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Abstract

Errors in Variables (EIV) are a long-standing issue in many fields, including medical

and epidemiological studies. Ignoring these errors can produce misleading inferential re-

sults. In discrete responses, EIV are commonly termed as misclassification errors. Studies

on misclassification have mostly focussed on misclassification in only one variable. Joint mis-

classification in both the response variable and the covariate has been less explored. Some

literature on joint misclassification assumes the misclassification process of the response vari-

able is independent of the misclassification process of the covariate. However, in practice, the

dependence of misclassification errors can occur. For example both, the response variable and

covariate are obtained from a similar source as in the case of self-reported responses from a

questionnaire. The objective is to investigate (1) modeling for error-prone response variable

and error-prone covariate and (2) consequences of using an incorrect misclassification model.

In this thesis, we first introduce a model that accounts for dependent misclassification er-

ror in a binary response variable and a binary covariate. The dependence of error is captured

through covariance-like parameters. Simulation studies are conducted to assess the conse-

quences of fitting an independent misclassification model to data generated from a dependent

misclassification model. The simulation experiments have several key factors to manipulate:

the amount of misclassification error (sensitivity and specificity), the dependence between

the misclassification process of the response variable, and the misclassification process of the

covariate, and the proportion of internal validation data. Further, the model is extended to a

multi-category setting and simulation study is conducted on a trinary response variable and

a trinary covariate. Results from the simulation studies indicate that ignoring dependence

of the error in misclassification can be worse than ignoring misclassification.

The proposed model is illustrated through a real data example by establishing the true

association between Trichomoniasis and Bacterial Vaginosis, using data from the HIV Epi-

demiology Research Study (HERS). A likelihood-ratio test is proposed to test the indepen-

dent misclassification assumption. The test concluded that the dependent misclassification

error model fits the HERS data significantly better than the model that ignored dependence

misclassification.
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Chapter 1

Introduction

1.1 Background

Ideally, variables included in statistical modeling and inference should be accurate and exact;

however, this ideal situation is often not attainable due to errors in variables. Errors in vari-

ables (EIV) are a long-standing issue in many fields, including medical and epidemiological

studies. These errors occur as a result of inaccurate measurement, incorrect diagnostic crite-

ria, and unreliable data sources, and other inadequacies in obtaining data [25]. Different au-

thors have referred to these errors as measurement error, misclassification, mis-measurement,

error-prone data, error-contaminated data, or errors-in-variables. They represent the differ-

ence between a measured value of a variable and its true value. One may be tempted to

proceed with analysis assuming the observed variables are perfectly measured; however, sim-

ply ignoring the presence of errors can have a strong impact on the results of statistical

analysis that involve such variable(s) [24].

The observed variables are referred to as surrogates or proxy variables [20, 9]. Proceeding

with parameter estimation without accounting for errors may produce misleading inference

results. For instance, in regression analysis employing surrogates in estimation is called the

naive method, and this tends to flatten or attenuate the associated regression coefficient.[20].

The term misclassification error is used when EIV occurs in a discrete or categorical variable;

thus, classifying an individual or an attribute to a value other than that to which it should

be assigned [22]. For example, the relationship between COVID-19 infection status and

complying with the protective measures (e.g., wearing masks). It is well known that none

of the current test methods are perfect. If the information on the compliance with the

recommended protective measure is collected by self report data, such information can be
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subject to errors. Several reasons may account for such misclassification errors; these include

the reluctance of respondents to provide correct information for fear it may be used against

them later, despite the assurance of confidentiality before data collection. Another reason is

recall bias, where respondents do not accurately remember or omit details of previous events

or experiences.

Research Aims and Objectives

The aim of this thesis is to investigate dependence for joint misclassification error in both

the response variable and the covariate.

The objectives of the study are to:

• Describe the framework for a joint dependent misclassification error model.

• Perform systematic simulation studies to assess the consequences of ignoring the de-

pendence in joint misclassification.

• Extend the framework of a binary joint misclassification model to a multi-category

response variable and a multi-category covariate.

• Illustrate the proposed model for joint misclassification in both the response variable

and covariate through a real data example by establishing the true association between

Trichomoniasis and Bacterial Vaginosis.

Misclassification Mechanism

Two methods are employed in the characterization of a misclassification process. The meth-

ods are differentiated by the choice of conditioning variables in the modeling processes. Let

Y and X be the true response variable and covariate respectively, and let Y ∗ and X∗ be their

observed or surrogate version, respectively. In the first method, the error-prone variable is

conditioned on the error-free variable through conditional probabilities, i.e., P (Y ∗|Y ) for the

response variable and P (X∗|X) for the covariate. This method of characterizing misclassifi-

cation error was first employed by Bross (1954) [5]. In a binary setting, correct classification
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P (Y ∗ = 1|Y = 1) and P (Y ∗ = 0|Y = 0) are known as the sensitivity and specificity in the

response variable and P (X∗ = 1|X = 1) and P (X∗ = 0|X = 0) are sensitivity and specificity

in the covariate. Sensitivity is the probability that an individual with a condition is classi-

fied as having the condition, and specificity is the probability that an individual without a

condition is classified as not having the condition. In a perfect situation where there is no

misclassification error, both sensitivity and specificity are equal to one.

In the other characterization procedure, which was first considered by Marshall(1990)[34],

misclassification errors are characterized differently. That is, for the binary setting, the

correct classification P (Y = 1|Y ∗ = 1) and P (Y = 0|Y ∗ = 0) are known as the Positive

Predictive Value (PPV) and Negative Predictive Value (NPV), respectively, for the response

variable. Also, P (X = 1|X∗ = 1) and P (X = 0|X∗ = 0) are Positive Predictive Value and

Negative Predictive Value, respectively, for the covariate. The PPV is the probability that

an individual who was classified as having a condition had the condition, and NPV is the

probability that an individual who was not classified as having a condition did not have the

condition. In the response variable, when the true prevalence (i.e., P(X=1)), sensitivity, and

specificity are known, the NPV and the PPV can be derived using Bayes’ theorem.

PPVX =
SNX · P (X = 1)

SNX · P (X = 1) + (1− SPX) · (1− P (X = 1))

NPVX =
SPX · (1− P (X = 1))

(1− SNX) · P (X = 1) + SPX · (1− P (X = 1))

In terms of covariate classification, this also holds when the true prevalence of the covariate

P(Y=1) is known. It is worth noting that, although sensitivity and specificity may be high,

translating it to predictive values may produce low values. As an example, say SNX = 0.95

and SPX = 0.85, when P (X = 1) = 0.5, the following predictive values are obtained;

PPVX = 0.86 and NPVX = 0.94. These predictive values are generally high and can

adequately characterize the misclassification process. However, when P (X = 1) = 0.1, which

is the case for a rare event, the positive predictive values are quite low, PPVX = 0.41 and

the negative predictive values are very high, NPVX = 0.993.

At this point, a distinction is made between non-differential and differential misclas-

sification. Non-differential and differential misclassification can occur in either the covariate
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or the response variable. Covariate misclassification is called non-differential if the true value

of the response variable cannot provide additional information in the misclassification pro-

cess; that is, P (X∗|Y,X) = P (X∗|X), otherwise called differential misclassification of the

covariate. Similarly, response variable misclassification is called non-differential if the true

value of the covariate cannot provide additional information on the misclassification process;

that is, P (Y ∗|Y,X) = P (Y ∗|Y ), otherwise called a differential misclassification of response.

For example, differential misclassification can occur in a case-control study where a woman

diagnosed with breast cancer may improve her diet; hence, her reported diet intake after di-

agnosis is correlated with cancer, even when the long-term diet has been taken into account.

In the non-differential misclassification, the correct classification for the response variable is

characterized by one probability instead of the two, i.e.,

P (Y ∗ = 1|Y = 1, X = 1) = P (Y ∗ = 1|Y = 1, X = 0) = P (Y ∗ = 1|Y = 1),

P (X∗ = 1|X = 1, Y = 1) = P (X∗ = 1|X = 1, Y = 0) = P (X∗ = 1|X = 1).

In joint misclassification, where both the response variable and covariate are subject to

error, misclassification can be either independent or dependent. Independent misclassification

occurs when the probability of the joint occurrence of any classification outcome concerning

response status with any classification outcome concerning the covariate status given the true

response and true covariate status, is equal to the product of corresponding classification

probabilities for response and covariate separately [25]. Simple, classification errors do not

correlate. That is,

P (Y ∗, X∗|Y,X) = P (Y ∗|Y ) · P (X∗|X), (1.1)

otherwise, it is dependent.

1.2 Literature Review

It has long been recognized that misclassification errors can produce biased parameter esti-

mates, and efforts have been made to examine the impact of ignoring these errors. Issues of

misclassification can be categorized into three groups: (1) covariate only is subject to mis-

classification; (2) response variable only is subject to misclassification; and (3) the response
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variable and covariate are subject to misclassification [56]. There is an extensive literature on

covariate misclassification. The works of Carroll et al. (2006)[9], Gustafson (2003) [20], and

references therein comprehensively discussed the impact of misclassification in covariates, as

well as various correctional approaches. More recent literature is by Yi [56]; this book focuses

on misclassification in covariates, and a portion covered misclassification in response variables

applied in survival analysis and longitudinal data. Misclassification in response variables has

received less attention compared to misclassification in covariates. Some studies have dis-

cussed and proposed approaches to correcting for misclassification error in response variables,

to mention a few Magder et al. (1993) [33], Lyles et al. (2011) [32], Jurek et al.(2013) [23],

Pekkanen et al.(2006)[40], Hausman et al.(1994)[21]. Relatively, there is minimal works on

joint misclassification errors in both the response variable and covariate. The scope of this

thesis will be misclassification errors in both the response variable and covariate.

Carroll et al. (2006) discussed the effects of misclassification as causing bias in param-

eter estimations, loss of power, and masking the features of data [9]. The pioneering work

regarding misclassification can be attributed to Bross (1954) [5]. He posited that when two

proportions are compared, misclassification tends to reduce the power of the significance test.

Subsequent development on misclassification after the classical paper of Bross (1954) [5]

shows, misclassification has the potential of underestimating or overestimating the effects

measures, thereby reducing or increasing the apparent strength of association. The magni-

tude and direction of the bias resulting from misclassification are dependent on the classi-

fication parameters (Positive Predictive Value and Negative Predictive Value or sensitivity

and specificity [11], as well as the type of misclassification (Non-differential and Differential).

In discussing the bias in the estimation of relative risk caused by misclassification, Coper-

land(1977) considered the case of both differential and non-differential misclassification for

two types of epidemiological studies: cohort and case-control studies[14]. In both types of

studies, non-differential misclassification produces a bias in the estimates towards the null;

this is consistent with other researchers [25, 18] who made the same assertion. This assertion

has been proven not always to hold, as it is applicable only when both response variable and

covariate are binary, only one variable is subject to misclassification, and misclassification is

non-differential and independent [17, 26, 35]. Differential misclassification of response vari-
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able or covariate may bias estimation in either direction [14, 35, 24]. Gustafson and Greenand

(2014) illustrated that non-differential misclassification in a situation where a trinary covari-

ate is misclassified does not always induce bias towards the null [1]. The impacts of dependent

non-differential misclassification were discussed by Kristensen[26] and Chavance[10]. In the

work of Vogel et al. (2005) [53], the dependence structure of the joint misclassification was

shown by a matrix composed of various dependence parameters. The works of Brenner et

al. (1993)[4] and Vogel et al. (2005)[53] concluded that positive correlation of errors in the

response variable and covariate might bias the exposure-disease association in any direction

in the case of non-differential misclassification.

Barron(1977)[2] introduced the matrix method to intuitively correct for misclassification

when both the response variable and covariate are binary. Variants and extensions of the

matrix method have been proposed for correcting misclassification errors. Marshall (1990)

[34] employed positive and negative predictive values as the correction identity for a co-

variate misclassification, instead of specificity and sensitivity used by Barron. Marshall’s

approach was later referred to as the “inverse matrix method” by Morrissey and Spiegelman

(1999)[36] in a model efficiency study. Brenner et al.(1993) [4] and Vogel et al. (2005) [53]

further extended the matrix approach of Barron (1977) [2] to a non-differential and depen-

dent misclassification situation to correct for misclassification in the estimation of cumulative

incidence and attributable risk, respectively. Barron’s [2] matrix method is computationally

straightforward; since there are no assumptions about the distribution of the true parameters,

his approach can be considered a functional modeling approach. Carrol et al.(2006) [9] made

a distinction between a structural modeling approach and a functional modeling approach, he

asserted that for the former case, some parametric distribution assumptions are made about

the true response and true covariate. A major limitation of the matrix method is that esti-

mated probabilities may be invalid, that is, falls outside the constraint of 0 and 1, and this is

as a result of matrix inversion [37]. Other functional approaches have been identified in the

literature; the most common is the Simulation Extrapolation. This correction method was

initially intended for measurement error in continuous covariate [13] but was later extended

to misclassification error by Kuchenhoff (2006) [27].

Most structural approaches for estimating parameters of misclassified data are likelihood-
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based methods. The likelihood-based methods are the Maximum Likelihood and Bayesian

Method. The maximum likelihood method is the most widely used approach. Tang et

al. (2013) [50] formulated generalizations of assumptions underlying the matrix and inverse

matrix methods into a framework of maximum likelihood when internal validation data are

available. Tang et al. (2015) [49] employed a maximum likelihood approach framework for

a common misclassification in both the response variable and the covariate of interest while

adjusting for other covariates through a logistic regression model. Morrissey and Spiegelman

(1999) [36] compared the matrix method and the inverse matrix method with a maximum

likelihood estimator (MLE) in a covariate misclassification. They asserted that, although the

MLE is computationally intense, MLE was more efficient than both the direct matrix and

direct inverse matrix method. However, the direct inverse method was more efficient than

the direct matrix method. For a more comprehensive discussion on Maximum Likelihood

Estimates, refer to Lyles (2002), Greenland (2008), and Carrol et al. (2006) [9, 19, 31].

Bayesian computation is mostly implemented with Markov chain Monte Carlo (MCMC)

sampling. Bayesian method to adjust for covariate misclassification has been discussed in

detail by Gustafson (2003) [20].

A common occurrence of joint misclassification is when both the response variable and

covariate are obtained from unreliable sources. Self-reported survey data is commonly en-

countered with misclassification[28]. Clinical or laboratory criterion is more accurate in

getting data than self- reported sources; however, obtaining clinical or laboratory criterion is

more costly and time-consuming. Studies have shown a discordance between estimates ob-

tained from self-reported data sources and a criterion standard such as clinical or laboratory

examination [39, 3]. For example, if both the response variable and the covariate are obtained

from self-reported responses, and respondents do not accurately remember or omit details

of previous events or experiences, misclassification errors may occur in both variables. Joint

misclassification can occur when information on both the response variable and covariate are

obtained from proxy respondents.

Liu et al.[30] and Tarafder et al.[51] employed a Bayesian approach to correct for joint

misclassification in both the response variable and covariate. However, they both assumed

joint misclassification to be independent. Another instance to consider is when information
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on both the response variable and covariate status are obtained from two sources; say, one

subgroup’s data is obtained from a personal interview, and another subgroup’s information

can only be obtained by proxy. Information from a proxy is usually less accurate, hence

misclassification in both the response variable and covariate will be common in this subgroup.

Thus, the dependence of classification errors is likely; therefore, the assumption of conditional

independence is not always guaranteed. Brenner at al.(1993)[4] and Vogel et al.(1993) [53]

considered the matrix framework for joint dependent misclassification errors in both the

response variable and covariate. An example stated in Brenner et al. [4] obtained from

Dales et al. (1991) [16] discusses home dampness and molds and its impacts on respiratory

health in children. In this study, both the covariate, which is the presence of molds and the

response variable, respiratory symptoms, were self-reported. Here the authors emphasized

the possibility of under or over-reporting both the respiratory symptoms and exposure to

molds depending on the health conciousness of the participants. The above example justifies

a situation where dependence error misclassification can occur. This thesis seeks to address

the consequences of violating the independence assumption in a joint misclassification error

model.

1.3 Effect of Misclassification

Following, the effect of (i) covariate misclassification, and (ii) response variable misclassifica-

tion are explored.

Covariate Misclassification

For a two binary classifier, Y and X, if misclassification occurs in only the covariate X, X∗

is observed, instead of X. The relationship between X and X∗ is described by sensitivity:

SNX = P (X∗ = 1|X = 1, Y ) and specificity: SPX = P (X∗ = 0|X = 0, Y ) respectively.

Consider a common occurrence in epidemiological studies in which Y = 1 indicates the

presence of a disease of interest, and X represents an exposure under consideration. Let the

prevalence of exposure amongst participants with disease and disease-free participants be;

r1 = P (X = 1|Y = 1) and r0 = P (X = 1|Y = 0) respectively.
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Usually, the inferential interest is to apply odd-ratio to ascertain the association between

the covariate and response.

Φ =
r1(1− r0)
r0(1− r1)

However, due to misclassification in X, the naive odds ratio is estimated to be;

Φ∗ =
r∗1(1− r∗0)
r∗0(1− r∗1)

.

The attentuation factor arising as a result is [20],

Φ∗

Φ
=
{1− s/r1}/{1 + t/(1− r1)}
{1− s/r0}/{1 + t/(1− r0)}

where,

s =
1− SNX

SNX + SPX − 1
t =

1− SPX
SNX + SPX − 1

The naive estimator is biased towards the null value of unity for non-differential misclas-

sification conditional on SPX + SNX − 1 > 0, in that either 1 ≤ Φ∗ ≤ Φ or Φ ≤ Φ∗ ≤ 1[20].

However, in differential misclassification odds ratio may either be under or overestimated,

bias may go in either direction[7].

