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Abstract 

 
  

Climate Change has been related to GHG emissions, of both natural and 

anthropogenic origin.  Agricultural management practices like reduced tillage and 

intensive cropping systems have a significant impact on the flow of C among it’s 

sources and sinks. These management practices involve complex biophysical 

interactions resulting in a range of impacts on farm income and GHG abatement. The 

focus of this study was on the impact of alternative annual crop tillage systems on GHG 

emissions and income to better inform climate change mitigation policy in agriculture. 

Besides tillage intensity, cropping intensity and crop mix and the interaction of these 

characteristics with the biological and physical  attributes, the emission and income 

effects are a function of factor inputs, factor costs and commodity prices. Therefpre, the 

analysis was multi-disciplinary in nature and the tool of choice that depicts impacts on 

individual indicators is Trade-off Analysis (TOA). A component of risk analysis was 

also included. The analysis focused on short and long-term performance, the uncertainty 

of soil N2O emission coefficients as well as changes in weather patterns. As the 

adoption of reduced till has been a relatively recent development and as such, there is 

not a lot of long-term biophysical and economic data, which limits the effectiveness of 

econometric analysis. The different scenarios of uncertainty and long-term impacts were 

analysed by use of a simulation model. The model was parameterised with 

Intergovernmental Panel on Climate Change (IPCC) 1996 coefficients, a farmer survey, 

and cost data from Saskatchewan Agriculture Agri-Food and Rural Revitalization 

(SAFRR) for 2004. Results indicated that net GHG emissions were relatively lower for 

reduced tillage management while conventional tillage may be relatively more attractive 

from an economic perspective.  However, results indicated that such economic factors 

as risk and economies of size may have a significant influence on this latter result. The 

study also highlighted the need to evaluate the GHG abatement potential of reduced 

tillage while simultaneously considering the abatement capability of the farm. 
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CHAPTER 1  
INTRODUCTION 

 
 
1.1 Background 

 When one looks at historic evidence, the past has shown warmer mean global 

temperatures than the present (Table 1). However, what is more interesting is how the 

present shows greater change in mean temperature variance: While it has been 

estimated that temperature variance changed by only two degrees Celsius in the last 

10,000 years, the variance has changed by 0.5 to 0.7 Celsius within the last 150 years 

(Splash, 1994). Coincidentally, these 150 years have been within the industrialisation 

period, the period when fossil fuels have been used extensively as an energy source. 

 
Table 1.1 Mean Global Temperatures  
Years ago Mean global temperature relative to present (°C) 
5,000-6,000 +1 
125,000 +2 
3-4 million +3-4 

(Source: Splash, 1994) 
 
 

There are increasing concerns that human activity, through the increased 

emissions of greenhouse gases (GHG), is having an impact on global climate. Among 

the early efforts to link climate change with GHG emissions associated with the burning 

of fossil fuels, was the Frenchman, Jean Baptiste Fourier, who in 1827 first postulated 

an analogy between atmospheric warming and warming properties of a greenhouse. In 

addition, Swedish Nobel laureate in Chemistry, Svante Arrhenius, postulated an 

anthropogenic greenhouse effect occurring as carbon dioxide (CO2) concentrations 

accumulated in the atmosphere from increased burning of fossil fuels. In 1938 G.D. 

Callendar’s failed attempt to convince the Royal Society that global warming was 

underway (Tucker, 1997). 
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 The response to anthropogenic changes in climate forcing occurs against a 

backdrop of natural climate variability. The Intergovernmental Panel on Climate 

Change (2001) state that  the presence of this natural climate variability means that the 

detection and attribution of anthropogenic climate change is a statistical “signal-in-

noise” problem. However, detection and attribution studies have advanced beyond 

addressing the simple question “have we detected a human influence on climate?” to 

such questions as “how large is the anthropogenic change?” and “is the magnitude of 

the response to greenhouse gas forcing as estimated in the observed record consistent 

with the response simulated by climate models?” (IPCC,2001). The concluding remarks 

of the IPCC third assessment report are as follows (IPCC, 2001):  

 

1. The 20th century climate was unusual 

2. The observed warming is inconsistent with model estimates of natural internal 

climate variability.  

3. The observed warming in the latter half of the 20th century appears to be 

inconsistent with natural external (solar and volcanic) forcing of the climate 

system. 

4. The observed change in patterns of atmospheric temperature in the vertical1 is 

inconsistent with natural forcing. Changes in the vertical refer to patterns of air 

temperature changes seen in the stratosphere and troposphere. What was observed 

are stratospheric cooling and tropospheric warming. 

5. Anthropogenic factors do provide an explanation of 20th century temperature 

change 

6. The effect of anthropogenic greenhouse gases is detected, despite uncertainties in       

sulphate aerosol forcing and response 

7. It is unlikely that detection studies have mistaken a natural signal for an 

anthropogenic signal 

8. The detection methods used should not be sensitive to errors in the amplitude of the 

global mean forcing or response 
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9. Studies of the changes in the vertical patterns (as discussed in 4 above) of 

temperature also indicate that there has been an anthropogenic influence on climate 

over the last 35 years 

10. Observed and simulated vertical lapse rate changes are inconsistent over the last 

two decades, but there is an anthropogenic influence on tropospheric temperatures 

over a longer period 

11. Natural factors may have contributed to the early century warming 

 
 

The scientific community has been careful to maintain a focus on the 

management of sources and sinks of the carbon pool in the environment (Lal et. al., 

2000 a). A source is any process, activity or mechanism that releases a greenhouse gas, 

an aerosol or a precursor of a greenhouse gas or aerosol into the atmosphere  (IPCC, 

2001 a). A sink is any process activity or mechanism that removes a greenhouse gas, an 

aerosol or a precursor of a greenhouse gas or aerosol from the atmosphere (IPCC, 

2001a). How sources and sinks are distributed among various reservoirs of the carbon 

pool is shown in Figure 1.1: The ocean is the largest carbon sink. Next in importance 

are both world soils and the biota that also influence atmospheric concentration of CO2 

and other radiatively active gasses (Lal at. al., 2000b and Azar and Sterner, 1996). In 

the long run, an equilibrium prevails between the atmosphere and the ocean.  

 
(Sources: Lal et. al., 2000b;  Johnson ,2000; Bouzaher et. al., 2000) 
Figure. 1.1 Estimates of GlobalCarbon Pool among Various Reservoirs 
(Gigatonnes) 
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While, in equilibrium approximately 15% of emitted CO2 remains in the atmosphere, 

this could rise to as high as 30% (or in other words, double the concentration of CO2 of 

the pre-industrial era (Azar and Sterner, 1996; Johnson , 2000). 

The movement of carbon among the various reservoirs within the global carbon 

cycle involves a number of processes (Table 1.2). Although, the largest effluxes are 

plant respiration and residue decay and the largest influx is through photosynthesis, 

these processes are influenced by human activity while such processes as the burning of 

fossil fuels and land use are are based on the level of human activity. Hence, the impact 

of land use and soil management practices are considered for GHG accounting by the 

IPCC (1996).  

 
Table 1.2 Carbon Change among the Reservoirs 
Flux Reservoir Rate (Gigatonnes carbon per 

year) 
Efflux to the atmosphere (i) fossil fuel burning 

(ii) land use 
(iii) plant respiration 
(iv) residue decay 

sub total 

5.3 
0.6-2.6 
40-60 
50-60 
95.9-127.9 

Influx from the atmosphere (i) photosynthesis 
(ii) ocean uptake 

sub total 

100-120 
1.6-2.4 
101.6-122.4 

Imbalance (efflux-influx)  1.8 + or – 1.4 
(Sources: Lal et. al., 2000 b; Johnson,2000) 
 

Production practices on soil systems found in the prairies of western Canada and 

the U.S. Great Plains have been driven by the limitation of soil moisture; and in order to 

counter this problem summer-fallow (leaving a parcel of land uncultivated for an entire 

cropping season) has been used. Summer-fallow conserves soil moisture at critical 

growing periods to reduce the risk of crop failure (Cihacek and Ulmer, 2000). However, 

the more frequent the land is left fallow the greater the reduction of Soil Organic matter 

Carbon (SOC) (Nyborg et. al., 2000, Cihacek and Ulmer, 2000 and Campbell et. al., 

2004). This is due to the fact that during the fallow period carbon is released to the 
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atmosphere2 but not replaced by the adoption of crop production and only in the crop 

growing period is carbon added to the soil (Cihacek and Ulmer, 2000). Hence, by 

reducing the frequency of fallow and by reducing tillage intensity3 SOMC losses could 

be decreased and soil could function as a net C sink (Cihacek and Ulmer, 2000 and 

Cambell et. al., 2004).  

 In addition to reducing CO2 emissions by sequestering more SOMC, reduced 

tillage is known to reduce the emission of CO2 by reducing fuel use and by reducing 

machinery use- and the CO2 emissions that they give rise to (Desjardins and Riznek, 

2000, and Coxworth, 1998). However, the C cycle is linked to the nitrogen (N) cycle 

such that increases in the soil carbon stock will also increase the soil N stock which 

could result in reduced tillage systems facilitating an increase in emission of nitrous 

oxide (N2O).  Further, under production systems that involve more intensive crop 

production there is an associated increase in the quantity of fertiliser used, particularly 

with more N based fertiliser, which may give rise to more N2O emissions (Desjardins 

and Riznek, 2000 and Coxworth, 1998). Reduced tillage farmers are also known to use 

more legumes in their rotations. This could have contrasting effects with respect to soil 

N2O emissions. On the one hand legume crops are known to add more N to the soil, 

which is released as N2O than cereal crops and on the other hand if wheat or barley 

follows a legume these crops, in turn, need less N based fertiliser (Desjardins and 

Riznek, 2000 and Coxworth, 1998). There is still uncertainty about the effect of zero 

tillage on soil N2O emissions; it has been postulated that reduced tillage systems may 

cause a reduction in soil N20 emissions in western Canadian but an increase in the east 

(Boehm, M. 2004c). However, it is poorly understood what the capacity is of reduced 

tillage systems in terms of  net GHG abatement (in terms of net CO2 equivalent) 

compared to more traditiona conventional tillage systems. 

                                                
2 After the crop is harvested, tillage incorporates the residue back into the soil where carbon is released by 
decomposition of microbial activity: This released carbon has two possible paths it could take; it could 
enter the SOMC pool or it could enter the atmospheric pool as CO2. 
 
3 Reduced tillage intensity during the fallow period maintains more carbon in the undecomposed form. 
i.e., for longer periods before being decomposed to SOMC or released out of the soil carbon pool to 
atmospheric CO2. 
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 The same factors that make the calculation of net GHG abatement complex 

makes the calculation of economic returns complex. For example while fuel use and 

labour use are expected to decline, due to the reduction of tillage, weed pressures may 

rise and herbicide costs increase. As well investment in different machinery could 

change the net machinery stock and changes to the yields would impact farm gross 

revenues. 

 

1.2 Problem  

To design policy aimed at abating GHG emissions in agricultural systems there 

needs to be an understanding of the effect of agricultural and land management systems 

on GHG emissions and abatement. This study aims to find the net effects of GHG 

abatement and farm income of reduced tillage systems relative to conventional tillage 

systems. 

  

1.3 Objectives 

The overall objective is to understand the characteristics of different tillage 

systems including the expected long-term net farm income and the capacity for net 

GHG abatement. To meet this objective one must first determine how the benefit of soil 

conservation under reduced tillage manifests itself as long-term net farm income. To 

meet this objective the following specific objectives will be addressed:  

 

1. Identify a simulation-modelling framework that integrates biophysical and 

economic components of an agricultural ecosystem and can be adapted for the 

impact analysis. 

2. Perform simulations with the model under different crop rotations, time frames, 

weather conditions and other bio-physical factors.  

3. Evaluate the economic/environmental impacts for different tillage systems. 



 7 

 

 1.4 Scope of the Study 

The study will focus on the black soil zone of Saskatchewan. The black soil 

zone covers nearly 10.7 million hectares in the north and east of the agricultural 

landscape. The biophysical characteristics of this region allow for a wider variety of 

cropping practices than are viable in other parts of the province as provided by 

Saskatchewan Agriculture Agri-Food and Rural Revitalisation (SAFRR) (2002). 

 

1.5 Organisation of the Thesis 

Chapter 2 reviews the literature over climate change, agriculture’s role and 

policy initiatives taken to reduce the GHG emissions and compares the methods of 

evaluation with specific reference to benefit cost analysis, abatement costs analysis and 

trade-off analysis. Chapter 3 constructs a conceptual framework for the research, how 

trade-off analysis would be used with the simulation model. Chapter 4 provides a 

description of the survey used to parameterise the simulation model. Chapter 5 provides 

an empirical framework of the model with respect to how it is parameterised and 

provides some descriptive statistics. Chapter 6 provides the simulation results of the 

model to come up with trade-off curves for the practices surveyed. Chapter 7 concludes 

with a discussion of implications for policy.  
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CHAPTER 2  
LITERATURE REVIEW 

 

2.1 Introduction 

This chapter principally examines the literature concerning the economic and 

environmental impacts of agricultural management practices with respect to GHG 

emissions and climate change. Secondly, an evaluation of the economic tools available 

to assess these economic and environmental impacts is presented. The chapter begins by 

shedding light on the role of GHGs in climate change. Then, a discussion of policy that 

is directed at mitigating climate change and Canada’s role in it is provided. Next, the 

economic and environmental impact of alternative agricultural management practices is 

discussed. Following which, is a comparison of assessment tools, including benefit cost 

analysis (BCA), abatement cost analysis and trade-off analysis (TOA).  

 

2.2 GHGs and Climate Change 

The previous chapter began by presenting the possible relation between GHG 

emissions and its impact on climate change. This uncertain link between GHGs and 

global warming is theorised to work as follows: The earth absorbs solar radiation and 

then reflects radiation back into the atmosphere, where certain gasses act like 

greenhouse windows and trap this radiant heat. These GHGs include water vapour, 

nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2), and ozone. Because each 

gas’s capacity to trap radiation differs they have been standardised to a common 

denominator - the CO2 equivalent. For example CH4 has 21 times the global warming 

capacity of CO2 and N2O has 310 times the global warming capacity.  Therefore they 

are each assigned a CO2 equivalency of 21 and 310 respectively (Agriculture and Agri-

Food Canada, 2000 and Johnson, 2000). 
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The trapped radiation has warmed the earth for billions of years by bringing the 

average surface temperature to 15 degrees Celsius - instead of the minus 18 it would 

have been without the GHGs.  As a result, the presence of this “greenhouse effect” is 

essential to support life as we know it. Both the concentrations of these gasses and 

average global temperature are thought to have varied little from century to century 

over the last 10,000 years: However, during the last 50-100 years they have both risen 

dramatically, warming the atmosphere and the earth’s surface by trapping more 

outgoing terrestrial radiation (Agriculture and Agri-Food Canada, 2000 and Johnson, 

2000). The capacity of these gasses to raise the global temperature has been calculated. 

In 1896 Arrhenius calculated the effect of doubling of CO2 concentration in the 

atmosphere and found that it could lead to an increase in mean global temperature of 

approximately six degrees Celsius. It is currently predicted that doubling atmospheric 

concentrations of CO2 will increase mean global temperatures by 1.5 to 4.5 degrees 

Celsius. North America has warmed by about 0.7°C during the past century and 

precipitation has increased, but both trends display large regional variation (e.g., 

seasonal reductions in precipitation in some areas) (IPCC, 2001b). Changes in 

precipitation are highly uncertain. The IPCC (2001b) Third Assessment Report (TAR) 

model results suggest that North America could warm by 1-3°C over the next century 

for a low-emissions case but it has been estimated that warming could be as much as 

3.5-7.5°C for the higher emission case.  

 The impact that a doubled atmospheric concentration of CO2 will have on 

sectors such as agriculture is an important area of research.  Agriculture is one of the 

sectors most likely to be affected. Sudden changes in climate could have drastic effects 

such as changes in production patterns, increases in crop damage, water shortages, new 

unpredictable changes in the interactions among crops, weeds, insects and disease 

(Agriculture and Agri-Food Canada, 2000). Some expressions of benefits from global 

warming have also been postulated (Splash, 1994)). However, there is a large 

uncertainty with respect to these benefits and should they materialise they would be 

seen only under a certain range of a temperature increase. Such postulated benefits to 

agriculture includes a possible increase in crop yields through a process known as CO2 

crop fertilisation. Crop fertilisation will only provide benefits as long as CO2 remains a 
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dominant gas, but as other gasses become relatively more important, yields will fall 

while negative impacts of global warming increase (Splash, 1994). How climate change 

may impact agriculture in North America has been summarised by the Third 

Assessment Report of the IPCC (2001b) as follows: 

 

“Food production is projected to benefit from a warmer climate, but there 

probably will be strong regional effects, with some areas in North America 

suffering significant loss of comparative advantage to other regions (high 

confidence). There is potential for increased drought in the U.S. Great 

Plains/Canadian Prairies and opportunities for a limited northward shift in 

production areas in Canada (high confidence). Crop yield studies for the United 

States and Canada have indicated a wide range of impacts. Modeled yield 

results that include direct physiological effects of CO2 (CO2), with sufficient 

water and nutrients, are substantially different from those that do not account 

for such effects. Economic studies that include farm- and agricultural market-

level adjustments (e.g., behavioural, economic, and institutional) indicate that 

the negative effects of climate change on agriculture probably have been 

overestimated by studies that do not account for these adjustments (medium 

confidence). However, the ability of farmers to adapt their input and output 

choices will depend on market and institutional signals, which may be partially 

influenced by climate change.” (IPCC, 2001b) 

 

Some of the Third Assessment Report highlights for North America are; 

• Precipitation changes for the Prairies and Peace River regions ranging from 

decreases of 30% to increases of 80% 

• Although warmer spring and summer temperatures might be beneficial to crop 

production in northern latitudes, they may adversely affect crop maturity in 

regions where summer temperature and water stress limit production  

• Predicted shifts in thermal regimes indicate a significant increase in potential 

evapotranspiration, implying increased seasonal moisture deficits. Modeling 

studies addressing the southeast United States have shown that changes in 
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thermal regimes under conditions of doubled CO2 would induce greater demand 

for irrigation water and lower energy efficiency of production (Pearl et al., 

1995). 

• Summarised studies for Canada that show varying results such as changes in 

cropping area ranging from decreases by 75 % to increases by 124%; increases 

in soil C and soil quality (not quantified);  

• Increases in pesticide expenditure for corn ranging from 10% to 20% and for 

wheat ranging from a decrease of 15% to an increase of 15% as well as an 

increase in irrigated acreage (not quantified) 

Changes in diurnal and inter-annual variability of temperature and moisture can result in 

substantial changes in the mean and variability of wheat yields. The main risk of 

climate change to some regions may be primarily from the potential for increased 

variability.  

Increased variability of temperature and precipitation results in substantially lower 

mean simulated yields, whereas decreased variability produces only small increases in 

yield that were insignificant  

 

 It has also been predicted that higher temperatures could shift away the carbon 

already sequestered in soils. Globally 100 pica grams (1 pica gram = 1015 grams) of 

carbon is estimated to evolve out of soil from temperature increases as small in 

magnitude as 0.5 degree Celsius per decade over the next 50-60 years (Johnson, 2000). 

This is through a process of faster decomposition of dead organic matter promulgated 

by higher temperatures (Boehm, 2005). Adding to the causes, land use and expansion of 

agricultural activities drives soil degradation. Firstly, soil biological degradation has an 

effect on soil GHG emissions4 through a reduction in soil organic carbon content, in 

biomass carbon and a reduction in CH4 influx. Second, soil physical degradation causes 

an increase in efflux of GHGs. A summary of how land use and soil degradation 

contributes is presented in Figure 2.1.  

                                                
4Further, one finds concomitant effects on activity and species diversity of soil fauna and flora. 
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2.3 Policy  

Concerns over climate change have driven the need for policy response. Policy 

actions to influence climate change will motivate either mitigation or adaptation 

activities (Larsen and Tobey, 1994). A chronology of international policy efforts have 

been compiled from those such as Tucker (1997), Larsen and Tobey (1994) Azar and 

Sterner (1996) and Agriculture and Agri-Food Canada (2000): 

• In 1935, the first international conference on record that set the tone for 

intransigence towards accepting the possibility of climate change, was the “ 

Conference of the International Organisation for Meteorology” Tucker (1997) 

 (Source: derived from Lal et. al., 2000 b) 
Figure 2.1 Process of Soil Degredation and GHG Emission  
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• In 1987, was the “Montreal Protocol” aimed at mobilising the global community to 

phase down Chloro-Fluoro-Hydrocarbon (CFC) production (Tucker, 1997).  

• In 1998, the Toronto Conference acknowledged the major environmental concerns 

of increasing GHG emissions (Azar and Sterner, 1996). 

• In 1990, under the auspices of the United Nations, the Intergovernmental Panel on 

Climate Change (IPCC) in it’s 1990 report predicted that a business as usual 

scenario with respect to the use of fossil fuels would still raise global temperatures 

by three degrees Celsius by 2100 (Tucker, 1997).  

• In 1992, under the auspices of the United Nations Conference on Environment and 

Development (UNCED), 154 nations signed the “United Nations Framework 

Convention on Climate Change”, agreeing to roll back emissions to 1990 levels by 

the year 2000. This was signed in Rio de Janeiro, Brazil, calling for the 

governments of developed nations to adopt policies to limit anthropogenic 

emissions to protect sinks, but it failed to specify abatement targets (Tucker, 1997, 

and Larsen and Tobey, 1994 and Azar and Sterner, 1996) 

• Since 1994 each annual meeting of the countries (that signed United Nations 

Framework Convention on Climate Change) to discuss climate change and 

reduction of GHG emissions has been referred to as the Conference of the Parties 

(COP). The acceleration of the preparation of the COP-3 was begun in Kyoto, Japan 

and was adopted by more than 160 countries in December of 1997. Unlike the 

convention held in Rio de Janeiro, COP-3 was clear to specify abatement targets. 

Hitherto, it has been referred to as the ‘Kyoto Protocol’. The Protocol is aimed at 

lowering overall emissions of six GHGs by the period 2008-20012. The three most 

important gasses, N2O, CH4, and CO2, will be measured against a base year of 1990 

under the requirements of the protocol. The three long lived industrial gasses- 

hydroflorocarbon, perflurocarbon, and sulfur hexafloride – will be measured against 

either the 1990 or 1995 base year (Desjardins and Agriculture and Agri- Food 

Canada, 2000). 

• Under the Kyoto Protocol, individual countries have negotiated different levels of 

GHG emission reduction. For example, Switzerland will lower its emissions by 

eight percent below 1990 levels, as will the European Union and many central and 
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east European states. The U.S. may lower its emissions by seven percent (although 

it has stated it would not ratify the accord) and Canada, Hungary, Japan and Poland 

will lower theirs by six percent. Russia, New Zealand and the Ukraine will stabilise 

their emissions, while Norway may increase its emissions by one percent; Australia 

may increase emissions by as much as eight percent; and Iceland, by ten percent 

(Desjardins and Agriculture and Agri-Food Canada, 2000).  

