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Abstract

A current trend in biological science is the increased use of computational tools for both the production

and analysis of experimental data. This is especially true in the field of genomics, where advancements in

DNA sequencing technology have dramatically decreased the time and cost associated with DNA sequencing

resulting in increased pressure on the time required to prepare and analyze data generated during these

experiments. As a result, the role of computational science in such biological research is increasing.

This thesis seeks to address several major questions with respect to the development and application of

single nucleotide polymorphism (SNP) resources in non-model organisms. Traditional SNP discovery using

polymerase chain reaction (PCR) amplification and low-throughput DNA sequencing is a time consuming

and laborious process, which is often limited by the time required to design intron-spanning PCR primers.

While next-generation DNA sequencing (NGS) has largely supplanted low-throughput sequencing for SNP

discovery applications, the PCR based SNP discovery method remains in use for cost effective, targeted SNP

discovery. This thesis seeks to develop an automated method for intron-spanning PCR design which would

remove a significant bottleneck in this process. This work develops algorithms for combining SNP data

from multiple individuals, independent of the DNA sequencing platforms, for the purpose of developing SNP

genotyping arrays. Additionally, tools for the filtering and selection of SNPs will be developed, providing

start to finish support for the development of SNP genotyping arrays in complex polyploids using NGS.

The result of this work includes two automated pipelines for the design of intron-spanning PCR primers,

one which designs a single primer pair per target and another that designs multiple primer pairs per target.

These automated pipelines are shown to reduce the time required to design primers from one hour per

primer pair using the semi-automated method to 10 minutes per 100 primer pairs while maintaining a very

high efficacy. Efficacy is tested by comparing the number of successful PCR amplifications of the semi-

automated method with that of the automated pipelines. Using the Chi-squared test, the semi-automated

and automated approaches are determined not to differ in efficacy.

Three algorithms for combining SNP output from NGS data from multiple individuals are developed

and evaluated for their time and space complexities. These algorithms were found to be computationally

efficient, requiring time and space linear to the size of the input. These algorithms are then implemented

in the Perl language and their time and memory performance profiled using experimental data. Profiling

results are evaluated by applying linear models, which allow for predictions of resource requirements for

various input sizes. Additional tools for the filtering of SNPs and selection of SNPs for a SNP array are

developed and applied to the creation of two SNP arrays in the polyploid crop Brassica napus. These

arrays, when compared to arrays in similar species, show higher numbers of polymorphic markers and better

3-cluster genotype separation, a viable method for determining the efficacy of design in complex genomes.
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Chapter 1

Introduction

Due to recent technological advancements, researchers in multiple fields of biological science are designing

far more complex and expansive experiments, which is rapidly increasing the role of computational science

in supporting the generation and analysis of the research. This is especially true in the field of genomics,

where DNA sequencing technologies are advancing rapidly. In fact, advances in DNA sequencing technologies

are currently outpacing Moore’s Law [124]. Moore’s Law is an observation that “compute power” doubles

every two years. Moore’s Law is often used for measuring the progress of technological innovation in many

fields, where technologies that keep up with Moore’s Law are regarded as performing very well. Figure

1.1 shows the actual cost of sequencing 1 megabase of DNA between September of 2001 and January of

2013 compared to the hypothetical cost of sequencing 1 megabase as predicted by Moore’s Law (equating

sequencing throughput to compute power and assuming that the doubling of compute power occurs at the

same cost).

As a result of decreases in sequencing cost, there has been an exponential increase in the amount of

available sequence information as evidenced by the growth of the National Center for Biotechnology In-

formation’s (NCBI) Sequence Read Archive (Figure 1.2) [31]. The vast wealth of biological information

that can potentially be extracted from this sequence information cannot be discovered without the use of

computational methods.

Capturing natural variation between and within species has applications in many areas of biological

study for both mammalian and plant systems. The most commonly found genome-wide variations are single

nucleotide polymorphisms (SNPs) [27, 24, 18]. SNPs are single base changes between two closely related

DNA sequences (Figure 1.3). DNA sequencing is an important technology for the discovery of SNPs, as the

resulting DNA sequences can be mined to isolate and characterize these variations. Over the course of this

work, advances in DNA sequencing technologies allowed for new techniques with regards to SNP discovery in

non-model organisms. This necessitated a change in the direction of my research from SNP discovery using

Sanger based sequencing approaches to the use of next generation sequencers. Early adoption of the next

generation sequencing technologies, as well as the volume of data they are capable of producing, provided

many challenges.
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Figure 1.1: Cost of DNA sequencing (y-axis, logarithmic) over time, as measured (blue) and predicted
by Moore’s Law (red). The rapid decrease in the actual cost of DNA sequencing is a direct correlation
to the advancements made in DNA sequencing technologies. Data for DNA sequencing cost obtained
from [124].

1.1 Motivation and Objectives

1.1.1 Motivation

SNPs are the most abundant variation found in the DNA between two individuals. Because of their abun-

dance, SNPs are one of the most important tools available to researchers studying genetic differences. Appli-

cations of SNPs range from human health, such as the study of cancer or genetic disorders, to plant breeding

[24]. Other advantages of utilizing SNPs in genetic research are that the evolutionary processes which create

them are well understood and they can be easily and cheaply compared by different laboratories [26].

All of Canada’s important commercial crops are considered non-model organisms and therefore have not

received as much scientific study as model organisms such as Arabidopsis thaliana. This includes crops such

as canola, spring and durum wheat, barley, and soybeans. In Canada, canola (Brassica napus) alone is a

$19.3 billion/year industry, making it an important contributor to the Canadian economy [14]. As such,

developing resources to aid plant breeding programs in the improvement of these crops will be key to the

continued success of agriculture in Canada and throughout the world.
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Figure 1.2: Exponential growth of the NCBI Sequence Read Archive (SRA) which was created to
hold publicly available sequence data from next generation sequencers. Data obtained from NCBI
[31].

1.1.2 Objectives

The goal of this work is to create new computational methods for the development and utilization of SNP

resources for non-model organisms. Our primary objectives are to:

1. Automate the design of intron-spanning PCR primers in non-model organisms in order to remove a sig-

nificant bottleneck to SNP discovery using first generation DNA sequencing. This requires maintaining

the efficacy of non-automated approaches while significantly reducing primer design time.

2. Design and implement algorithms that can combine SNP data from multiple individuals and whose

output provides sufficient biological information to allow effective design of a robust SNP genotyping

array in species with complex genomes.

3. Evaluate the computational complexity and performance of developed algorithms. Computational

complexity will be evaluated with respect to time and space (asymptotic time and space complexity,

using O-notation, Ω-notation, and Θ-notation). Performance will also be evaluated by varying the

size of the input and collecting data on the running time and memory usage. Performance data will
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Introduction

Single Nucleotide Polymorphisms (SNPs) are single base changes in the DNA sequences of
two individuals and are an important tool in many research areas. In plant breeding, for
example, SNPs can be used to track important agronomical traits from one generation to the
next. Important traits include disease resistance, cold tolerance, yield, oil content, flowering
time and many others. Researchers use SNPs as markers to track these traits and develop
improved varieties of important commercial crops.

Seq 1 -- 50 - GAC C TG - 30

Seq 2 -- 50 - GAC G TG - 30

Figure 1: SNP at base position 4 between Sequence 1 and Sequence 2.

In Canada, Canola (Brassica napus) alone is a $15.4 billion/year industry making it
an important contributor to the Canadian economy (Canola Council of Canada). Many
of Canada’s important commercial crops are considered non-model organisms. This means
that there have been fewer resources developed to support research in these species. The
goal of this work is to develop tools to aid in the creation of SNP resources for non-model
organisms.

Over the course of my project, advances in DNA sequencing technologies resulted in a
shift in thinking with regards to SNP discovery in non-model organisms. This necessitated
a change in the direction of my research from SNP discovery using Sanger based sequenc-
ing approaches to the use of second generation sequencers. Early adoption of the second
generation sequencing technologies as well as the volume of data they are capable of produc-
ing provided many challenges. In order to give a comprehensive look at the status of this
project, I would like to review some of the work I have finished and outline any work yet to
be finished as well as a timeline for completion.

1 High throughput SNP Discovery using Sanger Se-

quencing

The primary method of SNP discovery in non-model organisms was, at this time, to amplify a
portion of a target genome using polymerase chain reaction (PCR) primers. Genomic regions
were often targeted based on inferred function from a closely related model organism. In
order to sequence the amplified fragment, the DNA sequence was cloned into a bacterial
vector that could be grown on media. DNA was then extracted from a single colony and
sequenced. At the time of this work, the state-of-the-art in DNA sequencing technology
was capillary electrophoresis. State-of-the-art sequencers, such as the Applied Biosystems
(acquired by Life Technologies) 3730XL, used 96 capillaries and could accept samples in
either a 96 well plate or a 384 well plate. These sequencers were capable of producing DNA

1

Figure 1.3: An example of a simple SNP at base position 4 between two related individuals.

then be evaluated using a regression model and compared to the theoretical results obtained from the

complexity analysis.

4. Design a SNP genotyping array and compare results obtained from it to results from other genotyping

arrays in the literature. Array design will include the development of computational tools for filtering

the large amount of SNP output and selecting SNPs to be included on the genotyping array.

1.2 Thesis Overview

In this thesis, computational methods will be described for the discovery and utilization of SNPs in non-

model organisms. The success of these methods is dependent on the underlying genome structure and

organization of the species being investigated as well as the laboratory methods used to generate the data.

Chapter 2 introduces important background concepts with respect to both the computer science and the

biology pertinent to this thesis. In Chapter 3, a method is described for automating a key bottleneck for

SNP discovery using first generation DNA sequencing. The time required by the automated method will be

compared to the non-automated method and the resulting output statistically evaluated.

Chapter 4, describes the development of algorithms for combining SNP data from multiple individuals, a

key step in the design of SNP genotyping arrays for both diploid and complex polyploid genomes (Sections

4.5 and 4.6). Moreover, these algorithms are computationally evaluated with respect to their theoretical

time and space complexity to determine their suitability for processing large genomic data sets (Section 4.7).

The time and space requirements of each algorithm is further experimentally evaluated using varying input

sizes and performing linear regression analysis (Section 4.9). A discussion of potential bottlenecks in the

parallelization is given in Section 4.10 followed by a discussion on the selection of an appropriate algorithm

for a given input (Section 4.11). Methods for the filtering of the combined SNP data based on several

criteria and selection of SNPs are developed in Sections 4.12 and 4.13, respectively. Finally, results from the

application of the developed methods are compared to results available in the literature (Section 4.14) and

an overall discussion of the chapter performed (Section 4.15). Chapter 5 will then discuss the results of the

thesis as a whole and conclusions that can be drawn from this work. Further, it will discuss the potential

directions that this work might take in the future.
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Chapter 2

Relevant Background

2.1 Introduction

This chapter will introduce the basic concepts and techniques important to the discussion of the thesis work.

Section 2.2 describes the basic biological terminology and techniques used throughout the thesis. As the

focus of this thesis is on the development of computational resources for SNP discovery and utilization,

Section 2.3 provides some motivation and details regarding several common research applications of SNPs.

A brief overview of DNA sequencing (Section 2.4) is provided, followed by an introduction of the relevant

bioinformatics and computer science approaches (Section 2.5). Sections 2.6, 2.7, and 2.8 describe common

SNP discovery methods, DNA sequencing technologies, and DNA sequencing methodologies respectively.

2.2 Biological Background

An organism’s DNA, often referred to as its genome, contains much of the information that makes that

organism unique and is the primary method for inheritance. DNA is made up of two complementary

strands, which consist of many nucleotides (the building blocks of DNA). There are four nucleotides that

make up DNA sequences: adenine, guanine, cytosine, and thymine (A, G, C, and T respectively). The four

nucleotides can be subdivided into two groups, purines (adenine and guanine) and pyrimidines (cytosine and

thymine). In DNA molecules, the nucleotides adenine and thymine are complementary as are guanine and

cytosine. Therefore, if one strand of DNA is a chain of guanine, adenine, cytosine, cytosine, thymine, and

guanine (represented by the sequence GACCTG), the complementary strand would be cytosine, thymine,

guanine, guanine, adenine, and cytosine (CTGGAC). DNA sequences have terminal ends that are labelled

as either 3′ or 5′. Since the strands are complementary the result is that the 3′ end of one strand is matched

with the 5′ end of the other, and for this reason the second strand is referred to as the reverse complement

(Figure 2.1) [97].
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5′ - GACCTG - 3′
3′ - CTGGAC - 5′

Figure 2.1: The reverse complement (CAGGTC) of the sequence GACCTG, illustrating the pairing
of the 5′ and 3′ ends.

2.2.1 Genome Structure and Organization

An organism’s DNA is organized into one or more structures called chromosomes. Prokaryotes are organisms

without a nucleus, such as bacteria, and generally contain a single chromosome. In contrast, eukaryotes have

a number of chromosomes contained in the nucleus, where the number of chromosomes depends on the

species [97].

Within the chromosomes are substrings of DNA called genes. In eukaryotes, genes are composed of

subsequences known as exons, introns, and untranslated regions (UTRs) (Figure 2.2a.). Genes found in

DNA can be converted into ribonucleic acid (RNA), a shorter term storage medium than DNA, during a

process called transcription. These RNAs are often referred to as transcripts. Messenger RNA (mRNA) is a

RNA molecule that is used to make proteins. During the process of translation, the information contained

in the mRNA is read to determined the protein’s structure. The introns are ultimately removed during

conversion of the gene to messenger RNA (Figure 2.2b.). During translation the UTRs regions are ignored,

thus the name untranslated region. Exploiting this biology, complementary DNA (cDNA), which are DNA

molecules that are complementary to a mRNA molecule and therefore represent the DNA sequence of a

functional protein, can be generated. An expressed sequence tag (EST) is a small subsequence of a cDNA

molecule [64].

Figure 2.2: A representation of the gene structure (a) including exons, introns, and UTRs and of
the converted mRNA (b) with introns removed.
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Haploids, Diploids, and Polyploids

Organisms can be classified into one of three categories (haploid, diploid, or polyploid) based on the number

of copies of each chromosome found in each somatic cell (a cell which makes up the body of the organism).

Diploid species, such as humans, have two copies of each chromosome (2N) while haploid species contain

only a single copy of each chromosome (N) [97].

Polyploids are species that have more than two complete sets of chromosomes. For example, an organism

with 4 sets of chromosomes are known as tetraploids and those with 6 sets of chromosomes as hexaploids.

Although diploids are most common for mammals, polyploidy is a common occurrence in nature, particularly

in plants, and results from whole genome duplication events. There are two types of duplication events: those

resulting from the fusion of two genomes of the same species (autopolyploids) and those resulting from the

fusion of two separate but related species (allopolyploids) [125]. These genome fusion events result in multiple

copies of highly related genes, increasing genome complexity [115]. This increase in genome complexity can

confuse the results of genetic analysis as many bioinformatics tools are designed and tested using data from

diploid species.

2.2.2 Genotype and Phenotype

The combination of genes an individual inherits determines the individual’s genotype. Genes largely control

the physical characteristics (phenotype) of the organism as well as control the cellular mechanisms that keep

the organism alive. Different phenotypes, such as blonde versus brown hair or purple versus red flowers,

result from variations within the genetic code [56, 76]. These variations result in alternative versions of genes

known as alleles [97]. Allelic variation results in many traits of interest such as disease resistance, drought

and cold tolerance, yield, oil content in plants and genetic disorders and disease susceptibility in humans.

Such variations are often the target of research. In order to determine the genetic causes of these phenotypes,

molecular markers (discussed in Section 2.2.5) are used to track allelic variants.

2.2.3 Model and non-Model Organisms

A model organism is a species that is used in the study of other, usually more complex, organisms. Model

organisms often have small genomes with low genome complexity. They also tend to be easy to work with

in the laboratory and as a result have many genomic resources developed for them. These resources often

include gene sequences that are well-defined and annotated and finished genome sequences. In comparison,

non-model organisms tend to have large, complex genomes that present challenges for the development of

genomic resources.
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2.2.4 Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a method for generating copies of a target region of a DNA molecule.

This process, known as amplification, begins by separating the two strands of the DNA molecule and requires

two short DNA fragments known as PCR primers. Each primer is complementary to a single stand of the

DNA molecule flanking the target region. The primers bind to the single stranded DNA and an enzyme

extends the primers to recreate the double stranded DNA, resulting in two copies. By completing this

process several times, the number of copies of the target fragment can be increased greatly [64]. The size of

the amplified fragments (product size) can be estimated by the number of base pairs between the two PCR

primers.

2.2.5 Molecular Markers

A molecular marker is a DNA fragment, associated with a precise genomic position, that can be developed

from DNA variation found among individuals. Markers vary in the complexity of their development and ap-

plication, as well as their density across the genome. Ideally they are developed to anchor a gene that confers

a trait of interest [34, 92, 126, 118]. There are several types of molecular markers, including simple sequence

repeats (SSRs) and SNPs. SSRs are short (2–4 base pairs) repetitive DNA sequences (eg. ATATATAT) that

can be used as molecular markers by measuring differences in the length of the repeat [91, 118].

2.3 Single Nucleotide Polymorphisms

Compared to other types of molecular markers, SNPs are the most abundant variation in eukaryotic genomes

and as such have become the molecular marker of choice. For example, recent evidence suggests that when

comparing human DNA from two individuals a SNP is expected on average once every 1000–2000 base pairs

[24, 27]. In plants there is evidence of SNPs being even more abundant. For example, in maize (Zea mays

L.) coding regions (regions which result in the production of a protein), one SNP was found per 124 base

pairs and in non-coding regions one SNP per 31 base pairs [18]. There are two types of SNPs, transitions and

transversions. Transitions occur when either a purine (adenine or guanine) is converted to a purine (A→G

or G→A) or a pyrimidine (cytosine or thymine) is converted to a pyrimidine (C→T or T→C). Transversions

occur when either a purine is converted to a pyrimidine (A→C, A→T, G→C, or G→T) or a pyrimidine is

converted to a purine (T→A, T→G, C→A, or C→G) [97]. There are many applications for SNPs in both

human and plant genetics, some of which will be discussed in Section 2.3.1.

The most common method for finding SNPs is to compare the DNA sequence of two or more closely related

individuals; this is often done by sequencing the DNA of the individuals and comparing the results. Even

though these variations are common in most genomes, the process of accurately sequencing and characterizing
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the variations is complex; this process is generally referred to as SNP discovery.

2.3.1 SNP Applications

The detection of SNPs is an important tool in human, animal, and plant genetics since this natural variation

can be utilized for the development of genetic markers that can identify genes causing susceptibility to

complex diseases or other traits of interest [4, 79, 7]. Traits of interest in plants might include drought

tolerance, oil content, or flowering time and have a large impact on the economics of growing these plants

for a variety of uses [36].

The abundance of SNPs in eukaryotic genomes allows for the construction of extremely dense genetic

maps (defined below) as one or more SNPs may be found in proximity to almost every gene in the genome.

These maps may then be used to develop haplotyping systems for genes or regions of interest [90]. Beyond

the use of SNPs for generating genetic maps they can be applied to the integration of genetic and physical

maps, association studies [5], conservation genetics [26], and genetic diversity analysis [52].

Haplotyping

A haplotype is a group of SNPs with the same genetic pattern among individuals and that are usually in

close physical proximity to each other in the genome (Figure 2.3). Haplotypes are generally identified by

comparing the same SNP positions in multiple individuals and grouping each pattern. Often a few key SNPs

will be enough to distinguish between all possible haplotypes. Linking of individual SNPs into a haplotype

has been shown to provide better resolution in studying complex traits, which may show greater association

to the haplotype than to any individual SNP [90, 36].

Genetic Maps and Integration with Physical Maps

A genetic map is a representation of the genome based on linked molecular markers (Figure 2.4), whose

order and position is determined by measuring the frequency of exchange of genetic material between ho-

mologous chromosomes occurring during sexual reproduction (genetic recombination). Markers positioned

closer together indicate low frequencies of genetic recombination and markers that are inferred to be inherited

together are grouped together to form a linkage group. Depending on how the SNPs were discovered and the

level of genomic information known about the organism, the positional information might be based solely

on genetic recombination distances (measured in centimorgans) or could be relative to a physical section of

DNA [97]. The high density of SNPs in most genomes makes them ideal for creating dense genetic maps

[7, 118]. By scoring several related individuals (determining which individuals have the SNP and which do

not) across multiple SNP positions, genetic recombinations can be determined and a map can be generated

using a program such as JoinMap [108].
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Figure 2.3: Three haplotypes (GCAGT, GCAGA, and GAACA) are distinguished in 10 individuals
using 3 SNPs. Each column represents a specific SNP position in the genome while each row represents
SNP information from a single individual.

A physical map is a representation of the genome based on large, ordered DNA fragments. Physical

maps are generated using a complex process that often uses bacterial artificial chromosomes (BACs). One

potential procedure to construct a physical map is as follows. The DNA from a target organism is fragmented

into large segments which are inserted into and maintained in BACs (called clones). Whole genome profiling

can then be carried out. In whole genome profiling, DNA of individual BAC clones are placed into the wells

of a 384 well plate. By collecting a sample of DNA for each BAC clone in a row (24 BACs) or a column

(16 BACs), a DNA pool can be created for each row and column of the 384 well plate (Figure 2.5). Pooling

of the DNA decreases the number of subsequent sequencing reactions required. DNA from each pool is

then fragmented using a restriction enzyme (cuts DNA based on recognition of a specific sequence called a
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Figure 2.4: A sample of three linkage groups from the genetic map of Camelina saliva. Genetic
markers appear on the right side of each linkage group, while the numbers on the left side of each
linkage group indicate genetic recombination distances in centimorgans.

restriction site). These fragments are then sequenced using next generation sequencing technologies (Section

2.4). Sequencing results can be linked to an individual BAC by finding exact duplicates in both a row pool

and column pool (Figure 2.5). After multiple pools are sequenced, the sequencing results can then be used to

determine the relative order of the BACs by identifying common fragments that indicate overlapping BAC

clones, thus generating a physical map. Since the fragments are of a known size, this map represents the

actual base pair length of the genome [117].

The key difference between genetic and physical maps is that genetic maps do not necessarily represent

the actual base pair length between markers of the genome while they do for physical maps. Genetic and

physical maps can be integrated by locating molecular markers from the genetic map in BAC sequences of the

physical map. When one or more markers from the genetic map is found in a BAC, that BAC becomes linked

to the genetic map. This is known as integration of the physical and genetic maps [11, 90, 58]. Additionally,

genetic maps can be used to anchor results from whole genome sequencing projects in a similar manner [87].
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Figure 2.5: Pooling of BAC clones from a 384 well plate. Sequencing results with exact duplicates
in the H and 8 pools are determined to be from the BAC clone in the H8 well.

Conservation Genetics and Genetic Diversity

Genetic diversity is an important factor for both conservation of natural species and the improvement of

commercial crops. SNPs and other molecular markers have proven to be useful tools in attempts to assess

genetic variation in populations. In order to properly assess genetic diversity, it is important to be able to

determine variation between individuals. SNPs and SNP haplotypes provide sufficient utility to determine

diversity estimates [118, 52].

Genetic diversity is also important for maintaining ecological balances and assessing the relative fitness

of populations in the wild. Low genetic variation in a population is a sign of decreased overall fitness. This

means that populations have a reduced ability to adapt to changes in their environments which makes them

more susceptible to disease. Populations that are reduced to a small number of individuals suffer greatly

from reduced genetic variation. Evaluation of genetic variation in populations of interest is an important

aspect in effective conservation strategies [52, 59, 118].

Association Studies

Association studies attempt to determine the genes that cause a particular phenotype. Association studies

survey molecular markers in multiple, generally unrelated individuals. The number of markers available,
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their proximity to each other and their proximity to the genes controlling traits of interest are key factors

in the success of association studies. By using high throughput SNP discovery methods, a high density of

molecular markers can be obtained. This allows researchers the ability to associate genes with phenotypes

where low density genetic maps cannot [36, 126, 90].

SNP Genotyping Arrays

SNP genotyping arrays are mass produced chips containing many probe sequences. A probe sequence is a

short DNA sequence that is complementary to a specific region (target) within close proximity (usually less

than 100 base pairs) to a known SNP. For the Illumina SNP genotyping arrays used in this thesis, probe

sequences are 50 base pairs in length and are used to capture the target in a process called hybridization.

Each target then undergoes an extension reaction with labelled nucleotides, which allows for scoring of the

target based on the intensity of the signal generated when the labelled nucleotides are scanned [109].

Each probe is fixed to a bead that is placed on a chip for scanning. Custom genotyping arrays offered

by Illumina have bead densities which allow for as few as 48 SNPs and as many as one million SNPs to

be assayed in as many as 24 individuals for each chip. Individuals are loaded into independent regions of

the chip, with each region containing the entire set of SNPs to be assayed [47]. By combining results from

multiple chips, the number of individuals assayed can be increased. In order to deal with the large amount

of data generated by these arrays, specialized software has been developed to automatically call genotypes

and group individuals according to the SNP genotype; this process is referred to as cluster calling [48]. SNP

genotyping arrays provide the highest throughput for accurately genotyping large numbers of individuals.

Resulting genotype data can then be used across multiple applications, some of which have been described

previously.

SNP genotyping array design in polyploid genomes can be complicated by the short length of the probe

sequences and the presence of multiple closely related genes. If probe sequences are not carefully designed

they may be designed from a sequence common to more than one copy of a gene. These non-specific probe

sequences can result in the capture of multiple genome regions during hybridization which can lead to unclear

genotyping results during cluster calling [115].

2.3.2 Hemi-SNPs

A major challenge to the application of SNPs in polyploid species is due to the inability to separate reads

from the sub-genomes of polyploid species during read mapping. This is particularly problematic in al-

lopolyploid species, which contain not only homologous intra-genomic duplications within each represen-

tative sub-genome but also but also contain homoeologous inter-genomic duplicates between the multiple

sub-genomes. Hemi-SNPs result from polymorphism between such homoeologous sequences (or between
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sub-genomes) within an individual [114]. Figure 2.6 shows the alignment of the sub-genomes (a and b) of

two individuals (individual 1 and individual 2) and illustrates how such SNPs are identified during the read

mapping process. If the same hemi-SNP variant is identified in both individuals, it represents an inter-

homoeologue polymorphism and will not be identified as an allelic difference between the two individuals,

thus is effectively monomorphic. However, if only one individual carries the hemi-SNP variant it will be

possible to distinguish between the two individuals based on this variation. Hemi-SNPs can be mistaken for

simple SNPs due to errors in reference mapping and from insufficient depth of sequencing. In Figure 2.6, for

example, if DNA sequencing of individual 1 results in only sampling reads from the (a) sub-genome and DNA

sequencing of individual 2 results in reads from the (b) sub-genome, it would appear as though markers can

be created which differentiate the individuals. Markers developed based on monomorphic or polymorphic

hemi-SNPs effectively assay two independent loci and cannot be specific for a single locus due to the presence

of common alleles in both individuals. Due to these complications, SNP discovery in polyploids generally

focuses on the detection and use of simple SNPs [114] as they provide more reliable results.

TgtttcacgcAcaaGttttccacaaactC
GgtttcacgcCcaaCttttccacaaactC
TgtttcacgcCcaaCttttccacaaactG
GgtttcacgcCcaaCttttccacaaactG

Monomorphic Polymorphic Simple

Individual 1 (a)

Individual 1 (b)

Individual 2 (a)

Individual 2 (b)

Figure 2.6: Alignment of homoeologous sequences of the sub-genomes (a and b) of two individuals
(1 and 2) illustrates the two types of hemi-SNPs (monomorphic and polymorphic), as well as a simple
SNP.

2.4 DNA Sequencing Background

DNA sequencing is the method used to determine the order of the nucleotides of a single DNA strand,

most commonly by synthesizing the complementary strand and determining which nucleotides have been

incorporated. After detection of these complementary incorporated nucleotides, the sequence of the original

strand can be determined and output as a series of A’s, G’s, C’s, and T’s. The sequence output is typically

only a short subsequence of a chromosome and is most commonly referred to as a read.
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Often the goal of DNA sequencing is to determine the whole genome of a species, which then can be used

as a reference in a variety of further research [60, 15, 121, 116, 87]. To generate a genome sequence, DNA of

the target is sequenced and then the reads are de novo assembled (Section 2.5.3) into a draft of the genome.

