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Abstract

There currently exist several techniques for selecting and combining images from a digital image

library into a single image so that the result meets certain prespecified visual criteria. Image

mosaic methods, first explored by Connors and Trivedi[18], arrange library images according to

some tiling arrangement, often a regular grid, so that the combination of images, when viewed as

a whole, resembles some input target image. Other techniques, such as Autocollage of Rother et

al.[78], seek only to combine images in an interesting and visually pleasing manner, according to

certain composition principles, without attempting to approximate any target image. Each of these

techniques provide a myriad of creative options for artists who wish to combine several levels of

meaning into a single image or who wish to exploit the meaning and symbolism contained in each

of a large set of images through an efficient and easy process.

We first examine the most notable and successful of these methods, and summarize the ad-

vantages and limitations of each. We then formulate a set of goals for an image collage system

that combines the advantages of these methods while addressing and mitigating the drawbacks.

Particularly, we propose a system for creating photocollages that approximate a target image as

an aggregation of smaller images, chosen from a large library, so that interesting visual correspon-

dences between images are exploited. In this way, we allow users to create collages in which multiple

layers of meaning are encoded, with meaningful visual links between each layer. In service of this

goal, we ensure that the images used are as large as possible and are combined in such a way that

boundaries between images are not immediately apparent, as in Autocollage. This has required us

to apply a multiscale approach to searching and comparing images from a large database, which

achieves both speed and accuracy. We also propose a new framework for color post-processing, and

propose novel techniques for decomposing images according to object and texture information.
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Chapter 1

Introduction

Image mosaics, double images, and collages are various visual artistic forms that order images

in relation to each other and imply meaning beyond what is suggested by the images individually.

Double images, which depict two images simultaneously through the sharing of image objects for

dual purposes, have been created by artists for centuries. Image mosaics, while appearing in

many limited forms in western art, have become especially viable in the past fifteen years due to

computational methods for creating them. The image mosaic is a mosaic rendered such that each

tile, rather than containing a solid color, contains another smaller image. It is an art form that

uses images, arranged just so, to render other images.

When we create art, we render the world from something formless and confusing into something

manageable and understandable. Through his or her art, the visual artist creates a narrative,

assigning meaning to the meaningless, and orders the disparate and contradictory elements of

nature into a logical structure of causes and effects. Through the direct comparison and association

of images, a visual syntax is established and a text is created that is richer than the sum of its

elements. By connecting ideas, new ideas are created. The meanings associated with the elements

and their various relations may be enforced as a static property of the text or dynamically created

through the interpretation of each viewer. In double images, image mosaics, and photocollages

(which we will describe in this thesis) these connections and associations are made explicit.

We will begin this chapter with a discussion the goals and ideals of the image mosaic process and

qualities of successful image mosaics. We will discuss properties of double images and techniques

employed by artists to code multiple images into one. We will then compare these techniques with

each other and distill these ideas into a set of achievable properties and policies for creating a new

type of double image. Through this, we will identify the differences between the image mosaics and

the photocollage, which we introduce in this thesis.

1.1 Accuracy Vs. Discernibility

Orchard and Kaplan, in their paper “Cut-Out Image Mosaics” [69], refer to the qualities of Accuracy

and Discernibility as the main goals of the image mosaic process. They define accuracy as the quality

1



of presenting an accurate depiction of the target image. The target image is that which they wish

to represent as an arrangement of mosaic tiles. Discernibility is then, as they put it, the “legibility”

of the images within the tiles. It is easy to trade off between accuracy and discernibility in a mosaic

simply by adjusting the size of the mosaic tiles; for example, one may produce a perfectly accurate

mosaic by allowing the size of each tile image to be reduced to a single pixel. On the other hand, a

“mosaic” of one tile, which takes up the entire image, may have perfect discernibility without any

accuracy at all.

(a)

Figure 1.1: “All is Vanity” [84] by Charles E. Gilbert. The single “tile image” of a lady
looking into a mirror is perfectly discernible, but the “target image” of a skull is also very
accurately depicted.

However, it is possible to find cases in which this “single tile mosaic” is actually successful in

achieving both accuracy and discernibility; in these cases, the successful result is obviously really

not a mosaic at all but something that is called, in Seckel’s book [84], a double image. These double

images have taken many forms, including the anthropomorphic landscape paintings and engravings

that were popular after the sixteenth century, produced by artists such as Matthaus Merian [84].

The images may be thought of as the result of a sort of object-wise matching process; in Charles

E. Gilbert’s “All is Vanity” [84] (see figure 1.1), the head of the lady, in and out of the reflection

of the mirror, has been matched with the eyes of the skull, and the mirror itself has been matched

with the crown of the skull.

In these double images, there is a clear distinction between the “primary” and “secondary”

images. The secondary image is what we will refer to, in the context of image mosaics, as the

target image, or the image that we wish to depict secondarily through the manipulation of some

other image or set of images. The primary image (or images) is, then, the image that we use to
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depict the secondary image through some creative manipulations. In the case of image mosaics,

the secondary image is depicted through the combination of many primary images. Perhaps, using

this terminology, we may speak of accuracy as fidelity to the secondary image and discernibility as

fidelity to the primary image. In any case, the details of the double image mostly belong to the

primary image; that is, an initial inspection of the details in a double image will usually reveal the

primary image, whereas further inspection may reveal the secondary image.

Even so, it is difficult to assign responsibilities for semantic representation of objects between

the primary and secondary images. One strategy is to take a base/detail approach in which we say

that the details of the double image belong to the primary image while the base structures belong

to the secondary image. For example, viewing a painting by the 16th century Italian portraitist

Arcimboldo (1.3) with one’s nose close to the page will reveal only the fruits and grains of the

primary image, while taking a step back will reveal the base structure of the human face. See figure

1.2 for an example of a double image by Ocampo that we have crudely divided into base and detail

layers. This base/detail dichotomy is, of course, not strictly observed, and this accounts for much

of the magic and cleverness of double images. The Hybrid Images, produced by Oliva et al. [68],

represent an extreme case of this dichotomy; only the high spatial frequency data of the primary

image is used with the low spatial frequency data of only the secondary image. We will discuss

these ideas, as they relate to our implementation, in more detail in chapter 6.

(a) (b) (c)

Figure 1.2: 1.2a “Calvary” [84] by Octavio Ocampo. The primary image depicts the
crucified Christ, while the secondary image depicts Christ’s face. The cross and outstretched
arms in the primary image form the eyes, nose, and mouth in the secondary image. One
of the eyes in the secondary image has been matched with the head in the primary image.
Note that there are several smaller secondary images hidden throughout the painting. 1.2b
By taking the median filter (which has an edge-preserving quality) of the image, we are
able to produce a base layer in which most of the influence from the primary image has been
removed. The secondary image, depicting the face of Christ, is then clearly visible. 1.2c The
detail layer, obtained by subtracting the base layer from the original image. The contrast
has been enhanced for visibility. The influence of the secondary image is minimal, while the
primary image is clearly discernible.
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The object-wise quality of matching is more pronounced in the double images of some artists

than others, such as Arcimboldo who depicted the subjects of his portraits as aggregations of

fruits, animals, and other objects. Figure 1.3 shows an Arcimboldo portrait using sea creatures

as the matching primitives. In images such as these, the objects of the primary image, which

may be thought of as the matching primitives, are aggregated independently of any high-level

context at the object level and independent of any aim other than to represent the target image.

These images may be said to have a somewhat more “mosaic” quality, although the matching

primitives do interact with each other through overlapping, shadowing, reflection and occlusion,

establishing a minimal level of inter-object semantic coherence. This is in contrast to the work

of the anthropomorphic landscape artists and others who attempt to maintain a valid semantic

context for the image objects, in which the placement of objects with respect to each other has

some discernible meaning, apart from their function as matching primitives for the target image.

(a)

Figure 1.3: “Water” [84] by Giuseppe Arcimboldo.

This approach to object-wise matching has been taken up in computer graphics in the 3D Col-

lage [37] and in two dimensions with the Jigsaw Image Mosaic [52] and Puzzle Image Mosaic [9].

The latter of these may be categorized, with reasonable confidence, as a mosaic form, since inter-

action between matching primitives, and thus an overall object level context, has been completely

eliminated. Moving into this territory of mosaics, we see that the balance between accuracy and

discernibility becomes difficult to strike, at least in automatically generated mosaics. Certainly,

the production of double images, particularly image mosaics, is somewhat algorithmic and thus

amenable to computer-aided automation.
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(a) (b) (c)

Figure 1.4: 1.4a “Marlene” [84] by Octavio Ocampo. The primary image depicts an
aristocratic woman sitting near a trunk, while the secondary image depicts a woman’s face.
As in “Calvary” (and many other double images of this type), the head in the primary image
is matched with one of the eyes in the secondary image. 1.4b The base layer, in which the
secondary image is more prominent. 1.4c The detail layer, in which the primary image is
more dominant (the contrast has been enhanced for this figure). Since the artist has used
shape, as well as shading, to suggest the secondary image, we can see some of the secondary
image even in the isolated primary image.

Pareidolia Interestingly, in many (or perhaps even in most) double images the secondary image

depicts a human face as in anthropomorphic landscapes, all of Arcimboldo’s portraits, and many

of the most striking double images by Dali, Del-Prete, Knowlton, Muniz, Ocampo, and Orosz [84].

The phenomenon of observing seemingly meaningful patterns and structures in data with unrelated

meaning, or no meaning at all, is known as Pareidolia [41]. It is known that the human visual system

is specially adapted to recognize human faces, even from images that semantically are not at all

related [41]. Therefore, it is conceivable that less accuracy is strictly required in depicting, through

a double image, the secondary image of a face, since the human visual system will automatically

make up for some of the deficiencies. (Although trivial, it is interesting that the matching of a

human head in the primary image with an eye in the secondary image is a common technique.)

Hybrid Images In hybrid-images, edges from the secondary image are blurred out and thus may

only be resolved at a far viewing distance. Double images, on the other hand, have the quality

that both secondary and primary images are observable at close viewing. This may be due to

the preservation of hard edges from the secondary image in the double image; edge data from the

secondary image is allowed to be propagated through all scales (edges of this type are called “old

edges” by Orzan et al. [70]).

At this point it is necessary to draw attention to the distinction in the use of shading and shape

to convey the secondary image of a double image. Classic mosaics rely mostly on the shading within
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(a)

Figure 1.5: “NICHOLAS (Little League Pitcher)” [53] by Ken Knowlton, a true photo
mosaic. The representation of the target image (a young ball player) is achieved both through
the mosaic layout of the atomic elements, and the content of the elements themselves.

the matching primitives to convey the content of the secondary image. The matching primitives

contain no shapes to assist in the conveyance of the target image. Double images that use more

sophisticated correspondences and fewer matching primitives with richer context rely on shape as

well as shading to convey the content of the secondary image, as in figure 1.4. The difference

between the characteristics of shape and shading is that shape relies on hard, well defined edges,

whereas shading relies only on large-scale, softly varying features. In some sense, hybrid images

hide the secondary image in the shading. Other double images do this as well but also rely on the

shapes of the objects depicted therein to hold meaning in both the primary and secondary images.

For example, in figure 1.4, the edge of the woman’s arm in the primary image is also the edge of

the jaw in the secondary image.

So, it is reasonable to propose the creation of a new type of hybrid image from edge-preserving

decompositions of images rather than purely spectral decompositions, as in Oliva and Torralba’s

work. However, we must also ensure that the edges preserved are the same edges in both the primary

and secondary images. This may be done using the cross-bilateral filter, in manner similar to the

image denoising and detail transfer work of Petschnigg et al. [74] and Eisemann and Durand [31];

we will discuss this in more depth in chapter 6.

1.2 Objectives

The term image mosaic seems to have been used to describe any double image in which the aggre-

gation of primary images or objects are each arranged and rendered disjointly from one another. In

this case, the target image is partitioned into a set of tiles, and each tile is treated independently of
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the others, except that each tile is matched to a different region of the same target image. Figure

1.5 shows an image mosaic by Knowlton, depicting the face of a young baseball fan composed from

baseball cards.

In “Autocollage”, a collaging system by by Rother et al. [78], there is no secondary image; the

products of Autocollage are not double images. However, there are some global aesthetic constraints

for which tiles must be considered in relation to each other. In this way, a global context is created.

Furthermore, during rendering, image object boundaries are consulted in the establishment of final

tile boundaries. In distinguishing collages from mosaics, we have decided that for collages the tile

partition is not strict; overlap between objects may occur where it is appropriate, and there exists,

if only in a very basic form, some context that encompasses all of the matching primitives. Perhaps

there need not be any physical, three dimensional space as there is in many double images, in

which the matching primitives exist; however, object-object interaction should occur through the

establishment of boundaries between tile image regions, which are drawn around image objects.

This context exists independently of the target image matching constraint, or secondary image

constraint. In traditional art, collage artist have used a diverse array of techniques [48]; certainly,

the form of collage has allowed for irregular compositions involving the irregular placement of

irregularly shaped objects. These collage characteristics may be observed in the works of such

artists as Nick Bantock and Dave McKean (see chapter 2).

We have discussed the case of the double image, in which one single image accurately expresses

some other image while maintaining its own discernibility. While it may be difficult to automatically

construct such a clever image (although we have made progress toward a solution, as discussed in

chapter 6), we may partition our target image into smaller sub-images and tackle several easier

versions of the problem instead. This alone is the general approach of image mosaic methods, but

we have more ambitious goals for our project and set out a list of more specific objectives.

Images should be placed in tiles so that there are interesting correspondences between the tile

images and the target image—not merely correspondences between average color or color gradient

but also between salient image structures. Previous methods [69, 10, 99] have done this, but only

with small-scale, high-frequency image features. We assume that the more of the target image we

can match to a single collage image, the more interesting the results; thus, we attempt to match

large tiles to large images. Again, there have been previous attempts at this goal [69, 10], but

the results still rely heavily on extensive subdivision around features of the target image to achieve

accuracy. We should not have to rely on the aggregation of a large number of matching primitives of

correct mean color. The tile images should interact with each other within some basic context, and

so we would like tiles to blend into each other seamlessly, but also we would like for tile boundaries

to respect image object and structure boundaries; ideally, the viewer should have to examine the

image closely to determine where the tile boundaries are. As always, we wish for the contents of
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each tile to be as discernible as possible but also for the whole collage to depict the target image

as accurately as possible.

1.3 Overview of Method

In this section, we will provide a brief outline of the entire process of creating a photocollage. In

subsequent chapters, we will expand each of the following steps and provide full descriptions of the

methods used. The production of an image-collage is performed in six main steps:

• preprocessing of the target image to obtain edge maps and image feature maps;

• partition of target image into sets of tiles, by Voronoi tessellation or some other segmenta-

tion method; The photocollage process works by iterative refinement, and for each level of

refinement we need a complete set of tiles;

• for each refinement level:

– matching of each tile with a fragment of some image from the library;

– composition of tile images to create the final collage, including tile boundary adjustments;

– color correction;

– final error accounting and selection of tiles to be reprocessed in the next refinement level.

Preprocessing We extract from the target image some supplementary feature information to

inform the collaging process. Particularly, we determine which parts of the image may require

tighter error thresholds and which parts can tolerate looser matches. We also extract texture

information, and produce downsampled versions of the image for faster matching. Additionally, each

image in the image library from which tile images will be drawn is preprocessed and downsampled.

The results are saved to special files so that a given library need only be processed once.

Partitioning We start by producing a collage for a very coarse, large-tiled partition of the target

image and then replace poorly matched regions with smaller, presumably better-matched tiles in

the next refinement stage, while leaving well matched regions as they are. The number of refine-

ment stages required for a sufficiently accurate collage varies according to the target image being

processed, the coarseness of the initial partition, the difference in coarseness between each refine-

ment level, and the size of the image library. We have achieved good results using an initially very

coarse partition (approximately ten tiles for an image of size 640 × 480) with the next refinement

level having between four and six tiles for every one in the previous level and two refinement levels

after the first. Please see figure 1.6 and chapter 7 for a demonstration of results obtained with these

parameters. Chapter 4 gives a more detailed description of the tile partition process.
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Matching For each tile, we must search the library for an appropriate match. First, we must

determine what proportion of each tile image we would like to use; then for each image in the

library we must compare every possible translation with respect to the region of the target image

within the tile. This comparison process itself consists of several stages. In the first stage, we do not

attempt to find the optimal translation but only to find a subset of images from the library that are

likely to contain good matches. In subsequent stages, we compare every translation of the library

image against the tile and further pare down the subset of legitimate image candidates. In each of

these stages, we increase the resolution from the previous stage so that matching is more accurate,

even as we search a smaller library than the previous stage. We provide a complete description of

this process in chapter 4.

Compositing Once we have selected a single image for each tile along with an appropriate scale

and spatial translation, we must render the collage. We must also update the boundaries of our

tiles, since they were initially chosen without any knowledge of what images would be contained

therein. Each tile is slightly overmatched outside its boundaries so that tile boundaries may be

extended where needed without degrading the quality of the result. Boundaries are adjusted to

respect image objects and structures within the tile images. A color correction operation is then

performed to nudge the collage image a little closer to the target image without the appearance of

“cheating”. See chapter 5 for a more detailed description of the compositing process.

Error Accounting Since the collage produced at each refinement level is not entirely accurate,

we must calculate an error map between the collage and the target image. In some regions, there

will be significant error where neither a good library image match could be found, nor could color

correction make up for the deficit. For each tile in the partition of the next refinement level, we

calculate an error density, which is the sum of the errors within the tile divided by the tile area.

Tiles which have an error density above a certain threshold are “activated” for processing in the

next refinement level. Tiles whose error density is below this threshold are kept just as they are,

since over-refinement is not desirable.

This set of steps is repeated, with a finer partition, until a desirable collage is achieved.

1.4 Novel Contributions

In this thesis we introduce several novel techniques and approaches for solving a variety of image

processing and computer graphics problems. The following is a list of the novel contributions and

a brief description of each.

• We gather together general techniques for scale-based analysis and iterative refinement from

the NPR (non-photorealistic rendering) literature and apply them to the problem of photo-

9



(a) (b) (c)

(d) (e) (f)

Figure 1.6: The process of iterative refinement. 1.6a Target image. 1.6b First pass. 1.6c
Second pass. 1.6d Third and final pass. 1.6e, 1.6f The active tiles for each next refinement
level, overlaid on the error from the previous level.

collages. Particularly, we frame the ideas of multi-scale image processing in terms of accuracy

and discernibility, as Orchard and Kaplan defined these terms (chapter 1 and 4).

• While spectral decompositions and low dimensionality signatures have been used to accelerate

the process of image database querying and matching in image mosaics, we propose the use

of a multiscale approach, employing successive searches in increasing detail (chapter 4).

• We introduce a new measurement of texture contrast and simultaneously a new measurement

of image salience, both of which are useful for image abstraction, texture simplification, and

other image processing objectives (chapter 3).

• We introduce the use of Path Cost Voronoi diagrams as a simple and fast content-sensitive

image segmentation scheme for the purpose of composing the collage image set as a whole

(chapter 5).

• While a few methods exist for hiding one image in another, we propose another method,

motivated by double images in art and recent work in edge-preserving image decompositions,

that has wider applicability (chapter 6).
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1.5 Organization of Thesis

Before we begin building on the basis we have laid out for a photocollage system, in chapter 2 we

will first review the literature that has been produced thus far on this and related subjects. We

will further look into some artistic traditions and derive motivation from them for our own artistic

intentions. Once we have established the place of this work within the context of the work that

has come before it, we will proceed to outline the development of the system in a process-wise

fashion, starting with the early processes and moving to the later ones. In chapter 3, we describe

the techniques for obtaining the edge and texture information that will been used throughout the

entire photocollage process. In chapter 4, we will discuss our strategy for decomposing the target

image into tiles and matching each of these tiles with an image from a library. Through this

discussion, we will explain how each small process fits into the satisfaction of the goals we have

established in this chapter. Then, in chapter 5, we will move to the next stage, which is composition

of the selected images into a collage and the image processing technology that is used to ensure an

attractive result that adheres to our artistic philosophy. Following in chapter 6 is a description of

a postprocessing scheme for strengthening perceptual fidelity to the target image. In chapter 7, we

review the products of this work, describing the advantages and disadvantages of each component

and the work as a whole. Finally, in chapter 8, we provide our final thoughts on the system and

its place within the context of other non-photorealistic rendering tools and make suggestions for

future work.
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Chapter 2

Literature Review and Related Works

2.1 Preamble

The problem of the image collage has required us to look for inspiration from several different

areas of computer graphics research. Various different types of image collage frameworks already

exist, each of which has its own advantages and drawbacks. In addition to this, systems have been

developed for texture synthesis, artistic rendering, image abstraction and other non-photorealistic

rendering applications that are informative to the problem we are examining. Following is a brief

discussion of the main developments in each of these areas that have informed and motivated this

project.

We begin by discussing significant artists and works of art that have, from a creative and

aesthetic point of view, inspired this work; particularly, we discuss the contributions of Nick Bantock

and Dave McKean and the aspects of their works we are interested in studying and reproducing.

We then review the most significant related work in the area of image mosaics and collages. We

will discuss various different rendering problems within the sphere of the collage and mosaic forms

and the details of the techniques, developed throughout the past fifteen years, for solving these

problems and creating creatively and visually satisfying image mosaics and collages. We will look

closely at the most significant and influential publications expounding advances in accuracy, speed,

and form.

