness’ (external balance) of the game, but also

the possible dominance of a ‘defender’ strategy (internal imbalance), although they

are not concerned with creating a general framework for identifying and classifying

game properties that emerge from their approach. Another caveat is that the use-

fulness of their approach for design purposes is contingent on the learned behavior

being competitive with high-level human play. For newly invented games such as

those considered by Kalles and Kanellopoulos, this is difficult to verify without large

amounts of human playtesting which was beyond the scope of their study.

It should also be noted that the classically studied games in the machine learning

field, although obviously deep and complex in practice, are in general trivially simple

from a game theoretic viewpoint. Chess, checkers and othello are all zero-chance,

perfect information, alternating move games that fit perfectly into the minimax game

tree framework. Many modern games, particularly video games, are not like this and

are complicated by real-time play, imperfect information and a branching factor that

dwarfs that of checkers. There has been some work by Kovarsky and Buro in applying

classical search to simultaneous move abstract combat games [Kovarsky and Buro,

2005], but for the most part, competent game-playing algorithms for more ‘difficult’

games do not yet exist; instead, computer players are usually given hard-coded scripts

to follow which are easily defeated by an experienced human player.

3.2 Experimental Methods and Terminology

So far, we have provided a game theoretic framework for analyzing games, and

motivated the need to build strategic abstractions using machine learning tools in

order to construct useful matrices. In this section, we will first give an overview

of the testbed that will be used for the experimental work in Chapter 4, and then

provide a brief background and description of the different computational methods

used in the experimental work.

18

All of the methods we consider are supervised learning methods. A supervised

learning method is one in which a classifier is built using training examples for which

the variable of interest (usually called the class) is known. An unknown example

is then assigned a label based on what the classifier has learned from the known

labelled examples. We will discuss four such approaches in this section. The first is

Needleman-Wunsch sequence alignment, a method commonly used in bioinformatics.

The second is k-nearest neighbor classification. The third is Naive Bayes classification

and the fourth is boosting, an approach that can be used to enhance the accuracy of

existing learning algorithms.

3.2.1 Experimental Testbed

The major test-bed for this thesis will be the popular real-time strategy game War-

craft III, by Blizzard Entertainment [Blizzard Entertainment, 2005]. Warcraft III

is a competitive, online military strategy game. During the game, players collect

resources which they first use to build infrastructure such as production buildings,

and then to build military units, which can then be used to attack the opponent.

Player actions range from the selection of what buildings to construct and where,

choosing the type and number of troops to produce and ordering existing troops to

move, attack or use special abilities. In Warcraft III, each faction has nine or ten

different types of military units available. In addition, players produce workers to

perform basic resource-gathering tasks at their base, and Heroes, which are special

units that become more powerful as they fight and gain experience. Military units

cost resources to produce, such as gold and lumber. In addition, each unit has a food

cost, which is a representation of the ‘size’ of the unit. A player may only have up

to a given limit worth of food cost in play at any one time. Warcraft III is also an

imperfect information game, as each player only observes the map within a certain

range of her buildings and units.

An important facet of Warcraft III is that at the beginning of a match, players

elect to play one of four distinct races, or factions. Each faction has unique units and

abilities available, resulting in different strategies depending on the faction match-

19

up. Factions are chosen simultaneously by both players at the beginning of a match.

Opinion of the ‘best’ faction — or in other words, of balance — is a frequent debate,

and Blizzard routinely releases patches to fine-tune game parameters so as to address

balance issues.

Warcraft III makes for a suitable test-bed for this project due to the plethora

of game data in the form of online replays, available on numerous replay websites

[WCReplays, 2006] [WCStrategy, 2006] [BattleReports, 2006]. It is also a game in

which general high-level strategies seem to exist and quickly proliferate, due again

to the easy availability of replays by expert players. The goal of the experimental

section of this thesis is to compare the effectiveness of a variety of machine learning

techniques at extracting these strategies from game data and applying game-balance

definitions to the resulting matrices.

Our representation of each Warcraft III game consists of a string of characters,

in which each character corresponds to a military unit constructed by the player.

These strings are extracted directly from raw Warcraft III replays. This data format

is particularly amenable to analysis by sequence alignment and k-nearest neighbors

methods as discussed below, although we use this same representation for all the

machine learning algorithms evaluated in Chapter 4. Details of this representation

are also discussed in Chapter 4.

3.2.2 Sequence Alignment

In this section, we review the basic terminology of bioinformatics sequence alignment,

the first of two methods used in the experimental section of this thesis.

Bioinformatics offers a plethora of techniques for comparing the similarity of long

strings of characters (traditionally, representing nucleic and amino acids). Recent

methods can compute this similarity for entire genomes consisting of thousands if

not millions of characters [Delcher et al., 1999] [Brudno and Morgenstern, 2002]. The

most fundamental of these methods is the Needleman-Wunsch algorithm [Needleman

and Wunsch, 1970], along with the closely related Smith-Waterman algorithm [Smith

and Waterman, 1981] and their many heuristic variants, such as BLAST and PSI-

20

BLAST [Altschul et al., 1997]. The basic idea of Needleman-Wunsch is to take two

strings of characters and align them, usually through the insertion of gaps, especially

in strings of disparate lengths, so as to maximize the score of the alignment. In its

most simple form, we can use a scoring function of 0 for a match and −1 for a gap

or a mismatch. Thus, an optimal alignment of the strings ATAT and AGGAT would

consist of:

AT_AT

AGGAT

and the score would be −2. Using this scoring function, Needleman-Wunsch align-

ment in fact results in the Levenshtein [Levenshtein, 1966] distance, or edit distance,

between two strings. However, sometimes a more complex scoring function is used

[States et al., 1991].

Needleman-Wunsch alignment is a greedy, dynamic programming algorithm. Con-

sider the alignment of two strings, X and Y , of lengths n and m respectively. We will

find the global alignment of these strings by first storing the alignment of substrings

of X and Y in an n ∗ m alignment matrix. Take the problem of aligning xi, the

ith character of X, with yj, the jth character of Y . x0 to xi−1 are assumed to have

already been optimally aligned with y0 to yj−1, and stored in the alignment matrix.

Therefore, at this stage, there are only three options. The first is to insert a gap in

X at the current position, pay the cost of aligning a gap with yj and increment j.

The second is to insert a gap in Y at the current position, pay the cost of aligning a

gap with xi and increment i. The third is to pay the cost of aligning xi and yj and

increment both i and j. Needleman-Wunsch alignment chooses the option with the

lowest cost and store the result; if there is a tie, then either choice would result in an

optimal alignment. When the last character for both strings is reached, the cost of

the optimal alignment will be stored in the bottom right-hand corner of the matrix

we have been using to keep track of the alignment scores.

Needleman-Wunsch sequence alignment is guaranteed to result in the optimal

alignment score. However, the algorithm is quadratic in the length of the two strings,

and since biological sequences are frequently in the millions of characters, most often

21

heuristic versions such as BLAST and PSI-BLAST are used [Altschul et al., 1997].

In addition, many modern alignment programs can deal with more sophisticated

features to better model real-world biological processes, such as transposition and

variable gap costs. For example, translation is the process through which two seg-

ments of DNA will be swapped in their ordering. Because of this process, we say

that the strings AGGGCTTT and CTTTAGGG are much more similar than their

simple edit distance would imply. Furthermore, in biological sequences, new charac-

ters tend to occur in chunks, and thus for most biological purposes, the presence of

a gap is more significant than its length. Modern alignment programs can recognize

these features and allow for them while calculating the alignment cost.

3.2.3 Nearest Neighbors Methods

The nearest neighbor approach is another machine learning method, dating back to

Fix and Hodges [Fix and Hodges, 1957]. The fundamental idea of a nearest neighbor

approach is, given a labelled dataset and an unlabelled example x, assign to x the

label of the closest example in the dataset according to some distance metric. A

common extension is the k-nearest neighbor approach (often abbreviated kNN), in

which we select the k nearest neighbors to an unlabelled example x, where k is an

input to the algorithm, and simply have a vote among these k examples to assign

a class to x. This method is perhaps among the simplest of supervised learning

methods.

The most difficult part of kNN classification is choosing an appropriate distance

metric. Euclidean distance between numeric feature vectors is often inappropriate, as

all features may not be of equal importance or measured on the same scale. Stanfill

and Waltz [Stanfill and Waltz, 1986] examine these issues of adapting a distance

metric to the data. Since we are representing our data as strings of characters,

however, we will use the Needleman-Wunsch alignment distance as our distance

metric for the experiments in this thesis.

22

3.2.4 Naive Bayes Classification

Naive Bayes classification is a common, simple and (perhaps surprisingly) effective

classification and machine learning technique. It is a Bayesian network with a sim-

ple, restricted structure. A Bayesian network is a Directed Acyclic Graph (DAG),

consisting of a set of nodes, which represent random variables, and a set of arcs which

represent conditional dependence between variables. Associated with each node is a

Conditional Probability Table (CPT), which lists the probabilities that the variable

will take on a given value, given the possible states of its parents in the graph. Taken

together, the CPTs are a factorization of the full joint probability distribution (JPD)

of the network. Probabilities of interest are calculated by multiplying the CPTs of

the network together and summing over unobserved values [Pearl, 1988].

The major strength of Bayesian networks is their ability to compactly represent

conditional independence. Unless the graph is very dense, this can result in an

exponential savings in space requirements over the pure JPD, because independence

between variables is explicitly represented.

It has been shown that in the worst case, inference in a Bayesian network is also

NP-hard [Cooper, 1990]. However, quite often this inference can in fact be very

efficient, depending on the network structure. The Naive Bayes classifier is one such

structure.

In Naive Bayes, there is one node called the class node, which is normally unob-

served and represents the class we are trying to predict. All other nodes are attribute

nodes, and these nodes are all children of the class node. There are no other arcs

permitted in the graph.

Once the structure of a Naive Bayes classifier has been set, the CPTs for each

node can easily be learned from data. This is essentially just a counting process, in

which we count the number of times a particular attribute value occurred, given the

class, and is given by Equation 3.1, where C is the class node, c is a possible value

of the class node, A is an attribute node and a is a possible value of the attribute

node. The term p(X = x) means the probability a that variable X has a value of x,

23

while the term #(X = x) represents the number of times the variable X had a value

of x in the sample data. Like the kNN classifier discussed above, Naive Bayes is a

supervised learning method and requires that the class of all training data is known.

p(A = a|C) =
#(A = a, C = c)

#(A = a)
(3.1)

The posterior probability of the class node can then be calculated according to

Equation 3.2, given that our n evidence nodes, A1, . . . , An, have the values a1, . . . , an.

p(C = c|a1, . . . , an) =
p(a1, . . . , an|C = c)p(C = c)

p(a1, . . . , an)
(3.2)

However, the key assumption of the Naive Bayes classifier is that the attributes are

independent given the class. Therefore, Equation 3.2 can be simplified to be read

directly from the network. As the denominator is simply a normalizing constant, it

too can be dropped from the expression and we may obtain the most likely class by

choosing c such that Equation 3.3 is maximized.

p(C = c|a1, . . . , an) = p(a1|C = c), . . . , p(an|C = c)p(C = c) (3.3)

For more details on Bayes nets in general and learning in Bayes nets, see Heck-

erman [Heckerman, 1996b] or Krause [Krause, 1998].

