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ABSTRACT 

Pneumatic conveying is widely used in the agricultural industry for seed and fertilizer 

conveying during seeding operations. Dilute phase conveying is used as it inherently has a disperse 

particle flow that is leveraged to promote uniform division of the flow. Due to the higher power 

required per unit mass for dilute phase conveying, research was undertaken to better understand 

the role of entrainment and conveying velocity on the particles’ behavior, entrainment level, and 

the power required to convey them.  

The two hypotheses that guided this thesis were that an increased velocity in the entrainment 

zone, relative to the downstream conveying zone would (1) increase the entrainment level of the 

product and (2) decrease overall power required for conveying. 

To test these hypotheses, the following were completed: 

• A non-invasive method to quantify the entrainment level of the particles was developed; 

• A lab-scale pneumatic conveying system was designed and built that allowed for testing the 

effect of independently varying the entrainment and conveying velocities; 

• These systems were used to explore product entrainment levels in the form of a probability 

distribution map of the products location in the conveying pipe; and 

• The relationship of entrainment velocity and conveying velocity on the pressure drop and 

energy required to convey was explored. 

An optical flow profiling imaging apparatus was designed and built that allowed for non-

invasive imaging of the product flow behavior. A laser was used to illuminate a cross-section of 

the conveying line. Successive images of this illuminated section were acquired and then processed 

to give a probability distribution map of the particles’ location within the pipe. The centroid of this 

distribution was used as a proxy for the entrainment level of the product within the pipeline. 

To enable conveying at two different velocities in a single system, a gas extraction system was 

designed and constructed. This system allowed for a higher velocity during product entrainment 

and after a certain distance downstream air volume is bled off which in turn lowers the conveying 

velocity.  This system was used in conjunction with the flow profiler to give a quantitative measure 

of the effect of gas extraction on the entrainment level of the product as defined by the centroid of 
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the probability distribution map. The profiles taken indicated that the entrainment velocity had a 

significant effect on the entrainment level of the product in the downstream section.  

In addition to the entrainment level of the product, velocity and pressure data were acquired to 

explore the energy needed to convey varying mass flow rates. Specific pressure drop (ratio of air 

and product pressure drop to the air only pressure drop) was plotted against the mass loading ratio 

(ratio of the mass flow rate of the solid to the mass flow rate of the fluid) and grouped by the 

velocity ratio (conveying velocity over the entrainment velocity). When the velocity ratio was one 

the slope was positive with an intercept of approximately one. The data agreed with previously 

published results. As the velocity ratio was lowered the slope was reduced as well. At velocity 

ratios of 0.6-0.7 the slope of the relationship was approximately zero. This indicated that entraining 

at the higher velocity and then conveying at a lower velocity at this ratio required no additional 

pressure drop for conveying compared to the air only pressure drop. In addition, the specific energy 

required to convey the product was calculated. At the aforementioned velocity ratios there was an 

8-16% energy savings compared to conveying at the same entrainment and downstream velocity. 

There will be an efficiency cost to accelerating the product in the entrainment zone, however if a 

system could be designed such that the efficiency gains of low-speed conveying are greater than 

the extra energy required in the entrainment region, a net energy savings can result.  
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CHAPTER 1: INTRODUCTION 

Agricultural producers in Western Canada use pneumatic conveying systems to transport seed 

and fertilizer from one or more large mobile tanks (the air cart) to the seeding implement (air hoe 

drill). A Case New Holland (CNH) air seeding system is shown in Figure 1.1. Variations of 

pneumatic conveying methods are used by all major manufacturers of seeding systems. The 

product is incorporated into many separate airstreams created by one or more fans (used as a single 

source) mounted on the air cart. These primary air lines carry seed and granular fertilizer to the 

seeding implement. The air and product are then separated into secondary runs that deposit seed 

into individual rows. The pneumatic system is operated in the dilute phase of solid-gas flow to 

facilitate seed separation at the seeding implement. Dilute phase flow is defined as a flow regime 

that uses a large volume of gas at high velocity (above the saltation velocity) to convey discrete 

particles (Klinzing, Rizk et al. 2010). 

 
Figure 1.1: CNH seeding implement with tractor, Precision Hoe Drill, and air-cart. Adapted 

from Case IH 2012 with permission. (Case IH 2012) 
Dilute phase flow is widely used for agricultural pneumatic conveying but it has disadvantages 

when compared to dense phase conveying, such as using more power per unit mass conveyed and 

the greater tendency to cause pipe wear and seed damage (Barbosa and Seleghim Jr. 2003). 



 

2 
 

Conveying power required is directly related to the velocity cubed, while pipe wear and seed 

damage are also exponentially related to the conveying velocity (Klinzing, Rizk et al. 2010). 

Reducing the conveying velocity can therefore significantly reduce costs associated with 

equipment maintenance and operation for the end user. 

As the agriculture industry, particularly in Western Canada, Australia, and Eastern Europe, 

shifts to larger equipment there is a need for more efficient seed delivery and air handling systems. 

The desired efficiency gains are driven by market demands and physical limitations with current 

fan designs. Any power savings that can be easily implemented into current air carts or designed 

into future iterations would be an advantage in the marketplace. Entrainment systems or methods 

that allow for power reduction and/or reduced product velocity are desirable. Lowering the 

carrying velocity has the additional benefit of reducing seed coat damage (increases germination) 

and minimizing fertilizer shattering (reduces dust which leads to uneven application). 

