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Abstract 

The application of the synthetic mineralocorticoid, deoxycorticosterone acetate 

(DOCA)-salt, to unilaterally nephrectomised rats induces severe hypertension due to 

volume-overload, and mimics human primary aldosteronism. Importantly, DOCA-salt 

hypertension is characterized by severe cardiac and renal lesions triggered by nuclear 

factor kappa B (NF-κB), activating protein (AP-1), and transforming growth factor beta1 

(TGF-β1) leading to end-stage organ damage. Although DOCA-salt hypertension is a 

low renin model, local production of angiotensin-II and aldosterone in cardiac and renal 

tissues stimulate TGF-β1, fibronectin and collagen-1 causing fibrosis and hypertrophy. 

Since TGF-β1 gene promoter contains binding sites for NF-κB and AP-1, cross-talk 

between TGF-β1, NF-κΒ and AP-1 can be envisaged. Accordingly, the activation of 

TGF-β1, fibronectin, collagen, NF-κΒ and AP-1 may constitute a potent destructive 

force in hypertension. 

Emerging evidence indicates that upregulation of the heme oxygenase (HO) 

system is cytoprotective with antioxidant, antihypertensive and antihypertrophic effects. 

Interestingly, the promoter region of HO-1 gene harbors consensus-binding sites for 

NF-κB and AP-1; therefore, the HO system may regulate these transcription factors to 

counteract tissue insults. However, the multifaceted interactions between the HO system, 

NF-κB, AP-1, TGF-β1, fibronectin and collagen in mineralocorticoid-induced 

end-stage-organ damage have not been fully characterized. Similarly, the effect of the 

HO system on tissue angiotensin-II and aldosterone levels in mineralocorticoid-induced 

hypertension remains unclear. Therefore, the present study was designed to investigate 
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the antihypertrophic effect of the HO system in cardiac and renal tissue of DOCA-salt 

hypertensive rats.  

In this study, the HO inducer, hemin, lowered blood pressure and attenuated 

cardiac/renal hypertrophy, whereas the HO inhibitor, chromium mesoporphyrin (CrMP), 

nullified the effects of hemin and exacerbated cardiac/renal injury the DOCA-salt 

hypertensive rats. The protective effect of hemin was associated with increased HO-1, 

HO activity, cyclic guanosine monophosphate (cGMP), superoxide dismutase activity, 

ferritin and the total antioxidant capacity in the cardiac and renal tissue. In contrast, 

angiotensin-II, aldosterone, 8-isoprostane, NF-κB and AP-1 were significantly 

downregulated. Furthermore, hemin therapy attenuated TGF-β1 and extracellular matrix 

(ECM) proteins such as fibronectin and collagen, with corresponding reduction of 

cardiac histopathological lesions, including longitudinal/cross-sectional muscle fiber 

thickness, scarring, muscular hypertrophy, coronary arteriolar thickening and collagen 

deposition. Similarly, hemin attenuated structural lesions in the kidney such as 

glomerular hypertrophy, glomerular sclerosis, mononuclear cell infiltration, tubular cast 

formation, tubular dilation and renal arteriolar thickening with concomitant 

improvement of kidney function as evidenced by reduction of plasma creatinine, 

proteinuria, but enhanced creatinine clearance.  

Collectively, these results suggest that the HO system suppressed hypertension, 

cardiac and renal fibrosis, and hypertrophy in the DOCA-salt hypertensive rat by 

downregulating transcription factors such as NF-κB and AP-1, reducing ECM proteins 
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such as fibronectin and collagen, decreasing local tissue production of angiotensin-II and 

aldosterone, and improved renal functional capacity.   
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1. INTRODUCTION 

1.1. Hypertension 

The control of blood pressure depends on sodium and fluid balance, and 

vasomotor tone. It is also regulated by numerous factors including environmental, 

genetical, paracrine and hormonal as well as the nervous systems and intracellular 

feedback mechanisms. The interactions between these factors lead to alteration in the 

heterogeneous patterns of hemodynamics, which finally results in high blood pressure 

[1]. High blood pressure/hypertension is clinically defined as a systolic blood pressure ≥ 

140 mmHg, and/or diastolic blood pressure  ≥ 90 mmHg and is endemic in westernized 

societies. An epidemiological study showed that people having blood pressure between 

120/80 and 140/90 mmHg are considered to be prehypertensive and have greater the risk 

of heart disease than those with lower blood pressure [2]. The majority of hypertensive 

patients (∼90 %) have elevated blood pressure of unknown origin; it is termed primary 

or essential hypertension [3]. Essential hypertension is a frequent, chronic, age-related 

disorder, which finally leads to cardiovascular and renal complications. Similarly, 

systemic hypertension is also a common cause of cardiac, vascular, and renal 

hypertrophy. More than 50 % of essential hypertensive patients have salt-sensitive 

hypertension [4] with abnormal renal sodium handling [5], and this is accompanied by 

progressive renal damage [6].  Hypertension affects 25-35 % of the adult population, 

and about 60-70 %  of those above 70 year of age in developed and developing 

countries [1]. The prevalence of hypertension in the United States and Canada is around 

20-22 % of population. By the year 2025, hypertension is expected to increase to about 

60 % of the population worldwide, affecting around 1.5 billion people. Developing 
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countries will experience an 80 % increase, which translates that approximately 1.15 

billion people will be affected with hypertension [7].  

1.1.1. Angiotensin-II and aldosterone 

Among the factors that control blood pressure, the renin-angiotensin-aldosterone 

system (RAAS) is an essential regulatory component of the cardiovascular and renal 

system (Fig.1.1). It is a hormone system that regulates blood pressure and water (fluid) 

balance. When blood pressure is low, the kidneys secrete renin, which stimulates the 

production of angiotensin. Angiotensin causes an increase in blood pressure directly by 

vascular constriction or indirectly through stimulation of aldosterone production, which 

causes sodium and water retension. If the RAAS is too active, blood pressure will be too 

high. Interestingly, with decrease in cardiac function, the system will start to activate 

adaptive and positive mechanisms to counteract the underlying condition. However, as 

time progresses, prolonged alteration of the RAAS becomes maladaptive, leading to the 

development of severe hypertension and oxidative stress, followed by cardiac and renal 

hypertrophy, fibrosis, and vascular remodeling [8]. Although, the systemic RAAS is 

depressed in the DOCA-salt hypertensive rat, local production of angiotensin-II  [9] 

and aldosterone [10] in the heart and kidney tissue contribute to the cardiac and renal 

end-stage-organ damage.  

Angiotensin-II is a potent vasoconstrictor and plays an important role in blood 

pressure regulation. In addition, angiotensin-II stimulates the production of aldosterone 

from the adrenal gland, which in turn causes the tubules of the kidneys to retain sodium 

and water, and thus, increases blood pressure. Angiotensin-II is an oligopeptide and has 

hormonal properties. It is derived after a series of conversions from the precursor  
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Figure 1.1. Renin-angiotensin-aldosterone system (+, stimulatory and -, inhibitory) 
   [modified from http://images.google.ca/RAAS, A. Rad, 2006] 

 
molecule angiotensinogen, a serum globulin released from the liver. Renin is produced 

in kidneys in response to both a decrease in intra-renal blood pressure at the 

juxtaglomerular cells and/or decrease in the delivery of sodium and chloride ion to the 

macula densa [11]. It converts angiotensinogen into angiotensin-I, which is a precursor 

to angiotensin-II. Subsequently, angiotensin-converting enzyme, which is found 

predominantly in the capillaries of the lung, converts angiotensin-I into angiotensin-II. 

Angiotensin-II thus formed acts as an endocrine, paracrine/autocrine, and intracrine 

hormone [11]. Recent studies show that angiotensin-II production occurs in tissues such 

as heart and kidney [9]. Angiotensin-II also stimulates local tissue production of 

aldosterone in heart and kidney and causes organ-damage. 

Aldosterone is a steroid hormone secreted from the adrenal gland, which controls 

sodium and potassium balance [12, 13]. Aldosterone acts by promoting unidirectional 

reabsorption of salt across a variety of epithelial tissues, sweat glands, salivary glands, 
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intestine, and the kidney. It is synthesized from cholesterol in the zona glomerulosa 

section of the adrenal gland. Although hormones and electrolytes affect the secretion of 

aldosterone, the renin-angiotensin system (RAS) is the major and primary regulator of 

its secretion. Angiotensin-II and potassium are known to stimulate the secretion of 

aldosterone by enhancing the rate of synthesis of the hormone [14]. However, recently 

many researchers have reported cardiac and kidney tissue production of aldosterone 

[10].  

Interestingly, both angiotensin-II and aldosterone interacts synergistically and 

stimulates synthesis of oxygen free radicals, which further contributes to end-organ 

damage. Moreover, there is an interrelationship between the development of 

hypertension, local production of angiotensin-II and aldosterone, and oxidative stress. 

Many studies in animal and human hypertension have shown that increased oxidative 

injury might play an important role in the etio-pathogenesis of hypertension. Increased 

oxidative stress has been reported in several hypertensive models including the 

spontaneously hypertensive rat (SHR), stroke-prone SHR, Dahl salt-sensitive rat and the 

DOCA-salt hypertensive rat [15-18]. 

 

1.2. Oxidative stress  

Oxidative stress is an imbalance between prooxidants and antioxidants in favour 

of former [19]. Reactive oxygen species (ROS) are the natural byproducts of normal 

oxygen metabolism and are involved in normal intracellular signaling. However, ROS 

are highly reactive small molecules that result from the presence of unpaired valence 

shell electrons [20]. During oxidative stress, various ROS, including the superoxide 

anion (O2.-), a hydroxyl radical (HO-) or hydrogen peroxide (H2O2) are produced 
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intracellularly or generated exogenously from different sources [21]. The majority of the 

intracellular ROS are produced in the mitochondria, while cytosolic enzymes such as 

nicotinamide adenine dinucleotide phosphate [NAD(P)H] oxidases, xanthine oxidases, 

and lipoxygenases are also responsible for generating ROS [22]. Intracellular ROS 

production is normally counteracted by an endogenous antioxidant defense system 

[21-23]. However, during hypertension, increases in oxidative stress are commonly seen 

due to the production of ROS from xanthine oxidase, uncoupled endothelial (nitric 

oxide) NO synthase and NAD(P)H oxidase, or by a decrease in antioxidant capacity. In 

hypertension, elevated RAAS triggers the generation of ROS in part through the 

activation of membrane-bound nicotinamide adenine dinucleotide (NADH) and 

NAD(P)H oxidase. These oxidase enzymes are present in phagocytic mononuclear cells, 

fibroblasts, endothelial cells and vascular smooth muscle cells [24, 25]. Superoxides 

formed from the activation of NAD(P)H bind to nitric oxide to form peroxynitrite, a 

potent oxidant, which further causes endothelial dysfunction and vasoconstriction, the 

characteristics of many vascular diseases including hypertension [26]. Interestingly, 

deoxycorticosterone, along with salt, activates NAD(P)H oxidase through both the  

mineralocorticoid receptor (MR)-dependant mechanism and angiotensin-II receptor 

subtype 1 (AT1), resulting in the generation of ROS and endothelial dysfunction through 

the formation of peroxynitrite as well as oxidation of the nitric oxide synthase co-factor 

5,6,7,8-tetrahydrobiopterin (BH4) [27]. In addition, aldosterone decreases the expression 

of glucose-6-phosphate dehydrogenase (G6PD) leading to the reduction of NADP+ to 

NAD(P)H, and thus promotes oxidative stress and endothelial dysfunction [28]. 

Furthermore, aldosterone also stimulates the uncoupling of nitric oxide synthase (NOS) 

by induction of Ser1177 dephosphorylation through protein phosphatase 2A (PP2A) 
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[29]. Thus, the oxygen radicals formed oxidize tissue phospholipids and releases 

isoprostane, direct markers for oxidative stress [30] and antioxidant deficiency.  

1.2.1. 8-isoprostane 

The isoprostanes belong to the family of eicosanoids and are produced 

non-enzymatically by the random oxidation of tissue phospholipids caused by increased 

superoxide radicals. Isoprostanes normally appear in the plasma and urine under normal 

conditions and are increased by oxidative stress. Isoprostanes appears as an artifact in 

the tissue and plasma samples due to prolonged oxidative degradation or improper 

storage. One of the isoprostanes, 8-isoprostane has biological activity; it is a potent 

pulmonary and renal vasoconstrictor. It is one of the causative mediators of hepatorenal 

syndrome and pulmonary oxygen toxicity [31]. Elevated levels are found in heavy 

smokers [32]. 8-isoprostane is a marker of oxidative stress and indicator of a deficiency 

of antioxidants. The 8-isoprostane levels in plasma of normal healthy volunteers is 

40-100 pg/ml, while, urinary levels range between 10-50 ng/mmol creatinine, which is 

higher than any other enzymatically derived eicosanoids. Moreover, quantification of 

urinary 8-isoprostane has been proposed to be a precise index of chronic and systemic 

non-enzymatic lipid peroxidation [33]. Therefore, a lowered levels of 8-isoprostane 

indicates strong antioxidant capacity and/or decreased oxidative stress [34].  

One of the strategies of reduction or prevention of hypertension, and 

cardiovascular and renal tissue damage is to minimize the ROS production or to enhance 

the antioxidant defense mechanism. The mechanisms of scavenging of ROS can be 

categorized into two groups, the first one is enzymatic, which includes superoxide 

dismutase (SOD) [35], catalase [36], and glutathione peroxidase [37]; while the second 

group comprises nonenzymatic molecules, including vitamins A, C and E. Other potent 
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antioxidant scavenging systems are glutathione-ascorbic acid [38] and thioredoxin [39]. 

These antioxidants are able to ameliorate hypertension caused specifically by oxidative 

stress; however, there are many other factors responsible for the development of 

hypertension. Importantly, previous study showed that decreased total antioxidant 

capacity and SOD were noted in the SHR and DOCA-salt hypertensive rat [40]. 

1.2.2. Superoxide dismutase 

Among all the endogenous scavenging system of ROS, SODs are 

metalloenzymes, which have a role in the cellular antioxidant defense mechanism by 

catalyzing the dismutation of the superoxide anion to molecular oxygen and hydrogen 

peroxide. 

                          SOD  
             2O2

. - + 2H+              H2O2 + O2 
 
According to their metal components, SODs have been classified as copper/zinc 

(Cu/Zn), manganese (Mn), and iron (Fe), and are widely distributed in plants and 

animals. They occur in high concentrations in brain, erythrocytes, liver, heart, and 

kidney. In humans, SODs are found in three forms, cytosolic Cu/Zn-SOD, mitochondrial 

Mn-SOD, and extracellular SOD [41]. Extracellular SOD is found in extracellular fluids 

and in the interstitial spaces of tissues, which constitutes the majority of SOD activity in 

plasma, lymph, and synovial fluid. The amount of SOD present, both cellular and 

extracellular, is crucial for the prevention of diseases linked with increased oxidative 

stress. The presence of sufficient amounts of SOD in cells and tissues keeps the 

concentration of superoxide (O2
.-) very low through an extremely fast catabolic 

mechanism with turnover of 2×109 M-1sec-1. In hypertension, its concentration decreases 

and nitric oxide competes with SOD for the superoxide leading to formation of 



 8

peroxinitrite, which further converts to hydroxyl radicals, causing oxidative stress and 

tissue injury. Therefore, a reduction in the superoxide dismutase level indicates 

oxidative stress in diseased states. Interestingly, increase in the heme oxygenase-1 

(HO-1) protein and activity has been associated with enhanced SOD activity and 

decreased oxidative stress [42].  

Accumulation of ROS in tissue has been implicated in the activation of the 

oxidative/inflammatory transcription factor, nuclear factor kappa B (NF-κB), which 

involves the induction of a wide variety of biological responses [43]. NF-κB regulate 

many of the cellular genes implicated in early immune, acute phase, and inflammatory 

reactions, including interleukin-(IL)1β, tumor necrosis factor-α, IL-2, IL-6, IL-8, 

inducible nitric oxide synthase, cyclooxygenase-2, intracellular adhesion molecules, 

growth regulatory factors and many antioxidant systems [44]. 

1.3. Inflammation 

Inflammation is a complex biological response of tissue and vasculature to 

harmful stimuli such as irritants, damaged cells and pathogens. It is a protective attempt 

of organisms to remove the injurious stimuli as well as the initiation of the healing 

process for the tissue. Inflammation is classified into two major groups depending on the 

time-frame and type of inflammatory cells present at the site of injury. Acute 

inflammation is characterized by rapid influx of plasma and neutrophils from blood into 

the injured tissue; it is an early response of the body to harmful stimuli. During acute 

inflammation a series of reactions take place including, vascular changes, leucocytes 

extravasation and phagocytosis, chemotaxis and leucocyte activation, phagocytosis, and 

release of leucocyte products. Leucocyte metabolites and proteases are toxic and may 
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damage tissues. In general, however, acute inflammation may have different outcome, as 

it resolves completely, healing may take place by connective tissue replacement, abscess 

formation in pyogenic organisms and progresses to chronic inflammation. Chronic 

inflammation is characterized by progressive shifting of cells from neutrophils to 

mononuclear cells (lymphocytes and monocytes) at the site of injury, which 

subsequently causes destruction and healing of the tissue from the inflammatory process 

[45]. When the monocyte reaches the extravascular tissue, it undergoes transformation to 

form a large phagocytic cell, the macrophage. To perform phagocytic action 

macrophages are activated by signals such as cytokines (interferon-γ) secreted by T 

lymphocytes, other chemical mediators, bacterial endotoxins, and extracellular matrix 

(ECM) proteins like fibronectin. After activation, macrophages release a wide variety of 

biologically active ingredients that are important mediators of the tissue destruction, 

vascular proliferation, and fibrosis. If etiological factors are not eliminated then further 

recruitment of monocytes from the circulation takes place by certain chemotactic factors 

such as cytokines of the IL-8 family, growth factors like transforming growth factor 

beta1 (TGF-β1) and platelet derived growth factor (PDGF), fragments from the 

breakdown of collagen and fibronectin, and fibropeptides. Although, macrophages act as 

a powerful defense against unwanted invaders, it can damage tissue significantly when 

activated inappropriately. Interestingly, NF-κB is also known to regulate 

pro-inflammatory cytokines, which in turn causes infiltration and activation of 

neutrophils and mononuclear cells during acute and chronic inflammatory events. 

There is strong link between hypertension, oxidative stress, inflammation, and 

fibrosis due to the involvement of NF-κB, which modulates cellular genes, participated 
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in all of these signaling cascades. Mineralocorticoid-salt-induced cardiac and renal 

injury, and fibrosis are associated with infiltration of leucocytes and expression of 

pro-inflammatory cytokines suggesting that inflammation is an important part of cardiac 

and renal fibrosis. Moreover, Beswick et al., demonstrated that leucocyte infiltration in 

DOCA-salt hypertensive model is accompanied by ROS accumulation and increased 

expression of NF-κB [46]. Furthermore, NF-κB has been involved in hypertrophy, and 

together with inflammation, stimulates growth factors like TGF-β. 

 
1.4. Hypertrophy 
 

Hypertrophy is an increase in the size of an organ due to an increase in the cell 

size rather than cell number. The increase in size of the cells is due to an enhanced 

synthesis of structural components. Hypertrophy should not be confused with increase in 

size of cells due to an increased intake of fluid, referred as cellular swelling or edema 

whereby the hypertrophic organ has no extra cells, just larger sized cells. On the other 

hand, hypertrophy should be distinguished from hyperplasia where there is an abnormal 

increase in number of normal cells in normal tissue arrangement. Hypertrophy may be 

physiologic or pathologic and is caused by increased functional demand or specific 

hormonal stimulation. The striated muscle cells in both skeletal muscles and the heart 

are most capable of hypertrophy, because they cannot adapt to increased metabolic 

demands by mitotic division and formation of more cells to share the work [47].  

1.4.1. Cardiac and renal hypertrophy 

Cardiac hypertrophy is a morphological adaptation characterized by an increase 

in myocardial mass due to chronic work overload. Myocardial hyperfunction induces an 

increase in myocyte size, which leads to an increase in the overall mass and size of the 
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heart. The diameter of the cardiac myocyte increases about 65 % or more in cardiac 

hypertrophy in humans. The adult cardiac myocyte cannot divide; therefore an increase 

in the number of myocytes cannot occur in the adult heart [47]. For a long time, the heart 

has been considered as a post-mitotic organ without having regenerative potential. Based 

on this paradigm, it was known that cardiomyocytes undergo cellular hypertrophy but do 

not enter into cell cycle of a subpopulation of nonterminally differentiated myocyte or 

activates a pool of primitive cells. Cardiac biology has relied on this dogma for a long 

time, however, with the advent of regenerative medicine and the advancement of stem 

cell research the regenerating capacity of myocardial tissue by resident progenitor stem 

cells has gained considerable attention with potential of novel stem cell based therapy, to 

treat cardiac diseases. Efforts have been made to identify and characterize the resident 

pool of stem cells that can generate myocytes, and endothelial cells and smooth muscle 

cells organized in coronary vessels [48]. Given all this, the adult myocardium has a 

robust intrinsic reparative capacity and it resides in the cardiac stem cells. Moreover, 

acute ischemic injury or chronic cell apoptosis/necrosis causes a decrease in the viable 

cardiomyocyte, which is not balanced by adaptive hypertrophy of the remaining 

cardiomyocytes [49]. Therefore, the imbalance between myocardial hypertrophy and 

apoptosis has also been one of the proposed mechanism for cardiac failure [50, 51]. 

Cardiac hypertrophy is traditionally classified as either physiological or 

pathological depending on the underlying factors. A) Physiological cardiac hypertrophy 

is an adaptive response to growth signals and is characterized by a proportional increase 

in length and width of the cardiac myocyte. This type of hypertrophy is commonly seen 

in athletes. Traditionally, cardiac hypertrophy is considered as an adaptive response 

required from sustained stress due to elevated cardiac output. Generally, prolonged 
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hypertrophy is associated with a significant increase in the risk of sudden death or 

progression to heart failure [52], indicating that the hypertrophic process is not entirely 

beneficial [53].   

B) Pathological cardiac hypertrophy is a response to stress signals and is associated with 

an increase in cardiac myocyte size, upregulation of protein synthesis, and organization 

of the sarcomere. Phenotypically, pathological cardiac hypertrophy is divided into two 

different subtypes: a) concentric hypertrophy, in which there is parallel addition of 

sarcomeres and lateral growth of the individual cardiac myocyte due to pressure 

overload; and b) eccentric hypertrophy characterized by addition of sarcomeres in a 

series, and longitudinal cell growth of myocytes takes place as a result of volume 

overload or prior infarction [54].  

In hypertension, increase in the afterload causes left ventricular wall stress, 

which further stimulates the development of myocardial hypertrophy. Systolic and 

diastolic blood pressure depends on left ventricular mass and wall thickness, 

respectively. Therefore, both volume and pressure overload accelerates the development 

of left ventricular hypertrophy in the hypertensive condition [55]. Recently,  

epidemiological studies showed that hypertension along with left ventricular 

hypertrophy leads to an increased risk of congestive heart failure, ventricular 

arrhythmias, and stroke [52, 56], all of which are considered risk factors for cardiac 

morbidity and mortality [57]. However, various studies showed that the prevalence of 

left ventricular hypertrophy not only depended on hypertension but that various 

hemodynamic and neurohumoral factors also contribute to the development and 

maintenance of left ventricular hypertrophy [58-60]. In these the most important are the 

sympathetic nervous system [61], and the activated RAAS [62], which are known to 
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induce myocardial hypertrophy and fibrosis [55]. In addition, local tissue production of 

angiotensin-II and aldosterone stimulates myocardial hypertrophy and fibrosis, which 

leads to structural and functional alterations in cardiac tissue.  

In the DOCA-salt model, cardiac hypertrophy results from chronic pressure 

overload, whereas the kidney develops hypertrophy due to increased workload resulting 

from uninephrectomy (removal of one kidney), also referred to as compensatory 

hypertrophy. The hypertrophic process involves both individual cell hypertrophy and 

fibrosis, which may occur either in combination or separately depending on underlying 

causative factors. These hypertrophic processes are associated with activation of growth 

stimulatory transcription factors such as NF-κB, activating protein-1 (AP-1), which 

triggers activation of TGF-β1 and ECM proteins such as collagen and fibronectin. 

 

1.5. Mediators involved in hypertrophy and remodeling 

1.5.1. Nuclear factor kappa B 

NF-κB is a transcription factor, which after activation is found in the nucleus. 

The NF-κB transcription family is composed of several structurally related proteins, 

such as c-Rel, Rel A, Rel B, p50/p105, and p52/p100. These proteins normally give 

diverse combinations of dimeric complexes by forming either homodimers or 

heterodimers. Dimeric complexes regulate the gene expression by binding to DNA 

target sites known as kappa-B (κB) sites. A commonly known NF-κB consists of a 

p50/RelA or p50/p65 heterodimer. NF-κB dimers bind to Inhibitory κB (IκB) which 

blocks the nuclear localization sequence and prevents translocation into the nucleus [63]. 

Thus, the inactive form of NF-κB is normally present in the cytoplasm and bound with 
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IκB. Therefore, agents activate NF-κB by inducing the phopshorylation of IκB, which in 

turn causes degradation of IκB. Once the signal is received, IκBα phosphorylates at two 

conserved serine residues (S32 and S36) in its N terminal regulatory domain. The 

complex of IκB kinase consists of three major components, of which IKKα and β serve 

as kinases while IKKγ functions as the regulatory subunit. After phosphorylation, IκBs 

undergoes post-translational modification via a series of mechanisms by (E-highly 

specified enzymatic processes) E1 ubiquitin-activating enzyme, E2 

ubiquitin-conjugating enzyme, and E3 ubiquitin protein ligases, referred as 

polyubiquitination. Once ubiquitinated, IκB degrades into 26S proteasomes and leads to 

the release of NF-κB dimmers, which translocate into the nucleus [64]. Activation of 

NF-κB is a tightly regulated process and only takes place after appropriate stimulation to 

cause the modulation of targeted genes. NF-κB is activated by a variety of stimuli, 

including proinflammatory cytokines such as IL-1β, tumor necrosis factor-α (TNF-α), 

epidermal growth factor (EGF), viruses, viral proteins, bacteria, lipopolysaccharides 

(LPS), double-stranded RNA, ROS, physical and chemical stresses, and T- and B-cell 

mitogens [65]. In addition, cellular stresses such as chemotherapeutic agents and 

ionizing radiation activates NF-κB [65]. Nuclear translocation of NF-κB activates IκBα 

gene prior to other genes. It is an autoregulatory mechanism which brings activated 

NF-κB back to the cytoplasm [66].  

Hypertension-induced cardiac and renal hypertrophy, and end-stage-organ 

damage is associated with activation of NF-κB. Furthermore, DOCA-salt-induced 

hypertension, cardiac and renal fibrosis is accompanied with increased expression of  

NF-κB [46]. NF-κB has a binding site on the consensus promoter region of the HO-1 
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gene, thus modulation and transcription of genes, which are involved in inflammation, 

hypertrophy, and growth regulatory processes, occur through upregulation of the HO 

system [67].  

1.5.2. Activating protein-1  

The mammalian AP-1 proteins are homodimers and heterodimers consisting of 

basic regions-leucine zipper (bZIP) proteins, which include Jun, Fos, Jun dimerization 

partners, and the closely related activating transcription factors subfamilies. AP-1 is 

activated by several growth factors, proinflammatory cytokines, and a variety of 

environmental stressors. These stimulations cause induction of fos genes that further 

heterodimerize with jun protein to form a stable AP-1 dimer. Thus, different AP-1 

dimers formed are known to execute specific cellular programs. Activated AP-1 plays an 

important role in the control of cell proliferation, neoplastic transformation and 

apoptosis [68]. Mechanical stress, angiotensin-II, and hypoxia have been shown to 

activate AP-1 in the cardiac tissue [69, 70]. In addition, both angiotensin-II and 

aldosterone cause development of inflammatory lesions and fibrosis through activation 

of transcription factors such as NF-κB and AP-1 in the liver [71]. Potential AP-1 binding 

sites have been identified on the promoter region of both HO-1 [67] and TGF-β genes 

[72] indicating that AP-1 may act as a mediator for the modulation of growth factors by 

the activated HO system during pathological alterations.  

