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Abstract 

A five-degree-of-freedom (5-DOF) robot manipulator for agricultural applications was 

developed by previous members of the robotic lab at University of Saskatchewan. The manipulator 

was designed to be installed on a mobile base vehicle for monitoring targeted crops in a farm field 

using sensors installed on its tip. The crop monitoring is called phenotyping. When the manipulator 

mobile base moves along the field, vibration is induced from the farm terrain to the base of 

manipulator. Thus, the sensors mounted at the end-effector (EE) of the manipulator may not record 

data accurately. To address this issue, vibration suppression of the manipulator is necessary. 

The objectives of this research were: 1. Evaluation of vibration experienced by the 5-DOF 

manipulator’s tip; and 2. Study active vibration control to remedy vibration experienced by the 

manipulator; also, some efforts were done for possible implementation of active vibration control 

on the manipulator in a laboratory setting.  

Free and forced vibration simulation studies were conducted to evaluate the amplitude of 

vibration transmitted to the EE from the base of the manipulator. To eliminate excitation coming 

from the manipulator’s base, an active vibration suppression method using a model-based 

controller was used. To obtain a mathematical model for the manipulator, finite element analysis 

was utilized using commercial software and was verified manually. This method was applied to 

three different cases: 1- a cantilever beam, 2- a two-link, two-joint manipulator (2L2JM), and 3- 

the 5-DOF manipulator. For active vibration control, model reduction was applied to a state-space 

model of systems via a matched-DC algorithm. The LQR (linear-quadratic regulator) was used for 

the cantilever beam vibration control. For the 2L2JM and the 5-DOF manipulator, a H∞ controller 

was used. This was an optimal and robust controller based on the H∞ norm. 

Based on vibration evaluation, it was found that an active vibration suppression was necessary 

for the 5-DOF manipulator. Mathematical models of several systems were developed and verified 

using finite element analysis. The controllers suppressed random vibration that were applied to the 

base of the 5-DOF manipulator. For the closed-loop control system of the manipulator, a look-up 

table was created for the actuators. 

Through this study, the vibration of the 5-DOF manipulator was analyzed. Then, mathematical 

models of different geometries as well as the 5-DOF manipulator were obtained. Then these 
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models were compared with the software models. The model reduction approach made the large 

finite element models reduce to systems with a small order. Using models and control strategies, 

simulation studies were conducted for the vibration suppression of the manipulator.  
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Chapter 1.  Introduction 

1.1 Motivation 

It has been predicted that humanity’s demand for food and resources will increase in the future. 

It is clear that not only should available resources be managed for the future, but also the quality 

and quantity of food productions should be increased. Improving breeding techniques through 

phenotyping is one of the most important tasks to prepare enough food resources for the next 

generation.  This includes measuring characteristics of crops such as a plant’s height, temperature, 

and vegetation indices. Engineers from different areas like mechanical engineering, electrical 

engineering, and computer scientists are trying to make progress and improvements in phenotyping 

research [1].  

Data collection through plant phenotyping needs to be done for different types of farm fields. 

The monitoring is performed using different vehicles, (unmanned aerial vehicles) UAVs, and 

mobile robots [2]. The motivation of this study was to develop a vehicle for automated crop 

monitoring. A 5-DOF manipulator was already developed in-house and is going to be installed on 

a mobile robot for autonomous travelling on a farm/breeding field. The manipulator develops 

vibration when the mobile robot, which carries it, traverses a rough farming terrain. In this thesis 

vibration transmitted to the EE of the manipulator was studied. 

 

1.2 Background 

A five-degree-of-freedom (5-DOF) robot manipulator for agricultural applications was 

developed by previous members of the robotic lab at the University of Saskatchewan. The 

manipulator was designed to be installed on a mobile base vehicle for monitoring targeted crops 

in a farm field using sensors installed on its tip. 

The degrees of freedom of the manipulator are illustrated on Figure 1.1. The first degree of 

freedom controls the yaw angle of the manipulator. It is located on the base of the arm. The 2nd 

and 3rd joints are on top of the base. The 2nd joint is for back-and-forth motion of the upper arm, 
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while the 3rd joint is for pitch angle adjustment of the upper arm. The 4th joint is a prismatic joint 

and is defined for upper arm elongation. The 5th joint is for the pitch angle of the EE. 

 

Figure 1.1. 5-DOF manipulator of U of S. 

 

1.3 Problem statement 

The manipulator has been designed to be light. In particular, the linear actuator was made up of 

aluminum c-channels with many holes. Thus, the stiffness of the upper arm is very low and 

susceptible to vibrational forces. This part of the beam could be characterized as a cantilever beam 

with a mass at the free end. When the manipulator mobile base moves along the field, vibration is 

induced from farm terrain to the base of manipulator. Thus, the sensors mounted at the end-effector 

(EE) of the manipulator will not record data accurately. 

In order to address the problem, vibration needs to be suppressed. One possible way is to use 

passive vibration suppression system (open-loop system). Due to the characteristic of the 

manipulator which needs to change its configuration during operation, it is difficult to add 

vibration-isolators or absorbers. Another possible solution could be through adhesive dampers to 

be attached to the links. Since the vibration is due to the flexible links and not the joints, the 
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vibration of the upper arm could be attenuated by adding adhesive dampers to the link. However, 

this means more mass is added to the upper arm in addition to wiring; therefore, this was deemed 

not to be acceptable.  Therefore, active vibration suppression (closed-loop system) was selected 

for this manipulator. In other words, a controller was designed and implemented so that one or two 

joints would operate to damp the vibration of the EE. Therefore, in this thesis, the designed 

controller used the 2nd and 3rd joints and all other joints were considered fixed.    

 

1.4 Literature review 

Active vibration control of flexible link manipulators (FLM), similar to any control problem, 

requires mathematical modeling and a controller design. However, there are a few control schemes 

that can be implemented without the need for mathematical modeling. One simple and non-model-

based approach for vibration suppression of FLM is by means of strain gauge measurement. In 

this approach the gravity liberated strain of the clamped side of the FLM is fed to the controller. 

Based on that, Phung et al. [3] applied a multi-layer perceptron neural network (MLP NN) for 

forward and inverse kinematics of a 3-DOF FLM under gravity. For the vibration suppression task, 

the mean liberated strain is fed to the P-action controller in the cascade controller. In another study 

on the same FLM, a cascade control scheme for position and vibration suppression is proposed by 

Malzahn et al. [4]. They implemented two different control approaches based on direct strain 

feedback or DSFB. One was a half integrator controller for joint positions and the other was the 

classic proportional controller for the joint velocities. In order to eliminate the effect of gravity on 

the strain gauge measurement, the mean liberated strain was derived through a finite impulse 

response filter (FIR filter). In another study, Njery et al. [5] used a NN to tune the gain of DSFB 

(direct strain feedback) for bending and torsional vibration control of a 3-DOF FLM in the 

presence of gravity. Another non-model-based approach is through Iterative Learning Control 

(ILC). It is a simple method for control of repetitive motions such as periodic vibration. In other 

words, the controller performance is improved by learning from past experience. In this regard, 

Meng et al. [6] implemented a PD-type boundary ILC law for vibration control of a 1-DOF FLM 

with command torque being exerted on the joint. The same authors in another publication [7] 

implemented ILC with consideration of input saturation of the joint torque. Regarding Neural 

Network modeling, Jamali et al. [8] investigated modeling of a 2-DOF FLM. Then, in another 
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publication [9], two PID controllers for each link were designed for vibration and motion control. 

The vibration of the links was measured by accelerometers at the end of each link and suppressed 

by PZT (piezo-electric) actuators. For each PID controller, a P-type iterative learning algorithm 

was designed for online gain tuning. Although non-model-based control schemes are capable of 

vibration attenuation, there is a low confidence on controller performance and system stability 

[10]. 

Among model-based active control studies, the AMM (assumed mode method) and FEM 

(Finite element method) modeling are of interest. Based on the first method, Pereira et al. [11] 

presented a double-loop control scheme for motion and vibration control of a 1-DOF FLM. The 

inner loop is a PD-controller while the outer loop is a zero-order controller called integral resonant 

control. In similar studies, authors of [12]–[15] used different methods such as classic controller, 

SMC (sliding mode control), SDRE (State-Dependent Riccati Equation), and a fuzzy sliding mode 

controller to attenuate the EE vibration of a 1-DOF FLM. In [16] Nestorović et al. a multi-input-

multi-output (MIMO) model of a piezoelectric cantilever beam was obtained based on the 

subspace algorithm. Then they used a linear quadratic regulator (LQR) to control the vibration of 

the beam’s end. For a wind tunnel cantilever sting (being treated as a cantilever beam), Shen et al. 

[17] fitted a transfer function to a measured frequency response of the first mode of vibration. Then 

a PID controller was used, and controller gains were tuned using a neural network. 

The above studies were for manipulators with relatively simple geometry. To deal with more 

complex geometry, it is better to take advantage of FEM; besides, it is computationally efficient 

for model-based real-time control [18]. Based on the Newmark method for solving FEM, 

Karagülle et al. [19] presented a simple residual vibration damping for a 2-DOF FLM. In another 

study, Dubay et al. [20] presented an active vibration controller using MPC (model predictive 

control). First, the FEM model of a 1-DOF manipulator is derived, then a finite element based 

MPC is obtained and is solved using the Newmark approach. The manipulator is controlled with 

a joint’s motor and a linear piezoelectric actuator. In [21], Shao et al. presented an impulse 

controller to control the forced harmonic excitation of a 1-DOF flexible-link flexible-joint 

manipulator. Given LQR control, the manipulator takes advantage of a pair of piezoelectric 

actuators. To reduce computational cost, a reduced model is applied by increasing the inertia of 

the hub. Khot et al. [22] used finite element analysis (FEA) to obtain eigenvectors of a cantilever 
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beam. They obtained a reduced state-space model of the beam using principal coordinates. They 

also used linear optimal control to suppress the beam’s tip vibration. Using FEA and Hamilton’s 

principle, the authors of [23] obtained mathematical model of a cantilever beam and implemented 

combination of a classic controller and fuzzy logic for vibration control of the beam’s tip. 

Similarly, Kamel et al. in [24] suppressed vibration of a cantilever beam using FEA and fuzzy-

classic controllers. In a recent paper [25], Ebrahimi et al. utilized a so-called L1 adaptive-controller 

for a model obtained using finite-element for a cantilever beam and controlled its vibration. Hatch 

in [26] studied a state-space model reduction of a flexible link manipulator (FLM). According to 

this work, balanced realization with the help of Match-DC-Gain model reduction is applicable for 

MIMO systems. 

Among mathematical modeling found in the literature and reported here, finite element 

modelling seems to be the most suitable; however, it results in a large model, which may be 

difficult for the controller in terms of computational cost. It is worth mentioning that in some 

articles the actuator to control the vibration of the link is a PZT actuator, which is not applicable 

for the 5-DOF manipulator.  

Manipulator modeling was studied in this thesis through FEA with the focus of model reduction 

to improve the controller performance. Besides, unlike most of the cases in the literature, only 

joints would operate in the present study to suppress the vibration of the manipulator. 

 

1.5 Objectives  

The research question is: Do we need active vibration control for the 5-DOF mobile-manipulator 

developed for an agriculture setting?  

When the vehicle is moving on an agricultural setting, the 5-DOF mobile-manipulator shows 

vibration due to its large size and flexibility. Therefore, the sensors mounted on the EE of this 

manipulator have difficulty recording phenotyping data accurately. The linear actuator of the 

manipulator with relatively lower stiffness is more prone to vibration. To address this issue, there is a 

need to damp the vibration of the manipulator, particularly due to its prismatic joint (slider pair). This 

overall objective can be divided into the following sub-objectives:  
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1. Evaluation of the amplitude of vibration experienced by the manipulator; if vibration is deemed 

to be excessive, then  

2. Design active vibration control with several control algorithms to minimize vibration of the 

manipulator's EE.  

The research is divided into 3 main sections: modeling, control, and experimental testing. 

 

1.6 Methodology 

1. For the first objective, for the free vibration evaluation, first, the natural frequencies and 

mode shapes of the 5-DOF manipulator were obtained using finite element analysis (FEA), with 

the commercial FEA software ANSYS (FEA-A). Then, a comparison was made between the 

numerical values and experimental modal analysis. A similar effort was done by another group 

member [27]. They obtained the natural frequencies and mode shapes of the manipulator using the 

software and verified those results by a hammer test. However, that part of the program was not 

reported in this thesis. 

Then, forced vibration analysis of the arm was studied while its base (tractor) was moving. This 

is done using simulation (FEA-A). Then, displacement transmissibility (ratio of EE’s displacement 

over maximum base displacement) using simulation was obtained. 

2. For the second objective, the first step to obtain the model of the manipulator was to use 

finite element method (FEM), then active vibration control for the manipulator was achieved. For 

this purpose, a few control approaches (particularly, LQR and H∞ controllers) were explored and 

simulations were done in a commercial software called MATLAB (here referred to as M-

software). The control inputs were applied only on the 2nd and 3rd joints (see Figure 1.1). 

3. The experimental tests were limited to implementing the input and output of the closed loop 

system. A look-up table was generated for experimental study of the stepper-motors as the inputs. 

Besides, the accelerometer was calibrated as a measurement unit or output. 
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1.7 Key contribution of thesis 

The focus of this study was on modeling and vibration control of the 5-DOF manipulator. 

Although the approach used in this thesis is not new, some novelty can be attributed to 

implementing this approach for such a large 5-DOF manipulator, with a reach of about 3-meters. 

The contributions of this research can be listed as follows. 

1. The dynamic modeling of the 5-DOF manipulator using master DOFs (numerical FEM) was 

the main contribution of this thesis. It modeled the complex robotic structure of the novel 

5-DOF manipulator. Unlike other literature that simplify the model to a cantilever beam or 

a 2-link-manipulator, the modeling dealt with the actual model of the manipulator. In 

addition, the FEM modeling through master DOFs has been used for a one DOF manipulator 

in the literature; however, the manipulator in this thesis dealt with five DOFs.  

 

2. The mathematical modeling was verified using FEA-A software; the model was also 

reduced to provide a better performance for the controller. 

 

3. The controller took advantage of 2 joints, unlike most of the literature reviewed that used a 

PZT actuator to provide moments for the link or moving one joint. 

 

4. Another contribution is paving path for forced vibration evaluation of the 5-DOF 

manipulator. For experimental implementation, a look-up table was created for the actuators 

to give the proper amount of torque at a certain rotational speed and acceleration. 

 

1.8 Outline of the thesis 

This thesis has 5 chapters. Chapter 1 introduces the 5-DOF manipulator and discusses the 

problem of the manipulator during operation. It also specifies the methodology to address this 

issue based on the efficient methods provided in the literature. 

Chapter 2 is devoted to the 1st objective. In this chapter, free vibration evaluation was done 

using the modal module of FEA-A to obtain the natural frequencies and mode shapes of the 5-

DOF manipulator. However, for the forced vibration evaluation, displacement transmissibility of 
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the EE was evaluated. In other words, the ratio of the EE’s vibratory displacement over that of the 

base was tested. This value was obtained and verified using the harmonic and transient modules 

of FEA-A. First, using the harmonic module the base was excited harmonically, and the ratio was 

recorded as a frequency response diagram. Second, in the transient module, base was excited via 

random vibration and the EE’s displacement was recorded. Then, using a PSD (power spectral 

density) approach, the ratio in frequency domain was obtained.  

In Chapter 3, manipulators modeling was studied which covers a part of the 2nd objective. The 

modeling approach was performed on 3 different flexible geometries: a Cantilever Beam, a 

2L2JM, and a 5-DOF manipulator. The models for the first two geometries were obtained using 

manual FEA and verified through the modal module of FEA-A. However, due to the complexity 

of the 5-DOF geometry, the FEA model was only obtained from FEA-A eigenvectors. Then a 

reduction algorithm was applied on the obtained models. To verify the state-space models, FEA-

A transient analyses were compared to the state-space models. 

Chapter 4 relates to the controller design, which covers the rest of the 2nd objective. For the 

vibration control, LQR was applied to the cantilever beam model and H∞ controllers were applied 

to the 2L2JM and 5-DOF models.  

Chapter 5 discusses implementation of the designed controller on the real arm (3rd objective). 

The manipulator’s inputs were assumed to be the 2nd and 3rd joints, which were run with stepper 

motors. The output was assumed to be the acceleration measured by the accelerometer at the EE.  
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Chapter 2.  Vibration Evaluation 

In this chapter, the amplitude of manipulators’ vibration was evaluated. In this regard, first, free 

and forced vibration evaluation of the 5-DOF manipulator were studied. Then, based on the results 

a decision was made if the active vibration was needed for the vibration suppression of the 

manipulator. 

2.1 Free vibration evaluation 

If a system vibrates due to an initial disturbance and no external force, the vibration is known 

as free vibration. On the other hand, if the system is subjected to external force the vibration is 

known as forced vibration. Based on [28], the equation of motion for the vibration of an undamped 

system is: 

 

[𝑀]𝑞̈⃑ + [𝐾]𝑞⃑ = 0 2-1 

 

where [M] and [K] are the mass and stiffness matrices, and 𝑞 is the vector of generalized 

coordinates. The general solution of the differential equation would be: 

 

𝑞⃑(𝑡) = ∑𝑍(𝑛)𝛽𝑛 cos(𝜔𝑛𝑡 − 𝜙𝑛)

𝜂

𝑛=1

2-2 

 

where 𝑍(𝑛) and 𝜔𝑛 are the 𝑛𝑡ℎ mode shape and natural frequency, respectively. The number of 

modes extracted are from 1 to 𝜂 (last extracted mode). 𝛽𝑛 and 𝜙𝑛 are constants.  

Free vibration evaluation is referred to as finding natural frequencies and mode shapes of a 

structure. These values are obtained using hammer test or modal module of FEA-A. In this regard, 

the CAD model of the 5-DOF was modeled in SolidWorks. Then it was meshed in the modal 

module of FEA-A. This analysis assumed a fixed base and fixed joints for the manipulator. The 

analysis parameters are as follows: 
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1. The material for the upper arm and the EE was Aluminum Alloy, and other components 

were structural steel. The properties were given in Table 2.1. 

Table 2.1. Material properties for FEM modeling 

 Density (kg/m3) Young's Modulus (Pa) 

Aluminum Alloy 2770 7.1e10 

Structural steel 7850 2e11 

 

2. The mesh was given in Figure 2.1. The mesh method and sizing were automatically chosen 

by the software; however, a refinement was defined on the thin link.  The properties were 

extracted from modal solution information. The contact between the parts was modeled 

using CONTA174, which was a 3-D 8-Node Surface-to-Surface Contact element. 

Moreover, the joints were revolute MPC184 and were fixed. For the manipulator body, 

elements used were SOLID186, and SOLID187 which were 3-D 20-Node Structural Solid, 

and 3-D 10-Node Tetrahedral Structural Solid, respectively. Moreover, TARGE170 was 

used to define the boundary of a deformable body associated with contact elements. Mesh 

statistics are as follows: 

Number of total nodes = 179975  

Number of solid elements = 60366 (SOLID186, and SOLID187)  

Number of total elements = 145390 (including contacts and solid elements) 

 

Figure 2.1. The 5-DOF manipulator mesh results in FEA-A workbench. 

Fixed support 
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3. The boundary conditions were fixed support (as shown in Figure 2.1) at the base that was 

defined with remote displacement to avoid support-plate vibration. Besides, all joints were 

defined as bounding not to rotate. 

The result of the modal analysis, i.e., the natural frequencies of the manipulator were shown in 

Table 2.2.  

 

 

 

Table 2.2. Natural frequencies and mode characteristics of the 5-DOF manipulator (fixed base and joints). 

Mode number Natural frequency [Hz] Mode characteristic 

1 8.312 1st Lateral 

2 9.797 1st Vertical 

3 22.02 2nd Lateral 

4 27.11 2nd Vertical 

5 35.96 3rd Vertical 

6 47.68 3rd Lateral 

7 51.31 4th Vertical 

8 60.11 Ball screw vertical mode 

9 62.36 Ball screw lateral mode 

10 64.95 4th Lateral 

 

The manipulator first 10 mode shapes were given in Appendix A. To clarify the lateral and 

vertical modes of the 5-DOF manipulator with fixed joints and base, refer to Figure 2.2 and Figure 

2.3, respectively. 
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Figure 2.2. Plan view of first mode of the 5-DOF manipulator with fixed base and joints (1st lateral). 

 

 

Figure 2.3. Side view of second mode of the 5-DOF manipulator with fixed base and joints (1st vertical). 

 

The lateral modes, especially for higher frequencies were mixed with the vertical modes. This 

would have adverse effect on the sensor measurement for vertical motion of the EE.  However, the 

active vibration suppression was only able to attenuate the vertical modes, i.e., the 2nd, 4th, 5th, and 

7th. Since, The manipulator’s 2nd and 3rd joints were only capable of moving the EE in the vertical 
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direction and not lateral ones. Therefore, the vertical modes were studied for vibration suppression 

of the EE.  

It was noteworthy that the vertical modes of the manipulator with fixed base and joints were 

studied only in Chapter 2 for vibration evaluation, and the vertical modes of the manipulator with 

free base and free joints (2nd and 3rd joints) were studied for modeling and controller design. 

2.2 Forced vibration evaluation 

To evaluate the amount of EE vibration caused by the base vibration, displacement 

transmissibility is defined. Since the main contribution of this thesis was manipulator modeling 

and active vibration control, the analytical displacement transmissibility was briefly defined, and 

the values were obtained by FEA-A. As mentioned earlier, the 5-DOF manipulator is installed on 

a mobile robot or a tractor. For simplicity the manipulator could be assumed as a mass-damper-

spring system which is attached to a moving base as shown in Figure 2.4. 

 

Figure 2.4.Mass-damper-spring model of the manipulator with moving base. 

According to Rao [28], when the mass-damper-spring system undergoes base excitation, the 

equation of motion of the system is as follows: 

𝑚𝑒̈ + 𝑐(𝑒̇ − 𝑏̇) + 𝑘(𝑒 − 𝑏) = 0 2-3 

 

If the base is in harmonic excitation, then 

𝑏(𝑡) = 𝑏̃ sin𝜔𝑡 2-4 
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This results in the mass moving with the same frequency but with a phase difference as: 

 

𝑒(𝑡) = 𝑒 ̃𝑠𝑖𝑛 (𝜔𝑡 − 𝜙) 2-5 

 

The ratio of the displacement amplitudes is called displacement transmissibility.  

𝑇𝑑 =
𝑒̃

𝑏̃
= √1 + (

2𝜁𝜔

𝜔𝑛
)
2

 |𝐻(𝑗𝜔)| 2-6 

where 𝐻(𝑗𝜔) is the complex frequency response. The parameters 𝑗, 𝜔 and 𝜁 are the imaginary 

number, the frequency of excitation, and damping coefficient, respectively. 

The harmonic module of FEA-A is based on modal superposition which is explained in section 

3.3. Time integration for this module was based on the semi-discrete Newmark method [29]. Using 

this module, the base was excited by harmonic displacement with a base displacement of 1cm 

enforced over the frequency range of [0.1,100] Hz. The reason for 1 cm was that the base excitation 

in a real harmonic test (not simulation) for such manipulator would be chosen around this value; 

also, the frequency range would cover the natural frequencies in Table 2.2. The frequency response 

plot of the displacement transmissibility was shown in Figure 2.5. This transmissibility was 

obtained by dividing the frequency response plot of the EE displacement in the global vertical 

direction over the constant displacement of the base. As shown in Figure 2.5, the magnitude of the 

transmissibility for vertical modes were significant; i.e., if the base vibrates at the first vertical 

mode or the second mode of vibration at 9.80 Hz, the displacement transmissibility will be 45.0 

dB, which is 1045/20 = 178. This indicates that if the base vibrates at the second natural 

frequency, the EE will vibrate more than 177 times as high as the base. Looking at the other modes 

rather than the vertical ones, someone could observe that the EE has experienced vertical 

displacement. Since, due to the complexity of the geometry, each mode has a certain amount of 

vertical motion.  
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Figure 2.5. 5-DOF displacement transmissibility in frequency domain (EE displacement / base 

displacement). The base is under harmonic excitation (equation 2-4) over the range of [0.1,100] Hz. The 4 

indicated points are the first 4 vertical modes. 

 

When the base is moving on the rough terrain, for simplicity, the excitation could be assumed 

as random vibration. The random vibration was a white noise, which was generated using the 

command “rand” in the M-software. Based on the definition, white noise is a signal with the same 

intensity at different frequencies; i.e., the power spectral density (PSD) of the noise is constant. 