Naive Bayes has been used successfully in a variety of domains, and due to its

simplicity, it is a good first approach to a variety of machine learning problems.

One of the better known problems to which it has been applied is handwriting

recognition. Frey [Frey, 1998] tests a Naive Bayes classifier on a collection of hand-

written digit data (numeric digits from 0 to 9) with a variety of sample sizes. With a

training set size of 120, or 12 examples per digit, accuracy of the classifier is around

70%. With 1920 training samples, or 192 examples per digit, the accuracy is higher,

approaching 80%. Naive Bayes has been even more successful in the domain of junk

email classification, achieving a precision of 95% with a training set of 2500 messages

[Sahami et al., 1998]. As a result, many modern email clients now possess such a

filter.

24

3.2.5 Boosting and the ADABoost Algorithm

Boosting is a fairly contemporary technique that is not itself a machine learning

method, but rather a method for potentially increasing the accuracy of an existing

machine learning algorithm. Boosting was first proposed theoretically by Schapire

[Schapire, 1990]. The basic idea is instead of training only one classifier, we train M

classifiers, each of which will have a weighted vote on classifying unknown examples.

Each of the M classifiers is trained on the same training data, and then tested on

this same data; the training data is then weighted for training the next classifier.

Samples that were correctly classified by the classifier m will be assigned a lower

weight when training classifier m + 1, the basic idea being that we already have a

good classifier for those samples and now we need to work on building a classifier

that handles the ‘tougher’ ones.

An important property of boosting in general is that for large enough M , it is

guaranteed to produce a weighted set of classifiers that perfectly classifies the training

set, so long as the machine learning algorithm used is a weak learning algorithm —

that is to say, better than random guessing [Russell and Norvig, 2003]. For boolean

classification problems, this means a 50% classification accuracy on the training set

is needed. Schapire shows that for multiclass classification problems, the same is

generally true, but boosting algorithms may require modification; however, so long

as classifier accuracy is greater than 50% for these multiclass problems, the same

algorithms as those used for the boolean case can still be used [Schapire, 2001].

For this thesis, we will make use in particular of the ADABoost algorithm, de-

veloped by Freund and Schapire [Freund and Schapire, 1996]. We use the version as

presented by Russell and Norvig [Russell and Norvig, 2003] and which appears as

follows:

function ADABoost(examples, L, M) returns a a weighted-majority hypothesis

inputs: examples, set of N labelled examples

L, a learning algorithm

M , the number of hypotheses in the ensemble

25

local variables: w, a vector of N examples weights, initially 1/N

h, a vector of M hypotheses

z, a vector of M hypothesis weights

for m = 1 to M do

h[m] = L(examples, w)

error = 0

for j = 1 to N do

if h[m](xj) != yj then error = error + w[j]

for j = 1 to N do

if h[m](xj) = yj then w[j] = w[j] * error/(1 − error)

w = NORMALIZE(w)

z[m] = log(1 − error)/error

return WEIGHTED-MAJORITY(h, z)

The function WEIGHTED-MAJORITY at the end returns the output value with

the highest vote from all the hypotheses in h, with the votes rated by the vector z.

The most important steps of the algorithm are calculating the error of the current

model, and adjusting the weight of each sample for the subsequent model. For the

former, whenever an example is incorrectly classified by the current model, we add

the weight of the example to the current model’s error. For the latter, if the example

was correctly classified, we reduce its weight by a factor of error/(1−error), meaning

that if we have a highly accurate model that correctly classifies the example, we

significantly reduce the weight of that example for future models.

Boosting is primarily intended as a means of combining several crude, ‘rule of

thumb’ hypotheses to form a strong and accurate classifier [Schapire, 2001]. Russell

and Norvig show results for a sample boolean decision problem using restaurant data

where boosting with a decision tree model can achieve 80% classification accuracy

with a training set of 20 samples, and 90% with a training set of 100 samples.

The unboosted decision tree on the same data achieves accuracy of 70% and 75%

26

respectively [Russell and Norvig, 2003]. Other general problems to which a boosting

approach have been applied are spoken language understanding [Tur et al., 2003],

text categorization [Schapire and Singer, 2000] and auction price prediction [Schapire

et al., 2002].

27

Chapter 4

An Empirical Study of Abstract Strat-

egy Identification from Data

The overall goal of the experimental part of the study is to answer three general

questions. First, do high-level abstract strategies that human players can identify

really exist in game data? Second, can this high-level strategy be automatically

identified, and with what accuracy? And third, if so, how do available methods

compare for this task?

To achieve this goal, the study is divided into four major sections. Section 4.1 de-

scribes a pre-data survey of experts for determining domain-specific abstract strategic

classes. Section 4.2 describes the collection of game data and labelling by human

experts. Section 4.3 describes the methodology for classifying the data using se-

quence alignment, kNN classification, Naive Bayes and Naive Bayes with boosting.

Section 4.4 shows how game balance matrices can be constructed using the results

from Section 4.3, and Section 4.5 provides an analysis of the results.

4.1 Pre-Data Survey

The goal of the pre-data survey phase of the study was two-fold: first, to collect

participants for the study, and secondly to determine the contents of the classification

questionnaire that would be used during data collection. The purpose of the study

was not to evaluate the opinions of the participants, but rather to apply their expert

knowledge to the data. Therefore, participants were asked to be familiar with the

game Warcraft III: The Frozen Throne, by virtue of a nominal minimum rank on

28

the Warcraft III online ladder (see Section A of the Appendix for a brief description

of the Warcraft ladder). Beyond this, no evaluation of the participants’ expertise or

qualifications was performed.

In addition, each participant was given an initial survey. The survey consisted

of a list of several potential high-level strategies usable by experienced Warcraft III

players, as well as a description of those strategies. The initial list of strategies was

hand-picked by the study’s author, using prior experience with the game, resulting

in a choice of three or four strategies for each of the four races. Warcraft III has four

distinct races or factions from which a player may choose, each with unique units

and strategic options available. Participants were asked to agree or disagree on each

listed strategy as a common and viable strategy on the Warcraft III: The Frozen

Throne online competitive ladder. Participants were also asked to include a free-

form description of any major strategies they felt had been left out by the study’s

author. A copy of the distributed survey is included in section B of the Appendix.

A total of 15 people participated in this portion of the study. In general, par-

ticipants agreed with all of the potential strategies proposed by the study’s author,

as well as proposing a total of 9 additional strategies. Due to this agreement, all

the proposed and suggested strategies were included on the questionnaire used in

the Data Collection section below, except for the initial Double Lodge strategy, due

to low levels of player agreement. A full summary of the results of this survey is

provided in Table 4.1.

4.2 Data Collection

The purpose of data collection was to assign a strategy label to a set of Warcraft

III: The Frozen Throne replays. One hundred replays were collected, all from the

public website www.wcreplays.com [WCReplays, 2006]. At the time of this study,

the current version of Warcraft III was 1.20d (it should be noted that replays are

not compatible between major patches, and so data used in this study may not

be viewable using the Warcraft III game engine in the future). All replays depicted

29

Table 4.1: Results of the pre-data survey issued to participance, showing the number
of participants who agreed that the strategies proposed by the study’s author were
common and viable Warcraft III strategies.

Orc Strategies

Gruntraider Gruntapult WyvernRush DoubleLodge

Count 13/15 11/15 8/15 6/15

Human Strategies

Fast Expand RifleSorc GryphonRush

Count 12/15 11/15 10/15

Undead Strategies

FiendStatue GhoulGarg Necrorush

Count 12/15 13/15 10/15

Night Elf Strategies

HuntressRush ArcherTalon FastBears

Count 14/15 12/15 9/15

30

play of top-ranked Warcraft III players, and many of the games were from important

tournament matches. As all collected games were two-player matches, this resulted

in a data-set of 200 individual samples or ‘builds.’ These were selected randomly

from the website, resulting in a distribution of Warcraft III factions as follows: 42

Orc builds, 43 Human builds, 67 Night Elf builds and 48 Undead builds. This sample

was selected at random and the prevalence of Night Elf builds would therefore most

likely be caused by a higher popularity of the Night Elf faction.

Replays were then distributed in randomly determined sets to participants who

had responded to the pre-data survey. Each participant was sent from ten to twenty

replays, and asked to classify the strategy of each player in each game according to a

multiple choice questionnaire distributed with the replays. The available options for

the questionnaire were taken directly from the pre-data survey. In addition, a ‘None

of the Above’ option was included as a valid option, to represent the possibility that

a game may not exhibit a common and identifiable strategy. Unlike in the pre-data

survey, participants were not asked to qualify the selection of this option. Classi-

fication options were not assumed to be mutually exclusive, and participants were

invited to select more than one strategy if they felt the game was best described in

this manner. A copy of the questionnaire instructions and an example questionnaire

are included in Appendix C.

Participation in this phase of the study was somewhat lower than what was hoped

for. This resulted in a total of 7 respondants for the one-hundred replays. It was

initially hoped to have some redundancy in the study by having the same replay

viewed by multiple raters, but with the small number of participants this was judged

to be a poor use of available resources.

In general, however, the results of the data collection were positive in that par-

ticipants indicated that most games fell into one of the strategic categories listed

on the questionnaire. Some of the available options on the questionnaire were never

chosen by the raters, but as the questionnaire was designed to err on the side of

over-including strategies, this was deemed to be acceptable. Unfortunately, as there

was no overlap between raters, it is impossible to measure how much human expert

31

Table 4.2: Results of game data classification, showing the number of times each
strategy appeared according to human experts. Note that the total strategies listed
will be higher than the total number of games, as participants were permitted to list
more than one strategy per game.

Orc Strategies

Gruntraider Gruntapult WyvernRush FirelordRush None

Count 22 4 4 1 8

Human Strategies

Fast Expand RifleSorc GryphonRush FootmanCaster None

Count 7 4 4 15 11

Undead Strategies

FiendStatue GhoulGarg FiendAbom GhoulNuke None

Count 13 11 2 9 7

Night Elf Strategies

HuntressRush ArcherTalon BearDryad FastBears None

Count 4 12 22 16 11

opinion might potentially differ over these labels. All four races ended up with three

or four major strategies that occurred with a significant frequency. Ultimately of the

one-hundred replays collected, 85 ended up being used for the experimental work of

this chapter, due to expert availablility and data corruptions such as an expert being

unable to load game files due to a missing Warcraft map file, or otherwise returning

an incomplete survey. The exact results of the data collection phase are listed in

Table 4.2. Note that some of these strategies are different from those listed in Table

4.1, as some strategies were suggested by experts during the pre-data survey and

other strategies did not show up in the experts’ assessment of the data.

