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ABSTRACT 

Schizophrenia patients typically exhibit cognitive impairments that directly affect their 

daily functioning, but are not effectively treated by current antipsychotics.  Maternal 

immune activation (MIA) during pregnancy, which can be triggered by a variety of 

infectious agents, has been associated with the development of schizophrenia in adult 

offspring.  Epidemiological evidence indicates that elevated maternal levels of the 

chemokine interleukin- 8 (IL-8) during MIA contribute to the neurodevelopmental 

alterations underlying the disorder.  The present experiments used an animal model of 

neurodevelopmental disorders to study the effects of MIA and chemokine receptor 

antagonism on the behavior of rat offspring, with behavioral tests chosen to examine 

cognitive functions that are typically impaired in human schizophrenia patients.  The 

viral mimetic polyinosinic-polycytidylic acid (polyI:C) (4.0 mg/kg, i.v.) was injected into 

pregnant Long-Evans (LE) dams on gestational day (GD) 15.  Dams were also treated 

with the three injections of CXCL8(3–72)K11R/G31P (G31P) (500 µg/kg, i.p.), a 

chemokine receptor antagonist that binds CXCR1 and CXCR2 with high affinity.  

PolyI:C treatment significantly increased maternal levels of the chemokine CXCL1, the 

rodent analogue of IL-8 that binds CXCR1 and CXCR2.  The offspring of polyI:C-treated 

dams showed impaired associative recognition memory and multisensory integration, as 

well as subtle impairments in prepulse inhibition (PPI).  G31P administration did not 

reverse any of the behavioral deficits caused by polyI:C, although G31P did alter PPI 

during adolescence.  Although the present experiments included replications and novel 

findings for the polyI:C model, the effects of polyI:C were smaller than in other 

published research.  Utilizing animal models that include both genetic and environmental 
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components, as well as more widely targeted anti-inflammatory therapies will likely 

result in more promising findings in future research. 
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INTRODUCTION 

Schizophrenia is an extremely debilitating psychiatric disorder that causes 

significant health, social and financial burden for patients, their families and society as a 

whole (Knapp et al., 2004; Montgomery et al., 2013).  Much of the debilitation 

experienced by individuals with schizophrenia is caused by the cognitive symptoms of 

the illness, which directly affect patients’ daily functioning, ability to live independently 

and ability to work (Kitchen et al., 2012).  These cognitive impairments are especially 

problematic, as current antipsychotics cannot treat them effectively (Wallace et al., 

2012).  A preventative treatment strategy that stops the neurodevelopmental alterations 

underlying schizophrenia from occurring will likely be more effective than any symptom-

driven medication.  Research investigating the mechanisms underlying schizophrenia led 

to the formation of the cytokine hypothesis, which postulates that abnormal cytokine 

elevations during pregnancy transmit inflammatory signals through the immature blood-

brain barrier to the fetal brain, perturbing its development (Watanabe et al., 2010).  

Chemokines, a sub-class of cytokines with chemotactic properties that are primarily 

recognized for their role in leukocyte trafficking (Tran and Miller, 2003), are also being 

investigated for their role in these processes (Brown et al., 2004b; Arrode-Brusés and 

Brusés, 2012).  Gaining a better understanding of how cytokines contribute to the 

neurodevelopmental alterations underlying schizophrenia will, hopefully, aid the 

development of more effective therapeutics in the future.  Therefore, the aim of the 

present experiments was to use an animal model to examine the effects of maternal 

immune activation (MIA) and chemokine receptor antagonism during pregnancy on the 

cognitive functioning of rat offspring.       
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Inflammation and Schizophrenia 

Numerous studies have found evidence that maternal infection during pregnancy 

increases the offspring’s risk of developing neurodevelopmental disorders, such as 

schizophrenia and autism (Brown et al., 2004a; Arias et al., 2012; Atladottir et al., 2012). 

The release of maternal and fetal cytokines during infection is thought to mediate the 

neurodevelopmental alterations underlying these disorders, as their occurrence is 

increased by a variety of infectious agents (Fineberg and Ellman, 2013).  Significantly 

elevated plasma cytokine levels are also found in adult schizophrenia patients (Miller et 

al., 2011), suggesting that the inflammatory systems of these individuals have been 

dramatically altered.  Studies examining anti-inflammatory drugs as adjuvant therapies 

for schizophrenia found modest symptom improvements following treatment with non-

steroidal anti-inflammatory drugs (Nitta et al., 2013), minocycline (Levkovitz et al., 

2010) and the cyclooxygenase-2 inhibitor celecoxib (Akhondzadeh et al., 2007; Müller et 

al., 2010), with one celecoxib trial finding no treatment effect (Rapaport et al., 2005).  

Girgis et al. (2014) postulated that these treatment effects could have been larger if the 

anti-inflammatory drugs were specifically targeted to cytokines.  Administering drugs 

earlier in development, prior to the onset of symptoms, would also likely increase 

treatment effects.   

Although numerous cytokines could be chosen for the design of a targeted anti-

inflammatory therapy, several studies indicate that the chemokine interleukin-8 (IL-8) 

should be investigated.  An epidemiological study conducted by Brown et al. (2004b) 

using maternal serum samples from a large birth cohort found a correlation between 

elevated serum levels of IL-8 during pregnancy and the development of schizophrenia 
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spectrum disorders in adult offspring.  Further study of schizophrenia patients from the 

same birth cohort revealed correlations between prenatal exposure to elevated IL-8 and 

structural brain alterations that are typically seen in the disorder, including increased 

ventricular and decreased cortical volumes (Ellman et al., 2010).  Coinciding with the 

finding of abnormal plasma cytokine levels in schizophrenia (Miller et al., 2011), the 

production of numerous chemokines by mononuclear cells from peripheral blood samples 

of human patients was also altered (Reale et al., 2011). Despite these intriguing findings, 

the range of effects of IL-8 and their underlying mechanisms are not entirely understood. 

Animal Models of Schizophrenia 

The most practical method for investigating the developmental effects of cytokine 

elevations is rodent research.  Modeling the entire spectrum of a complex human disorder 

such as schizophrenia in rodents is likely impossible, but different models can be used to 

examine various behavioral, physiological and neuroanatomical phenotypes of the 

disorder (Meyer and Feldon, 2012).  An ideal model would exhibit high face, construct 

and predictive validity for the disorder it is designed to study.  The earliest models of 

schizophrenia involved pharmacological manipulations, such as administration of 

amphetamine or phencyclidine (PCP).  These drugs have been shown to increase 

locomotor activity and impair prepulse inhibition (PPI) in rodents, and exacerbate 

symptoms in human schizophrenia patients (McGonigle, 2014).  The advantage of these 

models is their high predictive validity for treatment of the positive symptoms of 

schizophrenia, which include hallucinations and delusions.  However, these models show 

low construct validity and low predictive validity for the other symptom domains 

(McGonigle, 2014).   
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Models with increased construct validity have focused on the developmental 

aspects of schizophrenia.  Treating pregnant rats with methylazoxymethanol (MAM), a 

compound that inhibits neuroblast proliferation, induces anatomical and behavioral 

changes in the offspring that resemble schizophrenia (Moore et al., 2006).  Another 

developmental model that has been used in research is the neonatal ventral hippocampal 

lesion model, in which ibotenic acid is injected into the ventral hippocampus of rodents 

on postnatal day (PND) 7.  Ventral hippocampal lesions have also been shown to cause 

structural brain changes and behavioral abnormalities in the offspring that resemble 

schizophrenia (Jones et al., 2011).  While the face validity of these models is relatively 

high, the construct validity is still not as high as desired, as MAM treatment and 

hippocampal lesions are not naturally occurring causes of schizophrenia.  