1.5.3. Transforming growth factor beta 

TGF-β is a regulatory cytokine that belongs to the TGF-β superfamily. It is a 

protein, which has three isoforms, TGF-β1, TGF-β2, and TGF-β3. The TGF-β 

superfamily is composed of different protein precursors made up of TGF-β1 with 390 
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amino acids, and TGF-β2 and TGF-β3 each containing 412 amino acids [73, 74]. Out of 

these, TGF-β1 is an important cytokine, performing different cellular functions, 

including cellular proliferation, cell growth, and differentiation. TGF-β1 is released in 

response to injury, via autocrine and/or paracrine mechanisms to maintain cellular 

homeostasis. The regulation of TGF-β1 in cardiac, vascular, and renal tissue is under the 

influence of metabolic, hormonal (for example, angiotensin-II and aldosterone) and 

cyclomechanical stretch [75-77]. TGF-β1 contributes to target organ damage in 

hypertension [75], and its overexpression has been commonly seen in chronic 

hypertension, left ventricular hypertrophy and remodeling [78, 79] as well as vascular 

remodeling [80] and progressive renal diseases [81]. Every rat model of hypertension 

shows left ventricular hypertrophy, which is a normal adaptation to increased pressure 

and volume overload [82]. However, the prolonged hypertrophic process is maladaptive. 

It is characterized by activation of TGF-β1 that further stimulates ECM protein 

production and deposition, [83] and eventually leads to excess scarring and fibrosis [75]. 

Interestingly, angiotensin-II and aldosterone play important roles in the development of 

glomerular sclerosis, tubular fibrosis, which is mediated by activated renal TGF-β1 and 

down-regulated endothelial nitric oxide synthase (eNOS) levels [75, 84]. Similarly, the 

activation of the oxidative transcription factor, AP-1, has been implicated in renal 

fibrosis, tubular injury and renal damage [85]. Mineralocorticoid-mediated as well as 

ROS-stimulated activation of AP-1 upregulates TGF-β1 that subsequently enhances the 

production of fibronectin, and the development of renal fibrosis [86]. Alternatively, 

inappropriate activated TGF-β1 stimulates cellular transformation of fibroblasts, 

synthesis of ECM proteins and integrins by decreasing the production of matrix 
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metalloproteinases (MMPs), and subsequently, promotes the development of fibrosis 

and tissue remodeling [87].  

1.5.4. Extracellular matrix proteins 

ECM does not remained as a structural form, but it performs a wide range of 

biological functions. The components of ECM interact with specific adhesion receptors 

on cell surfaces and control various cellular functions, which include differentiation, 

migration, proliferation, and apoptosis. Within the matrix, fibroblasts produce ECM 

proteins. Two major components of ECM are: i) fibrous proteins that provides structural 

support and resistance to deformation (e.g. collagen and elastin), or adhesion (e.g. 

fibronectin and laminin); and ii) glycosaminoglycans (GAGs) which links to protein to 

form proteoglycans [47]. 

1.5.4.1. Collagen 

The collagen molecule consists of a central core with long, stiff, triple helical 

conformation. Three chains (glycine-proline-hydroxyproline) are wound around each 

other into a superhelix forming the core. Both ends of the helix are flanked by globular 

domains. Each of the collagen chains are encoded by separate genes, which are 

expressed in different combinations in different tissues. Connective tissue contains 

mainly fibrillar collagen that includes type I, II, III, IV and XI, and after secretion, these 

molecules polymerize to form long bound collagen fibrils in the ECM. Collagen type-I 

is abundantly present in most mammals. Total collagen in the myocardium is distributed 

as 85 % collagen type-I, 11 % collagen type-III, with the remaining being collagen 

type-IV and type-V which are associated with the basement membrane [47].  

Chronic left ventricular pressure overload causes increase in the number and size 

of collagen fibers. The proportional changes in both collagen type-I and type-III cause 
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improper alignments of cardiomyofibroblast. The adaptive mechanism changes to 

pathological, which results in increased reactive and reparative fibrosis. Moreover, 

pathological myocardial fibrosis is characterized by excessive collagen deposition, 

which results from an imbalance between collagen synthesis and degradation. In 

addition, TGF-β1 can modulate both synthesis and degradation of collagen by regulating 

matrix metalloproteinase [88]. Therefore, substances like HO inducers, which are known 

to suppress TGF-β1 could be used to reduce excessive collagen deposition and fibrosis 

[88]. Excessive collagen deposition is associated with hypertension-induced myocardial 

hypertrophy and increased thickness and density of the perimysial weave 

(interconnection of the bundles) of cardiac muscle fibers. Both interstitial and 

perivascular fibrosis are the characteristics of chronic hypertension-induced myocardial 

hypertrophy [89]. 

1.5.4.2. Fibronectin 

Fibronectin is involved in many cellular processes, including blood clotting, cell 

migration/adhesion, tissue repairs, and embryogenesis. Fibronectin exists in two main 

forms: 1) as a soluble disulphide linked dimer found in the plasma, and 2) an insoluble 

glycoprotein dimer that acts as linkers in the ECM [47]. The extracellular form is 

synthesized by fibroblasts, chondrocytes, endothelial cells, macrophages, and by certain 

epithelial cells whereas, the plasma form is produced by hepatocytes. Fibronectin looks 

like a rod having three different types of homologous and repeating modules (I, II and 

III). Small linkers join these modules with each other as beads on a string. Module-I has 

twelve different subtypes, which can bind to fibrin and collagen. Module-II with two 

subtypes is structured to bind collagen. The most abundant form is module-III that binds 
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to integrins, and heparin. Fibronectin molecules also forms two disulphide bridges at 

their carboxy terminal producing a covalently linked dimer [47]. Fibronectin serves as a 

cell adhesion molecule by anchoring cells to the proteoglycan substrate or collagen. 

Fibronectin receptors, which are present on the cell membrane binds with different parts 

of ECM to organize cellular interactions [90]. In addition, fibronectin acts as a 

chemotactic factor to attract monocytes into the injured site during the progression of 

chronic inflammatory conditions. 

  

1.6. Cardiac and renal structural and functional alterations 

The multifactorial pathology of hypertension is closely linked to enhanced 

oxidative stress, inflammation, and the development of cardiovascular and renal 

remodeling. Histopathologically, cardiac remodeling is characterized by a structural 

rearrangement of the wall of a normal heart that involves hypertrophy of 

cardiomyocytes, proliferation of cardiac fibroblasts, fibrosis and cell death [91]. In 

fibrosis, disproportionate accumulation of fibrillar collagen type-I leads to stiffness of 

the ventricles and subsequently, impair both the relaxation and contraction of the 

ventricles. Furthermore, fibrosis separates myocytes from ECM proteins and impairs the 

electrical coupling of cardiomyocytes. In addition, fibrosis causes a reduction in the 

capillary density and increased oxygen diffusion distance and subsequently hypoxia of 

myocytes, thus it affects myocyte metabolism, performance and ventricular function 

resulting in cardiac end-stage damage [69]. Left ventricular fibrosis is common in many 

models of hypertension leading to alteration of cardiovascular function, and its reversal 

is indicative of improved cardiac function [92]. In the DOCA-salt hypertensive rat, 

cardiac fibrosis is characterized by a disproportionate increase in the synthesis and/or 
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inhibition of degradation of ECM protein. Specifically, the reactive fibrosis appears as 

interstitial and perivascular fibrosis and is not directly associated with myocyte death. In 

interstitial fibrosis, fibrillar collagen deposits in intermuscular spaces, while in 

perivascular fibrosis collagen accumulates within the adventitia of intramyocardial 

coronary arteries and arterioles [69]. Interestingly, adult cardiac myocardial 

cells/cardiomyocytes have the capacity to undergo hypertrophic changes. Systemic 

hypertension causes an increased hemodynamic load on the cardiomyocytes over time, 

which leads to increases in the synthesis of proteins and filaments in the 

cardiomyocytes. The overall effect is the advancement of cardiomyocyte hypertrophy 

and finally, increase in the size and weight of the heart. Moreover, chronic hypertension 

involves myocyte hypertrophy as well as fibrosis, with increased, irregular deposition of 

ECM proteins, especially collagen [62]. Therefore, it is necessary to characterize two 

different phenomenon of cardiac hypertrophy i.e. cardiomyocyte hypertrophy and 

cardiac fibrosis at the cellular level. Recent evidence suggests that a functional 

aldosterone system present in the heart, which is regulated by angiotensin-II, may cause 

cardiac fibrosis during the process of remodeling in hypertension [93]. Moreover, 

aldosterone also stimulates the expression of several profibrotic molecules that may 

contribute to the pathogenesis of cardiac and renal remodeling, and fibrosis [94].  

Similarly, end-stage renal damage is characterized by glomerular hypertrophy, 

glomerular sclerosis, tubular dilation, infiltration of mononuclear cells, interstitial 

fibrosis, arterial remodeling, and tubular cast formations. In malignant hypertension, 

glomeruli of the kidney undergo hypercellular changes by cellular proliferation of 

mesangial, endothelial cells and leucocyte infiltration. Furthermore, it is accompanied by 

thickening of the basement membrane, hyalinization, and sclerosis of the glomerular tuft 
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with fibrin deposition. Tubular necrosis is often associated with rupture of the basement 

membrane and occlusion of the tubular lumen by casts. The straight portion of the 

proximal tubule and the ascending thick limb in the renal medulla are especially 

vulnerable, however focal tubular necrotic lesions occur in the distal tubules in 

conjunction with casts. Eosinophilic hyaline and granular casts are present in distal 

tubules and collecting ducts. These casts consist of Tamm-Horsefall proteins (urinary 

glycoprotein secreted by ascending and distal thick limb of tubules) along with 

hemoglobin, myoglobin and plasma proteins [47]. In addition, essential hypertension is 

associated with changes in the peripheral as well as tissue arterial vessels. High blood 

pressure causes progressive thickening of the walls of muscular arteries, with 

characteristic symmetric hypertrophy of the muscular media, reduplication of elastic 

lamina and further fibrotic thickening of the intima. Overall, these changes lead to 

reductions in the lumen diameters of the arteries and contribute to further hypertension 

[95]. Hypertension is known to cause progressive damage of the kidney, and 

microscopically the tubules undergo a series of changes. Tubules are shrunken or 

atrophied and undergo fibrosis. Some of the atrophied tubules may dilate cystically with 

cast formation. These casts are made up of inspissated proteinaceous material with 

highly eosinophilic (pink colored) characteristic, which is also termed thyroidisation 

[95]. Tubular interstitial nephritis can be either acute or chronic. Acute tubular 

interstitial nephritis is characterized by interstitial edema, accompanied with leucocyte 

infiltration and focal tubular necrosis, while in the chronic interstitial nephritis there is 

infiltration of mononuclear cells, intense interstitial fibrosis, and diffuse tubular atrophy. 

Clinically, the condition is associated with impaired ability to concentrate urine, 

polyurea, salt wasting, reduced ability to excrete acids (metabolic acidosis), and defects 
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in tubular reabsorption and secretion. With the aggravation of these pathological 

conditions, it is difficult to accurately diagnose and separate damage of the glomeruli 

and tubules from other causes of renal insufficiency [47].  

The functional capacity of the kidney declines in end-stage renal damage, which 

can be clinically confirmed by increased proteinuria, increased plasma and urine 

creatinine, and glomerular filtration rate. Proteinuria has been considered as a marker of 

glomerular disease and increased excretion of protein in the urine reflects glomerular 

injury. Further, proteinuria has an important role in the progression of renal disease by 

causing tubular injury as it passes down through tubular lumen. As soon as tubular 

epithelial cells are exposed to plasma proteins, a variety of chemoattractants, 

proinflammatory cytokines, and extracellular matrix proteins are released, which 

ultimately lead to the development of interstitial inflammation and fibrosis [96, 97]. 

Furthermore, the glomerular filtration rate is also associated with glomerular and tubular 

diseases such as glomerular sclerosis, glomerulonephritis, and tubular injury. Generally, 

the levels of plasma, and urinary creatinine as well as the rate of creatinine clearance 

assess glomerular filtration rate. Therefore, it is important to know definition of 

clearance, which is defined as the volume of plasma from which a measured amount of 

substance such as creatinine can be completely eliminated (cleared) into the urine per 

unit time. Creatinine clearance depends on plasma and urinary concentration of 

creatinine; which in turn involves the glomerular filtration rate and renal plasma flow. 

Creatinine clearance is a better estimate of the glomerular filtration rate than any other 

test of urine analysis [98]. Creatinine is a marker of end-organ damage, because its level 

determines the overall renal function in patients with renal damage.  
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1.6.1. Cell death by necrosis and apoptosis  

Cell necrosis is a morphological expression of cell death, resulting from the 

progressive degradative action of enzymes on lethally injured cell in living tissue. Cell 

necrosis is either enzymatic digestion of the cell and/or denaturation of proteins. When 

catalytic enzymes are derived from the lysosomes of the dead cell the process is referred 

to as autolysis, whereas heterolysis is when degradature components are released from 

the immigrant leucocytes [47]. There are two different types of cell necrosis: 1) 

coagulative necrosis when denaturation of protein takes place, 2) liquifactive necrosis 

occurs due to catalysis of cell structure. Morphologically, necrotic cells show increased 

eosinophilic staining, attributed in part due to loss of the normal basophilic intensity 

imparted by the RNA in the cytoplasm. It is also caused by increased binding of eosin 

color to denatured intracytoplasmic proteins. Moreover, the cell appears more glassy and 

homogenous than normal cells because of loss of glycogen particles. On the other hand, 

in liquifactive necrosis, an enzyme digests the cytoplasmic organelles leading to 

formation of cytoplasmic vacuoles, which appears moth-eaten. Nuclear changes may 

appear in different forms, 1) karyolysis is characterized by fading of basophilia of the 

chromatin reflective of DNAse activity, 2) Pyknosis is a pattern in which DNA condense 

into a solid, shrunken basophilic mass, and appear as nuclear shrinkage and increased 

basophilia, and 3) karyorrhexis is associated with the pyknotic or partial pyknotic 

changes in the nucleus due to fragmentation [47].  

Apoptosis is another type of morphologic cell death, which can be either 

physiological or pathological. It is different from the common coagulative necrosis. 

Histologically, the apoptotic cell appears as a round oval mass of intensely eosinophilic 

cytoplasm with dense nuclear chromatin fragments. The cell shrinkage and 
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fragmentation of apoptotic bodies are rapid, which are quickly phagocytosed, degraded, 

or extruded into the lumen. Additionally, apoptosis does not elicit inflammation as 

compared to necrosis, making it more difficult to detect histologically [47]. Apoptotic 

and necrotic cell death have different consequences on cardiac remodeling. Myocyte 

necrosis leads to an accelerated inflammatory reaction, macrophage infiltration, 

proliferation of the vasculature, activation of fibroblasts, and finally the formation of 

scars. Conversely, apoptosis does not activate any reparative fibrotic process and 

apoptotic bodies are removed by neighboring cells without any changes in the 

morphology of the tissue. However, apoptosis can induce restructuring of the ventricular 

wall and reduces the tension development capacity of ventricular myocytes [99]. In 

addition, there is evidence that apoptosis precedes necrosis and constitutes the prevailing 

form of myocyte death. Immediately, after an ischemic event, apoptosis affects more 

than 80 % and necrosis less than 20 % of myocytes in the affected region of ischemia 

[100]. However, as time progresses, the percentage of these two types of cell death 

overlap, and stimulates reparative processes and myocardial scarring [50]. 

To combat multiple disease conditions in patients, the present clinical strategy is 

to give poly-drug therapy. Although multiple drug therapy showed beneficial effects to 

counteract different pathological conditions, the interaction between these drugs also 

showed significant detrimental side effects. Therefore, we need to search alternative 

therapies, which can counteract multiple risk factors or diseased conditions, without 

having side effects. Recently, major interest has been directed towards cytoprotection by 

the HO system, an anti-stress/antioxidant defense enzyme system [101-105]. The HO 

system is present in the body and the activation of the HO-1 protein plays an important 

role in the modulation of pathophysiological conditions. However, in severe 
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pathological alterations, the HO system is not able to play a significant role due to 

insufficient activation of the HO-1 protein. Therefore, pharmacological or genetical 

intervention would be approaches to achieve long term overexpression of HO-1 protein 

and total HO activity to combat severe, multiple diseased conditions such as 

hypertension and diabetes that are associated with cardiac and renal end-organ damage 

[106].  

 

1.7. Heme oxygenase system and heme catabolized products 
 

HO is a microsomal enzyme having three distinct isoforms: HO-1, HO-2, and 

HO-3, of which HO-3 is an inactive isoform, and not present in humans [107]. HO-2 is a 

36-kDa protein constitutively present in the mitochondria, which regulates normal 

physiological functions. It is mainly present in the heme protein containing enzymes of 

the liver and testis [108] and also expressed in the brain, endothelium, distal nephron 

segment, myenteric plexus and gastrointestinal tract. HO-1 is a 32-kDa inducible 

isoform protein localized in microsomes, which is ubiquitously expressed in a variety of 

mammalian cells after exposure of different stimuli [109], tissue injury and 

pharmaceutical agents. The rate-limiting enzymatic reaction of heme catabolism by the 

HO protein was first described by Tenhunen and his collegues [110, 111]. Subsequent 

studies have highlighted the important role of the HO system in cellular defence. For 

example, reports have shown the HO-1 is critical for survival in HO-deficient mice 

(HO-1 -/-), especially against oxidative stress induced injuries [105]. Heme degradation 

is considered to be critical in the cellular defense mechanism, due to the removal of 

pro-oxidant heme, and increased production of bilirubin and carbon monoxide which are 

antioxidant and vasodilatory, respectively [106] [Fig. 1.3]. Iron, is another compound 
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released by heme degradation which can induce free radical formation, but rapidly binds 

to ferritin by ferritin reductase enzyme [106]. Importantly, the products of heme 

degradation upregulated by HO activity, mediate antioxidant, anti-inflammatory, 

antinecrotic, anti-apoptotic and antihypertrophic actions. Although the cytoprotective 

effect of the HO system has been confirmed in a number of experimental models, the 

complete mechanism of action needs to be clearly elucidated.  

1.7.1. Bilirubin 
 

Bilirubin is a four-pyrrole open chain ring (tetrapyrrole). In the adult human 

about 250-350 mg of bilirubin is produced daily [112]. About 80-85 % of bilirubin is 

derived from the breakdown of hemoglobin, which is released from aging and damaged 

erythrocytes. The reducing properties of bilirubin and biliverdin make them potential 

antioxidants. Bilirubin in the presence of hydrogen peroxide or organic hydroperoxide 

serves as a reducing agent for certain peroxidases such as horseradish peroxidase and 

prostaglandin H (PGH) synthase [107]. The cardioprotective properties of bilirubin, 

which are derived from the HO system, have been shown in the cardiovascular system 

[101, 113]. Similarly, the anti-inflammatory action of biliverdin has been confirmed in 

renal tissue, pretreated with biliverdin, when challenged with lipopolysaccharide (LPS), 

and showed attenuation of P- and E-selectin expression, and reduction of 

pro-inflammatory cytokines [114]. 

1.7.2. Iron and ferritin 
 

Plasma iron is bound to transferrin which transfers iron to the intracellular 

compartment via cell surface receptors [106]. Iron is a pro-oxidant and leads to the 

generation of ROS, potentially resulting in damage to various cellular components. In 

addition, it can integrate into the phospholipid bilayer of the cell membrane and may 
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oxidize the inner components. Iron formed in the process of heme degradation is rapidly 

converted into ferritin by ferritin synthase, which stays in an oxidized (ferric) state, by 

H-chain ferrooxidase activity [115].  

Ferritin is a 24-unit oligomeric protein, with a macromolecular complex of 450 

kDa (heavy- H: ∼21 kDa and light- L:∼ 19 kDa) chain. Ferritin has a cytoprotective 

effect which has been investigated in various in vitro models [116, 117]. When 

endothelial cells and primary human skin fibroblast preconditioned and challenged with 

oxidants, and sub-lethal doses of UV irradiation. Both HO-1 and ferritin synthase acts as 

a cytoprotectant [104, 118]. Furthermore, upregulation of HO and increased ferritin 

synthesis was shown to abate glycerol-induced renal injury [119]. Similarly, the 

overexpression of ferritin H-chain reduced apoptosis in liver ischemic injury [120]. All 

of these in vitro and in vivo studies suggest that either overexpression and/or chemical 

induction of ferritin leads to cytoprotection [115]. 

1.7.3. Carbon monoxide 

Carbon monoxide is a diatomic molecule of low molecular weight (F.W. 28.01), 

which occurs naturally in the gaseous state under atmospheric temperature and pressure. 

It is soluble in aqueous media and organic solvents [121]. Physiologically carbon 

monoxide is produced in the body [122]. In biological systems, carbon monoxide is 

relatively stable compared to nitric oxide, which is a small gaseous molecule of similar 

structure and molecular size. Both nitric oxide and carbon monoxide form complexes 

with hemoproteins and metalloenzymes by forming heme-iron ligands. Nitric oxide 

binds with ferrous and ferric heme, while carbon monoxide binds to ferrous iron 

(reduced form) only [115]. Most of the carbon monoxide that is produced in the body 
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results from heme degradation by the HO system [107]. The antihypertensive effect of 

the HO system in SHR was known even before the discovery of the blood pressure 

lowering effect of carbon monoxide [123]. In addition, cytoprotective effects of carbon 

monoxide such as anti-apoptosis [124] and anti-inflammatory effects [125] in lung 

injury is mediated through physiological stress signals such as p38 mitogen activated 

protein kinases (MAPK) pathway [112, 126]. Interestingly, carbon monoxide binds the 

heme moiety of soluble guanylyl cyclase (sGC), and activates cyclic guanosine 

monophosphate (cGMP), which results in vascular relaxation [127-129], inhibition of 

vascular smooth muscle cell proliferation [130, 131], and platelet aggregation [132], an 

antiapoptic effect on pancreatic beta cells [133], neurotransmission [134, 135], and  

bronchodilatation [136]. Overall, the HO-mediated production of carbon monoxide has 

been shown to suppress a variety of pathopathophysiological conditions, which made it 

important for the prevention of disease conditions. 

 

1.8. Cyclic guanosine monophosphate 

Cyclic GMP is a key intracellular second messenger molecule, which in response 

to a variety of hormones, autocoids and drugs, transduces cellular signaling events. 

cGMP is synthesized from GTP by both membrane-bound and sGC enzymes [137, 138]. 

The protein of particulate guanylate cyclase contains both the cGMP catalytic domain 

and a cell surface receptor function characterized previously by molecular studies. In 

mammals, out of six membrane forms of cGMP (GC-A-F) only three are known to have 

ligands. Soluble GC is a heterodimer consisting of α (α1 or α2) and β (β1 or β2) subunits 

[139, 140]. The α1/ β1 heterodimer is activated by carbon monoxide, which results in 

accumulation of intracellular cGMP. The downstream mediators of cGMP dependent 
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kinases, cGMP–controlled events include cGMP-gated channels and cGMP-regulated 

phosphodiesterases. The relative abundance of cGMP within a given cell can serve as a 

marker for activation by agonists acting through particulate guanylate cyclase at the cell 

surface or intracellular activation of soluble guanylate. 

 

1.9. Hemin (Molecular formula: C34H32ClFeN4O4; Molecular weight: 651.94) 
 

Heme (iron protoporphyrin IX) exists as the prosthetic group of hemo-proteins, 

which include cytochrome P450, catalase, nitrophorins, peroxidases, nitric oxide 

synthases (NOS), guanylyl cyclases, cyclic nucleotide phosphodiesterases, hemoglobins, 

myoglobins, nitrite reductase, respiratory cytochromes and transcription factors. Heme 

and hemo-proteins are involved in a variety of biological and cellular functions needed 

for the survival of organisms [141]. Hemin (ferric chloride heme) is an oxidized form of 

iron protoporphyrin IX. Hemin is also a potent globin gene activator and growth 

promoter of early hematopoietic progenitors [141]. Synthetic heme analogues are 

commonly used to induce HO activity in animals and humans, especially in the 

newborns to prevent the development of severe hyperbilirubinemia [142]. Hemin 

stimulates the HO system, which plays a major role in the catabolism of heme, thus it 

protects the organism from free heme-induced cytotoxicity due to formation of oxygen 

free radicals and lipid peroxidation. The U. S. Food and Drug Administration have 

approved hemin, as an active ingredient of a biological therapeutic agent for the 

treatment of acute porphyrias [106].  
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Figure 1.2. Hemin structure. 
 
[Adapted from http://www.sigmaaldrich.com/catalog/search/ProductDetail/SIGMA/H9039]. 
 

1.10. Deoxycorticosterone acetate (DOCA)-salt-induced hypertension 
 

The etiology and pathogenesis of human hypertension have been studied widely 

using different animal models of hypertension. These models have been used in research 

to study the prevention of hypertension or to develop a therapy, and to identify different 

risk factors involved in human hypertension. The studies in animal models of 

hypertension are important for the success of clinical trials, even though they do not 

encompasses all traits of human essential hypertension. According to hypertension 

etiology; animal models of hypertension are divided into two different types, primary 

and secondary hypertension [143]. Depending on the manner of induction, primary 

hypertension includes environmentally-induced and genetically-induced models, 

whereas, secondary hypertension includes renal-induced and pharmacologically-induced 

hypertension. The DOCA-salt-induced model of hypertension is a type of 

pharmacologically-induced hypertension, which involves administration of a high dose 

of deoxycorticosterone, unilateral nephrectomy and isotonic salt (0.9 % NaCl) water as 

the sole drinking fluid. This animal model is a low renin, volume overload, and human 

primary aldosteronism type of hypertension [143] with a different natural history, and 
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different response to antihypertensives, compared to high renin models such as SHR, 2 

kidney-1 clip (2K1C), and transgenic rats overexpressing the mouse Ren-2 gene 

(TGR[mRen2]27) [144]. The DOCA-salt-induced hypertensive model is also 

characterized by enhanced oxidative stress [6, 19], upregulation of both endothelial 

system [145, 146] and local tissue RAAS, which results in severe hypertension, cardiac 

and renal hypertrophy, and end-stage-organ damage, accompanied by proteinuria and a 

decrease in the creatinine clearance rate [144]. In the DOCA-salt model, angiotensin I 

converting enzyme inhibitors and angiotensin-II receptor blockers are ineffective [147, 

148], while aldosterone receptor blockers and diuretics are effective in reducing blood 

pressure [149]. There are some limitations in the DOCA-salt-induced hypertensive rat 

model as compared to genetically-induced models. These are as follows, 1) a large dose 

of deoxycorticosterone acetate is necessary, 2) surgical removal of one kidney, and 3) 

continuous ingestion of salt water is required [143]. Even with all these limitations, 

however, this model is easy to develop and cost effective. The role of sodium in the 

development of hypertension has consequently been widely studied.  

