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ABSTRACT 

It is critical for the construction industry to ensure that new building designs and materials, 

including wall and floor assemblies, provide an acceptable level of fire safety. A key fire safety 

requirement that is specified in building codes is the minimum fire resistance rating. A 

manufacturer of building materials (e.g., insulation or drywall) is currently required to perform 

full-scale fire furnace tests in order to determine the fire resistance ratings of assemblies that use 

their products. Due to the cost of these tests, and the limited number of test facilities, it can be 

difficult to properly assess the impact of changes to individual components on the overall fire 

performance of an assembly during the design process. It would be advantageous to be able to 

use small-scale fire tests for this purpose, as these tests are relatively inexpensive to perform. 

One challenge in using results of small-scale fire tests to predict full-scale fire performance is the 

difficulty in truly representing a larger product or assembly using a small-scale test specimen. 

Another challenge is the lack of established methods of scaling fire test results.  

Cone calorimeter tests were used to measure heat transfer through small-scale specimens that are 

representative of generic wall assemblies for which fire resistance ratings are given in the 

National Building Code of Canada. Test specimens had a surface area of 111.1 mm (4.375 in.) 

by 111.1 mm (4.375 in.), and consisted of single or double layers of gypsum board, stone wool 

insulation and spruce-pine-fir (SPR) studs. As the specimens were designed to represent a one-

quarter scale model of a common wall design, with studs spaced at a centre-to-centre distance of 

406.4 mm (16 in.), the wood studs were made by cutting nominal 2x4 studs (38 mm by 89 mm) 

into 9.25 mm by 89 mm (0.375 in. by 3.5 in.) pieces. The scaled studs were then spaced at a 

centre-to-centre distance of 101.6 mm (4 in.). Three types of gypsum board were tested: 

12.7 mm (0.5 in.) regular and lightweight gypsum board, and 15.9 mm (0.625 in.) type X 
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gypsum board. Temperature measurements were made at various points within the specimens 

during 70 min exposures to an incident heat flux of 35, 50 and 75 kW/m2 using 24 AWG Type K 

thermocouples and an infrared thermometer. Temperature measurements made during cone 

calorimeter tests were compared with temperature measurements made during fire resistance 

tests of the same generic assemblies and the result show a very good agreement for the first      

25 min of testing at the unexposed side. 

A one-dimensional conduction heat transfer model was developed using the finite difference 

method in order to predict temperatures within the small-scale wall assemblies during the cone 

calorimeter tests. Constant and temperature-dependent thermal properties were used in the 

model, in order to study the effects of changes to materials and thermal properties on fire 

performance. A comparison of predicted and measured temperatures during the cone calorimeter 

tests of the generic wall assemblies is presented in this thesis. The model had varying degrees of 

success in predicting temperature profiles obtained in the cone calorimeter tests. Predicted and 

measured times for temperatures to reach 100°C and 250°C on the unexposed side of the gypsum 

board layer closest to the cone heater were generally within 10%. There was less agreement 

between predicted and measured times to reach 600°C at this location, and the temperature 

increase on the unexposed side of the test specimen. The model did not do a good job in 

predicting temperatures in the insulated double layer walls. Sensitivity studies show that the 

thermal conductivity of the gypsum board has the most significant impact on the predicted 

temperature.  
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CHAPTER ONE: INTRODUCTION 

One of the most critical issues for the construction industry is to ensure that building designs 

address fire safety issues.  These fire safety issues include: fire resistance (the ability of a 

material, product or assembly to withstand fire or give protection from it for a period of time), 

surface flame spread (propagation of flame away from the source of ignition across a surface) 

and non-combustibility (inability of a material to undergo combustion under specified fire 

exposure conditions). Fire performance of materials is usually determined through full-scale fire 

tests such as the Steiner tunnel test or the CAN/ULC-S101 [1] furnace test. The manufacturer of 

a building material (e.g. insulation, drywall and studs) is required to perform full-scale tests such 

as the CAN/ULC-S101 [1] furnace test for wall and floor assemblies in order to determine the 

fire resistance and flame spread ratings of assemblies that use their product. These tests facilities 

are very limited and the tests are very expensive to perform (e.g., ~$25,000/wall test). Therefore 

it has become very difficult to properly assess the impact of changes to individual components 

on the overall fire performance of an assembly during the design process.  

It would be advantageous to be able to use small-scale fire tests to evaluate fire performance, as 

these tests are relatively inexpensive to perform. One challenge to using results of small-scale 

fire tests to predict full-scale fire performance is the difficulty in truly representing a larger 

product or assembly using a small-scale test specimen. Another challenge is the lack of 

established methods of scaling fire test results. This thesis research was aimed at evaluating the 

ability of one small-scale fire test, the cone calorimeter, to predict the full-scale fire performance 

of wall assemblies. The cone calorimeter is relatively inexpensive to operate and uses small test 

specimens (e.g., 100 mm by 100 mm). In this project cone calorimeter tests were used to 
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measure heat transfer through small-scale specimens that are representative of generic wall 

assemblies for which fire resistance ratings are given in the National Building Code of Canada. 

This thesis presents temperature measurements made within small scale wall assembly 

specimens during cone calorimeter tests and a one dimensional conduction heat transfer model 

developed using the finite difference method in order to predict temperatures within the small-

scale wall assemblies during the cone calorimeter tests. It compares temperatures predicted using 

the numerical model and temperatures measured during the cone calorimeter tests of the generic 

wall assemblies. It presents the effects of changes to thermal properties and materials on fire 

performance of the small-scale assemblies. This research will be useful in assisting 

manufacturers of building products during the design process to better understand how potential 

changes to their products will affect fire resistance test results, thus reducing the need for full-

scale fire testing. 

1.1 WALL ASSEMBLY 

The term wall assembly will be used here to refer to a curtain wall or load bearing wall that may 

or may not be used to provide a fire separation in a building. An example of a wall assembly is 

shown in Figure 1.1. Most building walls in Canada are made using steel or wood studs with 

insulation covered with gypsum boards. This type of construction is economical, flexible, can be 

constructed very quickly. 
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Figure 1.1: A Typical Wall Assembly. 

1.2 FIRE RESISTANCE 

Fire resistance is defined as “the ability of a material, product, or assembly to withstand fire or 

give protection from it for a period of time” [2]. Fire resistance is usually quantified using a fire 

resistant rating, which is the time (in hours or minutes) for which the element can meet certain 

criteria when exposed to a standard fire resistant test. Fire resistance is assessed by conducting a 

full scale fire resistant test on building element or assembly. The fire resistance of typical 

assemblies can also be assessed from the generic ratings, proprietary ratings or calculation 

methods. A generic rating here refers to listings of fire resistance of typical materials without 

reference to individual manufacturers or detailed specifications while proprietary ratings refers to 

Wood Studs 

Insulation 

Gypsum Boards 
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listings of proprietary products with reference to specific manufacturers and are based on full-

scale tests results that are commissioned by the manufacturers of the products. 

1.2.1 Fire Resistance Tests 

Standard fire resistance tests are performed on representative specimens of actual building 

elements by subjecting them to a standard temperature-time exposure in a furnace in order to 

evaluate their fire resistance. Standard temperature-time curves do not really simulate real fires 

but rather provide a standard method of comparison between the fire performances of 

assemblies. Many countries have building codes that specify fire resistance ratings of building 

materials and assemblies for particular occupancies. Examples of the standard fire resistance 

tests include: CAN/ULC-S101 [1], ASTM E 119 [3] and ISO [4]. These tests are controlled to 

follow a temperature-time curve (e.g. ASTM E 119 or ISO 834, shown in Figure 1.2).  

 

 

Figure 1.2: ASTM E 119 [3] and ISO 834 [4] Temperature-Time Curves 
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1.2.2 Full Scale Fire Resistance Furnace 

An example of a full-scale fire test furnace includes a large steel box lined with materials (e.g. 

fire bricks), an exhaust chimney, and a small window for observation. The full-scale fire test 

furnace is also equipped with a number of oil or gas fuelled burners and several thermocouples 

or other devices for measuring the furnace temperatures. A full-scale wall or floor specimen has 

a minimum size of 3.0 x 3.0 m2 [5] and is built in a frame away from the furnace before bringing 

this frame into the furnace for testing. At the start of the test, loads may also be applied. The 

burners are ignited and controlled to follow a temperature-time curve in the fire resistance test 

standard. The loading frame of a full scale furnace is connected to the test frame which allows 

the design load to be evenly distributed over the surface with the help of a series of hydraulic 

pistons. An example of a full scale test furnace is the National Research Council of Canada 

NRCC test furnace shown in Figure 1.3 [6]. Walls are tested in the vertical orientation whereas 

floors or roofs are tested in the horizontal orientation. 

 

Figure 1.3: Full-Scale Test Furnace (NRCC) [5] (reprinted with permission). 
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1.2.3 Intermediate Scale Furnace 

As a result of the increasing demand for fire rated wall and floor assemblies that are made from 

new materials, it has become very important to determine the fire resistance performance of 

these assemblies. Owing to the time and high cost involved in full scale testing, the need for an 

alternative solution that is less expensive and less time consuming has been on-going. Part of the 

solution to this problem has been the construction of an intermediate scale furnace which 

produces heat exposures that follow the standard temperature-time curve in a similar fashion to 

the full scale furnace. The NRCC has developed and conducted tests using intermediate scale 

furnaces [6]. Figure 1.4 [6] shows an intermediate scale furnace (1.2 m wide, 1.8 m long and  

0.5 m deep) developed at the NRCC. The furnace can be used in conducting tests for loaded and 

unloaded wall and floor assemblies. Sultan et al [6] mentioned that the heat flux exposure in the 

intermediate scale furnace is 15% higher than that in a full scale furnace for a floor furnace. 

 

Figure 1.4: Intermediate Scale Furnace (NRCC) [6] (reprinted with permission). 
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1.3 FAILURE CRITERIA 

Three failure criteria stipulated in CAN/ULC S101 [1] and ASTM E 119 [3] are used to 

determine the end of the test, which gives the fire resistance rating. The failure criteria are: 

1. Stability or structural failure which occurs when the test specimen can no longer support 

the applied load; 

2. Integrity failure, which occurs when there is a crack that allows a passage of hot gases or 

flame hot enough to ignite a cotton pad; and  

3. Insulation failure, which occurs when the average temperature on the unexposed side 

rises by 139˚C above its initial temperature, or when the temperature reading from a 

single thermocouple on the unexposed side rises above 180˚C. 

Failure is said to have occurred if any of the three criteria is met. The fire resistant rating is 

determined as the time from the start of the test to this failure point. 

1.4 WALL ASSEMBLY MATERIALS 

1.4.1 Gypsum Board 

A key contributor to the fire performance of a building element is gypsum board. Gypsum board 

is the general name for a body of panel products comprising a non-combustible core which is 

made of gypsum and a paper surface on each face. Gypsum board is often called drywall, 

wallboard or plasterboard. The non-combustible property of gypsum cores and paper laminated 

surfaces make them different from other panel type building boards such as plywood, fibre board 

and hard board. Gypsum board is often used as an interior finish as it is relatively easy to work 

with, can be easily painted and has good fire performance.  
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As gypsum board is heated, a number of phenomena occur. The core of this product is gypsum, a 

crystalline mineral called calcium sulphate dehydrate (CaSO4.2H2O) found in sedimentary rock 

formations, which is non-combustible and contains chemically bound water, which is slowly 

released as steam at around 100°C under normal atmospheric pressure [7]. As a considerable 

fraction of the mass of the gypsum is water (approximately 21%), a significant amount of energy 

is required, which impacts the heat transfer through the board.  

Calcination (release of water) is a two stage process. The first stage involves the conversion of 

calcium sulphate dihydrate (gypsum) to calcium sulphate hemihydrate  

  �����	2�	� + 	ℎ��
 →		 ����� 	�	�	� +	�	�	�  (1.1) 

The second stage involves the conversion of calcium sulphate hemihydrate to calcium sulphate 

anhydrate  

     			����� 	�	�	� + 	ℎ��
 →		 ����� 	+ 	�	�	�                       (1.2)    

Both reactions are endothermic and liquid water is released, which then requires an additional 

amount of energy to evaporate [7]. Thermal Gravimetric Analysis (TGA)and Differential 

Scanning Calorimeter (DSC) tests of gypsum board [8,9] also reveal that another reaction occurs 

at a temperature above 600°C where a significant mass loss in the gypsum board occurs, due to 

the decarbonation of calcium carbonate to produce calcium oxide (quicklime) and carbon dioxide 

 ����� 		+ ℎ��
 → 		���			 + ��																																																																	(1.3) 
Sultan [10] reported that gypsum boards used in wall assemblies fall-off on the exposed side 

when the temperature of the mid-thickness or unexposed side exceeds 600˚C. The fall-off occurs 



9 
 

as a result of crack formations and decarbonation of calcium carbonate to calcium oxide at this 

temperature causing the gypsum board to lose its structural strength. 

Gypsum wall boards are easy to install in buildings because they typically come in 48 in. (1.2 m) 

or 54 in. (1.4 m) widths and 8-12 ft. (2.4 - 3.7 m) lengths (or longer) which enables them to 

quickly cover a large wall area. They can be very easily cut by using a utility knife or different 

varieties of saws, and can be easily fastened to the walls using screws or nails.  

Three types of gypsum board that are commonly used are: regular, lightweight and type X (a 

gypsum board with special core additive to increase the natural fire resistance of regular gypsum 

board). Regular gypsum board is used in many locations within buildings, while type X is used 

when a higher fire resistance rating is needed. Type X boards are reinforced with some glass 

fibre and may contain other additives to improve their fire performance. Lightweight gypsum 

board is a relatively new product, which is increasingly being used in place of the traditional 

regular gypsum board, because of its reduced weight. 

1.4.2. Insulation 

Walls and floor assemblies are insulated due to acoustics and also  to decrease heat flow during 

the cooling and heating seasons. Building insulation is rated using thermal resistance to heat flow 

values called Rvalue [11] 

������ = 
�																																																						(1.4) 
where t is the thickness in m and k is the thermal conductivity in W/m⋅K. 
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 The type of insulation material, its thickness and its density affect the R-value of the thermal 

insulation. There are basically five types of insulation used in different parts of a building: batts, 

spray, loose-fill, rolls and rigid foam boards. Batts are commonly made of fiberglass, or mineral 

or stone wool and mostly fitted between the studs in the walls and also joists of ceilings and 

floors.  

1.5 FIRE TESTING OF WALL AND FLOOR ASSEMBLIES 

Many studies have been performed on temperature measurements in gypsum board wall 

assemblies. The focus of this review will be full-scale tests conducted at the National Research 

Council of Canada’s Institute for Research in Construction (NRCC), as these full-scale fire tests 

have been used to provide data on generic wall and floor assemblies for the appendices in the 

National Building Code of Canada (NBCC). Selected tests performed at other laboratories and 

by other researchers are referenced in Table 1.1. 

Various research projects have been conducted to measure temperatures in full and small scale 

fire resistance tests of gypsum board wall assemblies at the NRCC. Sultan et al [12] carried out 

seven full-scale (4 m by 5 m) fire resistant tests on non-insulated, loaded and non-loaded, regular 

gypsum board protected wall assemblies to determine the temperature profiles and fire resistance 

ratings and of the assemblies. The assemblies were made up of single layer and double layers of 

regular gypsum boards on the exposed and unexposed sides, with wood studs for the single layer 

assemblies, and wood and steel studs for the double layer assemblies. The results revealed that in 

the non-loaded double layer wall assemblies, the type of stud has a negligible effect on the fire 

resistance rating. Kodur et al [13] carried out ten full-scale fire resistant tests on load-bearing 

gypsum board, wood studded shear wall assemblies with and without resilient channels (strips of 
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metal with an offset that space the drywall a half inch away from the framing to improve sound 

transmission loss in a building) on the fire exposed side. Wall assemblies with a single layer 

12.7 mm type X gypsum board on both the exposed and unexposed sides, and wall assemblies 

with a single board on the exposed side and double boards on the unexposed side were tested. 

The effects of the placement of the shear membrane on the exposed/unexposed face, type of 

shear membrane, insulation type, load intensity and resilient channel on the fire resistance of 

wall assemblies were determined. Sultan et al [14] carried out temperature measurements during 

fire resistance tests on insulated and non-insulated intermediate scale wall assemblies (914 by 

914 mm) protected by 12.7 mm and 15.9 mm type X gypsum boards on steel studs and 12.7 mm 

gypsum boards on wood studs. The tests were conducted using walls with three different gypsum 

board arrangements: a single layer gypsum board on both the exposed and unexposed side, 

double layers of gypsum board on both the exposed and unexposed side and single layer gypsum 

board on the exposed side along with a double layer gypsum board on the unexposed side. The 

effects of glass, mineral and cellulose fiber insulation thickness on the fire performance of 

intermediate scale tests were studied. Sultan et al [15] conducted temperature measurements on 

insulated and non-insulated intermediate scale regular gypsum board protected (914 by 914 mm) 

assemblies. The assemblies tested used double gypsum board layers on both the exposed and 

unexposed sides, wood and lightweight steel studs with mineral wool, glass and cellulose fiber 

insulation. The average temperatures on the exposed and unexposed boards, and within the 

insulation were presented. The impact of the use of different insulation and stud types, and mass 

per unit area were investigated, along with the presence of glass fibre in the gypsum board core.  
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Table 1.1: Selected Research Work on Fire Resistance Tests of Wall Assemblies 

Authors 
Wall 

Assemblies  
Gypsum 

Board Type 
Insulation 

Type 
Size of Wall 

(mm) 
Measurements 

Park et al [16] 

Steel Studs 
Double Layer 

Gypsum 
Boards 

15.9 mm 
Type X 

Non-insulated 3048 x 3048  Temperature 

Kontogeotgos 
et al [17] 

Steel Studs 
Double Layer 

Gypsum 
Boards  

12.5 mm 
Regular 

Non-insulated 1250 x 1050  Temperature 

Urbas & 
Shaw [18] 

Steel/Wood 
Studs Double 

Layer 
Gypsum 
Boards 

16 mm Type 
X & 13 mm 

Regular 

92 mm 
Expanded 

Polystyrene 
1000 x 1000  Temperature 

Jones [19] 

Wood/Steel 
Studs Single 

Layer 
Gypsum 

Board Wall 

Regular Non-insulated 1010 x 2010  Temperature 

 

1.6 FIRE MODELS 

The introduction of performance-based building codes and performance-based fire safety design 

has made it necessary to develop and validate fire resistance models for assessing building 

assemblies. While the predictions of models in the literature show good agreement with 

experimental results, there is still some room for improvements, as it has been very difficult to 

completely capture all of the underlying physics in the fire models. A few examples of fire test 

models found in the literature for wall assemblies made of gypsum board and wood or steel 

studs, and the agreement between numerical and experimental results are presented below.  
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1.6.1 Thomas 

Thomas [20] used a finite element program called TASEF to model heat transfer in walls 

exposed to the standard fire resistance temperature-time curve. The convective heat transfer 

coefficients were adjusted so as to have a good correlation with experimental results, and all 

other properties used in the simulation were determined from the literature. The author neglected 

mass transfer of moisture, and claimed that at a temperature above 120oC the net effect of 

moisture movement is insignificant. Figure 1.5 shows the locations of thermocouples and 

predicted temperatures for the wall assembly. Figure 1.6 shows the comparison of predicted and 

measured temperatures for the wall assembly. The predictions of the wall model are in good 

agreement with experimental results at point 4 (the ambient side of the wall), and in poorer 

agreement at points 2,3 and 5, with the model predictions being much higher than the 

experimental results.  

 

Figure 1.5: Thermocouple Locations Used By Thomas [20] (reprinted with permission) 
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Figure 1.6: Comparison of Temperatures Predicted and Measured By Thomas [20] (reprinted 
with permission). 

 

1.6.2 Takeda and Mehaffey 

Takeda and Mehaffey [21] and Takeda [22] described two dimensional models, WALL2D [21] 

and WALL2DN [22], which were developed at the NRCC to predict the heat transfer through 

non-insulated and insulated wood-stud walls protected by gypsum board. The models use 

explicit finite difference techniques to solve the governing equations with material property data 

derived from tests on gypsum boards and wood at NRCC. WALL2DN was used to model wall 

assemblies with four different types of insulation and also to simulate the opening of joints 

between boards by modelling the shrinkage of gypsum boards. Figure 1.7 shows the 

thermocouple locations for the non-insulated wall assembly. Figure 1.8 compares the numerical 

and experimental results for a non-insulated wood studded gypsum board wall assembly. The 

model predictions and the experimental results show a reasonable agreement. The time to 
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insulation failure predicted by the model is 57 min 30 s which is very close to the experimental 

value of 51 min 8 s. 

 

Figure 1.7: Thermocouple Locations Used By Takeda and Mehaffey [21] (reprinted with 
permission) 

 

 

Figure 1.8: Comparison of Temperatures Predicted and Measured By Takeda and Mehaffey [21] 
(reprinted with permission). (Tf is fire temperature, refer to Figure 1.7 for Locations 
B, C and D). 
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1.6.3 Clancy 

Clancy [23-25] developed a two-dimensional numerical algorithm based on an alternating 

direction implicit finite difference method called ADIDRAS for modeling heat transfer in walls. 

The model was used to predict radiative heat transfer in the assemblies as well as accounting for 

the shrinkage gaps that develop between the dried wood and gypsum. The author accounted for 

moisture movement by considering increased thermal conductivity and shrinkage gaps between 

the stud and gypsum. The observation made was that heat transfer was significantly increased by 

moisture transfer for areas within a solid where the temperature is less than 100°C. Heat transfer 

was reduced by moisture transfer in areas with temperature between 100°C and 150°C, whereas 

heat transfer was not affected by moisture transfer in areas above 150°C.  Figure 1.9 shows the 

thermocouple locations and Figure 1.10 shows the comparison between results of the ADIDRAS 

model and the wall experiment. From Figure 1.9, B is the thermocouple location at the back of 

the exposed board, C is the thermocouple location at the face of the unexposed gypsum board 

and D is the thermocouple location at the unexposed side. In general, the experimental and 

numerical results were in good agreement.  
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Figure 1.9 Thermocouple Locations Used By Clancy [23] (reprinted with permission) 

 

 

 

Figure 1.10: Comparison of Temperatures Predicted and Measured By Clancy [23] (see Figure 
1.9 for thermocouple locations) (reprinted with permission). 
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1.6.4 Collier 

Collier [26] developed a one-dimensional finite difference model that predicts temperature 

increase across the section of a structural wall exposed to standard (standard temperature-time 

curve) and non-standard (realistic) fires. Four intermediate-scale (2.10 m x 1.0 m) fire tests were 

used for the verification of the model. The model predictions for the beginning of the char of the 

gypsum board paper and time to failure are conservative compared to the experimental results. 

Figure 1.11 shows the comparison between one test [26] and the predictions from the model.  

 

 

Figure 1.11: Comparison of Temperatures Predicted and Measured By Collier [26].        
(reprinted with permission) 

 

T=test,   M = model,  

Cav = cavity,   Ins = insulation, 

Exp = back of exposed board,  

Nexp = unexposed side 
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1.6.5 Alfawakhiri 

Alfawakhiri [27] used a one-dimensional finite difference computer model called TRACE to 

predict heat transfer through insulated steel stud wall assemblies. The modes of heat transfer 

considered in the assembly include: convection and radiation to the exposed gypsum board 

surface, conduction through the exposed gypsum board, insulation and unexposed gypsum board 

and radiation and convection from the unexposed surface of the assembly to the surroundings. 

Gypsum board shrinkage, heat transfer through metal studs and moisture movement within the 

gypsum board were neglected. Predicted and experimental results were in good agreement. 

Figure 1.12 shows a comparison between results from a test and the model for one of the wall 

assemblies [27]. 

 

Legend: SL -  Gypsum Board Single Layer, BL – Gypsum Board Base layer, FL – 
Gypsum Board Face Layer, Std.- Stud, Cav. Cavity, Exp. – Exposed Side, Unexp. -  
Unexposed Side. 

Figure 1.12: Comparison of Temperatures Predicted and Measured By Alfawakhiri [27] 
(reprinted with permission) 
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1.6.6. Sultan 

Sultan [10] developed a one-dimensional model to predict heat transfer through steel-stud, non-

insulated and non-load bearing gypsum board wall assemblies. The model was validated with 

two non-insulated and non-load bearing full-scale fire resistance tests. The model gave a 

conservative prediction of the fire resistance with predicted temperature and failure times being 

approximately 3% lower than the experimental results as shown in Figure 1.13. 