The animal model chosen for the present experiments also focuses on the 

developmental aspects of schizophrenia.  In this model, pregnant rodents are injected 

with the viral mimetic polyinosinic-polycytidylic acid (polyI:C).  PolyI:C is synthetically 

manufactured double-stranded RNA that binds toll-like receptor 3 and elicits an 

inflammatory response (Doukas et al., 1994; Patterson, 2009).  In mice, polyI:C treatment 

increases maternal serum levels of the cytokines IL-1β, IL-6, IL-10 and tumor necrosis 

factor alpha (TNF-α) 3 h following treatment (Meyer et al., 2006), as well as serum levels 

of the chemokines Eotaxin, RANTES and MCP-1 on PND 7 in the offspring (Garay et 

al., 2013).  One study in Sprague-Dawley (SD) rats used ELISA assays to show that IL-

10 and TNF-α were significantly increased following polyI:C treatment (Song et al., 

2011).  However, ELISAs for other cytokines were not performed by Song et al. (2011), 

leaving the cytokine response of rats to polyI:C incompletely analyzed.   
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The offspring of polyI:C-treated rodents have been shown to exhibit behavioral 

impairments consistent with those seen in human schizophrenia, including impaired PPI, 

memory, set shifting and reversal learning (Zuckerman and Weiner, 2005; Wolff and 

Bilkey, 2008, 2010; Dickerson et al., 2010; Han et al., 2011; Howland et al., 2012; Zhang 

et al., 2012).  These behavioral impairments likely arise from exposure to elevated 

cytokines, as cytokines are critical components of neurodevelopmental cell signaling 

pathways (Deverman and Patterson, 2009).  Elevated levels of the cytokines IL-1β and 

TNF-α were also shown to reduce the number of dendritic nodes and total dendritic 

length in an in vitro study using cortical neurons from rats (Gilmore et al., 2004).  

Therefore, elevated cytokines likely affect behavior through their actions in multiple 

neurodevelopmental processes.  The research outlined above highlighting the associations 

between inflammation and schizophrenia, and the behavioral changes exhibited by 

animals in the polyI:C model indicate that this model possesses high construct and face 

validity.  

Chemokine Receptor Antagonism 

One aim of the present experiments was to examine the effects of IL-8 receptor 

antagonism during the acute inflammatory event triggered by polyI:C.  Human IL-8 binds 

to CXCR1 and CXCR2, G-protein-coupled CXC chemokine receptors that are present in 

similar amounts on neutrophils (Baggiolini et al., 1997).  When IL-8 binds 

CXCR1/CXCR2 it facilitates the migration of neutrophils from the bloodstream into 

inflamed tissues (Huber et al., 1991) and neutrophil activation (Zeilhofer and Schorr, 

2000).  While CXCR1 and CXCR2 are present in rodents, IL-8 is not produced.  Rodent 

CXCL1 (also known as Gro/KC) is considered to be the murine ortholog of IL-8 as both 
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chemokines bind CXCR1 and CXCR2 and have inflammatory functions (Baggiolini et 

al., 1995; Zlotnik et al., 2006). 

Research has shown that IL-8 and CXCL1 are also involved in 

neurodevelopmental processes.  As mentioned above, prenatal exposure to elevated 

maternal serum levels of IL-8 was positively correlated with structural brain alterations 

that are typically seen in schizophrenia (Ellman et al., 2010).  CXCL1 is critically 

involved in the development of central nervous system myelination, as it signals 

oligodendrocyte progenitors to stop migrating and proliferate once they have reached 

their destination (Robinson et al., 1998; Tsai et al., 2002).  CXCL1 also affects neuronal 

development, as a study using cells obtained from SD rat embryos showed that CXCL1 

specifically induced neurogenesis of dopaminergic neurons (Edman et al., 2008).  

Another study using SD rats found that the production of CXCL1 by neurons and 

endothelial cells preceded, and was correlated with, neutrophil infiltration into the brain 

(Johnson et al., 2011).  The receptors for CXCL1, CXCR1 and CXCR2, were also 

present in the brains of SD rats at two weeks and two months of age (Danik et al., 2003.)  

CXCR1 was present on a significant number of neurons, and approximately half of the 

neurons sampled expressed both CXCR1 and CXCR2 (Danik et al., 2003).  The 

importance of CXCL1 for neurodevelopment and the presence of CXCR1 and CXCR2 in 

the rat brain strongly suggest that the effects of polyI:C treatment will be altered by 

CXCR1/CXCR2 antagonism.    

In the present experiments, the CXCR1/CXCR2 antagonist CXCL8(3–

72)K11R/G31P (G31P) was administered to antagonize the receptors of CXCL1.  G31P 

is a synthetic, mutated form of human IL-8 that binds CXCR1 and CXCR2 with high 
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affinity (Zhao et al., 2009).  Previous rodent work with a guinea pig model of airway 

endotoxemia found that neutrophil infiltration and activation within the airways was 

blocked (>95%) by G31P administration (Zhao et al., 2009).  G31P also reduced 

neutrophil infiltration into the airways and production of the cytokines CXCL8, IL-1 and 

TNF in guinea pigs treated with Klebsiella pneumoniae (Wei et al., 2013).  Thus, our 

hypothesis was that treating pregnant dams with G31P before and after polyI:C would 

prevent the effects of elevated CXCL1.  

Behavioral Tests of Cognition 

The primary method used to assess treatment outcomes in the present experiments 

was behavioral testing of the offspring, with tests chosen to assess processes that are 

typically impaired in human schizophrenia.  The major symptom domains of 

schizophrenia are positive, negative and cognitive.  Research has shown that cognitive 

symptom levels are strong predictors of patient functioning (Green, 2006; Kitchen et al., 

2012) and, yet, cognitive functioning is not improved by antipsychotic treatment 

(Wallace et al., 2011).  To address this problem, the United States National Institute of 

Mental Health formed the Measurement and Treatment Research to Improve Cognition in 

Schizophrenia (MATRICS) initiative (Marder and Fenton, 2004).  The MATRICS 

initiative identified seven cognitive domains that are typically impaired in schizophrenia 

patients, which are attention/vigilance, working memory, reasoning and problem solving, 

processing speed, visual learning and memory, verbal learning and memory and social 

cognition.  Based on this information, Young et al. (2009) sought to identify the most 

valid rodent behavioral tests to form a preclinical cognitive test battery for schizophrenia.     
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PPI was identified by Young et al. (2009) as a useful test of sensorimotor gating, 

a component of attention that occurs early in stimulus processing.  In healthy humans and 

other animals, the presentation of a non-startling acoustic tone, called a prepulse, prior to 

a louder pulse reduces the startle reflex to that pulse.  In schizophrenia patients, inhibition 

of the startle reflex by a non-startling prepulse is typically decreased (Braff et al., 1992; 

Weike et al., 2000).  These PPI impairments are typically attributed to widespread 

dysfunction involving the striatum, hippocampus, thalamus, frontal and parietal regions 

of the brain (Takahashi et al., 2011).  PPI is an especially useful measure for clinical 

testing, as an identical test can be delivered to humans and rodents (Swerdlow et al., 

1994).    

Several researchers have examined PPI in the polyI:C model.  PPI impairments 

were reported at three months of age in SD offspring of dams injected with polyI:C (4.0 

mg/kg, i.v.) on gestational day (GD) 15 (Wolff and Bilkey, 2008, 2010).  Using the same 

treatment protocol, PPI impairments were also shown in Wistar rats tested on PND 90-98 

(Klein et al., 2013; Mattei et al., 2014) and in Long-Evans (LE) rats tested on PND 56-57 

(Howland et al., 2012).  Similar findings have been obtained in C57BL/6J mice, who 

showed PPI impairments after prenatal exposure to polyI:C (20 mg/kg, i.p.) on 

embryonic day (ED) 12.5 (Smith et al. 2007).  In contrast to these findings, Fortier et al. 

(2007) found that treatment of SD dams with polyI:C (two consecutive daily doses of 

750–1000 µg/kg, i.p.) starting on ED 10, ED 15 or ED 18 had no significant effect on PPI 

in the offspring.   These findings suggest that the species and strain chosen, the polyI:C 

treatment protocol and the timing of testing in the offspring can all impact performance 

on the PPI test.  
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As noted above, impaired visual learning and memory was also identified as a 

cognitive symptom of schizophrenia by the MATRICS initiative (Marder and Fenton, 

2004).  Human patients have shown impairments in multiple forms of visual learning and 

memory including spatial and non-spatial, recognition and recall, and short- and long-

term memory (Heinrichs and Zakzanis, 1998).  Specific impairments have been shown 

for visual pattern recognition (Cestari et al., 2013), and immediate and delayed recall and 

recognition of complex figures (Bozikas et al., 2006).  To investigate visual learning and 

memory in rodents, Young et al. (2009) recommended the novel object recognition test, 

which relies upon animals’ innate preference for exploring novel stimuli to demonstrate 

memory (Ennaceur and Delacour, 1988).  In the test, an animal first explores two 

identical copies of an object.  Then, following a delay, the animal explores an additional 

copy of the original object and a novel object.  Memory is inferred when the animal 

spends more time exploring the novel object.  Findings from several studies indicate that 

the perirhinal cortex (PRh) is the most important cortical area for novel object 

recognition memory performance (Winters et al., 2008).   