4.3 Data Classification

Two classification approaches were compared for their performance on this data. For

both approaches, data was randomly split between exemplars, or training data, and

32

test data. Typically in machine learning, this split is 80% training data and 20% test

data. However, due to our very small data set, we generally use considerably less

training data; the exact percentage of the split varies depending on the approach.

The goal of the classification was to assign a label to each game that matched the

label given by a human rater. As previously mentioned, some games have more than

one label assigned by the human expert. In general no attempt is made to assign

more than one label to a game using our machine classification approaches, and the

machine-assigned label is considered correct if it matches any of the labels assigned

by the expert.

4.3.1 Structure of Data

For our experiments, we encode each Warcraft III game as an alphabetic string of

characters, where each character in the string represents the production of a specific

military unit. In this section, we describe in detail how this string is constructed.

The game Warcraft III has a built-in feature for saving games and allowing the

entire game to be viewed at a later time. These replays are designed to be viewed

using the Warcraft III game engine; as such, certain details of the game are not stored

in the replay file but are recreated by the engine during playback, presumably so as to

make the replay files themselves as small as possible. However, online documentation

exists for the binary format of the replay files, courtesy of Gonera [Gonera, 2003].

For the classification section of this study, data was thus parsed directly from the

replay files, using a parser implemented in C++ and based on that made available

by Fetter [Fetter, 2005].

The end result of the parsing is a file for each individual player build; thus, two

builds from each replay file. The file contains the faction used by the player, the

strategies assigned by the human experts (as previously stated, assigning multiple

strategies was permitted), and a representation of the game encoded as a string of

characters. The features used for this construction consisted of the different military

units constructed by the player, in the order they were built. Although the replay file

contains other information about the game, such as movement and attack commands

33

issued to units, the construction of units was chosen as the most informative feature

for our purposes. Each unit was mapped to a single English-alphabet character,

resulting in a temporally ordered string usually around thirty to forty characters long.

For the purposes of classification, builds were only compared against other builds

belonging to the same faction. Therefore, using the same alphabetic character to

represent multiple units was acceptable so long as all such units were from a different

faction. Only production builds of combat units were thus encoded; workers and

Heroes were not included in the game description. The alphabetic unit encoding is

listed in Section D of the appendix.

4.3.2 Needleman-Wunsch Alignment Methodology

The basic terminology of Needleman-Wunsch sequence alignment has already been

described in Section 3.2.2. Here, we present the details of the sequence alignment

algorithm used in this study. First we will comment on the algorithm used, and

then describe the scoring matrix used for the experiments. We then present the

experimental results of this method.

In this study, we use a strict implementation of basic Needleman-Wunsch. We

believe that accounting for additional properties such as translation and variable gap

cost is not appropriate in our domain. Because the strings are temporally ordered,

building a host of one type of unit followed by a host of another is very different

from building the units in the opposite order. The biological translation process is

not one that occurs in a game with high frequency. Similarly, including one or two

extra characters, or units, into a string does not seem especially important, because

it does not represent a significant strategic investment by the player. Therefore, a

naive, linear gap cost in fact seems like the best choice in this domain. Finally, as

our strings are at most a few hundred characters, instead of the millions that are

typical in bioinformatics, a quadratic time complexity is perfectly acceptable.

The scoring matrix used in sequence alignment is supposed to represent, in some

sense, the likelihood that one character would be substituted for another. We first

present results using a naive, edit distance matrix (with a score of 0 for a match and -1

34

for a mismatch), and then present results using a matrix customized using knowledge

of the domain. For the customized scoring matrix, we use a system based on the

food cost of the unit from the actual game, as described in Chapter 3.1. Two units

of the same food cost typically represent a reasonably equivalent level of resource

investment on the part of the player. A successful match results in a high positive

score of sixteen multiplied by the unit’s food cost. The constant of 16 was chosen to

emphasize the importance of aligning identical units, and seemed to result in good

performance compared to other values. A mismatch results in a negative score based

on the difference in food cost between the mismatched in units. These penalties are

to represent the fact that replacing a small unit, in terms of food cost, with a very

large one represents an important strategic difference and therefore such a mismatch

is more heavily penalized. In addition, it is also a larger strategic difference to replace

one unit with a unit from a different production building, because of the overhead

cost of creating different production buildings. There is therefore an additional

mismatch penalty if the mismatched units come from different production buildings.

The exact matrices used in the alignment are included in Section D of the Appendix.

For the experiment, we first separate the builds based on the four Warcraft III

races. We then randomly select one build per distinct strategy to be the exemplar

for that strategy. These builds are essentially our ‘training data’ for this experiment.

The remainder of the data is our test set. For each test build, we compute its

alignment score with every exemplar of the same race. We then assign to the build the

same strategy as the exemplar to which it was closest, in the manner of a one-nearest-

neighbor approach as described in Section 3.2.3. If the exemplar had more than one

strategy associated with it, all of its strategies are assigned to matching builds. The

entire process starting from the random selection of exemplars is repeated 100 times

to obtain average accuracy and standard deviation. A sample is considered correctly

classified when the automatically assigned label matches the label assigned by the

human expert (or at least one label, in the case of a multiply labelled sample).

We present the accuracy as a percentage of the games where the correct label was

assigned.

35

A particularly tricky label to deal with is the ‘None’ label. It does not make

sense to assign an exemplar for the ‘None’ strategy, because by definition games

with a ‘None’ label should have no real strategic similarity, and nothing meaningful

in common with each other; if they do, it would be because a common strategy

missed being listed in the survey phase of the study. Therefore, we set a threshold

such that if the threshold is higher than the best matching alignment score, we assign

the build the ‘None’ label. The threshold is dependent on the length of the strings

because we would expect to find more mismatch errors in longer strings, especially

if they differ in length. For these experiments, we use a threshold score as shown

in Equation 4.1 for the edit distance scoring matrix, and in Equation 4.2 for the

customized scoring matrix. In both cases, S1 is the length of the first string and S2

is the length of the second string.

threshold = −
1

2
∗ (S1 + S2) (4.1)

threshold = 3 ∗ (S1 + S2) (4.2)

The constants listed simply produced the best performance of all values tried.

Table 4.3 shows the average results for 100 runs of the above experiment. The

accuracy shown is the total percentage of samples that were correctly classified;

the numbers in parentheses in the same cell show the number of correctly classified

samples over the number of total samples. It should be noted that not all totals will

be multiples of 100 due to games with multiple labels, which are sometimes randomly

selected to be exemplars of different strategy classes. We also show the maximum and

minimum accuracy that occurred over all 100 random sets of exemplars. Because

misclassifying a ‘None’ build is something of a a different kind of error, we show

results both including and excluding the ‘None’ builds from the test set. We also

show results broken down by each individual strategy to better show which strategies

tend to be successfully identified and which are more difficult. This breakdown is

shown in Tables 4.4 and Table 4.5. Again, the numbers in parentheses show the

number of correctly classified and total samples that fell into each cell.

36

Table 4.3: Results of 100 test runs using Needleman-Wunsch sequence alignment for
classification and selecting exemplars at random.

Avg Accuracy Std Dev Max Acc. Min Acc.

All Data, 49.0% 4.30 61.8% 32.9%

Edit Distance (7442/15200)

None-labels Excluded, 63.3% 5.61 79.1% 43.5%

Edit Distance (7278/11500)

All Data, 53.6% 5.37 65.1% 38.8%

Custom Score (8146/15200)

None-labels Excluded, 69.9% 7.14 85.2% 48.7%

Custom Score (8038/11500)

Table 4.4: Breakdown of Needleman-Wunsch alignment results by game strategy
using the edit-distance scoring matrix.

Race Strategy Average Accuracy

Orc Gruntraider 80.8% (1570/1943)

Orc WyvernRush 74.3% (223/300)

Orc Gruntapult 54.3% (163/300)

Human FootmanCaster 64.4% (880/1367)

Human GryphonRush 43.3% (114/263)

Human FastExpand 52.3% (301/575)

Human RifleSorc 46.0% (138/300)

Night Elves ArcherTalon 72.2% (770/1066)

Night Elves BearDryad 56.1% (1147/2044)

Night Elves FastBears 80.1% (1191/1487)

Night Elves HuntressRush 18.0% (54/300)

Undead FiendStatue 81.2% (875/1077)

Undead GhoulNuke 62.5% (500/800)

Undead GhoulGarg 40.9% (409/1000)

All None 4.4% (164/3700)

37

Table 4.5: Breakdown of Needleman-Wunsch alignment results by game strategy
using the customized scoring matrix.

Race Strategy Average Accuracy

Orc Gruntraider 74.1% (1439/1941)

Orc WyvernRush 94.3% (283/300)

Orc Gruntapult 86.0% (258/300)

Human FootmanCaster 62.8% (862/1372)

Human GryphonRush 80.5% (214/266)

Human FastExpand 66.6% (385/578)

Human RifleSorc 84.3% (253/300)

Night Elves ArcherTalon 70.0% (755/1078)

Night Elves BearDryad 76.9% (1581/2055)

Night Elves FastBears 71.8% (1069/1489)

Night Elves HuntressRush 74.0% (222/300)

Undead FiendStatue 95.2% (1033/1085)

Undead GhoulNuke 58.3% (466/800)

Undead GhoulGarg 47.1% (471/1000)

All None 2.9% (108/3700)

38

Table 4.6: Results a test run using Needleman-Wunsch sequence alignment for clas-
sification and selecting a set of ‘good’ exemplars according to a simple heuristic.

Accuracy

All Data 58.6% (89/152)

None-labels Excluded 75.7% (87/115)

In the tests above, the selection of exemplars is done at random. However, in a

real design environment, designers would be unlikely to select exemplars randomly;

they would select one that is generally quite clear and is representative of the overall

strategy it is supposed to capture. A random selection of exemplars may therefore

not be representative of how the algorithm would perform in practice. At the same

time, it is unlikely a great deal of effort would be put in to select an optimal exemplar.

Therefore, we heuristically select a ‘good’ exemplar using the following heuristic: for

each set of strategies, select as the exemplar the strategy that results in the highest

average alignment score with the other builds of the same strategy. In other words,

we select the example that is closest to all other examples in the same class. The

complexity of this operation is quadratic in the size of the largest strategy set. Using

the exemplars thus selected gives the results in Table 4.6. The accuracy is slightly

higher than the average accuracy of a random selection, and is considerably higher

than the minimum accuracy seen in the random test set. However, in real data

we would be unable to filter the ‘None’-labelled examples, meaning we can expect

performance indicated by the ‘All Data’ results in Table 4.6.

4.3.3 3-nearest Neighbor Classification

In Section 4.3.2, we used only a 1-nearest neighbor approach to classify builds against

our database of exemplars. In this section, we present results using a 3-nearest

neighbor approach, still using the same Needleman-Wunsch alignment score as our

distance metric just as in Section 4.3.2. We show results only for tests using our

custom alignment score matrix.