We then discuss important works in other related areas, particularly non-photorealistic render-

ing. Computer generated mosaics and collages have drawn upon the insights of several expositors

of the art and science of NPR; we wish to catalog and summarize those works that have contributed

algorithms, techniques, and points of philosophy to our own method.
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2.2 Related Work

2.2.1 Art and Illustration

In this section, we examine the work of various artists whose interpretive and artistic processes

have guided this work.

Collage Artists We have derived considerable inspiration from the work of Nick Bantock [4], a

visual artist and painter who composes detailed collages as well as paintings and other types of art.

His paintings and collages consist of objects and textural elements that are sometimes preserved

whole, and sometimes used as combinations of fragments (figure 2.1). He produces both abstract

and representational renderings.

Figure 2.1: “The Forgetting Room”, by Nick Bantock [4].

Similarly, the illustrations, graphic designs and artwork of Dave McKean [64] have been inspira-

tional. In his unique style, he has used objects and textures together to create a strong atmosphere

within each piece. Tending away from the strictly abstract, he combines well-known objects into

unfamiliar and often shocking aggregations. He is able to manipulate the expectations of view-

ers, thwarting an initial interpretation by hiding additional meaning in the details. Figure 2.2

demonstrates McKean’s skill in richly layering textures, objects and symbols.

In the 16th century, Arcimboldo [21] produced surrealist portraits of human subjects represented

as clusters of various types of objects, fruits being one notable example. In these portraits, both

the human figures and fruits are easily recognizable (as in figure 2.3). Gal et al. [37] noted that

this technique was given much more attention in the 20th century by artists such as Picasso, Miro,

Dali, Chagall, Warhol, Rauschenberg, and others.
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Figure 2.2: Detail from the graphic novel Arkham Asylum: A Serious House on Serious
Earth, illustrated by Dave McKean [64].

Artists of the Collage, Mosaic and Double Image Forms In chapter 1 we discussed the

double image form and examined works produced by prominent artists. Some other well known

artists of double images are Sandro Del-Prete, Ken Knowlton, Vik Muniz, Ocatavio Ocampo, and

Istavan Orosz; see Seckel’s book Masters of Deception [84] for a more complete treatment of this

topic.

Chuck Close [89] is a well-known painter of photo-realistic portraits. Interestingly, his most

recent portraits have been painted in a style that could be described as photo-realism when viewed

at a distance but are actually composed of collections of discrete cells, each containing a small,

simple, and abstract mini-painting. When viewed up close, the effect is entirely different and

decidedly non-photorealistic. The cells are arranged in various different lattices and partition

patterns, including rectangular, diamond shaped, and radially symmetric. Luong et al. [60] have

reproduced Close’s style with a special filter, using isoluminant color pairs.

Salvador Dali [20], the surrealist painter, contributed an interesting work which may be de-

scribed as a mosaic representation embedded within the environment of a more general surrealist

painting. In this case, Dali wove another level of detail into the already multilayered mosaic form.

This painting, titled “Gala contemplating the Mediterranean Sea, which at 30 meters becomes the

portrait of Abraham Lincoln (Homage to Rothko)” features a likeness of Abraham Lincoln, ren-

dered in blocks, behind the figure of a woman; the head of the woman blends into the eye of Lincoln.

In fact, the block-rendering of Lincoln is an interpretation of that produced by Leon Harmon [8] ,

who completed several portraits in a heavily pixelated form. Battiato et al. [8] speculate that this

is the first painting to use mosaic cells that each have a full range of tonality.
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Figure 2.3: The portrait “Vertumnus” by Arcimboldo [21]

2.2.2 Image Mosaics

In this section we discuss the most important development in the science of computer-generated

image mosaics, composed from libraries of images.

Early Work Exploration of computer generated image mosaics began with Silvers [86], in his

picture book Photomosaics, published in 1997. As is noted by Battiato et al. [8], the techniques

used to create the mosaics in the book has not been revealed, although it does not appear to

employ technology that has not been duplicated or superseded in subsequent research efforts. The

following year, Finkelstein and Range [36] produced an academic treatment of the image mosaic

technique; figure 2.5 shows one of their mosaics. Previous to this, various artists had manually

created photographic mosaics and photographic collages, producing dynamic works of art, but at

a high time and labor cost. A survey of exploration of the photographic mosaic technique may be

found in Battiato et al. [8].
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Figure 2.4: “Gala contemplating the Mediterranean Sea, which at 30 meters becomes the
portrait of Abraham Lincoln (Homage to Rothko)” by Salvador Dali [20]

Image Mosaics, Range and Finkelstein Finkelstein and Range [36] address the problem

of creating a large scale image from a mosaic of smaller images that are arranged on a regular

rectangular grid. The purpose is to find an arrangement of small images such that the effect of

viewing the arrangement from a larger distance is that the images come together to form a larger

image. They also explore methods of modifying the colors of the smaller images so that the mosaic

better resembles the target image.

For this, they refer to the half-toning literature for inspiration. Also, some motivation for the

image mosaic work comes from the visual principles exploited by impressionist painters; the human

vision system has the tendency to combine multiple discrete features into single averaged features

at a distance. They refer to manual productions of image mosaics by traditional artists such as

Dali and Close.

They have organized the mosaic creation into the following work-flow: choice of database images

and constraint image; and choice of tiling and match finding for each tile (we have adopted a similar
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Figure 2.5: An example of Finkelstein and Range’s Image Mosaic [36].

work-flow for our own method). They declare the regular rectangular tiling as a natural choice,

indicating that optimizing a mosaic over all possible tilings is too challenging of a problem. Indeed,

neither do we attempt to optimize the mosaic over all tilings, but seek only to choose a tiling for

which a very good mosaic is likely to exist (we define our conception of very good in chapter 4).

They note that, based on the work of Ulichney [94], grids angled at 45% are the least distracting

to viewers. However, it is not their intention to hide tile boundaries. We, however, do intend to

hide tile boundaries, although we do not use a regular grid.

Finkelstein and Range consider several options for matching each tile to an image, including

random matching, repeating the same image for each tile, manual human selection, mean tone

matching, and matching upon more detailed image criteria. For our project, we have chosen the

latter of these options.

In order to efficiently search the database of images for appropriate matches, they precompute

a special set of wavelet coefficients, based on the method of Jacobs et al. [50]. This allows them to

search a large database for a small number of terms; they report search times of below one second

for a database of 20,000 images on a conventional computer.
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Finkelstein and Range make some observations as to which images are most effective in com-

posing photo mosaics. For the constraint image, they note that easily recognizable images, such as

famous scenes, portraits or iconic images, as well as images that are recognizable at low resolutions,

are desirable.

Inspired by the results in the halftoning literature, Finkelstein and Range seek to further improve

the quality of the mosaic, after the matches have been obtained, by correcting the colors of each tile.

They propose a correction function that adjusts the mean color of the tile to that of the constraint

image by shifting and scaling the colors.

Figure 2.6: A cut-out image mosaic from the paper by Orchard and Kaplan [69]

.

Cut-Out Image Mosaics Orchard and Kaplan [69] have improved on the mosaic results ob-

tained by Finkelstein and Range by introducing several process improvements. The most notable of

these improvements are the use of image subregions, rather than entire images, global optimization

of the match arrangement, and arbitrarily shaped tiles. These are considerable improvements over

previous methods which sought only to compose mosaics of regular tiles containing whole images.

Figure 2.6 shows one of their notable results.

Orchard and Kaplan describe the philosophy behind the image mosaic concept in the following

excerpt [36]:

Image mosaics communicate at two disparate scales. These two scales act as a
symbolic divide, so that the target image is conceptually set apart from the contents of
the tiles that comprise it. This dichotomy provides a rich environment for combining
images that either suggest the same message from two different perspectives, or supply
contrasting viewpoints. For example, an image of a car might be made out of pictures
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of the employees that manufactured it, or pictures of bicycles. Image mosaics are a
powerful medium for conveying such split-level messages.

We attempt to bridge the divide between Orchard and Kaplan’s “two disparate scales” by

producing image collages in which two or more scales are linked through a continuum. Specifically,

we wish for semantic information to not be segregated by scale but to span the discrete scale levels

of the mosaic.

Orchard and Kaplan go on to describe the tug-of-war between accuracy and discernibility when

matching tiles with image regions. They resolve to seek the simultaneous fulfillment of accuracy

and discernibility. That is, they wish to accurately represent the source image while also ensuring

that the contents of each tile image are clearly discernible. The result of increased effectiveness in

this goal, they state, is that fewer, larger tiles are needed to produce a high quality mosaic.

Orchard and Kaplan take a unique approach to accelerating the matching process. They point

out the fact that the size of the database may be effectively extended by allowing sub-regions of

each image to be used, rather than the entirety of each image. Alternately, they allow for rotations

of each subregion, rather than requiring that the image be matched and composited in its original

orientation.

They point out that it is impossible to achieve the best possible match while only matching

coarse features as do Jacobs et al. [50] and Finkelstein and Range [36]. They propose a method for

calculating a match score, based on SSD error (Sum of Squared Distance error), for each image in

the database, at full resolution, for every possible spatial shift and rotation. In addition to all this,

they calculate an optimal color correction as part of the match calculation.

Orchard and Kaplan implement this ambitious matching scheme by expanding the terms of the

quadratic error metric, transforming the images into the frequency domain, and using spectral-based

image registration techniques to quickly compute the error for every possible shift. In determining

the final image for each tile, rather than using the match configuration with least error for each

individual tile, a minimum cost result is globally computed for the entire tiling (according to well

known graph-theoretic methods), so that no two images are repeated.

For future work, Orchard and Kaplan recommend exploring more transformation parameters for

the image regions and feathered, non-binary tile masks. We have chosen to take up the exploration

of the latter of these.

3D Collage Gal et al. [37] move the image mosaic into three dimensions; this transition requires

them to explore not only superficial similarities between the color and lighting of images, but also

more expressive correspondences, particularly in shape and volume. Correspondences between the

shape of the constraint object and database objects are exploited, often to creative effect. The

work has been inspired by the paintings of 16th century artist Arcimboldo.
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As design objectives, Gal et al. attempt to match the shapes of objects while maintaining

the following: a high proportion of intersection between the library and target object, with few

protrusions; a low amount of intersection between adjacent library objects; and as little deviation

as possible from the original size proportions of the objects in relation to each other. To compute

match fidelity, they use a biased form of Euclidean distance on a voxelized 3D grid, as well as

partial shape matching for localized regions. See figure 2.9 for a sample of their results.

Figure 2.7: A Jigsaw Image Mosaic [51].

Jigsaw Image Mosaic Related to the 3D collage, but back in the domain of two-dimensional

image manipulation, is the Jigsaw Image Mosaic (or JIM), by Kim and Pellacini [51], which seeks

to represent an image by a mosaic of irregularly shaped objects (figure 2.7). This work is less

related to the image matching methods of the photographic mosaic and texture synthesis work,

and more in line with the non-photorealistic, painterly, and tile mosaic rendering techniques that

came before. Rather than drawing from an image database, the JIM method uses a database

of shapes of relatively constant color, trimmed so that the boundaries of the shape match the

boundaries of the represented object. The constraint image is segmented into regions of constant

color, and then a packing is found to fill the regions with shapes from the database.

This whole process was optimized and improved by Di Blasi et al. [9]. Specifically, they increase

matching speed by mapping the shape and color of each tile object into a metric space, so that

they may be placed in an antipole data structure for easy searching. Shape data is represented by

a vector consisting of the normalized distance of 90 object edge points from the object centroid.

Other Work Zhang [99] performs a comprehensive exploration of Content Based Image Retrieval

methods for matching tiles to images from a database. She explores color and texture features, as

well as histogram methods for creating searchable image signatures. She also employs histogram
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methods for evaluating mosaic quality. Through these methods, she is able to significantly accelerate

the production of accurate image mosaics. However, there are few or no cases in which both

discernibility and accuracy are simultaneously handled; that is, it appears that if the image in each

tile were replaced with a flat shaded region of appropriate color, the accuracy of the collage would

hardly be affected.

Di Blasi et al. [10] propose a fast method for searching an image database by clustering image

feature vectors according to an antipole tree structure. They use a simple three by three grid

of mean values as the feature vector. They also introduce mosaics with multiple tile scales by

partitioning the image according to a quad-tree; the effect is that lower detail regions of the image

are represented by larger tiles, and the tile sizes vary by factors of two. Matching image details on a

finer scale, however, is not treated; neither is the case of image-scale variation outside of even-factor

increments.

Tran et al. [92] perform an evaluation of two photo mosaic algorithms. Along with computa-

tional efficiency, they measure the relationship between the following quality factors: similarity,

granularity, variety, and database size. They evaluate two string matching algorithms; one that

measures direct pixel-wise distance between the mosaic and original image, and another that uses

a string alignment algorithm, treating each row of pixels as a string. They evaluate the quality of

a mosaic by the minimum viewing distance at which no difference between the mosaic and original

image is discernible. It was found that the minimum distance increases linearly with the area of

the tiles. A weaker linear relationship was found to exist between the size of the image database

and the similarity between the collage and the original image.

2.2.3 Collages

Digital Tapestry In their paper “Digital Tapestry”, Rother et al. [77] look at the problem of

aggregate image composition from an entirely different angle. While the image mosaic works focus

on finding an arrangement of images that well represents a target image, the tapestry problem is

more focused on the quality of the arrangement and selection of database images, with the only

large scale constraints being the salience of the image regions used, and the desirability of the

aggregation to the eye of the user. They adapt a variety of methods, including methods similar to

those used in texture transfer, to the task of choosing an aggregation that is representative of the

database and arranged in a spatial layout that follows key design principles. See figure 2.9 for an

example of this technique.

Autocollage In Autocollage, Rother et al. [78] present another, more sophisticated method for

creating image collages which are not meant to approximate or represent any constraint image, but

only to create an attractive arrangement of images that is representative of the image database
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Figure 2.8: An example of a collage created by Autocollage [78]

(figure 2.8). They focus on creating collages in which each element is representative of the overall

set. From each element image a region of interest is extracted. Certain classes of objects within

the images are recognized, such as faces and skies, and the final packing of images is chosen so

that certain relationships between these objects and the collage as a whole are respected. Finally,

transition seams between images are rendered so as to not be obviously visible.

The collage problem is, in this case, proposed as a problem of finding a labeling that has

minimum energy according to an energy function weighting library-representation, desirability of

transition between images, proportion of region of interest used, and object-semantic considerations,

such as faces and skies. The first two energy terms are minimized one their own, in order, and then

the images are packed so that the entire collage is covered but regions of interest do not overlap.

The packing is achieved via branch and bound and local searching techniques. Overlapping in the

resulting packing is resolved through a graph cuts algorithm, as in Agarwala et al. [1] and Boykov

et al. [11]. Alpha blending is achieved via alpha-Poisson blending, as in Pérez et al. [72], taking

into account edge information so that a harder boundary is maintained along an edge and a softer

transition is employed for smoother regions of the image. We employ a similar philosophy for

blending between images.
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(a) (b)

(c) (d)

Figure 2.9: The results of various collage and mosaic rendering algorithms. 2.9a Dig-
ital Tapestry [77]. 2.9b Smart Ideas for Photomosaic Rendering [10]. 2.9c 3D Collage:
Expressive Non-Realistic Modeling [37]. 2.9d Puzzle Image Mosaic [9].
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2.3 Literature Review

We will now briefly survey various other contributions that have influenced the direction of this

project.

2.3.1 Mosaics

The photocollage art form shares some characteristics with the mosaic art form, which has been

used by artists from classical times to the present [8]. We will summarize the history of the mosaic

art form from the traditional forms to the computer-generated mosaic which has appeared more

recently.

Battiato et al. [8] have compiled a survey of collage work until 2006, which the reader may

refer to for a fuller history of traditional collage. They begin by discussing the works of Dali and

Arcimboldo, two artists who combined pictorial elements to form larger scale images in the same

vein as the modern photographic mosaic. They then discuss more contemporary artists, such as

Harmon, Close, and McKean, who produced photographic mosaic-like images before software had

been designed for the task.

Computer Generated Mosaics

Haelberli [42] conducted a wide exploration of painterly and NPR techniques for rendering images,

including mosaic-like renderings that employ Voronoi tessellations and color the tiles with flat colors

based on the source image. Dobashi et al. [25] expanded on this idea; they use Voronoi tiles to

create a mosaic, but the tile centroids are iteratively moved so as to minimize the error between

the mosaic and the source image. Later, Faustino and Figueiredo [35] also use Voronoi diagrams,

but place the initial sites according to image features and shift the centroids iteratively towards a

center of mass; they use a density function which is itself derived from image features—specifically,

the gradient magnitude of the image.

Hausner [43] was the first to attempt an NPR simulation of classic tile mosaics, with considerable

success as the reader can see in figure 2.10. In this paper, a process is described in which tiles are

oriented along image features and are arranged so as not to straddle important edges. As in Faustino

and Figueiredo [35], centroidal Voronoi diagrams are used with a modified metric to achieve the

desired lattice and orientation information from the edges of the image is used to orient the tiles.

Elber and Wolberg [32] extended this idea with a more sophisticated approach to tile orientation,

relying on user defined parametric curves. Tiles are placed tangential to the parametric curves in

concentric rows so that each tile is touching the one placed before it. Battiato et al. [7] improve

Hausner’s technique by segmenting the image, via statistical region merging and user input, into

foreground and background regions, similarly orienting tiles along image features and also providing

24



Figure 2.10: A mosaic by Hausner [43] exhibiting tiles of size and orientation adapted from
the target image.

some contingency for tile overlap. The tiles are arranged according to the level set curves obtained

from the distance transform, with the region edge map as input.

These techniques were further adapted and refined in Battiato et al. [6], who use gradient vector

fields to determine tile placement and orientation and Liu et al. [58], who use a graph-cuts based

global optimization scheme to obtain a globally optimal solution. Schlechtweg et al. [82] employs

the novel approach of using renderbots, a multi-agent system, to simulate various NPR effects

including mosaics.

2.3.2 Image Abstraction and Non-photorealistic Rendering

The problem of image abstraction involves the analysis and manipulation of images, particularly

photographs, with a mind to suppress image details that are not immediately necessary for the

perception of large scale object and semantic content [22]. The abstraction of images involves the

reduction of the image data to a minimum set necessary for effective perception and understanding

of the image content.

An area that is closely related to image abstraction is non-photorealistic rendering. Indeed,

the process of NPR may, in many cases, be characterized as the separation of rendering into an

abstraction stage, in which non-salient information is identified and discarded, and a stylization

stage, in which new information is added to the image, allowing it to be recognizable as a work
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belonging to some artistic tradition. Conversely, abstraction may also be thought of as a type of

non-photorealistic rendering, since it may be used to convert a photograph or some other realistic

image, into something more stylized. The motivation for techniques developed in this area have

come from early work in psychovisual perception, such as Marr [62], and more recent work such as

Regan [76].

We have approached the problem of the photocollage from the point of view of both image

abstraction and NPR, in that we must make decisions about which information from the target

image we wish to preserve and which we would like to replace with information from database

images. We wish to produce a collage in which both the target image and each of the elementary

library images are obviously recognizable to a viewer; but how do we know which portions from

each image to use? We wish to ensure a match, wherever is necessary to achieve an appropriate

level of accuracy, between low, mid and high frequency spatial frequency components. The image

abstraction segment of this workflow comes in as we determine which regions of the image require

matching at a high level of detail, and which may be approximated by mere coarse matches, and

matches of larger scale structure.

Herman and Duke [45] provide a concise and eloquent description of the philosophy behind non-

photorealistic rendering, summarizing the trajectory of computer graphics research towards realism

up until that point and drawing on contrasting philosophies in traditional eastern and western art.

They point out that impressionism is also an important artistic direction which deserves attention

and provides considerable utility in many applications. The key difference between the approaches

of the impressionist artist and the realist artist is that the former convey the impression of objects

or a scene without presenting all of the detail that would be encountered when viewing the scene

in reality; lines, contours, shading and shape are all used to build the general idea of an image.

The image mosaic and the image collage may be viewed, in a sense, as impressionist forms, since

in these cases we wish to give an impression of a target image through the shapes, textures and

colors of an aggregation of other images.

That same year, Gooch and Gooch provided an important treatment of non-photorealistic ren-

dering [39], which the reader may refer to for a summary of the field up until that time.

DeCarlo and Santella [22] provide a major examination of pure image abstraction, using a priori

knowledge of image semantics obtained from eye tracking data. A scale-organized segmentation

hierarchy is used to abstract non-salient areas of the image into flat shaded regions. Figure 2.11

shows one of their results.

Inspired by recent video abstraction endeavors in cinema, Winnemöller et al. [97] expanded

the work of Decarlo and Santella [22] into the domain of moving images, dealing with the issue of

temporal coherence while streamlining the salience identification process and moving it offline and

independent of significant user input.
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(a) (b)

Figure 2.11: 2.11a The original image. 2.11b The abstracted image via the method of
DeCarlo and Santella [22] .

Orzan et al. [70] significantly improved the automation of image salience extraction for im-

age abstraction by recognizing that image edges may be organized according to their position in

Gaussian scale space and used as the main indicators of semantic information within an image.

They adapt methods of gradient space image integration to recompose images from gradient edge

data. As is evident in figure 2.12, they have succeeded in reducing the prevalence non-salient image

structures.

Painterly Rendering

Viewed as an artistic rendering problem, several similarities emerge between the photocollage and

painterly rendering techniques. The photocollage may be viewed as a type of painterly rendering

filter; that is, a source target image is rendered in a particular artistic style, so that it resembles a

piece that was composed by some creative method other than photography.