This noise was generated with the sample rate of 100 Hz for 10 seconds in the range of [-1,1] cm. 

Although generating data in a longer duration would result in a more reliable signal (covering more 
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frequencies), more data was not supported by the license for FEA-A. The PSD of the generated 

noise was obtained by “pwelch” command in M-software without filtering or averaging. The PSD 

was shown in Figure 2.6. According to the figure, the PSD of the noise varied randomly about        

-125 dB. 

 

 

Figure 2.6. PSD of the random vibration for the base excitation. 

 

To obtain displacement transmissibility through random vibration, first, the random excitation 

was exerted on the base. Then the displacements of the base, and the EE were recorded. Finally, 

using Welch’s power spectral density (PSD) estimation, the displacement transmissibility was 

obtained as follows [30]: 

𝑇𝑑 = √
𝑃𝑆𝐷𝐸𝐸
𝑃𝑆𝐷𝑏𝑎𝑠𝑒

2-7 
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Using the transient module of FEA-A a random excitation was applied on the base. Similar to the 

harmonic module this module was based on mode superposition method. Time integration for this 

module was based on the semi-discrete Newmark method [29]. This method updates the 

displacement and velocity of the dynamic equation of motion in each iteration as follows: 

 

𝑥̇[𝑝+1] = 𝑥̇[𝑝] + [(1 − 𝛿)𝑥̈[𝑝] + 𝛿𝑥̈[𝑝]]Δt 2-8 

 

𝑥[𝑝+1] = 𝑥[𝑝] + 𝑥̇[𝑝]Δt + [(
1

2
− α) 𝑥̈[𝑝] + 𝛼𝑥̈[𝑝]] Δt

2 2-9 

 

where 𝛼 and 𝛿 are Newmark's integration parameters. In addition,  Δt is the timestep, and 𝑝 stands 

for the 𝑝𝑡ℎ iteration. In the Newmark method, the amount of numerical algorithm dissipation can 

be controlled by 𝛾.  

𝛿 =
1

2
+ 𝛾 

𝛼 =
1

4
(1 + 𝛾)2 2-10 

𝛾 ≥ 0 

The software enables user to chose 𝛾 by “TINTP” command. All over the thesis this value was 

chosen 0.005 as default.  

The program to generate the random vibration, and the displacement transmissibility were given 

in Appendix F. The base excitation and transmitted vibration to the EE are shown in Figure 2.7. 

The constant time step for this simulation was 1e-2s. 
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Figure 2.7. The displacement of the base and EE of the 5-DOF manipulator in time domain. the base of 

the 5-DOF manipulator (see appendix A) is under random vibration (red solid line). This vibration is 

transmitted to the EE (blue dashed line). 

 

The random vibration for the base and the EE shown in Figure 2.7 were substituted in equation 

2-7 to calculate the displacement transmissibility, with the results given in Figure 2.8 (red line). 

The random vibration result shown here was just one simulation; for more accurate results, more 

simulations with different random excitations should be conducted and the average considered. 

According to Figure 2.8, as the frequency increases the peaks of the random excitation separate 

from the harmonic excitation. That is because of the complexity of the geometry that led to mixture 

of the modes for the random excitation. Another justification could be due to the fact that the 

random data was not an ideal white noise. This could have been improved by applying filter to the 

generated data and including more data points. 
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Figure 2.8. The 5-DOF manipulator displacement transmissibility under harmonic and random vibration. 

Indicated points are explained in Table 2.2. 

 

Table 2.3. Displacement transmissibility of hormonic excitation and random vibration on the base of the 

5-DOF manipulator. Indicated points correspond to Figure 2.6. 

Mode 

Characteristic 

Harmonic excitation Random vibration 

Figure 2-6 Frequency Hz Magnitude dB Figure 2-6 Frequency Hz Magnitude dB 

1st vertical H1 9.80 45.1 R1 9.76 36.4 

2nd vertical H2 27.1 45.0 R2 25.8 27.4 

3rd vertical H3 36.0 44.9 R3 32.4 38.2 

4th vertical H4 51.3 49.8 R4 42.6 30.5 

 

As shown in Figure 2.8, considering the random vibration (red line), if the base vibrates at 9.76 

Hz, the displacement transmissibility will be 36.4 dB which is 1036.4/20 = 66.0. This indicates 

that if the base vibrates at this frequency, the EE will vibrate more than 60 times as high as the 

H1 H2 H3 

H4 

R1 

R2 

R3 

R4 
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base. Beside, as shown in Figure 2.8 and Table 2.3, due to the complex structure and mixture of 

the modes, as the frequency increases, the transmissibility from random excitation does not follow 

the harmonic excitation. This implies that for vertical vibration suppression, other modes than the 

vertical ones should also be considered. 

2.3 Summary 

In this chapter the 5-DOF manipulator vibration was evaluated. For the free vibration 

evaluation, the natural frequencies and mode shapes were studied. Moreover, the forced vibration 

evaluation was studied through the displacement transmissibility. The transmissibility from 

harmonic excitation showed that the vertical vibration transmitted from the base was significant. 

However, the transmissibility from random vibration not only showed the vibration from the base 

affected the EE, but it also indicated that all the modes should be considered in vibration 

suppression. Finally, one could conclude that the vibration transmitted to the EE would be 

significant and causes inaccurate data acquisition. As stated in the chapter, the vibration 

transmitted to the EE could be more than 100 times as the base. This necessitated an active 

vibration suppression for the manipulator’s EE. 
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Chapter 3.  Finite Element Model of Manipulators  

This chapter is devoted to the FEM modeling of three different manipulators. First, a cantilever 

beam and a two-link two-joint manipulator (2L2JM) were considered. Using manual FEM, the 

natural frequencies of the manipulators were derived and verified with FEA-A. Then, using the 

eigenvectors from FEA-A, a modal matrix was set up. Subsequently, considering the I/O (inputs 

and outputs) of the system, a state-space model was represented and followed by a model 

reduction. Finally, using the Solid-works model of the 5-DOF manipulator, its modal matrix was 

obtained. Then the reduced model of the manipulator was derived. At the end of the chapter the 

state-space models were tested and verified with the transient module of FEA-A. The models of 

the three manipulators were used for controller design in Chapter 4. 

 

3.1 Finite element model of a cantilever beam  

A cantilever beam has a simple geometry; therefore, it is easy to obtain its equation of motion. 

Moreover, the purpose of this part is to give credit to FEA-A eigenvalue problem; i.e., the software 

results are not meant to be trusted alone and should be accompanied by analytical or hand-

calculation results. Although more effort could be made to make the cantilever specifications 

resemble the 5-DOF manipulator’s upper arm, the cantilever beam modeled as follows has 

arbitrary dimensions. Thus, the dimensions of the cantilever beam are assumed to be of a 

rectangular cross-section, and its specifications are presented in Table 3.1. It is also restricted to 

move in the x-y horizontal plane, meaning without gravitation.  

Table 3.1. Specifications of the cantilever beam. 

Length, L (m) Width (m) Height (m) 

Modulus of 

Elasticity, E 

(Pa) 

Density, ρ 

(kg/m3) 
Material 

1.0 0.01 0.01 2.0E11 7850 
Structural 

Steel 
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Figure 3.1. Schematic of the cantilever beam with the actuator force applied at one-third its length from 

the base. 

 

According to the Figure 3.1, (X,Y) is the system of global coordinates, (𝑥𝑖 , 𝑦𝑖) is the system of 

local coordinates fixed to element i of the undeformed link; also, (x, y) are the local coordinates 

of a point, 𝑙𝑎𝑐𝑖  is the accumulated length, i.e., distance from the base to point (x, y), 𝑙𝑒𝑙𝑖 is the 

length of ith element, (𝑢𝑖 , 𝑣𝑖) are the displacement and slope of node i, and (𝑢𝑓, 𝑣𝑓) are the 

displacement and slope of the last node of the beam, respectively. 

As shown in Figure 3.1, position of a point in ith element can be represented by 𝑟: 

𝑟  = { 𝑙𝑎𝑐𝑖  + 𝑥, 𝑦}
𝑇

3-1 

 

Using Hermite shape functions, coordinate y in ith element can be calculated using the 

following equation: 

𝑦 =  𝜑 . 𝑧𝑖 3-2 
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where 𝑧𝑖 is the ith element’s generalized coordinate and  𝜑 is the Hermite shape function, which 

approximates displacements within each element. In Appendix E it is shown how to remove the 

natural coordinate of the element. The below shape function is based on physical coordinates: 

𝜑 = 

{
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𝑧𝑖 = (𝑢𝑖  , 𝑣𝑖  , 𝑢𝑖+1 , 𝑣𝑖+1)
𝑇 3-4 

 

where, (𝑢𝑖 , 𝑣𝑖) are the displacement and slope of node i, respectively. 

The element potential energy can be expressed as  

𝑃𝐸𝑖 =
1

2
𝑧𝑖
𝑇𝐾𝑖𝑧𝑖

 3-5 

For a prismatic beam element with Hermite shape functions, the symmetric element stiffness 

matrix, 𝐾𝑖 , can be written as: 

𝐾𝑖 =
𝐸𝑖𝐼𝑖

𝑙𝑒𝑙𝑖
3

[
 
 
 
 
12 6𝑙𝑒𝑙𝑖

 −12 6𝑙𝑒𝑙𝑖
 

 4𝑙𝑒𝑙𝑖
2 −6𝑙𝑒𝑙𝑖

 2𝑙𝑒𝑙𝑖
2

  12 −6𝑙𝑒𝑙𝑖
 

   4𝑙𝑒𝑙𝑖
2
]
 
 
 
 

3-6 

 

The kinetic energy for each element can be calculated as follows: 

𝐾𝐸𝑖 =
1

2
∫ 𝜌𝑎 [

𝜕𝑟 
𝑇

𝜕𝑡
.
𝜕𝑟

𝜕𝑡
] 𝑑𝑥𝑖

𝑙𝑒𝑙𝑖

0

3-7 

 

where, 𝜌 is the beam mass density, 𝑎 is area of the beam’s cross section, and r is the position, as 

shown in Figure 3.1. Using chain rule ( 
𝜕𝑟 

 

𝜕𝑡
 = 

𝜕𝑟

𝜕𝑧
.
𝜕𝑧

𝜕𝑡
 ), Equation (3-7) can be written as: 



24 

 

𝐾𝐸𝑖 =
1

2
∫ 𝜌𝑎 [ 

𝜕𝑧

𝜕𝑡

𝑇

.
𝜕𝑟

𝜕𝑧

𝑇 

.
𝜕𝑟

𝜕𝑧

 

.
𝜕𝑧

𝜕𝑡

 

] 𝑑𝑥𝑖

𝑙𝑒𝑙𝑖

0
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The element kinetic energy can be expressed in terms of the element mass matrix, 𝑀𝑖, as 

follows: 

𝐾𝐸𝑖 =
1

2
𝑧̇𝑖
𝑇𝑀𝑖𝑧̇𝑖 3-9 

Here 𝑧̇𝑖 is the speed of the displacement vector, as 𝑧̇𝑖 =
𝜕𝑧

𝜕𝑡
 . 

Comparing equation (3-8) and Equation (3-9), one can obtain: 

𝑀𝑖 = ∫ 𝜌𝑎 [
𝜕𝑟

𝜕𝑧𝑖
]
𝑇𝑙𝑒𝑙𝑖

0

.
𝜕𝑟

𝜕𝑧𝑖
𝑑𝑥𝑖 3-10 

In this equation, since 𝑟  = { 𝑙𝑎𝑐𝑖  + 𝑥, 𝑦}
𝑇
 and 𝑦 = 𝜑 . 𝑧𝑖, it can be obtained that 

𝜕𝑟

𝜕𝑧𝑖
=  𝜑. This 

leads to: 

𝑀𝑖 = ∫ 𝜌𝑎 𝜑
𝑇 . 𝜑

𝑙𝑒𝑙𝑖

0

𝑑𝑥𝑖 3-11 

For a beam element with Hermite shape functions, the symmetric element mass matrix, 𝑀𝑖 , can 

be written as: 

𝑀𝑖 =
𝜌 𝑎 𝑙𝑒𝑙𝑖
420

[
 
 
 
 
156 22𝑙𝑒𝑙𝑖 54 −13𝑙𝑒𝑙𝑖
 4𝑙𝑒𝑙𝑖

2 13 −3𝑙𝑒𝑙𝑖
2

  156 −22𝑙𝑒𝑙𝑖
   4𝑙𝑒𝑙𝑖

2
]
 
 
 
 

3-12 

Since the cantilever beam is fixed at its base, the boundary conditions are:   

𝑢1 = 0, 𝜈1 = 0 3-13 

 

 The total kinetic and potential energies for the cantilever beam are obtained by the components 

as follows: 

𝐾𝐸 =∑𝐾𝐸𝑖            , 𝑃𝐸 =∑𝑃𝐸𝑖 3-14 
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Using Lagrange equation for a conservative system, the equation of motion can be obtained 

as: 

𝑑

𝑑𝑡
[
𝜕(𝐾𝐸 − 𝑃𝐸)

𝜕𝑞̇ 
] − [

𝜕(𝐾𝐸 − 𝑃𝐸)

𝜕𝑞 
] = 𝐹 3-15 

 

where 𝑞⃑ = {𝑢1, 𝑣1, … , 𝑢𝑓, 𝑣𝑓} and 𝐹⃑ is the vector of external forces. The equation of motion can 

then be written as, 

[𝑀]𝑞̈⃑(𝑡) + [𝐾]𝑞⃑ = 𝐹⃑ 3-16 

 

where [𝑀], and [𝐾] are mass and stiffness matrices for the cantilever beam. The damping could 

be added manually as material damping in equation (3-30).  Using equation (3-16) one can obtain 

state-space model of the cantilever beam to control its tip vibration. In the next section the same 

process is done for a 2L2JM manipulator.  

 

3.2 Finite element model of two-link two-joint manipulator  

The 5-DOF manipulator is supposed to suppress the vibration using 2 of its joints. Therefore, 

modeling a manipulator with 2 joints is necessary. In this regard a two-link two-joint manipulator 

(2L2JM), as shown in Figure 3-2, with the same specifications as the cantilever beam is proposed 

(each link has the same dimensions and material as the cantilever). The joints are assumed to have 

no stiffness and damping. The first joint is assumed as a simply supported condition. This section 

is based on [31]. According to Figure 3.2, (X,Y) are the global coordinates, (𝑥𝑖,𝑙𝑖𝑛𝑘 , 𝑦𝑖,𝑙𝑖𝑛𝑘) are 

the local coordinates fixed to element i of the undeformed link where 𝑙𝑖𝑛𝑘 = 1,2; also, 

(𝑥𝑙𝑖𝑛𝑘, 𝑦𝑙𝑖𝑛𝑘) are the local coordinates of a point on the 𝑗𝑡ℎ link, 𝑙𝑎𝑐𝑖,𝑗  is accumulated length, 𝐿𝑗 is 

the length of 𝑗𝑡ℎ link, 𝑙𝑒𝑙𝑖 is the length of 𝑖𝑡ℎ element for the link, (𝑢𝑖,𝑙𝑖𝑛𝑘, 𝑣𝑖,𝑙𝑖𝑛𝑘) are displacement 

and slope of node 𝑖 of the link, and (𝑢𝑓,𝑙𝑖𝑛𝑘, 𝑣𝑓,𝑙𝑖𝑛𝑘) are the displacement and slope of the last node 

of the link, respectively.  
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Figure 3.2. Schematic of a two-link two-joint manipulator (2L2JM). 

 

To obtain the location of the point (𝑥𝑗 , 𝑦𝑗), it is necessary to use transformation matrices as 

follows: 
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𝑟1 = [
cos 𝜃1 −sin 𝜃1
sin 𝜃1 cos 𝜃1

] [
𝑙𝑎𝑐𝑖,1 + 𝑥1

 𝑦1
] 3-17 

𝑟2 = [
cos 𝜃1 −sin 𝜃1
sin 𝜃1 cos 𝜃1

] [
𝐿1
 𝑢𝑓,1

] + [
cos(𝜃2 + 𝑣𝑓,2) −sin(𝜃2 + 𝑣𝑓,2)

sin(𝜃2 + 𝑣𝑓,2) cos(𝜃2 + 𝑣𝑓,2)
] [
𝑙𝑎𝑐𝑖,1 + 𝑥1

 𝑦1
] 3-18 

 

The element generalized coordinates are as follows: 

 

𝑧𝑖,1 = (𝜃1, 𝑢𝑖,1 , 𝑣𝑖,1 , 𝑢𝑖+1,1 , 𝑣𝑖+1,1)
𝑇

3-19 

𝑧𝑖,2 = (𝜃1, 𝑢𝑓,1, 𝑣𝑓,1, 𝜃2, 𝑢𝑖,2 , 𝑣𝑖,2 , 𝑢𝑖+1,2 , 𝑣𝑖+1,2)
𝑇

3-20 

 

In order to meet 𝑦𝑗 = 𝜑𝑗𝑧𝑖,𝑗, using the equation (3-3), the links’ shape functions would be as 

follows: 

 

𝜑1 = [
0
𝜑
] , 𝜑2 = [

04×1
𝜑
] 3-21 

 

The mass and stiffness matrices are obtained using the same equations as 3-5 to 3-10. However, 

due to 𝜃1, 𝜃2, one cannot conclude equation (3-11). Using equation (3-6), element stiffness 

matrices would be: 

 

𝐾𝑖,1 = [
0 0
0 𝐾𝑖

] , 𝐾𝑖,2 = [
04×4 0
0 𝐾𝑖

] 3-22 

 

where 𝐾𝑖 is the element stiffness matrix in equation (3-6). The mass matrices are obtained as 

follows: 

𝑀𝑖,𝑙𝑖𝑛𝑘 = ∫ 𝜌𝑎 [
𝜕𝑟

𝜕𝑧𝑖,𝑙𝑖𝑛𝑘
]

𝑇𝑙𝑒𝑙𝑖,𝑙𝑖𝑛𝑘

0

.
𝜕𝑟

𝜕𝑧𝑖,𝑙𝑖𝑛𝑘
𝑑𝑥𝑖,𝑙𝑖𝑛𝑘 
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The boundary conditions are:   

𝑢1,1 = 0, 𝜈1,1 = 0, 𝑢1,2 = 0, 𝜈1,2 = 0 3-23 

 

Similar to the previous section the equation of motion (3-16) is derived. 

A program based on this section was given in Appendix G for the 2L2JM. Moreover, the same 

approach could have been used to find a simplified geometry of the 5-DOF manipulator called 

parallelogram (the approach was coded in Appendix H) [32]. However, the main objective of this 

thesis was modeling the 5-DOF manipulator and not a parallelogram. Besides, the manual FEM 

was not feasible for the 5-DOF manipulator since it has a complex structure. Therefore, any state-

space model of the 5-DOF manipulator in the following chapters is just based on the eigenvectors 

extracted from FEA-A. 

3.3 State-space modeling using principal coordinates 

When exerting force on an n-degrees-of-freedom (n-DOF) system, it undergoes forced 

vibration. The governing equation of motion is n coupled 2nd order ODE as follows:  

[𝑀]𝑞̈⃑ + [𝐾]𝑞⃑ = 𝐹⃑ 3-24 

 

Proportional damping may be added to this equation [28]. It is easier to uncouple this system 

of differential equations using modal analysis. For this purpose, the eigenvalue problem can be 

solved: 

𝜔2[𝑀]𝑍 = [𝐾]𝑍 3-25 

 

which results in the natural frequencies {𝜔} = 𝜔1, 𝜔2, … , 𝜔𝑛 and its normal modes  

𝑍(1), 𝑍(2), … , 𝑍(𝑛). The matrix of normal modes, the modal matrix, can be written as: 

 

[𝑍]𝑚𝑜𝑑𝑎𝑙 = [ 𝑍
(1), 𝑍(2), … , 𝑍(𝑛)] 3-26 
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Modal analysis is based on the expansion theorem that the physical coordinates are linear 

combination of normal modes [28]: 

𝑞⃑(𝑡) = 𝑧𝑝1(𝑡)𝑍
(1) + 𝑧𝑝2(𝑡)𝑍

(2) +⋯+ 𝑧𝑝𝑛(𝑡)𝑍
(𝑛) 3-27 

 

where 𝑧𝑝1(𝑡), 𝑧𝑝2(𝑡), … , 𝑧𝑝𝑛(𝑡) are the principal coordinates. Equation (3-27) is also called the 

mode superposition principle. For simplicity, equation (3-27) in the vector form is as follows: 

𝑞⃑(𝑡) = [𝑍]𝑚𝑜𝑑𝑎𝑙  𝑍𝑝(𝑡) 3-28 

 

where 𝑍𝑝 
(𝑡) = {𝑧𝑝1(𝑡), 𝑧𝑝2(𝑡), … , 𝑧𝑝𝑛(𝑡)} is the vector of principal coordinates. By substituting 

equation (3-28) in equation (3-24) one can obtain: 

 

[𝑍]
𝑚𝑜𝑑𝑎𝑙
𝑇

[𝑀][𝑍]𝑚𝑜𝑑𝑎𝑙𝑍̈𝑝 
(𝑡) + [𝑍]

𝑚𝑜𝑑𝑎𝑙
𝑇

[𝐶][𝑍]𝑚𝑜𝑑𝑎𝑙𝑍̇𝑝 + [𝑍]𝑚𝑜𝑑𝑎𝑙
𝑇

[𝐾][𝑍]𝑚𝑜𝑑𝑎𝑙𝑍𝑝 = [𝑍]𝑚𝑜𝑑𝑎𝑙
𝑇

𝐹⃑ 3-29 

 

If the modal matrix is normalized with respect to mass such that [𝑍]𝑚𝑜𝑑𝑎𝑙
𝑇 [𝑀][𝑍]𝑚𝑜𝑑𝑎𝑙 = 𝐼, 

then the system of equation (3-29) becomes n-uncoupled 2nd order ordinary differential equations 

(ODEs): 

 

𝑍̈𝑝(𝑡) + 2{𝜁}{𝜔}𝑍̇𝑝(𝑡) + {𝜔}
2𝑍𝑝(𝑡) = 𝐹𝑝 3-30 

 

where 𝐹𝑝 is the vector of principal forces, and {𝜁} is the vector of material damping which could 

be considered from [33].  

Using modal analysis in FEA-A, the natural frequencies and normalized modal matrix of a 

geometry could be obtained. The rows and columns of the matrix correspond to the specified DOFs 

of the geometry and vibrational modes, respectively. 
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[𝑍̂]
𝑚𝑜𝑑𝑎𝑙

=

[
 
 
 
 
𝑧̂11 𝑧̂12   𝑧̂1n
𝑧̂21 𝑧̂22 … 𝑧̂2n
𝑧̂31 𝑧̂32  𝑧̂3n
⋮ ⋮  ⋮
𝑧̂m1 𝑧̂m2 ⋯ 𝑧̂mn]

 
 
 
 

3-31 

 

In equation (3-31), the hat symbol specifies normalized values with respect to mass. In addition, 

n, and m are the number of modes and generalized coordinates requested from the eigenvalue 

solver in FEA-A, respectively.  

Designing a controller requires knowing the relationship between the I/O of the system. In this 

regard, the linear relationship between I/O of the system is as follows: 

{𝑋̇ = 𝐴𝑋 + 𝐵𝑈
𝑌 = 𝐶𝑋 + 𝐷𝑈

3-32 

 

The system of equations (3-32) is called state-space representation and A, B, C and D are called 

state, input, output, and feedthrough matrices, respectively. In addition, 𝑈, and 𝑌, are the vectors 

of input and output parameters.  

If 𝑋 = [𝑧𝑝1, 𝑧̇𝑝1, 𝑧𝑝2, 𝑧̇𝑝2, … , 𝑧𝑝𝑛, 𝑧̇𝑝𝑛, ]
𝑇
, then the state matrix is as follows: 

 

𝐴2𝑛∗2𝑛 =

[
 
 
 
 
 
 
0 1

−𝜔1
2 −2𝜁1𝜔1

 𝑧𝑒𝑟𝑜𝑠 

 
0 1

−𝜔2
2 −2𝜁2𝜔2

 

 𝑧𝑒𝑟𝑜𝑠  
⋱  

 
0 1

−𝜔𝑛
2 −2𝜁𝑛𝜔𝑛]
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and the input matrix is as follows: 

𝐵2𝑛×𝑗 =

[
 
 
 
 
 
0
𝑧̂11
0
𝑧̂12
⋮
𝑧̂1n

0
𝑧̂21
0
𝑧̂22
⋮
𝑧̂2n

   …
 

0
𝑧̂h1
0
𝑧̂h2
⋮
𝑧̂hn]

 
 
 
 
 

3-34 
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 where ℎ is the number of nodes that input forces are exerted on. The output matrix is: 

 

𝐶𝑔×2𝑛 =

[
 
 
 
𝑧̂11 0 𝑧̂12 0    𝑧̂1n 0

𝑧̂21 0 𝑧̂22 0 … 𝑧̂2n 0
  ⋮    ⋮

𝑧̂g1 0 𝑧g2 0    𝑧gn 0]
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where 𝑔 is the number of generalized coordinates as outputs. For the most systems such as in this 

thesis, the feedthrough matrix is zero.  

