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ABSTRACT 

Hydrological conditions play an important role in provisioning the exceptionally valuable 

ecosystem services and functions of wetlands. In alpine areas, wetland functions and services are 

expected to be very sensitive to climate-mediated changes in hydrology. However, few field 

studies of alpine wetland hydrology currently exist, thus limiting understanding of how wetlands 

will respond to warming and drying, and how their ecosystem services and functions will 

change. This study examines key processes contributing to the hydrological stability of alpine 

wetlands in Banff National Park, AB, Canada. During the two-year study, snowmelt timing 

differed by over three weeks, allowing for the examination of water table patterns under 

comparatively wet and dry conditions. Contrary to expectations, water table positions were 

relatively stable in each study year, particularly in the peat-bearing soils. Hydrophysical and 

hydrochemical data together provide evidence that the observed stability is in part due to 

groundwater contributions, which made up as much as 53% of the water budget in one peatland. 

Soil conditions also appear to play a role in stabilizing water table regimes. The results suggest 

that alpine wetlands, and peatlands in particular, may be more resilient to changes in climate than 

currently thought. Mineral wetlands, comparatively, may have limited adaptive capacity. 
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CHAPTER 1: INTRODUCTION 

1.1. Introduction 

High elevation wetlands are key in the provisioning of mountain watershed functions and 

services – they regulate runoff (Buytaert et al., 2006; Mosquera et al., 2016), provide habitat for 

rare and endangered species (Hauer et al., 2007; An et al., 2013), support the stabilization of 

riparian areas (Grab and Deschamps, 2004), and play a role in regulating greenhouse gases 

(Chimner et al., 2002; Millar et al., 2017). In this respect, changes in the functional capacities of 

mountain wetlands are likely to alter the overall functions of mountain ecosystems, which are 

themselves very important ecosystem service providers (Viviroli et al., 2003). While it is 

generally expected that mountain wetlands will be sensitive to changes in climate, the current 

understanding of these sensitivities is nascent, particularly in the alpine zone, thus limiting 

predictive capacity. 

Essential to the provisioning of wetland functions and services is hydrologic condition, 

which requires a long-term water balance that promotes near-surface soil saturation during some 

or all of the growing season (Mitsch and Gosselink, 2007). At high latitudes, such as in the 

Rocky Mountains of North America, snowmelt is thought to satisfy the water demands of alpine 

wetlands, with limited contributions from other flow paths, due to small upslope contributing 

areas and poorly weathered bedrock conditions (Burkett and Kusler, 2000; Winter, 2000). This 

conceptual model effectively treats alpine wetlands as bogs, whose hydrologic conditions are 

principally controlled by the balance of precipitation (i.e., snowmelt) and evapotranspiration 

(Brinson, 1993; NWWG, 1997). Under such conditions the atmosphere acts as the primary driver 

of wetland hydrodynamics, which has led some to conclude that alpine wetlands will be 

extremely sensitive to even small shifts in mountain climate (Burkett and Kusler, 2000; Winter, 

2000; Poff et al., 2002; Körner and Ohsawa, 2005; Lee et al., 2015), like those expected with 

climate change (IPCC, 2014). There is some evidence to support the tight control of atmospheric 
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processes over alpine wetland hydrodynamics (hereafter referred to as the “bog model”; Figure 

1.1). For example, research on the Tibetan Plateau has found that increases in temperature of 

between 0.19 and 0.23 oC have been accompanied by large losses of wetland area – as much as 

29 % in some areas (Zhang et al., 2011). However, it is still unclear as to whether these changes 

in wetland extent have also been influenced by other, more direct, changes to hydrologic 

condition, such as ditching and draining associated with an increased agricultural presence in the 

region (Mao et al., 2014). 

 

 

Figure 1.1. Current conceptual understanding of the most important hydrological processes to 
alpine wetlands. The relative size of an arrow represents its likely importance to the water 
balance of alpine wetlands. 

 

Contrary to the bog model of alpine wetlands, there are a growing number of studies that 

illustrate the importance of groundwater in alpine watersheds (e.g., Sueker et al., 2000; Manning 

and Caine, 2007; Hood and Hayashi, 2015). This merits interest, because subsurface 

contributions to alpine wetlands could promote a certain degree of temporal decoupling between 

wetland hydrodynamics and atmospheric conditions, with groundwater acting as a kind of 

hydrologic buffer (Kløve et al., 2014). Under such conditions, alpine wetlands might be expected 

to be less vulnerable to changes in mountain climate. Evidence of groundwater contributions to 

alpine wetlands has largely been confined to areas outside of high latitudes, such as the tropical 

Andes (e.g, Caballero et al., 2002; Cooper et al., 2010; Gordon et al., 2015). However, the 
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presence of groundwater has been documented in at least one alpine meadow occurring at the 

base of a talus slope in the Canadian Rockies (McClymont et al., 2010). It is still unclear as to 

how important groundwater storage is in the alpine landscape, and thus how common 

groundwater contributions are to alpine wetlands more generally. 

Also unclear is if there are any landscape features that might allow generalization of the 

relative importance of groundwater contributions to alpine wetlands. Such relationships could 

assist managers in prioritizing preservation and restoration efforts in the context of changing 

hydrologic conditions by focusing on wetlands under more likely threat of conversion to uplands. 

One obvious first step towards such a generalization is an examination of the relationship 

between topographic context and wetland hydrodynamics. Topography has a long history of 

being used to infer hydrologic process, flow paths, and functions of wetlands within the 

watershed context, owing to its fundamental relationship to the physical drivers of water flow 

(Tóth, 1962; Brinson, 1993; Winter, 1999; Buttle, 2006). 

1.2. Literature Review 

The purpose of this literature review is to synthesize current scientific understanding and 

identify gaps in knowledge related to the hydrological conditions of alpine wetlands. Because 

there is so little information about alpine wetland hydrology, this review is largely focused on 

alpine hydrology in temperate environments, with an emphasis on the American Cordillera (the 

mountain ranges that compose the “spine” of western North and South America). Where 

appropriate, additional insights are garnered from the tropical mountain and lowland wetland 

literatures. 

1.2.1. Wetlands Defined 

Wetlands have been defined in a myriad of ways, but central to these definitions are the 

interactions between hydrology, soils, and biota (Mitsch and Gosselink, 2007). That is, wetlands 

are those ecosystems that are saturated for some duration of the growing season sufficient to 

promote biota (e.g., plants, microbes) that prefer or tolerate hydric soil conditions (NWWG, 

1997). Further, hydric soils are not just those that are wet, but wet long enough to produce 

anaerobic conditions during some or all of the growing season (Richardson et al., 2000). In this 

way, wetland boundaries are ultimately defined by interactions between hydrologic and edaphic 

conditions, as indicated and modified by vegetation and other biota (Carter, 1986; Tiner, 1993). 

Thus, the very definition of a wetland is dependent on their hydrologic condition both from a 
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binary perspective (i.e., is it a wetland or not?) and functional perspective (i.e., hydrogeomorphic 

class). 

1.2.2. Alpine Wetland Functions and Services 

The functions and services of alpine wetlands in Canada are poorly documented. 

However, functions and services in other mountainous regions of the world have been examined 

to a limited extent. Alpine wetlands are known to support high rates of biodiversity and provide 

habitat for endemic vegetative and faunal species. In Peru, for instance, Cooper et al. (2010) 

found that 53% of species inventoried in a single wetland basin were found only in the Andes. In 

the Colorado Rockies, an extremely rare caddis fly larvae (Allomyia bifosa) has be found in 

alpine wetland streams, where it is thought that the wetlands provide the carbon inputs needed to 

support trophic dynamics important to the insect species (Hauer et al., 2007). On the Qinghai-

Tibetan Plateau, wetlands provide breeding habitat for rare migratory birds, such as the black-

necked crane (Grus nigricolis) (Li et al., 2014). Further, alpine wetlands have also served as 

important human habitat, shaping the geographic pattern of settlement in the high Peruvian 

Andes some 5,000 years before present (Maldonado Fonkén, 2014). 

As a result of wetland processes, alpine wetland soils serve a particularly important suite 

of functions in high elevation areas. For example, in Lesotho (southern Africa), wetlands soils 

are a key geomorphic regulator, helping to stabilize underlying mineral soils, thus preventing 

erosion and gully development, which would otherwise negatively impact watershed function 

(Grab and Deschamps, 2004). This outcome is largely the result of the presence of highly 

cohesive organic soils that maintain structural stability while damp, but become very fragile 

when dry. These organic soils also have a very high water holding capacity, with porosities as 

high as 81% (Crespo et al., 2011) to 90% (Buytaert et al., 2011), though it is thought that 

drought and other extreme conditions can severely reduce these capacities (Arnold et al., 2014). 

Such high water holding capacities have been attributed to influencing regional climate. For 

example in Zoige (a region with the Qinghai-Tibetan Plateau), where lower temperatures and 

higher relative humidities are produced in watersheds with greater wetland extent (Bai et al., 

2013). 

The soil-hydrological relationships of alpine wetlands can also impact their carbon 

management function, which then influences the carbon budget of the atmosphere and down-

gradient waters. Depending on the position of the water table, biogeochemical status, vegetation 
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present, and microbial activity, wetland soils can either act as a carbon sink or source, emitting 

both CO2 and CH4 (Koch et al., 2007; Hao et al., 2011; Franchini et al., 2014; Kang et al., 2014; 

Millar et al., 2017) as well as dissolved organic carbon into streams and adjacent water bodies 

(Lou et al., 2014). Such interactions between alpine wetland soils and hydrology are poorly 

understood at this point, but some data suggests that losses of peatland carbon, and thus wetland 

storage volumes, have disproportionately reduced discharge quantity and water quality from the 

Zoige region, a valuable headwater to much of Asia (Bai et al., 2013). The applicability of these 

findings to other regions is uncertain, but such alterations to mountain systems are particularly 

worrisome in an uncertain climate future (Bales et al., 2006). 

1.2.3. Temperate Alpine Wetland Hydrology 

Mountain wetland hydrology is the result of interactions between internal and external 

hydrologic processes occurring at multiple spatial and temporal scales (Loheide et al., 2009; 

Lowry et al., 2010). It is thus necessary to understand both basin-scale hydroclimatic processes 

and internal dynamics to untangle the mingled influence of hydrological processes supporting 

alpine wetlands (Woods et al., 2006; Lowry et al., 2010). To address the state of knowledge of 

these issues, this section (i.e., section 1.2.3) largely focuses on the mountain and alpine 

hydrological processes of the North American Cordillera, but occasionally draws on 

understanding generated from similarly situated (i.e., headwater) studies in temperate, boreal, or 

tropical alpine zones. Focus is generally maintained on growing season processes. However, due 

consideration is given to the snowmelt season, as it represents the initiation of the growing 

season. 

1.2.3.1. Precipitation 

Though patterns are variable, snow is often the dominant input to temperate alpine 

watersheds, constituting upwards of 95% of annual precipitation (Kattelmann and Elder 1991). 

However, snow distributions are uneven and influenced by a number of factors, such as 

topography and wind. For example, Grünewald et al. (2014) found that snow depth is elevation 

dependent, with a distinct peak followed by a decline at higher elevations due to avalanching 

(slope and poor adhesion) and wind redistribution. Wind redistribution, in turn, can cause snow 

to collect in topographic depressions, leeward slopes, and around exposed vegetation, which then 

has a pronounced impact on the partition of energy and hydrologic fluxes (DeBeer and Pomeroy, 

2010). There is a very active research community exploring snow accumulation, redistribution 
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and melt in the alpine of the Canadian Rockies (c.f., Canadian Rockies Hydrological 

Observatory, http://www.usask.ca/hydrology/CRHOStns.php). 

1.2.3.2. Discharge 

Peak discharge in alpine areas is tightly coupled to snowmelt timing (e.g., Sueker et al. 