 RESEARCH OBJECTIVES 
The overarching theme for this research was to explore the effect of entrainment and conveying 

velocity on the efficiency of dilute phase agricultural pneumatic conveying systems. While other 

industries utilize similar conveying schemes, the impetus for this work comes from the agriculture-

sector and therefore agricultural materials, such as wheat, were used.  

1.1.1 Hypothesis 
Higher gas velocity in the entrainment zone, relative to the downstream conveying gas velocity, 

was proposed to have the following effects:  

1)  Increased entrainment level of the product and 

2)  Reduced overall power required for conveying by enabling a lower downstream conveying 

velocity. 

1.1.2 Specific goals of project 
The following were the specific objectives of the research: 

1. Develop a method to non-invasively quantify the entrainment level of conveyed 

particles. 

2. Design and build a lab scale pneumatic conveying system that allows the effect of 

independently varying entrainment velocity and conveying velocity to be tested. 
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3. Explore the product entrainment level at various conveying velocities and its 

relationship, if any, to conveying efficiency. 

4. Characterize the relationship of entrainment velocity, conveying velocity, and the 

energy required to convey a given mass flow rate of product. 

 OVERVIEW OF THESIS 
General background on agricultural pneumatic conveying, particle characteristics, particle 

entrainment, and forces on a particle will be outlined in Chapter 2. A novel method for non-

invasive monitoring and quantification of the entrainment level will be discussed in Chapter 3. The 

design and implementation of a gas extraction velocity reduction system will be discussed in 

Chapter 4. Finally, the effect of gas extraction that enables different entrainment and conveying 

velocities on the specific pressure drop and power characteristics of wheat will be explored in 

Chapter 5. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 

A general overview of pneumatic conveying systems and methods along with factors affecting 

particle conveyance will be discussed in the following sections. A more specific background is 

located in each following chapter with information that pertains specifically to the information 

given in that chapter. 

 PNEUMATIC CONVEYING SYSTEMS IN AGRICULTURE 
Pneumatic conveying can be described as the transportation of powders and granular materials 

in either a positive or negative pressure gas stream (Klinzing, Rizk et al. 2010).  Pressurized gas 

is used to achieve work on the bulk material to be delivered from one location to another.  

Positive pressure systems are used to transport particles from one common location to one or 

more destinations. The particles are metered from a storage tank into a fluid stream contained in 

some form of piping. At the destination particles are generally removed from the airstream using 

a cyclone, with the gas being vented to atmosphere or filtered to remove dust (Klinzing, Rizk et 

al. 2010). The conveying gauge pressures commonly found in pneumatic conveying are high 

pressure (310 kPa-891 kPa), medium pressure (103 kPa-310 kPa), and low pressure (less than 103 

kPa) (Shamlou 1988). 

Negative pressure pneumatic conveying is used to convey particles from multiple pickup or 

insertion points to a common destination. The most common use in agriculture would be grain 

vacuum systems used for unloading or cleaning dry bulk materials from bins, boats, trucks, or 

trains (Shamlou 1988). 

The third major type of pneumatic conveying system is a combination of positive and negative 

pressure. This hybrid combines the most useful features of both systems, namely the ability to 

convey materials from multiple pick up points to multiple discharge or collection locations 

(Klinzing, Rizk et al. 2010). The negative pressure portion of the system picks up the particles 

which are then transferred to the positive pressure side for distribution.  

2.1.1 Air Cart 
The air cart is an integral component of an air seeding or planting system. It functions as a 

mobile granular storage tank and the central distribution point with attached metering system as 
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shown in Figure 2.1. An air cart consists of one or more product tanks to allow for the distribution 

of both seed and fertilizer, known in the industry as a double shoot system. 

To aid in seed and fertilizer separation in the seed row, air carts employ double shoot 

distribution systems. Air carts designed for granular fertilizer applications as well as seeding will 

have separate, parallel conveying lines to place the fertilizer at a safe distance from the seed to 

minimize nitrogen burning. Both single and double shoot systems will have multiple primary 

conveying lines that are then split using manifolds into secondary conveying lines using the single 

air source. This method of conveying makes system balancing difficult and generally results in a 

higher conveying velocity being used than actually required for distribution. 

 
Figure 2.1: Schematic of the pneumatic distribution system for an air-seeding-cart. Adapted 

from Flexi-Coil 20 Series Seed Cart Operator’s Manual (Flexi-Coil 1997) 
Positive pressure air carts employ a centrifugal fan to provide the pneumatic system with its 

conveying gas. These fans provide high volume and velocity flow at low pressures. The air flow 

is routed down past the meter roller in Figure 2.3 in a downdraft configuration but most other 

manufacturers use a Venturi section to assist in product entrainment. 
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2.1.2 Metering Device 
Product metering on an air-cart is typically accomplished through the use of an auguring system 

or fluted rollers which rotate to deliver the required mass flow rate into the airstream. Systems of 

this type are able to meter a wide range of products and mass flow rates while minimizing product 

damage and meter blockages (Kraus 1991).  

A more detailed cross section of air-cart tank system and a cross-section of the metering box 

are shown in Figure 2.2 and Figure 2.3 respectively. A double-shoot tank configuration is shown 

with the air-flow flowing down through the meter box and accelerating the particles into the 

airstream.  