For this experiment, instead of selecting only 1 build per class as the exemplar,

39

Table 4.7: Results of 100 test runs using Needleman-Wunsch sequence alignment
with a 3-nearest neighbor approach for classification.

Average Accuracy Std Dev Max Acc Min Acc

All Data 54.94% (6868/12500) 3.68 64.0% 45.6%

None-labels Excluded 77.48% (6818/8800) 5.26 90.9% 64.8%

we instead select 3, so that in the best case, all 3 nearest neighbors to an unlabelled

sample can potentially be of the same class. Then, for each build in the test set,

we compute the 3 nearest neighbors according to the Needleman-Wunsch alignment

score. If two or more of these exemplars agree on the same class, then that class is

assigned to the test sample. If the three nearest exemplars all have a different class,

we assign the class of the single closest neighbor. If the alignment score with this

single nearest neighbor is less than 10∗ s1+s2
2

, where s1 is the length of the first string

and s2 the length of the second, we assign a label of ‘None’ to the build.

The results of 100 test runs of this experiment are presented in Table 4.7. As

before, we also present a breakdown of the results by strategy; these are shown

in Table 4.8. We note that some strategies from previous tables, particularly the

GryphonRush strategy, do not appear in this table due to insufficient data when we

use 3 exemplars per strategy instead of 1.

4.3.4 Naive Bayes Classification Methodology

For this part of the study, we construct a Naive Bayes classifier with one class node

and eighty attribute nodes. The class node represents the strategy being used, while

the eighty attribute nodes represent the characters x1 to x80 in the original data

string, X. This structure is depicted in Figure 4.1. This representation was chosen

so as to be directly comparable to the sequence alignment approach, keeping the

structure of the data the same for both techniques. The value of 80 was chosen

arbitrarily based on the observation that all the games in the dataset except for one

were eighty characters or less. Most games were in fact around the forty mark, and

for these games the additional attribute nodes will have no effect on classification.

40

Table 4.8: Breakdown of Needleman-Wunsch alignment results with 3-nearest neigh-
bor approach by game strategy.

Race Strategy Average Accuracy

Orc Gruntraider 84.0% (1390/1655)

Orc WyvernRush 100.0% (100/100)

Orc Gruntapult 83.0% (83/100)

Human FootmanCaster 77.9% (856/1099)

Human FastExpand 75.1% (251/334)

Human RifleSorc 86.0% (86/100)

Night Elves ArcherTalon 86.2% (706/819)

Night Elves BearDryad 75.8% (1329/1754)

Night Elves FastBears 71.3% (905/1270)

Night Elves HuntressRush 88.0% (88/100)

Undead FiendStatue 95.2% (796/836)

Undead GhoulNuke 61.2% (367/600)

Undead GhoulGarg 73.8% (590/800)

All None 1.4% (50/3700)

41

Unit1

Strategy

Unit2 Unit80. . .

Figure 4.1: The structure of the Naive Bayesian classifier for strategy prediction.
Each UnitX node represents the character at position X in the game description.

This network was implemented in Java, using the commercial Bayes net software

package Norsys Netica [Netica] to build the Bayes net and perform learning and

inference.

For the evaluation of this classifier, data was first divided based on the Warcraft

III race being used. It was then sorted by strategy, and randomly split into 50

percent training data and 50 percent test data. An 80-20 split is more common for

machine learning, but with our small amount of data, a 50-50 split seemed more

appropriate. For game descriptions less than eighty characters in length, the values

of excess character positions were simply left as unobserved for the purposes of both

training and testing; this has the same effect on classification as if the nodes were

not even present in the network.

Again, the ‘None’ strategy label poses a dilemma. Unlike with the sequence

alignment approach, however, the Bayes net provides us with a principled way of

dealing with it. By including it as an option in the class node, we can have the

Bayes net tell us when it is the most probable label. The accuracy of this depends on

the meaningfulness of the ‘None’-labelled training examples. The only commonality

between ‘None’-labelled examples is that they are not like any of the named classes,

and we would not expect them to have anything in common with each other either.

Table 4.9 shows the average results for 100 runs of the above experiment. We

42

Table 4.9: Results of 100 test runs using Naive Bayes classification, randomly select-
ing half of the data as a training set for each run.

Average Accuracy Std Dev Max Acc. Min Acc.

All Data 62.9% (5599/8900) 3.26 73.0% 55.1%

None-labels Excluded 73.3% (4949/6900) 3.68 84.1% 63.8%

show results both including and excluding the ‘None’ builds from the test set. Again,

accuracy is defined as the percentage of correctly labelled samples, and the numbers

in parentheses show the number of correctly labelled samples over the total number

of samples.

In general, Naive Bayes performs well on strategies that are generally character-

ized by building a large number of two or three distinct units, such as the Grun-

tRaider or ArcherTalon strategies. It performs less well for strategies that are char-

acterized more by the presence of just a few units of high strategic importance. An

example of this sort of strategy is the Gruntapult strategy, which is characterized

by the player building only a few catapult units — perhaps two or three — but the

event is strategically significant. We can modify the Naive Bayes approach to deal

with this problem, at least in part. We do so by adding to the classifier ten additional

boolean-valued attribute nodes, each one being a child of the strategy class node,

with each such node corresponding to the presence or absence of one particular unit

type in the build. A depiction of this enhanced structure can be found in Figure

4.2. This modification results in roughly a 3% total increase in accuracy, as shown in

Table 4.11. For this improved structure, we show results by strategy in Table 4.12,

which shows that the increase in accuracy is largely coming from strategies that were

poorly classified before, such as the Gruntapult and WyvernRush strategies. Some

strategies however, such as the GryphonRush strategy, continue to be very difficult

to identify even with this enhancement.

43

Table 4.10: Breakdown of Naive Bayes classifier results by strategy.

Race Strategy Average Accuracy

Orc Gruntraider 100.0% (1201/1201)

Orc WyvernRush 38.0% (76/200)

Orc Gruntapult 31.0% (62/200)

Human FootmanCaster 92.7% (738/796)

Human GryphonRush 14.4% (29/202)

Human FastExpand 45.8% (160/349)

Human RifleSorc 22.5% (45/200)

Night Elves ArcherTalon 90.7% (604/666)

Night Elves BearDryad 75.0% (835/1114)

Night Elves FastBears 74.0% (594/803)

Night Elves HuntressRush 76.5% (153/200)

Undead FiendStatue 86.3% (619/717)

Undead FiendAbom 100.0% (166/166)

Undead GhoulNuke 45.6% (228/500)

Undead GhoulGarg 68.3% (410/600)

All None 26.95% (539/2000)

Table 4.11: Results of 100 test runs using Naive Bayes classification, with the en-
hancement of 10 additional nodes representing the presence or absence of individual
unit types in the build.

Average Accuracy Std Dev Max Acc Min Acc

All Data 65.6% (5842/8900) 3.65 75.3% 59.6%

None-labels Excluded 76.2% (5255/6900) 4.00 85.5% 68.1%

44

Table 4.12: Breakdown of Naive Bayes classifier with enhancement of 10 additional
nodes results by strategy.

Race Strategy Average Accuracy

Orc Gruntraider 99.7% (1193/1196)

Orc WyvernRush 68.0% (136/200)

Orc Gruntapult 61.5% (121/200)

Human FootmanCaster 91.3% (734/804)

Human GryphonRush 11.3% (22/194)

Human FastExpand 46.8% (162/346)

Human RifleSorc 23.5% (47/200)

Night Elves ArcherTalon 92.7% (608/656)

Night Elves BearDryad 73.6% (813/1105)

Night Elves FastBears 76.3% (608/797)

Night Elves HuntressRush 81.0% (162/200)

Undead FiendStatue 92.0% (651/707)

Undead FiendAbom 100.0% (100/100)

Undead GhoulNuke 50.6% (253/500)

Undead GhoulGarg 68.2% (409/600)

All None 29.35% (587/2000)

45

Strategy

Type2 Type10Type1

Unit1 Unit2 Unit80. . .

. . .

Figure 4.2: The structure of the enhanced Naive Bayesian classifier for strategy
prediction. Each UnitX node represents the character at position X in the game
description, and each TypeX node is a boolean value representing the presence or
absence of a specific unit type.

4.3.5 Naive Bayes with Boosting Methodology

For our final machine learning experiments, we applied the ADABoost algorithm to

our Naive Bayes classifier in order to generate a boosted Naive Bayes model. The

structure of the network was exactly the same as the second, enhanced Naive Bayes

classifier in Section 4.3.4, the only difference being that for each of the 100 iterations

in the test run, we would apply the ADABoost algorithm with M equal to 5 so as to

generate five Naive Bayes classifiers with identical structures but different CPTs and

a weight for each of these classifiers. For each sample of the test set, the 5 classifiers

then cast a weighted vote, assigning the class with the highest weighted total to the

test sample.

The results from this experiment are presented in table 4.13. As before, we also

present a listing of the results broken down by strategy in Table 4.14. As can be

observed, the boosting algorithm in this case actually led to worse performance than

the unboosted Naive Bayes classifier.

46

Table 4.13: Results of 100 test runs using Naive Bayes classification, using the
ADABoost boosting algorithm with M equal to 5.

Average Accuracy Std Dev Max Acc. Min Acc.

All Data 62.5% (5562/8900) 4.10 71.9% 53.9%

None-labels Excluded 70.6% (4873/6900) 4.90 82.6% 59.4%

Table 4.14: Breakdown of the boosted Naive Bayes classifier M equal to 5 for the
ADABoost boosting algorithm.

Race Strategy Average Accuracy

Orc Gruntraider 91.5% (1103/1205)

Orc WyvernRush 64.5% (129/200)

Orc Gruntapult 53.0% (106/200)

Human FootmanCaster 89.1% (714/801)

Human GryphonRush 16.3% (34/208)

Human FastExpand 47.6% (167/351)

Human RifleSorc 28.5% (57/200)

Night Elves ArcherTalon 84.9% (555/654)

Night Elves BearDryad 65.5% (719/1098)

Night Elves FastBears 71.4% (573/803)

Night Elves HuntressRush 63.5% (127/200)

Undead FiendStatue 84.3% (602/714)

Undead FiendAbom 99.6% (154/155)

Undead GhoulNuke 46.2% (231/500)

Undead GhoulGarg 66.3% (398/600)

All None 34.45% (689/2000)

47

4.4 Constructing Game-Balance Matrices

Now that we have presented machine learning techniques for automatically classifying

a game’s strategy, we can go directly from raw game data to a game matrix as

discussed in Chapter 2. This section illustrates that process. An analysis of our

experimental results will follow in Section 4.5.

We present the matrices in Tables 4.15, 4.16 and 4.17 that are constructed using

the data and results from the experimental methods above, according to the def-

initions outlined in Chapter 2. For our example here, each matrix represents the

Warcraft match-up of the Orc faction as the row player against the Night Elves

faction as the column player — in our dataset, we have 14 games where this match-

up occurs. Each row and column corresponds to one of the high-level strategies

identified in Section 4.1; strategies that did not occur in the Orc against Night Elf

match-up (such as the Orc WyvernRush strategy) are not shown in the matrices.