2000; Liu et al. 2004), making snowmelt the major hydrologic event of the year (Clow et al., 

2003). However, the translation of snowmelt to streams is still poorly understood. Initial 

investigations hypothesized that overland flow was the dominant mechanism of transfer (Laudon 

and Slaymaker, 1997). This was predicated on the assumption that the thin soils/saprolite, short 

up-slope accumulation zones, and small subsurface storage volumes were limiting groundwater-

surface water interactions (Winter, 2000), thus producing a reliance on intra-annual precipitation 

to support any flows (Clow et al., 2003). However, as more observations have been made and 

new techniques developed, this paradigm has been challenged (Williams et al., 2016). This 

paradigm shift is supported by a growing number of studies that have found groundwater is a 

significant component of spring discharge (e.g., Campbell et al. 1995; Sueker et al. 2000; Brown 

et al. 2007; Yang et al. 2012) and baseflow (Hood and Hayashi, 2015). For instance, Liu et al. 

(2004) found that discharge in the Green Lakes Valley, Colorado, USA was composed of as 

much as 64% groundwater, with a distinct absolute increase in groundwater during the melt 

season. These findings suggest a much more developed storage and subsurface flow network 

than previously thought. 

The above circumstances may not be universal, however. For example, in the Sierra 

Nevada Range (California, USA) it has been observed that groundwater represents only 10-20% 

of stream discharge (Huth et al., 2004). In contrast, Laudon and Slaymaker (1997) observed 

large variability in the contributions of groundwater to the stream, ranging from 25-90% in the 

Coast Range of British Columbia. There has thus been a push to understand this variability, as 

well as determine the importance of the various storage units potentially impacting runoff 

generation. Much of this research has since focused on talus slopes, moraines, glaciers, rock 

glaciers, and other cryogenic units (e.g., Caballero et al. 2002; Clow et al. 2003; Roy and 

Hayashi 2009; McClymont et al. 2012; Langston et al. 2013; Weekes et al. 2014); wetlands have 

received only limited attention (McClymont et al., 2010). 

While beyond the scope of this review, it should at least be noted that where glaciers 

exist, they are often, but not always (e.g., Brown et al., 2007), a dominant source water to down 
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gradient streams (Clow et al., 2003; Penna et al., 2014), effectively subsidizing streamflow 

during the lower summer flow periods (Viviroli et al., 2003). The provisioning of this hydrologic 

function in the future is highly uncertain, as continued glacial loss is causing reductions in flow 

volumes throughout Canada and much of the world (Demuth et al., 2008; Moore et al., 2009). 

The implications of these losses to wetland water availability, and thus ecosystem stability, are 

largely unknown. 

1.2.3.3. Groundwater 

Spatial and temporal heterogeneities, as well as a poor knowledge of the geologic 

conditions of the alpine zone make it difficult to understand groundwater flow patterns, let alone 

generalize them. However, there is evidence to suggest that groundwater flow is strongly 

influenced by topography, geology, and recharge conditions (e.g., Ofterdinger et al., 2014; 

Welch and Allen, 2014). 

Recharge in the alpine depends on many factors such as the type and timing of 

precipitation, topography, soil/subsurface condition, vegetation type, and land use (Bayard et al., 

2005; Ofterdinger et al., 2014), as well the balance of other flow paths, such as evaporation, 

runoff, and sublimation (Bales et al., 2006). Snowmelt is the main recharge source to alpine 

aquifers (Bales et al., 2006; Hood and Hayashi, 2015). However, the translation of snowmelt to 

recharge can be quite variable due to a number of factors. For example, topographic patterns can 

promote snow accumulation in depressions and other areas. Snowpack depth, in turn, is an 

important regulator of soil frost. Bayard et al. (2005), for example, observed that during a heavy 

snow year seasonal frost was limited, due to the insulating properties of snow, while in a low 

snow year the frost was deep and lasted well into the snowmelt season. These contrasting 

conditions then promoted 90-100% infiltration efficiency during the low frost year and only 65-

75% efficiency during the deep frost year. However, design limitations of their study did not 

examine the role of local topographic depressions, which may act to concentrate recharge and 

alter the basin-scale recharge efficiencies. Aspect and slope angle are also important controls of 

recharge as the energy balance between different slopes will produce differences in 

evapotranspiration and melt timing, both of which are impacted by vegetation, subsurface 

architecture, soil moisture, and relative humidity (Drexler et al., 2004; Carey and Quinton, 

2005). 
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Hydraulic conductivity can be viewed as a synoptic variable, summarizing a number of 

geologic properties, such as porosity and fracture geometry (i.e., aperture size, density, and 

connectivity) (Welch and Allen, 2014). That said, hydraulic conductivities in the alpine are 

extremely variable, influenced by the scale of observation, geologic structures (including 

permafrost and preferential flow paths), and lithologic discontinuities (Kohl et al., 1997; Stein et 

al., 2004; Ofterdinger et al., 2014). 

Current understanding of patterns of hydraulic conductivity in the alpine are summarized 

by the critical zone concept (sensu, Welch and Allen, 2014), which emphasizes a five layered 

model of the subsurface. These layers include: soil, saprolite, fractured and weathered bedrock, 

fractured bedrock, and unweathered/competent bedrock (Anderson et al., 2012; Welch and 

Allen, 2014). The first three layers are thought to be very variable in their bulk hydraulic 

conductivity values. Studies have documented a lower range of between 10-5 to 10-7 m/s with no 

apparent trend in anisotropy (Harr, 1977; Katsuyama et al., 2005; Banks et al., 2009; James et 

al., 2010; Welch and Allen, 2014). The fractured bedrock layer has a documented bulk hydraulic 

conductivity that ranges from 10-6 to 10-8 m/s with a maximum documented depth of 

approximately 200 m (Welch and Allen, 2014). Last, the unweathered bedrock layer can extend 

to >2 km below the surface with hydraulic conductivities ranging from 10-6 to 10-9 m/s, the lower 

values being more representative (Welch and Allen, 2014). In contrast, saturated hydraulic 

conductivities in at least one alpine meadow (wetland) have been found to range from 10-5 to 10-7 

m/s (McClymont et al., 2010). 

1.3. Research Gap 

Alpine wetlands provide many important ecosystem functions and services, many of 

which are bounded by the water table. The hydrologic processes important to maintaining water 

tables in these wetlands are still poorly understood. Thus, it is unclear how these ecosystems will 

respond to climate-mediated changes in water availability. Because direct recharge from 

snowmelt is thought to be the dominant hydrological input to many alpine wetlands, the current 

paradigm suggests these ecosystems will be very sensitive to directional shifts in climate that 

promote warming and drying. However, mounting evidence suggests groundwater may also be 

an important source water to streamflow in some alpine watersheds. The conditions that promote 

groundwater importance, such as topography, remain unclear. There is thus a need to better 

understand the hydrological processes influencing water table dynamics of alpine wetlands and 
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their geomorphic controls so we may better predict how they will respond to future climate 

conditions. 

1.4. Purpose and Objectives 

The purpose of this thesis is to explore the hydrologic conditions of alpine wetlands so as 

to begin to untangle the various factors influencing their vulnerability to climate change. Within 

this context, the water table is used as both an indicator of moisture status and as a means of 

understanding the hydrologic processes being integrated in wetlands. The objectives of this study 

are to: 1) characterize water table dynamics of alpine wetlands; 2) identify which key hydrologic 

processes influence water table position; and 3) evaluate whether topographic setting influences 

the hydrological processes critical to water table maintenance. To meet these objectives, three 

alpine wetlands situated in contrasting topographic positions were studied in the Canadian Rocky 

Mountains. These wetlands were examined over two growing seasons that differed by a month in 

the timing of snowmelt. 
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CHAPTER 2: METHODS 

2.1. Study Site 

This study is part of the Canadian Rockies Hydrological Observatory (CRHO; 

http://www.usask.ca/hydrology/CRHO.php), which focuses on better understanding and 

predicting changes in the processes influencing both the hydrologic flows from, and resilience 

of, mountain ecosystems. Our study focuses on the hydrologic conditions of wetlands in the 

Helen Creek Research Basin (HCRB) located in Banff National Park, AB, Canada (Figure 2.1). 

HCRB is a 315 ha, currently un-glaciated, U-shaped valley typical of the southern Canadian 

Rocky Mountains. Helen Creek is a tributary of the Bow River, which in turn flows to the 

Saskatchewan River – one of Canada’s most economically important watersheds. Elevations of 

HCRB range from ~2,200 to ~2,900 m, with tree line occurring at ~2,350 m. 

No long-term climate data is available for HCRB. However, regional weather station data 

are available for the area (Figure 2.2). Bow Summit is approximately 3.3 km (straight line 

distance) to the northwest of HCRB and located at an elevation of 2,080 m, while Skoki 

Mountain is approximately 31.2 km to the southeast at an elevation of 2,040 m. The earliest data 

available for Bow Summit is March 2006, while Skoki Mountain is March 2009. Similar weather 

observations were made at both sites. The average winter (DJF) air temperature at Bow Summit 

was -10.5 C, while the summer (JJA) temperature was 8.7 C. Fall (SON) and spring (MAM) air 

temperatures were -1.0 and -2.4 C, respectively. Daily average precipitation rates across seasons 

were fairly constant, ranging from a low of 1.7 mm/day in the winter to a high of 2.6 mm/day in 

the fall. 

HCRB is largely underlain by the Miette Group, which consists mostly of sandstone, 

conglomerate, siltstone, and slate (Pana and Elgr, 2013). Above tree line, the vegetation is 

dominated by shrub tundra, which transitions to bare rock at about 2,500 m. The lateral edges of 

the watershed are also bare, with a lateral moraine on much of the west side. Wetlands and lakes 
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Figure 2.1. A color infrared aerial photo of the Helen Creek Research Basin (HCRB) with its 
continental (lower left) and regional (upper right) contexts. Orange triangles indicate the 
locations of weather stations: the Canadian Rockies Hydrological Observatory weather station 
(CRHO Wx), located in the upland, and the wetland weather station (Wetland Wx), located in a 
wetland. Grey lines represent 100 m elevation contours. 
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Figure 2.2. Climate data for two weather stations proximal to HCRB, based on water year 
(starting on Oct 1st of each calendar year). Both weather stations are approximately 300-900 
meters lower than HCRB – thus the data are likely warmer and drier than that experienced by 
HCRB. Data available at: https://agriculture.alberta.ca/acis/alberta-weather-data-viewer.jsp. 

cover approximately 5.3 and 1 % of the watershed, respectively. Common megafauna in the 

basin include ground squirrel, hoary marmot, and grizzly bear. Three wetlands in the basin (8.8% 

of the total wetland area) were selected for study based on differing profile (down slope) and 

planform (across slope) topographic geometries – Bowl, Slope Break, and Valley. 

Bowl is the highest of the studied wetlands (2,490 m) and has profile and planform 

geometries that are concave (Figure 2.3A). Important hydrologic characteristics include surface 

inflows and outflows and a pond. Inflows occur as diffuse overland flow that disappear 

following the end of the snowmelt season. Perennial and well-defined outflow originates from a 

pond near the base of the wetland. Some seasonal frost was found in the spring of 2014, but 

quickly melted with the onset of summer. Plant cover is characterized by low sedges (Carex 

spp.), ericaceous shrubs (e.g., Empetrum nigrum) and mosses. The microtopography of the site is 

generally hummocky with some flat areas. Soils are a mix of gravels, silt, and organic matter. 

The area of Bowl is 0.15 ha and the area of its watershed (upslope accumulation area) is 0.99 ha, 

as determined by topographic boundaries. 
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The wetland Slope Break occurs at 2,385 m, is adjacent to Helen Creek and below a 

sharp break in slope such that its profile and planform geometries are concave and linear, 

respectively (Figure 2.3B). A small spring abuts the wetland, but is effectively parallel to the 

surface slope. No seasonal frost was detected at the site. Slope Break is moderately hummocky 

and has only thin organic soils. Vegetation cover is similar to Bowl’s. It is the smallest wetland 

of the three, with an area of 0.11 ha and a watershed area of 0.54 ha. 

Valley is located at 2,365 m, and is linear and concave in its profile and planform 

geometries, respectively (Figure 2.3C). The wetland has both a perennial inlet and outlet. 