• The role of agricultural soils as C sinks was recognized in agreements at COP 6 in 

Bonn (July, 2001) and at COP 7 in Marrakech (November, 2001) in which the 

removal of CO2 from the atmosphere into agricultural soils and forests was accepted 

(UNFCCC, 2001). The rules under which agricultural soils may be used by 

signatory countries, to meet their GHG emission reduction commitments under the 

Kyoto Protocol, have been established. These rules now pave the way for Parties to 

develop emission reduction strategies that include agricultural soils as sinks. 

 

 2.4 Canada and Kyoto 

 Canada has both signed and ratified the KyotoProtocol. Within the Kyoto 

Protocol, the government committed to reduce GHG emissions by six percent below 

1990 levels between the years 2008 and 2012 - representing an estimated 25 percent 

reduction from ‘business as usual’ forecasts for 2008 (UNFCC, 2001; CBC, 2004). 

When the Kyoto protocol was ratified the government committed to slash 240,000 

tonnes of CO2 equivalent emissions annually by 2010 (Natural Resource Canada 

Website, 2004). In August of 2003, Prime Minister Jean Chrétien announced the 

government's plan to spend more than $1 billion to reduce greenhouse gas emissions by 

20 megatonnes over five years (CBC, 2004). Such a reduction will require a joint effort 

from all sectors of the economy. Canada has had higher per capita energy consumption 

than other Organisation for Economic Co-Operation and Development (OECD) 

countries attributable to its size, settlement patterns and cold climate, export oriented 

economy, relatively low energy costs. The government has many stakeholder groups 

who analyze the economic, sociological and environmental impacts of the GHG 

abatement measures (UNFCC).   
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2.5 The Agriculture Sector 

 Atmospheric concentrations of GHGs have been rising in the past 20 years. If 

these concentrations continue to rise at the current rate, computer models that simulate 

the workings of the atmosphere predict that the average global surface air temperature 

will rise by two degrees Celsius by the year 2100 (Agriculture and Agri-Food Canada, 

2000). Such a temperature change is expected to cause greater fluctuations in weather 

conditions with severe effects on the agricultural industry and other human resource 

activities. (Agriculture and Agri-Food Canada, 2000, and Desjardins and Reznek, 

2000).According to most recent estimates, total agricultural GHG emissions (in CO2 

equivalents) have been between 10 and 14 percent of total Canadian GHG emissions 

(Lemke et al., 2004, and Desjardins and Reznek,2000). Saskatchewan is responsible for 

21% of total national GHG emissions (Figure 2.2).  From 1981 to 1996 national GHG 

emissions from the agriculture industry changed as follows, N2O increased by 21 

percent, CH4 was relatively constant, and emissions of CO2 declined by 13 percent 

(Figure 2.3). The reduction in CO2 emission was estimated to be mainly a result of 

adopting conservation farming practices (Desjardins and Reznek, 2000). More N 

fertiliser use has partly contributed to an increase in N2O while the remainder of N2O 

and CH4 emissions were estimated to be due to more intense livestock operations 

(Boehm, 2004 c).   

(Source: Desjardins and Reznek, 1996) 
Figure 2.2 Provincial Agricultural Contributions to GHG Emissions 
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The largest increase in N2O emissions was observed from 1991 to 1996. This is the 

result of a nine percent rise in crop production, including 22% in legume production, 

and changes in livestock production including an 18% increase in beef cattle 

production, 15% increase in the number of hogs and 33% increase in the amount of 

fertiliser used (Desjardin and Riznek, 2000). 
 

 
(Source: Desjardins and Reznek, 2000)  
Figure 2.3 National GHG Emissions from Agroecosystems -Indirect Emissions 
Inclusive 

 

According to estimates by Desjardins and Riznek (2000) the changes in GHG 

emissions from 1981 to 1996 at the provincial level have been as follows: Alberta and 

Manitoba increased; British Colombia, Saskatchewan and Atlantic Canada were 

relatively steady; Ontario and Quebec declined (Desjardins and Reznek, 2000). 

Environment Canada (2004) explains how the components of agricultural emissions 

within each province have changed between 1990 and 2000. In Ontario, Quebec, and 

the Atlantic provinces declines were evident in CH4 emissions from enteric 

fermentation as cattle populations declined. Whereas, emissions from manure 

management increased as swine and poultry populations increased.  Increases in direct 

N2O emissions from cropland soils were also evident, and indirect off-site N2O 

emissions as a result of a decline in crop production, crop residue and nitrogen fixing 
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crops and reduced use of synthetic nitrogen fertiliser.  In Ontario, Nova Scotia and 

Quebec and the prairie provinces, soil CO2 emissions declined as a result of increased 

adoption of no till and reduced acreage under summer fallow. In the prairie provinces 

direct N2O from cropland soils and off-site indirect N2O emissions increased - from 

manure management, enteric fermentation both attributable to greater cattle and swine 

populations, and from increased use of synthetic fertiliser and nitrogen fixing crops. In 

British Columbia, direct N2O from cropland soils, off-site indirect N2O emissions from 

enteric fermentation and manure management increased due to higher cattle and poultry 

populations. This has been partly offset by declining use of synthetic fertiliser.  

 

2.6 Agriculture Management Impact 

Of the total agricultural soil N2O emissions, direct5 N2O emissions account for 

about one half, indirect emissions6 account for about a third and the balance is 

attributable to animal production (Table 2.1). Of the direct emissions, a third is 

attributed to crop residues. The indirect emissions are the most difficult to measure; 

however, as more measurements of N deposition became available, the emission factors 

will be modified to better reflect indirect emissions under Canadian conditions. It 

should be noted that all direct, indirect and livestock related emissions in Canada are on 

the rise. 

Canadian agriculture soils are considered to be a net sink of CH4, absorbing 

about 12 kilo-tonnes of CH4 each year (Table 2.2) (Desjardins and Reznek, 2000).  On 

the other hand emissions of agricultural CH4 are attributable to livestock. On a positive 

note, much progress has been made in reducing livestock related emissions by 

increasing the efficiency of milk and animal production (Desjardins and Riznek, 2000). 

 

                                                
5 Direct emissions from soil include those from mineral fertilisers applied to agricultural soils; animal 
manure used as fertiliser; nitrogen fixing crops; crop residues; the cultivation of organic soils (IPCC 
guidelines 1996 and Desjardins and Riznek , 2000) 
6 Indirect emissions derived from N that come from agricultural systems include those from applying 
nitrogen fertilisers and animal manure can result in indirect release of N2O by: volatilisation and 
atmospheric deposition of ammonia and various oxides of nitrogen; nitrogen leaching and runoff  (IPCC 
guidelines 1996 and Desjardins and Riznek , 2000) 
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Table 2.1: Agricultural Emissions of N2O (Mt CO2 equivalent) 
 1981 1986 1991 1996 

Fertiliser 3.5 3.5 3.4 4.8 

Manure 3.3 3.0 3.2 3.5 

N-fixing crop 2.3 2.8 3.0 3.9 

Crop residue 4.7 4.7 4.7 5.5 

Organic soils 0.1 0.1 0.1 0.1 

Total Soils (Direct) 13.9 14.1 14.4 17.8 

Animal production 

systems 

6.9 6.2 6.7 7.6 

Total (Indirect) 9.9 9.5 9.6 11.8 

Total  31 30 31 37 

(Source: Desjardins and Riznek, 2000) 

 

Table 2.2. Agricultural Emissions of CH4 (Mt CO2 equivalent) 
 1981 1986 1991 1996 

Livestock 17.8 15.7 16.2 18.4 

Manure 4.4 4.0 4.0 4.4 

Soils -0.3 -0.3 -0.3 -0.3 

Total 22 19 20 23 

(Source: Desjardins and Reznek, 2000) 

  

Soils have lost around a quarter of their C content since cultivation began 

(Desjardins and Riznek, 2000). Agricultural soils accounted for around seven percent of 

agricultural emissions of CO2 in 1996 (Table 2.3). Predictions are that at the present rate 

of conversion of agricultural soils from conventional to zero tillage, these soils will shift 

from being a net source of CO2 to a net sink (Desjardins and Reznek, 2000). These 

predictions mention that Canadian agricultural soils will store between 0.5 and 0.7 Mt 
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of carbon each year by 2010 and the trend will continue until soils reach a new 

equilibrium. However, reduced tillage may increase SOC stocks only to a limit. This 

limit is the carrying capacity of the soil where no more additional C sequestration is 

possible. This limit is the level the SOC stocks were before their depletion by intensive 

tillage (point A in Figure 2.4). These SOC stocks are labile or ephemeral because they 

would be again depleted if the farmer returns to practice conventional tillage (Boehm, 

2005). However, with reduced tillage some western Canadian soils are close to 

replacing this lost SOC to a point C close to the original level at D (Figure 2.4). 

However, a much greater share of CO2 emissions from agriculture comes from burning 

fossil fuels (Table 2.3). Indirect sources contribute a further 14 to 16 Mt from fuel 

combustion.  Looking at how agricultural soil carbon is being balanced by each 

province the Century model estimates that most provincial agricultural soils are still 

losing soil organic matter carbon, albeit at a decreasing rate. And Saskatchewan has 

already started sequestering soil organic carbon (Smith et. al., 2000).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4 SOC Change With Breaking of Native Soil 
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Table 2.3. Direct and Indirect Agricultural Emissions of CO2 (Mt/yr) 
 1981 1986 1991 1996 

Fossil fuels 9.5 7.7 8.1 9.5 

Soils 7.7 7.3 5.1 1.8 

Total Direct emissions 17.2 15.0 13.2 11.3 

Fertiliser manufacture, transport & application 4.4 5.5 5.1 6.6 

Machinery manufacture & repair 4.7 4.3 3.9 3.7 

Building construction 1.5 1.4 1.7 1.4 

Pesticide manufacture 0.2 0.3 0.3 0.3 

Electricity generation 1.8 1.9 2.1 2.4 

Total Indirect emissions 12.6 13.4 13.1 14.4 

Total agricultural emissions 30 28 26 26 

(Source: Desjardins and Reznek, 2000) 

 

Table 2.4 Percent of Cropland in Actual and Predicted use of No-till  
Province 1991 1996 2000 2005 2010 

B.C. 5 10 13 16 20 

Alberta 3 10 17 23 28 

Saskatchewan 10 22 30 35 38 

Manitoba 5 9 12 15 20 

Ontario 4 18 20 20 20 

Quebec 3 4 7 9 11 

Atlantic 2 2 2 2 2 

Canada 7 16 22 26 30 

(Source: Smith et. al., 2000) 
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2.7 Environmental and Economic Benefits of Tillage  

Agricultural management practices that sequester C include reduced tillage, 

management of crop residue, cover crops and improved water management7. Any given 

single practice may not be as effective at sequestering soil C in all regions. The 

underlying effectiveness is influenced by spatial heterogeneity. Estimates from the U.S. 

show that 49 percent of agricultural C sequestration can be achieved by adopting 

reduced tillage and residue management, 25 percent by changing cropping practices, 13 

percent by land restoration efforts, seven percent through land use change and six 

percent by better water management (Antle et. al.,1999). Also in the U.S., it has been 

found that reduced tillage is capable of reducing between 10 to 50 percent of the 3000 

to 5000 kg CO2 equivalent of emissions from agriculture per year. This net benefit of 

reduced tillage is reported to be higher among C rich soils (Li et. al., 1995). In the 

Canadian prairies of Alberta, Saskatchewan and Manitoba, additional net GHG 

abatement could be achieved by improving fuel efficiency of machinery, reduction of 

fertiliser use and improvements in livestock management (Kulshreshtha, et. al., 1998). 

This again underscores the impact spatial variation in North America with respect to the 

efficacy of reduced tillage vis-à-vis other management strategies in impacting net GHG 

abatement.  

Similar to net GHG abatement, economic profitability is also spatially 

dependant (on weather and soil type). Economic profitability of tillage systems are also 

dependent on relative yields, crop rotations, frequency of cropping, product prices, 

factor costs, and risk levels. These impacts have been studied for different soils of 

Saskatchewan by Zentner et. al., (1996), Grey et. al., (1996), Young et. al., (1994) and 

also for some soils within southern Ontario by Yiridoe et. al., (2000) and Weersink et. 

al., (1992). Within Saskatchewan a change to zero till brought a 5.25 percent yield 

advantage in the Black soil zone near the community of Melfort, between zero to 18.5 

percent yield advantages in Indian Head (Black soil zone), and a 11.4 percent yield 

advantage for wheat and a 5.7 percent yield disadvantage for oil seeds at Scott (Dark 
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Brown soil zone) (Gray et. al., 1996). Yield advantages have also been cited for the 

Black soil zone of Saskatchewan with zero tillage and credited to greater water 

conservation, particularly when precipitation is limited during the growing season 

(Brandt 1992 and Lafond et al., 1992). Other advantages contributing to economic 

profits as studied for Saskatchewan are greater yields accruing from reduced incidence 

of diseases and other crop rotational benefits (Zentner et. al., 1996 and Bailey, 1996). 

Greater yields and hence greater gross revenue could also be expected on a rotation 

basis with reduced tillage. This is because reduced tillage is associated with continuous 

cropping which translates into more hectares under cultivation than under conventional 

tillage where a portion of the field is under summer-fallow. Also impacting economic 

profits are changes in costs. Product costs were higher for continuous wheat associated 

with reduced till compared with fallow wheat on three soil textures in southwestern 

Saskatchewan (Zentner et. al., 1996). With respect to production costs, there are studies 

indicating a reduction in machinery costs after the change to reduced tillage for 

Saskatchewan (Zentner et. al., 1996) as there are studies indicating otherwise (Grey et. 

al., 1996) as this depends on existing practices and how intensive the change to zero till 

was from conventional tillage (Gray et. al., 1996). Tillage related labour and fuel costs 

were expected to decline with the change, whereas, herbicide costs (glyphosate) were 

expected to rise for Saskatchewan (Gray et. al., 1996 and Zentner  et al., 1996) . 

Whether the greater gross revenue (should there actually be a greater yield) would 

suffice to balance the greater production costs associated with reduced till will 

determine the net economic profitability while the variability of these results help 

determine economic risk.  

The economic impact of risk in the studies of this nature considers three factors; 

producer’s preference for risk, the variance of net returns and the expected value of net 

returns (Weersink et. al., 1992, Yiridoe et. al., 2000, Grey et. al., 1996 and Zentner et. 

al., 1996). Gray et al., (1996) assumed that the standard deviation of yields will be the 

same or 10 percent lower for the reduced tillage system compared with conventional 

tillage. This study considered anecdotal evidence suggesting that zero tillage systems 

                                                                                                                                          
7 The stored C is lost if a producer subsequently reverts to conventional management 
practices. 
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(in the Black soil zone of Saskatchewan) tended to produce relatively better in drought 

and relatively lower in cool wet conditions. However Zentner et. al., (1996) in a 

separate study in Saskatchewan reported that the trade off between expected net returns 

and its variance depended on soil and market price for the product (Zentner et. al., 

1996). Generally conventional tillage had lower income variability in silt loam and 

sandy loam soils and minimum tillage and zero tillage had lower variability in heavy 

clay soil of Saskatchewan (Zentner et. al., 1996). 

 

2.8 Co-Benefits of Alternative Management Systems  

In many situations economic development has typically led to a number of 

negative environmental impacts including increased pollutants and resource 

degradation.  Any management changes or other actions taken to reduce a particular 

environmental impact will provide the intended benefits but may also provide a range of 

ancillary benefits. Any evaluation of the net benefits associated with a particular change 

that ignores these additional, or co-benefits, may undervalue the justification for 

encouraging these types of management changes (IPCC, 2001b). 

There are a number of on-farm benefits associated with landowners adopting 

soil conservation management, including improved soil texture, structure and water 

holding capacity as well as reduced wind and water based soil erosion.  In addition, a 

number of benefits extend beyond the farm.  For example, the reduction of soil erosion 

reduces the clogging of waterways and rivers with sediment beyond the boundaries of 

the farm (Dormar and Carefoot, 1996). Improvement of water retention improves off-

farm ground water tables (Dormar and Carefoot, 1996). Moreover, with improvement of 

water retention less nutrient, soil particle and pesticide rich runoff water is available to 

discharge into surface and ground water. Reduced tillage can also positively impact air 

quality (Table 2.5). From an immediate human health perspective there is widespread 

agreement that fine particulate matter is of serious concern. Smoke is the greatest 

particulate matter of concern from agriculture in the prairies (Lemke et. al., 2004). The 

public has pressured government to enact regulation of particulate matter sources and 

more regulations can be expected (Lemke et. al., 2004). Having spoken to farmer 

groups and listened to local media it became apparent that with the practice of direct 
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seeding burning of stubble and crop residue has been reduced. Moreover, as discussed 

above, reduced tillage not only reduces wind erosion but also can decrease the demand 

for fossil fuels. All of these co-benefits helps reduce concerns related to air quality 

(Table 2.5).  However, many people and scientists rate the most serious agricultural air 

quality concern as its contribution to the build-up of GHGs that can cause climate 

change (Lemke et. al., 2004). 

While there may be off-site related benefits associated with reduced tillage, 

there may also be off-site related costs. The stubble and residue left on the field, that 

would otherwise have been buried or burnt under conventional management, could 

provide a breeding ground for more rodents and insects that could be pests and disease 

carrying agents to the farmer and his neighbours (Dormar and Carefoot, 1996). Some 

diseases that were of lower economic importance would now be higher in economic 

importance (Bailey, 1996). As well, the potential for additional weed problems may 

require more herbicide be used under reduced tillage than conventional there could be 

greater damage to sensitive plants and aquatic organisms and humans with pesticide 

sensitivities (Table 2.5). 

The numerous ancillary benefits of reduced tillage in improvement of air, water 

and soil quality extend from the local to the global society. As mentioned in the 

beginning of this sub-section, these numerous ancillary benefits, if they go un-acounted 

for, may weaken the justification for its implementation. On the other hand, should it be 

possible to quantify these benefits to society, it may enable society to compensate the 

producers for any economic trade-offs should there be any.  This study, however, 

attempts to quantify only the net GHG abatement benefit along with any economic 

trade-offs producers may have to face. 

 

2.9 Evaluation of Tillage Systems 

This study looks at the impact assessment of tillage systems by finding the net 

economic and net GHG abatement effects.  As specified in the introduction, this 

information will help inform policy makers when developing climate change policies or 

simply relevant agricultural policies concerning the potential economic benefit to 

farmers and also the potential benefit due to changes in GHG abatement. This section 
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examines tools that could be used to evaluate the tillage systems before deciding to 

adopt. The tools of analysis discussed in this section are cost benefit analysis (CBA), 

abatement cost analysis and trade-off analysis (TOA).  

 

Table 2.5 Air Quality Concerns Related to Primary Agriculture 
Air 
Quality 
Concern 

Agricultural Sources Impact Range of 
Impact 

Particulate 
Matter 

Soil erosion by wind, dust raised 
during soil tillage; Burning farm 
wastes, bush piles, and crop 
residues; Diesel engines; Grain 
and feed processing and handling; 
Driving on dirt and gravel roads; 
Pollen. 

Crop damage for 
particles > 10 microns, 
especially greater than 
1000 microns (“sand 
blasting”); Animal and 
human health for 
particles < 10 microns 
(PM10), especially < 
2.5 microns (PM2.5), 
organic particulates 
more harmful to health 
than inorganic 
particulates; Some 
particulates are 
allergens; Impaired 
visibility for driving. 

Local (0-
10 km) for 
large 
particulate 
matter to 
regional 
(0-
1000km) 
to global 
(0-1000s 
km) for 
fine 
particulate 
matter 

Odour Livestock generally especially 
Intensive Livestock Operations 
(ILO); Manure storage, handling, 
and land application; Dead animal 
storage and handling. 

Nuisance. Local 

Ammonia Manure storage, handling, and 
land application; Losses during N 
fertiliser handling and application. 

Precursor to formation 
of various toxic 
compounds and 
aerosols that are also 
PM2.5; Irritant; 
Nutrient pollutant. 

Local to 
regional 

Pesticides Pesticide application and 
handling, drift during application 
and volatilisation after application 
or from spills. 

Damage to sensitive 
plants and aquatic 
organisms; Humans 
with pesticide 
sensitivities; Aerosols 
that are PM2.5. 

Local to 
global 

N2O N inputs on agricultural land from 
animal manures, N-rich crop 
residues, and fertilizer-released 

Destroys stratospheric 
ozone; Climate change 
from additions of this 

Global 
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Air 
Quality 
Concern 

Agricultural Sources Impact Range of 
Impact 

from nitrification of ammonia to 
nitrate and denitrification of 
nitrate. 

potent GHG. 

CO2 Sources are fossil fuel burning 
and net decay of soil organic 
matter. 

Climate change from 
additions of this GHG. 

Global 

CH4 Animal digestion, especially 
ruminants; Manure storage and 
handling. 

Climate change from 
additions of this GHG. 

Global 

(Source: Lemke et. al., 2004) 

 

2.9.1 Cost Benefit Analysis  
 In CBA, as the name implies, the benefits of some proposed action are estimated 

and compared with the total costs that society would bear if that action were 

undertaken. It is the main analytical tool used by economists to evaluate environmental 

decisions (Field and Olewiler, 2002). It was first used by the U.S. Army Corps of 

Engineers to evaluate water-development projects. In Canada, it was widely used in the 

public sector up until the 1970’s, in projects involving natural resource use (Field and 

Olewiler, 2002).  In 1996 a group of economists of different political persuasions 

reached consensus on its role in environmental decision making. The following is a 

summary of their conclusions: 

 

CBA can play an important role in legislative and regulatory policy debates on 

protecting and improving health, safety and the natural environment. Although 

formal CBA should not be viewed as either necessary or sufficient for designing 

sensible policy, it can provide an exceptionally useful framework for consistently 

organising disparate information, and in this way, it can greatly improve the 

process and hence, the outcome of policy analysis. If properly done, CBA can be 

of great help to agencies participating in the development of environmental, 

health, and safety regulations, and it can likewise be useful in evaluating agency 

decision- making and in shaping statutes (Tietenberg, 2002) 
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Some researchers have identified problems with CBA. A key criticism of CBA is 

related to discounting, intergenerational externalities and compensation. An arbitrary 

selection of discount rate to determine intergenerational resource allocation implies 

moral judgement. The underlying logic behind discounting is that the present is more 

important than the future. Any revenues or costs that are to be incurred in the present 

should be given greater weight than those of the future. There is also the concept of the 

opportunity cost of money. A particular project has an opportunity cost of the return 

from investing in the next best alternative. Under the principle of discounting if 

conventional agricultural practices were hypothetically to cost a future generation of 

people 1 million dollars to rectify and occurs in 100 years time would be discounted to 

be equivalent to a mere 5,000 dollars of current damage under an annual discount rate 

of three percent. And, if by continuing such agricultural practices an additional benefit 

greater than 5,000 dollars could be reaped today then the CBA assumes that the gainers 

of the present could compensate the losers of the future and still be better off.  
 

The arbitrary selection of the discount rate is decided by the current generation 

who prefer gratification of their current consumption as more important than the 

gratification of their own consumption of a future date or the consumption of future 

generations’. This has led to the criticism of the use of a discount rate. 