 

 

Legend: SL -  Gypsum Board Single Layer, BL – Gypsum Board Base layer, FL – 
Gypsum Board Face Layer, Std.- Stud, Cav. Cavity, Exp. – Exposed Side, Unexp. -  
Unexposed Side. 

Figure 1.13: Comparison of Temperatures Predicted and Measured By Sultan [10] (reprinted 
with permission). 
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1.6.7 Shahbazian et al 

Shahbazian et al [28] proposed a method of calculating temperature distributions in axially 

loaded cold-formed thin walled steel studs in wall assemblies exposed to fire from one side. The 

method is based on a heat balance analysis for nodes representing the main components of the 

panel. The proposed model was validated by comparing experimental results with the proposed 

one dimensional model and a 2-D ABAQUS finite element model. Figure 1.14 shows the 

predicted and measured temperatures for the exposed and unexposed side of the wall. A very 

good agreement between predicted and measured results was obtained at the earlier stages of the 

testing, but the agreement was not as good at the later stages of the testing.  

 

Figure 1.14: Comparison of Temperatures Predicted and Measured By Shahbazian et al [28] 
(reprinted with permission).  
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1.6.8 Keerthan and Mahendran 

Keerthan and Mahendran [29] conducted experimental and numerical studies on the thermal 

performance of composite panels under fire conditions. The composite panels were comprised of 

gypsum boards, mineral wool, glass fibre or cellulose insulations, and wood studs. Suitable 

thermal properties of these materials were determined and used in the numerical model. A finite 

element program, SAFIR was used to simulate thermal performance under both standard 

(temperature-time curve) and Eurocode (another curve similar to the standard temperature-time 

curve) design fire curves, and the models were then validated by comparing their results with 

standard fire test results of composite panels. Figure 1.15 shows a comparison between results 

from a test and the model for one of the wall assemblies. A very good agreement between 

predicted and measured results was obtained at unexposed (ambient) side of the wall assembly.

 

Figure 1.15: Comparison of Temperatures Predicted and Measured By Keerthan and   
Mahendran [29] (reprinted with permission).  

. 
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1.6.9 Other Models 

Hurst and Ahmed  

Hurst and Ahmed [7] used a model developed by Portland Cement Association which predicts 

heat and mass transfer through gypsum board to analyze the thermal response of wood-studs 

gypsum board assemblies exposed to the ASTM E119 temperature-time curve. A fully implicit 

finite difference method was used to solve the equations for conservation of mass, momentum 

and energy. The coupled heat and mass transfer through gypsum board was predicted by the 

model using the dehydration process and its effect on pore size and mass transport mechanisms. 

The model results are in good agreement with previous experimental results. The effects of wall 

studs were not considered in the model. The authors concluded that under positive pressure, the 

hot gases being forced through cracks and open joints have a significant effect of the fire 

performance of the wall assemblies.  

Craft  

Craft [7], developed a two dimensional finite element model called CUWoodFrame to predict the 

heat and mass transfer through a wood-frame floor assembly exposed to fire. The model uses 

Arrhenius expressions to predict the calcination process of gypsum and the pyrolysis of wood. 

The model results were validated using tests conducted in the cone calorimeter, intermediate 

scale furnace and full scale fire resistance furnace. The comparisons between experimental and 

numerical predictions show a good agreement for temperatures behind each layer of gypsum 

board. The temperature at the wall cavity was under-predicted and this resulted in an under-

prediction of the temperature at the unexposed side. 
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1.6.10 Summary of Models 

Numerical models of gypsum board wall assemblies subjected to fire discussed in the literature 

generally demonstrate a good ability to predict fire resistance test results (such as failure times), 

but models are less successfully able to predict the temperature profiles within a wall assembly. 

Some of the models presented show a very good agreement between predicted and measured 

temperatures on the unexposed side of the assembly, while other models show a good agreement 

at other locations within the wall. The model results presented in the literature also show the 

difficulty in predicting temperature profiles at all thermocouple locations in the wall assembly. 

However, the models presented above provide a basis for developing the numerical model used 

in this research, as well as the choice of thermal properties used in the model.  

 

1.6.11 Related Research at the University of Saskatchewan 

Fire research is ongoing at the University of Saskatchewan (UofS) to determine the fire behavior 

of materials using the cone calorimeter, including the performance of thermal protective fabrics, 

consumer products and soil. Part of the research at the UofS focuses on using results of small-

scale fire tests to predict full-scale fire performance. The cone calorimeter is used in fire testing 

of materials of 10 cm by 10 cm square. It is referred to as cone calorimeter because of its conical 

shaped radiant heater which is capable of providing a heat flux in the range of 0-100 kW/m2. 

Figure 1.16 shows the cone calorimeter.  
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Figure 1.16: Cone Calorimeter. 

 

One of the studies into the performance of thermal protective fabrics at the UofS was aimed at 

developing a heat transfer model of flame resistant fabrics during both heating and cooling after 

the exposure to fire [30]. Torvi and Threlfall’s [30] heat transfer model was used to predict both 

fabric temperature and skin burn injuries. The model was validated using results from small-

scale fabric tests.  

Eninful and Torvi [31] developed a numerical heat transfer model to predict temperature profiles 

in soil during cone calorimeter tests, which simulated wildland fire exposures. Predicted 

temperature profiles were used to estimate the depth of lethal heat penetration of a wildland fire, 

the depth to which plants would not be expected to grow after a fire exposure. The model 

predictions were within the 1-cm accuracy with which the depth of seeds and plant shoots in the 

soil can be determined.  

The burning behavior of polyurethane foam has also been studied by the UofS research group. 

For example, Ezinwa [32] performed fire tests on polyurethane foam using the cone calorimeter, 
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and developed a method to scale the fire test results. The test results reveal that the heat flux 

exposures and the different test arrangements have a significant effect on the fire behavior of the 

material. Heat release rate (the amount of energy released from the burning specimen) 

predictions made using a convolution model and a fire protection engineering correlation were 

compared with results from full-scale fire tests. The model successfully predicted the heat release 

rates during the early part of the fire growth phase. Predicted and measured peak heat release 

rates and total heat release were within 10-15% of one another. 

1.7 OBJECTIVES AND MAJOR TASKS 

Previous research on fire resistance tests of wall assemblies was focused on full scale tests and 

modeling of wall assemblies. The need for an economical and quick method of testing wall 

assemblies is important, especially during the design of new building materials and wall 

assemblies. This research will use the cone calorimeter to determine temperature profiles in wall 

assemblies and to predict full-scale fire resistance test results. A heat transfer model will be 

developed to predict expected temperatures profiles and heat transfer through wall assemblies. 

The main objectives of this research are: 

1. To evaluate the ability of the cone calorimeter to test small scale wall assemblies, and to 

compare temperature measurements in cone calorimeter tests and full-scale fire resistance 

tests conducted in a furnace for generic assemblies; 

2. To develop a heat transfer model to predict behavior of wall assemblies in fire. The 

development of this model will involve studying and modifying other existing heat 

transfer models for wall assemblies; and  
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3. To use cone calorimeter tests and heat transfer models to determine the effects of changes 

to density, thickness and other design parameters on heat transfer through wall 

assemblies. 

This research will assist manufacturers in using results from cone calorimeter tests to predict the 

expected fire performance of their materials. This research will significantly reduce the cost of 

testing since it costs about $100-$150/cone calorimeter test and about $25,000/full-scale wall 

test. This research will also assist building and fire protection regulators to develop a quick and 

cost effective means of conducting a preliminary evaluation of new building products as new 

materials can be quickly tested in the cone calorimeter. The performance of new materials can 

also be determined using the heat transfer model. 

In order to achieve the objectives of this study, cone calorimeter tests of wall assemblies 

consisting of wood studs, single and double layers of 12.7 mm (1/2 in.) regular and lightweight 

gypsum board, and 15.9 mm (5/8 in.) type X gypsum board walls, that are uninsulated and 

insulated with stone wool insulation will be tested using a heat flux of 75 kW/m2. The effect of 

heat flux exposure will be determined by testing single layer lightweight gypsum board wall 

assemblies using heat fluxes of 35, 50 and 75 kW/m2 in the cone calorimeter.  

Single and double layers of regular, lightweight and type X gypsum board, as well as complete 

wall assemblies, will be tested in this study. A finite difference heat transfer model will be 

developed to predict temperature profiles within the wall assembly. As will be discussed in the 

next chapter, the heat transfer through the wall assembly in this model is assumed to be one 

dimensional, and the effects of moisture movement and the burning of the gypsum board paper 

are assumed to be negligible. 
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1.8 OUTLINE OF THESIS          

In Chapter One of this thesis, a general introduction to the research project was provided, 

including background on generic wall assemblies and fire tests. A literature review of selected 

research dealing with gypsum board, insulation, fire tests and models was presented. The 

objective for this research was also presented in this Chapter. In Chapter Two, the development 

of the one dimensional finite difference heat transfer model is presented along with the effects of 

grid size and time-steps, and the validation of the model. In Chapter Three, the thermal 

properties of gypsum boards, wood and mineral and stone wool insulation given in the literature 

and the values adopted for the model are discussed along with numerical results predicted by the 

model, and the sensitivity of the model to changes in thermal properties of gypsum board and 

mineral or stone wool insulation. In Chapter Four, the experimental procedure and results are 

presented along with a comparison of the small scale results to full scale results found in the 

literature for similar wall assemblies. In Chapter Five, experimental and numerical results of the 

cone calorimeter tests are compared. In Chapter Six, the conclusions drawn from this study are 

presented, along with recommendations for future work. 
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CHAPTER TWO: DEVELOPMENT OF NUMERICAL MODEL 
 

For this study, a one dimensional finite difference model was developed to simulate the transient 

heat transfer through gypsum board and gypsum board wall assemblies. The derivation of the 

theoretical model follows a similar procedure as that used by Wang [33]. The objective of the 

model is to predict temperature development in gypsum board, stone wool insulation and wall 

assemblies exposed to a constant heat flux and a constant temperature. This chapter will present 

the development of the one dimensional heat transfer model and the validation of the model.  

 

2.1. GOVERNING EQUATION AND SIMPLIFYING ASSUMPTIONS  

From conservation of energy, the governing equation for one-dimensional heat and mass transfer 

in the control volume, is given by; 

� !(") #"#
 = 	 ##$ 	%�(") #"#$& + '																																										(2.1) 
 

where: 

 x is depth of wall from exposed surface (m), 

t is time (s), 

G is the thermal energy generation rate per unit volume (W/m3) associated with phase change 

and thermochemical reactions. 

T is the temperature (°C), 

k is the thermal conductivity (W/m⋅K), 

� is the density (kg/m3) and 

 ! is the specific heat (J/kg⋅K). 
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The thermal energy generation rate per unit volume (W/m3) associated with phase change and 

thermochemical reactions.is assumed to be accounted for by using the apparent heat capacity 

method (i.e., is incorporated within the values of density and specific heat). This approach is 

similar to Torvi [34]. 

Therefore the governing equation becomes; 

� !(") #"#
 = 	 ##$ 	%�(") #"#$&																																																																		(2.2) 
 

Initial and Boundary conditions: 

The initial and boundary conditions are based on the tests conducted using a hotplate and cone 

calorimeter. The initial temperature of the gypsum board as well as the wall assembly is assumed 

to be uniform and equal to the room temperature before the commencement of the test. 

The two boundary conditions used in this study are: 

a.) Fixed temperature boundary at the exposed surface of the wall (at, x=0).  

b.) Constant heat flux at the exposed surface of the wall (x = 0).  

 
Fixed Temperature Boundary at x=0.  

The hotplate is used to heat up the surface of the specimen to a constant temperature. The surface 

of the specimen is allowed to make contact with the heated surface of the hotplate as shown in 

Figure 2.1. The unexposed side of the specimen is well insulated to give an insulated boundary 

condition 

T = T1 at (x=0) and 

 ()** =0, for (x=L). 
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T1 is a known temperature at the exposed surface(x = 0) of the boundary and ()
** is the heat flux 

exchange at x = L. 

 

 

 

 

 

 

 

Figure 2.1: Schematic Representation of Wall Sample Exposed to Hotplate. 

 

Constant Heat Flux at x = 0.  

The cone calorimeter heater provides a relatively uniform heat flux (q’’ ) to the surface exposed to 

it. The exposed surface transfers heat to and from the environment by radiation and convection 

as shown schematically in Figure 2.2. The unexposed surface transfers heat to the surroundings 

by radiation and convection as well. The mathematical treatment of each of the boundary 

conditions is outlined below. 

 

 

 

 

 

 

x = 0 

Wall assembly 

Hotplate 
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Figure 2.2: Schematic Representation of Wall Sample Exposed to Cone Heater. 

 

Radiative heat flux: 

The radiative heat flux exchange	(+�," , between the exposed surface of the specimen and the 

surroundings (assumed to be at ambient temperature) is given by; 

q/01" = Fεσ(T678� − T0�)                                                                        (2.3) 

where:	  

 ε =	 emmisivity 

 σ		 =	 Stefan – Boltzmann constant (W/m2⋅K4), 

 T� =	Temperature of ambient (K),	
T678 =	Temperature at the exposed surface of the specimen (K) and 

 F	 =View factor 

q/01" =	Radiative heat flux loses	(W/m	) 

(BCD�" 	

(ED" 	 (D�F" 	

(+�," 	

x = 0 x = L 

Wall assembly Cone Heater 
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Convective heat flux: 

The convective heat flux is given by: 

qGHIJ
" = 	h(T678−T0)																																																																																			(2.4) 

where:   

h = convective heat transfer coefficient (W/m2⋅K). 

qGHIJ" = Convective heat flux loses  (W/m	) 
 

Net Energy Exchange 

The net energy exchange at the exposed surface which gives the boundary condition at the 

exposed surface (x=0) is given by: 

qIKL" = qMI" − q/01" − qGHIJ" 																																																																												(2.5) 
where: 

qIKL" =	heat flux conducted into the specimen, (W/m	), 
qMI" =, Incident heat flux from cone heater, (W/m	) 
q/01" =	Radiative heat flux loses	(W/m	) and 

qGHIJ" =Convective heat flux loses  (W/m	) 
 

View Factor 

A model for determining the view factor of the radiant interchange between the internal surface 

of the cone heater and the specimen surface in the cone calorimeter was presented by Yuen et al 

[35], and Wilson et al [36] as shown in equation (2.7).  Figure 2.3 shows the view factor of the 

interchange between the elemental area dA1 and area 2 and area 4. 
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Figure 2.3: Schematic of the internal surface of cone frustum radiating to an elemental surface 
dA1. 

 
P,,�Q� = P,,�Q	 − P,,�Q�																																																																																			(2.6) 

 

P,,�Q� = 12	ST1 − 1 + �		 − �		UV		 − 4�		
W − T1 − 1 + ��	 − ��	UV�	 − 4��	

WX																									(2.7) 
where:    Fd,1-2 is the view factor between elemental area dA1 and surface 2, 

   Fd,1-3 is the view factor between elemental area dA1 and surface 3, 

   Fd,1-4 is the view factor between elemental area dA1 and surface 4 and 

  a, is the distance from centerline 

�	 = Z	�  

�� = Z��  

�	 = [� 

Area 4 

Area 2 

Area 3 

dA1 a 

h 

z 

r2 

r4 
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�� = (ℎ + [)�  

V	 = 	1 + �		 + �			 
V� = 	1 + ��	 + ��	 

The cone dimensions considered for the model were r	 = 4	cm, r� = 8	cm,  h = 6.8 cm and the 

cone – specimen distance z, is 2.5 cm. The exposed surface of the specimen is 10 cm by 10 cm 

which results in a centerline distance (a) of 5 cm. Based on equation (2.7), the view factor P,,�Q�, 
is 0.711.  

Integrating Fd,1-3  numerically over the entire surface of the specimen, a value of 0.724 for view 

factor F1-3, (i.e. a view factor from the specimen to the cone heater surface) was calculated. 

The net radiation heat flux to the specimen is the radiation heat transfer from the cone heater 

divided by the area of the specimen. Therefore, using areas and view factors; 

 

(D�F,�Q�** = ^� × P�Q� × `�a("�� − "��)																																																																																(2.8) 
(D�F,�Q�** = (D�F,�Q�/^� 

By reciprocity, 

^� × P�Q� = ^� × P�Q� 

Therefore, 

(D�F,�Q�** = P�Q� × `�a("�� − "��)																																																																																						(2.9) 
It is assumed that the specimen surface can only see the cone heater and the surroundings, 

therefore the view factor from the specimen to the surrounding is given as 

P�Qc�++C�,EDd = 1 − P�Q� 

 

Therefore the boundary condition for the exposed side is given as; 



36 
 

(D�F,�** = P�Q� × `�a("�� − "��) − (1 − P�Q�) × `�a("�� − "��) − ℎ("� − "�)								(2.10) 
 

Hence,  

−k gh
g6 = P�Q� × `�a("�� − "��) − (1 − P�Q�) × `�a("�� − "��) − ℎ("� − "�)       (2.11) 

 

This is in some ways a simplified treatment of a complex radiation problem which some authors 

have tried to model in more detail (e.g. Yuen et al [35], Zhang and Delichatsios [37], Boulet et 

al [38]). However, given the uncertainty in the values of the thermal properties used in the 

model, which will be discussed later, this approximation is reasonable for the heat transfer 

model. Based on the assumptions made, this approach may over-estimate the radiation obtained 

in the cone calorimeter, but it is more suitable for real life fire situations where flame impinges 

on the exposed surface of the wall assembly. Similar approaches have been used by Spearpoint 

and Quintere [39], Craft et al [7] and Enninful and Torvi [40], to model the energy exchange 

between the exposed surface of the sample and the cone heater.  

The boundary at the unexposed side is; 

 

−� #"#$ = ℎ("i7) − "�) + `aj("i7))� − ("�)�k																																																									(2.12)							 
 

Convective heat transfer coefficient 

Several authors have developed correlations for determining the convective heat transfer 

coefficients for different fire scenarios. Incropera et al [41] present convective heat transfer 

coefficient correlations based on the average temperatures of the ambient and heated surfaces, 

which can be used for some fire applications. Janssens [42], carried out an experimental and 
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numerical investigation in order to develop a correlation for the convective heat transfer 

coefficient for materials tested in the vertical orientation using the cone calorimeter. Based on 

this investigation, the quadratic expression developed for the convective heat transfer coefficient 

is presented in equation (2.13) 

 

ℎB = 1.4 × 10Q�l(�"m + 2.4 × 10Qnl(�"m																																																								(2.13) 
where: 

hG is the convective heat transfer coefficient (W/m2⋅K) and  

qK"  is the incident heat flux (kW/m2). 

 

The correlation presented by Janssens [42] was used here because it best suits the scenario of the 

heat transfer problem that is being considered. The heat transfer coefficient for the exposed side 

used in the model was calculated using equation (2.13). Using incident heat fluxes of 35, 50 and 

75 kW/m2, the convective heat transfer coefficient for the exposed side was estimated to be 7.8, 

13 and 24 W/m2·K, respectively.  

The convective heat transfer coefficient for the unexposed side is estimated using an empirical 

correlation for external free convection flow for vertical plates presented by Incropera et al [41] 

op)qqqqq = ℎqr� 																																																																																																																(2.14) 
 

��) = 'Z)sZ = tu("c − "v)r�wx 																																																																												(2.15) 
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op)
qqqqq = 0.68 + 0.670	��)�/�j1 + (0.429/sZ)y/�nk�/y 																																																																			(2.16) 

where RaL is the Rayleigh number, 

 'Z) is the Grashof number,  

op)qqqqq	 is the Nusselt number, 

Pr is the Prandtl’s number, 

 ν is the  kinematic viscosity of air (m2/s),  

β is the expansion coefficient of air (K-1),  

L is the thickness (m),  

g is the acceleration due to gravity([m/s2) and  

α is the thermal diffusivity (m2/s). 

 

Using a surface temperature	Tz, of 130˚C and an ambient temperature	T0, of 24˚C a film 

temperature Tf, of 77˚C (350 K) is obtained	(T{ = (Tv + Tz)/2). The properties evaluated at this 

film temperature are [41]:  

v = 20.92 x 10-6 m2/s, Pr = 0.7, β = Tf
-1 = 2.86 x 10-3 K-1 and k = 30.0 x 10-3 W/m·K, and the 

 Rayleigh number, RaL = 4.97 x 106.  

From equation (2.16), the Nusselt number NuL = 24.89 and from equation (2.14), the convective 

heat transfer coefficient value of 7.4 W/m2·K was calculated.  

Using a surface temperature of 25˚C, a convective heat transfer coefficient of 2.6 W/m2·K was 

obtained, giving a range of 2.6 – 7.4 W/m2·K for the convective heat transfer coefficient for the 

expected temperature range on the unexposed side.  

Janssens [42] also presented results for convective heat transfer coefficients based on surface 

temperatures. For a free flow condition, the convection coefficient ranges from approximately 
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2.2 W/m2.K at surface temperature of 25˚C to 5.5 W/m2·K at a surface temperature of 200˚C. 

Wang [43] used a convective heat transfer coefficient of 4 W/m2·K for the unexposed side which 

is close to that used by Mehaffey et al [44]. Based on all of these results, a convective heat 

transfer coefficient of 5 W/m2 ·K was used for the unexposed side in this model. 

 

Assumptions 

The following assumptions were made in this study in order to use the equations outlined above: 

1. The heat transfer through the wall assembly at the mid-point is not influenced by the 

wood studs. Hence, one dimensional heat transfer across the wall assembly is assumed. 

2. The burning of the gypsum board paper on the exposed surface of the board during the 

test occurs within 2-3 min of the start of the test. The burning of the paper is not 

considered in the model. 

3. A perfect thermal contact is assumed between the gypsum board and insulation. 

4. Sultan [45] and others [46] have noted that the exposed gypsum boards experience cracks 

and fall off when the temperature of the mid-thickness exceeds 600˚C. However, in this 

study the gypsum boards in the wall assembly are assumed to be in place and without 

cracks for the duration of the simulation. 

5. While the energy associated with phase change in the gypsum board is included in the 

model through the use of the apparent heat capacity, the migration of moisture through 

the gypsum board is not considered in the model. 

 

 

 



40 
 

2.2 DISCRETIZATION 

The explicit finite difference method (FDM) was used to transfer the partial differential equation 

into a finite difference equation (FDE). Since wall assemblies are made of layered constructions, 

a finite difference formulation for a multilayered panel described by Wang [33] was modified for 

the heat transfer problem. To obtain the finite difference form of Equation 2.2, the central-

difference approximations to the spatial derivatives and the forward-difference approximation to 

the time derivatives were employed. 

The FDE is comprised of three typical equations, (i indicates the time step); 

 
1. For a boundary node (For example, for a boundary node 1), 

 

��E !�E ∆$l"�E}� − "�Em2∆

= ��El"	E − "�Em∆$ + P`a ~("BCD� + 273)� − l"�E + 273m��
− (1 − P) ~l"�E + 273m� − ("� + 273)�� − ℎl"�E − "�m											(2.17 

 

"DE}� = 2PC S"	E + ℎ∆$
��E "� + T 12PC − 1 − ℎ∆$

��E W"�EX + 	P`a ~("BCD� + 273)� − l"�E + 273m��
− (1 − P)		~l"�E + 273m� − ("� + 273)��																																																				(2.18)						 

                                                                      

where;   

PC = ��E∆
��E !�E ∆$	 
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The most important stability criterion for the FDE is that of the boundary node. This requires 

that; 

PC ≤ 0.5 �1 + ℎ∆$
��E + `a∆$

��E . l"�E + 273m�
"�E �

Q�
																																																	(2.19) 

 

 

2. For an interface node; 

"DE}� = PC S2l��E∆$	"DQ�E + �	E∆$�"D}�E m
��E∆$	 + �	E∆$� + "DE % 1PC − 2&X																																												(2.20) 

PC = �	 ��E∆$	 + �	E∆$��	E  !	E ∆$	 + ��E !�E ∆$�	�																																																																																						(2.21) 
 

where subcripts	1,2	represent	the	2	materials	at	the	interface. 
3. For an interior node n, within a material layer.  

�DE  !DE ∆$l"DE}� − "DEm∆
 = �DQ�,DE l"DQ�E − "DEm∆$ − �D}�,DE l"DE − "D}�E m∆$ 										(2.22) 
 

"DE}� = PC S2l�DQ�,DE "DQ�E + �D}�,DE "D}�E m
�D}�,DE + �DQ�,DE + "DE % 1PC − 2&X																																					(2.23) 

 

PC = �	(�D}�,DE + �DQ�,DE )∆

2�DE  !DE (∆$)	 	�																																																																																							(2.24) 
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In order to ensure stability of the calculation, the coefficient of	"DE, in equation (2.23) must be 

greater than zero. Therefore, the stability criterion is given by; 

1PC − 2 ≥ 0 

This implies that;    PC ≤ 0.5 

 This restricts the time step. 