Based on the obtained model of the system in (3-32), one cannot distinguish the contribution of 

the states to the past input and future output energy of the system. To identify this contribution, 

balancing should be applied on the model[34]. 

 

3.4 Balanced realization and model reduction 

Dealing with a large order state-space system leads to an inefficient online control system; thus, 

to obtain low latency and higher control bandwidth, model reduction is necessary [35]. To reduce 

the model of the system, balanced realization is proposed. Balancing arranges the model based on 

the contribution of the states to I/O. This method is based on controllability and observability 

Gramians which identify the amount of controllability and observability of the states. 

Controllability and observability Gramians are defined as 𝑊𝑐(𝑡), and 𝑊𝑜(𝑡), respectively [35]: 

 

𝑊𝑐(𝑡) = ∫ 𝑒𝐴𝜏𝐵𝐵𝑇𝑒𝐴
𝑇𝜏𝑑𝜏

𝑡

0

3-36 

𝑊𝑜(𝑡) = ∫ 𝑒𝐴
𝑇𝜏𝐶𝑇𝐶𝑒𝐴𝜏𝑑𝜏

𝑡

0

3-37 

 

where 𝐴, 𝐵, and 𝐶 are the state-space matrices.  
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For an infinite time, the Gramians would be referred to as 𝑊𝑐, and 𝑊𝑜. The Gramians are n by 

n matrices. If the eigenvalue problem is solved for the controllability Gramian: 

(𝑊𝑐(𝑡))𝛼 = 𝜆𝛼 3-38 

 

and the eigenvalues are sorted from the biggest to the smallest, then the eigenvector corresponding 

to the biggest eigenvalue would be the most controllable direction in the state-space coordinate. A 

more controllable direction means that, given an initial condition, reaching a certain state of the 

system requires less amount of input energy than the other state.  Similarly, observability could be 

sorted to show the most observable direction. A more observable direction means that, given a 

measurement output, a certain state of the system is estimated in a manner that is less noisy than 

the other state.  

There is a special coordinate transformation 𝑇 that makes both Gramians equal and diagonal. If 

𝑋 = 𝑇𝑋̃ and is substituted in equation (3-32), the transformed state-space system would be: 

 

{𝑋̇̃ = 𝑇
−1𝐴𝑇𝑋̃ + 𝑇−1𝐵𝑈

𝑌 = 𝐶𝑇𝑋̃ + 𝐷𝑈               
3-39 

 

where 𝑋̃ is the state vector in an order so that both observability and controllability Gramians are 

equal and diagonal. 

In a simpler notation one can rewrite the following equations: 

{𝑋̇̃ = 𝐴̃𝑋̃ + 𝐵̃𝑈
𝑌 = 𝐶̃𝑋̃ + 𝐷𝑈

3-40 

 

Then, the Gramians would become as follows: 

 

𝑊̃𝑐 = 𝑇
−1𝑊𝑐(𝑇

𝑇)−1 3-41 
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𝑊̃𝑜 = 𝑇
𝑇𝑊𝑜𝑇 3-42 

 

By multiplying Gramians: 

𝑊̃𝑐𝑊̃𝑜 = 𝑇
−1𝑊𝑐𝑊𝑜𝑇 3-43 

 

and assuming 𝑊̃𝑐 = 𝑊̃𝑜 = 𝛴, then, the equation (3-43) becomes an eigenvalue problem: 

 

𝑊𝑐𝑊𝑜𝑇 = 𝑇Σ2 3-44 

 

Solving equation (3-44) will result in the transformation 𝑇 and the values 𝛴 that represent the 

equal and diagonal controllability and observability Gramians. 

 After sorting 𝑇 based on the biggest to lowest values of  𝛴, one could truncate the transformed 

system, to keep the modes with significant contribution to the past input and future output energy 

of the system. By partitioning the full state vector 𝑋̃ to [𝑋̃1, 𝑋̃2]
𝑇, where 𝑋̃1 and 𝑋̃2 are the state 

variables to keep and to remove, respectively. Then, equation (3-40) becomes the following 

system: 

{
 
 

 
 [
𝑋̇̃1

𝑋̇̃2
] = [

𝐴̃11 𝐴̃12
𝐴̃21 𝐴̃22

] [
𝑋̃1
𝑋̃2
] + [

𝐵̃1
𝐵̃2
] 𝑈

𝑌 = [𝐶̃1 𝐶̃2] [
𝑋̃1
𝑋̃2
]                        

3-45 

 

In order to eliminate the fast dynamics or high frequency modes, we need to set 𝑋̇̃2 = 0 . This 

reduction is called Match-DC-gain model reduction algorithm or MDC [36]. Then, the equation 

(3-45) turns to the reduced system as follows: 

 

{
𝑋̇̃1 = [𝐴̃11 − 𝐴̃12𝐴̃22

   −1𝐴̃21]𝑋̃1 + [𝐵̃1 − 𝐴̃12𝐴̃22
   −1𝐵̃2]𝑈

𝑌 = [𝐶̃1 − 𝐶̃2𝐴̃22
   −1𝐴̃21]𝑋̃1 + [𝐷 − 𝐶̃2𝐴̃22

   −1𝐵̃2]𝑈         
3-46 
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The system of equation (3-46) is the reduced state-space representation of the system. This 

system contains the states that have significant contribution to the past input and future output 

energy of the system. Thus, it has less computational cost for the controller. For more information 

about Gramians and balanced realization refer to[37]. 

After the state-space model of the system was obtained. The model was balanced and reduced 

using the M-software commands; “balreal” and “modred”, respectively. 

3.5 Modal FEA-A for the manipulators studied 

The modal FEA-A results including the natural frequencies and mode shapes were used for 

modeling and vibration control of the manipulators. The mode shapes were given in Appendixes 

B, C and D. First, the CAD models of the manipulators were modeled in SolidWorks. Then modal 

analyses were done on these geometries by FEA-A. For the 5-DOF manipulator, the analysis 

assumed a free base and free rotation for the 2nd, and the 3rd joints of the manipulator. The analyses 

parameters were as follows: 

1. The material for the cantilever beam, 2L2JM and the 5-DOF except its upper arm was 

structural steel. The upper arm and the EE for the 5-DOF manipulator were an Aluminum 

Alloy as stated in Table 2.1. 

2. The mesh for the manipulators were generated automatically by the software; however, the 

number of elements for the cantilever beam and the 2L2JM were tested with different 

number of elements in section 3.6. The comparison on the natural frequencies showed the 

automatic mesh has achieved the convergence. For the 5-DOF manipulator the smaller 

element size was not achievable by the software as the number of the elements would have 

exceeded and the license did not perform the simulation. Therefore, for the 5-DOF 

manipulator the generated mesh by the software was used. The mesh details for the 

manipulators were as follows: 

The 5-DOF manipulator mesh was shown in Figure 3.3. The mesh method and sizing were 

automatically chosen by the software; however, a refinement was defined on the thin link. 

The properties are extracted from modal solution information. The contact between the 

parts is CONTA174 which is a 3-D 8-Node Surface-to-Surface Contact. Moreover, the 
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joints are revolute MPC184 that are set to have zero stiffness and damping. The body 

elements are SOLID186, and Solid 187 which are 3-D 20-Node Structural Solid, and 3-D 

10-Node Tetrahedral Structural Solid, respectively. Moreover, TARGE170 is used to 

define the boundary of a deformable body associated with contact elements.  Mesh 

statistics are as follows: 

Number of total nodes = 179974  

Number of solid elements = 60366 (SOLID186, and SOLID 187)  

Number of total elements = 145388 (including contacts and solid elements) 

 

Figure 3.3. The 5-DOF manipulator mesh results in FEA-A workbench. 

 

The Cantilever beam was meshed in FEA-A workbench, as shown in Figure 3.4. The 

properties were extracted from the modal solution information. The cantilever is a line 

body. The body elements are Beam188 which is a 3-D 2-Node Beam.  

--- Number of total nodes = 86 

--- Number of solid elements = 42 (Beam188) 

--- Number of total elements = 42 
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Figure 3.4. The Cantilever beam mesh results in FEA-A workbench. 

The 2L2JM was meshed in FEA-A workbench, as shown in Figure 3.5. The properties 

were extracted from the modal solution information. The 2L2JM is a line body. The body 

elements were BEAM188 which was a 3-D 2-Node Beam. The first joint was CONTA175 

which was a 2-D/3-D Node-to-Surface Contact element. The joint in the middle of the links 

was a revolute MPC184 with zero stiffness and damping. Moreover, TARGE170 was used 

to define the boundary of a deformable body associated with contact elements. 

--- Number of total nodes = 154 

--- Number of solid elements = 74 (37 BEAM188 for each link) 

--- Number of total elements = 81 

Fixed support 



37 

 

 

Figure 3.5. The 2L2JM mesh results in FEA-A workbench. 

 

3. The boundary condition for the manipulators are as follows: 

For the 5-DOF manipulator, remote displacement was defined such that it let the base only 

move in vertical direction. For the cantilever beam it was a fixed support at its end. For the 

2L2JM it was simple support at one end of the manipulator. It was noteworthy that both 

cantilever beam and the 2L2JM were restricted to move in x-y plane. 

 

 

3.6 Verification of finite element models  

In this section manual FEM model was used to verify FEA-A results. First, using the mass and 

stiffness matrices in sections (3.1, 3.2), natural frequencies were obtained and compared with those 

of FEA-A. After that, the master nodes of manipulators were chosen. Then, given the verified 

results of FEA-A, the eigenvectors were used to make the state-space models in sections (3.3, 3.4). 

Finally, the responses of the state-space models were compared with transient module of FEA-A.  

The FE results of the cantilever beam and 2L2JM are given in Table 3.2 and Table 3.3, 

respectively. The manual FEM and FEA-A modal analysis results are compared using a different 

number of elements. Each row of these tables corresponds to a vibrational mode of the 

corresponding manipulator. To compare the convergence of the meshing, a change index is defined 

Hinge support 
Joint in the middle 
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as |𝜔𝑛
6 𝐸𝑙𝑒 − 𝜔𝑛

9 𝐸𝑙𝑒 |/(𝜔𝑛
9 𝐸𝑙𝑒 ). Here the index specifies the difference between the natural 

frequencies of 6 and 9 elements. This change value for the cantilever was calculated for the 6th 

mode of vibration, whereas that of the 2L2JM was for the 8th mode. The convergence for the 

manual FEM was considered as being less than a 2% change, whereas that of FEA-A was less than 

a 0.1% change. 

It is noteworthy that in Table 3.3, there were 2 rigid modes with zero natural frequencies since 

2L2JM had joints with no stiffness. 
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Table 3.2. Cantilever beam, natural frequencies for manual FEM and FEA-A for different number of 

elements. 

mode 

Natural Frequencies (Hz), 

manual FEM 

Natural Frequencies (Hz), 

FEA-A 

3   

Ele 

4  

Ele 

6    

Ele 

9  

Ele 

3  

Ele 

9  

Ele 

42 

Ele 

100 

Ele 

1 8.153 8.152 8.152 8.152 8.155 8.153 8.153 8.153 

2 51.25 51.14 51.10 51.09 51.66 51.07 51.07 51.07 

3 144.8 144.1 143.3 143.1 156.0 143.0 142.9 142.9 

4 326.1 284.3 282.1 280.7 251.5 280.9 279.7 279.7 

5 613.8 528.9 470.3 465.1 339.3 467.0 461.7 461.7 

6 1223. 849.5 703.7 697.7 454.0 705.4 688.5 688.4 

% Change 75.29 21.75 0.860 - 34.05 2.470 0.015 - 

 

According to Table 3.2, the 6th mode for the manual FEM of the cantilever beam with 6 and 9 

elements per link had 0.86% change, which proved the convergence of the manual FEM for this 

geometry. On the other hand, the 6th mode for the FEA-A of the cantilever beam with 42 and 100 

elements had 0.01% change, which proved the convergence of the FEA-A for this geometry. Given 

the 6th mode for the manual FEM with 6 elements, the natural frequency of the 6th mode for the 

FEA-A with 42 elements per link had (703.7-688.5) / 703.7 = 2.16% error. Therefore, the FEA-A 

results were verified. Moreover, the FEA-A eigenvectors of the manipulator with 42 elements were 

chosen for state-space modeling. The eigenvectors extracted from FEA-A are normalized with 

respect to mass which is required in section 3.3. 
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Table 3.3. The 2L2JM, natural frequencies for manual FEM and FEA-A for different number of elements. 

mode 

Frequencies (Hz), manual 

FEM 
Frequencies (Hz), FEA-A 

3       

Ele/link 

6 

Ele/link 

10     

Ele/link 

3   

Ele/link 

10      

Ele/link 

37 

Ele/link 

100 

Ele/link 

1 0 0 0 0 0 0 1.100e-3 

2 0 0 0 0 0 0 1.203e-3 

3 16.97 21.58 23.62 26.78 26.69 26.69 26.69 

4 48.93 47.88 47.32 46.60 46.18 46.18 46.18 

5 98.28 114.0 109.0 103.1 99.31 99.28 99.28 

6 123.5 120.6 127.6 142.7 133.6 133.5 133.5 

7 154.8 172.9 189.7 228.2 217.6 217.2 217.2 

8 311.7 275.5 272.5 243.9 267.3 266.6 266.7 

% Change 14.39 1.101 - 8.549 0.225 0.038 - 

 

According to Table 3.3, the 8th mode for the manual FEM of the 2L2JM with 6 and 10 elements 

had 1.10% change, which proved the convergence of the manual FEM for this geometry. On the 

other hand, the 8th mode for the FEA-A of the cantilever beam with 37 and 100 elements had 

0.038% change, which proved the convergence of the FEA-A for this geometry. Given the 8th 

mode for the manual FEM with 6 elements, the natural frequency of the 6th mode for the FEA-A 

with 37 elements had (275.5-266.6) / 275.5 = 3.23% error. Therefore, the FEA-A results were 

verified. Moreover, the eigenvectors of the FEA-A with 37 elements per link were chosen for state-

space modeling. 

 

3.7 State-space modeling for the manipulators 

After verifying the modal results of FEA-A, the eigenvectors of the meshed geometries were 

used to make the state-space models of the manipulators. First, an APDL program was made to 

take only the relative displacement of the specified master nodes for the first n modes. These 
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programs for the manipulators were given in Appendix I. Second, the master DOFs were extracted 

from one of the 6 displacements (ux, uy, uz, rotx, roty, rotz) of the master node for all the first n 

modes. One sample of this extraction is shown in Figure 3.6 which corresponds to the 4th mode 

of the 5-DOF manipulator. Third, the extracted master DOFs for the first n modes were placed in 

a matrix to build the modal matrix. This table for the manipulators is given in Appendix J. Finally, 

a M-software program was coded to create the state-space models from the modal matrices. The 

resulting state-space matrices for the 5-DOF manipulator were given in Appendix K. 

 

Figure 3.6. Master DOF extraction for the 4th mode of the 5-DOF manipulator. 

 

For dynamic problems, master DOFs are typically chosen as displacements of the nodes with 

higher mass and rotations of the nodes with higher mass moment of inertia. On the other hand, the 

slave degrees of freedom are the displacements and rotations of the relatively lower inertia nodes 

[26]. According to equation (3-31), the rows of the matrix correspond to one generalized 

coordinate of the master nodes. These nodes are chosen from geometry after that the mesh is done. 

These nodes contain the main dynamic characteristic of the system so that the relative displacement 

of these nodes would be sufficient to show the dynamic behavior of the system. The input and 

output of the system are the necessary master nodes; however, other nodes could also be chosen 

for more accurate modeling. More information about the mesh properties of the manipulators is 
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provided in appendixes B, C, and D. The master DOFs of the manipulators are shown in Figure 

3.7. 

 

Figure 3.7. Master DOFs of the manipulators. The vertical displacements are represented with green 

arrows, while the rotational displacements are shown by orange curved arrows. (a) Master DOFs of the 

cantilever beam. (b) Master DOFs of the 2L2JM.  (c) Master DOFs of the 5-DOF manipulator. 

 

According to Figure 3.7, For the cantilever beam, the eigenvectors include the relative 

displacements of 2 master DOFs, the linear displacement of the tip and rotational displacement of 

a point located at 𝐿/6, where the actuator is located. This location is for the actuator and 

disturbance needs to be far from the vibrational nodes of the first n modes. Looking at appendix 

C, one could observe that for vibration suppression of the first 6 modes, a location between [0, 𝐿/5] 

was proper to place the actuator. 

For the 2L2JM, the eigenvectors include the relative displacements of 4 master DOFs: the linear 

displacement of the tip and the actuator, plus the rotational displacement of the joints. In Chapter 

4, these joints act as the actuators for vibration suppression. Unlike the cantilever beam for which 

the disturbance and the vibration suppression actuators were at the same point, for 2L2JM, it was 
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assumed that there was a nodal force on the point at 𝐿/3 of the first link to produce a linear force 

as a disturbance. This configuration leads to MIMO controller in Chapter 4.  

For the 5-DOF manipulator, 8 generalized coordinates are used as the master DOFs. According 

to Figure 1.1 and Figure 3.7, the vertical displacement of the EE, base, and middle of the upper 

arm as well as rotational displacement of 5 joints. These joints are: 1. the joint between the base 

and the curved link; 2. the joint between the curved link and thin link; 3. the joint between the 

thick link and the base; 4. the joint between the thin link and the upper arm; 5. the joint between 

the thick link and the upper arm. The reason for choosing the middle of the upper arm as one of 

the locations for master DOF was due the overlap of the prismatic joint which was twice as heavy 

as other parts of the upper arm. 

3.8 Transient analysis methodology 

After obtaining the state-space models of the manipulators, transient responses of the 

manipulators were simulated in M-software using “lsim” command. This command, first, 

discretizes the state-space model based on the applied input. If the input is discontinuous (not-

smooth) such as in sections 3.11, and 4.2, the discretization is based on zero-order-hold. whereas, 

for the smooth input simulations, such as all the simulations in Chapter 3 and 4, except sections 

3.11 and 4.2, the discretization method is first-order-hold [38]. After discretization, “lsim” 

propagates the discrete-time state-space equations. The propagation means solving the equation 

from the initial condition at 𝑝 = 1 to the final iteration as follows: 

 

{
𝑋[𝑝 + 1] = 𝐴𝑋[𝑝] + 𝐵𝑈[𝑝]

𝑌[𝑝] = 𝐶𝑋[𝑝]
3-47 

 

where 𝑝 is the number of iterations. The time step for “lsim” is based on the time step for the 

applied input. For simplicity on impulse simulation in section 4.2, the “impulse” command was 

used which is like “lsim”. Similarly, it discretizes the state-space model based on zero-order-hold. 

Then, the propagation is solved based on the unforced system with initial condition as follows: 

{
𝑋[𝑝 + 1] = 𝐴𝑋[𝑝]

𝑌[𝑝] = 𝐶𝑋[𝑝]
,    𝑋[1] = 𝐵 3-48 
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The time-step for “impulse” is automatically chosen based on the dynamics of the system. 

The excitation had an arbitrary pattern to distinguish different models. In addition to these state-

space models, an FEA-A transient response was simulated. For this purpose, the FEA-A modal 

results presented in section 3.5 were connected to transient module of FEA-A. Then the same 

initial condition and excitation as for the state-space models was applied to this module. The “FEA-

A transient” plot in the following figures indicate the mentioned response by FEA-A. 

For the cantilever beam, the eigenvectors of the FEA-A manipulator with 42 elements were 

chosen for state-space modeling. Then among all DOFs, two generalized coordinates were 

specified as the master DOFs (vertical displacement of a point at L/3 and the tip). The state-space 

matrices for the cantilever beam are given in Appendix K. The full state-space model includes all 

the 20 eigenvectors of the cantilever beam extracted from FEA-A (20 modes was chosen to be 

extracted). Then they were processed using section 3.3. The Truncated1 model includes the first 2 

modes of vibration, i.e., it has the first 4 columns and the first 4 rows of the full order state-space 

model. Finally, the BMDC stands for the balanced realization of the full order model which is 

followed by reduction to 2 modes using section 3.4. 

For 2L2JM, the eigenvectors of the FEA-A manipulator with 37 elements (links) were chosen 

for state-space modeling. Then among all the DOFs, 4 generalized coordinates were specified as 

the master DOFs. The state-space matrices for the cantilever beam are given in Appendix L. The 

full state-space model includes all 20 eigenvectors of the manipulator extracted from FEA-A. Then 

they were processed using section 3.3. The Truncated model includes the first 4 modes of vibration, 

i.e., it had the first 8 columns and first 8 rows of the full state-space model. However, for the 

BMDC model, first, the full order model without the rigid modes was balanced, then the balanced-

oscillatory model was reduced to keep only 2 modes. Finally, the 2 rigid modes were attached to 

result in the model with 4 modes. The pictures for the rigid modes are shown in Appendix D. 

The 5-DOF manipulator for the modeling and control was assumed to be free from the ground 

(only free in vertical direction) which resulted in the first rigid body mode. That base is where the 

disturbance/excitation is exerted to the manipulator. Also, the 2nd and the 3rd joints were not fixed, 

 
1 Throughout this thesis, Truncated model refers to the model reduction without balancing.  
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and they had no stiffness and damping. These joints were the actuators that control the excitation. 

Because of the 2 revolute joints, the manipulator had 2 more rigid body modes. Thus, the modes 

1,2, and 4 were the rigid modes (Appendix B). Among all DOFs, 8 generalized coordinates were 

specified as the master DOFs. The full state-space model includes all 30 eigenvectors of the 

manipulator extracted from modal module of FEA-A. Then they were processed using section 3.3. 

The Truncated model includes the first 5 modes of vibration, i.e., it has the first 10 columns and 

first 10 rows of the full state-space model. However, for the BMDC model, first, the full order 

model without the rigid modes was balanced, then the balanced-oscillatory model was reduced to 

keep only 2 modes. Finally, the 3 rigid modes were attached to result in the model with 5 modes. 

The pictures for the rigid modes are shown in Appendix B. 

Regarding the material damping for the simulations including sections 3.9, 3.10, 3.11, 4.4, and 

4.5, material damping was set to the almost zero value of 5e-5. The reason for having almost no 

damping for these simulations was to perform simulations for the worst-case scenario. In other 

words, simulations in Chapter 3 would show the vibrational behavior of models better if there was 

no damping. Besides, the controllers’ performance in Chapter 4 show the ability of controllers to 

suppress the vibration without help from passive dampers. A small value for material damping was 

used to avoid instability for H-infinity controller in sections 4.4, and 4.5. 

For section 4.2, the cantilever beam was a SISO problem which was under impact. It was 

decided to consider a damping ratio of  𝜁 = 0.02 according to [33], to show that the model 

reduction did not affect the response of the system compared with the full order model.  

3.9 Results, cantilever beam model 

This section is devoted to different state-space models of the cantilever beam. The responses of 

the models to an arbitrary vibration applied on the actuator were depicted. In addition, the models 

were verified in the presence of the transient module of FEA-A with the same condition. Then, the 

Gramians of balanced and unbalanced systems were discussed. The time step for the state-space 

simulations in this section was 5e-4s for the entire duration, whereas that of the FEA-A was 5e-3s. 

Plot a and b in Figure 3.8 shows three different state-space models of the cantilever beam that 

are compared with the transient module of FEA-A under an arbitrary vibration excitation. Plot c, 
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shows the excitation that was applied to the L/6 of the beam. The excitation was an arbitrary 

moment in the duration of 0.5s.   
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Figure 3.8. Cantilever beam’s tip displacement and moment for 3 different state-space models as well as 

FEA-A transient. a- the response for small time duration, for comparison, b- the response for 0.5 second 

interval, c- an arbitrary excitation moment between [-10,10] N-m applied on L/6 of the beam.  
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As shown in Figure 3.8, the red and magenta plot on top of each other. It proves that the full 

order mathematical model with state matrix of 40 by 40 is almost the same as the FEA-A. This 

indicates the accuracy of the full order model with only 2 master DOFs and 20 modes. More 

importantly, the black line which is for the BMDC model with state matrix of 4 by 4 is similar to 

the FEA-A results. This indicates the accuracy and efficiency of the BMDC with only 2 master 

DOFs and 2 modes. Since the cantilever is a relatively simple geometry, the BMDC and Truncated 

models give the same result. 