Additionally, a number of perennial and intermittent seeps dot the margins of the wetland. The 

wetland’s microtopography is characterized by low hummocks with occasional pools, flarks, and 

strings, the latter two of which are most evident during the high-water conditions of the spring 

snowmelt season (Mercer and Westbrook, 2016). Radiocarbon dating of the basal peat in this 

wetland indicate that organic matter started to form ~3,800 years before present (3820 ± 30 BP, 

Beta Analytic sample number 403430). Winter soil temperature records suggest the soil at this 

site does not freeze during the winter, and no frost was found at the site in the spring of 2014. 

The vegetation is characterized by low willows (Salix spp.), sedges, cotton grass (Eriophorum 

spp.), and moss. Valley is the largest wetland studied with an area of 1.23 ha and a watershed 

area of 21.0 ha. 

2.2. Water Table Measurements 

Water table dynamics were recorded in the field at monitoring wells near the geographic center 

of each study wetland. Water levels were measured using absolute pressure transducers every 15-

minutes during the summers of 2014 and 2015 (Solinst Levelogger Edge 3001 and Onset HOBO 

0-4m). A barometric pressure transducer (Solinst Barologger) was used to correct water level 

observations for atmospheric pressure fluctuations. The barometric transducer was installed in a 

well, always above the water table, at Valley to shade it and prevent any thermal artifacts from 

influencing the resultant water level measurements (McLaughlin and Cohen, 2011). Manual 

depth measurements were occasionally recorded as per Westbrook et al. (2006) to assure 

electronic data quality. Any missing water level data were linearly interpolated from data 

available immediately before and after the missing data (< 1% of data at Valley and Slope 

Break). 
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Figure 2.3. The wetlands, as viewed from their northern edges, are: A) Bowl, B) Slope Break, 
and C) Valley. 

 

2.3. Hydrophysical Processes 

2.3.1. Snowmelt Timing 

A meteorological station was installed in an upland area of the HCRB (CRHO Wx) at 

2,545 m during the fall of 2013, and operated throughout the study. Because this study was 
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prompted by an interested in wetland hydrologic processes, an additional weather station was 

also established at the Valley wetland (Wetland Wx), which operated July 7 th to September 19th, 

2014. Similar observations were collected at both stations (Table 2.1) allowing gap-filling of any 

missing data at the wetlands, as well as estimations of uncertainties associated with spatially 

heterogeneous processes (e.g., rain). Snowmelt timing was determined using a SR50 (Campbell 

Scientific) located at CRHO Wx. The relationship between snow depth and snow water 

equivalent (SWE) was established using snow survey data from 2014 and 2015 (R2 = 0.98, p << 

0.01; Appendix A). 

Table 2.1. The variables measured at each meteorological station, relevant to this study, 
including the make and model of instruments used for data collection. All data were collected in 
15-minute intervals, with the exception of the weighing gauge, which was collected at variable 
time steps ranging from 5 to 15 minutes. 

  Instrument make and model 
Variable Units Wetland Wx CRHO Wx 
Relative permittivity [-] CS-CS650 CS-CS650 
Soil electrical conductivity dS/m CS-CS650 CS-CS650 
Soil temperature @ 0.1 m C CS-CS650 CS-CS650 
Air temperature @ 1.6 m C CS-HMP45C212 CS-HMP45C212 
Relative humidity @ 1.6 m % CS-HMP45C212 CS-HMP45C212 
Rain - Tipping bucket mm TE-525M NM 
Rain/snow - Weighing gauge mm NM OTT-Pluvio 
Snow depth mm NM CS-SR50 
Soil heat flux @ 0.1 m W/m2 CS-HFP01 CS-HFP01 
Incoming shortwave radiation W/m2 CS-CNR1 CS-CNR4 
Incoming longwave radiation W/m2 CS-CNR1 CS-CNR4 
Outgoing shortwave radiation W/m2 CS-CNR1 CS-CNR4 
Outgoing longwave radiation W/m2 CS-CNR1 CS-CNR4 
CS: Campbell Scientific, Inc.; OTT: OTT Hydromet; TE: Texas Electronics; NM: not 
measured. 

 

2.4. Water Table Modelling 

To investigate the applicability of the bog model in the studied wetlands, a 1D water table 

model was applied that considered only surface and atmospheric volumetric fluxes: precipitation, 

evapotranspiration, and discharge. It was reasoned that if surface fluxes alone, accounting for 

error and process uncertainties, can explain the water table dynamics then groundwater would be 
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expected to play a limited role in satisfying the moisture conditions of the study wetlands. The 

basic form of the water table model used is (modified from Sumner, 2007): 

 

 ℎ௧ାଵ = ℎ௧ +
௉೟ିா ೟்ାொ೔,೟ିொ೚,೟

ௌ௬೓,೟
 (2.1) 

 

where t and t+1 indicate some initial and later time step, respectively, h is the water table 

position relative to the soil surface [L] (negative below the soil surface), P is precipitation [L], 

ET is evapotranspiration [L], Qi and Qo [L] are discharge at the inlet and outlet (if applicable), 

respectively, and Syh,t [-] is specific yield at water table h and time t. In this representation, all 

volumetric fluxes are areally weighted, relative to the surface area of a given wetland, resulting 

in a water depth [L]. Specific yield represents the relationship between change in combined 

fluxes (i.e., storage) and change in water table, with values ranging from between close to 0 and 

1. When values are close to 0, small absolute changes in hydrologic flux will yield large water 

table changes, while values of 1 produce a 1:1 change in storage and water table position, which 

will occur in open water. 

The relationship defined by Equation 2.1 formed the basis for treatment of the water 

table with two different hydrological models. The first treatment only accounted for direct water 

fluxes to the study wetlands, meaning lateral flow from upslope areas was excluded. The second 

treatment included lateral flows from upslope areas, weighted by the total area of an individual 

wetland’s contributing watershed (e.g., 21.0 ha in the case of Valley). This weighting factor 

applied only to precipitation and ET losses from upslope (upland) regions and not discharge. 

Thus, it can be thought to over-estimate the amount of lateral inputs to wetlands, since there may 

be some double accounting of waters in streams entering the wetlands (if applicable). Lateral 

flows from upslope areas were assumed to be instantaneous (i.e., conductivity is infinite or 

resistance is 0), which should be a reasonable approximation, given the small upslope watersheds 

of each wetland, the steep terrain, and the porous nature of the soil and regolith in the basin. 

2.4.2. Precipitation, Evapotranspiration, and Discharge 

Direct precipitation was measured at Wetland Wx using a tipping bucket rain gauge 

during the summer of 2014 (Table 2.1). Precipitation was also measured at the CRHO Wx using 

a weighing gauge for the entire duration of the study. Snowfall was observed every month of the 

year in HCRB, though in much smaller quantities and of limited persistence during the summer. 
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Precipitation phase was corrected for using the method of Harder and Pomeroy (2013). 

Corrections for catch efficiency for the weighing gauge were calculated for the snow portion of 

precipitation (Macdonald and Pomeroy, 2007). 

Rates of evapotranspiration were estimated using the Priestley-Taylor combination (PT) 

equation (Priestley and Taylor, 1972). Though PT is an estimate of potential evapotranspiration 

(PET), the method has been found to provide a reasonable estimate of ET in well-watered 

conditions (Drexler et al., 2004), and generally outperforms more complex ET formulations, 

such as the Penman-Monteith equation, in wetland environments (Gavin and Agnew, 2004; 

Rosenberry et al., 2004). Given that the water tables remained near the ground surface in the 

study wetlands throughout the study, ET and PET should have a ratio close to 1:1 (Shah et al., 

2007). Energy balance terms for the wetlands were measured at Wetland Wx, while upland 

energy balance terms were measured at CRHO Wx. A standard scaling value of 1.26 was applied 

to the wetlands (Rosenberry et al., 2004; Hood et al., 2006), while a lower value of 1 was 

applied to the uplands (Pape et al., 2009; Muir et al., 2011; Hood and Hayashi, 2015). An 

empirical relationship was derived between wetland and upland PET, which was used to gap-fill 

data for wetland estimates of ET when the Wetland Wx was not operational (< 10% of data in 

2014 and all of 2015) (R2 = 0.77; p < 0.05; Appendix B). 

Discharge was estimated from stream stage using rating curves. Stream stage was 

recorded with absolute pressure transducers (Solinst Levelogger Edge 3001) and corrected for 

barometric pressure (Solinst Barologger). Rating curves were developed via the area-velocity 

method (Dingman, 2008) using a current meter (Marsh-McBirney Flo-Mate 2000) (Appendix 

C). The rating curves had an R2 of 0.76 (p = 0.13), 0.87 (p = 0.06) and 0.92 (p = 0.04) at the 

outlet of Bowl, and inlet and outlet of Valley, respectively. Although there were occasionally 

small volumes of diffuse flow into the wetlands, it is assumed those volumes were captured in 

the large uncertainties of the above relationships. Stream stage, and thus surface flows, were only 

measured during the growing season of 2014, for Bowl (outlet) and Valley (inlet and outlet), 

with an n = 3 for each site. 

2.4.3. Specific Yield 

Specific yield was estimated using a composite function that incorporates the (van 

Genuchten, 1980) soil water retention curve (SWRC) relationship (Cheng et al., 2015). 

Parameters of the Sy function are porosity [L3 L-3], ϕ, specific retention [L3 L-3], θR, inverse 
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bubbling pressure head (aka, capillary length when inverted) [L-1], α, average absolute depth of 

the water table, pore-size distribution index [unitless], n, and m which is equivalent to 1-1/n. The 

function is represented as (Sumner, 2007; Cheng et al., 2015): 

  

 𝑆𝑦(𝑍௫௬ , ℎ) = ቊ
𝑆𝑦௪௔௧௘௥ = 1                                                      ℎ > 𝑍௫௬

𝑆𝑦௦௢௜௟ = (𝜙 − 𝜃ோ)(1 − [1 + (𝛼ℎ)௡]௠)      ℎ < 𝑍௫௬
 (2.2) 

 

where Zxy is the small-scale elevation (relative to the zero datum at which the water table is 

being measured) at the x- and y-coordinates of a point in the wetlands (represented by a 

cumulative distribution function), Sywater is the specific yield when the water table is above the 

soil surface, and Sysoil is the specific yield of soil when the water table is below the soil surface. 

The ultimate Sy value for a given water table depth, Syh, accounts for wetland microtopography 

via (Sumner, 2007; Dettmann and Bechtold, 2016): 

 

 𝑆𝑦௛ =
∑ ௌ௬(௓ೣ೤,௛)

஺ᇱ
 (2.3) 

  

where all Sy values are summed and averaged over a wetland’s area [L2], A’. 

Equation 2.3 assumes that soils are at or near hydrostatic equilibrium (Nachabe, 2002; 

Acharya et al., 2012; Cheng et al., 2015), such that the hydraulic head is invariant with depth 

(i.e., hydraulic potentials are roughly equal down the profile). To determine a time-scale at which 

this condition could be approximated, the time-to-drain function developed by Nachabe (2002) 

was used. The function incorporates observed changes in water table height, soil water retention 

parameters, and saturated hydraulic conductivity [L T-1], Ks. That analysis indicated that a daily 

time-step would be sufficient in approximating hydrostatic equilibrium in the wetlands studied. 

To assess the soil hydraulic properties of the study wetlands, soils were randomly 

sampled from Bowl (n = 4), Slope Break (n = 5), and Valley (n = 12). Ideally, more samples 

would have been collected, but it is yet unclear as to how sensitive alpine wetlands are to soil 

disturbance in the Canadian Rockies, thus an attempt was made to try to find a balance between 

limiting disturbance and characterizing soil hydraulic parameters. Soils samples were collected 

in PVC pipe with a diameter of 5.2 cm and a height of 5 cm. At Bowl, all soil samples were 

randomly sampled from a depth of 15 cm (n = 4). At Slope Break, samples were also taken at 15 
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cm depth, with one of the samples being taken at 8 cm (the shallow depth was due to the 

rockiness of the soil; n = 4). At Valley, six samples were taken at 15 cm depth, two were taken at 

35 and 40 cm, and the remainder were sampled at 50 cm (n = 4). Again, a more systematic 

approach to depth sampling would have been better, but a reduction in disturbance was 

necessary, considering the study took place in a national park of international importance. 