 
Figure 2.2: Double-shoot tank configuration. Adapted from Flexi-Coil 20 Series Seed Cart 

Operator’s Manual (Flexi-Coil 1997) 
The cross-section in Figure 2.3 shows the path of both the conveying gas and the product to be 

conveyed. The meter rotates clockwise to dispense product at the desired rate into the air stream. 

The particles are initially accelerated down until the conveying line changes direction. The 

particles then have to undergo another acceleration phase horizontally in the direction of travel. 
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Figure 2.3: Cross-section of a CNH meter box (1. Baffle Panel 2. Retainer latch 3. Inspection 

cover 4. Fastener knobs). Adapted from the Flexi-Coil air-cart assembly instructions (Flexi-Coil 
2011) 

2.1.3 Seeding Implement 
The seeding implement is the tool that physically places the seed and fertilizer into evenly 

spaced rows. There are many variations of implements such as: precision planters, which use a 

vacuum plate to precisely meter seed into downspouts; air-disc drills, which use the conventional 

air carts to deliver seed to the rows created by disc openers; and air hoe-drills, which also use the 

conventional carts with a hoe, shovel, or knife opener to create the seed rows. A typical hoe-drill 

shank and packer arm is shown in Figure 2.4. This arm is used on the CNH Precision Hoe Air Drill 

and is equipped for placing both seed and fertilizer into a single row. The parallel linkage enables 

a consistent depth to be maintained between the bottom of the packer wheel and the tip of the 

knife. This allows for a consistent seed depth and fertilizer placement across the drill in varying 

ground conditions and elevations.  



 

8 
 

 
Figure 2.4: CNH Precision Air-Hoe Drill Shank Assembly (Case IH 2012). 

 PARTICLE CHARACTERISTICS 
Wheat will be used for all example calculations, as it has the most readily available data in the 

literature for the agricultural products of interest. Unless otherwise stated, the properties of wheat 

were collected from product that was used during testing. A few additional values were obtained 

from Güner (2007). These properties are shown in Table 2.1. 

Table 2.1: Mean and standard errors of selected physical properties of the wheat used. Unless 
indicated, all values were obtained from the actual product used during testing.  

Property Wheat 
Geldart Classification Group D 

Length [mm] 6.04 ± 0.34 
Width [mm] 3.22 ± 0.20 

Thickness [mm] 2.79 ± 0.26  
Geometric mean diameter [mm] 3.86 ± 0.34 

Equivelant Spherical Diameter [mm] * 3.657 ± 0.001 
Sphericity [%] 60 ± 3 

Thousand seed mass [g] 36.47 ± 0.1 
Bulk density [kg/m3] 812 ± 3 

Particle density [kg/m3] * 1423.8 ± 0.7 
Projected area [mm2] 23 ± 2 

Porosity [%] ** 38.49 ± 1.36 
Terminal velocity [m/s] ** 9.86 ± 0.45 – 10.27 ± 0.52 

Drag coefficient ** 0.49 ± 0.05 – 0.53 ± 0.06 
* Particle Density and Equivalent Diameter were calculated from the average kernel 
volume determined using a gas pycnometer. 
** Güner (2007). 

The particle characteristics greatly affect the conveying and entrainment of solids in a gas flow. 

The following properties will be explored separately as they are particle properties and are 
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independent of the conveying fluid but will be utilized in many of the equations and parameters 

that will be discussed in Section 2.3. 

2.2.1 Shape and Size 
The geometric properties of the particles in a gas-solid flow have a large effect on the conveying 

characteristics (Fan and Zhu 2005). These properties include size, shape, overall size distribution, 

and family of shape. Agricultural particles are generally non-spherical and irregular; this can limit 

the application of findings from much published research, as plastic or glass spheres are generally 

used to simplify modelling. Even products considered spherical can be fairly irregular when it 

comes to size and shape, especially if they are a biological material. 

Shapes are generally described by equivalent diameters which are based on volumes, terminal 

velocities or other properties that can be measured (Fan and Zhu 2005). There can be many 

equivalent diameters describing the size of an irregular particle depending on the application. A 

few common terms to describe a particle are displayed in Figure 2.5. 

 
Figure 2.5: Schematic of a particle and its equivalent Sieve, Area, and Volume Diameter 

(Adapted from Fan and Zhu (2005)). 
Fan and Zhu (2005) describe the surface area diameter, volume diameter, and sieve diameter as 

the following. The equivalent surface diameter ds, is defined as the diameter of a sphere that has 

the same surface area as the irregular particle. Similarly, the equivalent volume diameter, dv, is the 

diameter of a sphere with equal volume to the particle, Vp. 
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 The sieve diameter is the smallest square opening the particle will fall through during sieving. 

To estimate the diameter of a particle using sieves a standard is to be followed. Two examples are 

the Tyler and the ASTM standard test methods for sieve analysis. The ASTM standard describes 

the range and size of sieve openings (ASTM 2006).  

Additionally, the size characteristics can be measured by the following methods: microscopy, 

gas absorption, diffraction, laser Doppler phase shift, and impaction (Fan and Zhu 2005). The 

details of these methods will not be reviewed here, but the wide range of methods and complexity 

of testing suggest that determining the shape properties of a particle is not always a straightforward 

process. 

 Two other diameters common in the literature are the geometric mean diameter (dg) and 

arithmetic mean diameter (da). The geometric mean diameter is the cube root of the product of the 

maximum, intermediate, and minimum diameter. Whereas the arithmetic mean diameter is the 

mean diameter of all the particles (Güner 2007). These diameters can be calculated using the 

following two equations given by Güner and measuring the maximum (lmax), intermediate (lint), 

and minimum (lmin) dimension of the particle. 