A more complex, but related form of recognition memory is associative 

recognition memory.  A study of patients with first episode schizophreniform psychosis 

and established schizophrenia showed that both patient groups were impaired on multiple 

tests of visuospatial memory compared to control subjects (Wood et al., 2002).  However, 

results from the same study showed that only patients with established schizophrenia 

were impaired on the visuospatial paired-associate learning test. This pattern of results 

caused the researchers to conclude that visuospatial associative memory impairments 

emerge as patients transition from first-episode schizophreniform psychosis to 
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established schizophrenia (Wood et al., 2002).  Similar findings were obtained in a 

functional magnetic resonance imaging (fMRI) study, in which schizophrenia patients 

showed similar performance to controls on a visual recognition test, but were impaired on 

the visual associative recognition test (Montoya et al., 2007).  fMRI images showed that 

schizophrenia patients had less prefrontal cortex (PFC) activity during the visual 

associative recognition test than controls, suggesting that diminished PFC activity was 

responsible for their impairment (Montoya et al., 2007).  This fMRI finding coincides 

with a large body of research demonstrating PFC hypoactivity in schizophrenia (da Silva 

Alves et al., 2008).   

One commonly used test of associative recognition memory in rodents is the 

object-in-place (OIP) recognition memory test (Bussey et al., 2000).  In this test, an 

animal first explores four distinct objects in a square arena.  Then, following a delay, the 

animal explores identical copies of the same four objects with the location of two of the 

objects switched.  Memory for an object-location association is inferred when the animal 

spends more times exploring the objects that have been moved (novel object-location 

association) than it spends exploring those that have not been moved.  A lesion study 

demonstrated that OIP test performance is dependent on processing in both the PRh and 

the medial prefrontal cortex (mPFC) of rats (Barker et al., 2007).   

Howland et al. (2012) administered both the novel object recognition test and the 

OIP test to polyI:C-exposed LE rats.  They found that the offspring of polyI:C-treated 

dams showed intact novel object recognition, but were impaired on the OIP test.  This 

finding corresponds with human data showing greater impairments on associative 

recognition tests than simple visual recognition tests (Wood et al., 2002; Montoya et al., 
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2007).  Based on this result, and the comment from Young et al. (2009) that multiple tests 

are appropriate for studying visual learning and memory in rodents, the present 

experiments included the OIP test and the visual component of the crossmodal 

recognition test (described below) to assess visual recognition memory.   

The final cognitive domain examined in the present experiments was multisensory 

integration, a rapidly growing subject of research in the schizophrenia field.  

Multisensory integration is the formation of a distinct representation of a stimulus that 

incorporates information from multiple sensory modalities.  Accumulating evidence 

suggests that schizophrenia patients are impaired in this process, although findings have 

been mixed.  Schizophrenia patients showed less reaction time facilitation to 

multisensory targets than controls  (Williams et al., 2010), suggesting that the processing 

of multimodal stimuli is impaired.  However, electroencephalography studies have 

obtained contradictory findings, with one group finding impairments in audiovisual 

integration (Stekelenburg et al., 2013), and the other finding enhancements (Stone et al., 

2011).   

The most appropriate rodent test of multisensory integration is the crossmodal 

recognition memory test (Winters and Reid, 2010).  This test includes visual, tactile and 

crossmodal components.  Visual and tactile testing require the animal to form a memory 

of an object in one sensory modality (unimodal) and, subsequently, to recognize that 

object in the same modality.  Crossmodal testing requires the animal to recognize an 

object visually based on a previously acquired tactile representation. Bilateral lesions of 

the PRh, the posterior parietal cortex (PPC) or unilateral lesions of PRh and PPC in 

opposite hemispheres were administered to LE rats to investigate the cortical areas 
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responsible for test performance (Winters and Reid, 2010).  PRh lesions impaired 

memory on the visual and crossmodal tests, while PPC lesions impaired performance on 

the tactile and crossmodal tests.  Most significantly, animals with crossed unilateral 

PRh/PPC lesions were selectively impaired on the crossmodal test, suggesting that 

multisensory integration is dependent on an association between these cortical areas in 

rats.  Further studies showed that hippocampal lesions have no effect on crossmodal 

recognition memory (Reid et al., 2012), while the PFC appears to contribute (Reid et al., 

2013).  To the best of the author’s knowledge, no published research has examined the 

crossmodal recognition memory of animals exposed prenatally to polyI:C, or any other 

inflammatory treatment.    

Hypotheses 

Based upon the findings outlined above, several hypotheses were formed for the 

present experiments.  PolyI:C treatment was expected to trigger an acute inflammatory 

event that increased the production of numerous cytokines in maternal serum and lung 

tissue.  Elevations were specifically predicted for IL-1β and IL-6, based on findings in 

mice (Meyer et al., 2006), and IL-10 and TNF-α, based on findings from mice and rats 

(Meyer et al., 2006; Song et al., 2011). Maternal concentrations of the chemokine 

CXCL1, the rodent analogue of human IL-8, were also expected to increase following 

polyI:C treatment.  This hypothesis was formed based on the human association between 

prenatal exposure to elevated maternal IL-8 and the development of schizophrenia in 

adult offspring (Brown et al., 2004b).  Although there is no published data showing the 

effects of G31P in rats, rats treated with the combination of polyI:C and G31P were 

expected to show decreased serum cytokine concentrations compared to rats who were 
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only treated with polyI:C.  The finding that G31P treatment decreased IL-1 and TNF 

production in guinea pigs (Wei et al., 2013) supports this hypothesis, although it is 

possible that species differences would change the response of rats to G31P.   

For the PPI test of sensorimotor gating, maternal polyI:C treatment was 

hypothesized to decrease the PPI of the offspring.  This finding would correspond with 

previous data published by our laboratory (Howland et al., 2012), as well as numerous 

other studies examining PPI in the polyI:C model (Smith et al., 2007; Wolff and Bilkey, 

2008, 2010; Klein et al., 2013; Mattei et al., 2014).  The group of offspring whose 

mothers were treated with the combination of polyI:C and G31P were expected to show 

increased PPI compared to those whose mothers were only treated with polyI:C.   

Maternal polyI:C treatment was also hypothesized to impair associative 

recognition memory performance of the offspring on the OIP test.  This hypothesis was 

also based on previously published work from our laboratory (Howland et al., 2012).  For 

the crossmodal test of multisensory integration, all treatment groups were expected to 

show similar memory abilities on the visual and tactile recognition tests.  These tests only 

require animals to use one sensory modality to form memories of, and recognize, objects.  

These relatively simply requirements, as well as the finding that the offspring of polyI:C-

treated rats did not show impaired novel object recognition memory (Howland et al., 

2012) strongly suggest that polyI:C would not cause impairments on the visual or tactile 

recognition tests.  For the crossmodal test, the offspring of polyI:C-treated dams were 

expected to show recognition impairments.  There is no previously published data 

showing the effects of polyI:C treatment on crossmodal recognition memory.  However, 

the cognitively complex nature of the test, as well as the involvement of the PFC in 
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performance (Reid et al., 2013) strongly suggest that polyI:C-exposed offspring would be 

impaired.  G31P treatment was expected to reverse all polyI:C-induced recognition 

memory impairments, due to its effects on the inflammatory response.  

 

METHODS 
 

Animals 

Timed pregnant LE dams (Charles River Laboratories, Quebec, Canada) arrived 

at the laboratory on GD 7. They were singly housed with food (Purina Rat Chow) and 

water available ad libitum in a colony room (maintained at 21°C) with a 12 h light/dark 

cycle (lights on at 0700 h). Data was collected from four separate squads of rats. 

Experiments were conducted during the light phase and experimenters were blind to the 

treatments during testing. All experiments were performed in accordance with the 

Canadian Council on Animal Care and were approved by the University of Saskatchewan 

Animal Research Ethics Board.   

