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Abstract 

Due to their chemical selectivity and the large amount of information that can be gained 

about the charge and coordination number (CN) of an element, X-ray absorption near-edge 

spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS) are routinely used to study 

metal centres in a variety of synthetic (e.g., alloys, ceramics, films) and natural (e.g., plants, 

soils) matrices. However, many competing effects influence spectral energies, and the ability to 

separate these effects is difficult. In particular, the effect of CN and the next-nearest neighbour 

(NNN) on XPS binding energies (BE) of inorganic solids have not been well-studied. In this 

work, the constituent elements of several industrially-relevant materials have been substituted 

and the resulting shifts in XPS and XANES spectral energies have been investigated, leading to a 

better understanding of the different effects that can cause these shifts. 

With increasing Zn content in SrFe1-xZnxO3-δ (0 ≤ x ≤ 1), an oxygen-deficient perovskite-

type structure, examination of Fe K- and Zn K-edge XANES spectra shows that greater oxygen 

deficiency (δ) lowers the transition-metal CN. Substitution of Fe by Zn results in shifts in the 

metal 2p XPS BEs that are much greater than the shifts observed in the corresponding L2,3-edge 

XANES absorption energies. As the number of electron-rich O2- anions surrounding the metal 

centres decreases, there is less electron density to screen the core-hole generated by XANES or 

XPS processes. Consequently, the poorly-screened core-hole exerts a stronger influence on the 

system, whose electrons relax to a greater extent. Further, O is electronegative compared to other 

atoms in the structure, and its tendency to tightly bind electrons restricts the ability of electrons 

from the material to relax around a core-hole on a metal centre. As the CN decreases, the 
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magnitude of final-state relaxation around the core-hole increases, lowering the final-state energy 

and the observed BE. When the same core-electron is excited, this effect is more pronounced in 

XPS than in XANES, where the excited electron partially screens the core-hole.  

Investigations of (TiO2)x(SiO2)1-x (0 ≤ x ≤ 1), an amorphous metal-silicate, showed that 

the use of both hard (Ti K-edge) and soft (Ti L2,3-edge) X-rays provides a useful way to monitor 

changes in the bulk and surface, respectively. The bulk and surface regimes are critical for the 

applications of the amorphous transition-metal silicates, which are now being used as high-κ 

dielectric materials for use in semiconductors. Comparison of Ti K- and L2,3-edge spectra 

revealed that Ti atoms at the surface have a higher average CN than in the bulk, likely due to the 

presence of surface hydroxide and water groups that can coordinate to the Ti centres. The O K-

edge, Ti L2,3-edge, and Si L2,3-edge XANES absorption energies showed little to no change with 

Ti content, while the O 1s, Ti 2p, and Si 2p XPS BEs were found to decrease significantly with 

increasing Ti content. As Ti replaces electronegative Si atoms, electrons in the material become 

less tightly bound and can relax to a greater extent around a core-hole. The larger degree of 

relaxation screens the core-hole more effectively in the final-state, lowering the final-state 

energy and all core-line BEs in these materials. Investigations of amorphous quaternary 

[(ZrO2)x(TiO2)y(SiO2)1-x-y (x + y = 0.20, 0.30)] and related ternary [(ZrO2)x(SiO2)1-x (0 ≤ x ≤ 1)] 

silicates found similar results. Namely, final-state relaxation increases with the amount of 

incorporated metal-oxide. The increase in final-state relaxation with total metal content has been 

confirmed empirically through analysis of the Auger parameter, which also increases with total 

metal content. These studies provide more examples that help us improve our understanding of 

the many influences that makes analysis of XPS spectra complicated, and highlight large changes 

in BE (>1 eV) that can occur without any changes in ground-state energies (e.g., oxidation state).  
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Chapter 1 

1. Introduction 

The rational design of materials requires a deep understanding of structure-property 

relationships, which can be acquired through studies using mature and robust spectroscopic 

techniques. X-ray spectroscopy is particularly effective for these studies, as it can be used to 

characterize both the physical structure (i.e., coordination environment) and electronic structure 

(i.e., energies of core and valence electrons, and/or bonding interactions).1, 2 X-ray absorption 

and photoelectron spectroscopies (XAS and XPS) involve the excitation of core electrons, and 

the energy required for these excitation processes is sensitive to the local chemical environment 

around an element of interest. In general, the spectral energies are the result of ground state 

(before excitation) and final state (after excitation) effects, and although these techniques and the 

underlying theory have developed considerably, there continue to be factors whose effects 

remain poorly understood and merit further study. 

In this work, subtle and controlled changes in model systems, oxygen-deficient 

perovskite-type structures (Chapter 2) and transition metal silicates (Chapters 3 and 4), are used 

to understand finer spectral energy changes in X-ray absorption and photoelectron spectra. These 

model systems have a wide range of compositions where substitution leads to well-defined 

structural changes. This provides an opportunity to isolate specific changes in structure and 

composition, which is crucial to determining the underlying cause of spectral energy shifts.  
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Figure 1.1. (a) The ideal ABX3 perovskite-type structure consists of a 3-dimensional framework 
of corner-sharing BX6 octahedra centered on corners of the cubic unit cell and A cations in 
interstitial positions. All B-X-B bond angles are 180° to each other and all B-X bond lengths are 
equidistant. (b) Tilting of the octahedra (top) and anion deficiency (bottom) are possible 
distortions of perovskite-type structures. Anion vacancies are represented by dashed-line circles.   

a

c

b

a

c

b

(b) 

(a) 
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1.1. Transition metal oxides and perovskite-type structures 

Transition metal oxides are a diverse class of materials bestowed with properties that 

make them desirable for technological applications.3 Compared to compounds without transition 

metals, the partially filled d-states of transition metals frequently lead to a more complex 

electronic structure, which is often accompanied by interesting properties. Accordingly, 

transition metal oxides have a long history of scientifically interesting features and industrial 

applications, as well as an abundance of phenomena that have yet to be fully understood or 

mastered, such as high-temperature superconductivity, half-metallicity, metal-insulator 

transitions, ion-conduction, magnetic ordering, and the coupling of magnetic and electric 

properties.3-13 

Metal oxides have a wide range of structures, but perhaps the most recognized is the 

perovskite-type structure, which follows the general formula ABX3. In this notation, A is usually 

a large electropositive cation, B is often a transition metal cation, and X is predominantly an 

oxygen anion, though the X site can be partially or fully substituted by other anions such as 

fluoride or sulphide.14, 15 As shown in Figure 1.1a, the ideal perovskite-type structure is cubic 

and consists of a 3-dimensional framework of corner-sharing BX6 octahedra, with A cations 

located in interstitial positions. All B-X-B bond angles are 180° to each other and all B-X bond 

lengths are equidistant.14-16 However, the structure can tolerate substantial distortion, and this 

flexibility allows the structure to accommodate a wide range of atoms with different size and 

valence. These modifications often involve tilting of the BX6 octahedra, displacement of the B 

cations within the octahedra, and anion (X) deficiency, all of which reduce the symmetry of the 

structure (Figure 1.1b).9, 14-18 Distorting the structure and/or reducing the symmetry are often 

desirable, as they introduce complexity and are frequently accompanied by new properties. For 
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example, anion-deficiency can lead to ion conduction, while tilted BX6 octahedra and displaced 

B cations can produce non-centrosymmetric structures required for ferroelectricity, 

piezoelectricity, and second harmonic generation.3, 9, 19-23  

Perovskite-type oxides can easily be made by direct methods (also called the ceramic 

method), where powdered binary oxides are mixed together and heated at high temperatures over 

extended periods.15 Sol-gel syntheses have also been successfully employed and have been 

shown to provide superior control of particle size, which is important for applications involving 

ion conduction through the material.24, 25 As a result of the compositional tolerance and ease of 

synthesis, the perovskite-type structure has become one of the most well-studied structure-types. 

Further, the structure is easily tuneable through changes in composition or synthetic conditions, 

so it is often used to investigate the complex relationship between structure, composition, and 

physical properties.15, 18 This has allowed the rational design of materials with desirable 

properties, tailored to particular applications and devices: capacitors, signal transducers, high-

temperature superconductors, resistors, ion conductors, and gas sensors, among many others.15  

One phenomenon being actively investigated through perovskite-type oxides is solid-

state ion conduction (also called mixed ion-electron conduction, or MIEC).3, 26 Although solids 

are typically considered to be static, sodium ions incorporated in β-Al2O3 at room temperature 

show the same ionic conductivity as a 0.1 M NaCl solution.3 Meanwhile, β-Al2O3 retains all the 

mechanical properties associated with a conventional ceramic, such as hardness, durability, 

chemical inertness, and retention of structural integrity at high temperatures. In industrial 

applications, lithium-ion conduction has been central to lithium-ion and lithium-polymer 

batteries, while oxide anion conduction is critical to solid oxide fuel cells (SOFC) and 

electrodeless catalysts.3, 26, 27 Recent investigations of oxygen-deficient perovskite-type phases 
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have shown high oxygen fluxes, making them viable replacements for yttria-stabilized zirconia 

(YSZ), which has been the standard for many years.9, 26-30  

Oxygen-deficient perovskite-type structures are non-stoichiometric perovskite-type 

oxides of the form ABO3-δ, where δ is the degree of oxygen deficiency. As before, A is a large 

electropositive cation, whereas B tends to be a smaller cation (and is often a transition metal). In 

the structure, the oxygen deficiency is derived by removing O atoms from the structure. 

Synthetically, the oxygen deficiency varies with temperature, partial pressure of oxygen (pO2), 

and substitution of the A or B sites.9 If the oxygen vacancies are randomly distributed, a 

disordered structure results. However, vacancy ordering can occur, and is favoured as δ 

increases.9, 31, 32 In many cases, the perovskite-type structure can tolerate a substantial oxygen 

deficiency, often up to ~15 mol %, before it undergoes a phase transformation to a 

brownmillerite-type structure where the oxygen vacancies are ordered.9, 32 The brownmillerite-

type structure, of the form A2B2O5 (ABO2.5), can be derived by removing 1/6 of the O atoms 

(16.7% deficiency) from the ABO3 perovskite-type structure, creating alternating layers of BO4 

tetrahedra and BO6 octahedra.9, 32 

Although many ceramics (processed inorganic solids) were first found as minerals in 

nature, rationally designed synthetic ceramics are now commonplace. As mentioned in the 

opening, this logical design of materials with application-tailored properties is possible due to 

knowledge of structure-property relationships. In this work, the subtle and controlled changes in 

perovskite-type structures are used to understand some of the finer spectral energy changes in 

X-ray absorption spectroscopy (XAS) and X-ray photoelectric spectroscopy (XPS).   
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1.2. Transition metal silicates 

Silicates are a broad class of materials that contain Si bound to anions. The most 

commonly featured anion is oxygen, where an extended structure is composed of SiO4 

subunits.33 These tetrahedral subunits can order to give isolated tetrahedra, pairs, rings, chains, 

sheets, or 3-dimensional networks.33 Due to the many possible motifs of these tetrahedral SiO4 

building blocks, silicates are usually classified by the ordering of these subunits within the 

crystal structure. The most well-known member, silica (SiO2), is colloquially referred to as 

“glass,” though most glasses contain a number of other additives. 

Although SiO2 is more well-known for its chemical and physical durability, it has played 

a vital role in the semiconductor industry, where it is grown on Si substrates by oxidation of Si to 

create an electrically insulating and polarizable layer (i.e., a dielectric layer).34, 35 However, the 

progressive reduction in the size of transistors is limited by the dielectric constant of SiO2. (The 

dielectric constant is a measure of the relative permittivity of a material and its ability to 

attenuate electromagnetic fields, so a large dielectric constant is desirable to achieve a high 

capacitance or serve as an electrically insulating layer.36-38) As gate dielectric stacks in 

complementary metal-oxide–semiconductor (CMOS) devices shrink in size, the SiO2 dielectric 

layer thickness can only shrink to a fundamental limit, beyond which electron tunnelling leads to 

a leakage current that deleteriously affects device reliability.34, 39, 40 To overcome this 

fundamental limit, materials with a higher dielectric constant are required, while being 

compatible with current manufacturing processes. The dielectric constant is material-specific, so 

there has been a flurry of activity in search of a suitable candidate to replace SiO2, and 

incorporation of Hf has led to the creation viable devices.35, 41 Introducing transition metals into 

silicates often imparts useful properties, and in the case of SiO2, the substitution of some Si sites 
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with Ti, Zr, or Hf increases the dielectric constant by up to an order of magnitude.42-45 

Unfortunately, phase segregation is problematic for metal silicates, especially with higher metal 

content. For example, annealing (i.e., heating at elevated temperatures), a routine technique in 

semiconductor fabrication and industrial processing, can easily cause the formation of ordered 

metal-rich domains, leading to heterogeneity when higher metal contents are used.39, 44, 46, 47 

Heterogeneity changes the properties of the material and can deleteriously affect device 

reliability, particularly with films.39 For other applications, silicates have traditionally been made 

by a melt synthesis, where they are rapidly cooled from high temperatures.33, 48, 49 However, 

transition-metal (e.g., Ti, Zr, Hf) silicates have high melting points that make this processing 

unfeasible, and crystallization is favoured at high temperatures.46, 48, 49 “Soft” methods such as 

sol-gel routes have overcome these difficulties, and have the added benefit of a range of post-

synthetic solution processing techniques, such as spin-coating for thin-film applications or fibre 

drawing and spinning for use in composites or textiles.50-52 

Industrial applications, particularly electronics, require homogeneous products with well-

defined properties. To investigate the structure and homogeneity of materials, X-ray diffraction 

(XRD) is traditionally used, but it depends on long-range order.53 Lack of long-range order in 

amorphous systems, such as silicate thin-films used in electronics, prevents examination by 

diffraction-based techniques, so structural information must be obtained by other means. 

Disordered systems such as these amorphous metal silicates are ideal candidates for study by 

X-ray spectroscopy, which requires no long-range order because it is sensitive to the first few 

coordination shells of the element being examined. XPS is one such technique that is routinely 

used to characterize these materials, and shifts in spectral energies have been observed with 

increasing metal content.54, 55 However, the origin of these shifts has been debated and remains 
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unclear.54, 55 In this work, the structural tolerance of the SiO2 glass network and the large 

substitutional range in the (TiO2)x(SiO2)1-x, (ZrO2)x(SiO2)1-x, and (ZrO2)x(TiO2)y(SiO2)1-x-y 

systems have been exploited to create an isostructural series with varying metal content. This 

series has been examined by several spectroscopic techniques to determine the contributing 

factors of the energy shifts in XPS, toward the goal of better understanding and describing 

material changes investigated by XPS. 

1.3. X-ray photoelectron spectroscopy (XPS) 

1.3.1. Overview 

X-ray photoelectron spectroscopy (XPS) is a spectroscopic technique that yields 

elemental and chemical state information of surfaces by exploiting the photoelectric effect: when 

a material is irradiated with photons of sufficient energy, electrons are ejected (called 

photoelectrons) whose kinetic energies (KE) are determined by the energy of the incident 

photons (hν) and the identity and chemical environment of the atoms in the material.2, 56 As 

shown in the diagram of a typical XPS instrument (Figure 1.2), photoelectrons are emitted into 

vacuum and pass through an energy analyzer to reach a detector, after which a spectrum of 

electron intensity as a function of KE is constructed. The KE of a photoelectron is given by 

eq. ( 1.1 ), where hν is the incident photon energy, BE is the binding energy of the electron 

examined, and ϕ is the work function of the sample, which is a material-specific measure of the 

energy required to liberate an electron from the surface of a solid.2, 56 

 𝐾𝐸 = ℎ𝜈 − 𝐵𝐸 − 𝜙 ( 1.1 ) 
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Figure 1.2. An XPS spectrometer generally consists of a chamber under ultra-high vacuum 
(<10-9 Torr), a monochromatic X-ray source, a charge neutralizer, an electron lens, an energy 
analyzer, and a detector that is electrically coupled to the sample stage. θ is the take-off angle, 
which can be adjusted by changing the orientation of the sample with respect to the electron lens. 
In a hemispherical analyzer, only electrons with a specific range of energies will reach the 
detector. V1 and V2 are applied negative potentials, where |V2| > |V1|, forcing electrons around an 
arc toward the detector. Electrons with too high or low KE will collide against the outer or inner 
wall of the analyzer, respectively.  
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Figure 1.3. (a) A representative XPS survey spectrum of (TiO2)x(SiO2)1-x, with peaks labelled to 
indicate the transition responsible for the emission. The peak intensities can be used to determine 
elemental composition. The stepped background is caused by inelastic scattering of electrons 
travelling through the material before reaching the surface. (b) A representative XPS O 1s core-
line spectrum from the same sample. Synthetic peaks (long-dashed lines) have been fitted to 
show the different O chemical environments. When O is surrounded by more electropositive Ti 
atoms (compared to Si), the O 1s BE is lower (short-dashed line). Measured data points are 
shown as circles, and the solid line is the spectrum generated from the synthetic peaks.  

  



11 

 

Figure 1.4. If an atom absorbs an incident photon with sufficient energy, bound electrons in core 
shells can be ejected from the absorbing atom. (a) Absorption of the incident photon produces a 
photoelectron and a core hole, which can decay by emission of (b) a photon (fluorescence) or (c) 
an electron (Auger emission).  
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Depending on the information needed, different regions of interest in an XPS spectrum 

are examined. To quantify elemental composition, “survey” spectra are collected with a wide 

energy window and a coarse step size (e.g., a 1000 eV window sampled every 1 eV; Figure 

1.3a), while core-line scans with a narrow energy window and a finer step size (e.g., a 10 eV 

window sampled every 0.05 eV; Figure 1.3b) are used to determine more subtle chemical state 

information, such as the oxidation state of the absorbing atom and the identity of coordinating 

ligands. Although the electron analyzer detects the KE of photoelectrons, conversion from KE to 

BE can be achieved by trivial rearrangement of eq. ( 1.1 ). Whereas the KE of an emitted 

photoelectron depends on the energy of the incident photon, the BE of an electron is 

characteristic of its atomic energy level and parent element, and is an intrinsic property of a 

material.56 For these reasons, XPS spectra are often plotted on a BE scale.  

1.3.2. Auger emission 

Analysis of the photoelectron peak BEs can reveal the electronic structure of a material. 

However, there are additional processes accompany the ejection of a photoelectron, and these 

can be used to gain more information about a system of interest. When a photoelectron is ejected 

from a core shell, the atom is ionized and a core-hole is produced. The core-hole that is produced 

is unstable, and rapidly decays by either fluorescence or Auger processes, shown schematically 

in Figure 1.4.57 In both processes, an electron from a higher-energy state fills the core-hole, and 

the difference in energy after this decay process (the stabilization energy) is released from the 

system. The decay products that carry this energy distinguish the two processes. In fluorescence, 

a photon is emitted with a frequency that depends on the stabilization energy, and the atom is left 

with a hole further from the core. In an Auger process, an electron is emitted whose KE depends 

on the stabilization energy, after which the atom is left with two holes further from the core (a 
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doubly-ionized state).56, 58 The emitted Auger electron can be subsequently analyzed and 

detected in an XPS spectrometer by the same means as the primary photoelectron.2, 56 

 𝐾𝐸𝐴𝑢𝑔𝑒𝑟 = 𝐸C − 𝐸V − 𝐸V′ − 𝜙 ( 1.2 ) 

Auger energies can be described approximately by the difference in the energies of the 

orbitals involved in the decay process, eq. ( 1.2 ), although it is recognized that more complicated 

factors such as many-body effects and relaxation influence the Auger energies.58-60 (The sample 

work function, ϕ, accounts for the amount of energy required to remove the electron from the 

material, and its contribution can be removed by methods described in Section 1.3.4.) Whereas 

the KE of a primary photoelectron is proportional to the incident photon energy, the KE of an 

Auger electron is independent of the excitation energy, so Auger peaks are always treated on a 

KE scale. As can be seen in Figure 1.4c, three energy levels are involved in a given Auger 

process, so Auger peaks are identified with three orbital definitions (sometimes two of these 

levels, V and V’, are identical). In the notation used here, C is the orbital of the core-hole being 

filled, V is the initial orbital of the relaxing electron, and V’ is the orbital from where the Auger 

electron is emitted.  

1.3.3. Sampling depth 

All of the information that can be obtained through the analysis of photoelectrons or 

Auger electrons is restricted to atoms near the surface of the sample (nm scale), which may not 

be in the same chemical environment as in the bulk (μm scale).56, 61 Differences in the bulk and 

surface chemical environment could be due to surface reconstruction, surface adsorbates or 

oxides, or incomplete coordination spheres at the surface. The incident photons that excite the 

sample are often high energy (e.g., Al Kα radiation, 1486.7 eV), and are able to penetrate into the 

bulk of the material.56 However, electrons with the same or lesser energy interact more strongly 
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with matter, so they are more likely to be inelastically scattered and/or absorbed by the material 

(i.e., the electron-electron scattering cross-section is much larger than the photon-electron 

scattering cross-section).62-64 For this reason, XPS is inherently surface sensitive, with a 

sampling depth less than 10 nm.56 (The sampling depth is commonly defined as the depth up to 

which 95% of the detected electrons originate.56)  

1.3.4. Determining the electron binding energy (BE) 

The binding energy (BE) of an element within a material is a valuable probe of its 

chemical environment. By comparison to reference materials, and especially within a series of 

similar compounds, the shift in the BE can be a powerful tool to examine changes in the 

electronic structure.56 This, in turn, can be used to understand how the system changes when a 

stress is applied, such as a change in structure or in composition. Rearrangement of eq. ( 1.1 ) 

yields the expression for the electron BE, shown in eq. ( 1.3 ). 

 𝐵𝐸 = ℎ𝜈 − 𝐾𝐸 − 𝜙 ( 1.3 ) 

All energies of solids are defined relative to the Fermi level of a material, which is taken 

to be zero (i.e., EFermi = 0). (The Fermi level for electrical conductors (i.e., metals) is defined as 

the highest occupied energy state at absolute zero, and is often defined as the mid-point of the 

band gap for semiconductors and insulators.)56, 62, 65 In this context, the BE of an electron is the 

amount of energy necessary to promote the electron from its ground-state energy (i.e., from a 

core orbital) to the Fermi level. However, the electron at the Fermi level still experiences an 

attractive potential from the solid and requires additional energy to be liberated from the surface. 