Early genomes, such as the human genome, took a long time to sequence and were very expensive. The

first human genome was sequenced in 2003 after 12 years and $2.7 billion dollars of research [49]. However,

recent advances in DNA sequencing technologies have allowed for much quicker generation of whole genome

sequences at a much reduced cost. This has lead to many new species being targeted for whole genome

sequencing [15, 121, 116, 87]. As more genomes become available the opportunities for studying genetic

variation also increase [90]. Often, studies of genetic variation rely on a technique called re-sequencing,

where DNA sequence reads from individuals in the study are mapped (discussed below in Section 2.5.4) to

a reference genome sequence [1, 74, 57].

Technological differences in sequencing methods result in differences in read lengths, number of reads,

error types, and error rates. Therefore, algorithms used for the analysis of sequence data are often directly

dependent on the sequencing methodology employed. While the output formats of the sequencing technolo-

gies do vary, the results of DNA sequencing are similar, as sequencers output DNA sequencing reads and an

estimated quality value for each nucleotide. Quality values are a measure of the sequencer’s confidence in

the nucleotide call. This thesis will provide computational tools that process both first generation and next

generation sequencing data. For this reason, a description of first generation and next generation sequencing

technologies is provided in Section 2.7.

2.5 Bioinformatics and Computational Background

2.5.1 Sequence Alignment

Sequence alignment is a method for determining sequence similarity by comparing two or more DNA, RNA

or protein sequences. There are usually two primary results of a sequence alignment: an alignment, which

indicates regions of the sequences that are in common, and a score, which indicates how similar the sequences

are to each other based on the alignment. An alignment of two sequences can be thought of as a matrix,

where the sequences are the rows of the matrix, and the bases of each sequence are placed in order in the

columns of the matrix. Although the bases are placed into the columns in order, base pairs are not necessarily

adjacent due to the insertion of gaps. Gaps are places in the alignment where a base from some sequences is

aligned to no characters of other sequences. Typically, the biological goal of sequence alignment is to predict

regions of sequence homology (evolutionary relatedness) by alignment of the homologous regions. Then

matches are desired, mismatches could represent mutation, and gaps could represent insertion or deletions

in the sequences. The amount of similarity between two sequences is often represented using the alignment
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score, which depends on the alignment approach. There are two main approaches to sequence alignment:

global alignment and local alignment.

Global Alignment

A global alignment is an alignment of two or more sequences across their entire length. The Needleman-

Wunsch Algorithm was developed in 1970 by Needleman and Wunsch for finding the highest scoring alignment

between two sequences. Scoring of alignments is usually based on three key components: a match score,

a usually positive integer added to the score when aligned nucleotides are the same; a mismatch score,

commonly a negative integer or zero added to the score when the aligned nucleotides are not the same; and

a gap penalty, commonly a negative integer added to the score when a gap has been inserted in one of the

sequences [84]. A common improvement in detecting homology to the Needleman-Wunsch algorithm is to

use a more complex gap penalty, such as the affine gap penalty method. The affine gap penalty approach

has two components, a gap opening penalty (a usually large negative value added to the score upon the start

of a gap) and a gap extension penalty (a much smaller negative value added to the score each time the gap

is extended) [128]. Additionally, some algorithms choose to differentiate between terminal gaps (at the ends

of sequences) and those found in the middle of sequences [63].

Local Alignment

Local alignment is a method for finding an alignment between subsequences of two or more sequences. The

Smith-Waterman Algorithm is a method for finding the highest alignment score between two subsequences

and was first characterized by Smith and Waterman in 1981 as a modification of the Needleman-Wunsch

global alignment method [105]. The key modification in the local alignment algorithm results in the alignment

score never being below zero; this allows for the identification of high scoring subsequences. Figure 2.7 shows

a comparison of global and local alignment using a simple scoring structure (match score = +1, mismatch

= 0, gap penalty = -1). The local alignment algorithm identifies an alignment that has a score of plus eight,

while the global alignment algorithm identifies two alignments both with a score of plus four.

Multiple Sequence Alignment

The goal of multiple sequence alignment is to determine regions of commonality among three or more se-

quences, therefore it is most common for multiple alignment algorithms to use a variation of the global

alignment algorithm. One advantage of multiple alignment compared to pairwise alignment is that multi-

ple alignment can use evidence of similarity in multiple sequences to find small regions of similarity that

may not have been recognized using pairwise alignment. Many multiple alignment algorithms are com-

putationally expensive. In fact, the time required to calculate optimal alignments (Needleman-Wunsch,
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Figure 2.7: Comparison of simple global alignment and simple local alignment (match score = +1,
mismatch score = 0, gap penalty = -1) with solid lines representing sequence alignment and dashed
lines representing gap insertions. Global alignment compares the strings across their entire length,
resulting in more than one alignment with the same score (+4). Local alignment generates a single
higher scoring alignment (+8) of only a segment of each sequence.

Smith-Waterman) increases exponentially with the number of sequences aligned. Typically, other heuristic

methods are employed, but those can remain difficult as the number of sequences grow [63].

2.5.2 Database Search

Database search is a general term for any algorithm which determines similarity of each sequence in a set

of query sequences compared to a database of sequences. Generally, database search algorithms use local

alignment based methods to determine sequence similarity [3, 63]. A brief overview of the two methods used

in this thesis, BLAST [3] and BLAT [53], are given.

BLAST

BLAST is a tool that searches for sequence similarities between one or more query sequences and the

sequences of a DNA or protein database. The BLAST algorithm breaks up each query sequence into short
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subsequences and stores them in an index. The database is then scanned using the short sequences to find

sequences in the database with similar subsequences. When a match is found, an alignment (called a seed

alignment) is generated. If the seed alignment reaches a predetermined score, then extension of the alignment

takes place. The alignment can be extended in both directions from the seed. When no further extension

or trimming of the alignment increases the score the alignment is determined to be locally optimal. Locally

optimal alignments are called high-scoring segment pairs (HSPs). The score of an HSPs alignment is then

normalized and the normalized score can then be converted into an expected value known as an E-value.

The E-value is the number of distinct HSPs, with at least the normalized score, expected to occur by chance

given the size of the search space. The search space is defined as the size (in base pairs) of the query sequence

multiplied by the size of the database (in base pairs). The E-value and normalized score are the main factors

researchers use in filtering BLAST results for significance [3].

BLAT

BLAT another tool for searching for sequence similarities between query sequences and DNA or protein

databases. BLAT is similar to BLAST in that it searches for short matches and extends them into HSPs.

However, BLAST requires a specially formatted database while BLAT does not and BLAST generates

an index of the query sequences while BLAT generates an index of the database sequences. BLAT also

requires perfect or near-perfect seed alignments before extension occurs. Contrary to BLAST which reports

alignments of each HSP of a query, BLAT stitches together all HSPs into a single alignment. Additionally,

BLAT was developed to align EST and mRNA sequences and therefore is better at detecting splice events

[53].

2.5.3 De novo Sequence Assembly

De novo sequence assembly is the process of combining short DNA sequencing reads into longer contiguous

fragments known as contigs. This is often accomplished by finding overlapping reads and combining them

into a single fragment based on the overlapping portion. The overlapping portion of the sequences are

combined into a consensus sequence and the number of overlapping reads at a given position is referred to

as the read depth. When there are disagreements in the consensus (from either an error in sequencing or in

assembly) the most frequent nucleotide at the position is used or an IUPAC ambiguity code can be inserted.

IUPAC ambiguity codes (Appendix A) are letters which represent one or more nucleotides, for example the

letter R represents either Adenine or Guanine [12]. In whole genome assembly, contigs are often combined

using additional read data into scaffolds, which may or may not contain gaps. Scaffolds are then combined

into pseudo-molecules representing whole chromosomes by determining the relative order of scaffolds and

their orientation to each other [2].
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2.5.4 Read Mapping

In comparison to de novo assembly, read mapping is essentially a sequence alignment problem where DNA

sequenced reads are aligned to a set of previously assembled reference sequences to determine the location of

the read within the reference set. As in de novo assembly, overlapping reads can be converted into a consensus

sequence and the number of reads aligned to a reference position is referred to as the read depth. There are

a variety of software packages available for read mapping that fall into three main categories algorithmically.

The focus of this section will be to discuss the algorithms and a selection of software packages in more detail.

Local Alignment

Local alignment (Section 2.5.1) has a distinct benefit over global alignment for mapping of reads, as it allows

for more errors in the ends of the reads being mapped (where errors are more frequent) [22, 55]. Software

packages using local alignment include Mosaik [110], CLC Bio reference assembly [22], and FASTA [88].

An advantage of read mapping using local alignment algorithms is that reads of varying length can all be

mapped at the same time, whereas some of the other algorithms (eg. Burrows-Wheeler Transform) require

reads of similar length [110, 65, 66].

Index/Seed

As the number of sequences to map became larger it became unfeasible to use the exact alignment methods

of local alignment. Heuristic methods were developed that generate an index of either the reads or the

reference genome [72, 103]. This index is stored as either a hash or array and is scanned to generate short

seed alignments. The purpose of the seed alignments is to narrow the alignment space, reducing overall run

time. These seeds are then extended into longer alignments [3, 53, 72]. With the increase in sequencing

reads due to next generation sequencing technologies, older index/seed based methods such as BLAST [3]

and BLAT [53] were unable to efficiently handle the large amount of data. New methods were developed,

such as MAQ [69], SOAP [72], RMAP [103, 102] and several others. These methods usually reduce the

number of seed locations by filtering seeds on criteria such as the number of mismatches. Some of these

newer methods sacrifice flexibility in terms of input read length in order to perform more quickly. For

example, MAQ versions under 0.7.0 have an input read length limit of 63 base pairs, while versions 0.7.0 and

above support up to 127 base pairs, and SOAP does not support reads over 60 base pairs. These limitations

are generally due to scalability, as when read length increases so does the time and memory footprint to run

these algorithms. Increasing from 36 base pair reads to 50 base pair reads triples the running time of SOAP

and going from 50 base pairs to 76 base pairs nearly doubles the running time of MAQ and increases the

memory footprint by 43% [62].
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Burrows-Wheeler Transform

In an attempt to further increase performance of read mapping, the Burrows-Wheeler Transform (BWT)

[13] has been adopted by several programs including BWA [65, 66], SOAP2 [73], and Bowtie [62]. BWT is

an alternative method for indexing which allows for fast and memory efficient searching. It works by adding

a character to the end of a string to be transformed, usually $, which is not in the alphabet of characters

to be indexed and is lexicographically less than the characters from the alphabet (Figure 2.8(a)). Then the

Burrows-Wheeler matrix for the string is generated by making each row one of the cyclic rotations of the

string to be indexed, and the matrix is sorted (Figure 2.8(b) & (c)). The far right column of the matrix

is the Burrows-Wheeler Transform of the string (Figure 2.8(c) & (d)) [62, 65]. There are two important

properties of the BWT: first, the results are highly compressible and second, the BWT can be converted

back to the original string (Figure 2.9) [13]. The compressibility of the BWT results from the tendency of

the same characters to group together and the reversibility allows for strings to be stored in their compressed

form, retrieved, and then reversed to obtain the original string.

Additionally, the sorted matrix can be used to search for exact matches using an algorithm proposed by

Ferragina and Manzini [30]. Algorithms for inexact matching generally use a back-tracking algorithm that

first tries to find an exact match and when that fails moves back to a point where a mismatch may be used

and the alignment extended from there. To avoid excessive back-tracking the number of mismatches allowed

is usually limited [62, 73, 65].

Figure 2.8: The Burrows-Wheeler Transform for the string ‘GACCTG’ by (a) appending the string
terminator character, (b) creating a matrix using the cyclic rotation of the string and (c) sorting that
matrix on lexicographical order results in (d) the BWT of ‘GACCTG’.
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Figure 2.9: Regenerating the original string ‘GACCTG’ from the BWT sorted matrix using the last
first method.

2.5.5 Bit Vectors

A bit vector is a binary string that can be thought of as an array; elements of the bit vector can be accessed

directly using an offset and the bit size of each element. In Perl, a common programming language for

bioinformatics, the size of an element must be a power of 2, with a minimum size of 21 and a maximum size

of either 232 or 264 (depending on the underlying architecture of the computer system). Since all of the bits

allocated to each element can be used for the input, as opposed to the behaviour of the built-in Perl hash or

array structures which have non-mutable element sizes designed around programming flexibility, bit vectors

provide a more space efficient data structure. Figure 2.10 gives an example of setting or getting an element

from a bit vector and the equivalent action in an array.

Bit Vector Array

vec(bit numbers, 3, 16) = 8 array numbers[3] = 8

vec(bit numbers, 3, 16) array numbers[3]

vec(bit numbers, 3, 16)++ array numbers[3]++

Figure 2.10: In Perl the vec command allows for bit vector operations similar to array operations.
Both the bit vector and the array start at index 0, so to set the 4th element position 3 is used. The
vec command takes an additional argument, which is the number of bits for each element. In our
example 16 bits are allowed for storing each element. The first operation sets the value of the 4th
element to 8, the second retrieves the value in the 4th element, and the third increments the value in
the 4th element from 8 to 9.
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2.5.6 O-notation

An algorithm’s time and space complexity is often measured as a function with respect to its input size (or

multiple input sizes if there are multiple inputs). Most commonly, these functions are simplified through

the use of O-notation. O-notation is a method first used in mathematics to describe the asymptotic upper

bound of the growth of a function with respect to its input, ignoring constant factors. For a given function

g(n), O(g(n)) describes a set of all functions (f(n)) where: there exists positive constants c and n0, n is

sufficiently large (n > n0), and each function in the set falls between zero and cg(n) (0 ≤ f(n) ≤ cg(n)) [25].

In computer science, O-notation is more often used to classify algorithms, rather than arbitrary functions,

based on an upper bound of the algorithm’s complexity. For example, an algorithm that takes input of size n

and that runs in, at most, time linear to n is described as big-oh of n or more commonly O(n). O-notation is

used to describe the worst-case time or space complexity of an algorithm for all possible inputs, and therefore

focuses on the highest-order term. For example, an algorithm with the growth function n2 + n is O(n2).

Categorizing algorithms based on their O-notation allows for the comparison of the efficiency of different

algorithms and provides an idea of what computational resources may be required for a problem given the

size of its input [25].

2.5.7 Ω-notation

Ω-notation (big-omega) is the method used to describe the asymptotic lower bound of the growth of a

function with respect to its input (n), for sufficiently large values of n. Similarly to O-notation, Ω-notation

ignores constant factors, focusing on the highest-order term. Therefore, for a given function g(n), Ω(g(n))

describes a set of all functions (f(n)) where: there exists positive constants c and n0, n is sufficiently large

(n > n0), and cg(n) falls between zero and each function in the set (0 ≤ cg(n) ≤ f(n)). In computer science

it is primarily used to describe the lower bound on the worst-case running time of an algorithm [25].

2.5.8 Θ-notation

Contrarily to Ω-notation and O-notation, Θ-notation is an asymptotically tight bound on the growth of a

function, meaning that Θ-notation bounds the growth of a function (from above and below) between two

constants for sufficiently large values of n. Therefore, for a given function g(n), Θ(g(n)) describes a set of

all functions (f(n)) where: there exists positive constants c1, c2 and n0, n is sufficiently large (n > n0), and

each function in the set falls between c1g(n) and c2g(n) (0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)) [25].
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2.5.9 Amdahl’s Law

Amdahl’s law is a method used in computer science to determine the theoretical maximum speedup of an

algorithm with both sequential and parallelized portions. Amdahl’s law states that if P is the proportion

of an algorithm that can be made parallel and (1-P ) is the proportion that cannot be parallelized, then the

maximum speedup that can be achieved using N processors is

S(N) =
1

(1− P ) + P/N
. (2.1)

2.6 SNP Discovery Background

There are several methods for identification of SNPs. However, the most common methods utilize reads

sequenced from the target organism’s DNA. These reads are then aligned to a reference sequence set (read

mapping) and the differences compared. Reference sequences are often obtained from fully sequenced, closely

related model organisms, such as humans or rice. However, due to the efficiency and relatively low cost of

next generation sequencing technologies, a reference set can now include de novo assemblies of more closely

related species or the target species itself, which increases the accuracy of SNP discovery. To reduce the

likelihood of incorrectly identifying a base change due to sequencing error as a SNP, multiple reads should

be considered. The number of reads required to confidently identify a SNP is different for each sequencing

method due to the differences in error rate between the sequencing methods [34, 55].

Advances in DNA sequencing technology are having a significant impact on the methods used for SNP

discovery. Due to the magnitude of data produced by the next generation sequencers, high-throughput SNP

discovery has become easier and more cost effective. However, low-throughput SNP discovery is still the

primary approach of researchers targeting a small number of important genes.

2.6.1 Low-throughput SNP Discovery

The most common approach for low-throughput SNP discovery is to use Sanger sequencing to sequence

DNA fragments that are captured using PCR primers. These primers are designed to amplify a target

region (Figure 2.11), usually containing all or a part of a gene of interest. Fragments are amplified from a

diverse set of individuals, sequenced, and the resulting products aligned against each other (Figure 2.12).

SNPs are identified based on variations found within the fragment set taking care to distinguish real SNPs

from sequencing errors [90]. Due to the quality of the sequenced products, false discovery is generally below

5% [34]. However, due to the targeted nature and the time involved with the laboratory processes associated

with this method, it is unsuitable for large-scale SNP discovery projects across an entire genome. For
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such projects it is faster and cheaper to utilize next generation sequencing technologies such as those from

Roche/454 and Illumina.

Figure 2.11: Amplification of a target region for sequencing using PCR primers (a, b) results in a
fragment that can be sequenced using Sanger sequencing.

2.6.2 High-throughput SNP Discovery

One approach to SNP discovery is to sequence DNA from multiple individuals and compare their sequence

to a closely related set of reference sequences. It is important that there is a high level of confidence in the

reference sequences as any difference in the DNA of the individual is considered as a potential polymorphism.

Once the sequence reads have been aligned to the reference sequence the alignment can be scanned and a

report generated of positions where the individual differs from the reference. These potential SNPs can then

be compared to a database of known SNPs if available. This comparison allows for the determination of

a novel set of SNPs, reduces the need to validate SNPs that are found in the database, and can provide

valuable information, such as SNP function. SNPs can also be compared between individuals of a population

to determine common characteristics amongst the individuals. SNPs can then be validated using methods

such as real-time Polymerase Chain Reaction (rtPCR) or using array based hybridization methods. Validated

SNPs can then be provided to researchers for use as reliable molecular markers [34].

2.6.3 SNP Discovery Informatics

There are two main components to the informatics of SNP discovery: read mapping and SNP calling. As

previously mentioned, read mapping, the crucial first step of SNP discovery, is the process of aligning the

sequenced reads against a reference set of longer more complete sequences, such as those from a de novo
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Figure 2.12: Fragments are amplified from multiple individuals (a), then sequenced (b). These
sequences can be aligned against one another and checked for polymorphisms (c). An example poly-
morphic base is shown in colour.

assembly (described in Section 2.5.3). Ideally, these reference sequences are from the same species as the

target reads. However, a model or other closely related organism may be used when there is no suitable

reference for the species being interrogated.

SNP calling is the process of determining positions within the reference sequence where the sequenced

reads differ from that of the reference. This is also often referred to as variant calling or variant detection

and is most often done by scanning the alignment for mismatches, determining if a mismatch constitutes a

SNP or an error (either in sequencing or alignment), and outputting the SNP calls. Generally, any difference

found would be reported as a variant. However, due to errors in sequencing reactions and/or the read

mapping, a given variation may not be biologically true. To overcome these errors it is important to have

both highly accurate read mappings and to have sufficient read depth providing evidence of the variation.

Software such as SOAPSnp [71], CLC Bio’s Genomics Workbench and Genomics Server [23], MAQ [69], and

SAM Tools [67] all use Bayesian models of statistics to determine if a mismatch qualifies as a SNP. Generally
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the output for each SNP called contains several important pieces of information such as the position in

the reference sequence, the reference base call, the SNP base call (sometimes referred to as the variant or

alternate base call), the total number of reads that are aligned to the reference position (total read depth),

and the frequency of the reads containing the SNP (Figure 2.13).

Reference
Sequence

Reference
position

Reference
base

SNP Call SNP Frequency Read Depth

Chr 1 100 C A 100% 20

Figure 2.13: A sample of the information contained in a typical variant call. In this example a
variant has been called at base position 100 of chromosome 1. The reference sequence is a “C” and
the individual has 20 aligned reads (Read Depth) all (100% Variant Frequency) indicating the variant
base“A”.

Sequencing and read mapping errors can compound resulting in mismatches that are incorrectly identified

as SNPs. Therefore, even after calling SNPs using modern algorithms, it is often necessary to do additional

custom screening of the SNP output before utilizing the SNPs in the lab. This is often based on knowledge

of the organism, read depth, allele frequency, and quality [73].

2.6.4 Validation of Called SNPs

KASPar

KASPar is a low throughput method that utilizes PCR and fluorescence to reliably detect SNPs. The benefit

of this method is that the KASPar primers are easy to develop and validation can be done quickly. However,

the downside is that the process is limited to 1536 samples at one time and there is no option for multiplexing

to increase the number of SNPs that can be validated. KASPar has been shown to have accuracy of greater

than 99.5% as well as high reproducibility [107]. It employs a series of denaturing, annealing and extension

steps to ensure that the fluorescent allele specific primer is amplified. Differentially labelled primers result

in allele specific clusters that can then be analyzed to determine if the SNP is monomorphic or polymorphic

[106]. By performing a KASPar reaction utilizing the reference DNA as well as the DNA from the same

sample as the SNP was called, it can be determined if the called SNP was valid.

Arrays

Custom genotyping arrays such as those offered by Illumina allow for a higher throughput validation than

that of the KASPar method. Using the highest density arrays, as many as one million SNPs can be validated
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at once. By including both the reference DNA sample and a sample from which the SNP was called, it can

be determined if the SNP called was likely valid.

2.7 DNA Sequencing Technologies

Knowledge of DNA sequencing technologies provides a better understanding of the challenges faced during

the analysis of DNA sequence data for research purposes. As such, each sequencing technology used in this

thesis is described below in its own subsection. As the majority of the data analyzed for the thesis work is

from next generation sequencers, a summary of their read lengths, output sizes, and error types is given in

Table 2.1. The features in this table are the most important factors from a data analysis perspective, to be

used for new algorithms developed for this thesis.

2.7.1 First Generation Sequencing Technology

First generation sequencing technologies are those based upon the chain-terminating method developed in

1977 by Frederick Sanger and is widely known as Sanger sequencing. The first step is to generate a large

enough quantity of the DNA to be sequenced either using purification or amplification by PCR. A sequencing

primer is then used to initiate reverse strand synthesis of each copy of the original target sequence using a

mixture of unmodified and modified nucleotides. The modified nucleotides have a fluorescent label attached

to them as well as structural changes which block the extension reaction, resulting in fragments of different

lengths and thus different molecular weights (Figure 2.14) . The fragments can then be sorted by mass using

capillary electrophoresis and the label attached to the termination point read to determine the DNA sequence

[98, 104, 112]. First generation sequencers were able to process 96 or 384 samples at a time, producing long

read lengths (600–1000bp) with very high accuracy (an estimated one error in 10,000–100,000 sequenced

bases) [55]. State-of-the-art sequencers, such as the Applied Biosystems (acquired by Life Technologies)

3730XL, use 96 capillaries and can accept samples in either a 96 well plate or a 384 well plate. These

sequencers are capable of completing approximately 12 runs of 96 samples each day resulting in 1152 reads.

With an average length of 800 base pairs for each read, the throughput of the 3730XL is 921.6 kilobases per

day [6].

2.7.2 Next Generation Sequencing Technologies

Next generation sequencers are considered, for the most part, those based on sequencing by synthesis (SBS).

SBS is a process in which the sequence of DNA is read while synthesizing the complementary strand of the

DNA sequence. An enzyme known as DNA polymerase, which is responsible for incorporating new bases

into the complementary strand during normal DNA synthesis, is used to incorporate nucleotides that can
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Figure 2.14: Starting point for the Sanger sequencing reaction (a) and a sample of the resulting
products of that reaction (b).

then be recorded producing the DNA sequence as they are added to the strand.

Pyrosequencing is a SBS method in which the incorporation of a nucleotide releases a pyrophosphate

molecule. The pyrophosphate molecule combines with enzymes and other chemicals in the reaction to

produce light. A single nucleotide (A, T, C, or G) is available for incorporation at a time and thus the

number of nucleotides incorporated can be determined by the intensity of the light produced. Alternatively,

the SBS method used by Illumina is a reversible terminator based method similar to Sanger sequencing,

which differs from pyrosequencing in that a fluorescent label is attached to each nucleotide and imaged to

determine which base was incorporated [55].

Next generation sequencing technologies usually produce shorter read lengths than those achieved using

Sanger sequencing. However, they produce many more reads and thus more overall bases per run. This allows

for increased depth (the number of reads per nucleotide of the target organism) of sequencing in comparison

to Sanger sequencing at a much lower cost [55]. Depth of sequencing increases the confidence in a base call

by providing multiple sources of evidence that a nucleotide has been sequenced without error. Additionally,

next generation sequencing methods allow for sampling a larger portion of the target organism’s genome

[8, 122].

While this is not meant to be a survey of all the different sequencing methods, pertinent information is
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included for the sequencers from which data will be examined in this thesis (Roche/454 GS FLX Titanium,

Illumina GAIIx, Illumina HiSeq 2000). Also included is information on several newer sequencers that are

currently being released (Table 2.1). This includes two lower cost, bench-top style sequencers (Roche/454

GS Junior and Illumina MiSeq) designed to provide lower throughput for researchers either without access

to a larger sequencing centre or who do not require the higher volume of data that can be generated by the

larger machines. These machines are of interest as they will make sequencing more accessible to every lab,

which in turn will create high demand for good software that does not require dedicated staff to perform the

data analysis.

Sequencer Read Length (bp) Output Run
Time

Error Type

Base pairs
(bp)

Disc Space

Roche/454
GS FLX
Titanium

400 400–600
million

3.1–4.8 GB 10
hours

Indel

Roche/454
GS Junior

400 35
million

0.28 GB 12
hours

Indel

Illumina
GAIIx

1x35, 2x50, 2x75,
2x100, 2x150

10–95
billion

24–230 GB 2–14
days

Substitution

Illumina
HiSeq
1000/2000

1x35, 2x50, 2x100 47–300
billion

114–726 GB 1.5–8.5
days

Substitution

Illumina
HiSeq
1500/2500

1x35, 2x50, 2x100 95–600
billion

0.225–1.42 TB 2–11
days

Substitution

Illumina
MiSeq

1x35, 2x25, 2x100,
2x150, 2x250

0.54–8.5
billion

1.3–20.6 GB 4–39
hours

Substitution

Table 2.1: Summary of next generation sequencers including read length, throughput per run, output
size, run time and most common error type. Illumina single reads are labelled as 1x, while 2x indicates
two sequences reads from a single template (one from each end). Disc space estimates are based on 8.3
bytes per base pair for the Roche/454 platforms and 2.6 bytes per base pair for the Illumina platforms;
these estimates were calculated using uncompressed data for each platform. Error types are either
insertion/deletion errors (Indel) or substitution errors. Data current as of January 2014.
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Roche/454

The Roche/454 machines use the pyrosequencing methodology. Pyrosequencing involves four major steps:

generation of a single-stranded template library, emulsion based PCR for clonal amplification, sequence data

generation by sequencing by synthesis, and data analysis [94]. The average read length of a pyrosequencing

run is 400 base pairs, which is substantially longer than the other next generation sequencing methods

[95, 44]. However, this technique has problems resolving homopolymers (stretches of a single base) greater

than 8 due to saturation of the sensor that detects the amount of light given off during an incorporation and

has lower throughput in comparison to other next generation sequencers [77, 95, 44].