The difference index of the models was represented by the normalized RMS values in Table 

3.4. the RMS is defined as follows: 

𝑅𝑀𝑆 = √
1

𝑁
∑|𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑛|

2

𝑁

𝑛=1

3-49 

where 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 is the difference of the tip displacement from any of the state-space models with 

that of the FEA-A transient (reference model). 𝑛 and 𝑁 are the nth variable and the total number 

of variables, respectively. Then the RMS values were normalized with respect to the maximum 

value, which was obtained from the worst model. 

 

Table 3.4. Normalized RMS values of different models and their comparison with FEA-A transient for 

the cantilever beam. 

 Full order BMDC Truncated 

Normalized 

RMS 
1 0.9960 0.9966 

 

According to Table 3.4, the normalized RMS values did not show any significant difference 

between the state-space models and the FEA-A transient; i.e, they did not have any significant 

difference. This was due to the fact that the cantilever beam was a relatively simple geometry. 

As discussed in section 3.4, the balanced realization deals with Gramians. After developing 

state matrices, A, B, C, and D, one could use the “gram” command in M-software to find the 

observability and controllability Gramians which are n by n matrices. This command is based on 

equations 3-36 and 3-37. According to [39], for the systems with a small damping coefficient, and 
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described in modal coordinates, the diagonal elements of the Gramian matrices are dominant. 

Thus, the diagonal elements of the controllability or observability Gramian give information about 

the relative controllability or observability of the different modes, respectively. To show these 

diagonal elements of the observability or controllability Gramian, “meshz” was used. The result 

is shown in Figure 3.9 and Figure 3.10. Similarly for the 2L2JM these results were given in Figure 

3.12 and Figure 3.13, and for the 5-DOF manipulator in Figure 3.15 and Figure 3.16. 

 

Figure 3.9. Cantilever beam, full order model, a. Observability Gramian and b. Controllability Gramian.   

 

According to Figure 3.9, the Gramians of the 40 states of the 20 modes from the full order model 

were scattered in the plane of the states. It was noted that model reduction before balancing could 

remove the states with higher priority in terms of observability or controllability. Therefore, 

balancing was recommended for model reduction.  
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Figure 3.10. Cantilever beam, balanced full order model, a. Observability Gramian and b. Controllability 

Gramian.   

 

As shown in Figure 3.10, the balanced algorithm made both Gramians equal and sorted. Then 

model reduction would consider modes’ priorities. It is obvious that the first 2 modes or 4 states 

would give almost entire dynamic behavior of the system.  

 

3.10 Results, two-link two-joint manipulator (2L2JM) 

In this section, like the previous section, different state-space models of the 2L2JM were 

studied. The manipulator in this section has 2 rigid modes as its revolute joints are not constrained. 

For the balanced realization, first, these modes were removed and then balancing was applied. 

Then, the rigid modes were added to the balanced oscillatory system to form the balanced full 
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order model. It is noted that Gramians exists only for the stable systems i.e., system poles are on 

the left-hand plane. Therefore, the rigid modes need to be removed for balancing and model 

reduction, and finally, they are added to the system. The time step for the state-space and FEA-A 

simulations in this section was 5e-4s for the entire duration.  

Figure 3.11 shows three different state-space models of the manipulator that are compared with 

the transient module of FEA-A. 
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Figure 3.11. 2L2JM’s tip displacement and moment for 3 different state-space models as well as FEA-A 

transient. a- the response for small time duration, for comparison, b- the response for 0.5 second interval, 

c- an arbitrary excitation Force between [-10,10] N applied on L/3 of the first link.  
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As shown in Figure 3.11, the red and magenta plot on top of each other. It proves that the full 

order mathematical model with a state matrix of 40 by 40 is almost the same as the FEA-A. This 

indicates the accuracy of the full order model with only 4 master DOFs and 20 modes. More 

importantly, the black line which is for the BMDC model with state matrix of 8 by 8 comply with 

the FEA-A. This indicates the accuracy and efficiency of the BMDC with only 4 master nodes and 

4 modes. Here, since the manipulator has more complex geometry the balancing effect is obvious 

between BMDC and the Truncated algorithms. The difference index of the models was represented 

by normalized RMS values in Table 3.5.  

 

Table 3.5. Normalized RMS values of different models and their comparison with FEA-A transient for 

the 2L2JM. 

 Full order BMDC Truncated 

Normalized 

RMS 
0.0471 0.2612 1 

 

According to Table 3.5, the normalized RMS values show that the full order and BMDC were 

almost the same as the FEA-A transient values; however, the Truncated model has shown the worst 

performance among the 3 state-space models. 
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Figure 3.12. 2L2JM, full oscillatory model, a. Observability Gramian and b. Controllability Gramian.   

 

According to Figure 3.12, the Gramians of the 36 states or the 18 oscillatory modes from 

unbalanced model are scattered in the plane of the states. It is noted that truncation before 

balancing could remove the states with higher priority in terms of observability or controllability. 

That is the reason why the Truncated (blue line) had the worst performance in Figure 3.11. 

However, the BMDC (black line) had covered the FEA-A or the full model behavior with just 4 

modes. 
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Figure 3.13. 2L2JM, balanced-full oscillatory model, a. Observability Gramian and b. Controllability 

Gramian.   

 

As shown in Figure 3.13, the balanced algorithm made both Gramians equal and sorted. Then 

model reduction would consider mode priorities. It is obvious that the first 2 modes or 4 states 

(plus the 2 rigid modes) would give almost the entire dynamic behavior of the system.   

 

3.11 Results, 5-DOF manipulator 

In this part, like the last 2 parts, the different state-space models are compared with FEA-A 

transient then the Gramians are discussed. The state-space matrices for the 5-DOF manipulator are 

given in Appendix M. The time step for the state-space and FEA-A simulations in this section was 

1e-3s for the entire duration. 
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Figure 3.14 shows three different state-space models of the manipulator that are compared with 

the FEA-A results. The disturbance generated here was based on an arbitrary excitation with the 

frequency of 25Hz to mostly excite the sixth mode of the 5-DOF manipulator with the free base 

and free joints (Appendix B). This was because the sixth mode was the first oscillatory mode of 

this manipulator in vertical direction. In other words, any excitation with a lower frequency would 

only show the rigid motion of the manipulator.  
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Figure 3.14. 5-DOF manipulator tip displacement and moment for 3 different state-space models as well 

as FEA-A transient. a- the response for small time duration, for comparison, b- the response for 0.2 

second interval, c- an arbitrary excitation force between [-2,2] kN applied on the base.  

 

As shown in Figure 3.14, the red and magenta plot on top of each other. It proves that the full 

order mathematical model with a state matrix of 60 by 60 is almost the same as the FEA-A. This 
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indicates the accuracy of the full order model with only 8 master DOFs and 30 modes. More 

importantly, the black line which is for the BMDC model with state matrix of 10 by 10 comply 

with the FEA-A. This indicates the accuracy and efficiency of the BMDC with only 8 master nodes 

and 5 modes. Here, since the manipulator had more complex geometry than the two other 

geometries, the balancing effect is obvious between BMDC and the Truncated algorithm. The 

difference index of the models was represented by normalized RMS values in Table 3.6.  

 

Table 3.6. RMS values of different models and their comparison with FEA-A transient for the 5-DOF 

manipulator. 

 Full order BMDC Truncated 

Normalized 

RMS 
0.0765 0.0573 1 

 

According to Table 3.6, the normalized RMS values show that the full order and BMDC were 

almost the same as the FEA-A transient values; however, the Truncated model has not shown the 

behavior of the system. 

As discussed in section 3.4, the balanced realization deals with Gramians. Diagonal elements 

of the controllability or observability Gramian give information about the relative controllability 

or observability of the different modes, respectively. The balancing algorithm finds a direction to 

make both observability and controllability Gramians equal and sorted. 
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Figure 3.15. 5-DOF manipulator, full oscillatory model, a. Observability Gramian and b. Controllability 

Gramian. 

 

According to Figure 3.15, the Gramians of the 54 states or the 27 oscillatory modes from 

unbalanced model are scattered in the plain of the states. It is noted that truncation before balancing 

could remove the states with higher priority in terms of observability or controllability. That is the 

reason why the truncated (blue line) has the worst performance in Figure 3.14. However, the 

BMDC (black line) has covered the FEA-A or the full model behavior with just 5 modes. 
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Figure 3.16. 5-DOF manipulator, balanced-full oscillatory model, a. Observability Gramian and b. 

Controllability Gramian. 

 

As shown in Figure 3.16, the balanced algorithm makes both Gramians equal and sorted. Then 

truncating would consider mode priorities. It is obvious that the first 3 modes or 6 states (plus the 

3 rigid modes) would give almost entire dynamic behavior of the system. However, for the system 

response in Figure 3.14, 2 oscillatory modes were sufficient for the BMDC. Therefore, only 2 

oscillatory modes plus the 3 rigid modes were used. 

3.12 Summary 

In this chapter the finite element models of manipulators were discussed. First the manual FEM 

was used to obtain the equation of motion for the cantilever beam and the 2L2JM. Then they were 

verified with the manual FEM using the change index. Second, state-space models were obtained 
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based on the eigenvectors from FEA-A using the principal coordinate method. In addition, a model 

reduction algorithm was presented to reduce the order of the obtained models from eigenvectors.  

The resulting state-space models are presented in Appendixes K, L, and M. Finally, the responses 

of the state-space models under random vibration were tested. The result of the models compared 

with transient module obtained from FEA-A showed the effectiveness of the modeling and 

reduction approach. 
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Chapter 4.  Vibration Controller Design 

In this chapter, the verified models were used to design closed loop systems to control the 

vibration. Based on the definition in [40], “the closed-loop system compensates for disturbances 

by measuring the output response, feeding that measurement back through a feedback path, and 

comparing that response to the input at the summing junction. If there is any difference between 

the two responses, the system drives the plant (plant includes the process system and the actuator), 

via the actuating signal, to make a correction. If there is no difference, the system does not drive 

the plant, since the plant’s response is already the desired response”.  The models used in this 

chapter were both the full and reduced models obtained in Chapter 3 (open loop systems). Based 

on [40], “Open-loop systems, then, do not correct for disturbances and are simply commanded by 

the input”. The cantilever beam was assumed to be a SISO (single-input-single-output) problem; 

i.e., the actuator moment at L/3 was the input, and the manipulator’s tip displacement was the 

output. The controller for this problem was a linear quadratic regulator (LQR). 

The 2L2JM manipulator had 2 joint tor ues as the input actuators and its tip’s displacement as 

the output. Also, a linear force was assumed to be the disturbance at L/6 of the first link. Since this 

problem had multiple inputs, it was MIMO (multi-input-multi-output), so the classic controllers 

could not be used. The controller for this manipulator was an optimal controller called H∞. This 

controller is also a robust controller that could cope with uncertainties and disturbances, so it paved 

the way for the 5-DOF problem with complexity. 

For the 5-DOF manipulator, the moment of the 2nd and 3rd joints were inputs, and the tip 

displacement was the output. The 5-DOF manipulator had a quite complex geometry and the 

simplification in the modeling led to uncertainties. However, this thesis was not meant to deal with 

the manipulators’ uncertainties. Instead, the H∞ controller could compromise between different 

controlling purposes of a MIMO problem by solving an optimization problem. Therefore, the main 

purpose of this thesis, which was neutralizing the disturbance from the base, could be achieved.  
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4.1 Vibration controller using LQR for cantilever beam  

The controller in this part was designed based on the full order model and the BMDC reduced 

model of section (3.6). In the previous chapter, the state-space models were derived using 20 

modes of the cantilever beam from modal module of FEA-A. For the full order model all the 20 

modes were used without any changes; however for the BMDC model, the full order model was 

balanced, and the first two modes were used for the final state-space model.  

As shown in Figure 4.1, LQR shows the structure of a state feedback controller. The purpose of 

LQR is to find a proper feedback by solving an optimization problem. For the cantilever problem, 

the tip displacement due to base excitation should reduce to zero, so the reference for this system 

was zero. Despite the good performance of LQR controller, it has a main flaw. Robust stability 

could not be ensured, so it is vulnerable to uncertainties. 

 

Figure 4.1. Structure of a LQR state feedback controller. 

 

The objective is to minimize the following quadratic cost function to find the optimum 𝐾𝐿𝑄𝑅 

which is the controller gain: 

𝐽 =
1

2
∫(𝑋𝑇𝑄𝑋 + 𝑈𝑇𝑅𝑈)𝑑𝑡

∞

0

4-1 
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where 𝑄 and 𝑅 are positive semi-definite weighting matrices and U and X is the control input and 

state vector, respectively. 

The control force is: 

𝑈 = −𝐾𝐿𝑄𝑅𝑋 4-2 

 

where 𝐾𝐿𝑄𝑅 is the optimal controller gain. For more information on how to obtain the LQR 

controller gain, refer to appendix N. 

 

4.2 Vibration controller- cantilever beam results 

In this section, four different models of the cantilever beam were exposed to impulse and 

random vibration. The 4 models were full order open loop (FOL), full order closed loop (FCL), 

reduced order open loop (ROL), and reduced order closed loop (RCL). The open loop state-space 

systems used in this section were based on the matrices in Appendix K. For the reduced models, 

only BMDC was used. The closed loop model was designed based on LQR, and the weight 

functions were chosen by trial and error. This procedure was made in M-software using the 

command “l r”. Finally, bode diagrams were depicted to compare the models over the frequency 

domain. Bode diagrams are used to measure the magnitude of frequency response of a system. 

Through this plot, the closed-loop performance, especially, over the natural frequencies was 

depicted. Bode diagrams were generated using the “bode” command over a desired range of 

frequencies in M-software. It is noteworthy that, since the system for the cantilever beam was 

SISO, the disturbance was exerted on the same channel as the control input. 

In Figure 4.2, the impulse response of the closed loop system of the cantilever beam is shown. 

In theory, the impulse is infinite at t=0 and zero elsewhere; however, in the simulation it has a unit 

value for the first iteration of the differential equation solver. As discussed in section 3.8, the 

“impulse” command chooses the time step based on the dynamics of the system. Here, the time 

step for FCL, FOL, RCL, and ROL were 4e-5s, 4e-5s, 1e-3s, and 1e-3s, respectively. According 

to plot (a), the open loop system for both the full order model and the reduced order model had 

lost 80% of its tip displacement within 2 seconds. Whereas, according to plot (b), for the closed 
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loop systems the tip displacement has lost all its magnitude within 2 seconds. The tip displacement 

of the full order model and the reduced order models show some insignificant differences except 

at the beginning. This implies that not only does the reduction have no adverse effect on the 

system’s response, but it also helped to reduce the computation time. Plot (c) depicts the controller 

efforts. It shows that the full order model has made extra effort to damp the high frequency modes 

of vibration; however, the reduced order model has not made any extra effort (the difference 

between the red and black plot in [0,0.2]s), and the material damping of the beam (𝜁 = 0.02) is in 

charge of attenuating high frequency modes. Since both models have the same results, it proves 

that the extra effort made by the full order closed loop model was unnecessary. 
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Figure 4.2. Vibration response of a cantilever beam due to an impulse moment exerted at L/6 from its 

base at zero-time, (a) tip displacement of the open loop systems, (b) tip displacement of the closed loop 

systems, (c) the controller effort.  
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Since the main purpose of thesis was random vibration attenuation of manipulators, an arbitrary 

excitation was exerted on manipulator and the responses of the 4 models were compared here. 

Figure 4.3, shows the overall performance of the closed loop systems for both full and reduced 

order models. As this figure shows, the red lines (closed loop) have an insignificant amount of 

vibration compared to the black lines (open loop). This implies that the closed loop systems have 

dampened the vibration effectively (the effectiveness index is explained in page 64). The time step 

for this simulation was 5e-4s for the entire duration. 

 

Figure 4.3. Vibration response of a cantilever beam due to an arbitrary vibration [-10,10]Nm moment 

exerted at L/6 from its base. (a) tip displacement of the full order systems. (b) tip displacement of the 

reduced order systems. 

The target performance of the controller was set to keep the displacement of the tip below 5mm. 

According to Figure 4.4, the tip displacements of the closed loop systems have obtained the target 

performance. 
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Figure 4.4. Vibration response of the closed loop cantilever beam systems due to an arbitrary vibration [-

10,10]Nm moment exerted at L/6 from its base. (a) tip displacement of the full order systems. (b) tip 

displacement of the reduced order system. 

 

According to Figure 4.5, plot (a) shows that the controllers have made almost the same effort 

to attenuate the arbitrary excitation. This again indicates that the first 2 modes of vibration were 

sufficient to control the vibration of the tip of the beam.  Plot (b) shows that the disturbance, which 

was applied as an arbitrary vibration [-10,10] Nm moment at x=L/6. 
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Figure 4.5. Cantilever beam results, (a) controller efforts of the full order and reduced order closed loop 

models (FCL and RCL), (b) disturbance as an arbitrary vibration [-10,10] Nm moment exerted at x=L/6. 

 

The effectiveness index of the controller is specified by H∞ norm of the system. Based on 

definition, “It describes the maximum energy gain of the system and is decided by the peak value 

of the largest singular value of the frequency response matrix over the whole frequency axis” [41]. 

It is defined as follows: 

 

‖𝐺‖∞ = 𝑠𝑢𝑝
𝜔∈𝑹

 ‖𝐺(𝑗𝜔)‖2 4-3 

 

where 𝐺 is the system transfer function that could be the overall closed loop system or the open 

loop system. In the definition of the 𝐻∞ norm of the system in equation (4-3), ‖ ‖2 stands for the 

second norm, which is defined as follows: 
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‖𝐺‖2 = [
1

2𝜋
∫ |𝐺(𝑗𝜔)|2 𝑑𝜔
+∞

−∞

]

1
2

4-4 

 

The Cantilever model is a SISO system. The H∞ norm for a SISO system is the largest value of 

the frequency response magnitude. The bode diagrams are shown in Figure 4.6, part (a) shows that 

LQR has reduced the H∞ norm of the system by 20 dB; i.e., the controller at the first resonance 

(worst case scenario) has reduced the magnitude of vibration at the tip by 10 times. Figures 4-5b 

and 4-5c compare the closed loop of the reduced model with the full and reduced order open loop 

models. They imply a 30 dB reduction in the H∞ norm of the system after using LQR; i.e., the 

controller at the first resonance (worst case scenario) has reduced the magnitude of vibration at the 

tip by 1030/20 times.  
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Figure 4.6. Bode diagram of the cantilever beam; (a) full order open loop and closed loop systems. (b) full 

order closed loop and reduced order open loop systems. (c) reduced order open loop and closed loop 

systems. 
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The results in this section showed the effectiveness of the controller for both reduced and full 

order models. The reduced model could achieve the same results as the full order model, but the 

reduced order model has less computational burden on the processor. The models in this section 

were based on the full order and BMDC matrices in Appendix K. The results in this section were 

just simulations that were not verified. The verification would be through practical test that is 

beyond the scope of this study. 

4.3 Vibration control using H∞ for 2L2JM and 5-DoF manipulator 

The 2L2JM and 5-DOF manipulator are recognized as MIMO systems since they both have 2 

inputs and one output. To deal with MIMO systems a H∞ controller was proposed. This controller 

compromises between different controlling purposes of a MIMO problem by solving an 

optimization problem. These purposes could be reference tracking, actuator performance and 

disturbance and noise rejection[41]. 

Considering Figure O-2 in appendix O, the ability for tracking is defined by the transfer function 

from 𝑟 to 𝑒 as follows: 

𝑇𝑒𝑟(𝑠) =:
𝐸(𝑠)

𝑅(𝑠)
= (𝐼 + 𝐺(𝑠)𝐾(𝑠))

−1
4-5 

 

where 𝐸(𝑠) and 𝑅(𝑠), are the error and input signal in Laplace space, respectively. This transfer 

function is called sensitivity and it is represented by S. To have good tracking performance in a 

certain frequency 𝜔, the sensitivity magnitude should be less than a small positive value: 

|𝑆(𝑗𝜔)| < 𝜖(𝜔) 4-6 

 

The inequality can be normalized with a weighting function 𝑊𝑠(𝜔) = 1/𝜖(𝜔) : 

 

|𝑆(𝑗𝜔)𝑊𝑠(𝑗𝜔)| < 1 4-7 

 

This inequality over the entire frequency domain could be shown as below: 
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‖𝑆 𝑊𝑠‖∞ < 1 4-8 

 

According to the definition of infinity norm, equation (4-8) ensures that the system at any 

frequency would track the reference. Similarly, for efficient actuator performance (refer to 

equation O-4), the condition should be as follows:   

 

‖𝐾𝑆 𝑊𝑢‖∞ < 1 4-9 

 

The H∞ controller is a multi-objective controller that solves an optimization problem between 

different control criteria. Therefore, the inequalities (4-8, 4-9) could be written as follows: 

 

𝑚𝑖𝑛
𝐾
‖
𝑆 𝑊𝑠

𝐾𝑆 𝑊𝑢
‖
∞

4-10 

 

 More information about this controller has been given in Appendix O. According to Figure O-

2 in Appendix O, the manipulators’ external input is the disturbance. In addition, control inputs 

are the joints torque, and measured output is the tip displacement. The manipulator controllers 

were designed to achieve reference tracking, actuator performance and disturbance rejection. 

Therefore, the outputs to be minimized are the tracking error and control input. 

 

4.4 Vibration controller- two-link two-joint manipulator (2L2JM) results 

In this section, the random vibration attenuation has been studied for the 2L2JM. The 4 models 

are FOL, FCL, ROL, and RCL which stand for full order open loop, full order closed loop, reduced 

order open loop, and reduced order closed loop, respectively. The open loop state-space systems 

used in this section were based on the matrices in Appendix L. For the reduced models, BMDC 

was only used. The closed loop model was designed based on a H∞ controller, and the weight 

functions were chosen by trial and error. This controller was designed based on “hinfsyn” in M-

software. Finally, bode diagrams were depicted to compare the models over frequency domain. A 
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bode diagram is used to measure the magnitude of frequency response of a system; i.e., the tip 

displacement magnitude over the entire frequency domain. Through this plot, the closed-loop 

performance, especially, over the natural frequencies was depicted. It is noteworthy that the system 

is MIMO, meaning, there are 3 inputs: 2 of them are the joints’ moments that act as control input, 

and one is the disturbance which is a linear force applied on the 𝐿/3 of the first link. The time step 

for the simulations in this section was 5e-4s for the entire duration. 

Figure 4.7, compares the open loop and closed loop full order models in presence of an arbitrary 

vibration. The red line in (a) shows that the tip of the manipulator fluctuates around the origin 

when the controller is active which proves the successful performance of the controller. The target 

performance of the controller was set to keep the displacement of the tip below 5mm. Plot (b) 

shows the zoomed closed loop performance. It shows that the controller has reduced the tip 

vibrations to the range of [-4,4] mm. Therefore, the tip displacement of the closed loop system has 

obtained the target performance. Plot (c) is the disturbance time series for the duration of 0.5s. 

This disturbance was an arbitrary vibration intended to resemble the vibration of the rough terrain. 

For having an accurate pattern of the rough terrain some experimental data should be recorded. 
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Figure 4.7. 2L2JM results, (a) tip displacement of the full order open loop and closed loop models (FOL 

and FCL), (b) zoomed closed loop tip displacement, (c) disturbance as an arbitrary vibration [-10,10] N 

linear force exerted at x=L/3 of the first link. 
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Figure 4.8 shows the controller effort; i.e., the amount of moment that is produced by the joints 

to attenuate the vibration. Controller effort shows how the controller has achieved the desired 

performance. In 2L2JM, the joints have made an effort within [-2,2] Nm. Using this value, one 

could provide suitable actuators in a real experiment.  

 

Figure 4.8. 2L2JM full order model results, (a) joint 1 controller effort, (b) joint 2 controller effort. 