The conductivities �D}�,D, 	���	�DQ�,D are evaluated at each time step as; 

�D}�,DE = � T"DE + "D}�E
2 W 

�DQ�,DE = � T"DE + "DQ�E
2 W 

 

2.3 VALIDATION OF MODEL 

In order to ensure accuracy of the formulated differential equations and the discretization of the 

differential equations and coding of the equations, validation exercises were conducted using 

fixed temperature and heat flux boundary conditions. The validation exercise conducted was for 

three pieces of regular gypsum boards (12.7 mm each) joined together as shown in Figure 2.4. 

 

 

 

 

 

 

Figure 2.4: Schematic of the gypsum layers and temperature positions. 

 Tm  Tn 

x 
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Constant properties of regular gypsum board used in the simulation are presented in Table 2.1. 

Table 2.1: Property of Regular Gypsum Board. 
Property Value 

Thermal Conductivity, k (W/m⋅K) 0.168 

Specific Heat, cp (J/kg⋅K) 950 

Density, � (kg/m3) 645.7 

Thickness, L (m) 0.0381 

 

2.3.1 Constant Thermal Property – Fixed Temperature Boundary Condition 

To validate the accuracy of the finite difference model, an exact solution to equation (2.25) 

reported by Carslaw and Jaeger’s [47] was used to solve for temperature as a function of space 

and time. This is one dimensional heat transfer in a solid bounded by parallel plates which 

assumes an initial uniform temperature and fixed temperature boundary conditions 

� !
#"#
 = 	 ##$ 	%� #"#$&																																																																																																(2.25) 

The exact solution is given as: 

 

"($, 
) = 	
� ∑ �$� �Q�D���F

�� � . sin	(D�i�v� ) ~� �($*)sin	(D�i�
�

�8 )�$* + D�i
� � �$�F8 ��D����

�� � �∅�(�) −
(−1)D∅	(�) ���																																																																																																																						(2.26)									                                                 
where l is the total thickness (m),  

α is the thermal diffusivity (m2/s),  

t is time (s),  

x is the distance from boundary (m), and 

n is the number of layers. 
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Using a normalized temperature, the exposed surface temperature is fixed at 1, the initial and 

unexposed temperatures are fixed at 0.  

Boundary condition:    @ x = 0, T = 1; 

@ x = L, T = 0; 

Initial condition:  @ t = 0, T = 0; 

This simplifies equation (2.26) to; 

 

"($, 
) = ¡S1 − �$� T−x�	¢	
£	 WX . sin	(
�¢$£ )�¢2

v

�
																																																	(2.27) 

 

This approach was used by McCarthy [48] and Spangler [49] to validate heat transfer models.  

The above simplified case was used to compute the temperature distribution of three layers of 

gypsum boards with properties presented in Table 2.1. The results are compared with the finite 

difference solution for the same layers of gypsum as shown in Figure 2.5. The simulation was 

allowed to run for 30 minutes. Table 2.2 gives a summary of the results from both the exact 

solution and numerical solution at depths of 12.7 and 25.4 mm. The percentage differences 

between the exact and numerical solution are in the range of 0 – 3%. 
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Figure 2.5: Exact Solution vs. Numerical Solution (∆x = node distance and ∆t = time step). 
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Table 2.2: Temperatures Obtained From Exact and Numerical Solution for Duration of 30 min.                    
at Different Depths of 12.7 mm and 25.4 mm. 

Time (s) Normalized Temperature at 
Depth 12.7 mm 

Tm 

Normalized Temperature at 
Depth 25.4 mm 

Tn 

Exact Solution Numerical 
Solution 

Exact Solution Numerical 
Solution 

300 0.30 0.29 0.04 0.04 

600 0.46 0.458 0.14 0.14 

900 0.54 0.542 0.21 0.21 

1200 0.59 0.591 0.26 0.26 

1500 0.62 0.621 0.29 0.29 

1800 0.64 0.638 0.31 0.31 

 

 

2.3.2 Constant Thermal Property – Heat Flux Boundary Condition 

To validate the finite difference model, an analytical solution to equation (2.2) reported by 

Incropera et al [41] was used to solve for temperature as a function of space and time. This is a 

one dimensional  heat transfer in a semi-infinite solid for a constant surface heat flux boundary 

condition. The validation exercise was conducted at heat fluxes of 35 kW/m2,  50 kW/m2 and 75 

kW/m2 for three layers of gypsum boards joined together (Figure 2.4) with properties shown in 

Table 2.1. Figures 2.6, 2.7 and 2.8 show the comparison between the analytical solution and the 
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numerical solution at the exposed surface for heat flux exposures of 35 kW/m2 , 50 kW/m2 and 

75 kW/m2, respectively, for an exposure time of 5 minutes.  

 

The exact solution is given as: 

"($, 
) − "E =	2(8" �
x
¢ ��	
� �$� T−$	

4x
W − (8"$� �Z� % $
2√x
&																											(2.28) 

 

where: 
q8" 	is	the	incident	heat	flux	 %kW§	& 

α	is	the	thermal	diffusivity	(§	/s)	 
k	is	the	thermal	conductivity	(¬/§ ∙ �) 
x	is	the	distance	from	exposed	surface	(m) 

The time-steps and node distance used for the finite difference simulation are: 

∆$ = 1.1	§§ 

∆
 = 1	®. 
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Figure 2.6: Comparison of Numerical and Analytical Results at Surface for Exposure of 5 min. 
(Irradiance of 35 kW/m2) 

 

 

Figure 2.7: Comparison of Numerical and Analytical Results at Surface for Exposure of 5 min. 
(Irradiance of 50 kW/m2) 
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Figure 2.8: Comparison of Numerical and Analytical Results at Surface for Exposure of 5 min. 

(Irradiance of 75 kW/m2) 

 

 

Figures 2.9, 2.10 and 2.11 show the comparison between the analytical solution and the 

numerical solution at a depth of 25.4 mm from the exposed surface for heat flux exposures of   

35kW/m2 , 50 kW/m2 and 75 kW/m2, respectively, for an exposure time of 5 minutes.  
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Figure 2.9: Comparison of Numerical and Analytical Results at Depth of 25.4 mm (Tm) for 
Exposure of 5 min. (Heat Flux of 35 kW/m2). 

 

 
 

Figure 2.10: Comparison of Numerical and Analytical Results at Depth of 25.4 mm (Tm) for 
Exposure of 5 min. (Heat Flux of 50 kW/m2). 
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Figure 2.11: Comparison of Numerical and Analytical Results at Depth of 25.4 mm (Tm) for 
Exposure of 5 min. (Heat Flux of 75 kW/m2). 

 

Figure 2.6 to 2.11 show a very good agreement between the analytical and numerical results. The 

variations between the analytical and numerical results were less than 2% throughout the 

simulation time. Table 2.3 shows a comparison between the analytical and numerical results at 

different thicknesses within the three layers of gypsum boards at heat flux exposures of                   

35 kW/m2, 50 kW/m2 and 75 kW/m2 for duration of 5 minutes. 
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Table 2.3: Temperatures Obtained From Numerical and Analytical Results for Duration of 300 s                    
at Different Depths and Heat Fluxes of 35 kW/m2, 50 kW/m2 and 75 kW/m2 . 

Thickness 

(mm) 

Temperature (˚C)  

35 kW/m2 50 kW/m2 75 kW/m2 

Numerical Analytical Numerical Analytical  Numerical Analytical  

Surface 2273.8 2281.1 3237.9 3248.0 4844.9 4860.9 

6.35 1095.7 1102.8 1554.9 1565.2 2320.4 2336.0 

12.7 449.7 452.9 632.2 636.8 936.4 943.3 

19.05 162.3 163.1 221.5 222.8 320.3 322.3 

25.4 60.1 60.1 75.6 75.6 101.4 101.9 

31.75 31.3 31.3 34.5 34.5 39.7 39.7 

 

The results of the numerical and analytical solution shown in Table 2.3 are in a very good 

agreement with a variation of less than 2% in all cases. This shows that the discretization of the 

differential equations and coding of the equations were done correctly, and that the time steps 

and grid sizes are appropriate. 
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CHAPTER THREE: NUMERICAL RESULTS 
 

The results from the numerical models formulated in Chapter Two will be presented in this 

chapter. The predictions made with the models include: 

• Heat transfer in wall assemblies exposed to a fixed temperatures of 80˚C;  

• Heat transfer in a single layer of gypsum board: Temperature profiles in regular, 

lightweight and type X gypsum boards exposed to an incident heat flux of          

75 kW/m2 for one hour; 

• Heat transfer in a wall assembly (constant properties): Temperature profiles in 

regular, lightweight and type X gypsum board wall assemblies exposed to an 

incident heat flux of 75 kW/m2; 

• Heat transfer in a wall assembly (temperature dependent properties): Temperature 

profiles in single layer lightweight gypsum board wall assemblies exposed to 

incident heat fluxes of 35 kW/m2 and 50 kW/m2; 

• Heat transfer in a wall assembly (temperature dependent properties): Temperature 

profiles in single layer regular, lightweight and type X gypsum board wall 

assemblies exposed to an incident heat flux of 75 kW/m2; and 

• Heat transfer in a wall assembly (temperature dependent properties): Temperature 

profiles in double layer regular, lightweight and type X gypsum board wall 

assemblies exposed to an incident heat flux of 75kW/m2. 

Sensitivity studies will be conducted to determine the effects of the thermal properties on 

the model results. 
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3.1 THERMAL PROPERTIES USED IN MODEL 

The materials selected for the tests were 12.7 mm thick lightweight, 12.7 mm thick regular and 

15.9 mm thick type X gypsum boards, as well as Roxul ComfortBath  R-14 (89 mm thick) stone 

wool insulation. These materials, along with nominal 2x4 wood studs (spruce-pine-fir), were 

purchased from a home improvement retail store in Saskatoon between January and February, 

2013.  

The thermal properties used in the model for these materials were derived from data presented in 

the literature. Several authors have determined the temperature dependent properties of gypsum 

boards and insulation. The properties used in the model are presented below. 

3.1.1 Thermal Conductivity of Gypsum  

The thermal conductivity measurements presented by different researchers vary because of the 

presence of moisture, pores, differences in the microstructure of gypsum board and methods of 

measurement. The variation in the thermal conductivity measurements is also likely due to 

changes to gypsum board over the years. Figure 3.1 shows the values of the thermal conductivity 

of gypsum boards at different temperatures as measured by Harmathy [50], Anderson and 

Janssen [51], Benichou et al [52, 53] and Mehaffey et al [20]. Harmathy used a relatively small 

temperature gradient to determine the thermal conductivity with an accuracy within 7%.  

Andersson and Janssen used the transient hot strip (THS) method to measure the thermal 

conductivity. This method uses the measured resistance of a metal strip embedded in the material 

to determine the thermal conductivity. Benichou et al [52, 53]used a TC-31 thermal conductivity 

meter made by Kyoto Electronics which uses a steady state analysis to determine the thermal 

conductivity. 



55 
 

Benichou et al [50] defined the thermal conductivity of regular gypsum board using four regions: 

a constant value from room temperature to 100˚C, a decrease at 100˚C  to a value which then 

remains constant to 400˚C, followed by a rise to 800 ˚C , and finally a steady increase in the 

slope after 800˚C . Benichou et al [53] defined the thermal conductivity of type X gypsum board 

using three regions: a steady decrease to a temperature of 200˚C , a constant value between 

200˚C  and 800˚C  and a steep increase after 800˚C . Thomas [51] suggested that the increased 

thermal conductivity after 800˚C  is as a result of the increased radiation which occurs in the 

openings of cracks in gypsum board at this temperature. Radiation within the cracks increases 

the effective thermal conductivity of gypsum boards.  

 
 

Figure 3.1: Comparison of Thermal Conductivity Values of Gypsum Board from Different 
Researchers. 

The values of the thermal conductivity in Figure 3.1 show a large scatter; however, that reported 

by Harmathy [50], Mehaffey et al [20] and Benichou [53] are in good agreement. The 
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temperature dependent thermal conductivity presented by Benichou et al [52] was used in this 

model for regular and lightweight gypsum boards (Figure 3.2) and that reported by Mehaffey et 

al [20] was adapted for type X gypsum board (Figure 3.3).  

 
Figure 3.2: Thermal Conductivity of Both Regular and Lightweight Gypsum Board Used in the 

Model. 

The temperature-thermal conductivity correlations drawn from Figure 3.2 for both regular and 

lightweight gypsum boards are given as follows: 

� = 0.1683																																																																																												0˚C < " ≤ 90˚C 

� = −0.00057(" − 90) + 0.1683																																																		90˚C < " ≤ 200˚C 

� = 0.000055(" − 200) + 0.1056																																																	200˚C < " ≤ 300˚C 

� = 0.0001283(" − 300) + 0.1111																																																	300˚C < " ≤ 600˚C 

� = � = 0.000352(" − 600) + 0.1496																																														600˚C < " ≤ 700˚C 

� = −0.000121(" − 700) + 0.1848																																														700˚C < " ≤ 800˚C 

� = 0.000495(" − 800) + 0.1727																																																																	" > 800˚C 

                     (3.1) 
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Figure 3.3: Thermal Conductivity of Type X Gypsum Board Used in the Model. 

The temperature-thermal conductivity correlations drawn from Figure 3.3 for type X gypsum 

boards are given as follows: 

� = 0.25																																																																																								0˚C < " ≤ 70˚C 

� = −0.0017(" − 70) + 0.25																																																	70˚C < " ≤ 140˚C 

� = 0.0000625(" − 140) + 0.13																																										140˚C < " ≤ 300˚C 

� = 0.00008(" − 300) + 0.14																																																															" > 300˚C 

          (3.2) 

3.1.2 Thermal Conductivity of Insulation 

Benichou et al [52] conducted a study on the thermal conductivity of millboard and glass fiber 

insulation as a function of temperature, the results of which are shown in Figure 3.4. A gradual 

increase in the thermal conductivity is noticed in rock fibre and millboard insulation. A gradual 

increase in thermal conductivity similar to that obtained for rock fibre and millboard is also 
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noticed for glass fiber insulation from 0.022 W/m⋅K at 24°C to 0.204 W/m⋅K at 515°C. A rapid 

increase in thermal conductivity is obtained beyond 515°C. Benichou et al [52] attributed the 

variation in the thermal conductivity of the insulation to the difference in chemical composition 

of the insulation fiber. 

 
Figure 3.4: Temperature-Dependent Thermal Conductivity of Insulation Benichou et al [52] 
 

Roxul ComfortBath  R-14 (89 mm thick)  stone wool insulation  was used in tests reported in this 

thesis. Based on the R-value provided by the manufacturer, the thermal conductivity value at 

room temperature for Roxul ComfortBath R-14 (89 mm thick) stone wool insulation is 

calculated to be 0.036 W/m⋅K. Since the thermal conductivity presented by Benichou et al [52] is 

approximately equal to 0.036, the temperature dependent thermal conductivity data reported by 

Benichou et al [52] for Roxul insulation (flexibatt) was used as input in the model for stone wool 

insulation. Figure 3.5 shows the thermal conductivity adopted for the model. 
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Figure 3.5: Thermal Conductivity of Stone Wool Insulation Used in the Model. 

The temperature-thermal conductivity correlations drawn from Figure 3.5 for stone wool 

insulation are given below: 

� = 0.036																																																																																																0˚C < " ≤ 101˚C 

� = 0.000194(" − 101) + 0.036																																																	101˚C < " ≤ 194˚C 

� = 0.0002135(" − 194) + 0.054																																																	194˚C < " ≤ 297˚C 

� = 0.0004343(" − 297) + 0.076																																																	297˚C < " ≤ 396˚C 

� = 0.000447(" − 396) + 0.119																																																				396˚C < " ≤ 501˚C 

� = 0.0007525(" − 501) + 0.166																																																		501˚C < " ≤ 602˚C 

� = −0.0002869(" − 602) + 0.242																																																		602˚C < " ≤ 724˚C 

� = 0.0001667(" − 724) + 0.207																																																		724˚C < " ≤ 856˚C 

� = 0.0004757(" − 856) + 0.229																																																																		" > 856˚C 

          (3.3) 
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3.1.3 Specific Heat  of Gypsum 

The specific heat of gypsum board values measured by some researchers is presented in 

Figure 3.6. The specific heat peaks noticed in Figure 3.6 can be traced to the reactions that occur 

when gypsum board is exposed to high heat fluxes. The first peak, which generally occurs at 

100°C, is traced to the first dehydration (calcination) process of gypsum. The temperature at 

which the second specific heat peak occurs, and the values obtained by the different researchers, 

varies. Harmathy [50] gave measurements up to 630°C, with the first specific heat peak value of 

7.32 kJ/kg⋅K obtained at a temperature of 100°C, and a second specific heat peak value of 

2 kJ/kg⋅K obtained at a temperature of 630°C. Anderson and Janssen [51] reported a first peak 

value of 52.2 kJ/kg.⋅K at 110°C, and a second peak value of 19.2 kJ/kg⋅K at 210˚C. Wakili and 

Hugi [54] mentioned that the second peak obtained by Benichou et al [52, 53] is as a result of the 

de-carbonization of type X gypsum board at about 700˚C.  The specific heat capacity reported by 

the researchers at ambient temperature is between 0.7–0.95 kJ/kg.⋅K. 
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Figure 3.6: Comparison of Specific Heat Values Measured by Different Researchers for Gypsum 
Board. 

 

The temperature dependent specific heat capacity of gypsum used in the model is that reported 

by Benichou et al [52] with a specific heat of 950 J/kg⋅K at room temperature. Mehaffey et 

al [20] also reported a value of 950 J/kg⋅K as the specific heat capacity of gypsum board at room 

temperature. Based on the data presented in Figure 3.6, averages of the temperature dependent 

specific heat peaks that represent the dehydration and decarbonization processes of gypsum as 

shown in Figure 3.7 were used in the model. 
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Figure 3.7: Specific Heat of Gypsum Board Used in the Model. 

The temperature-specific heat correlations drawn from Figure 3.7 for gypsum board are 

given as follows: 

�! = 950																																																																																											0˚C < " ≤ 90˚C 

�! = 388.75(" − 90) + 950																																																					90˚C < " ≤ 130˚C 

�! = −350(" − 130) + 16500																																													130˚C < " ≤ 160˚C 

�! = 33.333(" − 160) + 6000																																													160˚C < " ≤ 190˚C 

�! = −201.67(" − 190) + 7000																																									190˚C < " ≤ 220˚C 

�! = 950																																																																																						220˚C < " ≤ 600˚C 

�! = 38.125(" − 600) + 950																																															600˚C < " ≤ 680˚C 

�! = −50.833(" − 680) + 4000																																									680˚C < " ≤ 740˚C 

�! = 950																																																																																																					" > 740˚C 

          (3.4) 
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3.1.4 Specific Heat  of Insulation 

Benichou et al [52] carried out specific heat measurements of rock fiber insulation, mineral wool, 

glass fiber and SBP – Millboard fiber insulation using a Differential Scanning Calorimeter 

(DSC) at a heating rate of 5˚C/min in Nitrogen with results shown in Figure 3.8. Over regions 

where there are phase changes or reactions, specific heats measured by the DSC would account 

for energies associated with these phase changes or reactions, in a similar way to how these 

energies are treated using the apparent heat capacity described in Section 2.1.  A gradual increase 

in specific heat capacity up to temperatures of about 300 – 350˚C is observed in all insulations 

tested. Beyond 330˚C to 470˚C a rapid decrease in specific heat is noticed, followed by a rapid 

increase to 600˚C, then a slight variation in specific heat after 600˚C. The negative values of 

specific heat were attributed to the exothermic reaction in the material which was as a result of 

the applied heating rate, where the rate of absorption of the material is less than the rate of 

evolution due to reactions. The variation in the specific heat of the insulation was attributed to 

the difference in the composition of the insulation from one product to another. 
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Figure 3.8: Temperature Dependent Specific Heat of Insulation (Benichou et al [52]) 

 

As will be discussed in the next section, previous research has indicated that there are relatively 

small changes in mass for the type of insulation used in this study over the expected temperature 

range. There is also considerably less data in the literature on specific heat values of stone wool 

insulation than there are for gypsum board. Therefore, a constant specific heat value of 

0.7 kJ/kg⋅K was used in the model for stone wool.  

 

3.1.5 Density of Gypsum Board 

The density of gypsum board influences the thermal performance of the boards when exposed to 

high temperature. Table 3.1 shows some examples of the density measurements reported in the 

literature for some gypsum boards. 
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Table 3.1: Comparison of Density Values of Gypsum by Different Researchers. 

Authors Type of Board 
Nominal 

Thickness (mm) 

Density          

(kg/m3) 

Craft et al [8] Regular 12.7 620 

 Type X 15.9 690 

Thomas et al [17] Regular 12.7 612 

 Type X 15.9 687 – 750 

Mehaffey et al[18] Type X 15.9 648 

 

Mass Loss of Gypsum Board 

The mass loss of gypsum board as a function of temperature has been reported by some authors. 

The mass loss results of type X and type C gypsum board presented by Thomas et al [19] and 

Benichou et al [52-53] were similar with the mass loss for all specimens beginning at 

approximately 100˚C. Mehaffey et al [44] report that between 100˚C and 160˚C the cores of the 

gypsum lost about 18% mass, while Takeda and Mehaffey [55] report that between 100˚C and 

150˚C a mass loss of 15% was obtained. Benichou et al [52] report that between 100˚C and 

160˚C the mass loss for different boards was between 15% and 17%. The mass loss of four 

Canadian gypsum boards conducted at a heating rate of 5˚C per minute by Craft et al [8] reveals 

that a total of 15 to 17% of the total mass was lost between 100˚C and 160˚C.   

Thermal gravimetric analysis involves the measurement of the mass change of a specimen with a 

thermo-balance while the specimen is subjected to a controlled change in temperature. Thermal 

gravimetric analysis (TGA) was conducted for the three types of gypsum boards considered in 
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this study. Thermal gravimetric analysis (TGA) tests of the three types of drywall were 

conducted in air using a Q5000 thermal gravimetric analyzer (TA Instruments, New Castle, DE) 

at a heating rate of 20˚C/ min.  The test was conducted at the Department of Chemistry 

Laboratory, University of Saskatchewan. The TGA results obtained provides information on the 

thermal stability of gypsum boards along with the thermal degradation temperatures. 

The result of the thermal gravimetric analysis tests of the three different types of gypsum board 

in dry air at a heating rate of 20˚C/min is shown in Figure 3.9.  

 

Figure 3.9: Thermo gravimetric Analysis (TGA) Curves for Regular, Lightweight and Type X 
Gypsum Board. 

 

The TGA results for the three types of gypsum board, shown in Figure 3.9, were similar as the 

significant mass losses occurred over approximately the same range of temperatures for each 

material. There were two significant mass losses, which represent the reactions described in 

Equations 1.1-1.3. The first significant mass loss, which is due to calcination (Equations 1.1 and 

1.2), began at about 140-150˚C. This mass loss was approximately 17-18% of the initial mass for 
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each of the three types of gypsum board. The second mass loss started at about 730-750˚C and 

was due to decarbonation (Equation 1.3). This second mass loss was approximately 6-7% of the 

initial mass for each of the three types of gypsum board. 

The values of density of the gypsum board at room temperature used in the model are presented 

in Table 3.2. 

 
Table 3.2: Description of Gypsum Board 

Material Description 

Regular Gypsum 
Board 

Thickness = 12.7 mm (1/2 in.) 

Density = 645.7 kg/m3 

Lightweight 
Gypsum Board 

Thickness = 12.7 mm (1/2 in.) 

Density = 564.3 kg/m3 

Type X Gypsum 
Board 

Thickness = 15.9 mm (5/8 in.) 

Density = 724.8 kg/m3 

 

The TGA results were used to extrapolate the density as a percentage of the original density of 

gypsum at room temperature. Rahmanian [56] reports that at temperatures below 900˚C, the 

volume change in gypsum is insignificant; hence the heat transfer analysis does not include the 

effect of volume change on density but takes the relative change in density to be equal to the 

change in the mass. Figure 3.10 shows the density of regular and type X gypsum boards, 

respectively used in the model. 
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Figure 3.10: Density of Gypsum Boards Used in the Model. 