Response Variable Misclassification

Before misclassification in response variable is considered, lets briefly discuss the situation

where the response variable is continuous. When the response variable is a continuous vari-

able, measurement error in Y is mostly ignored. Consider a linear regression model,

Y = β0 + β1X + E. (1.2)

Let X be an error-free covariate and E be the inter-subject variability having a variance of

σ2
E. Let the estimate of β1 be β̂1 when Y is regressed on X. If Y ∗ is the surrogate of Y , that

is, Y ∗ = Y + ξ, then Y = Y ∗ − ξ, where ξ has a mean of zero and a variance of σ2
ξ . This

gives,

Y ∗ = β0 + β1X + (E + ξ) (1.3)

The structure of the regression does not change, and ξ does not depend on (Y,X). The main

difference is the variability, hence var(Y ∗) = σ2
E +σ2

ξ . This may be the reason why generally,

the emphasis is placed on errors in covariate rather than errors in the response variable.

9



Unlike error in a response variable that is continuous, misclassification in a response

variable has a different mechanism. Consider two binary classifiers Y and X, if we do not

observe Y but rather an error-prone version Y ∗. The misclassification probabilities can be

expressed as, P (Y ∗ = y∗|Y = y,X = x), where y∗, x, y = 0, 1. To distinguish between the

probabilities, SNY = 1 − P (Y ∗ = 0∗|Y = 1, X = x) = P (Y ∗ = 1∗|Y = 1, X = x) is the

sensitivity of the response variable while, SPY = 1 − P (Y ∗ = 1∗|Y = 0, X = x) = P (Y ∗ =

0∗|X = x, Y = 0) is the specificity. The observed response variable is modelled as:

P (Y ∗ = 1|X = j) =
1∑

k=0

P (Y ∗ = 1|Y = k,X = j)P (Y = k|X = j)

= (1− SPY )P (Y = 0|X) + SNY P (Y = 1|X)

= (SNY − (1− SPY ))P (Y = 1|X) + (1− SPY ) (1.4)

Given the sensitivity and specificity, one can straightforwardly obtain the effect estimates of

the covariate. The model relating a response variable Y to a covariate X is usually a logistic

regression,

logit P (Y = 1|X) = β0 + β1X (1.5)

but if misclassified model below if fitted,

logit P (Y ∗ = 1|X) = β∗
0 + β∗

1X. (1.6)

The relationship between β∗
1 and β1 are dependent on the type of misclassification. For

differential misclassification in Y with respect to X, the bias can be in either direction ,

towards or away from the null value 0. On the hand, for nondifferential misclassification, the

log odds ratio of β∗
1 is attenuated relative to β∗

1 [20].

1.4 Data Structure

Estimates of the parameters of interest may not always be reliable when inference is based

on only information on Y ∗ and/or X∗. The joint distribution of (Y ∗, Y ) and/or (X∗, X)

must be available or estimated to get precise parameter estimates; this leads to the notion

of validation studies. Validation studies can be categorized into two types based on the data

source: internal validation study and external validation study. For an internal validation
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study, the study subjects who contribute to the validation data are a subsample of the

main study. Typically, when perfect measures of both the response variable and covariates

(Y,X) are available, then the error-prone variables (Y ∗, X∗) becomes redundant in the model.

However, measures for (Y,X) may be labor-intensive or costly, making it difficult to be

obtained for every study participant. An example of an internal validation data is discussed

by Carrol et al. (1993) [8]. The study sought to establish an association between exposure

to simplex virus type 2 (HSV-2) and invasive cervical cancer. Invasive cervical cancer was

considered error-free, while a refined western blot procedure was used to assess the exposure

of some participants to HSV-2, and a less accurate western blot procedure was assessed for

all participants. Data obtained from the refined western blot was considered the validation

data, and the less accurate western blot procedure was the main study data. The structure

of the data is given in Table (1.1). Validation data were available for about 6% of the study

participants.

Table 1.1: HSV Data (Carrol et al.(1993))

Study Y X X∗ Count

1 0 0 13

1 0 1 3

1 1 0 5

Validation Data 1 1 1 18

0 0 0 33

0 0 1 11

0 1 0 16

0 1 1 16

1 - 0 318

Main Study Data 1 - 1 375

0 - 0 701

0 - 0 535

In the absence of internal validation data, additional information can be obtained from
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an external source. External validation studies employ samples from a different population.

External validation data has the advantage of cost-effectiveness because mostly data is readily

available from past studies. However, external validation misclassification error model are

not necessarily transportable. Transportability always assumes the error structure in the

main data and the external data are the same.

1.5 Estimation Methods

In drawing inference about the relationship between a true response and a covariate, two com-

mon approaches for data subject to misclassification error are likelihood-based: the Maximum

Likelihood Estimation approach and the Bayesian Estimation approach. Bayesian methods

allow the incorporation of historical information that is outside of the observed data. When

there is little prior information (that is, very diffuse prior distribution), the Bayesian and

MLE estimation are almost the same. Also, the Bayesian MCMC method provides transpar-

ent interval estimates for model parameters, especially when the model is very complex and

subject to nonlinear constraints on parameters. In this dissertation, the Bayesian method is

used to draw inference about the parameters of interest. Below is a brief review of Bayesian

inference.

Bayesian Inference

In the Bayesian approach the parameter θ ∈ Θ to be estimated is thought of as a random

variable with an assigned probability distribution termed the prior distribution, denoted by

π(θ). The prior distribution represents the information about the parameters which may be

available before data are observed. The posterior distribution π(θ|x) which is the target of

Bayesian inference is composed of prior distribution and likelihood function, fx(X|θ). The

Likelihood function contains information about the parameter from the available data X = x.

Updating of the prior is achieved by employing the Bayes’ rule giving the relation below:

π(θ|x) =
fx(x|θ)π(θ)

fx(x)
(1.7)

where fx(x) =
∫∫

f(x|θ)π(θ)dθ is the normalizing constant.

12



An essential part of Bayesian analysis is the prior specification for the unknown parameters

in a model. Specification of priors is entirely subjective, and it is normally based on the

nature of the problem or the researcher’s view of the problem. Bayesian employs a computer-

driven sampling method known as Markov Chain Monte Carlo (MCMC). MCMC has the

advantage of drawing samples from some distribution without knowing all the properties of

the distribution. It is especially helpful in the setting of Bayesian analysis when posterior

distributions are complex. MCMC methods require constructing suitable chains; these chains

are the simulated samples from the posterior distribution of the target population.

1.6 Contribution and Outline of Thesis

The impact of dependence on misclassification errors has been least explored; this work

should be the first to assess the consequences of imposing a wrong misclassification model

when both the response variable and covariate are misclassified. Chapter 2 addresses joint

misclassification in both the response variable and covariate when both variables are bi-

nary. The model for joint misclassification is specified while assuming misclassification er-

rors are non-differential. The specified model considers the dependence of error by including

covariance-like parameters. Bayesian method for parameter estimations is proposed for model

estimation. Simulation studies are conducted to assess the consequences of fitting the wrong

misclassification model.

In Chapter 3, the binary variables are extended to a multi-category situation. Similar

to the binary setting, the dependence of error is also captured by dependent parameters,

and the Bayesian method is proposed for parameter estimation. Further, simulation studies

are conducted for a trinary response variable and a trinary covariate to establish the impact

of ignoring dependence of error or misclassification in a multi-category setting. Chapter 4

illustrates the proposed models discussed through a real data example by considering the

association between a Trichomoniasis and Bacterial Vaginosis, using data from the HIV

Epidemiology Research (HERS). Chapter 5 concludes with the main findings, limitations,

and discussion of future work.
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Chapter 2

Binary Misclassification in both the Response

Variable and Covariate

This chapter examines the impact of mis-specifying joint misclassification errors on the regres-

sion co-efficients estimates when both the binary response variable and the binary covariate

are subject to misclassification errors. Dependence of misclassification error is characterized

by covariance-like parameters[53]. Bayesian MCMC method is used for model estimation.

Section 2.1 presents the notations and preliminary concepts as well as the specification of the

model for misclassification in both the response variable and covariate. In section 2.2, the

Bayesian method for the estimation of the model parameters are discussed by specifying the

likelihood functions and priors for the parameters. In Section 2.3, comprehensive simulation

study to assess the consequences of ignoring the dependence of the joint misclassification

errors in both the response variable and the covariate are conducted. The chapter concludes

with a discussion in Section 2.4.

2.1 Model Specification

Let Y and Y ∗ denote the actual response variable of interest and its surrogate (i.e., error-

prone) variable respectively. Let X and X∗ denote the actual covariate of interest and its

surrogate (i.e., error-prone) variable respectively. Here it is assumed that misclassification is

non-differential, consequently, sensitivity in the response variable and covariate are given as

SNY = P (Y ∗ = 1|Y = 1) and SNX = P (X∗ = 1|X = 1). Similarly, specificity in response

variable and covariate are given as SPY = P (Y ∗ = 0|Y = 0) and SPX = P (X∗ = 0|X = 0).
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If information on both the response variable and covariate status are obtained from the same

source (e.g., questionnaire, biological specimen) their errors are likely to be dependent.

Following the notion of dependence of misclassification error defined by Vogel et al.(2005)

[53], let Dij , for i, j = 0, 1, represent the dependence parameters,

Dij = P (Y ∗ = i,X∗ = j|Y = i,X = j)− P (Y ∗ = i|Y = i)P (X∗ = j|X = j). (2.1)

Please note that in the binary case, the following are obtained:

P (Y ∗ = 1− i,X∗ = 1− j|Y = i,X = j)− P (Y ∗ = 1− i|Y = i)P (X∗ = 1− j|X = j) = Dij

(2.2)

P (Y ∗ = i,X∗ = 1− j|Y = i,X = j)− P (Y ∗ = i|Y = i)P (X∗ = 1− j|X = j) = −Dij

(2.3)

P (Y ∗ = 1− i,X∗ = j|Y = i,X = j)− P (Y ∗ = 1− i|Y = i)P (X∗ = j|X = j) = −Dij

(2.4)

The dependence parameters are bounded, see Appendix A for the proof. The specific bound-

aries for the dependence parameters are given below [4],

D11 ∈
[
Max

{
− SNY SNX ;−(1− SNY )(1− SNX)

}
,Min

{
(1− SNY )SNX ;SNY (1− SNX)

}]
;

(2.5)

D10 ∈
[
Max

{
− SNY SPX ;−(1− SNY )(1− SPX)

}
,Min

{
(1− SNY )SPX ;SNY (1− SPX)

}]
;

(2.6)

D01 ∈
[
Max

{
− SPY SNX ;−(1− SPY )(1− SNX)

}
,Min

{
(1− SPY )SNX ;SPY (1− SNX)

}]
;

(2.7)

D00 ∈
[
Max

{
− SPY SPX ;−(1− SPY )(1− SPX)

}
,Min

{
(1− SPY )SPX ;SPY (1− SPX)

}]
.

(2.8)

Let p∗ij = P (Y ∗ = i,X∗ = j) and pkl = P (Y = k,X = l), thanks to the total probability

rule, one can easily derive the relationship between the two distribution:

p∗ij =
1∑

k=0

1∑
l=0

P (Y ∗ = i,X∗ = j|Y = k,X = l)pkl. (2.9)
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Each p∗ij can be expressed as a function of SNX , SPX , SNY , SPY and dependence parameters

Dij. Below the equation for p∗11 is shown:

p∗11 =
1∑

k=0

1∑
l=0

P (Y ∗ = 1, X∗ = 1|Y = k,X = l)pkl. (2.10)

=

[
SNY SNX +D11

]
p11 +

[
SNY (1− SPX)−D11

]
p10

+

[
(1− SPY )SNX −D11

]
p01 +

[
(1− SPY )(1− SPX)−D11

]
p00.

Please see Appendix B for details of p∗10, p
∗
01 and p∗00. The misclassified joint probabilities

described above can be expressed in matrix form as derived in Liu et al. (2020)[29]:

p∗ = (MY ⊗MX +D)p, (2.11)

where p∗ = (p∗11, p
∗
10, p

∗
01, p

∗
00)
′

and p = (p11, p10, p01, p00)
′
. Please note that the operator ⊗ is

the Kronecker product. The matrices MY and MX are as follows:

MY =

 SNY 1− SPY
1− SNY SPY

 , MX =

 SNX 1− SPX
1− SNX SPX

 .
The dependence matrix D, is composed of the dependence parameters Dij defined in Eqs.

(2.1) - (2.4) with the structure;

D =


D11 −D10 −D01 −D00

−D11 D10 D01 D00

−D11 D10 D01 −D00

D11 −D10 −D01 D00

 .

When misclassification errors are independent, all entries of the dependence matrix are zero

and (2.11) becomes,

p∗ = (MX ⊗MY )p. (2.12)

In this thesis, data structure with validation data is considered. Let’s consider a study

of N participants (sampling objects), with both the response variable and the covariate

subject to misclassification errors. Assuming nv of the N participants have observations
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made with an error-free measure in addition to the error-prone measure (where, N ≥ nv),

the nv participants constitutes the validation study subjects. The remaining nm = N − nv
participants are the main study subjects. For the validation dataset, all four assessments

(Y ∗ = i,X∗ = j, Y = k,X = l) are observed for each sampling unit. These assessments are

binary and takes on 0 and 1, hence 16 distinct patterns of the validation data are derived;

pijkl = P (Y ∗ = i,X∗ = j, Y = k,X = l),

= P (Y ∗ = i,X∗ = j|Y = k,X = l)P (Y = k,X = l),

= (P (Y ∗ = i|Y = k)P (X∗ = j|X = l) +Dijkl)P (Y = k,X = l). (2.13)

On the other hand, for the main data set, (Y ∗ = i,X∗ = j) are observed for each sampling

unit, and 4 distinct patterns are derived;

p∗ij = P (Y ∗ = i,X∗ = j). (2.14)

The data layout for joint misclassification in both the response variable and covariate when

validation data is available is given in Table (2.1).

Table 2.1: Data layout for joint misclassification in both the response variable and
covariate when validation data is available

Study Sampling unit X Y X∗ Y ∗

1 X X X X

· X X X X

Validation · X X X X

· X X X X

nv X X X X

nv+1 - - X X

· - - X X

Main · - - X X

· - - X X

N - - X X
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2.2 Bayesian method of adjustment for misclassifica-

tion error

2.2.1 Likelihood functions

The joint probabilities pij are parameterized through a logistic regression model with a re-

sponse variable and a covariate. Let us assume the underlying logistic regression model of

interest is:

logit(P (Y = 1|X = x)) = β0 + β1X. (2.15)

Employing the relationship below;

P (Y = i,X = j) =
exp(i(β0 + β1j))

1 + exp(β0 + β1j)
(pX)i(1− pX)1−i, (2.16)

where, pX = P (X = 1), the pij are reparameterized into regression parameters βk, k = 0, 1.

Let nijkl be the total number of individuals having (Y ∗ = i,X∗ = j, Y = k,X = l) and nij

be the total number of individuals having (Y ∗ = i,X∗ = j).

Let θ represent the parameters of interest for a model that considers dependence of mis-

classification errors (Eq. 2.11) , that is, θ = (SNY , SNX , SPY , SPX , D11, D10, D01, D00, β0, β1).

The likelihood function for the validation data, Lv is given by:

Lv(θ|Y,X, Y ∗, X∗) =
∏
ijkl

P (Y ∗ = i,X∗ = j, Y = k,X = l)nijkl . (2.17)

Let η represent the parameters of interest for a model that ignores dependence of mis-

classification errors (Eq.2.12) , that is, η = (SNY , SNX , SPY , SPX , β0, β1). The likelihood

function for the validation data, Lv is given by:

Lv(η|Y,X, Y ∗, X∗) =
∏
ijkl

P (Y ∗ = i,X∗ = j, Y = k,X = l)nijkl . (2.18)

Further, the main data’s likelihood function which is explicitly based on (Y ∗, X∗) is given

by:

Lm(θ|Y ∗, X∗) =
∏
ij

(P (Y ∗ = i,X∗ = j|Y = k,X = l)P (Y = k,X = l))nij , (2.19)
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and

Lm(η|Y ∗, X∗) =
∏
ij

(P (Y ∗ = i,X∗ = j|Y = k,X = l)P (Y = k,X = l))nij (2.20)

respectively for when dependence of misclassification errors is considered and when depen-

dence of misclassification errors is ignored. The overall likelihood function used in parameter

estimation is proportional to the product of the validation data’s likelihood and the main

data’s likelihood, that is, Lv × Lm.

2.2.2 Prior Construction

1. Priors for SNY , SPY , SNX , SPX : Truncated beta distributions are assigned to the pri-

ors of the misclassification parameters. The beta distribution is suitable because the

misclassification parameters are probabilities defined on the interval [0,1]. In practice,

however, it is rare to encounter sensitivities and specificities less than 0.5 [30]. Sensi-

tivity and Specificity are critical in making clinical decisions. Clinicians are interested

in knowing how well a test distinguishes between patients who have a disease and those

who do not have. A low sensitivity test misses a lot of positives whiles giving high

false negative rate (type 2 errors) and a low specficity test misses a lot of negatives

whiles giving high false positive rate (type 1 error). For this reason the distribution is

truncated to lie within [0.5,1], that is;

SNY ∼ Beta(α
SNY

, β
SNY

)I(SNY > 0.5);

SPY ∼ Beta(α
SPY

, β
SPY

)I(SPY > 0.5);

SNX ∼ Beta(α
SNX

, β
SNX

)I(SNX > 0.5);

SPX ∼ Beta(α
SPX

, β
SPX

)I(SPX > 0.5);

where, I(SNY > 0.5), I(SPY > 0.5), I(SNX > 0.5) and I(SPX > 0.5) are indicator

functions with value equal to 1 if the input is greater than 0.5 and 0 otherwise. An

equal-tailed 95% CI (0.55,0.95) is used to obtain the priors for the misclassification

parameters. Numerical methods are employed to estimate the hyperparameters.

2. Priors for βk,where k = 0, 1: The priors of the regression parameter are weakly
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informative priors,

βk ∼ N(0, 1000), k = 0, 1.