The resulting soil samples were split in half (producing soil samples ~ 2.5 cm in height) 

for different purposes: 1) to develop soil water retention curves, and 2) to estimate soil organic 

matter content. Relationships between pressure and water content were determined via pressure 

plate extractor (Klute, 1986) at the University of Calgary. Bulk density [M L-3] was also 

determined as part of that process. Soil hydraulic parameters were fit using RETC (van 

Genuchten et al., 1991). Replicate soil samples were analyzed for soil organic matter (SOM) 

content via loss on ignition (Rydin and Jeglum, 2006). In situ peat depths were also assessed 

using a combination of soil auger, push probe, and soil pits. 

Saturated hydraulic conductivity was determined via slug test (Hvorslev, 1951; Fetter, 

2001) at piezometers in Bowl (n = 10), Slope Break (n = 12), and Valley (n = 14). Piezometer 

nests contained both a ‘shallow’ and ‘deep’ piezometer. ‘Shallow’ piezometers were generally 

within 20 cm of the soil surface, while ‘deep’ piezometers were located approximately 15 cm 

below a noticeable change in soil properties (i.e., texture, organic content), to provide a sense of 

exchange between wetland layers both within and near the edges of wetlands. Piezometers were 

made of PVC with an internal diameter of 3.4 cm. The base of each piezometer was slotted for 

approximately 10 cm, and thus the middle of the slot was 10 cm below any noticeable change in 

soil properties. Piezometers were developed after installation. The maximum piezometer depth 

was ~100 cm, located at Valley. 

Microtopographic elevation at each wetland was determined using structure from motion 

with multi-view stereo (SfM) via the methods and recommended processing steps developed by 

Mercer and Westbrook (2016), who used Valley as a test case. Two additional processing steps 

were added to the methods of Mercer and Westbrook (2016) to better suite conditions at Bowl 

and the Sy formulation. First, a pond occurs at Bowl, which would cause an upward bias in the 

estimated soil elevation from ground-based SfM techniques owing to reflection from the water 

(points would be interpreted as the soil surface, rather than open water). To account for this bias, 

a high precision (±3 cm) global positioning system (Leica Geosystems Viva GS 15 & CS 15 
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RTK GPS) survey was conducted to map the bathymetry of the pond. Pixels representing the 

pond were then replaced in the SfM-MVS generated digital elevation model by GPS survey 

points using linear interpolation. Second, because water tables tend to follow mesotopographic 

trends (Winter, 1999; Haitjema and Mitchell-Bruker, 2005; Van der Ploeg et al., 2012) 

microtopographic data were detrended. This had the added benefit of preventing the model from 

artificially inundating or drying areas upslope or downslope of the monitoring well, respectively. 

All photo processing and point cloud generation was performed using PhotoScan Professional 

1.2.5 (Agisoft, St Petersburg, Russia), while all other geospatial tasks were performed in ArcGIS 

10.3 (ESRI, Redlands, California). 

2.4.4. Water Table Modeling Uncertainty 

To better ensure that magnitude of water table monitoring results were reflective of 

hydrologic processes and not error, sensitivity analysis was performed. For this, a Monte Carlo 

approach was used, similar to other hydrological uncertainty methods (Beven and Binley, 1992, 

2014). The Monte Carlo approach involved adding a suite of random values from empirical error 

distribution functions to the appropriate water budget component and re-running a model 10,000 

times. 

For snow error, guidance from Harder and Pomeroy (2013) was followed: a uniform 10% 

error in the snow component was added to all summer snow precipitation events. The empirical 

error distribution for PET was determined by resampling from the regression residuals relating 

PET from the wetland and upland weather station data. The same error distribution was used for 

the upland PET estimates as there was no independent error estimate for those data. In the case 

of surface water, error was assumed to be normally distributed based on the residuals defined by 

the stage-discharge relationships. Similar procedures were utilized for soil parameter 

uncertainties in estimating Sy. Unless otherwise indicated, all data analysis and model 

implementations were performed in R 3.4.3 (R Core Team, 2017). 

2.4.5. Water Budget 

To better understand the potential role of groundwater in controlling water table 

dynamics, Equation 2.1 was rearranged to solve for net groundwater, GWnet: 

 

 𝐺𝑊௡௘௧,௧ = ∆ℎ௢,௧𝑆𝑦௛,௧ − 𝑃௧ + 𝑃𝐸𝑇௧ − 𝑄௜,௧ + 𝑄௢,௧  (2.4) 
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where Δho is the observed change in water table depth. In this application, the term ΔhoSyh is 

effectively the change in storage commensurate with an observed change in water table position. 

Large errors are often associated with net groundwater formulations similar to Equation 2.4. To 

ensure that error could not explain the estimation of GWnet, a similar Monte Carlo approach to 

that described above was used, again incorporating hydrologic process and soil hydraulic 

parameter uncertainties. A total of 10,000 model runs were performed for all wetlands in 2014. 

Because no surface water measurements were made at Bowl or Valley in 2015, only Slope was 

evaluated that year. 

2.4.6. Groundwater Flux 

Darcy’s Law provides a means of directly estimating vertical specific discharge or 

recharge of groundwater [L T-1], qv from observational data (Hunt et al., 1996): 

 

 𝑞௩ = 𝐾௦
∆ுೇ

௅ೇ
  (2.5) 

 

where ΔHV is the vertical change in hydraulic head [L], and LV is the distance from head 

measurements [L], such that ΔHV/LV is the vertical hydraulic gradient [unitless], VHG. In this 

case, Ks was estimated using the harmonic bulk saturated hydraulic conductivity between the 

shallow and deep piezometer at each nest. Though isotropic conditions were assumed, it is just as 

likely that horizontal and vertical hydraulic conductivities are 1-2 orders of magnitude different. 

Thus, qv values were treated as relative indicators of groundwater flux. VHG data were 

calculated from measurements at each piezometer nest. Weather and logistic difficulties (i.e., 

HCRB was closed due to bear activity for weeks at a time during the study) prevented collection 

of enough data to meaningfully quantify groundwater fluxes. However, there was sufficient 

groundwater flux data to provide a reasonable quantitative context for comparison to the water 

budget findings. 

2.5. Hydrochemical Estimation of Hydrologic Processes 

Hydrochemical data were used as an independent tool to evaluate source waters of the 

wetlands. Hydrochemical measurements included specific conductance, (SC: μS/cm normalized 

to 25 oC), and stable water isotopes of various source waters both in the wetlands and around 

HCRB during the summer of 2014 and 2015, near the end of the snowmelt season. Water 
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samples were collected from lakes, ponds, streams, springs/seeps, and wetland wells. Rain 

samples were opportunistically collected over the study period. Snowpack samples were 

collected during the melt season. SC, which can indicate if waters have had significant contact 

with subsurface geologic material (Laudon and Slaymaker, 1997; Klaus and McDonnell, 2013; 

Mueller et al., 2016), was measured using a YSI Professional Plus Multiparameter meter. Isotope 

samples, which can be useful in distinguishing between snow and rain water sources (Kendall 

and McDonnell, 1998; Mueller et al., 2016), were collected at the same time as SC samples, and 

placed in 20 mL scintillation vials with zero headspace. Further, the tops of isotope sample vials 

were wrapped in plastic paraffin film and stored in a refrigerator until being analyzed for both 

δ18O and δ2H at the Watershed Hydrology Lab, University of Saskatchewan, using cavity ring 

down spectroscopy (Los Gatos Research). Results of that analysis are reported relative to 

VSMOW (Vienna Standard Mean Ocean Water). 

Water sources were classified in the field to help determine if hydrochemical signatures 

were significantly different from one another. Classes included: rain, snow, groundwater (e.g., 

springs, seeps, wells) and surface water (e.g., lakes, streams, ponds). Differences between classes 

were individually evaluated for each hydrochemical constituent via Tukey’s ‘Honest Significant 

Difference’ method (Yandell, 1997). To determine the proportion of a given water source, an 

end-member mixing model was used (Hooper et al., 1990; Liu et al., 2004). 
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CHAPTER 3: RESULTS 

3.1. Snowmelt Timing and Mass Balance 

Maximum SWE values measured at CRHO Wx were similar in 2013-14 (520 mm) and 

2014-15 (513 mm). However, snowmelt occurred several weeks earlier in the spring of 2015 

than in 2014 (Figure 3.1). In effect, the basin was snow free by June 17 in 2015, 22 days earlier 

than in 2014. Assuming maximum SWE at CRHO Wx was roughly representative across HCRB, 

snowpack volumes for each wetland (SWE multiplied by wetland watershed area) were roughly 

the same between years (Table 3.1). Similarly, if those volumes were translated into water depth 

(i.e., snowpack volume divided by wetland area), they were also relatively consistent across 

years. Based in nearby studies, it is expected that only 10-20 % of max SWE was translated to 

the subsurface hydrologic system (Hood and Hayashi, 2015). Recharge estimates in alpine areas 

are variable from year to year – depending on snowpack and subsurface conditions (Bayard et 

al., 2005), so these values are just very rough estimates. Assuming 20% of max SWE recharged 

the subsurface, for example, recharge volumes would be equivalent to 1.04 x 103, 0.56 x 103, and 

21.84 x 103 m3 of snowmelt, which could have then been received by Bowl, Slope Break, and 

Valley, respectively, in the year 2014. 

3.2. Observed Water Table Dynamics 

Water table dynamics for each wetland are illustrated in Figure 3.2. None of the wetlands 

expressed a strong water table decline over the growing seasons. The maximum water table 

position was 3 cm above the soil surface and occurred at Valley in 2014 while the lowest water 

table position was 35 cm below the soil surface at Slope Break in 2015. Mean seasonal water 

table depths at Bowl and Valley ranged from 5.7 to 2.6 cm below the soil surface, respectively 

(Table 3.2). Bowl had a slightly lower mean water table in 2015 compared to 2014, but Valley 

was virtually unchanged between years. Slope Break, a mineral wetland, had a substantially 
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deeper and more variable water table than the other two wetlands as evidenced by 25% less time 

spent above -20 cm from the soil surface. All the wetlands expressed some diel water table 

fluctuations, with nighttime increases in water table position, which are usually attributed to 

lateral or groundwater recharge (Loheide et al., 2005). 

 

 

Figure 3.1. Spring SWE at CRHO Wx for the years 2014 and 2015. The last day of appreciable 
SWE was 22 days earlier in 2015 compared to 2014. 
 
Table 3.1. Volumetric and depth equivalents of snow. Maximum wetland watershed SWE 
represents the volumetric SWE at each wetland, by year, determined by multiplying SWE 
estimated at CRHO by the upslope accumulation area for each wetland. The last two columns are 
the translation of that SWE, if the entirety of the snow volume were evenly distributed across 
each wetland’s area. These results are not intended to represent the expected snowpack volumes 
that were translated to each wetland, but are simply used for comparative purposes with other 
water budget values. Note: Values in parentheses represent 2 standard deviations. 

 Maximum wetland watershed SWE (m3) Maximum wetland SWE depth (cm) 
  2014 2015 2014 2015 

Bowl 5.2x103 (0.6 x 103) 5.1x103 (0.6 x 103) 343 (42) 338 (42) 

Slope Break 2.8x103 (0.3 x 103) 2.8x103 (0.3 x 103) 255 (31) 252 (31) 

Valley 109.2x103 (13.3 x 103) 107.7x103 (13.3 x 103) 888 (108) 875 (108) 
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Figure 3.2. Hourly observed water table depths relative to the soil surface for each site and year. 
 
Table 3.2. A summary of daily water table tendencies. 