  

The present generation deciding that the benefit to them is higher to than to 

another in a future generation is akin to a dictatorship. (Larsen and Tobey, 

19994) 

 

Proponents of discounting hold the view that the current generation should be 

unconcerned over the loss or injury caused to future generations because these future 

generations will benefit from advances in technology, investments in both man made 

and natural capital and direct bequests (Larsen and Tobey, 1994). However, such 

proponents do not appreciate that there are two distinct types of intergenerational 

transfer of resources which are relevant in the context of global warming (Larsen and 

Tobey, 1994). The first is a set of basic distributional transfers as compensation for 
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reducing stocks of non-renewable resources. The second consists of compensatory 

transfers made because damage is inflicted.  Proponents of discounting ignore that the 

transfer of improved technology and increased capital investments is mere 

compensation of the first set of transfer of resources and not the second (Larsen and 

Tobey, 1994). Compensation for damages has been neglected partly because they are 

assumed to be identical to basic distributional transfers and partly due to the principle of 

‘potential compensation’. The notion of ‘Potential compensation’, is described as 

follows. If the current generation could adequately compensate future generations for 

their loss in welfare due to climate change, and the current generation could still be 

better off relative to their condition when mitigating GHG emissions. In this case 

continued emission would be considered welfare improving regardless of whether 

compensation actually occurs (Larsen and Tobey, 1994). This is akin to the 

compensation criterion of efficiency of saying that if benefits out weigh costs, it would 

be possible for gainers to compensate fully the losers and still be better off.  A further 

critique of discounting within CBA with respect to intergenerational inequity is that 

society has a much larger life expectancy than individuals and thus the value society 

attaches to natural resources and the environment is likely to deviate from the aggregate 

of individual values (Larsen and Tobey, 1994). 

Besides intergenerational distribution impacts, CBA causes intragenerational as 

well as ecological distribution impacts (the latter is also known as territorial 

asymmetries or spatial ecological distribution, an example of which is depicted in 

section 3.3) (Munda, 1996). Intragenerational distribution impacts may arise when 

aggregating individual values the project runs the risk of placing greater weight on the 

preferences of higher income groups (Munda, 1996). A value judgement comes in to 

play regarding the appropriateness of the present generation valuing various services for 

future generations (IPCC, 2001).  

 
 
2.9.2 Abatement Cost Analysis 

The costs of reducing pollutants being released into the environment (or more 

specifically the mitigation of GHG emissions) or of lowering their ambient 

concentrations are called abatement costs (Field and Olewiler, 2002).  To understand 
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abatement cost one needs to look at a firm’s behaviour with respect to profit 

maximisation. Assume that a firm participates in a competitive market where price is 

fixed at P. Also, assume that the firm has not internalised its damage to society through 

its polluting practice. Hence, it produces an output (Q0) until the marginal cost of 

production (MC) equals it’s market price (P) (panel A Figure 2.5. Now assume that the 

firm is required by regulatory policy to internalise it’s cost of marginal damage (MD) 

which is also the first derivative of the cost of damage inflicted upon society by 

undertaking to produce. When forced to internalise MD, the firm decreases its output to 

Q* - the socially efficient level of output, where MC+MD = P.    

Before the regulation the firm’s marginal profits were P-MC which was greatest 

at the first unit of good produced and declined to zero up until P=MC, which is the 

competitive equilibrium. These marginal profits are what the firm has to sacrifice when 

it reduces it’s output for every unit below Q0. Hence, it could be called the opportunity 

cost of abatement or marginal abatement cost (MAC). Panel B of Figure 2.3 plots the 

MAC curve on the MD curve and assumes that every unit of production gives one unit 

of emission. It shows that at the socially efficient level of production Q*, the emission 

level would be E*. Using both panels of Figure 2.5, three possible scenarios of 

improvement in production technology are estimated as follows:  

a) Under the first technological improvement, only the marginal cost (MC) of 

production is reduced, but no change is made in MD. This shifts both the MC and 

MC+MD curves back in panel A, decreasing the level of production Q* and hence 

the level of emissions. The reduction in MC also helps widen the P-MC gap or the 

marginal opportunity cost of abatement (P-MC) or MAC. Hence the MAC curve 

shifts upward and the MD stays unchanged in panel B.  This again shows that the 

level of emissions increases. 

b) Under the second technological improvement only the cost of damage from each 

unit of production or the MD is reduced with no change in MC. This shifts only the 

MC+MD curve downward in panel A, raising the socially efficient level of 

production Q* which should also raise the level of emissions. In panel B the MAC 

stays the same but the MD shifts downward. Which again shows that the level of 

emissions increases. Whether this increase is higher than the previous scenario 
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depends on how much of a shift in the MC and MD curves were brought by the 

technological improvement and the elasticities of the MC and MD curves. 

c) Under the third technological improvement, both MC and MD are reduced. This 

shifts both the MC and MC+MD curves downward in panel A, raising the socially 

efficient level of production Q* and the emissions along with it. Both the upward 

shift in the MAC curve and downward shift in the MD curve in panel B , add to the 

increase of emissions.  

 

The above analysis requires the estimation of a cost function and a damage 

function. In this example we can assume that price is given. Under the assumption of a 

firm behaving under the objective of cost minimisation, cost is a function of level of 

output, input prices and technology (Varian, 1992). Further, one may add that it is also a 

function of the level of regulatory intensity (Gallop and Roberts, 1985) as depicted in 

equation 2.1.  The MAC function would be price less the first derivative of the cost 

function. 

 
C = C( w, y, T, R,)         (2.1)

  

where; 

C –production cost 

w – a vector of input prices 

y – level of output 

T – index of technology 

R -  level of regulatory intensity 

  

 The MAC is appropriate for evaluating the present consequences of current 

regulatory policy as well as for quantifying the presently available cost savings that 

could result from policy changes (Gallop and Roberts, 1985). Its potential application to 

the present area of research is that one could analyse the cost savings that could result 

from both regulatory policy changes and changes in the cropping system (or tillage 

technology). 
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(Source: Field and Olewiler., 2002) 
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Going beyond the effect of both technology and policy changes on cost one 

could find the socially efficient level of production using a damage function (and its 

first derivative) along with the cost function or the MAC function. For example, as 

relevant to the present research a functional relationship between the damage cost and 

atmospheric CO2 content (equation 2.2) was proposed by Aazar and Sterner (1996):  

 

where; 

C –damage cost 

k – fraction of world income that will be lost for a CO2 equivalent doubling  

mh(t) – anthropogenic level of CO2 in the atmosphere 

mp – pre-industrial level of CO2 

y(t) – world income or gross domestic product 

 

 While this model has the appeal of transparency , additional complexity does not 

increase the accuracy since uncertainties about k are so large, and also that it captures 

the fact that damage cost is a convex function of global average temperature change8.  

However, Aazar and Sterner (1996) provide the following caveats to this model. The 

authors highlight that the parameter k should be larger for poorer countries. The fraction 

of the income of poorer countries that would be lost for a CO2 equivalent doubling will 

be greater than for the OECD. This is akin to the criticism of spatial inequity in the 

CBA. Further, the model does not consider that damage depends on rate of climate 

change, absolute magnitude of climate change, and how well and quickly human 

                                                
8 Economic cost of climate change is likely to be a convex function of global average surface temperature 
change. This property is captured since the temperature increase is a logarithmic function of atmospheric 
CO2 concentration. Hence, the assumption of a linear relationship between anthropogenic CO2 
concentration and damage is equivalent to assuming this damage is exponentially dependant on the 
change in global average temperature. The value of k ranges from between one and two percent. 

! 

C( k, mh(t),  mp ,  y(t) ) =  k    x   mh(t)   x     y(t) (2.2)

mp
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societies will adapt to climate change. Moreover, large scale migration (adjustments) 

are likely to give rise to social and political conflict and some poor will not be able to 

change. As well, the model ignores ethical dilemmas such as by the valuation bestowed 

upon human lives, biological diversity to a cost value. Similarly, when the above 

discussed MAC function is used alone to evaluate the impacts of policy or technology 

change on cost efficiency it only considers economic efficiency. Most GHG policy 

studies concentrate on the efficiency issues alone (Shukla ,1995). What should be 

addressed is the consideration of multiple issues including those issues that effect 

ecological, social and political concerns besides economic factors, issues that address 

distribution and equity. 

 

2.9.3 Trade-off Analysis (TOA) 
During a debate over the complexity of outcomes encompassing multiple 

disciplines9 including the environment, economy and social welfare one researcher who 

advocated against the use of the single numeraire (in NPV or CBA) stated that;   

 

Our first task must be to define the context within which to conduct the 

analyses…requir[ring] specifying the larger infrastructure scheme within which 

this [project] is concerned. The role of the analyst is to help define the terms of 

the debates that should be opened for clarifying the role of nation-states, 

communities, and private capital in evaluating the structural transformations. 

(Barkin, D., 1996) 

 

Defining the terms of the debate is what TOA addresses. And the terms could cover 

multiple issues that CBA and abatement cost and damage cost analysis could not. The 

concept of TOA encompasses an illustration of outputs of goods and services using a 

production possibility frontier (PPF) and as such represents a way of diagrammatically 

depicting the choice faced by a group of people between two desirable outcomes. For 

example, the choice between the output of goods or services and health or between 

                                                
9 During the early to mid 1990s there was heated debate across the south Americas on the environmental 
and ecological trade-offs of a proposal to link the great rivers and water bodies beginning in the south 
from Uruguay across Brazil to the northern tip of South America. 
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output of goods and environmental (Field and Olewiler, 2002). Within the basic 

structure (Figure 2.6) one of the axes represent some economic indicator and the other 

represents some environmental indicator. Farther from the origin shows increase in 

benefit in both axes. 

 The PPF is determined by technical capacities in the economy together with 

ecological effects such as hydrology, meteorology such as precipitation and temperature 

patterns (Field  and Olewiler., 2002). Where society chooses to locate itself is a matter 

of social choice illustrated by a community indifference curve (CIC). This social choice 

today may have a bearing on where the PPF curve would lie in the future. Thus TOA 

could be analysed for different points in time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 A PPF of Goods Produced and Environmental Quality 
 (Source: Field  and Olewiler., 2002) 

 

 The PPF or TOA could also be analysed for different points in space and hence 

may be described as spatially representative. TOA could also be used to simulate the 

exogenous effect of a change in technology or of policy across a given space or over a 

given period of time. Under such a change one could expect to see shifts or pivots in the 
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trade off curve as well as possible changes in the standard deviation of the trade-off 

points, which is used to draw the trade-off curve.  

 The most important advantage to TOA is that it avoids the criticisms of using a 

single numeraire or measure of efficiency.  TOA allows the ecological or sociological 

(or other) criteria to be measured each in its own unit (Yanggen et. al., 2002).  In 

addition the approach avoids other ethical dilemmas surrounding the monetary 

quantification of losses to human lives and biological diversity as damage cost analysis 

(Azar and Sterner, 1996). Further, it does not purport to induce intergenerational, 

intragenerational or spatial externalities as does CBA (Splash, 1994).  

 While a TOA offers a number of advantages when evaluating a development it 

has been described as an oversimplification of reality as it is limited to a two-

dimensional space and thus compares only two outcomes, at least at any one given 

comparison or trade-off analysis (Yanggen et. al., 2002). However, one is not prevented 

from running many comparisons subsequent to each other (i.e., first run a comparison 

between economic output and health then run a comparison between economic output 

and environmental quality).  TOA may not be appropriate when multiple issues are 

relevant and they all have to be given importance. How one decides which of all those 

issues have more or lesser importance than the other, and at the same time compare the 

trade-off of the indictors with each other and with the economic impact indicator 

(Yanggen et. al., 2002).  

 

2.10 Simulation Model Approaches in TOA 

A TOA curve constructed is derived by regressing a curve through data points 

between the two indicators of interest in this study, profit and abatement. The curve 

would be regressed through data points that obviously have a certain variation among 

them. The variation between them would be attributable to such parameters as 

precipitation or temperature. Time and monetary constraints limit the collection of 

abatement and profit data that could be obtained using field studies, especially if one is 

interested in finding the abatement and profit impact over 30 years or under a 

hypothetical situation where the environment shows climate change. Thus, a simulation 

model was used to help generate appropriate data by simulating temperature and 
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precipitation changes over a long-term as well as under changes to the environmental 

variables.  

The procedure to be followed to develop a TOA using simulation output was 

described by Antle et al. (2001) and Yanggen et al. (2002) using a three-dimesional 

flow diagram (Figure 2.7). Under the current study, the question to be addressed is how 

would cropping systems (tillage intensities and crop rotations) effect the trade-off 

between net economic profit and environmental benefit (net CO2 equivalent abatement) 

in the Black soil zone of Saskatchewan. In Figure 2.7, the vertical axis represents the 

spatial scale one adopts when addressing the problem. The two horizontal axes 

represent the choice of research procedures: On the one horizontal axis, the range from 

qualitative to quantitative procedures is represented and on  the other horizontal axis the 

range from mechanistic to the empirical procedure is represented. The lines that follow 

the different stages, K1 to K2 and K3 to K5 and so on, are defined as the “research 

chain” or simply their prescribed procedure to be followed.  

 The problem definition of the trade-off model is started at the regional level and 

is defined using expert knowledge (K1) - which is more descriptive and less 

quantitative. Even though the problem was defined at the regional level, the decisions of 

tillage practices are taken at the farm or field level by individual farmers. Based on this 

information the problem is yet redefined (still in mechanistic and qualitative terms, K2) 

at the field level. How will the trade off between net GHG abatement and economic 

profit be affected by different tillage systems and other farm inputs used for the type of 

crop rotation practised in that farm. In the next step, a quantitative, empirical economic 

simulation model (K3) is used to simulate decision making for that field; crop yield, 

soil organic C build up processes, GHG emissions from fertiliser for example are 

modelled. If weather variability occurs it would be necessary to carry out simulation 

runs for different precipitation levels. 
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notes: 

K1: Application of user expertise (qualitative, empirical) 
K2:  Expert knowledge (qualitative, mechanistic) 
K3: Use of simple comprehensive methods, including modelling (quantitative, Empirical) 
K4:  Complex, mechanistic methods, including modelling (quantitative, mechanistic) 
K5: Detailed methods, including modelling, which focus on one aspect only, often with a 
disciplinary character (quantitative, mechanistic) 
 

(Source: Antle et. al., 2001) 

Figure 2.7 Classification Scheme for Research Procedures  
 

Then, during the simulation of these bio-physical processes it is necessary to 

consider such processes as nitrogen fixation by legumes, soil organic matter build up, 

and available nitrogen and phosphorus levels for the crop and it becomes necessary to 

come down to the plot level (K5). Then again, the quantitative processes are aggregated 

and taken up again to the field level and finally the results of the simulation for many 

fields are aggregated to the regional scale in the form of trade off curves. 

 

2.11 Summary 

 Agricultural practices vary spatially and temporally because the effects of 

agricultural production depend on soil, weather and on economical factor. Agriculture 

World 

Continent 

Region 

Watershed 

Farm 

Field 

Plot 

Soil horizon 

Soil structure 

Basic structure 

Molecular 

interaction 

empirical 

mechanistic 

quantitative qualitative 

K1 

K2 

K3 

K3 

K4 

K5 



 38 

as an industry is also in a unique position in that it is capable of both contributing to the 

emission and the abatement of climate changing GHGs. Practices such as reduced 

tillage and reduced tillage are able to sequester SOC and reduce the on farm energy 

consuming GHGs. Economic profitability and improved soil and moisture conservation 

have been shown to result with reduced tillage in the Black soils, under field trials. 

However, reduced tillage and reduced summer-fallow is also associated with the use of 

greater N2O emitting inorganic N fertiliser. There have not been any studies of the net 

effects on GHGs and profitability among tillage systems. TOA and a simulation model 

were selected for modelling the economic and environmental benefits of three cropping 

systems. The preceding section looks in to the detail at how trade-off analysis is used in 

simulating the trade off between economic profitability and net GHG abatement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



 39 

 
 
 
 
 
 

CHAPTER 3  
THE CONCEPTUAL MODEL 

 
 

3.1 Introduction 

The preceding chapter provided a foundation for the study through the literature 

reviewed on agronomic, environmental and economical research that has been 

conducted on agricultural management strategies. This chapter provides a conceptual 

framework of the model aiding the study - looking at the agronomic, environmental, 

and economical components of the model. In so doing, the chapter walks through the 

individual components that comprise the model simulations, which would ultimately 

simulate the trade-off between the net GHG abatement and the economic profits within 

agricultural cropping systems. This chapter begins by explaining how the literature 

reviewed leads to the conceptual model and enters into the concept underlining trade-off 

analysis (section 3.2) followed by a description of the model itself with descriptions of 

the environmennt, economic and emissions components of the model (section 3.3). 

Next, the temporal and spatial considerations given by the model are discussed (section 

3.4). 

 

3.2 Concept of Multidisciplinarity and Concept of TOA 

 The literature review provided an idea of how the farm inputs could change the 

ecology and the economy of the farm. These inputs include pesticides, fertiliser, fuel 

and primarily the management decisions they are based on. Of concern also is how the 

economy and the physical environment of the farm react when one of the variables they 

depend on changes - like rainfall, growing season temperature or the coefficient of 

nitrogen volatilisation changes. To address questions such as these there is a 

requirement for an approach that integrates a number of disciplinary perspectives 

(Antle, et. al., 1998b). When the individual pieces of disciplinary research are well co-
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ordinated and pieced together to assess trade-offs, it provides information for decision 

making. The trade-offs may be defined across several disciplines at a given point in 

time and also over many points in time as well as over spatial dimensions   (Crissman et 

al.,1998).  

 To help understand the role of this interdisciplinary approach it is useful to 

develop scenarios.  In the context of this study, assume a policy that would require 

farms in the Black soil zone to reduce tillage intensity (T) to minimum tillage. The 

policy was based on agricultural research, where data on yield and environmental 

effects were collected separately without sufficient location specific identifying factors. 

Suppose that this decision was based on a controlled trial10 in the Indian Head research 

centre, Saskatchewan, where it was found that reducing T would induce net GHG 

abatement.  However, the farm types within this soil zone can have internal variation, 

such as in size or scale of operations, yield, and input demand. Thus, the farms in this 

soil zone could have different farm types with respect to effect of tillage intensity on 

economic profit (π) and net GHG emissions (z). Four possible types are described 

below (Table 3.1). Between farm types 1 and 2 reducing tillage intensity has a greater 

reduction on profit, thus a higher coefficient on profit (2α ) than do types 3 and 4 

(which have a coefficient of α). Farm types 1 and 3 may have a higher coefficient on 

emissions (2β) than do farm types 2 and 4. A policy that considered only the effect on 

net GHG emissions (z) may not realise that reduction of T by the same intensity across 

all farms would have greater opportunity costs (in terms of profits forgone) on farms of 

types 1 and 2. Conversely, reduction in tillage intensity may not be worth the effort in 

farm type 2, as it has a high opportunity cost and does not provide as much emission 

reduction.  The process of quantifying trade-offs for agriculture becomes more 

complex, the larger the spatial or temporal scale. The conceptual foundations provided 

by Antle et al.,(1998a and b ) will be used to depict why and how TOA must work in 

this study. 

                                                
10 The trial being based on an experimental plot in Indian Head and that the same crop rotation is used on 
all tillage systems. 
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 Faced with a complex problem and stimulated by interdisciplinary interactions, 

a well-functioning research team naturally tends to attempt to address more questions 

than are feasible given the available time and resources. Keeping the project focussed 

on the key policy questions that need to be addressed helps the research team allocate 

scarce resources to the project’s highest priorities. 

 
Table 3.1 Regional Distribution of Economical and Ecological 
Emission Potential of Tillage 
 High GHG Emissions Low GHG  Emissions 

High Economic Profits Type 1 

π = 2αT 

z = 2βT 

Type 2 

π = 2αT 

z = βT 

Low Economic Profit Type 3 

π = αT 

z = 2βT 

Type 4 

π = αT 

z = βT 

Notes: π-economic profit, z-net GHG abatement, T- discrete variable adopted to reflect 
three different intensities of tillage operations 
(Source: Adapted from Antle et. al.,1998) 

 

 It is important to keep in mind that it is not necessary to measure all possible 

health or environmental effects of a production system in order to assess the key trade-

offs and provide useful guidance to policy makers and the public. There are trade-offs 

that must be considered between internal validity and generality in designing research 

projects. A key decision is the study site such that even with a limited number of 

impacts to be considered, the ideal site for a case study probably does not exist. (Antle 

et. al., 1998.a) 

In economic terms, the trade-off curves provide essential information for 

making choices among policy alternatives because they show how much of one desired 

outcome, such as agricultural production, must be given up to obtain a unit of some 

other desirable outcome, such as improvements in net GHG abatement. The conversion 

from agriculture to another desirable outcome, for example manufacturing, usually 

cannot be made on a one-for-one trade-off, and at some point it becomes increasingly 
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costly to transfer resources from one sector to another. This phenomenon is known as 

the law of increasing costs, and gives the trade-off curve a shape concave to the origin. 

However, the curvature properties of environmental or health functions are not 

necessarily the same as production functions. So these trade-off curves will not 

necessarily be concave to the origin.  

The indicators of a generic trade-off function may include economic profit on 

the horizontal axis and net GHG abatement on the vertical. The former may be replaced 

by production and the latter by soil C sequestration, for example. But, for illustration 

net farm profit and net GHG abatement shall be used. Let economic profit (π) be a 

function of a vector of output prices (p), which are considered exogenous because the 

farm is assumed to be a price taker, a vector of input prices (w), also considered 

exogenous and a vector of crop production/yields (y), which are, of course, endogenous:    

   

π = π(p, w, y)          (3.1) 

 

Crop production is a vector of endogenous variable inputs like fertiliser, 

herbicides, pesticides, as well as available soil moisture which would be denoted as (x), 

as well a vector of inputs considered fixed in the short to medium term such as land, 

machinery and labour denoted as (a), and a vector of exogenous factors representing 

policy, technology and prices (p). The crop production, as a biophysical production 

function, is further dependent on a random weather variable denoted (u). 

 

y = y (p, w, x, a, u)         (3.2) 

 

Combining 3.1 and 3.2 , the profit function maybe extended as follows; 

    

π = π( p, w, x, a, u)                   (3.3) 

 

 Assuming that the farmer is motivated to maximise profit (π) and not by 

maximising net GHG abatement (z), the latter may be considered the indeterminate 

variable and the former the determinate, in the trade-off quadrant. It would be fair that 
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net GHG abatement be a function of the above values that determine (π). A net GHG 

abatement (z) function may be defined as follows 

 

 z = z (x, a, p, u)                 

(3.4) 

     

If both indicators (π) and (z) used in the trade-off curve can be defined as functions of 

the same resources, then a downward sloping trade-off curve exists (Antle et al., 1998 ). 

An upward sloping trade-off curve may also exist. For example, in Figure 3.1 the 

portion AB of the trade-off curve is similar to the PPF. However, beyond some point B 

the continued exploitation of environmental resources can lead to a reduction in 

productivity potential. Hence from B to C a reduction in the environmental resource 

(soil erosion, erosion of SOMC and reduction in net GHG abatement) can accompany a 

reduction in productivity as well as net farm income. Moving backwards from C to B, a 

situation of revival of soil organic matter carbon (and hence possibly an improvement in 

net GHG abatement) may accompany an improvement in farm income.  