As before, the payoffs aij are to the row player and are calculated according to

equation 4.3, where Winsij indicates the number of times a player playing strategy

i defeated strategy j, and Lossesij indicates the number of times strategy i lost

against strategy j. Table 4.15 is constructed using the labels provided by human

experts; Table 4.16 is constructed using labels obtained through Needleman-Wunsch

sequence alignment; and Table 4.17 is constructed using labels obtained from Naive

Bayes classification. In each case, the number in parantheses next to each payoff aij

represents the number of games in the data that fell into cell ij.

aij =
Winsij − Lossesij

Winsij + Lossesij

(4.3)

This has the desired result that if Strategyi always defeats Strategyj, the payoff is

1; if is always loses, the payoff is -1; and if it is just as likely to win as to lose, the

payoff is 0.

These matrices demonstrate the manner in which game balance matrices might

be constructed, but with only 14 games, they are of limited use. Some cells differ as

much as going from a 0 to payoff to a 1.0, but only because many of the zeroes in

48

each table exist because there was no data in the cell. In fact, except for the very

popular ArcherTalon and Gruntraider strategies, only one or two examples existed

per strategy match-up in our very sparse dataset.

Using a small amount of labelled data in order to classify a large amount of

unlabelled data and using the total results to build the matrices would seem likely

to produce more useful results. To illustrate what results of this sort would look

like, we present the game matrix in Table 4.18. For this matrix, we use the 3-nearest

neighbor Needleman-Wunsch alignment approach, as it demonstrated the best overall

performance of the machine learning approaches we examined. The training set is

the same as for our experiment above; however, for constructing this matrix, we

obtained 100 unlabelled samples specifically of the Orc against Night Elf match-up,

none of which were part of our previous test or training set. Of these 100 games,

54 were won by Orc players and 46 were won by Night Elf players. As these 100

games were not examined by human experts, we cannot construct the corresponding

matrix using the ‘true’ labels; however, the matrix we present serves as an example

of the ultimate goal of the synthesis of all the techniques examined in this thesis to

date.

From a matrix such as Table 4.18, a designer could extract various pieces of

useful information. For instance, the value of the game is 0.04 indicating a slight

advantage for the Orc players, as manifested in the slightly higher number of Orc

wins in the dataset. Furthermore, the optimal strategy for the Orc player is to

always play the Gruntraider strategy, whereas for the Night Elf player it is optimal

to always play the ArcherTalon strategy. If the results of this matrix are accurate,

we would expect to see the largest number of games fall into this cell, and that is

indeed what we see in the data. However, the game theoretic techniques used to

determine the optimal strategies of the game do not take into account the number

of games used, only the payoff values in the matrix. This implies that the matrix is

a reasonably good model of the true properties of the game. We also see that while

the Orc WyvernRush strategy is useful against some strategies, it is almost never

used as it is weak against the very common Night Elf ArcherTalon strategy. Based

49

Table 4.15: A game balance matrix, with rows and columns constructed using strictly
the labelling provided by human experts over 14 games.

HuntressRush ArcherTalon BearDryad FastBears None

Gruntraider 0 (0) 0 (8) 0 (0) -1.0 (1) 1.0 (1)

Gruntapult -1.0 (1) 0 (2) -1.0 (1) 0 (0) 0 (0)

None 0 (0) 0 (0) 1.0 (1) 1.0 (1) 1.0 (1)

Table 4.16: A game balance matrix, with rows and columns constructed using the
labelling provided by Needleman-Wunsch sequence alignment over 14 games.

HuntressRush ArcherTalon BearDryad FastBears None

Gruntraider -1.0 (1) 0.25 (7) -0.33 (3) 0 (0) 0 (0)

Gruntapult 0 (0) 1.0 (1) 0 (0) 1.0 (1) 0 (0)

None 0 (0) 0 (0) 0 (0) 0 (0) 0 (0)

Table 4.17: A game balance matrix, with rows and columns constructed using Naive
Bayes classification over 14 games.

HuntressRush ArcherTalon BearDryad FastBears None

Gruntraider -1.0 (1) 0.11 (9) 0 (0) 0 (2) 0 (0)

Gruntapult 0 (0) 1.0 (1) 0 (0) 0 (0) 0 (0)

None 0 (0) 1.0 (1) 0 (0) 0 (0) 0 (0)

on these results, a designer might infer that the effectiveness of the Orc Gruntraider

strategy needs to be slightly reduced so as to move the value of the game closer to 0,

improving external balance, and to make other strategies more viable for both sides,

improving internal balance.

4.5 Results and Analysis

The results from Section 4.3 show a total average accuracy of 55% including the

‘None’ labels, and 77% excluding the ‘None’ labels, for 3-nearest neighbors sequence

alignment, and average accuracy of 65% including the ‘None’ labels, and 75% ex-

cluding the ‘None’ labels, for Naive Bayes. We recall that the ‘None’ labels refer to

games for which the human expert indicated no high-level strategy was used during

50

Table 4.18: A game balance matrix, with rows and columns constructed using the
kNN Needleman-Wunsch alignment classifier, run on 100 unlabelled Orc vs. Night
Elf games.

HuntressRush ArcherTalon BearDryad FastBears

Gruntraider 0.1 (20) 0.04(25) 0.56 (9) 0.67 (6)

Gruntapult -0.16 (19) 0 (16) -0.09 (11) -0.2 (15)

WyvernRush 0.33 (3) -0.33 (3) 0 (0) 1.0 (1)

the game. As can be seen, this makes the two methods comparable when we exclude

the ‘None’ labels, but Naive Bayes handles this trickier case better than sequence

alignment. Naive Bayes also has a significantly lower standard deviation, which is

expected since half of the data is used for training rather than a single exemplar

in the case of sequence alignment. Applying the boosting algorithm to Naive Bayes

only decreased the prediction accuracy. Schapire admits that in some cases, boosting

can lead to overfitting [Schapire, 2001]; furthermore, in our case, the original model

often performed very well on its own training data, making the boosting process

unlikely to result in any performance gains. It seems likely these factors explain the

failure of the boosting algorithm in our situation.

Analyzing the results when broken up by strategy shows that the Naive Bayes

classifier is only really performing well on the more common strategies in the dataset.

Essentially, this is because the classifier learns that if it always chooses the common

labels, it will be right most of the time. Therefore, the accuracy on common strategies

is very high whereas it is much lower for uncommon strategies: as low as 11% in some

cases. 3-nearest neighbor sequence alignment, on the other hand, has no strategies

other than the ‘None’ label below 60% accuracy and all but one are greater than

70%. This would seem to strongly indicate that the 3-nearest neighbor sequence

alignment is the best tool for our problem out of those tried in this thesis, at least

when the size of the dataset is small.

We also see that when a set of ‘good’ exemplars is heuristically chosen for sequence

alignment, the accuracy of sequence alignment is comparable with both 3-nearest

neighbors and Naive Bayes. Furthermore, we see that the best set of exemplars

51

that occurred during the 100 random runs of 3-nearest neighbor sequence alignment

exceeds this value by more than 10%, achieving an accuracy of almost 91% when

‘None’ labels are excluded from the test set. Again, it is not surprising that the

performance of sequence alignment is highly dependent on choosing a good set of

exemplars.

We now return to the three questions posed at the beginning of this section.

The pre-data survey and subsequent data classification by experts strongly implied

that build sequences with common strategic elements identifiable by humans really

do occur in the online competitive environment of Warcraft III, since every race

had at least one major strategy that significantly outranked the ‘None’ option, and

some (especially the Night Elves faction) had several. These results seem to validate

at least the potential use of strategic abstractions as a way of thinking about and

classifying game data.

The base classification results of 55% for sequence alignment and 61% for Naive

Bayes are significantly lower than machine learning classification results in other

domains, such as the 80% accuracy for handwritten digit recognition with 1960

training samples reported by Frey [Frey, 1998] and the 95% accuracy for junk email

filtering reported by Sahami with 2500 training samples [Sahami et al., 1998]. The

approach of increasing the size of the training set is a common solution in many

machine-learning domains. With a vastly increased training set size of 60,000, Russel

and Norvig show an accuracy of 98% or more for the handwritten digit problem, for

a variety of contemporary machine learning techniques [Russell and Norvig, 2003].

However, as our results tables in this section show, many of our errors are due to

erroneously assigning a label to a game that the human rater marked as having

no particular strategy. When we exclude such errors, the classification accuracy

is similar to, and in some cases slightly better than other results in domains such

as handwriting recognition with similar amounts of training data; Frey reports an

accuracy of 70% with 120 training examples, or about 12 examples per sample [Frey,

1998], while Rowley et al. report about 82% accuracy in classifying Japanese kanji

characters [Rowley et al., 2002] using 10 samples per character. By comparison, our

52

training set for the Naive Bayes classifier is smaller yet, from 1 to 11 samples per

strategy, depending on the popularity of the strategy. For our 3-nearest neighbor

method, we use only 3 samples per strategy. Excluding the ‘None’ examples seems

in some ways a more fair comparison, since the studies by Frey [Frey, 1998], Russell

and Norvig [Russell and Norvig, 2003] and Rowley et al. [Rowley et al., 2002] do not

include a ‘random scribble’ character among the test set, and it is our impression

that it is not common practice in the handwriting domain to do so. These results

suggest that merely increasing the size of the training set could result in accuracy

comparable to simple attempts at character recognition, as Rowley shows an increase

from 82% to 95% accuracy by increasing training set size one-hundred-fold [Rowley

et al., 2002]. Frey reports on other classifiers that perform better in the handwriting

domain, such as logistic autoregressive classifiers [Frey, 1998]; it is possible these

other classification techniques would also result in performance gains in our domain,

although for most of these the structure of the data may have to be changed.

In our case we must ask the questions of how much data is feasible, what is the

best accuracy we can expect, and how much accuracy is really required. We recall

that the purpose of this work is to provide tools to game designers so they can more

easily diagnose balance problems during the design phases of their games. Although

preliminary player tests (often called beta tests in the industry) can provide large

amounts of raw game data, it seems to us unreasonable to expect a game designer

could have access to 10,000 labelled game examples to use for training. Thus, for

methods in this domain to be useful, they must be so with only limited amounts of

training data available.

For the purpose of this thesis, our primary goal was to show first that high-level

strategies exist, at least with sufficient frequency so as to be useful in the testbed

game of Warcraft III, and secondly that they can be automatically identified through

machine learning. The results of our experiments seem to indicate strongly that they

can, even with very small datasets and very simple data models and machine learning

techniques.

While we have sometimes compared this problem to other classification problems

53

such as handwritten character recognition, the domain has at least one important

difference, and that is the class label itself is, by definition, abstract and does not

necessarily objectively exist in all cases. In handwriting, the writer always has a real,

objective intent for every character she writes, which in English is usually one of 26

different characters, regardless of whether or not the reader can correctly interpret

it. Warcraft players, on the other hand, may have a particular strategy in mind or

they may not. Their goal is simply to win the game, and strategic abstractions are

useful to human players only insomuch as they help to organize the player’s thoughts

about the game. Strategic similarities that appear due to this behavior are emergent,

rather than intentional on the parts of the players.