 Bowl Slope Break Valley 

 2014 2015 2014 2015 2014 2015 
Mean position 
(SD) (cm) -3.5 (2.3) -5.7 (2.3) -15.4 (5.8) -13.6 (8.8) -3.4 (3.7) -2.6 (4.4) 
Median change 
(cm/day) -0.08 -0.47 -0.75 -1.36 -0.49 -0.49 
Time above -20 
cm (%) 100 100 73 74 100 100 
Time above mean 
organic soil depth 
(%) 100 100 8 25 100 100 

 

3.3. Soil Hydraulic Properties and Microtopography 

Both Bowl and Valley contained peat (SCWG, 1998), but only Valley contained deposits 

deep enough for the wetland to be classified as a peatland according to the criteria outlined by 
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Canada’s National Wetlands Working Group (NWWG 1997). Organic contents at Valley 

contained soil samples with the maximum observed proportion of peat, 69 % SOM by mass, 

while Slope Break had the lowest, with 1.8 % SOM by mass (Table 3.3). The deepest observed 

peat, >1.00 m, was located in Valley, whereas Bowl’s deepest observed peat depth was 0.30 m. 

The minimum recorded bulk density, 0.05 g cm-3, occurred at Valley and was associated with the 

highest organic content. The highest bulk density, 1.69 g cm-3, was measured at Bowl and was 

associated with one of the lowest organic content soil samples, 3.6 % by mass. Overall, Slope 

Break had the highest average bulk density. Bulk densities associated with the peats of Bowl and 

Valley were much greater than values observed in other peatlands, which generally range from 

0.05 to 0.25 g cm-3 (Lewis et al., 2012). 

Saturated hydraulic conductivity values ranged from 2.3 x 10-3 to 1.1 x 10-8 m s-1, with 

the highest and lowest conductivities occurring at Bowl and Valley, respectively (Table 3.3). 

These estimates are similar to values observed in other mountain wetlands. For example, while 

studying a mineral alpine wetland in the Canadian Rocky Mountains of British Columbia, 

McClymont et al. (2010) found Ks values ranging from 1.4 x 10-5 to 2.5 x 10-7 m s-1. These are 

also comparable to values found in fens located in the Colorado Rockies, which range from 3.6 x 

10-4 and 4.6 x 10-6
 m s-1 (Crockett et al., 2015). Bowl (R2 = 0.44; p = 0.04) and Slope Break (R2 

= 0.56; p < 0.01) had weak linear depth dependence in Ks, while Valley did not. 

Specific retention values, θR, were fairly consistent between sites, but peat-bearing soils 

tended to have slightly larger porosity values. The peatlands also tended to have lower pore size 

distribution index values (n) than the mineral wetland, which indicates more negative pressures 

are required to remove equivalent amounts of water, all other parameters being the same. The 

largest and smallest capillary lengths (α-1), 23.2 cm and 1.9 cm, respectively, occurred at Slope 

Break, illustrating the high variability in soil parameters at that wetland. However, on average 

Valley had the lowest capillary length while Bowl had the highest. These values are in line with 

previous estimates of peatland/wetland capillary lengths, which range from ~600 to 0.2 cm 

(Schwärzel et al., 2006; Kettridge et al., 2016). 

During the period of observation, average Sy ranged from 0.34-0.45 at Bowl, 0.51-0.73 at 

Slope Break, and 0.62-0.75 at Valley. Sy decreased with water table depth in a predictable 

fashion at each wetland (Figure 3.3). 
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Table 3.3. A summary of the soil physical and hydraulic data for each wetland. 

Bowl No. samples Mean SD Min. Max. 
Peat thickness (cm) 5 11 13 0 30 
Soil organic matter (% mass) 4 22.5 23 3.8 51.6 
Bulk density (g cm-3)  12 0.81 0.72 0.15 1.69  
Log(KS) (m s-1) 10 -3.61 0.63 -4.82 -2.64 
ϕ [-] 4 0.68 0.24 0.45 0.97 
θR [-] 4 0.28 0.24 0.00 0.49 
α-1 (cm) 4 8.5 0.1 5.1 20.5 
n [-]   4 1.74 0.47 1.16 2.20  

Slope Break No. samples Mean SD Min. Max. 
Peat thickness (cm) 6 7 3 3 9 
Soil organic matter (% mass) 5 6.8 4.9 1.8 14.8 
Bulk density (g cm-3)  4 0.82 0.18 0.59 0.98 
Log(KS) (m s-1) 12 -4.61 1.08 -6.73 -3.31 
ϕ [-] 5 0.65 0.15 0.49 0.85 
θR [-] 5 0.28 0.25 0.00 0.55 
α-1 (cm) 5 5.2 0.2 1.90 23.2 
n [-]   5 1.82 0.65 1.18 2.55 

Valley No. samples Mean SD Min. Max. 
Peat thickness (cm) 29 30 19 8 100+ 
Soil organic matter (% mass) 12 26.8 22.3 2.4 68.8 
Bulk density (g cm-3)  4 0.43 0.29 0.05  1.03 
Log(KS) (m s-1) 14 -5.93 1.18 -7.95 -3.69 
ϕ [-] 12 0.78 0.23 0.68 1.00 
θR [-] 12 0.27 0.26 0.00 0.47 
α-1 (cm) 12 3.8 0.3 2.7 15.8 
n [-]   12 1.30 0.22 1.08 1.81  
[-]: Unitless; SD: Standard deviation. 
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Figure 3.3. The relationship between water table depth (relative to the soil surface) and specific 
yield (colored, solid lines), as well as the relationship’s sensitivity to soil heterogeneities (95% 
confidence intervals represented by colored, dashed lines). Minimum and maximum water table 
values observed during the summer are indicated by dash-dotted lines. Note that specific yield 
values do not reach 1 at the soil surface due to the influence of microtopgraphy. 

 

Point cloud densities that resulted from the SfM inventory of microtopographic 

elevations were generally greater than 1 point cm-2. Point clouds for Bowl and Slope Break are 

presented in Figure 3.4 and Figure 3.5, respectively. A visual representation of the point cloud 

for Valley is presented in Figure 3.6 (Figure 6 of Mercer and Westbrook 2016). Vertical RMSE 

values ranged from 8 cm to < 1 cm, the highest occurring at Valley and the lowest at Slope 

Break. The elevation range (maximum value – minimum value) of Bowl, Slope Break, and 

Valley is 2.0, 4.7, and 3.8 m, respectively. The median (IQR) elevation was determined to be 

2486.3 m (0.3 m) at Bowl, 2383.2 m (1.5 m) at Slope Break, and 2362.8 m (0.8 m) at Valley. 
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Figure 3.4. The point cloud generated for Bowl. Red dots are the locations of piezometer nests, 
while the blue line is the boundary of the wetland. Figure 2.2A was taken from a perspective to 
the upper left of the point cloud. Note that this image under-represents the true density of points 
acquired for the wetlands, due to visualization limitations. 

 

Figure 3.5. The point cloud generated for Slope Break. Red dots are the locations of piezometer 
nests, while the blue line is the boundary of the wetland. Figure 2.2B was taken from a 
perspective to the upper left of the point cloud. Note that this image under-represents the true 
density of points acquired for the wetlands, due to visualization limitations. 
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Figure 3.6. The point cloud generated for Slope Break. Red dots are the locations of piezometer 
nests. Figure 2-2C was taken from a perspective to the upper left of the point cloud (Mercer and 
Westbrook, 2016)1. 

3.4. Water Table Modelling, Water Balance, and Groundwater Flux 

Daily atmospheric fluxes during the periods of observation in 2014 and 2015 are 

illustrated in Figure 3.7. Total precipitation during the 2014 period was 42 mm with 88 % 

occurring as rain, and 30 mm in 2015 with 86 % occurring as rain. Total potential 

evapotranspiration losses at the wetlands were estimated as 349 and 539 mm in 2014 and 2015, 

respectively. Differences were largely due to the lengths of the seasons. Average wetland ET 

rates were 4.3 and 5.1 mm day-1 in 2014 and 2015, respectively. 

The use of precipitation, evapotranspiration, and discharge alone (i.e., the “bog model”) 

did a poor job of explaining the observed water table dynamics at all three wetlands (Figure 3.8). 

Those model treatments that included direct flows only (no lateral flows) only did marginally 

better in producing water table simulations that were closer to observed water tables for 3 of the 

4 site/year combinations investigated. In the case of Bowl, the mean model run indicated the  

                                                 
1 This figure appears as Figure 6 in: Mercer JJ, Westbrook CJ. 2016. Ultrahigh-resolution mapping of 

peatland microform using ground-based structure from motion with multiview stereo. Journal of Geophysical 
Research: Biogeosciences 121 (11): 2901–2916 DOI: 10.1002/2016JG003478. Jason Mercer is the major 
contributor and lead author of the manuscript. Cherie Westbrook was the primary supervisor, as well as assisted with 
writing and structure. 
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Figure 3.7. Daily wetland potential evapotranspiration loss (expressed as a negative) and rain 
and snow accumulations (positive) for the summers of 2014 and 2015. 

 

water table depth at the end of the growing season should be 18.6 m deeper than was observed, 

representing a volumetric deficit of 27, 900 m3 of water. A similar, though not as extreme, 

outcome was also observed at Valley. In that case, a water table of about 70 cm deeper than 

observed was predicted, representing a volumetric deficit of, on average, 8,600 m3. In the case of 

Slope Break, however, the bog model predicted values within the 95% confidence interval 35% 

of the time in both 2014 and 2015. All model treatments that included lateral fluxes did equally 

poorly at predicting water table position, suggesting a fundamental flaw in the conceptualization 

of those models. 
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Figure 3.8. (Left column) Water table prediction scenarios with no lateral flow included. (Right column) Prediction scenarios that 
do include lateral flow from upslope areas. The observed (solid line) versus most likely (dashed line) daily water table values for a 
given year and site. Shaded regions represent 95% confidence interval for all model runs. Note the differences in scale for each 
plot. 
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3.5. Net Groundwater Contributions 

3.5.1. Water Balance 

For all wetlands, the cumulative net groundwater contributions were positive (Table 3.4), 

even after accounting for hydrologic uncertainties and edaphic heterogeneities (Figure 3.9). In 

the wetlands where there is peat, net groundwater was larger than precipitation inputs, implying 

groundwater is a dominant source water to both Bowl and Valley during the growing season. 

There was a large amount of uncertainty regarding the importance of net groundwater 

contributions to Slope Break, as illustrated in the overlap between the 95% confidence interval of 

our model and the zero-flux line. At Slope Break, net groundwater contributions were smaller 

than PET. However, this does not rule out groundwater importance at Slope Break, as subsurface 

fluxes (discharge and recharge) could have been balanced. 

Table 3.4. 50th percentile change in volumetric water balance components for the observed 
periods of the growing season. Note that negative values indicate losses to the system. 

 Bowl Slope Break Valley 

 2014 2015 2014 2015 2014 2015 

Net groundwater (m3) 8,200 ND 83 220 4,600 ND 

Change in storage (m3) -1.0 4.0 -16 -12 310 260 

Discharge – inlet (m3) NA NA NA NA 6.8x105 ND 

Discharge – outlet (m3) -7,900 ND NA NA -6.9x105 ND 

Rain (m3) 170 170 100 130 1,300 1,400 

Summer snow (m3) 19 24 14 18 160 200 

PET (m3) -420 -500 -220 -370 -2,900 -4,100 

NA: Not applicable; ND: No data. 
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Figure 3.9. Cumulative changes in water balance components for the years when all surface fluxes could be accounted for at a 
given site. Net discharge represents the difference between inlet and outlet discharge, if applicable. Losses to the system are 
expressed as a negative. Data has been areally weighted, converting volumes into depths, to provide easier comparison between 
sites and years. 
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3.5.2. VHG and Specific Discharge 

All wetlands expressed both positive and negative vertical hydraulic gradients (VHGs), 

implying both discharge (positive) and recharge (negative) processes occurring in different parts 

of each wetland. Valley had both the most positive and negative vertical hydraulic gradients 

during the summer of 2014, which were -0.7 and 1.48, respectively. VHGs at the other two 

wetlands were comparatively subdued. Figure 3.10 illustrates both the spatial and temporal 

pattern of VHGs across wetlands, including one set of measurements made after the growing 

season. At Bowl, VHGs were positive during the summer near the top of the wetland, indicating 

discharge, and negative at this base, indicating recharge. Generally, the opposite pattern was 

observed at Slope Break, where the large gradients measured occurred at the base of the wetland, 

closest to Helen Creek. VHG values at Valley were transient, with the spatial distribution of 

hydraulic gradients reversing over the summer and again in the autumn – a fairly uncommon 

phenomenon. 