This energy barrier is the work function of a material, ϕ, which is the amount of energy required 

to bring an electron from the Fermi level to a point where the electron is no longer bound to the 
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solid (i.e., it is at the vacuum energy level, Evac), usually >100 Å.62, 65 An energy diagram is 

provided to help visualize the energy levels previously described (Figure 1.5).  

As shown in eq. ( 1.3 ), the measured BE depends on ϕ, the sample work function, which 

is specific to a material and generally unknown. However, if the sample is electrically 

conductive, it can be electrically connected (i.e., grounded) to the spectrometer, which aligns 

their Fermi levels and removes the dependence on the sample work function.2, 56 Instead, the 

measured BEs depend on the spectrometer work function, ϕspectrometer, as shown in eq. ( 1.4 ). 

This term is relatively static, and can be found through the use of conductive standards with 

well-known BEs (e.g. Au metal).2, 66-69 A bias is then added to the detector to remove the 

contribution of the spectrometer work function, and the expression for the BE of an electron 

simplifies to eq. ( 1.5 ). 

 𝐵𝐸 = ℎ𝜈 − 𝐾𝐸 − 𝜙spectrometer ( 1.4 ) 

 𝐵𝐸 = ℎ𝜈 − 𝐾𝐸 ( 1.5 ) 

Although this adequately describes the situation for electrical conductors, insulators make 

analysis more difficult. If the sample is an insulator, the surface of the sample will not be 

electrically grounded to the spectrometer and will not recover all of the electrons lost through 

emission. As a result, the surface of the material becomes electron-deficient and positively 

charged; electrons become more attracted to the surface and more difficult to remove.56 For 

semiconductors and weak insulators, uniform charging can often be overcome with a technique 

known as charge neutralization, where many low-energy electrons are directed toward the 

material.2, 55, 56 These electrons are able to replenish the electrons being lost from the material, 

which is often effective at reducing the effect of charging. One of the many ways electrons can  

  



16 

 

Figure 1.5. An energy diagram showing the relationship between the excitation energy (hv), 
binding energy (BE) of core electrons, the sample work function (ϕsample), and the KE of the 
emitted photoelectron.  
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be generated is through thermionic emission from a tungsten filament, after which an electric 

field is used to direct the electrons toward the sample being analyzed.70  

Once spectra are collected, energy referencing or calibration can be done using internal or 

external standards with known core-line energies. Since the potential generated by uniform 

charging affects all BEs equally, all spectra for a sample can be shifted by the appropriate 

amount if the BE shift of the internal standard is known. Fortunately, most samples are 

contaminated with adsorbed hydrocarbons that, although present in only small concentrations, 

are detectable by XPS.56, 71 This carbon contamination (called adventitious carbon) is 

unavoidable, even under ultra-high vacuum (UHV), and frequently arises from desorption of 

adsorbates from the instrument chamber walls. A common practice for conductive or insulating 

samples is to calibrate a set of core-line spectra from a sample by setting the C 1s photoelectron 

peaks from adventitious carbon to the accepted value of 284.8 ±0.2 eV.55, 56, 71  

1.3.5. The modified charge potential model 

One of the great strengths of XPS is that it can obtain information about chemical states. 

The binding energy (BE) of an XPS core-line is influenced by the chemical environment, and 

this superficial analogy to proton-based nuclear magnetic resonance (1H NMR) spectroscopy led 

to a BE shift in XPS also being called a chemical shift.72 As the electron density around a given 

atom being probed increases, the effective nuclear charge decreases due to screening by the 

electrons. As a result, the electrons around the atom experience less attraction and are easier to 

remove (i.e., have a lower BE). XPS BEs are sensitive to the chemical environment because they 

are related to the interactions between the atom of interest and its first coordination shell, that is, 

its nearest neighbour atoms. Longer-range interactions with more distant atoms can also 

influence these energies, though these effects are often much less pronounced.56, 73 The observed 
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binding energy of a photoelectron from atom i, Ei, which results from both ground- and final-

state energies, can be described by the modified charge potential model.2, 56, 74 Although final-

state effects were initially ignored because their contribution was believed to be minor, it is now 

recognized that final-state effects can be major contributors to an observed shift in BE.56, 74, 75 

Relative to the element in a reference compound (e.g., the elemental form), Ei
0, a shift in BE of 

atom i, ΔEi, is described by eq. ( 1.6 ).56 

 Δ𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖0 = (𝑘Δ𝑞𝑖 + Δ�
𝑞𝑗
𝑟𝑖𝑗i≠j

) − (Δ𝐸𝑖IA + Δ𝐸𝑖EA) ( 1.6 ) 

A shift in binding energy results from both ground- and final-state effects, which are 

shown in this order and separated by parentheses in eq. ( 1.6 ). Shifts in the ground-state energies 

are caused by changes in the charge of the atom (i) being excited (qi in kΔqi, where k is a 

parameter that describes the Coulombic interaction between core and valence electrons) and the 

chemical environment (∆∑ 𝑞𝑗
𝑟𝑖𝑗i≠j  , where rij is the distance to atom j, which has a charge of qj).2, 

56, 74-76 These are intra- and extra-atomic effects, respectively. In the final state, after a 

photoelectron has been ejected from atom i and an unscreened core-hole has been produced, the 

system will rearrange its remaining electrons to minimize its energy. In the presence of the 

newly-created attractive potential, the electrons in the system relax towards the core-hole. Extra-

atomic relaxation (ΔEi
EA) of electrons from surrounding atoms is sensitive to changes in the 

chemical environment, whereas intra-atomic relaxation (ΔEi
IA) of electrons localized on the atom 

of interest is not, so ΔEi
IA is often negligible.56 

 α′ = KE + BE ( 1.7 ) 

Separation of these initial- and final-state effects requires complimentary techniques, and 

can be quite involved when many variables are changing in a material. One way to separate the 
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contributions from initial- and final-state effects is to look at the Auger parameter. If a core-line 

photoelectron peak and an Auger peak are accessible for the same element, the photoelectron BE 

and the Auger KE can be combined, as shown in eq. ( 1.7 ), to obtain the Auger parameter, α’. 

The Auger parameter can be used to obtain information about the chemical state and chemical 

environment of an element within a material, but it also provides one of the few experimental 

measures of changes in extra-atomic final-state relaxation, ΔEi
EA, for which it is used in Chapter 

4.77 Another technique that can help resolve contributions to BE shifts is X-ray absorption near-

edge spectroscopy (XANES), which will be discussed in the next section. XANES absorption 

energies shift in a similar fashion to XPS BEs, though, as the excited electron is not removed 

completely from the system, contributions from final-state effects tend to be muted.54, 78-81 

1.4. X-ray absorption and near-edge spectroscopies (XAS and XANES) 

XAS is another powerful technique that is routinely used to study chemical states in a 

variety of synthetic (e.g., alloys, ceramics, films) and natural (e.g., plants, soils) matrices.82, 83 

This is largely due to the elemental selectivity and the information that can be gained about the 

charge and coordination number (CN) of an element.84 The CN of metal centres in structures 

often has a large influence on properties, so spectroscopic probes that can examine the CN are a 

valuable tool. For example, in oxygen-deficient perovskite-type structures (such as the 

SrFe1-xZnxO3-δ system investigated in Chapter 2), the ion conduction is strongly dependent on the 

oxygen-deficiency (δ), which can be probed by looking at the CN of the metal centres bound to 

oxygen.9 Further, the use of penetrating, high energy X-rays—also called “hard” X-rays—often 

allows in situ measurements to be performed, such as monitoring the oxidation state of a working 

catalyst.85, 86  
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Figure 1.6. A typical experimental setup for XAS where a sample of thickness t is irradiated 
with an incident X-ray beam with intensity I0. Promotion of a core electron creates an unstable 
core hole, which quickly decays by emission of photons (If) and electrons (e- ). These decay 
products, or the intensity of the transmitted beam (I), can be monitored to determine the change 
in the absorption coefficient as a function of energy. The flux of emitted electrons can be 
monitored by measuring the drain current (A) required to replace ejected electrons.  
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In an XAS experiment, monochromatic X-rays are used to excite an electron from a core 

orbital into unoccupied [conduction] states, and the need for a bright and tuneable source has led 

to the use of synchrotron radiation for these experiments.87, 88 The excitation energy is scanned 

through an energy range that is characteristic for a particular transition—called an absorption 

edge by virtue of its appearance—and a response that is proportional to the absorption coefficient 

is measured. There are several ways to detect this response, though the most common detection 

techniques are transmission, fluorescence yield (FLY), and total electron yield (TEY).88, 89 

Figure 1.6 shows a typical experiment with three observables detected by the previously-

mentioned techniques in their respective order: transmitted photons (I), emitted photons (If), and 

emitted electrons (e-). In a transmission experiment, the intensity of the X-ray beam (which is 

proportional to the number of photons) is measured before and after the sample. The change in 

the intensity of the beam is related to the absorption coefficient, μ, via a modified Beer-Lambert 

law, shown in eq. ( 1.8 ), where I0 and I are the intensities of the incident and transmitted beams, 

respectively, and t is the sample thickness. The intensity of the X-ray beam can be measured with 

an ionization chamber, a gas-filled compartment with an electric field applied across two parallel 

plates.87, 90 When X-rays pass through the chamber, some interact with the gas to generate ions 

and electrons. These charges are collected at the plates to generate a current that is proportional 

to the amount of amount of incident X-ray photons.87 If ionization chambers are placed before 

and after the sample, I and I0 can be easily measured. The relationship of interest is the change of 

the absorption coefficient with excitation energy, μ(E), and rearrangement of eq. ( 1.8 ) to isolate 

μ is shown in eq. ( 1.9 ). It is important to note that t is often unknown, but in most experiments 

the sample thickness does not change between measurements, so determining μt(E) provides 

equivalent results. 
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 𝐼 = 𝐼0𝑒−𝜇𝑡 ( 1.8 ) 

 𝜇 = −
1
𝑡

ln �
𝐼
𝐼0
� ( 1.9 ) 

Transmission experiments are not always possible, especially at lower excitation energies 

where photons interact more strongly with matter. The absorption energies of 1st row transition 

metal L2,3-edges (2p orbitals) are in this low-energy regime—the soft X-ray region—so the 

absorption coefficient must be probed by other means.88, 89, 91 When a core electron is promoted 

into conduction states during the experiment, the decay of the excited state is often accompanied 

by emission of photons (i.e., fluorescence) and electrons (e.g., direct emission of Auger or 

photoelectrons, or indirect emission of secondary electrons).57, 88 If the generation of these decay 

products is directly proportional to the change in the absorption coefficient, they can be detected 

in an experiment to yield a spectrum that is equivalent to a transmission measurement. This is the 

case with fluorescence yield (FLY), which detects the photon flux emitted from the sample, and 

total electron yield (TEY), which monitors a drain current required to replace electrons lost by 

the sample from emission.88  

It is important to note that the different phenomena lead to different sampling depths. For 

instance, a transmission experiment is inherently bulk sensitive, as the entire thickness of the 

substrate is sampled. Likewise, FLY detects photons emitted by fluorescence, which are 

sufficiently penetrating to escape from the bulk material. This is not the case for TEY, whose 

signal is dependent on the number of electrons that escape from the material. As the interaction 

cross-section with matter is much larger for electrons than photons, electrons rapidly lose energy 

from scattering and/or absorption, and are thus only able to escape from material if they are 

generated near the surface.56, 62-64, 89, 92 As a result, TEY measurements are surface sensitive (with 

sampling depths generally <10nm), and may not be representative of the bulk material.57, 88, 93-95 
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Figure 1.7. (a) A representative transition metal K-edge XAS spectrum, showing the XANES 
and EXAFS regions. (b) A representative XANES spectrum from a transition metal K-edge. The 
pre-edge intensity (A), main-edge energy (B), and main-edge intensity (C) have been shown to 
change with the coordination number and oxidation state of the metal centre being examined.  
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Figure 1.8. An representative energy diagram for representative K- and L2,3-edge transitions 
(from 1s and 2p orbitals, respectively) in XANES. In XANES, the excited electron is still bound 
to the material in the final state, where it can partially screen the core-hole produced by 
excitation. The transition for a 2p XPS core-line is shown for comparison, where the excited 
photoelectron is removed from the material, leading to greater final-state relaxation than in an 
analogous L2,3-edge XANES final state.  
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Further care must be taken with strongly absorbing or concentrated samples, as the 

detected signal may not be proportional to the absorption coefficient of the material. In 

particular, saturation and/or self-absorption effects can deleteriously alter the spectral lineshape 

by dampening changes in the measured absorption.89, 94, 96-99 This leads to spectral features with 

misrepresented intensities, and is most noticeable with strong features, which appear muted. It is 

well-known that saturation is problematic in fluorescence experiments for samples with a high 

concentration of absorbing atoms, but it can also be troublesome in soft X-ray TEY 

measurements when the absorption coefficient increases dramatically at an absorption edge (e.g., 

first-row transition-metal L3-edges) and incident photons are less penetrating.89, 90, 94, 96, 98, 100 (At 

higher energies, X-rays travel much further through a medium than electrons.) Because several 

detection methods can be used simultaneously and probe the same property (μ), the spectra can 

be compared to see whether saturation effects alter the lineshape.  

If appropriate sample preparation and detection methods are chosen, the measured 

absorption spectrum should be a probe of the variation in the absorption coefficient with 

excitation energy, μ(E). As the excitation energy is scanned and reaches the threshold required 

for an allowed electronic transition, μ increases drastically, giving rise to the characteristic 

absorption “edge” (Figure 1.7a).101 At low energies above the edge (<30 eV), the X-ray 

absorption near-edge structure (XANES) results primarily from electronic transitions to bound or 

quasi-bound states localized on the absorbing atom (Figure 1.8).57, 90 At higher energies above 

the edge (≥30 eV), the electron is promoted to continuum states, where it behaves as a free 

photoelectron travelling through the material.57, 90 In this energy-region, the promoted 

photoelectron has a higher kinetic energy (than in the XANES region), and backscattering of the 

photoelectron by atoms in the coordination shells surrounding the absorbing atom leads to 



26 

interference that creates structured oscillations in the absorption spectrum. These oscillations are 

known as the extended X-ray absorption fine structure (EXAFS), and are sensitive to the number 

and identity of scattering atoms.57, 90 A representative Ti K-edge spectrum is presented in Figure 

1.7a, where both the XANES and EXAFS regions have been labelled. 

The EXAFS region can be modeled to elucidate the local structure of a material; 

however, there is considerable information that is immediately accessible in XANES. It has been 

shown that several features in XANES provide important information about the coordination 

environment and the oxidation state of a given element (Figure 1.7b). At lower energy, 

transition metals with empty d-states have a pre-edge region that is due to 1s → (n–1)d 

[quadrupolar] transitions.57, 102-106 Formally, these transitions are forbidden (selection rules state 

that Δl = ±1 due to the conservation of angular momentum), though there remains a low 

probability of observing them. The probability of these transitions can be increased by addition 

of dipolar character through mixing with orbitals of p-character from coordinating atoms or 

possibly from the absorbing atom itself.57 Despite its weak intensity in most cases, the pre-edge 

region naturally provides a probe of the d-orbitals of a transition metal, so it provides important 

chemical knowledge.57, 104, 105, 107-110 The absorption energy of the pre-edge is sensitive to the 

oxidation state and coordination number of the metal, and the intensity (A) varies with the 

coordination number.104, 105, 107-110 At higher energy, the pre-edge is followed by the main edge, a 

strong feature that results from 1s → np [dipolar] transitions.57, 102 Like the pre-edge, the 

absorption energy (B) and the intensity (C) of the main-edge also change with the oxidation state 

and the coordination number of the absorbing metal atoms.102, 105, 107, 108, 111, 112 A representative 

K-edge XANES spectrum of a transition-metal oxide (TiO2) is shown in Figure 1.7b, where the 

pre-edge intensity (A), main edge energy (B) and main edge intensity (C) have been labelled. 
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1.5. Synopsis 

Like XPS, shifts in the XANES absorption energies can be explained using the modified 

charge potential model. However, as electrons in the final state of the XANES absorption 

process remain associated with the material in conduction states (Figure 1.8), relaxation effects 

(final-state effects) in XANES are generally muted compared to XPS for an analogous 

transition.54, 78, 79 This difference is exploited throughout this body of work to determine whether 

ground-state or final-state effects are the primary cause of XPS binding energy (BE) shifts within 

two series of materials. Many competing effects influence spectral energies, and the ability to 

separate these effects is difficult.  

Through the deliberate and careful choice of systems to isolate factors influencing XPS 

BEs, the combination of XPS and XANES is used to examine and resolve some of the competing 

effects that cause BEs to shift with changes in the first and second coordination shells. Chapter 2 

describes the study of SrFe1-xZnxO3-δ, an oxygen-deficient perovskite-type isostructural series 

from x = 0→0.3. In the structure of the end-member of the series (SrFeO2.75, Cmmm space 

group), Fe exists as a 50/50 mixture of Fe3+ and Fe4+, as expected by simple electron counting 

rules.32, 113 Substitution of Zn2+ into the system forces a loss of oxygen to balance the charge, and 

the subsequent decrease in the transition metal coordination number (CN) has been found to 

cause substantial shifts in BE.  

In the SrFe1-xZnxO3-δ system, the next-nearest neighbour (NNN) atoms have similar 

electronegativities (χZn = 1.66, χFe = 1.64), preventing any effect from changes in the average 

electronegativity of the NNN site. Chapter 3 and 4 continue by specifically looking at these NNN 

effects. Toward this end, electronegative Si atoms were gradually substituted by electropositive 

group IV transition metal ions (χSi = 1.74, χTi = 1.32, χZr = 1.22) in a set of isostructural silicates: 
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(TiO2)x(SiO2)1-x (0 ≤ x ≤ 0.33), (ZrO2)x(SiO2)1-x (0 ≤ x ≤ 0.50), and (ZrO2)x(TiO2)y(SiO2)1-x-y 

(x + y = 0.2, 0.3).114 In these systems, the CN of all atoms remains roughly constant, though 

large shifts in BE are observed due to differences in the electronegativity of the NNN site.  
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Chapter 2 

2. Coordination-induced shifts of absorption and binding energies in the 
SrFe1-xZnxO3-δ system* 

2.1. Introduction 

The perovskite structure is incredibly versatile, and the properties of perovskite-type 

materials can be changed by altering the composition.15, 18 Non-stoichiometric, oxygen-deficient 

perovskite oxides of the formula ABO3-δ (A = alkali; B = transition metal) have received 

considerable attention due to their mixed ionic-electronic conduction (MIEC), having oxygen 

fluxes up to two orders of magnitude greater than conventional materials.9, 28 This makes the 

materials potentially useful for, among other things, solid oxide fuel cells, catalysts, and oxygen-

permeable membranes. Owing to their lack of chemical durability, alternatives to Co-based 

MIEC materials are being investigated, with systems similar to SrFe1-xZnxO3-δ having been 

proposed as new high oxygen-flux ceramics.115 

The previously-mentioned applications have led to many studies on the physical and 

electronic properties of the ABO3-δ system, with focus on industrial applications as a ceramic 

membrane. To better understand these materials, and how they are affected by substitution, 

spectroscopic studies using X-ray absorption near-edge spectroscopy (XANES) and X-ray 

photoelectron spectroscopy (XPS) can be employed. Both XANES absorption energies and XPS 

binding energies (BEs) are sensitive to the chemical environment because they are related to the 

                                                 
* A version of this chapter has been published. Reprinted with permission from M. W. Gaultois and A. P. Grosvenor, 
Journal of Physical Chemistry C, 2010, 114, 19822-19829. Copyright 2010 American Chemical Society. 

http://dx.doi.org/10.1021/jp108117d
http://dx.doi.org/10.1021/jp108117d
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interactions between the atom of interest and its first coordination shell, that is, its nearest 

neighbour atoms. Longer-range interactions with more distant atoms can also influence these 

energies, though these effects are often much less pronounced.56, 73 The observed binding energy 

(BE) of a photoelectron from atom i, Ei, which results from both ground- and final-state energies, 

can be described by the modified charge potential model.56, 75 Relative to the binding energy of a 

reference compound, Ei
0, a shift in BE of atom i, ΔEi, is described by eq. ( 2.1 ).56, 75 

 Δ𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖0 = (𝑘Δ𝑞𝑖 + Δ�
𝑞𝑗
𝑟𝑖𝑗𝑖≠𝑗

) − (Δ𝐸𝑖IA + Δ𝐸𝑖EA) ( 2.1 ) 

A shift in binding energy results from both ground- and final-state effects, separated in 

eq. ( 2.1 ) by parentheses. Shifts in the ground-state energies are caused by changes in the charge 

of the atom being excited (qi in kΔqi, where k is a parameter due to interactions between core and 

valence electrons) and the chemical environment ( ∆∑ 𝑞𝑗
𝑟𝑖𝑗𝑖≠𝑗  , where rij is the distance to atom j, 

which has a charge of qj), which are intra- and extra-atomic effects, respectively.56, 75 In the final 

state, after a photoelectron has been ejected from atom i and an unscreened core-hole has been 

produced, the system will rearrange its remaining electrons to minimize its energy. Extra-atomic 

relaxation of electrons from surrounding atoms, represented by ΔEi
EA, are sensitive to changes in 

the chemical environment, whereas intra-atomic relaxation of electrons localized on the atom of 

interest are not, and ΔEi
IA is often negligible.56 XANES absorption energies shift in a similar 

fashion to XPS BEs, though, as the excited electron is not removed completely from the system, 

final-state effects tend to be less significant.54, 78, 79, 116 As explained above, many factors 

influence binding and absorption energies, and isolating the main contributors can be difficult. 

In this chapter, it is shown that as x increases in the SrFe1-xZnxO3-δ system (0 ≤ x ≤ 1), the 

oxygen deficiency (δ) increases and the transition-metal (TM) coordination number (CN) 
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decreases. The changing TM CN induces energy shifts in the TM K-edge XANES spectra and 

the TM 2p XPS spectra that are not observed in the corresponding TM L2,3-edge XANES 

spectra. Such shifts are a result of final-state effects, whereas only ground-state effects are found 

to change the O K-edge XANES absorption energies and the O 1s XPS BEs. Here, the factors 

which influence the absorption and binding energies in SrFe1-xZnxO3-δ are discussed, providing a 

greater understanding of the effects that can cause these energies to shift. 