Maternal Treatment 

On GD 15, dam weight and rectal temperature (Homeothermic Blanket System, 

Harvard Instruments, MA, USA) were recorded. Dams were anesthetized for 

approximately 10 min using isoflurane (5% induction and 2.5% maintenance) and given 

one i.v. tail vein injection of either saline or polyI:C (4.0 mg/kg, high molecular weight; 

InVivoGen, San Diego, CA, USA). Half of the dams from each treatment group also 

received three i.p. injections of G31P (500 µg/kg; 1 h before, 48 h after, and 96 h after 

polyI:C or saline treatment) (Gordon et al., 2005; Zhao et al., 2009). Other than 

injections, weight, and temperature recordings (8, 24 and 48 h after treatment) dams were 
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undisturbed until PND 1, when litters were weighed and culled to a maximum of ten pups 

(six males where possible). On PND 21 litters were weaned into same-sex sibling cages 

and male pups were randomly selected for behavioral testing.  Care was taken to control 

for litter effects in behavioral testing, as 1) no greater than six males from a litter were 

included in one treatment group and 2) all treatment groups included rats from ten or 

more distinct litters. 

Multiplex Assays and ELISAs for Cytokines 

Dams were deeply anesthetized with isoflurane 3 h after polyI:C or saline 

administration.  The rats were decapitated and maternal lung tissue was rapidly dissected 

and flash frozen using liquid nitrogen. Trunk blood samples were allowed to clot for 60 

min (room temperature) and then centrifuged at 12,000 rpm for 4 min.  Serum was 

pipetted from each sample and flash frozen. All samples were stored at -80˚C until 

analysis. Bio-Plex Pro Assay multiplex kits were used to quantify protein in the samples, 

as has been done previously (Garay et al. 2013). Levels of IL-1β, IL-6, TNF-α, CXCL1, 

IFNγ, IL-1α, IL-2, IL-4 and IL-10 were first quantified in tissue samples from rats treated 

with either saline (n=3) or polyI:C (n=5). A subsequent experiment measured cytokines 

in samples from rats treated with either saline-saline (sal-sal), saline-polyI:C (sal-

polyI:C), G31P-saline (G31P-sal), or G31P-polyI:C (n=4 for each group). Note that 

G31P was only given 60 min before polyI:C in this experiment. ELISAs were performed 

on maternal serum for CXCL1 (GROα/KC) and CXCL2 (GROβ/MIP-2; R&D Systems, 

Inc., Minneapolis, MN) to confirm the measurements from the multiplex assays for 

CXCL1 and to measure CXCL2. Bio-Plex and ELISA assays were carried out by a 

separate research group (laboratory of Dr. John Gordon, Department of Medicine, 
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University of Saskatchewan) with all procedures following the manufacturer’s 

instructions.   

Behavioral Testing 

Behavioral tests were conducted according to published protocols (Winters and 

Reid, 2010; Howland et al., 2012; Jacklin et al., 2012).  Testing occurred in the following 

order: PPI during puberty (PND 35-36) and young adulthood (PND 56-57), followed by 

recognition memory testing (PND 60-80).  

PPI 

Two SR-LAB startle boxes (San Diego Instruments, San Diego, CA, USA) were 

used. Prior to each session, a rat was placed into a cylindrical enclosure within the startle 

box.  The enclosure uses a 12 bit resolution motion sensor to quantify movement.  Each 

session had a constant background noise (70 dB) and began with a 5 min acclimatization, 

followed by six pulse-alone trials (120 dB, 40 ms). Pulse-alone (6), prepulse + pulse (72) 

and no stimulus (6) trials were then presented in a pseudorandom order, followed by 6 

additional pulse-alone trials. Prepulse + pulse trials began with a 20 ms prepulse of 3, 6, 

or 12 dB above background (70 dB). Prepulse-pulse intervals were 30, 50, 80 or 140 ms 

between the onset of the prepulse and the onset of the 120 dB pulse. The inter-trial 

interval varied randomly from 3 to 14 seconds. The boxes were cleaned with 40% ethanol 

between sessions.  

Object-in-Place Recognition Memory 

The testing apparatus was a white open-field arena (60 X 60 X 60 cm) with one 

black wall, constructed from corrugated plastic (Figure 4A). Three 10 min habituation 

sessions, in which a rat is placed into an empty arena, occurred prior to testing. During 
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the first two sessions, two rats were simultaneously habituated in the same room, in 

separate arenas. In the third session, rats were individually habituated. One day after the 

third habituation, rats explored four distinct objects for 5 min (sample phase). Following 

a 1 h delay in which the rats returned to their home cages, rats explored identical copies 

of the same four objects with the location of two of the objects switched (test phase).  

Crossmodal Recognition Memory   

The testing apparatus was a Y-shaped arena (constructed of corrugated plastic), 

with one entrance arm and two object arms (10 X 27 cm) (Figure 4C, E, G). Testing 

included three distinct components: the visual, tactile and crossmodal memory tests. 

Transparent plastic barriers were inserted in front of the objects during visual, but not 

tactile phases. One red light bulb (60 W) was illuminated during the tactile phases, 

preventing the rats from seeing the objects, but allowing video recordings to be made of 

the rats’ behavior. One paired and one individual habituation session (10 min) occurred 

prior to testing. White overhead lighting and the red light bulb were separately 

illuminated for half of each habituation, with the order of illumination counterbalanced. 

Testing began one day after the second habituation. The order of administration of the 

visual, tactile and crossmodal tests was counterbalanced. All tests included a 3 min 

sample phase and 2 min test phase separated by a 1 h delay, in which rats were returned 

to their home cages, between phases. The maze contained two identical copies of an 

object during the sample phase, and a third copy of the original object with a novel object 

during the test phase. 
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Data Analysis 

All results are reported as group means ± the standard error of the mean (SEM). 

Values greater than 2 standard deviations above or below the mean were considered 

outliers, and were removed prior to statistical analysis.  For PPI, outlier criteria was 

determined using mean PPI on all long-interval (50, 80, 140 ms) trials.  SPSS Statistics 

version 22 (IBM) was used to conduct all statistical tests, using a significance value of p 

< 0.05. Non-significant findings are reported as n.s. Two way analysis of variance 

(ANOVA) with polyI:C and G31P treatment as between-subjects factors were 

predominantly used for analysis. Corrections were made for violations of sphericity using 

Mauchly’s Test, where appropriate. Post hoc analyses were performed separately using t-

tests.  

PPI   

PPI was calculated by averaging the startle amplitudes for each trial type, and the 

percent PPI for each prepulse intensity was calculated using the formula: [100-(100 X 

startle amplitude on prepulse + pulse trials)/(startle amplitude on pulse-alone trials)] 

(Howland et al., 2004a, 2004b, 2012).  

Recognition Memory  

Exploration was scored when a rat was judged to be actively exploring an object 

with its nose directed within 2 cm of the object and its head or vibrissae moving, but not 

when it was standing on top of the object or not directing attention towards it. A 

discrimination ratios (DR), calculated as the time spent exploring (novel-familiar)/(novel 

+ familiar), was used to quantify memory (Cazakoff and Howland, 2011; Howland et al., 

2012).  
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RESULTS 

Effects of polyI:C and G31P on cytokine concentrations in maternal serum and lung 

Maternal Serum (Figure 1A, B)  

Analysis of maternal serum samples demonstrated that the treatments 

significantly increased the concentration of a number of cytokines. An ANOVA revealed 

a significant main effect of polyI:C treatment for CXCL1 (F(1,20) = 7.61, p = 0.012) and 

significant main effects of G31P for IFNγ (F(1,20) = 6.30, p = 0.021), IL-1α (F(1,20) = 

7.12, p = 0.015) and IL-2 (F(1,20) = 5.19, p = 0.034). While no significant interactions 

were observed, inspection of the data revealed that polyI:C increased the concentration of 

other proinflammatory cytokines including IL-1β, IL-6, and TNF-α. Analysis of the 

simple main effects of polyI:C treatment, excluding rats treated with G31P from analysis, 

revealed significant increases for IL-1β (t(14) = -2.16, p = 0.049) and TNF-α (t(14) = -

2.22, p = 0.044). 

 To further characterize the chemokine changes in maternal serum 3 h after 

polyI:C and G31P treatment, ELISAs for CXCL1 (GROα/KC) and CXCL2 (GROβ/MIP-

2) were performed (Figure 1B). The results indicated that polyI:C treatment significantly 

increased the concentrations of CXCL1 (F(1,18) = 20.25, p < 0.001) without altering the 

concentration of CXCL2 (n.s.). While there was no main effect of G31P treatment for 

either chemokine (n.s.), the interaction between polyI:C and G31P was close to 

significant for CXCL1 (F(1,18) = 3.48, p = 0.079) but not CXCL2 (n.s.). Inspection of 

the data revealed that G31P treatment had a tendency to reduce levels of CXCL1 in 

serum from polyI:C-treated dams. 
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Maternal Lung (Figure 1C)  

The assay failed to detect IFNγ in 14/22 samples so results are not reported. 