Haelberli [42] provided an extensive exploration of painterly rendering and other NPR tech-

niques. Introducing brush strokes as the primary rendering primitive, each brush stroke being

defined by a list of parameters such as stroke size and orientation, and locally controlling these

parameters, he set the standard for painterly rendering and NPR techniques.

(a) (b)

Figure 2.12: 4.2a The original image. 2.12b The abstracted image via the method of
Orzan et al. [70] .

27



This work was followed up extensively by other authors, such as Litwinowicz [57] and Shiraishiv

and Yamaguchi [85], which offer alternative methods for stroke orientation and placement, and

Markosian et al. [61] who explore the acceleration of NPR rendering for real time applications and

line rendering of geometric objects. Hertzmann [46] provides a method of building a painting as a

series coarse to fine approximations with each successive layer replacing high-error regions of the

previous layer. This work, in particular, has inspired the iterative refinement methods we use as

part of our method. This iterative refinement process is illustrated in figure 2.13.

(a) (b) (c)

Figure 2.13: 2.13a The original image. 2.13b A painterly rendering via Hertzmann’s
method [46] with a coarse brush. 2.13c The previous rendering after refinement with a finer
brush.

Hertzmann [47] provides a survey of stroke-based rendering, including painterly rendering tech-

niques which the reader may refer to for a more detailed discussion. He unifies the many disparate

theories of stroke-based rendering, expounded by various computer vision and graphics researchers

of unrelated problems, in an attempt to compose a more generalized theory by which the greater

philosophy of stroke-based rendering may be understood and advanced. He identifies the place-

ment of render elements according to some variety of goals as a coarse formulation of stroke-based

rendering; certainly, the problem of image mosaics and image collages may be viewed thus, since

in these cases we seek to place images, which are the rendering primitives, in order to approximate

some target image.

2.3.3 Texture Synthesis

The domain of texture synthesis and texture transfer has provided considerable inspiration for this

work. The work done in the area of texture synthesis-from-example has focused on transferring the

texture characteristics from a source texture image to the contents of a target image. The most

successful results rely on finding matches between the target image and a texture exemplar.

Efros and Leung [30] were the first to employ neighborhood sampling for the composition of

texturally coherent regions. At the same time, Wei [95] introduced a method for synthesizing

textures from exemplars by analyzing the image and creating a deterministic texture function.

These methods were expanded and refined by Wei and Levoy [96], who built on the idea that

textures could be successfully replicated, without repetition, by copying pixels from an exemplar
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texture; the constraint is that the neighborhood of each copied pixel should correspond in some way

to a similar neighborhood in the example texture. They introduced performance optimizations,

such as tree-structured vector quantization of the search space and pyramidal sampling of the

example texture. These ideas were built upon by several researchers, including Ashikhmin [2] who

improved user control, and modified the pixel selection methods of WL synthesis to overcome the

shortcomings of oversmoothing. Ashikhmin recognized that the L2 distance between pixels values

used by Wei and Levoy is an insufficient approximation of how the human visual system measures

the perceptual distance between image elements; the human vision system is sensitive to corners

and edges, and the L2 norm does not reflect this in any way. Ashikhmin solved this problem by

relying not on the L2 norm to match pixels, but on the visual continuity of the exemplar image

itself, using a verbatim copying strategy to reproduce texturally coherent image patches, the seams

of which are naturally hidden within the activity of the texture.

Later, Efros and Freeman [29] modified this pixel-wise sampling procedure by instead copying

patches of texture, rather than single pixels, in order to preserve intratexture coherence. Similar

to Ashikhmin, they rely on the verbatim copying of texture patches to ensure that the character

of the texture is not lost through the excessive fine-grained fragmentation of pixel-wise synthesis

techniques. This presents the problem of visually disruptive patch boundaries. They devise a

seam repair process in which a least cost boundary is computed between adjacent overlapping

tiles. For the purposes of texture transfer, they introduce another constraint to the patch selection;

in addition to ensuring that the neighborhood of the patch corresponds to the example texture,

they require also that the low spatial frequency component of the patch must correspond to the

low spatial frequency component of some constraint image. The result is an effective method of

texture transfer, in which a texture may be replicated for arbitrarily large areas but also arranged

so as to resemble some non-texture target image. This method for texture transfer, illustrated in

figure 2.14, suggests a feasible model for photocollage composition, and we have drawn inspiration

from it. Specifically, we have adapted the methods of match acceleration, seam repair and match

calculation which are the basis of this method. The photocollage, however, differs significantly

from texture transfer, and special considerations of these differences has been required in adapting

these methods. For instance, texture image data below a certain cut-off spatial frequency is often

irrelevant, in that it contributes very little to the perceptual characteristics of the texture; this is

not the case for the library images from which we compose the photocollage. The process of texture

transfer is, perhaps, more akin to that of the image mosaic, since coherent image patches are copied

in order to match a target image, although the image patches come from many different images in

the case of the image mosaic rather than a single texture.
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(a) (b) (c)

Figure 2.14: 2.14a The target image. 2.14b The exemplar texture, to be transfered to the
target image. 2.14c The texture transfer result, via the method of Efros and Freeman [29].

2.3.4 Image Completion

Image completion algorithms seek to replace a region of an image, often determined by the user,

with different content than that which occupied that region originally; this is done either based

on other content in the same image, or content from some other image or library of images. The

photocollage problem may be thought of as a series of constrained image completion steps on a

partition of the image.

Criminisi [19] and Drori [26] use patch copying to fill in user-segmented regions according to the

content of the rest of the image. They combine techniques from texture synthesis and structure-

based inpainting. Diakopoulos [23] uses the texture synthesis ideas previously discussed to resynthe-

size user selected regions according to semantically coherent content chosen from a user-annotated

database. Komodakis [55] uses global optimization, specifically Priority Belief Propagation, to

improve the greedy approach taken by the previous methods.

Hays and Efros [44] proffer a solution to the problem of searching a very large unannotated

database for a desirable patch; they adapt methods of semantic content based image clustering,

originally devised by Oliva and Torralba [67]. In this way they are able to eliminate most choices

from a very large database. They further refine template matching techniques for the problem of

scene completion. Oliva and Torralba use coarse global features to automatically classify images

with semantic tags. Both teams find that the process of semantic clustering is effective over very

large image databases. For image completion, this means that the improved accuracy afforded by a

very large database needn’t come at such a high search cost. The results of Hays and Efros’s work

are illustrated in figure 2.15
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(a) (b) (c)

Figure 2.15: A demonstration of Hays and Efros’s method [44] for scene completion. 2.15a
The target image, with the replacement region flagged. 2.15b A small subset of possible
replacement images. 2.15c The final composition.
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2.3.5 Frequency Space Image Synthesis

Oliva and Torralba, in their paper “Hybrid Images” [68], create images that are composed of data

that are semantically coherent only within certain bands of spatial frequency. Specifically, they

compose the low frequency data and high frequency data of two separate images in order to create

a hybrid image that presents different content depending on the viewing distance (figure 2.16).

This idea is similar to the idea of image collages, except that image collages, upon close viewing,

represent an aggregation of images rather than a single image. Oliva and Torralba characterize this

difference as such: image mosaics contain a local and global interpretation, whereas hybrid images

contain two distinct global interpretations.

(a)

Figure 2.16: A hybrid image, by the method of Oliva and Torralba [68]. After examining

the image up close, take a few steps back and look again.

2.4 Summary

In this chapter, we have discussed all of the important works which have inspired, informed and

guided this work. We began by examining the artwork of Nick Bantock, Dave McKean, and others,

whose styles we have attempted to imitate and reproduce. We then discussed important milestones
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in the progress of image mosaic methods and collage methods. Each of these composition systems

represent a simpler or slightly different version of the problem we address in this thesis, and thus

we seek to combine as many of these methods as we can. Particularly, we have borrowed from

these previously described systems of signature extraction and matching, color correction and color

shifting, spatial shifting, region-of-interest extraction, and tile boundary hiding.

Finally, we surveyed a selection of works in the areas of texture synthesis and non-photorealistic

rendering in order to gain insight from previously described solutions to related problems. Partic-

ularly, we have been interested in techniques for image abstraction and content summary, stroke

based rendering, patch-based rendering, texture analysis, and multiscale rendering and image com-

position.
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Chapter 3

Texture Amplitude and Salience Measures

3.1 Overview

In chapter 1 we set out a general outline for the discussion of our photocollage algorithm. Recall

that the first step is the preprocessing of the images in the library, done first to allow fast image

loading for all subsequent collages. In this step we downsample each image and extract texture and

edge information for subsequent image analysis operations. In this chapter we describe in detail

the techniques we use to obtain these texture and edge maps from each library image.

3.2 Requirements for a Texture Contrast Map

In chapter 4, we will include texture contrast as an image feature to be considered as part of

an image comparison and matching strategy. In this case, we need a fast method for calculating

a texture contrast map for each image in the library. Also, in chapter 6 we will use a texture

contrast map as part of a proposed image abstraction scheme, using also a bilateral filter with

depth controlled by the contrast of the textures. For a texture contrast map to be useful in these

tasks, it must have certain properties.

We require a texture contrast map that shows low values for texture regions with low local

contrast and high values for textures with high local contrast. The meaning of “local” in this

context refers to the scale at which the texture contrast map is computed. We say a texture has

high contrast, for a given scale, when there is a large difference between the values of the local

extrema within a region of that scale. However, the operation should be scale invariant in some

sense, and should respond to textures of varying scales, within some range of scales. That is, a

single texture contrast map, for some chosen scale, should sufficiently account for the majority of

significant texture activity in an image. The map should not be affected by non-texture features

such as edges. The map should show roughly uniform texture contrast values for regions of uniform

texture; it should map unsmooth regions to smooth regions, according to the character of the

unsmooth regions, or regions of homogeneous texture to regions of homogeneous luminance.

Bae et al. [3] introduced a quantity called textureness that is similar to texture contrast. For an
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image I, they measure textureness by taking a highpass filter H(I) and then filtering its magnitude

|H| bilaterally with I. They compare this result to the activity/power map of I, which is the

Gaussian lowpass filter of |H|; the activity/power map effectively measures texture activity in an

image, but is spatially imprecise and suffers from haloing (“haloing” refers to, in this case, an

artificial glow radiating from high activity regions). The textureness map, on the other hand,

is more spatially precise because the bilateral filter is constrained by the features of the original

image; so, if a texture region is bounded by a step edge, the bilateral filter will ensure that the

high response of the textureness map will not flow over the step edge. However, this textureness

map does not satisfy our condition that regions of uniform texture be represented in the texture

contrast map by regions of uniform texture contrast (see figure 3.9). The spatial precision comes

with a loss of homogeneity within texture regions. However, one may construct a similar filter by

replacing the Gaussian highpass result |H| = |I − G(I)| with a filter |Hm| = |I −M(I)| (similar

to a highpass filter, but subtracting a median filter operation rather than a Gaussian filter) and

complete the operation with a median filer rather than a bilateral filter (figure 3.1). The advantage

of this replacement is that the resulting texture contrast map is smoother, and still respects edges.

The disadvantage is that some spatial precision is lost due to the propensity of the median filter to

obliterate corners and other fine-scale features. We have, however, found a way to overcome this

limitation which we will discuss shortly.

(a) (b) (c)

Figure 3.1: 3.1a Texture image I. 3.1b |Hm| = |I−M(I)| where M represents the median
filter for some radius. 3.1c M(|Hm|).

3.3 Properties of Texture Images

Of course, in order to go any further with an operation that is able to adequately process texture

images, we need to decide what we mean by “texture”. The concept of texture is difficult to define,

but yet most people have some intuitive sense of what it is [93]. In order to add precision to the idea

of texture, we refer to the definition provided by Sklansky [87], which identifies constant, periodic,

35



or slowly varying statistical parameters as an identifying characteristic of textures. From this, we

can posit the existence of a sort of statistically perfect texture that has uniformly identical statistical

parameters everywhere inside the texture region. For simplicity, we may say that the statistical

parameters of interest are any parameters that may be derived from a gray level histogram; taking

it one step further we may say that, for every neighborhood of some scale within the texture, all

histograms must be identical. Then, what we have done is specified a class of images that are like

textures, or have texture-like properties. This has been useful in formulating a general operation

for measuring texture contrast.

3.4 A Basic Texture Contrast Map

The motivation to isolate this particular class of texture-like images has come from the desire to

improve the method of Bae et al. Naturally, if every subregion of scale r of a texture I has an

identical histogram, then the median filter |M(I, r)| over the texture will be uniform and constant,

since the median values may be extracted from the histograms. We may then perform the operation

Hm = I −M(I, r) in order to extract the texture details from the rest of the image content. Keep

in mind that the regions of texture in I are also regions of texture in Hm, since M(I, r) is uniform

across texture regions, and thus all histograms in Hm are still identical. Also, these new textures

in Hm will have similar contrast to the textures in I, since all we are doing is recentering these

textures about 0. So, we may then perform a final median filter on |Hm|, to obtain M(|Hm|, r), a

smooth texture activity map. Note that, again, regions of texture in I will be mapped to regions

of uniform value in M(|Hm|, r). Assuming that the median filter value of |Hm| is proportional to

the contrast of Hm, we then have an effective texture contrast operation τr:

τr(I) = M(|I −M(I, r)|, r), (3.1)

where M(., r) denotes the median filter for some radius r. (we discuss cases in which this assumption

does not hold later in the chapter). Figure 3.2 shows the stages in the production of this texture

contrast map.

3.5 A Better Texture Contrast Map

Returning to the idea of the “statistically perfect texture”, we must acknowledge that the real

textures we encounter in images do not conform to this strict model. In practice, textures are

complicated and may not have any determinable set of statistical parameters that are identical

everywhere for any particular scale. Therefore, our texture contrast map will be similarly imperfect,

though still useful. Also, while these criteria for texture-like images seem to be suitably general to
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(a) (b) (c)

Figure 3.2: 3.2a Image I. 3.2b |Hm| = |I −M(I, r)|. 3.2c M(|Hm|, r).

encompass a wide range of textures, there are some textures that are not accounted for. This is

compounded by the fact that our assumption that the median value of a region is proportional to

the contrast of the region does not hold for every texture. These assumptions do hold for textures

that adhere to a distribution that is, in some sense, “well behaved”; that is, for distributions that

are more or less unimodal (although this is not a strict requirement). These assumptions fail for

textures that have eccentric distributions of luminance values. While there exist textures that will

not hold to this assumption, we have found that it is sufficient for a large class of naturally occurring

textures, as we will show in section 3.5.2 (see figure 3.6).

As for our texture contrast operator τr, we have seen that while it provides a good measure of

texture contrast, it is spatially imprecise, since its precision is limited by the radius r of the median

filter. Of course, one may increase the spatial accuracy of the filter by decreasing the radius r, at

the cost of measuring a set of textures of a higher frequency. However, we may combine texture

contrast maps of various radii in order to derive the benefits of low-radius, spatially precise filters,

while maintaining the robustness of high-radius filters. At this point, we bring attention to the

effect of iteratively applying the operator τr.

3.5.1 Histogram Folding

Consider what is happening to the histogram of an image when applying this filter. By taking the

absolute value of the median difference filter |Hm| = |I −M(I)| we are “folding” the histogram of

I about the value M(I); values of I that were previously equal to M(I) become 0, and all values

which previously lay below M(I) are added back into the histogram in reverse bin-order. So, the

histogram is shifted left by M(I) bins, and all bins with value less than M(I) are added back into

the histogram in reverse order, left to right. This process is illustrated in figure 3.3.

Precisely, for a histogram Hist of image I with median value M(I) ∈ [0, 1], M(I) > 1−M(I),

the histogram Histm of image |Hm| is as follows:
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Histm(b) =

 Hist(M(I) + b) + Hist(M(I)− b) for b ∈ [0, 1−M(I)]

Hist(M(I) + b) for b ∈ [1−M(I),M(I)]
(3.2)

Similarly, in the case that 1−M(I) > M(I), we have:

Histm(b) =

 Hist(M(I) + b) + Hist(M(I)− b) for b ∈ [0,M(I)]

Hist(M(I) + b) for b ∈ [M(I), 1−M(I)]
(3.3)

(a) (b) (c)

Figure 3.3: One iteration of the histogram folding process, which occurs during one iteration
of operation k. 3.3a Original histogram. 3.3b Histogram with median indicated, and top
end folded over the bottom end. 3.3c Folded histogram.

The upshot of this histogram folding process is that the maximum value of |Hm| is equal to

either 1−M(I) or M(I), both of which are less than or equal to the maximum value of I. As the

lowest bin fills with each iteration, the median value will eventually be zero; at this point, folding

will no longer occur. For simplicity we define the nth iteration of this operation as follows:

In = |In−1 −M(In−1)|. (3.4)

It is important to note that wherever M(In) = 0, histogram folding will not occur, because

nothing is being subtracted from the image for the next iteration. This is important because while

M(In), for some sufficiently high number of iterations n, will go to zero, In itself will not necessarily

go to zero. We discuss the importance of this observation later when discussing the corner map.

At this point, the important observation is that with each additional iteration τn = M(|In−1 −

M(I−n− 1)|) = M(In), the magnitude of τn is decreased from the magnitude of τn−1, as illustrated

in figure 3.4. We may exploit this to compose a new, spatially precise texture contrast filter that

consists of the sum of texture contrast filters of decreasing radius and decreasing magnitude. With

each additional term in the sum, corners are filled in more tightly and the final map is more

representative of the content of the image I. So, our final texture contrast operator may be

expressed as follows:

τfinal(I, r) =
N∑
n=0

τn(I, r/(2n)), (3.5)
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where τn(I,R) represents the operation τ(I,R) = M(|I −M(I,R)|, R) iterated n times. Figure

3.4 shows the individual terms in this sum, and the final result.

(a) (b) (c)

(d) (e)

Figure 3.4: 3.4a–3.4cA view of each term in the sum of images used to compose the
final, spatially precise texture contrast map. Note that while each increasing term is reduced
in amplitude, its spatial precision is increased. The first coarsest scale is radius=6, and
decreases by half at each iteration. 3.4d Original image. 3.4e Final texture contrast map.

3.5.2 Evaluation

We have tested this texture contrast map on 112 of the standard Brodatz textures [12]. By inspec-

tion, we have classified the results of the texture contrast operation on each texture according to

its success in properly representing contrast. The operation was said to be successful for a given

texture if the resulting map values were relatively uniform, according to a qualitative perceptual

judgment, and approximately proportional to the perceived contrast of the texture. The operation

was said to be unsuccessful if the map values did not correspond accurately to the contrast of the

texture. The operation was said to be partially successful if the map values were somewhat faithful

to the perceived contrast of the texture, but were not uniform or showed clustering. Also, some of

the Brodatz textures do not meet our definition of texture because they do not exhibit the required

statistical stationarity; we have discounted results from these images. All judgments were made

according to the perception of the experimenter.

We observed that 67 of the 112 Brodatz textures, or 60%, are successfully measured by our

algorithm; 27 textures, or 24% are measured with partial success; 13 textures, or 12%, are not
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successfully measured; and 5 textures, or 4%, do not meet our requirements. See figure 3.6 for a

selection of textures that are successfully and unsuccessfully measured. Figure 3.5 shows a selection

of images and their texture contrast maps.

(a) (b)

(c) (d)

Figure 3.5: Two images (3.5a and 3.5c and their texture contrast maps (3.5b and 3.5d).

Comparison with Other Methods

Texture classification has been widely studied for several decades, and thus many methods exist

for deriving various features from a texture image. Here, we will compare our texture contrast

measurement with a few other well known measurement methods.

Carson et al. [14] have developed a system for querying a database of images based on image

segmentations that seek to partition each image according to regions of roughly constant color and

texture. To this end, they develop a measurement of texture contrast that uses information derived

from a windowed second moment matrix of the gradient magnitude edge map, and a unique form

of scale detection. This scale detection is performed by measuring the difference between scales of

the polarity of the image at each pixel, where polarity refers to the tendency of gradient vectors in

the neighborhood to point in the same direction. The texture contrast itself is derived as a quantity
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(a) (b) (c)

(d) (e) (f)

Figure 3.6: A sample of Brodatz textures [12] that do and do not agree with our as-
sumptions. The top row of images, figures 3.6a-3.6c, which would generally be classified as
textures by a human observer, unfortunately do not have properties which allow them to be
classified as textures by our method.

composed from the eigenvalues of the second moment matrix. For our purposes, it is not necessary

to monitor the scale of the textures we are measuring, since we are primarily concerned with the

scale of the collage tiles, and thus wish to scale our measurements accordingly. However, we have

found that when the appropriate scale is hand-chosen, and applied uniformly over the entire image,

our method achieves similar or better fidelity to edges and other object details, where the method

of Carson et al. produces some blurring and haloing, as we see in figure 3.9.

Lozano and Escolano [59] propose an alternative measure of texture contrast, informed by the

method of Carson et al. but using entropy-based image measurements. Comparison of our method

with theirs reveals the weakness of our method when applied to an image with textures of highly

varying scales. While the method of Lozano and Escolano correctly classifies textures across a range

of scales, we see in figure 3.7 that our method has ignored those textures larger than the specified

radius. When the radius is increased, textures of all scales are accounted for, but at the expense

of object edge fidelity. However, our method does provide a smoother representation for a given

scale, and is not hampered by the artifacts observed around edges in Lozano and Escolano’s effort.