 

 

 

 

 

 

  

 

 
Figure 3.1 Trade-Off Curve Between Net Farm Income And Net GHG Abatement  
(Source: Antle et. al., 1998 b) 
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The key features of the trade-off curve are its location in the quadrant and its 

slope at a point along it (Figure 3.2). Figure 3.2 shows that on the trade-off curve, when 

π1 units of net revenue are being made, net GHG abatement is z1 under conventional 

tillage management p1. When a change to, for example, reduced tillage management is 

taken p2 , hypothetically, one may expect  net GHG abatement to increase to z2 and net 

revenue to possibly decline to to π2. The slope of the trade-off curve from B to A thus 

represents the opportunity cost of increasing net GHG abatement in terms of forgone 

net GHG abatement.  

 

 

 

 

 

 

 

 

 

 

 

 

(Source: Antle et. al., 1998 b) 
Figure 3.2 Trade-off Curve Reflecting  Farm Profitability And GHG Emission 
Abatement 

 

The information provided by these tradeoff functions can help policy makers 

assess the cost of environmental improvement in terms of foregone net farm revenue (or 
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deterministic. For example, a given production technology combines a certain amount 

of land, labour, and capital to produce a given amount of output (Antle et al., 1998 (b)). 

However, production in the real world is stochastic, so that a given amount of inputs 

may produce variable amounts of output or environmental quality due to uncontrollable 

factors such as a pest infestation that could decrease production well below average, 

while high rainfall could raise it (up to a particular upper limit for water use by the 

crop).  

It is important to consider that GHG abatement should capture both on-farm and 

off-farm benefits. The on-farm benefits are those related to soil C sequestration; the 

improvement in soil fertility associated with greater SOC, improvement in soil N, P and 

moisture, reduction in soil salinity improvement and improvement in soil tilth and 

structure and also the reduction in wind and water related erosion. These on-farms 

changes may increase yields and reduce yield variability or production risk over the 

long term. These changes in productivity would likely be captured by the net farm profit 

axis of the trade-off curve if the trade-off is analysed over the long term. There may 

also be an implicit benefit to the farmer of knowing they have higher quality soil and in 

the process are abating GHG emissions.  These factors will not be captured by the net 

farm profit function. The off-farm benefits (co-benefits) of GHG abatement includes 

benefits to society at large in mitigating climate change.  As well, co-benefits like water 

quality improvement and recreational value of water is not captured by the net GHG 

abatement indicator. Such co-benefits may be considered separately and evaluated in 

separate trade-off curves from net farm profit.  

 

3.3 The Simulation Model 

Having discussed the role that TOA can play in the present research it is 

important now to discuss the role for a simulation model and the procedure in 

developing or adapting an appropriate simulation model to provide data to develop the 

trade-off functions. The key benefit is that a model that has been parameterised for this 

region could be used to easily and economically depict what would otherwise take years 

of controlled field experiments to study. The model enables one to look beyond the 

short-term benefits such as the studies already done for periods of less than five years, 
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but also look at how the endogenous benefits such as soil conservation could be 

internalised into net revenue over 30 years or more. Moreover, the model could change 

the exogenous factors to reflect imminent climate change and perform ‘what if’ 

simulations on the farm system.  

The simulation model specifies the relation between the endogenous variables 

(net revenue and net GHG abatement) and the exogenous factors (variable and fixed 

inputs and output prices and technology).  The model used in this research was based on 

a simulation model developed at the University of Saskatchewan (see Belcher et. 

al.,(2003); Belcher (1999))  The model was developed using with the STELLA version 

7.0.2 modelling software for a Windows platform11. For descriptive purposes the model 

is divided into three components; an environmental model, an economic model and an 

emissions model.  Each of these component models will now be discussed individually. 

 

3.3.1 Environmental Model 
The Crop production function described by Belcher et. al., (2003) represents the 

biophysical relations between crop production and three production input variables 

representing soil moisture and available soil nitrogen (N) and phosphorus (P). The 

model assumes that annual crop yields are determined exclusively by the availability of 

these three inputs.  Available water, N and P are partially determined by SOMC stocks 

which are dependent on yields from previous years.  In addition, the model assumes that 

farmers can apply synthetic N and P fertilizer as influenced by available soil moisture 

and available soil N and P nutrients. Hence, the crop production function is dynamic 

since it is a function of prior year production and weather. The production function is: 

 

where; 

yt
ij = yield of crop i in rotation j in year t (kg/ha) 

                                                
11 STELLA is software that provides an environment for constructing and interacting with models in a 
graphical programming language. Also used was Microsoft Excel 97 for analysing the standard deviation 
of determinant variables of economic profit and net GHG abatement obtained through STELLA. 

! 

yij

t  =  Yi  *   Xnsij

t    *    Xpsij

t   *    Xwsij 

t                            (3.5)
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Yi = unconstrained maximum potential yield for crop i when moisture and nutrients are 

optimal (kg/ha) 

Xnst
ij  . Xpst

ij . Xwst
ij = indices for N, P and water sufficiency, respectively. These 

indices fall between zero and one, with one representing unconstrained conditions. 

 

 The model shows complementarity of production inputs  by virtue of its 

construction. At higher levels of any one of the yield contributing factors (N, P or 

water) any of the other remaining factors (N, P or water) would contribute toward a 

higher marginal output. For example, the marginal product with respect to a given 

supply of nitrogen would be greater when moisture levels are higher, provided that none 

of these factors are limiting.  The balance of the environment model is focused on 

simulating the availability of N, P and water over time given the management history 

and the biophysical conditions of the target area (eg. soil texture, precipitation etc.).  For 

more complete details of the model structure refer to Belcher et al. (2003). 

 

3.3.2 Economic Model 
 The economic model computes net farm income from the proceeds of the sale of 

crop net the cash costs of inputs such as fertiliser, pesticides, seed, labour, management, 

land, transport and overhead. Included in this calculations are the returns to equity and 

are calculated annually per hectare for each of the simulated rotations. The crop yields 

and N and P fertiliser rates applied are endogenously derived by the crop environmennt 

model. The other input costs and output prices are exogenous and these inputs (seeds, 

labour, herbicides etc.) are combined in fixed proportions. The input and output prices 

are assumed fixed through the simulation period and were derived from data published 

by Saskatchewan Agriculture, Food and Rural Revitalisation (SAFRR, 2004). The 

annual net farm income per hectare for each rotation is defined in equation 3.6 below. 

The production inputs, pesticides, seed, land rent and overhead are assumed to 

be used in fixed proportions in the model (eg. each ha of land in each crop imposes a 

fixed input cost).  This assumption of fixed proportions for the fixed inputs is a strong 

assumption but does facilitate the modeling process. The quantity of fertiliser used is 
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endogenously determined by the model based on available soil N, P and soil moisture 

and assumes the farmers soil test to obtain soil N and P information.  The economic 

model is parameterised using a farmer survey along with baseline data provided in the 

Crop Planning Guides published by  SAFRR (2004) for the Black soil zone of 

Saskatchewan. Chapter 4 is dedicated to describing the survey while chapter 5 to 

describes the parametrising of the model. Although it is acknowledged that tillage 

systems can be used to produce a broad range of crop rotations12, the rotation used for 

the tillage systems in this research reflects the commonest rotation surveyed under that 

tillage system. Hence, it could be argued that the rotation is ‘integral’ to that tillage 

system and further, the subject of interest is the tillage system and not the rotation. 

 
3.3.3 Emissions Model 

The Emissions model uses the endogenously determined crop yield and fertiliser 

quantities of the Environmental model to determine the C sequestration and soil N2O 

emissions respectively. Further, the Emissions model makes use of other inputs 

                                                
 

! 

"  j

t  =  Pri yij
t # wij # siyij

t # rNfij
t # gPfij

t( )
i=1

n

$ (3.6)

                                      n

where :

"  j

t  = the average annual profits for rotation j at time t ($/ha/yr)

n = the number of crops (i) in rotation j 

Pri = the fixed farm gate output price for crop i ($/t)

wij = a vector of fixed production costs (pesticides, seed, fuel, labor and management,rent, 

overhead) for crop i in rotation j ($/ha/yr)

si = fixed transportation costs for crop i ($/t)

r,g = the respective fertiliser prices doe N and P ($/kg)

Nfij
t ,Pfij

t = the N and P fertiliser application rates (kg/ha/yr), respectively, for crop i in 

rotation j at time t
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quantities (herbicides, machinery) from the Economic model to estimate emissions in 

the manufacture of them. Such emissions are termed ‘frugal emissions’ under IPCC 

(1996), but this study uses the term ‘embodied emissions’.  

The rudimentary relationships between the three sub models are illustrated in 

Figure 3.3. The figure illustrates that the relationship between the respective 

components is bi-directional or unidirectional (or involve a feedback mechanism or 

not). Within the environmennt model, the exogenous variables weather, initial soil 

biophysical conditions and cropping systems (tillage and crop rotation) influence 

endogenous variables including subsequent soil biophysical conditions, which influence 

fertiliser quantity to be applied which influence crop yield which in turn influence 

subsequent soil biophysical conditions to complete the feedback cycle.  The feedback 

mechanisms envisaged between economic and environmennt components are where 

output and input price changes, change input demand. The feedback mechanisms 

envisaged between the emissions and environmennt components might be where 

conditions impacting soil N2O emissions coefficients change crop growth. Further, one 

may argue that these management decisions are considered influenced by profitability, 

risk and agronomic suitability and would most likely change during long time periods. 

To a lesser extent the farmer’s long-term concern for the environment could also be 

considered (Maqbool,1999). 

 

 

 

 
 
 
 

 
Figure 3.3 Rudimentary Relationships of the Model 

 

3.4 Temporal and Spatial Considerations. 

The simulation model depicts a farmer’s decision to apply fertiliser, pesticides 

and other inputs at every cycle that the simulation is run. The duration of each cycle 

Environment Model   Economic Model  

Emissions Model 
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within the model is one year.  However, such management decisions in farming can be 

taken at shorter intervals. The timing of the application of these inputs or the frequency 

of the application could change the outcome of the model, such as crop yield and SOC 

abatement. For example, the impact that application date of fertilizer and pesticides has 

on yields is not captured by the model.  In addition, the model can not capture within 

year environmental effects such as intra-year precipitation variability.  In general, the 

model assumes that inputs are used at the correct time and precipitation comes when 

needed.  As a result the crop yields produced by the model are often at the high end of 

the distribution for the target area.   

Another factor that should be considered is the fact that the simulation model 

must combine environmental and economic data.  Environmental data sets often have a 

higher temporal resolution than those of economic/market sets (Belcher, 1999). As a 

result, there must be recognition of the inconsistent time horizons.  For example, 

environmental models are frequently designed to capture processes that occur over 

long-time horizons encompassing over 25 and sometimes a 100 years, economic theory 

assumes that future shocks and adjustments are impossible to predict and restrict 

analysis to five to ten years (Belcher, 1999).  As a compromise the simulation model is 

run for 30 year time horizons. 

 

3.5 Summary 

 TOA defines the choices that aid in making policy. The policy outcomes can be 

represented by indicators that are functions of factors of production used on the farm, 

input and output prices as well as a random weather component: The chosen indicators 

were net GHG abatement and net economic profit, which are simulated by a model. 
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This chapter defined the concept behind this simulation model. The model was 

parametersied using a survey and secondary data. The survey will be discussed in the 

following chapter.  
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CHAPTER 4  
THE SURVEY 

 

4.1 Introduction 

For the model to simulate the economic and environmental trade-off outputs for 

the Black soil zone, it needs to be parameterised with economic and biophysical data 

from the Black soil zone. The economic model was parameterised using both regional 

level secondary data published by the provincial agriculture branch (SAFRR) and data 

gathered using a survey of farmers from the target region.  The subject of the current 

chapter is this survey and focuses on the process used to conduct the survey and 

provides a summary of the survey data.  

 

4.2 The Sampling Process 

 The survey population was located in the Black soil zone, of the northeast 

agricultural region in Saskatchewan. The map in appendix A depicts the Black soil zone 

with respect to the other soil zones in the province.  The sample population was located 

across this region with representatives from a number of the rural municipalities (Table 

4.1). 

 

Table 4.1 Number of Respondents under Each Rural Municipality 
(R.M) 
R.M. Number Number of Respondents R.M. Number Number of 

Respondents 
271 4 218 1 
3 1 459 1 
92 1 430 1 
428 2 307 1 
187 1 91 1 
471 2 367 1 
427 2 429 1 
244 1 461 1 
245 2 429 1 
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R.M. Number Number of Respondents R.M. Number Number of 
Respondents 

216 1 275 1 
460 1 308 2 
187 1 157 3 
400 4   
 

 

 The farmers interviewed were selected from databases of farmer contact 

information. Only farmers located in the Black soil zone were contacted. They were 

contacted by telephone, informed of the objective of the survey, the structure of the 

questionnaire, the approximate time that the questions would take and their entitlement 

to privacy as well as other information that was required to be provided by the ethics 

review committee of the University of Saskatchewan. Before contacting the farmers a 

trial survey was conducted with farmers attending the Saskatchewan Soil Conservation 

Association Conference in Regina, Saskatchewan in February of 2004 and faculty at the 

University of Saskatchewan. The feedback from this pilot indicated that it would be 

ineffective to request cost data for each input for each year due to the extensive time 

requirement of each of the respondents.  Therefore, it was decided that response rates 

would be much better if the survey focused instead on quantifying the relative change in 

input use after converting from the old management practice. Between ten and 15 

farmers did not answer the telephone calls and an approximately equal number 

answered but did not provide consent to respond to the survey. The final sample 

population of 40 respondents were evenly divided between the adopters of zero tillage 

and minimum tillage. There were only two farmers contacted who used conventional till 

which was too small to be used as a representative population so it was decided to use 

the secondary data on farm input costs provided in the Crop Planning Guide for the 

Black soil zone published annually by SAFRR (2004).  The data from the Crop 

Planning Guide was used to parameterise the economic component of the model for 

conventional tillage.  To parameterize the cost component of the economic model for 

minimum and zero tillage management this conventional cost data was adjusted using 

the relative change data collected through the survey. 
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4.3 Structure of the Survey 

 The format of the survey questions is provided in Appendix B. The order in 

which the questions were asked and their intended purpose was as follows. First, the 

cultivated acreage or acreage under tillage was elicited. Then they were asked if they 

were practising zero till, defined as a single pass operation, minimum till (a two pass 

operation) or conventional till (with greater than two passes). Next, they were asked 

how long ago they had changed their management practice, if they were practising one 

of the reduced till operations. Following this, they were asked if summer-fallow was 

practised. These questions on management along with their crop rotation helped 

determine the exogenous variable of tillage management practise (the model assumes 

that the tillage technique used is independent of other variables within the model and 

hence is considered an exogenous variable in the simulation model). Next, questions 

were asked on how much cultivated acreage, average crop yields and crop rotations 

changed after conversion to reduced till. Similarly, how variable inputs such as fertiliser 

and pesticide application rates, along with fuel use change was elicited. The responses 

to these questions would determine how most input factors of production changed, with 

the exception of machinery and owner operator opportunity cost of time spent on the 

field. With respect to machinery, the farmer was asked what machinery he/she bought 

and when and what machines he/she sold and when. The data gathered from these 

questions is considered somewhat suspect since many of the respondents found it too 

tedious to recall dates and values. Therefore, secondary data was used for the costs 

related to machinery investment. Next, they were asked by what proportion the 

owner/operator’s time on field operations had changed. 

 Following the first section of the survey which focused on more quantitative 

estimates of the cost changes associated with the change from conventional to minimum 

and zero tillage the next part of the survey focused on qualitative benefits. Specifically, 

the participants were asked whether ground water and surface water quality improved, 

worsened or left unchanged as a result of the change.  The respondents were also asked 

for their impression on the effect that the reduced tillage management had on soil 

quality and soil erosion and the effect on weed species populations.  
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4.4 Responses of the Survey 

 The survey responses are presented in the following four sub-sections:  first, the 

cultivated acreage and acreage change; second crop fallow and crop rotations; third, 

changes in farm inputs; fourth, changes in qualitative benefits. 

 

4.4.1 Cultivated Area and Change in Cultivated Area 

 The first section of the survey focused on the size of cultivated area and then the 

change in size of cultivated area since adopting the reduced tillage management 

practice. Table 4.2 depicts these results having excluded both the highest and lowest 

values. The important information gleaned from this table is that the size of farms 

surveyed are larger than the mean farm size of 425 ha used by SAFRR (2004) in their 

crop budgets which were used to parameterise the simulation model in this study. As a 

result, economies of size associated with the larger reduced tillage systems will not be 

captured in the simulation results.   

 

Table 4.2 Cultivated Area and Change in Cultivated Area 
Cultivated Area (Ha) 
 Mean Range of Responses 
Minimum till 2,466 1,000 to 6,700 
Zero till 2,194   900 to 4,000 
Change in Cultivated Area (Ha) 
 Mean Range of Responses 
Minimum till 794 0 to 2,400 
Zero till 537 -600* to 1,900 
Note:*The negative value for change in area reflects that some producers reduced the size of their fields 
after converting from conventional to zero till.  
(Source: Survey) 
 

4.4.2 Summer Fallow and Crop Rotations 
 Of the sample of 40 farmers, 20 practiced zero till and 20 practiced minimum 

till, today. Of the above 20 minimum till farmers, five included summer fallow in their 

rotation until the mid 1990’s and today they do not include summer fallow. Of these 

same 20 minimum till farmers, another five still include summer fallow in their rotation. 

Thus, 15 of the minimum till farmers surveyed (or the majority) do not include summer 
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fallow in their rotation, today.  Of the 20 zero till farmers no one includes summer 

fallow in their rotation. The most common crop rotation among both reduced tillage 

systems was wheat/ pea/ barley/ canola and therefore this rotation will be simulated in 

the model.  

 
4.4.3 Input Use Change  

  It is reasonable to assume that the use of farm inputs such as pesticides, 

fertiliser, labour and fuel would change after the conversion of the tillage system.  The 

survey elicited to what proportion these inputs had changed since the conversion (Table 

4.3). The responses for fertiliser use change, fuel use change, owner/operator time on 

field are reported in percentage change.  Glyphosate use is reported in litres per hectare 

(glyphosate is assumed not to be used in conventional tillage and this is supported by 

SAFRR, 2004). Machinery investments were represented net of machinery sold, 

adjusted at a discount rate of three percent to arrive at a net present value. A negative 

value on an input indicates that the cost of the input had reduced after the change.  

 

Table 4.3 Input Use Change after Conversion of Tillage System 
 Mean Range of Responses 
N fertiliser  percent change (in kg/ ha) 
Minimum till +10% 0 to +39% 
Zero till +18% -20% to +80% 

P fertiliser  percent change (in kg/ ha) 
Minimum till 0 - 
Zero till +4% 0 to +50 % 
Glyphosate use after conversion of tillage system (l/ ha) 
Minimum till +2.48 l/ ha 0 to +3.7 l/ ha 
Zero till +2.57 l/ ha 0 to +3.1 l/ ha 
Fuel use change after conversion of tillage system (l/ ha) 

Minimum till -18 % 0 to -66 % 
Zero till - 42 % -10% to -80 % 
Operator opportunity cost (hours on field) change after conversion of tillage system 

Minimum till - 24 % 0 to -30 % 
Zero till - 43 % -8% to -75 % 
NPV of machinery investment after conversion of tillage system (dollars invested) 

Minimum till +161 $ 0 to +514 $ 
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Zero till +82 $ -73* to +258 $ 
Note: The negative value in NPV of machinery investment after conversion to zero 
tillage indicates that some producers actually benefited by selling surplus machinery 
that was not needed anymore like a second tractor or old conventional seeding 
equipment 
 
 
  4.4.4 Ancillary Benefits in Reduced Tillage 

 The survey was used to collect information on changes in other 

components of the farm environment such as changes in water quality and soil quality 

(Table 4.4).  It is noteworthy that these benefits are apparent to a greater proportion 

among zero till farmers compared with minimum till farmers. This is interesting 

because the practice of zero tillage could be considered the opposing end of the scale 

from conventional tillage with respect to the least disturbance to the soil. Nearly, half 

the zero till farmers improved surface water quality (a third for minimum till farmers). 

A majority of both groups noticed an improvement in soil quality. Quite a few zero till 

farmers use cattle manure. A large proportion of both reduced till farmers groups felt 

there was a change in weed species where some weed species has reduced in the 

population and other had increased. As a response a greater proportion increased their 

use of herbicides (but not insecticides although this was elicited as one question) which 

has become a greater cost component. As well, approximately half of them said they are 

able to seed earlier after having reduced the tillage operations. Seeding earlier allows 

the crop to benefit from a longer crop growing period before the onset of winter.  

 

Table 4.4 Perceived Change in Farming System Attributes 
 Farms with improvement in surface water quality 

Minimum 35% (n=17) 
Zero 53% (n=19) 
 Using cattle manure 
Minimum 8% (n=12) 
Zero 43% (n=14) 
 Change in weed species 
Minimum 59% (n=17) 
Zero 100% (n=12) 
 change in pesticides 
Minimum 40% (n=15) 
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Zero 47% (n=19) 
 improvement in soil quality 
Minimum 82% (n=17) 
Zero 95% (n=19) 
 reduced soil erosion 
Minimum 62% (n=13) 
Zero 100% (n=18) 
 able to seed crop earlier 
Minimum 47% (n=15) 
Zero 58% (n=19) 
Note: n = number of responses to the question 
  
 

4.5 Summary 

This chapter explains where and how the sample was selected for the survey as 

well as the structure of the survey and finally tabulates or summarises the responses of 

the survey. These responses will be used to parameterise the economic component of 

the model, which is the subject of the following chapter. The following chapter 

discusses how this survey data will be used to parameterise the model and how the 

emissions component of the model are parameterised.  
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CHAPTER 5 
ANALYTICAL FRAMEWORK 

 
 

5.1 Introduction 

The fourth chapter discussed how the survey was conducted and presented the 

specific data collected using the survey.  This information is necessary to parameterize 

the simulation model so that it may be used to generate the appropriate data for the 

development of the trade-off functions.  This chapter focuses on developing the 

empirical foundations of the simulation model and specifically details the data that was 

used to parameterize the environmental, economic and emissions components of the 

model.  The chapter begins with a description of the biophysical properties of the Black 

soil zone with respect to its soil properties and climate characteristics within the rural 

municipalities encompassed in the study (section 5.2). The discussion then moves on to 

describe the how to parameterise the individual components of the model 

environmental, economic and the emissions sub-model (sections 5.3, 5.4 and 5.5 

respectively).  