The first stage of pyrosequencing involves the creation of a single-stranded template library. Library pro-

duction can be performed on the following materials: complementary DNA (cDNA), genomic DNA (gDNA),

Polymerase Chain Reaction (PCR) products, and Bacterial Artificial Chromosomes (BACs). Starting materi-

als larger than 800 bases must be fragmented before proceeding with the remainder of the library preparation;

this fragmentation occurs at random and produces 300-800 base pair fragments.

Double stranded DNA is denatured into single stranded DNA and sequencing adapters are attached to

both the 3′ and 5′ ends of each fragment (Figure 2.15a) [94]. The randomness of the library preparation is

examined and biases discovered [122].

The second stage of pyrosequencing involves the amplification of individual single-stranded DNA frag-

ments. This is done using a process called emulsion PCR (emPCR). Individual DNA fragments are captured

on separate beads by using an excess of beads to fragments. These beads are captured in a droplet of PCR

reagents in oil called a microreactor. The microreactors allow for separate DNA amplification resulting in

each bead containing several million copies of an individual fragment (Figure 2.15b) [77].

The third stage of pyrosequencing is the generation of sequence data using sequencing by synthesis.

Beads are deposited into wells of a fibre-optic plate using centrifugation (Figure 2.16a). The size of the

beads and the wells are matched to allow only 1 bead per well. However, in practise multiple beads are

observed in approximately 2-5% of wells that contain beads. The plate is then flooded with smaller enzyme

beads (Figure 2.16b) that serve two purposes. The first is to immobilize the beads carrying the template

strand to keep them from washing out of the well as the nucleotides flow across the surface of the plate. The

second is that these enzyme beads have adenosine tri-phosphate (ATP) sulphurylase, luciferase, and other

enzymes bound to their surface; these enzymes are required for the chemical reaction which leads to the

emission of light during the sequencing process.

During a flow cycle, each nucleotide is iteratively flowed over the plate in a pre-determined order

(T,A,C,G) with a wash cycle in-between to remove unincorporated nucleotides. If a nucleotide is com-

plementary to the template strand DNA polymerase present in the well extends the complementary strand

by that nucleotide (Figure 2.17a,b). Since there is an abundance of free nucleotides and the reaction is not
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Figure 2.15: Double stranded template sequences are sheared to an appropriate size, the fragments
are denatured into single strands and adapters annealed to the ends (a). A single bead is encompassed
in a drop of oil forming a microreactor. Excess of beads to fragments results in one fragment per bead.
This fragment is then amplified using PCR to create a bead with multiple copies attached to it (b).

halted by an incorporation event, as in the Illumina method, homopolymer stretches are incorporated at the

same time (Figure 2.17c). Addition of one or more nucleotides results in the release of a free pyrophosphate

(PPi) that reacts with free adenylyl sulfate (APS) and the ATP sulphurylase bound to the enzyme beads to

create ATP. The ATP and luciferase bound to the enzyme bead interact in a chemical reaction which leads

to the emission of light. Light is transmitted through the bottom of the fibre-optic plate and is captured by

approximately 9 pixels of the charge-coupled device (CCD) sensor. The light intensities that are captured

by each of the 9 pixels covering a well are summed to produce a signal for that well during the particular

nucleotide flow in which the light was captured [94, 55, 77].

The fourth and final stage of pyrosequencing is the processing of the imaging data. Although each well

of the plate only requires 9 pixels, the large number of wells results in 32 megabytes of data for each image

captured of the entire plate. In order to process the image data in real time, the control computer uses a Field

Programmable Gate Array (FPGA) containing 6 million gates. Wells with target sequence are determined by

the detection of a 4 nucleotide key sequence during the first two flow cycles. During the remaining flow cycles

the raw signal intensity of the incorporated nucleotide has background signal subtracted, is normalized, and

converted to the number of incorporated bases producing a flowgram (Figure 2.18). The read encoded by
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Figure 2.16: Beads containing amplified sequences are deposited in the wells of the fibre-optic plate
using centrifugation (a). The smaller enzyme beads are added next using the same method (b).

the flowgram will be reverse complemented to give the 5′ to 3′ sequence of the target sequence. The output

from the pyrosequencing run contains the flowgram, the normalized signal, and base calls with quality values.

Quality values are extracted from the flowgram using algorithms to detect common errors such as incomplete

extension (e.g. incorporating only 4 bases where 5 should be) and carry forward (e.g. incorporation of a

nucleotide out of order due to nucleotides trapped in the well) [77]. The most common error on the 454

platform are insertion or deletion (indel) errors. These errors usually result from mistakes in detecting the

number of nucleotides incorporated during homopolymers.

Genome Sequencer (GS) FLX Titanium The GS FLX Titanium is the flagship sequencer from

Roche/454 and offers a throughput of 400–600 million bases per 10 hour run. Roche claims accuracy greater

than 99% for bases 1–399 and an accuracy of 99% at 400 bp. In order to process the flowgram files into base

and quality information a computing cluster is recommended [95].
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Figure 2.17: When the complementary strand does not match the nucleotide being flowed across the
plate no incorporation event occurs (a). When the flowed nucleotide is complementary a chain reaction
takes place starting with the incorporation of the nucleotide. This results in a free pyrophosphate
being converted into light (b). Stretches of a single nucleotide are incorporated and captured at the
same time resulting in a higher light signal (c).

GS Junior The GS Junior is a bench-top version of the FLX Titanium system designed to offer reduced

throughput but at a more accessible price level (approximately $150–200K vs $400K). It provides the same

average read lengths and accuracy as the FLX Titanium with a throughput of approximately 35 million bases

instead of 400–600 million bases in a 12 hour run time. This machine requires only a desktop computer for

processing the image data [93].

Illumina

Similarly to the Roche/454 method, the Illumina sequencing method has four major steps: generation of

the sequencing library, clonal amplification of individual reads, SBS, and data analysis [10]. The Illumina

method produces read lengths of 250 bases or less, yet due to the high number of reads that can be extracted

from a single flow cell (the glass substrate to which template sequences are bound) produces more data per

run than the Roche/454 method [95, 42, 44].

In the first stage the sequencing template library is generated by creating DNA fragments of the ap-
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Figure 2.18: A sample of a flowgram (nucleotide flow order T,C,A,G) showing the first nine flow
cycles of a read. The first and second flow cycles read the 4 nucleotide key sequence and allows for
signal calibration. Flow cycles 4 through 9 result in a 16 nucleotide read (GTTCATCCCGACATGG).

propriate size, usually by shearing of longer fragments. The fragment size for the library is determined by

the read length being sequenced and the insert size of the library (paired-end only). These fragments are

joined to a pair of short adapter sequences (one on each end of the fragment) and then denatured into single

strands (Figure 2.19a) [10]. These adapters allow the sequence to be bound to the surface of the flow cell

for sequencing. The sequences are flowed at a low concentration across the flow cell and the adapters bind

to complementary adapter sequences that have been fixed on the flow cell [55]. The complementary strand

of the template is then synthesized starting with the adapter sequence fixed to the flow cell. The original

strand can then be removed and the second stage begun (Figure 2.19b) [10].

In the second stage of Illumina SBS the single template sequences bound to the flow cell are amplified

into clusters using a process called ‘bridging’ amplification (Figure 2.20). After the fragments have been

fixed to the flow cell the adapter sequence on the free end binds to the complementary sequence on the flow
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Figure 2.19: Double stranded template sequences are sheared to an appropriate size, adapters are
annealed to the ends and the fragments denatured into single strands (a). Single stranded sequences
are bound to complementary adapter sequences fixed to the flow cell and the complementary sequence
(dashed) synthesized before removal of the original template, leaving only the fixed sequences for
sequencing (b).

cell creating a bridge; this bridge can then be used to form the second strand. Once the second strand has

been synthesized the bridge is denatured resulting in two complementary copies of the same sequence. This

process of binding, copying, and denaturing is repeated for several cycles yielding a cluster of approximately

1 µm. This cluster contains reads in both the forward and reverse directions so in order to have a cohesive

cluster one strand is removed before sequencing, by cleaving the sequence using a cleavage site built into the

small fragment fixed to the array [10, 55].

The third stage is SBS; instead of detecting incorporation events using light released during incorporation

as the 454 does, Illumina uses a reversible terminator chemistry. First, a sequencing primer is bound to the

adapter on the free end of each read in a cluster. Using a specially designed DNA polymerase, fluorescent

dye labelled nucleotides are incorporated. The Illumina reversible terminator chemistry is similar to the
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Figure 2.20: Illumina ‘Bridging’ Amplification involves a series of annealing, extension, and denat-
uration cycles to amplify the target sequence in each cluster. Since this process amplifies both the
forward (light green) and reverse (light blue) directions a step is required to remove one direction by
cleaving the oligonucleotide that is fixed to the flow cell.

Sanger method of sequencing in that the incorporation of bases is stopped by the addition of a nucleotide,

the incorporated base is then read by exciting the fluorescent dye affixed to the nucleotide with a laser. The

fluorescence of each sequence is captured in an image and the fluorescent labels are removed so that another

incorporation event can take place (Figure 2.21). The terminator chemistry allows all four nucleotides to be

flowed over the cell at the same time, reducing misincorporation events. Four fluorescent dyes are used, one

for each nucleotide, with two excited using a red laser (A/C) and two excited using a green laser (T/G). To

distinguish between the two nucleotides excited by the same laser optical filters are employed. Therefore,

four images are taken at each imaging step (one for each filter) [10, 55]. Since an image is taken after

each incorporation there is less risk of misreading the number of bases in a homopolymer in comparison

to the pyrosequencing method. However, since two nucleotides are read using the same laser excitation,

substitution errors are generally higher with the Illumina platform.
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Figure 2.21: Initial setup of the sequencing reaction showing the sequencing primer, the polymerase
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from each filter for the incorporation event in (b). Removal of the fluorescent dye allows the reaction
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Genome Analyzer IIx The Genome Analyzer (GA) IIx was the flagship sequencer from Illumina before

the HiSeq 1000/2000 sequencers were released. The GAIIx is capable of producing 10-95 gigabases per 2-14

day run depending on the read length chosen. Shorter read lengths result in quicker run times and lower

throughput. As with all sequencers the accuracy tends to decrease towards the end of the read. Illumina

claims that greater than 85% of reads have an accuracy of 99.9% for the 2x50 bp read length and greater

than 80% of reads have an accuracy of 99.9% for the 2x100 bp read length. The GAIIx can produce reads

of 1x35 bp, 2x50 bp, 2x75 bp, 2x100 bp, and 2x150 bp. In order to capture this data and process it into

sequencing reads a dedicated cluster is recommended [42].

HiSeq The HiSeq series are Illumina’s new flagship sequencers. They boast higher throughput and shorter

run times than that of the GAIIx with no reduction in accuracy. The HiSeq 1000/2000 will produce between

47 and 300 gigabases per run (1.5 day and 8.5 day runs, respectively) and the HiSeq 1500/2500 will produce

95 to 600 gigabases per run (2 and 11 day runs, respectively). The HiSeq systems can produce read lengths

of 1x35 bp, 2x50 bp, and 2x100 bp. In order to facilitate the data collection a cluster is required for both of

these machines [43, 44]. Recently Illumina has also developed the Illumina BaseSpace, a cloud storage and

computing environment available for the HiSeq and MiSeq. This environment allows the user to store up to

1 Terabyte of run data for free and provides online access to many bioinformatics tools for data analysis. It

also is designed to allow easy online collaboration for data analysis [46].

MiSeq The MiSeq is Illumina’s new low throughput sequencer and is designed to offer sequencing capa-

bilities to smaller labs. It will produce between 540 megabases and 8.5 gigabases of data per run (4 and 39

hours, respectively). It can produce reads of 1x35 bp, 2x25 bp, 2x100 bp, and 2x150 bp and Illumina claims

that it achieves accuracy of 99.9% for greater than 90% of the 35 bp reads, greater than 80% of the 2x100 bp

reads, and greater than 75% of the 2x150bp reads. The MiSeq does not require a cluster for data collection

as it has a built in computing component as well as access to Illumina BaseSpace [45, 46].

2.8 DNA Sequencing Methodologies

The cost of DNA sequencing can become prohibitive based on factors such as desired read depth of sequencing,

size of the genome to sequence, and the sequencing platform being used. For this reason, different sequencing

methodologies have been developed to allow flexibility in the coverage of genome sequencing. The two

methods represented in this thesis, shotgun sequencing and reduced representation sequencing, are discussed

below in their own subsections.
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2.8.1 Shotgun

The shotgun approach to DNA sequencing involves randomly fragmenting DNA and sequencing the frag-

ments. The benefit of shotgun sequencing is that it provides sequenced fragments across the entire DNA

molecule (Figure 2.23 (a)). However, because there are a finite number of reads sequenced and they are

spread across the entire molecule, the depth of coverage at any nucleotide tends to be low in comparison to

other methods, such as reduced representation.

2.8.2 Reduced Representation

Reduced representation is the generic term given to any method which seeks to increase read depth by

sequencing a reproducible subset of the genome space, minimizing the amount of sequencing required. Often,

this is accomplished by fragmenting all or a portion of the DNA space using a restriction enzyme based

digestion [28, 7]. Restriction enzymes are enzymes which cut the DNA strand based on a recognized pattern

of nucleotides in a process known as digestion. For example, the restriction enzyme EcoRI recognizes the

nucleotide pattern GAATTC and cuts the DNA between the G and the A nucleotides as in the example in

Figure 2.22 [97].

5′ - CATTAGCGATAGGAGTCGTAGGAATTCGCCGTTGATAGATGATG - 3′
↑
(a)

5′ - CATTAGCGATAGGAGTCGTAGG - 3′

5′ - AATTCGCCGTTGATAGATGATG - 3′
(b)

Figure 2.22: Digestion (a) of the DNA sequence CATTAGCGATAGGAGTCGTAGGC-
CGTTGATAGATGATG by EcoRI (restriction site highlighted in red and cut site shown with arrow)
results in two fragments (b), CATTAGCGATAGGAGTCGTAGG and ATTCGCCGTTGATAGAT-
GATG.

The benefit of reduced representation libraries are that they focus sequencing on specific areas of the

genome resulting in greater depth with less overall cost. However, the pitfall of reducing overall genome cov-

erage is that some variations with important functionality may be missed. Reduced representation libraries

can be generated for any sequencing platform using a variety of methods [4, 28, 79]. Two specific methods,

3′ Transcript Profiling and Restriction-site associated DNA (RAD), will be discussed in greater detail next.
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Figure 2.23: Comparison of sequencing results from (a) Shotgun sequencing (b) 3′ Transcript Pro-
filing.

3′ Transcript Profiling

3′ transcript profiling is a restriction enzyme based method which captures the 3′-UTR of mRNAs. Capturing

the 3′-UTR results in the sequencing reads being stacked at the 3′ end of the transcript sequence, resulting

in greater depth for SNP discovery (Figure 2.23). Libraries are prepared by anchoring the 3′ end of the

RNA sequence to a magnetic bead, digesting it with the restriction enzyme, washing away any unanchored

fragments, and ligating on the sequencing primer [28]. The captured fragments are then ready for sequencing

(Figure 2.24). By limiting sequencing to only the captured fragments the overall representation of the genome

is reduced. However, the coverage of the regions sequenced has increased resulting in more robust SNP

discovery.

Restriction site Associated DNA

Restriction site associated DNA (RAD) is another restriction enzyme based method. Unlike the 3′ Transcript

Profiling method, the entire genome is digested and adapters containing a forward amplification primer, a

sequencing primer, and a barcode (used to identify pooled samples) are attached to either side of the

restriction site on the newly generated fragments. These fragments are then randomly sheared and a second

adapter attached to the newly sheared end (Figure 2.25). Fragments with both adapters are amplified and

then sequenced, reducing the areas of the genome that are sequenced while increasing the depth for more

robust SNP discovery (Figure 2.26) [7].
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Figure 2.24: 3′ Transcript Profiling library preparation by (a) attaching the RNA molecule to a
magnetic bead (b) fragmenting using a restriction enzyme (c) washing away any unanchored fragments
and attaching the sequencing primer (d) eluting the fragment to be sequenced.
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Figure 2.25: RAD library generated from (a) a genomic sequence fragmented using a restriction
enzyme results in (b) a series of fragments with P1 adapters attached at the restriction sites. These
fragments are then sheared into random sizes and a P2 adapter attached, resulting in sequencing reads
adjacent to the restriction site (c).
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Figure 2.26: Sequenced reads are generated on either side of the restriction site resulting in a RAD
tag with increased depth of coverage.
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Chapter 3

Automated Intron-Spanning Primer Design For

High-Throughput SNP Discovery Using

Sanger Sequencing1

3.1 Introduction

Robust and automated PCR primer design is an important prerequisite to many strategies of large-scale

discovery of nucleotide variation, specifically SNPs, as discussed in Section 2.6. At the time this thesis work

was initiated, the primary method of SNP discovery in non-model organisms was to amplify a specific portion

of a target genome using PCR primers. Often in more complex genomes a single gene from the related model

organism can be represented by multiple members of a gene family. It is then desirable to co-amplify all

members of the gene family using a single set of PCR primers. This requirement complicates the primer

design, which tends to be further exacerbated by additional factors such as targeting non-coding regions of

the gene sequence, which tend to be more polymorphic. This is especially complicated in organisms that

do not have a fully sequenced genome, requiring additional time intensive experimental work to provide the

necessary information for primer design. Thus, this phase of the SNP discovery method is often a bottleneck

in the overall process.

Although next generation methods such as those described in Chapter 4 are now the predominant method

for SNP discovery, the methods described in this chapter are still important for researchers performing

experiments using targeted sequencing. One such application is the targeted sequencing of moderate numbers

of genes where the cost of the methods outlined in Chapter 4 outweigh the cost of Sanger sequencing. The

objective of the work in this chapter is to fully automate the currently used semi-automated pipeline (Section

3.2) for design of intron-spanning PCR primers in order to remove this process as a bottleneck to SNP

discovery. Successfully completing this objective requires:

1. That there is not a significant drop in the efficacy of the PCR design process as measured by the PCR

1Much of the work in this chapter appears in [21].

44



primer amplification rate.

2. That the time to design primer pairs decreases dramatically, therefore removing the design phase as a

bottleneck to SNP discovery.

Therefore, sub-objectives of this chapter are: to statistically validate the efficacy of the automated pipeline

using experimental results from both the automated and semi-automated design pipelines and to measure

the time required for the automated design of an arbitrary number of PCR primers in comparison to the

semi-automated pipeline currently in use.

3.2 A Semi-Automated Pipeline For Design Of Intron-Spanning

PCR Primers

Most frequently introns are targeted for SNP discovery as mutation rates in introns tend to be higher than

in exons, as changes to the DNA sequence in introns do not affect the protein sequence of a gene. Therefore,

targeting introns maximizes the number of SNPs discovered per sequenced base. Also, because mutation

rates are lower in exons, there is less variation between exons of different individuals. Thus, allowing PCR

primers designed for the exon sequence to amplify the same region in multiple individuals (Figure 3.1).

UTR UTRExon Exon ExonIntron Intron
P1

P2

Individual 1

Individual 2

Individual 3

Individual 4

Figure 3.1: Amplification of a target region in multiple individuals using PCR primers (P1 and P2)
designed in exons. SNPs are shown as black bars in the individuals where they are present.
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Inferring the intron-exon structure of a non-model organism is usually most efficiently achieved by com-

paring EST sequences (with no structure) from the non-model to gene sequences, with carefully annotated

structure, from the model species (Figure 3.2). This requires a number of steps, firstly, the EST sequences

must be aligned to the model organisms gene using a method such as BLAST (Figure 3.3a). Next the

aligned overlapping EST fragments are assembled into contiguous sequences (contigs) using a sequence as-

sembler (Figure 3.3b). These contigs are then aligned back to the model sequence using a multiple sequence

alignment program (Figure 3.3c). Gaps between contigs in the alignment to the model sequence represent

introns, the size and position of these gaps can be combined with the positions of aligned contigs to infer

the intron/exon structure of the non-model gene.

UTR UTRExon Exon ExonIntron Intron

a)

b)

Exon Exon ExonUTR UTR

Figure 3.2: Alignment of the EST sequences to the intron-less cDNA sequence they were derived
from (a) and aligned against the target gene from the model organism (b). Dashed lines represent
gaps inserted into the EST sequences in sequences crossing intron-exon boundaries.

Previously, these steps were manually performed by a laboratory technician. The technician would

perform the BLAST of the EST sequences versus the targeted model sequence. They would then extract the

EST sequences from the FASTA file and import them into software (such as Gene Code’s Sequencher) with a

graphical interface where they could be assembled and aligned to the model sequence. The technician would

then manually improve the alignment if necessary. Once the technician was satisfied with the alignment, they

would scan the alignment for introns and manually choose sequence fragments for PCR primer design. This

combination of technician input and software use (Figure 3.4), referred to as the semi-automated approach,

is very effective but labour intensive.
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UTR UTRExon Exon ExonIntron Introna)

b)

UTR UTRExon Exon ExonIntron Intronc)

Figure 3.3: Inferring the structure of an unknown gene by alignment of EST sequences to a closely
related model gene. EST sequences are aligned to the reference gene model (a) with solid lines
representing the EST sequence and the dashed lines representing gaps inserted into the EST sequence
due to introns. Overlapping EST sequence fragments are then assembled into contigs (b) and these
contigs aligned to the reference model (c).
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Figure 3.4: Flowchart outlining the steps and highlighting the requirement for user input of the
semi-automated primer design approach.
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3.3 Previous Work

Previous methods to automate primer design focused on automating the design of individual primer pairs for

single targets as discussed by [123]. However, there were several programs available specifically for designing

PCR primers for SNP discovery [123, 33, 32, 127, 39]. Each of these programs were not appropriate due to

one of the following factors: the inability to infer the intron/exon structure [123, 33], the limited number of

organisms that they can be used with [32, 39], or due to being unavailable [127]. Therefore, at the time, the

only option for researchers was to perform the semi-automated primer design pipeline as describe, using a

variety of bioinformatics tools to first infer the intron/exon structure and then design the primers. This often

required manual refinement or parsing of the output of each phase of the intron/exon structure determination

and primer design.

3.4 An Automated Pipeline For Design Of Intron-Spanning PCR

Primers

The approach described here is to replicate the methodology of the semi-automated process performed by

researchers in a fully automated non-interactive manner. This is accomplished by using available bioinfor-

matics tools which perform computational steps that are similar to each stage in the semi-automated method

(Figure 3.5).

For simplicity the pipeline requires only four input parameters: a list of reference sequence identifiers, the

name of the EST BLAST database for the target organism, a cdbfasta formatted index of the EST FASTA

file, and a cdbfasta formatted index of the reference sequences. To maintain flexibility the pipeline only

requires that the reference sequence contain intronic and exonic sequence, which includes but is not limited

to a sequenced bacterial artificial chromosome (BAC) or a gene model.

Output from each program is parsed and formatted for input into the next program using custom scripting

in order to reduce the need for human participation. The pipeline uses the following open-source bioinfor-

matics tools:

• BLAST

• cdbfasta/cdbyank - Cdbfasta is a program designed to create an index of a FASTA file in order to

provide fast access to individual sequences and cdbyank is a program designed to utilize the index file

created by cdbfasta to extract a sequence record from the FASTA file [89].

• CAP3 - A de novo sequence assembly tool that can assemble long Sanger sequencing reads [41].
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Figure 3.5: Flowchart of the automated primer design process showing the fully automated primer
design approach with automated steps highlighted.
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• Kalign - A multiple sequence alignment tool that allows for different terminal and non-terminal gap

extension penalties [63].

• Primer3 - A tool for designing PCR primers from a single DNA sequence [96].

Cdbyank is used in the pipeline to extract the desired reference sequences, the reference sequences are then

used as input to BLAST. BLAST compares each reference sequence against the EST sequence database from

the organism of interest. The BLAST reports are parsed to determine overlapping high-scoring pairs (HSPs),

which represent the conserved sequence fragments between the EST sequences and the reference sequence.

The conserved fragment of each EST sequence matching a reference sequence is then extracted from the input

EST FASTA file using cdbyank and Perl’s substring command. EST fragments from overlapping HSPs are

output to a file and assembled into a conserved region using CAP3. These conserved regions (exons) are

then aligned to the reference sequence using Kalign. From this alignment a consensus sequence can be

produced with exons separated by inferred intronic regions (gaps in sequence coverage). Each nucleotide of

the intron sequence is translated to the ambiguity character (N) (Figure 3.6). This allows Primer3 to design

primers that span intronic regions. The consensus sequence is formatted into the Primer3 input format and

Primer3 is run on each input file. The resulting output files are parsed to extract forward and reverse primer

sequences and primer properties such as the predicted size of the amplified sequence.

Figure 3.6: Illustration of how aligned reads can be used to infer the length (Li) of an intron and
the conversion of intron gaps to ambiguous Ns.

Optimization of the parameters for the major computational elements was done using prior biological

knowledge. The parameters for BLAST include the BLAST program blastn, for nucleotide queries aligned

to a nucleotide database, the FASTA of query sequences, the BLAST formatted reference database, and

an E-value cutoff of 1e-5. The e-value cutoff is used to include all matches of reasonable significance, with

some of these sequences possibly being removed in the subsequent assembly and alignment steps. Parsing of

the BLAST output is performed using BIOPERL modules with HSPs below 85% identity being discarded.

51



CAP3 is run using a percent identity cutoff of 85% for co-assembled HSP sequences to generate the contigs for

alignment to the reference. Although parameters were not altered systematically, after several iterations of

parameter adjustment and checking of alignment results, the parameters for the multiple sequence alignment

program Kalign were set as follows: gap open penalty equal to 80, gap extension penalty equal to 3, terminal

gap extension equal to 0.5. Using a very low terminal gap extension penalty allows the alignment algorithm

to more accurately place the full length of the contig within the reference sequence, which is desirable since

the positions of the contigs are what is used to infer the intron structure. Primer design parameters had

previously been optimized in the semi-automated approach and were therefore carried over to the primer

design process.

3.4.1 Output Types

Two separate Perl scripts were implemented using the automated pipeline, one which output a single pair

of primers for each reference sequence and a second which outputs multiple non-overlapping primer pairs

for each reference. Primer3 outputs several primer pairs, separated into records by the string “||”, ordering

them based on how closely they match the desired input parameters. Therefore, in order to produce a single

primer pair per input reference sequence, just the first record in the Primer3 output is processed (Figure 3.7

(a)). To produce multiple primer pairs, the Primer3 output is processed to remove overlapping primer pairs,

resulting in a set of primers covering the target sequence (Figure 3.7 (b)).

3.5 Results and Evaluation

Results of PCR primer design using the automated approach are compared to results gathered for the

semi-automated approach in [100], to compare the total design time and PCR amplification rate. PCR

amplification rate is the proportion of primer pairs that amplify a sequence in the target species and provides

an estimation of how well the intron/exon structure has been inferred. The hardware used for evaluation

of the semi-automated and automated approaches is a HP Proliant DL-385 server running the CentOS 4.5

linux distribution. This machine houses two AMD 2.2 GHz processors and 16 GB RAM.

PCR primer design was done as part of a project to develop SNP markers for targeted genes in the crop

species Brassica napus by amplifying the same DNA sequence from multiple individuals, sequencing the

resultant fragments, and comparing the results to find SNPs. Genes from the model organism Arabidopsis

thaliana, which shares a level of sequence similarity of 87% in exons [16] with Brassica napus, were used in

evaluating the two approaches.
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Figure 3.7: Primers can be designed to generate a single amplified fragment per contig (a), usually
the most optimal of a set of primers (P1) is chosen. Primers can also be designed to amplify across
the gene space (b).

3.5.1 Semi-Automated Pipeline PCR Results

For the semi-automated approach 133 target genes were selected. Primer pairs were designed for all 133

target genes and PCR carried out resulting in 117 (88%) successful amplifications [100].