Hypertension in the DOCA-salt model has been divided into different phases; it 

proceeds with increase in plasma volume and later shifts to pressure natriuresis leading 

to a transient decrease in blood volume and increase in blood viscosity. Subsequently, 

reduction in arteriolar blood flow and activation of the intravascular coagulation 

pathway causes deposition of fibrin and impairment of vascular wall diffusion. Further, 

vascular alterations causes fibrinoid necrosis and plasmatic vasculitis, leading to 

cardiovascular complications and nephrosclerosis [150]. Patients with chronic essential 

hypertension also present the symptoms observed in the DOCA-salt model, having 

volume overload, vascular remodeling and elevated blood pressure with associated renal 
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damage [151]. Salt retention is one of the characteristics of chronic human essential 

hypertension, which can be achieved rapidly in the mineralocorticoid hypertensive rat 

model. We chose the DOCA-salt hypertensive rat model because it depicts end stage 

cardiac and renal damage. Moreover, in this low renin model, local production of 

angiotensin-II and aldosterone, which triggers cardiovascular and renal inflammatory 

responses results from accumulation of ROS and subsequent activation of NF-κB and 

AP-1 [46]. 
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Figure 1.3. The catalysis of heme and its end products by heme oxygenase 

[Modified from Ndisang et.al., J Hypertens. 2004 Jun;22(6):1057-74, and Abraham 
and  Kappas; Free Radical Biology & Medicine; (2005)39: 1-25)]. 
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2. RATIONALE, HYPOTHESIS, AND OBJECTIVES 

2.1. Rationale 

The HO system has been implicated in the modulation of several diseases, 

including hypertension, cardiac and renal injury [152]. Upregulation of the HO system 

has beneficial effects either by degradation of the pro-oxidant heme or by increase in the 

production of bilirubin and carbon monoxide [Fig.1.3], which are now regarded as 

beneficial and critical to the cellular defense mechanism [106]. Acute 4 day hemin 

therapy (i.p.) reduced blood pressure in the young SHR, however, it failed to lower 

blood pressure in the adult SHR as a result of a non-surmountable increase in HO-1, 

sGC, cGMP [153, 154]. Whether, this was due to inadequate translation and/or 

transcription of proteins involved in the HO signal transduction pathway remains to be 

fully elucidated. However, subsequent studies have now shown that chronic treatment 

with hemin leads to the prolonged expression of the HO-1 protein, reduced blood 

pressure and modestly decreased cellular heme in the adult SHR [155]. Similarly, initial 

data from our laboratory showed that chronic hemin therapy for 23 days lowered systolic 

blood pressure to physiological normal levels in the adult SHR [40]. Therefore, to 

counteract disease conditions, it is imperative to boost the HO-1 protein before the onset 

of chronic disease [156]. Moreover, chronic hemin therapy significantly enhances total 

HO activity, HO-1 expression, and agents involved in the carbon monoxide signaling 

cascade to normalize blood pressure in arteries of adult SHR and DOCA-salt 

hypertensive rats [40, 155]. However, the effect of the chronic hemin regimen on local 

production of angiotensin-II and aldosterone in the heart and kidney of DOCA-salt 

hypertensive rat is still unknown. Given the pivotal role of angiotensin-II and 

aldosterone in the pathophysiology of end-stage renal damage, novel agents capable of 
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suppressing angiotensin-II, aldosterone, oxidative stress and its mediators such as 

NF-κB and AP-1 would be very beneficial and would limit the risk associated with 

multiple drug therapy in the treatment of cardiac and renal disease. 

To date no systemic study has been carried out to correlate the hemin-induced 

changes in histopathological lesions of the heart such as myocyte scarring, fibrosis or 

kidney lesions such as glomerular hypertrophy, glomerular sclerosis, tubular cast 

formation, and small renal arterial thickening in the DOCA-salt hypertensive rat model. 

Moreover, the effect of an upregulated HO system in DOCA-salt-induced hypertension, 

oxidative stress, inflammatory and hypertrophic insults needs further clarification.  

 

2.2. Hypothesis 

Chronic hemin therapy would counteract cardiac and renal histopathological 

lesions in DOCA-salt-induced hypertension and prevent end-stage organ damages. 

 

2.3. Objectives  

To characterize the effects of hemin on the pathophysiological changes and 

underlying mechanisms of the HO system, that is responsible for the protection of the 

heart and kidney in DOCA-salt hypertensive rats. 
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3. MATERIAL AND METHODS 

3.1. Animal experiments 

The experimental protocol was approved by the University of Saskatchewan 

Standing Committee on Animal Care and Supply, which is accordance with the 

principles and guidelines of the Canadian Council on Animal Care. Hemin 

(Sigma-aldrich, St. Louis, Mi, USA) was triturated, dissolved in 0.1 M NaOH, and 

diluted with 1 X phosphate buffer solution (PBS), pH 7.2. The pH of solution was 

titrated to 7.4 by using 0.1 M HCl. Care was taken that the volume of NaOH was not 

exceed above 10 % of the final volume of hemin solutions [154]. Chromium (III) 

mesoporphyrin IX chloride (CrMP) [Frontier Scientific, Logan, Utah, USA] was 

dissolved in 1 X PBS and pH was titrated to 7.4 with 0.1 M HCl and final volume was 

adjusted using PBS. To prepare DOCA strips, Elastomer Part A (MDX4-4210, Factor II, 

Inc. AZ, USA) was weigheted about 18 grams, then 1.23 gram DOCA (044K3492, 

Sigma-Aldrich, USA) was added and mixed thoroughly. This gave a creamy white 

semi-solid product without any lumps. Further, 1.8 grams of the catalyst (crosslinker, 

Part B) was added to the elastoner/DOCA mixture and mixed thoroughly. This final 

product was scooped quickly and gently onto the casting tray and the elastomer mixture 

was forced into the slot with a metal spatula. Care was taken that the mixture should be 

evenly distributed along the wells and bubbles were avoided. This ratio provided 4 

complete lanes of DOCA inserts (30 c.m. each). The elastomer was allowed to 

polymerize for 48 hours (hrs) at room temperature. After polymerization DOCA strips 

were gently removed from the mold and cut into 5 cm. pieces, which were stored in a 

sealed plastic bag till further use [157, 158]. The above procedure was followed again 

depending on total requirements of DOCA-strips for the study. 
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Male Sprague Dawley (SD) rats were purchased from Charles River (Willington, 

MA, USA) at 8 weeks of age and were housed under standardized conditions. At 9 

weeks of age, all animals except the normal control rats (normal SD) were anaesthetized 

by inhalant anaesthesia (Isoflurane), and the right kidney removed through a dorsal flank 

incision [159]. Animals that received surgical intervention were injected with the 

pain-killer Buprenorphine (3 μg/ml/kg body weight) before and 12 hrs after surgery. All 

uninephrectomized animals recovered very well after the surgery, and began eating and 

drinking water normally.  

A total of 74 rats were used in the study, and were divided into seven different 

groups: A) DOCA-salt + hemin, n=22; B) DOCA-salt, n=22; C) DOCA-salt + hemin + 

chromium mesoporphyrin (CrMP), n=6; D) uninephrectomized-DOCA (UnX-DOCA) + 

water, n=6; E) uninephrectomized-salt (UnX-salt), n=6; F) UnX-sham + water, n=6 and 

G) surgery-free control (normal SD), n=6. In the DOCA-salt group, a silastic strip 

impregnated with DOCA was implanted subcutaneously in the midscapular region of 

uninephrectomized rats and animals were given a 0.9 % NaCl and 0.2 % KCl solution 

(salt water) for drinking ad libitum for 4 weeks, until they became hypertensive 

[160-162]. DOCA-salt + hemin group rats were treated the same as the DOCA-salt 

group with the addition of an intraperitoneal injection of the HO inducer, hemin (30 

mg/kg body weight) daily, for 4 weeks. Then DOCA-salt + hemin + CrMP group rats 

were treated the same as DOCA-salt + hemin group with the addition of CrMP injection, 

4 μmol/kg (2.61mg/kg) body weight, i.p., daily (for 4 weeks), a HO blocker [163]. Many 

HO inhibitors available are nonspecific and affect other hemo enzymes as well as 

increases level of HO-1 proteins. We used CrMP, which is a selective competitive 
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inhibitor of HO activity [153, 164]. Further, the UnX-DOCA group rats were treated like 

the DOCA-salt group, however ad libitum access to tap water was given. In the 

UnX-salt and UnX-sham groups, a DOCA free silastic strip was implanted and the 

animals had access to salt water and tap water ad libitum, respectively. The last group 

was the normal control where rats had no surgery or treatment. 

At the end of the study, the animals were kept in metabolic cages and urine 

samples were collected for 24 hrs. Thereafter the rats were weighed, anaesthetized and 

sacrificed. Blood and plasma samples were collected, and the kidney and heart tissues 

were isolated in ice-cold phosphate-buffered saline (PBS), cleaned, and weighed. 

Subsequently, the mid left ventricular portions of the heart and half of the left kidney of 

each rat were collected in formalin phosphate buffer for histopathological studies and 

remaining tissues were snap-frozen in liquid nitrogen and stored at -80oC for further 

analysis by molecular assays. Some of the gross parameters from the DOCA-salt and 

DOCA-salt + hemin groups were measured in half of the animals used in the total study. 

However, most of the molecular studies were done using n=6 and/ or n=4 samples for all 

groups.  

3.1.1. Measurement of systolic blood pressure 

Systolic blood pressure was measured in conscious animals using a standard 

tail-cuff noninvasive blood pressure measurement system (Model 29 SSP, Harvard 

Apparatus, Montreal, Canada) weekly for the 4 week period of treatment. According to 

the standard protocol of Harvard Apparatus, in the initial setting of the machine the 

Biopac system was connected to the analog system. Further pressure and pulse plugs 

were connected to analog channels 2 and 4, respectively. To set the blood pressure 

machine, all knobs such as pressure adjust, Lo pass/ band pass, pulse gain, offset, filter 
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gain were adjusted as per the company’s manual. Then the tail cuff was plugged into the 

input channel and the air tubing was attached to the tail cuff, sphygmomanometer, and 

air in channel of the Biopac system. After all these settings, NIBP software was opened 

in the computer, which was connected with the Biopac. Further using MP100 tool 

pressure was calibrated by applying a clamp onto the tube, which was attached to the tail 

cuff. Calibration was done using channel 1, when reading on the manometer was zero, 0 

mmHg was calibrated. Channel 2 was used to calibrate the highest reading, i.e. 220 

mmHg, when air was pumped through the bulb. The calibration of the tail cuff was done 

before starting every experiment.  

Before starting the blood pressure measurement, the rat was restrained and the 

rat’s tail was inserted into the tail cuff. The restrainer was kept on a heating pad to 

maintain the temperature (27-30oC). In addition, a heating coil with airflow was directed 

towards the restrainer to ensure an increase in the core body temperature of rat and 

increase blood flow towards the tail. Rats were allowed to settle for 5 minutes and 

baseline pressure was recorded. Raw systolic pressure was measured by pumping air 

through the tail cuff to about 220 mmHg reading on manometer, waiting for 2-3 seconds 

and then releasing the pressure slowly to get peak raw systolic pressure. On the screen, a 

bell shaped curve was recorded indicative of a good reading. The final systolic pressure 

reading was calculated by subtracting the basal pressure reading from the raw systolic 

reading. The final value of systolic blood pressure was a mean of six recorded readings 

per rat [154].  

3.1.2. Estimation of hematocrit  

The blood samples were collected in BD vacutainers spray-coated K2-EDTA 

tubes (Ref. 367861) and thoroughly mixed with K2-EDTA anticoagulant by 8-10 
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inversions. Heparinized capillary tubes were filled with blood by capillary action, and 

the other end sealed with nonabsorbent sealing clay. These capillaries were placed in a 

slot on a microcapillary centrifuge (Biofuge A, Baxter, Canlab) with the plugged end 

facing outward. Samples were centrifuged at the auto set point for 5 minutes (mins). 

After centrifugation the hematocrit value was determined using a ruler as a percentage of 

the packed cells to the total volume [165]. 

3.1.3. Plasma ferritin assay 

Plasma ferritin was assayed in the Biochemical Laboratory, Royal University 

Hospital (RUH), College of Medicine, using a standard ferritin kit supplied with 

Architech- i2000 system using a biochemical autoanalyzer (Abbott Architect i2000SR, 

USA). 

 

3.2. Determination of hypertrophy of heart and kidney 

3.2.1. Determination of left ventricular hypertrophy 

The heart was isolated, cleaned in PBS, blotted, and weighed using an analytical 

balance (Precisa XR 205SM-DR, Precisa Instruments, Ltd. Switzerland). The heart 

weight-to-body weight ratio was calculated. Subsequently, the atria were cut off, and left 

ventricle with intraventricular septum and right ventricle were separated and weighed 

[166]. The left ventricle-to-body weight ratio and left ventricle-to-right ventricle ratio 

were calculated [167]. In addition, the left ventricular wall thickness was measured 

using a Vernier caliper [168].  

3.2.2. Assessment of kidney hypertrophy 

The kidney weight-to-body weight ratio is a widely accepted index of kidney 

hypertrophy [169]. Body weights were recorded prior to sacrificing the animals. After 
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sacrifice, the left kidneys were rapidly removed from the animal and placed into ice cold 

PBS. Fat and connective tissues were trimmed off, kidneys were blotted dry, and 

weighed using an analytical balance. After weighing, the left kidney-to-body weight 

ratio was established.  

 

3.3 Assay for the quantification of heme oxygenase-1 

Detection and quantification of HO-1 protein was done in the cardiac tissue by 

using rat HO-1 ELISA kit (Stressgen bioreagents, Ann Arbor, USA). It is a quantitative 

sandwich immunoassay. The anti-rat HO-1 immunoassay plate is precoated with a 

mouse monoclonal antibody specific for HO-1 on the wells. HO-1 is captured by the 

immobilized antibody and is detected with rabbit polyclonal antibody specific for the 

HO-1. The polyclonal antibody is subsequently bound by an anti-rabbit IgG antibody, 

which is conjugated with horseradish peroxide. The assay is developed with 

tetramethylbenzidine substrate (TMB) and a blue color forms in proportion to the 

amount of HO-1 bound. 

To prepare the tissue samples. Cardiac tissue samples were homogenized in 1X 

extraction reagent (supplied with kit) consisting of protease inhibitors such as 0.1mM 

PMSF, 1μg/ml leupeptin, 1μg/ml aprotinin, 1μg/ml pepstatin. The homogenate were 

centrifuged at 21,000 x g for 10 mins at 4oC and supernatants were aliquotted and stored 

at -80oC untill assayed. All the reagents were brought to room temperature. Rat HO-1 

standard and samples were diluted in sample diluents. Subsequently, 100 μl of prepared 

standards and samples were added in duplicates to the wells of the anti-rat HO-1 

immunoassay plate and the plate was covered. The plate was allowed to incubate for 1 
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hr at room temperature and then wells were washed 4 times with 1X wash buffer. Then 

100 μl of diluted rat HO-1 conjugate was added to each well and the plate was incubated 

at room temperature for 30 min. Again, wells were washed with 1X wash buffer 4 times 

and 100 μl of TMB substrate was added. Further incubation of the plate was done in the 

dark for 15 mins and the reaction was stopped by adding 100 μl of stop solution in the 

wells. Finally, the plate was read at 450 nm using a microplate reader (SpectraMax 

340PC, Molecular Device, CA, USA). The blue color intensity is directly proportional to 

the amount of HO-1 enzyme present in the wells. The standard curve was plotted using a 

linear scale concentration (ng/ml) on the X-axis and absorbance, corresponding rat HO-1 

standard, on the Y-axis. The sample concentrations were determined by multiplying by 

the dilution factor and presented as ng/ml of sample. 

 

3.4. Assay for heme oxygenase activity  

The HO activity was evaluated as bilirubin production using an established 

method [154, 170]. To perform this assay, bilirubin reductase was initially extracted 

from the liver cytosol as described below. The liver homogenates were prepared using 

ice-cold 0.25 M sucrose solution containing phenylmethylsulfonyl fluoride (1 mM), 

EDTA (0.2 mM) and 50 mM potassium phosphate buffer (pH 7.4). The homogenates 

were centrifuged at 20,000 g for 20 mins and supernatant fractions were centrifuged at 

150,000 g for 90 min. The microsomal pellets thus obtained were washed, and further 

resuspended in 20 mM potassium phosphate buffer (pH 7.4), containing 135 mM KCl, 1 

mM phenylmethylsulfonyl fluoride, and 0.2 mM EDTA to a protein concentration of 10 

mg/ml. The 150,000 g supernatant obtained from the microsomal preparation was 
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fractionated by addition of ammonium sulphate (AS), and the 40-60 % AS fraction was 

dissolved in 10 mM potassium phosphate buffer.  

To measure HO activity, both cardiac and kidney tissues (1 gram) were 

homogenized on ice in 4 ml of 5:1 K/Na 100 mmol/L phosphate buffer with 2 mmol/L 

MgCl2 (HO-activity buffer), then centrifuged at 13,000 rpm for 15 min. Aliquots of 100 

μl were collected from the supernatant, and placed in tubes containing 500 μl of a 

mixture of 0.8 mmol/L nicotinamide dinucleotide phosphate, 20 μmol/L hemin, 2 

mmol/L glucose-6-phosphate, 0.002 U/μl glucose-6-phosphate dehydrogenase, and 100 

μl liver cytosol as a source of biliverdin reductase. The reaction was started in the dark 

at 37ºC for 1 hr, and then stopped by adding 500 μl of chloroform. To extract bilirubin, 

tubes were vigorously agitated and centrifuged at 13,000 rpm for 5 mins. The 

chloroform layer was collected and read on a spectrophotometer, at 464 nm minus the 

background at 530 nm. The amount of bilirubin in each sample was determined by the 

spectrophotometric assay using (extinction coefficient for bilirubin 40  mM-1cm-1), and 

was expressed as nmole/mg protein/hr. The protein content was measured using 

Bradford assay [171]. Spleen tissue was used as a positive control [154].  

 

3.5. Measurement of cyclic guanosine monophosphate levels 

The quantification of cGMP was performed using Cayman’s competitive enzyme 

immunoassay (EIA) method directly from cardiac and kidney tissue homogenates [172].  

In short, this assay is based on the competition between free cGMP and a 

cGMP-acetylcholinesterase (AChE) conjugate (cGMP tracer) for a limited number of 

cGMP specific rabbit antibody binding sites. Briefly, the kidney and cardiac tissue 
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samples were homogenized in 6 % trichloroacetic acid at 4°C in the presence of 

3’-isobutil-1-methylxanthine to inhibit phosphodiesterase activity and centrifuged at 

2000 g for 15 mins. The supernatant was recovered, washed with water-saturated diethyl 

ether and the upper ether layer was aspirated and discarded while the aqueous layer 

containing cGMP was recovered and lyophilized. The dry extract from the samples were 

dissolved in assay buffer. EIA buffer, samples or cGMP standards, cGMP AchE tracer 

and cGMP antiserum were added in wells sequentially as described in the 

manufacturer’s protocol. After incubation for 18 hrs at 4oC, the plate was washed to 

remove any unbound reagents and then Ellman’s Reagent (which contains the substrate 

to AchE) was added to the well. The product of this enzymatic reaction develops a 

distinct yellow color after 90-120 mins. Finally, the plate reading was done at 412 nm 

using a microplate reader (SpectraMax 340PC, Molecular Device CA, USA). The 

intensity of this colour, determined spectrophotometrically, was proportional to the 

amount of cGMP tracer bound to the well, which was inversely proportional to the 

amount of free cGMP present in the well during the incubation and expressed as 

picomol of cGMP per mg of protein. 

 

3.6. Superoxide dismutase assay 

Superoxide dismutase assay was performed using an EIA kit (Cayman Chemical, 

Ann Arbor, MI, USA) according to the manufacturer’s instruction [40, 173] in kidney 

tissue. The assay was performed to detect total SOD activity (cytosolic and 

mitochondrial). 
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Kidney tissue samples were homogenized in 5-10 ml of cold 20 mM HEPES 

buffer pH 7.2, containing 1 mM EGTA, 210 mM mannitol and 70 mM sucrose per gram 

of tissue and centrifuged at 1500 x g for 5 mins at 4oC. Supernatants were collected and 

stored at -80oC untill assayed. In the present assay, tetrazolium salt was used for the 

detection of superoxide radicals generated by xanthine oxidase and hypoxanthine, and 1 

unit of SOD was defined as the amount of enzyme needed to produce 50 % dismutation 

of the superoxide radical. All reagents were equiliberated at room temperature and 

samples were thawed and kept on ice. The stock SOD standard solution was prepared by 

diluting 20 μl of SOD standard with 1.98 ml of sample buffer and a range between 0 to 

0.25 U/ml standards were used for the assay. Then 200 μl of diluted radical detector and 

10 μl of samples or standards were added to the wells and the reaction was initiated by 

adding 20 μl of diluted xanthine oxidase to all wells. Then all the contents from the plate 

were mixed carefully, subsequently, plate was covered and incubated on a shaker for 20 

mins. at room temperature. The absorbance was read at 450 nm using a plate reader 

(SpectraMax 340PC, Molecular Device, CA, USA). The results were calculated as 

units/ml of samples. 

 

3.7. Total antioxidant capacity assay 

In tissues, the antioxidant system comprises different enzymes including 

catalase, glutathione peroxidase and superoxide dismutase as well as substances such as  

α-tocopherol, β-carotene, ascorbic acid, ferritin, biliverdin, uric acid, reduced 

glutathione and bilirubin [104, 174-179]. The total antioxidant capacity is the sum of 
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endogenous and food-derived antioxidants. As compared to a single antioxidant, the 

additive effects of all the different antioxidants provide a greater protection.  

The total antioxidant capacity assay in both heart and kidney tissue [173, 174] 

was determined using an EIA kit (Cayman Chemical Company, Ann Arbor, MI, USA) 

according to the manufacturer’s instruction [40, 173]. This assay was based on the 

ability of the antioxidants in the samples to inhibit the oxidation of 2, 

2-azino-di-3-ethylbenzthiazoline sulphonate (ABTS) to ABTS plus metmyoglobin. In 

brief, kidney and left ventricular tissue samples were homogenized in the presence of 

protease inhibitors in 1 ml of cold buffer pH 7.4, containing 5 mM potassium phosphate, 

0.9 % sodium chloride and 0.1 % glucose. Samples were centrifuged at 10,000 x g for 

15 mins at 4oC. Supernatants were separated, and total protein of the samples were 

determined by the Bio-Rad method [171]. Samples were stored at -80oC untill assaying. 

Before beginning the assay, all reagents, except samples were equilibrated to room 

temperature. Trolox standards were prepared between the ranges of 0 to 0.330 mM 

Trolox. Then 10 μl of either standard or samples, 10 μl of metmyoglobin, and 150 μl of 

chromogen were added in the designated wells on the plate. Subsequently, the reaction 

was started by adding 40 μl of the hydrogen peroxide working solution to all the wells, 

as quickly as possible. The plate was covered and incubated on a shaker for 5 mins at 

room temperature. Finally, the absorbance was recorded after removing the plate cover 

at 750 nm using the Synergy Microplate Reader (BioTek Instruments, Inc., VT, USA) 

with Gen5 Data Analysis Software. The results were presented as trolox equivalent 

antioxidant capacity (TEA C) per mg protein [173]. 
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3.8. Measurement of aldosterone in the heart and kidney 

Cardiac and kidney tissue aldosterone concentrations were quantified using an 

aldosterone EIA kit-Monoclonal (Cayman Chemical Company, Ann Arbor, MI, USA) 

[12, 180]. The tissues were homogenized in 10 mM Tris-buffered saline (20 mM 

Tris-HCl of pH 7.4, 0.25 M sucrose, and 1 mM EDTA) in the presence of a freshly 

prepared cocktail of protease inhibitors, and centrifuged at 8500 rpm for 10 mins at 4oC 

using a method described previously [154] and total protein estimation was determined 

using the Bio-Rad method [171]. The assay was based on the competition between 

aldosterone and a tracer (aldosterone-acetylcholinesterase) using a fixed amount of 

aldosterone monoclonal antibody. This antibody-aldosterone (either free or tracer) 

complex was bound to the goat polyclonal anti-mouse IgG that had previously been 

attached in the well. The plate was washed to remove excess unbound tracers and 

subsequently, Ellman’s reagent was added in the well according to the protocol. The 

products of this enzymatic reaction give a yellow color, which was quantified 

spectrophotometrically using a standard curve generated by reading the absorbance at 

412 nm with a microplate reader (SpectraMax 340PC, Molecular Device, CA, USA). 

The intensity of the distinct yellow color was proportional to the amount of aldosterone 

tracer bound to the well, which was inversely proportional to the amount of free 

aldosterone present in the well during the incubation. Finally, the aldosterone 

concentration was equalized by calculation of aldosterone pg/mg protein in the tissue.  

 

3.9. Assessment of angiotensin-II in the heart and kidney 

Cardiac and kidney tissue angiotensin–II concentrations were quantified using an 

angiotensin-II EIA kit (SPI-BIO bertin group F-91741 - Massy Cedex, France). A 
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specific monoclonal anti-angiotensin-II was immobilised on a 96 well microtiter plate. 

Angiotensin-II of samples and standards was allowed to react immunologically for 24 

hrs at 4oC. Wells were then washed to remove the excess unbound molecules of 

angiotensin-II while the trapped molecules were covalently linked to the plate by 

glutaraldehyde via amino groups. In addition, denaturing treatment followed so that 

angiotensin-II could react again with the acetylcholinesterase-labelled mAb used as 

tracer. Finally, the plate was washed and Ellman's reagent (enzymatic substrate for 

AChE and chromogen) was added to the wells. The AChE tracer acts on the Ellman's 

reagent to form a yellow compound. Levels of angiotensin-II were quantified using a 

standard curve generated by reading the absorbance at 412 nm with a microplate reader 

(SpectraMax 340PC, Molecular Device, CA, USA) and represented as pg/mg protein 

[180, 181]. 

 

3.10. Urine analysis  

3.10.1. Measurement of urine excretion 

Patients having kidney problems are associated with frequent urination and 

increased excretion of urine (polyurea). Similarly, in the DOCA-salt hypertension either 

by pressure natriuresis or due to severe renal damage causes increase in urine excretions. 

Antihypertensive effect and improved renal lesions would reduce urine excretion. 

Therefore, at the end of the study, all the animals were kept in metabolic cages and urine 

was collected for 24 hrs. Total urine excreted per group was calculated as ml/24 hrs in 

all the groups.  

3.10.2. Total urinary protein assay 
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Total protein concentrations in urine samples were measured using the Bradford 

protein assay (Bio-Rad kit) [171]. The Bio-Rad protein assay used was a dye-binding 

assay, in which various concentrations of protein displayed different colors. The 

working dye solution was prepared by diluting 1 part dye reagent concentrate with 4 

parts distilled deionized water, and filtering through Whatman filter paper #1 to remove 

particulate. Bovine serum albumin (Fract V, Fisher BiReagents, USA) was used for the 

assay standard to determine a linear range of 0.2 to 0.9 mg/ml. Then 25 μl each of the 

standard and sample solutions were pipetted out into a clean, dry test tube (duplicates); 1 

ml of diluted dye reagent was added to each tube and finally the solutions were mixed 

by vortex. Tubes were incubated for 10 mins at room temperature and absorbance was 

measured at 595 nm. The protein concentration in the urine was calculated and presented 

in the form of total protein excretion in mg for 24 hrs urine collection [152]. 

3.10.3. Creatinine clearance rate 

Creatinine is a metabolic product of creatine-phosphate dephosphorylation in 

muscle. It is produced daily and is present in the blood at stable levels. It has a constant 

rate of production and is excreted through a combination of glomerular filtration (70-80 

%) and tubular secretion. With a decrease in the glomerular filtration rate, the creatinine 

clearance value becomes increasingly inaccurate due to the shift towards tubular 

secretion fractions as a greater proportion of total urinary creatinine (it may go to 60 % 

in renal insufficiency) [98].  