During the summer, the average vertical specific discharge (n = 3) at Bowl was 128 cm 

day-1 while recharge was 518 cm day-1. Mean vertical specific discharge and recharge at Slope 

Break (n =3) was 65 and 3 cm day-1, respectively, while they were 13 and 2 cm day-1, 

respectively, at Valley (n = 3). 

3.6. Hydrochemistry 

The local meteoric water line (LMWL) for the study period (R2 = 0.98) was δ2H = 

7.70∙δ18O – 5.13, which is in line with long-term LMWL estimates from Calgary, AB, Canada 

(Peng et al., 2004). Snow and rain stable isotope values bracketed isotopic signatures of other 

source waters throughout the Helen Creek basin, making them good end members for 

distinguishing between snow and rain. 
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Figure 3.10. Select vertical hydraulic gradient maps for the summer (left two columns: 7/25 
and 8/8/2014) and autumn (after the end of the growing season: 9/27/2014). Positive values 
are areas of discharge (blue-green), while negative values are areas of recharge (yellow-
orange). Piezometer nests are indicated by circles (white) and the main vector of horizontal 
flow for each wetland is indicated by an arrow (black). Gradients were interpolated between 
nests using splines for visualization purposes only. Note the different spatial and legend 
scales for each wetland. 
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A summary of the hydrochemical data inventoried in the Helen Creek Research Basin 

(HCRB) is provided in Table 3.5. The isotopic signature of rain (mean of -86.7 δ2H and -10.6 

δ18O) was significantly different from all other source waters (n = 5; p << 0.01 for both 

isotopes). However, δ2H and δ18O were not significantly different when comparing groundwater 

(n = 26) and surface water (n = 39; p = 0.99 for both isotopes) or groundwater and snow (n = 7; p 

= 0.12 for δ2H and p = 0.31 for δ18O). In regards to SC, groundwater (n = 38) and surface waters 

(n= 62) were not different from one another (p = 0.99). Groundwater was significantly different 

to both snow (n = 9; p < 0.01) and rain (n = 5; p = 0.05). Surface water SC was also significantly 

different to both snow (p = 0.02) and rain (p = 0.05). Given the differences in hydrochemical 

values for the source waters identified, and the limited evaporation signal, it may be considered 

reasonable to use δ2H as the end member for separating rain and snow from each other. 

 
Table 3.5. The mean (SD) values of different source waters inventoried in HCRB, by 
geochemical constituent. Data significantly different from one another are marked with a 
symbol. Letters indicate which source waters are different from each other within a column. 

Source δ2H (‰) δ18O (‰) SC (μS cm-1) 
Rain (R)  -86 (27) -10.6 (3.4) 0 (0) 
Snow (Sn) -162 (14)‡(R) -20.6 (1.7)‡(R) 9.1 (13.3) 
Groundwater -150 (8)‡(R) -18.8 (1.5)‡(R) 95.5 (75.9)†(R,Sn) 
Surface water -150 (14) ‡(R) -18.8 (2.7)‡(R) 75.2 (58.5)*(R,Sn) 
Significance level determined at p = 0.05. 

 

Groundwater specific conductance values in HCRB are similar to those found in alpine 

watersheds nearby, which range from 90-260 μS cm-1 (Roy et al., 2011). However, groundwater 

and surface water could not be distinguished using SC, suggesting the two sources are well 

mixed. Because of this potential mixing, these end-members thus were lumped into a single 

‘subsurface’ category. Further, because of its large SC and VHG values, well water from Valley 

was used as the end member for defining the subsurface group. End member values used in the 

end member mixing analysis are presented in Table 3.6. 

Results of end member mixing analysis are illustrated in Figure 3.11. Of the waters 

sampled at the study wetlands and across HCRB, the analysis indicated Valley had the largest 

average contribution of subsurface water at 53 %. Snow and rain constituted the other 38 and 9 
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%, respectively. The average subsurface contribution of waters sampled at Bowl was 41 %, 

while snow was 54 % and rain was 5 %. Slope Break had the highest average contribution of 

snow at 65 %, while subsurface water and rain constituted the other 29 % and 6 %, respectively. 

In non-wetland areas (i.e., basin-scale) of HCRB, snow was the dominant signature at 49 %, 

while rain was 24 % and subsurface water was 27 %. Because all hydrochemical data were 

collected during or just after snowmelt, and are not integrated over time or flux weighted, it is 

expected that these values will be more reflective of peak snowmelt conditions, and not growing 

season conditions. 

Table 3.6. End member hydrochemical signatures for the three source waters evaluated. Low 
and High values are associated with confidence intervals at the 95th percentile. 

 δ2H (‰) SC (μS cm-1) 
End member Low Median High Low Median High 
Subsurface water -153 -150 -146 120 181 250 
Snow -172 -162 -153 1 5 11 
Rain -106 -86 -66 0 0 0 
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Figure 3.11. The proportions of end members for waters sampled at each site and across the 
Helen Creek Research Basin (basin-scale). The figure was made using the R package ‘ggtern’ 
(Hamilton, 2018).  
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CHAPTER 4: DISCUSSION 

In this study, I investigated the hydrologic processes associated with the water table 

dynamics of alpine wetlands in contrasting topographic settings to better understand the potential 

vulnerability of alpine wetlands to changes in environmental condition. Several processes were 

considered as possible factors contributing to the observed water table dynamics. Groundwater is 

likely an important contributor to wetlands during the growing season, especially in peat-bearing 

wetlands. This suggests that the bog model of hydrology in alpine wetlands has limited utility, at 

least in HCRB. Meso-scale topography (as opposed to microtopography) did not play an obvious 

role in controlling water table dynamics. Soil hydraulic properties, including specific yield, do 

seem to play a particularly important role in regulating water table position. Together, these 

observations suggest that peat-bearing alpine wetlands may be more resilient to changes in 

climate than previously expressed in the literature, but there are still many process uncertainties 

that require further investigation. 

4.1. Hydrological processes contributing to water stability 

It was expected that water tables would be lowest during the summer in 2015, when 

snowmelt occurred earlier, due to the prolonged period over which ET losses could occur. 

However, despite a nearly one-month advance in snowmelt timing, average and minimum water 

table depths were not substantially different between the two study years. The unexpected lack of 

correlation between timing of snowmelt and water table depth is unusual. While there are no 

studies documenting the effect of advanced snowmelt timing on wetland water table dynamics, 

there is empirical evidence for the opposite condition. Millar et al. (2017) showed, in the US 

Rocky Mountains, that a later melt season (shifting from March to June) was associated with as 

much as a 35 cm drop in the mean growing season water table. In their case, the wetland being 

studied was dependent on groundwater, suggesting transience in the groundwater system may be 

as important as snowpack dynamics for some mountain wetlands. At HCRB, upslope SWE 
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volumes were smaller than lateral inputs (i.e., net groundwater and discharge at the inlet) to 

Bowl and Valley for 2014 (the only year lateral inputs were estimated). This discrepancy in the 

water balance, in conjunction with other hydrological process estimates, highlights the 

importance groundwater must play in water table maintenance. In such cases, the contributing 

area to the wetland is likely to be much larger than that estimated from the surface watershed. 

The importance of groundwater to the wetlands at HCRB is consistent with findings from other 

studies of aquatic alpine ecosystems (Table 4.1). 

Table 4.1. A comparison of the importance of groundwater in various aquatic alpine ecosystems. 

 

Despite the apparent prevalence of groundwater, it is still expected that snowpack 

volumes are exceptionally important to alpine wetlands – including those that seem dependent on 

groundwater – considering snowmelt is the major hydrologic input to temperate alpine 

watersheds (DeBeer and Pomeroy, 2010), and so is critical for recharging groundwater (Hood 

and Hayashi, 2015). However, snowpack volumes in the Helen Creek Research Basin were not 

different between years, limiting inference related to the interactions between SWE and water 

table depths. However, there are a growing number of mountain wetland studies that have 

recorded SWE and water table depths for wetlands that are likely supported by groundwater 

systems. By extracting information from these studies and adding wetlands from HCRB, a 

Ecosystem Study Range and region Groundwater (%) 
Wetlands Nielson (2008) Rocky Mountains, CO, USA 44-54 

 Present study* Rocky Mountains, AB, Canada 29-53 
Lakes Gurrieri and Furniss (2004) Rocky Mountains, MT, USA 58-84 

 Hood et al. (2006) Rocky Mountains, BC, Canada 30-74 
Streams Caine (1989) Rocky Mountains, CO, USA 50 

 Williams et al. (1993) Sierra Nevada, CA, USA 62 
 Campbell et al. (1995) Rocky Mountains, CO, USA 10-75 

 Mast et al. (1995) Rocky Mountains, CO, USA 45 

 Laudon and Slaymaker (1997) Coast Range, BC, Canada 25-90 

 Sueker et al. (2000) Rocky Mountains, CO, USA 37-89 

 Clow et al. (2003) Rocky Mountains, CO, USA 75 

 Huth et al. (2004) Sierra Nevada, CA, USA 10-20 

 Liu et al. (2004) Rocky Mountains, CO, USA 18-64 
  Brown et al. (2006) Pyrénées, France 10-53 
* Based on mean mixing model values from spring hydrochemical samples - potentially a low 
estimate of groundwater importance. 
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correlation between SWE and mean growing season water table emerges (Figure 4.1). While 

there is still a lot of unexplained variance, the correlation between peak SWE and water table 

position is fairly strong (R2 = 0.49, p << 0.01). The relationship between SWE and water table 

depth indicates that, on average, a 10 mm increase (decrease) in peak SWE is associated with a 

1.2 cm increase (decrease) in mean growing season water table, relative to the soil surface. 

Though the available information used to generate Figure 4.1 was restricted to the Rocky 

Mountains (because this is where most data are available), the wetlands included in the analysis 

span large latitudinal, elevational and temporal (3 decades) gradients, suggesting the correlation 

between SWE and mean water table position might be regionally generalizable. The correlation 

is likely to be widely valuable, especially to hydrological modelling. For example, Huntington 

and Niswonger (2012) recently used wetland elevation to improve groundwater process 

estimations for stream discharge modelling. 

It may at first seem inconsistent that peak SWE is so strongly correlated to the mean 

growing season water table of groundwater-dependent wetlands. However, the correlation may 

be reasonable in the context of piston or translatory flow. Translatory flow occurs when 

infiltrating water displaces older water in the subsurface network, thus promoting downgradient 

discharge (Mast et al., 1995; McGlynn and Seibert, 2003; Williams et al., 2016). In this context, 

snowmelt may have both direct and indirect influences on alpine wetlands. Directly, in-situ (and 

nearby) snowmelt can set the initial water table depth during the spring. Indirectly, snowmelt is 

recharging the groundwater system, thus providing hydraulic pressure, which causes discharge to 

down gradient wetlands. Future studies that explore the heterogeneities that regulate the 

partitioning of snowmelt between surface and subsurface flowpaths would be valuable for 

understanding alpine wetland source waters.  

 Regardless of mechanism, groundwater expression appears to be very pronounced at the 

wetlands studied herein, as evidenced by the large vertical hydraulic gradients, the large specific 

discharge values, and the end member analysis. While the VHG values in wetlands of HCRB are 

somewhat comparable to those found by Woods et al., (2006), who studied a subalpine wetland 

in the Colorado Rockies, the extremes seem to be much greater than those that have been 

recorded in lowland wetland systems (Table 4.2). A similar sentiment can be expressed for 

vertical specific discharge. While no comparable mountain wetland studies have estimated 

groundwater specific discharge, lowland wetland values of discharge and recharge range from 
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0.001 to 4.65, and 0.004 to 14 (cm day-1), respectively (Koerselman, 1989; Roulet, 1990; Devito 

et al., 1996; Hunt et al., 1996; Choi and Harvey, 2000; Ferone and Devito, 2004; Todd et al., 

2006). As there are so few studies of alpine groundwater hydrology, it is not entirely clear why 

wetland specific discharge values in HCRB are so high. Determination of transit times in alpine 

groundwater systems are needed to better understand how changes in climate might alter 

subsurface flows contributing to wetlands (e.g, Lessels et al., 2016; Mosquera et al., 2016), and 

thus wetland resilience. 