 

The temperature-density correlation drawn from Figure 3.10 for the regular gypsum 

board is given as follows: 

� = 645.7																																																																																								0˚C < " ≤ 140˚C 

� = −1.02725" + 789.515																																																				140˚C < " ≤ 250˚C 

� = −0.0137" + 536.13																																																											240˚C < " ≤ 720˚C 

� = −0.3632" + 787.75																																																										720˚C < " ≤ 800˚C 

� = 497.189																																																																																																		" > 800˚C 

          (3.5) 

 

The temperature-density correlation drawn from Figure 3.10 for the lightweight gypsum 

board is given as follows: 
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� = 564.3																																																																																	0˚C < " ≤ 140˚C 

� = −0.8977" + 689.98																																																	140˚C < " ≤ 250˚C 

� = −0.012" + 468.55																																																	250˚C < " ≤ 720˚C 

� = −0.2469" + 637.7																																																	720˚C < " ≤ 800˚C 

� = 440.15																																																																																											" > 800˚C 

          (3.6) 

The temperature-density correlation drawn from Figure 3.10 for the type X gypsum board 

is given as follows: 

� = 724.8																																																																																		0˚C < " ≤ 140˚C 

� = −1.1531" + 886.23																																																	140˚C < " ≤ 250˚C 

� = −0.0154" + 601.82																																																	250˚C < " ≤ 720˚C 

� = −0.317" + 819.02																																																		720˚C < " ≤ 800˚C 

� = 565.344																																																																																							" > 800˚C 

         (3.7) 

 

3.1.6 Density of Insulation 

Mass Loss of Insulation 

The mass loss test results from thermal gravimetric analysis of rock fiber insulation and glass 

fiber insulation presented by Benichou et al [52] are shown in Figure 3.11. From Figure 3.11, 6% 

mass of rock fiber insulation was lost from 25˚C to 1000˚C and 6% mass of glass fiber insulation 

was also lost from 36˚C to 310˚C after which the mass remains constant. 
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Figure 3.11: Mass Loss of Insulation [14]. 

 

The density of insulation used in the model was 32 kg/m2, taken from Roxul technical 

data sheet for Roxul ComfortBatt  R-14 (89 mm thick)  stone wool insulation [57]. As was done 

for the specific heat, a constant density value for stone wool insulation was used in the model. 

3.2 GRID SIZE AND TIME-STEP 

The heat transfer model described in Chapter Two will be stable result as long as the stability 

criterion is met; however the optimal grid size and time step to be used in the model will be 

investigated.  The effect of time step on temperature at the unexposed side (depth of 12.7 mm) of 

a single regular gypsum board is shown in Figure 3.12 for a heat flux of 75 kW/m2. Figure 3.12 

shows that the time step has less significant effect on the predicted temperature at the unexposed 

end of the board (depth of 12.7 mm).  
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Figure 3.12: Effect of Time-step on Temperature Measurements on the Unexposed End        
(12.7 mm) of a Regular Gypsum Board. 

The choice of the grid size and time step were chosen by considering the effects at the exposed 

surface of the board. Figure 3.13 compares the results of the heat transfer analysis at a time-step 

of 0.5 s for different gird sizes and Figure 3.14 compares the results of the heat transfer analysis 

at a mesh size of 1.6 mm (8 layers) for different time steps. From Figures 3.13 and 3.14, 8 layers 

corresponding to a grid size of 1.6 mm and a time step of 0.5 s were chosen as the optimal grid 

size and time step for further analysis. There were only small differences between the results 

within the first minute of the exposure predicted using this time step and grid size, and predicted 

using the next smaller time step and grid size. As results after longer time periods are of most 

interest in this research, it was also noted that at the end of a 60 min. exposure, the duration used 

in this study, there was a difference of only about 0.3-1% between the numerical results 
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predicted using any of the different time steps and grid sizes shown in Figures 3.13 and 3.14.The 

finite difference method used the same grid size for both gypsum board and insulation. 

 

Figure 3.13: Effect of Grid Size on Exposed Surface Temperature Prediction of Gypsum Board 
(Time-Step = 0.5 s) 

 

 
Figure 3.14: Effect of Time-step on Temperature Prediction (Grid size = 1.6 mm)  
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3.3 NUMERICAL RESULTS  

The points of temperature prediction within the wall assembly are shown in Figure 3.15. From 

Figure 3.15, Point A is the temperature prediction between the unexposed side of the exposed 

board and insulation, point B is approximately 30 mm from the exposed board (point A) and 

Point C is approximately 30 mm from point B. Point D is the temperature prediction between the 

insulation and the exposed end of the unexposed board. Point E is the temperature prediction at 

the unexposed end of the wall assembly and point M is the midpoint in the insulation. Locations 

A,B,C, D and E were chosen to compare with experimental results. 

 
Figure 3.15: Positions of Temperature Predictions in Wall Assemblies. 

 

3.3.1 Heat Transfer in Wall Assemblies Exposed to a Fixed Temperature Boundary 

The temperature profiles within regular and type X wall assemblies exposed to a fixed 

temperature of 80˚C are presented in Figure 3.16 and 3.17, respectively. Thermal properties in 

the literature reveal that the thermal properties of gypsum and mineral wool are constant up to 

about 80˚C of exposure. Hence constant properties were used in the model.  

M 
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Figure 3.16: Temperatures Predicted by the Model for Regular Board Wall Assembly Exposed to 
a Fixed Temperature of 80˚C. 

 

 

Figure 3.17: Model Prediction of Type X Board Wall Assembly Exposed to a Fixed Temperature 
of 80˚C. 



75 
 

3.3.2 Heat Transfer in a Single Layer of Gypsum Board 

The temperature profile on the exposed and unexposed side of a single layer of regular, 

lightweight and type X gypsum board exposed to an incident heat flux of 75 kW/m2 are 

presented in Figures 3.18, 3.19 and 3.20, respectively. The temperature dependent properties of 

gypsum board were used in the model. The MATLAB code for the model is presented in 

APPENDIX A. 

 
Figure 3.18: Temperature Prediction for a 12.7 mm Regular Gypsum Board Exposed to a Heat 

Flux of 75 kW/m2. 
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Figure 3.19: Temperature Prediction for a 12.7 mm Lightweight Gypsum Board Exposed to a Heat 

Flux of 75 kW/m2. 
. 

 
Figure 3.20: Temperature Prediction for a 15.9 mm Type X Gypsum Board Exposed to a Heat Flux 

of 75 kW/m2. 
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. 
A comparison of predicted temperatures on the unexposed side of a single layer 12.7 mm 

regular, lightweight and 15.9 mm type X gypsum boards is presented in Figure 3.21  

 
Figure 3.21: Temperature Prediction for a Single Layer 12.7 mm Regular and Lightweight and a 

Single Layer 15.9 mm Type X Gypsum Board Exposed to a Heat Flux of 
75 kW/m2. 

 

 

3.3.3 Heat Transfer in a Double Layer of Gypsum Board 

The temperature profile on the interface  and unexposed side of double layers regular, 

lightweight and type X gypsum board exposed to an incident heat flux 75 kW/m2 are presented 

in Figures 3.22, 3.23 and 3.24, respectively. The temperature dependent properties of gypsum 

board were used in the model. 
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Figure 3.22:  Temperature Prediction at the Exposed Side, Interface and Unexposed Side of a 

Double Layer 12.7 mm Regular Gypsum Board Exposed to a Heat Flux of 
75 kW/m2. 

  

 
Figure 3.23: Temperature Prediction at the Exposed Side, Interface  and Unexposed Side  of a 

Double Layer 12.7 mm Lightweight Gypsum Board  Exposed to a Heat Flux of 
75 kW/m2. 
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Figure 3.24:  Temperature Prediction at the Exposed Side, Interface and Unexposed Side  of a 

Double Layer 15.9 mm Type X Gypsum Board Exposed to a Heat Flux of 
75 kW/m2. 

 
 

The comparison of predicted temperatures on the unexposed side of a double layer 12.7 mm 

regular, lightweight and 15.9 mm type X gypsum boards is presented in Figure 3.25.   
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Figure 3.25:  Temperature Prediction on the Unexposed Side of Double Layer 12.7 mm Regular 

and Lightweight and a Double Layer 15.9 mm Type X Gypsum Board Exposed to a 
Heat Flux of 75 kW/m2. 

 
 
3.3.4 Heat Transfer in Wall Assembly with Constant Properties: 

Temperature predictions using constant thermal properties of materials for regular, lightweight 

and type X gypsum (single layer) wall assemblies exposed to an incident heat flux of 75 kW/m2 

are presented in Figures 3.26, 3.27 and 3.28, respectively. Constant properties of the wall 

materials were used in the model.  
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Figure 3.26: Temperature Predictions for a Regular Gypsum Board Wall Assembly Exposed to a 
Heat Flux of 75 kW/m2. (Constant Thermal Properties). 

 

Figure 3.27: Temperature Prediction for a Lightweight Gypsum Board Wall Assembly Exposed 
to a Heat Flux of 75 kW/m2. (Constant Thermal Properties). 
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Figure 3.28: Temperature Prediction for a Type X Gypsum Board Wall Assembly Exposed to a 

Heat Flux of 75 kW/m2.  (Constant Thermal Properties). 
 

 

 

3.3.5 Heat Transfer in Wall Assembly with Temperature Dependent Properties. 

The temperature profile in a single layer regular, lightweight and type X gypsum wall assembly 

exposed to an incident heat flux 75 kW/m2 are presented in Figures 3.29, 3.30 and 3.31, 

respectively. The temperature dependent properties of gypsum and stone wool insulation were 

used in the model. The MATLAB code for the model is presented in APPENDIX B. 
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Figure 3.29: Temperature Prediction for a Regular Gypsum Board Wall Assembly Exposed to    
75 kW/m2 (Temperature Dependent Thermal Properties). 

 

Figure 3.30: Temperature Prediction for a Lightweight Gypsum Board Wall Assembly Exposed 
to 75 kW/m2 (Temperature Dependent Thermal Properties). 
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Figure 3.31: Temperature Prediction for a Type X Gypsum Board Wall Assembly Exposed 
to 75 kW/m2 (Temperature Dependent Thermal Properties). 

 

The temperature profiles in a single layer lightweight gypsum board wall assembly exposed to 

incident heat fluxes of 35 and 50 kW/m2 are presented in Figure 3.32 and 3.33, respectively. The 

temperature dependent properties of gypsum and stone wool insulation were used in the model.  
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Figure 3.32: Temperature Prediction for a Lightweight Gypsum Board Wall Assembly Exposed 
to 35 kW/m2 (Temperature Dependent Thermal Properties). 

 

Figure 3.33: Temperature Prediction for a Lightweight Gypsum Board Wall Assembly Exposed 
to 50 kW/m2 (Temperature Dependent Thermal Properties). 
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The temperature profile in double layer regular, lightweight and type X gypsum wall assemblies 

exposed to an incident heat flux of 75 kW/m2 are presented in Figures 3.34, 3.35 and 3.36, 

respectively. 

 

Figure 3.34: Temperature for a Double Layer Regular Gypsum Board Wall Assembly Exposed 
to75 kW/m2 (Temperature Dependent Thermal Properties). 
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Figure 3.35: Temperature Prediction for a Double Layer Lightweight Gypsum Board Wall 
Assembly Exposed to75 kW/m2 (Temperature Dependent Thermal Properties). 

 

Figure 3.36: Temperature Prediction for a Double Layer Type X Gypsum Board Wall Assembly 
Exposed to75 kW/m2 (Temperature Dependent Thermal Properties). 
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3.4 SENSITIVITY STUDY 

A sensitivity study was performed to determine the property or properties that have the most 

important impact on the numerical results. This study helps to quantify the influence of the 

uncertainties in material properties on the numerical results. The sensitivity of the temperature in 

a wood stud, 12.7 mm regular gypsum board with stone wool insulation wall assembly to ±20% 

changes in thermal conductivity, specific heat and density of both gypsum and insulation for the 

temperature dependent model is presented in this section. 

3.4.1 Specific Heat of Gypsum and Stone Wool 

The ± 20% changes to the temperature dependent specific heat of gypsum are shown in         

Figure 3.37. The sensitivity of the temperature to ± 20% changes in specific heat of gypsum in 

the temperature dependent model for the wall assembly at location A (depth of 12.7 mm from 

exposed side), M (middle of insulation) and E (unexposed side) is presented in Figure 3.38. 

Figure 3.39 shows the temperature variation on the unexposed side (E).  

 

Figure 3.37: Changes to Specific Heat of Gypsum 
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Figure 3.38:  Sensitivity of  Temperature to ± 20% Changes in Specific Heat of Gypsum for 
Location A (Depth of 12.7 mm from Exposed Side), M (Middle of Insulation) and 
E (Unexposed Side). – Temperature Dependent Property Model 

 

Figure 3.39: Sensitivity of Temperature to ± 20% Changes in Specific Heat of Gypsum for 
Location E (Unexposed Side). – Temperature Dependent Property Model 
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The ± 20% changes to the constant specific heat value of stone wool is shown in Table 3.3. The 

sensitivity of the temperature to ± 20% changes in specific heat of stone wool in the temperature 

dependent model for the wall assembly at location A (depth of 12.7 mm from exposed side), M 

(middle of insulation) and E (unexposed side) is presented in Figure 3.40. Figure 3.41 shows the 

temperature variation at the unexposed end (E).  

 

Table 3.3: Changes to Specific Heat of Stone Wool Insulation 
Specific Heat of Stone Wool Insulation (J/kg.K) 

Proposed Value 20% Increase 20% Decrease 

700 840 560 

 

 

 

Figure 3.40: Sensitivity of  Temperature to ± 20% Changes in Specific Heat of Stone Wool 
Insulation for Location A (Depth of 12.7 mm from Exposed Side), M (Middle of 
Insulation) and E (Unexposed Side). – Temperature Dependent Property Model 
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Figure 3.41: Sensitivity of Temperature to ± 20% Changes in Specific Heat of Stone Wool 
Insulation for Location E (Unexposed Side). – Temperature Dependent Property 
Model. 

 

 

3.4.2 Thermal Conductivity of Gypsum and Stone Wool Insulation 

The ± 20% changes to the thermal conductivity of gypsum  are shown in Figure 3.42 The 

sensitivity of the temperature to ± 20% changes in thermal conductivity of gypsum in the 

temperature dependent model for the wall assembly at location A (depth of 12.7 mm from 

exposed side), M (middle of insulation) and E (unexposed side) is presented in Figure 3.43. 

Figure 3.44 shows the temperature variation at the unexposed end (E). 
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Figure 3.42: Changes to Thermal Conductivity of Gypsum Board 

 

Figure 3.43: Sensitivity of Temperature to ± 20% Changes in Thermal Conductivity of Gypsum 
Board for Location A (Depth of 12.7 mm from Exposed Side), M (Middle of 
Insulation) and E (Unexposed Side). – Temperature Dependent Property Model 
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Figure 3.44: Sensitivity of Temperature to ± 20% Changes in Thermal Conductivity of Gypsum 
Board for Location E (Unexposed Side). – Temperature Dependent Property Model 

 
 
 
 
The ± 20% changes to the temperature dependent thermal conductivity of stone wool insulation 

are shown in Figure 3.45. The sensitivity of the temperature to ± 20% changes in thermal 

conductivity of insulation in the temperature dependent model for the wall assembly at location 

A (depth of 12.7 mm from exposed side), M (middle of insulation) and E (unexposed side) is 

presented in Figure 3.46. Figure 3.47 shows the temperature variation at the unexposed end (E). 
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Figure 3.45: Changes to Thermal Conductivity of Stone Wool Insulation 

 

Figure 3.46: Sensitivity of Temperature to ± 20% Changes in Thermal Conductivity of Stone 
Wool Insulation for Location A (Depth of 12.7 mm from Exposed Side), M (Middle 
of Insulation) and E (Unexposed Side). – Temperature Dependent Property Model 



95 
 

 

Figure 3.47: Sensitivity of Temperature to ± 20% Changes in Thermal Conductivity of Stone 
Wool Insulation for Location E (Unexposed Side). – Temperature Dependent 
Property Model 

 
 
 
3.4.3 Density of Gypsum Board and Stone Wool Insulation 

The ± 20% changes to the temperature dependent density of gypsum board are shown in     

Figure 3.48. The sensitivity of the temperature to ± 20% changes in density of gypsum board in 

the temperature dependent model for the wall assembly at location A (depth of 12.7 mm from 

exposed side), M (middle of insulation) and E (unexposed side) is presented in Figure 3.49.  

Figure 3.50 shows the temperature variation at the unexposed end (E).  
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Figure 3.48: Changes to Density of Gypsum Board 

 

Figure 3.49: Sensitivity of Temperature to ± 20% Changes in Density of Gypsum Board for 
Location A (Depth of 12.7 mm from Exposed Side), M (Middle of Insulation) and 
E (Unexposed Side). – Temperature Dependent Property Model 
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Figure 3.50: Sensitivity of Temperature to ± 20% Changes in Density of Gypsum Board for 
Location E (Unexposed Side). – Temperature Dependent Property Model 

The ± 20% changes to the constant value of the density of stone wool insulation is shown in 

Table 3.4. The sensitivity of the temperature to ± 20% changes in density of stone wool in the 

temperature dependent model for wall assembly at location A (depth of 12.7 mm from exposed 

side), M (middle of insulation) and E (unexposed side) is presented in Figure 3.51. Figure 3.52 

show the temperature variation at the unexposed end (E).  

 

Table 3.4: Changes to Density of Stone Wool Insulation 
Density of Stone Wool (kg/m3) 

Proposed Value 20% Decrease 20% Increase 

31.3 25.1 37.6 
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Figure 3.51: Sensitivity of Temperature to ± 10% and ± 20% Changes in Density of Stone Wool 
Insulation for Location A (Depth of 12.7 mm from Exposed Side), M (Middle of 
Insulation) and E (Unexposed Side). – Temperature Dependent Property Model. 

 

Figure 3.52: Sensitivity of Temperature to ± 20% Changes in Density of Stone Wool Insulation 
for   Location E (Unexposed Side). – Temperature Dependent Property Model 
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The sensitivity of the temperature increase after 40 min. of exposure on the unexposed side of 

the wall assembly to ± 20% changes to specific heat, thermal conductivity and density for both 

gypsum board and stone wool insulation is shown in Table 3.5. 

 
Table 3.5:  Sensitivity Results for Temperature Increase at Location E (Unexposed Side) at 40 

Minutes of Exposure for Temperature Dependent Property Model. 

Property 

20% Decrease Original 20% Increase 

(˚C) % diff (˚C) (˚C) % diff 

Specific Heat (Gypsum 
Board) 

57.1 11.5 50.9 45.9 -10.3 

Thermal Conductivity 
(Gypsum Board) 

42.7 -17.5 50.9 56.1 9.7 

Density (Gypsum Board) 57.1 11.5 

 

50.9 

 

45.8 -10.5 

Specific Heat 

(Stone Wool Insulation) 

 

50.9 

 

0 

 

50.9 

 

 

50.9 

 

0 

Thermal Conductivity 
(Stone Wool Insulation) 

47.1 -7.8 

 

50.9 

 

53.8 5.5 

Density (Stone Wool 
Insulation) 

 

50.9 

 

0 

 

50.9 

 

50.9 0 
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3.4.4 Sensitivity Study Results 

The results of the study of the sensitivity of temperature increase after 40 min. of exposure on the 

unexposed side of the wall assembly to ± 20% changes to specific heat, thermal conductivity and 

density of both gypsum board and stone wool insulation show that the property that the 

temperature is most sensitive to is the thermal conductivity of the gypsum board. The sensitivity 

study also shows that the temperature is significantly affected by the changes in the specific heat 

and density of gypsum board and moderately affected by the changes to the thermal conductivity 

of stone wool insulation. The specific heat and density of stone wool insulation is seen to have a 

negligible effect on the temperature. 

A 17.5% decrease in temperature at the unexposed side is obtained for a 20% decrease in the 

thermal conductivity of gypsum board. A 7.8% decrease in temperature at the unexposed side is 

obtained for a 20% decrease in the thermal conductivity of stone wool insulation. A 5.5% 

increase in temperature at the unexposed side is obtained for a 20% increase in the thermal 

conductivity of stone wool insulation. The sensitivity of the temperature at the unexposed side to 

± 20% changes to specific heat of stone wool is negligible. 
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CHAPTER FOUR: EXPERIMENTAL RESULTS 1 
 

In this chapter the experimental apparatus, sample, procedures and results are discussed. The 

experiments were designed to measure heat transfer through gypsum boards and wall assemblies 

using a hotplate and cone calorimeter. The following experiments were conducted: 

• Heat transfer through insulated, wood stud  single layer gypsum board  wall assemblies using 

a hotplate; 

• Heat transfer through single and double layers of gypsum board using the cone calorimeter; 

• Heat transfer through insulated, wood stud  single and double layer gypsum board wall 

assemblies using a cone calorimeter; and 

• Heat transfer through non-insulated, wood stud single and double layer gypsum board wall 

assemblies using a cone calorimeter. 

 

4.1 EXPERIMENTAL APPARATUS 

The apparatus used in this study included: a thermal gravimetric analyzer, a hotplate, a cone 

calorimeter, an Agilent data acquisition system, a sample holder, and temperature transducers. 

 

4.1.1 Hot Plate 

To determine the heat transfer through wall assemblies during low temperature exposures with a 

constant temperature boundary condition, a procedure similar to the ASTM Standard Test 

Method for Thermal Protective Performance of Materials for Protective Clothing for Hot Surface 

                                                           
1 A version of portions of this chapter has been previously published: Aire C.T., Torvi D.A., Weckman 
E.J., 2013, Heat Transfer in Cone Calorimeter Tests of Generic Wall Assemblies, Proceedings of the 
ASME International Mechanical Engineering Conference and Exposition, Paper No. IMECE2013-63981, 
San Diego, CA, USA. 
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Contact (ASTM F 1060) [58] was used. This standard uses a hotplate at a constant temperature 

to provide a thermal exposure. A 6.4 mm (0.25 in) thick, 140 by 140 mm (5.5 by 5.5 in.) wide, 

T-1100 aluminum surface plate was placed on the HP72625 MIRAK TM  hotplate (Barnstead 

International, Iowa, USA). The aluminum plate has a 2.4 mm (3/32 in.) hole drilled from the 

edge to the centre of the plate. A mass of 3.89 kg was placed on the specimen to ensure a contact 

pressure of 3 kPa. The setup for the hotplate experiment is shown in Figure 4.1. The control knob 

on the hot plate was adjusted when necessary to keep the temperature constant at 80˚C. 

Insulating boards were used to prevent loss of temperature to the surrounding during the tests 

and also to attempt to ensure one dimensional heat transfer. 

 

Figure 4.1: Hotplate Experimental Setup 
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4.1.2 Cone Calorimeter 

The cone calorimeter is one of the small-scale pieces of fire equipment used extensively for 

research purposes, as it measures the heat release of materials using the oxygen consumption 

principle. This principle states that for each kilogram of oxygen that is consumed in a 

combustion reaction for a wide range of combustibles, a heat value of 13.1 MJ is released with 

an accuracy of ±5% [59]. The capability of the cone calorimeter in measuring the heat release 

rate was not used in this thesis as only the cone heater was used. As shown in Figure 4.2, the 

cone calorimeter comprises a radiant electric heater which has a shape of a truncated cone 

(frustum) which is capable of providing a heat flux in the range of 0 – 100 kW/m2 to a 10 x 10 

cm square sample. The cone calorimeter can be used to conduct tests in both the vertical and 

horizontal orientations.   

 

 

Figure 4.2: Cone Calorimeter 
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For this research, tests were performed using a cone calorimeter (Fire Testing Technology, East 

Grinstead, U.K.) with the cone heater in the vertical orientation as shown in Figure 4.3. The cone 

heater alone was used to conduct tests for this research. The heat release rate in gypsum boards 

and wall assemblies were not considered in this research because the relatively long duration of 

the tests.   

 

 

Figure 4.3: Cone Heater in Vertical Orientation 

 

4.1.3 Sample Holder 

Due to the size of the specimens tested, the sample holder used with the cone calorimeter in this 

study is not the standard sample holder specified in ASTM E 1354 [59]. The sample holder 

consists of a 190.5 mm (7.5 in.) by 190.5 mm (7.5 in.) by 177.8 mm (7 in.) deep stainless steel 

box with an opening so that an area of 101.6 mm (4 in.) by 101.6 mm (4 in.) was exposed to the 

cone heater, as shown in Figure 4.4. A box was built out of 12.7 mm (0.5 in.) cement board to 

hold the test specimen. This cement board box was centered within the stainless steel box and the 
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space between the two boxes was filled with stone wool insulation. This arrangement was used 

to reduce heat losses from the sides of the test specimen.  