                                          
 

       Urinary creatinine concentration X urine flow/ volume 
 
Creatinine clearance =   -------------------------------------------------------------------- 
                                 Plasma creatinine concentration 
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Plasma creatinine, urine creatinine and creatinine clearance were measured in the 

Biochemical Laboratory (RUH), College of Medicine, with the help of the laboratory 

supervisor as per their standard protocol using a biochemical autoanalyser machine and 

kit (DXC, Beckman Coulter, CA, USA) [182]. 

 

3.11. Assay for urinary 8-isoprostane  

8-isoprostane, under normal condition appears in the plasma and urine, and when 

its levels are elevated, it signifies intense oxidative activities. Quantification of urinary 

8-isoprostane has been proposed to be a precise index of chronic and systemic 

non-enzymatic lipid peroxidation and increased ROS [33]. 

Urinary 8-isoprostane assay was done using an EIA kit (Cayman Chemical 

Company, Ann Arbor, MI, USA) according to the manufacturer’s instructions [46]. 

Urine samples were purified using an immunoaffinity method as described in the 

manufacture’s instruction before assaying. The assay is based on the competition 

between 8-isoprostane and an 8-isoprostane-acetylcholinesterase (AChE) conjugate 

(8-isoprostane tracer) for a specific 8-isoprostane rabbit antiserum binding site. 

Concentrations of 8-isoprostane were varied while the 8-isoprostane trace was constant, 

therefore, the amount of 8-isoprostane tracer that bound to rabbit antiserum was 

inversely proportional to the concentration of 8-isoprostane in the well. The complex of 

rabbit antiserum-8-isoprostane (either free or tracer) was bound to the rabbit IgG mouse 

monoclonal antibody, which was previously attached to the well. The plate was washed 

to remove excess unbound 8-isoprostane and reagents, then Ellman’s reagent containing 

the substrate AChE were added to obtain a yellow color, which absorbs at 412 nm. The 

intensity of yellow color determined spectrophotometrically is directly proportional to 
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the amount of 8-isoprostane tracer bound to the well. Where as it is indirectly 

proportional to the amount of free 8-isoportstane present in the well during the 

incubation; or 

Absorption α [Bound 8-Isoprostane Tracer] α 1/ [8-Isoprostane]. 

 

3.12. Western immunoblotting expression of HO-1, TGF-β and fibronectin 

Kidney tissues were homogenized in 10 mM Tris-buffered saline (20 mM 

Tris-HCl of pH 7.4, 0.25 M sucrose, and 1 mM EDTA) in the presence of a freshly 

prepared cocktail of protease inhibitors, and centrifuged at 8500 rpm for 10 mins at 4oC 

as described previously [154]. The supernatant was decanted and total protein 

concentration was determined by the Bio-Rad method [171]. Aliquots of 50 μg of 

proteins were loaded on a 10 % SDS-polyacrylamide gel. The fractionated proteins were 

electrophoretically transferred to nitrocellulose paper and non-specific binding was 

blocked with 3 % non-fat milk. Thereafter, the membranes were incubated overnight 

with primary rabbit anti-HO-1 antibody (Calbiochem, USA, 1:500), rabbit anti-pan 

TGF-β (Sigma-Aldrich, Inc., USA, 1:200), and mouse monoclonal anti-fibronectin 

antibody (Santa Cruz Biotechnology, Inc., CA, USA, 1:200) for HO-1, TGF-β and 

fibronectin, respectively. After several washes, the nitrocellulose blot was incubated 

with secondary goat anti-rabbit antibody conjugated to horseradish peroxide 

(Sigma-Aldrich, Inc., USA) for HO-1, TGF-β, while goat anti-mouse antibody for 

fibronectin, and the immuno-reactivity were visualized with enhanced horseradish 

peroxide/luminol chemiluminescence reagent (Perkin Elmer Life Sciences, Boston, MA, 

USA). A monoclonal antibody produced in mouse of glyceraldehyde-3-phosphate 
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dehydrogenase (GAPDH) and β-actin (Sigma-Aldrich, Inc., USA, 1:5000), and 

horseradish peroxide conjugated secondary goat anti-mouse antibody (Sigma-Aldrich, 

Inc., USA) were used for cardiac tissue and kidney tissue, respectively as a house 

keeping protein control to ascertain equivalent loading [183]. Relative densitometry 

analyses of respective bands of blots were carried out using UN-SCAN-IT software 

(Silk Scientific, Utah, USA). TGF-β and fibronectin expression were utilized in the 

kidney samples, however HO-1 expression was incorporated in both heart and kidney 

samples. 

 

3.13. Total RNA isolation and quantitative RT-PCR for NF-κB and AP-1 

Heart and kidney tissue, about 300 mg, was homogenized in 0.5 ml Trizol 

Reagent (Invitrogen Life Technologies, Carlsbad, CA, USA) according to the 

manufacturer’s specifications. Reverse transcription was carried out using the First 

Strand cDNA Synthesis Kit (Novagen, Madison, WI, USA) with 0.5 µg Oligo (dT)6, 50 

mM Tris-HCl (pH 8.3 at 25ºC), 75 mM KCl, 75 mM KCl, 3 mM MgCl2, 50 mM DTT, 

10 mM each free dNTP and 100 U of MMLV reverse transcriptase according to 

manufacturer’s instruction. Quantitative PCR was done with Applied Biosystems 7300 

Real Time PCR system (Foster City, CA, USA), iQ SYBR Green Supermix (Bio-Rad, 

Hercules, CA, USA) containing 50 mM KCl, 20 mM Tris-HCl (pH 8.4), 0.2 mM each 

free dNTP, hot start enzyme iQTaq DNA polymerase (25 U/ml), 3 mM MgCl2, SYBR 

Green 1, and 10 nM fluorescein as passive reference [184].  Triplicate samples 

containing 1 µl of cDNA were run using a template of 3.2 pmol of primers for NF-κB 

(forward, 5'CATGCGTTTCCGTTACAAGTGCGA-3' and reverse 5’TGGGTGCGT 
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CTTAGTGGTATCTGT-3'), AP-1 (forward, 5' AGCAGATGCTTGAGTTGAGAGCC 

A-3’ and reverse, 5’ TTCCATG GGTCCCTGCTTTGAGAT-3'), β-actin (forward, 5' 

TCATCACTATCGGCAATGAGCGGT-3' and reverse, 5' ACAGCACTGTGTTGGCA 

TAGAGGT-3’) and for heart house keeping gene GAPDH was used (forward, 

5’CCAGCCAAGGATACTGAGAGCAAGA-3' and reverse, 5' TCTGGGATGGAATT 

GTGAGGGAGA-3’) in a final volume of 25 µl. The National Research Institute of 

Canada, Saskatoon, confirmed the sequences of all primers used. The program for the 

thermal cycle was 10 mins at 95°C followed by 40 cycles of 15 secs at 95°C, 30 secs at 

56°C and 15 secs at 72°C.  The melting points of the PCR product were determined by 

incubating at 65°C for 1 min followed by a 1°C per min rise over 30 mins. 

 

3.14. Histopathological analysis of left ventricle and kidney 

The middle portion (midpapillary level) of the left ventricle and half of kidney 

were separated, fixed in 10 % formalin phosphate buffer for 48 hrs, processed and 

paraffin embedded. Then sections of 5 μm thicknesses were cut and stained with 

hematoxylin and eosin for histological analysis.  

3.14.1. Left ventricular morphological lesions: semi-quantitative analysis  

The left ventricular sections were obtained from the middle portion of the left 

ventricle to avoid differences in regional cardiomyocyte size in different regions of the 

left ventricle [185]. Observation of the degree of scarring was conducted in a blind 

fashion using light microscopy (Eclipse 80i, Nikon Canada Inc., Ontario, Canada)  

semi-quantitatively on a 0-2 scale (0= normal or almost normal; 1= focal mild; and 2= 

severe patchy lesions) in each cardiac tissue section, and the mean score was calculated 

per group [186].  
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3.14.2. Quantification of cardiac muscular hypertrophy  

Cardiac hypertrophy is a combination of myocyte hypertrophy and reactive 

fibrosis, therefore it was decided to measure cardiomyocyte size along with myocardial 

weight (cardiac or left ventricular weight) to exclude the confounding influence of 

non-myocyte on cardiac hypertrophy [187]. Cardiac muscular hypertrophy was initially 

scored blindly using a semi-quantitative method (0= no hypertrophy and 1= positive 

hypertrophy). It was further confirmed quantitatively by measuring muscle fiber 

thickness and myocyte diameter using image analyses software. To get consistent 

results, myocytes were positioned perpendicularly to the plane of the section with a 

visible nucleus and cell membrane clearly outlined. Unbroken areas were selected for 

measurement [188]. Left ventricular myocyte width (both longitudinal and 

cross/transverse sections separately) were measured randomly in 20 cardiac muscle 

fibers from each left ventricular tissue section. All sections were imaged at 400X using 

NIS-elements BR-Q imaging software (Nikon) [0.95 μm/Pixel (Px)]. Muscle fiber 

thickness was quantified and analyzed between different groups [189, 190]. 

3.14.3. Assessment of perivascular fibrosis  

Left ventricular paraffin sections of 5 μm thick were obtained and stained with 

Masson’s trichrome/collagen blue stain [191]. The tissue collagen was stained distinctly 

blue in the focal lesions of patchy fibrosis. The perivascular areas were also stained with 

blue color, indicative of fibrosis. All vessels from the left ventricular sections were 

selected and imaged at 200X, then photomicrographed by using NIS-element BR-Q 

imaging software (Nikon) [0.95 μm/Px]. Total areas of vessel and perivascular fibrosis 

were measured using the area measurement tool. Finally, assessment of the perivascular 
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fibrosis was done by calculating the ratio of the fibrosis area surrounding the vessel to 

the total vessel area, and averaged per group. [192]. 

3.14.4. Morphometric analysis of small coronary and renal arteries  

All small coronary and renal arteries from left ventricle and kidney sections were 

selected and imaged at 200X, respectively. Using NIS-elements BR-Q imaging software 

(Nikon) [0.95 μm/Px] the inner and outer diameters of arteries were measured and wall 

thickness calculated. In addition, the media-to-lumen ratio and medial cross-sectional 

areas of arteries were calculated and compared between the experimental groups 

[193-195]. 

3.14.5. Semi-quantitative analysis of morphological lesions in kidney  

Morphologic evaluation of glomerular hypertrophy, glomerular sclerosis, tubular 

dilation, cast formation and mononuclear cell infiltration was conducted in a blind 

fashion using light microscopy semi-quantitatively on a 0-3 scale (0= normal or almost 

normal; 1= mild; 2= moderate; 3= severe) in each kidney section and the mean score 

was calculated [196]. Quantitative assessments of renal glomerular and tubular lesions 

were done by counting the damaged and sclerotic glomeruli and tubular protein casts in 

each section [197]. 

3.14.6. Quantitative analysis of glomerular hypertrophy  

The cortex regions of the kidney sections were imaged at 200X and 30 glomeruli 

were selected randomly. Then the diameters of the glomeruli were measured using 

NIS-elements BR-Q imaging software (Nikon) [0.95 μm/Px] and compared between 

groups [182, 198].  
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3.15. Immunohistochemical detection of TGF-β and fibronectin 

Paraffin embedded sections of left ventricle and kidney tissue were taken for the 

detection of TGF-β whereas, only kidney tissue sections were utilized for the fibronectin 

detection in the three groups (UnX-sham, DOCA-salt and DOCA-salt + hemin) of the 

study. Five-micrometer thick sections were placed on the slides, deparaffinized, and 

rehydrated. The endogenous peroxidases were blocked by pre-treating sections with 3 % 

H2O2 in methanol for 10 mins, and then digested with pepsin at 37°C for 20 min. Dako 

autostainer universal staining system was used to perform all further procedures. Later, 

sections were incubated in protein-blocking serum for 60 mins. at room temperature 

followed by incubation with anti-rabbit TGF-β1/2/3 (1:50 dilutions) antiserum for 

TGF-β1/2/3, while fibronectin (P1H11) mouse monoclonal antibody (1:50 dilution) raised 

against a cell binding domain of fibronectin of human origin (Santa Cruz Biotechnology, 

Inc., CA, USA) for fibronectin about 30 mins. at room temperature. Sections were then 

washed in phosphate-buffered saline and incubated with an Envision plus chromagen 

linked secondary antibody (goat anti-rabbit or anti-mouse antibody, Santa Cruz 

Biotechnology, Inc., CA, USA) for 30 mins. Diaminobenzidine was used to localize 

peroxidase conjugates as a chromogen for 10 min. Finally, sections were counter-stained 

with hematoxylin and examined under the light microscope. Specific products utilized 

were included in the Dako Envision immunoperoxidase staining kit (Santa Cruz 

Biotechnology, Inc., CA, USA).   

The immunostaining intensity of TGF-β and fibronectin was scored on 50 

different fields per tissue section by semi-quantitative method, blindly. The staining 

intensity score per high power field was given on a 0-3 scale, where 0= no staining, 1= 
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mild, 2= moderate and 3 = maximum staining [199]. Further, the expressions of 

TGF-β and fibronectin were further confirmed by quantitative Western immunoblot 

method in the renal tissue only. 

 

3.16. Statistical analysis 

All data was expressed as mean ± SEM. Statistical analyses were done with a 

one way ANOVA for repeated measures wherever appropriate. Groups were compared 

using Bonferroni test for multiple comparisons. P values of p<0.05 were considered 

statistically significant. 
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4. RESULTS 
 
4.1. Effect of hemin on systolic blood pressure 

Systolic blood pressure was measured using a standard tail-cuff noninvasive 

blood pressure measurement system in the animals every week for 4 weeks during the 

protocol. Two normotensive groups and hemin-treated DOCA-salt group rats were 

compared with the DOCA-salt treated rats to observe the progression of development of 

the hypertension [Fig. 4.1.A]. However, at the end of study all rats from all groups were 

subjected to the standard tail-cuff noninvasive blood pressure measurement system to 

measure systolic blood pressure [Fig. 4.1.B]. The systolic blood pressure reading was 

determined from the mean of six readings per rat, and was averaged per group [154]. 

Hemin therapy given to DOCA-salt rats progressively lowered blood pressure over a 

four weeks period. Figure, 4.1.A demonstrated that the average systolic blood pressure 

in DOCA-salt hypertensive rats was significantly higher after the first week than in 

hemin-treated DOCA-salt, UnX-sham and normal SD [(140.8 ± 1.10 mmHg, n=22 vs. 

hemin-treated DOCA-salt, 114.7 ± 0.54 mmHg, n=22 and controls (113.7 ± 0.66 mmHg 

and 114.2 ± 1.05 mmHg, n=6), p< 0.01]. A gradual increase in blood pressure in the 

DOCA-salt rat was observed throughout the study. In the second week, the trend 

remained similar to that noted in the first week, as the blood pressure in DOCA-salt 

hypertensive rats was notably higher compared to hemin-treated and normotensive 

controls (155.4 ± 1.19 mmHg, n=22 vs. all groups, p< 0.01) [Fig. 4.1.A]. However, 

hemin-treated DOCA-salt rats showed significant increased blood pressure as compared 

to UnX-sham (118.5 ± 0.96 mmHg, n=22 vs. 113.6 ± 1.32 mmHg n=6, p< 0.05), but 

remained comparable to normal SD rats (114.8 ± 1.12 mmHg, n=6).  
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Figure 4.1. Effect of 4 weeks hemin treatment on systolic blood pressure of  
DOCA-salt-induced hypertensive rats. (A) Progressive changes in systolic blood 
pressure (weekly) of four different experimental groups. (B) The mean systolic blood 
pressure from all experimental groups at the end of study (4th week). The mean systolic 
blood pressure of controls such as normal SD, UnX-sham, UnX-salt and UnX-DOCA 
groups were within the normal physiological range. Uninephrectomized rat with 
DOCA-salt showed significantly higher systolic blood pressure, while hemin therapy 
restored systolic blood pressure to within the normotensive range. However, CrMP a HO 
blocker, nullified the effect of hemin and caused an increase in systolic blood pressure. 
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(#p< 0.05 vs. UNX-sham and DOCA-salt, *p< 0.01; †p< 0.01 vs. all other groups). Bars 
represent means ± SEs. 
[Normal SD- normal rat, UnX-sham- uninephrectomized rat + elastic strip + normal 
water, UnX-salt- uninephrectomized rat + elastic strip + salt water, UnX-DOCA- 
uninephrectomized rat + DOCA elastic strip + normal water, DOCA-salt- 
uninephrectomized rat + DOCA elastic strip + salt water and DOCA-salt + hemin- 
uninephectomized rat + DOCA elastic strip + salt water + hemin, DOCA-salt + hemin 
+ CrMP- uninephrectomized rat + DOCA elastic strip + salt water + hemin + CrMP]. 

 

Blood pressure in the third week was consistently higher in DOCA-salt hypertensive rats 

than controls [172.4 ± 0.91 mm Hg, n=22 vs. (UnX-sham, 118.0 ± 0.80 and normal SD, 

114.9 ± 0.83 mm Hg, n=6), p< 0.01]. However, hemin treated DOCA-salt rats showed 

significantly increased blood pressure compared to controls, but it was still within the 

normotensive range (126.6 ± 0.88 mm Hg, n=22 vs. controls, p< 0.01) [Fig. 4.1.A].  

In the fourth week DOCA-salt hypertensive rat showed severe hypertension with 

blood pressure reaching 190.9 ± 0.90 mm Hg, n=22, (p< 0.01) compared to all other 

experimental groups [Fig. 4.1.B]. Although, blood pressure of hemin-treated DOCA-salt 

hypertensive rats was within the normotensive range, it remained higher than that of 

control animals [135.6 ± 0.74 mm Hg, n=22 vs. ( UnX-DOCA, 119.0 ± 0.79 mm Hg, 

UnX-salt, 121.0 ± 0.91 mm Hg, UnX-sham, 120.0 ± 0.4 mm Hg and normal SD, 115.9 ± 

1.95 mm Hg, n=6), p< 0.01]. In contrast, CrMP a HO blocker, nullified the effect of 

hemin and showed significantly higher systolic blood pressure in the DOCA-salt + 

hemin + CrMP group (217.5 ± 3.7 mm Hg, n=6, p< 0.01) compared to all other groups 

[Fig. 4.1.B]. Importantly, in the present study blood pressure of the normotensive 

controls did not differ significantly, suggesting that uninephrectomy, DOCA and salt 

alone in the SD rat did not affect blood pressure up to 4 weeks of the study.  
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4.2. Effect of hemin treatment on body weight and hematocrit values  

At the end of the study, all animals were weighed and compared within groups to 

determine the effect of hemin on the body weight. The average body weight of the 

UnX-sham ( 471 ± 23.2 g, n=6), UnX-salt (454 ± 10.5 g, n=6) and UnX-DOCA (450 ± 

14.2 g, n=6) were significantly higher than the DOCA-salt hypertensive (405 ± 11.6 g, 

n=22), hemin-treated DOCA-salt (415 ± 5.8 g, n=22) and both CrMP + hemin-treated 

DOCA-salt (408 ± 10.1 g, n=6) rats, p< 0.05. Whereas, it did not differ from the normal 

SD (444 ± 19.1 g, n=6) [Table 4.1]. Hemin therapy did not affect the body weight of the 

experimental rats. 

      
    
 
 
 
 
 
 
 
 
Table 4.1. Effect of hemin on body weight and hematocrit values.  
            (†p<0.05 vs. DOCA-salt, DOCA-salt + hemin and DOCA-salt + hemin + CrMP; *p<0.01 vs.  
             all other group; Mean ± SE) 
 

Normal hematocrit values in the rat ranges from 36–54 % (juvenile to adult rat) 

[200]. In the present study, hematocrit values in the normotensive controls, 

hemin-treated, and both CrMP and hemin-treated DOCA-salt were within the normal 

range [normal SD, 53 ± 0.9 %, n=6; UnX-sham, 54 ± 0.5 %, n=6; UnX-salt, 53 ± 0.5 %, 

n=6, UnX-DOCA, 52 ± 0.4 %, n=6; DOCA-salt + hemin, 50 ± 2.1 %, n=22 and 

DOCA-salt + hemin + CrMP, 54 ± 0.4 %, n=6]. However, in the untreated DOCA-salt 

hypertensive rats, hematocrit values were significantly higher that all other groups (59 ± 

2.2 %, n=22, p< 0.01) [Table 4.1].  

Hematocrit
(%)

Body weight
(grams)

Parameter

54 ± 0.450 ± 2.259 ± 2.2*52 ± 0.453 ± 0.554 ± 0.553 ± 0.9

408 ± 10.1415 ± 5.8405 ± 11.6450 ± 14.2†454 ± 10.5†471 ± 23.2†444 ± 19.1

DOCA-salt 
+ hemin + 

CrMP (n=6)

DOCA-salt 
+ hemin
(n=22)

DOCA-salt
(n=22)

UnX-DOCA
(n=6)

UnX-salt
(n=6)

UnX-sham
(n=6)

Normal SD
(n=6)

Hematocrit
(%)

Body weight
(grams)

Parameter

54 ± 0.450 ± 2.259 ± 2.2*52 ± 0.453 ± 0.554 ± 0.553 ± 0.9

408 ± 10.1415 ± 5.8405 ± 11.6450 ± 14.2†454 ± 10.5†471 ± 23.2†444 ± 19.1

DOCA-salt 
+ hemin + 

CrMP (n=6)

DOCA-salt 
+ hemin
(n=22)

DOCA-salt
(n=22)

UnX-DOCA
(n=6)

UnX-salt
(n=6)

UnX-sham
(n=6)

Normal SD
(n=6)
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4.3. Effect of hemin regimen on cardiac and renal hypertrophy 

The effect of hemin on gross cardiac hypertrophy was determined by assessing 

heart-to-body weight ratio, left ventricle-to-body weight ratio, left-to-right ventricular 

weight ratio, and left ventricular wall thickness. A significant increase in the 

heart-to-body weight ratio was observed in the DOCA-salt hypertensive rats (3.8 ± 0.12 

gram/kg, n=22, p< 0.01) as compared to normal SD (2.9 ± 0.9 gram/kg, n=6), 

UnX-sham (2.8 ± 0.08 gram/kg, n=6), UnX-salt (2.7 ± 0.09 gram/kg, n=6) and 

UnX-DOCA (2.8 ± 0.4 gram/kg, n=6). Hemin treatment significantly reduced the 

heart-to-body weight ratio in the DOCA-salt hypertensive rats (3.4 ± 0.07 gram/kg, 

n=22, p<0.05), although not to control values. However, CrMP enhanced the 

heart-to-body weight ratio in the DOCA-salt hypertensive rats [Fig. 4.2.A]. Furthermore, 

left ventricle-to-body weight ratio in the DOCA-salt hypertensive rats (2.4 ± 0.14 

gram/kg, n=22, p< 0.01) was higher than normotensive controls (normal SD, 2.0 ± 0.08; 

UnX-sham, 1.82 ± 0.12; UnX-salt, 1.9 ± 0.06 and UnX-DOCA, 2.0 ± 0.09 gram/kg, 

n=6) and was in a comparable range with DOCA-salt + hemin + CrMP, treated 

hypertensive rats (2.7 ± 0.09 gram/kg, n=6). Hemin therapy reduced left 

ventricular-to-body weight ratios to the level of controls (2.1 ± 0.08 gram/kg, n=22, p< 

0.05) [Fig. 4.2.B].  

Another important index for the assessment of hypertrophy is the left-to-right 

ventricular weight ratio. The left-to-right ventricular weight ratio did not differ between 

the normotensive controls (normal SD, 4.1 ± 0.20; UnX-sham, 4.4 ± 0.66; UnX-salt, 4.4 

± 0.09 and UnX-DOCA, 4.3 ± 1.02, n=6), but was significantly elevated in DOCA-salt 

hypertensive rat (6.7 ± 0.62, n=22, p< 0.05) and DOCA-salt + hemin + CrMP treated 

rats (6.8 ± 0.87, n=6, p< 0.05) compared to controls. However, left-to-right ventricular  
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Figure 4.2. Hemin therapy inhibits DOCA-salt-induced cardiac and left ventricular 
hypertrophy. Uninephrectomized rats receiving DOCA-salt showed significant 
increased (A) Heart-to-body weight ratio, (B) Left ventricle-to-body weight ratio. Hemin 
therapy significantly prevented development of cardiac and left ventricle hypertrophy in 
the DOCA-salt rats, whereas CrMP blocked the effect hemin. (†p< 0.05 vs. all other 
groups; *p< 0.05 vs. Normal SD, UnX-sham, UnX-salt, UnX-DOCA and DOCA-salt 
hemin groups). Bars represent means ± SEs. 
 

A

0.0

0.9

1.8

2.7

3.6

4.5

 

 

H
ea

rt
-to

-b
od

y 
w

ei
gh

t r
at

io
 

(g
ra

m
/k

g)

*
†

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt

0.0

0.5

1.0

1.5

2.0

2.5

 

 

Le
ft 

ve
nt

ric
le

-to
-b

od
y 

w
ei

gh
t

ra
tio

 (g
ra

m
/k

g)

*

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt
B

A

0.0

0.9

1.8

2.7

3.6

4.5

 

 

H
ea

rt
-to

-b
od

y 
w

ei
gh

t r
at

io
 

(g
ra

m
/k

g)

*
†

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt

A

0.0

0.9

1.8

2.7

3.6

4.5

 

 

H
ea

rt
-to

-b
od

y 
w

ei
gh

t r
at

io
 

(g
ra

m
/k

g)

*
†

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt

0 .0

0.9

1.8

2.7

3.6

4.5

 

 

H
ea

rt
-to

-b
od

y 
w

ei
gh

t r
at

io
 

(g
ra

m
/k

g)

*
†

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt

0.0

0.5

1.0

1.5

2.0

2.5

 

 

Le
ft 

ve
nt

ric
le

-to
-b

od
y 

w
ei

gh
t

ra
tio

 (g
ra

m
/k

g)

*

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt
B

0.0

0.5

1.0

1.5

2.0

2.5

 

 

Le
ft 

ve
nt

ric
le

-to
-b

od
y 

w
ei

gh
t

ra
tio

 (g
ra

m
/k

g)

*

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt

0.0

0.5

1.0

1.5

2.0

2.5

 

 

Le
ft 

ve
nt

ric
le

-to
-b

od
y 

w
ei

gh
t

ra
tio

 (g
ra

m
/k

g)

*

Nor
mal 

SD
UnX

-sh
am

DOCA-sa
lt

DOCA-sa
lt +

 

he
min

n=6 n=6 n=22 n=22n=6 n=6n=6

UnX
-D

OCA

DOCA-sa
lt +

 

he
min

+ C
rM

P

*

UnX
-sa

lt
B



 64

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Hemin reduces left-to-right ventricular ratio and left ventricular wall 
thickness in DOCA-salt hypertensive rats. DOCA-salt and DOCA-salt + hemin + 
CrMP treated uninephrectimized rat showed significantly higher (A) left-right 
ventricular ratio and (B) left ventricular wall thickness. However, hemin treatment in 
DOCA-salt hypertensive rats restored left-to-right ventricular ratio and left ventricular 
wall thickness to control levels. (*p< 0.05 vs. Normal SD, UnX-sham, UnX-salt, 
UnX-DOCA and DOCA-salt hemin groups). Bars represent means ± SEs. 
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weight ratio between DOCA-salt and DOCA-salt + hemin + CrMP groups were 

non-significant. Interestingly, hemin therapy reduced the left-to-right ventricular weight 

ratio in the DOCA-salt hypertensive rats (4.2 ± 0.41, n=22, p< 0.05) to control levels 

[Fig. 4.3.A]. We also assessed the left ventricular wall thickness in the DOCA-salt 

hypertensive rat and relative controls. In a similar way this index was restored to control 

levels by hemin (2.82 ± 0.155 mm to 1.96 ± 0.138 mm, n=11, p< 0.01) [Fig. 4.3.B]. 