Analysis of the data with a two-way ANOVA revealed that polyI:C treatment 

significantly increased CXCL1 concentration in the lung (F(1,17) =5.00, p = 0.039). 

G31P did not significantly increase concentrations of the cytokines, although the effect 

on IL-10 levels was close to significant (F(1,17) =4.07, p = 0.060). Large effects were 

also noted for IL-1β and IL-1α following polyI:C treatment, although these differences 

were not significant when either the main effects or interaction terms were considered. 

Analysis of simple main effects for saline and polyI:C treatment revealed a significant 

effect of polyI:C treatment for IL-1α (t(11) = -3.0, p = 0.042) but not IL-1β (n.s.). 
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Figure 1. Effects of polyI:C and G31P treatment on cytokine concentrations in 
maternal serum (A, B) and maternal lung (C). A. PolyI:C treatment significantly 
increased serum concentrations of CXCL1, IL-1β, TNF-α. G31P treatment significantly 
increased serum levels of INFγ, IL-1α, and IL-2. Group sizes were: sal-sal (n=7), sal-
polyI:C (n=9), G31P-sal (n=4), and G31P-polyI:C (n=4). B. Serum concentration of 
CXCL1, but not CXCL2, was significantly increased by polyI:C treatment. Samples were 
the same as those in panel A except for that two were not available for testing from the 
sal-polyI:C group. C. PolyI:C treatment significantly increased concentrations of CXCL1 
and IL-1α in maternal lung tissue. G31P did not have significant effects on any cytokine 
examined. Tissues were collected 3 h after polyI:C treatment on GD15. Bio-Plex data are 
presented as fold-change relative to the group mean of the sal-sal treated group as the 
concentrations of the cytokines in the saline treated group varied. * indicate a significant 
main effect of either polyI:C or G31P. # indicate a significant difference between the sal-
sal and sal-polyI:C groups. 
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Effects of polyI:C and G31P on the pregnant dams and pups 

PolyI:C treatment significantly decreased the weight of the dams for at least the 

48 h following treatment (Figure 2A).  An ANOVA (polyI:C and G31P as between-

subjects factors; percent weight change as a within-subjects factor) confirmed a main 

effect of polyI:C (F(1,45) = 17.49, p < 0.001), and revealed n.s. effects of G31P 

treatment and the polyI:C by G31P interaction.  After treatment, dams exhibited an 

average response of weight loss at 8 h (-3.09±0.7%) and weight gain at 48 h (4.74±1.0%), 

consistent with a significant main effect of time following treatment (F(1.39,63.37) = 

475.50, p < 0.001).  Neither polyI:C nor G31P significantly altered temperature in the 48 

h following treatment (data not shown). 

At birth, the number of pups per litter and the total weight of each litter were 

taken.  PolyI:C treatment significantly decreased litter size (F(1,48) = 75.85, p = 0.016) 

from 12.35±0.5 to 9.96±0.9 pups (Figure 2B).  G31P treatment did not affect litter size, 

with n.s. effects of G31P and the polyI:C by G31P interaction.  Average pup weights 

were not affected by either treatment (Figure 2C) with all main effects and interactions 

n.s.      
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Figure 2. Effects of polyI:C and G31P treatment on maternal weight change (A), 
number of pups per litter (B), and average pup weight at birth (C). PolyI:C treatment 
caused significant weight loss in the 48 h following treatment (A) and decreased the 
number of pups per litter (B), without affecting pup weight (C). Maternal weight change 
(A) was normalized to the weight of the dams immediately before the initial saline or 
G31P treatment on gestational day (GD) 15. G31P or saline (500 µg/kg, i.p.) treatments 
occurred on GD 15, 17, and 19. PolyI:C or saline (4 mg/kg, i.v.) treatments were 
administered on GD 15, 60 min after G31P or saline. Group sizes were sal-sal (n=15 
dams), sal-polyI:C (n=11 dams), G31P-sal (n=11 dams), G31P-polyI:C (n=12 dams).  
B, C. Number of litters assessed for pups per litter and average pup weight were: sal-sal 
(n=15), sal-polyI:C (n=11), G31P-sal (n=11), G31P-polyI:C (n=12). * in panels A and B 
denote a significant main effect of polyI:C treatment. No significant effects of G31P were 
observed. 
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Effects of exposure to polyI:C and G31P on PPI in the offspring 

PND 35. Startle amplitude (Figure 3A) 

The average startle amplitudes during blocks of pulse-alone trials (before, during 

and after prepulse + pulse trials) were analyzed to assess habituation during a session.  

Results of an ANOVA (polyI:C and G31P as between-subjects factors; pulse-alone block 

as a within-subjects factor) showed a significant effect of block (F(1.40,116.29) = 91.65, 

p < 0.001), as startle was significantly higher during the first block of pulse-alone trials 

than during the other blocks.  All other main effects and interactions were n.s.  

PND 35. PPI: 30 ms prepulse-pulse interval (Figure 3C) 

As described previously, prepulse facilitation was observed for trials with a 30 ms 

interval (Howland et al., 2012) and they were analyzed separately from the other trials. 

An ANOVA (polyI:C and G31P as between-subjects factors; prepulse intensity as a 

within-subjects factor) revealed a significant effect of prepulse intensity (F(2,166) = 

44.95, p < 0.001), as rats showed prepulse facilitation at the 3 dB prepulse and PPI at the 

12 dB prepulse (data not shown). There was a significant main effect of G31P treatment 

(F(1,83) = 4.49, p = 0.037), with G31P-exposed rats showing less facilitation than those 

not exposed to G31P.  The main effect of polyI:C and the polyI:C by G31P interaction 

were n.s.   

PND 35. PPI: 50, 80, 140 ms prepulse-pulse intervals (Figure 3E, G) 

Data for the remaining prepulse-pulse intervals was analyzed using ANOVA 

(polyI:C and G31P as between-subjects factors; prepulse-pulse interval and prepulse 

intensity as within-subjects factors). Regardless of treatment, rats exhibited decreased PPI 

at the 50 ms interval compared to the 80 and 140 ms intervals (Figure 3E), giving a main 
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effect of prepulse-pulse interval (F(1.86,154.75) = 19.77, p < 0.001). A significant effect 

emerged for prepulse intensity (F(2,166) = 373.95, p < 0.001), as rats exhibited higher 

PPI at higher dB prepulses (Figure 3G). The prepulse-pulse interval by prepulse intensity 

interaction (F(4,332) = 8.22, p < 0.001) and the three-way interaction between prepulse-

pulse interval, prepulse intensity and polyI:C treatment (F(4,332) = 3.94, p = 0.004) were 

both significant. G31P treatment did not significantly increase PPI as it did on the 30 ms 

prepulse-pulse interval trials, although the main effect was close to significant (F(1,83) = 

3.41, p = 0.068).  All other main effects and interactions were n.s. 

PND 56. Startle amplitude (Figure 3B)   

Analysis of startle amplitude during the blocks of pulse-alone trials revealed a 

significant main effect of block (F(1.09,91.49) = 41.57, p < 0.001), as startle was higher 

on the first block of pulse-alone trials than the other pulse-alone trial blocks.  All other 

main effects and interactions were n.s.   

PND 56. PPI: 30 ms prepulse-pulse interval (Figure 3D)   

Similar to the results from PND 35, a significant effect of prepulse intensity was 

found (F(2,168) = 53.92, p < 0.001). However, at this age neither polyI:C or G31P 

caused significant alterations in PPI when a 30 ms prepulse-pulse interval was tested 

(n.s.).   

PND 56. PPI: 50, 80, 140 ms prepulse-pulse intervals (Figure 3F, H)  

Data analysis for these trials revealed significant main effects of prepulse-pulse 

interval (F(2,168) = 21.24, p < 0.001) and prepulse intensity (F(1.82,152.80) = 213.20, p 

< 0.001). In contrast to PND 35, at PND 56 the effect of interval was caused by an 

overall decrease in PPI with increasing interval. All other effects and interactions in this 
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analysis were n.s.  An analysis of simple main effects, excluding animals exposed to 

G31P, was performed to allow for a comparison with previous findings.  The effects of 

prepulse-pulse interval (F(2,90) = 13.98, p < 0.001) and prepulse intensity (F(2,90) = 

102.26, p < 0.001) were significant, as was seen in the analysis including G31P animals.  