2.2. Experimental 

2.2.1.  Synthesis and X-ray diffraction. 

The SrFe1-xZnxO3-δ system (0 ≤ x ≤ 0.3) was synthesized by the ceramic method. SrCO3 

(Alfa Aesar, 99%), ZnO (Alfa Aesar, 99.9%), and Fe2O3 (Alfa Aesar, 99.945%) powders were 

mixed in stoichiometric amounts and heated in alumina crucibles at 1100°C for >12 h to 

decompose the carbonate and produce SrO. The resulting product was then ground and pressed 

into a pellet, and heated at 1200°C over 2–3 days with intermediate grinding and pelleting. All 

materials were quenched in air except SrFeO2.75 (SrFe1-xZnxO3-δ, x = 0, space group Cmmm), 

which was cooled to 600°C at 1.25°C/min and annealed at this temperature for >12 h to stabilize 

the oxygen stoichiometry.113 At Zn concentrations of 0.3 < x < 1.0, the materials were 

multiphase. The materials produced in pure-phase were SrFe1-xZnxO3-δ (x = 0.0, 0.1, 0.2, 0.3), 

and SrZnO2 (SrFe1-xZnxO3-δ, x = 1.0, δ = 1.0, space group Pnma), which was synthesized using a 

temperature of 1100°C. In this system, the range of solid solution was expanded, as only 

Ba0.5Sr0.5Fe0.8Zn0.2O3-δ was previously known.115, 117 Powder X-ray diffraction (XRD) patterns 

were collected at room temperature using a Rigaku Rotaflex RU-200 rotating anode X-ray 

diffractometer using Cu Kα radiation. Lattice constants of SrFe1-xZnxO3-δ (0 ≤ x ≤ 0.3) were 

determined by the program Unit Cell, using an orthorhombic crystal system (Cmmm), and were 
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found to increase with greater Zn content (see Figure 2.1).118 Structural figures (Figure 2.2) 

were generated using VESTA.119 

2.2.2. Fe and Zn K-edge XANES. 

Fe and Zn K-edge XANES spectra were collected at the Canadian Light Source (CLS), 

using the Hard X-ray Micro-Analysis (HXMA) beamline, 06ID-1, with radiation generated from 

a 63-pole wiggler insertion device. The flux is ~6 x 1011 photons/sec, and the resolution is better 

than 1 eV at photon energies below 10 keV. For analysis, thin layers of finely ground powder 

sandwiched between Kapton tape were positioned 45° to the X-ray beam and fluorescence 

spectra were measured with a Canberra 32-element Ge detector. Spectra were collected from 

greater than 150 eV below the absorption edge to greater than 500 eV above the absorption edge 

to ensure proper normalization. Through the absorption edge, the X-ray energy was increased by 

0.15 eV per step for Fe and 0.25 eV per step for Zn. A standard thin foil of the elemental metal 

was positioned behind the sample and analyzed concurrently in transmission mode using N2-

filled ionization chambers, and the absorption edge energy, as determined by the peak maximum 

of the first derivative, was calibrated to the accepted value of 7112 eV for Fe and 8979 eV for 

Zn.87 

2.2.3. Fe L3-, Zn L3-, and O K-edge XANES. 

Fe L3- and O K-edge XANES spectra were collected at the CLS using the spherical 

grating monochromator (SGM) undulator beamline, 11ID-1.120 The flux is ~1011 photons/sec at 

1900 eV and increases to ~4 x 1012 photons/sec at 250 eV. The resolution is better than 0.3 eV at 

photon energies below 1500 eV, and the instrumental precision is better than ±0.1 eV. Powdered 

samples were mounted on carbon tape and measured in vacuo. Total electron yield (TEY) and X-

ray fluorescence yield (FLY) spectra were collected simultaneously. TEY spectra are presented 
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for the Fe and Zn L3-edges, while FLY spectra are presented for the O K-edge, as the TEY is 

more surface sensitive and influenced by surface adsorbates. Spectra were collected from ~30 eV 

below the absorption edge to 50–120 eV above the edge to get a suitable background for 

normalization. All spectra were collected with a 0.1 eV step size through the absorption edge. 

The spectra were not observed to significantly change even after extended collection times 

confirming that the surface composition of these materials is relatively stable. The Fe L3-edge 

spectra were calibrated against Fe metal powder with the maximum in the first derivative of the 

L3-edge set to 706.8 eV.15 Zn L3-edge spectra were calibrated to ZnO powder with the maximum 

in the first derivative of the L3-edge set to 1026.3 eV.121 The O K-edge spectra were calibrated to 

Fe2O3 powder with the maximum of the first derivative set to 528.6 eV.122 All XANES spectra 

were analyzed using the Athena software program.123 

2.2.4. Fe 2p, Zn 2p, and O 1s XPS. 

XPS measurements were performed using a Kratos AXIS Ultra spectrometer fitted with a 

monochromatic Al Kα (1486.7 eV) X-ray source. The resolution of this instrument has been 

determined to be 0.4 eV and the measured binding energies have a precision of better than 

±0.1 eV.124 The area analyzed was ~700 x 400 µm. Finely ground powders were pressed into In 

foil and mounted on an electrically grounded sample holder. After being loaded into the 

spectrometer, the samples were cleaned by Ar+ ion sputtering (4 keV accelerating voltage, 

10 mA current) to reduce the concentration of surface contaminants. High-resolution spectra of 

the Fe 2p, Zn 2p, O 1s, and C 1s core lines were collected with a pass energy of 20 eV, a step 

size of 0.05 eV, and a sweep time of 180 s. To counter differential charging, the charge 

neutralizer was used during collection of spectra from SrZnO2. Charge neutralization was not 

required for examination of the other samples. During data analysis, the samples were calibrated 
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using the C 1s line arising from adventitious C with a fixed value of 284.8 eV. A Shirley-type 

function was applied to remove the background arising from energy loss and spectra were fitted 

using synthetic peaks having a mixed Gaussian (70%) and Lorentzian (30%) line profile.125 

2.3. Results and discussion 

2.3.1. Structure and X-ray diffraction. 

Although most studies have refined both Co- and Zn-containing oxygen-deficient 

perovskites in a cubic space-group, it has been previously argued that the system cannot maintain 

the cubic symmetry at high oxygen deficiency.115, 126, 127 Similar complications arose with 

assignment of the proper space group for SrFeO3-δ.32 Despite a good fit by a cubic space group, 

an orthorhombic space group (Cmmm) was found to be more appropriate for SrFeO2.75 by 

Rietveld refinement of neutron diffraction data, which is more sensitive than XRD to light 

elements, such as oxygen.32 

In the structure of the end-member of the SrFe1-xZnxO3-δ series (SrFeO2.75, Cmmm space 

group, Figure 2.2a), Fe exists in the centre of corner-sharing FeO5 square pyramids and FeO6 

octahedra, and Sr2+ is in the interstitial sites. By charge balance, Fe exists as a 50/50 mixture of 

Fe3+ and Fe4+.11,24 As described in Section 2.3.2 (vide infra), substitution of Zn2+ into the system 

forces a loss of oxygen to balance the charge, leading to a greater oxygen deficiency (δ) and, 

therefore, a lowering of the coordination number (CN) of the transition metal (TM). Expansion 

of the unit cell accompanies the increase in x and δ (see Figure 2.1). In this system, the increase 

in the size of the unit cell is likely a result of size-effects (rZn2+ = 0.740 Å > rFe3+ (high-spin) 

= 0.645 Å).128 In the orthorhombic structure of the other end-member of the series (SrZnO2, 

Pnma space group, Figure 2.2b), Zn2+ is present in layers of corner-sharing ZnO4 tetrahedra in 

zig-zag chains along the b-axis, while Sr2+ cations occupy interstitial sites.129, 130   
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Figure 2.1. An increase in x in the SrFe1-xZnxO3-δ system is accompanied by an increase in 
oxygen deficiency (δ) and expansion of the unit cell. At a Zn content of x >0.3, there are multiple 
phases present when examined by powder XRD, and partial melting of these phases occurs at 
1200°C. The error in the values is smaller than the size of the symbols.  
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Figure 2.2. (a) In the SrFe1-xZnxO3-δ system, when x = 0 (SrFeO2.75, Cmmm), TM sites exist in 
the centre of corner-sharing FeO5 square pyramids and FeO6 octahedra. As x increases, Zn2+ 
replaces Fe3+/4+, and the oxygen deficiency (δ) increases to balance the charge, causing the 
average TM CN to decrease. The material exists exclusively in the Cmmm structure when 
0 ≤ x ≤ 0.3. (b) In the SrZnO2 end-member (Pnma), corner-sharing ZnO4 tetrahedra are in 
layered zig-zag chains.  
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Figure 2.3. (a) Fe and (b) Zn K-edge spectra from SrFe1-xZnxO3-δ. The peaks labelled as A, B, 
and C can be described by the excitations explained in Section 2.3.2. Changes in peak intensity 
and edge energy are consistent with a decreasing metal CN with increasing Zn content. The inset 
in (a) shows, more closely, the decrease in the pre-edge (region A) peak intensity and decrease in 
the absorption energy of region B observed with increasing Zn content.  
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2.3.2. Fe and Zn K-edge XANES. 

Before investigating how the XPS binding energies are affected by substitution, it is 

important first to understand how the Fe and Zn CNs change with composition. To study changes 

in CN, Fe and Zn K-edge XANES spectra were collected. These spectra result, primarily, from 

the dipolar excitation of 1s electrons to np states; however, weaker quadrupolar excitations, 

1s → (n–1)d, can also occur and are observed at slightly lower energies.111, 131-134 Multiple 

investigations have shown that the lineshape and absorption energy of the dipolar and 

quadrupolar excitations observed in the spectra yield direct information on how the transition-

metal CN changes with substitution.102, 105, 108, 135-137 

2.3.2.1. Fe K-edge XANES. 

The Fe K-edge XANES spectra from the SrFe1-xZnxO3-δ series are presented in Figure 

2.3a and show three main features, labelled as A, B, and C, which all change with CN. The 

lowest energy feature (A), referred to as the pre-edge peak, is primarily a result of the excitation 

of 1s electrons to 3d states.110, 135, 136 Since this is a quadrupolar transition, it is much less intense 

than the higher energy dipolar excitations (features B and C).136, 138, 139 As the CN decreases, 

inversion symmetry is lost and the 3d orbitals are overlapped by 4p states, adding a dipolar 

contribution to the excitation, which increases the intensity of the pre-edge peak.136, 138, 140 

The main absorption edge of the spectra (labelled as features B and C in Figure 2.3a), 

located above the pre-edge, results from the excitation of 1s electrons to 4p states, and is 

significantly more intense than the pre-edge peak.102, 103, 105, 132, 133 It has been observed that as 

the CN decreases, an increase in final-state relaxation occurs, resulting from the presence of 

fewer electrons in the first coordination-shell that are available to screen the core-hole, causing 

feature B to shift down in energy.111, 141, 142 Also, the intensity of the main-edge peak (C) has 
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been observed to decrease as the CN of the metal centre is reduced. This peak results from 

transitions to empty Fe 4p states that are hybridized with O 2p states.111, 143 Because the intensity 

of a transition is proportional to the likelihood of an absorption event and number of empty states 

that can be populated, a decrease in the number of empty states causes a decrease in peak 

intensity; similar effects have been observed in other systems.111, 144, 145 (Note that multiple-

scattering resonances (MSR), a special case of the extended X-ray absorption fine-structure 

(EXAFS), may also contribute to changes in the peak intensity.106, 141, 146) 

In Figure 2.3a, it is observed that as the Zn content (x) increases from 0→0.3 in 

SrFe1-xZnxO3-δ, the intensity of the pre-edge (A) increases while the main-edge absorption energy 

(B) and intensity (C) both decrease. (The absorption energy, B, decreases by 0.3 eV with 

increasing Zn content.) These observations all indicate that the Fe CN is reduced with increasing 

Zn2+ content (x) and, therefore, greater oxygen deficiency (δ). 

2.3.2.2. Zn K-edge XANES. 

In contrast to the Fe K-edge, there is no clearly defined pre-edge in the Zn K-edge 

XANES (Figure 2.3b), since the 3d states are filled (3d10). However, the dipolar regions of the 

spectra, labelled identically to those transitions in the Fe K-edge spectra, do change. The edge 

absorption energy of feature B decreases by >0.6 eV and the intensity of feature C decreases 

considerably as x increases from 0.1→1 (Figure 2.3b). Both observations are consistent with a 

decrease in Zn CN with increasing x and δ.   
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Figure 2.4. (a) Fe L3-edge spectra of SrFe1-xZnxO3-δ show a negligible change in absorption 
energy with increasing x, while the increase in intensity suggests an increase in the average 
charge of Fe. (b) Zn L3-edge spectra from SrFe1-xZnxO3-δ show a minimal shift in energy, when 
compared with the large shift in Zn 2p3/2 BE (Figure 2.5). (c) O K-edge spectra, described in 
detail in Section 2.3.3. Region F corresponds to transitions from O 1s → 2p states interacting 
with Fe 3d orbitals, while region G results from O 1s → Fe 4p/4s |Zn 4p/4s| Sr 5s/5p/5d 
excitations.  
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2.3.3. Fe L3-, Zn L3-edge, and O K-edge XANES. 

2.3.3.1. Fe L3- and Zn L3-edge XANES. 

To further study this system, and to investigate how absorption energies change 

depending on the orbital excited, the Fe and Zn L3-edge XANES spectra were collected and are 

presented in Figure 2.4. The transition-metal L2,3-edge spectra are dominated by dipole 

transitions from 2p levels to conduction states (empty (n–1)d or ns states).147 When d-states are 

involved, transitions are influenced by crystal field splitting, providing a useful method to probe 

coordination.147 Numerous studies have shown the efficacy of TM L2,3-edge XANES for 

determining oxidation state and site symmetry, as the lineshape and absorption energies are 

sensitive to charge and coordination.122, 148-151 Although shifts in energy are useful to track 

changes in oxidation state, previous studies have shown that the Fe3+ and Fe4+ energies are very 

similar (within 0.1 eV).117 In the SrFe1-xZnxO3-δ system, the Fe L3-edge (Figure 2.4a) absorption 

energy of the peak maximum decreases by 0.1 eV as x increases from 0→0.3, which is similar to 

the precision of the experiment (±0.1 eV). The broadness of the spectral peaks is a result of the 

presence of Fe in multiple coordination environments, which may contribute to the slight shift in 

absorption energy owing to variations in the crystal-field splitting. An alternative possibility for 

this slight shift in energy is discussed below (Section 2.3.4). Although no significant shift in 

absorption energy was observed, the peak intensity in Figure 2.4a increases with greater x. This 

suggests a larger number of unoccupied 3d conduction states into which 2p electrons can be 

excited (i.e., the Fe oxidation state increases with x, in agreement with Mössbauer studies of an 

analogous material, Ba0.5Sr0.5Fe0.8Zn0.2O3-δ). 117 The observation above implies that the degree of 

O deficiency (δ) with increasing x is not as large as might be expected. 
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Whereas the Fe L2,3-edge spectra are dominated by the excitation of Fe 2p states to 

partially unoccupied Fe 3d states interacting with O 2p states, the Zn 3d-states are filled (3d10). 

Consequently, Zn L2,3-edge spectra (Figure 2.4b) primarily involve the promotion of electrons 

from Zn 2p orbitals to empty conduction states involving interacting Zn 4s and O 2p states as 

well as continuum states. As x increases from 0.1→1.0, the energy of the peak maximum 

decreases by 0.3 eV, a much smaller decrease than was observed in the Zn K-edge spectra 

(>0.6 eV, Figure 2.4a). (A possible reason for this shift is presented in Section 2.3.4.) 

2.3.3.2. O K-edge XANES. 

To investigate further how the SrFe1-xZnxO3-δ system is influenced by metal-site 

substitution, O K-edge spectra were collected and are presented in Figure 2.4c. The O K-edge is 

particularly rich in detail, as O interacts with every atom in the SrFe1-xZnxO3-δ structure. 

Assignment of the many transitions is outside the scope of this work, though changes in peak 

intensities with composition, examination of constituent binary oxides, and previous studies on 

TM oxides make general classification possible.122, 152, 153 The O K-edge spectra (Figure 2.4c) 

have been divided into regions F and G, corresponding to transitions to O 2p states interacting 

with empty Fe, Zn, and Sr states. 

As the Zn content (x) increases, the O K-edge absorption peak in region F, corresponding 

to transitions from O 1s to 2p states interacting with Fe 3d orbitals (O 1s → O 2p – Fe 3d), 

decreases in intensity. The decrease in the intensity of region F is accompanied by an increase in 

intensity of the lowest energy side of region G, which is a result of Zn 4p/4s-O 2p states (this 

region also contains transitions to O 2p states interacting with Fe 4p/4s and Sr 4d/5s/5p states). 

122, 153, 154 The absorption energy of region F, determined by the peak maximum, does not change 

as x increases from 0→0.3, a result of the fact that the Fe 3d orbitals are hard screeners, which 
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are relatively insensitive to changes in screening when compared to the soft-screening, higher-

energy, Fe 4p and 4s orbitals involved in region G.105, 140, 155 This is consistent with the lack of 

shift observed in the Fe K pre-edge peak energy (Figure 2.3a), which also involves Fe 3d states. 

Although no shift in the energy of region F was observed, the absorption energy of region 

G decreases by ~0.9 eV as x increases from 0.1→1.0. Whereas the average TM CN decreases as 

O is removed from the system, examination of the crystal structures of SrFe1-xZnxO3-δ and 

SrZnO2 (Figure 2.2) suggests that the O CN does not change with varying x and δ. Therefore, 

the energy shift is likely a result of the replacement of Fe3+/4+ by Zn2+ cations in the O first 

coordination shell. Depending on the model of electronegativity (χ), there is little, if any, 

difference in electronegativity between Zn and Fe (Δχ = χFe – χZn: Δχ(Pauling) = 0.18, 

Δχ(Allred-Rochow) = –0.02, Δχ(Sanderson) = –0.03), which implies that a change in O-Fe/Zn bond 

covalency with x is an unlikely explanation for such a significant shift (~0.9 eV).114, 156, 157 By 

applying the charge potential model from eq. ( 2.1 ), which can also be used to describe shifts in 

absorption energy, it is more likely that the replacement of Fe3+/4+ by Zn2+ in the O first 

coordination shell leads to greater screening of the O nuclear charge (i.e., Zn2+ has more valence 

electrons than Fe3+/4+, so ∆∑ 𝑞𝑗
𝑟𝑖𝑗𝑖≠j  becomes less positive). This change in ground-state screening 

of O then leads to a lower absorption energy with increasing x.   
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Figure 2.5. High resolution core-line (a) Fe 2p3/2, (b) Zn 2p3/2, and (c) O 1s XPS spectra. Fe and 
Zn BEs decrease with increasing Zn content due to increasing final-state relaxation, while the 
decrease in O 1s BE is due to ground-state effects. The shifts observed in the Fe and Zn BEs are 
larger than in the analogous L3-edge XANES, presented in Figure 2.4. Owing to the large change 
in intensity observed across the series, normalized Zn 2p3/2 spectra are presented here.  
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Figure 2.6. Shifts in (a) the XANES absorption energies and (b) XPS BEs with increasing Zn 
content (x) in SrFe1-xZnxO3-δ. The precision of the measurements (±0.1 eV) is equal to the size of 
the symbols. The O K-edge absorption energy of x = 0.1 phase is not included in (a) because the 
transition was too weak.  
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2.3.4. Fe 2p, Zn 2p, and O 1s XPS. 

As was presented in the introduction, the XPS excitation fully removes a photoelectron 

from the system, so final-state relaxation induces considerable shifts in the BE. In the XANES 

excitation for the same orbital, the excited electron is promoted to unoccupied conduction states 

and provides some screening of the core-hole, so absorption energy shifts caused by final-state 

relaxation effects are not as significant. Comparing XPS binding energies to XANES absorption 

energies allows for a determination of the influence of final-state effects on shifts in BE. 

Studying the Fe 2p XPS spectra first (Figure 2.5a), as x increases from 0→0.3, the Fe 

2p3/2 BE decreases by 0.3 eV, a more significant shift than was observed in the corresponding Fe 

L3-edge absorption energy (Figure 2.4a). (A comparison of the shifts in BE and absorption 

energy is presented in Figure 2.6). The Zn 2p XPS spectra are presented in Figure 2.5b, and 

behave in a similar fashion. As x increases from 0.1→1, the Zn 2p3/2 BE decreases by 1.2 eV 

(Figure 2.5b), yet the Zn L3-edge absorption energy (Figure 2.4b) only decreased by 0.3 eV 

(see Figure 2.6). The magnitude of the BE and absorption energy shifts observed for Zn are 

much larger than for Fe because of the greater range of x. 

The large shifts observed in the Fe 2p3/2 and Zn 2p3/2 XPS BEs compared to the much 

smaller shifts in the corresponding L3-edge absorption energies implies that the XPS BE shifts 

result primarily from final-state effects. As mentioned in the introduction, ΔEi
EA, the change in 

extra-atomic relaxation described in the modified charge potential model, is sensitive to changes 

in the chemical environment. As x increases in SrFe1-xZnxO3-δ, the TM CN decreases and fewer 

electron-rich O2- anions surround the TM centres, producing a more poorly-screened core-hole. 

Further, O is electronegative compared to others atoms in the structure (χZn = 1.66, χFe = 1.64, 

χSr = 0.99, χO = 3.50), and its tendency to tightly bind electrons hinders the relaxation of 
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electrons in the material around a core-hole on a TM centre.114 Consequently, as x increases (and 

the CN decreases), the electrons in the system relax to a greater extent to better screen the core-

hole produced by the removal of a 2p photoelectron. (Shifts in XPS BE with changing CN have 

been observed before, albeit rarely.158, 159) This reasoning is consistent with the absorption 

energy shifts observed in the TM K-edge spectra, which are also affected by relaxation (see 

Section 2.3.2 and below).133, 135 If these changes in energy were a result of ground-state effects, 

shifts of similar magnitude would be expected to be observed in the Fe L3-edge and Zn L3-edge 

XANES absorption energies. However, the shifts in absorption energy are considerably smaller 

when compared to the XPS BE shifts (see Figure 2.6), and likely result from a change in 

ground-state screening of the Fe/Zn nuclear charge with increasing concentration of Zn2+ cations 

in the second coordination shell (i.e., ∆∑ 𝑞𝑗
𝑟𝑖𝑗𝑖≠j  in eq. ( 2.1 ) becomes less positive with 

increasing x). This will necessarily affect the XPS BEs as well, though it is overshadowed by 

final-state effects, which dominate. 