 

Figure 4.9, which is similar to Figure 4.6, but it compares the open loop and closed loop of 

reduced order (BMDC with 4 modes) models in the presence of the arbitrary vibration. The red 

line in (a) shows that the tip of the manipulator fluctuates around the origin when the controller is 

active which proves the successful performance of the controller. The target performance of the 

controller was set to keep the displacement of the tip below 5mm. Plot (b) shows the zoomed 

closed loop performance. It shows that the controller has reduced the tip vibrations to the range of 
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[-4,4] mm. Therefore, the tip displacement of the closed loop system has obtained the target 

performance. Plot (c) is the disturbance time series for the duration of 0.5s. 
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Figure 4.9. 2L2JM results, (a) tip displacement of the reduced order open loop and closed loop models 

(FOL and FCL), (b) zoomed closed loop tip displacement, (c) disturbance as an arbitrary vibration [-

10,10]N linear force exerted at x=L/3 of the first link. 
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Figure 4.10 shows the controller effort, i.e., the amount of force that is produced by the joints 

to attenuate the vibration. Comparing Figure 4.8 and Figure 4.10, the actuators have made an effort 

in the range of [-2,2] Nm. This indicates that, using the reduced model, one could chose the suitable 

actuators for the vibration suppression of the manipulator.  

 

Figure 4.10. 2L2JM reduced order model results, (a) joint 1 controller effort, (b) joint 2 controller effort. 

 

The 2L2JM model is a MIMO system. Considering equation (4-3), the H∞ norm for a MIMO 

system is the largest singular value of the system (open loop or closed loop) across frequencies. 

The bode diagrams are shown in Figure 4.11; part (a) shows that the H∞ controller has reduced 

the H∞ norm of the full order system from infinity to -58.2dB.  Besides, in part (b) the controller 

has reduced the H∞ norm of the reduced order system (BMDC with 4 modes) from infinity to -

54.2dB. This infinite value is due to the rigid modes of the manipulator. These modes are not 

shown in the figure since they occur at a frequency of zero Hz.  
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Figure 4.11. Bode diagram of the 2L2JM, (a) full order open loop and closed loop systems, (b) reduced 

order closed loop and open loop systems. 

 

The results in this section showed the effectiveness of the controller for both reduced and full 

order models. The reduced model could achieve the same results as the full order model, but the 

reduced order model had less computational burden on the processor. The models in this section 

were based on the full order and BMDC matrices in Appendix L. The results in this section were 

just simulations that were not verified. The verification would be through practical test that is 

beyond the scope of this study.  

 

4.5 Vibration controller- 5-DOF manipulator results 

This section reports the results of simulation of random vibration (arbitrary vibration) 

attenuation for the 5-DOF manipulator. The 4 models used were FOL, FCL, ROL, and RCL which 

stand for full order open loop, full order closed loop, reduced order open loop, and reduced order 
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closed loop, respectively. The open loop state-space systems used in this section were based on 

the matrices in Appendix M. For the reduced models, only the BMDC was used. The closed loop 

model was designed based on a H∞ controller, and the weight functions were chosen by trial and 

error. Finally, bode diagrams were depicted to compare the models over frequency domain. A bode 

diagram is used to measure the magnitude of frequency response of a system. Through this plot, 

the closed-loop performance, especially, over the natural frequencies was depicted. It is 

noteworthy that the system is MIMO, meaning, there are 3 inputs: 2 of them are the joints’ 

moments that act as control input, and one is the disturbance which is a linear force applied to the 

base of manipulator. The time step for the simulations in this section was 5e-4s for the entire 

duration. 

Figure 4.12 compares the open loop and closed loop full order models in the presence of an 

arbitrary vibration which in that way resembles the rough terrain of the farm field. The red line in 

(a) shows that the tip of the manipulator fluctuates around the origin when the controller is active 

which indicates the successful performance of the controller. The target performance of the 

controller was set to keep the displacement of the tip below 1mm. Plot (b) shows the zoomed 

closed loop performance which indicates the controller has made the tip vibration reduced to the 

range of [-0.4,0.4] mm. Therefore, the tip displacement of the closed loop system has obtained the 

target performance. Plot (c) is the disturbance time series. The performance index of the controller 

is given in Figure 4.15. 
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Figure 4.12. 5-DOF manipulator results, (a) tip displacement of the full order open loop and closed loop 

models (FOL and FCL), (b) zoomed closed loop tip displacement, (c) disturbance as an arbitrary vibration    

[-2000,2000]N linear force exerted at the base. 
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Figure 4.13 shows the controller effort, i.e., the amount of moment that is produced by the joints 

to attenuate the vibration. The controller effort shows how the controller has achieved the desired 

performance (having no vibration at the EE). In this simulation the 5-DOF manipulator’s joints 

have made an effort within [-5,5] * 1e5 Nm. This amount of moment is not achievable by the real 

stepper motors provided for the 5-DOF manipulator (Chapter 5). The stepper motor datasheet 

shows that the maximum possible moment is 8 Nm. To address this issue a gear ratio should be 

installed between the actuator and the corresponding link. The present gear ratio is 1:100 which 

enables the actuator to have maximum moment of 800 Nm which is not enough to damp such 

vibration in Figure 4.11 c. The arbitrary vibration provided here was an assumption. For more 

realistic result to prove whether the actuator is suitable for vibration suppression, the knowledge 

of terrain pattern is necessary. The focus of this simulation was to design a controller to assure the 

vibration damping in case of a relatively intense vibration (arbitrary vibration with 100Hz in [-2,2] 

kN). More simulation could be done to show the feasibility of the actuators, since the H infinity 

controller can consider the constraints of the actuators. 
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Figure 4.13. 5-DOF manipulator full order model results, (a) joint 1 controller effort, (b) joint 2 controller 

effort. 

 

Figure 4.14 compares the open loop and closed loop reduced order (BMDC with 5 modes) 

models in presence of an arbitrary vibration. The red line in (a) shows that the tip of the 

manipulator fluctuates around the origin when the controller is active which indicates the 

successful performance of the controller. The target performance of the controller was set to keep 

the displacement of the tip below 1mm. Plot (b) shows the zoomed closed loop performance which 

indicates the controller has made the tip vibration reduced to the range of [-0.4,0.4] mm. Therefore, 

the tip displacement of the closed loop system has obtained the target performance. Plot (c) is the 

disturbance time series.  
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Figure 4.14. 5-DOF manipulator results, (a) tip displacement of the full order open loop and closed loop 

models (FOL and FCL), (b) zoomed closed loop tip displacement, (c) disturbance as an arbitrary vibration    

[-2000,2000]N linear force exerted at the base. 
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Figure 4.15 shows the controller effort, i.e., the amount of moment that is produced by the joints 

to attenuate the vibration. Comparing Figure 4.14 and 4.12, although the controller requires less 

effort, it is still not achievable by the stepper motors. This again indicates the need for knowledge 

of the rough terrain pattern. 

 

Figure 4.15. 5-DOF manipulator reduced order model results, (a) joint 1 controller effort, (b) joint 2 

controller effort. 

 

The 5-DOF model is a MIMO system. Considering equation (4-3), the H∞ norm for a MIMO 

system is the largest singular value of the system (open loop or closed loop) across frequencies. 

The bode diagrams are shown in Figure 4.16; part (a) shows that H∞ controller has reduced the 

H∞ norm of the full order system from infinity to -128dB.  Besides, in part (b) the controller has 

reduced the H∞ norm of the reduced order system (BMDC with 4 modes) from infinity to -127dB. 

This infinite value is due to the rigid modes of the manipulator. According to Appendix B, the 5 

DOF manipulator has 3 rigid modes: mode 1 is due to the fact that there is no attachment from the 
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manipulator to the ground, mode 2 and 4 are due to the joints 2 and 3 free rotation. The first mode 

of the systems is not shown in Figure 4.16 as it has a frequency close to zero Hz. 

 

Figure 4.16. Bode diagram of the 5-DOF manipulator, (a) full order open loop and closed loop systems, 

(b) reduced order closed loop and open loop systems. 

 

The results in this section show the effectiveness of the controller for both reduced and full 

order models. The reduced model could achieve the same results as the full order model, but the 

reduced order model has less computational burden on the processor. The results in this section 

were just simulations that were not verified. The verification would be through practical test on 

the real 5-DOF manipulator that is beyond the scope of this study.  
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4.6 Summary 

This chapter was about designing the controllers for the manipulators and the the effectiveness 

of the controllers on the vibration attenuation of the manipulators.  

For the cantilever beam the LQR controller was designed for the vibration suppression of the 

full order and BMDC models. These models are in Appendix K. Then, impulse and random 

vibration (arbitrary vibration) for a SISO control task were simulated. 

For the 2L2JM and the 5-DOF manipulator, the H∞ controller was designed for the vibration 

suppression of the full order and BMDC models. These models are in Appendix L and M, 

respectively. Then impulse and random (arbitrary vibration) vibration for a MIMO control task 

were simulated.   
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Chapter 5.  Implementation of Active Vibration Controller  

This chapter is devoted to implementing the designed controller on the real 5-DOF manipulator. 

Every closed loop system requires a measurement unit which is also called the feedback unit. In 

addition, every closed loop system has a controller and plant. The plant includes the process system 

and the actuator. Chapter 3 was about the mathematical model of the process system. Chapter 4 

was about the controller. In this chapter the measurement unit and the actuator of the 5-DOF are 

discussed. The measurement unit for the 5-DOF manipulator is an accelerometer which is used to 

determine the EE displacement. The actuators for the active vibration suppression are stepper 

motors to rotate the joints 2 and 3. The closed loop is programmed on a microcontroller such that 

every iteration starts with the tip displacement measured by the accelerometer. Then the controller 

uses the measured value to calculate the amount of moment that should be applied to the joints to 

compensate for the tip displacement. Due to the length of the researcher’s study, which took more 

than 30 months, actual implementation was not accomplished. However, the researcher worked on 

implementation partially. In this chapter, calibration of the accelerometer for online measurement 

of the tip displacement, and stepper motors field of operation are reported. 

 

5.1 Tip displacement measurement and verification 

In this section, the online displacement measurement and verification are described. The 

vibrational displacement was produced using a shaker in Room 1B15 of the engineering building. 

It was measured using an accelerometer connected to an Arduino MEGA 2560, which is a 

microcontroller. Finally, the measured data was verified using a laser sensor for distance 

measurement. 



90 

 

  

Figure 5.1. Equipment for displacement measurement, (left) B&K type 4370 accelerometer, (right) 

B&K 2635 charging amplifier. 

 

The accelerometer was a B&K type 4370 which was connected to a B&K 2635 charging 

amplifier. The amplifier was adjusted to 1 mm-1000 mV so that ∓5 mm gives a ∓ 5 VDC. Then 

this voltage was transferred to the Arduino through the analog port A0 (one of the 15 analog ports 

on the Arduino). However, the Arduino could only receive 0–5 VDC. Therefore, the voltage 

needed to be mapped so that -5 to +5 VDC converted to 0 to 5 VDC. To do so, the following three-

resistor circuit was designed, as shown in Figure 5.2 [42]. 

 

Figure 5.2. The circuit to map the -5 to +5 VDC converts to 0 to 5 VDC [36]. 
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For the safety of the amplifier, R1 = 50kΩ so that the maximum current drawn would be 0.1 

milliamp. Using Kirchhoff's Current Law, R2=3MΩ and R3=50kΩ. The capacitor was for noise 

attenuation. To verify the displacement measurement using the accelerometer, a laser sensor was 

used. The laser had been calibrated as 25 mm/V by the lab assistant. This sensor was connected to 

an oscilloscope to record the voltage.  

The experiment was performed for several frequencies of the shaker but only 5 and 10 Hz were 

recorded by the oscilloscope. The Arduino processor had a 16 MHz clock, but since it wrote the 

data to the serial port, its recording frequency had fallen to 148 Hz. The oscilloscope captured 

50,000 data points for 10 seconds which resulted in 5000 Hz recording frequency. After recording, 

the data from Arduino and oscilloscope were filtered using an FIR filter to remove the noise. The 

FIR filter used in here was a multiband filter to let the frequency around 5 and 10 Hz pass. This 

was achieved by the command “fir1” in M-software. More information about the FIR filter is in 

[43]. 

 

Figure 5.3. Fast Fourier transform of the Accelerometer output, when stimulated at 5 and 10 Hz.  
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Figure 5.4. Fast Fourier transform of the Laser output, when stimulated at 5 and 10 Hz.  

 

Figure 5.3 and Figure 5.4 show fast Fourier transform (FFT) of the sensors output when they 

were stimulated at 5 and 10 Hz frequencies. The purpose of these figures was to show whether the 

laser sensor and the accelerometer connected to the Arduino could record the excitation frequency 

{5,10} Hz accurately. looking at the x coordinate of the indicated points in the figures, one could 

conclude that the sensors were able to record these two excitation frequencies; thus, they were well 

calibrated. 

The laser sensor is an accurate device to measure the displacement; however, it measures the 

offline data. On the other hand, the accelerometer connected to the Arduino was meant to measure 

online (real-time) displacement. If the Figure 5.5 shows that the accelerometer has tracked the 

laser, one could conclude the accuracy of the accelerometer for online measurement. In other 

words,  Figure 5.5, illustrates the reliability of the accelerometer. 
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Figure 5.5. Shaker displacement measured by the accelerometer and Laser sensors. 

 

According to Figure 5.5 the accelerometer has tracked the laser displacement measurement. The 

Difference index was defined based on the equation (3-47) by substituting the absolute sensor 

measurement instead of 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒. The RMS for the Accelerometer was 2.4498, whereas that of 

the Laser was 2.3787 which was 2.98% difference. Thus, it verifies that the accelerometer has 

measured the displacement accurately in real-time operation. To interpret the data captured by the 

accelerometer, the serial monitor records the timeseries of the displacement with a constant but 

unknown interval. Finding this interval results in the recording frequency. Using trial and error 

this frequency was around 148 Hz. Therefore, the phase difference between the red and blue plots 

in the figure is due to the inaccuracy in finding this frequency.  

 

5.2 Stepper motor field of operation experiment 

Joints 2 and 3 of the 5-DOF manipulator have been equipped with MST342C02 stepper motors 

and SMD42C2 drives. The driver was set to 10 mini-steps/full-steps. These motors have been 

connected to the joints through a gear box with the gear ratio of 100:1. The stepper motors were 
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energized with a converter that provide 48 VDC and 10 amp. The micro controller was an Arduino 

MEGA 2560. 

Accelstepper is a sophisticated library written for Arduino which makes the stepper motor move 

at the desired speed and acceleration. Using the Arduino code, the motor can produce a specific 

amount of torque at a certain speed. This value is parametrized with PWM (Pulse Width 

Modulation) that divides the maximum torque available to an integer between 0-255. This value 

is translated as voltage to the “moving current” pin of the driver. Using Arduino that has a 16 MHz 

processor, the stepper motor could move up to 1 rev/s. However, by changing the microcontroller 

to Teensy 4.1 (a faster microcontroller), the stepper motor could reach over 40 rev/s. This 

microcontroller has the clock speed of 600 MHz, but it could operate at 1GHz with a cooling 

system. It is noteworthy that there is another pin called “standby current” on the driver. This pin 

also works with PWM and determines the amount of holding torque (the torque to holds the stepper 

motor’s shaft immobilized against the external tor ue). 

Given the weight of the arm, which is 70kg, in the fully extended configuration, the motors 

should provide 900Nm to hold the arm in a stationary position. This is achievable thanks to a 

holding torque of 9Nm (multiplied by the 100 for the gear ratio). However, for vibration 

suppression the situation differs. The relationship between the rotational velocity of the motor and 

the speed of the tip is as follows: 

 

𝜔𝑙𝑖𝑛𝑘 = 𝜔𝑚𝑜𝑡𝑜𝑟 ∗ 𝑁𝑔𝑒𝑎𝑟 5-1 

𝑉𝑡𝑖𝑝 = 𝜔𝑙𝑖𝑛𝑘 ∗ 𝐿𝑙𝑖𝑛𝑘 

 

where 𝜔𝑙𝑖𝑛𝑘 , and 𝜔𝑚𝑜𝑡𝑜𝑟 are the rotational velocity of the link and motor, respectively. 𝑁𝑔𝑒𝑎𝑟 and 

𝐿𝑙𝑖𝑛𝑘 are the gear ratio and approximate length of the manipulator, respectively. Considering the 

gear ratio of 1:100, and 3m for the length of the manipulator, if the tip requires to move at a speed 

of 1 m/s, the motor needs to move 33 rad/s or around 300 RPM. 

At this speed, the motor torque drops significantly. According to the stepper motor torque-

velocity profile provided by the company in Figure 5.6 [44], the green line corresponds to the 5-
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DOF motor and driver and the three other graphs are not related to this research. This figure gives 

a little information about the dynamic performance of the motor. In other words, this figure has no 

detail on the acceleration of the motor, and it assumes that the motor operates at constant speed. 

However, the 5-DOF manipulator requires that different accelerations, speeds and torques be 

provided at different instances to suppress the vibration of the EE.  

 

Figure 5.6. Torque-velocity profile from stepper motor datasheet [44]. 

 

Therefore, to specify the exact amount of torque produced by the motor at different speeds and 

accelerations, a dynamic torque measurement is necessary. To measure the dynamic torque of the 

motor, one way is to attach the shaft to an electric brake. The setup for dynamic torque 

measurement is shown in Figure 5.7. The brake is magnetic particle CLUTCH KC-2.5 which gives 

a brake torque between 0.3-20 Nm by adjusting the current between 0-1.3 amps. The motor shaft 

diameter is 14 mm and that of the brake is 20 mm. Therefore, flexible shaft couplings connect the 

motor and brake shafts together. The coupling is made up of Iron Hubs and Buna-N Rubber Spider. 
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Figure 5.7. Torque measurement setup for stepper motor field of operation experiment. 

 

During the test it was noted that: 

 1. The driver chose the optimal torque for each certain speed. Therefore, there was no need to 

use PWM for adjusting the torque.  

2. To avoid weak performance, a cooling fan was needed for both motor and brake.  

3. The motor could operate at higher speeds with relatively low acceleration; however, 

increasing the acceleration results in motor stall for high speeds.  

To find the motor’s tor ue vs. speed, two sets of tests were established. Each test was performed 

several times to ensure the recorded value. The purpose of the first test was to establish a look-up 

table to give the maximum amount of the motor torque as a function of speed and acceleration. 

The approach taken was changing the motor speed from zero to a certain speed with a constant 

acceleration and bringing back the speed to zero with the same negative acceleration value. During 

the test, an electric damper applied a constant load to the motor. The measured values of torque 

are shown in Table 5.1. In this test, the measured torque for a certain velocity and acceleration was 

measured many times to ensure that the motor would never stall.  



97 

 

Table 5.1. Torque (Nm) measured based on specific acceleration and speed of the motor (test1). 

Acceleration (rev/s^2) 

5.0 10 15 20 25 30 35 

   

S
p

ee
d
 (

re
v

/s
) 

0.5 

 

7.00 6.83 6.67 6.50 6.33 6.17 6.00 

1.0 6.71 6.55 6.38 6.21 6.05 5.88 5.71 

1.5 6.43 6.26 6.10 5.93 5.76 5.60 5.43 

2.0 6.14 5.98 5.81 5.64 5.48 5.31 5.14 

2.5 5.86 5.69 5.52 5.36 5.19 5.02 4.86 

3.0 5.57 5.40 5.24 5.07 4.90 4.74 4.57 

3.5 5.29 5.12 4.95 4.79 4.62 4.45 4.29 

4.0 5.00 4.83 4.67 4.50 4.33 4.17 4.00 

4.5 4.83 4.67 4.50 4.33 4.17 4.00 3.83 

5.0 4.67 4.50 4.33 4.17 4.00 3.83 3.67 

5.5 4.50 4.33 4.17 4.00 3.83 3.67 3.50 

6.0 4.00 3.83 3.67 3.50 3.33 3.17 3.00 

6.5 3.50 3.33 3.17 3.00 2.83 2.67 2.50 

7.0 3.25 3.08 2.92 2.75 2.58 2.42 2.25 

7.5 3.00 2.83 2.67 2.50 2.33 2.17 2.00 

8.0 2.80 2.63 2.47 2.30 2.13 1.97 1.80 

8.5 2.60 2.43 2.27 2.10 1.93 1.77 1.60 

9.0 2.40 2.23 2.07 1.90 1.73 1.57 1.40 

9.5 2.20 2.03 1.87 1.70 1.53 1.37 1.20 

10.0 2.00 1.83 1.67 1.50 1.33 1.17 1.00 

 

Table 5.1 shows a look-up table, which represents dynamic torque values. In other words, this 

table represents a maximum amount of torque generated by the motor at a certain speed and 

acceleration of the motor. The designed controller in the previous chapter takes advantage of this 

table. Given the required controller torques used in Chapter 4, the library (look-up table above) 

uses the corresponding speed and acceleration to reach the required motor torque. 

The second test results were represented in Table 5.2. The purpose of this test was to obtain a 

relationship between the torque and current so that the required torque can be achieved by the 
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supplied current. Since the stepper motor is a synchronous electric motor, it has a torque constant 

which is as follows [40]: 

torque constant =
Motor torque

supply current
5-2 

  

However, this relationship is not accurate for stepper motors used in the 5-DOF manipulator. 

To find actual relationship between the torque and current, a second test was established. This test 

was performed by constant speed values. The procedure was as follows: while the motor was 

running at a certain speed the load was increased until the motor stalled. Then the current at the 

last moment was recorded. 

Table 5.2. Max torque of the motor and the current at a certain speed (test 2). 

Speed-(rev/s) 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 

Max Brake-Torque-(Nm)  8.0 8.0 8.0 8.0 8.0 8.0 7.8 7.2 7.0 6.2 

Current (amps) 2.5 3.2 3.8 4.7 5.2 5.8 6.0 6.0 6.0 6.0 

Torque/current 3.2 2.5 2.1 1.7 1.5 1.4 1.3 1.2 1.2 1.0 

 

Speed-(rev/s) 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 

Max Brake -Torque-(Nm)  5.8 5.7 5.0 4.9 4.3 4.0 3.8 3.5 3.4 3.3 

Current (amps) 5.8 6.0 6.0 6.0 5.8 6.0 5.8 5.8 5.9 5.9 

Torque/current 1.0 0.9 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6 

 

Table 5.2 represents relationship between the motor’s torque and its supplied current at a certain 

motor speed. This table shows that the torque constant value for the motor changes as the speed 

changes. 

After establishing the input and output of the closed loop system for the vibration suppression 

of the 5-DOF manipulator, the designed controllers needed to be programmed on the micro-

controller with a communication with the I/O. However, the closed loop implementation was 

beyond the scope of this study. 
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5.3 Summary 

In this chapter the tip measurement unit was calibrated for online displacement measurement. 

It was also verified using an accurate laser sensor. In the second part of this chapter the actuators’ 

stepper motor was tested. The test was intended to find a look up table for the stepper motor field 

of operation. This table showed the torque as a variable of the speed and acceleration of the motor. 

This test did not verify the graph provided by the company as it did not have any information 

regarding acceleration. In another test it was shown that the stepper motor’s tor ue does not have 

a linear relationship with the current.  
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Chapter 6.  Conclusion and Future Work 

6.1 Conclusions 

The 5-DOF manipulator is a flexible structure which was designed to be installed on a mobile 

base to monitor crops in farm fields. When the manipulator which is installed on a mobile base 

move along the farm field, the manipulator (especially its EE) undergoes vibration which may 

result in inaccurate data collection. Objectives for this thesis were vibration evaluation of the 

manipulator, controlling vibration of the manipulator, and trying to implement the controllers on 

the manipulator. Chapter 2 covered vibration evaluation of the manipulator. Modal parameters of 

the manipulator were obtained, and the force vibration transmitted to the EE of the manipulator 

was obtained. In Chapter 3 using manual FEM, the equation of motion for a cantilever beam and 

a 2L2JM were derived. The eigenvectors obtained from FEA-A were used to build full order and 

reduced order state-space models of the cantilever beam, 2L2JM and the 5-DOF manipulator. 

These models were verified with FEA-A. In Chapter 4, the state-space models from chapter 3 were 

used by the employed controllers. For the cantilever beam a LQR controller was used, which for 

the 2L2JM and the 5-DOF manipulator a H∞ controller was employed. In Chapter 6, a real-time 

unit for measuring displacement of the EE was calibrated. In addition, a look-up table was 

developed to give the joint torque as a function of speed and acceleration of the motors. 