This simple analysis also revealed a prepulse-pulse interval by polyI:C interaction that 

was close to significant (F(2,90) = 2.79, p = 0.067).  A t-test comparing PPI on trials with 

the longest prepulse-pulse interval (140 ms) revealed a significant difference (t(45) = 

2.21, p = 0.032) such that sal-polyI:C rats showed decreased PPI compared to sal-sal 

control rats (Figure 3F).  Another t-test comparing PPI on long-interval trials with the 3 

dB intensity prepulse revealed a significant difference (t(51) = 2.19, p = 0.033) between 

sal-polyI:C and sal-sal rats (Figure 3H).        
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Figure 3. Acoustic startle responses and prepulse inhibition (PPI) of the offspring 
following maternal polyI:C and G31P treatment. A, B. Acoustic startle responses 
(startle amplitude, arbitrary units) for 120 dB pulse trials before, during, and after the PPI 
trials at postnatal day (PND) 35 (A) and 56 (B) (sal-sal, n=27; sal-polyI:C, n=21; G31P-
sal, n=21; G31P-polyI:C, n=23). C, D. % PPI for trials with a 30 ms prepulse-pulse 
interval at PND 35 (C) and 56 (D). Data is averaged for the 3, 6, and 12 dB prepulse 
intensities. Negative % PPI values reflect an increase in startle to trials with a prepulse. 
G31P-exposed rats showed less prepulse facilitation than other rats (main effect of 
G31P). E, F. % PPI averaged by prepulse intensity for the 50, 80, and 140 ms prepulse-
pulse intervals at PND 35 (E) and 56 (F). G, H. Percent PPI averaged by prepulse-pulse 
interval for 3, 6 and 12 dB prepulse intensities at PND 35 (G) and 56 (H). Group sizes for 
C, E, G: sal-sal (n=24), sal-polyI:C (n=20), G31P-sal (n=21), G31P-polyI:C (n=22). 
Group sizes for D, F, H: sal-sal (n=26), sal-polyI:C (n=21), G31P-sal (n=19), G31P-
polyI:C (n=22). Number of litters included in testing: sal-sal (n=15), sal-polyI:C (n=11), 
G31P-sal (n=11), G31P-polyI:C (n=12). # in panels F and H show the significant 
decreases in PPI for sal-polyI:C rats compared to sal-sal rats for trials with a 140 ms 
interval (F) and for trials with a 3 dB prepulse (H). 
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Effects of exposure to polyI:C and G31P on recognition memory  
 
Exploration Times (Table 1) 
 

 With one exception, all treatment groups explored the objects for similar amounts 

of time during both the sample and test phases of the memory tests, as two way between-

subjects ANOVAs revealed n.s. effects of polyI:C, G31P and polyI:C by G31P.  During 

the sample phase of the crossmodal test, however, polyI:C exposure increased 

exploration from 30.63±1.5 sec to 36.40±2.4 sec (F(1,73) = 4.96, p = 0.029).   

Object-in-place memory (Figure 4A, B)  

ANOVA analysis of DRs showed that polyI:C-exposed rats were impaired on the 

OIP test compared to those not exposed to polyI:C, as evidenced by a main effect of 

polyI:C treatment (F(1,64) = 10.16, p = 0.002). G31P treatment did not alter memory 

performance, as the effects of G31P and polyI:C by G31P were n.s.  One sample t-tests 

comparing the DR to 0, a DR score indicating chance memory performance, showed that 

sal-sal rats exhibited significant memory (t(18) = 6.12, p < 0.001) while sal-polyI:C rats 

were impaired (t(16) = 2.107, p = 0.05).  Significant memory was also shown by G31P-

sal rats (t(14) = 4.035, p = 0.001).  Despite the strong performance of G31P-sal rats, 

G31P-polyI:C rats were severely impaired on the test (t(16) = 0.323, p = 0.751).     

Crossmodal recognition memory (Figure 4C-H) 

Analysis of DRs on the visual and tactile memory tests showed n.s. main effects 

of polyI:C, G31P, and the polyI:C by G31P interaction, although the G31P-exposed rats 

tended to show lower DRs on the visual component of the test (Figure 4D).  An analysis 

using one sample t-tests comparing to a DR of 0 found that G31P-polyI:C rats did not 

show significant memory compared to chance on the visual test (t(12) = 1.929, p = 
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0.078).  All other groups showed significant memory on both the tactile and visual tests.  

On the crossmodal portion of the test (Figure 4H), rats were tested for their ability to use 

information gained from a tactile experience during the sample phase to guide 

exploration of visual stimuli during the test phase. Sal-sal control rats showed evidence of 

significant memory (t(22) = 4.42, p < 0.001), similar to results described previously 

(Winters and Reid 2010; Jacklin et al., 2012). Sal-polyI:C rats failed to show significant 

memory as reflected by a mean DR not different from chance (t(19) = 1.06, p = 0.30). 

G31P-saline rats did not show significant memory on the test (t(18) = 2.03, p = 0.057), 

while G31P-polyI:C rats did show significant memory (t(18) = 2.18, p = 0.043). ANOVA 

failed to reveal significant main effects of polyI:C, G31P or a significant polyI:C by 

G31P interaction. However, a separate analysis of the simple main effect of polyI:C 

treatment showed that sal-polyI:C rats were significantly impaired on the crossmodal test 

compared to sal-sal rats (t(41) = 2.22, p = 0.032). 
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Table 1.  Total exploration time of the objects (s ± SEM) during the sample and test 
phases of the object-in-place (OIP), visual, tactile and crossmodal recognition 
memory tests.  The total time for the sample phase is presented, whereas the time for the 
first min is presented for the test phase.  No significant differences in exploration were 
present, except for the increased exploration caused by polyI:C treatment during the 
sample phase of the crossmodal recognition test. * indicates the significant main effect of 
polyI:C treatment.  
 
Test  Phase  Group   Exploration (s) 

OIP  Sample  sal-sal   102.21 ± 2.1 
    sal-polyI:C  105.20 ± 2.7 
    G31P-sal  105.68 ± 3.7 
    G31P-polyI:C  97.67 ± 3.1 
  Test  sal-sal   20.03 ± 0.9 
    sal-polyI:C  22.52 ± 1.4 
    G31P-sal  21.08 ± 1.6 
    G31P-polyI:C  22.78 ± 1.5 
 
Visual   Sample  sal-sal   3.84 ± 0.4 
    sal-polyI:C  4.27 ± 0.3 
    G31P-sal  3.94 ± 0.3 
    G31P-polyI:C  4.20 ± 0.5 
  Test  sal-sal   2.34 ± 0.3 
    sal-polyI:C  1.98 ± 0.2 
    G31P-sal  1.92 ± 0.2 
    G31P-polyI:C  2.53 ± 0.4 
 
Tactile  Sample  sal-sal   39.33 ± 2.6 
    sal-polyI:C  36.47 ± 1.8 
    G31P-sal  38.50 ± 3.1 
    G31P-polyI:C  34.90 ± 1.9 
  Test  sal-sal   15.19 ± 0.9 
    sal-polyI:C  14.82 ± 1.0 
    G31P-sal  14.65 ± 1.1 
    G31P-polyI:C  14.99 ± 1.1 
 