     

     

     

Figure 4.4: Sample Holder (Clockwise from Upper Left – Without Specimen and Insulation, 
Without Specimen, With Specimen (Rear View), With Specimen (Front View)) 

 

4.1.4 Temperature Measurements 

The Agilent 34970A data acquisition system manufactured by Hewlett Packard, Santa Clara, CA 

was used to record temperature readings within the test specimens during experiments at an 

interval of 1 s. This data logger has 16 channels and has the capability of recording signals (e.g. 
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temperatures, voltages) for long periods of time. Figure 4.5 shows a photograph of the Agilent 

data acquisition system. 

 

Figure 4.5: Agilent 34902A Data Acquisition System. 

Temperature measurements were taken by attaching 24 AWG (0.51 mm (0.02 in.) diameter) 

Type K (chromel-alumel) thermocouples at different locations on the gypsum boards with an 

adhesive prior to conditioning of the specimen. Thermocouples were also inserted into the 

insulation. The thermocouples were connected to an Agilent 34970A data acquisition system 

(HP Agilent, Santa Clara, CA), and temperature data were collected at an interval of 1 s. Infra-

red photographs of the unexposed surface were taken using an InfraCAM ™ camera (FLIR 

SYSTEMS, Burlington, ON). Figure 4.6 shows the InfraCAM ™ camera used. 
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Figure 4.6: Infra-red Camera 

 

An infrared thermometer (Cyclops 300AF, Minolta/Land, Dronfield, UK) shown in Figure 4.7 

was used to take the temperature measurements of the unexposed side of the gypsum boards at 

an interval of 1 s. 

 

    

Figure 4.7: InfraRed Thermometer 
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4.2 TEST SPECIMEN 

Test specimens are shown in Figures 4.8 and 4.9. The scaled wall assemblies were 111.1 mm 

(4.375 in.) by 111.1 mm (4.375 in.) and consisted of single or double layers of gypsum board, 

stone wool insulation and spruce-pine-fir (SPR) studs. The specimens were designed to represent 

a one-quarter scale model of a common wall design, with studs spaced at a centre-to-centre 

distance of 406.4 mm (16 in.).   

Three different types of gypsum board were used: 12.7 mm (0.5 in.) regular gypsum board, 

12.7 mm (0.5 in.) lightweight gypsum board and 15.9 mm (0.625 in.) type X gypsum board. The 

wood studs were made by cutting nominal 2x4 studs (38 mm by 89 mm) into 9.25 mm by 89 mm 

(0.375 in. by 3.5 in.) pieces. The scaled studs were spaced at a centre-to-centre distance of 

101.6 mm (4 in.). 6D finishing nails (2.33 mm (0.092 in.) diameter) were used to fasten single or 

double layers of the gypsum board to the wood studs (Figure 4.9). Nails of length 50.8 mm 

(2.0 in.) were used for the assemblies with double layers of type X gypsum board; the nails were 

cut to shorter lengths for other assemblies in order to provide a minimum penetration depth of 

20 mm into the wood as prescribed in the National Building Code of Canada [60]. The nails were 

spaced at 98.4 mm (3.875 in.) as shown in Figure 4.9. More information on the materials tested 

is presented in Table 4.1. The temperature measurement locations were picked so as to determine 

the temperature at which wall failure occurs. These locations are similar to the temperature 

measurement locations used in full scale testing to determine the performance of wall 

assemblies. 
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Figure 4.8: Wall Assembly Specimen (A – Double Layers of Gypsum Board, B – Single Layer 
of Gypsum Board) 

 

Table 4.1: Description of Materials Used 
Material Description 

Regular Gypsum Board 
Thickness = 12.7 mm (0.5 in.) 

Density = 645.7 kg/m3 

Lightweight Gypsum 
Board 

Thickness = 12.7 mm (0.5 in.) 

Density = 564.3 kg/m3 

Type X Gypsum Board 
Thickness = 15.9 mm (0.625 in.) 

Density = 724.8 kg/m3 

R-14 Stone Wool 
Insulation 

Thickness = 89 mm (3.5 in.) 

Nominal Thermal Resistance: R-14 

Studs 
9.25 mm (0.375 in.) by 111.1 mm (4.375 in.) by 89.0 mm (3.5 in.) 

Cut from Spruce-Pine-Fir (SPR) 2x4’s 

 

A B 
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Figure 4.9:  Schematic Diagram of the Specimen Showing Locations of Thermocouples             
(A-E, 1-4) and Nails 

 

4.3 EXPERIMENTAL PROCEDURE 

4.3.1. Instrumentation 

For the wall assemblies, five thermocouples were located on the centerline of the specimen at 

various depths (Figure 4.9). One thermocouple was placed on the back of the exposed gypsum 

board(s). Two thermocouples were placed within the insulation, such that there was a distance of 

approximately 30 mm between thermocouples A and B, B and C, and C and D in Figure 4.9. One 

thermocouple was placed on the surface of the gypsum board that was in contact with the 
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insulation, and one thermocouple was placed on the unexposed surface of the assembly. Four 

additional thermocouples were placed on the unexposed surface of the assembly, as shown in 

Figure 4.9 (thermocouples 1-4). 

Tests were also conducted in which only the gypsum board was tested, using either single or 

double layers. In these tests an infrared thermometer (Cyclops 300AF, Minolta/Land, Dronfield, 

UK) was used to take the temperature measurements of the unexposed side at an interval of 1 s. 

For the double layer tests, a single thermocouple was also placed between the two layers of the 

gypsum board. 

Specimens were placed inside the cement board box, within the stainless steel box. The specimen 

was then exposed to the cone heater for a period of 70 min. After testing the specimen was 

removed and inspected. 

4.3.2 Conditioning of Specimen 

The wall assembly specimens were conditioned for at least 24 hours in a chamber (shown in 

Figure 4.10), which was kept at a temperature of 23±2°C and a relative humidity of 50±3%, as 

specified in ASTM E 1354 [59]. The relative humidity within the chamber was controlled using 

a non-saturated salt solution of magnesium chloride (MgCl2). A saturated aqueous salt solution 

of magnesium chloride will produce an equilibrium relative humidity value of 32.8±0.2% at a 

temperature of 25°C [61]. The salt was mixed with water until the desired relative humidity of 

50±5% was achieved and sustained within the chamber. An Anton Paar (DMA 4500 M) 

densitometer was used to determine the density and specific gravity of the salt solution. The 

density of the salt solution was 1.27 g/cm3 and specific gravity was 1.28. During testing, the 

laboratory ambient conditions were 23±3°C and 35±7% relative humidity. 
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Figure 4.10: Pictures of conditioning chamber. 

 

4.3.3. Heat Flux Exposures 

One of the limitations of the cone heater is its inability to produce a high enough heat flux to 

replicate the full-scale fire test furnace environment [62]. These furnaces follow a standard 

temperature-time curve, which produce heat fluxes of up to 150 kW/m2 [6]. The cone calorimeter 

can only produce a maximum heat flux of 100 kW/m2. In this study, the small scale wall 

specimens were tested using an incident heat flux of 75 kW/m2. The effect of heat flux was also 

investigated by conducting wall tests using assemblies that contained single layers of lightweight 

gypsum board with and without insulation at heat fluxes of 35 and 50 kW/m2. 
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4.4 EXPERIMENTAL RESULTS 

4.4.1. Hot Plate Experiments 

Hot plate experiments on wall assemblies comprising of Regular and Type X gypsum board and 

stone wool insulation were conducted at a constant exposure temperature of 80oC. Three tests 

were conducted for both regular and type X wall assemblies. Figure 4.11 gives an indication of 

the repeatability as well as the variation of the temperature of the aluminum plate. Figure 4.12 

compares the temperature measurement at different depths in the wall assembly. Comparisons of 

the average temperature at different depths and times are presented in Table 4.2 

 

 

 
Figure 4.11: Temperature Measurements in Regular Gypsum Board Wall Assembly Exposed to 

Hotplate Temperature of 80˚C. (H.T. – Hotplate  Temperature) 
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Figure 4.12: Temperature Measurements in Regular and Type X Gypsum Board Wall 

Assemblies Exposed to Hotplate Temperature of 80˚C. 
 

 

 

 

 

 

 

 

 

 

 

 



115 
 

Table 4.2: Average Temperature Increase after 10, 15 and 25 Min. of Exposure Measured at Four 
Locations During Hotplate Tests of Wall Assemblies.. 

Type of Gypsum 
Board Used in 
Wall Assembly 

Maximum Temperature Increase (oC)   

Back of 
exposed 
board(s)  

(A) 

Insulation:      
30 mm from 
point A (s) 

 (B) 

Insulation:      
30 mm from 
point B (s) 

(C) 

Front of 
unexposed 
board(s)  

(D) 

Ave.  (σ) Ave. (σ) Ave. (σ) Ave. (σ) 

Single Regular 
12.7 mm (0.5 in.) 

at 
10 minutes 

34.9 (0.3) 8.8 (2.3) 2.6 (0.8) 0.5 (0.08) 

Single Regular 
12.7 mm (0.5 in.) 

at 
15 minutes 

45.5 (0.3) 17.5 (2.6) 5.6    (0.9) 1.8 (0.01) 

Single Regular 
12.7 mm (0.5 in.) 

at 
25 minutes 

48.3 (3.0) 21.2 (2.9) 5.9 (1.2) 2.4 (0.07) 

Single Type X 
15.9 mm (0.625 in.) 

at 
10 minutes 

33.8 (1.0) 5.1 (1.2) 2.0 (0.2) 0.5 (0.1) 

Single Type X 
15.9 mm (0.625 in.) 

at 
15 minutes 

46.2 (0.7) 12.0 (1.6) 5.6 (0.5) 1.5 (0.2) 

Single Type X 
15.9 mm (0.625 in.) 

at 
25 minutes 

47.9 (1.2) 15.3 (1.8) 7.5 (0.6) 2.1 (0.3) 

 

 

The test results in Figures 4.11 and 4.12 indicate a good level of repeatability and the variation in 

the results is primarily as a result of the variation in the hotplate temperature (H.T.) since it was 

difficult to keep the temperature of the hot plate constant. The knob of the hotplate was used to 

control the temperature within the desired range and an exposed temperature range of 80±10˚C 
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was attained during the test. The large variation in test results at location B is attributed to the 

shifting of the thermocouple position within the stone wool insulation. The nature of the stone 

wool insulation is such that it is difficult to maintain a consistent temperature measurement 

location within the insulation from test to test. Table 4.2 gives more information on the 

repeatability as well as the temperature increase at locations A, B, C, and D at 10, 15 and 25 min 

of exposure. From Table 4.2, the temperature increases in regular gypsum board wall assemblies 

are higher than temperature increases in type X wall assemblies at location B within the 

insulation. Similar temperature increases are observed at the other locations shown in Table 4.2. 

There is very little temperature increase at the unexposed side (location E) of either wall 

assembly.  

 

4.4.2. Cone Calorimeter Experiments 

Gypsum boards 

The three different types of gypsum boards were first tested on their own, using either single or 

double layers. Three tests were conducted at a heat flux of 75 kW/m2 for both single and double 

layers of gypsum board. Measurements of the temperature at the centre of the unexposed side of 

a single layer of gypsum board (location E in Figure 4.9) are shown in Figure 4.13. Figure 4.14 

shows the temperatures measured between the two boards in the double layer tests, along with 

the temperatures measured on the unexposed side.  
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Figure 4.13: Comparison of Temperature Measurements at Centre of Unexposed Side of Single 
Layer of Regular, Lightweight and Type X Gypsum Boards 

 

Figure 4.14: Comparison of Temperature Measurements at Interface Between Two Layers of 
Gypsum Board (1) and Unexposed Side of Gypsum Boards (2) for Tests of Double 
Layers of Regular, Lightweight and Type X Gypsum Board 
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The burning of the gypsum board paper occurred 20-30 s after exposure of the sample to the 

cone heater and it lasted for about 10-15 s after which products of combustion were released 

from the specimen and heating of the specimen continued. A comparison of the temperatures 

shown in Figure 4.13 for the tests of a single layer of gypsum board with the TGA results shown 

in Figure 3.9 (Section 3.1.5) indicates that calcination began quickly in all tests and that the 

length of time required to complete this process was much shorter for the two 12.7 mm (1/2 in.) 

gypsum boards (approximately 340 s) than for the thicker type X gypsum board (approximately 

840 s). For the two 12.7 mm (1/2 in.) gypsum board types, there was a sharp increase to a 

maximum temperature, which lasted for a relatively short time, after which the temperature 

decreased until it reached its steady state value of about 300 ˚C. Temperatures of the type X 

board did not show the same behavior, but instead increased at a slower rate to a steady state 

value of about 280˚C.   

Temperature measurements on the unexposed side of the assembly in the double layer gypsum 

board tests (Figure 4.14) exhibited a different behavior from the tests of the three types of single 

boards shown in Figure 4.13. It took a much longer time for calcination to occur throughout the 

two layers (from about 1400 s to more than 3000 s, depending on the type of drywall) than for a 

single layer. The maximum temperature increases on the unexposed side of the double layer of 

gypsum board were 33-68% lower than the values for a single layer of the three types of gypsum 

board.  The temperature between the two layers of gypsum board (labeled 1 in Figure 4.14) rose 

to a peak and then decreased. This observation is similar to that obtained by [7] and this peak 

was attributed to the oxidation of the paper between the two surfaces after complete pyrolysis. 

While there were some similarities between the temperatures measured behind the exposed layer 

(Figure 4.14) and the temperatures measured behind a single layer (Figure 4.13), peaks were 
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considerably broader in Figure 4.14, and maximum temperatures for the lightweight and type X 

boards were significantly higher. Differences in temperature measurements would be expected 

due to the differences in heat transfer and availability of oxygen between the two cases.  

Insulated Wall Assembly 

Six different insulated wall assemblies, using single or double layers of the three types of 

gypsum board, were tested. Three individual tests were performed for each of these six assembly 

designs. Figure 4.15 provides an indication of the repeatability of the temperature measurements.  

This particular example is for a wall assembly consisting of double layers of 12.7 mm (0.5 in.) 

regular gypsum board, wood studs and stone wool insulation. Temperature measurements in 

other test series displayed similar repeatability.  

 

Figure 4.15: Temperature Measurements During Three Tests of Wall Assembly Containing 
Double Layers of Regular Gypsum Board 
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The temperature measurements at location A, D and E are much more repeatable compared to 

locations B and C because the thermocouples are well attached to the gypsum boards, while, as 

noted earlier, at locations B and C there is likely variation in the exact thermocouples position 

within the insulation from test to test. 

 

Experimental Results for Walls with Different Gypsum Board Types  

Figure 4.16 compares temperatures measured at three locations in wall assemblies that use single 

layers of the three types of gypsum board. A similar comparison is shown in Figure 4.17 for the 

wall assemblies that use double layers of the three types of gypsum board.  

 

 

 

Figure 4.16: Comparison of Temperature Measurements Made During Tests of Wall Assemblies 
Containing Regular, Lightweight and Type X Gypsum Board (Single Layer) 
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Figure 4.17: Comparison of Temperature Measurements Made During Tests of Wall Assemblies 
Containing Regular, Lightweight and Type X Gypsum Board (Double Layers) 

 

 

Experimental Results for Single vs. Double Layer Walls 

Figures 4.18-4.20 compare the temperatures measured at three locations in wall assemblies that 

use single and double layers of each of the three types of gypsum board.  
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Figure 4.18: Comparison of Temperature Measurements Made During Tests of Wall 
Assemblies Containing Single and Double Layers of Regular Gypsum Board 

 

 

Figure 4.19: Comparison of Temperature Measurements Made During Tests of Wall Assemblies 
Containing Single and Double Layers of Lightweight Gypsum Board 
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Figure 4.20: Comparison of Temperature Measurements Made During Tests of Wall Assemblies 
Containing Single and Double Layers of Type X Gypsum Board 

 

Comparisons of the average maximum temperature increase at three locations within the 

specimen for the six wall assembly designs are shown in Table 4.3. The average times for the 

temperature of the unexposed side of the gypsum board layer(s) closest to the cone heater to 

reach particular temperatures are compared in Table 4.4 for the six wall designs. 
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Table 4.3: Average Maximum Temperature Increase Measured at Three Locations During Tests 
of Insulated Wall Assemblies (Heat Flux of 75 kW/m2) 

Type of Gypsum 
Board Used in 
Wall Assembly 

Maximum Temperature Increase (oC) 

Back of exposed 
board(s) (A) 

Front of unexposed 
board(s) (D) 

Back of unexposed 
board (E) 

Ave. (σ) Ave. (σ) Ave. (σ) 

Single Regular  
12.7 mm (0.5 in.) 

733.0 (6.0) 182.0 (17.1) 59.0 (1.2) 

Single Lightweight 
12.5 mm (0.5 in.) 712.9 (10.3) 189.5 (10.6) 66.2 (4.8) 

Single Type X  
15.9 mm 
(0.625 in.) 

701.4 (22.4) 145.0 (19.6) 48.3 (2.5) 

Double Regular  
12.7 mm (0.5 in.) 

682.3 (17.8) 76.8 (6.1) 23.7 (1.4) 

Double 
Lightweight 
12.7 mm (0.5 in.) 

686.2 (4.1) 112.4 (8.4) 25.6 (3.5) 

Double Type X  
15.9 mm 
(0.625 in.) 

542.6 (17.9) 54.8 (2.2) 22.8 (0.46) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



125 
 

Table 4.4: Average Time to Reach 100°C, 200°C, 250°C and Maximum Recorded Temperature 
on Back of Exposed Gypsum Board Layer(s) in Tests of  Insulated Wall Assemblies 

Type of Gypsum 
Board Used  

in Wall Assembly 

Average Time to Reach Temperature on Back of Exposed 
Gypsum Board Layer(s) (Location A) (s) 

100°°°°C 200°°°°C 250°°°°C 
Maximum 

Temperature 

Single Regular  
12.7 mm (0.5 in.) 300 660 720 1680 

Single Lightweight  
12.5 mm (0.5 in.) 270 564  588 1488 

Single Type X  
15.9 mm (0.625 in.) 444 960 1020 2940 

Double Regular  
12.7 mm (0.5 in.) 990  1836 1920 * 

Double Lightweight  
12.7 mm (0.5 in.) 906  1656  1740  * 

Double Type X  
15.9 mm (0.625 in.) 1518 3048 3168 * 

* for double layers, temperatures were still increasing at end of 4200 s (70 min.) tests 

 

In the tests of the insulated wall assemblies, there was a similar rate of rise in temperature on the 

back of the exposed board(s) (location A in Figures 4.18-4.19) for insulated single and double 

layer wall assembly, for all types of gypsum board up to a temperature of about 100 ˚C, when 

calcination began. The temperature on the back of the exposed board of the lightweight board 

wall assembly rose quicker than the regular and type X board wall assemblies. It can be seen 

from Table 4.4, as noted earlier, that the time required to reach a temperature of 100˚C at 

location A is dependent on the thickness and number of layers of the board as it took about 4–8 

min for the single layer walls and 15–25 min for the double layer walls to attain this temperature. 
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Figures 4.18-4.20 all show a plateau in temperature at about 100 ˚C on the back of the exposed 

board(s) (location A). This is as a result of the energy that is required for the dehydration or 

calcination of the gypsum board. The duration of this plateau will depend on the type of gypsum 

board, the thickness, and number of layers and presence of insulation in the wall. A rapid rise in 

temperature followed the end of the calcination process. The rate of this temperature increase is 

again dependent on the type and thickness of the gypsum board as well as presence of insulation 

in the wall assembly. For insulated wall assemblies, temperature increased most rapidly in the 

assemblies containing the two types of 12.7 mm (1/2 in.) gypsum board, and temperatures 

increased quickest in the assemblies containing the lightweight gypsum board. These differences 

in heating rates can also be observed in Table 4.4, which compares the times required to reach 

temperatures of 200 ˚C, 250 ˚C and the maximum recorded temperature. 

Figures 4.18-4.20 compare the temperatures measured in assemblies with single and double 

layers of the three types of gypsum board for insulated wall assembly. The figures clearly show 

that a higher level of fire protection can be obtained by using double layers of gypsum board in 

wall assemblies, as adding the second layer of drywall to each side of the assembly significantly 

decreases the rate of increase in temperature on the unexposed side of the assembly. Table 4.3 

indicates that maximum temperatures on the exposed side of the insulated double layer 

specimens were 53-61% lower than the maximum temperatures at the same location for the 

insulated single layer specimens. Table 4.4 indicates that the times required to reach 100, 200 or 

250 ˚C on the back of the exposed gypsum board layer were 170-240% longer for the insulated 

double layer specimens than the insulated single layer specimens. Figures 4.18-4.20 all 

demonstrate that temperatures measured on the back of the wall assemblies were relatively low. 

This is due to the performance of the gypsum boards and the stone wool insulation. As with other 
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temperature measurements, Table 4.3 indicates that the highest temperatures were recorded in 

tests that used lightweight gypsum board, and the lowest temperatures were recorded in tests that 

used the type X gypsum board.  

 

Experimental Results of Insulated Lightweight Wall Assembly Exposed to Different Heat Flux 

Cone calorimeter tests of insulated wall assemblies with a single layer of lightweight gypsum 

board were conducted at 35, 50 and 75 kW/m2 in order to determine the effects of heat flux. 

Figure 4.21 compares the effect of heat flux exposure on temperature measurements in 

lightweight wall assemblies. 

 
Figure 4.21: Temperature Measurements in Insulated Single Layer Lightweight Board Wall 

Assembly Exposed to Heat Fluxes of 35, 50 and 75 kW/m2. 
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Comparisons of the average maximum temperature increase at three locations within the 

specimen for the insulated single layer lightweight wall assembly exposed to 35, 50 and            

75 kW/m2 are shown in Table 4.5. 

 

Table 4.5: Average Maximum Temperature Increase Measured at Three Locations During Tests 
of Insulated Single Layer Lightweight Wall Assemblies Exposed to Heat Flux of 35, 
50 and 75 kW/m2 

Insulated Single 12.5 mm (0.5 in.) Lightweight Gypsum Board Wall Assembly 

Heat Flux 
Exposure  
(kW/m2) 

Maximum Temperature Increase (oC) 

Back of exposed 
board(s) (A) 

Front of unexposed 
board(s) (D) 

Back of unexposed 
board (E) 

Ave. (σ) Ave. (σ) Ave. (σ) 

35 661.6 (29) 101.0 (12.8) 41.1 (13.2) 

50 
683.4 (21.0) 138.3 (5.3) 47.3 (0.6) 

75 712.9 (10.3) 189.5 (10.6) 66.2 (4.8) 

 

From Figure 4.21 and Table 4.5, it is seen that higher temperatures at all locations (A, D, E) were 

recorded for tests with the higher heat flux exposures  

Temperature Distribution in Unexposed Side of Wall Assembly 

Figures 4.22-4.23 provide an indication of the temperature distribution on the unexposed side of 

the wall assembly. Figure 4.22 includes temperatures measurements made using thermocouples 

attached to the unexposed side, while Figure 4.23 includes examples of infrared photos taken of 

the unexposed side of the assembly at various times throughout a test of one layer of type X 

gypsum board. 
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Figure 4.22: Temperature Measurements Made at Five Locations On Unexposed Side During 

Test of a Single Layer of Type X Gypsum Board 

 

                                  

 

                              

 

Figure 4.23: IR Photographs Taken During Test of a Single Layer of Type X Gypsum Board. 
(Black Square Shows Boundary of Specimen). 
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One issue is whether one-dimensional heat transfer models will be sufficiently accurate to model 

these exposures. Therefore, the temperature distribution on the unexposed side of the wall 

specimen was investigated. Figures 4.22 and 4.23 provide an indication of the temperature 

distribution on the unexposed side of the specimen (see Figure 4.9 for thermocouple locations). It 

should be noted that higher temperatures were measured by thermocouples 1 and 2. However, 

this was mainly due to the release of combustion products during the tests, which flowed close to 

these thermocouple locations. Thermocouples 3 and 4 were in closer agreement to the centre 

thermocouple (E). The centre thermocouple (E) (mid-point), was used for comparison with 

predictions made using the numerical model.  

 

Uninsulated Wall Assembly 

Six different uninsulated wall assemblies, using single or double layers of the three types of 

gypsum board, were tested. Three individual tests were performed for each of these six assembly 

designs. Figure 4.24 provides an indication of the repeatability of the temperature measurements.  