The focus of this thesis was obtaining and verifying the model of the 5-DOF flexible 

manipulator which led to designing an active vibration controller for its end-effector. The 5-DOF 

manipulator has a complex structure, and its modeling is useful for other similar structures. This 

modeling was verified with FEA-A with a small error. Moreover, the model is proposed for online 

controlling. The modeling approach reduced the size of matrices from a very large order (about 

100,000) to a small order (about 10). The reduced model was verified by FEA-A to show the 

accuracy of behavior of the reduced system. The controller was both optimal and robust. The 

controllers employed can be used for achieving several targets, such as disturbance rejection and 

optimal performance. The controller caused the H∞ norm of an unstable system with an initial 

value of infinity be reduced -128 dB. For the closed loop system the feedback and actuator units 

were established. 
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6.2 Future work 

The research project was limited by the master’s period of study, however there are future tasks 

to be done. 

1. The designed controllers are needed to be programmed on the microcontroller. This 

program should be developed to allow communication between the controller, 

accelerometer, and the stepper motors. The first step is making an Arduino program with a 

numerical integrator to calculate the states from given measured displacement. Then it 

would use the designed closed loop matrices to calculate the desired actuator torque at each 

iteration. The second step is to make a serial communication between the real time 

measurement unit, which is the accelerometer, and the integrator and the actuator. The open 

loop system that has already been implemented on the real system has 1s delay. This amount 

was set by another lab member to ensure that the serial communication was available 

between the computer, microcontroller and the motors. However, this amount is not optimal 

and can be considered excessive for the fast response of active vibration suppression system. 

Therefore, the optimal time-delays should be compatible with different response rates of the 

units and provide the fast response for the entire active vibration suppression system. The 

possible solution to find the optimal time delays, would be through trial and error. In other 

words, the implemented program should be tested under different frequencies and 

amplitudes of base excitation with suitable time-delays. To make sure the corresponding 

time-delay is enough and fast to provide proper response for each frequency and amplitude. 

This results in the third step which is tuning the controller.  

 

2. The model reduction effectiveness should be shown in a real-time control system. 

Therefore, a comparison could be made between the performance of the controllers that run 

with the full order model compared to the reduced order models. This task needs the full 

implementation of the closed loop on the 5-DOF manipulator. Then the performance of the 

full order and reduced order closed loop s could be compared. 

 

3. Also, there is a need to define additional control targets for the H∞ controller. As a robust 

controller, it can deal with uncertainties apart from the disturbance that is transmitted to the 
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manipulator. Moreover, some other control targets could be defined, such as accelerometer 

noise rejection, and actuator optimum performance. The controller can compromise 

between these targets. 

 

4. The passive vibration attenuation could be applied to the arm. There are some adhesive tapes 

which provide the links with extra damping. Then, the passive and active vibration controls 

could be compared. 
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Appendixes  

A. The 5-DOF manipulator modal analysis, section 2.1 (fixed base and 

joints) 

The mode shapes in this part are from modal analysis of the 5-DOF manipulator with fixed base 

and fixed joints. Therefore, all the modes are oscillatory. Below are the 10 mode shapes of the 

manipulator, Figures A.2 to A.11. 

 

Figure A.1. First mode of the 5-DOF manipulator with fixed base and joints (1st lateral) 
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Figure A.2. Second mode of the 5-DOF manipulator with fixed base and joints (1st vertical) 

 

Figure A.3. Third mode of the 5-DOF manipulator with fixed base and joints (2nd lateral) 
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Figure A.4. Forth mode of the 5-DOF manipulator with fixed base and joints (2nd vertical) 

 

Figure A.5. Fifth mode of the 5-DOF manipulator with fixed base and joints (3rd vertical) 
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Figure A.6. Sixth mode of the 5-DOF manipulator with fixed base and joints (3rd lateral) 

 

Figure A.7. Seventh mode of the 5-DOF manipulator with fixed base and joints (4th vertical) 
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Figure A.8. Eighth mode of the 5-DOF manipulator with fixed base and joints (ball screw vertical) 

 

Figure A.9. Ninth mode of the 5-DOF manipulator with fixed base and joints (ball screw lateral) 
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Figure A.10. Tenth mode of the 5-DOF manipulator with fixed base and joints (4th lateral)  
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B. 5-DOF manipulator modal analysis, section 3.5, 3.8 and 4.5 (free base 

and joints) 

The mode shapes in this part are from modal analysis of the 5-DOF manipulator with free base 

and joints, i.e., the base can have vertical motion and the 2nd and the 3rd joints are free to rotate. 

Therefore, all the modes are oscillatory. 

 

Figure B.1. First mode of the 5-DOF manipulator with free base and joints (1st rigid mode) 
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Figure B.2. Second mode of the 5-DOF manipulator with free base and joints (2nd rigid mode) 

 

Figure B.3. Third mode of the 5-DOF manipulator with free base and joints 
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Figure B.4. Forth mode of the 5-DOF manipulator with free base and joints (3rd rigid mode) 

 

Figure B.5. Fifth mode of the 5-DOF manipulator with free base and joints 
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Figure B.6. Sixth mode of the 5-DOF manipulator with free base and joints 

 

Figure B.7. Seventh mode of the 5-DOF manipulator with free base and joints 
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Figure B.8. Eighth mode of the 5-DOF manipulator with free base and joints 

 

Figure B.9. Ninth mode of the 5-DOF manipulator with free base and joints 
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Figure B.10. Tenth mode of the 5-DOF manipulator with free base and joints 
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C. Cantilever beam modal analysis, section 3.5 and 3.6  

 

Below are the 6 modes of vibration for the cantilever beam, Figures C.1 to C.6. 

 

Figure C.1. First mode of the cantilever beam 

 

 

Figure C.2. Second mode of the cantilever beam 
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Figure C.3. Third mode of the cantilever beam 

 

 

Figure C.4. Fourth mode of the cantilever beam 
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Figure C.5. Fifth mode of the cantilever beam 

 

 

Figure C.6. Sixth mode of the cantilever beam 
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D. 2L2JM modal analysis section 3.5 and 3.7 

 

Below are the 6 modes of vibration for the 2L2JM, Figures D.1 to D.6. 

 

Figure D.1. First mode of vibration for the 2L2JM (1st rigid mode) 

 

Figure D.2. Second mode of vibration for the 2L2JM (2nd rigid mode) 



123 

 

 

Figure D.3. Third mode of vibration for the 2L2JM 

 

Figure D.4. Fourth mode of vibration for the 2L2JM 
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Figure D.5. Fifth mode of vibration for the 2L2JM 

 

Figure D.6. Sixth mode of vibration for the 2L2JM 
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E. Removing natural coordinate from Hermit shape function, section 3.1 

In some textbooks such as [45], the Hermit shape function for the beam is defined with the 

natural coordinate 𝜀 as follows:  

{
 
 
 

 
 
 𝐻1 =

1

4
(2 − 3𝜀 + 𝜀3)

𝐻2 =
1

4
(1 − 𝜀 − 𝜀2 + 𝜀3)

𝐻3 =
1

4
(2 + 3𝜀 − 𝜀3)

𝐻4 =
1

4
(−1 − 𝜖 + 𝜖2 + 𝜖3)

𝐸 − 1 

According to Figure E-1, =
𝑥−𝑙/2

𝑙/2
, where 𝑥 is the physical coordinate and 𝑙 is the length of the 

beam.  

 

 

 

 

By substituting 𝜀 =
2𝑥

𝑙
− 1 into equation (𝐸 − 1), the shape function becomes equation (3.3). 

 

  

 

 

Figure E.1. Beam element and the physical and natural coordinates 

𝜀 = 1 

𝑥 = 𝑙 

𝜀 = −1 

𝑥 = 0 

𝑥 

𝑢1 𝑢2 

𝑣1 𝑣2 
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F. Random vibration generation MATLAB code, section 2.2, 3.6 

In this section, the random vibration has been generated with “rand” and then the PSD has been 

obtained using “pwelch”. The generated random vibration was based on the sample rate of 100Hz; 

however, when the data was applied to FEA-A, the sample rate should be higher than this number. 

Therefore, the time interval for the FEA-A was chosen 0.005s which results in the sample rate of 

Fs=200 Hz. 

 

t=0:0.01:10; % time with sample rate of 100 Hz 

x=(-1+2.*rand(1,length(t)))*1e-2; %white noise in the range 

of [-1,1]cm 

 

Fs=200; 

%%EE 

Z= EE - mean(EE); 

L=length(EE); 

[psd_EE_Z,f]=pwelch(Z,[],[],[],Fs); 

 

%% Base 

Zb=(base)-mean(base); 

L=length(base); 

[psd_b_Z,f]=pwelch(Zb,[],[],[],Fs); 

 

%%Displacement Transmissibility 

Td=sqrt(psd_EE_Z./psd_b_Z); 
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G. Mass and stiffness matrices, two-link two-joint manipulator(2L2JM), 

section 3.2 and 3.5 

The code represented here is based on symbolic toolbox of MATLAB for the 2L2JM with 

each link having 3 elements. The result of this code was used for verification in section 3.5. 

clear 

clc 

  

syms t ro A E I 

i=2;  % #links 

j=3;  % #elements on each link 

  

  

syms x11 x12 x13 

syms x21 x22 x23 

syms l11 l12 l13 

syms l21 l22 l23 

  

l=[l11 l12 l13; l21 l22 l23]; 

x=[x11 x12 x13; x21 x22 x23]; 

  

z=sym(zeros(18,1,I,j)); 

q=sym(zeros(18,1)); 

 

syms theta1(t) theta2(t)  

syms u11(t) v11(t) u12(t) v12(t) u13(t) v13(t) u14(t) v14(t)  

syms u21(t) v21(t) u22(t) v22(t) u23(t) v23(t) u24(t) v24(t) 

  

theta=[theta1(t) theta2(t)]; 

u=[u11(t)  u12(t)  u13(t)  u14(t); u21(t)  u22(t)  u23(t) u24(t)]; 

v=[v11(t)  v12(t)  v13(t)  v14(t); v21(t)  v22(t)  v23(t) v24(t)]; 

  

  

fi=sym(zeros(1,18,I,j)); 

y=sym(zeros(I,j)); 

r=sym(zeros(2,1,I,j)); 

C=sym(zeros(2,1)); 

  

dr_dz=sym(zeros(2,18,I,j)); 

dr_dz2=sym(zeros(18,18,I,j)); 

T=sym(zeros(2,2,i)); 

m=sym(zeros(18,18,I,j)); 

M=sym(zeros(18,18)); 

ks=sym(zeros(4,4,I,j)); 

K=sym(zeros(18,18)); 

  

%% States for each element 

z(:,1,1,1)=[theta(1);sym(zeros(1,1));u(1,1);v(1,1);u(1,2);v(1,2); ... 

    sym(zeros(12,1))]; %[5,6,7,8] are active 

z(:,1,1,2)=[theta(1);sym(zeros(3,1));u(1,2);v(1,2);u(1,3);v(1,3); ... 

    sym(zeros(10,1))]; %[7,8,9,10] are active 

z(:,1,1,3)=[theta(1);sym(zeros(5,1));u(1,3);v(1,3);u(1,4);v(1,4); ... 

    sym(zeros(8,1))];  
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z(:,1,2,1)=[theta(1);theta(2);sym(zeros(6,1));u(1,4);v(1,4);u(2,1); ... 

    v(2,1);u(2,2);v(2,2);sym(zeros(4,1))]; %[13,14,15,16] are active 

z(:,1,2,2)=[theta(1);theta(2);sym(zeros(6,1));u(1,4);v(1,4); ... 

    sym(zeros(2,1));u(2,2);v(2,2);u(2,3);v(2,3); ... 

    sym(zeros(2,1))]; %[15,16,17,18] are active 

z(:,1,2,3)=[theta(1);theta(2);sym(zeros(6,1));u(1,4);v(1,4); ... 

    sym(zeros(4,1));u(2,3);v(2,3);u(2,4);v(2,4)]; 

%% Generalized Coordinates 

c=1; 

q(1:2,1)=theta(:); 

for i=1:2 

    for j=1:4 

        q(c+2:c+3,1)=[u(I,j);v(I,j)]; 

        c=c+2; 

    end 

end 

  

%% Shape Functions for each element 

  

fi(1,:,1,1)=[sym(zeros(1,2)), 1-3*x(1,1)^2/l(1,1)^2+2*x(1,1)^3/l(1,1)^3,... 

          x(1,1)-2*x(1,1)^2/l(1,1)+x(1,1)^3/l(1,1)^2,... 

          3*x(1,1)^2/l(1,1)^2-2*x(1,1)^3/l(1,1)^3,... 

          -x(1,1)^2/l(1,1)+x(1,1)^3/l(1,1)^2,sym(zeros(1,12))]; 

  

fi(1,:,1,2)=[sym(zeros(1,4)), 1-3*x(1,2)^2/l(1,2)^2+2*x(1,2)^3/l(1,2)^3,... 

          x(1,2)-2*x(1,2)^2/l(1,2)+x(1,2)^3/l(1,2)^2,... 

          3*x(1,2)^2/l(1,2)^2-2*x(1,2)^3/l(1,2)^3,... 

          -x(1,2)^2/l(1,2)+x(1,2)^3/l(1,2)^2,sym(zeros(1,10))]; 

  

fi(1,:,1,3)=[sym(zeros(1,6)), 1-3*x(1,3)^2/l(1,3)^2+2*x(1,3)^3/l(1,3)^3,... 

          x(1,3)-2*x(1,3)^2/l(1,3)+x(1,3)^3/l(1,3)^2,... 

          3*x(1,3)^2/l(1,3)^2-2*x(1,3)^3/l(1,3)^3,... 

          -x(1,3)^2/l(1,3)+x(1,3)^3/l(1,3)^2,sym(zeros(1,8))]; 

  

fi(1,:,2,1)=[sym(zeros(1,10)), 1-3*x(2,1)^2/l(2,1)^2+2*x(2,1)^3/l(2,1)^3,... 

          x(2,1)-2*x(2,1)^2/l(2,1)+x(2,1)^3/l(2,1)^2,... 

          3*x(2,1)^2/l(2,1)^2-2*x(2,1)^3/l(2,1)^3,... 

          -x(2,1)^2/l(2,1)+x(2,1)^3/l(2,1)^2,sym(zeros(1,4))]; 

  

fi(1,:,2,2)=[sym(zeros(1,12)), 1-3*x(2,2)^2/l(2,2)^2+2*x(2,2)^3/l(2,2)^3,... 

          x(2,2)-2*x(2,2)^2/l(2,2)+x(2,2)^3/l(2,2)^2,... 

          3*x(2,2)^2/l(2,2)^2-2*x(2,2)^3/l(2,2)^3,... 

          -x(2,2)^2/l(2,2)+x(2,2)^3/l(2,2)^2,sym(zeros(1,2))]; 

  

fi(1,:,2,3)=[sym(zeros(1,14)), 1-3*x(2,3)^2/l(2,3)^2+2*x(2,3)^3/l(2,3)^3,... 

          x(2,3)-2*x(2,3)^2/l(2,3)+x(2,3)^3/l(2,3)^2,... 

          3*x(2,3)^2/l(2,3)^2-2*x(2,3)^3/l(2,3)^3,... 

          -x(2,3)^2/l(2,3)+x(2,3)^3/l(2,3)^2]; 

  

%% Vertical 128olumns128s of points of elements  

for i=1:2 

    for j=1:3 

            y(I,j)=fi(1,:,I,j)*z(:,1,I,j); 

    end 

end 

  

%% Rotation Matrices  
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a=[theta(1), theta(2)+v(1,4)]; 

for i=1:2 

   T(:,:,i)=[cos(a(i)), -sin(a(i)); sin(a(i)), cos(a(i))];  

end 

  

%% r: Positions of points for each element  

for i=1:2 

  

    for j=1:3 

  

            if i==1 

  

                if j==1 

                    l1=sym(0); 

                else 

                    l1=l1+l(I,j-1); 

                end 

  

                r(:,:,I,j)=T(:,:,i)*[l1+x(I,j); y(I,j)]; 

  

  

            elseif i==2 

  

                if j==1 

                    l2=sym(0); 

                else 

                    l2=l2+l(I,j-1); 

                end 

  

                r(:,:,I,j)=T(:,:,i-1)*([l1; u(1,4)]+T(:,:,i)*[l2+x(I,j); ... 

                    y(I,j)]); %u(1,4)=u(1,end) 

  

            end         

    end 

end 

  

%% dr/dz  

  

  

for i=1:2 

    for j=1:3 

        for c=1:18 

            if z(c,1,I,j)~=0 

                dr_dz(:,c,I,j)=diff(r(:,1,I,j),z(c,1,I,j)); 

            else 

                dr_dz(:,c,I,j)=0; 

            end 

        end 

    end 

end 

  

%% dr_dz transpose and its quadratic form  

dr_dz_trans=permute(dr_dz,[2,1,3,4]); 

for i=1:2 

    for j=1:3 

        dr_dz2(:,:,I,j)=dr_dz_trans(:,:,I,j)*dr_dz(:,:,I,j); 

%(4*2)*(2*4)=>4*4 
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    end 

end 

  

%% Trapezoid integration for Mass matrix  

for i=1:2 

    for j=1:3 

        for i1=1:18 

            for i2=1:18 

                m(i1,i2,I,j)=ro*A*(int(dr_dz2(i1,i2,I,j),x(I,j),0,l(I,j))); 

            end 

        end 

    end 

end 

  

%% Assemble Mass Matrices  

  

for i=1:2 

   for j=1:3 

       M(:,:)=M(:,:)+m(:,:,I,j); 

   end 

end 

%% Stiffness Matrix and its assemble 

d=3; 

for i=1:2 

    for j=1:3 

       ks(:,:,I,j)=E*I*[12/l(I,j)^3,   6/l(I,j)^2, -12/l(I,j)^3,  

6/l(I,j)^2;... 

                        6/l(I,j)^2,   4/l(I,j),    -6/l(I,j)^2,  2/l(I,j);... 

                        -12/l(I,j)^3,  -6/l(I,j)^2,  12/l(I,j)^3, -

6/l(I,j)^2;... 

                        6/l(I,j)^2,   2/l(I,j),    -6/l(I,j)^2,  4/l(I,j)];  

  

        K(d:d+3,d:d+3)=K(d:d+3,d:d+3)+ks(:,:,I,j); 

        d=d+2; 

    end 

    d=d+2; 

end 

%% Eliminating rows and columns for u,v=0 

q([3,4,11,12], :)=[]; 

  

qd(:,:)=diff(q(:,:),t); 

qdd(:,:)=diff(qd(:,:),t); 

M([3,4,11,12], :)=[]; 

M(:,[3,4,11,12])=[]; 

K([3,4,11,12], :)=[]; 

K(:,[3,4,11,12])=[]; 

 

The resulting global stiffness matrices are given below (zero matrix elements are not 

mentioned): 

 

Considering 𝑞 = [𝜃1, 𝜃2, 𝑢12, 𝑣12, 𝑢13, 𝑣13, 𝑢14, 𝑣14, 𝑢22, 𝑣22, 𝑢23, 𝑣23, 𝑢24, 𝑣24] 
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𝐾3,3 , 𝐾3,4 , 𝐾3,5 , 𝐾3,6 =
12 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙11

3 + 𝑙12
3 )

𝑙11
3 ∗ 𝑙12

3 ,
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙11

2 − 𝑙12
2 )

𝑙11
2 ∗ 𝑙12

2 , −
12 ∗ 𝐸 ∗ 𝐼

𝑙12
3 ,

6 ∗ 𝐸 ∗ 𝐼

𝑙12
2  

 

𝐾4,3 , 𝐾4,4 , 𝐾4,5 , 𝐾4,6 =
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙11

2 − 𝑙12
2 )

𝑙11
2 ∗ 𝑙12

2 ,
4 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙11 + 𝑙12)

𝑙11 ∗ 𝑙12
, −
6 ∗ 𝐸 ∗ 𝐼

𝑙12
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙12
 

 

𝐾5,3 , 𝐾5,4 , 𝐾5,5 , 𝐾5,6 , 𝐾5,5 , 𝐾5,6

= −
12 ∗ 𝐸 ∗ 𝐼

𝑙12
3 , −

6 ∗ 𝐸 ∗ 𝐼

𝑙12
2 ,

12 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙12
3 + 𝑙13

3 )

𝑙12
3 ∗ 𝑙13

3 ,
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙12

2 − 𝑙13
2 )

𝑙12
2 ∗ 𝑙13

2 , −
12 ∗ 𝐸 ∗ 𝐼

𝑙13
3 ,

6 ∗ 𝐸 ∗ 𝐼

𝑙13
2  

 

𝐾6,3 , 𝐾6,4 , 𝐾6,5 , 𝐾6,6 , 𝐾6,5 , 𝐾6,6 =
6 ∗ 𝐸 ∗ 𝐼

𝑙12
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙12
,
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙12

2 − 𝑙13
2 )

𝑙12
2 ∗ 𝑙13

2 ,

4 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙12 + 𝑙13)

𝑙12 ∗ 𝑙13
, −
6 ∗ 𝐸 ∗ 𝐼

𝑙13
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙13
 

 

𝐾7,7 , 𝐾7,8 , 𝐾7,9 , 𝐾7,10 = −
12 ∗ 𝐸 ∗ 𝐼

𝑙13
3 , −

6 ∗ 𝐸 ∗ 𝐼

𝑙13
2 ,

12 ∗ 𝐸 ∗ 𝐼

𝑙13
3 , −

6 ∗ 𝐸 ∗ 𝐼

𝑙13
2  

 

𝐾8,9 , 𝐾8,10 , 𝐾8,11 , 𝐾8,12 =
6 ∗ 𝐸 ∗ 𝐼

𝑙13
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙13
, −
6 ∗ 𝐸 ∗ 𝐼

𝑙13
2 ,

4 ∗ 𝐸 ∗ 𝐼

𝑙13
 

 

𝐾9,9 , 𝐾9,10 , 𝐾9,11 , 𝐾9,12

=
12 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙21

3 + 𝑙22
3 )

𝑙21
3 ∗ 𝑙22

3 ,
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙21

2 − 𝑙22
2 )

𝑙21
2 ∗ 𝑙22

2 , −
12 ∗ 𝐸 ∗ 𝐼

𝑙22
3 ,

6 ∗ 𝐸 ∗ 𝐼

𝑙22
2  

 

𝐾10,9 , 𝐾10,10 , 𝐾10,11 , 𝐾10,12

=
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙21

2 − 𝑙22
2 )

𝑙21
2 ∗ 𝑙22

2 ,
4 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙21 + 𝑙22)

𝑙21 ∗ 𝑙22
, −
6 ∗ 𝐸 ∗ 𝐼

𝑙22
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙22
 

 

𝐾11,9 , 𝐾11,10 , 𝐾11,11 , 𝐾11,12 , 𝐾11,13 , 𝐾11,14

= −
12 ∗ 𝐸 ∗ 𝐼

𝑙22
3 , −

6 ∗ 𝐸 ∗ 𝐼

𝑙22
2 ,

12 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙22
3 + 𝑙23

3 )

𝑙22
3 ∗ 𝑙23

3 ,
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙22

2 − 𝑙23
2 )

𝑙22
2 ∗ 𝑙23

2 , −
12 ∗ 𝐸 ∗ 𝐼

𝑙23
3 ,

6 ∗ 𝐸 ∗ 𝐼

𝑙23
2  
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𝐾12,9 , 𝐾12,10 , 𝐾12,11 , 𝐾12,12 , 𝐾12,13 , 𝐾12,14

=
6 ∗ 𝐸 ∗ 𝐼

𝑙22
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙22
,
6 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙22

2 − 𝑙23
2 )

𝑙22
2 ∗ 𝑙23

2 ,
4 ∗ 𝐸 ∗ 𝐼 ∗ (𝑙22 + 𝑙23)

𝑙22 ∗ 𝑙23
, −
6 ∗ 𝐸 ∗ 𝐼

𝑙23
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙23
 

 

𝐾13,11 , 𝐾13,12 , 𝐾13,13 , 𝐾13,14 = −
12 ∗ 𝐸 ∗ 𝐼

𝑙23
3 , −

6 ∗ 𝐸 ∗ 𝐼

𝑙23
2 ,

12 ∗ 𝐸 ∗ 𝐼

𝑙23
3 , −

6 ∗ 𝐸 ∗ 𝐼

𝑙23
2  

 

𝐾14,11 , 𝐾14,12 , 𝐾14,13 , 𝐾14,14 =
6 ∗ 𝐸 ∗ 𝐼

𝑙23
2 ,

2 ∗ 𝐸 ∗ 𝐼

𝑙23
, −
6 ∗ 𝐸 ∗ 𝐼

𝑙23
2 ,

4 ∗ 𝐸 ∗ 𝐼

𝑙23
 

 

The Global mass matrices are too big to be given here, however the reader can simply obtain 

it by the provided code. 
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H. Mass and stiffness matrices, 5-DOF manipulator, section 3.2  

The code represented here is based on symbolic toolbox for a parallelogram with each link 

having 3 elements. This code is with the help of [32]. Since the main objective of this thesis was 

modeling the real 5-DOF manipulator and not a parallelogram, the result of the code here was not 

used for any verification. As stated in Chapter 3, the state-space model of the 5-DOF manipulator 

is just based on the eigenvectors extracted from FEA-A.  