Kokkinos et al. [54] use Amplitude-Modulation-Frequency-Modulation (AMFM) methods to

extract a texture feature vector, and Dominant Component Analysis (DCA) to distill a set of basic
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(a) (b)

(c) (d)

Figure 3.7: 3.7a Original image. 3.7b Texture contrast by Lozano1 and Escolano [59].
3.7c Our texture contrast map calculated with radius r = 32. 3.7d Our texture contrast
map calculated with radius r = 64.

texture descriptors, including texture contrast. As with the previous methods, the response of

their filter to varying scales is superior. However, from examining figure 3.8 it is clear that the

results, while useful for certain segmentation tasks, may not be ideal for smoothing filters due to

map discontinuities.

The method of Bae et al. [3] for producing a “textureness” map may also be held up for

comparison (figure 3.9), since it measures a similar quantity to texture contrast. In some ways,

their textureness map is superior to all the previous methods, in that it is conceptually simple (it

is built on a cross-bilateral filter) and produces results with very high spatial accuracy. However,

it is corrupted by edges and other high-salience image features, and highlights texture features

proportionally to contrast, rather than uniformly shading a region of coherent texture contrast.

3.6 Salience Maps

One more loose end we must tie up is the interpretation of the map In = |I−M(In−1)| in the limit

as n→∞ and where I0 = I. As we have observed, for large enough n, M((In−1(x, y)) = 0 for all

pixels (x, y), even though In−1(x, y) itself is not necessarily uniformly zero for all pixels (x, y). We

have discovered that it is not equal to zero for pixels that correspond to edges and corners in the

image I, but equal to zero everywhere else as we see in figure 3.10. This is not surprising, since we

have already seen that the histogram folding process causes the median map of textured regions to

go zero with increasing iterations, indicating that textured regions are being reduced in magnitude
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(a) (b)

(c) (d)

Figure 3.8: 3.8a Original image. 3.8b Texture contrast by Kokkinos et al. [54]. 3.8c
Textureness by Bae et al. [3]. 3.8d Our Texture contrast map.

with each iteration. Then, any part of the image that remains greater than zero either is not a

texture or has never contained any activity to begin with.

Because the map limn→∞ In tends to highlight corners and other details that are suppressed by

the median filter, we have called it the corner map:

Corner(I, r) = lim
n→∞

In,r, (3.6)

where r indicates the scale of the median filter M(., r).

Figure 3.10 shows the intermediate stages in the computation of the corner map as n increases.

3.7 Edge Maps

For our matching calculation, as we will describe in chapter 4, we require coarse-to-fine scale edge

maps. We also use these edge maps as the mass density functions for the generation of centroidal

Voronoi diagrams. In order to obtain this edge image F from a source image I, we first take a simple

normalized gradient magnitude map of the Gaussian filtered image, with filter radius r appropriate

for the desired scale. We will call this initial estimate ξ:

ξr = |∇Gr ∗ I|, (3.7)

where Gr represents a normalized Gaussian smoothing operation of radius r.
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(a) (b)

(c) (d)

Figure 3.9: 3.9a Original image. 3.9b Texture contrast by Carson et al. [14]. 3.9c
Textureness by Bae et al. [3]. 3.9d Our Texture contrast map.

This provides us with a coarse idea of where and how strong the edges are at the desired scale.

We subtract the result from 1 so that edges are represented by lower values. This edge map will

be contaminated by activity resulting from texture edges or non edge perturbations in the original

image. We may remove this unwanted activity by taking the corner map, Corner(ξ, r), of the edge

map F .

F ′′r(I) = 1− Cornerr(ξr(I)), (3.8)

The resulting map F ′′ appropriately represents edges and is uncontaminated by texture data

(figure 3.11). This is desirable for both of the tasks which this map will be used in; for the match

calculation, we wish to treat edges specially, but not textured regions; for the generation and

placement of Voronoi centroids, we do not wish to have increased density or clustering of points

within textured regions.

While it is possible to achieve similar properties in an edge map by taking the gradient magnitude

of the median filtered image, our method is preferable because it decouples the edge scale from the

texture scale; the former method requires more aggressive median filtering to remove larger scale

textures, and thus the accuracy is reduced for finer scaled edge maps.

Looking forward to our intended use for this edge map in the matching process, it is important

to recognize that the edge map for a particular scale should contain data from each scale below it.

We will use this map to prevent over-refinement of the collage near image edges. So, if the edge

map didn’t contain data from a wide range of scales, over-refinement would be allowed to occur

during the refinement passes (see chapter 4 for a more detailed discussion of this process). If errors
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(a) (b) (c)

(d) (e) (f)

Figure 3.10: 3.10a Original image I0 = I. 3.10b One iteration of corner map I1 =
|I −M(I0)| . 3.10c I2. 3.10d I3. 3.10e I4. 3.10f I5 ≈ Corner(I).

are given a low weight at one stage, they should also be given a low weight at every subsequent

stage. Therefore, for each scale after the first and coarsest, we multiply each edge map produced

so far.

F ′S(I) =
S∏
s

F ′′s(I) (3.9)

Finally, we would like to include in this map some sensitivity to the distance of any pixel from

important edges; preferably, pixels in empty regions of the image, far from edges and other salient

features should also have less weight. In chapter 7, we see that this encourages the refinement of

salient areas of the target image and discourages refinement in empty areas. We expand the edge

map F ′ by some radius R representing the falloff distance of the weight map. To do this, we take

a normalized Gaussian filter of the edge map and then multiply it with the original edge map F ′.

We also enforce some minimum weight c for empty regions by adding it as a constant, since we

prefer that all errors be accounted for to some minimal degree, no matter where in the image they

lie. That is,

FS(I) = GR(F ′S(I)) · F ′S(I)(1− c) + c (3.10)
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(a)

(b) (c)

Figure 3.11: An improved image edge map. 3.11a Original image. 3.11b Gradient Mag-
nitude. 3.11c Corner map of gradient magnitude, F ′′.
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Chapter 4

Matching

4.1 Introduction

As you recall, in chapter 1 we described the six main processes that constitute the photocollage

system: preprocessing and construction of necessary feature maps; the partition of the target image

into a set of tiles; the matching of each tile with a portion of some library image; the composition

of all images into a collage; color correction; and error calculation for further refinement passes.

In this chapter we first discuss the process for partitioning the target image into a set of tiles,

and then the process for matching each of these tiles with an image from the image library. Along

the way, we will discuss the aesthetic and efficiency considerations that go into the development of

each procedure. We then outline a process for recalculating regions that were initially calculated

unsatisfactorily.

First, we will begin a more detailed examination of the requirements for our collage in the areas

of accuracy and discernibility.

4.1.1 Achieving Accuracy and Discernibility

In chapter 1, we defined the ideas of accuracy and discernibility, using the work of Orchard and

Kaplan [69] as a reference. Often, accuracy and discernibility are treated as global properties of an

entire collage, but really there is no requirement that accuracy or discernibility be uniform across

the entire collage. Indeed, there are regions within a single target image in which high accuracy

is required and other regions in which high accuracy is not required. We may scale discernibility

proportionally as a function of the level of required accuracy. So, in stochastic, empty, and otherwise

uninteresting areas of the image, we may increase our efforts towards discernibility while relaxing

our requirements for accuracy. By localizing the priority between accuracy and discernibility we

may mutually satisfy our requirements for maximizing both of these qualities.

Two characteristics, of relevance in this section, that are tied to accuracy and discernibility are:

absolute size of the library image used; and the proportion of the library image contained within

the tile—particularly the proportion of image objects or other interesting image features contained

within the tile.
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It is easier to discern the content of images that are reproduced at a larger scale. As for the

proportion of the image used within the tile, it is also clear that images fragments containing more

of the complete image are easier to interpret by a viewer, since more context is available in which

to interpret image objects and structures. Furthermore, we assume that image regions in which

objects are reproduced completely are preferable. See figure 4.1 for an example of various different

styles of image fragment extraction, and their effects on discernibility.

(a) (b) (c)

Figure 4.1: 4.1a A small portion of library image, composited into a square tile. 4.1b A
larger portion of the library image, composited into a square tile. 4.1c Composition with
the tile boundary carved around image features.

How does the size and completeness of image tiles affect accuracy? Supposing we are drawing

tile images from a fixed, finite database, Tran et al. [92] have found that accuracy increases as tile

size decreases. This makes sense, since with small tiles the mosaic quality of aggregated elements

is more responsible for the depiction of the target image than the contents of the tile images

themselves. So, what we see is that while large tiles and near-complete image fragments are

desirable for discernibility, they are, under normal image mosaic circumstances, detrimental to

accuracy. However, as we have said, accuracy requirements may be localized within the image, so

we needn’t constrain the tile size uniformly across the entire image. Interestingly, even the difficulty

of meeting more stringent accuracy requirements is locally variable across the image. What we mean

by this is that even in a location where high accuracy is necessary, we may easily find an accurate

match through a fast, somewhat cursory matching process; however, this point comes into play in

match acceleration more than it does in accuracy/discernibility balancing.

The method of Orchard and Kaplan spends a large amount of time on matching details; the

details of the target image are matched with details within the library images. Medium scale image

features and object data are matched in exactly the same way, and account for a proportionally

equal amount of computational effort. For structures in the target image that are larger than the

tiles themselves, no explicit matching occurs at all. These large scale features are captured by the

mosaic quality of the product image. That is, at this scale, the representation of these features is

48



carried out by the aggregation of atomic elements. In many tiles the time spent matching details

to details is wasted, since many tiles will not contain significant detail in the target image. This

is somewhat mitigated by signature matching techniques such as Di Blasi et al. [10], Zhang [99]

and Range and Finkelstein [36]. We wish to spend more effort matching large-scale features and

less effort matching non-salient small-scale details. We wish to, in essence, eliminate the mosaic

characteristic as much as we can by choosing tiles that contain object structures, and matching

these structures entirely through the content chosen for each tile.

In summary, we may relax the constraints of accuracy in certain special cases in order to allow

a more discernible result. We will discuss the practical, implementation consequences of these

observations in more detail in this chapter.

(a)

Figure 4.2: “The Great Paranoiac” [84] by Salvadore Dali. This piece exhibits both high
accuracy and high discernibility. Furthermore, the matching between the target image, the
head of a man, and the element images, human figures engaged in varying poses is performed
on a large scale; this image does not rely at all on mosaic properties to represent the target
image.

4.2 Collage Tiles

We wish to find a tiling for which there is likely to be a set of library images that fulfill the criteria

we have established for a satisfactory photocollage. We wish to find a tiling for which there is a

chance for large-scale correspondences to be found between objects in the target image and objects

within the database images. At the same time, we wish to find a tiling for which it is possible, in a

reasonable amount of time and with a reasonably sized image database, to establish a collage with

significant visual similarity between itself and the target image.

For this purpose, we want to arrange tiles so that important edges and important semantic data

is contained therein. In doing this, we are shifting most of the responsibility for producing good

matches to the matching algorithm, since tile edges will never or seldom line up with image features.
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(a) (b)

Figure 4.3: A detailed view of an image mosaic produced by Orchard and Kaplan [69].
In the red circle, the edge of the tile and the object boundary in the target image match.
We wish for our own method to avoid this circumstance. 4.3a Detail of target image. 4.3b
Image-mosaic.

Figure 4.3 shows a detailed section of a mosaic by Orchard and Kaplan in which tile/feature

alignment occurs. One can imagine a tiling scheme that uses regions of relatively constant color

in the target image (figure 4.4); in this case, much of the work in matching the collage data to

the constraint image has already been taken care of as part of the tile calculation process; the

matching algorithm then needs only to find image regions that have constant color similar to that

of the region from which the tile was derived. While this effect can be quite striking, it is not quite

consistent with the aims of our project.

(a)

Figure 4.4: Detail of the collage “Brooke”, by Derek Gores [40]. For this portion of the
collage, it appears that the artist has segmented the target image by color.
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In some sense, this is the tiling for which the subsequent matching problem is the easiest.

Conversely, the tiling mechanism we have proposed will produce a tiling for which the matching

problem is more “difficult”, but we have chosen it because we propose that it will produce interesting

results (in chapter 7 we show that this is true). The segmentation based method heretofore described

solves much of the matching problem in advance by using the data present in the target image to

produce a tiling that in itself captures much of the essence of the image. By forcing a tiling that is

out of sync with image data, as we propose, we are forcing the matching algorithm to find a result

that derives all of its essence from correspondences between data in the database images and the

constraint image. Edges and features of the target image must be duplicated through the content

of the tile images alone.

Although the tiling we propose has made the matching problem more difficult from the outset,

we have devised the matching algorithm so as to partially alleviate this difficulty. This will be

discussed in more detail in the following section.

We have explored two approaches to the problem of tile arrangement. Since we are referring

to the original image content in order to find a satisfactory segmentation, we may still use ideas

from the image segmentation literature for inspiration. However, the image segmentation literature

primarily focuses on partitioning the image along important semantic content boundaries in the

image, particularly object edges. Since we wish to find a segmentation for which edges are contained

within the interior of regions, and not on region boundaries, we cannot use any existing segmentation

algorithms that we know of. However, we may take a segmentation produced from an existing

algorithm and use it as input for a process that produces a segmentation with the desired properties.

We have produced tilings with some desirable qualities by postprocessing segmentations gener-

ated via the mean shift method (MS), as implemented in the EDISON segmentation software [38,

63, 17, 16]. In order to produce the regions for our segmentation, we essentially adapt the technique

for producing Voronoi tessellations to the task of processing edges, rather than single points. An

outline of the algorithm follows.

For each pair of regions in the MS segmentation that share any number of boundary points,

we produce one region within the new segmentation. The new region is the union of the two old

regions. Since each old regions will be added to more than one new region, and we require our

new segmentation to be a valid partition of the image (in which each pixel belongs to only one

region), we must divide each old region so that some connected part of it belongs to each of the

new regions, in a sensible manner. We do this by ensuring that each pixel of the old region will

become a member of the new region for which it has the least distance from the closest pixel in the

pair boundary.

Another way to describe this is to say that the boundary between each pair of regions corresponds

to a new region, and the pixels that are contained within the new region are those which are closer

51



(a) (b)

Figure 4.5: 4.5a Mean-shift segmentation, with hand-chosen parameters, via EDISON [38].
4.5b Segmentation induced from the boundaries of the EDISON mean-shift segmentation.

to the pair boundary than to any other pair boundary. The results of this algorithm are displayed

in figure 4.5.

We have found that it is somewhat difficult to control mean shift segmentation for the ap-

plication of tile generation. It is difficult to choose parameters that produce tiles of consistently

reasonable shape and size; in particular, it is difficult to choose a set of parameters for the EDISON

segmentation system that produce desirable results for most input images. We have found that

hand-tweaking is often required.

(a) (b) (c)

Figure 4.6: Three mean shift segmentations, produced by EDISON [38] with three sets of
parameters. Note that for all segmentations the tiles vary widely in size, shape, and position.

The method of Voronoi tessellation is easy to control and creates regions that are simple,

convex and compact. Also, Voronoi tessellations have commonly been used to partition images

for mosaics [35, 43, 25]. We therefore have adapted this method for our own purposes. We have

found that computing a centroidal Voronoi Tessellation, with randomized start points, produces

adequate results for our purposes (4.7). A centroidal Voronoi diagram is a Voronoi diagram for
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which the centroid of each region is positioned at the center of mass within the region for some

mass distribution function [28]. For the mass function, we use a feature map computed from the

constraint image. We compute the centroidal Voronoi diagram by Lloyd’s algorithm [27]. For

the feature map, we use a modified gradient magnitude map (in which edges due to texture are

removed), computed for a scale that depends on the size of the desired Voronoi regions. See chapter

3 for a more detailed discussion of the corner map that is used in this feature map calculation.

(a) (b) (c)

Figure 4.7: 4.7a Feature/edge map. 4.7b Voronoi tiling, with centroids placed randomly,
but distributed according to the feature map. 4.7c Centroidal Voronoi tiling, using the
feature map as the mass function, with initial centroids placed randomly.

One problem of the Voronoi tessellation is that, aside from the placement of the centroids, the

region shapes do not respond at all to the underlying image data. This may be solved by using

bilateral Voronoi tessellation, with additional dimensions for additional feature maps. Bilateral

Voronoi diagrams have been used for image segmentation by Inoue and Urahama [49]. However, as

we have said, our main aim is to encompass salient image features inside tiles, and we have achieved

this. Another effect of using a Voronoi tesselation, is that the area of each tile is relatively uniform,

and a lattice which tends to the hexagonal in low mass regions. Little tweaking of parameters is

required to obtain satisfactory results.

4.3 Matching Problem Formalization

For each tile, we wish to find an image within the database, and a sub-image within that image, that

best represents the region of the target image contained within the tile. Previous investigators [52,

36, 69, 51, 9] have used SSD or sum of absolute error metrics to measure perceptual distance between

two images, by summing the distances between individual pixels. Ashikhmin [2] has indicated that

simple smooth metrics for measuring image perceptual distance lead to over-smooth results when
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used for texture synthesis, since object edges and corners are not properly accounted for. Therefore,

we do not necessarily want to find the library image with with the least absolute error, although

this is a factor in the calculation. We wish to consider higher order image features in order to more

easily find a match that is appropriate in the context of the collage. More specifically, we compare

each sub image in the database with the current sub image of the target image according to the

following criteria:

• Step edges in the constraint image should be matched to step edges in the database image.

Edges should match on a large scale (relative to the level of coarseness being evaluated

presently), and minor deviations in the edges which do not correspond to each other should

not unduly affect the score.

• The chosen sub-image should have low total absolute error wherever possible, except where

it contradicts the other criteria.

• The chosen sub-image should have similar textural and smoothness properties to the region

of the original image being examined, particularly texture contrast. Texture contrast is used

as a key feature in many image segmentation systems [59].

We will compose an energy function that contains a term for each of these criteria, and then

find the best collage according to these criteria by minimizing the energy function. The energy E

is defined as

E = wlEl + wcEc + wtEt. (4.1)

where El is the luminance term, Ec is the chrominance term, Et is the texture contrast term. The

quantities wl, wc, and wt are parameters that control the influence of each term in the function.

These parameters may be chosen by the user in order to favor particular quality factors. In order

to reduce the number of parameters, one may vary the chrominance parameter proportionally with

the luminance parameter, as such: wl = 1− wc. In chapter 7 we demonstrate the effect of varying

the components of ~w = (wl, wc, wt).

4.3.1 Calculation of Energy Terms

All calculations are performed in YIQ color space, so that luminance and chrominance may be sep-

arately treated. It is known that human perception is more sensitive to luminance information [90],

so it is preferable to treat it separately from chrominance. See chapter 7 for further discussion on

the separation of luminance and chrominance. We then have, for an image I,

I = (Iy′ , Ii′ , Iq′). (4.2)
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Luminance Energy, El is calculated as a simple sum of absolute differences of luminance values

across the two images being compared:

El =
∑

(x,y)∈A

F (x, y)M(x, y)|Iy′(x, y)− Ty′(x, y)| (4.3)

A = I ∩ T indicates the rectangular region of intersection between the library image I and

target image T , and M ∈ [0, 1] is a real-valued function representing the tile mask. M(x0, y0) = 0

indicates that the pixel at (x0, y0) is outside the current tile (we set M = 1 for all (x, y) ∈ A in order

to ensure that the resulting match is valid even with alternate tile boundaries—this is not required,

however). F ∈ [0, 1] is a real-valued map that indicates the strength of important edges within the

target image. F (x0, y0) = 0 indicates that the pixel at (x0, y0) belongs to an important edge. The

rational for including this factor in the sum is provided in the section 4.3.2, which follows. Further

details of the calculation of the map F are provided in chapter 3.

Chrominance Energy, Ec is calculated in the same way as El is, but the sums of each color-

component are combined.

Ec =
∑

(x,y)∈A

(F (x, y)M(x, y)|Ii′(x, y)− Ti′(x, y)|+ F (x, y)M(x, y)|Iq′(x, y)− Tq′(x, y)|) (4.4)

Texture Contrast Energy, Et is calculated as the sum of absolute differences between the

texture contrast values across the two images. The magnitude of each texture contrast value Iτ is

proportional to the contrast of the texture at the pixel (x, y). Details of the calculation of this map

may be found in chapter 3.

Et =
∑

(x,y)∈A

F (x, y)M(x, y)|Iτ (x, y)− Tτ (x, y)| (4.5)

4.3.2 Details of Energy Term Calculations

A Note on Texture Contrast as an Image Feature One characteristic of image mosaics we

have observed is that they often contain high-amplitude noise, relatively uniformly spread over the

area of the mosaic image, regardless of the noise and texture properties of the original constraint

image. In regions of the constraint image that contain a high amount of noise or active textures,

this “collage noise” may not significantly degrade the visual effect. However, in regions of the

constraint image which are smooth, this decidedly unsmooth activity in the mosaic can be very

distracting, as in figure 4.8.

Therefore, it may be desirable, for certain images, to match smooth areas of the constraint

image with smooth regions of the library images. Texture contrast is, in some sense, a measure of
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(a) (b)

Figure 4.8: There is a high amount of noise in the image mosaic, caused not only by tile
boundaries, but by high-frequency structure in the tile images. 4.8a Detail of target image.
4.8b Detail of mosaic.

smoothness. Our texture contrast map is preferable to a simple gradient magnitude map because

it is not unduly influenced by non-texture edge data, and it does not suffer from haloing artifacts

(spurious light and dark gradients abutting edges), as some other smoothness or texture contrast

maps do. For these reasons, we have designed our energy minimization framework with texture

contrast in mind.