 

 

Figure 4.1. A comparison of SWE to mean growing season water table depth, relative to the soil 
surface, for published studies of groundwater-dependent mountain wetlands and peatlands. The 
solid line represents the relationship defined by the equation in the upper left-hand corner of the 
figure (R2 = 0.49, p << 0.01), while the shaded area is the 95% confidence interval, and the 
dashed lines are the 95% prediction interval. Data Thief III (Tummers, 2006) was used to extract 
data from (Schook and Cooper, 2014) and (Crockett et al., 2015). 

 

Summer precipitation may also be contributing to the water table stability of alpine 

wetlands. Though summer precipitation was small compared to other water budget inputs, all 
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three wetlands expressed disproportionately large responses to summer precipitation events 

(Figure 3.2 and 3.6) – especially Slope Break. This phenomena has been previously observed in 

a number of wetlands, including an alpine wet meadow (McClymont et al., 2010). Such 

responses have been attributed to both internal and external conditions (Heliotis and DeWitt, 

1987; Gerla, 1992; Sumner, 2007; McClymont et al., 2010), the mechanisms of which are 

considered later in this section. Regardless of mechanism, however, these observations suggest 

that even small summer precipitation events can be important in attenuating the water table 

decline triggered by a high summer evapotranspiration demand (Duval and Waddington, 2011). 

Considering alpine zones tend to receive more precipitation than their lowland counter parts due 

to cooling and environmental lapse rates (Grabherr et al., 2010), this could mean that summer 

precipitation may be an increasingly important water table control in a future wherein snowpacks 

are shallower. 

Table 4.2. A comparison of vertical hydraulic gradients measured in the wetlands of this study, 
lower elevation wetlands, and one study focusing on alpine streams. 

Study Location Ecosystem Min. [-] Max. [-] 

Present study 
Canadian Rockies, 
AB, Canada Alpine wetlands -0.7 1.48 

Woods et al. 
 (2006) 

Rocky Mountains, 
CO, USA Subalpine wetland -2 0.6 

Moorhead (2003) 
Appalachian 
Mountains, NC, USA Montane wetland -0.13 0.15 

Devito et al. 
(1996) ON, Canada Lowland wetland 0.01 0.1 
Choi and Harvey 
(2000) 

Everglades, Florida, 
USA Lowland wetland -0.1 0.3 

Almendinger and 
Leete (1998) MN, USA Lowland wetland 0.037 0.146 
Mann and Wetzel 
(2000) AL, USA Lowland wetland -0.2 0.24 
Frisbee et al. 
(2011) 

Rocky Mountains, 
CO, USA Alpine streambeds 0.03 0.2 

 

Evapotranspiration was prolonged and rates generally higher in 2015, compared to 2014. 

However, these changes did not produce notable changes to average summer water table depths. 

This result contrasts with the findings of Zhang et al. (2016) who showed that climate changes 

that are prolonging the ET period in the Tibetan Plateau are leading to surface drying and runoff 
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reductions from alpine wetlands. This may indicate that the hydrological response of alpine 

wetlands to climate change is not uniform. Needed, then, is a better understanding of the linkages 

between water table dynamics of alpine wetlands in the Canadian Rockies and a changing ET 

regime. For example, eddy covariance systems (Drexler et al., 2004; Rosenberry et al., 2007) 

could be used to better determine which alpine wetlands are potentially more or less vulnerable 

to climate change. 

4.2. Topographic and geologic considerations in regulating mountain wetland hydrology 

Topography is generally considered a first-order hydrological control (Tóth, 1962; Beven 

and Kirkby, 1979; Brinson, 1993; Winter, 1999; Buttle, 2006). As such, topography is a key 

component of wetland functional classifications, such as the hydrogeomorphic classification 

system (Brinson, 1993; Smith et al., 1995). Thus, wetlands that occur near breaks in slope (i.e., 

concave profile geometry) are generally thought to be more groundwater dependent (i.e., slope 

wetlands; Woods et al., 2006), while wetlands with both concave profile and planform 

geometries are considered to be largely precipitation-dependent (i.e., depressional wetlands). 

Based on these criteria, it was expected that Slope Break would be groundwater dependent, Bowl 

would be more-or-less snowmelt dependent, and Valley would represent a mix of both water 

sources. Instead, all three wetlands were similarly dependent on groundwater, as discussed 

earlier, suggesting surface topography may be a poor predictor of alpine wetland hydrology. 

Other mountain studies have also found that topography may not be a key regulator of 

wetland hydrology. For example, while investigating landscape patterns associated with fens in 

the Cascade Range, USA, Aldous et al. (2015) found that geologic factors were a better predictor 

of wetland type and hydrology than topography. This observation is consistent with a growing 

number of studies that have linked mountain wetland locations to geologic features. In particular, 

mountain and alpine wetlands have been associated with volcanic deposits (Aldous et al., 2015), 

bedrock discontinuities (Stein et al., 2004; Cooper et al., 2010), alluvium/colluvium deposits, 

including talus fields (Caballero et al., 2002; Stein et al., 2004; McClymont et al., 2010; Baraer 

et al., 2015; Gordon et al., 2015), and faults (Stein et al., 2004). This seems to signify that the 

geologic framework on which wetlands sit may play a more fundamental role in controlling 

alpine wetland hydrology, than does topography – especially for those wetlands reliant on 

groundwater. 



 

46 
 

In some respects, strong associations between alpine wetlands and the hydrogeologic 

system could mean alpine wetlands are more resilient to changes in climate than currently 

expected, as groundwater can often act as a buffer to other hydrological changes (Kløve et al., 

2014). Practically speaking, this may mean that managers could make use of existing geologic 

information (e.g., geologic maps, borehole logs) to inform predictions of wetland climate 

vulnerabilities. However, not all geologic networks are the same. For example, Aldous et al. 

(2015) found that many of the groundwater wetlands that they studied in the Cascade Range 

were supported by intermediate groundwater flow networks. Generally, these intermediate 

networks are expected to be less resilient to changes in climate than are regional aquifer systems 

given differences in residence times. Thus, the nature of the hydrogeologic network will be an 

important aspect of wetland resilience. In this regard, future research is needed to investigate 

linkages between the hydrogeologic network, water transit times, aquifer size, and landscape 

settings of alpine wetlands, and develop a mountain-specific wetland classification system. 

Based on hydrological insights from this research and geologic information from the 

literature, Figure 4.2 provides an updated conceptual understanding of the hydrological 

processes important to alpine wetlands. 

 

Figure 4.2. Updated conceptual understanding of the hydrological processes and geological 
conditions that may be important to alpine wetlands. Red arrows represent likely flow paths 
important to the hydrological functioning of alpine wetlands, but that required much more 
investigation, while the relative size of the arrows represent their potential importance. 
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4.3. Soil hydraulic properties in relation to water table stability and resilience 

4.3.1. Water table response to summer precipitation in the context of soil hydraulic 

parameter uncertainties 

As mentioned earlier, wetlands in HCRB often expressed a disproportionate water table 

response to summer precipitation events. This phenomena is commonly associated with both 

capillary (Heliotis and DeWitt, 1987; Gerla, 1992) and storage effects (Heliotis and DeWitt, 

1987; Nachabe, 2002; McLaughlin et al., 2014). Capillary effects occur when new water fills the 

partially filled pores above the water table, promoting a rapid transition from negative to positive 

pressure, which is manifest as a water table rise in unconfined aquifers, like those in most 

wetlands. Storage effects, on the other hand, are water table changes due to changes in storage, 

as predicted by specific yield. Because capillary effects were explicitly represented in the 

specific yield function of both the 1D water table model and the water budget, capillarity is not 

expected to explain the observed responses of the water table to summer precipitation. However, 

there are still a number of uncertainties associated with capillarity, and other soil hydraulics, that 

could influence the interpretation of results from this study. 

One such uncertainty was the estimation of hydraulic parameters using a pressure plate 

extractor. Pressure plates are used to determine volumetric relationships at very negative 

pressures (generally between -100 and -1,500 kPa; ~-1 x 103 to -1.5 x 104 cm of water), 

representing dry to very dry conditions – conditions not experienced by the wetlands in this 

study, as indicated by the water table depths. Because capillary effects occur at pressures very 

close to zero, fitting soil water retention curve models from data generated at very negative 

pressures could, conceivably, result in highly non-unique estimates of capillarity, as well as the 

other soil hydraulic parameters used in the van Genuchten equation. Such uncertainties could be 

improved by using instruments meant to be operated at pressures closer to 0 to -100 kPa. These 

instruments/techniques include tempe cells (Figueras and Gribb, 2009), evaporation methods 

(Gardner and Miklich, 1962; Wind, 1968), centrifugation (Šimůnek and Nimmo, 2005), or the 

use of a hanging water column (Hillel, 2004). 

The use of pressure plates also requires the destruction of secondary soil structure, which 

is an important control of wetland soil hydraulics, including capillarity (Hayward and Clymo, 

1982; Rezanezhad et al., 2016). This destruction results in the collapse of macropores, such that 

laboratory estimates of hydraulic parameters are no longer representative of field conditions. 
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Disruption of the pore network is likely not an important factor at very negative pressures, 

because larger pores would have already drained, but could be a significant issue at pressures 

closer to 0 kPa, thus biasing parameter estimates. 

Hysteresis in the water table can often be prominent in wetland soils, but was not 

considered in this study. This is likely appropriate for the conditions found in HCRB. Price and 

Schlotzhauer (1999) found that hysteretic effects became more muted in peat soils as bulk 

density increased. Soils in this study were an order of magnitude denser than those analyzed by 

Price and Schlotzhauer (Table 3.3), thus reducing the likelihood of hysteretic effects. Further 

reducing the likelihood of the importance of hysteresis was the use of a time-step that 

approximated hydraulic equilibrium for the soil and hydraulic head conditions observed 

(Nachabe, 2002). 

Spatial heterogeneity in parameter estimates was also not considered here. In particular, 

depth-dependent changes in soil hydraulic parameters were not used. Generally, wetland soils 

express strong vertical gradients (Quinton et al., 2008), but considering changes in Ks were only 

weakly correlated with depth for two of the wetlands (Bowl and Slope Break), this bulk 

parameter assumption may be reasonable. Specific yield values were found to decrease with 

depth, which is consistent with both theoretical (Sumner, 2007; Dettmann and Bechtold, 2016) 

and empirical treatments (Sherwood et al., 2013; McLaughlin and Cohen, 2014) of Sy, again 

indicating the bulk treatment of wetland soil hydraulic parameters was reasonable for the study 

wetlands. 

The net effect of the above soil hydraulic uncertainties is likely an underestimation of the 

importance of capillary action, promoting an overestimate of net changes in lateral flows, and 

thus an over-prediction of the importance of groundwater. However, the combination of 

uncertainty analysis and consistency across methods (i.e., mixing models and discharge 

measurements) suggest that even though there are potentially still large uncertainties in the 

estimated hydrological processes, the overall signal is greater than any methodological noise. 

Given the above interpretation, it seems likely that much of the water table response to 

summer precipitation events was due to storage effects associated with an increase in net 

inflows. Though direct precipitation did not explain observed changes in the water table, the 

methods used here cannot rule out the possibility that summer precipitation is important. That is, 

it is still possible that summer precipitation is being translated to the study wetlands via 
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relatively shallow subsurface flow paths. This would be consistent with the translatory flow 

mechanism discussed earlier, but could also be a function of a transmissivity feedback, or some 

other near-surface flow processes, such as pipe flow. 