 𝑑𝑑𝑔𝑔 = [(𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚)(𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖)(𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚)]
1
3 2.2 

 
 

𝑑𝑑𝑎𝑎 =
𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖 + 𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚

3
 

2.3 

 
Whereas the sphericity of a particle, 𝜓𝜓, is calculated using the following equation. 

 
𝜓𝜓 =

[(𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚)(𝑙𝑙𝑖𝑖𝑖𝑖𝑖𝑖)(𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚)]
1
3

𝑙𝑙𝑚𝑚𝑚𝑚𝑚𝑚
 

2.4 

 

2.2.2 Particle Density 
The density of both the solid and the fluid phase of the pneumatic conveying system are very 

important quantities for calculating velocities, Reynolds numbers, and other properties. The solid 

bulk density (𝜌𝜌𝑏𝑏) and particle density (𝜌𝜌𝑝𝑝) are generally given in literature and are required for 
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further calculations. The bulk density is calculated by simply taking the mass of a known volume 

of either freely settled or tapped (must be stated) particles to obtain the density (Fan and Zhu 2005). 

This density takes into account the volume of the solid fraction, the inter-particle void fraction, 

and the internal voids. The particle density can be measured using a gas pycnometer to determine 

the volume of the solid fraction (including internal voids). The mass of the particles is then divided 

by the volume of the solids fraction to give 𝜌𝜌𝑝𝑝.  

 FACTORS AFFECTING FLOW AND PARTICLE ENTRAINMENT 
The factors that affect a particle’s flow characteristics and its initial entrainment will be 

discussed in the following sections. These major factors are the fluid density, fluid viscosity, void-

solids concentration, slip velocity, fluid Reynolds number, particle Reynolds number, drag force, 

friction forces, collision forces, and gravitational forces. Additionally, a few other effects that are 

hypothesised to come into play during testing for this project are shear-induced turbulent flow, 

Saffman force, Venturi effect, and turbulence suppression. 

2.3.1 Dilute Phase Flow 
The fluid flow condition most commonly encountered in agricultural pneumatic conveying is 

dilute two-phase flow. This flow regime is simply described as having a large conveying gas to 

solids ratio while being operated at relatively high velocities (Klinzing, Rizk et al. 2010). Generally 

the conveying gas will have a velocity in the range of 12 m/s for a very fine powder, 16 m/s for a 

fine granular material, to greater than 25-30 m/s for large particles (Mills 2004). A dilute phase 

system will also have a solids to gas mass flow ratio of less than 15 (Klinzing, Rizk et al. 2010) 

Consistent dilute phase flow is necessary for accurate product splitting and delivery to seeding 

implements. If the flow is in transition between dilute and dense phase flow, pulsing (slug flow) 

of the product will occur, causing uneven seed spacing and potential plugging.  Unique challenges 

of dilute phase conveying include using higher power per unit mass conveyed than other pneumatic 

systems (Barbosa and Seleghim Jr. 2003) and causing pipe wear and product damage due to higher 

conveying velocities (Klinzing, Rizk et al. 2010). 

2.3.2 Pressure Drop 
As an initial starting point in determining the pressure loss of a pneumatic conveying system 

the general pressure drop equation due to friction as developed by Darcy can be used:   
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∆𝑝𝑝 =

𝜆𝜆𝐿𝐿𝜌𝜌𝜌𝜌𝑣𝑣2

2𝐷𝐷
 

2.5 

 
where 

𝜆𝜆𝐿𝐿 is the pipe friction factor, 

𝜌𝜌 is the fluid density, 

𝐿𝐿 is the pipe length, 

𝑣𝑣 is the superficial fluid velocity, and 

𝐷𝐷 is the pipe inner diameter. 

This equation will give an estimate of the pressure loss due to the conveying pipe but does not 

take into account the particle acceleration or fitting pressure losses.  

2.3.3 Conveying Fluid Density 
The fluid density is calculated knowing the barometric pressure, relative humidity, saturation 

pressure, and the operating temperature as shown in the following equation. While calculating the 

density of dry air is quite straightforward, humid air requires the use of partial pressure formulas. 

The saturation pressure (psat) of air can be found by taking a regression of steam tables at the 

operating temperature. Knowing the saturation pressure, the vapour pressure can be found by 

simply multiplying psat by the relative humidity. The difference between the barometric pressure 

and the vapour pressure is therefore the pressure of dry air using the principal of partial pressures. 

The density of humid air is then calculated as a mixture of ideal gases as follows: 

 𝑝𝑝𝑣𝑣 = 𝑅𝑅.𝐻𝐻.∗ 𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆  2.6 

  𝜌𝜌𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑝𝑝𝑑𝑑
𝑅𝑅𝑑𝑑𝑇𝑇

+
𝑝𝑝𝑣𝑣
𝑅𝑅𝑣𝑣𝑇𝑇

 2.7 

where 

𝜌𝜌𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝐴𝐴𝐴𝐴𝐴𝐴 is the density of humid air [kg/m3], 

𝑝𝑝𝑑𝑑 is the pressure of dry air [Pa], 

𝑝𝑝v is the pressure of water vapour [Pa], 

𝑅𝑅𝑑𝑑 is the specific gas constant for dry air, 287.058 [J/kg K], 
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𝑅𝑅𝑣𝑣 is the specific gas constant for water vapour, 461.495 [J/kg K], and 

T is the temperature in degrees Kelvin. 