Edge Feature Map F

In the previous sections, we used an edge map F to weight the influence of differences between

pixels in the library and target images. Now we will briefly explain the calculation of this edge map

and discuss its uses.

Before the match calculation process begins, a feature map F (I) of the target image I is cal-

culated for several scales, from coarse to fine. The scale of F that is used is roughly proportional

to the size of the tiles being analyzed; for large tiles, a coarse scale is used, so that F represents

large-scale, high contrast edges. For smaller tiles, F contains finer, more delicate edges, as well

as more coarse edges. We obtain edge magnitude data for F that is unbiased by edges belonging

to texture features, since we treat texture data separately from edges. For specific details on the

calculation of F , please see chapter 3, section 3.7.

The absolute error is then multiplied with an edge calculation for large scale, high contrast

edges. The purpose of this is to suppress the influence of errors in the collage that correspond to

these prominent edges. We do this in order to improve the discernibility of the matches in the

neighborhood of this type of edge; if we did not, the collage might be over-refined in these areas,

obscuring the content of the collage images.

A Note on Large-Scale, High-Contrast Edges It may seem counterintuitive to use a relaxed

match criteria in regions of the image where our feature map has responded to high salience; in

this case, our decision is a matter of scale. The feature map we have computed responds to high

56



(a) (b)

(c) (d)

Figure 4.9: 4.9a Region of the target image containing a high-contrast step edge. 4.9b
Library image composition after matching. 4.9c Library image composition after matching
and color correction. 4.9d Error between target image and collage image.

contrast, large scale edges; that is, edges which have a high step, are relatively long, and relatively

unbothered by deviations and curves from the next higher scale. In essence, these edges are simple

and bold, and can suffer a great deal of degradation before they no longer are able to convey

the information to which they had been originally charged in the target image. We hypothesize

that these regions, because they can withstand degradation, are perfect candidates to take large,

uninterrupted images patches from the library, regardless of high errors between the library image

and source image that might occur. Figure 4.9 shows an example of the results of this strategy.

Image Scaling

Each image, as it is compared to the contents of the current tile, is scaled so that its area is

proportional to the area of the current tile. This is done for two reasons; first, it is assumed that

the size of the content of the library image is roughly scaled to the size of the image in which it is

contained (we rely on the user to ensure this); therefore, to faithfully represent the content of the

database image, we must ensure that its sub-image is proportional to the size of the overall image.

We do not wish to take a portion of the database image that appears as nonsense when composited,

out of context, with the entire collage. The easiest way to ensure this is to use the entire image,

rather than a portion. Unfortunately, as Orchard and Kaplan observed, the lost degrees of freedom
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for shifting the image into an optimal position will result in a poorer match. Rother et al. [78]

trimmed the library images to a region of interest, rather than using the entire image; while this

method has its uses, which they describe, and certainly ensures that important image information

is preserved within the collage, it does not help with the problem of increasing match efficacy. As

always, we wish to find a balance between discernibility and accuracy.

A second reason for scaling the image to be proportional to the tile area is to reduce the

number of possible shifts and thus speed up the match calculation. Again, we must balance speed

considerations with quality considerations.

Choice of Region of Interest We want to choose a subregion that has both represents a large

portion of the main content of the image, but also closely matches the content of the target image

within the tile. We prescale the image so that its largest dimension is proportional to the longest

dimension of the tile, and we do not search scale space, so we are actually only computing the

match score for a shift in two dimensions.

However, we would still like to preserve as much semantic content from each library image as

possible. In particular, we should avoid, whenever possible, having an important object in an image

only partially reproduced in the collage (although this is difficult in practice). We may avoid some

of these cases by sculpting the boundaries between images such that the objects within images are

considered and not arbitrarily cut off. This problem is similar to and, in some cases, equivalent

to the seam repair process undertaken in patch based texture synthesis techniques and collaging

techniques, as described in chapter 2.

Rother et al. [78] use a region of interest calculation that favors the center of the image as well as

regions with high entropy, where entropy is a measure of the uncertainty of the value of each pixel,

in a statistical sense [80]. Each image is preframed, before the composition of the collage, so that

90% of the image entropy is contained within the region of interest. Since our tile partition is not

directly influenced by the distribution of information in the target image, and since the entropy of

the portion of the target image contained within a given tile is arbitrary, this scheme is not entirely

suitable for our purposes. For instance, it may happen that the target image within a tile contains

very little entropy, and thus perhaps the portion of the library image chosen for that tile should also

contain very little entropy. We have chosen only to favor central regions for our region of interest

calculation, and control the utilized proportion of the library image as a parameter. That is, shifts

of the image, for the purpose of the match calculation, are performed with respect to the center of

the image. We are faced with the task of satisfying two goals, which may, at times, conflict with one

another. We wish to use interesting regions of each library image, in service of producing a collage

with high discernibility, but we also wish to maintain high accuracy in representing the content

of the original target image. These aims will conflict when the region of the library image that
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allows for the most accuracy contains little of the interesting content of the database image. We

can exercise some level of control over this trade-off through a scale parameter sROI, which allows

us to control what proportion of the library image is compared, and thus the number of possible

shift positions. Using a larger scale parameter will result in the availability of a larger number of

shifts. Then, where DT is the longest dimension of the current tile, the corresponding dimension

of the current library image DI is recalculated as follows:

DI = sROI ·DT , (4.6)

and the other dimension of the library image is appropriately scaled to maintain the original image

proportions. We allow the library image only to be shrunk, and not inflated. Since the library

image should never be smaller than the current tile, we have sROI ≥ 1.

A Note on the Effect of the Scale Parameter sROI Lower values of sROI favor the dis-

cernibility of the library image within the tile, because they allow a large proportion of the library

image to be used; discernibility is high because we are discarding very little of the image, and most

discarded data will lay on the edges of the image. However, in these cases there are fewer shifts

available for comparison, and thus the only chance for high accuracy is for the entire image to

match the contents of the source image within the tile; this is unlikely for a general image library.

Conversely, values of sROI that most favor accuracy in the collage are those that use only a very

small portion of the library image. In this case, there are a high number of shifts available, and

thus the chances of a very good match are relatively high. However, the chances that this small

portion of the image will contain a high amount of interesting information is relatively low, for a

general, non-stationary image. So, in figure 4.10 we see that sROI controls, to a large extent, the

balance between discernibility and accuracy on a global scale.

Alternately, we may adjust sROI as a function of refinement level or tile size in order to add

some localization to these scale effects. We explore this further in chapter 7.

4.4 Acceleration of the Matching Process

Traditionally, a large library of images has been required in order to produce an image mosaic of

good quality. This is due to the fact that mosaic quality appears to be linearly correlated to library

size [92]. Therefore, it is desirable to have a large library to search, which leads to a lengthy search

process if performed by brute force. Ideally, we would like the user to be able to compose a collage

from a library of images that is arbitrarily large, without an extended wait time. It is necessary to

have a method of searching a large library of images fast enough that a collage may be computed in

a reasonable amount of time (the definition of reasonable, in this case, being somewhat dependent
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(a) (b) (c)

Figure 4.10: 4.10a Target image. 4.10b Composition with low sROI 4.10c Composition
with high sROI While the discernibility of the composition in 4.10b is higher, it is apparent
that the composition in 4.10c is a closer match to the original, 4.10a

on how we define reasonable quality for the output).

Näıvely done, matching takes much too long. Using brute force, we would have to compare

each pixel in each sub-image of each database image to each pixel in each sub-image of the target

image. The time complexity of this operation is O(KM2N) where K is the number of images in

the library, M is the number of pixels in each library image, and N is the number of tiles in the

constraint image. We have M2 rather than M because we must measure each of M pixels in a given

library image for each of M possible spatial translations with respect to the target image (that is,

for which the library image is entirely contained within the target image, and for which the tile

region is entirely contained within the library image). Figure 4.11 shows a typical setup for a match

calculation. We have adopted acceleration techniques that do not reduce the time complexity, but

nevertheless reduce the computation time to within feasible limits.

In the photomosaic literature there have been two main approaches to match acceleration.

Coming at the problem from the direction of increasing the speed of matching at the cost of accuracy,

several approaches have been developed that rely on the precomputation of low dimensionality

signatures which may be quickly searched [10, 50, 36, 99]. From the point of view of improving

accuracy while attempting to maintain reasonable efficiency at the cost of speed, Orchard and

Kaplan [69] have advocated the online computation of match scores between image sub-regions,

taking into account various shifts both in image and color space. We use a method that combines

these two approaches into a matching mechanism that can quickly search through a large image

collection, screen out the poorest candidate images, and then switch to a more accurate method.
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(a)

Figure 4.11: For each tile, outlined here in green, each pixel of the library image, shaded
purple here, must be compared with each pixel of the target image within the tile, shaded
orange.

4.4.1 Hierarchy

We employ a hierarchical approach in which fast, low level calculations are used to pare down the

database to a small subset of likely match candidates, in several stages. As the complexity of the

feature set increases with each stage, the number of images whose features must be calculated and

compared decreases. In this way, we are able to use a system of successive estimations to find a set

of good match images, without having to exhaustively search the entire database. This is similar

to the pyramidal coarse-to-fine image matching schemes used in image registration [101] such as

those of Wong and Hall [98], Zheng and Chellappa [100] and Kumar et al. [56].

We begin with a fast initial matching pass, inspired by content based image classification meth-

ods such as those employed by Oliva et al. [67], which is intended to reduce a large library of

images to a small set of good candidate images. We then perform a sequence of pixel-wise com-

parison passes, one for each of various levels of resolution, for all valid translational shifts of the

image against the tile mask, reducing the library at each resolution level, so that fewer images are

available for consideration at the next stage. At the final and highest resolution of consideration,

the image subregion with the best match score is chosen for composition into the final collage.

First Matching Pass

The purpose of the first matching pass is not to find good image subregions for composition into

the current tile, but to reduce the image library to a subset of images, each of which is likely (or

more likely than the set mean) to contain a good image subregion. Therefore, we do not calculate a

match calculation over all potential shifts of the image against the tile, but only calculate a coarse

set of statistics, which we compare with the statistics of the source image in the current tile. Oliva
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et al. [67] were able to analyze large scale features of images in order to categorize them according

to semantic content. We wish to categorize the images in our library not by semantic content, but

by the prevalence of similar regions to the tile region currently under consideration. The match

calculation we perform may be summarized as the minimization of the following equation:

E0 = wcE
0
c + wtE

0
t , (4.7)

where E0
c is the luminance and color term and E0

t is the texture-amplitude term. In this equation,

E0 is distinct from E in equation 4.1. The quantities wc and wt are parameters that control the

influence of each term in the equation.

Calculation of Energy Terms We calculate the value of each term by computing the mean

value of the target image, within the current tile, and comparing it with a histogram for each library

image. For each of the luminance, chrominance and texture contrast terms, we measure the height

of the bin, in each library image, that corresponds to the mean value within the current tile. An

image with a large bin for a given value will ostensibly contain a higher proportion of image data

corresponding to that value, and therefore has a higher chance of providing a good match. In this

way, we wish to use the histogram of each library images to estimate, by bin height, its suitability

as a match for the current tile.

For each image, a coarsely binned (eight bins) histogram is calculated. The histogram is com-

posed of local mean luminance, chrominance, and texture contrast values, the mean being taken

over a region with area close to the area of the current tile under consideration.

A score is then calculated for each database image. The score is proportional to the number of

elements in the bins corresponding to the mean color and texture contrast of the image sub-region

within the current tile. Specifically, we subtract the height of the bin from some sufficiently large

positive integer, no less than the area of the current tile, so that the result is always positive.

The motivation for this procedure is that library images with a high number of pixels similar to

the tile mean are likely to give good pixel-wise matches. This assumption will fail in some cases:

for instance, when the local mean differs significantly from the actual image region. However, since

image data is often correlated across scales [5], and images are understood by the human vision

system according to a multiscale decomposition [68, 83], we believe this is a reasonable and effective

scheme. In chapter 7 we show that this strategy does indeed accelerate matching with acceptable

error costs. The images with the best matches are kept for the next pass, according to a proportion

specified by the user.
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Subsequent Matching Passes

Once a subset of desirable images has been gleaned from the library, a series of identical matching

passes is performed with each pass utilizing a finer scale than the previous. In each of these passes,

a full match calculation is performed; each pixel of the library image is compared with each pixel of

the current tile, over every possible translation, as described in the previous section. The database

images with the best matches are kept for the following pass, where the match calculation will be

performed at a higher resolution, thus increasing the accuracy. The proportion of images kept for

the next pass is, again, specified by the user. After the final pass, where a small number of images

is analyzed at full or near full resolution, a single image subimage is selected for composition into

the tile.

We have chosen to limit the maximum resolution for matching to 1/4 of the full resolution, in

order to maintain a high processing speed. Of course, it is possible that there exists somewhere

in the library a near-perfect match at full resolution; we assume that this ideal case is unlikely for

most libraries.

(a)

Figure 4.12: A visual guide to the matching process.
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Preprocessing

In order to speed up the comparison of image features, we precalculate the features for each image

in the database and save a new file for each library image and each scale level. This dramatically

cuts down the time spent loading each image and extracting its features. Preprocessing needs to

only be performed once for a given library.

4.5 Refinement

Because we wish to use to the largest portion of each library image as possible, both for speed and

aesthetic considerations, it is desirable to use as coarse a partition as possible for our tiling with

the fewest and largest tiles. However, it is unlikely that any collage exists that meets our accuracy

criteria, described in chapter 1, for such a coarse tiling. Therefore, in this case, we would like to

reprocess certain parts of the collage to improve their quality.

(a) (b)

(c) (d)

Figure 4.13: 4.13a Collage. 4.13b Original target image. 4.13c Error between collage
and original. 4.13d Collage with recomputed regions.
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Since we make an initial attempt to calculate a collage with tiles of some initial size, and it is

difficult to efficiently recalculate another configuration of similarly sized tiles to produce a collage

that shows any improvement, we compute a new tiling, which is less coarse and contains smaller

tiles. In this way, we relax our initial conditions in order to simplify the problem and obtain better

accuracy. We calculate matches for only those tiles in the new tiling that lie over undesirable

regions of the last computed collage. The new image matches are then composited over top of the

old collage. This process is iterated until a desirable result is obtained, as shown in figure 4.13.

We define “undesirable regions” of the last computed collage as regions in which the error

density between the collage and the original image exceeds some threshold, or which fall into the

top percentage of tiles in error density (we have chosen to refine the worst 25% of tiles, as explained

in chapter 7). By “error density”, we mean the total sum of the pixel-wise difference between the

current collage and the target image, divided by the area of the current tile. The pixel-wise difference

between the current collage and the target image is expressed as the map E . Also, since we require

higher accuracy in some regions of the collage, and higher discernibility in others, we multiply the

error E map by a salience map S, so that high error neighborhoods are not refined if they do not

contain significant data. For example, if high errors occur in a neighborhood that contains open sky

in the original image, we may not not wish to refine it any further; a looser match is sufficient here,

and perhaps even desirable, since further refinement could break up and obfuscate the content of

the library image that has been composited into the collage. Each refinement operation has a cost,

which is paid in the discernibility of the collage. Therefore, we wish only to perform refinement

where it is more important to transmit the data from the original target image than it is to faithfully

preserve the data from the library image; this priority is observed where the salience of the target

image is high, according to the salience map S that we define in chapter 3.

Also, since in our match calculation, described in the previous section, we have weighted the

contribution of each pixel by an edge feature map F , we must also modify our error map accordingly.

We do not wish to refine regions in which we have already agreed to tolerate a higher error threshold,

so we therefore multiply our error map by the same edge map. Our final error map is thus defined

as follows:

Efinal = E · S · F (4.8)

where E = |C − T | is the absolute error between the collage C and the target image T , S is the

salience map, obtained as the corner map Corner(T ) of I, and F is an edge map, obtained according

the method described in the previous section.

An error density, based on the error map heretofore described, is then calculated for each tile in

the next, more refined partition. If the error density within each tile exceeds a certain threshold,

or is among the highest error densities, that tile is activated and a match is recalculated for it in
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the next pass.

In the previous section, we discussed a method for relaxing the matching criteria in the neigh-

borhood of important edges. Since the salience map tends to respond to edges in the image, its

effects will thus be canceled out near certain important edges, since we combine the maps of these

phenomena multiplicatively; that is to say, we have chosen to relax the strictness of the match

calculation near certain edges, so the high-salience of these same edges is thus disregarded in the

choice of which tiles must be re-calculated. For this reason, we choose a scale for the salience

map that is relatively high, so even though large scale, high contrast edges are left alone in the

refinement process, other salient data will appropriately be flagged for re-processing, as in figure

4.14.

(a) (b) (c)

(d) (e) (f)

Figure 4.14: 4.14aTarget Image. 4.14a The edge map F , for increasing discernibility
around edges. 4.14b The salience map S, which indicates high priority for further refinement
in future iterations. 4.14d The intersection of S and F . Note that each map has been
calculated at a scale so that one does not completely contradict the other. 4.14b The raw
error map between the collage and the target image. 4.14d The raw error map is multiplied
with S and F to create the final error map.
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Chapter 5

Compositing

5.1 Overview

After the matching process, for a given refinement level, we have, at our disposal, the following

data: a list of tiles along with their position coordinates; and a corresponding list of images, along

with their coordinates and scales with respect to each tile. It is then our task to use these data to

compose an actual collage image, which may be further processed or kept as the final result.

Compositing occurs after each collage refinement stage; the newly matched tiles are re-rendered

and a new collage is produced. This compositing pass requires additional image analysis, and

introduces additional information into the specification of the collage. This additional information,

which consists of an edge map and error map of the collage so far, is used for the computation

of the next refinement level. Ideally, all necessary information for the specification of the collage

would be computed as part of the match calculation, also described in chapter 4. However, the

image analysis and modification steps performed in compositing—specifically, color correction and

seam-repair—are more costly in terms of computation time, and thus have been collected at the end

of each refinement pass (for instance, it is impractical to compute a Voronoi tesselation for every

possible library image at each tile). We wish to avoid the computation of a new tile partition and

color correction for every possible image when only one single case will be used, in the end. This

is the same philosophy that has guided our match-acceleration methods. In fact, the choice of tiles

to be refined in the next iteration, which we described in chapter 4, is made after the compositing

process, in order to take into account the new information that has been introduced into the collage

through the compositing process.

5.2 Seam Repair

Efros and Freeman [29] use least cost paths through the error map between overlapping tiles to

find visually inconspicuous seams. Rother et al. [78] use Poisson blending in the alpha channel,

modulating the amount of feathering by edge strength.

Since we have used centroidal Voronoi regions to generate our tiles, we may reuse the Voronoi
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centroids we have computed to recompute modified Voronoi regions that have the seam hiding

characteristics we desire. This applies also for other types of Voronoi tesselations, and may even be

extended to generalized region maps. However, the adaptation of this method for general regions

may increase the computational complexity of the algorithm.

As in Autocollage, we desire image transitions that are softer in smooth regions of the image

while more abrupt along image edges; also, as in Autocollage, we wish to respect semantic content

within the image. In order to do this, we recompute our Voronoi tesselations in such a way that edge

data from the library image is taken into account, with a provision for boundary edge feathering.

5.2.1 Path Cost Voronoi Diagrams

In order to recompute a Voronoi partition so that its boundaries adhere to important image edges,

we may use a Voronoi diagram with path cost as the distance metric, as in Mould’s treatment of

image-guided fractures [65]. Path cost refers to the cost of the least-cost path through a weighted

graph, from each pixel to the centroid. The weights of the graph, as in Mould’s paper, are derived

from edge information in the image to be composited, and the images that it overlaps. Where there

is an edge between a region pixel and the centroid, the least cost path will not pass through the

edge, but go around it; therefore, the cost of this path greater than it would be if the edge did not

exist. The result is that region boundaries tend to fall along edges. The path cost for each pixel

is calculated using Dijkstra’s algorithm [24], with each centroid placed in the heap as a start node.

The use of Path Cost Voronoi diagrams offers several advantages for preservation of content within

the tile images. Irregularly shaped image objects may be accurately carved out of the main image,

effectively preserving semantic content and maintaining high discernibility. Figure 5.1 shows three

intermediate stages in the course of Dijkstra’s algorithm.

Since we have in our graph one node for each pixel, the time complexity of this operation is

O(N logN), where N is the number of pixels in the target image. We must process each of N

pixels once, and there is an O(logN) cost associated with storing each node on the heap. Please

see Mould’s paper [65] for details of the Path Cost Voronoi region method.

Edge Weights The edge weight map e, over which the path cost is computed, is composed as a

combination of edge maps from each of the tile images being composited. First, we will describe

the process for obtaining edges for each individual tile image, and then we will describe the process

of combining them to form one overall edge map. All tiles are computed simultaneously from a

single edge map that includes contributions from each tile.

For each tile image, a gradient magnitude map is taken for some scale coarser than the finest

scale of the image, and then texture edges are removed. A Gaussian kernel is used to scale down

the image. The texture edges, or edges due to textures rather than object boundaries, are removed
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(a) (b) (c)

Figure 5.1: Three intermediate stages in the Path Cost Voronoi diagram calculation. The
regions (white) grow larger with each iteration. The node weight map is shown in the
background. Notice that regions curve around edges in the weight map.

via the corner map method; by taking the absolute difference of the image with its median filter,

iteratively, we may suppress texture edges, as specified in chapter 3. We use only edges that do not

belong to textures, because we wish to segment the image content by object, not texture; textured

regions should not be treated separately. In essence, we are only interested in segmenting the

images according to object boundaries, and thus wish to discount texture information altogether.