Crossmodal Sample  sal-sal   31.36 ± 2.0 
    sal-polyI:C  35.86 ± 3.5* 
    G31P-sal  29.60 ± 2.2 
    G31P-polyI:C  36.91 ± 3.2* 
  Test  sal-sal   3.44 ± 0.3 
    sal-polyI:C  2.71 ± 0.2 
    G31P-sal  3.48 ± 0.3 
    G31P-polyI:C  3.60 ± 0.5 
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Figure 4. Associative (A, B), visual (C, D), tactile (E, F), and crossmodal (G, H) 
recognition memory of the offspring following maternal polyI:C and G31P 
treatment. Schematics using an overhead view of each test are shown in panels A, C, E 
and G. A 1 h delay was used between the sample and test phases of all tests. 
Discrimination ratios (DR) by group are depicted in panels B, D, F, H; note: the y-axis 
varies among these panels. B. Rats from the polyI:C groups had significantly decreased 
associative memory, as assayed by the object-in-place test (sal-sal, n=19; sal-polyI:C, 
n=17; G31P-sal, n=15; G31P-polyI:C, n=17). Rats in the sal-polyI:C group also had 
significantly lower crossmodal memory (H). Group sizes for D: sal-sal, n=18; sal-
polyI:C, n=14; G31P-sal, n=19; G31P-polyI:C, n=13. Group sizes for F: sal-sal, n=22; 
sal-polyI:C, n=20; G31P-sal, n=19; G31P-polyI:C, n=21. Group sizes for H: sal-sal, 
n=23; sal-polyI:C, n=20; G31P-sal, n=17; G31P-polyI:C, n=19. Number of litters 
included in B: sal-sal (n=12), sal-polyI:C (n=11), G31P-sal (n=11), G31P-polyI:C 
(n=12). Number of litters included in D,F,H: sal-sal (n=15), sal-polyI:C (n=11), G31P-sal 
(n=11), G31P-polyI:C (n=10). * represent main effects, # represent simple main effects 
comparing sal-sal and sal-polyI:C rats.   
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DISCUSSION 
 

The results of the experiments outlined above provide insight into how MIA and 

chemokine receptor antagonism during pregnancy affect the cognitive abilities of rat 

offspring.  The most notable findings included: 1) elevated levels of the chemokine 

CXCL1 3 h after polyI:C treatment in maternal serum and lung tissue, 2) replication of 

the polyI:C-induced OIP recognition memory deficit, as published in Howland et al. 

(2012), and 3) the first evidence of a polyI:C-induced impairment on the crossmodal 

recognition test of multisensory integration.  Overall, the behavioral effects of polyI:C 

treatment were smaller than those obtained with previous batches of LE rats in our 

laboratory, some of which were published in Howland et al. (2012).  G31P treatment also 

had less significant effects than anticipated, as there were no significant reversals of the 

behavioral impairments caused by exposure to polyI:C.  There are multiple explanations 

that can be considered for the findings obtained in these experiments.   

Cytokine elevations following treatment with polyI:C and G31P 

To the best of the author’s knowledge, there have not been any publications using 

rats to investigate the effects of polyI:C treatment on levels of the chemokine CXCL1 in 

maternal serum and lung tissue.  The observation of an acute CXCL1 elevation provides 

construct validity for polyI:C treatment as an animal model of schizophrenia, as 

elevations of the analogous human chemokine IL-8 in maternal serum have been 

associated with the development of schizophrenia in adult offspring (Brown et al., 2004b) 

as well as the structural brain alterations typically seen in the disorder (Ellman et al., 

2010).   
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When simple main effects that excluded G31P-treated dams from analysis were 

calculated, polyI:C treatment also caused significant increases in serum levels of the 

cytokines TNF-α and IL-1β.  TNF-α increases correspond with results from a human 

study, which showed that elevated maternal serum concentrations of TNF-α were 

associated with the development of a variety of major psychotic disorders (Buka et al., 

2001).  In contrast, elevated levels of IL-1β were not detected in human studies 

examining associations between maternal cytokines during pregnancy and the 

development of schizophrenia in adult offspring (Buka et al., 2001; Brown et al., 2004b).  

Findings from animal research differ from this human IL-1β data, as several rodent 

studies have shown maternal serum elevations in IL-1β and TNF-α following polyI:C 

treatment (Meyer et al., 2006; Smith et al., 2007; Song et al., 2011; Arrode-Brusés and 

Brusés, 2012).  This discrepancy for IL-1β could represent a species difference in the 

inflammatory response of humans and rodents, making it difficult to interpret the 

meaning of these rodent elevations.   

One unanticipated finding of the present experiments was the lack of an IL-6 

elevation following polyI:C treatment.  An IL-6 increase was predicted based on a 

detailed study using the polyI:C model in mice.  Smith et al. (2007) demonstrated that a 

single injection of IL-6 into pregnant C57BL/6J mice caused impairments in PPI and 

latent inhibition of the offspring.  They went on to administer an anti-IL-6 antibody at the 

same time as polyI:C treatment, finding that this co-administration reversed the 

behavioral impairments.  Lastly, Smith et al. (2007) administered polyI:C to IL-6 

knockout mice, and found that many of the offspring’s behavioral impairments were 

reduced.  Other studies conducted in separate labs using the same strain of mice have also 
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found that polyI:C treatment increased the concentration of IL-6 in maternal serum 

(Meyer et al., 2006; Arrode-Brusés and Brusés, 2012).  Collectively, these findings 

provide strong evidence that the effects of polyI:C are at least partially dependent on IL-6 

signaling.   

There are several possible explanations as to why IL-6 was not significantly 

elevated in the present experiments.  In these experiments, Bio-Plex Pro Assay multiplex 

kits were used to quantify cytokine levels in maternal serum and lung tissue.  This 

method was chosen because it allows for the quantification of multiple cytokines from a 

single sample, and it gives comparable measurements to ELISA assays (Eishai and 

McCoy, 2006).  ELISA assays were also used to verify elevations of CXCL1, and to 

examine levels of CXCL2.  It is possible that the measurement techniques employed led 

to these discrepant results for IL-6.  However, the studies that found IL-6 elevations in 

mice utilized a variety of techniques including ELISA assays (Smith et al., 2007), 

multiplexed bead-based immunoassay Milliplex Maps (Arrode-Brusés and Brusés, 2012) 

and Fluorokine MAP mouse kits (Meyer et al., 2006), making it unlikely that the IL-6 

elevation was an artifact.   

A more plausible explanation for the IL-6 discrepancy is inherent differences in 

the innate immune systems of C57BL/6J mice and LE rats.  While no previously 

published research has compared the cytokine responses of these animals to polyI:C, 

there have been studies comparing the behavior of different strains of mice following 

MIA.  In one study, the offspring of NMRI and C57BL/6 mice showed markedly 

different behavioral profiles following prenatal exposure to lipopolysaccharide (LPS) on 

GD 17 (Babri et al., 2014).  Another study using BTBR and C57 mice showed substantial 
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behavioral differences in the offspring following exposure to polyI:C, as well as 

differences in cytokine release by splenocytes in vitro (Schwartzer et al., 2013).  Data 

showing that adult male SD rats did not show elevated plasma IL-6 4 h after polyI:C 

treatment provides additional evidence that rats may show different IL-6 responses than 

mice (Fortier et al., 2004).  Further research is clearly needed to characterize the 

inflammatory and behavioral responses of different species and strains to polyI:C in order 

to produce more consistent results in the field. 

Another area that should be addressed in future research is the measurement of 

cytokines in maternal and fetal tissues.  Attempts were made by our laboratory to 

quantify cytokines in placenta, brain tissue of the mother, and brain and lung tissue of the 

fetus using Bio-Plex Pro Assay multiplex kits.  Unfortunately, these assays were not 

sensitive enough to detect the small amounts of cytokines present in many of the samples, 

despite being designed for small-volume applications (Eishai and McCoy, 2006).  Future 

investigations could benefit from the use of bioassays or total cytokine immunoassays 

that are able to detect levels of both free and bound cytokines (Malone et al., 2001; 

Hillyer and Woodward, 2003).  Quantifying the levels of cytokines that have not 

previously been measured after polyI:C treatment would also benefit future studies.  

Particular attention should be paid to the chemokine CXCL12, which binds the 

chemokine receptors CXCR4 and CXCR7 in the brain and influences the glutamatergic 

and GABAergic systems (Guyon, 2014).  Quantifying a large number of cytokines from a 

wider range of tissues in LE rats will increase our understanding of which tissues have 

the highest cytokine activity, and how these elevations contribute to neurodevelopmental 

changes in the offspring.  
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Behavioral effects of exposure to polyI:C and G31P 

The behavioral data from the present experiments included several replications of 

previous results, as well as some novel findings.  For PPI testing, the baseline 

performance of the control animals was comparable with previously published data 

(Howland et al., 2004a, 2012).  At both PND 35 and 56 all groups showed normal 

habituation, as their startle to 120 dB pulses decreased across the session.  Animals also 

exhibited prepulse facilitation on trials with the shortest prepulse-pulse interval (30 ms), 

which is a replication of the novel finding published in Howland et al. (2012).  On the 

remaining trial types, saline-exposed rats also exhibited PPI that was comparable to 

previous findings.  

The effects of polyI:C on PPI were smaller than those published in Howland et al. 