Similarly, at the end of study (4 weeks), DOCA-salt-induced hypertensive rats 

showed severe renal hypertrophy, which was assessed by the kidney-to-body weight 

ratio. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 4.4. Hemin therapy abates DOCA-salt-induced by kidney hypertrophy. 
Uninephrectomized rats receiving DOCA-salt showed significant increased 
kidney-to-body weight ratio. Hemin therapy significantly prevented kidney hypertrophy. 
There is no difference of kidney-to-body weight ratio between the normotensive control 
groups. CrMP treatment nullified the effect of hemin and enhanced renal hypertrophy. 
(†p< 0.01 vs. all other groups; *p< 0.01 vs. Normal SD, UnX-sham, UnX-salt, 
UnX-DOCA and DOCA-salt + hemin groups). 
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Kidney-to-body weight ratio was significantly increased in DOCA-salt 

hypertensive rats (7.73 ± 0.281 gram/kg, n=22, p< 0.01) as compared to control rats 

(normal SD, 3.97 ± 0.358; UnX-sham, 4.39 ± 0.094; UnX-salt, 4.41 ± 0.780 and 

UnX-DOCA, 3.85 ± 0.500 gram/kg, n=6). Hemin therapy significantly reduced renal 

hypertrophy (6.24 ± 0.129 gram/kg, n=22, p< 0.01), but not to control levels [Fig. 4.4]. 

Whereas, the HO blocker, CrMP exacerbated renal hypertrophy with ratios significantly 

higher than controls and DOCA-salt + hemin groups (p< 0.01).  

 

4.4. Effect of hemin on cardiac and renal HO-1 expression, HO activity, and cGMP 

   content 

The HO-1 concentration in cardiac tissue of normotensive controls were not 

significant (normal SD, 11.05 ± 0.904 vs. UnX-sham, 11.68 ± 0.868 ng/ml, n=6). In the 

DOCA-salt hypertensive rats the HO-1 concentration increased by 1.5-fold compared to 

the controls (17.32 ± 1.617 ng/ml, n=6, p< 0.05). Interestingly, hemin therapy in 

DOCA-salt hypertensive rats showed a 6.3 fold increase in the HO-1 concentration 

compared to normotensive controls (71.75 ± 4.579 ng/ml, n=6, p< 0.01). Whereas, the 

HO blocker CrMP abolished the effect of hemin in the DOCA-salt hypertensive rats 

(16.26 ± 2.431 ng/ml, n=6, vs. controls and DOCA-salt + hemin, p< 0.01) [Fig. 4.5.A]. 

Alternatively, HO-1 expression in the kidney tissue was quantified by Western 

immunoblot technique, compared to the relative percentage against β-actin. The HO-1 

expression in kidney tissue from the normotensive rats (normal SD, 10.3 ± 2.0, and 

UnX-sham, 10.7 ± 1.6 HO-1/β-actin %, n=6) were significantly lower compared to  
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Figure 4.5. Effect of hemin and CrMP on HO-1, HO activity and cGMP levels in 
cardiac tissue of DOCA-salt hypertensive rats. (A) Cardiac HO-1 levels measured 
using anti-rat HO-1 ELISA kit. Cardiac HO-1 levels in the DOCA-salt significantly 
higher than the controls, however hemin therapy further boosted robustly. (B) Similar to 
the HO-1 levels, HO activity in the DOCA-salt was increased significantly compared to 
the control groups and hemin further enhanced HO activity. (C) Stimulation of the HO 
system enhanced production of cGMP in hemin-treated DOCA-salt rats whereas, CrMP 
abolished the effects of hemin.  
(†p< 0.05 vs. Normal SD, UnX-sham and DOCA-salt + hemin groups; *p< 0.01 vs. all 
other groups). HO-1= heme oxygenase-1, cGMP = cyclic guanosine monophosphate 
 

 

 

C

0

5

10

15

20

25

30

 

 

n=6

*

C
ar

di
ac

  c
G

M
P

co
n t

en
t

(p
m

ol
/m

g 
pr

ot
ei

n )

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

A

0

20

40

60

80

 

 

n=6

*

†

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD

C
ar

d i
ac

 H
O

- 1
 

C
on

ce
nt

ra
ti o

n 
(n

g /
m

l)

DOCA-salt + 
hemin + CrMP

†

B

0

4

8

12

16

 

 

C
ar

di
ac

  H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

)

n=6

†

*

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

†

C

0

5

10

15

20

25

30

 

 

n=6

*

C
ar

di
ac

  c
G

M
P

co
n t

en
t

(p
m

ol
/m

g 
pr

ot
ei

n )

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

C

0

5

10

15

20

25

30

 

 

n=6

*

C
ar

di
ac

  c
G

M
P

co
n t

en
t

(p
m

ol
/m

g 
pr

ot
ei

n )

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

0

5

10

15

20

25

30

 

 

n=6

*

C
ar

di
ac

  c
G

M
P

co
n t

en
t

(p
m

ol
/m

g 
pr

ot
ei

n )

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

A

0

20

40

60

80

 

 

n=6

*

†

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD

C
ar

d i
ac

 H
O

- 1
 

C
on

ce
nt

ra
ti o

n 
(n

g /
m

l)

DOCA-salt + 
hemin + CrMP

†

A

0

20

40

60

80

 

 

n=6

*

†

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD

C
ar

d i
ac

 H
O

- 1
 

C
on

ce
nt

ra
ti o

n 
(n

g /
m

l)

DOCA-salt + 
hemin + CrMP

†

0

20

40

60

80

 

 

n=6

*

†

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD

C
ar

d i
ac

 H
O

- 1
 

C
on

ce
nt

ra
ti o

n 
(n

g /
m

l)

DOCA-salt + 
hemin + CrMP

†

B

0

4

8

12

16

 

 

C
ar

di
ac

  H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

)

n=6

†

*

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

†

B

0

4

8

12

16

 

 

C
ar

di
ac

  H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

)

n=6

†

*

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

†

0

4

8

12

16

 

 

C
ar

di
ac

  H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

)

n=6

†

*

DOCA-salt 
+ hemin

DOCA-saltUnX-shamNormal SD DOCA-salt + 
hemin + CrMP

†



 68

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.6. Hemin therapy enhances HO-1 expression, HO activity and cGMP in 
the kidney. (A) Representative western blot and densitometry analysis of HO-1 
expression against β-actin in kidney tissue. HO-1 expression was higher in the 
DOCA-salt rat and was further boosted significantly higher level by hemin. (B) 
Significant increased activity was found in the kidney of DOCA-salt compared with 
control rats. Hemin treatment robustly increased HO activity in DOCA-salt hypertensive 
rats. (C) Hemin therapy greatly enhanced cGMP content in the kidney of DOCA-salt 
rats. (*p< 0.01; †p< 0.05 vs. all other groups).  
β-actin = beta actin 
 

 

0

5

10

15

 

 

n=6

K
id

ne
y 

H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

) *

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham

†

B

0

5

10

15

20

 

 DOCA-salt
+hemin

n=6

*

Normal SD DOCA-saltUnx-sham

K
id

ne
y 

c G
M

P
c o

nt
en

t
(p

m
ol

/m
g  

pr
ot

ei
n )

C

A

0

10

20

30

40

50

 

 

n=6

K
id

ne
y 

H
O

-1
/β

-a
ct

in
 (%

) *

†

β-actin

HO-1
42 kD
32 kD

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham
0

5

10

15

 

 

n=6

K
id

ne
y 

H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

) *

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham

†

B

0

5

10

15

 

 

n=6

K
id

ne
y 

H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

) *

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham

†

0

5

10

15

 

 

n=6

K
id

ne
y 

H
O

 a
ct

iv
ity

(n
m

ol
bi

lir
ub

in
/m

g 
pr

ot
ei

n/
hr

) *

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham

†

B

0

5

10

15

20

 

 DOCA-salt
+hemin

n=6

*

Normal SD DOCA-saltUnx-sham

K
id

ne
y 

c G
M

P
c o

nt
en

t
(p

m
ol

/m
g  

pr
ot

ei
n )

C

0

5

10

15

20

 

 DOCA-salt
+hemin

n=6

*

Normal SD DOCA-saltUnx-sham

K
id

ne
y 

c G
M

P
c o

nt
en

t
(p

m
ol

/m
g  

pr
ot

ei
n )

0

5

10

15

20

 

 DOCA-salt
+hemin

n=6

*

Normal SD DOCA-saltUnx-sham

K
id

ne
y 

c G
M

P
c o

nt
en

t
(p

m
ol

/m
g  

pr
ot

ei
n )

C

A

0

10

20

30

40

50

 

 

n=6

K
id

ne
y 

H
O

-1
/β

-a
ct

in
 (%

) *

†

β-actin

HO-1
42 kD
32 kD

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham

A

0

10

20

30

40

50

 

 

n=6

K
id

ne
y 

H
O

-1
/β

-a
ct

in
 (%

) *

†

β-actin

HO-1
42 kD
32 kD

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham
0

10

20

30

40

50

 

 

n=6

K
id

ne
y 

H
O

-1
/β

-a
ct

in
 (%

) *

†

β-actin

HO-1
42 kD
32 kD

β-actin

HO-1
42 kD
32 kD

DOCA-salt
+ hemin

Normal SD DOCA-saltUnX-sham



 69

DOCA-salt hypertensive rats (16.2 ± 1.6 HO-1/β-actin %, n=6, p< 0.05), suggesting 

basal HO-1 levels in the normal animal. Hemin therapy further boosted renal HO-1 

expression compared to controls and only DOCA-salt alone treated hypertensive rats 

(45.2 ± 2.2 HO-1/β-actin %, n=6, p< 0.01) [Fig. 4.6.A].  

In cardiac tissue, HO activity in controls (normal SD and UnX-sham) were not 

significantly different from each other (1.5 ± 0.20 vs. 2.2 ± 0.40 nmol bilirubin/mg 

protein/hr, n=6). However, the HO activity of the controls were less than those of 

DOCA-salt alone treated hypertensive rats (3.6 ± 0.51 nmol bilirubin/mg protein/hr, 

n=6, p< 0.05) and combined hemin and CrMP treated DOCA-salt hypertensive rat (3.2 ± 

0.43 nmol bilirubin/mg protein/hr, n=6, p< 0.05). Hemin therapy alone further enhanced 

cardiac HO activity in DOCA-salt hypertensive rats (16.3 ± 0.93 nmol bilirubin/mg 

protein/hour, n=6, p< 0.01) compared to DOCA-salt alone treated and control rats [Fig. 

4.5.B]. Similar observations of HO activity were made in the kidney. In the kidney 

tissue of DOCA-salt hypertensive rat, the HO activity was significantly increased (3.1 ± 

0.57 nmol bilirubin/mg protein/hr, n=6, p< 0.05) compared to controls (normal SD, 1.8 ± 

0.42 and UnX-sham, 1.9 ± 0.32 nmol bilirubin/mg protein/hr, n=6). Similarly, as 

observed in the heart, hemin therapy further enhanced kidney HO activity by 7-fold than 

that of control rats [Fig. 4.6.B]. 

The basal cGMP in DOCA-salt hypertensive rats, which were comparable to the 

levels in normotensive controls were significantly elevated by hemin therapy. The basal 

cardiac tissue cGMP levels of UnX-sham, normal SD and DOCA-salt hypertensive rats 

were 10.77 ± 0.705, 10.25 ± 0.804, and 12.56 ± 1.327, pmol/mg protein, n=6, 

respectively and were not significantly different from each other. However, hemin 
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therapy robustly boosted cardiac cGMP content (26.06 ± 2.561 pmol/mg protein, n=6, 

p< 0.01) in DOCA-salt hypertensive rats compared to controls and DOCA-salt 

hypertensive rats [Fig. 4.5.C]. In constrast to that combined hemin and CrMP therapy 

blocked the effect of hemin in the DOCA-salt hypertensive rats (9.87 ± 2.132 pmol/mg 

protein, n=6, vs. hemin treated DOCA-salt group, p< 0.01). Similarly, hemin therapy 

significantly enhanced kidney cGMP content [17.25 ± 1.607 pmol/mg proteins, n=6, p< 

0.01 vs. untreated DOCA-salt hypertensive rats (8.43 ± 1.082 pmol/mg protein, n=6) and 

normotensive controls (normal SD, 8.10 ± 0.919 and UnX-sham, 8.63 ± 1.024 pmol/mg 

protein, n=6)] [Fig. 4.6.C]. 

 

4.5. Measurement of aldosterone and angiotensin-II levels in cardiac and renal  

    tissue after hemin therapy 

Hemin therapy significantly decreased cardiac aldosterone levels in DOCA-salt 

hypertensive rat (25.0 ± 5.65 to 7.1 ± 1.03 pg/mg protein, n=6, p< 0.05) compared to 

DOCA-salt alone to the level of controls (normal SD, 8.1 ± 2.74 and UnX-sham, 7.0 ± 

2.73, pg/mg protein, n=6) [Fig. 4.7.A]. Similarly, renal aldosterone levels in DOCA-salt 

hypertensive rats were substantially increased from the basal levels of normotensive 

controls (normal SD, 6.0 ± 2.24 and UnX-sham, 4.2 ± 2.03, pg/mg protein, n=6). 

However, hemin-treatment in DOCA-salt rats showed significant attenuation of renal 

aldosterone levels (28.7 ± 7.01 to 6.4 ± 2.56, pg/mg protein, n=6, p< 0.05) [Fig. 4.7.B].  

In this study, there were no significant difference between cardiac angiotensin-II 

levels of normal SD, UnX-sham and hemin-treated DOCA-salt rats (4.5 ± 1.07, 3.2 ± 

1.17 and 5.8 ± 1.53, pg/mg protein, n=6, respectively). However, in DOCA-salt 

hypertensive rats the levels of cardiac angiotensin-II were considerably increased (16.8 ±  



 71

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.7. Hemin therapy prevents the upregulation of cardiac and renal 
aldosterone levels. In DOCA salt hypertensive rat both cardiac (A) and renal (B) 
aldosterone were greatly increased compared with controls. Hemin therapy attenuated 
aldosterone levels in DOCA-salt hypertensive rats, which were comparable with 
controls. (*p< 0.05 vs. all other groups). 
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Figure 4.8. Effect of hemin treatment on cardiac and renal angiotensin-II levels. 
DOCA-salt stimulated both cardiac (A) and renal (B) angiotensin-II levels with respect 
to controls, However, hemin therapy significantly downregulated angiotensin-II levels. 
(*p< 0.05 vs. all other groups).   
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3.15 pg/mg protein, n=6, p< 0.05) than those of the controls. Hemin therapy robustly 

reduced angiotensin-II to the basal levels noted in control rats [Fig. 4.8.A].  Similarly, 

hemin therapy abated renal angiotensin-II levels in the DOCA-salt hypertensive rats 

(20.2 ± 4.87 to 4.9 ± 0.97, pg/ml, n=6, p< 0.05).  Angiotensin-II levels were restored to 

the levels of controls (normal SD, 5.3 ± 1.56, pg/mg protein and UnX-sham 4.8 ± 1.15, 

pg/mg protein, n=6) [Fig. 4.8.B].  

 

4.6. Effect of hemin therapy on markers/mediators of oxidative stress such as 

    urinary 8-isoprostane, NF-κB and AP-1 

4.6.1. Urinary 8-isoprostane 

Urinary 8-isoprostane was used as an oxidative maker in DOCA-salt 

hypertensive rats. The basal urinary 8-isoprostane levels in controls were found as, 8.78 

± 1.399 ng/24 hrs and 8.90 ± 1.654 ng/24 hrs, (n=6) in normal SD and UnX-sham, 

respectively. In the DOCA-salt hypertensive rat, enhanced excretion of urinary 

8-isoprostane (57.94 ± 3.322 ng/24 hrs, n=6, p< 0.01) was observed with respect to 

controls. However, hemin-treated DOCA-salt hypertensive rat substantially decreased 

urinary 8-isoprostane levels (18.17 ± 2.300 ng/24 hrs, n=6, p< 0.01) as compared to 

DOCA-salt treatment alone. This decreased urinary 8-isoprostane was not restored to the 

normal control levels. In constract, CrMP nullified the effect of hemin and increased 

urinary 8-isoprostane levels (71.99 ± 7.522 ng/24 hrs, n=6, vs. all other groups, p< 0.01) 

[Fig. 4.9]. 
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Figure 4.9. Hemin therapy attenuates urinary 8-isoprostane. Oxidation of tissue 
phospholipid membrane releases urinary 8-isoprostane, an index of systemic oxidative 
stress. DOCA-salt rats excreted significantly higher levels of urinary 8-isoprostane 
compared with controls. In hemin-treated rats, urinary 8-isoprostane was significantly 
abated, but levels remained significantly higher than controls. However, CrMP abolished 
the effect of hemin in DOCA-salt hypertensive rats. (†p< 0.05; *p< 0.01 vs. all other 
groups). 
 

4.6.2. NF-κB and AP-1  

For the evaluation of NF-κB expression, mRNA levels of NF-κB were measured 

by real-time RT-PCR and percentage arbitrary unit was expressed against mRNA of 

GAPDH and β-actin in both cardiac and renal tissue, respectively. As shown in Figure 

4.10.A, significantly increased cardiac mRNA expression of NF-κB levels was observed 

in DOCA-salt hypertensive rat [98.73 ± 6.631 NF-κB/GAPDH % vs. controls (normal 

SD, 28.37 ± 3.157 and UnX-sham, 30.84 ± 3.215 NF-κB/GAPDH %) n=6, p< 0.01]. 

Hemin, therapy significantly downregulated cardiac mRNA expression of NF-κB in 

DOCA-salt rats with respect to DOCA-salt treatment alone (40.12 ± 2.429  
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Figure 4.10. Hemin prevents activation of NF-κB in cardiac and renal tissue. 
Quantitative RT-PCR showing relative mRNA expression of NF-κB against GAPDH 
and β-actin, respectively. Hemin therapy significantly downregulated NF-κB expression 
in both cardiac (A) and renal (B) tissue as compared with DOCA-salt rats. However, 
NF-κB expression levels were significantly higher than the controls. CrMP treatment 
nullified the effect of hemin in DOCA-salt hypertensive rats. (†p< 0.01 vs. all other 
groups; *p< 0 .01 vs. Normal SD, UnX-sham and DOCA-salt + hemin groups).  
NF-κB = Nuclear factor kappa B.  
GAPDH = Glyceraldehyde 3-phosphate dehydrogenase. 
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Figure 4.11. Hemin therapy abates cardiac and renal AP-1 expression. Quantitative 
RT-PCR showing relative mRNA expression of AP-1 against GAPDH and β-actin, 
respectively. In DOCA-salt rat significant enhanced mRNA expression of AP-1 as 
compared to controls is shown. Both CrMP + hemin treatment also enhanced mRNA 
expression of AP-1 compared to all other groups. However, hemin regimen significantly 
attenuated mRNA expression of AP-1 in (A) cardiac and (B) renal tissue. This levels 
remained greatly higher than controls. (†p< 0.01 vs. all other groups; *p< 0.01 vs. 
Normal SD, UnX-sham and DOCA-salt + hemin groups).  
AP-1 = activating protein-1 
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NF-κB/GAPDH % n=6, p< 0.01). Although, hemin therapy abated mRNA expression of 

cardiac NF-κB levels, it was not restored to the control levels. CrMP treatment abolished 

the effect of hemin and significantly enhanced level of mRNA expression of NF-κB 

compared to all groups in DOCA-salt hypertensive rats (105.27 ± 7.215 NF-κB/GAPDH 

% n=6, p< 0.01). 

Analogically, in the normotensive controls, the basal kidney mRNA expression 

of NF-κB levels were noted as follows, 31.5 ± 2.54, NF-κB/β-actin % for normal SD 

and 34.1 ± 3.26 NF-κB/β-actin % for UnX-sham, n=6. In the DOCA-salt hypertensive 

rats enhanced activity of kidney NF-κB was observed, however hemin therapy 

significantly alleviated but remained at levels significantly above controls (93.8 ± 2.82 

vs. 59.6 ± 3.39, NF-κB/β-actin %, n=6, p< 0.01) [Fig. 4.10.B]. 

The transcription factor AP-1 was quantified by real-time PCR in all the 

experimental groups. As illustrated in Figure 4.11.A, the cardiac tissue of DOCA-salt 

hypertensive rat (69.73 ± 8.231 AP-1/GAPDH %, n=6, p< 0.01) had a significantly 

higher AP-1 mRNA expression in relationship to those of controls. Hemin treatment 

significantly abrogated cardiac mRNA expression of AP-1 in the DOCA-salt 

hypertensive rats. However, cardiac mRNA expression of AP-1 in hemin-treated 

DOCA-salt rat was significantly higher levels than those of controls [43.12 ± 3.43 

AP-1/GAPDH % vs. controls (normal SD, 15.37 ± 3.112 and UnX-sham, 17.35 ± 4.222 

AP-1/GAPDH %) n=6, p< 0.01]. In constrast, cardiac mRNA expression of AP-1 in 

DOCA-salt + hemin + CrMP group  was comparable with DOCA-salt group and 

significantly higher than controls and hemin treated DOCA-salt hypertensive rats (63.73 

± 5.324 AP-1/GAPDH %) n=6, p< 0.01). Simillarly, kidney mRNA expression of AP-1 
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was reduced in hemin-treated DOCA-salt hypertensive rat (96.9 ± 5.83, AP-1/β-actin % 

to 59.4 ± 7.15, AP-1/β-actin %, n=6, p< 0.01). The reduction of mRNA expression of 

AP-1 was not restored to the level of normotensive controls (Normal SD, 25.6 ± 8.77, 

and UnX-sham, 27.1 ± 7.11, AP-1/β-actin %, n=6, p< 0.01) [Fig. 4.11.B].  

 

4.7. Assessment of hemin regimen on antioxidant defense systems (ferritin and  

    SOD), and total antioxidant capacity  

Plasma ferritin levels in control rats were 1.83 ± 0.401 μg/L and 2.0 ± 0.365 

μg/L for normal SD and UnX-sham, respectively. However, in DOCA-salt hypertensive 

rats plasma ferritin levels decreased significantly as compared to the controls (0.92 ± 

0.239 μg/L, p< 0.01). After hemin therapy, plasma ferritin levels were reestablished 

compared to control levels (2.5 ± 0.447 μg/L, p< 0.01) [Fig. 4.12.A]. 

DOCA-salt hypertensive rats were associated with significant decrease in the 

kidney SOD level (4.27 ± 0.827 U/ml, n=6, p< 0.01) with respect to controls (normal 

SD, 13.65 ± 0.966 U/ml and UnX-sham, 12.65 ± 1.026 U/ml, n=6). However, hemin 

therapy, restored the renal SOD levels in the DOCA-salt rat to control levels (12.37 ± 

0.968 U/ml, n=6) [Fig. 4.12.B]. 

The total antioxidant capacity in cardiac tissue of controls (normal SD and 

UnX-sham) were comparable (0.97 ± 0.073 vs. 0.87 ± 0.088 mM of TEAC/mg protein, 

n=6). However, in the DOCA-salt alone (0.22 ± 0.009 mM of TEAC/mg protein, n=6, 

p< 0.01) and CrMP + hemin treated DOCA-salt (0.20 ± 0.051 mM of TEAC/mg protein, 

n=6, p< 0.01) hypertensive rats, significantly decreased total antioxidant capacity 

compared to controls. Hemin-treatment in DOCA-salt hypertensive rats revived the  
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Figure 4.12. Hemin treatment restores plasma ferritin and kidney SOD levels. (A) 
Plasma ferritin in DOCA-salt rat was downregulated as compared to controls. Hemin 
regimen significantly augmented plasma ferritin levels in DOCA-salt rats, which 
remained comparable to controls. (B) Increased oxidative stress in the DOCA salt rat 
reduced relative SOD antioxidant defense system; however, hemin therapy enhanced its 
activity and was not significantly different from controls. (*p< 0.01 vs. all other groups; 
†p< 0.01 vs. DOCA-salt). 
SOD = Superoxide dismutase, a metalloenzyme scavenges superoxide radicals 
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Figure 4.13. Hemin enhances total antioxidant capacity in heart and kidney. 
Hypertension in DOCA-salt rat downregulated total antioxidant capacity of (A) heart 
and (B) kidney as compared with normotensive controls. Hemin, regimen significantly 
increased total antioxidant capacity compared with untreated DOA-salt and restored to 
the level of normotensive controls. (*p< 0.01 vs. normal SD, UnX-sham and DOCA-salt 
+ hemin; †p< 0.01 vs. DOCA-salt and DOCA-salt + hemin + CrMP). 
TEAC = Trolox Equivalent Antioxidant Capacity 
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cardiac total antioxidant capacity (0.86 ± 0.047 mM of TEAC/mg protein, n=6, p< 0.01 

vs. untreated) [Fig. 4.13.A]. Similarly, kidney total antioxidant capacity was restored by 

hemin therapy (from DOCA-salt, 0.21 ± 0.008 mM of TEAC/mg protein to 0.69 ± 0.055 

mM of TEAC/mg protein, n=6, p< 0.01). Kidney total antioxidant capacity in 

hemin-treated DOCA-salt rats was comparable to controls (0.62 ± 0.048 vs. 0.57 ± 0.032 

mM of TEAC/mg protein, n=6) [Fig. 4.13.B]. 

 

4.8. Effect of hemin therapy on TGF-β in the left ventricle and kidney 

The remodeling of myocardium revealed the presence of TGF-β 

immunoreactivity, which was visualized as brown to reddish granules in myocardial 

tissue of the left ventricle [Fig. 4.14.A]. In the DOCA-salt hypertensive rats, a marked 

increase in the intensity of TGF-β immunostaining was observed in the lesions 

consisting of myocardial scarring, interstitial fibrosis and inflammatory lesions as 

compared to the UnX-sham (p< 0.01) [Fig. 4.14.A(ii)]. The intensity of the TGF-β 

immunoreaction was reduced in the left ventricle of hemin-treated DOCA-salt 

hypertensive rats compared with DOCA-salt treatment alone (p< 0.01) [Fig. 4.14.B].  

However, the reduction of TGF-β staining intensity did not reach that in normotensive 

controls [Fig. 4.14.B].  

Representative photomicrographs of different groups showing different 

intensities of kidney tissue TGF-β immunoperoxidase staining are shown in Figure 

4.15.A (i-iii). Positive staining for TGF-β was most prominently observed within renal 

tubular epithelium (brown to reddish granules) giving a typical mosaic appearance [Fig. 

4.15.A (ii)]. There was occasional mild staining of the interstitium; however, both  
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Figure 4.14. Effect of hemin therapy on TGF-β expression in cardiac tissue. (A) 
Representative photomicrographs from different groups showing different intensity of 
TGF-β. Reddish brown granules of TGF-β  (arrow)  in the area consisting of myocardial 
scarring, interstitial fibrosis and inflammatory lesions. Immunohistochemistry 
magnification-400X. (B) TGF-β expression was assessed semi-quantitatively using a 0 
to 3 scale (0- no staining, 1- very little stained area, 2- moderately stained area, 3- 
severely /all stained area). Fifty different fields in high power (per section) were scored 
and averaged per group. Cardiac tissue from a DOCA-salt treated rat shows increased 
immunostaining expression of TGF-β (ii) compared to UnX-sham (i), while hemin 
downreguated the TGF-β expression (iii). (*p< 0.01; †p< 0.01 vs. all other groups). 
TGF-β = transforming growth factor beta 
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Figure 4.15. Hemin therapy attenuates TGF-β  in the kidney. (A) Representative 
photomicrographs of different groups showing different intensity of reddish brown 
granules  of TGF-β (arrow) in both proximal and distal tubular epithelium and 
interstitial spaces. Immunohistochemistry magnification-100X. (B) TGF-β expression 
was assessed semi-quantitatively using 0 to 3 scale (0- no staining, 1- very little stained 
area, 2- moderately stained area, 3- severely / all stained area). Fifty different fields in 
high power (per section) were scored and averaged per group. Kidney tissue from 
DOCA-salt rat shows increased immunostaining expression of TGF-β (ii) as compared 
to UnX-sham (i), while hemin downreguated the TGF-β expression (iii). (C) 
Representative western blot for all groups, and densitometry analysis of 
TGF-β expression against β-actin revealed significant upregulation of TGF-β expression 
in DOCA-salt hypertensive rats. Hemin therapy, significantly abated TGF-β expression 
in the DOCA-salt rats. (*p< 0.01; †p< 0.01 vs. all other groups). 
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proximal and distal tubules were stained abundantly with TGF-β especially in 

DOCA-salt hypertensive rats. TGF-β staining was abundant within tubules showing 

vacuolar degeneration compared to normal appearing tubules. The combined 

semi-quantitative score of TGF-β staining for three experimental groups are shown in 

Figure 4.15.B. The localization of TGF-β was higher in DOCA-salt hypertensive rats as 

compared to both the UnX-sham and hemin-treated [Fig. 4.15.A&B]. Renal TGF-β 

intensity from the DOCA-salt hypertensive rats was significantly abrogated after hemin 

therapy [Fig. 4.15.B].  