Deciphering the major contributions to shifts in binding and absorption energies is often 

problematic, but examination of the same energy level (e.g., Fe 2p and Zn 2p) by both XANES, 

where final-state relaxation effects are expected to be minor, and XPS, where final-state 

relaxation effects are more significant, provides a powerful way to differentiate between ground- 

and final-state effects. To better understand why the magnitude of final-state relaxation changes 

depending on the orbital excited and the spectroscopic technique used, Slater’s rules can be 

applied to study the changes in screening of the nuclear charge which occur during these 

excitations.160 Calculating the relative change in the effective nuclear charge, Zeff, before and 

after promotion of an electron provides a simple way to estimate the screening provided by the 

electron. For comparison of Fe 2p photoabsorption and photoelectron spectroscopies, application 



48 

of Slater’s rules yields a Zeff operating on the outermost valence electron of 3.75 for neutral Fe 

(Fe: 1s22s22p63s23p63d64s2), 3.90 for the XANES photoabsorption final state 

(Fe*: 1s22s22p53s23p63d74s2), and 4.75 for the XPS photoemission final state 

(Fe+: 1s22s22p53s23p63d64s2). The greater Zeff in the photoemission product implies that greater 

final-state relaxation will occur. 

When comparing the Zeff of the ground-state to the final-state of Fe metal produced by 

excitation of electrons from different orbitals and by different spectroscopic techniques, Zeff 

changes by 4% in Fe L3-edge XANES (2p→3d: 1s22s22p53s23p63d74s2), 17% in Fe K-edge 

XANES (1s→4p: 1s12s22p63s23p63d64s24p1
, Zeff = 4.40), and 27% in Fe 2p XPS. The above 

discussion provides a qualitative suggestion of the relative magnitude of relaxation expected 

from each process and validates the conclusion that the Fe and Zn 2p BEs and the Fe and Zn 

K-edge absorption energies shift because of final-state relaxation. 

Lastly, the O 1s XPS spectra are presented in Figure 2.5c. The lowest BE peak is 

ascribed to O from SrFe1-xZnxO3-δ while the higher BE peak may be attributed to adsorbed OHδ- 

or Oδ- present on the surface.161, 162 However, the possibility that this higher BE peak comes from 

the SrFe1-xZnxO3-δ system itself cannot be discounted. The intensity of the lowest BE peak 

decreases with increasing Zn content, confirming the greater O deficiency of this material as x 

increases in the formula. (This is in agreement with analysis of the Fe K- and Zn K-edge XANES 

spectra (Section 2.3.2) which show a decrease in transition-metal CN with increasing Zn 

content.) As observed in Figure 2.5c and Figure 2.6a, the O 1s BE decreases from 529.4 to 

528.7 eV as x increases from 0→1, a decrease of 0.7 eV across the series. This is similar in 

magnitude to the shift in the O K-edge absorption energy (~0.9 eV, see Figure 2.6b), implying 
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that ground-state effects, like those described in Section 2.3.3.2, play a dominant role in this 

shift.  

2.4. Conclusions 

The SrFe1-xZnxO3-δ (0 ≤ x ≤ 0.3) system was synthesized by the ceramic method and the 

range of solid solution was expanded, as only Ba0.5Sr0.5Fe0.8Zn0.2O3-δ was previously known.115, 

117 Examination of Fe K- and Zn K-edge XANES spectra show that the transition-metal (TM) 

coordination number (CN) decreases as x increases in the formula, confirming that the material 

becomes more oxygen deficient. As the number of electron-rich O2- anions surrounding the TM 

centres decreases, there is less available electron density to screen the core-hole generated by 

XANES or XPS processes. A decrease in CN results in a more poorly screened core-hole, 

resulting in greater final-state relaxation. Further, O is electronegative compared to others atoms 

in the structure (χZn = 1.66, χFe = 1.64, χSr = 0.99, χO = 3.50), and its tendency to tightly bind 

electrons restricts the degree to which electrons from the material can relax around a core-hole 

on a TM centre.114 When the TM CN is high, O atoms hinder the ability of electrons in the 

material to relax around a core-hole on a TM atom. As the CN decreases, electrons are able to 

relax to a greater extent around the core-hole, lowering the final-state energy and the observed 

BE. Changes in final-state relaxation are more pronounced in XPS than in XANES, where the 

excited electron in the final-state can still partially screen the core-hole. Direct comparison of 

shifts in XANES L2,3-edge (2p) absorption energies and XPS 2p BEs reveals that the BE shifts 

are larger, suggesting that final-state effects are primarily responsible for the shift that 

accompanies a decrease in CN. This is consistent with estimations of screening through 

application of Slater’s rules, which imply minimal influence from final-state effects in Fe and Zn 

L3-edge XANES, with stronger influence in the Fe and Zn 2p XPS spectra.160 Similar final-state 
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relaxation effects are also responsible for the decrease in absorption energy observed in the Fe 

and Zn K-edge XANES, a result of the fact that 1s electrons are strongly screening. Unlike the 

TM spectra, energy shifts in the O K-edge XANES spectra and analogous O 1s XPS spectra 

were similar in magnitude, as ground-state effects, owing to increased nearest-neighbour 

screening of the O nuclear charge with greater Zn content, dominate. Many competing effects 

influence binding and absorption energies, and the ability to separate these effects is rare. In this 

study, the influence of coordination number on XPS and XANES spectral energies has been 

discussed in detail, leading to a better understanding of the different effects which can cause 

these energies to change.  
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Chapter 3 

3. XANES and XPS investigations of (TiO2)x(SiO2)1-x: the contribution 
of final-state relaxation to shifts in absorption and binding energies* 

3.1. Introduction 

Amorphous transition-metal silicates (e.g., (MO2)x(SiO2)1-x; M = Ti, Zr, Hf) are an 

important class of materials having many interesting properties and applications. All of these 

compounds exhibit low thermal expansion, are chemically durable, and have a tuneable 

refractive index, which makes them appropriate for use as anti-reflective films and optical 

filters.47, 51, 163-168 The Ti-containing materials have also been examined as catalysts and as 

catalytic supports, while the Zr- and Hf- containing members have been extensively studied for 

their possible applications in the electronics industry.54, 169-177 In particular, (HfO2)x(SiO2)1-x has 

been proposed as a high-k dielectric replacement for SiO2 to act as a gate dielectric.40, 44, 54, 176, 177 

These materials can be produced through thin film deposition of the transition-metal or 

transition-metal oxide on a Si/SiO2 substrate with the silicate being formed at the interface 

through annealing or, in powdered form, using sol-gel methods.44, 47, 54, 163, 168, 178-183 Owing to the 

lack of long range-order, techniques such as X-ray diffraction yield little information. Because of 

this, to understand these materials, the use of advanced spectroscopic techniques such as nuclear 

magnetic resonance spectroscopy, X-ray absorption near-edge spectroscopy (XANES), extended 

                                                 
* A version of this chapter has been published. Reprinted with permission from M. W. Gaultois and A. P. Grosvenor, 
Journal of Materials Chemistry, 2011, 21, 1829-1836. Copyright 2011 The Royal Society of Chemistry. 

http://dx.doi.org/10.1039/C0JM03464A
http://dx.doi.org/10.1039/C0JM03464A
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X-ray absorption fine-structure (EXAFS), and X-ray photoelectron spectroscopy (XPS) has been 

necessary. 47, 54, 163, 168, 172-175, 181, 183-191 

Previous spectroscopic investigations (XANES and EXAFS) of the amorphous silicate 

powders produced by a sol-gel method have shown that the coordination number (CN) of the 

metal changes with variation in composition.47, 168, 181, 184, 186, 192 (The Si CN (4) is assumed to be 

constant.183) Sample preparation has been found to greatly affect the metal CN in these materials, 

as annealing removes organic residues from precursor materials that can coordinate to the metal 

atoms.47, 163, 168, 184, 185, 187 Knowing how the metal CN changes with substitution allows for a 

better understanding of how the properties of these materials can be adjusted through changes in 

composition. To study thin-films of these amorphous silicates, XPS has been most often used, as 

the binding energies (BEs) have been found to change considerably with composition.54, 172, 173, 

178-180 Although these materials have a variety of interesting properties and applications that 

require substantial examination, they are also excellent candidate materials to investigate how 

variations of the transition-metal CN and degree of ionic bonding influences XANES absorption 

energies and XPS binding energies. (Si is more electronegative than Ti, Zr, and Hf.114) 

In this chapter, the spectroscopic investigation of sol-gel-produced amorphous Ti 

silicates, (TiO2)x(SiO2)1-x, is reported. By examination of Ti K- and L3-edge XANES spectra, the 

variation in Ti CN depending on composition, heat treatment, and if Ti is located within the bulk 

of the material or at the surface has been investigated. Shifts in XPS BEs have also been studied, 

and when compared to the corresponding shifts in XANES absorption energies, were confirmed 

to result from final-state effects. This study, for the first time, provides an understanding of how 

metal coordination numbers change depending on if the transition-metal is located within the 
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bulk or surface and also provides important details on how and why the spectral energies shift 

with composition. 

Through substitutional studies of Sr(Fe1-xZnx)O3-δ, an oxygen-deficient perovskite-type 

structure, Chapter 2 showed the effect that changes in CN have on BE shifts. Owing to the 

similar electronegativities (χ) of Fe and Zn (χFe = 1.64, χZn = 1.66), XANES absorption and XPS 

binding energies were unlikely to be affected by a change in the average electronegativity of the 

next-nearest neighbour (NNN) site.114 As the NNN effects in solids are poorly understood, it was 

advantageous to isolate this effect. To maximize the effect for the purpose of studying and 

understanding the influence of the NNN on XPS BEs, the current chapter continues by looking at 

(TiO2)x(SiO2)1-x, where the difference in the electronegativities of substituted atoms is large 

(χSi = 1.74, χTi = 1.32).114 

3.2. Experimental 

3.2.1. Synthesis of (TiO2)x(SiO2)1-x 

The amorphous titanium silicates ((TiO2)x(SiO2)1-x; 0 ≤x ≤ 0.33) were synthesized using a 

sol-gel method.47, 180 (At high values of x, the material is inhomogeneous.47, 168, 181) The less 

reactive Si-alkoxide was prehydrolyzed by combining tetraethyl orthosilicate (≥99%, Sigma 

Aldrich), ethanol (anhydrous), and water in a 1:1:1 molar ratio with catalytic amounts of HCl. 

After stirring this solution under refluxing conditions at 70°C for 2 hours, the reaction was 

cooled to room temperature and a stoichiometric amount of titanium (IV) tert-butoxide (99.95%, 

Strem) was added drop-wise with stirring. All reactions were carried out under a N2 atmosphere. 

After increasing the water:alkoxide (Ti and Si alkoxide) molar ratio to 1:1, the mixture was 

sealed and left to sit for >10 days, after which time the material was exposed to the atmosphere 

for 7 days. Powders were obtained by grinding the resulting materials, placing them under 
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vacuum for >24 hours, and finally annealing them in air at 550°C for 12 hours to remove 

residual organic material. The formation of these materials was confirmed by use of Fourier 

transform infrared spectroscopy.47, 168 The lack of long-range order present in these materials, 

even after annealing at temperatures up to 550°C, was confirmed by powder X-ray diffraction 

using Cu Kα radiation generated from a Rigaku Rotaflex RU-200 rotating anode X-ray 

diffractometer.  

3.2.2. XANES 

3.2.2.1. Ti K-edge 

Ti K-edge XANES spectra were collected using the Pacific Northwest Consortium/X-ray 

Science Division Collaborative Access Team (PNC/XSD-CAT, Sector 20) bending magnet 

beamline (20BM) located at the Advanced Photon Source (APS), Argonne National Laboratory. 

A silicon (111) double crystal monochromator was used, providing a photon flux of ~1011 

photons/second and a resolution of 1.4 eV at 10 keV. Finely ground samples were sandwiched 

between Kapton tape, and positioned 45o to the X-ray beam. Transmission spectra were 

measured with N2-filled ionization chambers and fluorescence spectra were collected using a 13-

element Ge detector. The X-ray energy was increased by 0.15 eV per step through the absorption 

edge. Spectra were calibrated by comparison to the spectrum from Ti metal, collected 

concurrently in transmission mode, which has a well-known edge energy (4966 eV).87 The Ti K-

edge spectrum from anatase (TiO2; 99.6%, Alfa Aesar) was also collected to provide a standard 

for comparison of pre-edge peak intensities and absorption energies. The precision of the 

measurements is estimated to be ±0.1 eV.  
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3.2.2.2. Ti L2,3- and O K-edge 

Ti L2,3- and O K-edge XANES spectra from (TiO2)x(SiO2)1-x were collected using the 

Spherical Grating Monochromator beamline (SGM, 11ID-1) located at the Canadian Light 

Source (CLS).120 The flux is ~1011 photons/second at 1900 eV and increases to ~4 × 1012 

photons/second at 250 eV. The resolution is better than 0.3 eV at photon energies below 1500 eV 

and the precision of the measured absorption energies is better than ±0.1 eV. Spectra from 

powders of the material pressed on carbon tape were collected in total-electron (TEY; Ti L2,3-

edge) and fluorescence (FLY; O K-edge) yield mode. Through the absorption edge, the photon 

energy was increased by 0.1 eV per step. The Ti L2,3- and O K-edge spectra were calibrated by 

collecting spectra from Ti metal and Cr metal, respectively, which have well known Ti L3- 

(453.8 eV) and Cr L3-edge (574.1 eV) absorption energies.87  

3.2.2.3. Si L2,3-edge 

The Si L2,3-edge XANES spectra from (TiO2)x(SiO2)1-x were collected using the Variable 

Line Spacing Plane Grating Monochromator (VLS PGM, 11ID-2) at the CLS. The flux is 

2 × 1012 photons/second at 80 eV, the resolution is better than 0.01 eV at 100 eV, and the 

precision of this beamline is better than ±0.1 eV. The FLY spectra from powdered samples 

pressed on carbon tape were collected by stepping the excitation energy through the absorption 

edge at 0.05 eV increments. The spectra were calibrated by comparison to a spectrum from a Si 

wafer having a Si L3-edge absorption energy of 99.4 eV.87 All XANES spectra represent the 

average of multiple scans of each absorption edge, and were analyzed using the Athena software 

program.123  
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3.2.3. XPS 

XPS spectra were collected using a Kratos AXIS 165 spectrometer and a monochromatic 

Al Kα (1486.7 eV) X-ray source. The resolution of this instrument has been determined to be 

0.4 eV and the precision of the measured binding energies, which are significant to two decimal 

places, is better than ±0.10 eV.193 Finely ground powders of (TiO2)x(SiO2)1-x, TiO2 (anatase), and 

SiO2 (99.99%, Alfa Aesar) were pressed into In foil and mounted on an electrically grounded 

sample holder. High-resolution spectra of the Ti 2p, Si 2p, O 1s, and C 1s core lines were 

collected using a pass energy of 20 eV, a step size of 0.05 eV, and a sweep time of 180 s. To 

counter surface charging, the charge neutralizer was used during collection of all spectra. (Ar+ 

ion etching was not used to clean the samples, as testing found that it resulted in the reduction of 

some of the Ti atoms located at the surface of these silicates.) All spectra were calibrated using 

the C 1s line arising from adventitious C with a fixed value of 284.8 eV. A Shirley-type function 

was applied to remove the background arising from energy loss and spectra were fitted using 

synthetic peaks having a combined Gaussian (70%) and Lorentzian (30%) line profile.125 The Si 

2p3/2 BE was found by fitting the Si 2p core-line envelope with two peaks (Si 2p3/2 and Si 2p1/2) 

having a 2:1 peak area ratio (2p3/2:2p1/2).  

3.3. Results and Discussion 

3.3.1. Ti K-edge XANES 

As (TiO2)x(SiO2)1-x is an amorphous silicate, techniques other than X-ray diffraction are 

required to study the local structure of these materials. To investigate how the Ti coordination 

number (CN) changed with annealing and Ti content (x), Ti K-edge XANES spectra were 

collected. These spectra result, primarily, from the dipolar excitation of Ti 1s electrons to 

unoccupied Ti 4p states.102, 138 Lower energy and intensity quadrupolar transitions (1s→3d) are 
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also observed and are referred to as pre-edge peaks.102, 138 All of the features in these spectra 

have been found to change with charge, bonding environment, and CN.105, 111, 112, 136, 145, 155 The 

highest energy, most intense, dipolar portion of the spectrum (main-edge) decreases in energy 

and intensity with lowering CN, a result of poorer screening of the core-hole and reduced 

number of metal-ligand states (Ti 4p – O 2p in the case of this system) available for 1s electrons 

to be excited to.111, 112, 144, 145  

Along with the changes to the main-edge portion of the spectrum described above, the 

energy and intensity of the Ti K-edge pre-edge peak has been observed to change significantly 

depending on CN.106, 110, 194 As the CN decreases from 6, inversion symmetry is lost and the Ti 

3d states are overlapped partially by 4p states, lending a dipolar component to the excitation and 

causing the peak intensity to increase.136, 138 The decrease in energy of the pre-edge with 

decreasing CN is likely a result of changes in final-state core-hole screening.195 Simultaneous 

examination of the pre-edge peak intensity and energy allows for a detailed analysis of how the 

Ti CN changes in a system.106, 110, 194 In the silicates studied here and related materials, Ti has a 

fixed charge of 4+; all of the changes in the Ti K-edge spectra are ascribed to changes in Ti CN, 

which depend on composition and annealing temperature.196 

The Ti K-edge XANES spectra from (TiO2)0.20(SiO2)0.80 annealed at 550°C, as well as 

not annealed, are presented in Figure 3.1a and are compared to the spectrum from TiO2 

(anatase); the pre-edge and main-edge sections of the spectra are labelled as A and B, 

respectively. The pre-edge peak (A) is more intense in (TiO2)0.20(SiO2)0.80 (annealed or 

otherwise) than in TiO2, implying that the Ti CN is lower in the silicate than in the oxide. This is 

confirmed by examination of the main-edge peak (B), as the energy and intensity are lower in the 

silicate than in the oxide.  
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After annealing the silicate at 550°C, by examination of the Ti K-edge spectra (Figure 

3.1a), the average Ti CN was found to be lower than for the sample that was not annealed. The 

fact that the average metal CN is higher before the silicate material is annealed is well known 

and has been observed by XANES and EXAFS for a number of different silicate systems.47, 163, 

184, 185, 187 The increase in CN is a result of the metal coordinating with ligands from the precursor 

materials (hydroxide and alkoxide functional groups), leading to metal centres which have 

tetrahedral, square pyramidal, and octahedral geometries.47, 188 Examination of the energy and 

intensity of the peak maximum in the pre-edge of the unannealed material suggests that the Ti 

atoms are located in a primarily 5-coordinate environment.106, 110, 194 The presence of some 

spectral intensity at slightly higher and lower energies (~4972–4975 and ~4967–4969 eV) in the 

unannealed sample is similar to that observed for TiO2, implying that some 6-coordinate Ti is 

also present. (In the pre-edge peak from TiO2, three distinct structures (labelled as A1, A2 and A3 

in Figure 3.1a) are observed because of local, quadrupolar, and non-local, dipolar, 

excitations.135) 

If 4-coordinate Ti was present in any significant amount in the unannealed sample, a 

lower energy (<4971 eV), intense pre-edge peak would be observed, owing to the greater overlap 

of Ti 3d and 4p states. The annealed silicate, on the other hand, has a pre-edge peak located at 

~4970 eV which is much more intense than the peak at ~4971 eV observed in the unannealed 

sample. This implies that a significant amount of 4-coordinate Ti is found in the annealed 

material, corresponding to the loss of hydroxide and/or alkoxide ligands from the starting 

materials. As the principle pre-edge peak is relatively broad (i.e., it encompasses the main-peak 

from the unannealed sample; see inset of Figure 3.1a), it is likely that some 5-coordinate Ti 

remains after annealing. Further, some peak intensity is observed in the energy region of ~4972–
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4975 eV implying that a minor amount of 6-coordinate Ti is also present. The identification of 5-

coordinate Ti in these silicates has been suggested by some in the past and denied by others.47, 

181, 187, 188, 192, 197 The presence of 5-coordinate Ti in the system investigated here is likely a result 

of the different annealing conditions used (550°C for 12 hours) compared to that used by other 

research groups.181, 187, 197, 198 (A low annealing temperature was used in this work to limit the 

formation of TiO2-clusters, as the primary purpose of this investigation was to study how 

XANES and XPS spectral energies and lineshapes are affected when Ti is randomly exchanged 

for Si in the Ti-O-Si bonding environment.) 