At a station barometric pressure of 720 mmHg or 95.99 kPa, 50% R.H. and 20 oC the density 

of humid air was calculated to be 1.135 kg/m3.1 

2.3.4 Dynamic Viscosity 
Dynamic viscosity is another important parameter that is needed to calculate the Reynolds 

number of the conveying fluid. The main influence on the viscosity of a fluid is the temperature, 

which for conveying is the operating temperature of the gas. The dynamic viscosity based on 

temperature effects can be found using Sutherland’s formula as described by Smits and Dussauge 

(2005): 

 
𝜂𝜂 = 𝜂𝜂0

𝑇𝑇0 + 𝐶𝐶
𝑇𝑇 + 𝐶𝐶

�
𝑇𝑇
𝑇𝑇0
�
3
2
 

2.8 

where 

𝜂𝜂 is the dynamic viscosity at input temperature [Pa s], 

𝜂𝜂0 is the reference viscosity at T0 [Pa s] (18.97 µPa s for air), 

𝑇𝑇 is the input temperature [K], 

𝑇𝑇0 is the reference temperature [K] (291.15 K for air), and 

𝐶𝐶 is Sutherland’s constant for the gas (C=120 for air). 

For moderate pressures (less than 35 atm), the temperature effect on viscosity of the gas is not 

influenced by more than 10% (Klinzing, Rizk et al. 2010). For the operating conditions typically 

found in the lab conveying system (~25 oC), the dynamic viscosity is calculated using Equation 

2.8 to obtain 1.93 x 10-5 Pa s. There is less than a 2% difference between this and the reference 

viscosity which indicates that while temperature does have an effect on viscosity, it is small at 

these operating conditions. 

                                                 
1 Typical station barometric pressure (station is at an elevation of 504 m and values were not corrected to sea level), 
R.H. and temperature measured in the laboratory. 
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2.3.5 Void-Solid Concentration and Slip Velocity 
Two important factors in the modeling and prediction of gas-solid flow are the voidage (void-

solid ratio) and the slip velocity. Pahk and Klinzing (2010) describe the void-solid ratio as the 

volume between particles containing the carrier fluid in a given control volume. The voidage can 

be used to better understand plug characteristics, the pressure drop between two points, particle 

velocity and the friction factor (Pahk and Klinzing 2010): 

where 

𝜀𝜀 is the void ratio, 

V is the pipe volume [m3], 

VS  is the enclosed solids volume [m3], 

𝜙𝜙 is the mass loading ratio, 

ρ* is the apparent bulk density [kg/m3],  

𝜌𝜌𝑝𝑝 is the particle density, 

𝑣𝑣 is the superficial gas velocity, 

𝑣𝑣𝜀𝜀 is the voidage or the average fluid velocity between particles, and 

𝑣𝑣𝑝𝑝 is the average particle velocity. 

If the superficial gas velocity is a known quantity the voidage, Ve can be given as:  

Therefore, if the voidage, density, and mass flow rate are known, the particle and/or the fluid 

velocity between particles can be found (Klinzing, Rizk et al. 2010). Similarly, the slip velocity 

(ws) is the difference between the conveying gas and the particle velocities. 

 ws = vε − v𝑝𝑝 =
v
ε
− v𝑝𝑝 2.11 

 
𝜀𝜀 =

𝑉𝑉 − 𝑉𝑉𝑆𝑆
𝑉𝑉

= 1 − µ
𝜌𝜌
𝜌𝜌𝑝𝑝
𝑣𝑣𝜀𝜀
𝑣𝑣𝑝𝑝

=  
1 − 𝜌𝜌∗

𝜌𝜌𝑝𝑝
 

2.9 

 𝑣𝑣𝜀𝜀 =
𝑣𝑣
𝜀𝜀

 2.10 
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2.3.6  Conveying Fluid Reynolds Number 
The flow regime of a fluid is described by its Reynolds number, Re, a dimensionless unit that 

compares the inertial forces to viscous forces during flow (Fan and Zhu 2005): 

 𝑅𝑅𝑅𝑅 =  
𝜌𝜌𝜌𝜌𝜌𝜌
𝜇𝜇

 2.12 

where 

𝑅𝑅𝑅𝑅 is the Reynolds number of the conveying fluid, 

𝜌𝜌 is the density of the conveying fluid [kg/m3], 

D is the inner diameter of the pipe [m], 

v is the velocity of the conveying fluid [m/s], and 

𝜇𝜇 is the dynamic viscosity of the fluid [kg/ (m s)]. 

Pipe flow is considered laminar if the Reynolds number is lower than 2300 for a given pipe 

inner diameter. Laminar flow is characterized by concentric flow layers, with the highest fluid 

velocity in the center of the pipe. The fluid velocity drops quickly close to the pipe wall or 

boundary layer (Klinzing, Rizk et al. 2010). Turbulent flow occurs in flows with a Reynolds 

number of greater than 4000 and is characterized by random fluid movement and a much flatter 

velocity profile. Transition flows occur between 2300<Re<4000 where properties of either regime 

can be noticed, depending on factors such as wall roughness and flow development. 

The temperature directly affects the dynamic viscosity as shown in Equation 2.8 which in turn 

has a linear effect on the Reynolds number as shown in Equation 2.12 that is more pronounced as 

the velocity increases. Typical values for conveying agricultural materials range from 2.0 x 104 to 

1.5 x 105
. 