The localization of TGF-β was further quantified by Western immunoblot 

method. The expression of TGF-β was assessed by utilizing relative densitometry 

against β-actin in the kidney. Interesting, the expression of TGF-β was increased by 

3-fold in the kidney of DOCA-salt hypertensive rats with respect to UnX-sham control. 

This indicates abundant activity of TGF-β in the renal tissue of DOCA-salt hypertensive 

rats. Hemin administration to DOCA-salt hypertensive rats significantly abated TGF-β 

protein expression in the kidney with respect to untreated DOCA-salt hypertensive rats 

(p< 0.01) [Fig. 4.15.C]. 

 

4.9. Effect of hemin treatment on ECM proteins  

4.9.1. Fibronectin expression and levels in the kidney 

Renal fibrosis was verified by immunostaining of kidney sections. Further 

quantification of fibronectin expression was done by Western immunoblot method. 

Figure 16A shows representative images of fibronectin immunostaining. Positive 

staining was found in connective tissue of blood vessels. Very scanty staining was found  
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Figure 4.16. Hemin therapy prevents mobilization of fibronectin in the kidney. (A) 
Representative photomicrographs showing brown staining (arrow) of fibronectin in the 
interstitial spaces, having different intensity for different groups. Immunohistochemistry 
magnification-100X. (B) Fibronectin expression was assessed semi-quantitatively using 
a 0 to 3 scale (0- no staining, 1- very little stained area, 2- moderately stained area, 3- 
severely /all stained area). Fifty different areas per high power field per section were 
scored and averaged per group. Kidney tissue from DOCA-salt rat showed increased 
immunostaining of fibronectin (ii) as compared to UnX-sham (i), while hemin 
downreguated the fibronectin expression (iii). (C) Representative western blot and 
densitometry analysis of fibronectin expression against β-actin.  In DOCA-salt 
hypertensive rat significantly higher levels of fibronectin was noted, however hemin 
therapy abrogated fibronectin expression. (*p< 0.01; †p< 0.01 vs. all other groups). 
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in the interstitium in the UnX-sham control [Fig. 4.16.A(i)]. DOCA-salt hypertensive 

rats showed enhanced renal interstitial fibrosis leading to increased staining intensity of 

fibronectin in the interstitial spaces. The fibronectin was detected in the form of brown 

granules forming patches in the tubular interstitial spaces [Fig. 4.16A(ii)].  

Hemin therapy significantly reduced fibronectin accumulation in the DOCA-salt 

hypertensive rats (p< 0.01) [Fig. 4.16.B], however, fibronectin expression remained 

significantly higher than controls, when observed by semi-quantitative method [Fig. 

4.16.B]. Western immunoblot analysis showed that hemin therapy significantly reduced 

relative fibronectin levels normalized by β-actin in the kidney of DOCA-salt 

hypertensive rats compared with untreated rats (80 ± 3.5 to 20 ± 1.2, fibronectin/β-actin 

%, n=4, p< 0.01) [Fig. 4.16.C]. 

4.9.2. Perivascular collagen depositions in the left ventricle 

Left ventricular fibrosis was evaluated by using Masson’s Trichrome collagen 

blue stain. Cardiomyocytes stained dark reddish, and ECM, such as collagen, stained 

blue. UnX-sham rat sections appeared morphologically normal with scanty ECM in the 

intermuscular spaces. DOCA-salt rats showed areas of focal patchy fibrosis as well as 

fibrosis around the perivascular regions, while hemin therapy attenuated the deposition 

of fibrosis, as observed by reduced focal extracellular and perivascular blue staining 

[Fig. 4.17.A]. Assessments of perivascular fibrosis were done by calculating the ratio of 

the fibrotic area surrounding the vessel to the total vessel area. In the DOCA-salt 

hypertensive rats extensive increased perivascular fibrosis indicative of reactive fibrosis 

in the cardiac tissue was observed compared to control rats [1.76 ± 0.162 vs. (normal 

SD, 0.40 ± 0.022 and UnX-sham, 0.47 ± 0.035), n=6, p< 0.01)]. Interestingly, hemin  
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Figure 4.17. Effect of hemin on perivascular fibrosis in the cardiac tissue section. 
(A) Representative photomicrographs showing blue stained collagen (arrows) around 
vessels of left ventricle from different groups (Masson’s Trichrome stain, 
magnification-200X). (B) Perivascular fibrosis was assessed by calculating the ratio of 
the fibrosis area surrounding the vessel to the total vessel area and averaged per groups. 
In the DOCA-salt rats, intense areas of perivascular fibrosis were observed and the 
hemin regimen significantly reduced perivascular fibrosis to levels comparable to 
controls. (*p< 0.01 vs. all other groups).  
(All vessels from cardiac section were imaged at 200X and using NIS-element BR-Q 
imaging. Total areas of vessel and perivascular fibrosis were measured using an area 
measurement tool and area was represented with the unit μm2). 
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Figure 4.18. Hemin attenuates left ventricular myocytes scarring. (A) Representative 
photomicrographs (H. & E. stain, magnification-200X) from normal SD (i) and 
UnX-sham (ii) group showing normal cardiac myocytes, whereas cardiac myocytes from 
DOCA-salt rats (iii) show distortion, scarring and infiltration of inflammatory cells in 
the lesion (arrow). Hemin therapy significantly reduced scarring and inflammatory cell 
infiltration (iv) as compared to DOCA-salt rats. (B) Semi-quantitative analysis of 
myocyte scarring was done on 0-2 scale (0- normal myocytes, 1- mild scarred myocytes 
and 2- moderate to severe myocyte scarring). DOCA-salt rats showed a significantly 
higher myocyte scarring score as compared to control. Hemin prevented the 
development of lesions in the DOCA-salt rats. (*p< 0.01 vs. all other groups; †p< 0.01 
vs. Normal SD and DOCA-salt groups). 
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therapy markedly reduced perivascular fibrosis in DOCA-salt hyertensive rats (0.44 ± 

0.029, n=6, p< 0.01) comparable to control levels [Fig. 4.17.B].  

 

4.10. Assessment of hemin therapy on morphological changes in the left ventricle  

4.10.1. Left ventricular myocyte scarring 

The left ventricle section of DOCA-salt hypertensive rats showed reparative 

types of cardiac myocyte scarring. It also showed marked inflammatory cell infiltration 

in the scar tissue of focal patchy lesions in the interstitium [Fig. 4.18.A(iii)] compared 

with the normotensive controls. However, very few sites of scarring and inflammatory 

cells were noted in the interstitial spaces in the cardiac section of hemin-treated rats 

[Fig. 4.18.A(iv)]. The myocardial lesions were scored by a semi-quantitative method on 

a 0-2 scale. It was found that in normotensive controls the score for myocardial lesions 

was almost nil (normal SD, 0.0 ± 0.0 and UnX-sham, 0.17 ± 0.17, semi-quantitative 

score, n=6) indicating that uninephrectomy did not affect cardiac tissue even after 4 

weeks of surgery [Fig. 4.18.B]. However, uninephrectomy, DOCA and NaCl-salt caused 

severe myocardial lesions such as scarring, fibrosis and infiltration of inflammatory cells 

compared to those of controls (1.3 ± 0.22 semi-quantitative score, n=6, p< 0.05). 

Interestingly, hemin therapy significantly abated the myocardial scarring lesions in 

DOCA-salt hypertensive rats (0.5 ± 0.22 semi-quantitative score, n=6, p< 0.05) to the 

level seen in UnX-sham. However, it remained significantly higher level than that of the 

normal SD rat (p< 0.05) [Fig. 4.18.B].  

4.10.2. Left ventricular myocyte hypertrophy 
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Figure 4.19. Representative photomicrographs of left ventricle myocytes from 
different groups with H. & E. stain, magnification-400X (A) Longitudinal and (B) 
Cross / transverse sections. Both Normal SD (i) and UnX-sham (ii) groups showing thin 
myocardial fibers with normal intermyocardial space. DOCA-salt group (iii) showed 
thick muscle fiber with reduced intermyocardial space. Hemin regimen in the 
DOCA-salt rat showed normalized muscle fiber and intermyocardial space (iv). 
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Figure 4.20. Hemin therapy attenuates cardiac myocyte hypertrophy. (A) 
Semi-quantitative scoring of cardiac myocyte hypertrophy (0- normal myocytes, 1- 
myocyte hypertrophy). The DOCA-salt rat showed significant myocyte hypertrophy, and 
hemin regimen prevented development of myocyte hypertrophy. (B) Longitudinal 
muscle fibers in DOCA-salt group were thick compared to Normal SD and UnX-sham 
groups. Hemin treatment reduced the muscle fiber thickness. (C) Diameter of cross / 
transnverse sections of myocytes in DOCA-salt hypertensive rats were significantly 
higher as compared to normotensive controls. Hemin regimen normalized myocyte 
diameter. (*p< 0.05; *p< 0.01 vs. all other groups; †p< 0.01 vs. normotensive controls). 
(Cardiac myocyte thicknesses were measured using NIS-elements BR-Q image analysis 
system at 400X-magnification). 
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Cardiac myocyte hypertrophy was assessed either by semi-quantitative scoring 

method or morphometric analysis of cardiomyocytes in left ventricular sections of 

different experimental groups by using image analysis techniques. In the DOCA-salt 

hypertensive rats, enlarged cardiomyocytes with increscent nuclei were evident, as 

compared to normal cardiomyocytes in the controls (1.0 ± 0.00 semi-quantitative score, 

n=6, p< 0.05) [Fig. 4.19.A&B and Fig. 4.20A]. Interesting, hemin-treated DOCA-salt 

hypertensive rats showed significant downregulation of cardiomyocyte thickness (0.33 ± 

0.21 semi-quantitative score, n=6, p< 0.05) rats [Fig. 4.20.A].  

Furthermore, consistent with whole heart and left ventricular hypertrophy data, 

DOCA-salt hypertensive rat myocytes were hypertrophied compared with both 

sham-operated and normal SD myocytes. There was a 62 and 82 % increase in the 

cardiomyocyte cell thickness for longitudinal and cross sections respectively, in 

DOCA-hypertensive as compared to the same area of the ventricle in normotensive 

control rats (p< 0.01) [Fig. 4.20.B&C]. Interestingly, the hemin regimen reduced 

cardiomyocyte cell thickness by 29 and 25 % for longitudinal and cross sectional 

measurement respectively, compared with only DOCA-salt treated rats [Fig. 

4.20.B&C].  

4.10.3. Morphometry of small coronary arteries in the left ventricle 

Small coronary arterial wall thickness, coronary arterial media-to-lumen ratio 

and wall area were analyzed by measuring inner and outer diameters of all 

intermyocardial coronary arteries from left ventricular sections in all experimental 

groups [Fig. 4.21.A]. The small coronary arterial wall thickness in the control rats were, 

normal SD, 25.76 ± 2.824 μm and UnX-sham, 30.59 ± 4.515 μm, (n=6), In the  
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Figure 4.21. Effect of hemin on small coronary arterial remodeling in cardiac 
tissue. (A) Representative photomicrographs showing small coronary arteries (arrows) 
in cardiac tissue with H. & E. stain, magnification-200X. Small coronary arteries from 
DOCA-salt rat showed a significant increase in small coronary arteriolar wall-to-lumen 
ratio (B), small coronary arterial wall thickness (C) and small coronary arterial wall area 
(D). Hemin regimen downregulated all these parameters in DOCA-salt rats to levels 
comparable with controls. (*p< 0.01 vs. all other groups). 
(Small coronary arteries wall thickness calculated by assessing inner and outer diameter 
of coronary arteries using NIS-elements BR-Q image analysis system at 
200X-magnification). 
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DOCA-salt hypertensive rat wall thickness was significantly increased to 68.23 ± 8.794 

μm, n=6, p< 0.01. Interestingly, hemin-treated DOCA-salt hypertensive rats showed 

significant reduction of the small coronary arterial wall thickness (24.20 ± 4.981 μm, 

n=6, p< 0.01) compared to DOCA-salt treatment alone [Fig. 4.21.C]. Similarly, 

hemin-treatment normalized other indices of small coronary arterial remodeling, such as 

the small coronary arterial wall-to-lumen ratio (0.99 ± 0.221 to 0.4 ± 0.067, n=6, p< 

0.01) [Fig. 4.21.B] and the small coronary arterial wall area (0.042 ± 0.006 mm2 to 0.01 

± 0.002 mm2, n=6, p< 0.01) [Fig. 4.21.D] to control levels. 

 

4.11. Effect of hemin therapy on DOCA-salt-induced renal injury 

4.11.1. Renal morphological lesions 

In the present study, all renal pathological lesions such as glomerular 

hypertrophy, sclerotic and damaged glomeruli, mononuclear cell infiltration, tubular 

dilation, tubular cast formation and small renal arterial wall thickening were observed in 

the DOCA-salt hypertensive rats [Fig. 4.22, 4.24, 4.25, & 4.26] [182]. These 

morphological lesions were graded on a 0-3 scale using semi-quantitative method and 

without knowing experimental groups [182]. Interestingly, hemin therapy, significantly 

reduced pathological structural alteration that were noted in the DOCA-salt rats (2.09 ± 

0.19 to 0.94 ± 0.08 semi-quantitative score, n=6, p< 0.01). However, score in 

hemin-treated rats was not reduced to control levels (normal SD, 0.15 ± 0.02 and 

UnX-sham, 0.38 ± 0.1 semi-quantitative score, n=6, p< 0.05) [Fig. 4.23.A]. The 

majority of these finding regarding morphological lesions were further confirmed by 

quantifying the glomerular diameter, counting damaged sclerotic glomeruli and tubular  
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Figure 4.22. Hemin abrogates renal morphological lesions such as mononuclear cell 
infiltration, glomerulosclerosis and tubular dilation. Representative 
photomicrographs showing (A) infiltration of mononuclear cell, (B) sclerotic glomeruli 
and (C) tubular dilations in the kidney section of DOCA-salt rat (arrow). However, 
hemin-treated kidney sections of DOCA-salt rat exhibited reduction in the 
morphological lesions. Control kidney sections showed normal structural morphology. 
Magnification-200X, H. & E. stain. 
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Figure 4.23. Hemin reduces morphological lesions, and damaged and sclerotic 
glomeruli numbers in the kidney. (A) Semi-quantitative scoring of renal 
morphological lesions showed higher lesions in DOCA-salt rat, whereas in the 
normotensive controls renal morphology was normal. Hemin significantly reduced the 
lesions in the DOCA-salt rat. (B) Microscopically, quantification of damaged and 
sclerotic glomeruli was done in the kidney sections. DOCA-salt rats showed severe 
increased numbers of damaged and sclerotic glomeruli per sections. Hemin therapy 
significantly lowered numbers of damaged and sclerotic glomeruli. (*p< 0.01; †p< 0.01 
vs. all other groups). 
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casts per section, and morphometric analysis of small renal arteriolar alterations in 

kidney tissue. These morphological lesions signify the extents of renal damages in the 

DOCA-salt hypertensive rats, which were present in the study. In the DOCA-salt 

hypertensive rat, hemin therapy attenuated pathological lesions in the kidney.  

4.11.2. Glomerular hypertrophy and sclerotic/damaged glomeruli in the kidney 

Renal damage was assessed by measuring glomerular hypertrophy parameter, 

where 30 glomeruli were randomly selected per section (180 glomeruli per group) [182]. 

A horizontal line measurement tool from image analysis was used to measure the 

diameters of glomeruli irrespective of shape. Our data demonstrated that with constant 

renal hypertrophy, DOCA-salt hypertensive rat glomeruli were hypertrophied compared 

with normotensive control glomeruli [Fig. 4.24.A]. In DOCA-salt hypertensive rat, 

glomerular size was significantly increased by 58.7 % as compared with the same area 

of renal tissue from normotensive control rats (average UnX-sham and normal SD) (p< 

0.01) [Fig. 4.24.B]. Interestingly, hemin treatment significantly reduced glomerular 

hypertrophy by 22.3 % with respect to DOCA-salt rats (p< 0.01). The reduction of 

glomerular diameter did not equal control levels (p< 0.01) [Fig. 4.24.B]. 

Alongside glomerular hypertrophy, the DOCA-salt hypertensive rat showed 

severe glomerular injury, which was characterized as necrotic and sclerotic glomeruli 

having typical fibrinoid lesions in the glomerular tuft [Fig. 4.22.B]. These typical 

damaged and sclerotic glomeruli were counted microscopically in the kidney sections of 

all groups. The basal number of damaged glomeruli in controls, normal SD and 

UnX-sham were 9 ± 1.2 and 2 ± 1.3, n=6, respectively and were not significantly 

different [Fig. 4.23.B]. However, in the DOCA-salt hypertensive rat numbers of 

damaged and sclerotic glomeruli were robustly increased to 90 ± 14.1 and were 
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Figure 4.24. Hemin attenuates glomerular hypertrophy. (A) Representative 
photomicrographs showing glomeruli per sections of kidney (arrow), H. & E. stain, 
magnification-200X. (B) Randomly thirty glomeruli were selected from cortex region of 
kidney section and measurement of glomerular diameter were done by using horizontal 
line scale of NIS-element BR-Q imaging system at 200X-magnification. In 
normotensive controls, glomerular diameters were similar to each other. In DOCA-salt 
hypertensive rat significant increased glomeruli diameter was noted. Hemin therapy 
attenuated glomerular diameter significantly. (*p< 0.01; †p< 0.01 vs. all other groups). 
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Figure 4.25. Hemin reduces tubular cast formation in the kidney of the DOCA-salt 
rat. (A) Representative photomicrographs showing pink colored tubular cast formation 
(arrow), H. & E. stain, magnification-200X. The normotensive controls (i&ii) showed 
normal tubular structure, however, the DOCA-salt rat showed severe tubular cast 
formation (iii). Hemin regimen significantly decreased tubular cast formation in the 
DOCA-salt rat (iv). (B) Microscopic quantification of tubular cast revealed that hemin 
therapy significantly reduced numbers of tubular cast formation as compared with 
untreated DOCA-salt rats. (*p< 0.05; †p< 0.05 vs. all other groups). 
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significantly different than controls (p< 0.01). The number of damaged and sclerotic 

glomeruli were in DOCA-salt hypertensive after hemin therapy (40 ± 2.4 vs. untreated, 

n=6, p< 0.01) [Fig. 4.23.B].  

4.11.3. Tubular cast formation in the kidney  

In the present study, tubular cast formations were counted microscopically in the 

kidney sections. Protein cast staining was found largely in thick ascending limbs of 

tubules [Fig. 4.25.A]. These cast formations were severe and clearly identified in the 

renal sections of the DOCA-salt hypertensive rat, which were significantly higher than 

that of controls [46 ± 18.9 vs controls (normal SD, 0.33 ± 0.21 and UnX-sham, 0.5 ± 

0.22), n=6, p< 0.01]. In the DOCA-salt hypertensive rat hemin therapy abated the 

tubular cast formation (8.83 ± 1.08, n=6, p< 0.05) significantly, which was above the 

levels of controls (p<0.05) [Fig. 4.25.B].  

4.11.4. Small renal arteries morphometry in the kidney 

  Small renal arterial alterations in the kidney sections were quantified using an 

image analysis system for the following parameters: small renal arterial wall thickness, 

small renal arterial wall-to-lumen ratio and small renal arterial wall area [Fig. 4.26.A]. 

Hemin therapy in the DOCA-salt hypertensive rat significantly attenuated all the 

parameters of renal arterial remodeling. Small renal arterial wall thickness was reduced 

from 75.2 ± 4.08 μm to 49.0 ± 3.54 μm, n=6, p< 0.01 [Fig. 4.26.B], small renal arterial 

wall thickness-to-lumen ratio decreased from 0.79 ± 0.39 to 0.51 ± 0.02, n=6, p< 0.01) 

[Fig. 4.26.C], and renal arterial wall area reduced from 0.048 ± 0.007 mm2 to 0.028 ± 

0.004 mm2, n=6, p< 0.01 [Fig. 4.26.D] significantly as compared to DOCA-salt 

treatment alone. Although, small renal arterial wall thickness-to-lumen ratio did not  
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Figure 4.26. Hemin prevents small renal arterial remodeling. (A) Representative 
photomicrographs showing small renal arteries, magnification-100X-, H. & E. stain.  
Small renal arteries from DOCA-salt rats showed significant increases in small renal 
arterial wall-to-lumen ratio (B), small renal arterial wall thickness (C) and small renal 
arterial wall area (D). Hemin therapy improved small renal arterial structures as 
reduction of all the parameters of arterial remodeling were observed in the DOCA-salt 
rats. (**p< 0.01; *p< 0.05 and †p< 0.01 vs. all other groups). 
(Small renal arterial wall thickness were calculated by assessing inner and outer 
diameter of all small renal arteries using NIS-elements BR-Q image analysis at 200X- 
magnification)     
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restored to the control levels, small renal arterial wall thickness and renal arterial wall 

area were comparable with controls. 

 

4.12. Effect of hemin regimen on functional parameters of the kidney  

4.12.1. Polyurea and proteinuria 

In DOCA-salt hypertensive rats, severe renal damage led to significantly higher 

urine excretion as compared to control rats [58.5 ± 8.61 ml/24 hrs, n=22, vs. controls 

(normal SD, 22.3 ± 5.17 and UnX-sham, 24.8 ± 2.89 ml/24 hrs, n=6), p< 0.05]. 

However, antihypertensive effect and improved renal lesions in the hemin-treated 

DOCA-salt hypertensive rat robustly reduced urine excretions comparable to control 

levels (33.8 ± 3.48 ml/24 hrs, n=22, p< 0.05) [Fig. 4.27.A]. 

Moreover, the basal urinary protein levels in the control rats were 11.7 ± 2.29 

mg/24 hrs urine and 10.9 ± 2.19 mg/24 hrs urine, (n=6) for normal SD and UnX-sham, 

respectively. Whereas, in the DOCA-salt hypertensive rat extensive urinary protein 

excretion was noticed (96.3 ± 22.33 mg/24 hrs urine, n=11, p<0.01). However, 

hemin-treated DOCA-salt rat showed significant reduction of urinary protein excretion 

as compared to DOCA-salt alone (18.5± 3.14 mg/24 hrs urine, n=11, p<0.01) [Fig. 

4.27.B].  

4.12.2. Creatinine clearance rate 

Plasma and urine levels of creatinine also predict the renal function and 

glomerular filtration rate. The plasma creatinine levels in control rats were 3.2 ± 0.50 

mmol/L and 3.6 ± 0.70 mmol/L, n=6, in the normal SD and UnX-sham, respectively.  

In DOCA-salt hypertensive rats, the plasma creatinine level was significantly increased 

as compared to that of control rats (84.2 ± 4.6 mmol/L, n=6, p< 0.01).  



 103

 

0

15

30

45

60

75

 

 

Normal SD UnX-sham DOCA-salt DOCA-salt
+ hemin

U
rin

e 
ex

cr
et

io
n 

(m
l/2

4 
hr

s)

n=6 n=6 n=22 n=22

*

A

0

30

60

90

120

 

 

Pr
ot

ei
n 

ex
cr

et
io

n 
in

 u
rin

e
m

g 
pr

ot
ei

n/
24

 h
rs

 

Normal  SD UnX-sham DOCA-salt DOCA-salt
+ hemin

n=6 n=6 n=11 n=11

**

B

 

 
 
Figure 4.27. Hemin treatment decreases urine excretion and proteinuria. In 
DOCA-salt rats renal damage led to severe (A) polyuria and (B) proteinuria. After 
hemin therapy showed reduced urine excretion and proteinuria were observed, which are 
functional parameters of renal damage. (*p< 0.05; *p< 0.01 vs. all other groups). 
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Figure 4.28. Hemin therapy reduces plasma and urine creatinine levels and 
creatinine clearance. DOCA-salt hypertensive rat showed increased plasma (A) and 
urine creatinine levels (B) and decreased creatinine clearance rate (C) as compared to 
normotensive controls. However, hemin regimen significantly reduced plasma and urine 
creatinine and improved creatinine clearance rate.  
(*p< 0.01; †p< 0.01 vs. all other groups). 
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However, hemin-treated DOCA-salt hypertensive rat showed significant attenuation of 

plasma creatinine levels compared to that of DOCA-salt treatment alone (12.2 ± 1.6 

mmol/L, n=6, p< 0.01) [Fig. 4.28.A]. Similarly, urinary creatinine levels in DOCA-salt 

hypertensive rat were significantly higher than control rats [(18.2 ± 1.8 mmol/L vs. 

controls (normal SD, 2.89 ± 0.60 mmol/L and UnX-sham 3.5 ± 0.30 mmol/L), n=6, p< 

0.01]. However, the hemin regimen significantly reduced the urinary creatinine to a level 

significantly less than DOCA-salt alone but significantly higher than controls (5.8 ± 0.70 

mmol/L, n=6, p< 0.01 vs. all other groups) [Fig. 4.28.B]. 

The creatinine clearance rate was calculated from plasma and urinary creatinine 

concentrations and total urine excretion for 24 hrs. A significant reduction in the 

creatinine clearance rate was observed in the DOCA-salt rat (10.8 ± 1.2 ml/24 hrs, n=6, 

p< 0.01) compared to control rats (normal SD 24.6 ± 1.2 ml/24 hrs and UnX-sham 25.2 

± 1.8 ml/24 hrs, n=6). Hemin-treated DOCA-salt rats showed an improved creatinine 

clearance rate (47.2 ± 3.1 ml/24 hrs, n=6, p< 0.01) [Fig. 4.28.C]. 
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5. DISCUSSION 

Mineralocorticoid causes retention of salt and water as it has an aldosterone 

mimetic property. The uninephrectomized rat, treated with DOCA and salt water, 

develops severe hypertension, which is also known as salt sensitive high blood pressure 

[201]. DOCA-salt-induced hypertension is characterized by end-stage organ damage, 

leading to cardiac and renal insuffiencies [201]. In the present study, the data showed 

that DOCA-salt treatment of uninephrectomized SD rats increased systolic blood 

pressure, enhanced local cardiac and renal tissue levels of angiotensin-II, and 

aldosterone and oxidative stress, which stimulate other signal transduction pathways 

leading to the development of cardiac and renal end-stage injury. Tissue angiotensin-II 

and aldosterone are contributing factors for cardiac and renal injury. The roles played by 

these hormones would be subsequent to that initiated by DOCA and NaCl-treatment. 