The consequence of changing the composition on the Ti CN was further studied by Ti K-

edge XANES analysis of annealed samples. The spectra are presented in Figure 3.1b and, by 

examination of the decreasing pre-edge peak intensity with x (see inset), it can be clearly 

observed that the average Ti CN increases with increasing Ti content (x) in the (TiO2)x(SiO2)1-x 

system. Note that the major decrease in intensity is found in the region where signals from 4- and 

5-coordinate Ti would be expected (~4968–4972 eV) whereas the intensity of the region 

resulting from the presence of some 6-coordinate Ti (>4971 eV) increases slightly. This result is 

known and implies that at low values of x, Ti is exchanged for Si having a tetrahedral 

environment.47, 181, 183 With increasing Ti content, the larger ionic radius (rTi4+ (CN = 4) = 0.42 Å, 

rSi4+ (CN = 4) = 0.26 Å) opens the structure allowing for more O atoms to interact with the metal 

centre.128, 181 The increase of the Ti CN with increasing x has also been ascribed to the formation 

of TiO2 clusters within a SiO2 matrix.47, 187, 199, 200 The XANES spectra presented here cannot 

provide evidence of the presence, nor absence, of TiO2 clusters within these samples. However, 

as no narrow diffraction peaks were observed in collected powder X-ray diffraction patterns (not 

shown), it is likely that any ordered TiO2 domains that may have formed are small.   
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Figure 3.1. Ti K-edge (a,b) and Ti L3-edge (c,d) XANES spectra of (TiO2)x(SiO2)1-x. (a) Ti K-
edge absorption spectra showing the changes in lineshape resulting from CN changes observed 
when comparing annealed and unannealed (TiO2)0.2(SiO2)0.8 to TiO2 (anatase). The pre-edge is 
presented in the inset with typical peak energies for 4-, 5-, and 6-coordinated Ti. The three pre-
edge peaks observed in the spectrum from TiO2 due to both local and non-local transitions are 
labelled as A1, A2, and A3. (b) Ti K-edge absorption spectra from annealed (TiO2)x(SiO2)1-x 
silicates showing an increase in the average Ti CN with increasing Ti content (x). (c) Ti L3-edge 
absorption spectra of annealed (TiO2)x(SiO2)1-x. This surface sensitive analysis shows that the 
average CN of Ti near the surface increases with x, and is generally higher than that observed for 
Ti present within the bulk of the material. (d) Ti L3-edge absorption spectra of unannealed 
(TiO2)x(SiO2)1-x. The average Ti CN increases with increasing x and is always higher than for the 
unannealed materials having the same Ti concentration.   
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3.3.2. Ti L2,3-edge XANES 

Multiple investigations have used Ti K-edge XANES and EXAFS to investigate the 

change in the Ti CN with composition in the (TiO2)x(SiO2)1-x system.47, 181, 187, 197 These studies 

are inherently bulk-sensitive and do not provide any considerable insight to how the CN of Ti 

atoms located at the surface of the material changes with composition and annealing. One way to 

study the CN of the Ti atoms located at the surface is to collect Ti L2,3-edge XANES spectra in 

TEY mode. The surface sensitivity of this technique is related to the short inelastic mean free 

path of electrons as they travel through the material, resulting in depth sensitivities on the nm, 

rather than μm, scale.95 This particular spectrum results primarily from the excitation of Ti 2p 

electrons to unoccupied Ti 3d states.188 By analysis of various Ti mineral phases and Ti-

containing glasses, it has been found that the Ti L2,3-edge lineshape changes considerably with 

CN.188 

The Ti L3-edge spectra from (TiO2)x(SiO2)1-x and TiO2 are presented in Figure 3.1c. 

When x = 0.10, the lineshape is consistent with Ti having a CN of 5, and shows few features 

resulting from 4- and/or 6-coordinate Ti.188 With increasing x, the main peak, labelled as C in 

Figure 3.1c (~460.5 eV), decreases in intensity. Concurrently, a new peak located at ~458.4 eV 

(labelled as D in Figure 3.1c) is visible when x >0.10, and increases in intensity with x. By 

comparison to the spectrum from TiO2, peak D and C can be attributed to the crystal-field split 

3d t2g and eg* states expected for Ti having a CN of 6.188 These observations imply that the Ti 

CN increases from ~5 to between 5 and 6 with greater Ti content. The identification of 

decreasing Ti CN (from 5 to 4) with greater Ti content, through analysis of Ti L2,3-edge XANES 

spectra, has been suggested in the past, but this interpretation is unlikely considering that Ti 

prefers to reside in higher-coordinate sites and that a large concentration of species able to 
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coordinate with Ti atoms are available at the surface.188 The difference in the average CN 

depending on if Ti is located in the bulk of the material, as studied by analysis of Ti K-edge 

spectra, or near the surface of the material, as studied by analysis of Ti L2,3-edge spectra, can be 

related to the availability of surface hydroxide and water groups to bond to the Ti atoms located 

in the surface region. The Ti L3-edge XANES spectra from the (TiO2)x(SiO2)1-x samples which 

were not annealed show a similar trend to that observed for the annealed samples (see Figure 

3.1d). As peak D is always present in the spectra shown in Figure 3.1d, regardless of x, the 

average Ti CN is always higher in the unannealed samples than in the annealed samples. 

3.3.3. XPS 

In the previous sections, it was shown that analysis of Ti K- and L2,3-edge XANES 

spectra can be very useful to studying changes in CN with composition. These spectra can also 

provide information on how the electronic structure is affected by substitution of one element for 

another; however, such effects can be difficult to study when the CN of the atom of interest is 

variable. Owing to the considerable differences in electronegativity between Si and Ti, changes 

in the character of the Ti/Si-O bond are expected with changing composition.114 To investigate 

these effects, XPS can be used through examination of shifts in binding energy (BE). The source 

of BE shifts can be identified using a simple model that describes changes in energy arising from 

both ground- and final-state effects.56, 75 This modified version of the charge potential model is 

defined by eq. ( 3.1 ).56  

 Δ𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖0 = (𝑘Δ𝑞𝑖 + Δ∑ qj
riji≠j ) − (Δ𝐸𝑖IA + Δ𝐸𝑖EA).64,65 ( 3.1 ) 

The total binding energy shift, ΔEi, which is the difference between the measured binding 

energy of the atom of interest, Ei, and a reference binding energy, Ei
o, consists of a number of 
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contributions. The kΔqi term describes intra-atomic effects involving the change in charge Δqi on 

atom i.56, 75 (The k term is a constant, and describes the interaction between valence and core 

electrons.56, 75) The Δ∑ qj
riji≠j  term describes interatomic effects involving changes in the local 

chemical environment.56 Both terms introduced above are ground-state effects, describing shifts 

in BE resulting from changes in the screening of the nuclear charge of the atom being excited, i. 

However, final-state effects, through changes in the magnitude of final-state relaxation, can also 

influence BEs. These effects are described in eq. ( 3.1 ) by the (ΔEi
IA + ΔEi

EA) terms and 

represent intra-atomic (IA) and extra-atomic (EA) relaxation, respectively, with ΔEi
IA often being 

negligible.56, 75 Shifts owing to final-state relaxation result from changes in the ability of 

electrons to screen the core-hole produced by removal of a photoelectron. Depending on the 

system under investigation, BEs can be found to shift because of ground-state or final-state 

effects, or a combination of both.  

3.3.3.1. Ti 2p3/2, Si 2p, O 1s XPS 

To study how the Ti/Si electronegativity affects this system; Ti 2p, Si 2p, and O 1s XPS 

spectra were collected for the annealed materials and are presented in Figure 3.2. The BEs from 

all three spectra, which are plotted in Figure 3.3, were found to decrease with greater Ti 

concentration. As is described below, this decrease in BE is driven by an increase in final-state 

relaxation with greater Ti content. 

  



64 

 

 

Figure 3.2. High resolution core-line (a) O 1s, (b) Si 2p, and (c) Ti 2p3/2 XPS spectra of annealed 
(TiO2)x(SiO2)1-x. The asterisk, *, in (a) highlights the low-BE shoulder observed in the O 1s 
spectra which is caused by Ti-rich domains.  
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Figure 3.3. Si 2p3/2, Ti 2p3/2, and O 1s binding energy shifts with increasing Ti content (x) in 
(TiO2)x(SiO2)1-x. These shifts are caused by the substitution of Si by less electronegative Ti 
atoms, which increases the magnitude of final-state relaxation. (The Ti 2p1/2 BE shifts in an 
identical fashion to the 2p3/2 BE.)  
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As x increases from 0→1 in (TiO2)x(SiO2)1-x, the O 1s XPS BE (based on analysis of the 

peak maximum) decreases by 2.94 eV (Figure 3.2a and Figure 3.3). Note also in Figure 3.2a, 

the presence of a low-BE shoulder that increases in intensity and decreases in BE with increasing 

x. This low-BE contribution is attributed to the formation of TiO2-rich clusters in a SiO2 matrix, 

whereas the significantly more intense high-BE peak results from homogeneously mixed Ti/Si 

atoms. (This system is known to exhibit some heterogeneity with increasing Ti content.47, 168, 181) 

Along with shifts in the O 1s BE, the Ti 2p3/2 BE decreases by 1.25 eV as x increases from 

0.1→1 and the Si 2p3/2 BE decreases by 0.74 eV as x increases from 0→0.33 (Figure 3.2 and 

Figure 3.3).  

Comparison of XPS BE shifts with XANES shifts in absorption energy for transitions in 

which the same core-electron is excited (e.g., the Ti L3-edge absorption energy vs. the Ti 2p3/2 

BE) provides a method to isolate final-state effects, as demonstrated in Chapter 2. XPS binding 

energies are more strongly influenced by final-state effects because the excited electron is 

completely removed from the system, unlike in the XANES process, where the electron is 

promoted to an unoccupied conduction state, which can still provide some screening to the core-

hole (i.e., the (ΔEi
IA + ΔEi

EA) term in eq. ( 3.1 ) is minimized in the XANES excitation).54, 78, 79  

The O K-edge XANES spectra are shown in Figure 3.4a and are comprised of a low-

energy absorption feature (528–533 eV), owing to transitions to O 2p states interacting with 

Ti 3d states, and a higher-energy absorption feature (>533 eV) resulting from transitions to O 2p 

states interacting with Ti 4p/4s and Si 3p/3s states.152, 189 The low-energy feature in Figure 3.4a 

increases in intensity and width with increasing Ti content, especially at high values of x. This 

broadening is likely due to the presence of multiple Ti coordination environments.  

  



67 

 

Figure 3.4. (a) O K- and (b) Si L2,3-edge XANES spectra for annealed (TiO2)x(SiO2)1-x 
materials. The O K-edge spectra show no change in absorption energy of the peak maximum of 
the main edge or the pre-edge, while the Si L2,3-edge spectra shift by less than 0.1 eV over the 
concentration range studied.  
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Importantly, the energy of the peak maximum of this feature is invariant with Ti content. 

Additionally, the higher-energy feature shows no change in absorption energy as x increases 

from 0→0.33, while the O 1s BE decreases by 0.55 eV over the same concentration range 

(0 ≤ x ≤ 0.33; Figure 3.3). Such a comparison provides strong evidence that final-state effects 

cause the XPS BE shifts observed in the O 1s XPS spectra (Figure 3.2a).  

To confirm the nature of the Si 2p and Ti 2p XPS BE shifts, they can also be compared to 

the corresponding XANES spectra (Si L2,3-edge (Figure 3.4b) and Ti L3-edge (Figure 3.1c). The 

Si L2,3-edge spectra are composed of two regions, a low-energy region corresponding to a Si 

2p→3s transition, split into L2,3-peaks, and a higher-energy, broader region, corresponding to Si 

2p→3d transitions.201 Overall, the absorption energy of the Si L2,3-edge spectra (Figure 3.4b) 

decreases by ≤0.1 eV as x increases from 0→0.33. This shift is significantly smaller than the 

corresponding decrease in the Si 2p3/2 XPS BE (cf. Figure 3.3). The Ti L3-edge XANES (Figure 

3.1c) absorption energy was observed to decrease by less than 0.1 eV with greater Ti content 

(0.1 ≤ x ≤ 1.0), while the Ti 2p3/2 BE decreased by 1.25 eV (Figure 3.3). (The slight decrease in 

the Ti L3-edge XANES absorption energy could be due to changes in crystal-field splitting or 

possibly a change in the ground-state screening of the Ti nuclear charge.)  

3.3.4. XANES vs. XPS 

Comparison of the energy shifts observed in XANES and XPS (the O K-edge XANES 

spectra compared to the O 1s XPS spectra, the Si L2,3-edge XANES spectra compared to the Si 

2p XPS spectra, and the Ti L3-edge XANES spectra compared to the Ti 2p XPS spectra) strongly 

supports the notion that the XPS BEs in this system are influenced by final-state effects. As 

slight shifts in the XANES spectra were observed, ground-state effects do influence the 

absorption and binding energies, but only in a minor way. Contributions to the shifts in energy 
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because of ground-state effects result from a change in screening of the nuclear charge of the 

excited atom owing to the substitution of the atoms located in the first or second coordination 

sphere (i.e., the Δ∑ qj
riji≠j  term in eq. ( 3.1 ) becomes less positive with greater concentration of 

less electronegative Ti atoms). 

Final-state effects, that is, a change in the magnitude of final-state relaxation, can be 

influenced by a variety of possible contributors. In the system studied here, the replacement of 

nearest-neighbour or next-nearest-neighbour Si atoms (χSi = 1.74) by less electronegative Ti 

atoms (χTi = 1.32) leads to greater final-state relaxation of the excited atom with increasing x.36 

Greater relaxation results in a lower final-state energy, and, therefore, a lower binding energy. 

Chapter 2 demonstrated that final-state relaxation also increases with decreasing CN, because of 

a more poorly-screened core-hole. (This final-state effect is mitigated during the XANES 

excitation as the excited electron populates conduction states, and thus still partially screens the 

core-hole.) However, the Ti 2p3/2 BE in the (TiO2)x(SiO2)1-x system decreases with increasing x, 

despite an increase in the Ti CN, implying that although this effect may dampen the shift in BE, 

its effect is not significant. The increase in magnitude of the total O 1s BE shift (see Figure 3.3) 

compared to the Ti 2p BE shift (0.1 ≤ x ≤ 1.0) is a result of the Si/Ti atoms substituting in the 

first—rather than the second—coordination shell of O. The determination that the XPS binding 

energies from these amorphous silicate powders shift primarily because of final-state effects, 

with changes in ground-state screening playing a very minor role, is consistent with previous 

Auger parameter analysis of Ti silicate thin films and powders, and previous XPS studies of Hf- 

and Zr-silicate thin films.54, 172-174, 191  
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3.4. Conclusions 

In this contribution, the (TiO2)x(SiO2)1-x system has been investigated by soft and hard X-

ray XANES and XPS and has allowed for a study of the influence of the local coordination 

environment on the electronic structure. This work has provided a better understanding of how 

the Ti coordination number (CN) changes in (TiO2)x(SiO2)1-x depending on composition, on 

annealing temperature, and if the Ti atoms examined are located within the bulk of the material 

or at the surface. Greater knowledge of why the XPS BEs and XANES absorption energies shift 

with composition has also been gained.  

Examination of Ti K- and L3-edge XANES spectra revealed that the average Ti CN 

increases with greater Ti content (x), an effect of the larger Ti ionic radius. Comparison of the Ti 

K- and Ti L3-edge XANES spectra showed, for the first time, that the average Ti CN is higher at 

the surface compared to within the bulk. (Within the bulk of the material, 4-, 5- and 6-coordinate 

Ti was observed while only 5- and 6-coordinate Ti was present at the surface.) 

With increasing Ti content in (TiO2)x(SiO2)1-x, the O 1s, Si 2p, and Ti 2p XPS BEs 

decreased significantly, in agreement with previous studies, while the corresponding XANES 

spectra (involving the same excited core-electron) showed little to no shifts. As ground state 

effects will equally affect both, a comparison of the BE and absorption energy shifts allowed for 

an estimation of the contribution of final-state relaxation to the XPS BEs, which this study has 

shown is more significant than previously thought for these amorphous silicate powders.191 The 

decrease in O 1s, Si 2p, and Ti 2p BEs with increasing Ti content is due to substitution of Si by 

less electronegative Ti atoms leading to greater final-state relaxation. As the Ti CN was found to 

increase with greater x, the shift to lower, rather than higher BEs shows that changes in final-

state relaxation because of substitution of the next-nearest-neighbour atoms will dominate over 
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CN affects when the difference in electronegativity of the substituting atoms is sufficiently large 

(ΔχSi-Ti = 0.4).114  

The amorphous transition-metal silicates ((MO2)x(SiO2)1-x; M = Ti, Zr, Hf), in either thin-

film or powdered form, have received a considerable amount of interest owing to their numerous 

potential applications, especially as high-k dielectric replacements for SiO2 in semiconductor 

devices.40, 44, 54, 176 The increased understanding of how the CN changes depending on 

composition and location of the metal centres within the material, along with why the XPS BEs 

and XANES absorption energies shift with composition provided here will aid in optimizing 

these materials for such applications.  
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Chapter 4 

4. XPS investigations of final-state relaxation in amorphous Zr and Zr/Ti 
silicate powders 

4.1. Introduction 

Amorphous transition-metal silicates (e.g., (MO2)x(SiO2)1-x; M = Ti, Zr, Hf) have been 

the subject of many investigations because of their tuneable properties and industrial 

applications. Many of the desirable properties depend on the metal content, which can be 

adjusted to control the refractive index, thermal expansion coefficient, hardness, chemical 

durability, and dielectric constant of the materials.42, 47, 51, 163-168, 202 TiO2 is often incorporated 

into SiO2 to make glasses with a high refractive index and ultra-low thermal expansion, ZrO2 

greatly increases the resistance to alkaline solutions, and (HfO2)x(SiO2)1-x has been proposed as a 

high-k dielectric replacement for SiO2 gate dielectrics in transistors.40, 44, 164-166 (Hf-based 

materials are currently being used in 45 nm computer processors, though the material’s identity 

is not specified.35, 41) Quaternary (M-M’-O-Si; M, M’ = Ti, Zr, Hf) mixed-metal silicates allow 

the combination of beneficial properties from each of the ternary metal silicates (M-O-Si), 

creating a wealth of chemical possibilities. Yet, despite the considerable volume of work on the 

ternary silicates, the quaternary silicates have received considerably less attention.46, 168, 182, 185, 

203, 204  

Traditionally, silicates are made via melt syntheses; however, the high temperatures 

required to melt transition-metal silicates (often >1300°C) cause phase segregation and 
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crystallization, leading to heterogeneous products.46, 49, 182 Consequently, low-temperature soft 

processing techniques, such as sol-gel synthesis, have led the way to making amorphous, 

homogeneous glasses with high metal content.46, 49, 180, 205 Solution-based routes have the added 

benefit of a range of post-synthetic solution processing techniques, such as spin-coating for thin-

film applications or fibre drawing and spinning for use in composites or textiles.50-52 The lack of 

long-range order in amorphous materials hinders the use of diffraction-based techniques that are 

typically used to probe the structure and homogeneity. As a result, amorphous materials are ideal 

candidates for study by X-ray spectroscopy, which is sensitive to only the first few coordination 

shells of the element being examined.  

In this work, amorphous (ZrO2)x(TiO2)y(SiO2)1-x-y, a series of quaternary metal silicates, 

was synthesized by sol-gel methods and investigated by X-ray absorption near-edge 

spectroscopy (XANES) and X-ray photoelectron spectroscopy (XPS). These mature 

spectroscopic techniques are routinely used to examine the electronic structure of materials in the 

solid state, yet many effects remain poorly understood and require further study to understand 

their role in spectral energy shifts. Improving our understanding of the causes of spectral energy 

shifts, such as the role played by the next-nearest neighbour (NNN), is critical to the continuing 

development of these powerful techniques as probes of electronic structure. Towards this goal, 

this work examines changes in XANES lineshape, changes in XANES absorption and XPS 

binding energy shifts, and changes in the Auger parameter of these materials to determine the 

contribution of final-state relaxation. Chapter 3 drew attention to shifts in binding energy (BE) 

owing to electronegativity differences; however, there were noticeable changes in the Ti 

coordination number (CN) that could have muted the observed shift in BE. The current chapter 

expands upon this work by examining the more complex quaternary silicates, where the effect of 
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metal identity and changes in average CN have been examined. Additionally, Auger spectra have 

been collected and extraction of the O KLL Auger parameter has been used to confirm that 

increasing final-state relaxation leads to considerable BE shifts in the metal silicates. 

4.2. Experimental 

4.2.1. Synthesis of (ZrO2)x(SiO2)1-x and (ZrO2)x(TiO2)y(SiO2)1-x-y  

The amorphous quaternary [(ZrO2)x(TiO2)y(SiO2)1-x-y (x + y = 0.20, 0.30)] and ternary 

[(ZrO2)x(SiO2)1-x (x = 0.10, 0.20, 0.25, 0.33, 0.50)] silicates were synthesized using a sol-gel 

method.47, 180 The precision of the stoichiometry in these materials is believed to be better than 

x,y ±0.02, as supported by the close agreement with XPS BE shifts of ternary silicates having a 

similar metal content, and the smooth evolution of spectral features in the O K-edge spectra from 

quaternary and ternary silicates with varying metal content (vide infra). All reactions were 

carried out under a N2 atmosphere with constant stirring. The reaction solution was diluted with a 

stoichiometric amount of anhydrous ethanol before addition of each metal-organic precursor (20 

equivalents of EtOH were added per molar equivalent of Ti- and Zr-alkoxide precursor), and the 

precursors were reacted in order of increasing reactivity—Si, Ti, then Zr—to promote the 

formation of homogeneous products.182, 206 The less reactive Si-alkoxide was prehydrolyzed by 

combining tetraethyl orthosilicate (≥99%, Sigma Aldrich), ethanol (anhydrous), and water in a 

1:2:1 molar ratio with catalytic amounts of HCl.180 This solution was stirred under reflux at 80°C 

for 2 hours and then cooled to room temperature. Ethanol was added to dilute the solution, after 

which titanium (IV) tert-butoxide (99.95%, Strem) was added drop-wise. After stirring for one 

hour, ethanol was added and zirconium (IV) tert-butoxide (99%, Strem) was added drop-wise 

with stirring. After continued stirring, water was added drop-wise to increase the water:alkoxide 

(Ti, Zr, and Si alkoxide) molar ratio to 2:1. The mixture was then sealed under N2 and stirred 
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until a gel formed (7-21 days), after which the material was exposed to the atmosphere for >7 

days. (Higher Ti content and/or overall metal content reduced the time required to gel.) Powders 

were obtained by placing the resulting materials (transparent glasses) under vacuum for 

>24 hours, grinding with a mortar and pestle, and then annealing them in air at 550°C for 

12 hours to remove residual organic material. The formation of these materials was confirmed by 

use of Fourier transform infrared spectroscopy, and the lack of long-range order, even after 

annealing at temperatures up to 550°C, was confirmed by powder X-ray diffraction using Cu Kα 

radiation generated from a Rigaku Rotaflex RU-200 rotating anode X-ray diffractometer.47, 168, 

182 

4.2.2. XANES 

4.2.2.1. Ti and Zr K-edge 

Ti and Zr K-edge XANES spectra were collected using the Pacific Northwest 

Consortium/X-ray Science Division Collaborative Access Team (PNC/XSD-CAT, Sector 20) 

bending magnet beamline (20BM) located at the Advanced Photon Source (APS), Argonne 

National Laboratory. A silicon (111) double crystal monochromator was used, providing a 

photon flux of ~1011 photons/second and a resolution of 0.7 eV at 5000 eV, and 2.5 eV at 

18000 eV (ΔE/E = 1.4 × 10-4). Finely ground samples were sandwiched between Kapton tape, 

and positioned 45° to the X-ray beam. Transmission spectra were measured with N2-filled 

ionization chambers and partial fluorescence spectra were collected using a Canberra 13-element 

Ge detector. Comparison with transmission spectra showed no self-absorption effects in the 

fluorescence spectra presented here. The X-ray energy was increased by 0.15 eV per step 

through the Ti K absorption edge and 0.3 eV per step through the Zr K-edge. Spectra were 

calibrated by comparison to spectra collected concurrently in transmission mode from Ti and Zr 
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metal, which have well-known edge absorption energies (4966 eV and 17998 eV, respectively).87 

The Ti K-edge spectrum from anatase (TiO2; 99.6%, Alfa Aesar) was also collected to provide a 

standard for comparison of pre-edge peak intensities and absorption energies. The precision of 

the measurements is estimated to be better than ±0.1 eV, as determined by comparison of spectra 

from samples and standards collected throughout these studies.  