3. Priors for D11, D10, D01, D00: The dependence parameters are constrained to lie within

an interval determined by the misclassification parameters (2.6) - (2.8), thus, uni-

form distributions are assigned to the dependence parameters which is also constrained

within (2.6) - (2.8).

Given the complexity of the model with multi-parameters, it is not feasible to obtain the pos-

terior estimates of the parameters analytically; hence Markov Chain Monte Carlo (MCMC)

sampling, implemented in R via “Just Another Gibbs Sampler” (JAGS), is used. JAGS is a

statistical program that implements MCMC methods [42].

2.3 Simulation Study

In this section, simulation studies are conducted with the aim of checking the consequences

of fitting an independent misclassification error model and a naive model to data generated

from a dependent misclassification error model. The fitted models are,

1. The model for dependent misclassification errors. In this model, the misclassi-

fication errors in the response variable depends on the misclassification errors in the

covariate and vice versa.

2. The model for independent misclassification errors in the response variable and

the covariate.

3. The naive model which assumes no misclassification error.

The scenarios for the simulation studies are selected based on:

• varying the misclassification parameters. Large values of the SNX , SPX , SPY , SPX

corresponds to less amount of misclassification.

• varying the extent of dependence. Here, the function δ =
∑

ij(−1)i+jDijPij is used to

control the dependence in the model. Please refer to section(2.3.2) for details of the δ

function.
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• varying the proportion of the validation data
nv
N

; 10% proportion of validation data

and 50% proportion of validation data.

2.3.1 Simulation Setup

Based on the logistic regression model,

logit P (Y = 1|x) = β0 + β1X,

one can derive the joint distribution for (Y,X), pij. I set the values of β0 and β1 to be 1

and P (X = 1) = 0.1. To introduce non-differential and dependent misclassification errors

in Y and X, I set up the true value of MY ,MX , and D. In binary misclassification with

validation, the 16 distinct patterns of the validation data are derived from P (Y ∗ = i,X∗ =

j, Y = k,X = l) where i, j, k, l = 0, 1.

In the simulation studies, two different proportions of the validation data are consid-

ered, and each has a sample size 10,000 including both main data and validation data.

(a) 10% validation data: 9000 are main data observations, that is, there are observations

for only Y ∗and X∗, and 1000 are validation data observations, that is observations for all

Y ∗, X∗, Y and X. (b) 50% of the sampling unit as validation data; both the main data and

the validation data have 5000 observations. There are eight scenarios for each proportion of

the validation data, and repeatedly 1000 data sets are generated for each scenario for the

simulation study. The average of each of the parameter estimates out of the 1000 datasets

for each fitted model are calculated.

2.3.2 Choice of Dependence

High and low dependence are chosen based on the optimization of the function below:

δ =
∑
ij

(−1)i+jDijPij. (2.21)

The above function is equal to δ = E(Cov(Y ∗, X∗|Y,X))[30] and can be extracted from Eq.

(2.1). Please see Appendix C for proof details. Table ( 2.2) gives the Low and high values

for the dependence parameters of various misclassification scenarios considered. Please note
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that a scaled version of δ, is defined by:

δr = E(corr((Y ∗, X∗|Y,X))) =
E(Cov(Y ∗, X∗|Y,X)√

V ar(Y ∗|Y,X)V ar(X∗|Y,X)
.
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Table 2.2: Low and High dependence values for the dependence parameters based on
the misclassification scenarios.

Misclassification scenario Parameters Low High

D11 -0.0086 0.1600

SNY = 0.8, SNX = 0.8 D10 0.0418 -0.0400

SPY = 0.8, SPX = 0.8 D01 0.0126 -0.0400

D00 0.1174 0.1600

δr 1.186e-18 0.0995

D11 -0.0054 0.1600

SNY = 0.8, SNX = 0.8 D10 0.0141 -0.0100

SPY = 0.95, SPX = 0.95 D01 0.0116 -0.0100

D00 0.0408 0.0475

δr 2.486e-19 0.0607

D11 -0.0011 0.0475

SNY = 0.95, SNX = 0.95 D10 0.0241 -0.0100

SPY = 0.8, SPX = 0.8 D01 0.0155 -0.0100

D00 0.0667 0.1600

δr 7.7726e-19 0.0370

D11 -0.0003 0.0475

SNY = 0.8, SNX = 0.8 D10 0.0149 -0.0025

SPY = 0.95, SPX = 0.95 D01 0.0115 -0.0025

D00 0.04111 0.0475

δr 5.7063e-20 0.0199
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2.3.3 Simulation Results

The result of the simulation studies that are aimed at checking the consequences of fitting

the wrong models (an independent misclassification error model and a naive model) to data

generated from a dependent misclassification model is presented below. The results are pre-

sented based on: (1) 10% proportion of validation data, and (2) 50% proportion of validation

data.

Results for simulation studies employing 10% validation data

Tables (2.3) -(2.6) shows the average posterior means and the 95% credible intervals for the

regression parameters (β0 and β1), misclassification parameters (SNY , SNX , SPY , SNX)

and the D-parameters(D11,,D10D01,D00) in the three models for each of the 8 simulation

scenarios when 10% validation data is employed for a 1000 replicated data. Also included

in the tables are the average relative bias for each parameter. Note that, the relative bias

for θ is defined as
∣∣ θtrue−θ̂
θtrue

∣∣. The naive model has estimates for only β0 and β1. Please note

that the primary interest parameter is β1 because the estimate of this parameter gives the

mathematical relationship between the response variable and covariate.

Table (2.3) shows the results of low sensitivity and specificity scenarios (that is, SNY =

SNX = SPY = SPX = 0.8). It is observed that scenario 2 (low δ) produces estimates that

are closer to the true values than scenario 1 (high δ). The estimates of the misclassifica-

tion parameters for both the dependent misclassification error model and the independent

misclassification error model under scenario 2 are relatively close to the true value. How-

ever, in scenario 1 although the misclassification parameters estimates for the dependent

misclassification error model are close to the true value, notably high mean values for the in-

dependent misclassification error model (that is, ˆSNY = 0.924, SNX = 0.936, SPY = 0.899,

SPX = 0.931) is observed. The dependence parameters are reasonably close to the true value

for both scenarios 1 and 2 when fitting the dependent misclassification error model.
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Comparing the three models, for both scenarios considered in the Table (2.3), it is noticed

that for the β1 parameter, estimates from the dependent misclassification error model are

closer to the true values than the other two models. However, the naive model is superior

to the independent misclassification error model when δ is high. The model that produced

the largest bias in Table(2.3) for the β1 parameter is the independent misclassification er-

ror model with high δ (β̂1=4.670). A look at Table (2.4), where high sensitivity (that is,

SNY = SNX = 0.95) and low specificity (that is, SPY = SPX = 0.8) scenarios are con-

sidered, the dependent misclassification error model performs better than the independent

misclassification error model and the naive model for both scenarios 3 and scenario 4. Es-

timates of the misclassification parameters in both scenario 3 and scenario 4 are a bit close

to the true values, also the D parameters are close to the true values except D11 in scenario

4 which has a rather high relative bias of 8.834. The parameter estimates of β1 for the

dependent misclassification error model and independent misclassification error models are

somewhat close for scenario 4. It is observed that the naive model gives β1 estimates that are

lower than the true mean values for the high δ scenario in Table (2.4), a similar observation

was made in scenarios 5 where low δ scenario was also considered. The best performing

model for β1 is the dependent misclassification error model with low δ (β̂1=1.107) and the

model that produce the largest bias for β1 is the independent misclassification model with

high δ (β̂1=4.007)).

From Table (2.5) where low sensitivity (that is, SNY = SNX = 0.8) and high specificity

(that is, SPY = SPX = 0.95) scenarios are considered, patterns for the misclassification

and D-parameters are very similar to what is observed in Table (2.4). Although β1 estimates

reduced in the independent model for the high δ scenario, it produce largest bias in estimating

the true β1 value (β̂1 = 3.512). When the δ is low, both the dependent and independent

misclassification error model provide accurate point estimate for the β1 parameter.

For high sensitivity and specificity scenarios (that is, SNY = SNX = SPY = SPX = 0.95),

it is shown from the Table (2.6) that both the dependent misclassification model and the

independent misclassification model accurately estimates the true values of the parameters

under consideration fro scenario 8 which considers a low δ scenario.
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The point estimates of the misclassification and D-parameters in scenario 7 and scenario

8 remain reasonably close to the true values. The point estimates in scenario 7 (low δ) are

better than the point estimates in scenario 8 (high δ). The point estimate of β1 for the naive

model is very low compared to the true value. (β̂1=2.805).

For easy visual comparison, Figure (2.1) shows the graph of the relative bias of the esti-

mated misclassification parameters and the regression coefficients. Generally, it is observed

that the misclassification parameters have a minimal relative bias, especially in models with

low δ (that is, B, D, F, H). Also the relative bias for the β1 is high for models with high

δ (that is, A, C, E, G). However, the value reduces as the misclassification error decreases.

For the low misclassification parameters, the graph of the relative bias has almost identical

patterns irrespective of the δ value; this is evident in subfigures G and H of Figure (2.1).
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Figure 2.1: Graph of the relative bias (in absolute value) of the misclassification
parameters and the regression coefficient with 10% validation.
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Results for simulation studies employing 50% validation data

Tables (2.7) -(2.10) show the posterior means, 95% credible intervals, and the relative bias

of the parameters in the three models for each of the eight simulation scenarios for the case

where 50% validation data is used.

In Table (2.7) low sensitivity and specificity scenarios (that is, SNY = SNX = SPY =

SPX = 0.8) are shown. It is observed that in scenario 2 (low δ), both the dependent

and independent misclassification error model accurately estimate the true values of the

misclassification parameters. In scenario 1 (high δ), the dependent misclassification error

accurately estimates the true values of the misclassification parameters, although estimates

from the independent misclassification model are quite close to the true value. For the β1

parameter, the point estimates of the misclassification parameters in both scenario 1 and

scenario 2 are relatively close to the true parameters. The dependent and independent

misclassification error model gave accurate point estimates for β1 parameter in scenario 1.

The model that produced the largest bias is the naive model with high δ (β̂1=2.681).

For scenarios that considers high sensitivity (that is, SNY = SNX = 0.95), and low

specificity (that is SPY = SPX = 0.8) scenarios, as is the situation in the Table (2.8), it

is observed that the dependent model remains the best model. However, there is minimal

distinction between the dependent model and the independent model for low dependence

error. The model that produce largest bias in estimating the β1 parameter is the naive model

with high dependence error (β̂1=2.196). Patterns observed in Table (2.9) are very similar

to (2.8) which considers low sensitivity (that is SNY = SNX = 0.8) and high specificity

(that is SPY = SPX = 0.95) scenarios. Although the β̂1 estimates have reduced compared

to preceding models the naive model with high δ remains the model that produces the

largest bias in estimating the beta1 parameter (β̂1=1.889). Considering high misclassification

scenarios (that is, SNY = SNX = SPY = SPX = 0.95) as recorded in the Table (2.10),

generally the there is a reduction in the relative bias values. The model produce largest bias

in estimating the β1 parameter is the independent misclassification error model with high δ

(β̂1=1.516).
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Figure (2.2) shows the average relative bias of the estimated misclassification and re-

gression parameters for the scenarios where 50% of validation data is employed. The relative

biases for the misclassification and regression parameters are generally small compared to the

relative biases obtained when 10% of validation data was used. Here, the model produced

the largest bias in estimating the true values of the β1 parameter for most scenarios is the

naive model.

2.3.4 MCMC Diagnostics

For MCMC diagnostics, two Markov chains are constructed, each having 10,000 iterations.

The initial 5,000 iterations are discarded as burn-in. To assess whether chains from the

MCMC algorithm have converged to a stationary distribution, I perform a couple of tests.

A visual inspection is performed by examining trace and density plots of each parameter

before formal tests are conducted. For 10% validation data, the trace plots and density plots

for the first Scenario are shown in Figures (2.3) - (2.8). Also for 50% validation data the

trace and density plots for the second Scenario are shown, please refer to Figures (2.12)

- (2.17). These few plots are shown because similar plots are obtained for the remaining

scenarios considered. The trace plots show no apparent patterns, indicating that the sampler

mixed well and stationarity is achieved. The formal test considered is the Gelman-Rubin

diagnostics. The Gelman-Rubin R statistics are approximately equal to 1 for all parameters,

which is a confirmation of stationarity. Autocorrelation plots are used to check convergence

and mixing performance. Autocorrelation plot are shown in Figures (2.9) - (2.11) and Figures

(2.18) - (2.20). The quick decay shows a good mix and an evidence of convergence.
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Figure 2.2: Graph of the average relative bias of the misclassification parameters and
the regression coefficient with 50% validation.
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Figure 2.3: Trace plots for the posterior samples under the dependent misclassification error
odel with 10% validation data for Scenario 1.(SNX = 0.8,SNY = 0.8,SPX = 0.8,SPY = 0.8,
High Dependence)

Figure 2.4: Trace plots for the posterior samples under the independent misclassification
error model with 10% validation data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX =
0.8, SPY = 0.8, High Dependence)

Figure 2.5: Trace plots for the posterior samples under the Naive Model with 10% validation
data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, High Dependence)
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Figure 2.6: Density plots for the posterior samples under the dependent misclassification error model
with 10% validation data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, High δ)

Figure 2.7: Density plots for the posterior samples under the independent misclassification error
model with 10% validation data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8,
High δ)

Figure 2.8: Density plots for the posterior samples under the Naive Model with 10% validation data
for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, High δ)
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Figure 2.9: Autocorrelation plots for the posterior samples under the Dependent misclassification
error model with 10% validation data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8,
High δ)

Figure 2.10: Autocorrelation plots for the posterior samples under the Independent misclassification
error model with 10% validation data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8,
High δ)

Figure 2.11: Autocorrelation plots for the posterior samples under the Naive Model with 10%
validation data for Scenario 1.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, High δ)
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Figure 2.12: Trace plots for the posterior samples under the Dependent misclassification model with
50% validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low δ)

Figure 2.13: Trace plots for the posterior samples under the Independent misclassification model
with 50% validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low δ)

Figure 2.14: Trace plots for the posterior samples under the Naive Model with 50% validation data
for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low δ)
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Figure 2.15: Density plots for the posterior samples under the Dependent misclassification error
model with 50% validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low
δ)

Figure 2.16: Density plots for the posterior samples under the Independent misclassification model
with 50% validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low δ)

Figure 2.17: Density plots for the posterior samples under the Naive Model with 50% validation
data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low δ)
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Figure 2.18: Autocorrelation plots for the posterior samples under the Dependent misclassification
error model with 50% validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8,
Low δ)

Figure 2.19: Autocorrelation plots for the posterior samples under the Independent misclassification
error model with 50% validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8,
Low δ)

Figure 2.20: Autocorrelation plots for the posterior samples under the Naive Model with 50%
validation data for Scenario 2.(SNX = 0.8, SNY = 0.8, SPX = 0.8, SPY = 0.8, Low δ)
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2.4 Discussion

In this chapter, a model that accounts for dependent misclassification error in a binary

response variable and binary covariate was introduced. I considered a data structure with

validation data available. Simulation study is conducted with the objective of checking the

consequences of fitting an independent misclassification error model and a naive model to a

data generated from a dependent misclassification error model.

Findings based on the simulation studies summarize that, when 10% of validation data

is employed, the dependent misclassification error model demonstrates that it was best at

producing estimates that are closer to the true value than the naive model and independent

misclassification error model for all scenarios considered. Making comparison based on the

β1 estimates, the model that produced the largest bias for high δ scenarios is the indepen-

dent misclassification error model. However, for low δ, both the dependent and independent

misclassification error model accurately estimated the true values of the parameters under

consideration, except Scenario 8, where the naive model better estimated the β1 than the

independent misclassification error model. Although the independent misclassification error

model was the model that produced tjhe largest bias for cases where 10% validation data

was used, it performed better in most scenarios than the naive model in the case where 50%

validation data was employed. Overall, it is observed that for low misclassification scenarios,

the relative bias for the β1 parameter is low.

The simulation studies revealed that ignoring dependence error can be worse than ignoring

misclassification altogether when validation data is small (10% of validation data). However,

for substantial validation (50% of validation data), when the δ is low, both the dependent

and independent misclassification error models accurately estimate the true values when δ

is low. In the next chapter (Chapter 3), I extend the proposed model in this chapter to a

multi-category response variable and a multi-category covariate.
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Chapter 3

Analysis of Categorical Data Subject to Mis-

classification

3.1 Introduction

This chapter describes a general approach to joint misclassification in category data. It is

an extension and a generalization of the binary response variable and binary covariate case

proposed in chapter 2. Category data are a common occurence in many fields of study,

especially epidemiology. An example includes the association between socio-economic status

(SES) and malnourished children [52]. The covariate SES is a three level category variable

(low, middle and high). Wealth index (asset index) is widely used as a measure of SES

[46]. Wealth index is created by measuring an individual’s assets. However, not possessing

certain assets may not necessarily mean one cannot afford them. Employing wealth index can

introduce misclassification error in categorizing SES. A child’s nutrition status is categorized

as severely undernourished, moderately undernourished, and nourished. Nutrition status is

categorized by comparing a child’s weight and height with reference standards [55]. However,

these athropometric indicators may be influenced by chronic diseases or genetics but not lack

of nutrient availability. This can therefore lead to misclassification in the categorization

of nutrient status. This kind of data is subject to joint misclassification errors, but these

errors are often ignored in the analysis since techniques for adjustment have been least

explored. The chapter is organized as follows: notations and prelimary concepts for category

misclassification error in both the response variable and covariate are introduced in Section

3.2. A Bayesian method for the estimation of the model parameters is discussed in Section

3.3. In Section 3.4, a comprehensive simulation study is conducted to assess the consequences
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of ignoring dependence of misclassification errors or completely ignoring misclassification in

a trinary response variable and a trinary covariate.