Interestingly, our study showed augmentation of HO-1 expression, HO activity and 

cGMP levels in cardiac and renal tissue after administration of hemin in the DOCA-salt 

hypertensive rat. Moreover, enhanced HO activity was associated with significant 

attenuation of cardiac and renal tissue angiotensin-II and aldosterone, decreased 

oxidative stress with subsequent downregulation of redox sensitive 

(oxidative/inflammatory) transcription factors such as NF-κB and AP-1. In addition, 

hemin significantly decreased the profibrotic molecule TGF-β1 and further, reduced the 

mobilization of ECM proteins such as collagen and fibronectin. Hemin improved both 

cardiac and renal lesions shown by normalization of renal function test such as 

proteinuria and creatinin clearance rate. 
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5.1. Physiological parameters such as systolic blood pressure, body weight and 

    hematocrit   

In the present study, blood pressure was measured indirectly by incorporating the 

standard non-invasive tail cuff method weekly throughout the protocol on the 

experimental rats (except UnX-DOCA, UnX-salt and DOCA-salt + hemin + CrMP 

groups). In the DOCA-salt hypertensive rat model, a steadily positive sodium balance 

leads to continuous increase in blood pressure for the initial 3 weeks period. After this 

period, fluctuation of the sodium balance causes onset of malignant phase of 

hypertension that is associated with fibrinoid necrosis of glomeruli in the kidney [202]. 

Animals start showing two to three paroxysms of sodium loss with concomitant fall in 

body weight, fluid loss and evidence of hemoconcentration [202]. Initial high blood 

pressure in the DOCA-salt model is due to increase in fluid volume, in the later stage 

due to paroxysms sodium and fluid losses takes place, however, blood pressure is 

maintained at higher levels due to arterial remodeling [150], and cardiac and renal 

alterations.  

Hemin therapy abated blood pressure in the DOCA-salt hypertensive rat over a 

four-week study period. Importantly, the antihypertensive effects observed in 

hemin-treated DOCA-salt rats are consistent with previous studies in which upregulation 

of HO system was shown to normalize blood pressure in SHR and DOCA-salt 

hypertensive model, however CrMP, a HO blocker nullified effect of hemin and 

enhanced systolic blood pressure [155]. The antihypertensive effect was accompanied 

with enhanced activity of the HO system, cGMP and total antioxidant capacity in the 

cardiac and renal tissue, which are some of the main blood pressure regulatory organ 

systems along with vasculature of the body. Products of heme catabolism by the HO 
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system have the properties of regulating blood pressure, especially carbon monoxide. 

Previously it has been showed that acute [123] or chronic [203] administration of the 

HO-1 inducer (stannous chloride) led to normalization of blood pressure in the SHR. In 

addition, HO substrates or HO-1 inducer have been shown to decrease blood pressure in 

the SHR [204-206]. Conversely, when the HO-1 inhibitor, zinc deuteroporphyrin 2,4 

bis-glycol was administered intraperitoneally in the normotensive rat model, it led to a 

rapid increase in the arterial pressure and inhibited carbon monoxide production [207]. 

Upregulation of the HO system led to an increase in the catabolism of heme and release 

of different products such as ferritin, biliverdin, bilirubin and carbon monoxide. 

Importantly, carbon monoxide has been known as a vascular relaxant, acting through the 

stimulation of sGC, affecting cytochrome P450 and opening calcium–activated K+ 

channels [208]. Moreover, the antihypertensive effects of hemin in the SHR model is 

associated with increased HO-1 expression, HO activity, sGC, and cGMP in the thoracic 

aorta and mesenteric arteries [153, 155]. Also, it reversed SHR-featured arterial 

eutrophic inward remodeling and decreased vascular endothelial growth factor 

expression [155].  Increased HO-1 expression and total HO activity could generate 

more carbon monoxide, a vasodilator and may cause vascular relaxation. Carbon 

monoxide plays an important role in the regulation of both renal cortical and medullary 

blood flow [209]. Predominantly, hemin therapy induces HO-1 in the kidney, which may 

increase renal cortical and medullary blood flow and would shift the pressure-natriuretic 

response towards the left, lowering the blood pressure in the hypertensive models [210].  

Several studies have showed evidence for an enhanced production of ROS and 

decrease in the antioxidant defence system in plasma and tissue of hypertensive animals 

and humans [211]. Furthemore, in various models of hypertension such as DOCA-salt, 
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SHR, glucose-induced and angiotensin-induced models, a progressive increase in the 

production of superoxide anion have been demonstrated in vascular and cardiac tissue 

during the development of hypertension [212]. Oxidative stress mediated through the 

formation of superoxide anion is a major primary pathogenic factor in the development 

of hypertension, however, treatment with efficacious antioxidant therapies can prevent 

or markedly attenuate the development of hypertension [213]. Along with oxidative 

stress, growing evidence also suggests that inflammation participates in the development 

and pathogenesis of hypertension [214]. Therefore, for the treatment of hypertension, it 

is essential to conteract both oxidative stress and inflammatory cascades. Importantly, 

bilirubin and biliverdin, endogenous antioxidant and anti-inflammatory factors produced 

by the HO system [215], would suppress oxidative stress and the inflammatory cascade, 

known to accompany hypertension [216]. In addition, HO activity is associated with 

increased ferritin activity, which also possesses anti-inflammatory and antioxidant 

properties [217]. Interestingly, in our study, increased plasma ferritin levels were 

accompanied by enhanced total SOD, total antioxidant capacity and decreased NF-κB, 

which indicates the suppression of oxidative stress and the inflammatory cascade in 

hemin treated DOCA-salt hypertensive rat. It also suggests decrease in hypertension is 

associated with significant reduction of both oxidative stress and inflammation in hemin 

treated DOCA-salt hypertensive rats. 

Although, the direct effect of hemin induced molecular changes in the 

vasculature of the DOCA-salt rat was not incorporated in this study, previous studies 

showed that upregulation of the HO system led to vascular relaxation through the 

sGC-cGMP pathway and subsequently, normalized blood pressure in the SHR [154]. 
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Importantly, in the present study, the heart and kidney were employed to investigate the 

effect of hemin to counteract DOCA-salt induced end-stage damage, as they are known 

to be vital organs having a role in controlling blood pressure. Improvement in these 

organ systems indirectly confirms the effect of hemin on blood pressure in the 

DOCA-salt hypertensive rat. Furthermore, decreased proteinuria and suppressed 

oxidative stress in the kidney, as shown by reduced urinary 8-isoprostane, also directly 

shows improved renal function, and in part, improved blood pressure in the DOCA-salt 

hypertension model. Interestingly, our study also demonstrated that upregulation of the 

HO system attenuated both cardiac and renal aldosterone and angiotensin-II. These 

hormones are known to trigger mechanisms involved in elevation of blood pressure, 

oxidative stress and promote inflammation by activation of NF-κB and AP-1 [71, 218, 

219]. Angiotensin-II is known as a potent vasoconstrictor, which also stimulates 

production of aldosterone resulting in retension of salt and water leading to increase in 

blood pressure. Therefore, abrogation of these hormones might have caused additive 

effects and led to the reduction of blood pressure in the DOCA-salt hypertensive rats. 

The results from our study also showed that hemin therapy did not affect body 

weight since weight of treated rats were not different from the control rat. However, 

body weights of DOCA-salt hemin-treated DOCA-salt and both hemin and CrMP 

treated DOCA-salt rats were significantly lower than uninephrectomized rats. Decreased 

body weight in DOCA-salt group was probably due to paroxysms of sodium loss [202] 

and subsequently fluid loss through urinary excretion and end stage cardiac and renal 

damage, which was evident in the present study. Uninephrectomized rat showed increase 

in body weight, which was not significant with respect to normal SD control rats.  
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Since hemin is known to be an activator and growth promoter of early 

hematopoietic progenitor cells [107] blood hematocrit values were measured in the 

experimental rats. The hematocrit values of the hemin treated DOCA-salt rats were 

significantly lower than DOCA-salt alone and were within the normal range.  This 

slight increase in the hematocrit level in the DOCA-salt hypertensive rat could be due to 

transient reduced plasma volume from pressure natriuresis and reduced vascular lumen, 

a characteristic of the DOCA-salt model [150]. Another explanation for increased 

hematocrit value in the DOCA-salt rat could be due to the increase in the heme content a 

pro-oxidant [106], and which was expressed significantly by increased oxidative stress, 

along which decreased total antioxidant capacity and SOD levels. Heme is a component 

in the synthesis of hemoglobin and increased heme content might cause increased 

synthesis of hemoglobin in the reticulocytes (immature RBCs). Therefore, reticulocytes 

could have been released into the blood circulation leading to an increased hematocrit 

values in the DOCA-salt rat. However, hemin treated DOCA-salt hypertensive rat could 

have enhanced catabolism of excessive heme content, leading to a decreased synthesis of 

excess hemoglobin, and reduced abonormal reticulocyte counts, which subsequently 

restored the hematocrit value to normal range.  

 

5.2. Heme oxygenase and cyclic guanosine monophosphate 

HO-1 is a 32 kDa protein; an inducible isoform of the HO enzyme. Different 

stimuli induce HO-1 expression in the various mammalian cells. The HO-1 enzyme is 

also sensitive to pharmacological agents. HO activity consists of the relative input by 

HO-1 and HO-2 proteins. However, HO-2 is the constitutive isoform and is not 

pharmacologically modulated [108]. Hemin is one of the most potent pharmacological 
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stimulators of the HO-1 enzyme [106, 107]. Accordingly, our result indicates that hemin 

therapy increased the HO enzyme activity in a similar way as HO-1. Importantly, our 

result showed that in the DOCA-salt hypertensive rat both cardiac and renal HO activity 

were significantly higher than the normotensive control rats. Although the basal HO 

activity in DOCA-salt hypertensive rat was higher than in controls, the magnitude might 

have been insufficient to trigger the downstream element of the HO-signal transduction 

pathways. This notion in consistent with inability of basal HO activity in DOCA-salt 

hypertensive rat to cause any detected changes in cGMP, an important signaling 

molecule of the HO system [Fig. 4.5.B & 4.6.B]. It is important to note that 4.5 and 

2.1-fold increase of cardiac HO activity and cGMP content was demonstrated after the 

administration of hemin in DOCA-salt hypertensive rat [Fig. 4.5.B&C]. Similar 

increases of 5.6 and 2.1-fold were observed in the kidney tissue [Fig. 4.6.B&C]. 

Therefore, it is possible that enhanced HO activity by hemin therapy would cause a 

parallel increase in the production of endogenous CO that would in turn stimulate cGMP 

content. However, combined treatment with CrMP and hemin attenuated HO-1 

expression, HO activity and cGMP levels in cardiac tissue indicative of HO blocking 

effect of CrMP against hemin in DOCA-salt hypertensive rat. This observation is 

consistent with previous finding in SHR and DOCA-salt hypertensive study [40, 153, 

154]. 

Given that carbon monoxide, one of the products of heme catabolism, stimulates 

the sGC/cGMP pathway to regulate vascular tone [153], carbon monoxide may 

upregulate the production of cGMP in cardiac and renal tissue. In addition, cGMP has 

cytoprotective and antiproliferative properties [128]. Interestingly, in this study, hemin 

therapy enhanced the HO activity and cGMP content in both cardiac and renal tissue of 
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the DOCA-salt hypertensive rats. Thus, HO triggered release of carbon monoxide will 

stimulate cGMP, which further will activate downstream mechanisms to relax vascular 

tissue [122, 153] and protect cells. It needs to be clarified as to whether activation of HO 

directly stimulates the cGMP pathway. Although the basal HO activity in cardiac and 

renal tissue of DOCA-salt rats was higher than in the normotensive controls, it remains 

ambiguous why the higher basal HO activity in hypertensive rats did not trigger cGMP 

activation and attenuate damage. The possible explanation is that in the hypertensive rat, 

the magnitude of basal HO activity might be below the threshold necessary to stimulate 

cGMP, downstream mechanism of the HO system. Thus, hemin-mediated enhanced 

activity of the HO-1 protein was necessary to induce the downstream cGMP pathway. 

This is consistent with the previous finding, that increased HO activity in hypertension 

models did not stimulate cGMP content in SHR and DOCA-salt hypertensive models 

[40]. Therefore, it is necessary to investigate further interaction between HO activity and 

the cGMP-signaling pathway in hypertension and related end-organ diseases. 

 

5.3. Aldosterone and angiotensin-II  

In the DOCA-salt rat model, mineralocorticoid administration along with salt 

leads to the development of low renin, volume overload type of hypertension. In such 

conditions, local tissue production of angiotensin-II and aldosterone leads to tissue 

damage in the cardiovascular and renal systems. In end-stage organ damage synergistic 

interaction between aldosterone and angiotensin-II and elevated ROS activity have been 

shown to play a prominent role [180]. Therefore, one of the major focuses of our study 

was to assess the role of hemin therapy on local tissue aldosterone and angiotensin-II 

levels. Interestingly, increased aldosterone and angiotensin-II levels in our study were 



 114

higher than the levels reported in high salt-induced hypertension model [180]. This 

discrepancy might be due to the combined effects of nephrectomy, the synthetic 

mineralocorticoid, DOCA and NaCl-salt, which distinguishes DOCA-hypertension from 

the high-salt-diet-induced hypertension, a model without surgery. Our results from the 

present study demonstrated for the first time that hemin therapy downregulates cardiac 

and renal tissue levels of angiotensin-II and aldosterone in the DOCA-salt hypertensive 

rat. In DOCA-salt rats, suppressed systemic RAAS causes production of local tissue 

angiotensin-II and aldosterone, which plays a role in cardiac and renal structural 

remodeling. This is consistent with other types of hypertensive models such as, the 

aldosterone/salt [220, 221] and high salt-diet-induced hypertension in Dahl salt-sensitive 

rat [180]. These models are associated with cardiac and renal hypertrophy, marked 

collagen deposition in the left ventricle, and renal structural alterations. Importantly, 

aldosterone has been shown to upregulate AT1 receptor by the synthesis of new receptor 

protein, which was demonstrated in cultured rat aortic vascular smooth muscle cells 

[222, 223]. Thus, synergistic interaction between angiotensin-II and aldosterone is 

envisaged in the production of end-organ damage, which involves production of ROS 

consistent with previous study in other types of hypertensive rat models [180].  

Several studies have reported that the heart is capable of synthesizing aldosterone 

[180, 224]. Aldosterone acts as a prohypertensive substance by causing water retention 

through absorption of sodium and excretion of potassium. Recently, the role of 

aldosterone in mediating tissue inflammation, remodeling and fibrosis [221, 225] has 

been well acknowledged in non-epithelial cells in brain, vasculature, heart and glomeruli 

[224, 226]. These events were shown to be prominently mediated by the 

mineralocorticoid receptor [218, 227]. Therefore, local production of aldosterone sets a 
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destructive force in hypertension. Importantly, the aldosterone system in the kidney 

involves salt regulation. However, excessive aldosterone activity causes renal injury, 

fibrosis and progresses towards end-stage-renal damage [10]. It is worthwhile noting 

that in our study, the DOCA-salt hypertensive rat cardiac and renal aldosterone level 

was increased by 3.3 and 5.8-fold, respectively as compared to the controls. 

Interestingly, the results for cardiac aldosterone are consistent with those reported by 

Gomez-Sanchez et al., and Fiebeler et al.,  in normotensive Wistar and SD rats, 

respectively [224, 228]. However, some reports also showed 10-20 times higher cardiac 

aldosterone in the normotensive Wistar rats as compared to our results [229]. Although, 

Bayorh et al., used similar Caymans EIA kit for the measurement of aldosterone 

concentrations in both heart and kidney in the Dahl-salt sensitive rat [180] they found 

aldosterone levels 10-15 times lower than the concentrations found in the present study 

in normotensive SD rats. These discrepancies are probably due to different strains of rat 

used in different studies and different laboratory factors that might affect the 

performance of the assay. The monoclonal antibody used for the detection of aldosterone 

in our study might be from a different batch and/or have different specificity to the SD 

rats.  

In the synthesis of aldosterone, the rate-limiting steps are the transport of 

cholesterol, mediated by the steroidogenic acute regulatory protein in the inner 

mitochondrial membrane. Subsequently, the reaction is controlled by P450scc, and the 

conversion of deoxycorticosterone to aldosterone takes place by mitochondrial 

aldosterone synthase [224, 230]. After hemin therapy, the probable mechanism for the 

decrease in production of tissue aldosterone would be the regulation of CYP450 

hemoprotein by the HO protein. The HO system limits the levels of heme and produces 
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carbon monoxide, which strongly binds to the heme moiety of CYP450 and causes 

enzyme inhibition [231]. Thus, it might inhibit the enzymes P450scc and P450 

aldosterone synthase, which are required for the synthesis of aldosterone, and may led to 

decrease in production of aldosterone, thus in part favoring the improvement of cardiac 

and renal structural lesions. Predominantly, a previous study showed that hemin therapy 

reduces aldosterone synthase mRNA in SHR and plasma aldosterone levels in the 

DOCA-salt rat [40]. In the randomized aldosterone evaluation study (RALES) mortality 

trial, when patients with severe chronic heart failure were treated with spironolactone, an 

aldosterone antagonist, they showed improved cardiac and renal function, indicating that 

aldosterone plays an important role in end-organ damage [232]. Interestingly, the present 

data clearly shows that hemin therapy attenuated local tissue levels of aldosterone, 

which might be indicative of an important role of the HO system on enzyme systems 

involved in the synthesis of aldosterone and thus improve cardiac and renal health. 

In the DOCA-salt hypertensive rat, excessive activity of local tissue aldosterone 

caused both cardiac and renal damage, conversely hemin therapy inhibited. Importantly, 

aldosterone mediates tissue injury by the activation of AT1 receptor subtype and further 

production of angiotensin-II. Therefore, it is imperative to analyze local tissue levels of 

angiotensin-II in DOCA-salt hypertension. Moreover, an increase in local angiotensin-II 

has been shown to play a major role in the progression of end-organ damage in the 

DOCA-salt hypertension model [17]. This is consistent with our observation of cardiac 

and renal hypertrophy and pathological lesions seen in DOCA-salt hypertensive rats. 

Further, angiotensin-II causes vasoconstriction and stimulates production of ROS 

through AT1 mediated mechanism, which was exhibited by increased systolic blood 

pressure and urinary 8-isopostane, a marker of systemic oxidative stress. In addition, to 
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vasoconstrictor action, angiotensin-II is a trophic/growth factor that affects the structure 

of blood vessels, the heart, and the kidney. Our data shows that cardiac and renal 

angiotensin-II levels were 3.7 to 5.3-fold higher in DOCA-salt hypertensive rats 

compared to control rats. It is consistent with the notion that kidney produces more 

angiotensin-II levels as compared to the heart and local angiotensin-II production is 

tissue specific in the DOCA-salt rat, which was also seen, in the present study.  

Angiotensin-II levels in both cardiac and renal tissue from normotesive SD rats 

are in a similar range to that observed by Mendes et al., in the Wistar rat. It indicates the 

consistency of angiotensin-II levels in normotensive rats [233]. However, Bayorh et al., 

reported 10-20 times lower angiotensin-II levels in Dahl-salt sensitive rats in both heart 

and kidney tissue [180]. The explanation for the discrepancy of angiotensin-II levels 

might be the same as given for aldosterone. Interestingly, in this study hemin-treated 

DOCA-salt hypertensive rats demonstrated the abrogation of both cardiac and renal 

angiotensin-II, which was associated with enhanced activity of HO and cGMP. It 

suggests a role of the HO system in modulation of angiotensin-II. Importantly, Aizawa 

et al., found that HO-1 was upregulated in the kidney of rats rendered hypertensive with 

chronic angiotensin-II-infusion, demonstrating the renoprotective effect of HO-1 against 

angiotensin-II induced insults [234]. Several lines of evidence also suggested that 

administration of the HO-1 inducer hemin ameliorates angiotensin-II induced cardiac 

hypertrophy [235] and renal injury induced by angiotensin-II and high salt diet [152].  

However, the transient upregulation of the HO proteins would not be sufficient to 

prevent end-organ damage in the hypertensive rat, which was noted in our study and 

consistent with previous reports [149, 150], whereas, hemin-induced strong stimulation 

of the HO-1 may act as a feedback mechanism to decrease production of angiotensin-II 
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and prevent end-stage damage. Moreover, the RAS has a positive feedback loop where 

angiotensinogen gene activation is mediated by the rel-A NF-κB p65 subunit, and thus 

stimulates the production of angiotensin-II [236], while NF-κB can bind on the 

consensus binding site of HO-1 gene [67]. Dowregulation of NF-κB due to the 

stimulated HO system may inhibit angiotensinogen gene activation and the downstream 

mechanism causing a decrease in the production of angiotensin-II in the local tissue. 

Therefore, interaction between HO-1, angiotensin-II, and NF-κB would be envisaged for 

the multifaceted peptide mediated signaling pathway.  

The effects of hemin therapy on cardiac and renal aldosterone and angiotensin-II 

levels are novel findings in DOCA-salt hypertension. However, the precise mechanism 

of decrease in tissue angiotensin-II and aldosterone levels associated with enhanced 

HO-1 is still unknown and would be part of a future study.  

 

5.4. Oxidative stress, inflammation, and heme oxygenase system 

Hypertension is associated with increased ROS formations such as O2.-, HO- or 

H2O2. Excessive ROS production in the heart and kidney has been reported in the 

DOCA-salt hypertensive model [15, 46]. The elevated superoxide causes random 

oxidation of tissue phospholipids and generate isoprostanes [33]. Urinary 8-isoprostane 

has been known as a precise index of chronic and systemic non-enzymatic lipid 

peroxidation and overall oxidative marker of body systems [33]. It is a stable biomarker 

of superoxide production in vivo and in vitro [237]. The 8-isoprostane also appears in 

the plasma and urine under normal conditions and is elevated by oxidative stress. The 

isoprostane, thus released are higher than any other enzymatically derived eicosanoids 
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[33]. Hemin therapy leads to catabolic degradation of heme, which releases products 

such as bilirubin, biliverdin and ferritin. These products have the capacity to scavenge 

the superoxide radicals. Therefore, in hemin-treated animals the attenuation of 

superoxide might have prevented tissue phospholipid peroxidation and ultimately 

reduction of the urinary 8-isoprostane occurred. Moreover, this reduction of urinary 

8-isoprostane does not mean only reduction of renal injury, but it is a sign of inhibition 

of oxidative stress from overall body systems [33]. 

NF-κB is a transcription factor, which is expressed in a variety of 

pathophysiological conditions, including hypertension. NF-κB stimulates many 

downstream mechanisms, which are known to play an important role in cardiac and 

renal injury. Mineralocorticoid-induced hypertension is associated with increased 

NF-κB activity and subsequent damage by inflammation and fibrosis [94]. Increased 

NF-κB activity suggested that further transcription of proinflammatory and growth 

factors might have occurred in DOCA-salt hypertensive rats. The transcription factor 

AP-1 is involved in the gene regulation of some inflammatory proteins and ECM 

proteins such as TGF-β in mineralocorticoid hypertension [94]. Interestingly, in 

hemin-treated DOCA-salt rats, 2.5 and 1.6-fold dowregulation of NF-κB and AP-1, 

respectively were noted equally in both cardiac and renal tissue, compared to DOCA-salt 

treatment alone. It means upregulation of the HO system showed more effect on NF-κB 

than that of AP-1, which might dowregulate proinflammatory factors to a greater degree 

than growth factors. Moreover, according to our data, both transcription factors levels 

were not restored to the basal control levels. It suggests that along with HO-1 gene [67] 

some other factor might be involved in the regulation of transcription factors.  
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Circumstantial evidence showed that increased activity of the HO system 

releases bilirubin, biliverdin, carbon monoxide and ferritin. These products have 

antihypertensive, antioxidative, cytoprotective, anti-inflammatory, and antihypertrophic 

properties, which have been shown in a variety of in vivo and in vitro studies. Moreover, 

their effects are consistent with other reports stating that hemin or HO substrate 

normalizes blood pressure in the SHR and DOCA-salt-induced hypertension [40, 154, 

155]. Importantly, upregulation of the HO system releases free iron. Free iron rapidly 

converts to ferritin via ferritin synthase. It has antioxidant and anti-inflammatory 

properties. Thus, the enhanced activity of HO would liberate more ferritin and show its 

beneficial effect to prevent end-stage damage; therefore, we decided to evaluate plasma 

ferritin concentration. Oxidative stress is the imbalance between the production of 

reactive oxygen species and antioxidant capacity. The DOCA-salt hypertension model is 

known to exhibit an increase in oxidative stress during the development of hypertension, 

which subsequently leads to end-stage organ damage [15]. Importantly, liberation of 

biliverdin, bilirubin, ferritin and carbon monoxide, which are antioxidant products, 

would act as a supplementary effect on the enhancement of total antioxidant capacity in 

cardiac and renal tissue. Therefore, it is critical to note that compared to a single 

antioxidant defence system, combined anitioxidant from different sources provides 

greater protection [104, 174-179]. Furthermore, it is worthwhile to note that the 

hemin-induced elevations of plasma ferritin, SOD activity and total antioxidant capacity 

were associated with attenuation of urinary 8-isoprostane, an index of oxidative stress. It 

exhibits that hemin has an antioxidant effects in DOCA-salt hypertension. Moreover, 

these observations are consistent with previous studies, which indicated that hemin 
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therapy upregulates the HO system and enhances the antioxidant effect in the tissue 

[104, 177, 238]. 

Bilirubin is a potent antioxidant which either directly scavenges superoxide or 

inhibits reduced NADP (NADPH) oxidase [177, 239], whereas biliverdin acts as an 

antioxidant via interaction with vitamin E [238]. Furthermore, the cardioprotective 

function of bilirubin has been shown previously. HO-1-derived bilirubin attenuates 

myocardial dysfunction and reduces infarct size after ischemia/reperfusion injury [101]. 

Additionally, higher serum bilirubin levels, related to decreased lipid peroxidation, is 

associated with reduced risk of coronary artery disease in humans [240]. The antioxidant 

mechanism of the HO-1 is also attributed to an increase in the antioxidant genes of 

superoxide dismutase and catalase in an experimental diabetes model [42]. Interestingly, 

in the present study, upregulation of HO system is accompanied by increased levels of 

SOD in the hemin treated DOCA-salt hypertensive rat. Furthermore, upregulation of 

HO-1 is associated with decreased cellular heme and increased glutathione levels that 

were reduced during the oxidative insult [241]. Thus, it may shift the redox state to a 

reduced state, decreasing superoxide formation. Therefore, an increase in SOD levels, 

total antioxidant capacity in this study might have inhibited oxidative injury which was 

confirmed by reduction of urinary 8-isoprostane. Decrease in oxidative stress might not 

have stimulated the upregulation of redox sensitive transcription factors NF-κB. 

Previously, it was shown that prolonged administration of antioxidant decreases 

superoxide production, lowers systolic blood pressure, and reduces NF-κB activation in 

Mineralocorticoid hypertension [46]. Angiotensin-II-induced cardiomyocyte 

hypertrophy was abrogated by HO-1 overexpression, and the author claims that it was 
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associated with suppressed ROS [235]. Interestingly, our data clearly showed that 

decreased urinary 8-isoprostane, a direct marker of oxidative stress, and enhanced, 

plasma ferritin content, total SOD level and cardiac and renal tissue total antioxidant 

capacity could suppress ROS and ROS-mediated downstream signaling. Thus, 

subsequently attenuation of cardiac and renal end-stage organ damage were exhibited 

after hemin therapy.  