We additively combine edges of several scales in order to capture larger features as well as certain

prominent details.

In summary, for a given library image I, the contribution e(I) to the final edge map efinal is as

follows:

e(I) =
M∑
i=0

|∇G2i ∗ I| (5.1)

where M is the total number of scales used, ∇ is the two-dimensional gradient operator ∇I =

[∂I/∂x, ∂I/∂y], and G2i ∗ I is the convolution operation with a Gaussian kernel of width 2i.

The purpose of recalculating the regions after matching is to resolve overlaps between tile images

so that each collage pixel is assigned to only one image. As we mentioned before, we must update

the partition of the target image to account for the library images that have been chosen to fill

each tile. Therefore, for each pixel in the collage we must somehow take into account the edges

of several overlapping images at once. We have done this by using, for each pixel (x, y) of the

final edge map efinal, the maximum edge strength of all images overlapping (x, y). Additionally,

we weight the influence of each edge pixel according to its distance from the boundaries of the

original Voronoi region associated with the current image. This distance weighting is calculated

as a simple Gaussian convolution of a binary edge map of the original Voronoi region (using a

Gaussian function of distance). After all, we wish for our new region boundaries to roughly follow

the old boundaries, since it was these old boundaries that guided the matching calculations. The

Gaussian filter simply produces a map that falls off in intensity, with distance, from the original

segmentation boundaries. So, the final edge map efinal is defined as follows:
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efinal(T, x, y) = Max(ei(Ii(x, y)) · v(x, y)i), (5.2)

for all edge maps ei = e(Ii) and where v(x, y) ∈ [0, 1] is proportional to the distance from a boundary

in the original Voronoi Tesselation, with greater weight closer to the boundary. we calculate v as

follows:

v(x, y) = GR(TileBoundary(x, y)), (5.3)

where R is a scalar on the order of the distance across which tile images are blended, and GR is

the normalized Gaussian blur operation. Figure 5.2 shows various components of this edge map

calculation.

(a) (b)

(c) (d) (e)

Figure 5.2: 5.2a Original tile image I to be composited. 5.2b Edge map e of I. 5.2c
Boundary of the tile to be composited, from the original Voronoi segmentation. 5.2d Dis-
tance map v. 5.2e Contribution of I to final edge map efinal.

Feathering To enable smooth transitions when necessary between collage tiles, we feather the

tile boundaries by applying a simple adaptive Gaussian blur to the region masks, in order to

convert each binary mask to a continuous mask with soft edges. Within the adaptive Gaussian blur
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operation, the radius of the blur kernel is proportional for each pixel (x, y) to the strength of the

edge in the map efinal(T, x, y). The purpose of this is to allow wider, softer feathering in low-activity

regions, while maintaining crisp region edges near object boundaries and other important edges in

the tile images, as illustrated in figure 5.3.

(a) (b)

Figure 5.3: 5.3a Composite with a narrow maximum feather radius. 5.3b Composite with
wider adaptive feathering. Notice that while tile boundaries near object edges, such as the
tree, remain well defined.
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Chapter 6

Post-Processing

6.1 Motivation

It may happen that the best match for a particular tile resembles the content of the tile to a

certain degree, but differs enough to cause a visual interruption in the transmission of the target

image through to the collage. Similarly, it may be that the composition of the collage, even with

seam repair and special transitions between images, results in distracting discontinuities between

adjacent tile images that do not reflect the continuity of the original source image.

In these cases, we would like to alter each of the tile images, or the collage as a whole, so that

they better represent the content from the target image. However, we do not wish to damage the

content of the tile images themselves or impair their efficacy in representing the deeper level of

content that is expected to be present in photocollages. In short, we do not wish to negatively

affect the discernibility of the tile images.

Also, we wish to alter the images in such a subtle way as to respect the overall aesthetic of the

mosaic composition process; we do not want to tamper with the final result in such a way as to cast

doubt on the nature of the original collage creation process. With these considerations in mind, we

have developed a postprocessing system for improving the visual appeal of the collage after it has

been created.

Previous Approaches Postprocessing of image mosaics, in order to increase accuracy at the

cost of discernibility, has been implemented in past systems. Finkelstein and Range [36] sought to

match the average color of the target image within each tile by appropriately translating and scaling

each color in the tile image. Orchard and Kaplan [69] pointed out that this technique often distorts

the content of the tile images beyond recognition, therefore significantly reducing its discernibility.

They proposed a technique that calculates the optimal shift for each color component, in YIQ

space, as part of the match calculation. Figure 6.1 shows these two methods compared side by side.

Di Blasi et al., in “Puzzle Image Mosaic” [9], also shift the overall color of each tile object so that

it matches the mean color within the tile after the mosaic composition.
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(a) (b)

Figure 6.1: 6.1a The mosaic of Finkelstein and Range [36] has been color-corrected in
a pixel-wise fashion so that the unedited content of the original image is clearly visible.
6.1b The mosaic of Orchard and Kaplan [69] has been color-corrected in a tile-wise fashion,
avoiding the problems of the previous approach. However, accuracy in this case is dependent
on the shape, orientation and size of tiles used.

6.2 Our Approach

As previously stated, our postprocessing operation should increase accuracy without negatively

affecting the discernibility of the tile images within the collage. Simultaneously, we wish to avoid

altering the collage in any way that allows image information from the target image to be reproduced

directly in the collage, without any apparent attempt to use correspondences between images;

any details of the target image which show through into the collage must be composed from an

arrangement of details in the tile images, in a manner that appears to be natural. We have identical

standards for the larger scale object and structures.

The method of Finkelstein and Range causes details of the target image to clearly show through

in the mosaic. In some cases, natural correspondences between details in the two matched images,

which on their own are quite clever and effective, are obscured by the color correction process.

The method of Orchard and Kaplan does not suffer from this effect, since color shifts are applied

uniformly across every pixel in each tile. In this case, the representation of details from the target

image is handled entirely through the matching process. However, this global shift often produces

tiles with strange color schemes, particularly when dramatic hue rotations occur (figure 6.2). Di

Blasi et al. [9] and Kim et al. [51] perform color correction in an object-wise fashion, since objects

are the primary rendering primitive in their methods.

We have combined aspects from all three of these approaches. Since we often use very large

tiles, applying a uniform shift over each tile may not be appropriate; the desired level of accuracy

in color matching may not be obtainable. Orchard and Kaplan were able to get away with this
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because the tiles they use are small enough that this method has ample precision. We would rather

apply corrections in an object-wise fashion, as do Di Blasi et al. and Kim et al., so as to preserve

the content of the tile images and avoid the appearance of obvious tampering. However, since we

compose the collage on the image level and not on the level of geometric shapes as Di Blasi et

al. do, we require some basic object sensitive image filtering. The most obvious candidate for this

operation is the bilateral family of filters, which we will discuss shortly.

(a) (b)

Figure 6.2: 6.2a The hue shifting scheme of Orchard and Kaplan sometimes produces odd-
looking results, like these blue cows in a detailed section of the collage from figure 2.6. 6.2b
The original library image.

6.2.1 Hybrid Images

Oliva et al. [68] have described a method for creating hybrid images; a hybrid image is an image that

represents something different when viewed from far away than it does when viewed close up. The

basic process for creating these images involves combining the high spatial frequency data of one

image with the low spatial frequency data of another. Essentially, semantic content is segregated

by frequency within a single image.

Hybrid images bear some similarity to image mosaics and collages in that different content is

represented on different scales. Indeed, resolution of image features with respect to viewing distance

has been used by Tran et al. [92] to test mosaic accuracy. However, there are some major differences;

particularly, in the case of our project, we do not wish for there to be a hard boundary in frequency

space or scale space between the database image content and the constraint image content. There

should be a continuum across scales in which these two possibly disparate sets of information are

represented.

Furthermore, the content of the target image in the collage should be somewhat visible even at
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close range. This is not the case with hybrid images; see Oliva’s publications [83, 68] for a more

complete discussing of correlation across scales in hybrid images.

Despite these differences, the idea behind hybrid images has motivated our approach to the

post-processing of photocollages. While it is tempting to apply the hybrid-image method for this

purpose, we will see, in the following section that a similar but more appropriate method may be

devised, using an image decomposition scheme similar to the image denoising and detail transfer

method of Petschnigg et al. [74] and Eisemann and Durand [31].

6.3 Method

One can imagine a process in which an image mosaic is artificially created by rendering a hybrid

image between a general, non-representational collage (such as is produced by Autocollage) and

some other base image. However, because there would, in this case, be no information correlation

across scales, the resulting mosaic would not be convincing; the collage image may appear as a thin

transparent layer overlaid upon the blurred target image (indeed, this is exactly what it is, as we

see in figure 6.3).

One may achieve a better result by creating the base and detail layers in some manner other than

simple spatial frequency high pass and low pass operations. Using a texture/object decomposition

(or base/detail), such as that used in Fardbman et al. [33] and Bae et al. [3] for our base and detail

layers, we are able to combine information from the target image and collage image in a way that is

more faithful to the collage aesthetic, so that the target image is visible also at close range (figure

6.4, 6.5, 6.6). Precisely, for our collage C, we have

C = CB + CD, (6.1)

where CB is the base layer, or object layer, and CD is the detail layer, or texture layer. Similarly,

for our target image T , we have

(a) (b) (c)

Figure 6.3: 6.3a Target image. 6.3b Collage by Microsoft Autocollage 2008 [79]. 6.3c
Hybrid collage.
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(a) (b)

(c) (d) (e)

Figure 6.4: A modified hybrid image, with base layer created from a cross bilateral filter
between the secondary image and the primary image, and the detail layer created from a
bilateral high pass filter of the primary image. Some additional enhancement of the details
from the secondary image have has been done according to section 6.3.1. 6.4a Primary
image. 6.4b Secondary image. 6.4c Base layer. 6.4d Detail layer. 6.4e Final double image.

T = TB + TD. (6.2)

However, simply using the object layer from the original source and texture layer from the

collage, as in TB + CD, is not sufficient, since we wish to create the appearance that both objects

and textures are being used from the collage; we wish to modify the contents of the object layer of

the collage so that the objects within this layer, when viewed in aggregation, more closely resemble

the entire target image. To achieve this, we must somehow adjust the object layer of the collage

so that it more closely resembles the object layer of the target image.

First, we must find a way to decompose the collage into object and texture layers, according

to some scale parameter R. This scale parameter delineates the scale-space boundary between

the detail layer CD and base layer CB . To obtain the texture/object decomposition, we perform

a texture simplification operation, which renders the object layer CB , and subtract it from the

original image to obtain the texture layer CD = C −CB (figure 6.7). We will describe this texture

simplification operation in more detail in the following section.
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(a) (b) (c)

Figure 6.5: A hybrid image, using a method similar to the that presented in Hybrid
Images [68]. 6.5a Base layer, with colors adjusted to better suit the detail layer. 6.5b Detail
layer. 6.5c Final hybrid image.

Once we have the object and texture layers CB and CD, we then cross-bilateral filter the target

image T with the object layer CB from the collage, again according to the scale parameter R.

Recall that the bilateral filter operation, introduced to the image processing world by Tomasi

and Manduchi [91], performs an image smoothing operation in which the smoothing kernel varies

according to the content of the image at each position. Most often the kernel is, for each position,

constructed in such a way that the weight of each pixel is somehow proportional to its distance in

intensity from the center pixel. More precisely, the bilateral filter B of image I may be described

as such:

B(I, x, y) =
1

N(I, x, y)

∑
∆x,∆y

fa

(
(x, y), (x+ ∆x, y + ∆y)

)

· fb
(
I(x, y), I (x+ ∆x, y + ∆y)

)
· I(x+ ∆x, y + ∆y)

(6.3)

where fa(., .) and fb(., .) are positive-valued distance functions. The normalization factor N(I, x, y)

is defined as such:

N(I, x, y) =
∑

∆x,∆y

fa

(
(x, y), (x+ ∆x, y + ∆y)

)

· fb
(
I(x, y), I (x+ ∆x, y + ∆y)

)
.

(6.4)

The cross-bilateral filter, introduced by Petschnigg et al. [74] and Eisemann and Durand [31],

is a bilateral filter operation in which the filter kernel for each pixel is computed from an image

different than the image being filtered; essentially, the bilateral influence of the filter comes from

another image:
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(a)

(b)
(c) (d)

Figure 6.6: A comparison of two double image methods. Our method, shown in figure
6.6c, shows sharper edges and shared features between the secondary and primary images.
Haloing is largely absent from the primary image, due to the edge-preserving nature of the
decomposition. However, it is due to this that some distracting distortions to the primary
image have appeared that are not present in the original method, such as inverted gradients
in the child’s arm and face. Figure 6.6d shows a double image composed by a method similar
to the Hybrid Image method of Oliva et al. [68]

Bcross(I, J, x, y) =
1

N(I, x, y)

∑
∆x,∆y

fa

(
(x, y), (x+ ∆x, y + ∆y)

)

· fb
(
J(x, y), J (x+ ∆x, y + ∆y)

)
· I(x+ ∆x, y + ∆y)

(6.5)

where image J is used to determine the filter kernel at each pixel.

Petschnigg et al. and Eisemann and Durand used the cross-bilateral filter for image denoising

when combining flash and no-flash photograph pairs using a base/detail approach. Similarly, in

our system this cross-bilateral operation acts as a sort of low-pass filter, blurring the image I but

preventing blurring over edges in image J . We may use the result as our new base layer PB .

PB = Bcross(T,CB , x, y) (6.6)

This base image PB from the target image is blurred in a way that respects the edges of the

objects in the collage. When combined with the texture high-pass layer CD from the collage, we

see in figure 6.8 that the result is an image that more closely resembles the original source image,

but does not exhibit any obvious signs of direct combination between the target and the collage.

Note that we have not directly used the base layer of the target image TB in computing PB ; as

always, in every step of the collage generation process, we do not wish to directly use the target
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(a) (b)

Figure 6.7: 6.7a The collage image. 6.7b The abstracted collage image after texture
simplification.

(a) (b)

(c) (d)

Figure 6.8: 6.8a The original target image T . 6.8b The texture-simplified collage image.
6.8c The cross-bilateral result. 6.8d The cross-bilateral result combined with the texture
high-pass from the collage.

image T in any obvious way, but only to approximate it as an aggregation of objects and other

image features from our library. We then have, for the final color corrected image P :

P = PB + CD. (6.7)

The process described thus far is summarized in figure 6.9.

6.3.1 Detail Enhancement

While the image P is certainly an improvement on the directly computed collage C, we may be

able to do even better. In the main part of this section, we have concentrated on ensuring that

the object layer of the collage matches as closely as possible the target image T . We have left the

texture layer of the collage, CD untouched, but we may also modify it to better represent the details

of the target image. We have accomplished this by augmenting CD with an additional detail layer,
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(a)

Figure 6.9: A diagram of the color correction post processing.

P0, which we compute in the following way:

P0 = τ(C)
[
Bcross(T,C)−Gr(T )

]
, (6.8)

where Gr is a Gaussian smoothing operation for some small radius r determined by the scale of

the details we wish to represent, and where it is understood that Bcross(T,C) = Bcross(T,C, x, y).

What we are doing here is filtering the target image bilaterally across the collage, as we did to

produce PB , but for a smaller blur radius; then, we are performing a Gaussian high-pass filter to

extract the resulting details, so that we can add them to the final result. The effect of this operation

is a sort of distortion, as a scene is distorted when viewed through textured glass. In this way, we

bend the details of T to fit the details of C, and the addition of these bent details back into the

collage acts to accentuate the details of C in such a way that they better suggest the details of T .

In a final tying up of loose ends, we multiply P0 by the texture contrast τ(C) of the collage, so that

we do not introduce any new detail to the final collage where before there was none. The effects

of this detail enhancement are illustrated in figure 6.10. The final result may then be expressed as

follows:

Pfinal = PB + CD + P0. (6.9)
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(a) (b)

(c) (d)

(e)

Figure 6.10: 6.10a The target image T . 6.10b The color corrected collage. 6.10c The
Gaussian high-pass of T . 6.10d The high-pass after bilateral filtering with C. 6.10e The
final result P = PB +CD +P0. Notice the details of the eyes and mouth have naturally been
brought out of the collage images.

Parameter Tuning Given the large number of parameters involved in the creation of a collage

such as tile scale, image scale with respect to tiles, and the nature of the image library itself, it is

difficult to determine a set of parameters for postprocessing that works for every collage. We have

found that using a uniform scaling parameter for all tasks (within a factor of 2), and choosing the

scale parameter to match the scale of the collage tiles, provides a good base (as we see in figure 6.10),

but parameter tweaking is invariably required to achieve the best look. Certainly, there is an art to

this process, and other image processing operations may be used to enhance the result further. For

example, in chapter 7, figure 7.17 we have mixed the postprocessed result with the original collage

to accentuate shadows in the library images. Furthermore, different scale parameters may be used

to produce each of the base and detail layers.

6.3.2 Texture Simplification

Previous Investigations in Edge-preserving Smoothing Perona and Malik [73] provided an

early solution to the problem of edge-preserving smoothing. Their method of anisotropic diffusion

uses a series of iterated regularization operations [81] to simulate diffusion, while preventing diffusion

across image object boundaries in order to preserve edges. Since the introduction of anisotropic

diffusion, it has been pointed out [91] that its iterative nature poses problems of stability and

efficiency. As is noted in Farbman et al. [33], the bilateral filter, first introduced by Tomasi and

Manduchi [91], is commonly used as an image abstraction or texture simplification filter. However,
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Bae et al. [3] point out that the bilateral filter will not sufficiently handle high-contrast, high-

frequency features, which we wish to simplify along with low-contrast, high-frequency features. Of

course, the trick is that we also wish to preserve high-contrast edges, and in order to do this we

must distinguish them from high-contrast textures.

Choudhury and Tumblin [15] improve the performance of the bilateral filter in high gradient

regions by tilting (or rather, skewing) the filter kernel in the intensity dimension according to the

gradient vector of a bilaterally filtered version of the image. Fattal et al. [34], for shape and detail

enhancement, use an iterated bilateral filter, reducing the depth of the filter at each iteration,

and increasing the spatial radius with each iteration, in order to achieve a smoother, deeper filter.

However, the case of high-contrast textures is not addressed in either of these methods.

The Weighted-Least-Squares (WLS) method of Farbman et al. [33] is extremely effective in

abstracting images to an object layer and texture layer, including the abstraction of high-frequency,

high-contrast texture data. However, the resulting base layer seems to suffer from an over-flattening

of important gradients which serve to convey object shading and lighting. Comaniciu and Meer [17]

introduce the Mean-Shift filter, a filtering operation for image smoothing and abstraction based

on the mean-shift segmentation operation. However, this method of filtering suffers from a similar

drawback to WLS.

The methods found in the realm of image abstraction, described in chapter 2, may be applied

to the problem of texture simplification. Particularly, the method of Orzan et al. [70] seems to

exhibit good texture simplification properties without specifically setting out to separate textures

from objects. This method is aimed at abstracting out edges that do not persist through a deep

range of scales, and many textures are composed of such edges, although not all; textures of the

highest amplitude may not be abstracted by this operation.

Any of these methods, including the basic bilateral filter and perhaps even the antiquated

anisotropic diffusion, may be used to obtain the base and detail layers required by the methods of

the main part of this section, with some degree of success. However, our method is an effective

alternative and, to the best of our knowledge, is the only method that specifically aims to remove

textures, of most varieties, from objects.

A Novel Approach As we have stated, the bilateral filter is a convolution operation in which

the convolution kernel varies as a function of position in the image and the image content within the

neighborhood of the position. However, the standard bilateral filter is insufficient for abstracting

textures with high contrast, because the high contrast features are indistinguishable from image

edges by the standard bilateral filter. Our texture simplification operation consists of a modified

bilateral filter operation, in which the depth, or the influence of the intensity component, is modu-

lated by a scalar map τ(C) representing texture contrast. This method is reminiscent of the work
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of Su et al. in de-emphasizing regions of high texture activity [88]. The effect of this is that blurring

will occur not only over low contrast texture regions, but also over higher contrast texture regions,

effectively removing textures while preserving object edges. See Tomasi and Manduchi’s original

paper [91] for a complete discussion of the bilateral filter. The texture simplification filter we use

may be more precisely expressed as follows:

Btexture(I, x, y) =
1

M(I, x, y)

∑
∆x,∆y

fa

(
(x, y), (x+ ∆x, y + ∆y)

)

·
(

1− τ(I(x, y))
)
· fb
(
I(x, y), I (x+ ∆x, y + ∆y)

)
· I(x+ ∆x, y + ∆y)

(6.10)

where

M(I, x, y) =
∑

∆x,∆y

fa

(
(x, y), (x+ ∆x, y + ∆y)

)

·
(

1− τ(I(x, y))
)
· fb
(
I(x, y), I (x+ ∆x, y + ∆y)

) (6.11)

Alternately, we have achieved good results using a standard cross-bilateral filter, with the bi-

lateral component composed of a blend between the target image and a Gaussian blurred version

of the target image, with the blending amount controlled by the texture contrast map. This allows

the smoothing algorithm to be easily implemented with standard filters. More precisely:

Btexture(I, x, y) =
1

N(I, x, y)

∑
∆x,∆y

fa

(
(x, y), (x+ ∆x, y + ∆y)

)

· fb
(
I ′(x, y), I ′ (x+ ∆x, y + ∆y)

)
· I(x+ ∆x, y + ∆y)

(6.12)

where

I ′ =
(

1− τ(C(x, y))
)
I +

(
τ(C(x, y))

)
Gσr (I) (6.13)

The method for obtaining a texture contrast map is explained fully in chapter 3. In brief, we

exploit the fact that the median filter, while exhibiting some level of preservation of step edges,

completely flattens even high contrast textures. By taking the absolute differences between an

image and its median-filtered companion, and iterating this operation, we may obtain a novel and

useful measure of texture contrast. Figure 6.11 shows a comparison of some image abstraction

filters with our own filter.
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(a) (b)

(c) (d)

Figure 6.11: 6.11a Original Image. 6.11b Image abstraction via the method of Orzan
et al. [70]. 6.11c Image after ordinary bilateral filtering (2 iterations). 6.11d Image after
texture simplification via our method (2 iterations).
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Chapter 7

Results and Evaluation

In this chapter we will discuss the products of the collage system described heretofore and eval-

uate each component of the processes involved. First we will review and summarize the algorithmic

elements introduced thus far. Then, as part of this discussion and evaluation, we will present vari-

ous examples of each extrema in the space of parameters involved in the collage creation process,

as well as some typical and best-case examples. We will then discuss failure cases and open issues

with the system as it stands.