3.2 Model and Notation

Let Y and X denote the actual response variable and covariate of interest and let Y ∗ and X∗

denote their surrogate (i.e., error-prone) variables respectively. The number of categories of

the response variable and covariate are represented by gY and gX , respectively.

Now, the dependence parameters Dijkl is defined by,

Dijkl = P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l). (3.1)

Similar reasoning as in the binary case, each dependence parameter is bounded to lie within

an interval.

Max
{
−MY [i, k]MX [j, l];−(1−MY [i, k])(1−MX [j, l])

}
≤Dijkl

≤Min
{

(1−MY [i, k])MX [j, l];MY [i, k](1−MX [j, ])
}

(3.2)

Please refer to Appendix (A) for the proof of the boundaries of the dependence parameters.

Let the vector of the joint probabilities of the error-prone response variable and the error-

prone covariate p∗ij be represented by p∗, then p∗i = (p∗i1, ..., p
∗
igY

)
′
, (i = 1, ..., gX) and p∗ =

(p∗1
′
, ..., p∗gX

′
)
′

and the vector of the joint probabilities of the error-free response variable and

the error-free covariate pij be represented by p, then pi = (pi1, ..., pigX )
′
, (i = 1, ..., gY ) and

p = (p1
′
, ..., pgY

′
)
′
.

The relationship between p∗ and the error-free joint probability p is given by:

p∗ = (MY ⊗MX +D)p (3.3)

where p∗, p are defined accordingly above,

MY [i, k] = P (Y ∗ = i|Y = k), (3.4)

MX [j, l] = P (X∗ = j|X = l), (3.5)

and D are the dependence parameters defined in Eq.(3.1). Note that, MY [i, k] and MX [j, l]

represent the misclassification in the response variable and covariate respectively. In the
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binary case the misclassification parameters are the sensitivities and specificities, defined as,

SNY = P (Y ∗ = 1|Y = 1), SNX = P (X∗ = 1|X = 1),

SPY = P (Y ∗ = 0|Y = 0), SPX = P (X∗ = 0|X = 0).

3.2.1 Misclassification in a trinary response variable and a trinary

covariate

Let Y and X represent a three-category response variable and a three-category covariate

respectively. Suppose both Y and X are misclassified, Y ∗ and X∗ will instead be recorded.

Then i, j, k, l in MY [i, k], MX [j, l], and Dijkl from Eq.(3.1), Eq.(3.4), and Eq.(3.5) takes on

1, 2, 3.

Relating to the fact that , ∑
i

Dijkl = 0,

∑
j

Dijkl = 0.

The number of independent dependence parameter is obtained from (I−1)× (J−1)× I×J .

Specifically for the three category response variable and three category covariate the number

of dependence paranmeters obtained are (3 − 1) × (3 − 1) × 3 × 3 = 36. As the number

of category increases the number of dependence parameters in the model increase. Large

number of parameters in a model may cause computational problems.

3.3 Bayesian method for adjustment for misclassifica-

tion error in a category data

Bayesian analysis using a JAGS (version) program similar to the previous chapter is per-

formed. The likelihood functions for both the validation and main data are in like manner

as the binary case stated in equations (2.20) and (2.23). The joint probabilities pij are repa-

rameterized through a multinomial logistic regression. In this study, ordinal variables are

considered in the multinomial logistic regression, which is common in epidemiologic studies.
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pij is generated from an ordinal logistic regression model with a three-category response vari-

able and a three-category covariate. The following indicator variables for X are defined. Let

X = 1 be the reference category. For j = 2, 3, let Zj = 1 if X = j and zero otherwise. The

underlying ordinal logistic regression model is,

logit
[
P (Y ≤ i|X = j)

]
= αi + β1Z1 + β2Z2, (3.6)

where i = 1, 2.

The regression model above results to :

[
P (Y ≤ 2|X = j)

]
=

exp
[
α1 + β1Z1 + β2Z2

]
1 + exp

[
α1 + β1Z1 + β2Z2

] , (3.7)

[
P (Y ≤ 3|X = j)

]
=

exp
[
α2 + β1Z1 + β2Z2

]
1 + exp

[
α2 + β1Z1 + β2Z2

] . (3.8)

Note that ∀ pij ∈ [0, 1], α1 < α2.

The conditional probabilities for the first Y category is given by,

P (Y = 1|X = j) = P (Y ≤ 1|X = j).

Subsequent conditional probabilities for Y are obtained from,

P (Y = i|X = j) = P (Y ≤ i|X = j)− P (Y ≤ i− 1|X = j).

P (Y = i,X = j) = P (Y = i|X = j)P (X = j),

where P (X = j) are the marginal probabilities. Please refer to Appendix (B) for specific

joint probabilities.

3.4 Simulation Studies

In section simulation studies are conducted to investigate the impact of fitting an independent

misclassification error model and a naive model to data generated from a dependent misclas-

sification error model when the response variable and covariate are trinary. The following

models are fitted:
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1. The model for dependent misclassification errors: In this model, the misclassi-

fication errors in the response variable depends on the misclassification errors in the

covariate and vice versa.

2. The model for independent misclassification errors in the response variable and

the covariate.

3. The naive model, which assumes no misclassification error.

The dependence parameter and the misclassification parameters are varied to observe

if the magnitude of dependence or the extent of misclassification has an impact on the

models. For the dependence parameters, the function φc(Y
∗, X∗|Y,X) is used to control the

dependence in the model. Please refer to section 3.4.1 for details of the φc(Y
∗, X∗|Y,X)

function

Also the proportion of validation data
nv
N

are varied by considering 10% proportion of

validation data and 50% proportion of validation data. Here the following assumptions are

made for the simulation studies, these are:

• all correct classifications are equal:

MY [1, 1] = MY [2, 2] = MY [3, 3] = CY

MX [1, 1] = MX [2, 2] = MX [3, 3] = CX

• misclassification occurs only in classification parameters adjacent to the correct classifi-

cation. Follow the discussion in Swartz et al [48], who purported that misclassification

is less likely as the incorrect category moves away from the true category.

Since
3∑
i=1

MY [i, k] = 1 and
3∑
j=1

MX [j, l] = 1 where, k and l takes on 1, 2, 3, the following are

obtained

MY [2, 1] = MY [2, 3] = 1− CY MX [2, 1] = MX [2, 3] = 1− CX

MY [1, 2] = MY [3, 2] =
1− CY

2
MX [1, 2] = MX [3, 2] =

1− CX
2
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From the above assumptions, the following results:

MY =


CY

1− CY
2

0

1− CY CY 1− CY

0
1− CY

2
CY

 , MX =


CX

1− CX
2

0

1− CX CX 1− CX

0
1− CX

2
CX

 .
The kronecker product of the MY and MX gives the matrix MY ⊗MX .

Recall,

Dijkl = P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)P (X∗ = j|Y = l)

P (Y ∗ = i,X∗ = j|Y = k,X = l) ≤ P (Y ∗ = i|Y = k,X = l) = P (Y ∗ = i|Y = k)

this implies,

Dijkl ≤ P (Y ∗ = i|Y = k)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l)

Dijkl = P (Y ∗|Y = k)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l)

when P (Y ∗ = i|Y = k)=0

Dijkl = 0

From the above, all entries in the matrix MY ⊗MX that have 0 entries have corresponding

entries in D to be 0. This therefore, further reduces to 16 dependence parameters.
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Prior Construction

1. Priors for the misclassification parameters CY and CX : Truncated beta distributions

are assigned to the priors of the misclassification parameters. An equal-tail 95% CI

(0.6,0.95) are used to obtain the priors for the misclassification parameters. The dis-

tribution is truncated to lie within [0.5,1], that is :

CY ∼ Beta(14.19, 3.38)I(CY > 0.5);

CX ∼ Beta(14.19, 3.38)I(CX > 0.5).

where, I(CY > 0.5) and I(CX > 0.5) are indicator functions with value equal to 1 if

the input is greater than 0.5 and 0 otherwise.

2. Priors for the regression parameters αi, βi, where i = 1, 2: The priors for the multi-

category regression parameters are weakly informative priors, hence normal distribution

with a large variance are assumed. However, for an ordinal regression model, α2 should

necessarily be greater than α1, that is α2 > α1, hence α1 is an upper truncated normal

distribution with an upper bound α2.

βi ∼ N(0, 1000);

α2 ∼ N(0, 1000);

α1 ∼ N(0, 1000)I(α1 < α2).

(3.9)

3. Priors for the dependence parameters Dijkl. For the dependence parameters, unifom

distributions constrained within the boundaries of Eq. (3.2) are chosen.

Simulation Setup

Based on the ordinal logistic regression model considered in Section (3.3), I derive the joint

distribution pij for (Y,X). The values of α1 = −1, α2 = 0.5, β1 = 0.5 and β2 = 1 are set.

The marginal probabilities are also set at P (X = 1) = 0.3 and P (X = 2) = 0.3. To introduce

non-differential and dependent misclassification errors in Y and X, true value of MY ,MX ,
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and D are set up. In trinary misclassification with validation, the 81 distinct patterns of the

validation data are derived from P (Y ∗ = i,X∗ = j, Y = k,X = l) where i, j, k, l = 1, 2, 3.

In the simulation studies, two different proportions of the validation data are considered,

and each has a sample size 100,000, including both main data and validation data. (a)

10% validation data: 90,000 are main data observations, that is, there are observations for

only Y ∗and X∗, and 10,000 are validation data observations, that is observations for all

Y ∗, X∗, Y and X. (b) 50% of the sampling unit as validation data; the main data and the

validation data have 50,000 observations. There are eight scenarios for each proportion of the

validation data, and I repeatedly generated 1000 data sets for each scenario for the simulation

study. The average of each of the parameter’s estimates are calculated. Table ( 3.1) presents

the dependence value for each of the dependence parameters for various misclassification

scenarios.

3.4.1 Choice of Dependence

The extent of dependence between the response variable and covariate in the categorical

setting is characterized by E(φc(Y
∗, X∗|Y,X)) which is derived from the concept of Cramer’s

V (Liu et al. 2020) [29] . In the trinary categorization, φc is defined by:

φc(Y
∗, X∗|Y = k,X = l) =

√
χ2

2n
, (3.10)

where,

χ2 = n
∑
ij

P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l)

P (Y ∗ = i|Y = k)P (X∗ = j|X = l)
,

= n
∑
ij

(Dijkl)
2

MY [i, k] MX [j, l]
.

Hence,

φc(Y
∗, X∗|Y = k,X = l) =

√√√√1

2

∑
ij

(Dijkl)2

MY [i, k] MX [j, l]
, (3.11)

Please note that, φc(Y
∗, X∗|Y = k,X = l) reduces to δr = E(Y ∗, X∗|Y = k,X = l) in the

binary case. The function φc(Y
∗, X∗|Y = k,X = l) is optimized to obtain the low and high
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value for each dependence parameter. The boundaries for the dependence parameters are

used as constraints in the optimization process, this included all non-linear constraints. An

indicator function is included in the MCMC smpling in jags by using the step() function.

This function is used to impose all the non-linear constraints in the models. Only MCMC

samples which satisfy the nonlinear constraint were included in the posterior summaries.

Table 3.1: Dependence value for the dependence parameter for various scenarios.

(CY = 0.8,CX = 0.8) (CY = 0.8,CX = 0.95) (CY = 0.95,CX = 0.8) (CY = 0.95,CX = 0.95)

D Low High Low High Low High Low High
para- φc = 0.0667 φc = 0.4733 φc = 0.0161 φc = 0.2523 φc = 0.1115 φc = 0.2569 φc = 0.0176 φc = 0.6041
meters (Scenario 1) (Scenario 2) (Scenario 3) (Scenario 4) (Scenario 5) (Scenario 6) (Scenario 7) (Scenario 8)

D1 -4.788E-05 0.0600 1.562E-04 0.0150 -4.043E-05 0.0150 -3.654E-05 0.0225

D2 -1.292E-04 0.0600 -5.205E-04 0.0250 -4.195E-05 0.0150 2.505E-04 0.0225

D3 -1.199E-04 -0.0300 -6.575E-05 -0.0100 -3.699E-05 -0.0075 -8.072E-05 -0.0112

D4 4.421E-05 -0.0600 -5.065E-05 -0.0150 1.103E-04 -0.0150 -7.635E-06 -0.0225

D5 -4.502E-04 0.0600 -3.859E-04 0.0150 -5.184E-05 0.0233 3.102E-04 0.0225

D6 -4.713E-05 -0.0300 -6.687E-05 -0.0075 -1.157E-04 -0.0117 -7.746E-05 -0.0113

D7 -3.297E-05 0.0178 -5.094E-05 0.0058 -2.500E-03 0.0058 -2.827E-05 0.0063

D8 8.944E-03 -0.0356 4.748E-04 -0.0117 5.000E-03 -0.0117 3.449E-04 -0.0126

D9 -3.287E-05 -0.0356 -1.147E-04 -0.0117 -2.000E-02 -0.0117 -1.603E-04 -0.0126

D10 7.106E-02 0.0711 1.953E-02 0.0233 4.000E-02 0.0233 2.341E-02 0.0253

D11 3.520E-05 -0.0600 7.216E-05 -0.0150 -4.542E-05 -0.0233 -1.073E-04 -0.0225

D12 -1.575E-05 0.0300 -4.759E-05 0.0075 -3.115E-05 0.0117 -3.102E-05 0.0113

D13 -5.311E-05 0.0600 -1.962E-05 0.0150 -6.244E-05 0.0150 -4.365E-05 0.0225

D14 -4.935E-05 -0.0600 -5.080E-05 -0.0233 -2.179E-04 -0.0150 6.334E-06 -0.0225

D15 -2.047E-05 0.0300 -4.386E-05 0.0117 -3.747E-05 0.0075 -3.033E-05 0.0113

D16 -5.547E-05 0.0600 -1.956E-05 0.0150 -2.216E-05 0.0150 -3.871E-05 0.0225

3.4.2 Simulation Results

In the simulation study results, the outcome of fitting an independent misclassification error

model and a naive model to data generated from a dependent misclassification model are

shown. The results are presented for (1) 10% proportion of validation data, and (2) 50%

proportion of validation data.
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Results for simulation studies employing 10% validation data

Tables (3.2) -(3.9) shows the average posterior means and the 95% credible intervals for the

regression and misclassification parameters in the three models for each of the 8 simulation

scenarios when proportion of validation data is 10%. The average relative bias for each

parameter estimate of the 1000 datasets under the various models is also presented in the

tables. Since a three-category response variable and a three-category covariate are considered,

the primary parameters of interest, which give the relationships between the two variables,

are the β1 and β2 parameters. Also note that for the misclassification parameters, the higher

the value, the less the misclassification error.
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Table (3.2) shows the results of larger amount of misclassification error scenarios (that

is, CY = 0.8 and CX = 0.8). It is observed that the point estimates obtained for the

misclassification parameters are closer to the true values in scenario 2 (low φc) than scenario

1 (high φc error) for both the dependent and independent misclassification error models. For

the β1 and β2 parameters, the dependent misclassification error model gave point estimates

that are closer to the true values than the naive and independent misclassification error model.

However, the independent misclassification error model is superior to the naive model. Also,

notice from Table 3.2 that all the β1 and β2 parameters for the naive model in both scenario

1 and scenario 2 have the estimated mean value to be smaller than the true value. The model

which produced the largest bias in estimating the β1 and β2 parameters is the naive model

with Low φc (β̂1 = 0.2698 and β̂1 = 0.6992).

From Table 3.3 it is seen that, where less misclassification error scenario is considered in

the covariate (CX = 0.95) and larger amount of misclassification error scenario is considered

in the response variable (CY = 0.8) that the estimates of the misclassification error param-

eters are quite close to the true values in both scenario 3 and scenario 4 for the dependent

and independent misclassification error models. The dependent misclassification error model

produced the lowest bias in estimating the β1 and β2 parameters, followed by the independent

misclassification model for both the high φc scenario and low φc scenario. The naive model

with low φc produced the worst mean estimated values (β̂1 = 0.3914 and β̂2 = 0.8164).

A look at Table 3.4, where larger amount of misclassification error scenarios are consid-

ered for the covariate (CX = 0.8) and less misclassification scenarios are considered for the

response variable (CY = 0.95) shows that the misclassification parameters have been accu-

rately estimated by both the dependent and independent misclassification error model for

both scenario 5 and scenario 6. For the β1 and β2 parameters, a similar pattern is observed as

in Tables 3.2 and 3.3, the dependent misclassification model gave estimates that are closest

to true value. The naive models produce the largest bias in Table 3.4, that is (β̂1 = 0.4534

and β̂2 = 0.8911) for high φc scenario and (β̂1 = 0.4549 and β̂2 = 0.8775) for low φc scenario.
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When less misclassification scenarios are considered for both the response variable and

covariate (that is, CX = 0.95 and CY = 0.95) as in Table 3.5, the general observation is that,

estimates for all the parameters under consideration are closer to the true values than scenar-

ios considered in Tables 3.2, 3.3 and 3.4. The misclassification parameters were accurately

estimated by the dependent and independent misclassification error models for scenario 7

and scenario 8. Considering the β1 and β2 parameters, the dependent misclassification error

model remains the best in estimating the true parameter values. For the low φc scenario,

the naive model produced largest bias. However, when high φc scenario is considered, the

estimates of β1 and β2 parameters are quite close to the true values than the independent

misclassification error model (β̂1 = 0.4744 and β̂1 = 0.9685). A plot of the average relative

bias for the estimated parameters in Figure 3.1, clearly shows that the naive model produces

the largest relative bias.