Because of the nature of this problem in that not all examples will have a clear

class and some of the classes themselves may bear similarities and overlap to some

degree, we would contend the most important aspect of this domain is correctly

classifying the ‘clear’ examples, examples that a human player might describe as a

‘textbook’ implementation of the strategy. In other words, the baseline accuracy of

the problem is not 100%; rather it is only as high as the percentage of human raters

who would agree on a game’s class. Even for digit recognition, for instance, Russell

and Norvig report that human accuracy is only 97.5% [Russell and Norvig, 2003]. It

seems unlikely to us that human ‘accuracy’ (or rather, consensus) for the problem

of strategy classification would be as high as that; future study would be needed to

set a more precise upper limit.

With the data collected for this study, it is difficult to objectively say how well

the methods tested here succeed in the regard of classifying the ‘clear’ examples. One

possible way to do this would have a large number of raters all rate the same set of

games, and compare the classifier’s accuracy on games on which the raters all agreed

on the strategy versus ones on which the raters disagreed. With the small number of

participants we had available, this was infeasible in our case. However, an entirely

subjective viewing of the classification results suggest that correct classification of

clear examples is indeed going on in many cases.

Another metric for evaluation in this domain that can be performed with the

54

Table 4.19: A measurement of the difference in alignment score and posterior prob-
ability between correctly and incorrectly classified samples, over 100 random test
runs.

Correct Incorrect

Sequence Alignment 755 649

Sequence Alignment excluding None-labels 771 671

Naive Bayes 93.0% 87.2%

Naive Bayes excluding None-labels 94.1% 84.9%

available data is, in the sequence alignment case, to measure the average alignment

score for both correct and incorrectly classified samples, and in the Bayes Net case,

to measure the posterior probability for both correct and incorrect classifications.

Table 4.19 shows the results of such a test, again using 100 random test runs for

both methods.

Table 4.19 shows that in that in all cases, the scores or posterior probabilities in

correctly classified samples are higher than for those that are incorrectly classified.

This means that at least the samples that the machine-learning algorithms believe

to be clear are being correctly classified.

55

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In this thesis, we first proposed framing the problem of game balance using the

language of game theory. We presented definitions for external and internal balance

of a game and show how these properties can be detected using game theoretic tools.

We then proposed the concept of strategic abstractions, that is to say high-level

groupings of strategic competitive game play, in order to construct these matrices

and perform an empirical study to demonstrate whether such abstractions really

exist in game data, whether they can be automatically detected, and, if so, how to

best go about it.

The study has shown that strategic abstractions can and do occur in real data and

can be identified by experts, at least in the testbed domain of the Warcraft III real-

time strategy game. Furthermore, even with very small datasets, our experimental

work has shown that these strategies can also be identified automatically using simple

machine learning techniques. Bioinformatics sequence alignment with a k-nearest

neighbor classification approach can, with only 3 exemplars of each strategy, correctly

identify the strategy used in 55% of cases using all data, and 77% of cases on data that

experts indicated actually had a strategic class. Naive Bayes classification achieves

similar results, with 65% accuracy on all data and 75% accuracy on data rated to

have an actual class.

Finally, we demonstrated how these machine learning methods can be combined

with game-theoretic tools to build game-balance matrices, which can then serve as

a formal and analytic aid to the game design process. Taken together, these tools

56

provide for a principled means of analyzing and synthesizing the experience of a

large number of expert human players, without the need to solicit each individual

expert for an opinion. Rather than forcing them to rely on the potentially conflicting

personal opinions of human players, we thus provide game developers with a snapshot

of what is actually going on in their game, allowing them to leverage available game

play data to improve their game design process.

5.2 Future Work

Section 4.5 discussed the possibility of performing cross-validating expert rating of

game data in order to get an idea of how much experts agree on the label of a game.

This would also allow the performance of the machine classification algorithms to

be measured on examples which human raters considered very clear, based on the

amount of consensus between raters. Such a study would also aid to set upper

bounds of accuracy in this problem, based on the percentage of games on which

there is consensus among the raters.

A particular problem of this work was the fact that 21% of games were rated not

to possess a common and identifiable strategy and were thus given a ‘None’ label by

the raters. Correctly classifying the ‘None’-labelled examples was the single largest

source of error in our experiments. There is substantial room for improvement in how

best to correctly separate them from the rest of the data. It also raises the question

of whether other domains, such as handwriting recognition, would encounter similar

problems if analogous samples (random scribbles in the case of handwriting) were

included in the test set for these problems.

Of course, it bears saying that Naive Bayes classification is one of the simplest

classifier technologies available; as such, it was deemed suitable for a proof-of-concept

study such as this one, but there are many other classifier technologies that could

be applied to this problem. They key in this regard is to find one that works well

with only small amounts of data.

Clustering is another techonology that could be applied to this problem. Clus-

57

tering techniques have been applied in domains ranging from music classification

[Logan and Salomon, 2001] to gene-finding in bioinformatics [Eisen et al., 1998] and

many others [Jain et al., 1999]. In particular, it could be very interesting to see

whether unsupervised clustering can produce clusters that match labelled clusters of

strategies. Currently, the techniques applied in this paper require that the different

strategic classes be available via expert knowledge a priori. If clustering can success-

fully cluster games by similar strategy, not only can this expediate the process of

assigning strategy labels to games, but could even result in designers being able to

discover new strategies which players are using, but which had not been previously

identified. The X-means algorithm by Pelleg and Moore [Pelleg and Moore, 2000]

could be one approach to apply to this task.

Another entirely different direction would be to gather large amounts of unla-

belled data and apply the game-theoretic methods discussed in this thesis to discover

interesting results on player behavior. For instance, with the labelling techniques in

this thesis, we can construct matrices of the type in section 4.4. Using these ma-

trices, we can then easily calculate the Nash equilibria of the resulting games. We

can then answer questions of whether or not the player population is actually play-

ing the equilibria, or if a certain subset (say, the high-level players) are playing the

equilibrium strategy. We can also determine how payoff values in the matrix change

for individual players when they play against the full online population, and monitor

how the effectiveness of each strategy differs from the average effectiveness of the

strategy, as well as monitoring how the Nash equilibria of the game may change for

individuals who are more or less skilled with certain strategies.

In this thesis, our experimental testbed was a real-time strategy game. Although

our goal is to present general balance principles that can apply to all games, applying

the techniques we discuss to games of radically different genres seems like a non-

trivial task. The major challenges here are finding a suitable feature set to describe

the game and identifying distinct high-level strategies for the purpose of strategic

abstraction. In particular, these problems seem difficult for any game for which

the focus is not a discrete set of strategic choices but rather an almost continuous

58

process, such as a car-racing game where the player is continually trying to maintain

maximum speed by staying on the road and avoiding obstacles. Investigating the

application of our techniques to such an environment is another potential area of

future study.

Yet another angle to examine is the problem of balance at different levels of player

skill. Game theory itself makes the assumption that all agents are perfect players and

know the optimal strategy to a game. In reality, it is questionable whether experts

are in fact ‘perfect’ players, and novices certainly are not. Developing definitions of

balance that can hold across all levels of player skill seems like a non-trivial task, but

ensuring that a game is balanced at the novice level of play is perhaps more important

for some games than game balance at the expert level. This is because no player of

any game is initially an expert, and many may never become one. Therefore, if some

game faction or element seems too weak at a novice level of skill, players may become

frustrated and never invest the necessary time to discover that the game element in

question is indeed balanced once they discover how to properly use it, since they will

quit playing the game long before they have the skill to make this realization.

Finally, the ultimate desired outcome of this work would be a complete set of

tools that help designers first design games, then analyze them for balance properties,

detect balance problems and then allow the designer to modify the game in a way

that corrects the problems. While the game theoretic matrix properties and strate-

gic abstractions proposed in this paper facilitate analysis and detection of balance

problems, and can suggest solutions at a very abstract level, a more direct mapping

between the game balance matrices and the actual game changes a designer needs

to make would be a useful contribution to complete this cycle.

59

Bibliography

Ernest Adams. A symmetry lesson. Gamasutra, www. gamasutra. com , 2, 1998.

Ernest Adams. Balancing games with positive feedback. Gamasutra, www.

gamasutra. com , 2002.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J.
Lipman. Gapped BLAST and PSI–BLAST: a new generation of protein database
search programs. Nucleic Acids Res., 25:3389–3402, 1997. URL citeseer.ist.

psu.edu/altschul97gapped.html.

Salman Azhar, Andrew McLennan, and John H. Reif. Computation of equilibria in
noncooperative games, duke university technical report cs-1991-36. In Proceedings
of the Workshop for Computable Economics, December 1992.

BattleReports. http://www.battlereports.com, 2006.

E.R. Berlekamp, J.H. Conway, and R.K. Guy. Winning Ways for your Mathematical
Plays. New York: Academic Press, 1982.

Blizzard Entertainment. Starcraft real-time strategy game, 1998.

Blizzard Entertainment. http://www.blizzard.com, 2005.

Daniel Bozinov and Jorg Rahnenfuhrer. Unsupervised technique for robust target
separation and analysis of dna microarray spots through adaptive pixel clustering.
Bioinformatics, 18(5):747–756, 2002.

M. Brudno and B. Morgenstern. Fast and sensitive alignment of large genomic
sequences. In Proceedings of IEEE Computer Society Bioinformatics Conference,
Stanford University, California, pages 138–147, August 2002.

M. Buro. How machines have learned to play othello. IEEE Intelligence Systems
Journal, 14:12–14, 1999.

Tom Cadwell. Techniques for achieving play balance. Gamedev.net, www. gamedev.
net , 2002.

Adam Carpenter. Applying risk analysis to play-balance rpgs. Gamasutra, www.

gamasutra. com , 2003.

Chessgames. http://www.chessgames.com/chessstats.html, April 2005.

60

G.F. Cooper. Probabilistic inference using belief networks is NP-hard. Artificial
Intelligence, 42:393–405, 1990.

A. L. Delcher, S. Kasif, R. D. Fleischmann, J. Peterson, O. White, and S. L. Salzberg.
Alignment of whole genomes. Nucl. Acids. Res., 27(11):2369–2376, 1999. URL
citeseer.ist.psu.edu/delcher99alignment.html.

M. B. Eisen, P. T. Spellman, P. O. Brown, and D. Botstein. Cluster analysis and dis-
play of genome-wide expression patterns. In Proceedings of the National Academy
of Sciences of the USA, volume 95, pages 14863–14868, 1998.

Michael D. Ernst. Playing Konane mathematically: A combinatorial game-theoretic
analysis. UMAP: The Journal of Undergraduate Mathematics and its Applications,
16, 1995.

Daniel Fetter. http://www.cs.iastate.edu/~dfetter/, 2005.