3.5.2 Automated Pipeline PCR Results

Single Primer Pair

For the automated single primer pair approach, 256 Arabidopsis gene models were selected for input to the

pipeline. Of the 256 selected gene models, 253 (98.9%) successfully had primers designed for them. Further,

PCR was performed using the resulting primer pairs, with successful amplification occurring in 206 primer

pairs (81.5%). The 206 successful amplifications represent an overall success rate of 80.5% for all gene models

submitted to the pipeline.

Multiple Primer Pairs

Multiple primer pairs were designed to span 22 target sequences. There were 90 primer pairs chosen in

a amplification product size range of 200-1100 base pairs in order to maximize the coverage of the target
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sequences. Of these 90 primer pairs there were 83 successful PCR amplifications resulting in 92% efficacy.

3.5.3 Evaluation

In order to compare the efficacy of the semi-automated and automated pipelines the number of successful

PCR amplifications was compared to the number of non-successful amplifications using a 2x2 contingency

table and the Pearson’s Chi Squared (χ2) statistical test. For the automated method, the results of both the

single primer pair and multiple primer pair methods were combined. The null hypothesis for the chi squared

test was that the two primer design pipelines have the same efficacy. The chi squared test was performed

using the R programming language’s built in function and resulted in a χ2 = 1.0536 and a p-value = 0.3047.

Based on this p-value, the null hypothesis cannot be rejected, therefore the efficacy of the two pipelines does

not differ.

Time requirements to design 100 primer pairs using the semi-automated approach were compared to the

time required to design 100 primer pairs using the fully automated pipeline. In our tests the automated

pipeline designed 100 primers in less than 10 minutes (an average of 9 minutes and 16 seconds over 5 trials).

This is a significant improvement over the semi-automated approach, which required approximately 1 hour

to produce 2 primer pairs or 50 hours per 100 primer pairs [100].

Additionally, the sizes of the amplified products for all of the methods were checked using gel electrophore-

sis and the majority were within the size range predicted by the alignment of the conserved fragments to

the model gene sequence. Variations in the sizes of the products versus the expected sizes are explained by

variation in the intron sizes between the model organism and the target organism.

3.6 Discussion

As evident by the results of the evaluation, the pipeline greatly reduces both required user input and primer

design time. Further, the results of the statistical analysis show that there is no significant decrease in

the efficacy of the automated method when compared to the semi-automated method. Therefore, the work

provided in this chapter successfully removes PCR primer design as a bottleneck to SNP discovery. This

software has been demonstrated to work in the crop Brassica napus but should be equally effective in any

non-model organism where an EST sequence resource is available or could be generated, and where a closely

related model organism is present.

Further, a very similar method was published in 2009 by You et al. in parallel to this work [127]. Their

method is very similar to the automated pipeline described in this chapter and has been proven to work in

wheat, indicating that the method works across multiple non-model organisms. The method provided by

You et al. differs from what is described in this chapter in two main ways. First, it removes primer pairs

54



in the output that will amplify more than one gene from a gene family by aligning the primer sequences to

a set of non-redundant EST sequences using BLAST and removing primers that match to more than one

EST sequence. This is a difference in the methodology employed for SNP discovery and does not indicate a

problem with either method. Second, all potential primer pairs are output and the user then does a manual

selection of a particular primer pair. While this approach does allow for single or multiple primer pairs to

be selected, overlapping primer pairs are not removed, which would make the selection of multiple primer

pairs more tedious.
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Chapter 4

Methods For The Generation Of SNP Genotyping

Arrays In non-Model Diploid and Polyploid Species1

4.1 Introduction

The development of next generation DNA sequencers has led to a vast wealth of DNA sequence data and

has significantly reduced the cost of generating new sequence data. It is therefore more important than ever

to develop methods for the analysis of this data. Due to the volume of data being produced, these methods

can no longer rely on researchers to manually process the data. For this reason, computational methods for

the analysis of next generation sequencing data are crucial to many researchers in the biological sciences.

Mining DNA sequence data for genetic variation, such as SNPs, is an important tool for researchers in

fields such as human health and plant breeding. Development of SNP resources typically requires a set of

high quality reference sequences. In the past, the lack of such high quality reference sequences was a limiting

factor for SNP discovery in non-model organisms. However, recent advances in DNA sequencing and de

novo sequence assembly has made it possible to generate a set of high quality reference sequences for many

non-model organisms [51, 70, 87, 121].

Many computational methods have been developed for the discovery of SNPs in next generation sequenc-

ing data (refer to Section 2.6.3). These methods involve taking sequenced reads from an individual and

mapping them to a set of DNA reference sequences. The resulting alignment can be scanned for variants.

Often statistical methods are employed, using factors such as read depth and sequence quality, to generate

a probability of a called variant being real. False positives are mainly caused by sequencing errors and mis-

alignment of reads to the reference sequence [78, 9, 8]. Even with these advanced SNP discovery methods,

the effective application of these SNPs to research projects often requires additional computational filtering

and selection steps, particularly in organisms with complex genomes [120, 17, 119]. The application that

this work focuses on is the development of SNP genotyping arrays.

For SNP genotyping arrays there is typically a minimum number of chips that must be ordered resulting

1A subset of the work from this chapter has been published in PLoS ONE [19] and BMC Genomics [99].
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in significant cost and changes to the array cannot be made easily. Therefore, it is particularly important to

post-process discovered SNPs in order to ensure the most robust genotyping array possible. The first stage

of developing a SNP genotyping array is to generate SNP data from multiple individuals. SNP calls can

then be combined from all of the individuals into a comprehensive variant list. By combining evidence from

multiple individuals, a more robust screening of available variants can be accomplished.

The goal of the work described in this chapter is to provide methods for utilizing large amounts of next

generation sequencing data for the development of SNP genotyping arrays in non-model diploid and polypoid

species. As such, a general workflow for the design of SNP genotyping arrays in non-model organisms will be

presented. Based on this array design workflow, available tools (and their limitations) can be discussed. The

methods described in this chapter seek to address the limitations of available software for the development

of high quality SNP genotyping arrays.

First, the development of three algorithms for combining SNP data from multiple individuals (all address-

ing step (b) of Figure 4.1) will be discussed along with evaluations of their computational time and space

complexities and experimental performance. Evaluation of each algorithm’s time and space complexities

provides an estimation of the efficiency of the algorithms, while the evaluation of the experimental perfor-

mance provides confirmation of the complexity analysis, without ignoring constant factors so important to

these typically large data sets. Further, evaluation of the experimental performance allows for statistical

estimates of resource requirements for future experiments. As two of the three algorithms are designed to

utilize parallel CPU threads to process a portion of their input, potential bottlenecks of the parallelization

process are discussed. Using the analysis of the algorithms, recommendations for algorithm selection are

provided based on input sizes and computing resource capacities.

Next, implementations for SNP filtering (step (c) of Figure 4.1) and selection (step (d) of Figure 4.1)

are discussed as important post-processing steps of SNP discovery and as important pre-design steps for

design of SNP genotyping arrays. In particular, two methods for the selection of SNPs for inclusion onto

a SNP genotyping array are discussed. Then, results from SNP genotyping arrays using the methods from

this chapter are discussed and evaluated for statistical significance, in terms of number of polymorphic loci

(genomic positions) and number of clean genotyping clusters, based on comparisons to other SNP genotyping

arrays. Finally, conclusions about the overall effectiveness and utility of the methods from the chapter are

discussed.

4.2 SNP Array Design

A general workflow for the creation of a SNP genotyping array starting with the sequenced reads from

multiple individuals and a set of reference sequences is presented in Figure 4.1. The process begins with

the independent mapping of sequencing reads from each individual against the set of reference sequences.
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SNP detection can then be performed for each individual, resulting in a SNP report and SAM alignment

file (a common file format for read mapping data, see Figure 4.3 (b)) for each individual (Figure 4.1 (a)).

SNP and alignment data can then be combined into a single output file (SNP summary table, Figure 4.2),

where each line of the file represents a SNP called in at least one of the individuals (Figure 4.1 (b)). The

development of the SNP summary table serves two purposes: it provides the first aggregate view of the data

to the researcher, and provides a type of checkpoint after the most computationally intensive process in the

workflow. The summarized SNP data is then filtered, using evidence from multiple individuals, for SNPs

that represent potentially robust markers (Figure 4.1 (c)). Finally, a set of SNPs can be chosen for inclusion

onto the array from the filtered SNPs (Figure 4.1 (d)). Selected SNPs are then submitted for array design

by providing the SNP flanking sequence to the array manufacturer. A SNP’s flanking sequence consists

of two substrings of the DNA sequence (one occurring immediately to the left of the SNP and the other

immediately to the right of the SNP) joined by the reference/SNP pair delimited by braces (Figure 4.4(b)).

The SNP flanking sequence is used to design the probe sequence (Section 2.3.1) that will be included on the

array; the amount of flanking sequence required is determined by the array technology being used.

This work provides new algorithms for only a subset of these steps; that is, the aggregation of SNP data

from multiple individuals into a single output file, the filtering of SNP data, and the selection of SNPs for

inclusion onto a SNP genotyping array.

4.3 Available Tools

The read mapping process (step (a) of Figure 4.1) can be accomplished using one or more of the programs

mentioned in Section 2.5.4. However, currently the most commonly used programs are Bowtie2 [61] and

SOAP [71]. The three most widely used software packages for SNP calling in multiple individuals are

samtools (mpileup) [67], the genome analysis toolkit (GATK) [82], and SOAPsnp [71].

SOAPsnp, originally made available in late 2008 is not a true SNP discovery software package. SOAPsnp’s

purpose is to generate a consensus sequence based on alignment of reads to a known reference sequence. SNPs

can then be discovered by comparing the consensus sequence to the reference sequence. There are several

limitations to using SOAPsnp: it is limited to using only Illumina sequence data, only supports one specific

non-standard alignment format called the SOAPaligner alignment format, and does not provide a simple

method for determining the depth of reads resulting in a SNP call [71].

To call SNPs in multiple individuals using samtools, the mpileup tool is called on BAM files (the binary

version of SAM files). This method was not available when we began our work, as multisample SNP calling

was not available in samtools until October 28, 2010 when mpileup was first included in samtools release

0.1.9 [68]. Additionally, multisample SNP calling in mpileup is limited to samples that are biallelic, meaning

that only two different nucleotides are expected across all samples. This is true in certain instances, such as
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Figure 4.1: Workflow for the design of a SNP genotyping array. The process begins by independently
mapping sequencing reads from multiple individuals to the reference sequence set and calling SNPs in
the alignment (a). SNP reports and SAM files are then combined to generate a SNP summary table
(b). This table is filtered to remove SNPs that will not result in robust markers (c). Finally, a group
of SNPs can be selected from the filtered set for inclusion onto the array (d).
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Figure 4.2: Sample output illustrating the difference between variant, reference, and null calls
(individuals 1, 2 & 3 respectively). In this example, individual 1 has a variant called at position 100
in chromosome 1, while individuals 2 and 3 have no variation detected. By querying the alignment
of reads to the reference, it is determined that individual 2 has 12 reads aligned at position 100 of
chromosome 1 and is therefore the same as the reference (C) and that individual 3 has no reads aligned
to the reference and is therefore a null (X) call.

in mapping populations, where alleles are inherited from one or both parents, but is not true for the diverse

samples used to generate SNP genotyping arrays. Further, when calling SNPs with mpileup there is limited

information reported for each individual; only a total depth of reads and a probability that the individual

is either the same as the reference (homozygous for the reference), variant (homozygous for the variant), or

has both the reference and variant alleles (heterozygous). However, in complex genomes it is useful to have

more detailed information, such as the number of reads supporting a reference or variant call, in order to

more accurately review SNP calls.

In comparison, the GATK SNP calling method which has a tool called DepthPerAlleleBySample, provides

sufficient biological information for use in complex genomes by reporting the read depth of both the reference

and alternate bases (alleles) for each individual. However the DepthPerAlleleBySample tool was not released

until July 2012 and was therefore not available when the thesis work was initiated [80].

An important factor missing from all of these algorithms is the ability to produce flanking sequence

information for each SNP. Since the flanking sequence is used to generate the probe sequence which represents

the SNP on the array, generation of flanking sequence for each SNP is a vital step in designing a SNP

genotyping array. Additionally, the ability to post-process called SNPs is very limited. There are no available

software packages for standalone filtering of combined SNP output from SOAPsnp or mpileup. However,

GATK does provide a limited method for filtering combined SNP results [81]. Further, no software is

currently available which assists in the selection of SNPs for a genotyping array.

4.4 Building A Comprehensive List Of SNP Calls Across Multiple

Individuals

As the generation of read mapping and SNP calling algorithms is beyond the scope of this thesis, the approach

taken for the generation of alignment and SNP data is to align next generation DNA sequencing reads to high

quality reference sequences using the proprietary CLC Genomics Workbench’s map reads to reference tool
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(CLC Bio Inc, Aarhus, Denmark). These alignments were performed using mapping parameters dependent

on the species being studied, with parameters chosen based on prior knowledge of the species and its affects

on alignment [86]. Sequencing reads from each individual were independently aligned to the reference and

the alignment exported in the SAM alignment format. From each of the independent alignments, SNPs were

called using the CLC Genomic Workbench’s probabilistic variant detection tool. The resulting variant calls

were then exported as tab delimited text files.

In order to allow the read mapping and SNP discovery phases of the workflow to be accomplished using

a variety of tools, the input formats chosen for the algorithms described in Sections 4.5 and 4.6 are either

current industry standards (SAM alignment format) or easily generated (tab-delimited text format). Thus,

these algorithms will work with any mapping software that can output alignment data in the SAM format

and any variant calling software that produces text output. During the course of the thesis work, the

variant call format (VCF) for SNP reports became an industry standard. The ability to transition from the

tab-delimited text format to the VCF format will be discussed in Chapter 5.

The algorithms detailed in Sections 4.5 and 4.6 are pipelines which address the generation of the SNP

summary table (step (b) within the higher level pipeline of Figure 4.1). The algorithms generate identical

output, however the two algorithms in Section 4.6 differ in parallelization from the algorithm in Section 4.5.

All of the algorithms differentiate reference (aligned reads indicate the same base as the reference) and null

(no aligned reads at the reference position) calls for reference positions in individuals where no variant has

been called, but evidence of variation exists in other individuals, using alignment data from SAM alignment

files. The resulting output is a table containing a unique SNP id, the reference sequence where the SNP was

found, the SNP’s position in the reference, available flanking sequence information, the reference base, and

SNP call data for each individual (Figure 4.2). The unique identifier and SNP flanking sequence are used by

the array manufacturer, the SNP call data can be used for the filtering of SNPs and the reference sequence

and SNP position can be used for SNP selection purposes.

4.5 Serial SAM Processing Algorithm

When the thesis work was initiated, next generation sequencing was in its infancy. While the cost per base

pair sequenced provided by early next generation sequencers was much less than that of Sanger sequencing,

the total cost of sequencing was still a limiting factor in the number of individuals for SNP discovery. The

initial algorithm developed in this thesis for processing alignment data (to be described in Algorithms 4.5.1 -

4.5.6) places more emphasis on the identification of robust SNP markers rather than performance; however,

it is still quite practical on modern computer hardware when the number of individuals is low (less than 10).

We have used the term serial SAM processing for this algorithm, as it processes each SAM file one after the

other, as opposed to the parallel SAM processing algorithms described in Section 4.6.
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The main method of the algorithm is described at a high level in Algorithm 4.5.1 and has four required

input parameters: a directory that contains one tab delimited SNP report per individual, a FASTA2 format

file containing all of the reference sequences used in the alignment process, a directory containing the SAM

format alignment files, and the name of a file to which results can be written. As the SAM and SNP report

files for an individual must be linked together, the individual’s identifier is required by the algorithm to be

present at the beginning of the file names.

The pipeline (to just complete step (b) of the higher level pipeline described in Figure 4.1) contains

several main components (a section expanding upon each step, along with the formal pseudocode is provided

below). The first step is to parse and collect the SNP information from the SNP reports (Algorithm 4.5.1

(i)), next the alignment files (SAM files) are processed to retrieve reference calls if available (Algorithm

4.5.1 (ii)). As this algorithm is developed to generate a SNP list for selecting SNPs for a genotyping array,

flanking sequence is required. In order to retrieve the flanking sequence information the reference sequences

are first parsed from the FASTA file given on the command line (Algorithm 4.5.1 (iii)). Reference sequences

are stored in a hash using the sequence name as the key and the sequence as the value. The subroutine

ADD MAJOR VARIANT (Algorithm 4.5.1 (iv)) then traverses the SNP calls and adds a field that contains

the variant present in the majority of individuals. This field is then used when generating the flanking

sequences (Algorithm 4.5.1 (v)) as described in Algorithm 4.5.5. Finally, the SNP and flanking sequence

data is passed to the OUTPUT TABLE subroutine (Algorithm 4.5.1 (vi)) where it is formatted and printed

as described in Algorithm 4.5.6.

4.5.1 Processing SNP Reports

The first processing step is to parse all of the SNP reports to find all reference positions with a variant called

in at least one individual. Algorithm 4.5.2 describes the subroutine PROCESS SNP REPORTS, which takes

a list of reports found in the SNP dir input parameter. The algorithm loops over the files, extracting the

name of the individual from the file name. It stores the names of the files in an array which is used for

ordering the results in Algorithm 4.5.6. For each line of the tab delimited file, the line is split into various

fields and as long as the variant type is “SNP” the information is stored in a hash. Other variant types,

such as insertions/deletions, are ignored as they are not desired for this application. Since all individuals are

aligned to a common reference, SNP positions are stored using the name of the reference sequence (ref id)

as the first key of the hash and the position in the reference (pos) as the second key in the hash. The

individual’s identifier (ind name) is then used as a third key to separate results from different individuals.

The hash, which now contains all of the SNP positions for all of the reference sequences across all of the

2a common file format for sequence data containing a description line (starting with > followed by the sequence identifier)
followed by one or more lines of sequence data
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individuals, is then returned.

4.5.2 Processing SAM Alignment Files

The next step is to process all of the alignment data so that individuals without a variant call at a particular

position can be called as either the same as the reference or null (no reads aligned). Algorithm 4.5.3 describes

the subroutine PROCESS SAM FILE which is called in the main method on each SAM file found in the

SAM dir input parameter. The algorithm opens the file and for each line that contains alignment data

(there are several header lines that need to be skipped) processes the alignment data if the read is aligned

to a reference sequence where a SNP has been identified. Skipping reads aligned to SNP-free reference

sequences reduces running time by avoiding processing uninformative alignments.

Each read alignment contains four important pieces of information: the reference sequence id (ref id),

the start position of the alignment in that reference (start pos), the compact idiosyncratic gapped alignment

report (CIGAR) string (cigar string), and the read sequence (read seq) (Figure 4.3(b)). The cigar string

(Figure 4.3(b), highlighted in red) is a sequence of operations and their counts describing how subsequences

of the read align to the reference. In order to get the actual alignment of the bases of read seq to the

reference, the operations of the cigar string must be processed as described in Algorithm 4.5.4. For this

algorithm, five operation types are important as they change the alignment of bases in the read sequence to

the reference. These operations indicate:

1. The subsequence of the read is matched to the reference (operations M,X,=). M represents an alignment

match that is either a sequence match or mismatch, while = is a sequence match and X is a sequence

mismatch.

2. Deletion of a subsequence in the read versus reference (operation D). Equivalent to adding a gap

character to the read sequence at the aligned position(s).

3. Insertion of a subsequence in read versus reference (operation I). Equivalent to adding a gap character

to the reference sequence at the aligned position(s).

4. Soft clipping of a subsequence of the read (operation S). Soft clipped bases are bases that are in the

read sequence (read seq) presented in the SAM file but are not used in the alignment of the read to

the reference. This is opposed to hard clipped bases (operation H) which are removed from the read

sequence (read seq) as presented in the SAM file. Clipped bases are often low quality and therefore

not used in downstream analysis. The determination of low quality and the decision to perform soft

or hard clipping is done by the alignment algorithm.

5. Skipped reference bases (operation N). The N operation is used to represent introns in alignments of

mRNA sequences to genome sequences and is not defined otherwise.
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For a full list of CIGAR operations, refer to the SAM specification [113]. Figure 4.3(a) gives an example

alignment of a read (r001) to the reference sequence (Ref) with the resulting SAM file shown in Figure

4.3(b). The CIGAR string for this alignment is 2S4M2D2M1I1M2N3M and indicates that the read starts

with 2 soft clipped bases, followed by 4 aligned bases, a 2 base pair deletion, 2 aligned bases, a single base

insertion, a single aligned base, 2 skipped reference bases, and ends with 3 aligned bases.

@SQ SN:Ref LN:22 
r001 0 Ref 6 30 2S4M2D2M1I1M2N3M 0 0 GCGACGTTAGAGC *

0000000001111 111111222 
1234567890123 456789012 
ATTGCGACCTGTT*GCAAGCTAG 

gcGACG**TTAG..AGC
Ref
r001

Coords
a)

b)

Figure 4.3: An example alignment of a read (r001) to the reference (Ref) (a) and the resulting
SAM alignment (b). The SAM file begins with header line(s), which begin with the @ symbol. In
the example, a single header line giving the name and length of the reference sequence is provided.
Following the header line there is a line for the alignment of each read. These lines are tab delimited
and have the following important fields for our algorithm: reference name (field 3), start position (field
4), CIGAR string (field 6 and highlighted in red), and read sequence (field 9).

4.5.3 CIGAR Alignment Processing

As the CIGAR string present in the SAM alignment is only a representation of an alignment of a read to

the reference, which does not contain the per base detail required, the CIGAR string must be decoded to

determined the per base alignment of the read to the reference. Algorithm 4.5.4 describes in detail the

process of parsing the CIGAR string to determine alignment of a read to the reference. It begins by setting

the reference position ref pos to the start position (start pos) of the read alignment, the position in the

read sequence (seq pos) to zero, and then looping over the CIGAR operations in ops (for our example in

Figure 4.3, ops would contain S,M,D,M,I,M,N,M). The actions taken in processing of the alignment data are

dependent on the operation observed.

If the current operation is M, X, or = then the number of times (i) the operation needs to be performed

is retrieved from op counts (e.g. 2,4,2,2,1,1,2,3). The algorithm iterates from one to j, pulling out the base

call in the read from seq (an array where each element is a single base from the read sequence read seq)

using seq pos as an index. If a SNP has been observed in another individual at ref pos, then the total read

depth at ref pos (Algorithm 4.5.4 (i)) and the base call count (count of this particular allele at ref pos)

(Algorithm 4.5.4 (ii)) are incremented (indicating coverage). If a SNP has not been observed at ref pos in
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any other individual, no alignment information is recorded (since this base position is uninformative for SNP

discovery purposes). The algorithm then increments the position in the reference (ref pos) and the read

(seq pos) before performing the next iteration of the operation. If no further iterations of the operation are

available the next operation is read from ops and the process starts over.

If the current operation is D then the number of times (j) the operation needs to be performed is retrieved

from op counts (e.g. 2,4,2,2,1,1,2,3). The base call is set to the gap character (*) for each iteration. The

algorithm iterates from one to j, if a SNP has been observed in another individual at ref pos, then the

total read depth (Algorithm 4.5.4 (iii)) and base call count (Algorithm 4.5.4 (iv)) are incremented as above.

Unlike operations M, X, and =, when the operation is D only ref pos is incremented at the end of each

iteration as the position in the read has not changed.

If the operation is S or I, only the position in the read sequence requires updating as the reference sequence

position has not changed. Therefore, the algorithm adds the number of operations found in op counts to

seq pos. If the operation is N, the algorithm adds the number of operations found in op counts to ref pos as

only the position in the reference sequence requires updating since the position in the read has not changed.

4.5.4 Generating Flanking Sequences

Flanking sequences are substrings of the reference sequence to the left (5′) and right (3′) of the SNP posi-

tion (Figure 4.4(a)). The process of generating flanking sequence information for each SNP is detailed in

Algorithm 4.5.5. For each SNP position the reference sequence is obtained from seqs and the reference base

call and major variant of the SNP position from snp data. Flanking sequence requirements (size of flanking

sequence, requirement of flanking sequence from one or both sides of the SNP) are dependent on application

and the algorithm is optimized for the design of Illumina Inc.’s Infinium SNP array which requires 60 bp on

either side of the SNP. Left and right flanking sequences are extracted separately; if the SNP is less than the

proposed flanking sequence length from either end of the sequence, only the sequence between the end of the

reference and the SNP is extracted. The final flanking sequence format, as required by Illumina, combines

the left and right flanking sequences by placing a string (left square bracket followed by the reference base,

a slash, the SNP base, and a right square bracket) representing the reference and SNP bases between them

(Figure 4.4(b)). If both the left and right flanking sequences were less than 60 bp or the reference base was

an International Union of Pure and Applied Chemistry (IUPAC) ambiguity code (an IUPAC code indicating

more than one nucleotide, Appendix A) the flanking sequence for this position is stored as N/A.

For many applications it is important to know if another SNP falls within the flanking sequence of the

current SNP. For this reason, SNPs in the flanking sequence are converted to their IUPAC ambiguity codes

using the SNP and reference alleles. The algorithm iterates over each position in the flanking sequence and

converts the flanking sequence position to a position in the reference sequence by adding the position in the
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a) 5′ -- ACTGT...CATGCTTAGCT...CTAGC -- 3′

b) 5′ -- ACYGT...CATGC[ref/var]TAGCT...CTAGC -- 3′

Figure 4.4: An example of flanking sequences to the left (5′) and right (3′) of the SNP (highlighted
red) (a) before and after formatting (b). Formatting replaces SNPs in the flanking sequence with
IUPAC ambiguity codes as well as the nucleotide at the SNP position with both the reference and
variant nucleotides, separated by a slash, and surrounded by square brackets. In this example, a T/C
SNP occurs at position 3 and is replaced by the appropriate ambiguity code Y (highlighted green).

flanking sequence to the start position of the flanking sequence in the reference. If a SNP exists in snp data

at the reference position the IUPAC code, based on the reference base and SNP, is determined and replaces

the base in the flanking sequence. Once all the SNPs in the flanking sequence have been converted the

formatted string can be stored (Figure 4.4(b)) in the snp data structure.