7.1 Overview of the Algorithm

In this section we bring together all of the system elements we have introduced throughout the

previous chapters, and review the entire algorithm.

Preprocessing We begin by extracting from the target image edge and salience maps for future

use, as well as a texture contrast map. Each of these maps must also be downsampled for multiscale

processing.

• Edge maps are produced for various scales. The purpose of these edge maps is, for each scale,

to weight regions of the target image near strong edges as less significant in the calculation of

match quality. In this way, we may improve collage discernibility and prevent over-refinement.

For a given scale r, a gradient magnitude map is taken as an initial starting point for the edge

map. The corner map of this gradient magnitude map is taken, to remove unwanted texture

edges. The edge map F (I) of image I should have range [0, 1] where lower values represent

stronger edges; therefore, we subtract the entire result from 1. That is,

F ′′r(I) = 1− Cornerr(|∇Gr(I)|), (7.1)

where Gr represents a normalized Gaussian smoothing operation of radius r.

The higher scales should also include the edges from the lower scales, since we wish to respect

the content that has been already laid out. So, for each scale after the first and coarsest, we

multiply each edge map produced so far.
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F ′S(I) =
S∏
s

F ′′s(I) (7.2)

Also, we prefer that pixels in empty regions of the image, far from edges and other salient

features, have less weight. Therefore, we extend the edge map F ′ by some radius R repre-

senting the falloff distance of the weight map, by taking a normalized Gaussian blur filter of

the edge map and then multiplying it with the original edge map F ′. We also enforce some

minimum weight c for empty regions by adding it as a constant.

FS(I) = GR(F ′S(I)) · F ′S(I)(1− c) + c (7.3)

• A salience map S is produced for the purpose of signifying salient features of the target image

that do not correspond to strong step edges. We use this map to ensure that the tiles chosen

for refinement lie over salient data and not in empty regions of the image. The salience map

is composed as a simple corner map of the target image, for some radius r (chosen according

to the size of the target image and the scale the details the user wishes to highlight). The

salience map increases in value with increasing salience:

S(I) = Cornerr(I). (7.4)

• A texture contrast map τr, for some radius r, is computed for the target image and each

library image; for the purposes of speed, we calculate these maps at a low resolution. Since

we calculate this map at a low resolution, we also calculate only one iteration of the map:

τr(I) = Mr(|I −Mr(I)|), (7.5)

where Mr represents the median filter of radius r.

• For the target image and each library image, the luminance, chrominance, and texture contrast

channels are all downsampled for each level of resolution used in the matching process (this

is two levels of resolution for our tests).

• Histograms are calculated for each channel of each library image, for the library reduction

stage of the matching process. We have used 8 bin histograms for the purpose of speed.

Matching Once we have done the necessary preprocessing of the target image and library images,

we then create a partition of the target image for each iteration of refinement we wish to perform,

and then begin matching each tile in the coarsest partition with some image from the library. After

creating an entire coarse-scaled collage, we repeat the process for a partition with smaller tiles, and
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only for those tiles that lie above a part of the collage that was poorly matched in the previous

stage. Every tile, except those that have not been chosen for refinement, should be matched with

an image from the library, with an associated positioning coordinate.

• A partition of the target image is produced by calculating a centroidal Voronoi diagram, using

the edge map F (I) as the mass function. A Voronoi diagram is a partition of a space, according

to some given set of centroids, such that every point within a tile is closer the the centroid

associated with that tile than to any other centroid. A centroidal Voronoi diagram is one in

which the centroid for each tile lies at the center of mass for some function. We calculate this

partition by first calculating a Voronoi diagram, moving each of the centroids to the center

of mass for each tile, and then recalculating the Voronoi diagram. This operation is typically

performed iteratively until convergence is achieved (this is called Lloyd’s Algorithm). We use

seven iterations, which we have found, through experimentation, produces regions with the

desired characteristics in a short period of time.

• The region of the target image contained within each tile is matched against the library to

find a representative collage image.

– First, we begin by reducing the size of the library by keeping only those images in the

library that have many pixels near the mean value of the target image pixels within the

current tile. We determine which images these are by analyzing their histograms, which

have been computed in preprocessing.

– Then, we do a pixel-wise comparison of each image in this reduced set with the tile

content. We also compare every translation of a given image against the content of the

tile. We keep the best matches from this process, further reducing the library, and repeat

the process again at a higher resolution. This is repeated again until we have reached

the desired maximum resolution, and then the best image is chosen as the image with

the lowest pixel wise error.

An image I, for a given translation and channel n = {l, c, t} for luminance, chrominance

or texture contrast, is ranked according to how well the following quantity is minimized:

En =
∑

(x,y)∈A

F (x, y)M(x, y)|In(x, y)− Tn(x, y)|, (7.6)

where A = I ∩ T indicates the rectangular region of intersection between image I and

image T and M ∈ [0, 1] is a fraction-valued function representing the tile mask. The

quantity F represents an edge map for strong step edges.

For an image I and a given translation, the final ranking is determined by the following

quantity:
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E = wlEl + wcEc + wtEt, (7.7)

where ~w = (wl, wc, wt) are parameters chosen by the user to influence the character

of the final result; specifically, the three parameters (wl, wc, wt) influence the weight of

luminance, chrominance, and texture contrast, respectively, in the matching calculation.

Compositing At the end of the matching process, every tile (except for those tiles lying above

sufficiently accurate portions of the collage) will have an image and a set of translation coordinates

associated with it. Then, it is time to draw the collage as it currently stands. At this point, we

recalculate the Voronoi partition (using the positions of the centroids initially calculated) using

path cost rather than the Euclidean norm to measure the distance from each pixel to each centroid.

The path cost is calculated through a weight map that is derived from a combination of edge maps

from each collage image to be composited.

The contribution to the weight map of each image is computed as a sum of gradient magnitude

edge maps over several scales:

e(I) =
M∑
i=0

|∇G2i ∗ I|. (7.8)

The contributions of each image are combined into one final edge map for the entire collage.

The pixels from each image edge map are weighted proportionally by their distances from the edge

of the tile boundary. Where there is overlap between tile images, the maximum of the edge values

is taken.

efinal(T, x, y) = Max(ei(Ii(x, y)) · v(x, y)i), (7.9)

for all edge maps ei and where v(x, y) ∈ [0, 1] is proportional to the distance from a boundary

in the original Voronoi Tesselation, with greater weight closer to the boundary. we calculate v as

follows:

v(x, y) = GR(TileBoundary(x, y)), (7.10)

where R is a scalar on the order of the distance across which tile images are blended, and GR is

the normalized Gaussian blur operation.

Refinement Following the composition of the collage, at each intermediate stage, an error map

must be computed so that decisions can be made about which tiles should be calculated in the next

refinement iteration. Again, as in the matching stage, the error map is multiplied with the edge

map F (I) and also with the salience map S(I). Then, the error density of each tile in the next

partition is calculated, and the tiles with the highest error density are flagged for recalculation. The

number of tiles that are flagged for recalculation at each stage are limited to a certain proportion.
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Postprocessing At this point, we have a finished photocollage. Now we wish to improve the

accuracy of the collage by applying color correction. We produce the final, color corrected collage

by composing a base layer, derived from the target image and collage, with a detail layer derived

from the collage and with detail accents added in from the target image.

• We begin composing the base layer PB by first abstracting the collage C (removing textures

and other fine details) to obtain an image that roughly represents the image objects of the

collage. Then we cross bilateral filter the target image T with this abstracted collage image:

PB = Bcross(T,CB), (7.11)

where Bcross(., .) represents the cross-bilateral filter, and CB = TextureSimplify(C) represents

the base layer of the collage.

• We create the detail layer PD = CD by abstracting the collage, as in the above step, and then

subtracting it from the original collage to separate the textures and details from the rest of

the image. The base and detail layer are additively combined:

P = PB + CD, (7.12)

where CD = C − TextureSimplify(C).

• Finally, we attempt to tweak the details of the collage so that they are able to also represent

the details of the target image. First, we duplicate the process for creating the base layer,

but on a much finer scale. Then, we take a Gaussian high pass filter of this result P0 and add

it to the rest of the collage.

P0 = τ(C)
[
Bcross(T,C)−Gr(T )

]
, (7.13)

Pfinal = PB + CD + P0. (7.14)

Pfinal represents the final color corrected collage.

7.2 Discussion of Results

The production of a photocollage depends on many parameters and is accomplished through various

different systems, depending on different image understanding and rendering frameworks. Similarly,

the scale for measuring success is also quite varied. We have attempted to isolate many sensible
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components of the image collaging process and analyze them independently. We also have made

some general observations of phenomena that tend to arise in the production of photocollages.

Following is a qualitative analysis of the known problems in photocollage and image mosaic systems,

the efficacy of our proposed solutions, and phenomena we have observed through the course of our

investigation.

7.2.1 Selection of Target Image

As with most NPR systems, there are some images that are more amenable to the process than

others. We have had the most success with images that have the following properties:

• A steep difference between the texture contrast of adjacent image regions. We use fairly

low-level methods for treating texture, and adjacent regions with similar texture properties

tend to get muddled together in the final collage;

• High contrast, large scale objects, which are few in number and perceptually disjoint. Images

that contain large aggregations of small, low contrast objects tend to produce muddled col-

lages. An image consisting of an aggregation of objects is what we are trying to produce, not

what we wish to start from;

• Natural, organic or photographic image content. Line art and vectorized images can produce

interesting collages, but as with some other NPR processes, hard edges and constant colors

are not well-preserved.

See figure 7.1 for an example of a target image for which our algorithm produces an unsatisfactory

collage.

(a) (b)

Figure 7.1: A poorly produced collage and the corresponding target image. 7.1a Original
target image. The image contains multiple objects with low contrast. 7.1b The photocollage.
Notice that not even color correction has been able to bring the collage up to an acceptable
standard.
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7.2.2 Accuracy

While our method is able to produce collages of reasonable accuracy in a small amount of pro-

cessing time, we have observed that the collages are not as accurate as they are discernible. We

have attempted to address this through postprocessing without compromising discernibility. The

advantage of this approach is that large gains in accuracy can be achieved without increasing the

size of the image library or decreasing the coarseness of the tiling. In fact, one can achieve high

accuracy even with a library of only a few images and a very coarse tessellation (figure 7.2).

When viewed from perspective of double images, as discussed in chapter 1, it comes down to a

comparison of two distinct philosophies: an exhaustive search through a large database for a better

solution, or tweaking and manipulating an existing solution to make it better. For one-to-one

double images, a combination is used; a human artist, employing some creative process, is able to

choose an arrangement of objects that is able to convey the secondary, target image ideally while

also rotating, scaling and otherwise distorting these objects as necessary.

Another observation is that some damage to perceptual accuracy seems to occur as a result of

the multiscale nature of the collaging process itself. While seams between tiles have been hidden

to some degree, it is often apparent, to a human eye, where one tile ends and another begins

simply through context; a night scene composited next to a day scene shows clearly the difference

between two tiles. The eye is thus guided through a visual interpretation of the collage by the

size and placement of tiles in relation to each other, and the essence of the target image is not

always respected; that is, the scale of tiles used may not be congruent with the scale of objects

in the target image, and thus the target image may be difficult to discern. The scale of objects

in the target image is usually pulled back into the collage through post processing; even so, we

hypothesize that the preprocessed collage is often less accurate to the human eye than it is in terms

of pure pixel-wise error.

7.2.3 Discernibility

We have chosen to forego the use of content based region of interest detection when determining

the valid space of translations for each library image, in hopes of improving accuracy. While we

have achieved some success with this method, as evidenced by the images we have presented, there

have been some drawbacks. Particularly, it is common for images consisting largely of textures to

be chosen, and purely textured regions from these images to be used in the final collage. While

this occurrence may not be noticeable in traditional image mosaics, such as Orchard and Kaplan’s

cut-out image mosaics [69], due to the small size of the matching primitives and clear distinction

between tiles, it sometimes becomes a problem when larger tiles are used. It may not even be entirely

accurate to classify this as a discernibility problem, since these textures are certainly discernible;
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(a) (b)

(c) (d)

Figure 7.2: 7.2a Target image. 7.2b Photocollage. 7.2c Absolute error between target
image and collage. 7.2d Photocollage after post processing.

they just aren’t very interesting!

7.2.4 Compositing

When compared to the composition results of Autocollage [78], which uses graph cuts and Poisson

image blending, our method holds up well, and shows superior performance in some cases as shown

in figure 7.4. Autocollage shows no significant advantage over our method, even though it is

significantly more complex. In figure 7.5 we see that each method similarly preserves image content

while smoothly changing between images.

Some minor problems still persist. For instance, haloing occurs around some hard edges, as a

thin strip of the background of one tile persists along the tile’s edge. Also, the shapes of some

image objects appear negatively in the composition; that is, the shape of a tile boundary is defined

by an object that has been removed from the image through the compositing process, resulting in

a mysteriously shaped tile, as we see in figure 7.3.

7.2.5 Image Library

For conventional, regular lattice image mosaics, Tran et al. [92] have shown that mosaic accuracy

improves as a function of image library size. This is certainly true of photocollages as well; however,

one of the benefits of our method is that collage accuracy is not as tightly correlated to library size.

Iterative refinement, accuracy enhancement via post processing, and the expansion of the match

space due to image translation all allow for a lower boundary on accuracy that is higher than in
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(a) (b)

Figure 7.3: 7.3a Original library image. 7.3b Image in the composition. The face has not
been included, but the shape remains as part of the tile boundary.

(a) (b)

Figure 7.4: Two examples of successful compositions via path cost Voronoi tessellations.

the case of the standard image mosaic. Even with a very small library (or even a well-chosen

single image!) an attractive and accurate collage may be produced. In section 7.2.6 we discuss the

effective expansion of the image library resulting from scaling and translating the library images

against the collage tiles.

Of course, there are also benefits to be had for using a very large image library. Figure 7.6

illustrates the effects of increasing the library size on the outcome of the collage process.

7.2.6 Tile Image Scale

We have discussed the effect of the scaling factor in chapter 5. Here we will examine the effects of

some tile image scaling policies on the discernibility and accuracy of collages.

As we have discussed, the larger an image is with respect to the tile with which it is being
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(a) (b)

Figure 7.5: 7.5a Our composition method. 7.5b An image produced by Microsoft Auto-
collage 2008 [79].

compared, the greater the potential accuracy of the final match. Orchard and Kaplan [69] noted

that searching the space of translations against the tile region effectively increases the size of the

image database being consulted for each match. For example, an image I, which is X times larger in

each dimension than the current tile, will provide 4X2 possible matches, assuming that a translation

of X/2, in any direction, is necessary to produce a sufficiently unique match (in practice, we use

an even smaller step size for shifts). So, for a scaling factor s = X, the size of the image database

is effectively multiplied by 4X2. Of course, one must look into the effect of s on the discernibility

of resulting collages, since each of these “effective images” is more fragmentary and less complete

than in the case of s = 1.0. Another thing that must be considered is the increased processing time

for large s. Since we are increasing the effective size of our database, we can expect an increase

in processing time due to a larger search space. However, the methods that we have employed

to mitigate the high costs of searching this space, as described in chapter 4, are not effective for

mitigating the costs associated with an enlarged search space due to a large scaling factor S. This

is because these methods operate on the level of the image, and not on the sub-image level of image

translations. So, these extra points in the search space have been smuggled in with each image.

As expected, we see in figure 7.7 that an increased scale factor leads to increased accuracy.

Accordingly, processing time also increases with the scaling factor. When considering issues of

discernibility, it is not clear that a larger scale factor is necessarily “better” than a lower one; the

figures in section 7.5 show collages computed for scaling factors between 1.3 and 2.0, which have

good accuracy and discernibility. For collages with three levels of refinement, the results indicate

more of an advantage to using a larger scale factor, since the iterative refinement process is able to

rectify some errors. In one case, an average decrease in absolute error of 7% was observed, along

with an average increase in processing time of 56% when increasing the scaling factor from 1.5 to

3.0.
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(a) (b)

(c) (d)

Figure 7.6: An illustration of the effect of library size on collage quality. 7.6a Original
Image. 7.6b Photocollage with a library of 27, randomly selected images. 7.6c Photocollage
with a library of 79 randomly selected images. 7.6d Photocollage with a library of 838
randomly selected images.

In chapter 4 we discussed the idea of adjusting the scale factor s for each detail level such that

s is proportional to tile size. It seems that in this way we may shift the increased accuracy and

processing time to areas of the image where it is most necessary. However, we found that when

linearly interpolating between scaling factors of 1.5 and 3.0 as refinement increased, the processing

time increased by an average of 38% while the quality increase was negligible. It is possible that

for very large images, this strategy may provide a good compromise of efficiency, but for smaller

images (between 500 and 1500 pixels in the longest dimension) it is not recommended.

7.2.7 Refinement and Scaling

We believe a large difference between the size of the largest tiles and the smallest is preferable,

aesthetically. A wide variation of spatial scales contributes depth to the collage and engages the

visual and interpretive senses of the viewer; a rich and dynamic space is established, and the depth

of the image is expanded. In section 7.5 we show a sample of collages that have been computed with

both one refinement pass and two refinement passes; there is an evident difference in the character

of collages that are produced with a deeper range of scales, although we see that accuracy is very

high for collages with a shallower range of scales. Practically speaking, the size of the tiles in
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(a) (b)

(c) (d)

Figure 7.7: An illustration of the effect of image-size to tile-size ratio on discernibility and
accuracy. 7.7a Original Image. 7.7b Collage with scaling factor S = 1.5 7.7c Collage with
scaling factor S = 3.0 7.7d Collage with scale factor varying from S = 1.5 to S = 3.0 for the
smallest tiles.

each refinement level, in proportion to the tiles in other refinement levels, determines some of the

character of the accuracy/discernibility tradeoff in the final collage. We have found that a functional

and visually effective policy for determining tile size is to reduce the average tile size, in the next

refinement level, by a factor between 3 and 6. See figure 7.14 and figure 7.13 to compare the effects

of different tile size proportions.

For target images whose size is on the order of the 1000×1000, or roughly the resolution of a

typical consumer display, three levels of refinement are usually appropriate (sometimes even two

are sufficient). An additional level of refinement would require the use of tiles that would be

indiscernible due to their small size. For larger images, of course, more levels of refinement may be

appropriate.
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7.2.8 Edge Weights in Matching and Refinement

As we have said, it is easy to achieve high accuracy at the expense of discernibility but difficult to

achieve both high accuracy and discernibility at the same time. One method we have proposed for

increasing discernibility at a modest cost in accuracy is, when evaluating the match cost of a par-

ticular tile image, to weight pixels around high contrast step edges as less important. The purpose

of this is to allow minor deviations in the trajectory of step edges without undue penalization in

the match cost calculation. This, in turn, will prevent (in the refinement stage) over-refinement of

step edges, and (in the matching stage) tile matches that pave over the step with a solid tone.

We have shown some typical results of this strategy in figure 7.8. As you can see, the collage

result without modified edge weights shows high accuracy to the original image, but also shows

clusters of small, poorly discernible tiles around high contrast edges. The results with edge weighting

show poorer accuracy, but much higher discernibility of tile images around edges. As you can see

from the results in chapter 6, the application of base/detail postprocessing mitigates the decline in

accuracy to some degree.

(a) (b) (c)

Figure 7.8: 7.8a Original target image. 7.8b Collage, without edge weights. 7.8c Collage,
with edge weights. Note that the hard step edge on the brim of the hat has suffered less
subdivision.

7.2.9 Corner and Salience Maps in Refinement

When evaluating the error between the collage and the target image, it is common to discover that

high errors reside in low activity, non salient regions of the image. This can lead to a large amount

of computational resources being directed towards computing new matches for regions of the image

in which new matches are not really needed. In these cases, the old matches, while not entirely

accurate, are sufficient given the underlying content of the target image. As we said in chapter 4,

we may avoid this by multiplying our error map by some map that measures the salience of the

target image, so that errors in low salience regions are dampened. We discussed in chapter 4 the

technique of applying a salience map S that is more sensitive than the edge-weight map F , used
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to increase discernibility, as described in chapter 4 section 4.3.2, so that it is not canceled out. We

have found that in order to prevent the total cancellation of all errors outside the neighborhood of

some salient image feature, it is useful to modify the salience map by raising the minimum value

to some non-zero value.