E. Fix and J.L. Hodges. Discriminatory analysis. nonparametric discrimination. con-
sistency properties. Technical Report 4, US Air Force School of Aviation Medicine.
Randolph Field, TX., 1957.

A. S. Fraenkel and D. Lichtenstein. Computing a perfect strategy for n*n chess
requires time exponential in n. In Proc. 8th Int. Coll. Automata, Languages, and
Programming, pages 278–293, 1981.

Yoav Freund and Robert E. Schapire. Experiments with a new boosting algorithm. In
Machine Learning: Proceedings of the Thirteenth International Conference, pages
148–156, 1996.

Brendan J. Frey. Graphical Models for Machine Learning and Digital Communica-
tion. MIT Press, 1998.

Juliusz Gonera. Warcraft 3 replay parser, http://toya.net.pl/~julas/w3g/, 2003.

D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press, 2001.

D. Heckerman. A tutorial on learning with bayesian networks. Technical Report
MSR-TR-95-06. Microsoft Corporation, Redmond, USA, 1996b.

Robert C. Holte, M. B. Perez, R. M. Zimmer, and A. J. MacDonald. Hierarchical
A*: Searching abstraction hierarchies efficiently. In AAAI/IAAI, Vol. 1, pages
530–535, 1996.

A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31(3):264–323, 1999.

Dimitrios Kalles and Panagiotis Kanellopoulos. On verifying game designs and play-
ing strategies using reinforcement learning. In SAC ’01: Proceedings of the 2001
ACM symposium on Applied computing, pages 6–11, New York, NY, USA, 2001.
ACM Press. ISBN 1-58113-287-5.

61

David Kennerly. Better game design through data mining. Gamasutra, www.

gamasutra. com , 2003.

Craig A. Knoblock. Automatically generating abstractions for planning. In Artificial
Intelligence, 68(2), pages 243–302, 1994.

D.E. Knuth and R. E. Moore. An analysis of alpha beta pruning. Artificial Intelli-
gence, 6:293–326, 1975.

Alexander Kovarsky and Michael Buro. Heuristic search applied to abstract combat
games. In Canadian Conference on AI 2005, pages 66–78, 2005.

P. Krause. Learning probabilistic networks. http: // www. auai. org/

bayesUSkrause. ps. gz , 1998.

Vladimir Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady, 10(8):707–710, 1966.

B. Logan and A. Salomon. A music similarity function based on signal analysis,
2001. URL citeseer.ist.psu.edu/logan01music.html.

S. Needleman and C. Wunsch. A general method applicable to the search for simi-
larities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

Norsys Netica. http: // www. norsys. com .

Guillermo Owen. Game Theory. Academic Press, third edition, 1995.

Christos H. Papadimitriou. Computing correlated equilibria in multi-player games.
In Proceedings of the 37th ACM Symposium on Theory of Computing, 2005.

Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization.
Dover Publications, Inc, 1998.

Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, 1988.

Dan Pelleg and Andrew Moore. X-means: Extending k-means with efficient estima-
tion of the number of clusters. In Proceedings of 17th International Conference on
Machine Learning, pages 727–734, 2000.

R. Rouse III. Game Design: Theory and Practice. Wordware Publishing, second
edition, 2005.

Henry A. Rowley, Manish Goyal, and John Bennett. The effect of large training set
sizes on online japanese kanji and english cursive recognizers. In Proceedings of
the 8th International Conference on Frontiers in Handwriting Recognition, pages
36–40, 2002.

62

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, second edition, 2003.

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian
approach to filtering junk E-mail. In Learning for Text Categorization: Papers
from the 1998 Workshop, Madison, Wisconsin, 1998. AAAI Technical Report WS-
98-05. URL citeseer.ist.psu.edu/sahami98bayesian.html.

A. Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of Research and Development 3, pages 210–229, 1959.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):
197–227, 1990.

Robert E. Schapire. The boosting approach to machine learning: An overview. In
MSRI Workshop on Nonlinear Estimation and Classification, Berkeley, CA, Mar.
2001. See http: // stat. bell-labs. com/ who/ cocteau/ nec/ and http: //

www. research. att. com/ ~schapire/ boost. html , 2001.

Robert E. Schapire and Yoram Singer. Boostexter: A boosting-based system for text
categorization. Machine Learning, 39(2/3):135–168, 2000.

Robert E. Schapire, Peter Stone, David McAllester, Michael L. Littman, and
Janos A. Csirik. Modeling auction price uncertainty using boosting-based con-
ditional density estimation. In Machine Learning: Proceedings of the Nineteenth
International Conference, pages 143–160, 2002.

C.E. Shannon. Programming a computer for playing chess. Philosophical Magazine,
41:256–275, 1950.

T. Smith and M. Waterman. Identification of common molecular sequences. Journal
of Molecular Biology, pages 195–197, 1981.

C. Stanfill and D. Waltz. Toward memory-based reasoning. Communications of the
ACM, 29:1213–1228, 1986.

D.J. States, W. Gish, and S.F. Altschul. Improved sensitivity in nucleic acid database
searches using application-specific scoring matrices. Methods: A Companion to
Methods in Enzymology, 3(1):66–70, 1991.

G. Tesauro. Temporal difference learning and td-gammon. Communications of the
ACM, 38:58–67, 1995.

G. Tesauro and T. Sejnowski. A parallel network that learns to play backgammon.
Artificial Intelligence, 39:357–390, 1989.

Sebastian Thrun. Learning to play the game of chess. In G. Tesauro, D. Touretzky,
and T. Leen, editors, Advances in Neural Information Processing Systems 7, pages
1069–1076. The MIT Press, Cambridge, MA, 1995.

63

Gokhan Tur, Robert E. Schapire, and Dilek Hakkani-Tur. Active learning for spoken
language understanding. In IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 276–279, 2003.

WCReplays. http://www.wcreplays.com, 2006.

WCStrategy. Warcraft strategy http://www.warcraftstrategy.com, 2006.

64

Appendix A

The Warcraft III Ladder

The Warcraft III: The Frozen Throne ladder system is an online system provided

by Blizzard Entertainment [Blizzard Entertainment, 2005] to facilitate online play of

the game. The system features an Automatic Match-Making system, which matches

players for competitive play based on the perceived skill level of each. In general,

the system will try to match players who are perceived to be relatively equal in skill.

The ladder also has an experience-based system, the intention of which is to

allow more successful players to “climb” the ladder and ultimately provide a player

ranking system. Each player is assigned a level which represents his or her skill, and

the level increases as the player plays and wins games. New players start at level 1,

with the maximum level attainable being 50.

65

Appendix B

Pre-Data Survey

The following is the pre-data survey that was distributed to players at the outset

of the experimental portion of this study.

Warcraft III: The Frozen Throne

Strategy Questionnaire

The following questionnaire is for a Computer Science Masters thesis project. The

topic of this project is automatically identifying high-level player strategies in com-

petitive, multi-player games. The research is not about your answers to this ques-

tionnaire but rather about the computers ability to identify strategies; your answers

are needed to help measure how well the computer is doing. Both your identity and

your answers will be kept anonymous, and your participation in this study is greatly

appreciated.

When complete, please return this form to the mailbox of:

Jeff Long

Department of Computer Science,

176 Thorvaldson Building,

110 Science Place

66

Instructions

Under each playable race from Warcraft III: The Frozen Throne, several major strate-

gies (sometimes referred to as builds) are listed. The term major is deliberately

rather vague, but is intended to refer to a short, high-level description that you

might use to capture the important strategic elements of the game. For each of the

listed strategies, please indicate whether you agree or disagree (yes or no) that it is

a viable and commonly used build by experienced Warcraft III players. In addition,

if you feel there is a common build worth mentioning that has not been included in

the current list, please add it under the heading Other at the bottom of each races

section. Similarly, if you feel something important has been left out of one of the

existing strategy write-ups, please feel free to add it.

Orc

1. Gruntapult: A significant build-up of early Grunts; Demolishers enter pro-

duction as soon as possible; an attack mounted on the enemy base before Tier

2 production buildings can really kick in:

• Yes:

• No:

2. Gruntraider: An early build-up of Grunts; Beastiary built as soon as possible;

Production of several raiders with Ensnare:

67

• Yes:

• No:

3. Wyvern Rush: Minimal build-up of early units; base is compactly built to

resist a rush; double Beastiaries built in Tier 2; significant Wind Riders (or

Wyverns as they were once called) production:

• Yes:

• No:

4. Double Lodge: Medium early game build-up; emphasis on Spellcaster pro-

duction at Tier 2, usually focusing on Shaman and Witchdoctors. Often fast

upgrade to Bloodlust is a priority:

• Yes:

• No:

5. Other:

Human

1. Rifle-Sorc: Little to no footman production; Early blacksmith and rifleman

production begins as soon as possible. Sorceresses are added at Tier 2, often

from double Arcane Sanctums:

• Yes:

68

• No:

2. Gryphon Rush: Base is heavily fortified with towers; Usually involves Hero

harass with Archmage and/or Bloodmage; Gryphon and Dragonhawk produc-

tion begins as soon as possible.

• Yes:

• No:

3. Fast Expand: Heavy early peasant production; militia used to help clear a

nearby goldmine; additional peasants then used to quickly power-build a new

Townhall; Expansion is usually fortified with towers:

• Yes:

• No:

4. Other:

Night Elf

1. Archer-Talon: Significant Archer production at Tier 1, usually with a Demon

Hunter hero to soak damage; Druid of the Talon production begins as soon as

possible; massing of Archers and Talons continues:

• Yes:

• No:

69

2. Huntress Rush: No Archer production, very early Huntress Hall; Huntress

production begins, usually from double Ancients of War; emphasis is on seizing

map control and often an early resource expansion:

• Yes:

• No:

3. Fast Bears: Ancient of War is often skipped at Tier 1; heavy Hero harassment,

usually by a Demon Hunter or Warden; Double Ancients of Lore produced at

Tier 2; Druid of the Claw production begins shortly, sometimes with Dryad

production first:

• Yes:

• No:

4. Other:

Undead

1. Fiend-Statue: Ghouls produced only for lumber, Graveyard is built very

early; Crypt Fiend production begins as soon as possible; Slaughterhouse built

immediately at Tier 2, several statues are produced; upgrade to Destroyers

later is possible:

• Yes:

• No:

70

2. Necro Rush: A small Ghoul creeping force is produced; upgrade to Tier 2

is usually early; Necromancer production begins in conjunction with a Slaugh-

terhouse and Meatwagons; an attack is mounted on the enemy base before

significant dispel magic is available:

• Yes:

• No:

3. Ghoul-Garg: Significant Ghoul production at Tier 1; Hero combination is

usually Death Knight and Dread Lord; Gargoyle production begins at Tier 2,

usually out of double Crypts:

• Yes:

• No:

4. Other:

71

Appendix C

Questionnaire

The following are the instructions to the questionnaire that were provided to

participants along with the game replays they were asked to classify.