3.4.3 MCMC Diagnostics

The posterior samples are based on two MCMC chains, each having total length 5,000 after

a 10,000 burn-in period. Figure (3.3) - (3.20) shows the trace plots, density plots, and

autocorrelation plots of the regression and misclassification parameters for the three models

for 10% and 50% proportion of validation data. The trace plots show no visible patterns

for the parameters; there is evidence of unimodal in the density plot. The autocorrelation

drops with increasing lag; these are all indications of convergence and stationarity for the

considered parameters.
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Figure 3.1: Graph of the average relative bias of the misclassification parameters
and the regression coefficient for the multi-category model when 10% proportion of
validation data is employed.
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Table 3.6 considers larger amount of misclassification error scenarios for both the covariate

and response variable (that is, CX = 0.8 and CY = 0.8) when proportion of validation data is

50%. It is observed that the estimates of the misclassification parameters are close to the true

values for both high φc (scenario 1) and low φc (scenario 2). For the β1 and β2 parameters,

the dependent misclassification error model produced estimates that are closest to the true

values than the independent misclassification error model and the naive model. In scenario 1

and scenario 2, the independent misclassification error model performs better in estimating

the β1 and β2 parameters than the naive model.

From Table 3.7 where less misclassification error scenario for the covariate (CX = 0.95)

and larger amount of misclassification error scenarios for the response variable (CY = 0.8)

are considered it is seen, that for the β1 and β2 parameters the estimates are closer to the

true values in the dependent misclassification error model than the naive and independent

misclassification error models. However, the naive models remains the worse performing

models for β1 and β2 parameters, that is (β̂1 = 0.4491 and β̂1 = 0.8943) for scenario 3 and

(β̂1 = 0.4202 and β̂1 = 0.8670) for scenario 4.

In Table 3.8 larger amount of misclassification error scenario in covariate (CX = 0.8) and

less misclassification scenario in the response variable (CY = 0.95) are considered. Patterns

observed are similar to that in Table 3.7. The models that produced the largest bias in

estimating the true β1 and β2 parameters value are the naives models, that is (β̂1 = 0.4665

and β̂1 = 0.9225) for scenario 5 and (β̂1 = 0.4686 and β̂1 = 0.9128) for scenario 6.

Table 3.9 shows less misclassification scenarios for both the covariate and response variable

(that is, CX = 0.95 and CY ] = 0.95), although the β1 and β2 estimates for the naive models

are closer to the true value than scenarios with larger amount of misclassification error

scenarios, they produce the largest bias, for the high φc scenarios (β̂1 = 0.4804 and β̂1 =

0.9767). However, the naive model performed better than the independent misclassification

error model in the high φc scenario.

64



T
a
b
le

3
.6
:

P
os

te
ri

or
su

m
m

ar
ie

s
an

d
re

la
ti

ve
b

ia
s

fo
r

th
e

m
o
d

el
p

a
rm

et
er

s
u

n
d

er
th

e
D

ep
en

d
en

t
M

o
d

el
,

In
d

ep
en

d
en

t
M

o
d

el
a
n

d
N

a
iv

e
M

o
d
el

in
m

u
lt

i-
ca

te
go

ry
m

is
cl

as
si

fi
ca

ti
on

u
si

n
g

si
m

u
la

te
d

d
a
ta

(N
=

1
0
0
,0

0
0
)

w
it

h
1
0
%

p
ro

p
o
rt

io
n

o
f

va
li

d
a
ti

o
n

d
a
ta

.
T

a
b

le
em

p
lo

y
s

se
tt

in
g
s

fr
o
m

sc
en

ar
io

1
(H

ig
h
φ
c
)

an
d

sc
en

ar
io

2
(L

ow
φ
c
).

D
e
p
e
n
d
e
n
t
M

o
d
e
l

In
d
e
p
e
n
d
e
n
t
M

o
d
e
l

N
a
iv
e
M

o
d
e
l

P
a
ra
m
et
er

T
ru

e
M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

V
a
lu
e

B
ia
s

B
ia
s

B
ia
s

H
ig
h

-
φ
c

α
1

-1
.0
0
0
0

-0
.9
9
9
6

(-
1
.0
2
5
6
,
-0
.9
7
3
7
)

0
.0
0
0
4

-1
.0
1
3
4

(-
1
.0
3
9
6
,
-0
.9
8
7
3
)

0
.0
1
3
4

-1
.0
5
6
3

(-
1
.0
7
5
3
,
-1
.0
3
7
4
)

0
.0
5
6
3

α
2

0
.5
0
0
0

0
.5
0
0
3

(0
.4
7
5
3
,
0
.5
2
5
2
)

0
.0
0
0
6

0
.4
9
0
2

(0
.4
6
5
2
,
0
.5
1
5
3
)

0
.0
1
9
5

0
.6
2
8
5

(0
.6
1
0
2
,
0
.6
4
6
9
)

0
.2
5
7
1

β
1

0
.5
0
0
0

0
.4
9
8
8

(0
.4
6
2
5
,
0
.5
3
5
1
)

0
.0
0
2
4

0
.4
9
9
7

(0
.4
6
2
9
,
0
.5
3
6
5
)

0
.0
0
0
7

0
.4
2
8
9

(0
.4
0
5
3
0
.4
5
2
5
)

0
.1
4
2
2

β
2

1
.0
0
0
0

0
.9
9
9
4

(0
.9
6
6
8
,
1
.0
3
2
0
)

0
.0
0
0
6

1
.0
3
0
3

(0
.9
9
7
6
,
1
.0
6
2
9
)

0
.0
3
0
3

0
.8
9
7
4

(0
.8
7
3
5
,
0
.9
2
1
2
)

0
.1
0
2
6

C
X

0
.8
0
0
0

0
.8
0
0
0

(0
.7
9
6
7
,
0
.8
0
3
4
)

0
.0
0
0
0

0
.8
0
0
3

(0
.7
9
6
9
,
0
.8
0
3
6
)

0
.0
0
0
4

-
-
-

-
C

Y
0
.8
0
0
0

0
.8
0
0
1

(0
.7
9
6
6
,
0
.8
0
3
5
)

0
.0
0
0
1

0
.8
0
0
3

(0
.7
9
6
9
,
0
.8
0
3
7
)

0
.0
0
0
4

-
-
-

-

L
o
w
-
φ
c

α
1

-1
.0
0
0
0

-1
.0
0
0
0

(-
1
.0
2
6
8
,
-0
.9
7
3
2
)

0
.0
0
0
0

-0
.9
6
4
2

(-
0
.9
9
0
2
,
-0
.9
3
8
1
)

0
.0
3
5
8

-0
.9
8
0
7

(-
0
.9
9
9
5
,
-0
.9
6
1
8
)

0
.0
1
9
3

α
2

0
.5
0
0
0

0
.5
0
0
4

(0
.4
7
5
0
,
0
.5
2
5
8
)

0
.0
0
0
8

0
.5
3
2
2

(0
.5
0
7
1
,
0
.5
5
7
3
)

0
.0
6
4
4

0
.6
9
3
8

(0
.6
7
5
4
,
0
.7
1
2
3
)

0
.3
8
7
6

β
1

0
.5
0
0
0

0
.4
9
9
7

(0
.4
6
2
2
,
0
.5
3
7
3
)

0
.0
0
0
6

0
.4
3
9
9

(0
.4
0
3
2
,
0
.4
7
6
8
)

0
.1
2
0
1

0
.3
3
3
0

(0
.3
0
9
4
,
0
.3
5
6
6
)

0
.3
3
3
9

β
2

1
.0
0
0
0

0
.9
9
9
6

(0
.9
6
6
2
,
1
.0
3
3
1
)

0
.0
0
0
4

0
.9
5
8
9

(0
.9
2
6
3
,
0
.9
9
1
5
)

0
.0
4
1
1

0
.7
8
9
7

(0
.7
6
6
0
0
.8
1
3
4
)

0
.2
1
0
3

C
X

0
.8
0
0
0

0
.7
9
9
9

(0
.7
9
6
8
,
0
.8
0
3
0
)

0
.0
0
0
1

0
.8
0
0
0

(0
.7
9
6
6
,
0
.8
0
3
3
)

0
.0
0
0
0

-
-
-

-
C

Y
0
.8
0
0
0

0
.8
0
0
0

(0
.7
9
6
8
,
0
.8
0
3
2
)

0
.0
0
0
0

0
.7
9
9
8

(0
.7
9
6
4
,
0
.8
0
3
2
)

0
.0
0
0
2

-
-
-

-

65



T
a
b
le

3
.7
:

P
os

te
ri

or
su

m
m

ar
ie

s
an

d
re

la
ti

ve
b

ia
s

fo
r

th
e

m
o
d

el
p

a
rm

et
er

s
u

n
d

er
th

e
D

ep
en

d
en

t
M

o
d

el
,

In
d

ep
en

d
en

t
M

o
d

el
a
n

d
N

a
iv

e
M

o
d
el

in
m

u
lt

i-
ca

te
go

ry
m

is
cl

as
si

fi
ca

ti
on

u
si

n
g

si
m

u
la

te
d

d
a
ta

(N
=

1
0
0
,0

0
0
)

w
it

h
1
0
%

p
ro

p
o
rt

io
n

o
f

va
li

d
a
ti

o
n

d
a
ta

.
T

a
b

le
em

p
lo

y
s

se
tt

in
g
s

fr
o
m

sc
en

ar
io

3
(H

ig
h
φ
c
)

an
d

sc
en

ar
io

4
(L

ow
φ
c
).

D
e
p
e
n
d
e
n
t
M

o
d
e
l

In
d
e
p
e
n
d
e
n
t
M

o
d
e
l

N
a
iv
e
M

o
d
e
l

P
a
ra
m
et
er

T
ru

e
M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

V
a
lu
e

B
ia
s

B
ia
s

B
ia
s

H
ig
h

-
φ
c

α
1

-1
.0
0
0
0

-0
.9
9
9
6

(-
1
.0
2
4
7
,
-0
.9
7
4
5
)

0
.0
0
0
4

-1
.0
0
5
3

(-
1
.0
3
0
4
,
-0
.9
8
0
3
)

0
.0
0
5
3

-1
.0
6
8
2

(-
1
.0
8
6
7
,
-1
.0
4
9
8
)

0
.0
6
8
2

α
2

0
.5
0
0
0

0
.5
0
0
5

(0
.4
7
6
3
,
0
.5
2
4
7
)

0
.0
0
1
0

0
.4
9
6
0

(0
.4
7
1
9
,
0
.5
2
0
2
)

0
.0
0
8
0

0
.6
1
9
4

(0
.6
0
1
5
,
0
.6
3
7
2
)

0
.2
3
8
7

β
1

0
.5
0
0
0

0
.4
9
9
2

(0
.4
6
5
8
,
0
.5
3
2
6
)

0
.0
0
1
7

0
.5
0
2
7

(0
.4
6
9
3
,
0
.5
3
6
0
)

0
.0
0
5
3

0
.4
4
9
1

(0
.4
2
5
2
,
0
.4
7
3
0
)

0
.1
0
1
8

β
2

1
.0
0
0
0

0
.9
9
9
4

(0
.9
6
8
1
,
1
.0
3
0
7
)

0
.0
0
0
6

1
.0
1
0
2

(0
.9
7
9
0
,
1
.0
4
1
3
)

0
.0
1
0
2

0
.8
9
4
3

(0
.8
7
1
2
,
0
.9
1
7
4
)

0
.1
0
5
7

C
X

0
.9
5
0
0

0
.9
4
9
9

(0
.9
4
8
0
,
0
.9
5
1
8
)

0
.0
0
0
1

0
.9
4
9
9

(0
.9
4
8
0
,
0
.9
5
1
8
)

0
.0
0
0
1

-
-
-

-
C

Y
0
.8
0
0
0

0
.8
0
0
0

(0
.7
9
6
6
,
0
.8
0
3
4
)

0
.0
0
0
0

0
.8
0
0
1

(0
.7
9
6
7
,
0
.8
0
3
5
)

0
.0
0
0
2

-
-
-

-

L
o
w

-
φ
c

α
1

-1
.0
0
0
0

-0
.9
9
9
5

(-
1
.0
2
4
8
,
-0
.9
7
4
2
)

0
.0
0
0
5

-0
.9
9
0
3

(-
1
.0
1
5
3
,
-0
.9
6
5
3
)

0
.0
0
9
7

-1
.0
4
8
1

(-
1
.0
6
6
5
,
-1
.0
2
9
6
)

0
.0
4
8
1

α
2

0
.5
0
0
0

0
.5
0
0
8

(0
.4
7
6
5
,
0
.5
2
5
1
)

0
.0
0
1
6

0
.5
0
9
2

(0
.4
8
5
1
,
0
.5
3
3
3
)

0
.0
1
8
4

0
.6
3
6
7

(0
.6
1
8
8
,
0
.6
5
4
6
)

0
.2
7
3
4

β
1

0
.5
0
0
0

0
.4
9
8
8

(0
.4
6
5
0
,
0
.5
3
2
5
)

0
.0
0
2
4

0
.4
8
1
4

(0
.4
4
8
1
,
0
.5
1
4
8
)

0
.0
3
7
2

0
.4
2
0
2

(0
.3
9
6
2
,
0
.4
4
4
1
)

0
.1
5
9
6

β
2

1
.0
0
0
0

0
.9
9
9
0

(0
.9
6
7
6
,
1
.0
3
0
6
)

0
.0
0
1
0

0
.9
8
9
8

(0
.9
5
8
6
,
1
.0
2
0
9
)

0
.0
1
0
2

0
.8
6
7
0

(0
.8
4
3
9
,
0
.8
9
0
0
)

0
.1
3
3
0

C
X

0
.9
5
0
0

0
.9
4
9
9

(0
.9
4
8
0
,
0
.9
5
1
8
)

0
.0
0
0
1

0
.9
4
9
9

(0
.9
4
8
0
,
0
.9
5
1
8
)

0
.0
0
0
1

-
-
-

-
C

Y
0
.8
0
0
0

0
.8
0
0
0

(0
.7
9
6
6
,
0
.8
0
3
4
)

0
.0
0
0
0

0
.8
0
0
1

(0
.7
9
6
7
,
0
.8
0
3
5
)

0
.0
0
0
1

-
-
-

-

66



T
a
b
le

3
.8
:

P
os

te
ri

or
su

m
m

ar
ie

s
an

d
re

la
ti

ve
b

ia
s

fo
r

th
e

m
o
d

el
p

a
rm

et
er

s
u

n
d

er
th

e
D

ep
en

d
en

t
M

o
d

el
,

In
d

ep
en

d
en

t
M

o
d

el
a
n

d
N

a
iv

e
M

o
d
el

in
m

u
lt

i-
ca

te
go

ry
m

is
cl

as
si

fi
ca

ti
on

u
si

n
g

si
m

u
la

te
d

d
a
ta

(N
=

1
0
0
,0

0
0
)

w
it

h
1
0
%

p
ro

p
o
rt

io
n

o
f

va
li

d
a
ti

o
n

d
a
ta

.
T

a
b

le
em

p
lo

y
s

se
tt

in
g
s

fr
o
m

sc
en

ar
io

5
(H

ig
h
φ
c
)

an
d

sc
en

ar
io

6
(L

ow
φ
c
).

D
e
p
e
n
d
e
n
t
M

o
d
e
l

In
d
e
p
e
n
d
e
n
t
M

o
d
e
l

N
a
iv
e
M

o
d
e
l

P
a
ra
m
et
er

T
ru

e
M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

M
ea

n
9
5
%

C
I

R
el
a
ti
v
e

V
a
lu
e

B
ia
s

B
ia
s

B
ia
s

H
ig
h

-
φ
c

α
1

-1
.0
0
0
0

-0
.9
9
9
8

(-
1
.0
2
4
6
,
-0
.9
7
5
1
)

0
.0
0
0
2

-1
.0
0
3
5

(-
1
.0
2
8
2
,
-0
.9
7
8
8
)

0
.0
0
3
5

-0
.9
8
1
7

(
-1
.0
0
0
4
,
-0
.9
6
3
0
)

0
.0
1
8
3

α
2

0
.5
0
0
0

0
.5
0
0
4

(0
.4
7
6
7
,
0
.5
2
4
0
)

0
.0
0
0
8

0
.4
9
7
8

(0
.4
7
4
2
,
0
.5
2
1
4
)

0
.0
0
4
4

0
.5
5
5
5

(0
.5
3
7
3
,
0
.5
7
3
7
)

0
.1
1
1
0

β
1

0
.5
0
0
0

0
.4
9
9
3

(0
.4
6
3
7
,
0
.5
3
5
0
)

0
.0
0
1
4

0
.4
9
9
4

(0
.4
6
3
7
,
0
.5
3
5
1
)

0
.0
0
1
2

0
.4
6
6
5

(0
.4
4
2
9
,
0
.4
9
0
0
)

0
.0
6
7
1

β
2

1
.0
0
0
0

0
.9
9
9
5

(0
.9
6
8
4
,
1
.0
3
0
7
)

0
.0
0
0
5

1
.0
0
8
0

(0
.9
7
6
9
,
1
.0
3
9
0
)

0
.0
0
8
0

0
.9
2
2
5

(0
.8
9
8
8
,
0
.9
4
6
2
)

0
.0
7
7
5

C
X

0
.8
0
0
0

0
.8
0
0
0

(0
.7
9
6
6
,
0
.8
0
3
3
)

0
.0
0
0
0

0
.8
0
0
0

(0
.7
9
6
7
,
0
.8
0
3
4
)

0
.0
0
0
1

-
-
-

-
C

Y
0
.9
5
0
0

0
.9
5
0
0

(0
.9
4
8
0
,
0
.9
5
1
8
)

0
.0
0
0
0

0
.9
5
0
0

(0
.9
4
8
0
,
0
.9
5
1
8
)

0
.0
0
0
1

-
-
-

-

L
o
w

-
φ
c

α
1

-1
.0
0
0
0

-0
.9
9
9
7

(-
1
.0
2
4
6
,
-0
.9
7
5
0
)

0
.0
0
0
3

-1
.0
0
1
0

(-
1
.0
2
5
7
,
-0
.9
7
6
3
)