4.3.2. Peat response to climate change may alter alpine wetland water table dynamics 

Peat was found at both Bowl and Valley, where peat is defined as soil containing 

approximately 30% soil organic matter, or 17% organic carbon by mass (SCWG, 1998). Valley, 

however, was the only wetland to have deep enough peat deposits, > 40 cm, to be considered a 

peatland (NWWG, 1997). Peatlands are, generally, lumped into three categories based on their 

physical hydrology, hydrochemistry, and vegetation. The water table, water chemistry, and 

vegetation at Valley are all suggestive of a moderate-rich fen, which are considered to be 

groundwater-dependent peatlands (Zoltai and Vitt, 1995; NWWG, 1997). This study, then, is the 

first to describe the hydrology of an alpine peatland in Canada, which is remarkable considering 

the volume and quality of peatland research that has occurred in the country. However, 

considering the limited attention alpine wetlands have received, it remains unclear as to how 

transferable the results of this study are to other alpine wetlands in the Rocky Mountains. 

Aside from the utility of the presence of peat in helping to understand a wetlands’ 

hydrology, peat is also an important hydrologic control. For example, the porosity of peat, which 

is usually above 0.8 (Letts et al., 2000), is generally greater than that associated with mineral 

soils, allowing peat and peatlands to store more water than their mineral wetland counterparts. 

The high porosity acts as a buffer to water loss. An association between peat amount and 

porosity was observed in this study. For example, porosities of soils at Valley were highest 

(which had the most peat), while those at Slope Break were lowest (which had no peat). The 

implications of an association between peat and mineral soil storage could mean that alpine 

peatlands with greater peat, or SOM in general, may be more resilient to changes in climate, due 

to greater internal hydrological buffering capacities. The factors leading to differential peat 

accumulation in wetlands close to one another in the alpine remains an open question.  

Another important feature of peat, in the context of climate change resilience, is that it is 

fairly responsive to hydrological and ecological processes (Arnold et al., 2014; Kettridge et al., 

2016). Some of these responses are known to promote stabilization of wetland water table 

dynamics, while others may amplify (reinforce) those dynamics (Waddington et al., 2015). 

Mechanism that reduce fluctuations of a given hydrological process are considered stabilizing 
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(negative) feedbacks (Chapin et al., 2009). For example, the “peat decomposition feedback” 

described by Waddington et al. (2015) is a stabilizing feedback that occurs when water depths 

increase, causing decomposition rates to increase, promoting pore collapse, which reduces 

specific yield values. The net result of such a feedback is that reduced water inputs are required 

to produce the same water table depths prior to drying and soil consolidation. Amplifying 

(positive) feedbacks, on the other hand, result in increased process fluctuation rates (Chapin et 

al., 2009). These feedbacks are largely associated with afforestation and shrubification, but are 

also associated with specific yield responses, in certain circumstances. See Waddington et al. 

(2015) for a more detailed explanation of these and other feedbacks associated with peatlands. 

This combination of feedbacks is important to consider as they suggest that peat-bearing 

wetlands are complex adaptive systems (sensu Levin, 1998; Chapin et al., 2009; Petraitis, 2013) 

capable of some self-regulation, but are also highly responsive to internal conditions and external 

forcings, which may produce alternative stable states (Belyea and Baird, 2006; Dise, 2009). 

While there is some differing opinion as to whether state shifts in peatlands are real, or simply 

the result of mathematical simplifications (van Nes and Scheffer, 2005; Baird et al., 2012), there 

are an increasing number of both theoretical (Hilbert et al., 2000; Belyea and Baird, 2006; 

Ridolfi et al., 2006; Rennermalm et al., 2010; Baird et al., 2012; Moffett et al., 2015) and 

empirical studies (Srivastava and Jefferies, 1996; Jefferies et al., 2006; Heffernan, 2008; Dise, 

2009; Ireland et al., 2012) that have illustrated alternative stable states occur in peatlands, as well 

as mineral wetlands. 

From a management perspective, the existence of alternative stable states in ecosystems 

can be particularly challenging, because these ecosystems will often exhibit highly non-linear 

responses to change, which are very difficult to predict, and even harder to remediate (Chapin et 

al., 2009). For example, it is conceivable that alpine wetland water table depths could express 

only marginal changes in response to shifts in climate, due to stabilizing feedbacks. However, 

drought conditions could promote the expression of an amplifying feedback, which causes a 

permanent drop in the water table, even if pre-drought conditions return. Similar ‘tipping points’ 

have been increasingly identified in a number of ecosystems (Scheffer et al., 2012), including 

socio-hydrological systems (Sivapalan et al., 2012). 

In this respect, shrubification and afforestation may be a particular threat to alpine 

peatlands, because of the amplifying feedbacks associated with those mechanisms (Waddington 



 

51 
 

et al., 2015). There are an increasing number of examples and studies illustrating the invasion of 

shrubs and trees in the alpine (Grabherr et al., 2010), including in wetlands (Moradi et al., 2012). 

Such invasions could result in a non-linear lowering of water tables, which would impact peat 

accumulation rates. However, much of what is known about afforestation and shrubification 

feedbacks is from the boreal peatland literature. Study of alpine wetlands is required to 

determine if these types of climate changes are likely to yield similar water table results. 

Last, it is unclear how quickly peat and high organic soils might take to respond to 

changes in hydrology. Kettridge et al. (2016), for example, found that low elevation peats 

respond to climate signals operating at centennial to millennial timescales. Arnold et al. (2014, 

2015), however, found that drought promoted peat hydraulic changes within a matter of years to 

decades in high elevation wetlands of the Sierra Madres, California, USA. Future research 

focusing on the properties and processes contributing to these differences in peat response will 

be very valuable in understanding how alpine peatlands will respond to changes in hydrology 

and climate.  
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CHAPTER 5: CONCLUSIONS 

The overall goal of this thesis was to better understand the hydrological processes 

contributing to alpine wetlands in the Helen Creek Research Basin, so that we might start to 

understand the vulnerability of these wetlands to environmental shifts associated with changing 

climate conditions. This was achieved by monitoring and characterizing water table dynamics of 

wetlands in differing geomorphic settings, and using a number of complementary hydrochemical 

and hydrophysical methods to infer the hydrological processes critical to maintaining near-

surface water table stability. 

Groundwater was found to be a potentially important source water to at least two of the 

alpine wetlands studied in the Helen Creek Research Basin, suggesting the bog model of alpine 

wetland hydrology has only limited utility. While the methods used to determine hydrological 

contributions were relatively simple, they were surprisingly consistent in indicating the 

importance of groundwater. This finding is important in understanding how alpine wetlands may 

respond to changes in climate, as groundwater is generally considered a more stable water source 

than other inputs, such as precipitation. Thus, having groundwater as the predominate water 

source may help alpine wetlands adapt to climate-driven hydrological changes. While this 

assessment is contrary to previous reviews of alpine wetland sensitivity to climate change 

(Winter, 2000; Williamson et al., 2008), it is consistent with the growing number of studies that 

show groundwater is an important hydrological element of the alpine zone (e.g., Hood and 

Hayashi, 2015; Williams et al., 2016). 

Surface topography did not correlate well with the observed water table dynamics. This 

was unexpected, considering the emphasis that both the hydrological and wetland literature put 

on this landscape factor, and the complex topography that characterizes alpine environments. 

However, the observations made in this thesis are consistent with at least one other mountain 
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wetland study that have found topography to be of limited utility in understanding wetland 

hydrology (i.e., Aldous et al., 2015). Instead, geologic considerations may be more fundamental 

in determining hydrological conditions, especially in relation to groundwater flows. 

Surprisingly, we found peat in two of the three studied wetlands in the Helen Creek 

Research Basin – with one of the wetlands likely qualifying as a peatland. This is significant in 

considering the vulnerability of alpine wetlands to climate change because: 1) peat may act as an 

indicator of long-term water availability (more peat could mean more stable groundwater 

conditions); and 2) peat is subject to strong stabilizing feedbacks that may reduce sensitivities to 

changes in water availability. This also suggests a potential hierarchy in the vulnerability in 

alpine wetlands, with well-established peatlands being more resilient to changes in climate, 

compared to their mineral wetland counter-parts. However, strong amplifying feedbacks, like 

those associated with shrubification, may negate this resilience. 

Though this thesis represents an important advance in our understanding of alpine 

wetland hydrological conditions, and vulnerability to changes in those conditions, it is not 

without its limitations. For example, the focus on three wetlands in a single watershed limits the 

ability to generalize the findings to other alpine watersheds. Also, the hydrophysical and 

hydrochemical methods used did not allow for a clear understanding of groundwater 

contributions to the wetlands from shallow versus deep groundwater flow paths. In the case of 

the water balance method, groundwater was treated as a residual. Although logistically 

challenging, it would be useful to have had a continuous record of discharge and recharge at the 

site to independently evaluate groundwater inputs to and outputs from the wetlands. Also, both 

the water budget and water table estimates of hydrological processes would have been improved 

if lab methods for estimating soil water retention curve data were better matched with conditions 

in the field, thus improving estimates of capillarity. Additionally, compared to the 1D model 

used in this study, a distributed (2D or 3D) water table model may have yielded more insights 

into the differential roles that soils and water balance components (e.g., evapotranspiration) 

played in regulating water table dynamics. It is also unclear if the groundwater end-member for 

the hydrochemical methods was representative of the larger groundwater systems. This is a 

typical constraint on end-member mixing models (Christophersen and Hooper, 1992), but 

considering the consistency across methods, the results seem reasonable. 
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There are a number of elements that future research could focus on to address the above 

short-comings and advance our understanding of alpine wetland hydrology and resilience to 

shifts in climate. One such element is simply a better understanding of the distribution of alpine 

wetlands (and mountain wetlands, more generally). With few exceptions, even basic 

distributional information related to alpine wetlands is not available for most of the world. Such 

inventories would improve basic understanding of how common alpine wetlands are. 

Complementary efforts to characterize soil, hydrological, and landscape features (e.g., geologic 

and topographic features) of alpine wetlands would also be useful and could provide some 

preliminary insights in the controls of their distribution and resilience. 

Additional understanding of alpine wetland function would also be useful, especially in 

the context of hydrology. While there is some documentation of alpine wetland functions and 

ecosystem services, there is still much to know. For example, how much water is stored in alpine 

wetlands? Are alpine wetlands important nodes in the larger hydrological network? To answer 

these questions, it would be useful to virtually experiment with wetland coverage and 

hydrological condition in alpine hydrological models.  

Improved insights into connectivity between upland and wetland areas will also be 

valuable in better understanding alpine wetland resilience. This includes more refined 

approaches to partitioning ‘shallow’ and ‘deep’ flow paths, estimations of the size of the 

groundwater system(s) contributing to wetlands, and the transit times associated with incoming 

flows. Such information would be useful in understanding how well buffered alpine wetlands 

might to be to changes in snowpack. 

A focus on understanding ecohydrological feedbacks in alpine wetlands will also be very 

valuable. While feedbacks have been relatively well studied in lowland areas, the understanding 

of alpine processes is still extremely limited, making prediction very difficult. In this regard, the 

work done by Waddington et al. (2015) could serve as a template for determining which 

feedback mechanisms require the most immediate focus. Of particular importance will be 

mechanisms that have relatively strong amplifying impacts, such as those associated with 

shrubification and afforestation, and to a lesser extent, specific yield. Together, such insights 

would be extremely valuable in understanding how wetland resilience outcomes might influence 

the larger hydrological network, thus improving predictive capacity, and allowing scientists and 

managers to better plan for an uncertain water future.  
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APPENDIX A : DEPTH-SWE RELATIONSHIP 

   

 

Figure A.1. Plot of snow depth (x) and snow water equivalent (y), including the 95% 
confidence interval (shaded area) of their relationship. 
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APPENDIX B : RELATIONSHIP BETWEEN WETLAND AND UPLAND PET 

 

  

 

Figure B.1. Plot of upland (x) and wetland (y) potential evapotranspiration, including the 
95% confidence interval (shaded area) of the relationship. 
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APPENDIX C : STAGE-DISCHARGE CURVES 

 

 

Figure C.1. Rating curve for the outlet of the Bowl wetland. The shaded region represents the 
95% confidence interval. Note: Negative discharge values were not considered in any part of this 
study (i.e., the 1D water table and water budget models). 
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Figure C.2. Rating curve for the inlet of the Valley wetland. The shaded region represents the 
95% confidence interval. 
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Figure C.3. Rating curve for the outlet of the Valley wetland. The shaded region represents the 
95% confidence interval. 