 

5.2 Black Soil Zone  

 This research focused on the Black soil zone because of the relatively high 

adoption rate of reduced tillage practices over a relatively longer period of time in this 

region relative to the other soil zones in the province.  This ensured a better availability 

of both biophysical and economic data relevant to these targeted management 

alternatives.   In addition, the simulation model being used in this study has been 

validated for the Black soils (Belcher et. al., 2003) 

 The Black soils were formed under grassland vegetation, although trees and 

shrubs have expanded onto the grasslands as a result of the elimination of such 

landscape scale forces as large prairie fires and the herds of bison that once roamed 
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them. The natural climax community in this region is mid to tall grass prairie with some 

tree and shrub communities interspersed in areas with wetter soils, such as wetlands and 

riparian zones along streams and rivers.  In the current period annual crop production, 

predominantly cereals and oilseeds, and livestock production (the area has the highest 

cattle numbers per farm in Saskatchewan) dominate the landscape. Soils in this soil 

zone tend to have higher organic matter (SOM) stocks. Since SOM contains both 

organic carbon and mineralizable N, the greater availability of SOM implies more 

mineralizable N. As well, SOC has a greater water holding capacity and thus the Black 

soil zone is not as constrained with soil moisture and hence farmers in this soil zone are 

less compelled to summer fallow.  Practices like zero tillage or extended rotations, 

when combined with adequate fertiliser increases crop yields which leaves behind 

greater crop residues. These crop residues produce greater SOM that conserve more 

moisture even under dry conditions. Specific details of the landscape are provided in 

Table 5.1 and a map of the Black soils with respect to its position in the province is 

depicted is Appendix A  

 

5.3 Parameterising the Environmental Model 

 The agronomic processes of the sub model are parameterised to the Black soil 

zone. All tillage systems in the model are parameterised using values representing the 

biophysical and climatic conditions of an area near Yorkton, in the eastern part of the 

province of Saskatchewan (Table 5.1). Precipitation values are based on historic- 1973 

to 2003- growing season (May to July) and non-growing season (April to August) 

precipitation data from the Yorkton weather station. 

 

Table 5.1 Biophysical Characteristics of the Black Soil Zone 
  
Growing season precipitation a  (cm) 20.18 
Winter precipitation b (cm) 24.9 
Mean daily temperature    (0C) 20 
Mean daily temperature (days) c  2 
Growing degree-days d 1420 
Soil texture Clay loam 
Initial Solum (cm)e 130 
Initial SOC (t/ha)f 80 
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Initial surface trash (t/ha) 4.2 
notes: 
a- growing season precipitation is from May through July 
b-winter precipitation is from August through April 
c-mean daily temperature days  represents the number of days within a growing season where the mean 
daily temperature exceeds 24 0C 
d- growing degree days using a base temperature of 5 0C 
e – depth of A and B horizon 
f-total stock to a depth of 20 cm 
(Source: adapted from Belcher, et.al., 2003) 
 

A complete description of the environmental component of the simulation model 

is found in Belcher, (1999) and Belcher et. al., (2003). The model is parameterised with 

three categories of biophysical data; soil type (texture and thickness), weather (growing 

season temperature and precipitation), and initial soil stocks (surface residue, soil N, 

soil P and SOC).  Based on these initial stock values the sub-model simulates crop 

yields (wheat, canola, pea and barley); bio-physical soil properties (SOC, soil N, soil P 

and soil moisture); under the different crop rotations. The rotations modelled in this 

study are the wheat-pea-barley-canola for both zero tillage and minimum tillage and 

wheat-barley-fallow-canola for conventional tillage.  These rotations were selected 

based on information collected in the survey that indicated that they represented the 

more common rotations used by farmers in the area.   

Crop yields are estimated by the model based on Liebig’s concept of the Law of 

the Minimum (Belcher et. al.,  2003): The maximum potential yield (Ymax) decreases 

in proportion to the most limiting growth requirement; soil moisture, soil N or soil P.  It 

should be noted that the model assumes that moisture is received at the correct time and 

inputs are used at the optimal levels such that yields are not negatively impacted by 

weeds, insect pests and disease.  The mathematical expression of yield (kg/ha) for crop 

i, under rotation j at time t is calculated using the following mathematical relationship: 

 

! 

yij
t

=Yi * Xnij
t
* Xpij

t
* Xwij

t
(5.1)  

 
where:  

yt
ij = yield for crop (i) in rotation j at time t (kg/ha) 
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Yi = an exogenous variable reflecting the maximum potential yield (unconstrained for 

the margin) (kg/ha) 

Xnst
ij  . Xpst

ij . Xwst
ij = indices for N, P and water sufficiency, respectively. The indices 

fall between zero and one, with one representing unconstrained conditions. 
 

 The sufficiency indices have been parameterised using empirically derived 

relationships (Belcher et. al.,  2003). The primary function of the environmental 

component of the model is to simulate the quantity of soil N, P and water available to 

the crop at each time step thereby determining the magnitude of the sufficiency values. 

The availability of soil N, P and soil moisture is, among other variables13, determined 

by the SOC stock. SOC (kg/ha to a depth of 20 cm) at a point in time is determined by 

the equation 5.2: 

 

 
SOC t

ij = SOC t-1
ij + (R t-1

ij - D t-1
ij)         (5.2) 

 

where: 

SOC t
ij = soil organic matter carbon for the ith crop in the jth rotation at time t  

R t
ij = the annual rate of crop residue additions to soil (kg/ha/yr) which, in turn, is a 

function of crop type and crop yield  

D t
ij = the annual rate of residue decomposition (kg/ha/yr) due to microbial 

decomposition and respiration of CO2 which , in turn, is a function of the tillage factor 

and growing degree days. 

 
 The annual rate of crop residue additions to the soil is a function of crop type 

and crop yield:  

 

! 

Rij

t
=Yij

t
*Ci *HIi (5.3)

  

where:    

                                                
13 Such other variables as precipitation, fertiliser application, placing of legumes in the 
crop rotation 



 63 

Ci = the carbon content of the added biomass  

HIi = harvest index (kg residue/kg grain defined by crop in Belcher et. al., (2003)) 

 

 It should be noted that, as discussed earlier, since the model assumes that crop 

yields are constrained only by N, P and water, crop yields tend to be overestimated by 

the model.  As a result, organic residue added to the soil also tends to be overestimated 

with SOC stocks also overestimated.  This situation will also have implications for 

yields in later periods of the simulation with higher SOC stocks resulting in greater 

levels of available N, P and water in the future. 

The annual rate of residue decomposition due to microbial decomposition and 

respiration of CO2 which is a function of the tillage factor and growing degree days: 

  

D t
ij = R t

ij . EXPf(Ni, Gj, k, GDD)      (5.4) 

 

where: 

Ni = the N content of the crop residue  

Gj = a tillage factor which increases with the frequency of tillage 

k = a general decomposition coefficient calculated as 1/cumulative degree days 

GDD = the annual growing degree days above 50C 

 A key factor to consider from the above equations is that greater tillage 

frequency increases the rate of residue decomposition by increasing soil disturbance, 

temperature, aeration and available N (Belcher et al., 2003). The quantity of available 

soil N is based on the SOMC content, and the rate of N mineralization (Belcher et.al., 

2003).  N mineralization is positively correlated with soil temperature and soil water 

and, as such, is rotation and time specific. The quantity of N available to the crop is the 

sum of available soil N plus fertiliser N. Fertiliser N is constrained, in the model, so that 

total N does not result in a sufficiency value greater than one for each crop (in other 

words the farmer does not apply more fertiliser than required). Fertiliser N is further 

adjusted based on available soil water to reflect the fact that farmers will be more 

willing to invest in fertiliser inputs in years when water will be less likely to be 
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constraining to crop growth.14. Available soil P is a function of the stock of P in the 

previous time period plus P released from mineral, organic and fertiliser sources, minus 

the quantity of P taken up by the crop and exported with grain. Fertiliser P is 

constrained using the same procedures as for N fertiliser. 

Apart from available N and available P, within the model, crop yields are largely 

determined by the availability of soil water. Soil water, in turn, is determined by the 

precipitation received during the growing season (May- July) and non-growing season 

(August-April). The pattern of precipitation is based on actual precipitation data for the 

past 30 years, for Yorkton.  The proportion of total precipitation that is available to the 

crop in each time step is determined by the infiltration rate, recharge rate, and water 

storage capacity of the soil. It is assumed that there is no carryover of soil water 

following crop production and that 30% of the water stored in the soil during a summer-

fallow year is available in the subsequent year. In this part of the environmental sub 

model, the output parameters of SOC as well as inorganic fertiliser and other factors of 

production like pesticides are used to calculate net GHG sequestered in the emissions 

sub model.  As well, the output parameter crop yield is used to determine revenue in the 

economic component of the model. The crop rotations of this model were selected to 

represent those most closely resembling the survey respondents’.  

 

5.4 Parameterising the Economic Component of the Model 

The output of the Environment component is used in the economic and 

emissions components of the model.  The measures taken to parameterise the Economic 

component of the model are described here. The economic component calculates net 

income ($/ha) for the three different tillage systems based on economic data for an 

average farm size of 425 hectares from the Crop Planning Guide for the Black soil zone 

published by SAFRR (2004).  The Crop Planning Guide arrived at such cost data by 

conducting cost surveys of farms in the Black soil zone with an average farm size of 

425 ha.  However, the cost and revenue results are projected on a per hectare basis. Net 

                                                
14 Optimum rates (N sufficiency = 1) are applied only when soil water is greater than 50% 
above average for the region. The model assumes when available soil water is at or below 
average, farmers are less willing to invest in fertiliser inputs, as there is a higher risk that yields 
will be limited by water availability. 
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farm income is the revenue from the sale of crops (gross revenue) above the cash costs 

of farm expenses (described in equation 3.6 in chapter 3). Gross revenue is the product 

of farm gate crop prices and yields. Crop prices were fixed at farm gate levels (SAFRR, 

2004) (Table 5.2). Crop yields are endogenously determined by the environmental sub 

model. 

 

Table 5.2 Farm Gate Market Prices (Black Soil Zone, 2004) 
Crop Price ($/t) 
Wheat 146.98 
Pea 156.19 
Barley 88.18 
Canola 275.58 
(Source: SAFRR, 2004) 

 

The input costs used to parameterise the economic component of the model were 

based primarily on SAFRR, (2004) data with some adjustments made to the costs for 

zero and minimum tillage based on the survey data (Table 5.3).  Land rent was fixed at 

$42/ha/year for the entire simulation period for each of the tillage systems SAFRR 

(2004). However, one may argue that lands under reduced till may capitalise the value 

of improved soil and the rent maybe greater (Kulshreshtha, 2004 (b)). The Third 

assessment Report of the IPCC (2001) states that land prices may change (e.g., increase) 

as a consequence of competition between crops for food and crops for mitigation 

strategies.  Nonetheless, for the purpose of this analysis a fixed land rent value will be 

assumed.  The cost of the herbicide Glyphosate was the product of the price of $7 per 

litre (SAFRR, 2004) and the mean application rates of 2.48 l/ha and 2.57 l/ha for 

minimum till and zero till respectively, which are values that were elicited from the 

survey. The cost of the other pesticides were as reported by SAFRR, (2004). Owner 

operator opportunity cost is arrived at using the labour costs provided for conventional 

tillage (SAFRR, 2004) and then discounting them by the proportion of owner operator 

time saved after the conversion of tillage system, as elicited by the survey. Fuel costs 

were calculated the same way. Machinery costs were as reported by SAFRR (2004) and 

included machinery investment, repairs and depreciation. Seed costs were also 

determined using SAFRR, (2004).  
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Table 5.3 Summary of Annual Cost Components ($/ha) 
Component CT MT ZT Source 

Land 42.82 (SAFRR, 2004) 
Glyphosate n/a 17.36 18.00 (SAFRR, 2004) for price and 

survey for usage 
Other pesticides (SAFRR, 2004) 

spring wheat 49.47 49.47 49.47  
canola 55.70 55.70 63.87  
barley 44.35 44.35 50.95  
peas n/a 61.38 61.38  

fallow 6.84 n/a n/a  

Labour 
spring wheat 15.44 11.73 8.80 

canola 10.50 7.98 5.98 
barley 10.50 7.98 5.98 
peas 8.65 6.57 4.93 

fallow n/a n/a n/a 

SAFRR (2004)for CT and 
discounts from survey for MT 

& ZT 

Machinery 
spring wheat 95.31 95.31 83.77 

canola 95.31 95.31 83.77 
barley 95.31 95.31 83.77 
peas n/a 118.44 106.33 

fallow 49.13 n/a n/a 

SAFRR (2004) 

Fuel 
spring wheat 18.90 15.50 10.96 

canola 20.01 16.41 11.61 
barley 18.90 15.50 10.96 
peas 21.13 17.33 12.26 

fallow 11.12 9.12 6.45 

SAFRR (2004) for CT and 
discounts from survey for MT 

& ZT 

Seed 
spring wheat 19.25 19.25 19.25 

canola 62.57 62.57 62.57 
barley 18.80 18.80 18.80 
peas n/a n/a 48.93 

fallow n/a n/a n/a 

SAFRR (2004) 

Other costs SAFRR (2004) 
 36.05 36.05 36.05 insurance premium + 

utilities.+ interest on variable 
expenses & miscellaneous 

 74.14 74.14 74.14 all machinery related 
Summer Fallow Expense 

spring wheat 146.96 n/a n/a 
SAFRR (2004) 
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Component CT MT ZT Source 
canola 146.96 n/a n/a 
barley 146.96 n/a n/a 
peas 146.96 n/a n/a 

fallow - - - 

 

  

Net revenue per hectare (derived using equation 3.6 in chapter 3) are evaluated 

per crop rotation. The rotation chosen was the most popular crop rotation among survey 

respondents for the tillage system. The fact that two tillage systems being compared 

employ different crop rotations is not a concern because the study attempts to study the 

tillage system with the crop rotation that is most popular with that tillage system. This 

facilitates an evaluation of the management systems and not a particular crop. The 

economic profit of each tillage system is evaluated as a 10 and 30 year cumulative 

expected yield, mean return and risk (keeping prices constant).  

 

5.5 Emissions Sub Model 

The three largest components of net GHG abatement in agriculture are the 

quantity of carbon sequestered as SOC, soil N2O emissions and emissions associated 

with farm fuel use. A less significant source of emissions are those resulting from the 

manufacture of other farm related inputs including fuel, fertiliser, and agro-pesticides. 

These emissions are referred to as ‘embodied emissions‘.  The purpose of the emissions 

sub-model is to estimate the net GHG emissions from the simulated management 

systems by calculating the above-discussed emission levels for each rotation and 

management.  Each of these categories will be discussed in more detail in this section. 

Soil organic carbon sequestration is derived from the environment component of 

the model. The model simulates conversion of crop growth to crop residues and crop 

residues to either sequestered SOC or emitted as CO2. Crop residues enter the soil as 

surface trash. The amount of carbon in the surface trash is a function of crop yield, 

reflecting biomass production, and crop type, reflecting type of residue. The rate of 

change in the SOC stock is determined by the rate of SOC formation and the rate of 

decomposition, which in turn are determined by soil N and soil moisture (Belcher, 

1999).  In the simulation model the initial value of SOMC is set at 80 tonnes per hectare 



 68 

and surface trash at 4.2 tonnes per hectare. The trade-off analysis measures net GHG 

sequestered in CO2 equivalent, hence the carbon sequestered would be multiplied by the 

ratio of molecular weight of CO2 to the atomic weight of carbon, 3.667. 

In accounting for soil N2O emissions, the Emissions component of the model 

follows the accounting system recommended in the IPCC Guidelines (1996), which are 

divided into direct and indirect emissions (from atmospheric deposition of NH3 and 

NOx). Direct emissions are where N2O is emitted directly to the atmosphere from 

cultivated soils and fertilized and/or grazed grassland systems. Indirect emissions result 

from transport of N from agricultural systems into ground and surface waters through 

drainage and surface runoff, or emission as ammonia or nitrogen oxides and deposition 

elsewhere, causing NO production. Both direct and indirect emissions in the simulation 

model are a function of the (endogenously determined) inorganic nitrogen fertiliser 

added and their respective direct and indirect emissions coefficients.  To calculate direct 

emissions all the N input to the soil, through N-fixing crops, crop residue and from 

additions of synthetic N ferilizer, are estimated. The N input to the soil from N-fixing 

crops ( kg N/ha) is calculated as follows: 

 

NCRBFBFBN FracCropF **2=         (5.5) 

  

Where: 

FBN - N input to the soil from N-fixing crops (kg N/ha) 

The factor 2 converts crop production to total crop biomass (IPCC, 1996) 

CropBF – Dry pulses and soy beans produced (kg/ha/yr). In case dry biomass is 

unavailable, multiply yield by 0.85 (IPCC Guidelines, 1996) 

FracNCRBF – Fraction of N in N-fixing crop (0.03 kg N / kg dry biomass – IPCC,(1996))  

The N input to the soil from crop residue (kg N/ha) is calculated as: 

 

! 

FCR = 2*Cropo *FracNCRO * (1" FracR ) * (1" FracBURN ) (5.6)  

 

note: substitute FracNCRBF for FracNCRO if the crop is a legume 

where: 
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FCR - N input to the soil from crop residue (kg N/ha) 

The factor 2 converts the crop production to total crop biomass (IPCC, 1996) 

CropO – Dry production of other crops (kg/yr). In case dry biomass is unavailable, 

multiply yield by 0.85 (IPCC Guidelines, 1996) 

FracNCRO - Fraction of N in non N-fixing crop (0.015 kg N / kg dry biomass for non-N-

fixing crops and 0.03 fro N-fixing crops –IPCC Guidelines, (1996)) 

FracR – Fraction of crop residue removed from field as crop (0.45 –IPCC Guidelines, 

(1996)) 

FracBURN - Fraction of crop burned (0.1 in developed countries-IPCC Guidelines, 

(1996))  
The N input from synthetic fertiliser are calculated as: 

  

! 

F
SN

= N
FERT

* (1" Frac
GASF

) (5.7)  

  

where: 

FSN - N input from synthetic fertiliser excluding emissions of NH3 and NOx (kg N/ha) 

NFERT – total (endogenous) synthetic fertiliser (kg N / yr) 

FracGASF - Fraction of synthetic fertiliser N volatilised as NOx + NH3 (0.1 kg NH3-N + 

NOx-N per kg of fertiliser N applied – IPCC, 1996)) 

  

 It should be noted that this part of the calculation does not consider emissions of 

NH4 and N2O (Kg N/ha).  All three sources of N addition to the soil contribute to direct 

N2O emissions from the soil (tonnes CO2 equivalent/ ha), which is calculated as 

follows: 

 

! 

N2O =
EF1 * (FBN + F

CR
+ F

SN
) * 44 * 310

28*1000
(5.8) 

 

where: 

EF1 - N2O emission factor for direct emissions (0.0125 kg N2O N/kg N input (IPCC, 
1996)) 
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FBN, FCR and FSN are as discussed above 
 
310/1000 converts kg N2O/ha into tonnes CO2 equivalent /ha 
 
44/28     is the ratio of the molecular weight of N2O to the molecular weight of N2 
 

The indirect emissions (from atmospheric deposition of NH3 and NOx) is 

comprised of emissions from leaching and emissions from volatilisation which are both 

functions of inorganic N fertiliser, and of their relevant emission coefficients.  The 

quantity of fertiliser N that leaches from the soil (kg N/ha) is calculated as follows: 

 

! 

N2O = N
FERT

*Frac
LEACH

(5.9)  

   

where: 

N2O (L) - the quantity of fertiliser N that leaches (kg N/ha) 

NFERT  – total (endogenous) synthetic fertiliser (kg N/ha/ yr) 

Frac LEACH = Fraction of fertiliser that leaches (0.3 kg N/kg fertiliser applied – IPCC 

Guidelines, 1996) 

 

 The quantity of fertiliser N that volatilises (kg N/ha/yr) is calculated as follows: 

   

! 

N2O(G ) = N
FERT

*Frac
GASF

(5.10) 

  

where: 

N2O(G) – Quantity of fertiliser N that volatilises (kg N/ha) 

NFERT – total (endogenous) synthetic fertiliser (kg N/ha/yr) 

FracGASF - Fraction of synthetic fertiliser N volatilised as NOx + NH3 (0.1 kg NH3-N + 

NOx-N per kg of fertiliser N applied-(IPCC , 1996)) 

 

 The fraction of N that volatilises may not necessarily be in the form of N2O. It 

could be in any other gaseous form of N. A fraction of these nitrogenous gases would 

be converted N2O. When both, the N that leaches and the N that volatilises are 
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calculated, these values are added and multiplied by their respective emission 

coefficients to calculate the total Indirect N2O emissions as follows: 

 

 

! 

N2O(I ) = 310 x 44 x [(N2O(G ) x EF4 ) + (N2O(L ) x EF5)] (5.11)

1000 x 28  

where: 

N2O(I) = Indirect N2O emissions from leaching and volatilisation (kg/ha/yr) 

EF4 = Emission factor for N volatilised. 0.01(0.002 –0.02) kg N2O-N per kg NH3-N 

emitted (IPCC,1996) 

EF5 = Emission factor for N leached 0.025 (0.002 – 0.12) kg N2O-N per kg N leached or 

runoff per year 

44/28      is the ratio of the molecular weight of N2O to the molecular weight of N2 

310/1000 converts kg N2O/ha into tonnes CO2 equivalent /ha. 

 

It should be noted that due the extreme temporal and spatial variability in N2O 

emissions and therefore the high degree of uncertainty associated with N2O emissions 

from agriculture, the coefficients for N2O emissions from N that leaches and volatilises 

are subject to wide variation (IPCC, 1996 and Desjardins and Riznek, 2000).   

With respect to IPCC (1996), energy based emissions related to agriculture refer 

solely to on farm fuel based emissions (eg. emissions of CO2, CH4 and N2O that arise 

only from burning fuel on farm machinery). The quantity of total on-farm emissions in 

the model is the product of the fuel use and the individual emissions coefficients for 

CO2, CH4 and N2O. The quantity of fuel used, which is exogenous in the model, is 

taken from the economic component of the model.  How the individual emission 

coefficients were derived is described below. The emission coefficient for CO2 arising 

from the on farm use of fuel (CO2 tonnes /L) is calculated as follows: 

 

! 

CO2 = (NCF *CEF *99%* 44 /12) (5.12)

VOL
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where: 

CO2(F)  = The emission coefficient for CO2 arising from the on farm use of fuel (CO2 

tonnes /L/year) 

NCF = Net Calorific Value (43.33 Tera joules/ 1000 tonnes diesel -IPCC Guidelines, 

1996)) 

CEF = Carbon Emission Factor of diesel (20.2 tonnes C / Tera joule of diesel -IPCC 

Guidelines, (1996)) 

99% = percentage of C that is oxidised (IPCC Guidelines, 1996) 

44/12 = molecular weight of CO2/ atomic weight of C 

VOL = volume of 1000 tonnes of diesel (106 x 0.85 )  

 

The emission coefficient for CH4 emissions arising from the on farm use of fuel is 

calculated as follows (CH4 tonnes / L): 

 

  

 CH4(F) = (NCF      x      CH4EF)     

 (5.13)  

      VOL 

where: 

CH4(F) - The emission coefficient for CH4 arising from the on farm use of fuel (CH4 

tonnes /L) 

CH4EF = CH4 Emission Factor (5kg CH4/ Tera joule of diesel –IPCC, 1996)) 

 

The emission coefficient for N2O emissions arising from the on farm use of fuel is 

calculated as follows (N2O tonnes /L): 

 

 N2O(F)  = (NCF        x      N2OEF)     

 (5.14) 

         VOL 

where: 
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N2O(F) - N2O emissions arising from the on farm use of fuel (N2O tonnes /L) 

N2OEF = N2O Emission Factor (0.6 kg N2O / Tera joule of diesel – IPCC , 1996)) 

  

 The emissions sub-model calculates the total emissions from energy use using 

these estimates. The IPCC Guidelines do not consider embodied emissions, or those 

generated during the manufacture of fertiliser, fuel, machinery and pesticides, under 

emissions accounting for the agriculture sector. This study includes them to provide a 

more complete picture of total agricultural and induced emissions. Embodied emissions 

are estimated by the emissions sub-model by multiplying the specific input use value 

(quantity) by the respective emission coefficients obtained from Sobool and 

Kulshreshtha, (2004) (Table 5.4). 