4.5.5 Outputting SNP Results

The algorithm’s final step is to output the collected SNP and alignment data as described in Algorithm

4.5.6. It begins by outputting a header line with the following format: SNP id, reference id, SNP position,

flanking sequence, reference base, and then a three part header for each individual (base call, frequency, and

total depth). For each reference sequence the algorithm iterates over the SNP positions and generates a

unique id for each SNP that consists of the reference id and the SNP position. The elements of the output

are collected in two arrays (parts, snp parts) to be printed once all the data is processed in the correct

order. The first output array (parts) stores the following elements: SNP id, reference id, reference position,

flanking sequence, and reference base (all pulled from the snp data data structure). Then for each individual

(using the order defined by the output order array) the algorithm determines if a SNP call exists. If a SNP

was called the following elements are stored in the second output array (snp parts): the SNP call, SNP

frequency, and total depth. Otherwise the algorithm determines if there is read coverage for the position or

if the position is null. If there is read coverage, all of the base calls are collected for the reference position,

along with base call frequencies, and the total depth and placed into snp parts. If no reads were observed

covering the reference position, a null is indicated by storing in snp parts three X’s; one for the call, one

for the frequency, and one for the read depth of the individual. Once data has been collected from all of

the individuals, the output can be printed to the Output file in a tab delimited format. Figure 4.2 shows

an example of the SNP output format including the header line and output of a SNP at position 100 in

chromosome 1. As a whole, this pipeline accomplishes step (b) of Figure 4.1 as it has determined appropriate

call data (reference, SNP, or null) for each individual, for each reference position in which a SNP has been

called in at least one individual.
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Algorithm 4.5.1: gen infinium array design(SNP dir,Ref fasta, SAM dir,Out file)

comment: SNP dir - a directory containing all SNP reports (one per individual)

comment: Ref fasta - a FASTA file containing one record for each reference sequence

comment: SAM dir - a directory containing all SAM alignment files (one per individual)

comment: Out file - the name of the file to output results to

main
SNP reports← list of SNP reports from SNP dir
(snp data, output order)← process snp reports(SNP reports) (i)
SAM files← list of SAM files from SAM dir
for each sam file ∈ SAM files (ii)

do

{
comment: call process sam file on each file, one after the other

process sam file(sam file, snp data)

seqs← parse ref seqs(Ref fasta) (iii)
add major variant(snp data, output order) (iv)
generate flanking sequence(seqs, snp data) (v)
output table(snp data, output order,Out file) (vi)
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Algorithm 4.5.2: process snp reports(SNP reports)

variables (data, output order)
comment: data is a hash

comment: output order is an array

for each filename ∈ SNP reports

do



open filename for reading
ind name← individual name from filename
store ind name in output order
while there are lines in file

do



variables
ref id,
pos,
variant type,
ref base,
variant,
variant frequency,
variant depth,
total depth← elements of line split on tab
comment: total depth is depth of variant + depth of reference

skip if variant type != SNP
if there is more than one variant

then

{
variant← string of variants separated by /
variant frequency ← string of variant frequencies separated by /

store variant in data at ref id→pos→ind name→ variant
store variant frequency in data at ref id→pos→ind name→ variant frequency
store total depth in data at ref id→pos→ind name→ total depth

return (data, output order)
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Algorithm 4.5.3: process sam file(sam file, snp data)

open sam file for reading
ind name← individual name from sam file
while there are lines in sam file

do



skip if line does not contain read data
variables read id, ref id, start pos, cigar string, read seq ← elements of line split on tab
comment: Skip reads from reference sequences that do not have SNPs in them

skip if ref id is not in snp data
variables seq, ops, op cnts
comment: seq, ops, & op cnts are arrays

comment: Split read seq into an array of individual bases

seq ← read seq
comment: Split cigar string into arrays containing individual operations (ops)

comment: and the number of times to apply that operation (op cnts)

(ops, op cnts)← cigar string
comment: Initialize variables to track the position in both the read and the reference

seq pos← 0
ref pos← start pos
comment: Process the alignment of the read to the reference

process alignment(snp data, seq, seq pos, ref pos, ops, op cnts, ind name)
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Algorithm 4.5.4: process alignment(snp data, seq, seq pos, ref pos, ops, op cnts, ind name)

comment: Loop over ops

for i← 0 to Number of ops

do



operation← ops[i]
if operation == [MX =]

then



for j ← 1 to op cnts[i]

do



base← seq[seq pos]
skip if base != [ATCG]
comment: if there is no SNP for this individual then

comment: increment the count for the total read depth and the base

if

{
exists snp data→ref id→ref pos &&
!exists snp data→ref id→ref pos→ind name→snp

then

{
snp data→ref id→ref pos→ind name→depth++ (i)
snp data→ref id→ref pos→ind name→base++ (ii)

comment: Increment the seq pos and ref pos

seq pos← seq pos+ 1
ref pos← ref pos+ 1

else if operation == D

then



for j ← 1 to op cnts[i]

do



base← *
comment: If there is no SNP for this individual then

comment: increment the count for the total read depth and the base

if

{
exists snp data→ref id→ref pos &&
!exists snp data→ref id→ref pos→ind name→snp

then

{
snp data→ref id→ref pos→ind name→depth++ (iii)
snp data→ref id→ref pos→ind name→base++ (iv)

comment: Increment only the ref pos when there is a deletion in the read

ref pos← ref pos+ 1
else if operation == I ‖ operation == S

then


comment: Operation I indicates an insertion to the reference

comment: Operation S indicates soft clipping of the read

comment: These cases require only the position in the read to change

seq pos← seq pos + op counts[i ]

else if operation == N

then


comment: Operation N indicates a skipped region from the reference

comment: This cases require only the position in the reference to change

ref pos← ref pos + op counts[i ]
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Algorithm 4.5.5: generate flanking sequences(seqs, snp data)

for each ref id ∈ keys snp data

do



for each ref pos ∈ keys snp data→ref id

do



ref seq ← seqs→ref id
ref ← snp data→ref id→ref pos→ref
major variant← snp data→ref id→ref pos→major variant
left coord← ref pos - 61
left size← 60
comment: These are based on Illumina Infinium flanking requirements

if left coord < 0

then

{
left coord← 0
left size← ref pos - 1

lf seq ← substring of ref seq starting at left coord extracting left size bases
rf seq ← substring of ref seq starting at ref pos extracting 60 bases
if ref != [ATCG] || ( length(lf seq) < 60 && length(rf seq) < 60)

then

{
snp data→ref id→ref pos→flanking← ”N/A”
skip to next ref pos

comment: SNPs that occur in the flanking sequence of another SNP

comment: must be converted to IUPAC ambiguity code

len← the greater of length(lf seq) || length(rf seq)
for pos← 1 to len

do



lf pos← ref pos - pos
rf pos← ref pos + pos
comment: Operate on the left flanking sequence

if exists snp data→ref id→lf pos && pos <= length(lf seq)

then


flanking ref ← snp data→ref id→lf pos→ref
flanking var ← snp data→ref id→lf pos→major variant
flanking snp← IUPAC ambiguity code for flanking ref/flanking var
replace base call at SNP with IUPAC code

comment: Operate on the right flanking sequence

if exists snp data→ref id→rf pos && pos <= length(rf seq)

then


flanking ref ← snp data→ref id→rf pos→ref
flanking var ← snp data→ref id→rf pos→major variant
flanking snp← IUPAC ambiguity code for flanking ref/flanking var
replace base call at SNP with IUPAC code

snp data→ref id→rf pos→flanking← lf seq . ”[ref/major variant ]” . rf seq
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Algorithm 4.5.6: output table(snp data, output order,Out file)

open Out file for writing
comment: Print a header line to the output file (tab delimited)

print to Out file SNP id, Reference id, SNP position, Flanking sequence, Reference Base
for each ind name ∈ output order

do
{

print ind name Base call, ind name Frequency, ind name Total depth
for each ref id ∈ keys snp data

do



for each ref pos ∈ keys snp data→ref id

do



variables parts, snp parts
comment: parts and snp parts are arrays

snp id← ref id -ref pos
ref base← snp data→ref id→ref pos→ref
skip if ref base != [ATCG]
store ref base in snp parts
store snp id, ref id, ref pos, snp data→ref id→ref pos→flanking in parts
for each ind name ∈ output order

do



if exists snp data→ref id→ref pos→ind name→snp

then


comment: If there was a SNP called in the line

store snp data→ref id→ref pos→ind name→snp in snp parts
store snp data→ref id→ref pos→ind name→frequency in snp parts
store snp data→ref id→ref pos→ind name→total depth in snp parts

else



comment: Check to see if there were reads covering ref pos

total depth← snp data→ref id→ref pos→ind name→depth
if total depth exisits && is > 0

then



variables tmp bases, tmp counts
comment: tmp bases and tmp counts are arrays

for each base ∈ snp data→ref id→ref pos→ind name

do



comment: collect all base calls

skip if base == ’depth’
if base == ref base

then base← 0
count← snp data→ref id→ref pos→ind name→base
store base in tmp bases, count in tmp counts

if size of tmp bases > 1

then

{
store string of bases separated by / in snp parts
store string of counts separated by / in snp parts

else store tmp bases[0], tmp counts[0] in snp parts
store total depth in snp parts

else

{
comment: Put X’s into snp parts to indicate no coverage

store X, X, X in snp parts

comment: Print a new line of output to Out file (tab delimited)

print to Out file parts, snp parts
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4.6 Parallel SAM Processing Algorithms

As next generation sequencing became less expensive, it became more affordable for researchers to generate

sequence data at greater depth, from larger numbers of individuals, and in species with larger genomes.

These factors combine to dramatically increase the size of the alignment input that is typically used. Figure

4.5 illustrates the increase in alignment input size is linear in the reference size multiplied by the sequence

coverage multiplied by the number of individuals, showing the potential for large input sizes with next

generation sequencing techniques. For the algorithm described in Section 4.5, the majority of the time taken

is for processing of the alignment data (this is Algorithm 4.5.4). Indeed, this step takes an average of 92%

of the serial algorithm’s processing time for the eight test inputs in Table 4.2. Thus, it became evident

that increases in the input size would result in significantly longer running times for our serial algorithm

(discussed further in Section 4.9.1). For this reason we began development of a parallelized version of the

serial algorithm described in Section 4.5. As the running time of the algorithm is dominated by the time

required to process the read alignments (SAM file) for each individual (Table 4.2), the focus is on parallelizing

this particular algorithm phase. As the parallel algorithms were designed to calculate the identical result as

the serial algorithm, no comparison of the accuracy between the serial and parallel algorithms is required.

Results presented in Table 4.2 were collected on an early 2011 Apple MacBook Pro (Mac OS X version

10.9.1) with a 2.3 GHz Intel Core i7 quad core processor with 16GB of RAM. The Intel processor supports

the Intel Hyper-Threading protocol, which allows two CPU threads to run simultaneously per CPU core,

resulting in a maximum of 8 CPU threads to execute concurrently.

4.6.1 Parallelization Using Threads

Two algorithms for parallelization of the SAM processing phase are developed which use multiple threads to

simultaneously process multiple SAM files from multiple individuals. The parallel 1 algorithm stores only the

alignment positions for which SNPs have been identified while the parallel 2 algorithm stores alignment data

for every base pair of the reference sequence(s). These algorithms use a semaphore variable (thread count)

which is shared across threads to limit the number of active processors to a user defined number (default of

8). A default value of eight is used as many modern computers come equipped with quad-core processors,

each of which can handle two parallel threads, resulting in eight total CPU threads. However, this value can

be set to just the number of individuals (if the number of CPU threads available is greater than the number

of individuals) or perhaps more commonly, to the maximum number of CPU threads the user has available.
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Figure 4.5: Plotting SAM input size (total number of aligned reads across all individuals) for
variations in genome size, sequence coverage and number of individuals (Table 4.1) shows the potential
for large input data sets with next generation sequencing methods.

During the generation of threads (Algorithm 4.6.1 (iii) & Algorithm 4.6.4 (iii)) thread count is decreased.

When enough threads have been created to decrease thread count to zero, new thread generation will be

blocked until a running thread increases the value of thread count just before terminating (Algorithm 4.6.2

(iii) & Algorithm 4.6.5 (iii)). Pseudocode has been given where the algorithms differ from that described in

Algorithms 4.5.1 - 4.5.6, with numbered statements indicating changes in logic.
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Number of Individuals Reference Size (Mb) Sequence Coverage (X) Reference Size * Sequence
Coverage * Number of

Individuals

SAM size (# of reads)

1 1.17 10 11.7 153140

2 1.17 10 23.4 306995

1 2.34 10 23.4 326807

3 1.17 10 35.1 469354

2 2.34 10 46.8 658311

1 4.68 10 46.8 660054

3 2.34 10 70.2 1005260

2 4.68 10 93.6 1329276

3 4.68 10 140.4 2028043

4 4.68 10 187.2 2724822

5 4.68 10 234 3422310

6 4.68 10 280.8 4009461

7 4.68 10 327.6 4722103

8 4.68 10 374.4 5352694

3 4.68 50 702 10141668

3 4.68 100 1404 20280932

Table 4.1: The size of the SAM input is a function of the number of individuals, the size of the
reference sequence set (Mb), and the sequence coverage (fold). The sum of the aligned reads across all
SAM files is given as a representation of the total SAM input size for variations in each of the three
variables.

Number of Individuals Reference Size (Mb) Sequence Coverage (X) SAM Processing Time (sec) Total Time (sec) % of Running
Time for SAM

Processing

1 4.68 10 34.67 38.67 89.66

2 4.68 10 70.67 76.33 92.58

3 4.68 10 105.67 114 92.69

4 4.68 10 142.33 153 93.03

5 4.68 10 181.33 194 93.47

6 4.68 10 210.67 229.67 91.73

7 4.68 10 253.33 274.33 92.35

8 4.68 10 297.33 321.67 92.44

Table 4.2: Percentage of running time required for SAM processing, for different numbers of indi-
viduals (SAM files), of the Serial SAM processing algorithm (Section 4.5). SAM processing and total
running time results are in seconds and are averaged over 3 replicates per number of individuals.
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4.6.2 Parallel 1 Algorithm

In the first parallel algorithm, processing of SAM files (Algorithms 4.6.2 & 4.6.3) is essentially the same as

in Section 4.5, where alignment data is stored only for positions with SNPs identified at that position in

one or more individuals. However, alignment results are stored in a local variable in each parallel thread

(Algorithm 4.6.2 (i) & Algorithm 4.6.3 (i - iv)) and then returned (Algorithm 4.6.2 (iii)). In order to store

only alignment positions with SNP data, the SNP reports are processed first and the resulting data structure

passed to each thread. This algorithm merges thread results (alignment data) with the existing snp data

data structure (Algorithm 4.6.1 (iv)). Since the merged snp data data structure in this algorithm is the same

as the snp data data structure in Section 4.5, there were no changes made to the algorithm for outputting

the results (Algorithm 4.5.6).

Section 4.7 will evaluate this algorithm’s computational complexity with respect to time and space, while

Section 4.9 will evaluate real-world time and memory requirements based on a Perl implementation, and

Section 4.11 will discuss the advantages/disadvantages of the implementation of this algorithm compared to

the implementations of other algorithms in this work.
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Algorithm 4.6.1: gen infinium array design(SNP dir,Ref fasta, SAM dir,Out file,max threads)

comment: SNP dir - a directory containing all SNP reports (one per individual)

comment: Ref fasta - a FASTA file containing one record for each reference sequence

comment: SAM dir - a directory containing all SAM alignment files (one per individual)

comment: Out file - the name of the file to output results to

main
SNP reports← list of SNP reports from SNP dir
(snp data, output order)← process snp reports(SNP reports)
SAM files← list of SAM files from SAM dir
variables threads, sam data (i)
comment: threads is an array, sam data is a hash

thread count← 8 (ii)
comment: thread count is a semaphore (variable shared by all threads)

comment: the value thread count gets is the total number of threads to start at once

for each sam file ∈ SAM files (iii)

do



comment: decrease thread count

comment: when thread count reaches 0 it blocks creation of new threads

thread count–
comment: Generate a new thread for parsing each SAM file

thread← process sam file(sam file, snp data, thread count)
store thread in threads

for each thread ∈ threads (iv)

do



comment: Collect the values returned by the parallel thread

(ind name, data)← thread
comment: Merge the results of the thread with snp data

for each ref ∈ keysdata
do

{
for each pos ∈ keys data→ref

do
{

snp data→ref→pos→ind name ← data→ref→pos
seqs← parse ref seqs(Ref fasta)
add major variant(snp data, output order)
generate flanking sequence(seqs, snp data)
output table(snp data, sam data, output order, output file)
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Algorithm 4.6.2: process sam file(sam file, snp data, thread count)

open sam file
ind name← individual name from sam file
variables sam data (i)
comment: sam data is a hash

while there are lines in sam file

do



skip if line does not contain read data
variables read id, ref id, start pos, cigar string, read seq ← elements of line split on tab
variables seq, ops, op cnts
comment: seq, ops, & op cnts are arrays

comment: Split read seq into an array of individual bases

seq ← read seq
comment: Split cigar string into arrays containing individual operations (ops)

comment: and the number of times to apply that operation (op cnts)

(ops, op cnts)← cigar string
seq pos← 0
ref pos← start pos
process alignment(snp data, seq, seq pos, ref pos, ops, op cnts, sam data, ind name)

comment: Increase thread count

comment: when the thread finishes to allow for new threads to be started

thread count++ (ii)
return (ind name, sam data) (iii)
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Algorithm 4.6.3: process alignment(snp data, seq, seq pos, ref pos, ops, op cnts, sam data, ind name)

comment: Loop over ops

for i← 0 to Number of ops

do



operation← ops[i]
if operation == [MX =]

then



for j ← 1 to op cnts[i]

do



base← seq[seq pos]
skip if base != [ATCG]
comment: if there is no SNP for this individual then

comment: increment the count for the total read depth and the base

if

{
exists snp data→ref id→ref pos &&
!exists snp data→ref id→ref pos→ind name→snp

then


comment: Increment the value for total depth and base

sam data→ref id→ref pos→total++ (i)
sam data→ref id→ref pos→base++ (ii)

comment: Increment the seq pos and ref pos

seq pos← seq pos+ +
ref pos← ref pos+ +

else if operation == D

then



for j ← 1 to op cnts[i]

do



base← *
comment: If there is no SNP for this individual then

comment: increment the count for the total read depth and the base

if

{
exists snp data→ref id→ref pos &&
!exists snp data→ref id→ref pos→ind name→snp

then


comment: Increment the value for total depth and base

sam data→ref id→ref pos→total++ (iii)
sam data→ref id→ref pos→base++ (iv)

comment: Increment only the ref pos when there is a deletion in the read

ref pos← ref pos+ +
else if operation == I ‖ operation == S

then

{
comment: Increase the seq pos by op cnts[i ] when there is an insertion in the read

seq pos← seq pos+ op cnts[i]

else if operation == N

then


comment: Operation N indicates a skipped region from the reference

comment: so we increase ref pos by op cnts[i ] and do not change seq pos

ref pos← ref pos+ op cnts[i]
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4.6.3 Parallel 2 Algorithm

This algorithm stores alignment data for all possible reference positions and instead of processing the SNP

report data first, as in Algorithms 4.5.1 and 4.6.1, the SAM data (sam data) is parsed first (Algorithm 4.6.4

(i)). This algorithm stores in a second data structure, for every alignment position, a count of each alignment

element (bases A, T, C, and G plus the gap character (*) and a total depth). Adding a second structure to

the algorithm required changes to how reference and null positions are determined during the output of the

results (Algorithm 4.6.7). The initial process is the same and iteration occurs over the positions within each

reference sequence that have a SNP called in them. The algorithm then iterates over each individual and

if a SNP was called then the data contained in snp data is output. If no SNP was called in the individual

the algorithm queries the sam data structure containing the bit vectors for the depth of reads available at

that reference position (Algorithm 4.6.7 (i)). If there were reads aligned to that reference position in the

individual then the count of each reported base at that position (Algorithm 4.6.7 (ii & iii)) and the base

frequencies can be determined. These values along with the total depth are then reported for the individual.
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Algorithm 4.6.4: gen infinium array design(SNP dir,Ref fasta, SAM dir,Out file,max threads)

comment: SNP dir - a directory containing all SNP reports (one per individual)

comment: Ref fasta - a FASTA file containing one record for each reference sequence

comment: SAM dir - a directory containing all SAM alignment files (one per individual)

comment: Out file - the name of the file to output results to

main
SAM files← list of SAM files from SAM dir
variables threads, sam data (i)
comment: threads is an array, sam data is a hash

thread count← 8 (ii)
comment: thread count is a semaphore (variable shared by all threads)

comment: the value thread count gets is the total number of threads to start at once

for each sam file ∈ SAM files (iii)

do



comment: decrease thread count

comment: when thread count reaches 0 it blocks creation of new threads

thread count–
comment: Generate a new thread for parsing each SAM file

thread← process sam file(sam file, thread count)
store thread in threads

for each thread ∈ threads (iv)

do



comment: Collect the values returned by the parallel thread

(ind name, data)← thread
comment: data is a hash with format ref pos→base where base is A, T, C, G, * or total

store data in sam data at ind name (v)
comment: structure therefore becomes ind name→ref pos→base

SNP reports← list of SNP reports from SNP dir (vi)
(snp data, output order)← process snp reports(SNP reports)
seqs← parse ref seqs(Ref fasta)
add major variant(snp data, output order)
generate flanking sequence(seqs, snp data)
output table(snp data, sam data, output order, output file)
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Algorithm 4.6.5: process sam file(sam file, thread count)

open sam file
ind name← individual name from sam file
variables sam data (i)
comment: sam data is a hash

while there are lines in sam file

do



skip if line does not contain read data
variables read id, ref id, start pos, cigar string, read seq ← elements of line split on tab
variables seq, ops, op cnts
comment: seq, ops, & op cnts are arrays

comment: Split read seq into an array of individual bases

seq ← read seq
comment: Split cigar string into arrays containing individual operations (ops)

comment: and the number of times to apply that operation (op cnts)

(ops, op cnts)← cigar string
seq pos← 0
ref pos← start pos
comment: Initialize an empty data structure for the total depth if it does not exist

if !exists sam data→ref id→total
then sam data→ref id→total = ’ ’ (ii)

process alignment(seq, seq pos, ref pos, ops, op cnts, sam data, ind name)
comment: Increase thread count

comment: when the thread finishes to allow for new threads to be started

thread count++ (iii)
return (ind name, sam data) (iv)
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Algorithm 4.6.6: process alignment(seq, seq pos, ref pos, ops, op cnts, sam data, ind name)

comment: Loop over ops

for i← 0 to Number of ops

do



operation← ops[i]
if operation == [MX =]

then



for j ← 1 to op cnts[i]

do



base← seq[seq pos]
skip if base != [ATCG]
comment: Initialize an empty data structure for base

if !exists sam data→ref id→base
then sam data→ref id→base = ’ ’ (i)

comment: Increment the value for total depth and base

(sam data→ref id→total, ref pos, 16)++ (ii)
(sam data→ref id→base, ref pos, 16)++ (iii)
comment: Increment the seq pos and ref pos

seq pos← seq pos+ 1
ref pos← ref pos+ 1

else if operation == D

then



for j ← 1 to op cnts[i]

do



base← *
comment: Initialize an empty data string for deletions

if !exists sam data→ref id→base
then sam data→ref id→base = ’ ’ (iv)

comment: Increment the value for total depth and base

(sam data→ref id→total, ref pos, 16)++ (v)
(sam data→ref id→base, ref pos, 16)++ (vi)
comment: Increment only the ref pos when there is a deletion in the read

ref pos← ref pos+ 1
else if operation == I ‖ operation == S

then

{
comment: Increase the seq pos by op cnts[i ] when there is an insertion in the read

seq pos← seq pos+ op cnts[i]

else if operation == N

then


comment: Operation N indicates a skipped region from the reference

comment: so we increase ref pos by op cnts[i ] and do not change seq pos

ref pos← ref pos+ op cnts[i]
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Algorithm 4.6.7: output table(snp data, sam data, output order,Out file)

open Out file for writing
print to Out file SNP id, Reference id, SNP position, Flanking sequence, Reference Base
for each ind name ∈ output order

do
{

print ind name Base call, ind name Frequency, ind name Total depth
for each ref id ∈ keys snp data

do



for each ref pos ∈ keys snp data→ref id

do



variables parts, snp parts
snp id← ref id -ref pos
ref base← snp data→ref id→ref pos→ref
skip if ref base != [ATCG]
store ref base in snp parts
store snp id, ref id, ref pos, snp data→ref id→ref pos→flanking in parts
for each ind name ∈ output order

do



if exists snp data→ref id→ref pos→ind name→snp

then

store snp data→ref id→ref pos→ind name→snp in snp parts
store snp data→ref id→ref pos→ind name→frequency in snp parts
store snp data→ref id→ref pos→ind name→total depth in snp parts

else



comment: Check to see if there were reads covering ref pos

total depth← (sam data→ind name→ref id→depth, ref pos, 16) (i)
if total depth exisits && is > 0

then



variables tmp bases, tmp counts
for each base ∈ sam data→ind name→ref id

do



skip if base == ’depth’
if base == ref base

then base← 0
vec string ← sam data→ind name→ref id→base (ii)
count← (vec string, ref pos, 16) (iii)
store base in tmp bases, count in tmp counts

if size of tmp bases > 1

then

{
store string of bases separated by / in snp parts
store string of counts separated by / in snp parts

else store tmp bases[0], tmp counts[0] in snp parts
store total depth in snp parts

else
{

store X, X, X in snp parts
print to Out file parts, snp parts
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4.7 Evaluation Of Computational Complexity

The generation of the table of SNP data across all of the sequenced individuals (as described in Section 4.2)

is the most computationally intensive step in the process of generating SNP data with sufficient biological

information to proceed with the development of a SNP genotyping array in complex organisms. For this

reason we have evaluated, in Θ-notation (Section 2.5.8), the algorithms described in the previous sections

for their computational complexity.

4.7.1 Time Complexity

The algorithms we proposed in Sections 4.5, 4.6.2, and 4.6.3 perform the same function. The SNP reports

are processed and stored in a structure (snp data), as are the SAM alignment files (stored in snp data in

Algorithms 4.5.1 and 4.6.1 and in sam data in Algorithm 4.6.4). We parse the reference sequences, add the

major variant and flanking sequence for each SNP and format and output the results from all individuals into

a table. As the serial algorithm described in Section 4.5 is fundamentally only different from the algorithms in

Sections 4.6.2 and 4.6.3 during the processing of the SAM alignment files, the time complexity in Θ-notation

of the common algorithm phases will be described first and time complexity of processing SAM files for the

serial algorithm and parallel algorithms will be described separately.

SNP Processing

The algorithms described previously loop over the number of individuals (n) and for each individual, opens

the SNP report and processes all the lines of the file (s) (the number of lines for an individual i is denoted

by si). As such, the processing of the SNP reports (Algorithm 4.5.2) in the algorithms requires time equal to

the sum of the number of lines across all SNP reports. This results in a time complexity for SNP processing

of Θ(R), where

R =

n∑
i=1

si. (4.1)

Reference Parsing

The algorithm for parsing the reference sequences simply passes over each line of the reference sequence file

(l) requiring time Θ(l).
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Addition of major variant

The addition of the major variant requires looping over the number of reference sequences with variants

in them (r) and for each reference looping over the number of variants (vi for reference i) found in that

sequence, represented by

V =

r∑
i=1

vi. (4.2)

The algorithm then looks at the variant in each of the individuals with a SNP call (at most n), resulting in

a time requirement of Θ(V · n).

Generation Of Flanking Sequences

Generation of flanking sequences (Algorithm 4.5.5) again requires looping over the reference sequences with

SNPs (r) and then the variants (vi) (Equation 4.2). Then for each of the variants, an iteration over the

length of the flanking sequence (f) occurs, resulting in a time complexity of Θ(V · f).

Outputting Results

Finally the algorithms take each reference sequence (r) and for every variant position (vi) (Equation 4.2),

loops over the individuals (n) and collects and prints the data to the output file (Algorithm 4.5.6). This

process takes time Θ(V · n).

Serial SAM Processing

The processing of SAM files (Algorithms 4.5.3 & 4.5.4) loops over the number of individuals (n) and for each

individual opens the alignment file. Alignment files contain a number of header lines (h) that do not need

to be processed and a number of alignment lines (a). For each alignment line, the length of the alignment,

which is made up of a number of operations (o) where each operation has an associated count (ci), must be

traversed. Since the length of the alignment can be determined by

L =

o∑
i=1

ci, (4.3)
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the total length of the aligned reads can be represented as a · L. The effects of header and alignment lines

can then be combined across individuals using

S =

n∑
i=1

(hi + (ai · L)), (4.4)

the resulting time complexity of the SAM processing phase of the serial algorithm is Θ(S).

Parallel SAM Processing

In the parallel SAM processing algorithms (Algorithms 4.6.2 & 4.6.3, 4.6.5 & 4.6.6) processing of the reads

from each SAM file requires the same time, Θ(h + (a · L)), as in the serial algorithm (Algorithms 4.5.3 &

4.5.4). However, using multi-threaded computing, the processing of each distinct individual in Equation 4.4

is independent from the others. Parallelization requires the distribution of jobs (processing of individuals)

to CPU threads. To begin, let n be the number of individuals in the input, t be the number of available

threads for processing data, and Tj be the time to process an individual SAM file, where Tj is proportional

to hi + (ai ·L). Then two cases for the time complexity of parallel processing SAM data can be identified as

follows:

1. The number of individuals is less than the number of threads available (n ≤ t).

2. The number of individuals is greater than the number of threads available (n > t).

For case 1 the function

P = max
1≤j≤n

(Tj), (4.5)

represents the longest processing time of any SAM file in the input and since each individual receives its own

thread for processing this is the maximum time required for SAM processing. Therefore, the time complexity

of case 1 is Θ(P ).