 

clear 

clc 

  

syms t ro A E I 

i=4;  % #links 

j=3;  % #elements on each link 

  

syms x11 x12 x13 

syms x21 x22 x23 

syms x31 x32 x33 

syms x41 x42 x43 

  

syms l11 l12 l13 

syms l21 l22 l23 

syms l31 l32 l33 

syms l41 l42 l43 

  

l=[l11 l12 l13; l21 l22 l23; l31 l32 l33; l41 l42 l43]; 

x=[x11 x12 x13; x21 x22 x23; x31 x32 x33; x41 x42 x43]; 

  

l13=sym(0); 

l23=sym(0); 

l33=sym(0); 

  

x13=sym(0); 

x23=sym(0); 

x33=sym(0); 

  

z=sym(zeros(36,1,i,j)); 

q=sym(zeros(36,1)); 

F=sym(zeros(22,1)); 

B=sym(zeros(36,2)); 

Bd=sym(zeros(36,2)); 

  

  

syms theta1(t) theta2(t) theta3(t) theta4(t) 

syms u11(t) v11(t) u12(t) v12(t) u13(t) v13(t) u14(t) v14(t) 

syms u21(t) v21(t) u22(t) v22(t) u23(t) v23(t) u24(t) v24(t) 

syms u31(t) v31(t) u32(t) v32(t) u33(t) v33(t) u34(t) v34(t) 

syms u41(t) v41(t) u42(t) v42(t) u43(t) v43(t) u44(t) v44(t) 
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theta=[theta1(t) theta2(t) theta3(t) theta4(t)]; 

u=[u11(t)  u12(t)  u13(t)  u14(t); u21(t)  u22(t)  u23(t)  u24(t); u31(t) ... 

    u32(t)  u33(t)  u34(t); u41(t)  u42(t)  u43(t)  u44(t)]; 

v=[v11(t)  v12(t)  v13(t)  v14(t); v21(t)  v22(t)  v23(t)  v24(t); v31(t) ... 

    v32(t)  v33(t)  v34(t); v41(t)  v42(t)  v43(t)  v44(t)]; 

  

  

fi=sym(zeros(1,36,i,j)); 

y=sym(zeros(i,j)); 

r=sym(zeros(2,1,i,j)); 

C=sym(zeros(2,1)); 

bd=sym(zeros(2,1)); 

  

dr_dz=sym(zeros(2,36,i,j)); 

dr_dz2=sym(zeros(36,36,i,j)); 

T=sym(zeros(2,2,i)); 

m=sym(zeros(36,36,i,j)); 

M=sym(zeros(36,36)); 

ks=sym(zeros(4,4,i,j)); 

K=sym(zeros(36,36)); 

  

Cqd=sym(zeros(22,1)); 

CC=sym(zeros(22,22)); 

  

%% States for each element  

z(:,1,1,1)=[theta(1);sym(zeros(3,1));u(1,1);v(1,1);u(1,2);v(1,2); ... 

    sym(zeros(28,1))]; %[5,6,7,8] are active 

z(:,1,1,2)=[theta(1);sym(zeros(5,1));u(1,2);v(1,2);u(1,3);v(1,3); ... 

    sym(zeros(26,1))]; %[7,8,9,10] are active 

z(:,1,1,3)=sym(zeros(36,1)); 

z(:,1,2,1)=[sym(0);theta(2);sym(zeros(10,1));u(2,1);v(2,1);u(2,2); ... 

    v(2,2);sym(zeros(20,1))]; %[13,14,15,16] are active 

z(:,1,2,2)=[sym(0);theta(2);sym(zeros(12,1));u(2,2);v(2,2);u(2,3); ... 

    v(2,3);sym(zeros(18,1))]; %[15,16,17,18] are active 

z(:,1,2,3)=sym(zeros(36,1)); 

z(:,1,3,1)=[sym(0);theta(2);theta(3);sym(zeros(13,1));u(2,3);v(2,3); ... 

    sym(0);sym(0);u(3,1);v(3,1);u(3,2);v(3,2); ... 

    sym(zeros(12,1))]; %[21,22,23,24] are active 

z(:,1,3,2)=[sym(0);theta(2);theta(3);sym(zeros(13,1));u(2,3); ... 

    v(2,3);sym(zeros(4,1));u(3,2);v(3,2);u(3,3);v(3,3); ... 

    sym(zeros(10,1))]; %[23,24,25,26] are active 

z(:,1,3,3)=sym(zeros(36,1)); 

z(:,1,4,1)=[sym(0);theta(2);theta(3);theta(4);sym(zeros(12,1)); ... 

    u(2,3);v(2,3);sym(zeros(6,1));u(3,3);v(3,3);sym(0);sym(0); ... 

    u(4,1);v(4,1);u(4,2);v(4,2);sym(zeros(4,1))]; %[29,30,31,32] are active 

z(:,1,4,2)=[sym(0);theta(2);theta(3);theta(4);sym(zeros(12,1)); ... 

    u(2,3);v(2,3);sym(zeros(6,1));u(3,3);v(3,3);sym(zeros(4,1)); ... 

    u(4,2);v(4,2);u(4,3);v(4,3);sym(zeros(2,1))]; %[31,32,33,34] are active 

z(:,1,4,3)=[sym(0);theta(2);theta(3);theta(4);sym(zeros(12,1)); ... 

    u(2,3);v(2,3);sym(zeros(6,1));u(3,3);v(3,3);sym(zeros(6,1)); ... 

    u(4,3);v(4,3);u(4,4);v(4,4)]; %[32,33,34,35] are active 

  

%% Generalized Coordinates 

c=1; 

q(1:4,1)=theta(:); 

for i=1:4 

    for j=1:4 
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        q(c+4:c+5,1)=[u(i,j);v(i,j)]; 

        c=c+2; 

    end 

end 

  

%% Shape Functions for each element 

  

fi(1,:,1,1)=[sym(zeros(1,4)), 1-3*x(1,1)^2/l(1,1)^2+2*x(1,1)^3/l(1,1)^3,... 

          x(1,1)-2*x(1,1)^2/l(1,1)+x(1,1)^3/l(1,1)^2,... 

          3*x(1,1)^2/l(1,1)^2-2*x(1,1)^3/l(1,1)^3,... 

          -x(1,1)^2/l(1,1)+x(1,1)^3/l(1,1)^2,sym(zeros(1,28))]; 

  

fi(1,:,1,2)=[sym(zeros(1,6)), 1-3*x(1,2)^2/l(1,2)^2+2*x(1,2)^3/l(1,2)^3,... 

          x(1,2)-2*x(1,2)^2/l(1,2)+x(1,2)^3/l(1,2)^2,... 

          3*x(1,2)^2/l(1,2)^2-2*x(1,2)^3/l(1,2)^3,... 

          -x(1,2)^2/l(1,2)+x(1,2)^3/l(1,2)^2,sym(zeros(1,26))]; 

  

fi(1,:,2,1)=[sym(zeros(1,12)), 1-3*x(2,1)^2/l(2,1)^2+2*x(2,1)^3/l(2,1)^3,... 

          x(2,1)-2*x(2,1)^2/l(2,1)+x(2,1)^3/l(2,1)^2,... 

          3*x(2,1)^2/l(2,1)^2-2*x(2,1)^3/l(2,1)^3,... 

          -x(2,1)^2/l(2,1)+x(2,1)^3/l(2,1)^2,sym(zeros(1,20))]; 

  

fi(1,:,2,2)=[sym(zeros(1,14)), 1-3*x(2,2)^2/l(2,2)^2+2*x(2,2)^3/l(2,2)^3,... 

          x(2,2)-2*x(2,2)^2/l(2,2)+x(2,2)^3/l(2,2)^2,... 

          3*x(2,2)^2/l(2,2)^2-2*x(2,2)^3/l(2,2)^3,... 

          -x(2,2)^2/l(2,2)+x(2,2)^3/l(2,2)^2,sym(zeros(1,18))]; 

  

fi(1,:,3,1)=[sym(zeros(1,20)), 1-3*x(3,1)^2/l(3,1)^2+2*x(3,1)^3/l(3,1)^3,... 

          x(3,1)-2*x(3,1)^2/l(3,1)+x(3,1)^3/l(3,1)^2,... 

          3*x(3,1)^2/l(3,1)^2-2*x(3,1)^3/l(3,1)^3,... 

          -x(3,1)^2/l(3,1)+x(3,1)^3/l(3,1)^2,sym(zeros(1,12))]; 

  

fi(1,:,3,2)=[sym(zeros(1,22)), 1-3*x(3,2)^2/l(3,2)^2+2*x(3,2)^3/l(3,2)^3,... 

          x(3,2)-2*x(3,2)^2/l(3,2)+x(3,2)^3/l(3,2)^2,... 

          3*x(3,2)^2/l(3,2)^2-2*x(3,2)^3/l(3,2)^3,... 

          -x(3,2)^2/l(3,2)+x(3,2)^3/l(3,2)^2,sym(zeros(1,10))]; 

  

fi(1,:,4,1)=[sym(zeros(1,28)), 1-3*x(4,1)^2/l(4,1)^2+2*x(4,1)^3/l(4,1)^3,... 

          x(4,1)-2*x(4,1)^2/l(4,1)+x(4,1)^3/l(4,1)^2,... 

          3*x(4,1)^2/l(4,1)^2-2*x(4,1)^3/l(4,1)^3,... 

          -x(4,1)^2/l(4,1)+x(4,1)^3/l(4,1)^2,sym(zeros(1,4))]; 

  

fi(1,:,4,2)=[sym(zeros(1,30)), 1-3*x(4,2)^2/l(4,2)^2+2*x(4,2)^3/l(4,2)^3,... 

          x(4,2)-2*x(4,2)^2/l(4,2)+x(4,2)^3/l(4,2)^2,... 

          3*x(4,2)^2/l(4,2)^2-2*x(4,2)^3/l(4,2)^3,... 

          -x(4,2)^2/l(4,2)+x(4,2)^3/l(4,2)^2,sym(zeros(1,2))]; 

  

fi(1,:,4,3)=[sym(zeros(1,32)), 1-3*x(4,3)^2/l(4,3)^2+2*x(4,3)^3/l(4,3)^3,... 

          x(4,3)-2*x(4,3)^2/l(4,3)+x(4,3)^3/l(4,3)^2,... 

          3*x(4,3)^2/l(4,3)^2-2*x(4,3)^3/l(4,3)^3,... 

          -x(4,3)^2/l(4,3)+x(4,3)^3/l(4,3)^2]; 

  

  

fi(1,:,1,3)=sym(zeros(1,36)); 

fi(1,:,2,3)=sym(zeros(1,36)); 

fi(1,:,3,3)=sym(zeros(1,36)); 
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%% Vertical postions of points of elements  

for i=1:4 

    for j=1:3 

            y(i,j)=fi(1,:,i,j)*z(:,1,i,j); 

    end 

end 

  

%% Rotation Matrices (?) 

a=[theta(1), theta(2), theta(3)+v(2,3), theta(4)+v(3,3)]; 

for i=1:4 

   T(:,:,i)=[cos(a(i)), -sin(a(i)); sin(a(i)), cos(a(i))];  

end 

  

%% r: Positions of points for each element  

for i=1:4 

  

    for j=1:3 

  

            if i==1 

  

                if j==1 

                    l1=sym(0); 

                else 

                    l1=l1+l(i,j-1); 

                end 

  

                r(:,:,i,j)=T(:,:,i)*[l1+x(i,j); y(i,j)]; 

  

            elseif i==2 

  

                if j==1 

                    l2=sym(0); 

                else 

                    l2=l2+l(i,j-1); 

                end 

  

                r(:,:,i,j)=T(:,:,i)*[l2+x(i,j); y(i,j)]; 

  

            elseif i==3 

  

                if j==1 

                    l3=sym(0); 

                else 

                    l3=l3+l(i,j-1); 

                end 

  

                r(:,:,i,j)=T(:,:,i-1)*([l2; u(2,3)]+T(:,:,i)*[l3+x(i,j); ... 

                    y(i,j)]); %u(2,3)=u(2,end) 

  

            elseif i==4 

  

                if j==1 

                    l4=sym(0); 

                else 

                    l4=l4+l(i,j-1); 

                end 
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                r(:,:,i,j)=T(:,:,i-2)*([l2; u(2,3)]+T(:,:,i-1)*([l3; u(3,3)] 

... 

                    +T(:,:,i)*[l4+x(i,j); y(i,j)])); %u(3,3)=u(3,end) 

  

            end         

    end 

end 

%% Constraint  

  

C(:,1)=subs(r(:,:,1,2),x(1,2),l(1,2))-subs(r(:,:,4,1),x(4,1),l(4,1)); 

  

%% Jacobian for Constraint  

  

  

for c=1:36 

    B(c,:)=diff(C(:,1),q(c,1));  %36*2 

end 

  

Bd(:,:)=diff(B(:,:),t); 

bd(:,1)=diff(C(:,1),t); 

  

%% dr/dz  

  

  

for i=1:4 

    for j=1:3 

        for c=1:36 

            if z(c,1,i,j)~=0 

                dr_dz(:,c,i,j)=diff(r(:,1,i,j),z(c,1,i,j)); 

            else 

                dr_dz(:,c,i,j)=0; 

            end 

        end 

    end 

end 

  

%% dr_dz transpose and its quadratic form  

dr_dz_trans=permute(dr_dz,[2,1,3,4]); 

for i=1:4 

    for j=1:3 

        dr_dz2(:,:,i,j)=dr_dz_trans(:,:,i,j)*dr_dz(:,:,i,j); 

%(4*2)*(2*4)=>4*4 

    end 

end 

  

%% Trapezoid integration for Mass matrix  

for i=1:4 

    for j=1:3 

        for i1=1:36 

            for i2=1:36 

                m(i1,i2,i,j)=ro*A*(int(dr_dz2(i1,i2,i,j),x(i,j),0,l(i,j))); 

            end 

        end 

    end 

end 

  

%% Assemble Mass Matrices  
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for i=1:4 

   for j=1:3 

       M(:,:)=M(:,:)+m(:,:,i,j); 

   end 

end 

%%  Stiffness Matrix and its assemble 

d=5; 

for i=1:4 

    for j=1:3 

       ks(:,:,i,j)=E*I*[12/l(i,j)^3,   6/l(i,j)^2, -12/l(i,j)^3,  

6/l(i,j)^2;... 

               6/l(i,j)^2,   4/l(i,j),    -6/l(i,j)^2,  2/l(i,j);... 

             -12/l(i,j)^3,  -6/l(i,j)^2,  12/l(i,j)^3, -6/l(i,j)^2;... 

               6/l(i,j)^2,   2/l(i,j),    -6/l(i,j)^2,  4/l(i,j)];  

  

        K(d:d+3,d:d+3)=K(d:d+3,d:d+3)+ks(:,:,i,j); 

        d=d+2; 

    end 

    d=d+2; 

end 

  

%% Eliminating rows and collumns for u,v=0 

q([5,6,11,12,13,14,19,20,21,22,27,28,29,30],:)=[]; 

B([5,6,11,12,13,14,19,20,21,22,27,28,29,30],:)=[]; 

Bd([5,6,11,12,13,14,19,20,21,22,27,28,29,30],:)=[]; 

  

qd(:,:)=diff(q(:,:),t); 

qdd(:,:)=diff(qd(:,:),t); 

M([5,6,11,12,13,14,19,20,21,22,27,28,29,30],:)=[]; 

M(:,[5,6,11,12,13,14,19,20,21,22,27,28,29,30])=[]; 

K([5,6,11,12,13,14,19,20,21,22,27,28,29,30],:)=[]; 

K(:,[5,6,11,12,13,14,19,20,21,22,27,28,29,30])=[]; 
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I. APDL code for eigenvector extraction from modal FEA-A, section 3.6 

 

The following code corresponds to the cantilever beam specified in appendix C. 

 

!   Commands inserted into this file will be executed immediately after the ANSYS /POST1 command. 

!   Active UNIT system in Workbench when this object was created:  Metric (m, kg, N, s, V, A) 

!   NOTE:  Any data that requires units (such as mass) is assumed to be in the consistent solver unit 

system. 

!   See Solving Units in the help system for more information. 

 

/output,cant4thesis_torque,frq         ! write out frequency list  

set,list 

/output,term    ! returns output to terminal 

! *******************************  output eigenvectors   

! define nodes for output:  forces applied or output displacements 

nsel,s,node,,1   ! 1/3 

nsel,a,node,,2   ! tip 

/output,cant4thesis_torque,eig         ! write out eigenvectors list 

*do,i,1,20 

 set,,i 

 prnsol,dof 

*enddo 

/output,term 
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The following code corresponds to the 2L2JM specified in appendix D. 

 

! Commands inserted into this file will be executed immediately after the ANSYS /POST1 command. 

 

! Active UNIT system in Workbench when this object was created:  Metric (m, kg, N, s, V, A) 

! NOTE:  Any data that requires units (such as mass) is assumed to be in the consistent solver unit system. 

! See Solving Units in the help system for more information. 

 

/output,2link_june,frq          ! write out frequency list 

set,list 

/output,2link_june,eig  

*do,I,1,20 

SET,,I 

esel,s,ename,,184         !152 (joint2) 

nsle 

nsel,a,node,,2   ! tip 

nsel,a,node,,89   ! 1/6 

nsel,a,node,,76   ! joint1 

prnsol,dof,comp 

allsel,all 

*enddo 

/output,term 
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The following code corresponds to the 5-DOF manipulator specified in appendix B. 

 

! Commands inserted into this file will be executed immediately after the ANSYS /POST1 command. 

! Active UNIT system in Workbench when this object was created:  Metric (m, kg, N, s, V, A) 

! NOTE:  Any data that requires units (such as mass) is assumed to be in the consistent solver unit system. 

! See Solving Units in the help system for more information. 

 

/output,5dof_May,frq         ! write out frequency list to ascii file .frq 

set,list 

/output,5dof_May,eig  

*do,I,1,30 

SET,,I 

esel,s,ename,,184 

NSLE 

nsel,a,node,,25034   !base 

nsel,a,node,,53705    !mid 

nsel,a,node,,171337    !tip 

prnsol,dof,comp 

allsel,all 

*enddo 

/output,term 
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J. Transposed Modal Matrices for the manipulators, section 3.6 

Table J.1 is the result of the APDL code for eigenvector extraction that is represented in 

Appendix I. This table corresponds to modal matrix of the Cantilever beam. 

 

Table J.1. Cantilever beam transposed modal matrix 

 
Tip (vertical 

displacement) 

L/3 

(rotational 

displacement) 

Mode 1 2.26 1.19 

Mode 2 2.26 -5.04 

Mode 3 2.26 8.34 

Mode 4 2.25 -6.23 

Mode 5 2.25 -2.57 

Mode 6 2.25 16.14 

Mode 7 2.25 -29.71 

Mode 8 2.24 37.35 

Mode 9 2.24 -34.24 

Mode 10 2.23 18.8 

Mode 11 2.23 6.22 

Mode 12 2.22 -34.07 

Mode 13 2.22 55.9 

Mode 14 2.21 -63.55 

Mode 15 2.21 52.46 

Mode 16 2.2 -23.66 

Mode 17 2.2 -15.96 

Mode 18 2.19 55.26 

Mode 19 2.19 -82.01 

Mode 20 2.18 86.73 
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Table J.2 is the result of the APDL code for eigenvector extraction that is represented in 

Appendix I. This table corresponds to modal matrix of the 2L2JM. 

 

Table J.2. 2L2JM transposed modal matrix 

 
Tip (vertical 

displacement) 

Hinge 

(rotational 

displacement) 

L/6 (vertical 

displacement) 

Middle joint 

(rotational 

displacement) 

Mode 1 1.15 -1.44 -0.47 2.59 

Mode 2 1.74 0.33 0.11 1.42 

Mode 3 -1.01 -4.77 -1.24 0.84 

Mode 4 -2.01 3.19 0.69 8.48 

Mode 5 1.04 9.27 1.21 1.76 

Mode 6 2.00 -5.57 -0.47 14.69 

Mode 7 -1.04 -13.69 0.00 2.59 

Mode 8 -2.00 7.85 -0.24 20.73 

Mode 9 1.04 18.1 -1.21 3.42 

Mode 10 2.00 -10.12 0.72 26.75 

Mode 11 -1.03 -22.47 1.26 4.23 

Mode 12 -2.00 12.38 -0.51 32.73 

Mode 13 1.03 26.81 -0.12 5.04 

Mode 14 2.00 -14.62 -0.18 38.68 

Mode 15 -1.03 -31.10 -1.14 5.82 

Mode 16 -1.99 16.84 0.70 44.58 

Mode 17 1.03 35.35 1.31 6.60 

Mode 18 1.99 -19.03 -0.55 50.43 

Mode 19 -1.03 -39.55 -0.24 7.35 

Mode 20 -1.99 21.20 -0.12 56.23 

 

Table J.3 is the result of the APDL code for eigenvector extraction that is represented in 

Appendix I. This table corresponds to modal matrix of the 5-DOF manipulator. 
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Table J.3. 5-DOF manipulator transposed modal matrix. Master DOFs are specified in section 3.6 

 DOF 1 DOF 2 DOF 3 DOF 4 DOF 5 DOF 6 DOF 7 DOF 8 

Mode 1 0.11 0.11 0.11 0 0 0 0 0 

Mode 2 -0.06 0.24 0.24 0 0.31 0 0.31 0 

Mode 3 0 0 -0.01 -0.01 0.01 0.01 0.01 -0.01 

Mode 4 -0.01 -0.2 -0.52 -0.37 0.16 -0.37 0.15 -0.37 

Mode 5 0 -0.04 -0.01 -0.09 0 -0.1 0 -0.08 

Mode 6 -0.01 -0.28 0.22 -0.87 0.04 -0.88 -0.04 -0.79 

Mode 7 -0.01 0.07 0.45 -0.56 0 -0.64 -0.09 -0.46 

Mode 8 0 0.04 0.1 -0.26 0.04 -0.09 -0.04 -0.17 

Mode 9 -0.01 0.4 -0.45 -0.54 0.09 -0.77 -0.21 -0.37 

Mode 10 0 -0.21 0.23 0.13 -0.1 -0.03 -0.03 -0.13 

Mode 11 0 -0.03 0.04 -0.05 -0.01 -0.01 -0.02 -0.06 

Mode 12 0 0.12 -0.13 -0.21 0.03 -0.02 0.01 -0.09 

Mode 13 0 -0.01 0.2 0.07 0.05 0.14 0.07 0.03 

Mode 14 0 -0.02 0 0.5 0.97 0.25 -0.01 0.41 

Mode 15 0 -0.06 0.15 1.1 1.88 0.39 0.02 0.62 

Mode 16 0 -0.01 0.05 0.19 -0.06 -0.1 0.02 -0.07 

Mode 17 0 0 0.33 -0.71 -0.59 -0.22 -0.09 0.06 

Mode 18 0 0.01 -0.02 0.59 -1.04 -0.58 0.05 -0.32 

Mode 19 -0.02 0.03 0.03 3.48 -1.36 -1.89 0.29 -2.34 

Mode 20 0 0.03 0.09 0.51 -0.28 -0.37 -0.02 -0.16 

Mode 21 0 0.03 -0.09 -0.08 0.09 0.06 -0.01 0.08 

Mode 22 -0.01 -0.17 -0.1 0.4 -0.23 -0.35 0.17 -0.59 

Mode 23 0 0 -0.16 0.3 -0.14 -0.19 0.06 -0.38 

Mode 24 0 0.01 0 0.49 0.24 -0.1 0.11 -0.85 

Mode 25 0 -0.2 0.21 0.04 -0.12 -0.05 -0.14 0.29 

Mode 26 -0.02 0.18 0.16 0.68 1.05 0.35 0.67 -2.2 

Mode 27 0 -0.07 -0.06 0.06 -0.06 -0.06 -0.06 -0.08 

Mode 28 -0.01 -0.42 -0.38 2.06 0.93 -0.11 0.15 -0.87 

Mode 29 0 0.19 0.21 2.79 0.64 -0.76 -0.05 0.93 

Mode 30 0 0.08 0.06 1.8 0.42 -0.48 -0.07 0.58 

Master 

DOFs 
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K. State-space matrices for the Cantilever beam, section 3.6, 3.7, and 4.2 

The 5-DOF manipulator modal matrix was an 8 by 30 matrix, which the resulting state-space 

matrices based on section 3.3 for the full order model is as follows: 

 

A40×40
full_order        ,        B40×1

full_order        ,        C1×40
full_order

 

 

For the Truncated model, only the first 5 modes from the full order model were taken. 