 

 

Table 5.4 Embodied Emission Coefficients 
Agriculture Induced Emission Input Embedded Emission Coefficient and Unit 

P fertiliser manufacture coefficient 1.33E-03 t CO2 equivalent/ kg P in fertiliser 

N fertiliser manufacture coefficient 1.836E-03 t CO2 equivalent/ kg N in fertiliser 

Machinery manufacture coefficient 3.841E-04 t CO2 equivalnt/ $ machinery 

Pesticide manufacture emission 

coefficient 

4.677E-06 t CO2 equivalent/ $ pesticide 

Fuel manufacture emission coefficient 4.98E-04 t CO2 equivalent/ litre diesel 

(source: Sobool and Kulshreshtha, 2004) 

 

5.6 Summary 

 This chapter described how the empirical aspects of the model were 

parameterised with respect to the Black soil zone. It begins by briefly describing how 

the model is initiated with the bio-physical properties of the Black soil zone and then 

continues by describing how the three sub components of the model are parameterised 
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to reflect the farming practices of this soil zone. The three sub components included in 

the environmental component, an economic component and end emissions component. 

The next chapter describes how the model simulations results are used and an analysis 

of these results. 
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CHAPTER 6 
SIMULATION RESULTS 

 

6.1 Introduction 

Having discussed the survey data and the parameterisation of the model in the 

previous chapter the current chapter will present the data provided by the simulation 

model and provide a discussion of the implications of these results. Across many 

provinces reduced tillage and summer-fallow are known to reduce CO2 emissions, 

increase N fertiliser use which is associated with an increase in soil N2O emissions and 

increase soil C sinks. The policy of selecting from options of different tillage practices 

that would be both beneficial to GHG abatement and farm income. The primary 

objective of this study is to look at the net effects, the long-term effects on farm income 

and capacity to abate GHG abatement. The chapter commences by comparing the 

components of GHG abatement (section 6.2), components of net income (section 6.3), 

TOA between net abatement and net income (section 6.4) and economic risk (section 

6.5) and discussing the implications for policy throughout.  

 

 

6.2 Components of Net GHG Abatement  

The model was used to simulate a 30-year time horizon for the identified crop 

rotations and tillage management options.  The simulation output included each of the 

discussed GHG sources (fuel, soil and embedded emissions) and the carbon sink (SOC 

sequestration) components of the simulated farming systems.  Each replication includes 

a stochastic weather component that results in different SOC and yield values that in 

turn creates a random distribution around an expected value of net income and net GHG 

abatement. Therefore, the 30-year simulations were run for 30 separate times in order to 

generate a distribution of output values.  The following compares the expected values of 

the sources and the sink  
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Carbon sequestered in the soil was a function of such factors as crop yield, crop 

type, tillage, and the growing degree days. All three tillage systems started with 80 

tonnes of soil organic carbon and were subject to the same biophysical and climatic 

conditions (growing degree days and thirty year historic precipitation), with the 

exception of mean daily temperature, which was the stochastic weather parameter 

mentioned earlier, the effect of which will be discussed in this section. Hence, all three 

systems commenced with the same exogenous climatic conditions and stocks such as 

soil organic matter carbon, surface trash, soil depth, and minerals.   

 

6.2.1 Soil C Sequestration 

Throughout the simulation period of 30 years, SOC sequestration was greatest 

for zero tillage, second for minimum tillage and lowest for conventional tillage (Table 

6.1). This divergence kept increasing throughout the simulation period (Table 6.1 and 

Figure 6.1). The SOC stocks show an almost linear increase over time (Figure 6.1) and 

the increase seems associated with an increasing, albeit cyclical trend (which may be 

attributable to the precipitation trend(Figure 6.3)), in crop yield (Figure 6.2). This result 

that reduced till is able to sequester greater SOC agrees with the literature with respect 

to western Canada generally and specifically to Saskatchewan (Agriculture and Agri-

Food Canada, 2000). More SOC is retained under reduced tillage because of the slower 

decomposition of crop residue and organic matter. Equation 5.2 states that SOC 

addition to the soil is positively influenced by crop residue addition to the soil and 

negatively influenced by crop residue decomposition. Now, equation 5.3 states that crop 

residue addition to the soil is positively influenced by crop yields and should crop yields 

be greater with reduced tillage this will contribute to greater SOC addition. Moreover, 

equation 5.4 states that crop residue decomposition is positively influenced by tillage 

intensity, hence, by reducing the intensity of tillage the rate of residue decomposition 

could be retarded and hence SOC addition increased. In general the reduced tillage 

cropping systems till have greater annual crop yields which result in greater crop 

residue additions to the soil which results in larger SOC stocks. In addition, reduced 

tillage frequency reduces residue decomposition rate which helps keep SOC stocks 

higher. Moreover, in the Black soil zone more crop residue is added to the soil because 
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of greater crop yields. However, a greater increment in SOC sequestration was expected 

of reduced till from the Black soil zone of Saskatchewan  Agriculture and Agri-Food 

Canada, 2000; Soon and Clayton, 2002). The smaller than expected difference may be 

due to the fact that the model assumes that only N, P and water availability have an 

impact on annual crop yield.  The simulation assumes that all precipitation values used 

in the model were available at the correct time of the growing season, whereas in reality 

such precipitation could have been experienced at a time in which it did not contribute 

to crop growth. Further, the model does not capture any yield losses that may be 

attributed to early or late frosts or insect, weed or disease infestations. Such 

imperfections may contribute to an underestimate of the difference between SOC 

sequestered in reduced tillage systems as compared to conventional tillage systems. 

However, as previously discussed (in Chapter 2) the SOC sequestration with reduced 

tillage is labile and is easily oxidised if the farmer changes tillage practices from 

reduced tillage to conventional tillage systems. In argument for giving western 

Canadian soils recognition for such ephemeral C sinks one could suggest that most 

countries that have not considered soil conserving tillage practices are still in the stage 

of moving from A to B of Figure 2.4.  In defence of the reduced till strategy providing 

only labile C sinks, one may argue that restoring the lost SOC is what warrants merit. If 

society is concerned about the possibility of farmers returning to conventional tillage 

and oxidising the C sequestered incentives may be put in place to motivate the farmers 

to maintain appropriate management even after the soil reaches its carrying capacity. 

For example, to meet this objective a program that provides ongoing incentives even 

after reaching carrying capacity or require that the producer purchase C credits from 

another producer for oxidising the C thereby imposing a disincentive to mobilizing the 

soil carbon stock.  
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Table 6.1 Mean SOC Stock At Every Fifth Year With Standard 
Deviation In Parentheses (t C/ Ha) 
years Conventional Minimum Zero 

5 85 (0.2) 86 (0.2) 87 (0.3) 

10 87 (0.3) 89 (0.3) 91 (0.3) 

15 89 (0.3) 91 (0.3) 94 (0.4) 

20 91 (0.3) 95 (0.4) 98 (0.4) 

25 92 (0.4) 96 (0.5) 101 (0.5) 

30 96 (0.4) 99 (0.5) 104 (0.5) 

Note: 
Under a gamma distribution Belcher et al., (2003) came up with the following SOC annual sequestration 

values for conventional, minimum and zero till respectively: 0.19, 1.00 and 1.2 tonnes carbon per year 

after 50 years of simulation. This study gives 0.53: 0.63 and 0.80 tonnes carbon per year respectively for 

the same tillage systems but with 9 cm less of annual growing season precipitation and a 30-year 

simulation 
  

6.2.2 Fuel Emission 

The model was parameterised so that fuel use was exogenous in the model. The 

model was parameterised for each crop and cropping system as summarised in Table 

6.2. It should be noted that peas were not a crop in conventional tillage cop rotation and 

summer-fallow was not used in minimum or zero tillage crop rotation. Fuel use has no 

stochastic component in the simulations, hence, there would be no variability within the 

30 simulations.  The 30-year cumulative CO2 emission from fuel use for the three 

cropping systems were 3.2; 3.0 and 2.2 tonnes/ha CO2 equivalent for conventional, 

minimum and zero tillage respectively. The literature suggested that lower fuel 

emissions were an advantage of reduced tillage to which was consistent with the survey 

results. That lower energy use as a result of reduced tillage is associated with the scaling 

down of tillage operations due to the change in practice. Under conventional tillage the 

farmer would have made three or more passes with tillage equipment to break up and 

bury the vegetative stubble from the previous crop and to break down soil clumps to 

ensure higher seed germination followed by the seeding operation as compared to 
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reduced tillage systems where the farmer would make one or two passes where seeding 

is done directly into the stubble.  

 

6.2.3 Soil N2O Emissions 

The discussion in chapter 3, where the emissions sub-model was analysed, 

explained that soil N2O emissions from crops are a function of inorganic nitrogen 

fertiliser quantity, crop nitrogen content (a function of crop type), yield, tillage system, 

residue management and a vector of emission coefficients. The coefficients have 

temporal and spatial variability such that the values discussed below for soil N2O 

emissions should be interpreted with caution, since there is a high degree of uncertainty 

associated with these coefficients.  A discussion of the other variables that these 

emissions are a function of will precede an estimate of soil N2O emissions.  

  The quantity of inorganic fertiliser applied to annual crops largely helps to 

determine the nitrogen input to the soil that would be available for emission from the 

soil as N2O (Table 6.2). The quantity of N fertiliser to be applied is negatively 

influenced by SOC available, because SOC itself contains N.  The results indicate that 

within the first ten years total cumulative fertiliser added to the soil in zero tillage and 

minimum tillage was almost 20 kg greater than for conventional tillage. In the second 

ten-year period this difference, though reduced, was still evident. At first, this difference 

was thought to be attributable to either the difference in crops in the rotation (as the 

conventional till rotation does not have a legume whereas  the two reduced till rotations 

do not leave their land fallow) or it was thought to be attributable to difference in tillage 

intensity, or both.  
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Figure 6.1 SOC addition by tillage system over time 

 
 
Figure 6.2 Simulated Annual Rotational Crop Yield 
 

 
Figure 6.3 Annual Precipitation 1971-2001 from the Yorkton weather station 
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However, difference in tillage intensity could be ruled out, at least for the first 

20 years, since the minimum till and zero till rotations (which have different tillage 

intensities) still had the same fertiliser quantity applied. Hence, it is believed that the 

difference in fertilizer input during the first 20 years was attributed to the difference in 

crop rotation.  This difference in fertiliser use between conventional till and reduced till 

has been explained by Desjardins et. al., (2002) as follows; the conversion to reduced 

tillage has reduced the need to summer-fallow15, and the reduced area under summer 

fallow has increased the area under cultivation (intensification of cropping system). 

Intensification of cropping systems has led to both the increased need for nitrogen 

fertiliser and increased legume crop production, which adds greater quantities of 

nitrogen to the soil. The addition of greater quantities of nitrogen to the soil may 

subsequently enhance N2O emissions16. Reduced tillage rotations include a legume, 

which is capable of fixing nitrogen. The legume in the reduced till rotation is capable of 

fixing enough N that it compensates for the greater quantity of N fertiliser applied 

because of the intensification in land use, 

 
 
 
Table 6.2 Cumulative N Fertiliser Used with Time, Crop Type and 
Cropping System for 30 Years. (Kg /ha/year) 

Conventional Minimum Zero Year Crop 

Mean s.d.* 

Crop 

Mean s.d. Mean s.d. 

1 wheat 100 0.00 wheat 100 0.00 100 0.00 

2 barley 100 0.00 legume 100 0.00 100 0.00 

3 fallow 176 0.00 barley 176 0.00 176 0.00 

4 canola 254 0.00 canola 254 0.00 254 0.00 

5 wheat 338 0.00 wheat 338 0.00 338 0.00 

6 barley 338 0.00 legume 338 0.00 338 0.00 

                                                
15 Because reduced tillage has shown to as good as conventional till (and in the Black soils) at 
conserving soil moisture than summer fallow. 
16 A caveat has to be expressed here as the effect of less disturbed soil and greater mulch cover 
may help counter this – there is insufficient information to express the net effect 
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Conventional Minimum Zero 

7 fallow 422 0.00 barley 422 0.00 422 0.00 

8 canola 528 0.26 canola 529 0.24 528 0.26 

9 wheat 615 0.26 wheat 616 0.24 615 0.26 

10 barley 615 0.26 legume 616 0.24 615 0.26 

11 fallow 708 0.26 barley 709 0.24 708 0.26 

12 canola 786 0.26 canola 787 0.24 786 0.26 

13 wheat 872 0.26 wheat 873 0.24 872 0.26 

14 barley 872 0.26 legume 873 0.24 872 0.26 

15 fallow 950 0.26 barley 951 0.24 950 0.26 

16 canola 1027 0.26 canola 1028 0.24 1027 0.26 

17 wheat 1100 0.26 wheat 1100 0.24 1100 0.26 

18 barley 1100 0.26 legume 1100 0.24 1100 0.26 

19 fallow 1196 0.26 barley 1195 0.24 1196 0.26 

20 canola 1274 0.26 canola 1273 0.24 1274 0.26 

21 wheat 1365 0.26 wheat 1365 0.24 1365 0.26 

22 barley 1365 0.26 legume 1365 0.24 1365 0.26 

23 fallow 1446 0.26 barley 1446 0.24 1446 0.26 

24 canola 1506 0.26 canola 1503 0.24 1506 0.26 

25 wheat 1609 0.26 wheat 1606 0.24 1609 0.26 

26 barley 1609 0.26 legume 1606 0.24 1609 0.26 

27 fallow 1687 0.26 barley 1684 0.24 1687 0.26 

28 canola 1737 0.26 canola 1729 0.24 1737 0.26 

29 wheat 1815 0.26 wheat 1807 0.24 1815 0.26 

30 barley 1815 0.26 legume 1807 0.24 1815 0.26 

31 canola 1904 0.26 canola 1896 0.24 1904 0.26 

Note:* standard deviation of fertiliser use among 30 simulations 

 

Other factors that influence the quantity of inorganic N being added to the soil in 

the simulation model are crop yield, crop type and residue management. These three 

factors affect the size of the SOC stock, which consists of N, and hence has an impact 
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on the quantity of N fertiliser required.  The Emissions component of the model 

considers the aforementioned three factors and the nitrogen entering the soil through 

fertiliser and makes an N2O emission estimate (Table 6.3) with the use of a set of 

emission coefficients recommended by the IPCC (1996). As expected the emission 

estimates are positively correlated with the quantity of N fertilizer added to the soil and 

the stock of N in the soil. The reduced till cropping system emitted greater quantities of 

N2O during the first 20 years, but the reduced tillage cropping systems have greater 

emissions in the last 10 years of the 30-year simulation horizon.  These results are 

consistent with results from comparable studies in the literature.  For example, Six et. 

al., (2004) reported that over a period of 20 years the soil N2O emissions were less for 

reduced till than for conventional till. However, their study was for soils in the 

temperate climatic zone.  

 
Table 6.3 Cumulative Simulated Soil N2O Emissions (t CO2 e. /ha) 
Years Conventional Minimum  Zero 
10 6.6 6.8 6.8 
20 12.9 13.1 13.1 
30 18.7 18.2 18.3 
 Note: Boehm, (2004 c) indicates that Saskatchewan farmland emit soil N2O emissions of 
approximately 0.3 tonnes CO2 equivalent per hectare per year. Based on IPCC coefficients this 
simulation produces approximately 0.6 tonnes CO2 equivalent per hectare per year. 
 
 

6.2.4 Embodied Emissions 

 The previous section discussed the on-farm emissions resulting from the 

consumption of fuel and fertiliser. This section discusses the emissions that result from 

the manufacture of fuel, fertiliser, machinery, pesticide inputs used in the farm 

operations. Fertiliser based embodied emissions are the product of the total quantity of 

both N and P based fertiliser and their respective emission coefficients as discussed in 

section 6.2.3. The quantity of fertiliser based embodied emissions is consistent, 

primarily with the quantity of N fertiliser applied.  The fertiliser based embodied 

emissions are displayed on Table 6.4. 
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Table 6.4 Fertiliser use and Embodied GHG Emissions  (30-year) 
 Conventional Minimum Zero 

Cumulative N fertiliser Use (kg N/ ha) 1,940 1,896 1,904 

Cumulative P fertiliser Use (kg  P/ ha) 68 105 106 

N fertiliser - Embodied Emissions (t CO2 e. /ha) 3.6 3.5 3.5 

P fertiliser - Embodied Emissions (t CO2 e./ha) 0.1 0.1 0.1 

Total fertiliser - Embodied Emissions (t CO2 e./ha) 3.7 3.6 3.6 

Notes: 
- P fertiliser embodied emission coefficient =0.00133 t CO2 e./ kg fertiliser P/ ha (Sobol and 
Kulshreshtha, 2004) 
- N fertiliser embodied emission coefficient=0.00184 t CO2 e./ kg fertiliser N/ ha (Sobol and 
Kulshreshtha, 2004) 
  

None of the literature reviewed specifically indicated how embodied emissions 

were effected by tillage practices.  The discussion in chapter 5 of the present study 

explained how the fuel based embodied emissions were the product of fuel consumed 

and the fuel based embodied emission coefficient, the former being elicited from 

interviews and the latter from Sobool and Kulshreshtha (2004). The emission 

coefficients are constant and hence fuel based embodied emissions have a linear 

relationship with fuel use. As expected, farm fuel embodied emissions are proportional 

to on-farm fuel emissions (Table 6.5). However, fuel embodied emissions represent 

only about 15% of the total GHG emissions associated with fuel use (Table 6.8). 

 
 
Table 6.5 Fuel Based Embodied Emissions  
 conventional minimum zero 
Total 30-year fuel consumed (litres/ha) 1,181 1,120 795 
Cumulative fuel based embodied emissions (t CO2 
e. /ha) 

0.6 0.6 0.4 

Note: 
Embodied fuel emission coefficient 0.000498 t CO2 e./litre diesel/ ha (Sobol and Kulshreshtha, 2004) 

 
Farm machinery, aside from the fuel use component already discussed, does not 

give rise to direct on-farm emissions, however, the machinery manufacturing process 

requires energy giving rise to GHG emissions. The method of calculating machinery 

based embodied emissions in this model is the product of the dollar value of machinery 
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and the embodied emission coefficient (Sobool and Kulshrestha, 2004). Moreover, 

reduced till may involve greater machinery requirements resulting in greater machinery 

based embodied emissions. The cumulative emissions by cropping system indicate that 

minimum tillage has greater machinery expenditure and hence higher embodied 

emissions (Table 6.6).  Machinery based embodied emissions are the second largest 

embodied emission component after fertiliser based embodied emissions, but however, 

are small compared to the on-farm fuel emissions like fuel and fertiliser (table 6.8) 

  
Table 6.6 Machinery based Embodied Emissions  
 conventional minimum zero 

Total 30-year machinery investment ($/ha) 2,513 3,140 2,191 

Cumulative 30-year machinery based 

embodied emissions (t CO2 e./ha) 

1.08 1.32 1.01 

Note: 
embodied machinery emission coefficient 0.000384127t CO2 e./$ machinery/ ha  (Sobol and 
Kulshreshtha, 2004) 

 

The manufacture of farm pesticides  requires energy, just as all the other farm 

inputs. Pesticide based embodied emissions are computed as the product of pesticide 

cost and an emission coefficient, which was discussed in chapter 5 . The results indicate 

zero till had the highest and conventional till the lowest pesticide embodied emissions 

related to the pesticide requirements for each of these systesm. 

 
Table 6.7 Pesticide Based Embodied Emissions  
 Conventional Minimum Zero 

Total 30-year glyphosate cost ($/ha) - 247 256 

Total 30-year other pesticide cost ($/ha) 1,195 1,631 1,741 

Cumulative 30-year pesticide based 

embodied emissions (t CO2 e./ha) 

0.006 0.009 0.009 

Note: 
embedded pesticide based emission coefficient 4.67704E-06 t CO2 e./$ pesticide/ ha 
(Kulshreshtha, 2004(a)) 
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6.2.5 Simulated Net GHG Abatement 

Having discussed the components used to calculate baseline net GHG abatement 

for the three tillage systems, they are now summarised and presented together in this 

section (Table 6.8). Total net GHG abatement is the size of GHG sinks after netting off 

sources, expressed in CO2 equivalent. The simulation results indicate that net GHG 

abatement is greatest in zero till, followed by minimum till and conventional till. The 

reason for the greater abatement in the reduced tillage systems is primarily due to the 

larger quantity of C sequestered in reduced tillage systems. The lesser soil N2O 

emission with reduced tillage, both direct and embodied, was the result of reduced N 

fertiliser being required with reduced tillage. The reduced fuel emission with reduced 

tillage was also the result of reduced fuel use. The Table 6.8 provides perspective of the 

components of net GHG abatement. It shows that the largest influence on net GHG 

abatement comes from SOC sequestration. Thus, it may be most effective to direct 

policy toward enhancing SOC sequestration. Following SOC sequestration, as a distant 

second in importance is soil N2O emission reduction, which should receive importance 

in policy direction second only to SOC sequestration. Next, in importance are fuel 

emissions and embodied emissions in the manufacture of fertiliser. The other embodied 

emissions are not a large influence on net GHG emissions. 

 
Table 6.8 Simulated Net GHG Abatement For The Three Management 
Systems (T CO2 E. / Ha / 30 Years) 
 conventional minimum Zero 

C sequestration* 59 70 88 

On-farm fuel emissions - 3.2 - 3.0 - 2.2 

Soil N2O emissions** - 18.7 -18.2 -18.3 

Embodied emissions    

- fertiliser -3.7 -3.6 -3.6 

- fuel  -0.6 -0.6 -0.4 

- machinery -1.08 -1.32 -1.01 

- pesticides -0.006 -0.009 -0.009 

Net GHG Abatement* 32 43 62 

Note: 
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* differences among expected net GHG abatement values among tillage systems were statistically 
significant (p < 0.05) 
 

 

6.3 Net Income 

 The previous section disaggregated and aggregated the first of the two 

components of the study, net GHG abatement, now the study begins to focus on 

simulated results of the second component of the study, the economic component. The 

economic indicator used is net income from the sale of crops produced, net of cash 

costs, per hectare, and per crop rotation. The simulated mean annual gross revenue was 

larger for reduced till because of a greater annual crop yield per rotation compared with 

conventional till. Crop yields were approximately 18 per cent greater for both reduced 

tillage systems compared with conventional. These values are consistent with values 

collected during the farmer survey which revealed yield advantages associated with 

reduced tillage of between six and 20 percent. Further, a study by Lafond et al. (1993) 

reported yield advantages in the Black soil zone of between 10 and 20 percent. Further, 

Gray et al. (1996) reported yield advantages for reduced tillage systems over 

conventional tillage of between zero and 18 percent in the Indian Head Saskatchewan 

area (Black soil zone). The impact of including high value crops such as field pea and 

flax in crop rotations combined with improved yields under reduced tillage resulted in a 

more favourable economic return in these studies (Lafond et. al., 1996). 