0
.0
0
1
0

-0
.9
7
8
4

(-
0
.9
9
7
1
,
-0
.9
5
9
7
)

0
.0
2
1
6

α
2

0
.5
0
0
0

0
.5
0
0
3

(0
.4
7
6
6
,
0
.5
2
4
1
)

0
.0
0
0
7

0
.4
9
9
4

(0
.4
7
5
8
,
0
.5
2
3
0
)

0
.0
0
1
3

0
.5
5
7
6

(0
.5
3
9
4
,
0
.5
7
5
8
)

0
.1
1
5
1

β
1

0
.5
0
0
0

0
.4
9
9
5

(0
.4
6
3
6
,
0
.5
3
5
5
)

0
.0
0
0
9

0
.5
0
0
7

(0
.4
6
5
0
,
0
.5
3
6
4
)

0
.0
0
1
4

0
.4
6
8
6

(0
.4
4
5
0
,
0
.4
9
2
1
)

0
.0
6
2
8

β
2

1
.0
0
0
0

0
.9
9
9
4

(0
.9
6
8
2
,
1
.0
3
0
8
)

0
.0
0
0
6

1
.0
0
1
5

(0
.9
7
0
4
,
1
.0
3
2
5
)

0
.0
0
1
5

0
.9
1
2
8

(0
.8
8
9
1
,
0
.9
3
6
6
)

0
.0
8
7
2

C
X

0
.8
0
0
0

0
.7
9
9
7

(0
.7
9
6
4
,
0
.8
0
3
1
)

0
.0
0
0
3

0
.7
9
9
9

(0
.7
9
6
6
,
0
.8
0
3
3
)

0
.0
0
0
1

-
-
-

-
C

Y
0
.9
5
0
0

0
.9
5
0
0

(0
.9
4
8
1
,
0
.9
5
1
9
)

0
.0
0
0
0

0
.9
5
0
0

(0
.9
4
8
1
,
0
.9
5
1
9
)

0
.0
0
0
0

-
-
-

-

67



Figure 3.2: Graph of the average relative bias of the misclassification parameters
and the regression coefficient for the multi-category model when 50% proportion of
validation data is employed.
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Figure 3.3: Trace plots for the posterior samples under the dependent Model of a trinary
misclassification in both the response variable and covariate, with 10% proportion of validation
data for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.4: Trace plots for the posterior samples under the independent Model of a trinary
misclassification in both the response variable and covariate, with 10% proportion of validation
data for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.5: Trace plots for the posterior samples under the naive model of a trinary mis-
classification in both the response variable and covariate, with 10% proportion of validation
data for scenario 1. (CY = 0.8 , CX = 0.8, High φc)
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Figure 3.6: Density plots for the posterior samples under the dependent Model of a trinary mis-
classification in both the response variable and covariate, with 10% proportion of validation data for
scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.7: Density plots for the posterior samples under the independent Model of a trinary mis-
classification in both the response variable and covariate, with 10% proportion of validation data for
scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.8: Density plots for the posterior samples under the naive Model of a trinary misclassification
in both the response variable and covariate, with 10% proportion of validation data for scenario 1.
(CY = 0.8 , CX = 0.8, High φc)
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Figure 3.9: Autocorrelation plots for the posterior samples under the dependent Model of a trinary
misclassification in both the response variable and covariate, with 10% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.10: Autocorrelation plots for the posterior samples under the independent model of a trinary
misclassification in both the response variable and covariate, with 10% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.11: Autocorrelation plots for the posterior samples under the naive model of a trinary
misclassification in both the response variable and covariate, with 10% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)
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Figure 3.12: Trace plots for the posterior samples under the dependent Model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation
data for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.13: Trace plots for the posterior samples under the independent Model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation
data for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.14: Trace plots for the posterior samples under the naive model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation
data for scenario 1. (CY = 0.8 , CX = 0.8,, High φc)
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Figure 3.15: Density plots for the posterior samples under the dependent Model of a trinary mis-
classification in both the response variable and covariate, with 50% proportion of validation data for
scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.16: Density plots for the posterior samples under the independent Model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.17: Density plots for the posterior samples under the naive Model of a trinary misclassifi-
cation in both the response variable and covariate, with 50% proportion of validation data for scenario
1. (CY = 0.8 , CX = 0.8, High φc)
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Figure 3.18: Autocorrelation plots for the posterior samples under the dependent Model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.19: Autocorrelation plots for the posterior samples under the independent model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)

Figure 3.20: Autocorrelation plots for the posterior samples under the naive model of a trinary
misclassification in both the response variable and covariate, with 50% proportion of validation data
for scenario 1. (CY = 0.8 , CX = 0.8, High φc)
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Discussion

In chapter 3, the model that accounts for dependent misclassification errors discussed in

Chapter 2 was extended to a multi-category setting. Simulation studies were conducted on

a trinary response variable and a trinary covariate. Data were generated from a dependent

error misclassification error model ; however, an independent misclassification error model

and a naive model were fitted to the data to learn the consequencies of fitting the wrong

model. In the case where 10% proportion of validation data is employed, it was observed that,

although the dependent misclassification error model and the independent misclassification

error model estimates β1 and β2 were close to the true values, the dependent misclassification

error model was better than the independent misclassification error model. The model that

produced the largest bias was the naive model for scenarios which considered both high φc

and low φc. The patterns observed for cases that considered 50% proportion of validation

data are similar to those observed for 10% proportion of validation data; however, in general,

the relative biases are less for 50% proportion of validation data. In chapter 4, the proposed

model for joint misclassification in both the response variable and covariate is illustrated

through a real data example.
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Chapter 4

Real Data Example

4.1 Data Description

This chapter aims to illustrate the proposed model discussed in previous chapters using a real

data example. This data example is a cross-sectional analysis of the Bacterial Vaginosis (BV)

and Trichomoniasis (TRICH) status of women enrolled in the HIV Epidemiology Research

Study (HERS). This dataset was obtained from Tang et al. (2013). The HERS study is

a multi-center prospective study that enrolled 1310 women from four cities in the United

States from 1993 to 1995.

A unique feature that makes this data example suitable for the illustration of our proposed

model is that two different methods measure both the response variable and covariate; an

error-prone method and an error-free method arguably a gold standard method. Here the

response variable is BV; the error-prone method for BV is a clinical-based method (CLIN),

which employs a modified Amsel’s criteria. The error-free method is a Laboratory-based test

(LAB). The covariate Trichomoniasis diagnosis for the error-prone method is a microscopic

evaluation of wet preparation of genital secretion, referred mostly to as a wet mount procedure

(WET) and a culture (CULT) was used to assess the error-free method. The error-prone

procedures for the two conditions are relatively low cost and convenient.

A total number of 916 patients with complete observations on both the error-free and

error-prone diagnosis of TRICH and BV at the fourth HERS visit are considered. The

justification for using the fourth visit data of the HERS study is stated in Tang et al. (2003).

A random subsample, which selected a quarter of the total sample size, was used as the

validation dataset. Table ( 4.1) and ( 4.2) summarizes the resulting main and validation

samples respectively. The main and validation sample sizes are Nm = 687 and Nv = 229
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Table 4.1: Main Data of the Fourth HERS Visit (Tang et al (2013))

TRICH (WET)

X∗

1 0 Total

BV Y ∗ 1 29 138 167

(CLIN) 0 23 497 520

Total 52 635 687

respectively. From the samples employed, the prevalence of BV through the clinical method

is 7.5%, while the more expensive LAB method serving as the gold standard method has a

prevalence of 18.2%. The prevalence of TRICH is 24.5% when assessed by the wet mount;

however, the culture method’s prevalence of TRICH is 40%.

Background

Trichomoniasis and Bacterial Vaginosis are two of the three diseases most frequently asso-

ciated with abnormal vaginal discharge, elevated vaginal pH, and a shift in vaginal flora.

TRICH is the most prevalent curable Sexually Transmitted Disease (STD), which is more

common in women than men. The global annual incidence of TRICH is estimated to be

over 170 million cases [47]. More than 8 million new cases are reported annually in North

America. BV, on the other hand, although not considered an STD, has multiple sexual

partners included in its risk factors. Other risk factors include douching, smoking, and low

socioeconomic status.

Both BV and TRICH are associated with increase risk of HIV acquistion [54], preterm

birth and other adverse pregnancy outcome including premature rupture of membranes [15],

infertility [41] and pelvic inflamatory diseases[12, 38]. These two diseases often occur con-

currently and studies have shown an association between them [6, 43].
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Table 4.2: Validation Data of the Fourth HERS Visit (Tang et al (2013))

Study CLIN WET LAB CULT Count

Y ∗ X∗ Y X

1 1 1 1 7

1 1 1 0 0

1 1 0 1 3

1 1 0 0 0

1 0 1 1 11

Validation 1 0 1 0 28

Data 1 0 0 1 0

1 0 0 0 8

0 1 1 1 2

0 1 1 0 0

0 1 0 1 4

0 1 0 0 1

0 0 1 1 11

0 0 1 0 34

0 0 0 1 11

0 0 0 0 109

4.2 Analysis and Results

This analysis’s particular interest is to establish how the association between TRICH and BV

is affected by dependence error misclassification. We fit the Fourth HERS visit data to three

different models: The dependent misclassification error model (adjusts for misclassification

and dependence error). The independent misclassification error model (adjusts for misclas-

sification but ignores dependence error). The naive model (ignore both misclassification).

Bayesian MCMC sampling in R via the Rjags Package is implemented [42] for parameter

estimation of the three models. Please refer to section (2.2.1) for likelihood functions used
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in the analysis. The specific prior distributions for the parameters are:

• the misclassification parameters SN , SP , a fairly diffuse prior is selected such that the

95% equal-tail interval is (0.55, 0.95). The crude sensitivity and specificity from the

real data example is quite low, hence a more flexible constraint SP + SN − 1 > 0 is

employed. Truncated beta distributions is used for the priors of the sensitivity and

specificity parameters; that is,

SN ∼ Beta(11, 3)I(1− SP, ),

SP ∼ Beta(11, 3),

where, I(1− SP ) is an indicator function that equal 1 if input is greater than 1− SP

and 0 otherwise.

• weakly informative priors are chosen for the regression parameters for the models be-

cause no essential prior information is available, that is,

βk ∼ N(0, 1000), k = 0, 1.

• the dependence parameters D11, D10, D01, D00 are constrained to lie within an interval

determined by the misclassification parameters, therefore the priors for dependence

parameters are chosen to follow a uniform distribution also constrained within the said

interval.

For the posterior samples of the three models, two MCMC chains are used, each with 10000

iterations and the first half is discarded as burn-in. Table (4.3) shows the posterior mean,

standard deviation (SD) and credible interval (CI) of parameters for each model. The sample

size for the real data is lower than that used in the simulation because it is a challenge to

obtain a large sample size for validation data. However, there is control over the size to use

in the validation data. The larger the size the better.

Notice from 4.3 that all three models employed differ by the estimated β1 parameter

(1.885 for the dependent error model, 2.433 for the independent error model, and 1.533 for

the naive model). This indicates the potential benefits of adjusting for misclassification and

dependence of error. The trace plots for the posterior samples of the regression parameters

80



for the three models under consideration are shown in Figure (4.1)-(4.3); the absence of a

trend in the trace plots for the two chains is an indication of good mixing an indication

of stationarity. From Figure (4.7)-(4.9), it is observed that the autocorrelation plots of the

regression parameters show a quick drop from 1 to 0, an indication of stationarity. Density

plots of the regression parameter shown in Figure (4.4)-(4.6) for the three models indicate

stationarity as there is no evidence of unexpected peaks. In addition to the visual plots

discussed above, the Gelman-Rubin R statistics are employed; the value 1 obtained for all

posterior estimates confirms stationarity.

4.3 Model selection

In this analysis, the Likelihood Ratio Test (LRT) proposed by Neyman and Pearson (1928)

is employed. LRT is strictly reserved for comparing “nested” models. Two models are nested

if one is considered as a special case of the other model. The more complex model (model

with the most parameters) is compared to a simpler model (model with least parameters)

to see if it fits a dataset significantly better. LRT is mostly used to compare models fit by

Maximum Likelihood Estimation (MLE). However, in large samples, MLE and confidence

interval coincides with the posterior mean and the credible interval of Bayesian [44]. It

has also been established that when flat or weakly informative priors are used in Bayesian

analysis, estimates obtained are very close to MLE. The LRT statistic approximately follows a

chi-squared distribution, where the degree of freedom is the number of additional parameters

in the more complex model. Considering the dependent and independent models in the

study, notice that the independent model differs from the dependent model by the addition

of the four dependence parameters D11, D10, D01, D00. Therefore, it can be said that these

two models are hierarchically nested, a crucial requirement of the LRT.

Let η and θ represent the collection of the parameters for the independent and dependent

model respectively, that is,

η = (SNX , SPX , SNY , SPY , pX , β0, β1),

θ = (SNX , SPX , SNY , SPY , pX , β0, β1, D11, D10, D01, D00), (4.1)

where, degrees of freedom for the test equals the difference in the number of parameters for
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the two models. Degree of freedom = 11 − 7 = 4. The hypothesis H0 : D11 = D10 = D01 =

D00 = 0 is tested against H1 : at least one of the Dij parameters is not equal to 0.

Let the likelihood functions of the dependent and independent model be represented by

L(η) and L(θ) respectively. 1This leads to,

LRT = −2 log

(
L(η)

L(θ)

)
.

= 52.6078 (4.2)

The p-value for this test is 1.029e-10. This suggests a strong evidence against the null

hypothesis. The dependent model is a significant improvement over the independent model.
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Table 4.3: Posterior Mean, Standard deviation (SD) and the 95% Credible Interval
(CI) of Parameters for the fourth HERS visit data under the Dependent Model.

Dependent Model

Parameter Mean SD 95% CI

β0 -1.326 0.224 (-1.794 , -0.915)

β1 1.158 0.325 (0.547 , 1.802)

SNX 0.274 0.034 (0.211 , 0.345)

SNY 0.583 0.051 (0.478 , 0.680)

SPX 0.961 0.011 (0.937 , 0.979)

SPY 0.963 0.023 (0.908 , 0.995)

D11 0.015 0.024 (-0.032 , 0.061)

D10 -0.011 0.007 (-0.023 , 0.003)

D01 -0.006 0.012 (-0.035 , 0.013)

D00 0.006 0.006 (-0.001 , 0.022)

Independent Model

Parameter Mean SD 95% CI

β0 -1.452 0.216 (-1.901 , -1.057)

β1 1.351 0.313 (0.753 , 1.975)

SNX 0.281 0.033 (0.220 , 0.351)

SNY 0.615 0.047 (0.520 , 0.706)

SPX 0.967 0.009 (0.947 , 0.983)

SPY 0.969 0.019 (0.924 , 0.996)

Naive Model

Parameter Mean SD 95% CI

β0 -1.567 0.087 (-1.744 , -1.399)

β1 0.930 0.172 (0.594 , 1.262)
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Figure 4.1: Trace plots for posterior samples of βk(k = 0, 1) under the Dependent
Model.

Figure 4.2: Trace plots for posterior samples of βk(k = 0, 1) under the Independent
Model.

Figure 4.3: Trace plots for posterior samples of βk(k = 0, 1) under the Naive Model.
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Figure 4.4: Density plots for the posterior samples under the Dependent Model.

Figure 4.5: Density plots for the posterior samples under the Independent Model.

Figure 4.6: Density plots for the posterior samples under the Naive Model.
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Figure 4.7: Autocorrelation plots for posterior samples of βk(k = 0, 1) under the
Dependent Model.

Figure 4.8: Autocorrelation plots for posterior samples of βk(k = 0, 1) under the
Independent Model.

Figure 4.9: Autocorrelation plots for posterior samples of βk(k = 0, 1) under the
Naive Model.
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Chapter 5

Discussion

5.1 Findings and Conclusion

This thesis aims to establish the importance of dependence on joint misclassification errors

in both the response variable and covariate. Misclassification error studies have relied on

the conditional independence assumption[30, 51]. However, when information on both the

response variable and covariate status are from the same source, their errors are likely de-

pendent. First, a model that accounted for dependent misclassification errors in a binary

response variable and a binary covariate were introduced. Different from the works of Tang

et al.(2013) [50], Tang et al.(2015)[49], and Salway et al.(2019) [45] where dependence was

captured through conditional probabilities, covariance-like parameters characterized the de-

pendent misclassification errors in this study [53]. Although Brenner et al. (1993)[4] and

Vogel et al. (2005)[53] first introduced the covariance like parameters to capture dependence,

their work mostly focussed on how the bias (e.g., relative risk), due to complete ignorance of

the misclassification errors, depends on the correlation in the misclassification errors when

both the response variable and covariate are misclassified.

The objective of my thesis was to conduct a comprehensive simulation study to check

the consequences of fitting an independent misclassification error model and a naive model

to data generated from a dependent misclassification error model. The scenarios of the

simulation studies were selected based on varying the misclassification parameters (SNY ,

SPY , SNX and SPX), the proportion of validation data, and the dependence strength. The

dependence strength was assessed by a δ function, where δ is the expected value of the

conditional covariance between the error-prone response variable and error-prone covariate

(Y ∗ and X∗) given the error-free response variable and error-free covariate (Y and X). The
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simulation studies show that misfitting the joint misclassification error model can be worse

than simply ignoring misclassification errors when low proportions of the validation data are

used. However, when a higher proportion of validation data is employed, the independent

misclassification model’s performance is similar to the dependent misclassification model, and

they produce point estimates that are closer to the true value.