2.3.7 Particle Reynolds Number 
The Reynolds number of a single particle is necessary for calculating the drag coefficient of a 

particle, which in turn is required for calculating the drag force. The formula is shown below and 

is nearly identical to the Reynolds number for pipe flow except the diameter is of the particle and 

ws is the slip velocity between the superficial gas velocity and the particle’s velocity. 
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𝑅𝑅𝑅𝑅𝑝𝑝 =  

𝜌𝜌𝐷𝐷𝑝𝑝𝑤𝑤𝑠𝑠
𝜇𝜇

 2.13 

Where: 

𝑅𝑅𝑅𝑅𝑝𝑝 is the Reynolds number of the particle, 

𝜌𝜌 is the density of the conveying fluid [kg/m3], 

𝐷𝐷𝑝𝑝 is the diameter of the particle [m], 

ws is the slip velocity (vε-vp) [m/s], and 

𝜇𝜇 is the dynamic viscosity of the fluid [kg/ (m s)]. 

A typical Rep range for wheat is 4 x 103
 to 8 x 103. Canola has a Rep of less than 2 x 103 at 

typical conveying velocities while chickpeas can have a Rep of up to 1.6 x 104 due to their large 

diameter. 

2.3.8 Minimum Conveying Velocity 
The minimum conveying velocity refers to lowest conveying gas velocity that a system can 

operate at without behaving erratically or plugging. There are many terms in the literature for this 

velocity, some of which include the saltation velocity, pick-up velocity, critical velocity, initial 

mixing velocity, or the velocity at the minimum pressure drop (Hubert and Kalman 2003). For 

dilute phase conveying, the saltation velocity will be 2-2.5 times lower than the pickup velocity 

for a single particle and nearly equal for a layer of particles (Hubert and Kalman 2004). For 

purposes of this work, the saltation velocity will be defined as the minimum conveying velocity 

of the system.  

Figure 2.6 shows the predicted relationship between the mass loading ratio, ϕ, which is defined 

as the mass flow rate of the particles (ṁp) divided by the mass flow rate of the conveying gas (ṁg) 

and saltation velocity u, using the estimation developed by Cabrejos and Klinzing (1994). This 

formula tends to overestimate the saltation velocity for very dilute flows according to Hubert and 

Kalman (2003) 
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Figure 2.6: Saltation Velocity vs. Mass Flow Ratio of wheat at a particle density of 1460 

kg/m3 using the estimation developed by Cabrejos and Klinzing (1994) 

 FORCES ON A PARTICLE 
The following sections outline the forces that act on a particle. The drag force provides the 

positive acceleration while the other forces either act to suspend, settle, or slow down the particles. 

2.4.1 Drag Force 
One of the most important quantities in pneumatic conveying and entrainment of particles is 

the drag force. The drag force accelerates the particle in the direction of fluid flow. The difference 

between the gas velocity and the particle velocity provides for this acceleration.  

The drag coefficient is related to the Reynolds number of the particle (which is directly related 

to the particle diameter) and can be found from a standard drag coefficient curve (Klinzing, Rizk 

et al. 2010) or through empirical equations such as the one developed by Turton and Levenspiel 

(1986): 

 𝐶𝐶𝐷𝐷 =  
24
𝑅𝑅𝑅𝑅𝑝𝑝

�1 + 0.173 ∗ �𝑅𝑅𝑅𝑅𝑝𝑝�
0.657

� +
0.413

1 + 16300 ∗ �𝑅𝑅𝑅𝑅𝑝𝑝�
−1.09 2.14 

The drag force is useful in analyzing the force on a particle. This along with the acceleration 

force, the force due to gravity, and friction forces need to be overcome by the drag force to convey 

a particle. The drag force is shown in Equation 2.15,  

u = 17.395ϕ0.5
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 𝐹𝐹𝐷𝐷 = 𝐶𝐶𝑇𝑇(𝑤𝑤𝑠𝑠)2, 2.15 

where:  

𝐶𝐶𝑇𝑇 is the turbulent drag factor and 

𝑤𝑤𝑠𝑠 is the slip velocity [m/s], ug-up. 

Substituting Equation 2.16 into Equation 2.15 FDRAG can be simplified into Equation 2.17, 

 𝐶𝐶𝑇𝑇 =
1
2
𝐶𝐶𝐷𝐷𝜌𝜌𝐴𝐴∗ 2.16 

 𝐹𝐹𝐷𝐷 = 𝐶𝐶𝐷𝐷𝜌𝜌𝑤𝑤𝑠𝑠2 𝐴𝐴∗

2
, 2.17 

where:  

A* is the projected area [m3] 

𝐶𝐶𝐷𝐷 is the drag coefficient, 

𝜌𝜌 is the density of conveying fluid (air) [kg/m3], and 

𝑤𝑤𝑠𝑠2 is the slip velocity [m/s], �𝑢𝑢𝑔𝑔 − 𝑢𝑢𝑝𝑝�
2
. 

The drag force on a particle is calculated using the simplified Equation 2.17 as described by 

Klinzing, Rizk et al. (2010). Because the drag force is directly related to particle diameter, the 

method of measuring the diameter becomes important for accurate predictions.  

An estimation of the power required to convey the particles is given by the following equation. 