4.2.2.2. Ti L2,3-, O K-, and Si K-edge 

Ti L2,3-, O K-, and Si K-edge XANES spectra from (ZrO2)x(TiO2)y(SiO2)1-x-y were 

collected using the Spherical Grating Monochromator beamline (SGM, 11ID-1) located at the 

Canadian Light Source (CLS).120 The flux is ~1011 photons/second at 1900 eV and increases to 

~4 × 1012 photons/second at 250 eV. The resolution is better than 0.3 eV at photon energies 

below 1500 eV (ΔE/E < 2 × 10-4) and the precision of the measured absorption energies is better 

than ±0.1 eV. Spectra from powders of the material pressed on carbon tape were collected in 

total-electron (TEY; Ti L2,3-edge and Si K-edge) and fluorescence (FLY; O K-edge) yield mode. 

Through the absorption edge, the photon energy was increased by 0.1 eV per step for Ti L2,3-

edge and O K-edge measurements, and 0.15 eV per step for Si K-edge measurements. The Ti 

L2,3- and O K-edge spectra were calibrated by collecting spectra from Ti metal and Cr metal, 

respectively, which have well known Ti L3- (453.8 eV) and Cr L3-edge (574.1 eV) absorption 

energies.87 Si K-edge spectra were calibrated using fused silica (SiO2; 99.99%, Alfa Aesar), 

whose edge absorption energy was taken to be 1847.0 eV.207 

4.2.2.3. Si L2,3-edge 

The Si L2,3-edge XANES spectra from (ZrO2)x(TiO2)y(SiO2)1-x-y were collected using the 

Variable Line Spacing Plane Grating Monochromator beamline (VLS PGM, 11ID-2) at the CLS. 
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The flux is 2 × 1012 photons/second at 80 eV, the resolution is better than 0.01 eV at 100 eV 

(ΔE/E = 1 × 10-4), and the precision of this beamline is better than ±0.1 eV. The FLY spectra 

from powdered samples pressed on carbon tape were collected by stepping the excitation energy 

through the absorption edge at 0.05 eV increments. The spectra were calibrated by comparison to 

a spectrum from a Si wafer having a Si L3-edge absorption energy of 99.4 eV.87 All XANES 

spectra represent the average of multiple scans of each absorption edge, and were analyzed using 

the Athena software program.123  

4.2.3. XPS 

XPS spectra were collected using a Kratos AXIS 165 spectrometer and a monochromatic 

Al Kα (1486.7 eV) X-ray source. The resolution of this instrument has been determined to be 

0.4 eV and the precision of the measured binding energies is better than ±0.10 eV.193 Finely 

ground powders of (ZrO2)x(TiO2)y(SiO2)1-x-y, TiO2 (anatase), SiO2 (99.99%, Alfa Aesar), and 

monoclinic ZrO2 (99.7%, Alfa Aesar) were pressed into In foil and mounted on an electrically 

grounded sample holder. High-resolution spectra of the Ti 2p, Si 2p, O 1s, and C 1s core lines 

were collected using a pass energy of 20 eV, a step size of 0.05 eV, and a sweep time of 

180 seconds. To counter surface charging, a charge neutralizer was used to direct low-energy 

electrons toward the samples during collection of all spectra. (Ar+ ion etching was not used to 

clean the surface of the samples, as testing on related materials showed preferential reduction of 

Ti (Section 3.2.3).) All spectra were calibrated using the C 1s core-line arising from adventitious 

C with a fixed value of 284.8 eV. Charge neutralization and calibration using adventitious C has 

been previously shown to be effective for analyzing these materials.55 A Shirley-type function 

was applied to remove the background arising from energy loss and spectra were fitted using 

synthetic peaks having a combined Gaussian (70%) and Lorentzian (30%) line profile.125 The Si 
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2p3/2 BE was found by fitting the Si 2p core-line envelope with two peaks (Si 2p3/2 and Si 2p1/2) 

having a 2:1 peak area ratio (2p3/2:2p1/2).  

4.2.4. Electronic structure calculations 

To confirm the interpretation of the complicated O K-edge XANES spectra, full-potential 

linear muffin-tin orbital (FP-LMTO) calculations were performed using LMTART 7 to 

determine the total and partial (O 2p, Ti 3d, Zr 4d) density of unoccupied states.208-211 Owing to 

difficulties inherent in modeling amorphous systems, calculations were performed for crystalline 

systems (ZrSiO4 and TiSiO4), though previous studies using this model have accurately 

reproduced properties (e.g., the dielectric constant) of the amorphous silicates investigated 

here.45, 212, 213 Further, as the materials investigated in this study contain a solid solution of Ti and 

Zr atoms, the true electronic structure likely lies somewhere between the two substitutional end-

members modeled here (ZrSiO4 and TiSiO4). Self-consistency was achieved by requiring the 

convergence of the total energy to be smaller than 10-4 eV per unit cell, and the Brillouin zone 

integration was performed over 1000 k-points (10×10×10) using the tetrahedron method.214, 215 

Crystallographic parameters of ZrSiO4 and TiSiO4 used for the calculations were taken from 

literature.216, 217 Parameters for TiSiO4 were taken from a theoretical study, as the structure-type 

of TiSiO4 is not thermodynamically stable under ambient conditions.217   
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Figure 4.1. Ti (a, b) and Zr (c, d) K-edge XANES spectra from (ZrO2)x(TiO2)y(SiO2)1-x-y with a 
fixed total metal content (x + y) of 20 mol % (a, c) and 30 mol % (b, d). The lack of changes in 
the lineshape is evidence that there is no significant change in either the Zr or Ti coordination 
number (CN) with increasing metal content.  
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Figure 4.2. a) Ti K-edge XANES spectra of the quaternary silicates show no change with 
increasing total metal content, indicating there is no significant change in the Ti coordination 
number (CN). A spectrum from TiO2 (anatase) is presented as an example of the lineshape 
expected if the Ti CN was 6. b) Zr K-edge XANES spectra from the quaternary silicates also 
show no change with total metal content. The spectra are displayed over a wider energy range to 
highlight the overall lineshape. A spectrum from monoclinic ZrO2 is presented as an example of 
the lineshape expected if the Zr CN was 6.  
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4.3. Results and discussion 

4.3.1. Transition metal K-edge XANES 

Transition metal K-edge XANES spectra were collected to examine how the Ti and Zr 

coordination number (CN) change as a function of the total metal content and Zr:Ti ratio (Figure 

4.1 and Figure 4.2). Metal K-edge spectra result from 1s → (n–1)d (quadrupolar, pre-edge) and 

1s → np (dipolar, main-edge) transitions, which are sensitive to changes in CN.105, 106, 110-112, 135, 

136, 138 The higher energy and more intense, dipolar portion of the spectrum (i.e., the main-edge, 

above ~4980 eV for Ti and ~18010 eV for Zr) decreases in energy and intensity with lowering 

CN. This is a result of poorer screening of the core-hole and reduced number of metal-ligand 

states (e.g., Ti 4p – O 2p or Zr 5p – O 2p) available for 1s electrons to be excited to.111, 112, 142-145 

The main edge absorption energy is also characteristic of the metal oxidation state, which was 

found to be 4+ for both Zr and Ti in these materials. Significant changes are also observed in the 

Ti K pre-edge region (4965-4975 eV). As the CN decreases from 6, inversion symmetry is lost 

and the Ti 3d states are overlapped partially by 4p states, lending a dipolar component to the 

excitation and causing the pre-edge peak intensity to increase.135, 136, 138 Although changes in the 

Zr K pre-edge also occur, they are more difficult to follow because the pre-edge is partially 

obscured by the main edge. This happens because the unoccupied d- and p-states (4d and 5p, 

respectively) are closer in energy, and also because the core-hole lifetime broadening increases 

and instrumental resolution decreases with greater excitation energy. 

4.3.1.1. Ti K-edge XANES 

Owing to the larges changes in the lineshape of metal K-edge spectra with CN, the 

coordination environment of Ti in silicates and oxides has been previously investigated using 

XANES. By comparison of the lineshape to standards with known structures, the average CN of 
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elements in the amorphous silicates can be estimated.106, 110 This is readily done by analysis of 

the intensity and energy of the pre-edge peak, which can be used to determine the Ti CN and the 

relative concentration of 2-component mixtures where the Ti CN is 4, 5, and/or 6.106, 109, 192, 194 

However, when all three coordination environments coexist, precise determination is not 

possible using only this method. Examination of the Ti K pre-edge peak intensities and energies 

from the materials studied here, compared to those from materials reported in other studies, 

suggest Ti centres in the bulk of (ZrO2)x(TiO2)y(SiO2)1-x-y are primarily 5-coordinate, with 

contributions from 4-coordinate Ti, though minor contributions from 6-coordinate Ti cannot be 

discounted (Figure 4.1a,b).106, 218 More importantly for the scope of this study, the pre-edge 

intensities and energies are extremely sensitive to changes in the Ti CN; however, no changes 

were observed as a function of metal content (Figure 4.2). These results were confirmed by Ti 

L2,3-edge spectra collected from these materials (Section 4.3.3), which exhibit lineshapes 

consistent with 5-coordinate Ti, and which show no large changes in lineshape or edge 

absorption energy with metal content. 

4.3.1.2. Zr K-edge XANES 

The Zr coordination environment in (ZrO2)x(SiO2)1-x and (ZrO2)x(TiO2)y(SiO2)1-x-y has 

previously been studied using extended X-ray absorption fine-structure (EXAFS) modeling and 

XANES through analogy to known crystalline structures.168, 186, 219 In agreement with a previous 

XANES study, the Zr K-edge lineshapes shown here have a more pronounced pre-edge shoulder 

and a flat, double-peaked main-edge, and show virtually no change when the total metal content 

((x + y, mol % ZrO2 + TiO2) is constant (Figure 4.1c,d).168 The spectra are presented over an 

expanded energy region to show the overall lineshape, which is most similar to the lineshape of 

cubic and tetragonal ZrO2, where Zr is 8-coordinate (Figure 4.2).163, 168 However, the assignment 
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of CN is tentative because the silicates studied here are amorphous, and structural differences 

can cause the lineshape to change. Although quantitative assignment is not possible in this case, 

the Zr CN is certainly >6, which is higher than Ti in these materials. (EXAFS studies do give 

quantitative results, but the large errors obtained for these materials make assignments equally 

ambiguous.163, 168) Also—as was the case with Ti—no changes were observed in the Zr K-edge 

spectra with increasing total metal content (Figure 4.2), indicating the Zr CN does not change 

throughout the series. 

4.3.1.3. The coordination number of Ti and Zr 

In summary, Ti K-edge XANES spectra of the quaternary silicates show no significant 

changes in lineshape, energy, or intensity with increasing metal content or Zr:Ti ratio (Figure 

4.1a,b). Zr K-edge spectra are equally static as a function of metal content, evidence that there is 

no significant change in the average CN of Zr (Figure 4.1c,d). Because even minute mixing of 

p- and d-states leads to a large increase in the pre-edge intensity, the lack of drastic changes in 

either the Zr or Ti K-edge XANES spectra is evidence there are no large changes in either Zr or 

Ti CN with increasing metal content. This differs from the ternary Zr- and Ti-silicates, where an 

increase in the average metal CN—albeit a small increase—was seen with increasing metal 

content (see Chapter 3 and reference 112). It was shown in Chapter 2 that a decrease in the 

average CN increases the magnitude of final-state relaxation, so the lack of large change in 

average metal CN in the silicates studied here removes a potential contributor to any shifts in 

XPS BE. Although exact quantification of the average CN is not possible, Ti appears to be 

predominantly 5-coordinate, and the Zr CN is >6, likely due to its larger size.   
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4.3.2. Zr 3d5/2, Ti 2p3/2, Si 2p, and O 1s XPS binding energy (BE) shifts 

To investigate the changes in electronic structure as the identity and concentration of the 

metal is changed, high-resolution Zr 3d, Ti 2p, Si 2p, and O 1s core-line XPS spectra were 

collected. As was demonstrated in previous chapters, the photoelectron BEs can change as a 

result of shifts in the ground- and/or final-state energies, though the cause of the shift cannot be 

determined by XPS alone.56, 220, 221 To describe why BEs shift, a version of the charge potential 

model is shown in eq. ( 4.1 ), where ground- and final-state effects have been grouped together in 

the first and second set of parentheses, respectively.56 

 Δ𝐸𝑖 = 𝐸𝑖 − 𝐸𝑖0 = (𝑘Δ𝑞𝑖 + Δ�
qj
riji≠j

) − (Δ𝐸𝑖IA + Δ𝐸𝑖EA) ( 4.1 ) 

The total binding energy shift, ΔEi, which is the difference between the measured binding 

energy of the atom of interest, Ei, and a reference binding energy, Ei
o, consists of a number of 

contributions. This shift in BE occurs due to changes at and around the absorbing atom, given by 

the first and second terms, respectively, in each set of parentheses in eq. ( 4.1 ). In the ground 

state (also called the initial state), shifts in BE result from changes in the screening of the nuclear 

charge of the atom being excited, i. Here, the kΔqi term describes changes in the charge of the 

atom being excited (Δqi), while the Δ∑ qj
riji≠j  term (often called the Madelung potential) describes 

changes in the charge of atoms (j) located around atom i at a distance rij.56 (k is a parameter that 

describes the Coulombic interaction between core and valence electrons.75) In the final state, 

changes in the magnitude of intra- (IA) and extra-atomic (EA) relaxation result from changes in 

the ability of electrons to screen the core-hole produced by removing a photoelectron. Here, the 

ΔEi
IA and ΔEi

EA terms represent changes in the final-state relaxation of electrons at and around 

atom i, respectively, with ΔEi
IA often being negligible.56   
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Figure 4.3. (a) Zr 3d and (b) Ti 2p3/2 XPS core-line spectra of the quaternary silicates and binary 
oxides. Dashed lines are a guide to indicate the approximate peak maximum for a set of spectra 
at a given total metal content, [x + y] in (ZrO2)x(TiO2)y(SiO2)1-x-y. The Zr 3d and Ti 2p binding 
energies (BE) decrease with increasing total metal content. (Small variations (±0.1 eV) were 
observed between samples with identical total metal content, though these variations are near the 
limits of instrumental precision (±0.1 eV) and lack a monotonic trend.)  
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Figure 4.4. (a) Si 2p and (b) O 1s XPS core-line spectra of the quaternary silicates and binary 
oxides. Dashed lines are a guide to indicate the approximate peak maximum for a set of spectra 
at a given total metal content, [x + y] in (ZrO2)x(TiO2)y(SiO2)1-x-y. The Si 2p and O 1s binding 
energies (BE) decrease with increasing total metal content. The O 1s spectra of the quaternary 
silicates have a shoulder at low BE that increases in intensity with metal content. This peak is the 
result of metal-rich domains, which are known to exist in metal silicates at high metal 
loadings.47, 181, 186, 191  
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Figure 4.5. The binding energy (BE) of the photoelectron peak maximum decreases with 
increasing total metal content (mol % ZrO2 + TiO2).  
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To study how increasing the total metal content affects the electronic structure of these 

materials, XPS core-line spectra from (ZrO2)x(TiO2)y(SiO2)1-x-y were collected (Figure 4.3 and 

Figure 4.4). All core-line photoelectron peaks (Zr 3d5/2, Ti 2p3/2, Si 2p, and O 1s) show a 

significant decrease in BE with increasing total metal content (x + y, mol % ZrO2 + TiO2), but 

show little to no variation in BE when the total metal content is fixed and the Zr:Ti ratio is 

varied. The O 1s spectra of the quaternary silicates exhibit a shoulder at low BE that increases in 

intensity with metal content (Figure 4.4b). This low-BE contribution is attributed to the 

formation of metal-rich domains in the SiO2 matrix, whereas the significantly more intense high-

BE peak results from homogeneously mixed transition-metal and Si atoms.191 This heterogeneity 

is known to occur in metal silicates at higher metal loadings, as shown in Chapter 3 and 

elsewhere.47, 181, 186 Additionally, the O 1s spectrum of the monoclinic ZrO2 (m-ZrO2) standard 

shows a high-BE shoulder at energies characteristic of surface adsorbates, which is 

understandable given that the standard was not pre-treated by Ar+ sputtering and/or in vacuo 

annealing.222  

To make analysis feasible for the many samples investigated, the BE of the photoelectron 

peak maximum is plotted as a function of total metal content (Figure 4.5). BEs from ternary 

silicates are also plotted to show the close agreement with values obtained from the quaternary 

silicates at similar total metal content (≤0.1 eV difference when the total metal content is 

identical). (Core-line spectra from (TiO2)x(SiO2)1-x are reported in Chapter 3.) As the total metal 

content increases, the variation of the quaternary BEs at a fixed total metal content increases, 

though there is no monotonic trend in BE as the Zr:Ti ratio is changed (see Figure 4.3 and 

Figure 4.4 for the individual spectra), and the small deviations are at the limits of instrumental 

precision (±0.1 eV). Such small deviations may be due to minor differences in synthetic 
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conditions or heterogeneity, the latter of which is well known in metal silicates at high metal 

content, and can be seen in the O 1s spectra of these materials (Figure 4.4b).47, 181, 186 Also, 

although the BEs generally agree within the precision of the measurements, the decrease in the 

ternary (ZrO2)x(SiO2)1-x BEs appears to be slightly less than in the quaternary silicates, particularly 

at higher metal loadings (Figure 4.5). These small differences between the ternary and 

quaternary metal silicates may be caused by changes in the average Zr CN in (ZrO2)x(SiO2)1-x, 

which increases slightly with increasing metal content (cf. the quaternary silicates, where Zr K-

edge spectra showed that the Zr CN remains unchanged, as shown in Figure 4.2b).112 The small 

changes in CN seen in the ternary silicates could cause the BEs to be slightly higher than the BEs 

from the quaternary silicates, for similar reasons to those highlighted in Chapter 2. 

As the total metal content (x + y) increases from 0.1→1, the Zr 3d5/2, Ti 2p3/2, and O 1s 

BEs decrease by 1.0, 1.3, and 2.5 eV, respectively. Although a similar compositional range is not 

accessible for Si, the Si 2p3/2 BE decreases by 0.9 eV from (x + y) = 0→0.3. It is clear that there 

are large decreases in BE with increasing total metal content, but the underlying cause of the BE 

shift is unknown without the aid of other techniques. For example, substitution of Si4+ atoms by 

more electropositive Ti4+ or Zr4+ atoms (χSi = 1.74, χTi = 1.32, χZr = 1.22) may increase final-state 

relaxation experienced by electrons in the material (increasing Δ𝐸𝑖EA in eq. ( 4.1 ), and 

decreasing the BE). Alternatively, this substitution could lead to more electron density at and/or 

around the absorbing atom in the ground-state (decreasing 𝑘Δ𝑞𝑖 and/or Δ∑ qj
rij

 i≠j  in eq. ( 4.1 ), 

and decreasing the BE).56, 114, 220, 223 Additionally, the incorporation of metal centres into the 

materials will increase the average bond distances (rSi4+ (CN:4) = 0.26, rTi4+ (CN:5) = 0.51, 

rZr4+ (CN:8) = 0.84), which could also affect Δ∑ qj
rij

 i≠j .56, 128, 220  



90 

4.3.3. Ti L2,3-, Si L2,3-, and O K-edge XANES 

To determine the origin of the BE shifts in the XPS core-line spectra, soft X-ray XANES 

spectra (Ti L2,3-, Si L2,3-, and O K-edge) were collected and compared to the corresponding XPS 

spectra (Ti 2p, Si 2p, and O 1s). XANES absorption energies shift for similar reasons as XPS 

BEs, and shifts in absorption energy can be explained by the same charge potential model 

introduced for XPS in eq. ( 4.1 ). The important difference between XANES and XPS lies in the 

final state produced by each method. In XPS, the final state of the system being probed is 

electron deficient and has an unscreened core-hole (the core electron having been removed from 

the material), so relaxation effects due to the core-hole are greater than in XANES (where the 

core electron is promoted to conduction states and can partially screen the core-hole).54, 78, 79 

Thus, when the ground state is identical and electrons of equal energy (i.e., the same orbital) are 

probed by both techniques (e.g., Ti 2p3/2 XPS and Ti L3-edge XANES), the difference in the final 

state of analogous XPS and XANES excitations can be exploited to resolve ground- and final-

state effects in XPS BE shifts. Additionally, the lineshape of Ti L2,3- and Si L2,3-edge spectra can 

be used to determine the coordination environment around these elements.  