(2012), as no main effects emerged for treatment.  Fortier et al. (2007) reported similar 

insignificant results in a study using polyI:C treatment in SD rats.  However, simplified 

data analysis comparing the PPI of sal-sal rats with sal-polyI:C rats on trials with the 

longest prepulse-pulse interval (140 ms), and the 3 dB prepulse intensity did reveal 

significant polyI:C-induced impairments.  These reduced effects of polyI:C treatment on 

PPI are difficult to explain, considering that the effects seen on the OIP test are very 

similar to previous results (Howland et al., 2012).  One possible explanation could be that 

the PPI impairments did not emerge until after PND 56, as the other rat studies that have 

found PPI impairments following polyI:C treatment administered testing around three 

months of age (Wolff and Bilkey, 2008, 2010; Klein et al., 2013; Mattei et al., 2014).  A 
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delayed emergence of PPI impairments would correspond with the reduced treatment 

effects of polyI:C in these experiments.   

The only significant effect that emerged for G31P treatment on PPI testing was 

reduced prepulse facilitation on trials with the 30 ms prepulse-pulse interval during 

adolescence (PND 35).  The mechanisms underlying prepulse facilitation at short 

intervals have not been elucidated, making it unclear how G31P treatment caused this 

effect.  However, this finding indicates that G31P exposure altered cognitive functioning 

on PND 35.  If further behavioral studies using G31P are conducted, more tests should be 

administered at this age to look for additional differences.  

PolyI:C exposure caused significant associative memory impairments on the OIP 

test, as evidenced by a main effect of polyI:C treatment.  Comparison of the animals’ 

DRs to chance performance (DR=0) showed that sal-sal rats demonstrated significant 

memory, while sal-polyI:C rats did not.  These results serve as a useful replication of 

published findings (Howland et al., 2012) that validate the use of the polyI:C model for 

studying the associative recognition memory impairments seen in schizophrenia.  This 

polyI:C-induced impairment was not reversed by G31P treatment, as G31P-polyI:C rats 

did not show significant memory compared to chance.  It seems unlikely that G31P 

treatment caused the impairment seen in this group, as G31P-sal rats showed significant 

memory on the OIP test.  

PolyI:C treatment also selectively impaired multisensory integration, as sal-

polyI:C rats showed significant memory on the visual and tactile tests, but were impaired 

on the crossmodal test.  Sal-sal rats showed significant memory compared to chance on 

all tests, with similar DRs to those seen in several papers (Winters and Reid, 2010; Reid 
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et al., 2012, 2013).  This pattern of results did not lead to a main effect of polyI:C 

treatment for the crossmodal test, because G31P-polyI:C rats exhibited significant 

crossmodal recognition memory.  Despite this insignificant main effect, these findings 

provide evidence that the polyI:C model is useful for studying multisensory integration in 

the context of schizophrenia.  Replication of these findings using polyI:C or another 

model of MIA would provide further strength for this claim.  

The performance of G31P-exposed animals on the crossmodal tests was very 

different from the predicted results.  While there were no significant treatment main 

effects or interactions on the visual and tactile tests, G31P-exposed animals showed a 

trend toward impaired visual recognition memory, with G31P-polyI:C rats failing to 

show significant memory on the visual test.  G31P-exposed rats also showed a trend 

toward decreased crossmodal recognition memory, with G31P-sal rats showing 

impairments on the crossmodal test.  Both of these results could be explained by visual 

impairments in G31P-exposed rats, as the test phase of the crossmodal test is a purely 

visual assessment.   

Considerations for effects of G31P treatment 

Maternal treatment with G31P during gestation could induce visual impairments 

in the offspring by altering optic development of the fetus, or development of the cortical 

areas involved in visual processing.  As this was the first documented investigation of 

visual learning and memory following maternal G31P administration, this impairment 

would have been missed in other studies (Gordon et al., 2005; Zhao et al., 2009; Wei et 

al., 2013).  Further research is needed to determine if G31P treatment does interfere with 
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development of the visual system, or if other factors were responsible for the G31P-

induced visual memory impairments.   

Another issue surrounding G31P that deserves further consideration is its ability 

to bind CXCR1 and CXCR2 in LE rats.  G31P not antagonizing CXCR1/CXCR2 

effectively could explain the results of the OIP test, in which G31P-sal rats showed 

significant memory but G31P-polyI:C rats did not.  However, other results showed that 

G31P had significant effects on the dams and their offspring.  For example, G31P 

treatment caused significant serum elevations of the cytokines IFNγ, IL-1α and IL-2, all 

of which were unanticipated findings.  G31P also significantly altered the PPI exhibited 

by the offspring during adolescence.  These effects of G31P may have occurred through 

the intended mechanism of CXCR1/CXCR2 antagonism, or through other unidentified 

processes.       

Targeted vs. Broad-spectrum Approaches 

A larger issue than the efficacy of G31P as a CXC chemokine receptor antagonist 

is whether or not inhibiting the activity of one chemokine will ever be sufficient to 

prevent the impairments caused by polyI:C, or the development of human schizophrenia.  

Independent human studies have found different cytokines, including TNF-α (Buka et al., 

2001) and IL-8 (Brown et al., 2004b) to be associated with the development of 

schizophrenia.  These discrepant findings strongly suggest that multiple cytokines are 

involved in the development of the disorder.  Moreover, these studies do not provide us 

with complete information about how those particular cytokine elevations affect other 

components of the inflammatory system. Cytokine interactions are extremely complex, 
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and the compensatory mechanisms that take place when the activity of one cytokine is 

inhibited are beyond the scope of our current understanding.   

The utility of more generalized treatment approaches that inhibit the action of 

multiple pro-inflammatory processes is starting to gain attention.  The antibiotic 

minocycline improved symptoms in rats whose mothers were treated with polyI:C 

(Mattei et al., 2014) and in human patients in early-phase schizophrenia (Levkovitz et al., 

2010).  A downside to these positive findings is that the side effects of such broad-

spectrum treatments could potentially be high.  Continuing to increase our understanding 

of the specific inflammatory processes underlying neurodevelopmental disorders will 

allow for the creation of more targeted anti-inflammatory drugs in the years to come.  

Future considerations for animal models 

This future research will not be possible without some experiments using animal 

models.  The polyI:C model is valuable, largely because of its high construct validity.  In 

spite of its strengths, one weakness of the model that is often overlooked is the inherent 

assumption that all offspring who are exposed to MIA will go on to develop 

schizophrenia.  It is very clear from human research that this claim is not accurate 

(Brown et al., 2004a, 2004b).  Increased use of double-hit animal models that include a 

genetic predisposition for the disorder and an environmental trigger, such as MIA, will 

bring the animal data closer in line with human findings.  A double-hit model of polyI:C 

treatment in dominant negative- disrupted in schizophrenia 1 (DN-DISC1) transgenic 

mice has already been conducted, although the researchers did not compare the behavior 

of polyI:C-exposed wild-type mice with polyI:C-exposed DN-DISC1 mice to quantify 

the effects of this genetic mutation (Nagai et al., 2011).   
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General conclusions 

In conclusion, the present experiments quantified the effects of maternal treatment 

with the viral mimetic polyI:C and the chemokine receptor antagonist G31P on the 

cognitive functioning of LE rat offspring.  PolyI:C treatment triggered a significant acute 

inflammatory event, which included an elevation of the chemokine CXCL1 in maternal 

serum and lung tissue.  As CXCL1 is considered the rodent analogue of human IL-8, and 

maternal IL-8 elevations during pregnancy are associated with the development of 

schizophrenia in adult offspring (Brown et al., 2004b), this finding increases the construct 

validity of the polyI:C model.  The offspring of polyI:C-treated rats exhibited impaired 

associative recognition memory on the OIP test, replicating a previously published 

finding (Howland et al., 2012).  These rats also exhibited impaired multisensory 

integration on the crossmodal test, which is a novel finding for the polyI:C model.  The 

behavioral effects of G31P were inconsistent across tests, and G31P treatment never 

successfully reversed a polyI:C-induced impairment.  Given our current understanding of 

the etiology of schizophrenia, broad spectrums anti-inflammatory drugs should continue 

to be investigated as adjuvant therapies for the disorder.  Future research incorporating 

the use of double-hit animal models will, hopefully, foster the identification of more 

targeted anti-inflammatory drugs that are able to treat the cognitive symptoms of 

schizophrenia.  
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