Due to the cubed relationship with velocity, the conveying power is greatly affected by changes to 

the conveying velocity.  

 
𝑃𝑃 = 𝐹𝐹𝐷𝐷 ∗ 𝑣𝑣 =

𝐶𝐶𝐷𝐷𝜌𝜌𝜌𝜌3 𝐴𝐴∗

2
 2.18 

2.4.2 Other Lift Forces 
Small particles in a shear field will encounter a lift force perpendicular to the direction of fluid 

flow. This force was first described by Saffman (1965) for small particles in very viscous flows. 

The shear lift force is given in Equation 2.19 which is a generalization of Saffman’s one 

dimensional form given by Drew (1976). 
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 𝐹𝐹𝑙𝑙𝑙𝑙 = 6.46𝑐𝑐𝑙𝑙𝑙𝑙𝑟𝑟2�𝜌𝜌𝜌𝜌
𝑢𝑢𝑟𝑟𝐷𝐷𝑇𝑇
�𝐷𝐷𝑇𝑇

 2.19 

Where: 

  cls is the Saffman lift coefficient, 

  r is the particle radius [m] 

  ρ is the fluid density [kg/m3], 

µ is the viscosity of the fluid [Pa s], 

ur is the relative fluid velocity [m/s], and 

DT is the rate of deformation tensor. 

The other relevant lift force is the rotational or Magnus lift force which is given in equation 

2.20. This force acts perpendicular to the plane created by the velocity and the spin vector of the 

object (Mehta 1985). 

 𝐹𝐹𝑙𝑙𝑙𝑙 = 𝑆𝑆(𝜔𝜔𝑟𝑟 × 𝑢𝑢𝑟𝑟) 2.20 

Where: 

  S is the air resistance coefficient across the objects surface, 

  ur  is the fluid velocity [m/s], and 

  ωr is the angular velocity [m/s] of the particle. 

2.4.3 Gravitational Force 
The force due to gravity acts to pull particles to the bottom wall in a horizontal conveying 

system. This force must be balanced or overcome by other lift forces in order to achieve fully 

entrained dilute phase flow. The gravitational force acting on a particle is given in the following 

equation. 

 𝐹𝐹𝑔𝑔 = �𝑚𝑚𝑝𝑝 −𝑚𝑚𝑓𝑓�𝑔𝑔 2.21 

Where: 

  mp is the mass of the particle with diameter d [kg], 
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  mf is the mass of fluid displaced by the particle with diameter d [kg], and 

  g is the acceleration due to gravity [m/s2]. 

2.4.4 Electrostatic Force 
Another general force that acts counter to both drag and lift forces is the electrostatic force. 

Particles in motion can experience significant electrostatic forces due to their induced charge. This 

effect is especially noticeable with small particles in ungrounded or plastic conveying lines and 

when the conveying air is dry (Klinzing, Rizk et al. 2010).  

 
𝐹𝐹𝑒𝑒 = �𝐸𝐸𝑥𝑥 �

𝑞𝑞
𝑚𝑚𝑝𝑝

�𝑚𝑚𝑝𝑝� 2.22 

Where: 

  Ex is the electric field [N/C], 

mp is the mass of the particle with diameter d [kg], and 

  q is the charge [C]. 

 VISUALIZATION OF FORCES ACTING ON A SINGLE PARTICLE 
The factors outlined previously all play a role in the basic mechanics of conveying a single 

particle (i.e. assumed no interaction with other particles for simplification). A force analysis will 

be completed to illustrate the basic underlying relationships to achieve pneumatic conveying. 

The major forces on a single particle are shown with a Free Body Diagram (FBD) in Figure 2.7. 

The forces for a single particle that is fully entrained are: drag force in the x-direction, drag force 

in the y-direction (due to turbulent eddies), electrostatic forces, and the force due to gravity. These 

forces will be described individually along with other forces not included in this analysis but 

important in pneumatic conveying. 

Not shown are friction forces from contact with the wall or other particles as this was an 

assumed single particle model. These forces would cause a deceleration of the particle which 

would then need to be re-accelerated by the drag force. 
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Figure 2.7: Simple free body diagram showing the main forces acting on a single particle fully 

entrained (i.e. no collision or friction forces). 
The drag force is required for motion and can be generalized as the force caused by a velocity 

difference between the conveying fluid and the particle. Equations 2.15, 2.16, and 2.17 describe 

the drag force. The force balances are shown in Equation 2.23 and 2.24 for the generic case of 

multiple particles with collision terms (particle-wall and particle-particle interaction) shown but 

not discussed in this analysis due to the limited scope of this paper.  

 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑥𝑥 = 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑥𝑥 + 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑥𝑥 + 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑥𝑥 + 𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥  2.23 

The net force in the x-direction must be positive for particle acceleration, theoretically zero to 

maintain conveying velocity, and negative if the particles are being decelerated. The FDRAGx must 

be large enough at the conveying slip velocity to overcome the negative forces caused by 

electrostatic forces, friction forces, and energy loss due to collisions. 