Despite the fact that the zero and minimum tillage systems had higher yields in 

the simulations these systems had lower average net income than the conventional 

rotation by $45 and $18 respectively (per rotation, per hectare, per year). This lower 

income for the reduced tillage systems was largely due to pesticide costs that were on 

average $22/ha/yr and $15/ha/yr higher for the zero and reduced tillage systems 

respectively. An important production cost difference between the conventional and 

reduced tillage systems in the simulation was pesticide costs, and in particular the costs 

of glyphosate. Based on the simulation results it was estimated that herbicide costs 

would need to decline by 58% and 28% for minimum till and zero till, respectively, for 

these systems to be at least as profitable as conventional till. At this point it is not 

difficult to understand why the simulated minimum tillage system was so unprofitable. 
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To use the reasoning by Lafond et. al., (1993) while the minimum tillage management 

practice still has to retain machinery that is needed for some limited tillage ,and perhaps 

partial burying of stubble in the soil, the minimum tillage practice does still require 

nearly as much herbicide as the practise of zero tillage does .  

 In addition, input costs associated with machinery were potentially an important 

factor in the relative profitability of the simulated tillage systems. SAFRR (2004) 

budgeted machinery costs, based on a 425 ha farm, for minimum tillage and zero tillage 

that were on average $20/ha/yr and $5/ha/yr greater than conventional till, respectively 

(Table 6.9). The survey indicated that farmers had expanded their land after converting 

to reduced tillage, although this may not be a significant indication that reduced tillage 

farming systems are generally larger than conventional till farming systems. However, 

it was evident from the survey that reduced till helps reduce the farm (hired and 

owner/operator) labour required. Thus, it is safe to assume that the reduced farm labour 

required may enable the farmer to cultivate more land with the same labour as before 

the change to reduced tillage. There is likelihood that larger farm size may provide 

economies of size that makes reduced till more profitable or at least competitive with 

conventional till. Based on the simulated results of net income, to be at least as 

profitable as conventional tillage, in the (30-year) long-term simulation, minimum 

tillage and zero tillage would require machinery costs to be reduced by 20% and 35% 

respectively. However, reduced tillage did not produce large savings with respect to fuel 

(between $1 and $5 per ha.) or for labour (between $0 and $3 per ha.) for minimum till 

and zero till, respectively. Besides the caveat expressed with respect to economies of 

size that have not been factored in to the profitability calculations, another caveat is that 

the costs derived from SAFRR are derived from the farmers who used the highest level 

of inputs and are likely not representative of the average farmer (Schoney, 2004 b). 

 

6.3.1 Returns to Size 

  As discussed earlier, returns to size may be an important factor influencing the 

production costs of the reduced tillage systems simulated in this research. The 

production costs that would most likely be influenced by returns to size would be fixed 

costs and overhead such as farm machinery, farm buildings, labour and management. 
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Table 6.9 Simulated Average Farm Production Costs And Average 
Net Income  ($/Ha/Rotation/Year) 
 Conventional Minimum  Zero 

Average Gross Revenue 211 (5) 249 (5) 250 (5) 

Fuel cost 17 (0) 16 (0) 12 (0) 

Labour cost 9 (0) 9 (0) 6 (0) 

Machinery cost 82 (0) 101 (0) 89 (0) 

Land 43  43 43 

N fertiliser cost 50 (0) 49 (0) 49 (0) 

P fertiliser cost 2 (0) 3 (0) 3 (0) 

Glyphosate cost - 8 (0) 8 (0) 

Other pesticide cost 39 (0) 53 (0) 56 (0) 

Transport cost 84 (1) 97 (1) 97 (1) 

Seed cost 22 (0) 37 (0) 37 (0) 

Other cost 102 (0) 107 (0) 107 (0) 

Total Cost of Production 450 523 507 

Net revenue* -239 -274 -257 

Note:  
* expected net revenues are significantly different (p<0.05) 
Standard deviation in parantheses 

  
 

Variable costs such as fertiliser, pesticides and seeds would not be as influenced by 

returns to size.  It was assumed in the simulation model that the size of the farms 

containing the simulated systems were consistent with the characteristics of those 

surveyed by SAFRR for the Black soil zone  with a mean size of 425 hectares. The 

SAFRR (2004) data used to parameterise the model involved input cost data such as 

machinery, herbicide, and labour. It is likely that although some input costs like 

herbicide and seed costs remain unchanged other costs such as labour and machinery 

may differ by the size of the farm. Therefore, while returns to size may be an important 

factor in production costs it has not been factored into the model. Economies of size 

may result in minimum till and zero till farmers investing in larger equipment and 
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decreasing tillage time thereby enabling them to complete greater areas of farm 

operations which may enable farmers to expand farm size and use their machinery on 

such expanded farms.  Within the survey performed in this research project there were 

only three farmers with less than 425 hectares among the minimum till farmers 

surveyed and just one among the zero till.  In fact in the survey population the mean 

size of farms was 1,000 ha for minimum tillage and 1200 ha for zero tillage.  

The net worth (per ha) of machinery for minimum tillage and zero tillage could 

be lower than conventional tillage under two more conditions: 

1. If the farmer is making the change towards the end of the life cycle of the 

machinery when he was going for machinery replacement anyway. 

2. The difference between the existing tillage practice and the envisaged tillage 

practice is small.  

Both of the above are supported anecdotally by Gray et al., (1996) who ran simulations 

for zero tillage assuming that machinery costs could at times be less than and other 

times greater than conventional tillage. The survey findings indicated that farmers 

adopting reduced tillage had little or no need to own cultivators, tandem disks and 

harrow packer bars obviously because their was no need to cultivate the soil, turn 

stubble over or pack the soil. Extra equipment such as extra tractors were sold because 

these tractors were previously used to run the cultivators and disks to cultivate the soil.  

Moreover, the adoption of reduced tillage may allow a producer to expand the land base 

farmed. This study has not included the impact of these economies in the simulation 

parameterization. As well, the time savings could be valued as opportunity cost of time 

spent with family or recreation (Gray et. al., 1996). There may also be pecuniary 

economies in purchasing other inputs that have not been captured. Pecuniary economies 

refer to the discounts that could be obtained when greater quantities of inputs such as 

seeds and fertiliser are purchased than previously. Although such returns to size have 

not been captured in the analysis particularly with respect to machinery, management 

and labour, a series of sensitivity analyses was performed using the simulation model to 

estimate the impact of these factors on the results.  Specifically, sensitivity analysis was 

performed on machinery costs.  The next section highlights the insights gained from this 

sensitivity analysis. 
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6.4 Scenarios and Sensitivity Analysis 

The results that have been presented up to this point have been based on the 

specific assumptions of historic weather patterns, time horizons and emission 

coefficients.  One of the strengths of simulation models in the type of analysis that is 

presented in this study is the flexibility to relax some of these assumptions to provide 

insight into function of the agricultural system.  Therefore, the analysis previous to this 

section represents a baseline scenario. By changing the assumptions of baseline 

parameters sensitivity analysis can be performed on specific parameters.  The specific 

scenario selected for this sensitivity analysis include changes in the relevant time 

horizon for net abatement analysis, changes in the IPCC N2O emission coefficients, a 

parameter with a high degree of uncertainty, and changes to the climate parameters to 

reflect climate change conditions (Table 6.10).  The remainder of this section will 

present the TOA for the baseline scenario as well as each of the alternative scenarios 

highlighted in Table 6.10.  In general the results are normalized to the conventional 

rotation such that the analysis focuses on the relative performance of the reduced tillage 

systems in the target landscape. 

 

6.4.1 Baseline Simulation and TOA 

 The baseline simulation assumed that historic weather for the Black soil 

zone would continue into the future and also that a mid value of IPCC (1996) 

soil N2O emission coefficients are appropriate. 

 The studies done for the economics of tillage systems (discussed in the 

literature review) in Saskatchewan have been focusing on the impacts that take 

place only after 5 to 10 years after the change in the practice. This study looks 

beyond the economic impact of 10 years, it looks at the impact after 30-years. 
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Table 6.10. Characteristics Of The Baseline Simulations And The 
Sensitivity Analysis Simulations 
Simulation Description 

1 A ten-year simulation, with historic weather and midpoint soil N2O 

emission coefficients (Direct a 1.25 %, Leaching b 1%, and Volatilisation c 

1%). 

2 A 30-year simulation, with historic precipitation (as simulation 1) and a 

midpoint of soil N2O emission coefficients (as simulation 1) (Baseline 

Simulation) 

3 A 30-year simulation, with historic weather (as simulation 1) and the 

upper range of soil N2O emission coefficients (Direct 2.25%, Leaching 

12%, Volatilisation 12%) 

4 A 30-year simulation, with historic weather (as simulation 1) and the 

lower range of soil N2O emission coefficients (Direct 0.25%, Leaching 

0.2%, Volatilisation 0.02%) 

5 A 30-year simulation, with dry, warm weather and a midpoint of the range 

of soil N2O emission coefficients (as simulation 1) 

  

 

The results from the simulation model (Table 6.11) shows three key points with respect 

to timing of the results 

a. Reduced tillage systems are relatively more profitable over the longer 

term compared to the short term.  It is proposed that this is due to 

positive feed back of SOC, soil N and moisture that improves crop 

production which again produces greater SOC. 

                                                
a how much N2O evolves from the fraction of N that enters the soil through fertiliser, 
crop residues and legumes   
b how much N2O tht evolves from the fraction of N that leaches from the N fertiliser 
that is applied 
c how much N2O that evolves from the fraction of N that volatilises from the N fertiliser 
that is applied 
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b. Annual net abatement is relatively larger over the short term than over 

the longer term simulation.  This result is possibly because the soil is 

reaching its carrying capacity in terms of SOC. 

c. The trade-off in income for abatement is not largely different between 

the long-term and short-term. The trade-off is larger for minimum till 

than for zero-till. 

 

 The empirical trade-off curves are depicted in Figure 6.4. The Figure 6.4 shows 

the points where expected net revenue and expected GHG abatement for each of the 

three tillage systems reside, with the two reduced tillage systems being normalised to 

conventional tillage (conventional till being in the coordinates of zero for both net 

revenue and net abatement). The trade-off curves for zero tillage and minimum tillage 

each would be the straight line connecting the point representing each reduced tillage 

system and the point representing conventional tillage. The reader is advised to refer to 

the conceptual model of the trade-off curves depicted in Figures 3.1 and 3.2 (in chapter 

3). The empirical result conforms to the negative or downward sloping section of the 

curve in Figure 3.1 or the section between A and B. The negative curve indicates that 

the two reduced tillage systems (zero till and minimum till each) need to forgo profit to 

gain abatement, when compared to conventional till.  

  

6.4.2. N2O Emission Coefficients 

 The model estimates the direct N2O emissions based on the emission coefficient 

recommended in the IPCC (1996).  Indirect N2O emissions are comprised of those 

emissions that are sourced from soil N that has been transported from the soil through 

volatilisation and leaching.  Therefore, indirect emissions captures those N2O emission 

from soil N that are not captured in the direct emissions calculation.  The model 

calculates indirect N2O emissions based on the estimates of leaching and volatilisation 

of the soil N stock and the emission coefficients for leached and volatised N 

recommended by the IPCC (1996).  
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Table 6.11. Economic And GHG Abatement Performance Of Reduced 
Tillage Production Systems Relative To Conventional Tillage Under 
Alternative Emission, Time And Climate Scenarios. 

 
 Relative rotation 
net income 
($/ha/yr) 

Relative rotation net 
GHG abatement 
(t CO2 e/ha/yr) 

Relative GHG 
abatement cost  
($/t CO2 e) 

Relative C 
sequestration cost 
($/t Carbon) 

Long-term (Baseline) 

Minimum* -35 0.40 88 24 

Zero** -20 1.10 18 5 

Short-term  

Minimum* -56 0.80 70 19 

Zero* -41 1.50 27 7 

Highest N2O emission coefficient 

Minimum* -35 0.43 81 22 

Zero** -20 1.10 18 5 

Lowest N2O emission coefficient 

Minimum -35 0.36 97 26 

Zero -19 1.10 17 5 

Warmer drier weather  

minimum -48 0.27 178 48 

zero* -35 0.73 48 13 

Note: * - reduced till different from conventional till (p<0.05) 

** - zero till different from both minimum and conventional till (p<0.05) 
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Figure 6.4 Baseline TOA over 30-years 
 

 

It should be noted that N2O emissions are known to be highly stochastic and therefore 

the IPCC emission coefficients have a large degree of uncertainty.  In response the 

sensitivity analyses on the emission coefficients to help to understand the impact of this 

uncertainty on GHG abatement policy. For the initial simulation an emission coefficient 

was chosen that falls in the middle of this range (as specified by the IPCC for emission 

accounting: direct emissions 1.25%; volatilisation 1%; leaching 2.5%). The simulation 

model was run using the highest emission coefficients published by the IPCC (direct 

emissions 2.25%, leaching 12%, and volatilisation 12%) and the lowest emission 

coefficients (direct emissions 0.25%, leaching 0.2%, and volatilisation 0.02%) (IPCC, 

1996).  As before, the reduced till results were normalised to the conventional tillage 

system to facilitate a relative comparison of the simulation results. The simulation 

results indicate that changing the emission coefficients seem to have little impact on the 

relative GHG abatement cost.  Therefore, it seems that the TOA analysis is not very 
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sensitive to changes in N2O emissions within the range specified in the IPCC guidelines 

(Table 6.12). 

 

  

 
Figure 6.5 TOA with the Highest Emission Coefficient  
 

6.4.3. Climate Change Weather Patterns 

The impact of climatic conditions on the TOA results is also of interest in this 

study due to predictions of ongoing climate change. To assess the impact of this 

changing climate on climate change mitigation the simulation model was run using 

climate data that represents warmer, drier weather with a greater variability in 

temperature and precipitation.  Specifically, growing season precipitation was decreased 

by 4 cm (to 16 cm), winter precipitation was decreased by 13 cm (to 12 cm) and the 

standard deviation of precipitation was increased by 2 cm (to 7 cm).  In addition, mean 

daily temperature was increased by 0.2o Celsius to 2.2o Celsius. With these conditions 

the income and GHG abatement capacity of the reduced tillage systems is negatively 

impacted relative to the conventional tillage system (Table 6.12).  The simulation 

indicates that under the given climate scenario the costs of GHG abatement increase 
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dramatically relative to the conventional rotation. What does this imply? Encouraging 

farmers to practice reduced tillage, which is a policy to abate climate change, happens 

to become a less effective climate change mitigation policy. Thus, in designing policy 

to mitigate climate change it is important that analysis tools like TOA should not be 

considered under historic weather alone, but under a pattern of weather that is likely to 

be seen in the future. Cost of abatement should consider the costs of mitigation as well. 

 

 Figure 6.6 TOA under Warmer Drier Weather  
 

 

6.5 Risk 

 The above analysis provided insight into the relative economic and GHG 

abatement trade-offs associated with reduced tillage annual crop production systems.  

The results quantified what the opportunity costs are when these production systems are 

adopted. However, simply compensating the farmer who adopts these alternative 

production systems such that they receive the same expected net farm returns would not 

make him/her indifferent between conventional till and reduced till.  There must also be 

explicit consideration of the costs imposed due to the risk of the alternative 

management practices. Data provided by the simulations showed that the reduced tillage 

production systems were riskier than the conventional tillage system with the simulated 

standard deviation in yields for reduced till increased by approximately seven percent, 
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compared with conventional.  It should be noted that this is in contrast to some 

published data. For example Gray et. al. (1996) suggests that the standard deviation of 

yield would decline by 10 percent for reduced till compared with conventional till. 

Although, this study took place within the Black soil zone, it was for a shorter time 

frame, five years or less.   

A tool that can be used to evaluate the relative risk and preferences for risky 

production systems is an evaluation of stochastic dominance analysis (Figure 6.7).  In 

this research the stochastic dominance compares the cumulative probability distribution 

for each tillage system of net income (normalised to conventional till) after 30 years. 

The figure shows that the probability of net farm income being less than a given value is 

always smaller for conventional till and is therefore first order dominant. Hence, 

producers will choose conventional till over zero till and min till. (The stochastic 

dominance analysis in this study is not capable of discerning the utility among the risk 

neutral, risk averse and risk loving individuals). Cumulative probability distributions for 

the other scenario simulations shows that under short term and warmer drier weather 

scenarios conventional till is still first order dominant. Moreover, time and risk 

associated with mastering a new crop production practice was not considered. Hence, 

the producer considering both expected income and income risk would choose 

conventional till over a 30-year planning horizon. The policy implications are that in 

order to encourage a farmer to adopt reduced tillage, the utility gained from expected 

income and risk should be considered together. It would be of interest to quantify the 

compensation required for a farmer to view the reduced tillage and conventional tillage 

as being equivalent. 
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Figure 6.7 Cumulative Probability Distribution (Baseline) 
 
 
 The study did a sensitivity analysis to find the magnitude of the value of a tonne 

of C sequestered that would make a farmer, considering both expected net income and 

risk, indifferent to the three tillage systems (Figure 6.8). The finding was that deciding 

to compensate the producer $2.5/tonne of net C sequestered would suffice to make zero 

till first order dominant and to make a producer prefer zero tillage.  The policy 

implication here is that when attempting to compensate a producer to change to zero till 

considering producer utility with respect to risk and net income together was cheaper. It 

is necessary to stress that this analysis does not discern the risk preference of the 

producer. When the study used TOA (as it did in section 6.4) which considering only 

income, the compensation required was 5 dollars per tonne C (Table 6.12). 

 

6.6 Policy that Compensates the Change to Reduced Tillage 

 The common element of the TOA and stochastic dominance analysis discussions 

have been that they both address the role for compensation.  A need to compensate the 

producer to change from conventional to reduced tillage. The GSD analysis that 

incorporates both risk and net income appears to be less onerous in terms of dollars per 

tonne of C sequestered than TOA. However, the analyses are consistent with respect to 

the fact that a farm of average size of 425 ha, would need to be paid for the C 

sequestered. How much to compensate should address the greater long-term abatement 

costs , the long term increase of variability in yields (comparing the simulated results 
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versus other studies done for the region Gray et al.,(1996)). It should also address the 

cost of mitigation and not TOA under certain historic weather. It should address risk. 

When to compensate, should address that C sinks are labile and farmer may stop 

reduced tillage at any time and come back to conventional tillage. Especially if over a 

long period (30 years) he finds that what he was paid for a tonne of C is not 

compensating him for his losses. Hence, policymakers should decide if they want to 

leave their contracts open so that the contract could change its price per tonne of C if 

events turn to be better or worse or if they want to lock in a price for C at the beginning 

which does not change regardless of later increases or decreases in opportunity cost of 

abatement. Another relevant policy question is how to compensate or what policy 

instruments could be used. The government may decide if they would prefer to include 

taxes on conventional tillage equipment such as disk ploughs, cultivators, harrowers or 

subsidies on herbicides like glyphosate and machinery like airseeders. Other 

instruments may include direct payment per tonne of C sequestered and if it is possible 

to quantify the other off-farm benefits, such as the improvements to air, water, soil 

quality and general health benefits that reduced till brings to society at large (section 

2.8), then policy instruments may include payment for those benefits. Trade-offs of the 

same nature as this study between profitability and abatement could be replicated for 

any of the other co-benefits. These other benefits reduced tillage provides society are 

what society could re-imburse the producer for such benefits.  

  

Figure 6.8 Cumulative Probability Distribution ( $ 2.5/ t. net C abated) 
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 6.7 Summary 

 The results of the simulations and their implications for policy were the focus of 

the current chapter. Simulated net GHG abatement and net income were compared. 

Expected net revenues were greater for conventional tillage than for reduced tillage. Net 

abatement was greater for reduced tillage than for conventional tillage. The trade-offs 

between net income and net abatement were also analysed. The TOA, did not change 

largely between the short and long term. Howoever, the trade-off was greater for 

minimum tillage than for zero tillage. Different TOA scenarios were also included. 

Among them were different soil N2O emission coefficients and a scenario under warmer 

and drier weather opportunity cost of abatement was not significantly influenced by 

different soil emission coefficients. Warmer, drier weather made the opportunity cost of 

abatement significantly greater. The comparison was extended to include a trend 

analyses and a risk analyses of the tillage systems. The trend analysis showed how 

closely the SOC sequestration followed average rotational crop production. Risk 

analysis also showed that reduced tillage would need to be compensated for the 

producer to be as well of as he would be under conventional tillage. Finally, the chapter 

discussed the role of financial compensation as a policy tool to meet a climate change 

mitigation goal. 
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CHAPTER 7  
SUMMARY AND CONCLUSIONS 

  

 This final chapter provides a summary and conclusion of the entire study. 

Having previously discussed the results of the study and its policy implications this 

concluding chapter provides a summary of the entire study and discusses some 

limitations and suggestions for future study. 

 

7.1 Summary 

Climate Change has been related to GHG emissions arising from both natural 

and anthropogenic activities.  Soil management and crop management practices (such as 

reduced intensity tillage and more intensive cropping systems) have a significant impact 

on the flow of C among it’s sources and sinks. Different soil and crop management 

practices have complex biophysical interactions which have different impacts on net 

income and net GHG abatement. The focus of this study was to assess the net impacts 

on income and net GHG abatement among tillage systems in the Black soil zone of 

eastern Saskatchewan. Net income and net GHG abatement of tillage practices vary 

spatially and temporally. Besides tillage and intense cropping systems, net income and 

net abatement are functions of input costs, commodity prices, biophysical variables 

(yield and SOC levels) and management system as seen on the farm (tillage intensity, 

cropping intensity and crop mix).  A systems perspective was, thus, employed 

encompassing tillage intensity, cropping intensity and crop mix. The analysis is multi-

disciplinary and TOA was the tool of choice because it depicts impacts on individual 

indicators for policy makers to make choices. The analysis considered longer-term (30 

year) uncertainty of soil N2O emission coefficients and changes to weather patterns. 

Since the adoption of reduced till has been a relatively recent development and as such, 

there is not a lot of long-term biophysical and economic data and hence econometric 
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data analysis would have limited effect. The different scenarios of uncertainty and long-

term impacts could be feasibly analysed by use of a simulation model. The study made 

use of SAFRR (2004) crop budgets and farmer surveys on changes in input use to 

change the crop budgets to reflect the tillage systems. 

 
7.2 Discussion 

The distribution of climate change impacts, capacity to adapt and effectiveness 

of mitigation techniques (reduced tillage) differs from region to region.  This site 

specificity is due to the degree of heterogeneity within regions in terms of climate, 

ecosystems, and socio-economic characteristics of the systems. Consideration of all 

such relationships including interactions of climate variability and change with other 

environmental changes and evolving demographic, social, and economic conditions that 

affect driving forces of change and resources available for adaptation are desirable but 

beyond the scope of this study. TOA and the simulation model of this study does not 

translate impacts into a single metric, but rather retain other physical measures (net 

income, net GHG abatement). Although, they loose out on comparability the IPCC 

(2001) recognise that aggregation conceals rather than highlights some of the critical 

issues and value-laden assumptions at stake. Moreover, because estimates of the 

monetary costs of impacts span a wide range of values given the many uncertainties and 

often are value laden, it may be argued that climate change targets should be based on 

physical or social, rather than economic, indicators.  

 Since the Kyoto protocol has allowed forest and agricultural sinks to be used by 

parties to meet their GHG emission reduction commitments there has been much focus 

on sinks here in North America. Within the agriculture industry, an important part of the 

sink strategy will be the adoption of reduced tillage production systems (IPCC, 2001). 