In practice, the error map is dominated by the influence of the edge map F , even when the

salience map is calculated at a finer scale. Furthermore, restricting the number of tiles to be refined

in the next pass to some fixed proportion goes a long way to preventing unnecessary refinement (as

opposed to using a fixed error density threshold). This makes sense, since an arbitrary number of

tiles may have error density above a given threshold. Even so, the use of a salience map may be

used to modestly improve the results in the case that a coarse scale edge map is not used.

7.2.10 Luminance and Chrominance

Since the human visual system is more sensitive to changes in luminance than changes in chromi-

nance [90], it may be helpful to weight luminance data heavier in the calculation of matches. The

expectation, in this case, is that the result should be more accurate in luminance, while the colors

are less preserved. Orchard and Kaplan [69] take these properties into account when they suggest

a single degree of freedom approach to color correction, in which only the luminance channel is

shifted.

As you can see in figure 7.9, collages composed with low chrominance influence, specifically wl =

1.0, wc = 0.2, will not accurately represent the colors of the target image and may have a somewhat

rainbow colored appearance; this is mitigated somewhat through postprocessing. It is not sufficient

to ignore chrominance altogether in the matching process, since large adjustments to chrominance

in postprocessing become obvious and detrimental to the quality of the collage. Chrominance

adjustments that change the color of objects so that they are obviously wrong according to semantic

classification by user (for example, the blue cows observed in figure 6.2), and adjustments that split

an object into several, apparently arbitrary and disjoint color regions, are undesirable. Therefore,

some attention to chrominance is necessary during the matching process, although overall, higher

perceived accuracy may be achieved by emphasizing luminance, as shown in figure 7.9.

7.2.11 Texture Contrast

In chapter 4, we discussed the problem of smooth areas in the target image being matching with

non-smooth images in the collage. We have attempred to address this problem by adding a texture

contrast term to the error energy calculation in the matching process. In this, it appears that

we have achieved a modest level of control over the smoothness of the collage result. In figure

7.10 we show the results of a collage computed with high texture contrast influence, and a collage

computed without texture contrast influence. As you can see, the texture contrast term has shifted
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(a) (b) (c)

Figure 7.9: The effect of changes to luminance/chrominance balance. 7.9a Target image.
7.9b Low chrominance influence (wl = 1.0, wc = 0.2). 7.9c Balanced chrominance and
Luminance (wl = 1.0, wc = 1.0).

the priority from tone matching to matching the smoothness of the target image.

However, there are some problems with the current approach that prevent it from being as

useful as color and luminance in image matching; since the primary result of matching with texture

contrast is to enforce smoothness, discernibility often suffers, since low-activity and uninteresting

image regions are used. Also, we do not consider the scale or orientation of the textures; therefore,

while textures of similar contrast may be matched, the discrepancy in scale may render this match

invalid. This is complicated by the fact that each image is rescaled in proportion to each tile, so the

texture scale is not fixed for a given image. In light of this, we recommend using texture contrast

as a matching term only when it is imperative to maintain smoothness in the collage result. Even

in these cases, the results appear to be largely dependent on the scale parameters used and the

content of the image library.

(a) (b) (c)

Figure 7.10: The effect of changes to the balance of texture contrast in the matching
calculation. 7.10a Target image. 7.10b No texture influence (wl = 1.0, wc = 1.0, wt = 0.0).
7.10c No luminance or color influence (wl = 0.0, wc = 0.0, wt = 1.0). Smooth, relatively low
contrast images are used for the left-hand side of the image.
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7.2.12 Library Reduction

Before matching the library images directly with the target image, we first reduce the size of

the image library to a subset of likely good matches. As described in chapter 4, this is done by

comparing the mean value of the target image inside the current tile with the histogram of each

library image.

To measure the effectiveness of this strategy we compared the collage error and processing time

of collages computed with and without library reduction (the library being reduced by 90%). Using

a scaling factor of s = 1.3, we found that using library reduction increased the average collage error

to 104% of the error without library reduction, and reduced the processing time to 89%. With a

scaling factor of s = 2.0, the error was increased to 109% of the error without library reduction,

and the processing time was reduced to 77% of the time to compute a collage without library

reduction. The scaling factors were chosen to represent typical “high discernibility” and “high

accuracy” parameters, respectively. These results indicate that library reduction has less effect

for images that are scaled close to the size of the tiles, but is useful for reducing the processing

time when the scaling factor is high, even though accuracy is decreased. For comparison, library

reduction by random image selection caused the error to increase to 138% and and 142% for each

scaling factor, with near identical processing time.

7.2.13 Scale Hierarchy

After the matching process is completed for a given resolution, some proportion of the best matches

must be chosen to go onto matching at the next higher resolution. We have chosen, for the sake of

efficiency and timely processing, to process two scale levels after the initial library reduction pass.

For the first pixel-wise matching pass, we use an image resolution of 1/16 the original, and for the

second pass we use a resolution of 1/4 the original. As for the proportion of images used from each

pass, we have found that the processing time may increase dramatically with higher proportions,

depending on the resolution. This makes sense, since the time complexity of a pixel-wise image

comparison across the space of translations is quadratic. For the resolutions we have chosen, the

second pixel-wise comparison stage will have 4×4 = 16 times more comparisons; then, if we wish

for the second stage to take the same amount of time as the first, we must compare 1/16 of the

images (this assumes a constant scaling factor). For a small library, this may be too few. We have

opted to use a uniform proportion of 6% for the final, most precise matching pass, which is small

enough to keep processing time down, but large enough to provide a sufficient number of potential

matches for even a small library.

As for the first pixel-wise matching pass after the initial library reduction stage, we have found

that there is little difference in collage quality (either in perceived accuracy or absolute error)
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between collages computed with a reduction to 33% of the original library and 50%, despite a

significant increase in processing time (22% in a typical case). This is not surprising, but indicates

that the ordering of images from the first matching pass is a good approximation to the ordering

that will come from the next pass. Of course, the ordering will not be identical; if it were, one pass

would be sufficient.

7.2.14 Postprocessing

Overall, the use of the postprocessing algorithm described in chapter 6 is able to dramatically

increase the accuracy of a collage. Even a collage which initially exhibits very poor accuracy (due

to a small library or other factors) may be repaired in this way. Perceptual accuracy is improved

through detail enhancement, as we see in figure 7.11.

(a) (b) (c)

Figure 7.11: 7.11a Detail of photocollage, before post processing. 7.11b Detail of photo-
collage, after post processing. Note that discernibility of library images remains high. 7.11b
Detail of target image.

Since much of the low spatial frequency data of the collage has been replaced with data from

the target image, strange results sometimes may be observed, particularly, reversal of gradients.

This has been observed by other investigators in the area of edge-preserving decompositions [33].

However, this does not occur often or conspicuously enough to warrant significant investigation

within this project, since the matching process generally produces a collage with low frequency

data sufficiently similar to that of the target image (see figure 7.12). Furthermore, the original

low frequency data from the collage may be blended with the base layer (generated by the cross-

bilateral operation) in a sufficient proportion as to avoid obvious gradient reversals and other

visually distracting anomalies. The best proportion in which to blend the original and new base

layers varies widely with the image being processed; the new base layer should be roughly twice as

prominent as the old base layer, in order to ensure that the postprocessing is effective.

When determining the scale of the cross bilateral filter used to produce the base layer, there
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must be some consideration of the nature of the target image. Generally, we recommend that a scale

be used that is on the same order as the scale of the most prominent tiles, within a factor of two.

If the width of the blur is too small, it is possible that the resulting gradients across collage image

objects may be to steep in some cases; that is, image objects in the collage which fall across step

edges in the target image may be spuriously bisected in the postprocessed result. We wish, instead,

to augment the collage result with gentle, wide gradients that maintain the spatial coherence of

image objects.

(a) (b)

(c) (d)

Figure 7.12: 7.12a Target image. 7.12b Collage, before postprocessing. 7.12c Lowpass
of target image. 7.12d Lowpass of collage.

7.3 Efficiency and Performance

Throughout the entire design process of this system, we have kept speed and efficiency as a primary

goal. When designing a system that is meant to process arbitrarily large sets of data, this is

a necessity; a collaging system is not useful if it can only be used, within a reasonable amount

of time, on a very small database. We have achieved a system that is both straight-forward

in implementation, effective, and relatively fast. The hierarchical matching scheme is naturally
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applicable to processing image data, which is known to be well represented by multiscale and

pyramidal structures [13]. We have also designed our system in such a way as to minimize the

amount of library queries that must be carried out; by working to make the most from large tiles

through localized refinement and clever post-processing, we are able to cut down the number of

tiles that must be matched.

For a target image of size 1400 × 945 pixels, with a database of 79 images, each of size 655 ×

500 ± 50 pixels, the time for determining all matches was 17.0 minutes. The image preprocessing

step took 0.84 minutes. Calculating the time for two more databases (of size 53 and 27 images)

we found that the average rate of matching was 13 seconds per file. For a database of 422 images,

as Orchard and Kaplan use for their tests, this indicates the processing time would be 1.5 hours.

This test was conducted with two additional refinement passes after the first and a uniform scaling

factor of 2.0 across refinement levels. The proportion of tiles calculated was 33% and 25% for each

of the two refinement passes respectively. All the rest of the parameters were set as recommended

in the previous part of this chapter. The computer used to perform these tests was a Dell XPS 420,

with the Intel Core 2 Duo 3.00Ghz processors and 3.00Gb of RAM. Our implementation has been

programmed in Java 6.0.

Orchard and Kaplan report, for their Cut-Out Image Mosaic method [69], a time of 4.7 hours,

using a database of 422 images, each of size 60 × 80 on an Apple Macintosh 2.50Ghz PowerPC G5

workstation with 8.00Gb of RAM. They do not report the size of the target image, so it is difficult

to compare this performance with ours. In any case, the method of Orchard and Kaplan is different

enough in its fundamental philosophy that it is difficult to make a direct comparison. We have

designed our method so that in the worst case fewer match calculations are necessary.

The calculation of texture contrast, edge maps, corner maps, and salience maps all have been

done through methods which may be implemented as a combination of fast image processing meth-

ods, such as the O(1) bilateral filter of Fatih Porikli [75] (which extends to other filters, such as the

median filter), and fast approximation methods such as those proposed by Paris and Durand [71].

The same is true for the post processing operations, which also may be implemented through known

fast methods. For the tests reported above, using an unoptimized implementation, the average time

for the calculation of everything other than the image/image comparisons was 12.9 minutes (this

time is independent of library size).

7.4 Failures and Limitations

While we have made significant progress towards an effective photocollage system, there remain

some aspects of the process that may be improved upon. In this section, we discuss certain failure

cases of our proposed system, limitations that extend across all cases, and suggestions for possible
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remedies. First, we will discuss the main problems with the system as it stands.

Unpredictability Due to the randomized nature of tile selection, several collages for a given

target image and library often vary widely in quality. In chapter 4, we discussed options for

generating the collage tiles; many of these do not depend on randomization, so it may be fruitful to

investigate these further. Along a similar track to the centroidal Voronoi tessellations, it is possible

that using edge segments (from some binary edge detection mechanism) instead of single points

may yield favorable results.

Repetition of Images We have chosen to allow the repetition of images in the composition

of the collage. We felt that the multi-scale nature of the tiling, as well as the placement of the

tiles across salient image regions, would naturally discourage the occurrence of multiple adjacent

tiles being rendered with the same image. Orchard and Kaplan [69] identified the problem of a

flat-shaded region being paved with multiple copies of the same image; but if the sky is represented

by only a few tiles, this is less likely to occur, and if these tiles contain salient image structures

from other parts of the image, it is even less likely. Also, the fast matching system allows for the

use of large databases, which also may discourage repetition.

In practice, repetition among adjacent tiles does occur frequently. The initial matching step—

that is, the reduction of the database by histogram comparisons—often will lead to several adjacent

tiles having very similar sub-libraries to draw from, and thus repetition occurs. This somewhat

mitigates the advantage of having a large database. Perhaps more sophisticated methods of image

clustering, such as those proposed by Oliva and Torralba [67], may be used to rectify this problem.

Refinement Efficiency We have observed that there is often a high proportion of overlap in

the image regions that are refined at each level. That is, any pixel in the image is most likely to

either be recalculated several times, or not at all. This seems to point to a problem with algorithm

efficiency; it is reasonable to expect that a region may need to be calculated more than once, but

it seems like a waste to recalculate very similar stretches of the image over and over. It is possible

that these regions simply are more difficult to match, and thus must be reprocessed several times.

More investigation into this problem is required.

Selection of Parameters Even though, through extensive experimentation, we have gathered

a set of operation parameters that are appropriate for general use, it is usually possible to improve

the visual quality for any given target image through further exploration of the parameter space.

The problem is that there are many parameters on which the quality of the end result relies. We

have outlined the most important of these parameters in this section, but there are others. For

instance, the post-processing step alone contains a scale parameter for the the production of the
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detail layer, two scale parameters for the production of the base layer (one for the width of the

cross-bilateral filter, and one for the image abstraction of the cross-image), scale parameters for the

detail layer, parallel parameters for each color channel and various blending parameters for mixing

all these components together. As a general policy, we have used scale parameters that are uniform

across all tasks (within a given refinement level). However, invariably, tweaking is required to get

the best results for each target image. A more extensive investigation is required to determine a

comprehensive and strict system for determining parameters, if one even exists.

105



7.5 Selected Results

(a)

Figure 7.13: A collage emphasizing discernibility, made from 685 images. Individual collage
images are circled.
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(a)

Figure 7.14: A collage emphasizing accuracy, made from 685 images. Individual collage
images are identified.
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(a)

(b)

Figure 7.15: A collage emphasizing discernibility. The size of the library is 837 images,
and two refinement passes are used.
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(a)

(b)

Figure 7.16: A collage emphasizing accuracy. The size of the library is 837 images, and
one refinement pass is used.
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(a)

(b)

Figure 7.17: A collage made from 30 images of the author, with one refinement pass.
Additional post processing was done to emphasize edges in the library images.
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(a)

(b)

Figure 7.18: A collage emphasizing discernibility. 837 images are used, and one refinement
pass.
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(a)

(b)

Figure 7.19: A collage emphasizing discernibility, made from 685 images. Saturation has
been enhanced to improve discernibility.
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(a) (b)

(c)

Figure 7.20: A collage made from 685 images, with two refinement passes. 7.20b The
result of Orchard and Kaplan [69] is shown for comparison.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Contributions Orchard and Kaplan produce image mosaics using tiles of irregular shape; how-

ever, the shapes of their tiles have nothing to do with the content of the images composited therein,

or even the target image. Rother et al. render collages with consideration of image content, without

attempting to match any target image. We combine these two approaches to create collages that

contain fascinating interactions between adjacent collage images, and between the collage images

and the target image. The individual images of the collage flow from one to the next, without

any distracting tile seams to break up the image. As in image mosaics, the photocollage shows

interesting correspondences between the collage images and the target image, but more so; since

we have made the use of large tiles a priority and facilitated the use of large databases, there is less

reliance on arrays of small tiles each containing poorly matched images.

All in all, multiscale image processing has been the backbone of the matching algorithm. Not

only have we been able to maintain high discernibility by using large tiles, and using smaller tiles

only when needed, but we have been able to accelerate the search process through the image library

by matching low resolution images first and then increasing the resolution as needed. The whole

algorithm brings together various ideas inspired by signature matching, image registration and

content based image retrieval.

We have tackled the problem of achieving high accuracy and discernibility simultaneously within

a single collage. By localizing the criteria for measuring the fulfillment of these requirements, we

have allowed for collages with increased discernibility while maintaining an acceptable level of

accuracy. Over all, we have found that it is easiest to keep discernibility high during the image

matching and compositing process, while attending to the accuracy requirements in postprocessing.

This seems to be parallel to what is seen in the photographic mosaic techniques that currently exist.

The matching process and color correction processes work together to create double images that

are comparable to those produced by artists, although they certainly have their own character and

charm.

We have experimented with the use of image edge and salience maps to influence the outcome
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of the matching process in favor of accuracy or discernibility, depending on the underlying features

of the target image. By allowing looser matches in the neighborhood of strong step edges, we have

been able to create collages with high discernibility in areas of the image where heavy subdivision

is often used to maintain accuracy. Similarly, by also allowing looser matches in empty, flat regions

of the image, and limiting the number of tiles that may be refined, we’ve reduced the incidence of

over-refinement in non salient image regions.

We have also experimented with different weights for each of the terms in the calculation of

the matching score for determining the best image for a given tile. We have shown that favoring

luminance over chrominance is a way to achieve higher perceptual accuracy while still maintaining

some correspondence between the colors in the target image and the collage. Also, we have tried

using a texture contrast as a matching feature, and found it somewhat useful in representing smooth

regions of the target image with smooth collage images. However, for general images, the use of

the texture contrast term generally does not improve the results significantly.

Color post-processing has been used in various image mosaic systems to pull up accuracy after

the main matching process has been completed. Our system also relies on color correction, but

draws from hybrid image techniques to obtain a good balance of accuracy and discernibility in the

final result. The base/detail approach and the use of edge preserving decompositions has allowed

us to render both primary and secondary images viewable at any distance by tying together image

features across scales. Additionally, by tweaking the detail layer of the collage, we have been able

to effectively transmit detail information through from the target image to the collage without

harming the discernibility of the collage images.

Throughout the process of developing the techniques heretofore described, we have also come

across some interesting image processing operations that have allowed us to produce salience maps,

texture contrast maps, and abstracted images in unique ways. By recognizing the particular re-

sponses of texture images under the application of median filters, and drawing on previous ap-

proaches to texture contrast measurement, we have developed a class of filters that may certainly

be built upon in further investigations of texture analysis, image abstraction and edge preserving

decompositions.

— -

Context Many forms of double image have been thought up by artists, and many more certainly

will be thought up in the future. The introduction of algorithmic methods for automatically

composing double images may already be contributing to the introduction of new forms, even though

computational methods in this areas are relatively new. In any case, computational methods have

certainly made a once laborious and time consuming task—the task of creating image mosaics and

collages—something potentially achievable by any user, be the user an artist, graphic designer or
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amateur tinkerer. The creativity of artists can never be predicted, but only assisted. Artists will

find new ways to combine images and make unique statements by creating new visual vocabularies.

We may leave it up to them to develop new ways of combining images, and then try to assist them

by automating these processes. However, we may also be able to assist in the creation of new forms

by allowing artists greater freedom to experiment. We hope that artists will use this photocollage

tool in ways that we have not anticipated. We hope also that it will be used to inspire new types

of double images, motivating further research and development in this area.

The photocollage system presented here allows users to create complex collages from any library

of images, to match any target image. Given the large number of parameters involved in the whole

process, there is the potential for a wide range of looks that may be achieved with some experi-

mentation. The user may trade between accuracy and discernibility, sharp or soft tile boundaries,

and large or small collage images. For a release version of the software, it is unclear what the best

set of parameters would be to make available to the user, but there is certainly some flexibility

in this area. The system is relatively fast, and thus accessible to anyone with a standard desktop

computer.

8.2 Summary of Future Work

In this section, we offer some brief suggestions for developing further the system that we have

introduced in this thesis.

Image Features We have shown that a scale-based matching process is effective for querying a

large database for image regions with certain feature characteristics. These results may be extended

in a great number of ways; an obvious direction for future research is the exploration of expanded

feature sets.

We have proposed a few basic methods for using the corner map and texture contrast map

described in chapter 3 for image abstraction and texture simplification. However, we believe there

exist more sophisticated approaches that may be discovered through further investigation. Addi-

tionally, it seems likely that there exist more sophisticated approaches for calculating corner maps

and texture contrast maps using more detailed and complete statistical structures than simple grey

level histograms.

Double Images More investigation into the methods that artists use to create double images is

warranted. In this thesis, we have assumed a method of distorting and modifying the structures

of the secondary image in order to convey it with a more discernible primary image. However, it

appears that many artists, including such artists as Ocatavio Ocampo and Salvador Dali, actually

prefer to distort the primary image in order to more accurately convey the secondary image. In our
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method, we modify the primary images by cutting them from their natural contexts and compositing

them into the collage, and then applying pixel-wise color transformations in order to improve

accuracy. More work may be done in applying spatial distortions to the matching primitives in the

primary image to improve accuracy, with modest discernibility costs. The authors of Jigsaw Image

Mosaic [51] and Puzzle Image Mosaic [9] have already explored these ideas.

Collage Tiles We have identified several methods for producing tilings, each of which have advan-

tages and drawbacks. We believe further investigation is warranted into these and other methods

of producing tilings, as well as other methods of modifying each tiling for iterative refinement.

Particularly, there are likely many methods of producing edge-straddling segmentations that may

be explored. We suggest the use of Voronoi regions with edges as generators; we touched on this

idea briefly in chapter 5. Bilateral Voronoi Regions may also be useful, as used by Inoue and

Urahama [49].

We have devised a system for using path cost Voronoi diagrams to find the optimal composition

of a set of images, given their scaling and translation transforms, and the region centroids. However,

there may be many variations of this technique which could produce various different types of

images, depending on the application. We encourage the adaption of these techniques to other

NPR realms. Particularly, path cost Voronoi tessellations may be useful for seam repair in patch

based texture synthesis.

Discernibility Measurement Throughout this book, we have used a subjective method for

judging discernibility. It may be possible to judge discernibility in a quantitative way, to some

degree, by analyzing the content of image tiles.

Texture Contrast In order to improve the response of our texture contrast filter to a wider

range of texture scales within a single image, it may be useful to use automatic scale selection

techniques as employed by Carson et al. [14] and others.
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