In case 2, if the size of the SAM file for each individual is the same, then distribution of jobs has no affect

on the time complexity. Therefore the function

dn/te, (4.6)

87



can be substituted for the upper bound of summation in Equation 4.4 resulting in a time complexity for

processing SAM data for the parallel algorithms of Θ(P ′), where

P ′ =

dn/te∑
i=1

(hi + (ai · L)). (4.7)

When the sizes of the SAM file vary from individual to individual, the parallel algorithms process SAM files

based on the input order. Although the optimal partition of jobs to threads is not calculated, as soon as a

thread terminates, if there are individuals left to process, a new thread is created. Therefore, a lower bound

on the time complexity of the parallel algorithms would be Ω(S/t). The implementation in Section 4.8 and

the performance profiling of that implementation in Section 4.9 will test how close the time is to the optimal

speedup.

Overall Time Complexity

By combining the terms from all of the algorithm phases we get an overall complexity for running time of

Θ(R + l + (V · n) + (V · f) + S) for the serial algorithm. To get the complexity of the parallel algorithms

we simply divide the term for the serial SAM processing (S) with the number of threads (t) to give Ω(R +

l + (V · n) + (V · f) + S/t). The dominating factor of both the serial and parallel algorithms is that of the

SAM processing (S and S/t, respectively). As such, the overall time complexity of the algorithms can be

represented by O(S).

Table 4.3 summarizes the time complexity, of each algorithm phase for both the serial and parallel

algorithms. Although some terms of the complexity functions are multiplicative, the terms are all less than

the size of the input. Therefore, the parallel 1 and parallel 2 algorithms are expected to increase linearly

with respect to their inputs.

4.7.2 Space Complexity

Based on the implementations of the serial and parallel 1 algorithms there are two main requirements for

space, a data structure which contains information for each individual at each SNP position found in the

reference sequences and a data structure which contains the reference sequence data itself. The SNP data

structure contains the union of all SNP positions across all reference sequences (known as the unique SNP

positions) (Equation 4.2, V ) multiplied by the number of individuals (n). The space required for the reference

sequence data structure is based on the total number of base pairs in the reference (b). Therefore the overall
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Algorithm Phase Serial Algorithm Parallel Algorithm(s)

SNP report processing Θ(R), R =
n∑

i=1

si -

SAM file processing Θ(S), S =
n∑

i=1

(hi + (ai · L)), L =
o∑

i=1

ci Ω(S/t)

Reference sequence parsing Θ(l) -

Addition of the major variant Θ(V · n), V =
r∑

i=1

vi -

Flanking sequence generation Θ(V · f) -

Output of results Θ(V · n) -

Overall Θ(R+ l + (V · n) + (V · f) + S) Ω(R+ l+2(V ·n)+(V ·f)+S/t)

Table 4.3: The time complexity of each algorithm phase of the serial and parallel algorithms described
in Section 4.2. A dash in the parallel algorithms column indicates that the complexity is the same
as for the serial algorithm. The terms of the complexity functions are as follows: n is the number
of individuals, s is the number lines in the SNP report, o is the number of cigar operations, c is the
number of times to apply operation, h is the number of header lines and a is the number of alignment
lines, t is the maximum number threads, l is the number of lines in the reference sequence FASTA file,
r is the number of references with SNPs, v is the number of variant positions in the reference, and f
is the length of the flanking sequence.

space complexity of the serial algorithms is Θ((V · n) + b). The space requirements of each of the three

algorithms will be experimentally determined using the implementation in Section 4.8 and the performance

profiling of that implementation in Section 4.9.

4.8 Implementation Of Algorithms In Perl

The algorithms serial (Section 4.5), parallel 1 (Section 4.6.2), and parallel 2 (Section 4.6.3) are implemented

in the Perl programming language based on the pseudocode provided in each section. Perl was selected as the

language of implementation as it provides quick development time and is a common programming language

for many bioinformatics tools. Implementations in other languages are beyond the scope of this thesis and

will be discussed in Chapter 5. The two parallelized algorithms are implemented using the Perl threads and

Threads::Semaphore modules. The threads module allows a new thread to be created to process each SAM

file and the Threads::Semaphore module provides a shared variable across all threads that can be used to

manage the number of parallel operations permitted at one time.
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As the parallel 2 algorithm requires a second data structure to store all of the alignment data, an

evaluation of several structures to store the alignment data is performed using the Perl module Devel::Size

[111]. Devel::Size has a method called total size which will report, in bytes, the size of a data structure —

including both the elements of the structure and the structure’s contents. Table 4.4 gives the size (converted

to MB) reported by the total size method, for storing depth per alignment element for each alignment

position from a single SAM file (containing 698,767 reads) of the different data structures evaluated. The

results of evaluating the structures clearly show that the hash of bit vectors (using 16 bits per element of the

bit vector) is the most memory efficient, as such the algorithm is implemented using this method to store

the alignment data.

Data Structure Structure Size (MB)

Hash 1,645.8

Array of Hashes 1,520.8

Array of Arrays 992.4

Hash of Arrays 789.0

Hash of Bit Vectors 78.4

Table 4.4: Reported size, using the total size method of the Perl module Devel::Size, of different
data structures for storing alignment data. Each structure was populated with the data from the same
SAM file, which contained 698,767 aligned reads.

In this algorithm, each individual has a set of bit vectors, one per alignment element, for each reference

sequence (Algorithm 4.6.5 (ii) & Algorithm 4.6.6 (i & iv)). These bit vectors can be stored in a three level

Perl hash using the individual name as the key for the first level, the reference sequence id as the key for the

second level and the alignment element as the key for the third (Algorithm 4.6.4 (v)). Since the elements of

a bit vector are used to represent the positions in the reference, a particular bit vector element represents the

count of reads that have the alignment element corresponding to the bit vectors key at the elements position

in the reference (Algorithm 4.6.7 (i, i & iii). For example, after parsing r001 from Figure 4.3 (a) the key

Ref would point to six bit vectors (one each for A, T, C, G, * and total). To determine the number of reads

with base A at position 7 the element at position 7 of the Ref→A bit vector would be accessed, returning

a count of 1. This structure gives direct access to the alignment information stored in the bit vector at the

element representing the reference position of the SNP. Direct access is important for fast querying of the

data structure, an important performance aspect due to the potential to query multiple individuals across

large numbers of potential SNPs.
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4.9 Performance Profiling

In order to compare the performance of the serial and parallel algorithms, the observed running time and

memory of each algorithm’s Perl implementation was profiled based on different input parameters. This

provides a practical assessment of each of the algorithms and allows for predictions as to the limitations

of the algorithms and for an assessment of necessary hardware to process desired input (Section 4.11).

Profiling was performed using publicly available E.coli genome data. Test runs of each algorithm were

performed using the E.coli strain K12:DH10B (Accession #NC 010473) as the reference sequence; simulated

reads were generated from the genome sequences of eight E.coli strains (Table.4.5) using the open-source

software ART (version 1.5.0) [40] at various coverage levels.

E.coli Strain NCBI Accession # Individual #

O157 NC 002655.2 1

O55 NC 013941.1 2

SE11 NC 011415.1 3

E24377A NC 009801.1 4

HS NC 009800.1 5

REL606 NC 012967.1 6

SMS-3-5 NC 010498.1 7

O127 NC 011601.1 8

Table 4.5: E.coli strains for which simulated reads were generated for use in evaluating the perfor-
mance of our algorithms. The individual number given for each strain is the order in which they were
added to the analysis when multiple individuals were processed together.

Three important factors were identified that can affect the performance of the algorithms:

• Number of individuals to process - The number of individuals affects the number of SNPs likely

to be found (the union of all SNP positions and not the intersection between individuals is evaluated)

and the total amount of SNP and alignment data to be processed. Term n of Table 4.3 represents the

effect of the number of individuals.

• Size of reference sequence(s) - The size of the reference sequence(s) (total number of base pairs)

affects the number of possible SNP positions, the size of the SAM alignments (given a fixed sequencing

coverage, which we feel more accurately represents sequencing strategies versus a fixed number of reads)
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and the number of lines in the reference sequence FASTA file. Therefore, the effect of the size of the

reference sequence(s) is represented indirectly in terms s, r, a, and v and directly in term l of Table

4.3.

• Sequencing coverage - Coverage represents the average number of reads covering a single nucleotide

in the alignment (fold X). For example, coverage of 10X indicates an average of 10 reads aligned to

each nucleotide position in the genome. Thus, for the same genome sequence, higher genome coverage

indicates more aligned reads and a larger SAM file. Therefore, the effect of genome sequencing coverage

is represented by term a of Table 4.3.

These three factors were varied to produce a set of test input cases (Table 4.6) which could be used to

evaluate the time and memory usage performance of the serial, parallel 1, and parallel 2 algorithms, described

in Sections 4.5, 4.6.2 and 4.6.3 respectively. Each test case was evaluated by independently aligning the

simulated reads, at a specific coverage level, from a set of individuals (E.coli strains) to the appropriate

reference sequence set (K12 reference sequence: whole genome (4.68 megabases (Mb)), half genome (2.34

Mb) and quarter genome (1.17 Mb)) using the CLC Genomics Workbench version 6.5 (CLC Bio Inc, Aarhus,

Denmark) map reads to reference tool. It is important to note that the estimated coverage levels indicated

are based on the coverage of each E.coli genome and that the aligned reads often have reduced coverage

of the K12 reference sequence set. SNPs were then detected in the resulting alignments using the CLC

Genomics Workbench probabilistic variant detection tool. For each individual a SAM file was exported for

the read alignments and a tab delimited text file exported for the SNP report generated by CLC Genomics

Workbench. The resulting SAM files and tab delimited SNP files for each test case, plus the appropriate

reference sequence set, were then passed as input parameters to the algorithm being tested. Each test was

performed in triplicate for each algorithm and the running time and memory usage recorded. Results from

all replicates were then fit to regression models. Profiling was performed using the Apple MacBook Pro

discussed in Section 4.6.

4.9.1 Time Profiling

In order to evaluate the performance of each of our algorithms, we first profiled their running time using the

previously described (Table 4.6) test cases. Since the running time is dominated by the parsing of alignment

data (Table 4.2) and these algorithms differ only in how they process alignment data, we performed a linear

regression of time versus the total number of aligned reads for each of the algorithms. The total number of
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Number of Individuals Reference Size (Mb) Sequence Coverage (X)

1 4.68 10

2 4.68 10

3 4.68 10

4 4.68 10

5 4.68 10

6 4.68 10

7 4.68 10

8 4.68 10

3 2.34 10

3 1.17 10

3 4.68 50

3 4.68 100

Table 4.6: Combination of factors used for each of the test cases used for time and memory usage
profiling of algorithms described in Sections 4.5, 4.6.2 & 4.6.3.

aligned reads was used as it allows for the interactions of each of our performance factors to be combined as

in

total aligned reads =

n∑
i=1

(r · si), (4.8)

where n is the number of individuals, r is the size of the reference in base pairs, and s is the estimated

average sequence coverage.

Results of plotting the data from each algorithm and performing the linear regression (Figure 4.6) shows

that the parallel 1 algorithm (Section 4.6.2) requires the least running time while, as expected, the serial

algorithm (Section 4.5) requires the most. The R2 value, which is a statistical measure of how closely the

data fit to the model [83], of each algorithm is above 0.98 indicating a very good fit of the data points to

the regression. This implies that our expectation of linear growth in running time as the number of aligned

reads increases is correct.
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Figure 4.6: Linear regression of time versus aligned reads for the serial, parallel 1, and parallel 2
algorithms, Sections 4.5, 4.6.2 & 4.6.3 respectively. Series data for each of the algorithms can be found
in Tables 4.7 (serial), 4.8 (parallel 1), and 4.9 (parallel 2).
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Algorithm Individuals Reference Size (Mb) Coverage Total Aligned Reads Running Time (sec)

Serial 1 4.68 10X 660054 39

Serial 1 4.68 10X 660054 38

Serial 1 4.68 10X 660054 39

Serial 2 4.68 10X 1329276 76

Serial 2 4.68 10X 1329276 77

Serial 2 4.68 10X 1329276 76

Serial 3 4.68 10X 2028043 113

Serial 3 4.68 10X 2028043 115

Serial 3 4.68 10X 2028043 114

Serial 4 4.68 10X 2724822 148

Serial 4 4.68 10X 2724822 157

Serial 4 4.68 10X 2724822 154

Serial 5 4.68 10X 3422310 198

Serial 5 4.68 10X 3422310 193

Serial 5 4.68 10X 3422310 191

Serial 6 4.68 10X 4009461 232

Serial 6 4.68 10X 4009461 229

Serial 6 4.68 10X 4009461 228

Serial 7 4.68 10X 4722103 276

Serial 7 4.68 10X 4722103 273

Serial 7 4.68 10X 4722103 274

Serial 8 4.68 10X 5352694 326

Serial 8 4.68 10X 5352694 319

Serial 8 4.68 10X 5352694 320

Serial 3 2.34 10X 1005260 59

Serial 3 2.34 10X 1005260 59

Serial 3 2.34 10X 1005260 57

Serial 3 1.17 10X 469354 26

Serial 3 1.17 10X 469354 26

Serial 3 1.17 10X 469354 27

Serial 3 4.68 50X 10141668 557

Serial 3 4.68 50X 10141668 564

Serial 3 4.68 50X 10141668 574

Serial 3 4.68 100X 20280932 1059

Serial 3 4.68 100X 20280932 1073

Serial 3 4.68 100X 20280932 1041

Table 4.7: Raw series data of aligned number of reads and total running time for each of the test
cases outlined in Table 4.6 and performed using the serial algorithm described in Section 4.5.
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Algorithm Individuals Reference Size (Mb) Coverage Total Aligned Reads Running Time (sec)

Parallel 1 1 4.68 10X 660054 39

Parallel 1 1 4.68 10X 660054 39

Parallel 1 1 4.68 10X 660054 38

Parallel 1 2 4.68 10X 1329276 41

Parallel 1 2 4.68 10X 1329276 41

Parallel 1 2 4.68 10X 1329276 40

Parallel 1 3 4.68 10X 2028043 50

Parallel 1 3 4.68 10X 2028043 49

Parallel 1 3 4.68 10X 2028043 52

Parallel 1 4 4.68 10X 2724822 60

Parallel 1 4 4.68 10X 2724822 62

Parallel 1 4 4.68 10X 2724822 62

Parallel 1 5 4.68 10X 3422310 74

Parallel 1 5 4.68 10X 3422310 72

Parallel 1 5 4.68 10X 3422310 72

Parallel 1 6 4.68 10X 4009461 87

Parallel 1 6 4.68 10X 4009461 89

Parallel 1 6 4.68 10X 4009461 88

Parallel 1 7 4.68 10X 4722103 106

Parallel 1 7 4.68 10X 4722103 103

Parallel 1 7 4.68 10X 4722103 101

Parallel 1 8 4.68 10X 5352694 89

Parallel 1 8 4.68 10X 5352694 89

Parallel 1 8 4.68 10X 5352694 89

Parallel 1 3 2.34 10X 1005260 25

Parallel 1 3 2.34 10X 1005260 26

Parallel 1 3 2.34 10X 1005260 24

Parallel 1 3 1.17 10X 469354 11

Parallel 1 3 1.17 10X 469354 11

Parallel 1 3 1.17 10X 469354 11

Parallel 1 3 4.68 50X 10141668 200

Parallel 1 3 4.68 50X 10141668 207

Parallel 1 3 4.68 50X 10141668 208

Parallel 1 3 4.68 100X 20280932 401

Parallel 1 3 4.68 100X 20280932 405

Parallel 1 3 4.68 100X 20280932 396

Table 4.8: Raw series data of aligned number of reads and total running time for each of the test
cases outlined in Table 4.6 and performed using the parallel 1 algorithm described in Section 4.6.2.
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Algorithm Individuals Reference Size (Mb) Coverage Total Aligned Reads Running Time (sec)

Parallel 2 1 4.68 10X 660054 68

Parallel 2 1 4.68 10X 660054 68

Parallel 2 1 4.68 10X 660054 69

Parallel 2 2 4.68 10X 1329276 72

Parallel 2 2 4.68 10X 1329276 71

Parallel 2 2 4.68 10X 1329276 71

Parallel 2 3 4.68 10X 2028043 81

Parallel 2 3 4.68 10X 2028043 83

Parallel 2 3 4.68 10X 2028043 81

Parallel 2 4 4.68 10X 2724822 99

Parallel 2 4 4.68 10X 2724822 100

Parallel 2 4 4.68 10X 2724822 99

Parallel 2 5 4.68 10X 3422310 117

Parallel 2 5 4.68 10X 3422310 121

Parallel 2 5 4.68 10X 3422310 123

Parallel 2 6 4.68 10X 4009461 136

Parallel 2 6 4.68 10X 4009461 137

Parallel 2 6 4.68 10X 4009461 136

Parallel 2 7 4.68 10X 4722103 156

Parallel 2 7 4.68 10X 4722103 156

Parallel 2 7 4.68 10X 4722103 160

Parallel 2 8 4.68 10X 5352694 148

Parallel 2 8 4.68 10X 5352694 148

Parallel 2 8 4.68 10X 5352694 148

Parallel 2 3 2.34 10X 1005260 41

Parallel 2 3 2.34 10X 1005260 41

Parallel 2 3 2.34 10X 1005260 39

Parallel 2 3 1.17 10X 469354 19

Parallel 2 3 1.17 10X 469354 19

Parallel 2 3 1.17 10X 469354 19

Parallel 2 3 4.68 50X 10141668 387

Parallel 2 3 4.68 50X 10141668 384

Parallel 2 3 4.68 50X 10141668 387

Parallel 2 3 4.68 100X 20280932 783

Parallel 2 3 4.68 100X 20280932 769

Parallel 2 3 4.68 100X 20280932 821

Table 4.9: Raw series data of aligned number of reads and total running time for each of the test
cases outlined in Table 4.6 and performed using the parallel 2 algorithm described in Section 4.6.3.
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The speedup (S), which can be determined using the formula

S =
Told
Tnew

, (4.9)

is a metric for measuring relative performance improvements in computer science [38]. To determine the

efficiency of each parallelization method, the speedup of each parallelization algorithm versus the serial

algorithm was computed (Table 4.11) and then divided by the theoretical maximum improvement, which

is estimated using Amdahl’s law (Section 2.5.9). Table 4.10 shows the results of calculating the maximum

theoretical speedup using Equation 2.1; values for P are taken from Table 4.2 and the number of processors

(N) is the same as the number of individuals. In Table 4.11, the times shown are averages (over three

trials) of the SAM alignment processing phase and the efficiency of the parallel algorithms is calculated by

dividing the observed speedup by the associated theoretical speedup from Table 4.10 and then multiplying

the result by 100. As expected, speedup values increase with the number of CPU threads used, reaching

a maximum of 3.38 for the parallel 1 algorithm and 2 for the parallel 2 algorithm at eight CPU threads.

However, the efficiency of parallelization decreases as the number of CPU threads increases, resulting in

64.61% efficiency for the parallel 1 algorithm and 38.23% efficiency for the parallel 2 algorithm at eight

CPU threads. Maximum parallelization efficiency of both parallel algorithms occurs at two CPU threads,

with 108.49% and 57.47% efficiency for the parallel 1 and parallel 2 algorithms respectively. Differences in

efficiency between the parallel 1 and parallel 2 algorithms can be attributed to the reduced access speed of

bit vectors in Perl compared to the Perl native hash structures. Possible causes for decreased efficiency of

the parallel algorithms as the number of CPU threads increases will be discussed in Section 4.10.

N P (1 - P ) S(N)
2 0.9258 0.0742 1.86
3 0.9269 0.0731 2.62
4 0.9303 0.0697 3.31
5 0.9347 0.0653 3.96
6 0.9173 0.0827 4.24
7 0.9235 0.0765 4.80
8 0.9244 0.0756 5.23

Table 4.10: Theoretical maximum speedup (S(N)) as calculated using Equation 2.1 (Amdahl’s Law)
for 2-8 processors. Values of P are obtained from the percentage of running time required for SAM
processing for 2-8 individuals (Table 4.2).
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Number of
Individuals

Reference
Size (Mb)

Coverage Serial
Algorithm
Time (S)

Parallel 1
Algorithm
Time (P1)

Parallel 2
Algorithm
Time (P2)

Parallel 1
Speedup
(S/P1)

Parallel 2
Speedup
(S/P2)

Parallel 1
Efficiency

Parallel 2
Efficiency

2 4.68 10X 70.67 35 66 2.02 1.07 108.49 57.47

3 4.68 10X 105.67 41.67 73.67 2.54 1.43 97.04 54.64

4 4.68 10X 142.33 49.33 88.67 2.89 1.61 87.36 48.67

5 4.68 10X 181.33 60 108 3.02 1.68 76.18 42.38

6 4.68 10X 210.67 66.33 117 3.18 1.80 74.92 42.41

7 4.68 10X 253.33 79 136 3.21 1.86 66.91 38.77

8 4.68 10X 297.33 88 148.67 3.38 2 64.61 38.23

Table 4.11: Calculation of the speedup and the efficiency (as a percentage of the maximum possibly
speedup) of each of the parallel algorithms versus the serial algorithm. Speedup is calculated using
Equation 4.9 using average SAM processing time from three trials of each algorithm at each input size.
The number of individuals is used as the number of processors in the calculation of the theoretical
maximum speedup, since each individual is processed using an independent CPU thread.

4.9.2 Memory Profiling

Since peak memory usage is a limiting factor in the use of the algorithms, the memory usage of each algorithm

is examined at various phases of processing input for three individuals with sequence coverage of 10X and a

reference sequence size of 4.68 Mb. The serial and parallel 1 algorithms perform each algorithm phase in the

same order, therefore both are plotted in Figure 4.7. Data points were collected (in MB) using the Activity

Monitor application included with Mac OS X at the following algorithm phases: after the initial parsing of

the SNP input data, after the start of each parallel thread (one per input alignment file), after each alignment

file has been processed, after all threads have been cleared (all parallel processes have completed), and when

the program has finished (after writing of the output and before the program exits). The data points for the

start of each thread and the thread clearing do not appear in the series for the serial algorithm as it does

not utilize multiple threads.

As the execution order of algorithm phases differs for the parallel 2 algorithm, its data was plotted

separately in Figure 4.8. The data points plotted are mostly the same, however, in Figure 4.8 there is a data

point for the start of the algorithm, no data point for once the threads have cleared, and the data point for

the SNP processing phase is collected after processing the alignment data. The start data point is used to
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Figure 4.7: Chart of average memory usage during various phases of the serial and parallel 1
algorithms based on an input of three individuals. There are no data points for the serial algorithm
for any of the parallelization specific algorithm phases. Each point in the series is a result of averaging
three runs of the algorithm; the raw and average data are provided in Table 4.12.

show that very little memory is used to start each thread in the parallel 2 algorithm and there is no data

point shown for when the threads have cleared as this value is always the same as the memory usage at the

end of processing the final individual.

These figures indicate several important aspects of the algorithms: the serial algorithm, as expected,

shows very slow memory growth; processing of alignment data from each individual results in an increase in

memory usage; and total memory usage is highest at the end of the program. The slow growth of the serial

algorithm can be attributed to the storage of alignment data for only the positions in the reference sequences

that have a SNP in at least one line. The parallel 1 algorithm stores alignment data in the same way, but

uses a large amount of memory to start each thread, which is then mostly released once processing the

alignment data has finished and the thread can be cleared. This large increase in memory usage for starting

each parallel thread can be attributed to the way Perl creates new threads; in Perl all data structures and
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Algorithm SNP
Process-
ing

Individual
1 Process
Start

Individual
2 Process
Start

Individual
3 Process
Start

Individual
1 Process
End

Individual
2 Process
End

Individual
3 Process
End

Thread(s)
Cleared

Finish

Serial - Run 1 95.7 102.9 110.1 120.7 166.5

Serial - Run 2 95.9 102.9 110.2 120.7 167.6

Serial - Run 3 95.6 102.8 110.1 120.6 167.7

Parallel 1 - Run 1 95.8 224.7 329.1 421 434.8 446.9 462.1 190.9 208.9

Parallel 1 - Run 2 95.8 219.1 327.4 439.1 447.9 454.1 461.2 196.1 219.3

Parallel 1 - Run 3 95.8 221.1 328.6 428.4 438 448.6 466.8 175.6 201.3

(a)

Algorithm SNP
Process-
ing

Individual
1 Process
Start

Individual
2 Process
Start

Individual
3 Process
Start

Individual
1 Process
End

Individual
2 Process
End

Individual
3 Process
End

Thread(s)
Cleared

Finish

Serial 95.73 102.87 110.13 120.67 167.27

Parallel 1 95.8 221.63 328.37 429.5 440.23 449.87 463.37 187.53 209.83

(b)

Table 4.12: Memory usage results for various algorithm phases of the serial and parallel 1 algorithms.
Each test was performed in triplicate (Runs 1-3) and the memory usage at each algorithm phase
determined using the Activity Monitor application in Mac OS X (a). The results for each algorithm
phase were then averaged (b) and charted in Figure 4.7.

variables created before the generation of a thread are copied entirely to the new thread. Creating the SNP

data structure before generating threads to parse the alignment data allows the parallel 1 algorithm to only

store alignment data for known SNP positions, similar to the serial algorithm. However, this structure is

then copied to each new thread resulting in a spike in peak memory usage. Although this duplicated data is

then released, resulting in a decrease in memory usage, peak memory usage is what limits a programs ability

to run on specific hardware.

The parallel 2 algorithm moves the generation of the SNP data structure until after the alignment data

has been processed. By not creating any data structures before generating new threads, parallel algorithm

2 solves the issue (duplication of data to all threads) of the parallel 1 algorithm. However, this means that

alignment data must be stored for any reference position with a read aligned to it. The implementation of

the parallel 2 algorithm results in a set of bit vectors (one per alignment element [A,T,C,G,*, and total]) for

each individual, with each bit vector having a size that is 16 bits multiplied by the total reference size.
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Figure 4.8: Chart of average memory usage during various phases of the parallel 2 algorithm based
on an input of three individuals. Each point in the series is a result of averaging three runs of the
algorithm; the raw and average data are provided in Table 4.13.

To evaluate the memory usage of each of the algorithms under a wider range of conditions, the test cases

presented in Table 4.6 were again applied, but this time recording peak memory usage for each algorithm. To

compare the algorithms, two linear regressions are performed, with one plotting memory versus unique SNP

positions (V, Equation 4.2) multiplied by the number of individuals (n) (Figure 4.9) and the other plotting

memory versus reference size (b) multiplied by the number of individuals (n) (Figure 4.10). These regressions

were chosen based on the implementations of the algorithms and the analysis of the computational space

complexity (Section 4.7.2). The serial and parallel 1 algorithms are expected to be linear in memory usage

with respect to V · n and the parallel 2 algorithm is expected to be linear with respect to b · n.

The regression of memory usage versus V · n shows that both the serial and parallel 1 algorithms have

data points that are very well suited to the linear regression model (R2 values of 0.99273 and 0.99388

respectively) indicating that these algorithms have memory usage patterns that are linear based on the SNP

data input. This result matches the complexity analysis of Section 4.7.2 while providing actual memory
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Algorithm Start Individual
1 Process
Start

Individual
2 Process
Start

Individual
3 Process
start

Individual
1 Process
End

Individual
2 Process
End

Individual
3 Process
End

SNP Pro-
cessing

Finish

Parallel 2 - Run 1 1.6 2.4 3.2 3.8 69.3 133.9 198.3 287.6 326.2

Parallel 2 - Run 2 1.6 2.5 3.2 3.8 69.2 133.8 198.4 288 325.4

Parallel 2 - Run 3 1.6 2.5 3.1 3.8 69.7 133.4 197.1 285.9 325.1

(a)

Algorithm Start Individual
1 Process
Start

Individual
2 Process
Start

Individual
3 Process
start

Individual
1 Process
End

Individual
2 Process
End

Individual
3 Process
End

SNP Pro-
cessing

Finish

Parallel 2 1.6 2.47 3.17 3.8 69.4 133.7 197.93 287.17 325.57

(b)

Table 4.13: Memory usage results for various algorithm phases of the parallel 2 algorithm. Each test
was performed in triplicate (Runs 1-3) and the memory usage at each algorithm phase determined
using the Activity Monitor application in Mac OS X (a). The results for each algorithm phase were
then averaged (b) and charted in Figure 4.8.

estimates based on varying input sizes. The parallel 2 algorithm data points have a R2 value of 0.94393

indicating a reasonable fit of the data points to the linear model. This is expected as the space complexity of

this algorithm does have a component that depends on the number of SNPs and the number of individuals.