This particular example is for a wall assembly consisting of double layers of 12.7 mm (0.5 in.) 

regular gypsum board, wood studs and stone wool insulation. In Figure 4.24, L1 is the 

temperature profile at the interface of the exposed gypsum boards, L2 is the temperature profile 

at the interface of the unexposed gypsum boards. Temperature measurements in other test series 

displayed similar repeatability.  
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Figure 4.24: Temperature Measurements During Three Tests of Wall Assembly Containing Non 
Insulated Double Layers of Regular Gypsum Board (Uninsulated)                         
(L1 is the temperature profile at the interface of the exposed gypsum boards,          
L2 is the temperature profile at the interface of the unexposed gypsum boards)  

 

Experimental Results for Walls with Different Gypsum Board  

Figure 4.25 compares temperatures measured at three locations in wall assemblies that use single 

layers of the three types of gypsum board. A similar comparison is shown in Figure 4.26 for the 

wall assemblies that use double layers of the three types of gypsum board.  
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Figure 4.25: Comparison of Temperature Measurements Made During Tests of Uninsulated Wall 
Assemblies Containing Regular, Lightweight and Type X Gypsum Board (Single 
Layer) 

 

Figure 4.26: Comparison of Temperature Measurements Made During Tests of Uninsulated Wall 
Assemblies Containing Regular, Lightweight and Type X Gypsum Board (Double 
Layers) 
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Experimental Results for Single vs. Double Layer Walls 

Figures 4.27-4.29 compare the temperatures measured at three locations in wall assemblies that 

use single and double layers of each of the three types of gypsum board.  

 

 

Figure 4.27: Comparison of Temperature Measurements Made During Tests of Uninsulated Wall 
Assemblies Containing Single and Double Layers of Regular Gypsum Board 
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Figure 4.28: Comparison of Temperature Measurements Made During Tests of Uninsulated Wall 

Assemblies Containing Single and Double Layers of Lightweight Gypsum Board 

 

Figure 4.29: Comparison of Temperature Measurements Made During Tests of Uninsulated Wall 
Assemblies Containing Single and Double Layers of Type X Gypsum Board. 
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Comparisons of the average maximum temperature increase at three locations within the 

specimen for the six wall assembly designs are shown in Table 4.6. The average times for the 

temperature of the unexposed side of the gypsum board layer(s) closest to the cone heater to 

reach particular temperatures are compared in Table 4.7 for the six wall designs. 

 

Table 4.6: Average Maximum Temperature Increase Measured at Three Locations During Tests 
of Uninsulated Wall Assemblies 

Type of Gypsum 
Board Used in 
Wall Assembly 

Maximum Temperature Increase (˚C) 

Back of exposed 
board(s) (A) 

Front of unexposed 
board(s) (D) 

Back of unexposed 
board 

(E) 

Ave. (σ) Ave. (σ) Ave. (σ) 

Single Regular  
12.7 mm (0.5 in.) 

586.0 (25.9) 549.0 (29.2) 188.0 (18.3) 

Single Lightweight 
12.5 mm (0.5 in.) 679.6 (4.0) 686.1 (6.2) 258.6 (7.1) 

Single Type X  
15.9 mm 
(0.625 in.) 

532.5 (25.3) 494.0 (31.4) 120.4 (29.5) 

Double Regular  
12.7 mm (0.5 in.) 

355.5 (31.8) 243.9 (21.2) 36.0 (1.8) 

Double 
Lightweight 
12.7 mm (0.5 in.) 

449.3 (28.4) 356.0 (32.7) 43.5 (1.9) 

Double Type X  
15.9 mm 
(0.625 in.) 

276.3 (9.5) 597.6 (9.1) 28.5 (0.95) 
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Table 4.7: Average Time to Reach 100°C, 200°C, 250°C and Maximum Recorded Temperature  
on Back of Exposed Gypsum Board Layer(s) in Tests of Uninsulated Wall 
Assemblies 

Type of Gypsum 
Board Used  

in Wall Assembly 

Average Time to Reach Temperature on Back of Exposed 
Gypsum Board Layer(s) (Location A) (s) 

100˚C 200˚C 250˚C Maximum 
Temperature 

Single Regular  
12.7 mm (0.5 in.) 314 656 750 * 

Single Lightweight  
12.5 mm (0.5 in.) 248 562  625 * 

Single Type X  
15.9 mm (0.625 in.) 382 987 1103 * 

Double Regular  
12.7 mm (0.5 in.) 1070 1871 2022 * 

Double Lightweight  
12.7 mm (0.5 in.) 816  1557  1662  * 

Double Type X  
15.9 mm (0.625 in.) 1472 3064 3223 * 

* for double layers, temperatures were still increasing at end of 4200 s (70 min.) tests 

 

As expected, the temperature measurements in the uninsulated wall assemblies were different 

from those in the insulated wall assemblies. The average maximum temperature increase at the 

back of the exposed board (location A) in the insulated wall assembly (Table 4.3) was generally 

higher than that of the uninsulated wall (Table 4.6) for all single and double layer wall 

assemblies. The average maximum temperature increase at the back of the exposed board of the 

uninsulated single layer lightweight, regular and type X wall assembly were 20%, 4.7% and 24% 

respectively less than that of the insulated wall assemblies (Table 4.3). The average maximum 

temperature increase at the back of the exposed board of the uninsulated double layer 
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lightweight, regular and type X wall assembly were 47.8%, 34.5% and 49%, respectively, less 

than that of the insulated wall assemblies (Table 4.3). The lower temperature increase at the back 

of the exposed board is as a result of increased heat losses in the wall cavity as compared to the 

insulation. From Table 4.4 and 4.7, the percentage difference in the average time to reach 100˚C 

at the back of the exposed board of insulated and uninsulated wall assembly is in the range of 

4.5-15% for single layer wall and 7-10.5% for double layer wall assembly. The percentage 

difference in the average time to reach 200˚C at the back of the exposed board of insulated and 

uninsulated wall assembly is in the range of 0.3-2.8% for single layer wall and 0.5-1.9% for 

double layer wall assembly. The percentage difference in the average time to reach 250˚C at the 

back of the exposed board of insulated and uninsulated wall assembly is in the range of 4.7-7.8% 

for single layer wall and 1.7 - 5.2% for double layer wall assembly.      

The average maximum temperature increase at the front of the unexposed board (location D) and 

at the back of the unexposed board (location E) in the insulated wall assembly (Table 4.3) were 

generally lower than that of the uninsulated wall (Table 4.6) for all single and double layer wall 

assemblies. The average maximum temperature increase at the front of the unexposed board of 

the insulated single layer lightweight, regular and type X wall assemblies (Table 4.3) were 

66.8%, 72.3% and 70.6%, respectively less than that of the uninsulated wall assemblies (Table 

4.6). The average maximum temperature increase at the back of the exposed board of the 

insulated double layer lightweight, regular and type X wall assemblies were 68.4%, 68.5% and 

90.8%, respectively less than that of the uninsulated wall assemblies. The average maximum 

temperature increase at the back of the unexposed board of the insulated single layer lightweight, 

regular and type X wall assemblies (Table 4.3) were 68.6%, 74.5% and 60%, respectively, less 

than that of the uninsulated wall assemblies (Table 4.6). The average maximum temperature 
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increase at the back of the exposed board of the insulated double layer lightweight, regular and 

type X wall assemblies were 33.3%, 19.3% and 90.8%, respectively, less than that of the 

uninsulated wall assemblies. The lower temperature increase at the front and back of the 

unexposed board in the insulated wall assembly is due to the fire protection provided by the 

insulation in the wall cavity. 

Experimental Results of Uninsulated Lightweight Wall Assembly Exposed to Different Heat Flux 

Cone calorimeter tests of uninsulated wall assemblies containing lightweight gypsum board were 

conducted at 35, 50 and 75 kW/m2 in order to determine the effects of heat flux. Figure 4.30 

compares the effect of heat flux exposure on temperature measurements in uninsulated 

lightweight wall assembly. 

 

Figure 4.30: Temperature Measurements in Uninsulated Single Layer Lightweight Board Wall 
Assembly Exposed to Heat Fluxes of 35, 50 and 75 kW/m2. 
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Comparisons of the average maximum temperature increase at three locations within the 

specimen for the uninsulated single layer lightweight wall assembly exposed to 35, 50 and        

75 kW/m2 are shown in Table 4.8. From Figure 4.30 and Table 4.8, it is seen that higher 

temperatures at all locations (A, D, E) were recorded for tests with higher heat flux exposures.  

 
Table 4.8: Average Maximum Temperature Increase Measured at Three Locations During Tests 

of Uninsulated Sinlge Layer Lightweight Wall Assemblies Exposed to Heat Flux of 
35, 50 and 75 kW/m2 

Uninsulated Single Lightweight 12.5 mm (0.5 in.)Gypsum Board Wall Assembly 

Heat Flux 
Exposure  
(kW/m2) 

Maximum Temperature Increase (oC) 

Back of exposed 
board(s) (A) 

Front of unexposed 
board(s) (D) 

Back of unexposed 
board (E) 

Ave. (σ) Ave. (σ) Ave. (σ) 

35 337 (15.1) 235 (21.9) 78.1 (14.2) 

50 
573.8 (64.1) 553.2 (74.1) 188.9 (42.5) 

75 679.6 (4.0) 686.1 (6.2) 258.6 (7.1) 

 

 

4. 5 CONE CALORIMETER, INTERMEDIATE AND FULL SCALE TESTS RESULTS 

Full scale tests are often required to determine the fire resistance performance of wall and floor 

assemblies formed with new materials and construction methods. These tests are very expensive 

and time consuming and as a result of this, design engineers seek alternative solution in order to 

save cost and time. The National Research Council of Canada (NRCC) developed an 

intermediate scale furnace which is a simpler and less expensive test method and capable of 

reflecting the full scale test results. Some results of the intermediate and full scale tests of wall 

assemblies conducted at the NRCC are compared with some results of the cone calorimeter tests 
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of wall assemblies reported in this Chapter in Figures 4.32-4.36. The average furnace 

temperature in the intermediate and full scale followed very closely the CAN/ULC-S101-M89 

[1] standard temperature-time curve which is similar to the  ASTM E 119 curve [3]. Figure 4.31 

shows the heat flux-time distribution used in the furnaces and that used in the cone calorimeter. 

Table 4.9 compares the dimensions of the specimen tested in the furnaces and cone calorimeter. 

Results of single and double layer non-insulated wall assemblies tested in the furnaces and cone 

calorimeter are compared below.  

 

Figure 4.31: Comparison of Heat Flux Distribution in the Furnace and Cone Calorimeter. 
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Table 4.9: Comparison of Cone Calorimeter, Intermediate and Full Scale Wall Assembly 
Specimens. 

 Cone Calorimeter 

Specimen 

Full Scale Specimen 

[12] 

Intermediate Scale 

Specimen [15] 

Gypsum Board 12.7 mm Regular 12.7 mm Regular 12.7 mm Regular 

Wood Studs 9.25mm x 89 mm SPF 38 mm x 89 mm SPF 38 mm x 89 mm SPF 

Studs Spacing 101.6 mm O.C. Single layer: (F-01) 

 400 mm O.C 

Double layer: (F-04) 

600 mm O.C. 

Double layer:  

600 mm O.C. 

Screws 6D finishing nails, 

2.33 mm diameter, 

with 20 mm minimum 

penetration depth 

 

Single layer : 41 mm 

long Type S drywall 

screws 

Double layer: 41 mm 

long Type S drywall 

screws 

Double layer: 41 mm 

long Type S drywall 

screws 

Wall Size  111.1 mm x 111.1 mm 3048 mm x 3658 mm 914 mm x 914 mm 

 

 

Full Scale vs. Cone Calorimeter Test - Single Layer Wall Test.  

The results from cone calorimeter tests of single layer uninsulated regular gypsum board wall 

assembly and that from the full scale furnace test of the loaded single layer non-insulated regular 

gypsum board wall assembly (test F-01) reported by Sultan et al [12], are compared in Figure 

4.32. Figure 4.33 shows the temperature measurements at the unexposed side.  
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Figure 4.32: Comparison Between Full-scale Furnace Test Results and Cone Calorimeter Tests 
Results of Uninsulated Single Layer Regular Gypsum Board Wall Assembly. 

 

Figure 4.33: Comparison Between Temperature Measurements in Full-scale Furnace Test 
Results and Cone Calorimeter Tests Results For Uninsulated Regular Gypsum 
Board Wall Assembly (Unexposed side – E). 
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Comparisons of the average maximum temperature increase at three locations within the 

specimen for the full scale tests and the cone calorimeter tests of uninsulated single layer regular 

wall assembly are shown in Table 4.10. The average times for the temperature of the back of the 

exposed board (A) to reach particular temperatures are compared in Table 4.11 for the full scale 

tests and the cone calorimeter tests of uninsulated single layer regular wall assembly. 

 

Table 4.10: Average Maximum Temperature Increase Exposure Measured at Three Locations 
During Full Scale and Cone Calorimeter Tests of Uninsulated Single Layer Regular 
Gypsum Board Wall Assemblies 

Type of Test 

Maximum Temperature Increase (oC) 

Back of exposed 
board(s) (A) 

(°°°°C) 

Front of unexposed 
board(s) (D) 

(°°°°C) 

Back of unexposed 
board (E) 

(°°°°C) 

Cone Calorimeter 423.2 287.4 93.1 

Full Scale  718.5 639.5 102.9 

 

Table 4.11: Average Time to Reach 100°C, 200°C, 250°C and Maximum Recorded Temperature 
on Back of Exposed Gypsum Board Layer(s) in Full Scale and Cone Calorimeter 
Tests of Uninsulated Single Layer Regular Gypsum Board Wall Assemblies 

Type of Test 

Average Time to Reach Temperature on Back of Exposed 
Gypsum Board Layer(s) (Location A)  

(s) 

100°°°°C 200°°°°C 250°°°°C 
Maximum 

Temperature 

Cone Calorimeter 300 646 756 1860* 

Full Scale  420 835 910 1860* 

*temperatures were still increasing at end of 1800 s (30 min.) tests 

 

 



144 
 

Intermediate vs. Full Scale vs. Cone Calorimeter Test - Double Layer Wall Test.  

The results from cone calorimeter tests of a double layer uninsulated regular gypsum board wall 

assembly and that from a full scale furnace test of loaded double layer uninsulated regular 

gypsum board wall assembly (test F-04) reported by Sultan et al [12], are compared in Figure 

4.34. The results from cone calorimeter tests of a double layer uninsulated regular gypsum board 

wall assembly and that from an intermediate scale furnace test of an unloaded double layer non-

insulated regular gypsum board wall assembly (test S-02) reported by Sultan et al [15], are 

compared in Figure 4.35. Figure 4.36 shows the temperature measurements on the unexposed 

side of the wall assemblies tested in the cone calorimeter, intermediate furnace and the full scale 

furnace. 

 

Figure 4.34: Comparison Between Full-scale Furnace Test Results and Cone Calorimeter Tests 
Results of Uninsulated Double Layer Regular Gypsum Board Wall Assembly. 
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Figure 4.35:  Comparison Between Temperature Measurements in Intermediate and Cone 
Calorimeter Tests Results of Uninsulated Single Layer Regular Gypsum Board 
Wall Assembly. 

 

Figure 4.36: Comparison Between Unexposed Side Temperature Measurements in Full-scale 
Furnace, Intermediate and Cone Calorimeter Tests Results of Uninsulated Single 
Layer Regular Gypsum Board Wall Assembly. 
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Comparisons of the average maximum temperature increase at three locations within the 

specimen for the intermediate, full scale and the cone calorimeter tests of uninsulated double 

layer regular wall assembly are shown in Table 4.12. The average times for the temperature of 

the back of the exposed board (A) to reach particular temperatures are compared in Table 4.13 

for the intermediate, full scale and the cone calorimeter tests of uninsulated double layer regular 

wall assembly. 

 

Table 4.12: Average Maximum Temperature Increase Exposure Measured at Three Locations 
During Intermediate, Full Scale and Cone Calorimeter Tests of Uninsulated Double 
Layer Regular Gypsum Board Wall Assemblies 

Type of Test 

Maximum Temperature Increase (oC) 

Back of exposed 
board(s) (A) 

(°°°°C) 

Front of unexposed 
board(s) (D) 

(°°°°C) 

Back of unexposed 
board (E) 

(°°°°C) 

Cone Calorimeter 354.2 239.9 60.8 

Intermediate Scale 594.0 545.0 73.2 

Full Scale  879.0 874.0 95.0 
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Table 4.13: Average Time to Reach 100°C, 200°C, 250°C and Maximum Recorded Temperature 
on Back of Exposed Gypsum Board Layer(s) in Intermediate, Full Scale and Cone 
Calorimeter Tests of Uninsulated Double Layer Regular Gypsum Board Wall 
Assemblies 

Type of Test 

Average Time to Reach Temperature on Back of Exposed 
Gypsum Board Layer(s) (Location A)  

(s) 

100°°°°C 200°°°°C 250°°°°C 
Maximum 

Temperature 

Cone Calorimeter 1120 1874 2032 3600* 

Intermediate Scale 1320 2130 2230 3600* 

Full Scale  1250 1935 2020 2940 

* temperatures were still increasing at end of 3600 s (60 min.) tests 

 

The comparison between full scale, intermediate and cone calorimeter tests of uninsulated single 

and double layer wall assemblies presented in Figures 4.32-4.36 show higher temperatures in the 

cone calorimeter tests than in the full-scale tests for the first 20 – 25 min of exposure. The 

temperature difference is larger for the single layer wall than the double layer wall assembly. The 

higher temperatures observed for cone calorimeter tests up to the first 20-25 min of exposure is 

as a result of the higher heat flux of exposure in the cone calorimeter for the first 20-25 min as 

shown in Figure 4.31. The temperature measurements from the intermediate and full scale tests 

rise above that of the cone calorimeter tests after 20-25 min of exposure as a result of the higher 

heat flux of exposures than that of the cone calorimeter after this time (Figure 4.31). The 

maximum temperature at location D in the full scale test is 67.7% higher than the maximum 

temperature at location A in the cone calorimeter test. A low percentage difference of 10% in 
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maximum temperature between the cone calorimeter and full scale tests is observed for the 

unexposed side (location E).  

The full scale, intermediate scale and cone calorimeter tests results for double layer non insulated 

wall assembly show a very good agreement for the first 20 to 25 min as seen in Figures 4.34-

4.36. The full scale and cone calorimeter tests results for the non-insulated double wall assembly 

in Figure 4.34 are in good agreement at the unexposed side (E) for up to 25 min of exposure. The 

maximum temperatures at locations A, D and E in Table 4.12 shows a higher temperature in full 

scale tests than the cone calorimeter tests for all locations with a percentage difference of 51.7% 

for location A and a percentage difference of 75.9% for location D. The maximum temperatures 

on locations A, D and E in Table 4.13 also show a higher temperature in full scale tests 

compared to the intermediate and cone calorimeter tests for all locations. The maximum 

temperature in the intermediate scale test is 67.7% higher at location A, 127.2% higher at 

location D and 20.4% higher at location E than the maximum temperature in the cone 

calorimeter test. The maximum temperature in the full scale test is 148.2% higher at location A, 

264.3% higher at location D and 56.3% higher at location E than the maximum temperature in 

the cone calorimeter test.  

Generally the difference in temperature measurements within the wall assemblies in full scale, 

intermediate scale and cone calorimeter tests is as a result of the difference in the incident heat 

fluxes as shown in Figure 4.31 and the inability of the tests to adequately represent all of the 

phenomena exhibited in large-scale wall assemblies, such as the fire performance of joints in a 

drywall system. From Figures 4.33 and 4.36, the unexposed side temperatures showed a good 

agreement even though the heat of exposures and condition of testing are different. This 

demonstrates that cone calorimeter tests may have the potential to be used as indicators of the 
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performance of wall assemblies in standard full-scale fire tests. Additional research is necessary 

to develop scaling relationships for these tests.  

4.6 SUMMARY OF CHAPTER 

The experimental procedure, specimen and apparatus used to obtain results have been presented  

in this Chapter. The heat transfer through small-scale specimens that are representative of 

generic wall assemblies was investigated in this chapter using the cone calorimeter and a 

hotplate. Wall assemblies tested in the hotplate were exposed to a temperature of 80˚C. Insulated 

and uninsulated assemblies that use 12.7 mm (1/2 in.) regular and lightweight gypsum board, and 

15.9 mm (5/8 in.) Type X gypsum board, were tested in the cone calorimeter using an incident 

heat flux of 35, 50 and 75 kW/m2. Temperature measurements were dependent on the type and 

number of layers of gypsum board used. Temperatures increased most rapidly in assemblies that 

used lightweight gypsum board and most slowly in assemblies that used Type X gypsum board. 

Adding a second layer of gypsum board on each side of the assembly reduced the maximum 

temperature on the unexposed side by 53-61%. The results obtained from cone calorimeter tests 

of wall assembly specimen conducted in this study were also compared with similar intermediate 

and full scale tests conducted at the NRCC.  
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CHAPTER FIVE: COMPARISON OF NUMERICAL AND EXPERIMEN TAL RESULTS 

In this chapter the numerical results presented in Chapter Three will be compared to the 

experimental results presented in Chapter Four. The main comparisons in this chapter will 

include the following: 

• comparison of hotplate experimental results with numerical results of wall assemblies 

exposed to a fixed temperature boundary condition; 

• comparison of cone calorimeter test results with numerical results for single layer regular, 

lightweight and type X gypsum boards exposed to a heat flux of 75 kW/m2; 

• comparison of cone calorimeter test results with numerical results for double layer 

regular, lightweight and type X gypsum boards exposed to a heat flux of 75 kW/m2; 

• comparison of cone calorimeter test results with numerical results for wall assemblies 

that include single layers of lightweight gypsum board exposed to heat fluxes of 35, 50 

and 75 kW/m2; 

• comparison of cone calorimeter test results and numerical results for wall assemblies that 

include single layers of regular and type X gypsum board exposed to a heat flux of        

75 kW/m2; and 

• comparison of cone calorimeter test results and numerical results for wall assemblies that 

include double layers of lightweight, regular and type X gypsum board exposed to a heat 

flux of 75 kW/m2. 
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5.1. COMPARISON OF NUMERICAL AND HOTPLATE EXPERIMEN TAL RESULTS 

The temperature profiles from the hotplate experiment discussed in Section 4.4.1  are compared 

to the numerical results with constant properties and fixed temperature boundary discussed in 

Section 3.3.1. Temperature profiles predicted by the numerical model and those measured in the 

experiments for an exposure to 80oC are presented in Figure 5.1 and 5.2. 

 

 

Figure 5.1: Comparison of Numerical and Hotplate Experimental Results for Regular Gypsum 
Wall Assembly. 
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Figure 5.2: Comparison of Numerical and Hotplate Experimental Results for Type X Gypsum 
Wall Assembly. 

 

The tests conducted using the hotplate were used to determine the temperature profiles in the 

wall assembly before major reactions begin. Thermal properties at room temperature were used 

in the model. This exercise was to evaluate the model and the choice of thermal properties at 

room temperature. The results show a fair level of agreement between predicted and measured 

temperatures. The variation between the numerical and experimental results is expected to be 

mainly a result of the variation in the hot plate temperature shown in Figure 4.11 (Section 4.4.1). 

It was difficult to keep the temperature of the hotplate constant at 80˚C, as the knob was 

controlled to get the desired temperature and a temperature of about 80±7˚C was achieved.  The 

uncertainty in thermal properties is also expected to be responsible for the differences between 

numerical and experimental results. The effects of uncertainty in thermal properties will be 

discussed later in this chapter. 
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5.2.  COMPARISON OF NUMERICAL RESULTS AND CONE CALO RIMETER 

TEST RESULTS OF GYPSUM BOARD. 

Single Layer Gypsum Board 

Temperature profiles on the unexposed side measured during the cone calorimeter experiments 

in which single layer regular, lightweight and type X gypsum boards were exposed to a heat flux 

of 75 kW/m2 (Section 4.4.2) are compared with predictions made using the numerical model 

(Section 3.3.2) in Figures 5.3, 5.4 and 5.5, respectively.  

 

Figure 5.3: Comparison of Numerical and Experimental Results at Unexposed Side of           
(12.7 mm) Regular Gypsum Board 
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Figure 5.4: Comparison of Numerical and Experimental Results at Unexposed Side of 12.7 mm 
Lightweight Gypsum Board 

 

 
Figure 5.5: Comparison of Numerical and Experimental Results for 15.9 mm Type X Gypsum 

Board 
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The results presented in Figures 5.3-5.5 indicate that the model is fairly successful in predicting 

the expected temperatures profiles seen in the experimental results. While the model did a good 

job of predicting the initial temperature increase and the steady-state portion later in the test, the 

model is unable to predict the sudden rise in temperature beyond 300˚C for both regular and 

lightweight boards as seen in Figures 5.3 and 5.4. This is likely attributed to moisture movement 

within the 12.7 mm board which is not considered in this study. The sensitivity study conducted 

in Section 3.4 also shows how changes in specific heat, thermal conductivity density of gypsum 

boards affect the temperature profiles within the wall assembly, and demonstrate how the 

variation between the predicted and measured temperatures in Figures 5.3-5.5 is expected to be 

largely as a result of the uncertainty in the thermal properties used for the gypsum boards. As 

noted in Chapter 3, the properties used in the model were largely taken from the literature, rather 

than being measured for the specific materials used in this study.   