4.3.3.1. Ti L2,3-edge XANES 

Ti L2,3-edge spectra result from the excitation of Ti 2p electrons to unoccupied Ti 3d 

states, and are sensitive to both the local CN and the electronic structure (Section 3.3.2).78, 224 Ti 

L2,3-edge spectra are split into the L3 and the L2 components as a result of spin-orbit coupling, 

and each component is split by bonding interactions (e.g., crystal field splitting).78, 225 (These 

peaks are further broadened by multiplet interactions.226, 227) In general, although the L2 

component is more poorly resolved than the L3 (due to broadening from shorter core-hole 

lifetimes), the spectral features in both edges are consistent.226, 228 Previous studies have assigned 
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the multiple peaks of the L3 or L2 components to transitions with energies reflective of the 

splitting in Ti 3d orbital energies.188 For example, when Ti is in an octahedral environment, a 

low-energy peak is attributed to transitions involving t2g states, and a high-energy peak is 

attributed to eg* states. 

Owing to the complex lineshape and numerous spectral features, Ti L2,3-edge spectra are 

characteristic of the Ti CN, and comparison to crystalline standards with known CNs allows the 

estimation of the Ti CN.188 The L3-edge spectra show 2 peaks, and the largest distinguishing 

factor between spectra from Ti having different CNs is the ratio between high- and low-energy 

peak intensities, which is large when Ti is 5-coordinate (~3), and small when Ti is either 4- or 6- 

coordinate (~1).188 (The L2-edge shows similar changes.188) The L2,3-edge spectra collected from 

the quaternary silicates studied here have lineshapes that are characteristic of 5-coordinate Ti 

(Figure 4.6a), though the presence of other-coordinate species in small amounts cannot be ruled 

out.188 Further, the lineshape remains largely unchanged with increasing total metal content, 

suggesting the Ti CN is constant. These findings are consistent with findings from the Ti K-edge 

spectra, presented earlier (Section 4.3.1). As a point of contrast to the ternary silicates, the rather 

undramatic lack of change differs from the (TiO2)x(SiO2)1-x system, where the more surface-

sensitive Ti L3-edge spectra showed a slight increase in the Ti CN with increasing total metal 

content (Section 3.3.2). Monitoring structural changes is important for characterization, as 

changes in CN have been shown to influence BEs. However, examining shifts in XANES 

absorption energies is necessary to determine whether the ground-state energies are changing. 

The Ti L3-edge spectra (Figure 4.6a) showed no change in the L3-edge absorption energy 

(<0.1 eV, determined by the maximum in the first derivative shown in Figure 4.6a), indicating 

that ground-state effects are not responsible for the Ti 2p BE shift observed by XPS.   
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Figure 4.6. (a) Ti L2,3-edge and (b) Si L2,3-edge XANES spectra of the quaternary silicates. 
Dashed lines are a guide to indicate the edge absorption energy, which is taken to be the peak 
maximum in the first derivative. In both sets of spectra, a <0.1 eV shift was observed across the 
series as the total metal content is changed, indicating there is no change in ground-state 
energies. Spectra from TiO2 (anatase) and SiO2 (fused silica) standards are shown as examples of 
the lineshape expected if the Ti4+ CN was 6 and/or the Si4+ CN was 4.   
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4.3.3.2. Si L2,3-edge XANES 

Si L2,3-edge spectra were also collected to probe the Si CN and changes in the ground-

state electronic structure (Figure 4.6). The Si L2,3-edge spectra have features due primarily to Si 

2p→3s transitions at lower energies, followed by a broader region at higher energies involving 

largely 2p→3d transitions.141, 142, 201, 229, 230 When Si is in a tetrahedral coordination environment, 

mixing of the p- and d-states allows transitions to unoccupied states with some p-character, 

leading to a broad and intense feature (B) that follows the feature at lowest energy (A).142, 201, 230, 

231 (Feature (A) is noticeably split by spin-orbit coupling, leading to two peaks.141, 142) The Si 

L2,3-edge lineshape is characteristic of the Si coordination geometry, in part because large 

changes in coordination lead to significant changes in the spectral lineshape and the intensity 

ratio of features A and B.142, 230, 232 

Comparison of the spectra collected at the Si L2,3-edge reveals only subtle changes in the 

lineshape (such as a slight broadening of the peaks with increasing metal content) and less than 

0.1 eV change in absorption energy across all samples (Figure 4.6b). The lineshape is similar to 

SiO2, and confirms that Si has a 4+ charge and remains in a 4-coordinate, tetrahedral geometry in 

the materials investigated here.230 This is well supported by previous investigations of 

(TiO2)x(SiO2)1-x using Si K-edge XANES, which have found that the Si CN is insensitive to 

changes in metal content of the glasses; Si4+ remains in a 4-coordinate tetrahedral site.183 Si K-

edge spectra of (TiO2)x(SiO2)1-x collected here show no change in Si CN with increasing metal 

content, confirming studies by other groups (Figure 4.7).183 There are no changes in the Si CN, 

removing the possibility that the decrease in the Si 2p BE is due to CN-induced shifts.  
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Figure 4.7. Si K-edge XANES spectra of ternary metal silicates show no changes with metal 
content, confirming there is no change in the Si CN with increasing metal content.  
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Further, the lack of significant changes in the Si L2,3-edge absorption energies (<0.1 eV 

shift, determined by the maximum in the first derivative shown in Figure 4.6b) is testament to 

the lack of ground-state shifts in the Si 2p BEs with substitution. (Previous studies of related 

silicates have shown that Si L2,3-edge absorption energies shift with substitution of the next-

nearest neighbour (NNN) cation due to ground-state effects, but this is not observed in the metal 

silicates studied here.230  

4.3.3.3. O K-edge XANES 

The O K-edge XANES spectra were also collected to explore changes in the electronic 

structure of the silicates with changing Ti and Zr content. The peaks in O K-edge spectra result 

from O 1s→2p transitions, though because the O 2p orbitals interact with other atoms in the 

structure, the O K-edge spectra are feature-rich and often have contributions from the 

coordinating atoms. This inherent complexity makes electronic structure calculations a valuable 

aid for interpretation. Specifically, since XANES transitions are to unoccupied states, examining 

the unoccupied partial electronic density of states (DOS) can help assign general regions of 

spectral density to particular interactions. In general, the low-energy region of O K-edge spectra 

(<535 eV) from the silicates discussed here have features due to O 2p states interacting with M 

(n–1)d states (Ti 3d, Zr 4d).152, 233, 234 This is followed by a region at higher energy (>535 eV) 

with features due to O 2p states interacting with np and ns states (e.g., Ti 4p/4s, Zr 5p/5s, Si 

3p/3s).152, 233, 234 These assignments are supported by ab initio DOS calculations of the partial 

density of unoccupied states for ZrSiO4 and TiSiO4 (Figure 4.8c). 

As with the Ti L2,3- or Si L2,3-edge, any shift in the O K-edge absorption energy would 

signal that there are changes in ground-state energies with substitution. The O K-edge spectra of 

the quaternary silicates show a lower-energy feature that becomes more prominent with 
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increasing Ti content (Figure 4.8a), owing to the greater number of unoccupied Ti 3d states 

(Figure 4.8c). The Ti 3d states are found at lower energies than the Zr 4d states due to the 

decreased average distance of 3d electrons to the nucleus (i.e., 3d states are bound more tightly 

than 4d states). Examination of this feature shows no change in absorption energy (determined 

by the maximum in the first derivative shown in Figure 4.8b) when the metal content is varied. 

This is consistent with other findings in this work, which suggest that the total metal content (and 

not the metal identity, e.g., Zr or Ti) plays the largest role in shifts of core-level energies. Similar 

examination of the higher-energy feature in the O K-edge spectra (~535.0 eV) reveals no shift in 

absorption energy (Figure 4.8), suggesting that the O ground-state energies are insensitive to 

changes in the identity of the metal. This was also found to be the case during examination of the 

Ti L2,3- and Si L2,3-edge spectra (Sections 4.3.3.1 and 4.3.3.2). 

To examine the effect of total metal content over a larger range of substitution, the 

ternary silicates, (ZrO2)x(SiO2)1-x, were examined from x = 0.1→0.5, with SiO2 and ZrO2 taken 

as the end-members at x = 0 and 1, respectively (Figure 4.9). No shift in the O K absorption 

energy (535.0 eV) was observed up to x = 0.5, and only a 0.2 eV increase was observed from 

x = 0→1 (Figure 4.9b). Although there is a decrease (0.5 eV) in the onset energy of the Zr 4d 

states, the peak maximum of this feature in the O K-edge spectrum (the zero-crossing in the first 

derivative) remains unchanged, so it is likely due to a broadening of the Zr 4d band with 

increasing Zr content. The same phenomenon was seen in the O K-edge spectra of the Ti ternary 

silicates (Chapter 3), though there was no effect on the Ti core levels. Further, this change in the 

Zr valence states is not related to the changes in the O core levels (as seen by the lack of shift in 

the main edge at 535.0 eV), and is small compared to the 2.5 eV shift in the O 1s BE. 
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Figure 4.8. (a) O K-edge XANES spectra of the quaternary silicates. No shift was observed in 
the absorption energy (535.0 eV) when Zr replaces Ti, as monitored by (b) the first derivative of 
the O K-edge spectra. Dashed lines are a guide to indicate the absorption-edge energy, which is 
taken to be the peak maximum in the first derivative. (c) The metal (n–1)d, O 2p, and total 
density of states of ZrSiO4 and TiSiO4 were calculated to confirm assignment of the orbital 
contributions in the O K-edge spectra.  
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Figure 4.9. (a) O K-edge XANES spectra of the Zr ternary silicates. The absorption edge at 535 
eV is preceded by a low-energy feature due to metal d states. (b) Taking the first derivative is 
helpful to look for shifts in absorption energy. Dashed lines are a guide to indicate the 
absorption-edge energy, which is taken to be the peak maximum in the first derivative. No shift 
in the O K absorption energy (535.0 eV) was observed up to (x + y) = 0.5, and a 0.2 eV increase 
was observed from x = 0→1 (from SiO2→ZrO2). Although there is a decrease (0.5 eV) in the 
onset energy of the Zr 4d states, the peak maximum of this feature in the O K-edge spectrum (the 
zero-crossing in the first derivative) remains unchanged, so it is likely due to a broadening of the 
Zr 4d band with increasing Zr content. Further, this change in the Zr valence states is not related 
to the changes in the O core levels (as seen by the lack of shift in the main edge at 535.0 eV), and 
is small compared to the 2.5 eV shift in the O 1s BE.  
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4.3.4. Identifying the cause of XPS BE shifts 

Previous XPS studies on representative members of the (ZrO2)x(SiO2)1-x series (i.e., SiO2, 

ZrSiO4, ZrO2) have also found decreases in core-line BEs with increasing metal content, but the 

shifts were attributed to increased ground-state charge density at the absorbing atom.55 Core-line 

BEs and Auger transitions were collected, after which the Auger parameter was used to estimate 

Δ𝐸𝑖EA and DFT calculations were used to determine the contribution from Δ∑ qj
riji≠j .55 It was 

found that the calculated increase in the Madelung potential ( Δ∑ qj
riji≠j  ) was opposed by a 

measured increase in relaxation of similar magnitude, so it was concluded that the decrease in 

BEs with increasing metal content was due to increased charge density at the absorbing atom 

(𝑘Δ𝑞𝑖).55 However, XANES absorption energies are also sensitive to changes in charge density 

in the ground-state, and the spectra presented here show no change in absorption energies with 

metal content. This suggests that any ground-state contributions, although likely present, oppose 

each other and do not cause a net change in the ground-state core-level energies.  

The XPS core-line spectra, reported in section 4.3.2, showed a large decrease in the 

photoelectron BEs of all elements in (ZrO2)x(TiO2)y(SiO2)1-x-y with increasing total metal 

content. Meanwhile, soft X-ray XANES spectra (Ti L2,3-, Si L2,3- and O K-edge), reported in 

section 4.3.3, showed no changes in absorption energies, implying that ground-state effects are 

not a major contributor in the XPS BE shifts. This leaves changes in final-state relaxation (Δ𝐸𝑖EA) 

as the driving cause of these BE shifts. Previous studies on oxygen-deficient perovskite-type 

materials have shown that a change in CN can change the magnitude of relaxation (Chapter 2). 

This is not the case in the metal silicates studied here, as hard X-ray XANES (Zr and Ti K-edge) 

performed in this work show the metal CN is static as a function of total metal content in the 
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quaternary silicates (Section 4.3.1), so the decrease in BE cannot be driven by a changing CN of 

the absorbing atom. Yet, although the average CN of the absorbing atom (either Si, Zr, or Ti) 

does not change with increasing total metal content, the average CN of the Si/Zr/Ti site does 

increase as Si is replaced by metal atoms. (In the silicates examined here, the average CN of Si is 

4, Ti is roughly 5, and Zr appears to be 8.) Given the large difference in the average Ti and Zr 

CNs, a difference between the ternary silicate BEs would be expected if an increase in the 

average CN of the nearest neighbour (NN) or next-nearest neighbour (NNN) site was a major 

contributor to the BE shifts. However, the core-line BE shifts from (ZrO2)x(SiO2)1-x and 

(TiO2)x(SiO2)1-x agree within the limits of instrumental precision (±0.1 eV) to those from 

(ZrO2)x(TiO2)y(SiO2)1-x-y at similar metal loadings (x = 0→0.33). The close agreement between 

the shifts in BE from the ternary and quaternary silicates, which have different average metal 

CNs, suggests that the average metal CN does not play a major role in the BE shifts observed in 

the quaternary silicates.  

Instead, the BE shifts in the silicates are caused by substitution of Si by Ti or Zr atoms, 

which are much less electronegative (χSi = 1.74, χTi = 1.32, χZr = 1.22).114, 223 As the 

electronegativities of Ti and Zr are similar, mutual core-line BE shifts experienced by 

(ZrO2)x(SiO2)1-x and (TiO2)x(SiO2)1-x are remarkably close, as noted above. This close agreement 

between ternary BE shifts further supports the conclusion that the electronegativity difference 

(Δχ) is the primary contributor. Despite large differences in the metal CN, bonding environment, 

and response of the glass network (large Zr atoms act primarily as network modifiers—network 

modifiers do not participate in forming the glass network structure—whereas smaller Ti atoms 

can act as network formers and modifiers), the driving force of the BE shifts is similar (Δχ), and 

this leads to BE shifts of similar magnitudes in both ternary systems.218, 219 As metal atoms 
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replace Si and the average electronegativity of the Si/Zr/Ti site decreases, the electron density 

becomes less tightly bound. Consequently, electron density from the chemical environment 

surrounding the absorbing atom can relax to a greater extent around the core-hole produced 

during an XPS experiment, lowering the final-state energy and leading to a decrease in the BE. 

Revisiting the charge potential model in eq. ( 4.1 ), these shifts resulting from final-state effects 

can be described as a change in the magnitude of the ΔEi
EA term, which describes changes in 

extra-atomic relaxation. 

4.3.5. The Auger parameter 

The electronic structure of a material is sensitive to changes in the chemical environment, 

and can be probed by many spectroscopic techniques. As was discussed in Sections 4.3.2 and 

4.3.4, there are numerous factors that influence the BE of a photoelectron peak, making 

complementary techniques necessary to elucidate the major contributors to a shift in energy. By 

comparing the shifts in XPS BEs and XANES absorption energies of transitions involving the 

same core electron, it is argued in this work that the observed decrease in BEs with increasing 

total metal content is due to greater final-state relaxation. To confirm that final-state effects are 

responsible for the BE shifts, the O KLL Auger transition was monitored and the Auger 

parameter, one of the few experimental measures of extra-atomic relaxation, was extracted 

(Figure 4.10 and Figure 4.11).77, 235 

4.3.5.1.  The physical basis of the Auger parameter 

The Auger parameter, α’, is obtained by adding the BE of a core-line photoelectron peak 

and the kinetic energy (KE) of an Auger peak involving the same orbital as the photoelectron 

peak. Provided that the transitions giving rise to the Auger peak involve only core orbitals, the 

change in the Auger parameter provides a direct measure of final-state effects in XPS BEs.56, 76, 
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77, 235 These final-state effects are primarily due to changes in extra-atomic relaxation around the 

core-hole, Δ𝐸𝑖EA in eq. ( 4.1 ).56, 77, 235 The physical basis for the Auger parameter lies in the 

nature of the final states created during photoelectron and Auger electron emission. In an Auger 

process, the atom is left in a doubly-ionized final state, which experiences more relaxation than 

the final state produced by emission of a photoelectron, where there is only a single core-hole.235 

Understandably, final-state effects play a larger role in Auger KEs than photoelectron BEs; 

however, shifts in ground-state energies influence XPS BEs and Auger KEs equally. Thus, when 

the Auger KE and XPS BE involving the same orbital are combined in the Auger parameter, 

ground-state effects drop out, and shifts in the Auger parameter depend only on final-state 

effects, as shown in detail below.235  

After primary photoelectron emission in XPS, the excited atom is left with a core-hole. In 

the Auger KLL Auger process, this K-shell (1s) core-hole (K+) subsequently decays with 

relaxation of an L-shell (2p) electron and ejection of an L-shell electron, leaving two holes in the 

L shell (L+L+). The kinetic energy (KE) of the Auger electron is given approximately by 

eq. ( 4.2 ), where 𝐸𝑖 terms represent ground-state energies of core shells, and 𝐸𝑖EA terms represent 

the relaxation energies of core shells. (Where appropriate, initial-state effects have been placed 

in square brackets to help distinguish them from final-state effects.) 

 KEAuger = [𝐸𝑖(K) − 𝐸𝑖(L) − 𝐸𝑖(L)]− 𝐸𝑖EA(K+) + 𝐸𝑖EA(L+L+) ( 4.2 ) 

Because the KLL Auger KE depends on the difference in energy between the K and L 

shells, the Auger KE will increase if the K-shell becomes more stabilized (lower energy), while 

the Auger KE will decrease if the L-shell becomes more stabilized. (This is why Ei(L) terms 

have the opposite sign as Ei(K) terms.) Accordingly, a shift in the kinetic energy of the KLL 
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Auger electron is given by eq. ( 4.3 ). By analogy, a shift in the KE of a 1s (K-shell) 

photoelectron examined by XPS is given by eq. ( 4.4 ). 

 ∆KEAuger = [∆𝐸𝑖(K) − 2∆𝐸𝑖(L)]− ∆𝐸𝑖EA(K+) + ∆𝐸𝑖EA(L+L+) ( 4.3 ) 

 ∆KEXPS = [−∆𝐸𝑖(K)] + ∆𝐸𝑖EA(K+) ( 4.4 ) 

Provided that only core shells are involved in Auger emission, the shift in ground-state 

energy of the different core shells is approximately equal (i.e., ∆𝐸𝑖(K) = ∆𝐸𝑖(L) = ∆𝐸𝑖,ground) 

and the shift in the Auger KE simplifies to eq. ( 4.5 ).235 If valence shells are involved, the simple 

model shown here breaks down because the shift in ground-state energies of core shells is 

different than valence shells. 

 ∆KEAuger = �−∆𝐸𝑖,ground� − ∆𝐸𝑖EA(K+) + ∆𝐸𝑖EA(L+L+) ( 4.5 ) 

In the original model of the Auger parameter proposed by Wagner, final-state relaxation 

(referred to as the “polarization energy”) was assumed to be proportional to e2, where e is the 

charge of the ion.235 Consequently, the shift in relaxation energy of the doubly-ionized state 

Auger final state will be 4 times that of the singly-ionized XPS final state, i.e., ∆𝐸𝑖EA(L+L+) =

4∆𝐸𝑖EA(K+). This is shown in eq. ( 4.6 ), which simplifies to eq. ( 4.7 ). 

 ∆KEAuger = �−∆𝐸𝑖,ground� − ∆𝐸𝑖EA(K+) + 4∆𝐸𝑖EA(K+) ( 4.6 ) 

 ∆KEAuger = �−∆𝐸𝑖,ground� + 3∆𝐸𝑖EA(K+) ( 4.7 ) 

Taking the difference between the shift in the Auger KE and photoelectron KE 

(eq. ( 4.8 )) removes any dependence on ground-state effects; the shift in the Auger parameter, 

Δα, directly provides the contribution of final-state relaxation in a singly-ionized final state, such 

as that created in XPS.  



104 

 ∆𝛼 = ∆KEAuger − ∆KEXPS = 2∆𝐸𝑖EA(K+) ( 4.8 ) 

Alternatively, the excitation energy can be added to the Auger parameter, and the result is 

equivalent to addition of the Auger KE and XPS BE, shown in eq. ( 4.9 ) and eq. ( 4.10 ).  