The regression of memory usage versus b · n shows that the parallel 2 algorithm is very well suited to

the linear regression model (R2 value of 0.99745) indicating that this algorithm has a memory usage pattern

that is linear in the size of the reference and the number of individuals in the input. Further, the higher R2

in this regression indicates that memory usage of the parallel 2 algorithm is more dependent on reference size

than on the number of unique SNP positions. The serial algorithm has a R2 value of 0.96313 and appears

to be linear with respect to reference size and the number of individuals. We expect this result as both the

size of reference sequence set and the number of individuals can affect the number of SNP positions that

can be discovered and thus stored by our algorithms. Although the R2 value of the parallel 1 algorithm

indicates close proximity of the points to the regression model it seems possible from Figure 4.10 that its

memory usage is non-linear with respect to reference size times the number of individuals. This is due to

increases in the number of individuals resulting in an increase in the size of the SNP data structure as well

as its duplication across threads.
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Figure 4.9: Results of linear regression analysis of memory versus unique SNP positions multiplied
by the number of individuals for the serial, parallel 1, and parallel 2 algorithms. Data points are based
on the number of unique SNP positions and individuals for each of the test cases outlined in Table
4.6. Each test case was performed in triplicate for each algorithm (Tables 4.14, 4.15, and 4.16 for the
serial, parallel 1, and parallel 2 algorithms, respectfully).
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Algorithm Individuals Reference Size (Mb) Coverage Individuals * SNP Count Peak Mem (MB)

Serial 1 4.68 10X 50044 67.2

Serial 1 4.68 10X 50044 67.5

Serial 1 4.68 10X 50044 67.7

Serial 2 4.68 10X 116812 103.2

Serial 2 4.68 10X 116812 103.4

Serial 2 4.68 10X 116812 102.8

Serial 3 4.68 10X 241506 166.5

Serial 3 4.68 10X 241506 167.6

Serial 3 4.68 10X 241506 167.7

Serial 4 4.68 10X 362392 214.8

Serial 4 4.68 10X 362392 215

Serial 4 4.68 10X 362392 213.9

Serial 5 4.68 10X 493000 273.4

Serial 5 4.68 10X 493000 275.7

Serial 5 4.68 10X 493000 282.1

Serial 6 4.68 10X 840150 428.6

Serial 6 4.68 10X 840150 442.1

Serial 6 4.68 10X 840150 435.6

Serial 7 4.68 10X 1015959 498.3

Serial 7 4.68 10X 1015959 491.8

Serial 7 4.68 10X 1015959 500.8

Serial 8 4.68 10X 1359360 643.8

Serial 8 4.68 10X 1359360 636.3

Serial 8 4.68 10X 1359360 649.4

Serial 3 2.34 10X 119685 82.7

Serial 3 2.34 10X 119685 82.3

Serial 3 2.34 10X 119685 86.6

Serial 3 1.17 10X 52272 41

Serial 3 1.17 10X 52272 42.9

Serial 3 1.17 10X 52272 40.6

Serial 3 4.68 50X 268794 186.8

Serial 3 4.68 50X 268794 189.7

Serial 3 4.68 50X 268794 187.6

Serial 3 4.68 100X 272211 195.7

Serial 3 4.68 100X 272211 193.5

Serial 3 4.68 100X 272211 193.8

Table 4.14: Memory usage results for changes in the number of unique SNPs multiplied by the
number of individuals, measured using the Mac OS X variant of the unix top command, for each of
three replicates of the test cases described in Table 4.6 for the serial algorithm (Section 4.5).
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Algorithm Individuals Reference Size (Mb) Coverage Individuals * SNP Count Peak Mem (MB)

Parallel 1 1 4.68 10X 50044 109.4

Parallel 1 1 4.68 10X 50044 106.4

Parallel 1 1 4.68 10X 50044 106.3

Parallel 1 2 4.68 10X 116812 241.7

Parallel 1 2 4.68 10X 116812 243.7

Parallel 1 2 4.68 10X 116812 248.6

Parallel 1 3 4.68 10X 241506 462.1

Parallel 1 3 4.68 10X 241506 461.2

Parallel 1 3 4.68 10X 241506 466.8

Parallel 1 4 4.68 10X 362392 896.1

Parallel 1 4 4.68 10X 362392 896.1

Parallel 1 4 4.68 10X 362392 883.6

Parallel 1 5 4.68 10X 493000 1167.1

Parallel 1 5 4.68 10X 493000 1160.7

Parallel 1 5 4.68 10X 493000 1170.5

Parallel 1 6 4.68 10X 840150 1634.2

Parallel 1 6 4.68 10X 840150 1656.7

Parallel 1 6 4.68 10X 840150 1656.7

Parallel 1 7 4.68 10X 1015959 2199.5

Parallel 1 7 4.68 10X 1015959 2178.5

Parallel 1 7 4.68 10X 1015959 2214.7

Parallel 1 8 4.68 10X 1359360 2856.3

Parallel 1 8 4.68 10X 1359360 2870.6

Parallel 1 8 4.68 10X 1359360 2823.5

Parallel 1 3 2.34 10X 119685 238.2

Parallel 1 3 2.34 10X 119685 239.7

Parallel 1 3 2.34 10X 119685 243

Parallel 1 3 1.17 10X 52272 115.9

Parallel 1 3 1.17 10X 52272 121.1

Parallel 1 3 1.17 10X 52272 115.4

Parallel 1 3 4.68 50X 268794 555.8

Parallel 1 3 4.68 50X 268794 552.3

Parallel 1 3 4.68 50X 268794 558.4

Parallel 1 3 4.68 100X 272211 563.6

Parallel 1 3 4.68 100X 272211 575.3

Parallel 1 3 4.68 100X 272211 563

Table 4.15: Memory usage results for changes in the number of unique SNPs multiplied by the
number of individuals, measured using the Mac OS X variant of the unix top command, for each of
three replicates of the test cases described in Table 4.6 for the parallel 1 algorithm (Section 4.6.2).
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Algorithm Individuals Reference Size (Mb) Coverage Individuals * SNP Count Peak Mem (MB)

Parallel 2 1 4.68 10X 50044 130.8

Parallel 2 1 4.68 10X 50044 130.3

Parallel 2 1 4.68 10X 50044 130

Parallel 2 2 4.68 10X 116812 224.7

Parallel 2 2 4.68 10X 116812 197.8

Parallel 2 2 4.68 10X 116812 225.8

Parallel 2 3 4.68 10X 241506 326.2

Parallel 2 3 4.68 10X 241506 325.4

Parallel 2 3 4.68 10X 241506 325.1

Parallel 2 4 4.68 10X 362392 436.5

Parallel 2 4 4.68 10X 362392 434.6

Parallel 2 4 4.68 10X 362392 439.1

Parallel 2 5 4.68 10X 493000 519

Parallel 2 5 4.68 10X 493000 523.2

Parallel 2 5 4.68 10X 493000 517.7

Parallel 2 6 4.68 10X 840150 662

Parallel 2 6 4.68 10X 840150 656.9

Parallel 2 6 4.68 10X 840150 659.1

Parallel 2 7 4.68 10X 1015959 735.3

Parallel 2 7 4.68 10X 1015959 750.8

Parallel 2 7 4.68 10X 1015959 735

Parallel 2 8 4.68 10X 1359360 850.5

Parallel 2 8 4.68 10X 1359360 867

Parallel 2 8 4.68 10X 1359360 859.1

Parallel 2 3 2.34 10X 119685 167.9

Parallel 2 3 2.34 10X 119685 168.3

Parallel 2 3 2.34 10X 119685 167.9

Parallel 2 3 1.17 10X 52272 84.8

Parallel 2 3 1.17 10X 52272 84.2

Parallel 2 3 1.17 10X 52272 84.9

Parallel 2 3 4.68 50X 268794 343.1

Parallel 2 3 4.68 50X 268794 343.5

Parallel 2 3 4.68 50X 268794 344.7

Parallel 2 3 4.68 100X 272211 343.6

Parallel 2 3 4.68 100X 272211 346.4

Parallel 2 3 4.68 100X 272211 346

Table 4.16: Memory usage results for changes in the number of unique SNPs multiplied by the
number of individuals, measured using the Mac OS X variant of the unix top command, for each of
three replicates of the test cases described in Table 4.6 for the parallel 2 algorithm (Section 4.6.3).
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Figure 4.10: Results of linear regression analysis of memory versus reference size multiplied by the
number of individuals for the serial, parallel 1, and parallel 2 algorithms. Data points are based on
the number of unique SNP positions and individuals for each of the test cases outlined in Table 4.6.
Each test case was performed in triplicate for each algorithm (Tables 4.17, 4.18, and 4.19 for the serial,
parallel 1, and parallel 2 algorithms, respectfully).
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Algorithm Individuals Reference Size (Mb) Coverage Individuals * Reference Size Peak Mem

Serial 1 4.68 10X 4.68 67.2

Serial 1 4.68 10X 4.68 67.5

Serial 1 4.68 10X 4.68 67.7

Serial 2 4.68 10X 9.36 103.2

Serial 2 4.68 10X 9.36 103.4

Serial 2 4.68 10X 9.36 102.8

Serial 3 4.68 10X 14.04 166.5

Serial 3 4.68 10X 14.04 167.6

Serial 3 4.68 10X 14.04 167.7

Serial 4 4.68 10X 18.72 214.8

Serial 4 4.68 10X 18.72 215

Serial 4 4.68 10X 18.72 213.9

Serial 5 4.68 10X 23.4 273.4

Serial 5 4.68 10X 23.4 275.7

Serial 5 4.68 10X 23.4 282.1

Serial 6 4.68 10X 28.08 428.6

Serial 6 4.68 10X 28.08 442.1

Serial 6 4.68 10X 28.08 435.6

Serial 7 4.68 10X 32.76 498.3

Serial 7 4.68 10X 32.76 491.8

Serial 7 4.68 10X 32.76 500.8

Serial 8 4.68 10X 37.44 643.8

Serial 8 4.68 10X 37.44 636.3

Serial 8 4.68 10X 37.44 649.4

Serial 3 2.34 10X 7.02 82.7

Serial 3 2.34 10X 7.02 82.3

Serial 3 2.34 10X 7.02 86.6

Serial 3 1.17 10X 3.51 41

Serial 3 1.17 10X 3.51 42.9

Serial 3 1.17 10X 3.51 40.6

Serial 3 4.68 50X 14.04 186.8

Serial 3 4.68 50X 14.04 189.7

Serial 3 4.68 50X 14.04 187.6

Serial 3 4.68 100X 14.04 195.7

Serial 3 4.68 100X 14.04 193.5

Serial 3 4.68 100X 14.04 193.8

Table 4.17: Memory usage results for changes in the reference size (Mb) multiplied by the number
of individuals, measured using the Mac OS X variant of the unix top command, for each of three
replicates of the test cases described in Table 4.6 for the serial algorithm (Section 4.5).
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Algorithm Individuals Reference Size (Mb) Coverage Individuals * Reference Size Peak Mem

Parallel 1 1 4.68 10X 4.68 109.4

Parallel 1 1 4.68 10X 4.68 106.4

Parallel 1 1 4.68 10X 4.68 106.3

Parallel 1 2 4.68 10X 9.36 241.7

Parallel 1 2 4.68 10X 9.36 243.7

Parallel 1 2 4.68 10X 9.36 248.6

Parallel 1 3 4.68 10X 14.04 462.1

Parallel 1 3 4.68 10X 14.04 461.2

Parallel 1 3 4.68 10X 14.04 466.8

Parallel 1 4 4.68 10X 18.72 896.1

Parallel 1 4 4.68 10X 18.72 896.1

Parallel 1 4 4.68 10X 18.72 883.6

Parallel 1 5 4.68 10X 23.4 1167.1

Parallel 1 5 4.68 10X 23.4 1160.7

Parallel 1 5 4.68 10X 23.4 1170.5

Parallel 1 6 4.68 10X 28.08 1634.2

Parallel 1 6 4.68 10X 28.08 1656.7

Parallel 1 6 4.68 10X 28.08 1656.7

Parallel 1 7 4.68 10X 32.76 2199.5

Parallel 1 7 4.68 10X 32.76 2178.5

Parallel 1 7 4.68 10X 32.76 2214.7

Parallel 1 8 4.68 10X 37.44 2856.3

Parallel 1 8 4.68 10X 37.44 2870.6

Parallel 1 8 4.68 10X 37.44 2823.5

Parallel 1 3 2.34 10X 7.02 238.2

Parallel 1 3 2.34 10X 7.02 239.7

Parallel 1 3 2.34 10X 7.02 243

Parallel 1 3 1.17 10X 3.51 115.9

Parallel 1 3 1.17 10X 3.51 121.1

Parallel 1 3 1.17 10X 3.51 115.4

Parallel 1 3 4.68 50X 14.04 555.8

Parallel 1 3 4.68 50X 14.04 552.3

Parallel 1 3 4.68 50X 14.04 558.4

Parallel 1 3 4.68 100X 14.04 563.6

Parallel 1 3 4.68 100X 14.04 575.3

Parallel 1 3 4.68 100X 14.04 563

Table 4.18: Memory usage results for changes in the reference size (Mb) multiplied by the number
of individuals, measured using the Mac OS X variant of the unix top command, for each of three
replicates of the test cases described in Table 4.6 for the parallel 1 algorithm (Section 4.6.2).
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Algorithm Individuals Reference Size (Mb) Coverage Individuals * Reference Size Peak Mem

Parallel 2 1 4.68 10X 4.68 130.8

Parallel 2 1 4.68 10X 4.68 130.3

Parallel 2 1 4.68 10X 4.68 130

Parallel 2 2 4.68 10X 9.36 224.7

Parallel 2 2 4.68 10X 9.36 197.8

Parallel 2 2 4.68 10X 9.36 225.8

Parallel 2 3 4.68 10X 14.04 326.2

Parallel 2 3 4.68 10X 14.04 325.4

Parallel 2 3 4.68 10X 14.04 325.1

Parallel 2 4 4.68 10X 18.72 436.5

Parallel 2 4 4.68 10X 18.72 434.6

Parallel 2 4 4.68 10X 18.72 439.1

Parallel 2 5 4.68 10X 23.4 519

Parallel 2 5 4.68 10X 23.4 523.2

Parallel 2 5 4.68 10X 23.4 517.7

Parallel 2 6 4.68 10X 28.08 662

Parallel 2 6 4.68 10X 28.08 656.9

Parallel 2 6 4.68 10X 28.08 659.1

Parallel 2 7 4.68 10X 32.76 735.3

Parallel 2 7 4.68 10X 32.76 750.8

Parallel 2 7 4.68 10X 32.76 735

Parallel 2 8 4.68 10X 37.44 850.5

Parallel 2 8 4.68 10X 37.44 867

Parallel 2 8 4.68 10X 37.44 859.1

Parallel 2 3 2.34 10X 7.02 167.9

Parallel 2 3 2.34 10X 7.02 168.3

Parallel 2 3 2.34 10X 7.02 167.9

Parallel 2 3 1.17 10X 3.51 84.8

Parallel 2 3 1.17 10X 3.51 84.2

Parallel 2 3 1.17 10X 3.51 84.9

Parallel 2 3 4.68 50X 14.04 343.1

Parallel 2 3 4.68 50X 14.04 343.5

Parallel 2 3 4.68 50X 14.04 344.7

Parallel 2 3 4.68 100X 14.04 343.6

Parallel 2 3 4.68 100X 14.04 346.4

Parallel 2 3 4.68 100X 14.04 346

Table 4.19: Memory usage results for changes in the reference size (Mb) multiplied by the number
of individuals, measured using the Mac OS X variant of the unix top command, for each of three
replicates of the test cases described in Table 4.6 for the parallel 2 algorithm (Section 4.6.3).
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4.10 Parallelization Bottlenecks

An important aspect of evaluating the performance of parallel algorithms is to try and determine what

computational resources may be limiting performance. The two most common bottlenecks are access to

storage, such as the computer’s hard disk or memory, and CPU time. The most common approach to

determining if a parallel program is CPU or memory bound is to evaluate the source code of the program

and estimate the number of CPU and memory actions. The number of CPU actions are divided by the

number of instructions the CPU can perform per clock cycle multiplied by the clock speed of the CPU to

give the CPU bound. The number of memory operations are divided by the memory access speed to give the

memory bound. This type of analysis is often performed on algorithms with very clear or easily simplified

CPU and memory operations [54]. Additionally, in some programming languages, the estimated instruction

sets can be generated using the compiler or other software [75]. However, no such utilities exist for profiling

CPU and memory instructions in the Perl language. Combined with the complexity of the three algorithms

presented here it was beyond the scope of this thesis to produce an accurate representation of the CPU and

memory boundaries using this method.

The performance limits of the parallel algorithms are not evaluated by inspecting their code directly,

instead the approach taken is to determine these limits by observing changes in the running time. By fixing

the size of the input to eight individuals and varying the number of available CPU threads (amount of

possible parallelization) observations can be made which provide insight into how the algorithms are limited.

Figure 4.11 shows the results of plotting the running time versus the number of CPU threads for our

parallel algorithms. There is an obvious decrease in running time as the number of CPU threads increased

from one to four, while the pattern for five, six and seven threads appears to indicate the levelling off (and

in some cases increasing) of running time. An explanation for the levelling off seen in the trials of 4, 5, 6, or

7 threads is that the upper bound of the time required for processing the alignment data can be estimated

using the equation dn/te (Equation 4.6), where n is the number of individuals and t the number of threads

available. This function results in the same upper bound (2) for eight individuals when the number of threads

is 4, 5, 6, or 7 and as such the running time of these trials should be the same. Variation in the running

times for 4, 5, 6, or 7 threads may be due to other demands, such as those from background processes, on the

test system and might decrease if the results from several trials were averaged. When the number of threads

is increased to eight, decreases in running time of 9% and 11%, for the parallel 1 and parallel 2 algorithms

respectively, are observed versus the next fastest running time. This decrease in running time is expected,
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as increasing the number of CPU threads from seven to eight allows all of the individuals to be started at

the same time (upper bound of 1).
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Figure 4.11: Running time results for input of 8 individuals, each with 10X coverage, aligned to a
4.68 Mb reference sequence set allowing parallel 1 and parallel 2 algorithms access to different numbers
of threads. Raw series data is presented in Table 4.20.

Based on these observations, one potential cause of the limited speedup of the parallel algorithms seen

in Section 4.9.1 is the choice of programming language used in the implementation. This is suggested by the

knowledge that each thread in the parallel algorithms acts independently on its input. This means that the

algorithms themselves are not limiting the parallelization performance and that the theoretical maximum

speedup values calculated using Amdahl’s law should be obtainable. Future work on further investigating

parallelization bottlenecks as well as improvements to the parallelization will be discussed in Chapter 5.
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Number of threads
Running Time (sec)

Parallel 1 Parallel 2

1 327 543

2 186 300

3 153 237

4 139 206

5 142 202

6 138 212

7 134 208

8 122 180

Table 4.20: Running time results for the parallel 1 and parallel 2 algorithms when given access to
1-8 parallel threads. Input data was for 8 individuals, each with 10X coverage, aligned to a 4.68 Mb
reference sequence set.

4.11 Algorithm Selection

Assuming that the goal is to minimize run time, selection of an algorithm for combining SNP data into the

multisample output is dependent on available memory. As shown in Figures 4.9 & 4.10, memory usage of the

algorithms is due to several factors including the number of input individuals, the size of the reference set,

and the diversity among the individuals (number of unique SNP positions). As the selection of an algorithm

is also highly dependent on the amount of available memory, an approach for estimating the memory usage

of each algorithm is discussed. Estimated memory requirements can then be compared to available memory

to determine if a particular algorithm is suitable to an application.

The parallel 1 algorithm has the fastest running time (Figure 4.6) and therefore should be checked for

suitability first. For the Perl implementation, its memory usage is dependent on the number of individuals

and the number of unique SNP positions. As it has the fastest memory usage growth rate (Figure 4.9), it

is suitable for applications with a low number of SNP positions and/or a low number of individuals. As

the memory for each thread is not released until all threads have completed, this approach is generally not

suitable for very large numbers of individuals. Determining the number of SNP positions can be done by

extracting the reference name and position of each SNP from every individual SNP report, then sorting them

and removing duplicates. This number can then be multiplied by the number of individuals and substituted
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for x in the slope (y = 0.0021x+ 13.307) of the parallel 1 algorithm’s linear model (Figure 4.9) to estimate

the required memory usage.

The parallel 2 algorithm in Perl has a memory usage which is dependent on the number of individuals

and the size of the reference sequence set. This algorithm is suitable for applications where the reference

sequence size is moderate and the number of individuals is low. Each individual has six bit vectors (one per

alignment element), each of which store at most the length of the reference sequence set multiplied by 16

(the number of bits per reference position). Determining the size of the reference is quite simple, we simply

add up the length of each individual reference sequence in the set. This number can then be multiplied by

the number of individuals and substituted for x in the slope (y = 22.432x+15.3) of the parallel 2 algorithm’s

linear model (Figure 4.10) to estimate the required memory usage.

When neither the parallel 1 nor parallel 2 options are immediately suitable due to excess memory usage

there are two options. The first is to evaluate the serial algorithm to determine if it will allow for the

processing of the data within the required memory space and with an acceptable running time. Since

the serial algorithm is dependent on the number of individuals and the number of unique SNP positions,

a similar estimation to the parallel 1 algorithm can be performed. Once the number of SNP positions

have been determined it can be multiplied by the number of individuals and substituted for x in the slope

(y = 0.0004x + 49.73) of the serial algorithm’s linear model (Figure 4.9) to estimate the required memory

usage. Running time can be estimated by summing the number of aligned reads across all SAM files in

the input and then putting the sum into the slope (y = 0.00005x + 13.986) of the serial algorithm’s linear

model for running time. If either the predicted memory usage or running time make the computation

of the multisample SNP table impossible, then the input may be split to allow for the use of one of the

parallel algorithms. Splitting of the input data should be done by reference sequence position. This allows

the algorithm to still provide context for a SNP across all of the input individuals with no change in the

algorithm results and minimal overhead when combining the output of split data.

4.12 Filtering Of SNP results

For the purpose of designing SNP genotyping arrays we need to select SNPs that will result in robust markers.

Ideally, discovery of SNPs would be both comprehensive and 100% accurate, allowing us to quickly assess

the SNP for suitability. However, due to biological complexities and errors introduced during the sequencing

process this is not the case. In reality, SNP discovery software can vary significantly in called SNP sets

115



using the same data sources [85], illustrating the complexity of SNP discovery. SNP discovery is particularly

complicated in larger more complex genomes, where polyploidy, repetitive elements, and duplication of

genomic regions are more common. Our approach, in dealing with non-perfect SNP data, is to combine

evidence from multiple individuals and screen on multiple criteria to select, from a large pool of available

SNPs, a subset that results in robust markers. As no available software provided the filtering we required, we

developed our own filtering methods as part of the design of several Illumina, Inc. GoldenGate and Infinium

SNP genotyping arrays.

4.12.1 Filtering Raw SNP data

This section describes the implementation of a filtering method which utilizes the robust output format

generated by the algorithms described in Section 4.4. This output has the SNP id, reference id and position,

flanking sequence if available, the reference allele, and for each individual surveyed, the SNP call, depth and

frequency data (Figure 4.2). This comprehensive data allows for the filtering of SNPs based on the following

criteria:

1. the frequency of individuals with null calls,

2. the frequency of individuals with heterozygous calls,

3. the frequency of individuals with the reference allele,

4. confidence in the SNP call,

5. appropriate flanking sequence data (application specific).

It would be desirable to combine these criteria in an optimal way by systematically varying their influence

on inclusion in the filtered data set, and then by measuring their efficacy. But this is not, as yet, practical

as it would require creating a SNP genotyping array for each combination, which is too costly. Thus a set

of heuristics will be described and their success will be measured against other genotyping arrays that have

been created. The method employed is as follows.

The frequency of null calls is easily calculated by looping over the calls and counting the number of

individuals called as “X”. The number of null calls is then divided by the total number of individuals and

if that value is greater than a user defined cutoff, then the SNP is excluded. The frequency of heterozygous

SNPs is similarly calculated and filtered by counting the number of individuals with more than one allele in

their call field (i.e. A/T) and determining the frequency with respect to non null individuals. The frequency
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of the reference allele is calculated by counting the number of individuals with the same base call as the

reference base and dividing by the number of non null individuals. The value must fall into a user defined

range (for example 0.25–0.75), otherwise the SNP is filtered out. This ensures that the reference alleles are

not under or over represented in the individual samples and is more commonly recognized as the minor allele

frequency. To calculate the confidence of a SNP call, individuals with high quality SNP calls (read depth

above a user defined threshold and 100 percent SNP frequency) and individuals with marginal SNP calls

(read depth lower than the threshold and 100 percent SNP frequency or read depth higher than the threshold

and greater then 80 percent SNP frequency) are counted. To be a confident SNP, the number of high quality

SNP calls has to be greater than the number of marginal SNP calls and the combined total must be above

a user defined threshold when divided by the number of non null individuals. For the Illumina Infinium

array designs, a flanking sequence of at least 60 bp on one side of the SNP is required. Further, the flanking

sequence could not contain SNPs. For the Illumina GoldenGate array designs, a SNP free flanking sequence

of 100 bp is required on both sides of the SNP. Since the flanking sequence in the output has flanking SNP

positions converted to IUPAC ambiguity codes, SNPs are filtered if they do not have an appropriate length

of flanking sequence without an ambiguity code.

4.13 Selection Of SNPs

In many cases the number of SNPs remaining after filtering (using the previously described approach) is

larger than the number of SNPs to be included onto the SNP array. Therefore, a subset of the remaining

SNPs are selected for inclusion onto the SNP array. The two methods used in this thesis are selection of

SNPs based on their distribution in the reference sequence set (described in Section 4.13.1) and selection

of SNPs based on the number of alignments of the Illumina probe sequence to the reference sequence set

(described in Section 4.13.2).

4.13.1 SNP Selection Based On Distribution In Reference

The first method employed for SNP selection was to select SNPs based on their distribution throughout the

reference sequences, in order to generate a relatively even distribution of SNPs across the reference genome.

This is accomplished by first identifying the subset of reference sequences represented by SNPs in the filtered

SNP set. Next, the number of SNPs to select from each reference sequence is determined by multiplying the

total number of SNPs to be selected by the length of the reference sequence divided by the total length of
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all reference sequences. This ensures that large reference sequences are allocated a greater numbers of SNPs,

allowing better distribution of SNPs across the reference set. Each reference sequence is then binned into

ranges of base pair positions, where the number of bins is determined by dividing the length of the sequence

by the number of SNPs allocated to it. Bins for each reference are then checked to ensure at least one SNP

is present in every bin. If a SNP has not been located in every bin, the reference sequence is re-binned using

a larger number of bins. This process reduces bin size, until either all SNPs are allocated to a bin or a user

defined threshold for minimum bin size is crossed. If more than one SNP is found in a bin then the algorithm

selects the SNP closest to the middle of the bin, where the middle of the bin is the midpoint of the base pair

range. If the total number of SNPs selected by the algorithm does not match the total number of SNPs that

were to be selected, then the remaining SNPs are chosen at random.

4.13.2 SNP Selection Based On Illumina Probe Matches

As part of the Illumina procedure for developing genotyping arrays, the SNP id and flanking sequence of

each candidate SNP is submitted to Illumina to undergo their probe design and evaluation. A probe is a

subsequence of the SNPs flanking sequence that is attached to a bead on the array. In some species, probes

from the submitted SNPs are tested against the available genome sequence by Illumina in order to determine

if the probe comes from an ambiguous genomic position. However, as most non-model species do not have

publicly available genome sequences, this check is not available.