Categorical variables are often encountered in practice. For instance, in the medical con-

text, the severity of a case may influence the choice of treatment better than the mere absence

or presence of a disease. For example, it is more appropriate to address the diagnosis of cancer

in stages (absence of cancer, I, II, III, IV). To address categorical misclassification, the mod-

els considered in chapter 2 were extended to a multi-category setting. This study is the first

to address dependent misclassification in both a categorical response variable and a categor-

ical covariate to the best of knowledge. Greenland and Kleinbaum (1983) briefly mentioned

a general form for categorical misclassification in both the response variable and covariate

while assuming conditional independence. To learn the impact of ignoring dependence in

categorical data, simulation studies were conducted for a trinary response variable and a

trinary covariate. The simulation study showed that when both low and high proportions

of validation data are used in the misclassification process, the dependent misclassification

error model is better than the independent misclassification error model and the naive model.

However, the estimates from the dependent and independent misclassification error models

are close to each other.

The proposed model presented in Chapter 2 was illustrated through a real data example

by establishing the true association between Trichomoniasis and Bacterial Vaginosis, using

data from the HIV Epidemiology Research Study (HERS). The data was fitted to a depen-

dent misclassification error model, an independent misclassification error model, and a naive

model. A comparison of the dependent misclassification error model and the independent

misclassification error model by a Likelihood Ratio Test concluded that the dependent mis-

classification error model fits the dataset significantly better. This is consistent with the

conclusion of Tang et al. (2013) [50], where AIC was used for the comparison of the models

that accounted for dependence and models that ignored dependence.

An important implication that this study’s results have on epidemiologic studies is to add
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to the current body of knowledge that refutes the assertion that non-differential misclassifi-

cation will always bias the effect measure towards the null. This is evident in our findings

in the simulation studies that; the β1 estimates were either greater or lower than the true

values, an indication that bias is either away from the null or towards the null. In conclusion,

dependence error may have an impact on joint misclassification; therefore, care has to be

taken in constructing misclassification models.

5.2 Limitations

A key limitation of this study is that the validation/main study design may not always apply

to real applications. This thesis considered the (internal) validation/main study design but

not other study designs, e.g., multiple measurement for response variable and/or covariates

when internal validation data is too expensive to collect. Internal validation data is not

readily available for categorical studies; although external validation can be employed, the

transportability assumption is a crucial assumption that usually cannot be verified by the

available data. When validation data is not available, model identification becomes a major

challenge, especially for the models with multi-categorical data considered in this study.

5.3 Future Studies

Other remaining issues can be considered for future studies; these include:

• Theoretical investigation for asymptotic bias. In this study, relative bias was employed

in quantifying the impact of ignoring joint misclassification errors in both the response

variable and covariate in the simulation studies. Future studies can consider the impact

of joint misclassification errors on parameter estimation as the sample size increases by

studying the asymptotic bias.

• Dependence misclassification errors were accounted for in our studies as covariance-like

parameters. Another area to explore is to consider an alternative way to account for

dependence in misclassification error. For example, Tang et al. [49] in considering
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differential and dependent misclassification error, modeled dependence error through

conditional probabilities.

• Alternative parameterization of the misclassification parameters. In the characteriza-

tion of the misclassification process, the error-prone variable were conditioned on the

error-free variable, that is in binary settings known as sensitivity and specificity. Fu-

ture studies can consider the alternative characterization procedure of conditioning the

error-free variable on the error-prone variable. In binary setting known as predictive

values. Predictive values are also of clinical relevance in practice. Using the law of to-

tal probability and definition of conditional probability, the error-free joint probability

can be connected with the error prone joint probability of the response variable and

covariate.

P (Y = i,X = j) =
1∑

k=0

1∑
l=0

P (Y = i,X = j|Y ∗ = k,X∗ = l)P (Y ∗ = k,X∗ = l). (5.1)

Here, PPV and NPV are employed as the misclassification parameters and, the

dependence parameters are defined as,

Dij = P (Y = i,X = j|Y ∗ = i,X∗ = j)− P (Y = i|Y ∗ = i)P (X = j|X∗ = j). (5.2)

The matrix formulation of this alternative parameterization is given as

p = (MY

⊗
MX +D)p∗, (5.3)

where p∗ and p are the vectors of the misclassified and true probabilities, respectively,

that is, p∗ = (p∗11, p
∗
10, p

∗
01, p

∗
00)
′

and p = (p11, p10, p01, p00)
′
. The matrix MY and MX

are as follows:

MY =

 PPVY 1−NPVY

1− PPVY NPVY

 , MX =

 PPVX 1−NPVX

1− PPVX NPVX

 .
The dependence matrix D, is composed of the dependence parameters Dij and are

bounded. The specific boundaries of the dependence parameter are obtained in like

manner when sensitivity and specificity are employed.
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[27] Helmut Küchenhoff, Samuel M Mwalili, and Emmanuel Lesaffre. A general method
for dealing with misclassification in regression: the misclassification simex. Biometrics,
62(1):85–96, 2006.

[28] Charles E Lance and Robert J Vandenberg. Statistical and methodological myths and
urban legends: Doctrine, verity and fable in the organizational and social sciences. Taylor
& Francis, 2009.

[29] Juxin Liu, Annshirley Afful, and Yanyuan Ma. Consequences of incorrect misclassifica-
tion assumption when both response variable and covariate are misclassified. ”submit-
ted”, 2020.

[30] Juxin Liu, Paul Gustafson, and Dezheng Huo. Bayesian adjustment for the misclassifi-
cation in both dependent and independent variables with application to a breast cancer
study. Statistics in medicine, 35(23):4252–4263, 2016.

[31] Robert H Lyles. A note on estimating crude odds ratios in case–control studies with
differentially misclassified exposure. Biometrics, 58(4):1034–1036, 2002.

[32] Robert H Lyles, Li Tang, Hillary M Superak, Caroline C King, David D Celentano,
Yungtai Lo, and Jack D Sobel. Validation data-based adjustments for outcome mis-
classification in logistic regression: an illustration. Epidemiology (Cambridge, Mass.),
22(4):589, 2011.

[33] Laurence S Magder and James P Hughes. Logistic regression when the outcome is
measured with uncertainty. American Journal of Epidemiology, 146(2):195–203, 1997.

[34] Roger J Marshall. Validation study methods for estimating exposure proportions and
odds ratios with misclassified data. Journal of Clinical Epidemiology, 43(9):941–947,
1990.

[35] Thierry Mertens. Estimating the effects of misclassification. The Lancet, 342(8868):418–
421, 1993.

[36] Mary J Morrissey and Donna Spiegelman. Matrix methods for estimating odds ratios
with misclassified exposure data: extensions and comparisons. Biometrics, 55(2):338–
344, 1999.

93



[37] Samuel Musili Mwalili. Bayesian and frequentist approaches to correct for misclassifica-
tion error with applications to caries research. 2006.

[38] Roberta B Ness, Kevin E Kip, Sharon L Hillier, David E Soper, Carol A Stamm,
Richard L Sweet, Peter Rice, and Holly E Richter. A cluster analysis of bacterial
vaginosis–associated microflora and pelvic inflammatory disease. American journal of
epidemiology, 162(6):585–590, 2005.

[39] Sallie A Newell, Afaf Girgis, Rob W Sanson-Fisher, and Nina J Savolainen. The accuracy
of self-reported health behaviors and risk factors relating to cancer and cardiovascular
disease in the general population: a critical review. American journal of preventive
medicine, 17(3):211–229, 1999.

[40] Juha Pekkanen, Jordi Sunyer, and Susan Chinn. Nondifferential disease misclassification
may bias incidence risk ratios away from the null. Journal of clinical epidemiology,
59(3):281–289, 2006.

[41] Donatella Pellati, Ioannis Mylonakis, Giulio Bertoloni, Cristina Fiore, Alessandra An-
drisani, Guido Ambrosini, and Decio Armanini. Genital tract infections and infertility.
European Journal of Obstetrics & Gynecology and Reproductive Biology, 140(1):3–11,
2008.

[42] M Plummer. Jags version 4.3. 0 user manual. 28 june 2017, 2017.

[43] Sujit D Rathod, Karl Krupp, Jeffrey D Klausner, Anjali Arun, Arthur L Reingold, and
Purnima Madhivanan. Bacterial vaginosis and risk for trichomonas vaginalis infection:
a longitudinal analysis. Sexually transmitted diseases, 38(9):882, 2011.

[44] FJ Rubio, Adam M Johansen, et al. A simple approach to maximum intractable likeli-
hood estimation. Electronic Journal of Statistics, 7:1632–1654, 2013.

[45] Travis Salway, Martin Plöderl, Juxin Liu, and Paul Gustafson. Effects of multiple forms
of information bias on estimated prevalence of suicide attempts according to sexual
orientation: An application of a bayesian misclassification correction method to data
from a systematic review. American journal of epidemiology, 188(1):239–249, 2019.

[46] MA Yushuf Sharker, Mohammed Nasser, Jaynal Abedin, Benjamin F Arnold, and
Stephen P Luby. The risk of misclassifying subjects within principal component based
asset index. Emerging themes in epidemiology, 11(1):6, 2014.

[47] Jack D Sobel. What’s new in bacterial vaginosis and trichomoniasis? Infectious disease
clinics of North America, 19(2):387–406, 2005.

[48] Tim B Swartz, Yoel Haitovsky, Albert Vexler, and Tae Y Yang. Bayesian identifiability
and misclassification in multinomial data. Canadian Journal of Statistics, 32(3):285–302,
2004.

[49] Li Tang, Robert H Lyles, Caroline C King, David D Celentano, and Yungtai Lo. Binary
regression with differentially misclassified response and exposure variables. Statistics in
medicine, 34(9):1605–1620, 2015.

94



[50] Li Tang, Robert H Lyles, Ye Ye, Yungtai Lo, and Caroline C King. Extended matrix
and inverse matrix methods utilizing internal validation data when both disease and
exposure status are misclassified. Epidemiologic methods, 2(1):49–66, 2013.

[51] Mushfiqur R Tarafder, Hélène Carabin, Stephen T McGarvey, Lawrence Joseph, Ernesto
Balolong Jr, and Remigio Olveda. Assessing the impact of misclassification error on an
epidemiological association between two helminthic infections. PLoS neglected tropical
diseases, 5(3):e995, 2011.

[52] Ellen Van de Poel, Ahmad Reza Hosseinpoor, Niko Speybroeck, Tom Van Ourti, and
Jeanette Vega. Socioeconomic inequality in malnutrition in developing countries. Bul-
letin of the World Health Organization, 86:282–291, 2008.

[53] C Vogel, H Brenner, A Pfahlberg, and O Gefeller. The effects of joint misclassification of
exposure and disease on the attributable risk. Statistics in medicine, 24(12):1881–1896,
2005.

[54] Chia C Wang, R Scott McClelland, Marie Reilly, Julie Overbaugh, Sandra R Emery,
Kishorchandra Mandaliya, Bhavna Chohan, Jeckoniah Ndinya-Achola, Job Bwayo, and
Joan K Kreiss. The effect of treatment of vaginal infections on shedding of human
immunodeficiency virus type 1. The Journal of infectious diseases, 183(7):1017–1022,
2001.

[55] Jeffrey A Wright, Carole A Ashenburg, and Robert C Whitaker. Comparison of methods
to categorize undernutrition in children. The Journal of pediatrics, 124(6):944–946, 1994.

[56] Grace Y Yi. Statistical Analysis with Measurement Error Or Misclassification. Springer,
2016.

95



Appendix A

Boundaries for the Dependence Parameters

The boundaries for the dependence parameters are obtained as follows;
Let Dijkl = P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l).

P (Y ∗ = i|Y = k)P (X∗ = j|X = l) +Dijkl ≤P (Y ∗ = i|Y = k)

Dijkl ≤P (Y ∗ = i|Y = k)

− P (Y ∗ = i|Y = k)P (X∗ = j|X = l)

Dijkl ≤P (Y ∗ = i|Y = k)(1− P (X∗ = j|X = l)) .

(A.1)

P (Y ∗ = i|Y = k)(1− P (X∗ = j|X = l)−Dijkl ≤P (Y ∗ = i|Y = k)

−Dijkl ≤P (Y ∗ = i|Y = k)

− (P (Y ∗ = i|Y = k)(1− P (X∗ = j|X = l))

Dijkl ≥− P (Y ∗ = i|Y = k)P (X∗ = j|X = l).

(A.2)

(1− P (Y ∗ = i|Y = k))P (X∗ = j|X = j)−Dijkl ≤ 1− P (Y ∗ = i|Y = k)

−Dijkl ≤ 1− P (Y ∗ = i|Y = k)

− (1− P (Y ∗ = i|Y = k))P (X∗ = j|X = j)

Dijkl ≥ −(1− P (Y ∗ = i|Y = k))(1− P (X∗ = j|X = l)).

(A.3)

(1− P (Y ∗ = i|Y = k))(1− P (X∗ = j|X = l)) +Dijkl ≤ 1− P (Y ∗ = i|Y = k)

Dijkl ≤ 1− P (Y ∗ = i|Y = k)

− (1− P (Y ∗ = i|Y = k))(1− P (X∗ = j|X = l))

Dijkl ≤ (1− P (Y ∗ = i|Y = k))(P (X∗ = j|X = l).

(A.4)
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Appendix B

Misclassified joint probabilities

Details of the misclassified joint probability p10, p01 and p00 is given below:

p∗10 =
1∑

k=0

1∑
l=0

P (Y ∗ = 1, X∗ = 0|Y = k,X = l)pkl (B.1)

=

[
SNY (1− SNX) +D11

]
p11 +

[
SNY SPX −D11

]
p10

+

[
(1− SPY )(1− SNX)−D11

]
p01 +

[
(1− SPY )SPX −D11

]
p00

p∗01 =
1∑

k=0

1∑
l=0

P (Y ∗ = 0, X∗ = 1|Y = k,X = l)pkl (B.2)

=

[
(1− SNY )SNX +D11

]
p11 +

[
(1− SNY )(1− SPX)−D11

]
p10

+

[
SPY SNX −D11

]
p01 +

[
SPY (1− SPX)−D11

]
p00

p∗00 =
1∑

k=0

1∑
l=0

P (Y ∗ = 1, X∗ = 1|Y = k,X = l)pkl (B.3)

=

[
(1− SNY )(1− SNX) +D11

]
p11 +

[
(1− SNY )SPX −D11

]
p10

+

[
SPY (1− SNX)−D11

]
p01 +

[
SPY SPX −D11

]
p00
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Appendix C

Proof of the delta parameter

EstimatingCOV (Y ∗,X∗|Y,X)

Y ∗ = 1 Y ∗ = 0

X∗ = 1 P (Y ∗ = 1, X∗ = 1|Y,X) P (Y ∗ = 0, X∗ = 1|Y,X) P (X∗ = 1|Y,X)

X∗ = 0 P (Y ∗ = 1, X∗ = 0|Y,X) P (Y ∗ = 0, X∗ = 0|Y,X) P (X∗ = 0|Y,X)

P (Y ∗ = 1|Y,X) P (Y ∗ = 0|Y,X)

From the definition of covariance,

COV (Y ∗, X∗|Y,X) = E(Y ∗, X∗|Y,X)− E(Y ∗|Y,X)E(X∗|Y,X)

For the binary case,

E(Y ∗|Y,X) =
∑
y∗

y∗P (Y ∗ = y∗|Y,X)

E(X∗|Y,X) =
∑
x∗

x∗P (X∗ = x∗|Y,X)

E(Y ∗, X∗|Y,X) =
∑
x∗y∗

x∗y∗P (Y ∗ = y∗, X∗ = y∗|Y,X)

E(Y ∗|Y,X) = 1× P (Y ∗ = 1|Y,X) + 0× P (Y ∗ = 0|Y,X) = P (Y ∗ = 1|Y,X)

E(X∗|Y,X) = 1× P (X∗ = 1|Y,X) + 0× P (X∗ = 0|Y,X) = P (X∗ = 1|Y,X)

E(Y ∗, X∗|Y,X) = [1× 1× P (Y ∗ = 1, X∗ = 1|Y,X)] + [0× 1× P (Y ∗ = 0, X∗ = 1|Y,X)]

+ [1× 0× P (Y ∗ = 1, X∗ = 0|Y,X)] + [0× 0× P (Y ∗ = 0, X∗ = 0|Y,X)]

= P (Y ∗ = 1, X∗ = 1|Y,X)

COV (Y ∗, X∗|Y,X) = P (Y ∗ = 1, X∗ = 1|Y,X)− P (Y ∗ = 1|Y,X)P (X∗ = 1|Y,X)

Let g(Y,X) = Cov(Y ∗, X∗|Y,X)

g(Y,X) = Cov(Y ∗, X∗|Y,X)

= P (Y ∗ = 1, X∗ = 1|Y,X)− P (Y ∗ = 1|Y,X)P (X∗ = 1|Y,X)
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Considering non-differential misclassification error,

g(Y,X) = P (Y ∗ = 1, X∗ = 1|Y,X)− P (Y ∗ = 1|Y )P (X∗ = 1|X)

If g(y, x) is a real- value function defined for all possible values of (x, y) of the discrete erandom
vector (Y,X). Then g(Y,X) itself is a random variable with expected valueEg(Y,X) (Casella
and Berger,2002) is given by

Eg(Y,X) =
∑
allx,y

g(y, x)f(y, x)

where, ∑
allx,y

f(y, x) = P (Y,X) = 1

Eg(Y,X) =

[ ∑
allx,y

P (Y ∗ = 1, X∗ = 1|Y,X)− P (Y ∗ = 1|Y )P (X∗ = 1|X)

]
P (Y,X)

=

[
P (Y ∗ = 1, X∗ = 1|Y = 1, X = 1)− P (Y ∗ = 1|Y = 1)P (X∗ = 1|X = 1)

]
P (Y = 1, X = 1)

+

[
P (Y ∗ = 1, X∗ = 1|Y = 1, X = 0)− P (Y ∗ = 1|Y = 1)P (X∗ = 1|X = 0)

]
P (Y = 1, X = 0)

+

[
P (Y ∗ = 1, X∗ = 1|Y = 0, X = 1)− P (Y ∗ = 1|Y = 0)P (X∗ = 1|X = 1)

]
P (Y = 0, X = 1)

+

[
P (Y ∗ = 1, X∗ = 1|Y = 0, X = 0)− P (Y ∗ = 1|Y = 0)P (X∗ = 1|X = 0)

]
P (Y = 0, X = 0)

From the definition of the dependence parameter,

Dkl = P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l)

[
P (Y ∗ = 1, X∗ = 1|Y = 1, X = 1)− P (Y ∗ = 1|Y = 1)P (X∗ = 1|X = 1)

]
P (Y = 1, X = 1)

= D11 × p11

=
[
P (Y ∗ = 1, X∗ = 1|Y = 1, X = 0)− P (Y ∗ = 1|Y = 1)P (X∗ = 1|X = 0)

]
P (Y = 1, X = 0)

= −D10 × p10

=
[
P (Y ∗ = 1, X∗ = 1|Y = 0, X = 1)− P (Y ∗ = 1|Y = 0)P (X∗ = 1|X = 1)

]
P (Y = 0, X = 1)

= −D01 × p01

=
[
P (Y ∗ = 1, X∗ = 1|Y = 0, X = 0)− P (Y ∗ = 1|Y = 0)P (X∗ = 1|X = 0)

]
P (Y = 0, X = 1)

= −D00 × p00
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Eg(Y,X) = D11 × p11 −D10 × p10 −D01 × p01 +D00 × p00

Eg(Y,X) = [D11,−D10,−D01, D00]×


p11

p10

p01

p00



δ = Eg(Y,X) =
∑
ij

(−1)i+jDijPij (C.1)

Let p∗ and p represent the vectors of the misclassified and true probabilities respec-
tively,i.e.,

p∗ =
[
p∗11 p∗10 p∗01 p∗00

]T
, p =

[
p11 p10 p01 p00

]T
The relationship between p and p∗ is given by,

p∗ = (QYQX +D)p

p∗ = (QYQX)p+ (D)p

The matrixQY andQX are composed of sensitivities and specificities in term of the response
variable and the covariate and D is a matrix composed of the dependence parameters.