 

Double Layer Gypsum Board 

Temperature profiles at the interface and on the unexposed side measured  during the cone 

calorimeter experiments in which  double layer regular, lightweight and type X gypsum boards 

were exposed to a heat flux of 75 kW/m2 (Section 4.4.2) are compared with predictions made 

using the numerical model (Section 3.3.3) in Figures 5.6, 5.7 and 5.8, respectively. 
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Figure 5.6: Comparison of Numerical and Experimental Results at the Middle (1) and 

Unexposed Side (2) of Double Layers of 12.7 mm Regular Gypsum Board 

 
Figure 5.7: Comparison of Numerical and Experimental Results at the Middle (1) and 

Unexposed Side (2) of Double Layers of 12.7 mm Lightweight Gypsum Board 
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Figure 5.8: Comparison of Numerical and Experimental Results at Unexposed Side of   Double 

Layers of 15.9 mm Type X Gypsum Board 
 

 
The results presented in Figures 5.6-5.8 again indicate the model is fairly successful in predicting 

the temperatures obtained in the experiment, especially on the unexposed surface of the test 

specimen. The variation in the temperature prediction may once again be attributed to the 

moisture movement within the gypsum boards and other physical phenomenon not captured in 

the model (e.g. release of hot gases from the specimen through the sample holder). The 

temperature predictions at the interface of the boards show a very good agreement with the 

experimental temperature profiles during the first 6-12 min of testing. The larger variation in the 

temperature between the predicted and measured temperatures at the interface later in the tests 

can be as a result of the contact resistance at the interface of the boards, and the fact that 

phenomena such as burning of the paper at this interface are not included in the model.  
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5.3. COMPARISON OF NUMERICAL RESULTS AND CONE CALOR IMETER TEST 

RESULTS OF WALL ASSEMBLIES 

Lightweight Gypsum Board Wall Assembly 

Temperature profiles within the wall assemblies measured  during the cone calorimeter 

experiments in which single layer lightweight gypsum board wall assemblies were exposed to 

heat fluxes of 35, 50 and 75 kW/m2 (Section 4.4.2) are compared with predictions made using 

the numerical model (Sections 3.3.5 and 3.3.6) in Figures 5.9, 5.10 and 5.11, respectively. The 

time at which the back of the exposed board reaches 100, 250 and 600˚C and the maximum 

temperature increase at the back of the unexposed board of the wall assembly are presented in 

Tables 5.1, 5.2 and 5.3 for lightweight wall assemblies exposed to 35, 50 and 75 kW/m2, 

respectively. 

Single Layer Lightweight Gypsum Board Wall 

 
Figure 5.9: Comparison of Numerical and Experimental Results for Single Lightweight Gypsum 

Wall Assembly Exposed to 35 kW/m2. 
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Table 5.1:  Comparison Between Experimental and Numerical Results – Single Layer 
Lightweight Gypsum Board Wall Assembly (35 kW/m2 Exposure) 
 

Back of exposed 
board(s) 

(A) 

Experimental 

 

     Ave. (s)                       σ 

Numerical 

 

(s) 

Time to 100oC 360 7.3 328 

Time to 250oC 912 6.3 800 

Time to 600oC 1108 9.2 1599 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

σ   

 

Ave. (̊ C) 

Maximum 
Temperature Increase 

38.4 4.1 46.0 

 
 

 
Figure 5.10: Comparison of Numerical and Experimental Results for Single Lightweight 

Gypsum Wall Assembly Exposed to 50 kW/m2. 
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Table 5.2: Comparison Between Experimental and Numerical Results – Single Layer 
Lightweight Gypsum Board Wall Assembly (50 kW/m2 Exposure) 
 

Back of exposed 
board(s)     

(A) 

Experimental 

 

Ave. (s)                            (σ) 

Numerical 

 

(s) 

Time to 100oC 323 (27) 295 

Time to 250oC 700 (50) 678 

Time to 600oC 864 (40) 1152 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

62.8 (0.9) 59.5 

 
 

 
Figure 5.11: Comparison of Numerical and Experimental Results for Single Lightweight 

Gypsum Wall Assembly Exposed to 75 kW/m2. 
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Table 5.3: Comparison Between Experimental and Numerical Results – Single Layer 
Lightweight Gypsum Board Wall Assembly (75 kW/m2 Exposure) 
 

Back of exposed 
board(s)     

(A) 

Experimental 

 

Ave. (s)                           (σ) 

Numerical 

 

(s) 

Time to 100oC 273 (28.3) 265 

Time to 250oC 585 (19.3) 573 

Time to 600oC 729 (15.1) 880 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

55 (5.2) 74.2 

 

 

Double Layer Lightweight Gypsum Board Wall Assembly 

Temperature profiles on the unexposed side measured  during the cone calorimeter experiments 

in which double layer lightweight gypsum board wall assemblies  were exposed to 75 kW/m2 

(Section 4.4.2) are compared with predictions made using the numerical model (Section 3.3.6) in 

Figure 5.12. The time at which the back of the exposed board reaches 100, 200 and 250˚C and 

the maximum temperature increase at the back of the unexposed board of the wall assembly are 

presented in Table 5.4. 
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Figure 5.12: Comparison of Numerical and Experimental Results for Double Lightweight 
Gypsum Board Wall Assembly Exposed to 75 kW/m2. 

 

Table 5.4: Comparison Between Experimental and Numerical Results – Double Layer 
Lightweight Gypsum Board Wall Assembly (75 kW/m2 Exposure) 
 

Back of exposed 
board(s) 

(A) 

Experimental 

 

Ave. (s)                          (σ) 

Numerical 

 

(s) 

Time to 100oC 908 (5.4) 975 

Time to 200oC 1644 (6.7) 2114 

Time to 250oC 1740 (11.7) 2156 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

24.9 (3.5) 30.5* 

*temperature still increasing at the end of 3600 s (60 min.)  
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Regular Gypsum Board Wall Assemblies 

Temperature profiles on the unexposed side measured  during the cone calorimeter experiments 

in which single layer regular gypsum board wall assemblies were exposed to 75 kW/m2 

(Section 4.4.2) are compared with predictions made using the numerical model (Section 3.3.6) in  

Figure 5.13. The time to 100˚C, 250˚C and 600˚C at location A as well as the maximum 

temperature increase at the back of the unexposed board (E) are presented in Table 5.5.  

 

 

Figure 5.13: Comparison of Numerical and Experimental Results for Single Regular Gypsum 
Wall Assembly Exposed to 75 kW/m2. 
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Table 5.5: Comparison Between Experimental and Numerical Results – Single Layer Regular 
Gypsum Board Wall Assembly (75 kW/m2 Exposure) 
 

Back of exposed 
board(s) 

(A) 

Experimental 

 

Ave. (s)                           (σ) 

Numerical 

 

(s) 

Time to 100oC 302 (14.3) 301 

Time to 250oC 694 (18.8) 655 

Time to 600oC 843 (20.4) 990 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

57 (2.5) 71.3 

 

Double Layer Regular Gypsum Board Wall Assembly 

Temperature profiles on the unexposed side measured during the cone calorimeter experiments 

in which single layer regular gypsum board wall assembly were exposed to 75 kW/m2 (Section 

4.4.2) are compared with predictions  made using the numerical model (Section 3.3.6) in Figure 

5.14. The time at which the back of the exposed board reaches 100, 200 and 250˚C and the 

maximum temperature increase at the back of the unexposed board of the wall assembly are 

presented in Tables 5.6. 

 

 



165 
 

 
Figure 5.14: Comparison of Numerical and Experimental Results for Double Layer Regular 

Gypsum Wall Assembly Exposed to 75 kW/m2. 
 

Table 5.6: Comparison Between Experimental and Numerical Results – Double Layer Regular 
Gypsum Board Wall Assemblies (75 kW/m2 Exposure) 
 

Back of exposed 
board(s) 

(A) 

Experimental 

 

       Ave. (s)                    (σ) 

Numerical 

 

(s) 

Time to 100oC 957 (35.9) 1112 

Time to 200oC 1845 (33.4) 2417 

Time to 250oC 1920 (38.7) 2464 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

21.3 (1.4) 24.0* 

*temperature still increasing at end of 3600 s (60 min.) tests 
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Type X Gypsum Board Wall Assemblies 

Temperature profiles on the unexposed side measured  during the cone calorimeter experiments 

in which single layer type X gypsum board wall assemblies were exposed to 75 kW/m2 

(Section 4.4.2) are compared with predictions  made using the numerical model (Section 3.3.6) 

in Figure 5.15. The time to 100˚C, 250˚C and 600˚C at location A as well as the maximum 

temperature increase at the back of the unexposed board (E) are presented in Table 5.7.  

 

Single Layer Type X Gypsum Board Wall Assembly 

 

 
Figure 5.15: Comparison of Numerical and Experimental Results for Type X Gypsum Wall 

Assembly Exposed to 75 kW/m2. 
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Table 5.7: Comparison Between Experimental and Numerical Results – Single Layer Type X 
Gypsum Board Wall Assembly (75 kW/m2 Exposure) 
 

Back of exposed 
board(s) 

(A) 

Experimental 

 

   Ave. (s)                      (σ) 

Numerical 

 

(s) 

Time to 100oC 444 (17.5) 449 

Time to 250oC 1010 (29) 1003 

Time to 600oC 1334 (7.3) 1562 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

37 (5.3) 57.8 

 

 

Double Layer Type X Gypsum Board Wall Assembly 

Temperature profiles on the unexposed side measured  during the cone calorimeter experiments 

in which single layer type X gypsum board wall assemblies were exposed to 75 kW/m2 (Section 

4.4.2) are compared with predictions  made using the numerical model (Section 3.3.6) in Figure 

5.16. The time at which the back of the exposed board reaches 100, 200 and 250˚C and the 

maximum temperature increase at the back of the unexposed board of the wall assembly are 

presented in Tables 5.8. 
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Figure 5.16: Comparison of Numerical and Experimental Results for Double Type X Gypsum 

Wall Assembly Exposed to 75 kW/m2. 
 

Table 5.8: Comparison Between Experimental and Numerical Results – Double Layer Type X 
Gypsum Board Wall Assembly (75 kW/m2 Exposure) 
 

Back of exposed 
board(s) 

(A) 

Experimental 

 

    Ave. (s)                      (σ) 

Numerical 

 

(s) 

Time to 100oC 1538 (19.8) 1701 

Time to 200oC 3049 (63.8) ** 

Time to 250oC 3167 (81.02) ** 

Back of unexposed 
board 

(E) 

 

Ave. (̊ C) 

 

(σ) 

 

(˚C) 

Maximum 
Temperature Increase 

22.6 (0.3) 3.3 

  ** Temperature not attained 
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Discussion 

The comparisons between the numerical and experimental time-temperature profiles for single 

layer wall tests in Figures 5.9-5.11, and Figures 5.13 and 5.15 further validates the finite 

difference model as the agreement between experimental and numerical results is reasonably 

good at all locations. The larger variations between the temperature predictions made using the 

model and the experimental results at locations B and C are attributed to the difficulty in keeping 

the thermocouple at the exact position predicted by the model as a result of the loose nature of 

stone wool insulation. Tables 5.1-5.3, Table 5.5 and 5.7 give information about the predicted and 

measured times to 100˚C (calcination), 250˚C and 600˚C (fall off of exposed gypsum board) at 

location A for all wall tests. The agreement between the numerical and experimental results 

(single wall) for the calcination of the gypsum (predictions to 100˚C at location A), the time to 

250˚C, and the time to 600˚C (fall off of the exposed gypsum board) was reasonably good with a 

percentage difference in the range of 0.3 -36% for all the results in Tables 5.1-5.3, Table 5.5 and 

5.7.  Tables 5.1-5.3, Table 5.5 and 5.7 also give information on the maximum predicted and 

measured temperature increase at the back of the unexposed board (E). The agreement was 

reasonably good with a percentage difference in the range of 5-43%.  

The comparison between the time-temperature profiles in experimental and numerical results for 

double layer wall tests are presented in Figures 5.12, 5.14 and 5.16.The predicted and measured 

results show good agreement at the earlier stages (initial heating and calcination process) of the 

tests but show a poor level of agreement after the calcination process is complete. For all double 

wall temperature predictions, the time for calcination was overestimated by the model.  

Tables 5.4, 5.6 and 5.8 gives information about the time to 100˚C (calcination), 200˚C and 250˚C 

at location A and the maximum temperature at location E for all wall tests. The comparison 
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between the numerical and experimental results (double wall) for the calcination of the gypsum 

(predictions to 100˚C at location A) and predictions to 200˚C were reasonably good. The 

percentage difference between predicted and measured time to 100˚C  at location A for 

lightweight, regular and type X gypsum board wall assembly is 7.1%, 15% and 10.1%, 

respectively. The percentage difference between predicted and measured time to 200˚C at 

location A for lightweight and regular gypsum board wall assemblies is 25% and 27%, 

respectively. The percentage difference between predicted and measured time to 250˚C at 

location A for lightweight and regular gypsum board wall assemblies is 21% and 24.8%, 

respectively. The predicted temperature at location A for type X wall assemblies did not attain 

200˚C and 250˚C. Tables 5.4, 5.6 and 5.8 also give information on the maximum numerical and 

experimental temperature increase at the back of the unexposed board (E). The percentage 

difference between predicted and measured maximum temperatures at the unexposed side 

(location E) for lightweight, regular and type X gypsum board wall assemblies is 10.1%, 20.2% 

and 149%, respectively. This very high percentage difference in temperature increase on the 

unexposed side for the double layer type X gypsum board wall assembly is because the other 

predicted temperatures in the wall assembly did not increase enough to cause the unexposed 

temperature to rise. 

 

The fact that the model was not as successful in predicting temperatures in the double layer wall 

assemblies is expected, as the model had more difficulties in predicting temperatures within the 

specimens that contained two layers of drywall than in predicting temperatures in the specimens 

that contained only a single layer of drywall. These comparisons and possible reasons for the 
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difficulties in predicting temperatures within double layers of drywall were discussed in 

Section 5.2. 

A major reason for the differences between all of the predicted and measured results was the 

choice of thermal properties, which were taken from the literature rather than being measured. In 

particular the sensitivity study presented in Section 3.4 demonstrated that the thermal 

conductivity, and to a lesser degree the specific heat, of the gypsum board had the largest effect 

on the predicted temperatures. Comparing the figures in Section 3.4 with those in this section, 

the magnitude of the differences between numerical and experimental results are similar to the 

magnitude of the differences in temperatures when the properties of the gypsum board were 

changed.  

The model was also unable to predict the temperature peaks in Figures 5.3 and 5.4 which are 

largely due to moisture movement which was not considered in this thesis research. To 

investigate the possible effect of the energy transfer associated with moisture movement within 

the wall assembly, the specific heat curve shown in Figure 5.17 was used in the model for 

gypsum board. While most of this curve was based on the values used in the model, three points 

at 159, 191 and 220°C were introduced in order to look at the effects of including negative 

specific heat values in the model, as negative values are seen in some measurements reported in 

the literature. The negative values represent exothermic reactions, or in this case, energy transfer 

to the inner parts of the gypsum board as the moisture is driven through the assembly. Using this 

specific heat curve resulted in a better prediction of the temperature peak noticed in the gypsum 

board tests shown in Figures 5.18 and 5.19. These results are further evidence that in order to 

obtain a better prediction of the temperature profiles in wall assemblies the correct thermal 

property data and the effect of moisture movement need to be included in the numerical model. 
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Figure 5.17: A Modified Specific Heat of Gypsum Board to Account for Energy Associated with 
Moisture Movement 

 
Figure 5.18: Comparison of Numerical and Experimental Results at Unexposed Side of            

Single Regular Gypsum Board (Using Specific Heat in Figure 5.17) 
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Figure 5.19: Comparison of Numerical and Experimental Results at Unexposed Side of         
Single Lightweight Gypsum Board (Using Specific Heat in Figure 5.17  
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CHAPTER SIX: CONCLUSIONS AND RECOMMENDATIONS 

6.1. CONCLUSIONS 

The following conclusions can be made as a result of this research. 

• Temperatures predicted using the one dimensional conduction heat transfer model 

developed in this study show a varying degree of agreement with measured temperatures 

for insulated single layer wall assemblies. Predicted and measured times for temperatures 

to reach 100°C and 250°C on the unexposed side of the gypsum board layer closest to the 

cone heater were generally within 10%. There was less agreement between predicted and 

measured times to reach 600°C at this location, and the temperature increase on the 

unexposed side of the test specimen. The model did not do a good job in predicting 

temperatures in the insulated double layer walls. Based on these comparisons, it was felt 

that the heat transfer model showed good potential for predicting temperature in cone 

calorimeter tests of wall assemblies, but more development work is needed. 

 

• Experimental and numerical results demonstrated that temperatures increased most 

rapidly in assemblies that used lightweight gypsum board and most slowly in assemblies 

that used Type X gypsum board. Adding a second layer of gypsum board on each side of 

the assembly reduced the maximum temperature on the unexposed side and insulated 

wall assemblies provided better fire protection than uninsulated wall assemblies. 

 

• The results of the sensitivity of temperature to ± 20% changes to specific heat, thermal 

conductivity and density of both gypsum board and stone wool insulation showed that the 
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thermal conductivity of gypsum board has the most significant impact on the predicted 

temperatures with the specific heat of gypsum board having a significant impact as well. 

 

• In the comparison of cone calorimeter, intermediate and full scale test results, the 

temperatures on the back of the exposed gypsum board and front of the unexposed board 

showed good agreement up to the first 20-25 min of exposure. The temperature on the 

unexposed side of the assembly showed a good agreement up to about 45-50 min of 

testing even though the incident heat fluxes and conditions of testing are different. This 

demonstrates that cone calorimeter tests may have the potential to be used as indicators of 

the performance of wall assemblies in standard full-scale fire tests. One limitation is that 

the cone calorimeter tests only used a heat flux of 75 kW/m2, while the full scale tests 

produce heat fluxes of up to 150 kW/m2.  

 

 

6.2. RECOMMENDATIONS FOR FUTURE WORK 

Based on the experiments, the following recommendations are made to improve cone calorimeter 

tests of wall assemblies: 

•  A temperature dependent cone calorimeter should be used to simulate the temperature 

distribution of the standard temperature time curve; and 

• More cone calorimeter tests of wall assemblies with similar gypsum board arrangement 

and stud types as in the full scale tests should be conducted in order to develop a scaling 

model. 
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Based on the development of the numerical model, the following recommendations are made to 

improve heat transfer models of wall assemblies. 

• The numerical model should be further improved to include the effects of moisture 

movement across the wall section, structural failure, and shrinkage of gypsum boards. 

For example, a porous media model should be used for the gypsum board and insulation. 

• The use of the differential scanning calorimeter (DSC) should be employed to determine 

the temperature dependent thermal properties of gypsum board and insulation over a 

large range of temperature so as to arrive at a better prediction of the experimental 

results.  

• It should be noted that when the specimens were inspected after testing there was 

evidence that the wood studs had partially burned during the exposures. Therefore, this 

phenomenon may need to be taken into account in modeling these tests. While 

temperatures of the wood studs were not recorded in these tests, future tests may be 

necessary to record this information for use in developing numerical models.  
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APPENDIX A 

%************************************************** **************************
***************  
% COMPUTER CODE FOR SINGLE GYPSUM BOARD 
%************************************************** **************************  
% THIS COMPUTER CODE SOLVES ONE-DIMENSIONAL TRANSIENT HEAT CONDUCTION 
% EQUATION USING A FINITE DIFFERENCE APPROACH.  
%************************************************** **************************  
  
clc; 
% Single Layer Gypsum Board  
  
%PROPERTIES 
  
L= 0.0127*1;      %thickness (SINGLE GYPSUM BOARD = 12.7 mm, DOUBLE =  12.7*2)  
St=5.669*10^-8;         %stefan boltzmann constant  
Tini = 30;              %Initial temperature  
Tamb = 30;              % ambient temperature  
Tout = 30;              % outside temperature  
Tcone = 894;            % cone temperature (894 C for 75 kW/m2, 690C = 35 
kW/m2, 780C = 50 kW/m2)  
F = 0.72;               % view factor  
hc=24;               %convective heat transfer coeffient at the exposed side)  
hco=5;            % convective heat transfer coeffient at the unexpos ed side)  
emo=0.9;                % emmisivity  
em = 0.9;               %emmisivity  
        % GYPSUM BOARD PROPERTIES = REGULAR GYPSUM BOARD 
             
k=0.1683;               %thermal conductivity at room temperature  
p=645.7;                % density at room temperature  
cp=950;                 %specific heat at room temperature  
             %grid properties  
N = 8;                 % number of divisions (N+1 = total number of nodes)  
dx = L/N;              % thickness of each division  
 dtime=p*cp*dx^2/(2*hc*dx+2*k+2*em*St*dx*(Tini+273.1 5)^3); % stability 
criterion (max. time)  
dt=dtime/4;            % setting up for stability and timestep  
 tspace = (0:dt:3600)'; % time increaement and duration of test  
[sp,sy] = size(tspace);  
  
T = zeros(sp,sy);      %Initialize temperature matrix  
  
for  j=2:1:sp; 
    n=N+1;  % total number of nodes including surface temperatu res  
            T(1,1)=0;    
    for  ny=1:n; 
         T(1,ny)=Tini;    
    end  
           
        for  x=1:1:n 
         
         if  x<=1;   % FIRST NODE 
            % THERMAL CONDUCTIVITY 
            Tm1=(T(j-1,x+1)+T(j-1,x))/2; 
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         if  Tm1<=90; 
         k1=0.1683; 
         elseif  Tm1<=200; 
         k1=-0.00057*(Tm1-90)+0.1683; 
         elseif  Tm1<=300; 
         k1=0.000055*(Tm1-200)+0.1056; 
         elseif  Tm1<=600; 
         k1=0.0001283*(Tm1-300)+0.1111; 
         elseif  Tm1<=700; 
         k1=0.000352*(Tm1-600)+0.1496; 
          elseif  Tm1<=800; 
         k1=-0.000121*(Tm1-700)+0.1848; 
          elseif  Tm1>800; 
         k1=0.000495*(Tm1-800)+0.1727; 
         end  
                  % DENSITY 
         if  T(j-1,x)<=140; 
          p1=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         p1=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p1=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p1=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p1=497.189; 
         end  
                  %  SPECIFIC HEAT  
         if  T(j-1,x)<=90; 
         cp1=950; 
         elseif  T(j-1,x)<=130; 
         cp1=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp1=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp1=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp1=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp1=950; 
         elseif  T(j-1,x)<=680; 
         cp1=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp1=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cp1=950; 
         end  
  
          syms T1 
          
         EQ1= hc*(T(j-1,x)-Tamb)+F*em*St*((Tcone+27 3)^4-(T(j-1,x)+273)^4)-(1-
F)*em*St*((T(j-1,x)+273)^4-(Tamb+273)^4)+k1*(T(j-1, x+1)-T(j-1,x))/dx-
p1*cp1*(dx/2)*(T1-T(j-1,x))/(dt); 
         [T1]=solve(EQ1); 
         T(j,x)= T1; 
         clear T1 
         clear EQ1 
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         clear k1  
         clear p1 
         clear cp1  
            %INTERIOR NODES 
         elseif  x<n; 
               
         T2l=(T(j-1,x-1)+T(j-1,x))/2; 
                  
         %conductivity  
         if  T2l<=90; 
         k2l=0.1683; 
         elseif  T2l<=200; 
         k2l=-0.00057*(T2l-90)+0.1683; 
         elseif  T2l<=300; 
         k2l=0.000055*(T2l-200)+0.1056; 
         elseif  T2l<=600; 
         k2l=0.0001283*(T2l-300)+0.1111; 
         elseif  T2l<=700; 
         k2l=0.000352*(T2l-600)+0.1496; 
         elseif  T2l<=800; 
         k2l=-0.000121*(T2l-700)+0.1848; 
         elseif  T2l>800; 
         k2l=0.000495*(T2l-800)+0.1727; 
         end  
          
         T2r=(T(j-1,x+1)+T(j-1,x))/2; 
               
         %conductivity  
         if  T2r<=90; 
         k2r=0.1683; 
         elseif  T2r<=200; 
         k2r=-0.00057*(T2r-90)+0.1683; 
         elseif  T2r<=300; 
         k2r=0.000055*(T2r-200)+0.1056; 
         elseif  T2r<=600; 
         k2r=0.0001283*(T2r-300)+0.1111; 
         elseif  T2r<=700; 
         k2r=0.000352*(T2r-600)+0.1496; 
         elseif  T2r<=800; 
         k2r=-0.000121*(T2r-700)+0.1848; 
         elseif  T2r>800; 
         k2r=0.000495*(T2r-800)+0.1727; 
         end  
                 