In order to replicate this methodology, the probe sequences for all filtered SNPs were obtained from

Illumina. These sequences are then matched to the reference sequences using the open source alignment

tool BLAT [53]. These alignments are then parsed to determine the number of times the probe sequence

from a particular SNP matched to the reference sequence set. SNPs are then ranked based on the number

of times their probe sequence matches the reference sequence set and SNPs with fewer probe matches are

preferentially selected.

4.14 Applications And Comparisons To Other Methods

The algorithms developed in Sections 4.4, 4.12, and 4.13 have been used for the development of Illumina

GoldenGate and Infinium SNP genotyping arrays for both diploid (lentil) [99] and polyploid (camelina,

Canola) non-model crop species [20, 101]. While this section will focus mainly on the use of these methods

in polyploid species, it is worth mentioning that the Illumina GoldenGate SNP genotyping array with 1,536
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SNPs developed for lentil enabled the first comprehensive genetic map in lentil to be produced [99].

Comparisons of the polyploid arrays developed using methods from this thesis will be made to three

published plant genotyping arrays: a 90,000 SNP wheat array, a 7,867 SNP apple array, and a 8,303 SNP

potato array. These arrays were selected based primarily on the similar genomic complexities of these species

and the quality of the publication. Both the apple and potato arrays use a wide variety of SNP filters such as

read depth, duplicate genes, multi-allelic SNPs, and Illumina ADT score. Further, both select SNPs based

mainly on distribution across the respective genome [17, 37]. The wheat array uses two main filters for SNPs,

removal of SNPs found in annotated repeat regions and removal of SNPs in close proximity to exon-intron

junctions [120]. No details are provided on the selection of filtered SNPs to be used on the wheat array.

In camelina, an Illumina GoldenGate SNP array with 768 SNPs was developed. Of these 768 SNPs,

534 (69.5%) could be mapped using a single population. This compares favourably to other SNP arrays in

polyploids such as wheat, where single population polymorphism ranged from 15.4% to 25.9% (43.7% across

8 populations) [120] and apple, where 72.2% of SNPs were polymorphic across 8 populations [17].

In Canola two arrays were developed, an Illumina Infinium SNP array containing 6,000 SNPs (known as

the Brassica napus 6K array) and then a second 58,464 SNP Infinium array (known as the Brassica napus

60K array). Filtering of raw SNP output as discussed in Section 4.12 is important for the quality of the

designed array. Both the 6K array and the 60K arrays were developed using reads sequenced from both

Roche/454 and Illumina platforms. Due to the differences in the throughput and common error profiles of

the two sequencing technologies (Section 2.7.2), filtering of SNPs based on read depth was performed at

two different levels based on the sequencer type. Roche/454 reads were filtered using a lower read depth

requirement as these sequencers produce fewer reads. However, since the common error type for this platform

is insertions/deletions which were not the focus of this study, lower read depth did not appear to result in

decreased confidence. Table 4.21 provides a detailed breakdown of the number of SNPs excluded at each

filtering step as described in Section 4.12.1 for the 60K array.

SNPs for the 6K array were selected based on their distribution across the reference sequences (Section

4.13.1) while SNPs for the 60K array were selected using the probe uniqueness method described in Section

4.13.2 and subsequently the distribution across the reference sequences. Of the SNPs submitted to Illumina

to be placed on the arrays, 5,506 (91.8%) of the SNPs from the 6K and 52,157 (89.2%) of the SNPs from

the 60K passed the manufacturing process and were included on the respective arrays. This level of attrition

between the submission and manufacturing phases is in line with other Illumina Infinium arrays [120], [29].

As these SNP arrays were developed in partnership with industry leaders, not all of the SNPs on the 6K and
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Filter Method SNPs excluded SNP Count

None 0 24,528,374

Flanking Sequence 18,619,172 5,909,202

Multi-Allele SNP 7,671 5,901,531

Confidence 5,742,443 159,088

Illumina ADT Score (<0.6) 33,556 125,532

Transversions 1,318 124,214

Table 4.21: Breakdown of SNPs excluded and remaining at the each filtering stage described in
Section 4.12.1 during the design of the Brassica 60K array. For the 60K array the flanking sequence
length was 60 bp, SNPs with multiple alternate alleles were removed, a confidence threshold of 0.8
was used (80 percent of non-null lines must be either high or marginal confidence with the majority
being high confidence). Additionally, SNPs with an Illumina design score (ADT score) less than 0.6
and transversions (A/C, A/T, G/C, G/T, C/A, T/A, C/G, or T/G) were also excluded.

60K arrays were developed using the processes described in this thesis. Of the 5,506 SNPs on the Brassica

napus 6K array, 4,966 were designed using the methods from this thesis and of the 52,157 SNPs on the 60K

array, 38,793 were designed using the methods from this thesis.

The 6K and 60K arrays were surveyed using a single population with 2,494 (50.2%) and 21,859 (56.3%)

SNPs called as polymorphic in the 6K and 60K arrays, respectively. Initially, the level of polymorphic loci

observed for the Brassica 6K array was used in comparisons to the highest published results for similar array

analyses of the complex genomes of wheat and potato. Comparisons were made using a 2x2 contingency

table and the Pearson’s Chi Squared test, with the null hypothesis that there is no difference between the 6K

array and the array to which it is being compared. The chi squared test was performed on the contingency

table using the R programming language’s built in chisq.test function. In wheat, where single population

polymorphism results ranged from 15.4% to 25.9% [120], the chi squared test statistic was χ2 = 1399.061

and the p-value < 2.2e− 16. The significance level of this p-value means that the null hypothesis is rejected,

indicating that there is a significant difference between the 6K and wheat results in terms of the level of

polymorphism. As higher levels of polymorphism are desired, it can be concluded that the approach to array

design in the 6K (and the 60K by extension as the level of polymorphism is higher) is superior to that used

for array design in wheat. In potato, where single population polymorphism ranged from 24.0% to 29.6%

[29], the chi squared test statistic was χ2 = 567.5242 and the p-value < 2.2e−16. The p-value again indicates
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that the design approach for the 6K and 60K SNP arrays is superior to that employed for the design of the

potato array. The caveat being that these observed differences will also reflect the true level of biological

variation between the parents of the mapping populations used in each of these studies.

Using the Illumina GenomeStudio software, which processes the SNP genotyping signal data for a panel of

individuals at each SNP on the array and clusters the individuals by their genotypes, the genotype for every

individual at every SNP on the array can be determined. Genotype clusters are generated by GenomeStudio

using a normalized theta value, where theta ranges from zero to one and a theta of zero represents pure A

genotype signal and a theta of one represents pure B genotype signal. Figure 4.12 shows an example of a

clear three cluster SNP from the Brassica 60K array as represented in a graph. Each dot on the graph is

the genotype of an individual screened on the array. If the individual falls within the darkly shaded area

(and is the same colour) then the individual is part of that cluster. The generation of three clear genotype

clusters from the array hybridization data is a measure of how well the array design method is able to

target simple SNPs (Section 2.3.2) in complex polyploid genomes. Genotyping non-simple SNPs, such as

hemi-SNPs, results in complex genotyping patterns complicating downstream analysis. Figure 4.13, shows

a SNP from the Brassica 60K array which produces a complex genotyping pattern. This SNP results in 5

genotype clusters and is likely results from the SNP assay querying two homologous loci, each segregating

hemi-SNPs. The GenomeStudio parameters used to call three cluster SNPs are as follows:

1. AA cluster theta mean of < 0.2 and BB cluster theta mean of > 0.8 – these values are used to identify

SNPs with good separation of A and B alleles,

2. AB frequency of < 0.1 – used to eliminate SNPs which have a high number of heterozygotes indicating

that the SNP is not a simple SNP,

3. AA and BB frequency is > 0 and minor allele frequency is > 0.01 – used to eliminate monomorphic

SNPs.

To determine the number of clear three cluster SNPs present on the 6K array, a set of 399 diverse

Brassica napus inbred individuals were tested, resulting in 929 (18.7%) clear three cluster SNPs as called

by the GenomeStudio software. For the 60K SNP array, the number of tested individuals increased to 449,

and resulted in 26,270 (67.7%) SNPs called as having three clear genotype clusters. The SNPs from the

60K array can be further divided based on the predicted uniqueness of their probes, as described in Section

4.13.2. SNPs with single match probes as well some SNPs with two probe matches were present on the

array. The breakdown of the number of SNPs in each set, as well as the number of clear three cluster SNPs
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is given in Table 4.22. The results of the 60K array clearly show an improvement in the percentage of clear

three cluster SNP calls over that of the 6K array. To further validate this observation, a 2x2 contingency

table and the chi squared test were used to evaluate if a statistically significant difference exists between

the SNP selection methods; the null hypothesis of this test is that no difference exists between the methods.

The results of the test were a χ2 = 4495.777 and a p-value < 2.2e − 16. This p-value indicates that there

is a statistically significant difference between the SNP selection methods. An additional chi squared test

was performed to assess if a difference exists between SNPs with single probe matches and those with two

probe matches, resulting in a χ2 = 9238.348 and a p-value < 2.2e− 16 indicating that there is a significant

difference between SNP types. The results of these statistical tests show the importance of careful selection

of SNP markers. Expanding the analysis further, the number of clear three cluster probes in the Brassica

napus 60K array were compared to those presented in the wheat 90K array [120]. The number of clear three

cluster SNPs on the wheat array was 20,785 which represents (25.5%) of the 81,587 total SNPs on the wheat

array. Again, the chi squared test was performed indicating a significant difference (χ2 = 19704.74, p-value

< 2.2e− 16) in the number of three cluster SNPs between the Brassica napus 60K array and the wheat 90K

array. Other polyploid crops, such as apple—where more than 50% of SNP markers had clusters with no

clear segregation pattern [115], have also struggled with the development of array markers which result in

clear three cluster SNPs.

SNP Type 3-Cluster SNPs Total SNPs Percentage 3-Cluster

Single Probe Match 23,444 28,928 81.0%

Two Probe Matches 2,826 9,865 28.6%

Table 4.22: Breakdown of cluster types for the Brassica napus 60K array SNPs, designed using the
methods developed in the thesis work, based on the number matches of the SNP probe to the reference
sequences as determined using the SNP selection method from Section 4.13.2.
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Figure 4.12: A SNP with three clear genotype clusters as called by the Illumina GenomeStudio
array processing software. Each dot represents the genotype of a single individual at the SNP (Bn-
A01-p18706337). Norm R is the normalized intensity of the signal and Norm Theta is the normalized
theta score, where a theta score of zero indicates pure A allele signal and a theta score of one indicates
pure B allele signal. Individuals in the darkly shaded region (and of the same colour) of each genotype
are said to belong to that cluster.
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Figure 4.13: A SNP with a complex scoring pattern (5 genotype clusters) as called by the Illumina
GenomeStudio array processing software. Each dot represents the genotype of a single individual
at the SNP (Bn-A02-p26554539). As the GenomeStudio software was developed for use in diploid
organisms, the secondary clusters of black dots are not scored. Norm R is the normalized intensity of
the signal and Norm Theta is the normalized theta score, where a theta score of zero indicates pure A
allele signal and a theta score of one indicates pure B allele signal. Individuals in the darkly shaded
region (and of the same colour) of each genotype are said to belong to that cluster.
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4.15 Conclusions

The goal of this work was to develop methods to assist in the creation of SNP genotyping arrays in non-

model organisms. First a method was developed to combine per sample SNP call data (from next generation

sequencing data) into a multisample format which contains sufficient biological information to provide a

strong basis for the filtering of SNPs. This information includes the base call, read depth, and frequency of

all alleles for each sample. It also includes determination of reference versus null positions for samples where

no alternate allele has been called. As described in Section 4.4, three separate algorithms were developed,

each of which combines SNP and alignment data from multiple individuals into a single output table. These

algorithms, as described in Section 4.7, were evaluated for their time and space complexities. The results

of the computational complexity analysis shows that all of the developed algorithms require time and space

linear to the input — making them programmatically efficient. These algorithms were then implemented in

Perl with differences in the implementation of each algorithm resulting in varying performance as detailed

in Section 4.9. Selection of an algorithm is application specific and a discussion of suitable applications of

each algorithm is given in Section 4.11.

Next, a method for filtering the multisample SNP output of the algorithms was developed, based on

several biologically relevant criteria (Section 4.12). Two methods for selecting SNPs for genotyping arrays

from the filtered set are discussed in Section 4.13. Section 4.13.1 describes a common method for selecting

SNPs based on their distribution in the reference genome, while Section 4.13.2 describes a new approach

developed in this thesis for the selection of SNPs based on matching of the Illumina probes to the reference

sequences, where SNPs with probes with unique or very few matches are selected preferentially.

The efficacy of the methods described in this chapter were tested by developing several SNP genotyping

arrays in both diploid and polyploid non-model organisms. Two of these genotyping arrays are described and

compared to other SNP genotyping arrays in Section 4.14. The SNP filtering results presented in Section

4.14 show that the algorithms developed in this chapter and the implementations of those algorithms provide

sufficient biological information to allow for the utilization of next generation sequencing SNP data for the

development of SNP genotyping arrays. Comparisons to other previously published SNP genotyping arrays

shows that there is a statistical improvement, when using the methods described in this chapter for the

design of SNP genotyping arrays, in two key performance measures – level of polymorphism and the number

of clear genotyping clusters. Further, analysis of the number of three cluster SNPs, which can be used to

determine how well the preferred simple SNPs can be selected in polyploid organisms, shows that there
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is a statistically significant improvement when using the SNP selection method based on probe matching

described in Section 4.13.2 compared to the commonly used method of SNP selection based on distribution

in the genome.

Therefore, it can be concluded, that the Brassica “6K” and “60K” SNP arrays developed using the

methods described in this chapter are shown to outperform similar SNP genotyping arrays, demonstrating

that the methods developed in this chapter are an improvement over current methods for the development

of high-quality SNP genotyping arrays.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

During the course of this thesis several key goals have been accomplished with respect to the discovery and

utilization of SNPs in non-model organisms. Chapters 1 & 2 introduced the topics of the thesis, motivation

for the work, and the relevant computational and biological background. As the discovery and utilization

of SNPs is highly dependent on the biology of the organism of interest, background on genome structure

and organization was provided. Additionally, the modern techniques for SNP discovery described rely on

the use of DNA sequencing technologies. Since the characteristics (number of reads, size of reads, common

sequencing errors) of the sequencing technology used for SNP discovery can impact analysis of the results,

the sequencing technologies from which data was analyzed throughout this thesis and their characteristics

were described in detail. As this thesis focuses on applications to the steps prior to sequencing (Chapter

3) and after SNP discovery (Chapter 4), background on the bioinformatics of common methods for SNP

discovery were also provided.

Chapter 3 describes an approach for automating the design of intron-spanning PCR primers in non-model

organisms. These primers are a precursor to SNP discovery using Sanger sequencing technology and the time

required for their design was a significant bottleneck in the SNP discovery process. The goal of this work was

to implement an automated computational pipeline which could design PCR primers in non-model organisms

by inferring the intron-exon structure of non-model genes using existing DNA sequences from the organism

of interest and the gene structure from a closely related model organism as a template. The resulting PCR

primers would amplify a genomic region that spanned one or more intronic regions to maximize the number

of SNPs detected in subsequent analysis. Automated pipelines were implemented using Perl to combine the

results of several bioinformatics utilities such as BLAST, Kalign, CAP3, Primer3, and BioPerl. Metrics for

determining the success of the automated pipeline were:
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1. to maintain the efficacy of PCR amplification observed in the non-automated approach,

2. decrease the manual labour required by the non-automated method,

3. decrease the time required for primer design.

Evaluation of the efficacy of the automated primer design pipeline was done using results from two primer

design projects – one in which a single pair of PCR primers were design per template gene and one where

multiple pairs of non-overlapping PCR primers were designed per gene template. The efficacy of primer

design, as measured by the successful amplification of a PCR product in the organism of interest, ranged

from 81.5% (single primer pair) to 92% (multiple primer pairs). Based on the results of a statistical test, these

results show no significant difference when compared to the 88% successful amplification rate (single primer

pairs only) observed for the non-automated method. Additionally, the non-automated method was estimated

to require approximately 50 hours per 100 primer pairs, whereas our pipeline required only 10 minutes to

design 100 PCR primer pairs. Much of the time savings are a result of the decrease in manual input required

by the automated pipeline, which requires the user to provide a small number of input parameters and then

fully automates the primer design process requiring no further manual intervention. The development of this

pipeline resulted in the removal of a significant bottleneck in performing this type of SNP discovery and it

can easily be applied to other non-model organisms.

In Chapter 4, computational methods developed to aid in the design of robust SNP genotyping arrays,

specifically Illumina BeadArrays, in non-model organisms were developed. There were several goals for the

work in this chapter:

1. develop and implement an algorithm for combining SNP data from multiple individuals into a single

output,

2. evaluate the time and space complexity of the algorithm,

3. profile the performance of the algorithm based on different input parameters and provide an estimate

of necessary hardware to process a set of inputs,

4. describe a method for filtering the resulting output of the algorithm into robust SNP markers based

on biological information present in the output,

5. determine if additional methods are required to select robust SNP markers in complex genomes,

6. evaluate the approach in comparison to previously developed genotyping arrays.
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Three algorithms (Serial, Parallel 1, and Parallel 2) were developed, each of which can combine SNP

call information from multiple individuals with read alignment data from each individual to create a single

multi-sample SNP output, and pseudocode for all three were provided. The algorithms, which differ mainly

in their handling of the alignment data, were all implemented using Perl. The serial algorithm is not multi-

threaded, while the parallel 1 and parallel 2 algorithms offer parallelization of the alignment processing. The

implementations of the serial, parallel 1, and parallel 2 algorithms (Sections 4.5, 4.6.2, 4.6.3 respectfully)

were evaluated to be linear in time (Sections 4.7.1) and space (Sections 4.7.2) complexity with respect to

the input. However, their performance profiles of the Perl implementations vary significantly as discussed

in Section 4.9. The parallel 1 algorithm results in the lowest running time, while the serial algorithm uses

the least amount of memory and is the slowest. The memory usage of the serial and parallel 1 algorithms

is dependent on the number of SNP positions and the number of individuals, while the memory usage of

the parallel 2 algorithm is dependent on the reference size and the number of individuals. Selection of the

appropriate algorithm is based on factors such as the size of the reference sequence set (in base pairs), the

number of individuals, and the total number of unique SNP positions. Section 4.11 discusses, in depth, some

strategies for selecting an appropriate algorithm given a variety of inputs as well as suggestions for methods

of dealing with input data that requires more resources than the user has available.

Chapter 4 further describes a method for filtering the SNP output based on a variety of biological factors

(Section 4.12.1) such as the number of lines with enough sequence depth to be considered reliable, the

number of lines with heterozygous allele frequencies indicated, and the overall SNP allele frequency in the

lines. Filtering SNPs with low potential to be robust markers is a primary requirement in the development

of high quality SNP genotyping arrays because of the vast (potentially several million) number of SNPs that

can be discovered when dealing with multiple diverse individuals sequenced using next generation sequencing

technologies. Additionally, complexities in the biological makeup of the organism of interest such as repetitive

elements, gene duplication and polyploidy, increase the number of markers that may result in complicated

SNP genotyping analysis. In non-model organisms, Illumina does not offer matching of the probe sequences,

designed from the SNP flanking sequence, back to a reference sequence set. For this reason, a solution for

matching the probe sequences to the reference sequence set and selecting SNP markers based on the number

of alignments of the probe sequence to the reference set was developed.

All of these methods were used in the design of a Brassica napus “60K” SNP genotyping array with 52,157

SNPs, while all of the methods except probe matching were used in the development of lentil, camelina, and

Brassica napus (“6K”) genotyping arrays. These applications represent both diploid (lentil) and polyploid
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(camelina, Brassica napus) crop species and as discussed in Section 4.14, these arrays all perform (with

respect to the percentage of polymorphic markers and clear cluster calls) similarly to, or outperform, arrays

in species of similar genomic complexity. Specifically, the Brassica “60K” SNP array outperforms arrays in

other polyploid species such as wheat and apple. Two distinct methods of SNP selection were tested: on the

“60K” SNP array SNPs were selected based on matching their probe sequences to the genome and selecting

SNPs based on unique or nearly unique probe matches and on the “6K” SNPs were selected based on their

distribution in the genome. Observations of the performance of the Brassica “60K” array compared to that

of the Brassica “6K” array indicate that the improved performance is due to selecting SNPs based on the

number of matches of the Illumina probe sequences to the genome as opposed to selecting SNPs on their

distribution in the genome. The improved selection of SNPs for the Brassica “60K” array seemed to provide

additional robustness to the SNPs with respect to the number of clear three genotype clusters.

This thesis describes computational tools that make significant contributions to both the process of

traditional SNP discovery (Chapter 3) and the utilization of discovered SNPs (Chapter 4) in non-model

organisms. The work with automated PCR primer design provides a simple solution to the design of intron-

spanning primers in non-model organisms where the gene structure is unknown. Additionally, while this

method was intended originally for traditional SNP discovery, it has present-day applications in the area of

targeted sequencing using next generation sequencing technologies. The work presented spans a technological

revolution in DNA sequencing technologies resulting in increased access to large quantities of sequencing data

for non-model organisms. The volume of SNP data that can be produced using next generation sequencing

technologies dramatically alters the complexity of analysis, requiring innovative methods for their utilization.

The implemented algorithms for combining and filtering independent multi-sample SNP data have proven

successful in the design of high quality SNP genotyping platforms in several important non-model crop

species. These genotyping platforms are an invaluable asset to researchers studying these species.

5.2 Future Work

Potential future applications of the automated intron-spanning primer design pipeline should focus on its

applications alongside next generation sequencing technologies, as next generation sequencers offer the lowest

cost per base pair sequenced. One potential application might be targeted re-sequencing of genes identified as

related to traits of interest by transcriptome or reduced representation sequencing. These sequencing methods

do not provide complete coverage of the genomic region. Instead, they provide data located in transcribed
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regions or around restriction sites (transcriptome sequencing and reduced representation respectively). The

automated primer design pipeline could be adapted to develop primers spanning these regions which would

allow for the sequencing of the underlying genomic regions.

Three main areas identified for future work related to the algorithms for combining multi-sample SNP

data are:

• transition to the Variant Call Format (VCF) for SNP input,

• reduction of memory usage for the parallel 1 and parallel 2 algorithms,

• development of a multi-sample SNP discovery tool.

5.2.1 Transition To The Variant Call Format (VCF) For SNP Input

During the course of this work, the VCF format has become the most widely used format for SNP output.

It would therefore be beneficial to transition the developed algorithms to use this input format for SNP data

from each individual. This change could be supported by modifying the subroutine called to parse SNP data

to extract the required information from the VCF files. This was not included in the algorithms provided

as the VCF format was not as widely used at the time of their development and the tab-delimited format

available for output from the CLC Genomics Workbench provides the same information in a more human

readable format.

5.2.2 Reducing Memory Usage

One potential solution for reducing the memory usage of the Perl implementation of the parallel 1 algorithm

would be to clear threads upon their completion. Alignment data from each thread could be integrated into

the main SNP data structure when the thread finishes and the thread could then be cleared. Clearing the

thread releases the memory the thread was using which, in the case of Perl, can be significant due to copying

of data structures to every thread. Currently, memory usage is proportional to the number of individuals as

the memory used by each thread is held until all of the individuals have been processed. Clearing threads on

termination would reduce the memory usage when the number of active threads is less than the number of

individuals. Memory usage proportional to the number of active threads could result in significant savings

on machines with limited resources, allowing for the use of this algorithm on a wider range of input sizes.

A further consideration with respect to reducing the memory usage is to re-implement the parallel portion

of the parallel 1 algorithm in a programming language with better memory sharing amongst threads or to re-
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implement the algorithm entirely in another language. As discussed in Section 4.9 the memory management

for multiple threads in Perl is very poor, as it replicates data structures across all threads. Reimplementing

in a language that allows for each thread to access the SNP data without having to duplicate the structure

in each thread would significantly reduce the memory usage of the parallel 1 algorithm.

Memory usage of the Perl implementation of the parallel 2 algorithm might be reduced by parsing a subset

of the alignment data and SNP data for each individual. The parsed alignment and SNP data from each

individual could then be combined and printed to the output file. Partitioning of the alignment data into

subsets could be done most easily by reference sequence, however it should be possible to generate subsets

based on a specified number of reference base pairs. Both partitioning methods would allow for data to be

collected for all individuals for a given reference position and combined based on the SNP positions found

in all individuals. This partitioning could be accomplished by pre-generating file handles for both the SAM

file and SNP file for each individual. Each thread would read the required subset of the file it was parsing

and return the data. Returned SNP results would be combined across individuals and then printed to the

output file using a method similar to the output algorithm described in Algorithm 4.5.6. Both partitioning

methods have potential to decrease the memory usage of the parallel 2 algorithm dramatically, allowing for

much larger input data sets to be processed. Unfortunately, as these methods still require storing alignment

data for all positions so they cannot be applied to the parallel 1 algorithm.

The approaches described above for reducing the memory usage of the parallel 2 algorithm might allow

for a user defined memory limit. In the case of partitioning input by reference sequence, the algorithm could

estimate the peak memory usage based on the number of individuals in the input data and the length of the

longest reference sequence. This estimation could then be compared to the the value supplied for maximum

memory usage to determine if the allowed memory is sufficient. The estimation of memory usage would be

based on the number of individuals in the input data and the length of the longest reference sequence. In the

case of partitioning input by number of reference base pairs, the algorithm could attempt to determine the

number of base pairs that could be processed based on the maximum memory and the number of individuals

in the input. The estimated value would then be used to take a subset of the input data. The addition of a

user defined maximum memory usage has the potential to add significantly to usability of the algorithm by

providing the user a method which insures the program runs on their hardware.
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5.2.3 Development Of A Multi-Sample SNP Discovery Tool

The parallel 2 algorithm has the potential to be developed into a SNP discovery tool, as the alignment data

for all reads are contained in the bit vector structures. Therefore, the composition of aligned bases at a single

position could be determined and compared to the nucleotide present in the reference at that position. This

would remove the dependency of performing SNP discovery prior to processing the data, reducing overall

analysis time. Developing this functionality would make the algorithm comparable to the GATK tool kit for

multi-sample SNP calling with the added benefit of still providing the detailed information required for the

design of high quality SNP genotyping arrays. If the memory improvements mentioned above for the parallel

2 algorithm were implemented, the algorithm would be able to process input for a much larger number of

individuals than is currently possible.

5.2.4 Parallelization Bottlenecks

As discussed in Section 4.10, there are two main problems to explore with regards to the bottlenecks in par-

allelization. The first, is the efficient distribution of SAM processing jobs across the available CPU threads.

This problem is referred to as the multiprocessor scheduling problem in computer science and has been

shown to be NP-Complete [35]. As such, distribution of jobs should be transitioned to an implementation

of a known approximate solution to the multiprocessor scheduling problem. The second, is to further inves-

tigate causes of reduced parallelization efficiency due to parallelization bottlenecks. One potential avenue of

research would be to use an advanced performance profiling software such as the Intel VTune Amplifier tool,

which allows for performance profiling based on direct access to the CPU [50]. Another potential avenue

would be the implementation of the algorithms in another language to determine if Perl’s performance is a

bottleneck. Additionally, the amount of the program that is parallelized could be increased (increasing the

value of P in Amdahl’s law) and/or the algorithm’s parallelization mechanism could be modified. One such

modification would be to decouple the parallelization from the number of individuals, allowing more than

one process to operate on each individual.
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Appendix A

IUPAC Ambiguity Codes

IUPAC Ambiguity Code Base

R A or G

Y C or T

S G or C

W A or T

K G or T

M A or C

B C or G or T

D A or G or T

H A or C or T

V A or C or G

N A or C or G or T

Table A.1: IUPAC codes codes for ambiguous bases
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