D =


D11 −D10 −D01 D00

−D11 D10 D01 −D00

−D11 D10 D01 −D00

D11 −D10 −D01 D00




p∗11

p∗10

p∗01

p∗00

 = (QYQX)p+


Eg(Y,X)

−Eg(Y,X)

−Eg(Y,X)

Eg(Y,X)
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Appendix D

Proof of the matrix form for Joint misclas-

sification error model

From the law of total probability,

p∗ij = P (Y ∗ = i,X∗ = j) =
2∑

k=1

2∑
l=1

P (Y ∗ = i,X∗ = j|Y = k,X = l)pkl. (D.1)

p∗ij =
2∑

k=1

2∑
l=1

P (Y ∗ = i,X∗ = j|Y = k,X = l)pkl.

=
2∑

k=1

2∑
l=1

[
P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)(X∗ = j|X = l) + P (Y ∗ = i|Y = k)(X∗ = j|X = l)

]
pkl.

=
2∑

k=1

2∑
l=1

[
P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)(X∗ = j|X = l) + P (Y ∗ = i|Y = k)(X∗ = j|X = l)

]
pkl.

(D.2)

From the definition of the dependence parameter,

Dijkl = P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)(X∗ = j|X = l). (D.3)

p∗ij =
2∑

k=1

2∑
l=1

[
P (Y ∗ = i|Y = k)(X∗ = j|X = l) +Dijkl

]
pkl.

(D.4)

Considering the RHS:

when i = 1, j = 1:
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p∗11 = (P (Y ∗ = 1|Y = 1)(X∗ = 1|X = 1) +D1111) p11

+(P (Y ∗ = 1|Y = 1)(X∗ = 1|X = 2) +D1112) p12

+(P (Y ∗ = 1|Y = 1)(X∗ = 1|X = 3) +D1113) p13

+(P (Y ∗ = 1|Y = 2)(X∗ = 1|X = 1) +D1121) p21

+(P (Y ∗ = 1|Y = 2)(X∗ = 1|X = 2) +D1122) p22

+(P (Y ∗ = 1|Y = 2)(X∗ = 1|X = 3) +D1123) p23

+(P (Y ∗ = 1|Y = 3)(X∗ = 1|X = 1) +D1131) p31

+(P (Y ∗ = 1|Y = 3)(X∗ = 1|X = 2) +D1132) p32

+(P (Y ∗ = 1|Y = 3)(X∗ = 1|X = 3) +D1133) p33

when i = 1, j = 2:

p∗12 = (P (Y ∗ = 1|Y = 1)(X∗ = 2|X = 1) +D1211) p11

+(P (Y ∗ = 1|Y = 1)(X∗ = 2|X = 2) +D1212) p12

+(P (Y ∗ = 1|Y = 1)(X∗ = 2|X = 3) +D1213) p13

+(P (Y ∗ = 1|Y = 2)(X∗ = 2|X = 1) +D1221) p21

+(P (Y ∗ = 1|Y = 2)(X∗ = 2|X = 2) +D1222) p22

+(P (Y ∗ = 1|Y = 2)(X∗ = 2|X = 3) +D1223) p23

+(P (Y ∗ = 1|Y = 3)(X∗ = 2|X = 1) +D1231) p31

+(P (Y ∗ = 1|Y = 3)(X∗ = 2|X = 2) +D1232) p32

+(P (Y ∗ = 1|Y = 3)(X∗ = 2|X = 3) +D1233) p33

when i = 1, j = 3:

p∗13 = (P (Y ∗ = 1|Y = 1)(X∗ = 3|X = 1) +D1311) p11

+(P (Y ∗ = 1|Y = 1)(X∗ = 3|X = 2) +D1312) p12

+(P (Y ∗ = 1|Y = 1)(X∗ = 3|X = 3) +D1313) p13

+(P (Y ∗ = 1|Y = 2)(X∗ = 3|X = 1) +D1321) p21

+(P (Y ∗ = 1|Y = 2)(X∗ = 3|X = 2) +D1322) p22

+(P (Y ∗ = 1|Y = 2)(X∗ = 3|X = 3) +D1323) p23

+(P (Y ∗ = 1|Y = 3)(X∗ = 3|X = 1) +D1331) p31

+(P (Y ∗ = 1|Y = 3)(X∗ = 3|X = 2) +D1332) p32

+(P (Y ∗ = 1|Y = 3)(X∗ = 3|X = 3) +D1333) p33

when i = 2, j = 1:
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p∗21 = (P (Y ∗ = 2|Y = 1)(X∗ = 1|X = 1) +D2111) p11

+(P (Y ∗ = 2|Y = 1)(X∗ = 1|X = 2) +D2112) p12

+(P (Y ∗ = 2|Y = 1)(X∗ = 1|X = 3) +D2113) p13

+(P (Y ∗ = 2|Y = 2)(X∗ = 1|X = 1) +D2121) p21

+(P (Y ∗ = 2|Y = 2)(X∗ = 1|X = 2) +D2122) p22

+(P (Y ∗ = 2|Y = 2)(X∗ = 1|X = 3) +D2123) p23

+(P (Y ∗ = 2|Y = 3)(X∗ = 1|X = 1) +D2131) p31

+(P (Y ∗ = 2|Y = 3)(X∗ = 1|X = 2) +D2132) p32

+(P (Y ∗ = 2|Y = 3)(X∗ = 1|X = 3) +D2133) p33

when i = 2, j = 2:

p∗22 = (P (Y ∗ = 2|Y = 1)(X∗ = 2|X = 1) +D2211) p11

+(P (Y ∗ = 2|Y = 1)(X∗ = 2|X = 2) +D2212) p12

+(P (Y ∗ = 2|Y = 1)(X∗ = 2|X = 3) +D2213) p13

+(P (Y ∗ = 2|Y = 2)(X∗ = 2|X = 1) +D2221) p21

+(P (Y ∗ = 2|Y = 2)(X∗ = 2|X = 2) +D2222) p22

+(P (Y ∗ = 2|Y = 2)(X∗ = 2|X = 3) +D2223) p23

+(P (Y ∗ = 2|Y = 3)(X∗ = 2|X = 1) +D2231) p31

+(P (Y ∗ = 2|Y = 3)(X∗ = 2|X = 2) +D2232) p32

+(P (Y ∗ = 2|Y = 3)(X∗ = 2|X = 3) +D2233) p33

when i = 2, j = 3:

p∗23 = (P (Y ∗ = 2|Y = 1)(X∗ = 3|X = 1) +D2311) p11

+(P (Y ∗ = 2|Y = 1)(X∗ = 3|X = 2) +D2312) p12

+(P (Y ∗ = 2|Y = 1)(X∗ = 3|X = 3) +D2313) p13

+(P (Y ∗ = 2|Y = 2)(X∗ = 3|X = 1) +D2321) p21

+(P (Y ∗ = 2|Y = 2)(X∗ = 3|X = 2) +D2322) p22

+(P (Y ∗ = 2|Y = 2)(X∗ = 3|X = 3) +D2323) p23

+(P (Y ∗ = 2|Y = 3)(X∗ = 3|X = 1) +D2331) p31

+(P (Y ∗ = 2|Y = 3)(X∗ = 3|X = 2) +D2332) p32

+(P (Y ∗ = 2|Y = 3)(X∗ = 3|X = 3) +D2333) p33

when i = 3, j = 1:
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p∗31 = (P (Y ∗ = 3|Y = 1)(X∗ = 1|X = 1) +D3111) p11

+(P (Y ∗ = 3|Y = 1)(X∗ = 1|X = 2) +D3112) p12

+(P (Y ∗ = 3|Y = 1)(X∗ = 1|X = 3) +D3113) p13

+(P (Y ∗ = 3|Y = 2)(X∗ = 1|X = 1) +D3121) p21

+(P (Y ∗ = 3|Y = 2)(X∗ = 1|X = 2) +D3122) p22

+(P (Y ∗ = 3|Y = 2)(X∗ = 1|X = 3) +D3123) p23

+(P (Y ∗ = 3|Y = 3)(X∗ = 1|X = 1) +D3131) p31

+(P (Y ∗ = 3|Y = 3)(X∗ = 1|X = 2) +D3132) p32

+(P (Y ∗ = 3|Y = 3)(X∗ = 1|X = 3) +D3133) p33

when i = 3, j = 2:

p∗32 = (P (Y ∗ = 3|Y = 1)(X∗ = 2|X = 1) +D3211) p11

+(P (Y ∗ = 3|Y = 1)(X∗ = 2|X = 2) +D3212) p12

+(P (Y ∗ = 3|Y = 1)(X∗ = 2|X = 3) +D3213) p13

+(P (Y ∗ = 3|Y = 2)(X∗ = 2|X = 1) +D3221) p21

+(P (Y ∗ = 3|Y = 2)(X∗ = 2|X = 2) +D3222) p22

+(P (Y ∗ = 3|Y = 2)(X∗ = 2|X = 3) +D3223) p23

+(P (Y ∗ = 3|Y = 3)(X∗ = 2|X = 1) +D3231) p31

+(P (Y ∗ = 3|Y = 3)(X∗ = 2|X = 2) +D3232) p32

+(P (Y ∗ = 3|Y = 3)(X∗ = 2|X = 3) +D3233) p33

when i = 3, j = 3:

p∗33 = (P (Y ∗ = 3|Y = 1)(X∗ = 3|X = 1) +D3311) p11

+(P (Y ∗ = 3|Y = 1)(X∗ = 3|X = 2) +D3312) p12

+(P (Y ∗ = 3|Y = 1)(X∗ = 3|X = 3) +D3313) p13

+(P (Y ∗ = 3|Y = 2)(X∗ = 3|X = 1) +D3321) p21

+(P (Y ∗ = 3|Y = 2)(X∗ = 3|X = 2) +D3322) p22

+(P (Y ∗ = 3|Y = 2)(X∗ = 3|X = 3) +D3323) p23

+(P (Y ∗ = 3|Y = 3)(X∗ = 3|X = 1) +D3331) p31

+(P (Y ∗ = 3|Y = 3)(X∗ = 3|X = 2) +D3332) p32

+(P (Y ∗ = 3|Y = 3)(X∗ = 3|X = 3) +D3333) p33

Resulting in the matrix below

p∗ = (MY ⊗MX +D)p (D.5)
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where

MY [i, k] = P (Y ∗ = i|Y ∗ = k),

MX [j, l] = P (X∗ = j|X∗ = l),

The dependence parameters D are,

Dijkl = P (Y ∗ = i,X∗ = j|Y = k,X = l)− P (Y ∗ = i|Y = k)P (X∗ = j|X = l), (D.6)

where i, j, k, l takes on 1, 2, 3.
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Appendix E

Parameterizing the joint probabilities pij’s

through an ordinal logistic regression model

Consider a multinomial logit model with a multicategory covariate. Let Y ∗ denote the

observed ordinal categorical response with J categories and X∗ denote observed covariate

with (m ≥ 2) categories. For X∗ the following indicator variables are defined with category

1 as reference category. For i = 2, ...,m. Let Ii−1 = 1 if X∗ = i and zero otherwise.

logit
[
P (Y ∗ ≤ j|X∗ = x∗)

]
= αj + β∗

1I1 + β∗
2I2 + ...+ β∗

m−1Im−1

where j = 1, ..., J − 1

logit
[
P (Y ∗ ≤ j|X∗ = x∗)

]
= log

[
P (Y ∗ ≤ j|X∗ = x∗)

1− P (Y ∗ ≤ j|X∗ = x∗)

]

P (Y ∗ = j|X∗ = x∗) = P (Y ∗ ≤ j|X∗ = x∗)− P (Y ∗ ≤ j − 1|X∗ = x∗)

Let consider J = 3 and m = 3

Y ∗ = 2 Y ∗ = 1 Y ∗ = 0

X∗ = 2 (2, 2) (1, 2) (0, 2)

X∗ = 1 (2, 1) (1, 1) (0, 1)

X∗ = 0 (2, 0) (1, 0) (0, 0)

[
P (Y ∗ ≤ 1|X∗ = x∗)

]
=

exp
[
α1 + β∗

1I1 + β∗
2I2
]

1 + exp
[
α1 + β∗

1I1 + β∗
2I2
]

[
P (Y ∗ ≤ 2|X∗ = x∗)

]
=

exp
[
α2 + β∗

1I1 + β∗
2I2
]

1 + exp
[
α2 + β∗

1I1 + β∗
2I2
]

The cumulative probabilities reflect the ordering with P (Y ∗ ≤ 1|X∗ = x∗) ≤ P (Y ∗ ≤ 2|X∗ =

x∗) ≤ ... ≤ P (Y ∗ ≤ J).
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The estimated probabilty for the first category is given by:

P (Y ∗ = 1|X∗ = x∗) = P (Y ∗ ≤ 1|X∗ = x∗)

Other category probabilities are obtained from the difference between two consecutive cumu-

lative probabilities. For example,

P (Y ∗ = 2|X∗ = x∗) = P (Y ∗ ≤ 2|X∗ = x∗)− P (Y ∗ ≤ 1|X∗ = x∗)

The final cumulative probability is necessarily equals to 1.

P (Y ∗ ≤ 3|X∗ = x∗) = 1

P (Y ∗ = 3|X∗ = x∗) = 1− P (Y ≤ 2|X∗ = x∗)

The cell probabilities can be obtained from:
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P (Y ∗ = 1, X∗ = 1) =

[
exp
(
α1

)
1 + exp

(
α1

)]× P (X∗ = 1)

P (Y ∗ = 1, X∗ = 2) =

[
exp
(
α1 + β∗

1

)
1 + exp

(
α1 + β∗

1

)]× P (X∗ = 2)

P (Y ∗ = 1, X∗ = 3) =

[
exp
(
α1 + β∗

2

)
1 + exp

(
α1 + β∗

2

)]× P (X∗ = 3)

P (Y ∗ = 2, X∗ = 1) =

[
exp
(
α2

)
1 + exp

(
α2

) − exp
(
α1

)
1 + exp

(
α1

)]× P (X∗ = 1)

=

[
exp
(
α2

)
1 + exp

(
α2

) − P (Y ∗ = 1|X∗ = 1)

]
× P (X∗ = 1)

P (Y ∗ = 2, X∗ = 2) =

[
exp
(
α2 + β∗

1

)
1 + exp

(
α2 + β∗

1

) − exp
(
α1 + β∗

1

)
1 + exp

(
α1 + β∗

1

)]× P (X∗ = 2)

=

[
exp
(
α2 + β∗

1

)
1 + exp

(
α2 + β∗

1

) − P (Y ∗ = 1|X∗ = 2)

]
× P (X∗ = 2)

P (Y ∗ = 2, X∗ = 3) =

[
exp
(
α2 + β∗

2

)
1 + exp

(
α2 + β∗

2

) − exp
(
α1 + β∗

2

)
1 + exp

(
α1 + β∗

2

)]× P (X∗ = 3)

=

[
exp
(
α2 + β∗

2

)
1 + exp

(
α2 + β∗

2

) − P (Y ∗ = 1|X∗ = 3)

]
× P (X∗ = 3)

P (Y ∗ = 3, X∗ = 1) =

[
1−

exp
(
α2

)
1 + exp

(
α2

)]× P (X∗ = 1)

=

[
1− P (Y ∗ ≤ 2|X∗ = 1)

]
× P (X∗ = 1)

P (Y ∗ = 3, X∗ = 2) =

[
1−

exp
(
α2 + β∗

1

)
1 + exp

(
α2 + β∗

1

)]× P (X∗ = 2)

=

[
1− P (Y ∗ ≤ 2|X∗ = 2)

]
× P (X∗ = 2)

P (Y ∗ = 3, X∗ = 3) =

[
1−

exp
(
α2 + β∗

2

)
1 + exp

(
α2 + β∗

2

)]× P (X∗ = 3)

=

[
1− P (Y ∗ ≤ 2|X∗ = 3)

]
× P (X∗ = 3)
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