 

A4×4
Truncated        ,        B4×1

Truncated        ,        C1×4
Truncated 

 

For the BMDC, first the full order was balanced then the first 5modes from the full order 

model were taken. 

 

A4×4
BMDC        ,        B4×1

BMDC        ,        C1×4
BMDC 

 

The state-space matrices were given in the following. Since the state matrix for the full order 

was large, it was broken to 10 by 10 chunks. Not mentioned elements are zero. 
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𝐴[1:10,1:10]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-2624 -0.01 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -102969 -0.03 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -806052 -0.09 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -3088479 -0.18 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -8415856 -0.29 

 

𝐴[11:20,11:20]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-

18715130 
-0.43 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -36359815 -0.6 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 
-

64146905 
-0.8 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -105289556 -1.03 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -163360493 -1.28 
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𝐴[21:30,21:30]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-2.4E+08 -1.56 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -3.5E+08 -1.86 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -4.8E+08 -2.19 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -6.5E+08 -2.55 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -8.6E+08 -2.93 

 

𝐴[31:40,31:40]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-1.1E+09 -3.33 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -1.4E+09 -3.76 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -1.8E+09 -4.21 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -2.2E+09 -4.69 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -2.7E+09 -5.19 
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𝐵 [1:40,1]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=                

0 
1.19 

0 
-5.04 

0 
8.34 

0 
-6.23 

0 
-2.57 

0 
16.14 

0 
-29.71 

0 
37.35 

0 
-34.24 

0 
18.8 

0 
6.22 

0 
-34.07 

0 
55.9 

0 
-63.55 

0 
52.46 

0 
-23.66 

0 
-15.96 

0 
55.26 

0 
-82.01 

0 
86.73 
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𝐶 [1,1:10]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

2.26 0 2.26 0 2.26 0 2.25 0 2.25 0 

 

𝐶 [1,11:20]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

2.25 0 2.25 0 2.24 0 2.24 0 2.23 0 

 

𝐶 [1,21:30]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

2.23 0 2.22 0 2.22 0 2.21 0 2.21 0 

 

𝐶 [1,31:40]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

2.2 0 2.2 0 2.19 0 2.19 0 2.18 0 
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𝐴4×4 
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =  

0 1 0 0 
-2624 -0.01 0 0 

0 0 0 1 
0 0 -102969 -0.03 

 

 𝐵4×1
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =  

0 

1.19 

0 

-5.04 

 

 

C1×4
Truncated =  

2.26 0 2.26 0 
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𝐴4×4 
𝐵𝑀𝐷𝐶 =  

0 51.23 0 0 
-51.23 0 0 0 

0 0 -0.02 -320.89 
0 0 320.89 -0.02 

 

 𝐵4×1
𝐵𝑀𝐷𝐶 =  

-0.16 

-0.16 

0.13 

-0.13 

 

 

𝐶1×4
𝐵𝑀𝐷𝐶 =  

-0.16 0.16 -0.13 -0.13 
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L. State-space matrices for the 2L2JM, section 3.6, 3.8, and 4.4 

The 5-DOF manipulator modal matrix was an 8 by 30 matrix, which the resulting state-space 

matrices based on section 3.3 for the full order model is as follows: 

 

A40×40
full_order        ,        B40×3

full_order        ,        C1×40
full_order

 

 

For the Truncated model, only the first 5 modes from the full order model were taken. 

 

A8×8
Truncated        ,        B8×3

Truncated        ,        C1×8
Truncated 

 

For the BMDC, first the full order was balanced then the first 5modes from the full order 

model were taken. 

 

A8×8
BMDC        ,        B8×3

BMDC        ,        C1×8
BMDC 

 

The state-space matrices were given in the following. Since the state matrix for the full order 

was large, it was broken to 10 by 10 chunks. Not mentioned elements are zero. 
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𝐴[1:10,1:10]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -1 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -28137 -0.02 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -84213 -0.03 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -389135 -0.06 

 

𝐴[11:20,11:20]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-703910 -0.08 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -1863285 -0.14 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -2807424 -0.17 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -5718098 -0.24 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -7819470 -0.28 
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𝐴[21:30,21:30]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-1.4E+07 -0.37 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -1.8E+07 -0.42 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -2.8E+07 -0.53 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -3.5E+07 -0.59 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -5.1E+07 -0.72 

 

𝐴[31:40,31:40]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-6.1E+07 -0.78 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -8.6E+07 -0.93 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -1E+08 -1.01 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -1.4E+08 -1.17 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -1.6E+08 -1.26 
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𝐵 [140,1:3]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=                                                                               

0 0 0 
0.69 0.22 0.69 

0 0 0 
-1.31 -0.42 2.87 

0 0 0 
-4.77 -1.24 0.84 

0 0 0 
3.19 0.69 8.48 

0 0 0 
9.27 1.21 1.76 

0 0 0 
-5.57 -0.47 14.69 

0 0 0 
-13.69 0 2.59 

0 0 0 
7.85 -0.24 20.73 

0 0 0 
18.1 -1.21 3.42 

0 0 0 
-10.13 0.72 26.75 

0 0 0 
-22.47 1.26 4.23 

0 0 0 
12.38 -0.51 32.73 

0 0 0 
26.81 -0.12 5.04 

0 0 0 
-14.62 -0.18 38.68 

0 0 0 
-31.1 -1.14 5.83 

0 0 0 

16.84 0.7 44.58 

0 0 0 

35.35 1.31 6.6 

0 0 0 

-19.03 -0.55 50.43 

0 0 0 

-39.55 -0.24 7.35 

0 0 0 

21.2 -0.12 56.23 
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𝐶 [1,1:10]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

1.38 0 1.57 0 -1.01 0 -2.01 0 1.04 0 

 

𝐶 [1,11:20]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

2 0 -1.04 0 -2 0 1.04 0 2 0 

 

𝐶 [1,21:30]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

-1.03 0 -2 0 1.03 0 2 0 -1.03 0 

 

𝐶 [1,31:40]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

-1.99 0 1.03 0 1.99 0 -1.03 0 -1.99 0 
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𝐴8×8 
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =  

0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 -1 0 0 0 0 0 
0 0 0 0 0 1 0 0 
0 0 0 0 -28137 -0.02 0 0 
0 0 0 0 0 0 0 1 
0 0 0 0 0 0 -84213 -0.03 

 

 𝐵8×3
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =  

0 0 0 

0.69 0.22 0.69 

0 0 0 

-1.31 -0.42 2.87 

0 0 0 

-4.77 -1.24 0.84 

0 0 0 

3.19 0.69 8.48 

 

 

C1×8
Truncated =  

1.38 0 1.57 0 -1.01 0 -2.01 0 1.38 0 
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𝐴8×8 
𝐵𝑀𝐷𝐶 =  

0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 
0 0 -1 0 0 0 0 0 
0 0 0 0 -0.01 -290.2 -0.07 -0.05 
0 0 0 0 290.2 -0.01 -0.05 -0.07 
0 0 0 0 0.06 0.04 -0.01 -167.74 
0 0 0 0 0.04 0.06 167.74 -0.01 

 

 𝐵8×3
𝐵𝑀𝐷𝐶 =  

0 0 0 

0.69 0.22 0.69 

0 0 0 

-1.31 -0.42 2.87 

-0.06 -0.01 -0.17 

0.06 0.01 0.17 

0.12 0.03 -0.02 

-0.12 -0.03 0.02 

 

 

𝐶1×8
𝐵𝑀𝐷𝐶 =  

1.38 0 1.57 0 0.18 0.18 0.12 0.12 1.38 0 

 

  



159 

 

M. State-space matrices for the 5-DOF manipulator, section 3.6, 3.9, and 

4.5 

The 5-DOF manipulator modal matrix was an 8 by 30 matrix, which the resulting state-space 

matrices based on section 3.3 for the full order model is as follows: 

 

A60×60
full_order        ,        B60×3

full_order        ,        C1×60
full_order

 

 

For the Truncated model, only the first 5 modes from the full order model were taken. 

 

A10×10
Truncated        ,        B10×3

Truncated        ,        C1×10
Truncated 

 

For the BMDC, first the full order was balanced then the first 5modes from the full order 

model were taken. 

 

A10×10
BMDC         ,        B10×3

BMDC        ,        C1×10
BMDC 

 

The state-space matrices were given in the following. Since the state matrix for the full order 

was large, it was broken to 10 by 10 chunks. Not mentioned elements are zero. 
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𝐴[1:10,1:10]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -0.63 0 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -2722.88 -0.01 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -3521.79 -0.01 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -19119.7 -0.01 

 

𝐴[11:20,11:20]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-24015.2 -0.02 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -50792.4 -0.02 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -89426.1 -0.03 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -113272 -0.03 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -141706 -0.04 
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𝐴[21:30,21:30]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-153399 -0.04 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -166248 -0.04 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -244890 -0.05 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -424375 -0.07 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -447438 -0.07 

 

𝐴[31:40,31:40]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-525103 -0.07 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -557739 -0.07 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -643786 -0.08 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -845446 -0.09 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -907076 -0.1 
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𝐴[41:50,41:50]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-998431 -0.1 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -1102860 -0.11 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -1205851 -0.11 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -1447158 -0.12 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -1665886 -0.13 

 

𝐴[51:60,51:60]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=   

0 1 0 0 0 0 0 0 0 0 

-1861913 -0.14 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 0 

0 0 -2050626 -0.14 0 0 0 0 0 0 

0 0 0 0 0 1 0 0 0 0 

0 0 0 0 -2169447 -0.15 0 0 0 0 

0 0 0 0 0 0 0 1 0 0 

0 0 0 0 0 0 -2464836 -0.16 0 0 

0 0 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 -2478665 -0.16 
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𝐵 [1:30,1:3]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=                                                                             𝐵 [31:60,1:3]
𝑓𝑢𝑙𝑙_𝑜𝑟𝑑𝑒𝑟

=    

0 0 0 

 

0 0 0 
0.11 0 0 0 -0.1 0.02 

0 0 0 0 0 0 
-0.06 0 0.31 0 -0.22 -0.09 

0 0 0 0 0 0 
0 0.01 0.01 0 -0.58 0.05 
0 0 0 0 0 0 

-0.01 -0.37 0.15 -0.02 -1.89 0.29 
0 0 0 0 0 0 
0 -0.1 0 0 -0.37 -0.02 
0 0 0 0 0 0 

-0.01 -0.88 -0.04 0 0.06 -0.01 
0 0 0 0 0 0 

-0.01 -0.64 -0.09 -0.01 -0.35 0.17 
0 0 0 0 0 0 
0 -0.09 -0.04 0 -0.19 0.06 
0 0 0 0 0 0 

-0.01 -0.77 -0.21 0 -0.1 0.11 
0 0 0 0 0 0 
0 -0.03 -0.03 0 -0.05 -0.14 
0 0 0 0 0 0 
0 -0.01 -0.02 -0.02 0.35 0.67 
0 0 0 0 0 0 
0 -0.02 0.01 0 -0.06 -0.06 
0 0 0 0 0 0 
0 0.14 0.07 -0.01 -0.11 0.15 
0 0 0 0 0 0 
0 0.25 -0.01 0 -0.76 -0.05 
0 0 0 0 0 0 
0 0.39 0.02 0 -0.48 -0.07 
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𝐶 [1,1:10]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

0.11 0 0.24 0 -0.01 0 -0.52 0 -0.01 0 

 

𝐶 [1,11:20]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

0.22 0 0.45 0 0.1 0 -0.45 0 0.23 0 

 

𝐶 [1,21:30]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

0.04 0 -0.13 0 0.2 0 0 0 0.15 0 

 

𝐶 [1,31:40]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

0.05 0 0.33 0 -0.02 0 0.03 0 0.09 0 

 

𝐶 [1,41:50]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

-0.09 0 -0.1 0 -0.16 0 0 0 0.21 0 

 

𝐶 [1,51:60]
𝑓𝑢𝑙𝑙𝑜𝑟𝑑𝑒𝑟 =  

0.16 0 -0.06 0 -0.38 0 0.21 0 0.06 0 
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𝐴10×10 
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =  

0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 -0.63 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 -2722 -0.21 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 -3521 -0.24 0 0 
0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 -19119 -0.55 

 

 𝐵10×3
𝑇𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 =  

0 0 0 

0.11 0 0 

0 0 0 

-0.06 0 0.31 

0 0 0 

0 0.01 0.01 

0 0 0 

-0.01 -0.37 0.15 

0 0 0 

0 -0.1 0 

 

 

C1×10
Truncated =  

0.11 0 0.24 0 -0.01 0 -0.52 0 -0.01 0 
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𝐴10×10 
𝐵𝑀𝐷𝐶 =  

0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 
0 0 -0.63 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 -3521 -0.01 0 0 0 0 
0 0 0 0 0 0 -0.01 155 0.01 0.05 
0 0 0 0 0 0 -155 -0.01 -0.05 -0.01 
0 0 0 0 0 0 0.01 0.05 -0.01 -225 
0 0 0 0 0 0 -0.05 -0.01 225 -0.01 

 

 𝐵10×3
𝐵𝑀𝐷𝐶 =  

0 0 0 

0.11 0 0 

0 0 0 

-0.06 0 0.31 

0 0 0 

-0.01 -0.37 0.15 

0 0.03 0 

0 0.03 0 

0 -0.03 0 

0 0.03 0 

 

 

𝐶1×10
𝐵𝑀𝐷𝐶 =  

0.11 0 0.24 0 -0.52 0 -0.03 0.03 0.03 0.03 
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N. LQR formulation, section 4.1 

 

Let’s assume the dynamics of the system has a linear time variant model as follows: 

 

𝑋̇ = 𝐴(𝑡)𝑋 + 𝐵(𝑡)𝑈,        𝑋 ∈ 𝑹𝑛,        𝑈 ∈ 𝑹𝑛,         𝑡 ∈ [𝑡0, 𝑡1] N − 1 

 

that we want to minimize a quadratic cost function: 

 

𝐽(𝑈) = 𝑋𝑇(𝑡1)𝑄(𝑡1) 𝑋(𝑡1) + ∫(𝑋𝑇𝑄(𝑡)𝑋 + 𝑈𝑇𝑅(𝑡)𝑈)𝑑𝑡

𝑡1

𝑡0

, 𝑄(𝑡) ≥ 0, 𝑅(𝑡) > 0 N − 2 

 

where the first part is called terminal cost and is denoted as  𝛷: 

 

𝛷 = 𝑋𝑇(𝑡1)𝑄(𝑡1) 𝑋(𝑡1) N − 3 

 

and the second part is called the running cost and is denoted as ℒ: 

 

ℒ = 𝑋𝑇𝑄(𝑡)𝑋 + 𝑈𝑇𝑅(𝑡)𝑈 N − 4 

 

To solve the optimization problem, Hamiltonian is defined which could be considered as the 

energy of the system. 

 

𝐻 ≔ ℒ + 𝜆𝑇ℱ = 𝑋𝑇𝑄 𝑋 + 𝑈𝑇𝑅 𝑈 + 𝜆𝑇(𝐴 𝑋 + 𝐵 𝑈),        𝜆 ∈ 𝑹𝑛 N − 5 
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where ℒ is called Lagrangian which is the running cost function. Besides, ℱ is the dynamics of 

the system and 𝜆 is the Lagrange multiplier.  

From calculus of variations, one could end up with the necessary conditions for the optimization 

problem as follows: 

{
 
 
 
 

 
 
 
 
𝜕𝐻

𝜕𝜆
= 𝑋̇              

𝜕𝐻

𝜕𝑋
= −𝜆̇           

𝜕𝐻

𝜕𝑈
= 0              

 
𝜕𝛷(𝑡1)

𝜕𝑋(𝑡1)
= 𝜆(𝑡1)

N − 6 

 

These conditions are simplified as follows: 

 

{
  
 

  
 

𝐴 𝑋 + 𝐵 𝑈 = 𝑋̇
 

𝑄 𝑋 + 𝜆𝑇  𝐴 = −𝜆̇
 

𝑅 𝑈 + 𝐵 𝜆𝑇 = 0
 

𝑄(𝑡1)𝑋(𝑡1) = 𝜆(𝑡1)

N − 7 

 

The first condition is the state equation which is trivial. The second condition is called costate 

condition. The fourth condition is called transversality condition. The third condition is called 

stationarity that leads to the optimal control law as follows: 

 

𝑈 = −𝑅−1𝐵𝑇𝜆 N − 8 

 

To solve equation N-8, 𝜆 needs to be found. Based on the following assumption: 
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𝜆(𝑡) = 𝑃(𝑡)𝑋(𝑡), 𝑡 ∈ [𝑡0, 𝑡1] N − 9 

 

if we take the derivative of 𝜆 with respect to time: 

 

𝜆̇ = 𝑃̇𝑋 + 𝑋̇𝑃 N − 10 

 

By substituting equations N-1 and N-8 into equation N-10: 

 

𝜆̇ = [𝑃̇ + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃]𝑋,              ∀𝑋 ∈ 𝑹𝑛 N − 11 

 

Now we could use the second condition in N-7 instead of 𝜆̇. This would end up as the the 

following equation which is called the differential Ricatti equation. 

 

−𝑃̇ = 𝑃𝐴 + 𝐴𝑇𝑃 −  𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 N − 12 

 

where the boundary condition is from the fourth condition in L-7: 

 

𝑃(𝑡1) = 𝑄(𝑡1) N − 13 

 

By solving P from equation N-12, and substituting equation N-9 in N-8, the following control 

law could be found: 

 

𝑈 = −𝑅−1𝐵𝑇𝑃𝑋 N − 14 
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O. H∞ controller for vibration damping of manipulators, section 4.3, 4.4, 

and 4.5 

This section is devoted to explanation of H∞ controller concept. According to [41], a closed 

loop feedback system as shown in Figure O.1 is internally stable if and only if all the transfer 

functions in equation (O.1 to O.4) are BIBO stable (bounded input bounded output), i.e., the 

bounded inputs must have bounded outputs. This happens when the transfer functions have two 

conditions. First, the denominator has higher order than the numerator. Second, the poles are on 

the left-hand plane of the s-space. 

 

𝑇𝑦𝑟(𝑠) =:
𝑌(𝑠)

𝑅(𝑠)
= 𝐾𝑐(𝑠)𝐺(𝑠)(𝐼 + 𝐺(𝑠)𝐾𝑐(𝑠))

−1
O − 1 

𝑇𝑦𝑑(𝑠) =:
𝑌(𝑠)

𝐷(𝑠)
= 𝐺(𝑠)(𝐼 + 𝐾𝑐(𝑠)𝐺(𝑠))

−1
O − 2 

𝑇𝑢𝑟(𝑠) =:
𝑈(𝑠)

𝑅(𝑠)
= 𝐾𝑐(𝑠)(𝐼 + 𝐺(𝑠)𝐾𝑐(𝑠))

−1
O − 3 

𝑇𝑢𝑑(𝑠) =:
𝑈(𝑠)

𝐷(𝑠)
= −𝐾𝑐(𝑠)𝐺(𝑠)(𝐼 + 𝐾𝑐(𝑠)𝐺(𝑠))

−1
𝑂 − 4 

 

Figure O.1. A closed loop system with feedback [34]. {r: reference, e: error, u: control input, d: 

disturbance, y: output, 𝐾𝑐: controller transfer function, G: plant transfer function} 

 

c 
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If the nominal system is internally stable, it can meet the required performance (nominal 

performance). The ability for tracking is defined by the transfer function from 𝑟 to 𝑒.  

 

𝑇𝑒𝑟(𝑠) =:
𝐸(𝑠)

𝑅(𝑠)
= (𝐼 + 𝐺(𝑠)𝐾(𝑠))

−1
𝑂 − 5 

 

This transfer function is called sensitivity and it is represented by S. To have good tracking 

performance in a certain frequency 𝜔, the sensitivity magnitude should be less than a small positive 

value: 

 

|𝑆(𝑗𝜔)| < 𝜖(𝜔) 𝑂 − 6 

 

The inequality can be normalized with a weighting function 𝑊𝑠(𝜔) = 1/𝜖(𝜔) : 

 

|𝑆(𝑗𝜔)𝑊𝑠(𝑗𝜔)| < 1 𝑂 − 7 

 

This inequality over the entire frequency domain could be shown as below: 

 

‖𝑆 𝑊𝑠‖∞ < 1 𝑂 − 8 

 

In inequality (O-8), ‖ ‖∞ stands for infinity norm, which is defined as follows: 

 

‖𝐺‖∞ = 𝑠𝑢𝑝
𝜔∈𝑹

 ‖𝐺(𝑗𝜔)‖2 O − 9 

 

Infinity norm of a system is also called 𝐻∞ norm of the system. It describes the maximum 

energy gain of the system and is decided by the peak value of the largest singular value of the 
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frequency response matrix over the whole frequency axis [41]. This ensures that the system at any 

frequency would track the reference. 

In the definition of 𝐻∞ norm of the system in (O-9), ‖ ‖2 stands for the second norm, which is 

defined as follows: 

‖𝐺‖2 = [
1

2𝜋
∫ |𝐺(𝑗𝜔)|2 𝑑𝜔
+∞

−∞

]

1
2

𝑂 − 10 

 

Similarly, for efficient actuator performance, the transfer function in equation (O-4) should be 

as follows:  

‖𝐾𝑆 𝑊𝑢‖∞ < 1 𝑂 − 11  

 

The H∞ controller is a multi-objective controller that solves an optimization problem between 

different control criteria. Therefore, the inequalities (O-8 and O-11) could be written as follows: 

 

𝑚𝑖𝑛
𝐾
‖
𝑆 𝑊𝑠

𝐾𝑆 𝑊𝑢
‖
∞

𝑂 − 12 

For better demonstration, Figure O.1 could be recast into standard configuration. 
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Figure O.2. The standard H∞ configuration [34]. {w: external input, z: outputs to be minimized, u: control 

input, y: measured output, P(s): generalized system transfer function, K(s): controller transfer function} 

 

According to Figure O.2, 𝑤  denotes the external inputs such as the reference, noise, and 

disturbance. On the other hand, 𝑧 denotes the output signals to be minimized. The objective is to 

find a stabilizing controller to minimize the output 𝑧. The generalized system 𝑃 is defined as: 

 

[
𝑧
𝑦] = [

𝑃11 𝑃12
𝑃21 𝑃22

] [
𝑤
𝑢
] O − 13 

 

By substituting 𝑢 = 𝐾𝑦 in the system of equations (O-13) and removing y, one could end up 

having z as: 

 

𝑧 = [𝑃11 + 𝑃12𝐾(𝐼 − 𝑃22𝐾)
−1𝑃21]𝑤 O − 14 

∶= ℱ𝑙(𝑃, 𝐾)𝑤                                      

 

where ℱ𝑙(𝑃, 𝐾) is called lower linear fractional transformation of 𝑃 and 𝐾. The design objective 

becomes:  
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𝑚𝑖𝑛
𝐾
‖ℱ𝑙(𝑃, 𝐾) ‖∞ 𝑂 − 15 

 

which is called H∞ optimization problem. The H∞ norm is usually computed numerically from a 

state-space realization. The smallest value of 𝛾 is found so that the Hamiltonian matrix equation 

(O-16) has no eigenvalues on the imaginary axis [46]. 

 

𝐻 = [
𝐴 + 𝐵𝑅−1𝐷𝑇𝐶 𝐵𝑅−1𝐵𝑇

−𝐶𝑇(𝐼 + 𝐷𝑅−1𝐷𝑇)𝐶 −(𝐴 + 𝐵𝑅−1𝐷𝑇𝐶)𝑇
] O − 16 

 

where A, B, C, and D are the state-space matrices and 𝑅 = 𝛾2𝐼 − 𝐷𝑇𝐷. Thus, the main problem 

becomes: 

‖ℱ𝑙(𝑃, 𝐾) ‖∞ <  𝛾 𝑂 − 17 

  