         % density  
         if  T(j-1,x)<=140; 
          p2=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         p2=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p2=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p2=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p2=497.189; 
         end  
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         %  specific heat  
         if  T(j-1,x)<=90; 
         cp2=950; 
         elseif  T(j-1,x)<=130; 
         cp2=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp2=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp2=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp2=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp2=950; 
         elseif  T(j-1,x)<=680; 
         cp2=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp2=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cp2=950; 
         end  
                
         syms T2 
         EQ2=k2l*(T(j-1,x-1)-T(j-1,x))/dx+k2r*(T(j- 1,x+1)-T(j-1,x))/dx-
p2*cp2*(dx)*(T2-T(j-1,x))/(dt); 
         [T2]=solve(EQ2); 
         T(j,x)=T2; 
         clear T2 
         clear EQ2 
         clear k2l  
         clear k2r  
         clear cp2  
         clear p2 
          
         elseif  x>=n; 
             T7l=(T(j-1,x-1)+T(j-1,x))/2; 
  
         %conductivity  
         if  T7l<=90; 
         k7=0.1683; 
         elseif  T7l<=200; 
         k7=-0.00057*(T7l-90)+0.1683; 
         elseif  T7l<=300; 
         k7=0.000055*(T7l-200)+0.1056; 
         elseif  T7l<=600; 
         k7=0.0001283*(T7l-300)+0.1111; 
         elseif  T7l<=700; 
         k7=0.000352*(T7l-600)+0.1496; 
         elseif  T7l<=800; 
         k7=-0.000121*(T7l-700)+0.1848; 
         elseif  T7l>800; 
         k7=0.000495*(T7l-800)+0.1727; 
          
         end  
          
         % density  
         if  T(j-1,x)<=140; 
          p7=645.7;   
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         elseif  T(j-1,x)<=250;          %Regular  
         p7=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p7=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p7=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p7=497.189; 
         end  
          
         %  specific heat  
         if  T(j-1,x)<=90; 
         cp7=950; 
         elseif  T(j-1,x)<=130; 
         cp7=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp7=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp7=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp7=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp7=950; 
         elseif  T(j-1,x)<=680; 
         cp7=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp7=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cp7=950; 
         end  
         
         % STABILITY...  
          
         dtimel=p7*cp7*dx^2/(2*hco*dx+2*k7+2*emo*St *dx*(Tout+273.15)^3); % 
maximum time for instablity  
          dtl=dtimel/2;  
                                     
         syms T7 
         
         EQ7=k7*(T(j-1,x-1)-T(j-1,x))/dx-hco*(T(j-1 ,x)-Tout)-emo*St*((T(j-
1,x)+273.15)^4-(Tout+273.15)^4)-p7*cp7*(dx/2)*(T7-T (j-1,x))/(dtl); 
         [T7]=solve(EQ7); 
         T(j,x)=T7; 
         clear T7 
         clear EQ7 
         clear T7l  
         clear k7  
         clear cp7  
         clear p7 
              
        end  
        end  
   
    
end   
% OBTAIN RESULTS FROM MATLAB WORKSPACE (T). 
plot (tspace,T(:,n), '-b' , 'LineWidth' ,3) 
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APPENDIX A 

 
%************************************************** **************************  
% COMPUTER CODE FOR INSULATED SINGLE GYPSUM BOARD WALL ASSEMBLY 
%************************************************** **************************
**************  
% THIS COMPUTER CODE SOLVES ONE-DIMENSIONAL TRANSIENT HEAT CONDUCTION 
% EQUATION USING A FINITE DIFFERENCE APPROACH.  
%************************************************** **************************  
   
  
%REGULAR WALL ASSEMBLY....  
  
%PROPERTIES 
  
L= 0.1143;       %total thickness of wall in m (GYPSUM BOARD = 12.7 mm, 
INSULATION CAVITY = 89 mm)  
St=5.669*10^-8;  %stefan boltzmann constant  
Tini = 24;         %Initial temperature  
Tamb = 24;          % ambient temperature  
Tout = 24;             % outside temperature  
Tcone = 894;            % cone temperature (894 C for 75 kW/m2, 690C = 35 
kW/m2, 780C = 50 kW/m2)  
F = 0.72;               % view factor  
hc=24;                  %convective heat transfer coeffient at the exposed 
side)  
hco=5;                  % convective heat transfer coeffient at the unexpos ed 
side)  
emo=0.9;                % emmisivity  
em = 0.9;                  %emmisivity  
  
                % GYPSUM BOARD PROPERTIES = REGULAR GYPSUM BOARD 
                 
k=0.1683;               %thermal conductivity at room temperature  
p=645.7;                % density at room temperature  
cp=950;                 %specific heat at room temperature  
  
%grid properties  
N = 72;                 % number of divisions (N+1 = total number of nodes)  
dx = L/N;               % thickness of each division  
  
dtime=p*cp*dx^2/(2*hc*dx+2*k+2*em*St*dx*(Tini+273.1 5)^3); % stability 
criterion (max. time)  
dt=dtime/7;     % setting up for stability and timestep  
  
tspace = (0:dt:10)'; % time increaement and duration of test  
[sp,sy] = size(tspace);  
  
  
T = zeros(sp,sy);       %Initialize temperature matrix  
  
for  j=2:1:sp; 
    n=N+1;  % total number of nodes including surface temperatu res  
            T(1,1)=0;    
    for  ny=1:n; 
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         T(1,ny)=Tini;    
    end  
     
       
        for  x=1:1:n 
         
         if  x<=1;   % FIRST NODE 
            % THERMAL CONDUCTIVITY 
            Tm1=(T(j-1,x+1)+T(j-1,x))/2; 
         
         if  Tm1<=90; 
         k1=0.1683; 
         elseif  Tm1<=200; 
         k1=-0.00057*(Tm1-90)+0.1683; 
         elseif  Tm1<=300; 
         k1=0.000055*(Tm1-200)+0.1056; 
         elseif  Tm1<=600; 
         k1=0.0001283*(Tm1-300)+0.1111; 
         elseif  Tm1<=700; 
         k1=0.000352*(Tm1-600)+0.1496; 
          elseif  Tm1<=800; 
         k1=-0.000121*(Tm1-700)+0.1848; 
          elseif  Tm1>800; 
         k1=0.000495*(Tm1-800)+0.1727; 
          
         end  
          
         % DENSITY 
         if  T(j-1,x)<=140; 
          p1=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         p1=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p1=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p1=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p1=497.189; 
         end  
          
         %  SPECIFIC HEAT  
         if  T(j-1,x)<=90; 
         cp1=950; 
         elseif  T(j-1,x)<=130; 
         cp1=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp1=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp1=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp1=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp1=950; 
         elseif  T(j-1,x)<=680; 
         cp1=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp1=-50.833*(T(j-1,x)-680)+4000; 
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         elseif  T(j-1,x)>740; 
         cp1=950; 
         end  
  
  
    syms T1 
          
         EQ1= hc*(T(j-1,x)-Tamb)+F*em*St*((Tcone+27 3)^4-(T(j-1,x)+273)^4)-(1-
F)*em*St*((T(j-1,x)+273)^4-(Tamb+273)^4)+k1*(T(j-1, x+1)-T(j-1,x))/dx-
p1*cp1*(dx/2)*(T1-T(j-1,x))/(dt); 
         [T1]=solve(EQ1); 
         T(j,x)= T1; 
         clear T1 
         clear EQ1 
         clear k1  
         clear p1 
         clear cp1  
                      
         % INTERIOR NODES OF FIRST LAYER  
         elseif  x<9; 
                 
         T2l=(T(j-1,x-1)+T(j-1,x))/2; 
                  
         %conductivity  
          if  T2l<=90; 
         k2l=0.1683; 
         elseif  T2l<=200; 
         k2l=-0.00057*(T2l-90)+0.1683; 
         elseif  T2l<=300; 
         k2l=0.000055*(T2l-200)+0.1056; 
         elseif  T2l<=600; 
         k2l=0.0001283*(T2l-300)+0.1111; 
         elseif  T2l<=700; 
         k2l=0.000352*(T2l-600)+0.1496; 
         elseif  T2l<=800; 
         k2l=-0.000121*(T2l-700)+0.1848; 
         elseif  T2l>800; 
         k2l=0.000495*(T2l-800)+0.1727; 
          
         end  
          
         T2r=(T(j-1,x+1)+T(j-1,x))/2; 
               
         %conductivity  
         if  T2r<=90; 
         k2r=0.1683; 
         elseif  T2r<=200; 
         k2r=-0.00057*(T2r-90)+0.1683; 
         elseif  T2r<=300; 
         k2r=0.000055*(T2r-200)+0.1056; 
         elseif  T2r<=600; 
         k2r=0.0001283*(T2r-300)+0.1111; 
         elseif  T2r<=700; 
         k2r=0.000352*(T2r-600)+0.1496; 
         elseif  T2r<=800; 
         k2r=-0.000121*(T2r-700)+0.1848; 
         elseif  T2r>800; 
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         k2r=0.000495*(T2r-800)+0.1727; 
          
         end  
          
                   
         % density  
         if  T(j-1,x)<=140; 
          p2=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         p2=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p2=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p2=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p2=497.189; 
         end  
          
         %  specific heat  
         if  T(j-1,x)<=90; 
         cp2=950; 
         elseif  T(j-1,x)<=130; 
         cp2=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp2=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp2=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp2=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp2=950; 
         elseif  T(j-1,x)<=680; 
         cp2=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp2=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cp2=950; 
         end  
          
                       
         syms T2 
         EQ2=k2l*(T(j-1,x-1)-T(j-1,x))/dx+k2r*(T(j- 1,x+1)-T(j-1,x))/dx-
p2*cp2*(dx)*(T2-T(j-1,x))/(dt); 
         [T2]=solve(EQ2); 
         T(j,x)=T2; 
         clear T2 
         clear EQ2 
         clear k2l  
         clear k2r  
         clear cp2  
         clear p2 
          
         %FIRST IINTERFACE (GYPSUM-INSULATION)  
          
         elseif  x==9; 
        %GYPSUM 
            TI1=(T(j-1,x-1)+T(j-1,x))/2; 
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         if  TI1<=90; 
         kI1g=0.1683; 
         elseif  TI1<=200; 
         kI1g=-0.00057*(TI1-90)+0.1683; 
         elseif  TI1<=300; 
         kI1g=0.000055*(TI1-200)+0.1056; 
         elseif  TI1<=600; 
         kI1g=0.0001283*(TI1-300)+0.1111; 
         elseif  TI1<=700; 
         kI1g=0.000352*(TI1-600)+0.1496; 
         elseif  TI1<=800; 
         kI1g=-0.000121*(TI1-700)+0.1848; 
         elseif  TI1>800; 
         kI1g=0.000495*(TI1-800)+0.1727; 
          
         end  
                  
          
         % density  
         if  T(j-1,x)<=140; 
          pI1g=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         pI1g=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         pI1g=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         pI1g=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         pI1g=497.189; 
         end  
          
         %  specific heat  
         if  T(j-1,x)<=90; 
         cpI1g=950; 
         elseif  T(j-1,x)<=130; 
         cpI1g=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cpI1g=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cpI1g=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cpI1g=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cpI1g=950; 
         elseif  T(j-1,x)<=680; 
         cpI1g=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cpI1g=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cpI1g=950; 
         end  
  
          % STONE WOOL INSULATION 
         if  TI1<=101; 
         kI1i=0.036; 
         elseif  TI1<=194; 
          kI1i=0.000194*(TI1-101)+0.036; 
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         elseif  TI1<=297; 
          kI1i=0.0002135*(TI1-194)+0.054; 
         elseif  TI1<=396; 
          kI1i=0.0004343*(TI1-297)+0.076; 
         elseif  TI1<=501; 
          kI1i=0.000447*(TI1-396)+0.119; 
         elseif  TI1<=602; 
          kI1i=0.0007525*(TI1-501)+0.166; 
         elseif  TI1>724; 
         kI1i=-0.0002869*(TI1-602)+0.242; 
         elseif  TI1<=856; 
          kI1i=0.0001667*(TI1-724)+0.207; 
         elseif  TI1>856; 
          kI1i=0.0004757*(TI1-856)+0.229; 
          
         end  
          
        % density  
          pI1i=31.32; 
               
         %  specific heat of INSULATION  
          cpI1i=700; 
          
         syms T3 
         EQ3=dx^2*(cpI1g*pI1g + cpI1i*pI1i)/((kI1g+ kI1i)*dt)*(T3-T(j-1,x)) + 
2*T(j-1,x) - 2*(kI1g*T(j-1,x-1)+(kI1i*T(j-1,x+1)))/ (kI1g+kI1i); 
         [T3]=solve(EQ3); 
         T(j,x)=T3;     
         clear T3 
         clear EQ3 
         clear cpI1g  
         clear kI1g  
         clear kI1i  
         clear cpI1i  
         clear pI1g  
         clear pI1i  
     
          
          % INTERIOR NODES OF SECOND LAYER 
          
         elseif   x<65; 
              
         %CONDUCTIVITY OF INSULATION        T  
         
         T4l=(T(j-1,x-1)+T(j-1,x))/2; 
          if  T4l<=101; 
         k4l=0.036; 
          elseif  T4l<=194; 
          k4l=0.000194*(T4l-101)+0.036; 
           elseif  T4l<=297; 
          k4l=0.0002135*(T4l-194)+0.054; 
           elseif  T4l<=396; 
          k4l=0.0004343*(T4l-297)+0.076; 
         elseif  T4l<=501; 
          k4l=0.000447*(T4l-396)+0.119; 
         elseif  T4l<=602; 
          k4l=0.0007525*(T4l-501)+0.166; 
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         elseif  T4l>724; 
         k4l=-0.0002869*(T4l-602)+0.242; 
         elseif  T4l<=856; 
          k4l=0.0001667*(T4l-724)+0.207; 
          elseif  T4l>856; 
          k4l=0.0004757*(T4l-856)+0.229; 
          
         end  
          
         T4r=(T(j-1,x+1)+T(j-1,x))/2; 
          if  T4r<=101; 
         k4r=0.036; 
          elseif  T4r<=194; 
          k4r=0.000194*(T4r-101)+0.036; 
           elseif  T4r<=297; 
          k4r=0.0002135*(T4r-194)+0.054; 
           elseif  T4r<=396; 
          k4r=0.0004343*(T4r-297)+0.076; 
         elseif  T4r<=501; 
          k4r=0.000447*(T4r-396)+0.119; 
         elseif  T4r<=602; 
          k4r=0.0007525*(T4r-501)+0.166; 
         elseif  T4r>724; 
         k4r=-0.0002869*(T4r-602)+0.242; 
         elseif  T4r<=856; 
          k4r=0.0001667*(T4r-724)+0.207; 
          elseif  T4r>856; 
          k4r=0.0004757*(T4r-856)+0.229; 
          
         end  
        % density  
          p4i=31.32; 
             
         %  specific heat of INSULATION  
          cp4i=700; 
  
        %CHECKING FOR STABILITY 
         dat4 = (cp4i*p4i*(dx)^2)/(k4l+k4r); 
         dt4 = dat4; 
             
         syms T4 
          
         EQ4=k4l*(T(j-1,x-1)-T(j-1,x))/dx+k4r*(T(j- 1,x+1)-T(j-1,x))/dx-
p4i*cp4i*(dx)*(T4-T(j-1,x))/(dt4); 
         [T4]=solve(EQ4); 
         T(j,x)=T4;     
         clear T4 
         clear EQ4 
         clear k4l  
         clear k4r  
         clear cp4i  
         clear p4i  
     
        %SECOND INTERFACE (INSULATION-GYPSUM) 
         
         elseif  x==65; 
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         TI2=(T(j-1,x-1)+T(j-1,x))/2; 
          %  insulation...................................  
  
         if  TI2<=101; 
         kI2i=0.036; 
          elseif  TI2<=194; 
          kI2i=0.000194*(TI2-101)+0.036; 
           elseif  TI2<=297; 
          kI2i=0.0002135*(TI2-194)+0.054; 
           elseif  TI2<=396; 
          kI2i=0.0004343*(TI2-297)+0.076; 
         elseif  TI2<=501; 
          kI2i=0.000447*(TI2-396)+0.119; 
         elseif  TI2<=602; 
          kI2i=0.0007525*(TI2-501)+0.166; 
         elseif  TI2>724; 
         kI2i=-0.0002869*(TI2-602)+0.242; 
         elseif  TI2<=856; 
          kI2i=0.0001667*(TI2-724)+0.207; 
          elseif  TI2>856; 
          kI2i=0.0004757*(TI2-856)+0.229; 
          
         end  
          
        % density  
          pI2i=31.32; 
         %  specific heat of INSULATION  
          cpI2i=700; 
         
          %GYPSUM 
          
         if  TI2<=90; 
         kI2g=0.1683; 
         elseif  TI2<=200; 
         kI2g=-0.00057*(TI2-90)+0.1683; 
         elseif  TI2<=300; 
         kI2g=0.000055*(TI2-200)+0.1056; 
         elseif  TI2<=600; 
         kI2g=0.0001283*(TI2-300)+0.1111; 
         elseif  TI2<=700; 
         kI2g=0.000352*(TI2-600)+0.1496; 
         elseif  TI2<=800; 
         kI2g=-0.000121*(TI2-700)+0.1848; 
         elseif  TI2>800; 
         kI2g=0.000495*(TI2-800)+0.1727; 
          
         end  
          
         % density  
         if  T(j-1,x)<=140; 
           pI2g=645.7;   
         elseif  T(j-1,x)<=250;           
         pI2g=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         pI2g=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         pI2g=-0.3632*T(j-1,x)+787.75; 
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         elseif  T(j-1,x)>800;     
         pI2g=497.189; 
         end  
          
         %  specific heat  
         if  T(j-1,x)<=90; 
         cpI2g=950; 
         elseif  T(j-1,x)<=130; 
         cpI2g=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cpI2g=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cpI2g=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cpI2g=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cpI2g=950; 
         elseif  T(j-1,x)<=680; 
         cpI2g=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cpI2g=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cpI2g=950; 
         end  
  
         syms T5 
         EQ5=dx^2*(cpI2g*pI2g + cpI2i*pI2i)/((kI2g+ kI2i)*dt)*(T5-T(j-1,x)) + 
2*T(j-1,x) - 2*(kI2i*T(j-1,x-1)+(kI2g*T(j-1,x+1)))/ (kI2g+kI2i); 
         [T5]=solve(EQ5); 
         T(j,x)=T5;     
         clear T5 
         clear EQ5 
         clear cpI2g  
         clear kI2g  
         clear kI2i  
         clear cpI2i  
         clear pI2g  
         clear pI2i  
     
          
         %INTERIOR NODES OF THE THIRD LAYER 
          
         elseif   x<n; 
          %CONDUCTIVITY OF GYPSUM 
         T6l=(T(j-1,x-1)+T(j-1,x))/2; 
          
        %conductivity  
         if  T6l<=90; 
         k6l=0.1683; 
         elseif  T6l<=200; 
         k6l=-0.00057*(T6l-90)+0.1683; 
         elseif  T6l<=300; 
         k6l=0.000055*(T6l-200)+0.1056; 
         elseif  T6l<=600; 
         k6l=0.0001283*(T6l-300)+0.1111; 
         elseif  T6l<=700; 
         k6l=0.000352*(T6l-600)+0.1496; 
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         elseif  T6l<=800; 
         k6l=-0.000121*(T6l-700)+0.1848; 
         elseif  T6l>800; 
         k6l=0.000495*(T6l-800)+0.1727; 
          
         end  
          
         T6r=(T(j-1,x+1)+T(j-1,x))/2; 
               
         %conductivity  
          if  T6r<=90; 
         k6r=0.1683; 
         elseif  T6r<=200; 
         k6r=-0.00057*(T6r-90)+0.1683; 
         elseif  T6r<=300; 
         k6r=0.000055*(T6r-200)+0.1056; 
         elseif  T6r<=600; 
         k6r=0.0001283*(T6r-300)+0.1111; 
         elseif  T6r<=700; 
         k6r=0.000352*(T6r-600)+0.1496; 
         elseif  T6r<=800; 
         k6r=-0.000121*(T6r-700)+0.1848; 
         elseif  T6r>800; 
         k6r=0.000495*(T6r-800)+0.1727; 
          
         end  
          
         if  T(j-1,x)<=140; 
          p6=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         p6=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p6=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p6=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p6=497.189; 
         end  
          
         %  specific heat  
         if  T(j-1,x)<=90; 
         cp6=950; 
         elseif  T(j-1,x)<=130; 
         cp6=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp6=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp6=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp6=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp6=950; 
         elseif  T(j-1,x)<=680; 
         cp6=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp6=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
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         cp6=950; 
         end  
          
         det6 = (cp6*p6*(dx)^2)/(k6l+k6r); 
         dt6 = det6/4; 
          
         syms T6 
         EQ6=k6l*(T(j-1,x-1)-T(j-1,x))/dx+k6r*(T(j- 1,x+1)-T(j-1,x))/dx-
p6*cp6*(dx)*(T6-T(j-1,x))/(dt6); 
         [T6]=solve(EQ6); 
         T(j,x)=T6;     
         clear T6 
         clear EQ6 
         clear k6l  
         clear k6r  
         clear cp6  
         clear p6 
          
         %LAST BOUNDARY NODE 
         
         elseif  x>=n; 
         T7l=(T(j-1,x-1)+T(j-1,x))/2; 
  
         %conductivity  
         if  T7l<=90; 
         k7=0.1683; 
         elseif  T7l<=200; 
         k7=-0.00057*(T7l-90)+0.1683; 
         elseif  T7l<=300; 
         k7=0.000055*(T7l-200)+0.1056; 
         elseif  T7l<=600; 
         k7=0.0001283*(T7l-300)+0.1111; 
         elseif  T7l<=700; 
         k7=0.000352*(T7l-600)+0.1496; 
         elseif  T7l<=800; 
         k7=-0.000121*(T7l-700)+0.1848; 
         elseif  T7l>800; 
         k7=0.000495*(T7l-800)+0.1727; 
          
         end  
          
         % density  
         if  T(j-1,x)<=140; 
          p7=645.7;   
         elseif  T(j-1,x)<=250;          %Regular  
         p7=-1.02725*T(j-1,x)+789.515; 
         elseif  T(j-1,x)<=720; 
         p7=-0.0137*T(j-1,x)+536.13; 
         elseif  T(j-1,x)<=800;     
         p7=-0.3632*T(j-1,x)+787.75; 
         elseif  T(j-1,x)>800;     
         p7=497.189; 
         end  
          
         %  specific heat  
         if  T(j-1,x)<=90; 
         cp7=950; 
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         elseif  T(j-1,x)<=130; 
         cp7=388.75*(T(j-1,x)-90)+950; 
         elseif  T(j-1,x)<=160; 
         cp7=-350*(T(j-1,x)-130)+16500; 
         elseif  T(j-1,x)<=190; 
         cp7=33.333*(T(j-1,x)-160)+6000; 
         elseif  T(j-1,x)<=220; 
         cp7=-201.67*(T(j-1,x)-190)+7000; 
         elseif  T(j-1,x)<=600; 
         cp7=950; 
         elseif  T(j-1,x)<=680; 
         cp7=38.125*(T(j-1,x)-600)+950; 
         elseif  T(j-1,x)<=740; 
         cp7=-50.833*(T(j-1,x)-680)+4000; 
         elseif  T(j-1,x)>740; 
         cp7=950; 
         end  
         
         % STABILITY...  
          
         dtimel=p7*cp7*dx^2/(2*hco*dx+2*k7+2*emo*St *dx*(Tout+273.15)^3); % 
maximum time for instablity  
          dtl=dtimel/2;  
           
         syms T7 
         
         EQ7=k7*(T(j-1,x-1)-T(j-1,x))/dx-hco*(T(j-1 ,x)-Tout)-emo*St*((T(j-
1,x)+273.15)^4-(Tout+273.15)^4)-p7*cp7*(dx/2)*(T7-T (j-1,x))/(dtl); 
         [T7]=solve(EQ7); 
         T(j,x)=T7; 
         clear T7 
         clear EQ7 
         clear T7l  
         clear k7  
         clear cp7  
         clear p7 
              
        end  
        end  
   
    
    
end   
% OBTAIN RESULTS FROM MATLAB WORKSPACE (T). 
plot (tspace,T(:,n), '-b' , 'LineWidth' ,2) 
 
 