 

5.5. Cardiac and renal hypertrophy, transcription factors, and heme oxygenase  

    system 

In the present study, hemin treatment resulted in a significant reduction in 

cardiac and renal hypertrophy. The results extend the findings of a previous related 

study that showed that overexpression of HO-1 attenuated angiotensin-II-induced 

cardiac hypertrophy [235], both in vitro and in vivo. The antihypertensive effect of 

hemin, which significantly reduced blood pressure in the DOCA-salt hypertensive rat, 

could be one of the factors that prevented cardiac hypertrophy. In the hypertensive 

patient, an increase in cardiac after-load leads to cardiac hypertrophy, especially left 

ventricular hypertrophy [190, 242]. Hypertensive cardiac hypertrophy develops either by 

induction of mechanical stress due to elevated left ventricular after-load or 

neural/humoral factors [243]. Interestingly, the direct effect of HO system on cardiac 

tissue may contribute to antihypertrophic function in vivo [235]. In accordance with this 

notion, HO-1 induction abrogates cardiac hypertrophy in the adult stroke-prone SHR rat 

through a pressure-independent mechanism [244]. Alternatively, one of the important 

features of the development of hypertrophy or increase in cell mass is that, once external 

stimuli are removed, the altered growth pattern ceases and the cells reverts to their 
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original state [95]. Supporting this theory, suppressing external stimuli such as cardiac 

angiotensin-II, aldosterone, oxidative stress, transcription factor NF-κB and TGF-β1 

would halt the altered growth pattern of the heart, and prevent cardiac hypertrophy, as 

observed in the present study.  

A previous study by Purcell, et al., showed that NF-κB is required in the 

hypertrophic growth of primary rat neonatal ventricular cardiomyocytes, and its 

overexpression enhances cardiomyocyte enlargement [245]. In addition, in the double 

transgenic angiotensin-II dependent rat model, an inhibitor of NF-κB suppressed the 

development of hypertrophy, independent of blood pressure, suggesting that NF-κB 

activation is necessary for cardiac hypertrophy, and its inhibition prevents cardiac 

hypertrophy [246]. Recently, the importance of NF-κB as a hypertrophic mediator in the 

adult heart has been shown, as reduced heart growth was observed in the gene-targeted 

mice lacking p50 protein after chronic angiotensin-II infusion [247]. In addition, 

transgenic mice expressing NF-κB ‘super-repressor protein’ abated cardiac hypertrophy 

after angiotensin-II and isoproterenol infusion [248]. Importantly, oxidative stress also 

stimulates the activation of redox sensitive transcription factors such as NF-κB and 

AP-1, leading to development of cardiac hypertrophy and injury. Therefore, signaling 

and activation of NF-κB and AP-1 play important roles in the development of cardiac 

hypertrophy in vivo and prevention of signaling cascade and activation of NF-κB and 

AP-1 attenuates cardiac hypertrophy. Interestingly in the present study, hemin therapy 

exhibited reduction of whole heart mass, left ventricular hypertrophy and cellular 

abrogation of cardiomyocyte thickness, which were accompanied with downregulation 

of NF-κB and AP-1 expression, and subsequent attenuation of TGF-β and collagen 
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depositions in the cardiac tissue of DOCA-salt hypertensive rats. The blockade of the 

transcription factors NF-κB and AP-1 might have caused a decrease in cardiac 

hypertrophy. Similarly, HO-1 induction by hemin treatment greatly improved the 

kidney-to-body weight ratio, suggesting amelioration of renal hypertrophy. This effect 

was likely linked to the enhanced activity of the HO and cGMP levels, suppression of 

local tissue angiotensin-II, aldosterone, oxidative/inflammatory transcription factors, 

TGF-β1 and ECM proteins. Furthermore, decrease in renal hypertrophy was probably 

due to the HO-1-mediated reduction of heme content in the DOCA-salt hypertensive rat. 

Heme, a known prooxidant, has been shown to contribute to generation of ROS [249] 

and renal injury [231].  

Our result confirms that upregulation of the HO system abated these destructive 

transcription factors and attenuated cardiac and renal lesions, wheras the HO inhibitor, 

CrMP exacerbated damages. CrMP, selective and competitive inhibitor of HO activity, 

was given at dose of 4 μmol or 2.61 mg per kg [153, 163]. Therefore, increased blood 

pressure, hypertropic processes were associated with enhanced transcription factors in 

CrMP-treated animals [164]. Moreover, our lab had reported previously that the basal 

level of HO has important role in blood pressure regulation [153]. 

 

5.6. Improvement in cardiac and renal morphological lesions, and function 

The central and novel finding of this study is the observation that 

DOCA-salt-induced pathophysiological changes in cardiac and renal tissue can be 

abrogated by upregulation of the HO system. Hemin therapy significantly attenuated 

cardiac morphological lesions such as cardiac myocyte hypertrophy, myocyte scarring, 
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myocardial, and perivascular fibrosis, small coronary vasculature thickening, and 

collagen depositions. Similarly, renal lesions such as glomerular hypertrophy, 

glomerular sclerosis, interstitial mononuclear cell infiltration and fibrosis, tubular 

dilation, small renal arterial wall thickening, and tubular cast formation in the 

DOCA-salt hypertensive rat were prevented by hemin therapy. The improved renal 

function was accompanied with decreased proteinuria, plasma and urine creatinine, and 

enhanced creatinine clearance rate. This attenuation of organ damage is probably linked 

to the direct effect of heme catabolized products and/or the interaction of different 

signaling pathways with the HO system, which were involved in the development of 

cardiac and renal injury.  

NF-κB is a heterodimer, normally present in an inactive form, bound with an 

inhibitory subunit protein IκB. NF-κB is a redox-sensitive oxidative/inflammatory 

transcription factor. After oxidative insults, it is activated, leading to degradation of 

phosphorylated IκB and NF-κB translocated from the cytosol into the nucleus. In the 

nucleus it binds to the promoter region of specific genes to initiate transcription that 

encodes for specific genes such as pro-inflammatory and growth factors [250]. 

Therefore, upregulation of NF-κB stimulates pro-inflammatory as well as growth 

stimulatory factors, which causes inflammation and development of hypertrophy. 

Likewise, AP-1 also involved in the regulation of some proinflammatory factors, 

majorly modulates growth factors such as TGF-β1 and ECM proteins [68] . Interestingly 

in our study, hemin therapy attenuated oxidative/inflammatory transcription factors such 

as NF-κB and AP-1 from both cardiac and renal tissue of the DOCA-salt hypertensive 

rat. Given that the promoter region of the HO-1 gene consists of consensus binding sites 
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for both NF-κB and AP-1, suggest that the HO system probably plays important roles in 

the modulation of these transcription factors [67]. Moreover, these transcription factors 

are also triggered by enhanced activity of ROS leading to stimulation of 

proinflammatory and growth factors. However, upregulation of the HO system releases 

antioxidant products such as bilirubin, biliverdin and ferritin. Abrogation of ROS 

indirectly prevents upregulation of oxidative/inflammatory transcription factors such as 

NF-κB and AP-1. This was consistent with the previous finding that antioxidant therapy 

attenuates transcription factors [46]. Importantly, DOCA-salt-induced hypertension is 

associated with cardiac and renal remodeling or structural changes mediated through 

mineralocorticoid and AT1 receptors, [62, 201] and is associated with enhanced 

production of ROS and activation of NF-κB and AP-1. In the present study, increased 

levels of both cardiac and renal tissue angiotensin-II and aldosterone might directly or 

through the oxidative mediated signaling pathway upregulate NF-κB and AP-1 [71, 

218]. Thus, it might have triggered the downstream mechanism for cardiovascular and 

renal remodeling, infiltration of inflammatory cells, and finally end-stage organ damage. 

Importantly, enhanced HO activity might downregulate oxidative/inflammatory 

transcriptions factors, preventing inflammatory and fibrotic cascade. Conversely, 

inhibition of the HO system led to an increase in NF-κB and AP-1, and stimulated the 

inflammatory cascade [251]. These findings further confirm the study in HO-1 knockout 

mice, which showed enhanced proinflammatory activity in the mice after removal of the 

HO-1 gene [252]. Interestingly, the present data also showed that downregulation of 

NF-κB and AP-1 were associated with decreased local tissue angiotensin-II, aldosterone 

and oxidative stress.  
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Transcription factors such as NF-κB and AP-1 are known to stimulate the 

expression of TGF-β1, which further enhances the mobilization of ECM such as 

fibronectin and collagen, leading to development of fibrosis and hypertrophy. In the 

present study, in the DOCA-salt hypertensive rat upregulation of transcription factors 

were noted, which were associated with both cardiac and renal hypertrophy. The 

downstream mechanism for the development of hypertrophy is the activity of growth 

regulatory factors such as TGF-β1. Therefore, we performed immunohistochemical and 

quantitative Western immunoblot analyses of TGF-β1 in DOCA-salt hypertensive rats 

and relative controls. It is interesting to note that left ventricular hypertrophy and 

fibrosis was associated with increased growth regulatory factors such as TGF-β1, in 

DOCA-salt hypertensive rats. Furthermore, TGF-β1 has been linked to the development 

of glomerulosclerosis and interstitial fibrosis in the hypertensive kidney [86]. 

Interestingly, the antihypertrophic effects noted here might be due the growth 

modulatory action of the HO system on TGF-β1, which was also shown previously in 

human renal tubular epithelial cells in vitro [88]. In the DOCA-salt model, renal TGF-β1 

was increased which stimulated production of ECM resulting in an increase in 

fibronectin in the interstitium, leading to the development of fibrosis. The reduced 

TGF-β expression correlates with the reduction of fibronectin, amd ECM protein. The 

protective effect of hemin on DOCA-salt-induced renal fibrosis was further verified by 

immunostaining of kidney sections for fibronectin and staining intensity was scored 

using a semi-quantitative method.  

Importantly, NF-κB and TGF-β1 have a functional relationship with each other for 

the induction of inflammatory and growth modulatory actions through TGF-β1 activated 
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kinase1(TAK1) [253]. Similarly, AP-1 is also involved in the regulation of the gene 

responsible for cell proliferation and tissue remodeling, such as TGF-β1 [68, 72, 94]. 

The AP-1 binding site is also present on the promoter region of the TGF-β1 gene [72] . 

Thus, activation of both NF-κB and AP-1 led to stimulation of growth factor TGF-β1 

and deposition of ECM proteins such as collagen and fibronectin in the interstitial space, 

resulting in fibrosis and structural remodeling. The structural and morphological changes 

were associated with upregulation of NF-κB and AP-1 transcription factors and an 

increase in TGF-β1 and ECM proteins such as collagen type-1 production as well as a 

decrease in MMP-1 expression [254]. Hemin therapy abrogated cardiac tissue 

angiotensin-II, aldosterone and NF-κB accompanied by decreased expression of TGF-β1 

and perivascular fibrosis, which gives direct evidence for the cytoprotective effects of 

upregulated HO system. It is worthy to note that, the HO-1 gene harbors consensus 

binding sites for NF-κB and AP-1 [67]. NF-κB is required for the transcription of the 

angiotensinogen gene to produce angiotensin-II [236]. Angiotensin-II and aldosterone 

stimulate production of oxidative cascades, which in turn trigger the transcription of 

NF-κB, which also consist of the transcription binding site for AP-1, which is a growth 

stimulatory transcription factor. NF-κB and TGF-β1 are known to share a common 

TAK1 pathway for the modulation of inflammatory and growth signaling. AP-1 

modulates TGF-β1 activation. The production of aldosterone is regulated by the HO 

system through the CYP450 hemoprotein. Overviewing, the interrelationship between 

all these factors, we envisage the multifaceted interaction of the HO system. The novelty 

of this study is that it showed all these interactions from gross to the molecular level in 

vivo in the DOCA-salt animal model of hypertension. 
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Cardiomyocyte hypertrophy in the present study is greater than previously 

reported in similar type of 2Kidney1clamp hypertension model indicating additive 

effects of uninephrectomy, DOCA and NaCl-salt in the development of cardiac 

hypertrophy [187]. Cardiac intramuscular coronary arterial alterations are common 

findings in DOCA-salt hypertension, which includes small coronary arterial wall 

thickening, exaggerated media-to-lumen ratio and wall area [193, 255-257]. 

Interestingly, hemin therapy appreciably prevented the small coronary arterial 

remodeling which were confirmed by indices of arterial remodeling. This prevention of 

coronary arterial remodeling was accompanied with enhanced activity of cardiac cGMP 

levels. It confirms the notion that carbon monoxide mediated upregulation of cGMP 

could have caused vascular relaxation and prevented vascular smooth muscle 

proliferation in the small coronary arteries. Moreover, the development of cardiac or left 

ventricular fibrosis is one of the major complications of hypertensive cardiac disease. 

The increased deposition of interstitial and perivascular collagen is a hallmark of the 

remodeling process, which predisposes the adverse effect on cardiac events. The 

reduction or prevention of cardiac fibrosis would improve cardiac function in the 

hypertensive patients [258]. Therefore, this study has important prognostic and clinical 

relevance because it highlights the pathophysiological changes in a model that mimics 

the development and progression of fibrosis in humans. Normally ECM connects 

myocytes, aligns contractile elements, prevents overstretching and alterations of 

myocytes, and prevents rupture by transmitting force and providing tensile strength. 

However, non-uniform deposition of ECM changes the quality of the interstitial space, 

which is critical in the prediction of cardiac functional alterations. It is well known that 

pathological left ventricular hypertrophy is associated with ventricular remodeling 
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through increased mobilization of ECM proteins such as collagen and fibronectin. 

Ventricular remodeling eventually impacts on cardiac function and energy use, and 

enhances cardiac myocyte cell death by apoptotic and necrotic mechanisms, and thus 

forms myocyte scarring [259]. Interestingly, it is shown here for the first time that hemin 

attenuated left ventricular hypertrophy, perivascular fibrosis, myocyte scarring and 

inflammation, myocyte hypertrophy and small coronary arterial remodeling in the 

DOCA-salt model of end-stage damage. Abrogation of myocardial scarring and 

inflammation indicates that the HO might have a role in attenuation of myocardial cell 

death, which is triggered by pathological necrosis and apoptosis. This notion might 

support the previous finding that the HO-1 overexpression resulted in reduced 

myocardial inflammation and necrosis in response to regional ischaemia, which was 

accompanied with increased expression of the anti-apoptotic genes and decreased 

pro-apoptotic genes [260]. Moreover, carbon monoxide generated by HO-1 might 

protect by modulation of both Akt and P38MAPK pathways [261] which are involved in 

mediating cellular death by apoptosis and necrosis mechanisms. In addition, the HO-1 

gene transfer inhibited angiotensin-II-mediated rat cardiac myocyte apoptosis via 

augumented Akt (Protein kinase B gene) activation in vitro [262]. It is of note that 

Morita et al., (2005) reported that transgenic mice constitutively overexpressing HO-1 

demonstrated significant reduction of oxidative radicals and levels of lipid peroxidation 

products in the heart as compared with wild type-mice after angiotensin-II and salt 

treatment [263]. Further the cytoprotective effects of hemin was associated with 

attenuation of cardiac remodeling, which might be due to carbon monoxide mediated 

increased cGMP levels in cardiac tissue. Enhanced cGMP levels might trigger 

downstream signaling pathways and cause relaxation of coronary vascular smooth 
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muscle cells, preventing the development of vascular remodeling and contraction. 

Improved small coronary arterial wall thickening, small coronary arterial wall-to-lumen 

ratio, and small coronary arterial wall area in the left ventricles of hemin-treated 

DOCA-salt hypertensive rats might have exhibited the effect of carbon monoxide and 

cGMP-signaling pathway. Improved coronary vessels may have provided a corrected 

blood supply to cardiac myocytes, prevent myocyte death, and thus prevent scarring. 

Predominantly, all pathological structural changes were accompanied with the increased 

expression of TGF-β in cardiac tissue, giving direct evidence of structural alterations in 

the heart of DOCA-salt hypertension. Furthermore, in DOCA-salt hypertension, 

increased production of cardiac angiotensin-II and aldosterone might have cause 

stimulation of cardiac fibroblasts for the remodeling process through oxidative cascades 

[71]. However, the direct action of angiotensin-II has been demonstrated on expression 

of TGF-β1 in cardiac fibroblasts and myocytes [264]. It is of note that adeno associated 

virus HO-1 gene delivery markedly reduced ventricular fibrosis and remodeling, and 

restored left ventricular function and chamber dimension in a rat model of myocardial 

infarction [265].  

Similarly, pathological lesions in the kidney were accompanied by increased 

production of tissue angiotensin-II, aldosterone and reactive oxygen species in the 

kidney of DOCA-salt rats and also upregulated TGF-β1, which subsequently increased 

fibronectin and renal fibrosis [86]. However, administration of antioxidants was shown 

to decrease the expression of TGF-β1 and renal damage in the Dahl salt-sensitive model 

[266]. Consistent with this previous findings our results also showed that upregulation of 

the HO system was accompanied with enhanced  antioxidant systems such as plasma 
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ferritin, renal SOD and total antioxidant capacity, which were associated with 

downregulation of TGF-β1. Alternatively, decreased aldosterone might contribute to the 

reduction of TGF-β1. Previously, it has been shown that the aldosterone blocker, 

eplerenone, significantly reduced TGF-β1 and fibronectin expression with reduced 

glomerulosclerosis, which is independent of blood pressure [86]. Moreover, HO-1 

induction has a role in protecting the kidney from noxious stimuli. In the model of acute 

renal failure induced by glycerol, increases in the production of heme protein lead to 

development of renal toxicity. This renal toxicity was attenuated by HO-1 induction and 

renal function was restored [267].  

The DOCA-salt hypertensive rat model triggered a malignant hypertension, 

which gradually led to end stage renal damage. The malignant hypertensive condition 

leads to a severe increase in blood pressure, which causes changes in the small renal 

arteries by concentric thickening of the intima. This intimal layer is replaced by loose 

myxomatous, fibroblastic tissue; therefore, the lumen of small renal arteries is 

obliterated [Fig. 4.26.A(iii)]. Afferent glomerular arterioles often show patchy acute 

necrosis in the walls with the accumulation of amorphous, brightly eosinophilic 

proteinaceous material, called fibrinoid [95]. This damage is also termed fibrinoid 

necrosis and may extend from the glomerular hila into the glomerular tuft affecting 

segments of the glomerular capillary network leading to a hypertrophic condition of 

glomeruli [Fig. 4.22.B(iii)].  However, in essential hypertension, renal arteries and 

glomerular arterioles show marked thickening of walls with a combination of medial 

hypertrophy, elastic lamina replication, and fibrotic intimal thickening. All these 

changes in the renal and afferent glomerular arterioles results in smaller lumens and 
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thus, decreases blood supply to glomeruli. The resulting chronic ischemia leads to the 

development of sclerosis or hyalinization of the glomeruli, accompanied by disuse 

atrophy of parts of the tubules and cast formations [Fig. 4.22.B(iii) & 4.25.A.(iii)]. 

These changes are called hypertensive glomerulosclerosis [Fig. 4.22.B(iii)], and it 

further causes nephrosclerosis [95]. Therefore, chronic renal failure is caused by a slow 

progressive loss of functional nephrons and is morphologically known as end-organ 

damage [95]. The DOCA-salt hypertension shows similar types of glomerular damages 

leading to renal end-stage damage. In addition, prominent interstitial fibrosis and 

infiltration of mononuclear cells [Fig. 4.22.A(iii)] are the morphological lesions seen in 

the renal failure conditions. Moreover, in the hypertensive model, renal injury causes 

proteinuria. It depends on capillary wall damage, hemodynamic factors, and increased 

intracapillary pressure, which is affected by afferent and efferent arteriolar constriction. 

In addition, glomerular injury leads to increased transcapillary hydraulic pressure and 

exacerbates proteinuria [268]. Clinically, proteinuria has been considered as an index for 

the marked glomerular injury and severe renal damage in the patient. Damaged 

glomeruli are unable to restrict high molecular weight proteins such as hemoglobin, 

myoglobin, albumin and plasma proteins. Therefore, it passes through glomeruli and 

tubules giving typical cast formation and reacts with tubular epithelium causing 

interstitial inflammation and activation of growth factors. All these reactions lead to 

damage of collecting tubules and contribute to loss of proteins, since proteins are 

excreted in urine. Thus, analysis of protein in the urine samples was used to diagnose the 

intensity of renal damage, clinically. The results showed that in the DOCA-salt 

hypertensive rats proteinuria was associated with severe renal lesions such as glomerular 
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hypertrophy, glomerular sclerosis, tubular injury, and overall end-stage-renal damage. It 

was clinically confirmed. 

In the present study, reduction of proteinuria was associated with increased HO 

activity, HO-1 expression, and cGMP levels. These results are consistent with a previous 

study in which the administration of hemin to angiotensin-II-infused rats ameliorated the 

glomerular filtration rate, decreased proteinuria and thus provided renoprotection [234]. 

A possible explanation for the reduced proteinuria is that carbon monoxide mediated 

upregulation of cGMP in vasculature may act as a capillary vasodilator, leading to 

reduced intracapillary pressure and reduced proteinuria [269]. Moreover, hemin 

treatment significantly reduced blood pressure to the normotensive range; therefore, the 

antiproteinuric effect of hemin may also be attributed to its antihypertensive effect as 

seen in hydralazine treatment [234]. Importantly proteinuria has a major impact on the 

progression of renal disease [270]. The precise mechanisms by which persistent 

proteinuria induces interstitial inflammation and fibrosis in renal damage are not well 

known, although NF-κB activation has been involved in renal injury. Gomez-Garre et 

al., studied the effect of bovine serum albumin in uninephrectomized rats [271]. Tubular 

atrophy, dilatation and infiltration of mononuclear cells were associated with activation 

of NF-κB and combined treatment with ACE inhibitor and ET1 antagonist diminished 

proteinuria, renal lesions and NF-κB activity [271]. In addition, when cultured tubular 

cells were exposed to bovine serum albumin, NF-κB was activated [271]. Interestingly, 

proteinuria can result from renal inflammation, which is accompanied with ROS, due to 

increased susceptibility to proteolytic damage and inactivation of proteinase inhibitors. 

Furthermore, ROS can induce proteinuria either by direct degradation of glomerular 
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basement membranes without any direct ultrastructural abnormalities [272]. Therefore, 

enhanced kidney total antioxidant capacity, SOD levels in response to higher HO 

activity, concomitant with reduced urinary 8-isoprostane, polyurea, proteinuria and 

improved creatinine clearance rate in the DOCA-salt rat indicates renoprotective effects 

of hemin and improved kidney function. 

  

 

 

 

 

 

 

 

 

 
 
 
 
Figure 5.1. Multifaceted interaction of the HO system  

      (One way signaling     and two way signaling      ) 
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AP-1, growth factors such as TGF-β1 and ECM proteins (Collagen and fibronectin) and 
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humoral factors like angiotensin-II and aldosterone. These interactions trigger an 

oxidative, inflammatory and hypertrophic cascades, which progresses to cardiac and 

renal end-stage damage [Figure 5.1].  

Therefore, upregulation of the HO system would be envisaged for the attenuation 

of multifaceted diseased conditions such as hypertension, diabetes and end-organ 

damage. Moreover, the data provided by this study will target the future clinical 

relevance of the HO system by the counteracting the progression of disease conditions in 

humans, to improve the quality of life. 

 

5.7. Limitation of the study 

Every animal study has its limitations. In the present study, one of the limitations 

is indirect blood pressure measurement method. Blood pressure measurement techniques 

in the experimental animals are divided into two major types; one is a direct method and 

other indirect method. The direct blood pressure measurement method consists of a 

radiotelemetric device, which is surgically implanted in the animal’s body, and then 

indwelling catheters are connected with major blood vessels to record blood pressure. 

The indirect blood pressure method is the non-invasive tail or limb cuff, which measures 

blood pressure by the cuff pressure method. In this method, the changes in blood 

pressure that occur during the occlusion and release of the cuff are recorded. The 

standard tail cuff method is commonly used to measure systolic blood pressure in 

laboratory rats, with some advantages [273]. It is noninvasive and relatively less 

expensive to operate than direct blood pressure equipment in large numbers of animals. 

It is of incredible worth in repeated blood pressure measurements of individual animals 

over a long period in the experiment. The disadvantage of the tail-cuff method is that in 
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order to record blood pressure physical restraint of the animal is required and warming 

of the animal is necessary to ensure sufficient tail blood flow. Both restraining and 

warming of the animal may significantly increase the core body temperature and 

concurrent stress, which will affect blood pressure. Therefore, the blood pressure value 

obtained by the tail-cuff method may not be the actual blood pressure, but instead the 

reaction of the animal to the stress of the underlying procedure. Recently some other 

limitations were noted to the indirect blood pressure method; first, this method only 

measures a very small sample of cardiac cycles and second, it imposes stress on animals 

that disturbs multiple aspects of cardiovascular system. Therefore, there are very 

important steps to be followed to measure blood pressure using tail-cuff methods. One 

should use the proper size of tail cuff depending on the age of animals [274]. In addition, 

animals should be daily acclimatized for the restrainer, for at least 3 days before the 

actual blood pressure measurement, which will reduce the effect of stress on the animals. 

Also, it is recommended that the same experimenter handle the animals throughout the 

study.  Blood pressure should be measured at the same time every day when blood 

pressure is stable. Further,  proper cleaning of the restrainer and equipment to remove 

foreign scents and blood odor, placement of restrainer in semi-darkened room 

conditions, measuring blood pressure in a quiet room, and limiting access to others 

during the experiments will all reduce the disturbance to animals [274, 275]. All of these 

important factors were considered during the blood pressure measurements. 
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6. SUMMARY AND CONCLUSIONS 

Administration of hemin, the HO inducer, showed upregulation of HO-1 

expression, total HO activity, and cGMP levels in the DOCA-salt hypertensive rats. 

Upregulation of the HO system accompanied with attenuation of both cardiac and renal 

angiotensin-II and aldosterone, and reduction of oxidative stress. In addition, abrogation 

of both cardiac and renal hypertrophy and inflammation were noted in the DOCA-salt 

hypertensive rat after hemin regimen. Importantly, upregulation of HO leads to the 

release of carbon monoxide, biliverdin, bilirubin and ferritin molecules. Further, carbon 

monoxide thus released is probably stimulated the production of cGMP in the tissue, 

which is a secondary messenger through which the HO system can be cytoprotective. 

Hemin therapy attenuated urinary 8-isoprostane and down regulated transcription factors 

such as AP-1, NF-κB, TGF-β1 and ECM proteins (fibronectin and collagen). Thus, it 

prevented inflammation and hypertrophy. In addition, HO-mediated heme catabolized 

products such as bilirubin, biliverdin and enhanced plasma ferritin levels that may be 

anti-inflammatory and antioxidant. Myocyte scarring and collagen deposition in the left 

ventricle, and severe renal damage including glomerular sclerosis, glomerular 

hypertrophy, tubular cast, interstitial mononuclear infiltrations and tubular dilation were 

noted in the DOCA-salt hypertensive rat. All these lesions were prevented by hemin 

therapy. Urinary protein excretion was significantly reduced and creatinine clearance 

rate increased in the hemin treated DOCA-salt rats, indicative of improved renal 

function.  

Interestingly, the present study envisioned the multifaceted interaction of the HO 

system with NF-κB, AP-1, TGF-β1 and both angiotensin-II and aldosterone hormones 
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from the gross to cellular level and opened future doors for molecular studies of the HO 

system in pathophysiological events. 
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7. FUTURE DIRECTIONS 

1. The results from the above study showed the promising effect of hemin in the 

DOCA-salt rat for the prevention of hypertension and hypertrophy. However, its 

curative effect needs to be checked for end stage-organ damage caused by hypertension 

and diabetes. 

2. In the present study, decreases in the tissue levels of angiotensin-II and aldosterone 

were found, due to upregulation of the HO system. The mechanisms behind the decrease 

in local tissue production of angiotensin-II and aldosterone are still unclear, therefore 

this needs to be further explored. 

3. It needs to be determined if the hemin effect is only due to a decrease in oxidative 

stress or some other mechanism.  

4. The characterization of different molecular interactions among the HO system, 

extracellular matrix, fibrosis andhypertrophy needs to be investigated more precisely. 

5. Antiapoptosis and antinecrosis effect of hemin need to be further clarified by 

employing a suitable molecular method. 
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