 ∆KEXPS = hυ − ∆BEXPS ( 4.9 ) 

 ∆𝛼′ = ∆𝛼 + hυ = ∆KEAuger + ∆BEXPS = 2∆𝐸𝑖EA(K+) ( 4.10 ) 

4.3.5.2. The effect of total metal content on final-state relaxation 

The Auger parameter described and used here only provides a reliable estimate of final-

state relaxation when the valence shell is not involved in the Auger transition.77, 235-238 However, 

though strict quantification of the relaxation requires modified Auger parameters or Auger 

transitions involving only core orbitals, the use of Auger transitions involving valence orbitals is 

used here in the simple model to qualitatively confirm that final-state effects are responsible for 

the observed BE shifts.77, 238-241 O KLL Auger spectra for the quaternary and ternary silicates are 

shown in Figure 4.10, and the peak maxima were plotted as a function of total metal content 

(Figure 4.11a). These Auger KE values were added to the previously presented O 1s BEs 

(Figure 4.5) to obtain the Auger parameter (Figure 4.11b). A plot of the Auger parameter vs. 

total metal content (irrespective of metal identity) yields a positive linear relationship, 

confirming that Δ𝐸𝑖EA, the degree of final-state relaxation, in (ZrO2)x(TiO2)y(SiO2)1-x-y and 

(ZrO2)x(SiO2)1-x increases with total metal content. As the electronegativities of Zr and Ti are 

similar, the identity of the metal was not found to be important in this case. 
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Figure 4.10. O KLL Auger spectra from (a) quaternary and (b) ternary silicates.  
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Figure 4.11. (a) O KLL Auger peak maxima and (b) Auger parameters of the quaternary and 
ternary silicates. The Auger parameter increases with total metal content, confirming that final-
state relaxation increases in the same fashion.  
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Figure 4.12. Plots of XANES absorption energies and XPS BEs for transitions with identical 
ground-state energies. The absorption energies remain unchanged, while the BEs decrease, 
indicating that final-state effects are dominant. The height of the symbols represents the 
precision of the measured energy (±0.1 eV), and the precision of the stoichiometry is believed to 
be better than (x,y ±0.02). Spectral energies from ternary silicates [(TiO2)x(SiO2)1-x and 
(ZrO2)x(SiO2)1-x; x = 0.1, 0.25, 0.33, 0.50] are included to show the close agreement with the 
quaternary silicates.  
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4.4. Conclusions 

The observation of significant shifts in the XPS BEs of the quaternary transition-metal 

silicates without accompanying shifts in analogous XANES spectral energies demonstrates the 

dominant influence of increasing final-state relaxation with next-nearest neighbour (NNN) 

substitution in the silicates (Figure 4.12). Zr K-edge, Ti K-edge, Ti L2,3-edge, Si L2,3-edge, and 

Si K-edge XANES spectra confirm that the CN and oxidation state of Zr4+, Ti4+, and Si4+ do not 

change with increasing metal content. In the (ZrO2)x(TiO2)y(SiO2)1-x-y series, the substitution of 

Si for group IV metals (Zr and Ti) with lower electronegativity increases the amount of final-

state relaxation experienced by atoms in the material upon excitation, decreasing all core-line 

BEs. Si is more electronegative than Ti or Zr, and restricts the ability of electrons in the material 

to relax around a core-hole produced in XPS. As the concentration of the incorporated less-

electronegative atoms increases, electrons in the material near a core-hole are able to relax to a 

greater extent, lowering the final-state energy and the observed BE. The increase in final-state 

relaxation with total metal content has been supported through analysis of the Auger parameter, 

which also increases with total metal content. This investigation provides another example to 

improve our understanding of the many influences that makes analysis of XPS spectra 

complicated, and highlights that large changes in BE can occur without any changes in ground-

state energies (e.g., oxidation state).  
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Chapter 5 

5. Conclusions 

5.1. Summary 

The work presented here highlights the investigation of several systems toward the goal 

of better understanding the factors that cause X-ray photoelectron spectroscopy (XPS) binding 

energies (BE) to shift. This spectroscopic technique is routinely used to examine the electronic 

structure of materials in the solid state, yet many effects remain poorly understood and require 

further study to understand their role in spectral energy shifts. Improving our understanding of 

the causes of spectral energy shifts, such as the effect of coordination number (CN) and the next-

nearest neighbour (NNN), is critical to the continuing development of this technique as a probe 

of electronic structure. Through selection of model systems that isolate many of the contributors 

to spectral energy shifts, the combined use of X-ray absorption near-edge spectroscopy 

(XANES) and XPS has been shown to be useful for resolving ground- and final-state effects. 

This thesis describes the first systematic study of the role that CN plays in BE shifts, and 

includes an important study of final-state NNN effects, which have not been extensively studied 

in inorganic solids.54, 73, 193  

5.1.1. The effect of coordination number 

The role of CN in XPS BE shifts was investigated in Chapter 2, which featured the 

SrFe1-xZnxO3-δ (0 ≤ x ≤ 1) system. This is an oxygen-deficient perovskite-type material that is 

interesting because of its mixed ionic-electronic conduction (MIEC), which positions it for use in 
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high-temperature reactors catalyzing the partial oxidation of methane to syngas, and as a part of 

solid oxide fuel cells (SOFC).9 Co-containing materials decompose under the high-temperature 

operating conditions for these proposed applications, so the absence of Co in the materials 

studied here makes SrFe1-xZnxO3-δ an important system to study.9, 115 With increasing Zn content 

in SrFe1-xZnxO3-δ (0 ≤ x ≤ 1), examination of Fe K- and Zn K-edge XANES spectra showed that 

greater oxygen deficiency lowers the transition-metal CN. Substitution of Fe by Zn resulted in 

shifts in the metal 2p XPS BEs that were much greater than the shifts observed in the 

corresponding L2,3-edge XANES absorption energies. These shifts are due to increasing final-

state relaxation with decreasing metal CN. As the number of electron-rich O2- anions 

surrounding the metal centres decreases, there is less electron density to screen the core-hole 

generated by XANES or XPS processes. Consequently, the poorly-screened core-hole exerts a 

stronger influence on the system, resulting in greater relaxation of the electrons. Further, as O is 

electronegative compared to other atoms in the structure, its tendency to tightly bind electrons 

restricts the ability of electrons from the material to relax around a core-hole on a metal centre. 

As the CN decreases, the magnitude of final-state relaxation around the core-hole increases, 

lowering the final-state energy and the observed BE. As mentioned throughout this thesis, if the 

same core orbital is probed by XANES and XPS, final-state effects are more pronounced in XPS 

because the photoelectron is no longer associated with the material in the final-state and is thus 

unable to screen the core-hole.78, 116 (By comparison, XANES transitions are to bound states, and 

the promoted electron is still associated with the material in the final-state and is able to partially 

screen the core-hole.) This is consistent with estimations of screening through application of 

Slater’s rules, which were applied to explain the minimal influence of final-state effects in Fe 

and Zn L3-edge XANES, and stronger influence in the Fe and Zn 2p XPS spectra.160 Unlike the 
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metal spectra, energy shifts in the O K-edge XANES spectra and analogous O 1s XPS spectra 

were similar in magnitude, as ground-state effects were found to dominate. This was attributed to 

increased nearest-neighbour screening of the O nuclear charge with greater Zn content. 

5.1.2. Structural studies of transition metal silicates 

The amorphous TM silicates featured in Chapter 3 and 4, (MO2)x(M’O2)y(SiO2)1-x-y 

(M, M’ = Ti, Zr, Hf), are a family of materials whose many properties can be chosen in a 

controlled manner by adjusting the amount of metal oxide added. A variant of (HfO2)x(SiO2)1-x is 

being used as a high-κ dielectric replacement for SiO2 in complementary metal-oxide–

semiconductor (CMOS) devices, such as microprocessors, making the study of these materials 

important for the electronics industry.35, 40, 44 Within this large family, the Ti and Zr ternary 

systems, (TiO2)x(SiO2)1-x (0 ≤ x ≤ 0.33) and (ZrO2)x(SiO2)1-x (0 ≤ x ≤ 0.50), and the Ti/Zr 

quaternary system, (MO2)x(M’O2)y(SiO2)1-x-y (x + y = 0.2, 0.3), were synthesized by sol-gel 

methods and investigated by XANES and XPS. The lack of long-range order in amorphous 

materials hinders the use of diffraction-based techniques that are typically used to probe structure 

and homogeneity, making them ideal candidates for study by X-ray spectroscopy. The increased 

understanding of the how the CN changes depending on composition and location of the metal 

centres within the material, along with why the XPS BEs and XANES absorption energies shift 

with composition provided here, will aid in optimizing these materials for industrial applications. 

Additionally, despite the considerable volume of work on the ternary silicates (see Chapter 3, 

Chapter 4, and references therein), the quaternary silicates have received significantly less 

attention, and the work presented in Chapter 4 is one of the few structural studies of this 

system.168 
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Chapter 3 investigated how the Ti CN changes in (TiO2)x(SiO2)1-x depending on 

composition and annealing temperature, and if the Ti atoms examined are located within the bulk 

of the material or at the surface. It was shown therein that the use of both hard (Ti K-edge) and 

soft (Ti L2,3-edge) X-rays provides a useful way to monitor changes in the bulk and surface, 

respectively, of these amorphous materials. Examination of Ti K- and L2,3-edge XANES spectra 

revealed that the average Ti CN increases with greater Ti content (x), an effect of the larger ionic 

radius of Ti. Comparison of the Ti K- and Ti L2,3-edge XANES spectra showed, for the first 

time, that the average Ti CN is higher at the surface compared to within the bulk. (Within the 

bulk of the material, 4-, 5- and 6-coordinate Ti was observed while only 5- and 6-coordinate Ti 

was present at the surface.) Comparison of Ti K- and L2,3-edge spectra of annealed samples 

revealed that Ti atoms at the surface have a higher average CN than in the bulk, likely due to the 

presence of surface hydroxide and water groups that can coordinate to the Ti centres. Also, these 

materials are known to exhibit heterogeneity at higher metal content, though the presence of 

metal-rich amorphous domains in the silica network is difficult to detect, even with a 

combination of advanced spectroscopic techniques.47, 185, 219 It was found here that O 1s core-line 

XPS spectra of these materials, presented in Chapters 3 and 4 (Figure 3.2a and Figure 4.4b), 

exhibit features corresponding to metal-rich domains that increase with metal content. Owing to 

the strong O 1s signal, this provides a simple and rapid test to inspect the homogeneity of these 

materials during XPS analysis. The ability to easily detect heterogeneity may be valuable in 

other studies because XPS is commonly used for analyzing these materials, particularly in thin 

film applications.  
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5.1.3. Next-nearest neighbour (NNN) effects and electronegativity 

In addition to the important structural information acquired from the studies described 

above, final-state effects were investigated by examining changes in spectral energy with 

composition. The lack of significant changes in oxidation state or changes in electronegativity 

(χZn = 1.66, χFe = 1.64) in the SrFe1-xZnxO3-δ system removed influences from ground-state 

effects or NNN influences on the metal core-line BEs.114 However, NNN effects have not been 

extensively studied in inorganic solids and are thus poorly understood. For this reason, the role 

of the NNN atom was investigated in Chapters 3 and 4 by controlling the stoichiometry, and thus 

the degree of substitution at the NNN site. With increasing Ti content in (TiO2)x(SiO2)1-x, the 

O 1s, Si 2p, and Ti 2p XPS BEs decreased significantly, in agreement with previous studies. In 

comparison, the corresponding XANES absorption energies involving the same excited core-

electron showed little to no shift.178, 191 Ground state effects equally affect both XPS and 

XANES, so a comparison of the XPS BE and XANES absorption energy shifts allowed for an 

estimation of the contribution of final-state relaxation to the XPS BEs. The decrease in O 1s, 

Si 2p, and Ti 2p BEs with increasing Ti content is due to substitution of Si by less 

electronegative Ti atoms, leading to greater final-state relaxation. As the Ti CN was found to 

increase with greater Ti content, the shift to lower, rather than higher, BEs shows that changes in 

final-state relaxation due to substitution of the NNN atoms will dominate over CN effects when 

the difference in electronegativity of the substituting atoms is sufficiently large 

(e.g., Δχ(Si-Ti) = 0.4).114 While (TiO2)x(SiO2)1-x was found to exhibit these NNN final-state effects 

when Si replaces Ti (Δχ is large, Δχ(Si-Ti) = 0.4), this type of effect was not observed in 

SrFe1-xZnxO3-δ upon replacement of Fe by Zn (Δχ is small, Δχ(Fe-Zn)  = -0.02), evidence that the 

difference in electronegativity plays a crucial role. 
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Chapter 4 expanded upon the findings in the ternary silicates by increasing the 

complexity of the system to examine the effects of metal identity and changes in average CN of a 

crystallographic site (as opposed to an element). Zr K-, Ti K-, and Ti L2,3-edge spectra showed 

less change in the CN of metal centres than in the ternary silicates, allowing the isolation of CN-

induced shifts in XPS BEs that were shown to influence final-state relaxation in Chapter 2. As 

was the case with the ternary silicates, the significant shifts in the XPS BEs of the quaternary 

transition-metal silicates without accompanying shifts in analogous XANES spectral energies 

demonstrates the dominant influence of increasing final-state relaxation with NNN substitution 

in the silicates. In the (ZrO2)x(TiO2)y(SiO2)1-x-y series, the substitution of Si for group IV metals 

(Zr and Ti) with lower electronegativity increases the degree of final-state relaxation in the 

material upon generation of a core-hole, decreasing all core-line BEs. The increase in final-state 

relaxation with total metal content has been confirmed empirically through analysis of the Auger 

parameter, one of the few experimental measures of relaxation, which also increases with total 

metal content.77, 235 Despite large shifts in BE due to NNN substitution, no significant effect was 

observed due to the average CN of the NNN site in these materials. (In the silicates examined 

here, the average CN of Si is 4, Ti is roughly 5, and Zr is >6.) Mutual core-line BE shifts of 

(ZrO2)x(SiO2)1-x and (TiO2)x(SiO2)1-x agree within the limits of instrumental precision, ±0.1 eV, 

and show similar trends at the metal loadings investigated (x = 0→0.33). The close agreement 

between BEs of ternary metal silicates with different average metal CNs suggests that the 

average CN of the metal site (in these silicates) does not play a major role in the observed BE 

shifts. This is consistent with what has been previously described in this thesis. That is, since Δχ 

is large, we expect NNN effects to dominate over CN-induced effects. Also, because Δχ is 

responsible for the BE shifts and because Zr and Ti have similar electronegativities (χTi = 1.32, 
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χZr = 1.22; Δχ(Si-Ti) = 0.4, Δχ(Si-Zr) = 0.5), similar shifts in BE result, regardless of metal identity 

(Zr or Ti).114, 223 

The nature of the decrease in BEs with increasing metal content in the silicates has been 

debated, as there are many potential effects that could cause this shift. Some studies have 

suggested the BE shift is caused by final-state, while more recent studies combining experiment 

and theory argued that ground-state effects are responsible for the decrease in BE.54, 55 The 

findings presented in Chapter 3 and Chapter 4 suggest that the decrease in BEs with increasing 

metal content is due to increasing final-state relaxation, which is not new.54 However, most 

previous studies were conducted on thin films due to the industrial applications (semiconductor 

devices and optical coatings), where it was mentioned that interfacial charge trapping could have 

led to the observed decrease in BE.54 Charge trapping occurs between thin layers with different 

dielectric constants, but is not an issue with powders, which were chosen for the studies 

presented in this thesis.54 Properly assigning the origin of BE shifts is important, as ground-state 

electronic structure often dictates material properties and stability. 

5.1.4. Significance and implications 

Taken together, these studies on final-state effects provide important examples to 

improve our understanding of two of the many influences in XPS BE shifts that often complicate 

analysis. The significant changes in BE due to increasing final-state relaxation, such as those 

observed in this thesis, do not necessarily reflect changes in the ground-state energies or electron 

density, which are often sought by the use of XPS. For example, shifts in XPS core-line BEs are 

routinely used to assign changes in oxidation state, where an increase in formal charge by +1 

(e.g., Fe2+→Fe3+; V4+→V5+) leads to an increase in BE of roughly 1-2 eV.242-244 This is similar in 

magnitude to the shifts in BE presented throughout this thesis, where large changes in BE due to 



116 

increasing final-state relaxation occurred without any changes in oxidation state. Shifts in XPS 

core-line BEs are also used in catalyst optimization studies, where small (<0.5 eV) shifts in XPS 

BEs have been used to determine the relative electron density of metal centres.81, 245, 246 The 

electron density of metal centres in metal-phosphide hydrodesulphurization (HDS) catalysts 

affects the adsorption (and desorption) of sulphur on the surface of the catalyst, which has a 

strong influence on catalytic activity.245-247 (High affinity for sulphur leads to stronger 

adsorption, which increases catalytic activity up to a point; in the extreme case at low affinity, no 

substrate adsorbs to the surface and thus there is no reaction, while at the extreme case of high 

affinity, no product desorbs from the surface and the catalyst is deactivated.) Catalytic activity is 

often tuned by partial substitution of the metal. However, Chapter 3 and 4 demonstrated that if 

the difference in electronegativity (Δχ) of the substituted elements is large, substitution can lead 

to shifts in BE due to increasing final-state relaxation that, by virtue of being final-state effects, 

do not necessarily reflect changes in the ground-state electron density. These shifts in BE are 

larger in magnitude (>0.5 eV) than the BE shifts observed in the catalyst optimization studies 

mentioned earlier, making further studies of NNN effects a valuable endeavour, as it is currently 

unknown at which point Δχ leads to significant final-state effects. 

5.2. Directions for future research 

Although the observation of significant BE shifts due to final-state effects is well-

substantiated within the systems studied in this thesis, systematic studies on other systems are 

required to evaluate the transferability and generality of the concepts and models discussed in 

this thesis. ABO3-δ perovskite-type materials are a likely avenue for extending the current 

studies, as the perovskite structure-type is notoriously robust to substitution.15 By controlled 

substitution of the A and B sites, it should be possible to create several series and examine the 



117 

effect of changing electronegativity and/or CN on XPS BEs, providing more well-controlled 

systems to study. As there have only been 2 broad systems examined in this thesis, it is important 

to confirm that the results are general.  

A good starting point would be closely related systems to the ones studied in this thesis. 

In the Sr(M1-xM’x)O3-δ (M, M’ = transition metal) system, SrFeO2.75 (δ = 0.25) is convenient 

because it has a defined stoichiometry and is oxygen deficient. This allows the TM CN to 

increase or decrease, depending on the substituent. Substitution by Zn2+ was chosen for study in 

Chapter 2 because of its fixed oxidation state and similar electronegativity to Fe. In this case, the 

TM CN decreases to maintain charge neutrality. However, substitution by Zr4+ should increase 

the TM CN for the same reason. The SrFe1-xZrxO3-δ system was synthesized and XANES 

measurements have been performed.112 Performing XPS measurements is the next logical step, 

where an increase in the TM BEs is expected with increasing Zr4+ content due to an increase in 

the average CN (assuming the average oxidation state of Fe remains unchanged). As the change 

in δ is smaller (0.25→0 in the Fe/Zr system, cf. 0.25→1 in the Fe/Zn system), the changes in 

CN, and therefore BE, are expected to be smaller.  

Any fundamental study requires pure, single-phase materials, and both the SrFe1-xZnxO3-δ 

and SrFe1-xZrxO3-δ system exhibit multiple phases at intermediate values of x (0.3 < x <1) when 

using high-temperature synthetic methods. This limits the change in CN that can be achieved and 

studied for some elements (e.g., for Fe in these materials). Low-temperature methods designed to 

intimately mix the starting materials, such as routes employing ethylenediaminetetraacetic acid 

(EDTA) and citrate complexation, could potentially allow for synthesis of materials that are not 

accessible through the direct reaction of binary oxides at high temperature.24, 248-250 Compared to 

traditional syntheses, these “soft” complexation methods are less limited by diffusion because of 
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the proximity and thorough mixing of precursors. As a result, lower processing temperatures can 

be used, where undesirable phases might not be thermodynamically favoured.  

There are also limits to the change in CN that may not be as easily overcome in 

SrFe1-xZnxO3-δ, making other model systems necessary. In this perovskite-type system, metal 

CNs can range from 4 to 6, but it would be valuable to examine changes in systems with higher 

metal CNs. Further, it would be beneficial to study systems where the change in CN could be 

quantified. A study of the ZrO2 system is an excellent opportunity for both of these studies. ZrO2 

has several polymorphs where the Zr CN is 7- or 8-coordinate.251-253 Chapter 4 showed that the 

similar electronegativities of Zr and Ti do not cause shifts in BE due to NNN effects. Thus, 

ZrTiO4 (the Zr CN is 6) should serve as a suitable standard for 6-coordinate Zr, as it has the same 

metal/oxygen mol ratio (i.e., MO2) as ZrO2.254-256 Monitoring the change in BE as the absolute Zr 

CN decreases quantitatively from 8 to 6 will validate the results found in this work and extend 

the model to higher-coordinate metal centres. 

The study described in Chapter 2 and the studies proposed here all involve coordination 

environments where a metal centre is surrounded by O atoms. It is believed that the 

electronegativity of O is an important factor in these CN-induced final-state effects. As O atoms 

are much more electronegative than the other elements in the systems examined, they are 

believed to hinder the relaxation of electrons in the material around a core-hole generated on the 

metal atom. When the metal CN is high, electronegative O atoms restrict the ability of electron to 

relax, and this is alleviated when the CN decreases. However, on a more general level, is the 

observed CN-induced (or NNN-induced) change in final-state relaxation merely due to an 

increase in the average electronegativity of atoms in the material? As the average 

electronegativity (a measure of the ability to attract electrons) of atoms decreases in the materials 
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studied (as O is removed in SrZnxFe1-xO3-δ or as Si is replaced in the metal silicates), electrons in 

the material are less tightly held to atoms and able to better relax around a core-hole on nearest-

neighbour or NNN atoms, causing BEs to decrease. This raises an important question. At what 

point does the difference in electronegativity of substituted elements begin to play a major role in 

BE shifts? To answer this, it would be wise to undertake a systematic study of BE shifts across a 

series of metal silicates with increasing atomic number at constant total metal content 

((MuOv)x(SiO2)1-x; M = Mg, Ca, Y, Nb, W, V, Mn, Fe, Co, Al, B; x = constant; u and v depend on 

the charge of M), isolating the effect of the NNN electronegativity (χ). Chapters 3 and 4 showed 

that the difference in electronegativity between Si and the incorporated metal drives the shift in 

BE, and the study described here may be able to better quantify this effect. The silica network is 

robust and able to accommodate a wide range of substituents, and the metal-organic precursors 

for sol-gel syntheses are commercially available for most transition metals, as well as many other 

elements.51, 206 By studying the change in the Si 2p BEs as the identity of the metal is changed in 

the silica network, a relationship of BE shift vs χNNN (the electronegativity of the next-nearest 

neighbour) may emerge.73, 193  

There are many systems to be studied, but an excellent starting point is the 

(M2O3)x(SiO2)1-x system where M = Al and B, which could be made by sol-gel reaction of 

Si(OEt)4, Al(OBu)3, and B(OBu)3. Varying the concentration of both substituents in the 

quaternary (M2O3)x(M’2O3)y(SiO2)1-x-y system (M = Al; M’ = B), as was done in Chapter 4, 

would be a smart choice. First, the structures of aluminosilicate and borosilicate glasses are well 

studied, facilitating synthesis and structural characterization.33, 257-268 Second, Al and B are 

isovalent, simplifying characterization by XPS, where charge plays a large role.56 Third, the 
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range of electronegativities in the substituted species is large (χSi = 1.74, χAl = 1.47, χB = 2.01), 

which will cause large changes in XPS BEs and make any trends more evident.114 

This thesis has investigated several inorganic solids and has outlined shifts in XPS BEs 

that result from changes in CN and NNN atoms, representing an important step towards a more 

complete understanding of why BEs change. Several model systems have been identified for 

future studies due to the suspected ability to isolate many of the competing factors that influence 

XPS BEs (e.g., changes in structure, oxidation state, concentration, coordination number, etc.). 

These further studies will allow for a refinement of the understanding that was developed in this 

work.  
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