This study shows that reduced tillage has the ability to increase net GHG abatement in 

the Black soil zone. The social benefit of abatement, in reducing the risks of climate 

change, goes beyond the farm boundary. While mitigative responses impact beyond the 

locality of initiation adaptive responses help the locality at which the response was 

initiated. What this study shows is that while it is important to understand what may be 

achieved by mitigative and adaptive responses, it is important to know how a mitigative 
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response initiated by one locality may impact the adaptive response of that very locality 

(a farm in the Black soil zone). The IPCC (1996) TAR states that changes in diurnal and 

interannual variability of temperature and moisture can result in substantial changes in 

the mean and variability of wheat yields. The current study only simulated an increased 

variability and did not simulate decreased variability (in temperature and precipitation). 

And the results agreed that increased variability of temperature and precipitation results 

in substantially lower mean simulated yields and its variability. As it is reasonable to 

assume that many adaptation options will be pursued, this means that the baseline 

against which mitigation options should be assessed is one with adaptation also 

occurring (IPCC, 2001).  

 What was apparent from the TOA was that over the long-term the relative net 

income of reduced till improved but the relative net abatement declined (closing in on 

point of saturation). However, because the decline in net abatement was greater than the 

improvement in net income, the opportunity cost of abatement became greater. The C 

sinks in reduced tillage are in a labile form, vulnerable to rapid oxidation and release as 

CO2 if the management system is changed. This implies that even after the soil reaches 

its carrying capacity in terms of C, reduced tillage needs to be practised in order to 

prevent the oxidation of SOC and emissions of CO2 again. This may require that 

reduced-till systems be maintained for an extended period (which also would lengthen 

the ancillary beneficial aspects of reduced tillage). If the producer is not being 

compensated after this stage of SOC saturation the economic and ancillary benefits 

should be sufficient to keep them continuing as seen by the large rate of adoption in the 

Black soil zone. If not, then compensatory or penalty mechanisms need to be in place. 

The fact that there were off-site benefits or co-benefits beyond mere abatement may  be 

an adequate justification to continue compensation. 

  

7.3 Limitations of the Study 

 Some of the restrictions this study was under could be relaxed to enable a deeper 

understanding of the problem such as simulations with changes in commodity prices. 

The study did not assume price changes due to inflation or technological change. 

Greater prices among selected crops such as wheat for example with prices other crops 
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remaining unchanged may change the relative trade-offs among tillage systems. 

Another relaxation of assumptions would be to simulate different scales of farm 

operations. This would have to consider that either increasing or decreasing returns to 

size exist with respect to how machinery and labour are used. A further limitation of the 

model that was discussed before was that it ignored the within year (or inter year) 

timing of precipitation and other inputs such as fertiliser and pesticides that could effect 

the other biophysical results. As well, the fact that the SAFRR (2004) factor costs being 

derived from the farmers who utilised them in the highest quantites also may have 

affected the accuracy of results. 

 

7.4 Further Research 

Further research may be interested in deriving a long-term profit function that is 

able to capture the soil conservation benefit as well as returns to size. Moreover the 

study could look for an optimising solution with such a profit function.  A simulation of 

reduced till with the inclusion of high value such crops may indicate greater net returns 

for reduced till. Inclusion of high value crops like flax with the greater yield advantages 

of reduced till make reduced till more profitable. Moving beyond modelling the farm 

one could simulate for a watershed where topographical factors are considered. This 

would consider different leaching levels of fertiliser use and hence different fertiliser 

use equations and consider off-site impacts as well. 

 

 

 

 

 

 

 

 

 

 

 



 106 

 
References 

 
 
Agriculture and Agrifood Canada, 2000. Environmental Sustainability of Canadian 

Agriculture.Research Branch and Policy Branch, Prarie Farm rehabilitation 
Administration. 

 
Antle, J.M., J.T. Stoorvogel, C.C.Crissman and W. Bowen. (2000). Tradeoff Assessment 

as a Quantitative Approach to Agricultural Policy Analysis. 
 
Antle, J.M., J.T. Stoorvogel, W. Bowen, C.C.Crissman and David Yanggen. (April 

2002). The Tradeoff Analysis Approach: Lessons Leaned from Ecudor and Peru. 
 
Antle, J., Capalbo, S., Cole, D., Crissman, C. and Wagenet, R. 1998.a. “Integrated 

Simulation Model and Analysis of Economic, Environmental and Heath 
Tradeoffs in the Carchi Potato-Pasture Production System.”  Economic, 
Environmental and Health Tradeoffs in Agriculture: Pesticides and the 
Sustainability of Andean Potato Production, C.C. Crissman, J.M. Antle, and 
S.M. Capalbo, eds., pp. 243-266. Boston: Kluwer Academic Publishers,. 

 
Antle, J.M., Capalbo, S.M., and Crissman, C.C.1998.b. “Tradeoffs in Policy Analysis: 

Conceptual Foundations and Disciplinary Integration.” Economic, 
Environmental and Health Tradeoffs in Agriculture: Pesticides and the 
Sustainability of Andean Potato Production, Crissman, C.C., Antle, J.M., and 
Capalbo, S.M. eds., pp.1-11. Boston: Kluwer Academic Publishers,  

 
Antle, J.M. and Mooney, S. 1999: Economics and Policy Design for Soil Carbon 

Sequestration in Agriculture. Research Discussion paper No.36, Trade Research 
Centre, Montana State University.  

 
Antle, J.M., J.T. Stoorvogel, W. Bowen, C.C.Crissman and David Yanggen. (October 

2002). The Tradeoff Analysis Approach: Lessons Leaned from Ecudor and 
Peru.Proceedings at the International Conference on Impacts of 
AgriculturalResearch and Development, San Jose, Costa Rica, February 4-7, 
2002. 

 
Antle, J.M., J.T. Stoorvogel, C.C.Crissman and W. Bowen. 2001.Tradeoff Assessment 

as a Quantitative Approach to Agricultural/Environmental Policy Analysis. 
Proceedings o the SAAD III Third International Symposium on Systems 
Approaches for Agricultural Development, Lima, Peru, November 8-10, 1999.  

 
Azar, C. and Sterner, J. (1996). Discounting and Distributional Considerations in the 

Context of Global Warming. Ecological Economics. 19: 169-184. 
 



 107 

Barkin, D. 1996. Macro Changes and Micro Analysis: Methodological Issues in 
Ecological Economic. Ecological Economics. 19: 197-200 

 
Bailey, K.L. 1996. Diseases under reduced tillage systems. Canadian Journal of Plant 

Science. 76: 635-640 
 
Belcher, K. (1999). Agroecosystem Sustainability: An Integrated Modelling Approach, 

Doctoral Thesis, Department of Agricultural Economics Saskatchewan, Canada: 
University of Saskatchewan. 

 
Belcher, K.W., Boehm, M. aand Zentner, R.P. 2003. The Economic Value of Soil 

Quality under Alternative Management in the Canadian Prairies. Canadian 
Journal of Agricultural Economics 51:175-196 

 
Belcher, K. 2004. Personal Communications August, 2004 
 
Boehm, M. 2000. Carbon Sequestration in Agricultural Soils. Saskatchewan, Canada: 

University of Saskatchewan. 
 
Boehm , M. 2004. (a). Direct seeding and Soil Quality on the Prairies,. Direct Seeding, 

The Key to Sustainable Management. Saskatchewan Soil Conservation 
Association. 

 
Boehm, M. 2004. (b). Personal Communications July, 2004 
 
Boehm, M. 2004. (c). Personal Commuications November, 2004 
 
Boehm, M. 2005. Personal Communications January, 2005 
 
Brandt, S.A. 1992. Zero vs. Conventional Tillage and Their Effects on Crop Yield and 

Soil Moisture. Can. J. Plant Sci. 72: 679-688. 
 
Brown, K., Emma, T and Adger, W. N.. 2001. Trade-off Analysis for Participatory 

Coastal Zone Decision Making. Overseas Development Group. University of 
East Anglia. 

 
Bucher, E.H. and Huszar, D.C. 1996. Project Evaluation and Economic Development- 

the Use of BCA. Ecological Economics. 19: 201-203 
 
 
Campbell, C.A., Zentner, R.P., Janzen, H.H., and Lafond, G.P. (2004) Effect of 

Cropping Frequency on C Storage in Canadian Prarie Soils. Agriculture and 
AgriFood Canada 

 



 108 

Cambell, C.A., Lafond, G.P., Leyshon, A.J., Zentner, R.P., and Janzen, H.H. 1991. 
Effect of Cropping Practices on the initial potential rate of N Mineraalization in 
a Thin Black Chernozem. Can. J. Soil Sci. 71: 43-53 

 
Changsheng, Li. 2000. Modeling Impact of Agricultural Practices on Soil C and N20. 

Soil Management and the Greenhouse Effect. Lewis Publishers. Boca Raton, 
Florida. pp101-113. 

 
CBC, August 2004. website: http://www.cbc.ca/news/background/kyoto/ 
 
Cihacek, L.J. and Ulmer. M.G. 1995. Estimated Soil Organic Carbon Losses from 

Long-Term Crop Fallow I the Nothern Great Plains of the USA. Soil 
Management and the Greenhouse Effect. Lewis Publishers. Boca Raton, Florida. 
pp85-93 

 
Crissman, C.C., Antle, J.M., and Capalbo, S.M. “Introduction and Overview.” 

Economic, Environmental and HealthTradeoffs in Agriculture:Pesticides and 
the Sustainability of Andean Potato Production, Crissman, C.C., Antle, J.M., 
and Capalbo, S.M. eds., pp.1-11. Boston: Kluwer Academic Publishers, 1998. 

 
Derksen, D.A., Blackshaw, R.E., Boyetchko, S.M. 1996. Sustainability Conservation 

Tillage and Weeds in Canada.Can. J. Pl. Sci. 76: 651-659 
 
 
Desjardins, R.L. and  AgriFood Canada. (2000). “The Kyoto Protocol”, Envitonemental 

Sustainability of Canadian Agriculture. Research Branch and Policy Branch. 
Prarie Farm Rehabilitation Administration. Agriculture and AgriFood Canada.  

 
Dormaar, J. 1986. Quality and Value of Wind Movable Aggregates in Chernozemic Ap 

Horizons. Can.J. Soil Sci. 67: 601-607 
 
Dormaar, J.F. and Carefoot, J.M. 1996. Implications of crop residue management and 

conservation tillage on soil organic matter. Can. J. Pl. Sci. 76: 627-635 
 
Edgar Peter, The economics of including Annual legumes in Crop Rotations in the Dark 

Brown Soil Zone of Saskatchewan, 1998, Masters Thesis, Department of 
Agricultural Economics, University of Saskatchewan, Saskatoon, Sakatchewan. 

 
Environment Canada Website. 2004.   

http://www.ec.gc.ca/pdb/ghg/1990_02_report/ann9_e.cfm 
 
Field, D.C., and Olewiler, N.D. 2002. Environmental Economics .Second Canadian 

Edition. McGraw Hill Ryerson. Toronto 
 



 109 

Fox, G., Umali, G., and Dickinson, T. 1995. An economic analysis of targeting soil 
conservation measures with respect to off-site water conservation. Canadian 
Journal of Agricultural Economics. 43: 105-118. 

 
Frank M. Gollop; Mark J. Roberts. Feb., 1985.Cost-Minimizing Regulation of Sulphur 

Emissions: Regional Gains in Electric Power. The Review of Economics and 
Statistics. 67(1): 81-90. 

 
Fulton, M. 2004. Personal communication, November 2004. 
 
Gray, R.S., Taylor, J.S., and Brown, W.J. 1996. Economic factors contributing to the 

adoption of reduced tillage technologies in central Saskatchewan. Canadian 
Journal of Plant Science. 76: 661-669 

 
Huggins, D.R., Clapp, C.E., Allmara, R.R., and Lamb, J.A. 1995. Carbon Sequestration 

in Corn-Soybean Agroecosystems. Soil Management and Greenhouse. Effect. 
Lewis Publishers. Boca Raton, Florida. pp 61-68 

 
Hoosebeek and Bryant, 1992.Towards Quantitative Modelling of Pedogenesis – 

aReview. Geoderma 55:183-210 
 
IPCC. 1996. Revised IPCC Guidelines for National Greenhouse Gas Inventories. 

http://www.ipcc-nggip.iges.or.jp/public/gl/invs1.htm  
 
IPCC 2001a. Glossary. < http://www.grida.no/climate/ipcc_tar/wg1/518.htm> 
 
IPCC 2001b. Third Assessment Report. < http://www.grida.no/climate/ipcc_tar/> 
 
IPCC 2003: Introduction to the IPCC. < http://www.ipcc.ch/about/beng.pdf> 
 
Johnson. M.G., 2000.  The role of soil management in sequestering soil carbon. Soil 

Management and the Greenhouse Effect. Lewis Publishers. Boca Raton, Florida. 
pp351-364. 

 
Jozic, J. and Monchuk, D. 2000. Uncertainity, Early Action and Soil Sinks. Climate 

Change Handbook for Agriculture. Centre for Studies in Agriculture Law and 
the Environment. University of Saskatchewan. 

 
Katrina Brown, W. Neil Adger, Emma Tompkins, Peter Bacon, David Shim and  
 
Kathy Young. 2001. Trade-off analysis for marine protected area management. 

Ecological Economics. 37: 417-434 
 
Kowlaski, J. 2000. Overview. Climate Change Handbook for Agriculture. Centre for 

Studies in Agriculture Law and the Environment. University of Saskatchewan. 
 



 110 

Kulshestra, S.N., Boehm, M., Bonneau, M., MacGregor, R.J. and Giraldez, J. 
Contributions of Canadian Agriculture to Greenhouse Gas Emissions: 
Preliminary Results of Selected Policy Options, 1998.World Resource Review 
10 (4). 

 
Kulshreshtha, S. 2004 (a). Personal Communications. June 29, 2004. 
 
Kulshreshtha, S. 2004 (b). Personal Communications. December 26, 2004. 
 
Lafond, G.P., Loeppky, H.A., and Derksen, D.A. 1992. The Effects of Tillage Systems 

and Crop Rotation Soil Water Conservation, Seeding Establishment and Crop 
Yield. Can. J. Plant Sci. 72: 103-115. 

 
Lafond, G. P., Zentner, R.P., Geremia, R. and Derkson, D.A. 1993. The Effects of 

Tillage Systems on the Economic Performance of Spring Wheat, Winter Wheat, 
flax and Field Pea Production in East-Central Saskatchewan. Can.J.Plant Sci. 
73:47-54. 

 
Lal, R. Kimble, J. and Stewart, B.A. 2000 a. “Preface”. Soil Management and 

Greenhouse Effect. CRC Press, Inc. Bota Raton, Florida. 
 
Lal, R. Kimble, J. and Stewart, B.A. 2000 b. “World Soils as a Source or Sink for 

Radiatively-Active Gases”. Soil Management and Greenhouse Effect. CRC 
Press, Inc. Bota Raton, Florida. 

 
Larsen, B.A. and Tobey, J.A. (1994). Uncertain Climate Change and the International 

Policy Response. Ecological Economics. 11: 77-84 
 
Lemke Reynald. 2000. Greehhouse Gas Emission Reduction and Cropping Systems. 

Climate Change Handbook for Agriculture. Centre for Studies in Agriculture 
Law and the Environment. University of Saskatchewan. 

 
Lemke, Reynald, McConkey, B., and Janzen H. 2004.Impacts of Agriculture on Air 

Quality,.Direct Seeeding. The 16th Annual Meeting, Conference and Tradeshow 
of the Sskatchewan Soil Conservation Association. Regina. Sskatchewan. 

 
Li, Changsheng. 1995. Modeling Impact of Agricultural Practices on SoilC and N20 

Emissions. Soil Management and the Greenhouse Effect. Lewis Publishers. 
Boca Raton, Florida. pp 101-112. 

 
Maqbool , Muhammad . An Assessment of Sustainable Farming Systems in 

Saskatchewan, 1999. Doctoral Thesis, Department of Agricultural Economics 
Saskatchewan, Canada: University of Saskatchewan. 

 



 111 

McConkey, B.G., Campbell, C.A., Zentner, R.P., Dyck, F.B. and Selles, F. 1996.  Long-
term Tillage Effects on Spring Wheat Production on Three Soil Textures in the 
Brown soil zone. Can.J.Plant Sci. 76:747-756. 

 
Ministry of Agriculture and Forestry, NewZealand. 

http://www.maf.govt.nz/mafnet/rural-nz/sustainable-resource-
use/climate/sinks/climate-07.htm 

 
Mitchell, D. and Edwards, C.K. 2000. Market Potential for Emissions Trading. Climate 

Change Handbook for Agriculture. Centre for Studies in Agriculture Law and 
the Environment. University of Saskatchewan. 

 
Munda, G. 1996. Cost Benefit Analysis in Integrated Environmental Assessment – 

Methodological Issues. Ecological Economics. 19: 157-168 
Nagy, Cecil. 1997. An Economic Assesment of Alternative Cropping Systems for the 

Saskatchewan Parklands. Masters Thesis, Department of Agricultural 
Economics Saskatchewan, Canada: University of Saskatchewan. 

 
Natural Resource Canada Website, 2004.  

http://oee.nrcan.gc.ca/neud/dpa/data_e/SEE03/Gov_operations.cfm?PrintView=
N&Text=N 

 
Nyborg, M., Soldberg, E.D., Malhi. S.S., and Izaurralde, R.C. (2000) “Fertilizer N, 

Crop Residue, and Tillage Alter Soil C and N Content in a Decade”.  Soil 
Management and Greenhouse Effect. CRC Press, Inc. Boca Raton, Florida. 

 
Plantinga, A.J. and J.Wu. (February 2003). Co-Benefits from Carbon Sequestration in 

Forests: Evaluating Reductions in Agricultural Externalities from an 
Afforestation Policy in Wisconsin. Wisconsin, U.S.: University of Wisconsin. 

 
Saskatchewan Agriculture and Food (2002): Agricultural Statistics. Policy Branch. 

Regina Saskatchewan. 
 
Saskatchewan Agriculture and Food (2004). Crop Planning Guide. 

http://www.agr.gov.sk.ca/DOCS/Econ_Farm_Man/Production/Cereals/cpgblack
04.pdf 

 
Schoney, R. 2004.a. Personal Communications, June 2004 
 
Schoney, R. 2004.b. Personal Communications, November 2004 
 
Six J., Stephen M.O., Breidt J., Rich T.C., Arvin R.M.,and Keith P. 2004. The potential 

to mitigate global warming with no-tillage management is only realized when 
practised in the long term. Global Change Biology. 10: 155-160 

 



 112 

Splash, C.L. (1994). Double CO2 and Beyond: Benefits, Costs and Compensation. 
Ecological Economics. 10 : 27-36. 

 
Sobol D., and Kulshreshtha S. 2004. Greenhouse Gas Emissions from Canadian 

Agriculture Module. Technical Documentation. Department of Agricultural 
Economics,  University of Saskatchewan, Saskatoon. Saskatchewan. S7N5A8. 

 
Soon, Y.K. and Clayton, G.W. 2002. Eight years of crop rotation and tillage effects on 

crop production and N fertiliser use. Canadian Journal of Soil Science. 82: 165-
172 

 
Tucker, M. (1997). Climate Change and the Insurance Industry: the Cost of Increased 

Risk and the Impetus for Action. Ecological Economics. 22 : 85-96. 
 
Shukla P.R. Greenhouse Gas Models and Abatement Costs for Developing Nations: 

Critical Assessment. 1995. Energy Policy. 23(8). 677-687 
 
The United States Department of Commerce .Current Industrial Reports: Pollution 

Abatement Costs and Expenditures.1994. 
http://www.census.gov/prod/2/manmin/ma200x94.pdf  

 
Tietenberg T. 2002. Environmental and Resource Economics. Sixth Edition. Addison 

Wesley. Toronto 
 

United Nations Framework for Climate Change. 
http://unfccc.int/resource/docs/sum/can01.htm 

 

United Nations Framework Convention on Climate Change. 2001. Review of the 
Implementation of Commitments and of Other Provisions of the Convention. 
Conference of the Parties, 6th session, part two. Bonn, 16-27 July, 2001. 
www.unfccc.int/resource/docs/cop6secpart/I07.pdf. 

 

Varian, H. 1992. Microeconomic Analysis. Third Edition. Norton. New York. N.Y. 

 
Wall, David D. The Economics of Alternative Crops in the Brown and Dark Brown Soil 

Zones of Sskatchewan, 2000. Masters Thesis, Department of Agricultural 
Economics Saskatchewan, Canada: University of Saskatchewan. 

 
Weersink, A., Walker, M. Swanton, C., and Shaw, J. 1992. Economic comparission of 

alternative tillage systems under risk. Canadian Journal of Agricultural 
Economics. 40: 199-217 

 



 113 

Yanggen,  D., Antle J., Stoorvogel J., Bowen W., and Crissman C. 2002. Trade-off 
Analysis as a Tool for Integrated Assessment of Economic and Environmental 
Impacts of Agricultural Research.  

 

Yiannaka Amalia, Furtan Hartly and Gray Richard. 2001.Implementing  the Kyoto 
Accord in Canada. Canadian Journal of Agricultural Economics. 49 :105-126 

 
Yiridoe, E.K., Weersink, A., Hooker, D.C. Vyn, T.J., and Swanton, C. 2000. Income 

risk analysis of alternative tillage systems for corn and soybean production on 
clay soils. Canadian Journal of Agricultural Economics. 48: 161-174 

 

Young, D.L., Kwon, T.J. and Young, F.L. 1994. Profit and risk for integrated 
conservation farming systems in the Palouse. Journal of Soil Water 
Conservation. 49:601-606 http://www.encyclopedia.com/html/s1/stripcro.asp 

 
Zentner, R.P., McConket, C.A., Campbell, C.A., Dyck, F.B., and Selles, F. 1996. 

Economics of conservation tillage in the semiarid prarie. Canadian Journal of 
Plant Science. 76: 697-706. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 114 

Appendix A 

 
 
 



 115 

 
Appendix B 

 
Table B.1 Sample Survey Data Grid 
L..Name Doe      
F.Name & In. John      
Address Box 133,  Sk.      
Phone xxx-xxxx      
Acreage 2850      
R.M.division 271      
Zerotill: y/n/mintill n      
When did you change now changing to zero till     
T.fallow: y/n n      
Yield change with time steadily rose by 50% in last 10yrs    
Acreage change with 
time 

75%      

Rotation before w/c      
Rotation after w/c      
Fertiliser change w/ 
time 

n use incrsd 20 lb/ac, p by 10, k by 25, s by 15, micronutrients last 5yrs 

Herbicide change w/ 
time 

no      

Fuel use change w/ time no      
Equipment bought   sold   

 what how much when what how much  when 
 airdrill  70000 95 airseeder 30000 95 
 high clearnce 
sprayer 

69000 98    

       
       
       
       

personal time more due to intense crop plan (spoon feeding , micro nutrients, fungicides) 
g.water no       
s.water no       
soil quality better, nutrient levels increased    
hog/cattle manure no       
weed species changed no       
insec/fungicides 
changed 

no      

soil erosion no, due to ground cover     
seeding date earlier by a wk     
wildlife sp. steady      
comments changing because soil moisture water use efficiency improves  
other contact       
date surveyed       
 want an abstract y/n       

 
 