Warcraft III: The Frozen Throne

Replay Classification Instructions

The following questionnaire is for a Computer Science Masters thesis project. The

topic of this project is automatically identifying high-level player strategies in com-

petitive, multi-player games. The research is not about your answers to this ques-

tionnaire but rather about the computer’s ability to identify strategies; your answers

are needed to help measure how well the computer is doing. Both your identity and

your answers will be kept anonymous, and your participation in this study is greatly

appreciated.

When complete, please return this form to the mailbox of:

Jeff Long

Department of Computer Science,

176 Thorvaldson Building,

110 Science Place

72

Instructions

Under each playable race from Warcraft III: The Frozen Throne, several major strate-

gies (sometimes referred to as builds) are listed. The term ‘major’ is deliberately

rather vague, but is intended to refer to a short, high-level description that you

might use to capture the important strategic elements of the game. You will be sent

a series of replays by high-level Warcraft III players. For each replay, please indicate

which strategy from the available list you believe that player to be using. You may

list more than one strategy if you feel this is appropriate. Please do this for both

players in each replay. For your reference, a full list of strategies is included in this

document along with their descriptions. The accompanying classification document

will list the strategies by name and number only.

Orc

1. Gruntapult: A significant build-up of early Grunts; Demolishers enter pro-

duction as soon as possible; an attack mounted on the enemy base before Tier

2 production buildings can really kick in.

2. Gruntraider: An early build-up of Grunts; Beastiary built as soon as possible;

Production of several raiders with Ensnare. Spirit Walkers are often added

later.

73

3. Wyvern Rush: Minimal build-up of early units; base is compactly built to

resist a rush; double Beastiaries built in Tier 2; significant Wind Riders (or

Wyverns as they were once called) production.

4. Tauren Chief Headhunters: A risky strategy consisting of a first-hero Tau-

ren Chieftain. Headhunters are produced in large numbers and upgraded to

berzerkers swiftly. The Chieftain keeps the enemies stunned while the Head-

hunters do the damage. Taurens are sometimes eventually added later in the

game.

5. Firelord Rush: Significant Grunt build-up early on. Starting hero is usually

Farseer or Shadow Hunter with Serpent Wards. The Firelord is added at Tier

2 to mount an immediate attack on the enemy base.

Human

1. Rifle-Sorc: Little to no footman production; Early blacksmith and rifleman

production begins as soon as possible. Sorceresses are added at Tier 2, often

from double Arcane Sanctums. Sometimes complimented by Mortar Teams.

2. Gryphon Rush: Base is heavily fortified with towers; Usually involves Hero

harass with Archmage and/or Bloodmage; Gryphon and Dragonhawk produc-

tion begins as soon as possible.

3. Fast Expand: Heavy early peasant production; militia used to help clear a

nearby goldmine; additional peasants then used to quickly power-build a new

74

Townhall; Expansion is usually fortified with towers.

4. Footman-Caster: Frontline of footmen built up early. Spellcasters of all

types produced at Tier 2. Often a 3rd Hero is added at Tier 3.

5. Breaker-Priest-Knight: Usually begins with modest Footman production.

Arcane Sanctums at Tier 2 produce Spellbreakers and priests to create a highly

defensive army. Footmen are replaced with Knights as they become available.

6. Tank Bait: Early footmen are produced for defense along with towers. Steam

Tanks (or Siege Engines as they’re now called) are secretly massed to destroy

enemy buildings.

Night Elf

1. Archer-Talon: Significant Archer production at Tier 1, usually with a Demon

Hunter hero to soak damage; Druid of the Talon production begins as soon as

possible; massing of Archers and Talons continues.

2. Huntress Rush: No Archer production, very early Huntress Hall; Huntress

production begins, usually from double Ancients of War; emphasis is on seizing

map control and often an early resource expansion.

3. Fast Bears: Ancient of War is often skipped at Tier 1; heavy Hero harassment,

usually by a Demon Hunter or Warden; Double Ancients of Lore produced at

Tier 2; Druid of the Claw production begins shortly, sometimes with Dryad

production first.

75

4. Ranger-Moon: Priestess of the Moon is chosen as first Hero, with Searing

Arrows and Trueshot Aura. Tier 1 units of Huntresses and Archers are massed

to gain an early advantage. Focus fire on enemy units with this army is a

priority.

5. Bear-Dryad: Similar to Fast Bears in that dual Ancients of Lore are involved;

however, Tier1 production is usually not skipped. Huntresses are produced

early game and supplemented with Dryads. Upgrade to Bears comes somewhat

slower but they eventually replace the Huntress Frontline. Usually Staves of

Teleportation are involved to save dying bears.

Undead

1. Fiend-Statue: Ghouls produced only for lumber, Graveyard is built very

early; Crypt Fiend production begins as soon as possible; Slaughterhouse built

immediately at Tier 2, several statues are produced; upgrade to Destroyers

later is possible.

2. Necro Rush: A small Ghoul creeping force is produced; upgrade to Tier 2

is usually early; Necromancer production begins in conjunction with a Slaugh-

terhouse and Meatwagons; an attack is mounted on the enemy base before

significant dispel magic is available.

3. Ghoul-Garg: Significant Ghoul production at Tier 1; Hero combination is

usually Death Knight and Dread Lord; Gargoyle production begins at Tier 2,

usually out of double Crypts.

76

4. Ghoul-Nuke: Primarily a Hero-nuking strategy. The Death Knight is pro-

duced at Tier 1 along with Ghouls. The Lich is added at Tier 2 for Frost Nova.

Upgrade to Tier 3 as soon as possible for Ghoul Frenzy.

5. Fiend-Abom: Usually opens as a Cryptfiend build with a Death Knight.

Slaughterhouses are constructed at Tier 2, and began producing Abominations

as soon as Tier 3 is reached. The Death Knights coil effectively heals both units.

Sometimes banshees are added if resources allow.

77

Appendix D

Sequence Alignment Scoring Matrices

The following are the similarity scoring matrices used for the sequence alignment

portion of the experimental study. They are presented by Warcraft III race, since

each race has different types of units available and thus a different encoding. For all

races, the underscore () character represents the gap character in the alignment.

78

Table D.1: The character encoding key for Orc and Human military units.

Orc Units Human Units

Game Unit Character Game Unit Character

Grunt G Footman F

Headhunter H Rifleman R

Catapult C Knight K

Raider R Sorceress S

Windrider W Priest P

Batrider B Spellbreaker B

Kodo Beast K MortarTeam M

Shaman S FlyingMachine L

WitchDoctor D SteamTank T

Spiritwalker I Dragonhawk D

Tauren T Gryphonrider G

79

Table D.2: The character encoding key for Undead and Night Elf military units.

Undead Units Night Elf Units

Game Unit Character Game Unit Character

Ghoul G Archer A

Crypt Fiend F Huntress H

Gargoyle R Glaive Thrower G

Necromancer N Dryad D

Banshee B Druid of the Claw (Bear) B

Obsidian Statue O Mountain Giant M

Abomination A Hippogryph I

Meat Wagon M Druid of the Talon T

Destroyer D Faerie Dragon F

Frost Wyrm W Chimaera C

80

Table D.3: The scoring matrix used for Orc strategy classification.

G H C R W B K S D I T

G 48 -2 -2 -2 -5 -5 -3 -3 -3 -2 -4 -3

H -2 32 -3 -3 -6 -4 -4 -2 -2 -3 -5 -2

C -2 -3 64 -3 -4 -6 -2 -4 -4 -3 -3 -4

R -2 -3 -3 48 -4 -4 -2 -3 -3 -2 -4 -3

W -5 -6 -4 -4 64 -3 -3 -6 -6 -5 -5 -4

B -5 -4 -6 -4 -3 32 -5 -4 -4 -5 -7 -2

K -3 -4 -2 -2 -3 -5 64 -4 -4 -3 -3 -4

S -3 -2 -4 -3 -6 -4 -4 32 -2 -2 -5 -2

D -3 -2 -4 -3 -6 -4 -4 -2 32 -2 -5 -2

I -2 -3 -3 -2 -5 -5 -3 -2 -2 48 -4 -3

T -4 -5 -3 -4 -5 -7 -3 -5 -5 -4 80 -5

81

Table D.4: The scoring matrix used for Human strategy classification.

F R K S P B M L T D G

F 32 -2 -3 -2 -2 -3 -3 -5 -3 -5 -6 -2

R -2 48 -2 -3 -3 -2 -2 -6 -2 -4 -5 -3

K -3 -2 64 -4 -4 -3 -3 -7 -3 -3 -4 -4

S -2 -3 -4 32 -1 -2 -3 -5 -3 -5 -6 -2

P -2 -3 -4 -1 32 -2 -3 -5 -3 -5 -6 -2

B -3 -2 -3 -2 -2 48 -2 -6 -2 -4 -5 -3

M -3 -2 -3 -3 -3 -2 48 -5 -2 -4 -5 -3

L -5 -6 -7 -5 -5 -6 -5 16 -5 -4 -5 -1

T -3 -2 -3 -3 -3 -2 -2 -5 48 -4 -5 -3

D -5 -4 -3 -5 -5 -4 -4 -4 -4 48 -2 -3

G -6 -5 -4 -6 -6 -5 -5 -5 -5 -2 64 -4

82

Table D.5: The scoring matrix used for Undead strategy classification.

// G F R N B O A M D W

G 32 -2 -3 -2 -2 -3 -4 -4 -7 -9 -2

F -2 48 -4 -3 -3 -2 -3 -3 -6 -8 -3

R -3 -4 32 -4 -4 -5 -6 -6 -5 -7 -2

N -2 -3 -4 32 -2 -3 -4 -4 -7 -9 -2

B -2 -3 -4 -2 32 -3 -4 -4 -7 -9 -2

O -3 -2 -5 -3 -3 48 -2 -2 -5 -8 -3

A -4 -3 -6 -4 -4 -2 64 -2 -4 -7 -4

M -4 -3 -6 -4 -4 -2 -2 64 -4 -7 -4

D -7 -6 -5 -7 -7 -5 -4 -4 80 -4 -5

W -9 -8 -7 -9 -9 -8 -7 -7 -4 112 -7

83

Table D.6: The scoring matrix used for Night Elf strategy classification.

// A H G D B M I T F C

A 32 -2 -2 -3 -4 -7 -4 -2 -4 -7 -2

H -2 48 -2 -2 -3 -6 -5 -3 -5 -6 -3

G -2 -2 48 -2 -3 -6 -5 -3 -5 -6 -3

D -3 -2 -2 48 -2 -5 -5 -3 -5 -6 -3

B -4 -3 -3 -2 64 -4 -6 -4 -7 -5 -4

M -7 -6 -6 -5 -4 112 -9 -7 -9 -6 -7

I -4 -5 -5 -5 -6 -9 32 -3 -2 -5 -2

T -2 -3 -3 -3 -4 -7 -3 32 -3 -7 -2

F -4 -5 -5 -5 -7 -9 -2 -3 32 -5 -2

C -7 -6 -6 -6 -5 -6 -5 -7 -5 80 -5

84