 𝐹𝐹𝑁𝑁𝑁𝑁𝑁𝑁𝑦𝑦 = 𝐹𝐹𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑦𝑦 + 𝐹𝐹𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑦𝑦 + 𝐹𝐹𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑦𝑦 + 𝐹𝐹𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑦𝑦 + 𝐹𝐹𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑌𝑌  2.24 

A generally positive or zero net force in the y-direction must be maintained in order to have 

dilute and fully entrained conveying. The drag force in the y-direction is due to velocity caused by 

eddies, Saffman and Magnus lift forces, and randomness in the turbulent fluid flow. Due to this 

turbulence and random motion, the FDRAGy may alternately act in the positive or negative y-

direction, but will on average be positive to overcome the force due to gravity and keep the 

particles suspended (a net force of generally zero). 
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CHAPTER 3: OPTICAL FLOW PROFILING METHOD USED FOR VISUALIZATION AND 

EVALUATION OF FLOW DISTURBANCES IN AGRICULTURAL PNEUMATIC CONVEYANCE 

SYSTEMS 

An optical flow profiling method and apparatus was designed and built to aid in quantifying the 

entrainment level of agricultural products in pneumatic conveying systems. This system consists of two 

major components: the optical imager and the positioning system. The imaging system uses a red laser to 

illuminate a cross section of fluid flow which is imaged using machine vision cameras to produce plots 

that represent the time averaged location of particles in the pipe. The positioning apparatus is used to place 

the imager in various orientations for different conveying systems in addition to moving along the 

conveying pipe.  

This paper was co-authored by Dr. Scott D. Noble and published in Computers and Electronics in 

Agriculture in October 2015: 

Keep T, Noble SD (2015) Optical flow profiling method for visualization and evaluation of flow 

disturbances in agricultural pneumatic conveyance systems Computers and Electronics in 

Agriculture 118:159-166 doi:10.1016/j.compag.2015.08.029 

Fabrication of the optical imager was mainly completed by the author of this thesis in consultation with 

Dr. Scott Noble. Preliminary design of the imager stand was completed by B. Lozinsky and S. Gregoire 

in the course of their ABE 495 capstone design while Dr. Noble designed the optical platform. The 

machining of the optical platform and components was done in house at the College of Engineering Shops, 

University of Saskatchewan. The imager stand and positioning system was contracted out to Lean 

Machine Fabrication for final design and fabrication which I oversaw. Apparatus calibration, construction, 

and testing was performed by Mr. Keep along with data collection and analysis. I wrote the manuscript 

while Dr. Noble provided guidance, revisions, and editing. 

The manuscript is formatted to fit this thesis with minor edits for flow, formatting, and numbering. A 

brief discussion of an alternative method of profiling the flow was added, along with comments on why it 

was not used.  
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OPTICAL FLOW PROFILING METHOD USED FOR VISUALIZATION AND EVALUATION OF FLOW 

DISTURBANCES IN AGRICULTURAL PNEUMATIC CONVEYANCE SYSTEMS  

Tyrone Keep and Scott D. Noble 

Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 

S7N 5A9 

e-mail: tyrone.keep@usask.ca, scott.noble@usask.ca

ABSTRACT 

Pneumatic conveying is widely used for transporting granular materials and agricultural products. 

Traditional flow visualization methods are used extensively in experimental fluid dynamics but have not 

been commonly used with agricultural products as the flow seeding particles. A flow visualization method 

was developed to aid in understanding physical design changes made to agricultural pneumatic conveying 

systems. This optical flow profiling method is demonstrated by providing qualitative flow images and 

quantitative values to describe the behaviour of the particle flow, both upstream and downstream of a 25 

mm spherical obstruction. The sphere was attached to the bottom of an acrylic conveying line that was 

conveying wheat particles [equivalent diameter: 3.66 mm] at an air speed of 20 m/s and a mass flow rate 

of approximately 5 kg/min. Probability density maps of particle occurrence were developed to describe 

the chance of a wheat particle being present in a particular location of the conveying line. The data 

contained in these maps were used to determine the centroid of the distribution and to plot the change in 

the cross-sections over the test area of the pneumatic conveying system.  

 

 

Keywords: air seeder; pneumatic conveying; imaging; laser illumination; seed transport; dilute phase 
flow. 
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 INTRODUCTION 
Pneumatic conveying is an important and widely used method of handling agricultural materials. 

Specifically, air seeders employ dilute-phase pneumatic conveying for transporting seed and granular 

materials from the air cart (a mobile storage tank that dispenses seed and granular fertilizer) to the seeding 

implement (air hoe-drill or disc-drill). This method of seeding is popular for planting wheat and other 

small and medium grains in large fields in western Canada, the U.S. Midwest, Australia, Ukraine and 

Russia. As these implements have increased in size (the largest have planting widths in excess of 30 m 

wide) more attention is being paid to the nature of particle flow in the conveying line.  

The fluid flow condition most commonly encountered in agricultural pneumatic conveying is dilute 

two-phase flow. Dilute phase flow is necessary for accurate product splitting and delivery to seeding 

implements, but it has some disadvantages. It utilizes higher power per unit mass conveyed than other 

pneumatic systems (Barbosa and Seleghim Jr. 2003) and can cause pipe wear and product damage due to 

higher conveying velocities (Klinzing, Rizk et al. 2010).  

If the particle location through flow obstructions (elevation changes or bends) is better understood, 

conveying power can be potentially reduced while minimizing damage to the particles conveyed. This is 

of great interest in air seeder design and development, among other applications. Therefore, the objective 

of this study was to develop and test an optical system to image cross-sections of a laboratory-based 

conveying line to aid in understanding particle behaviour, and the cross-sectional location in particular. 

The system will need to incrementally obtain cross-sectional images upstream, adjacent to, and 

downstream of the obstruction to visualize the flow behaviour over the region of interest. 

The main alternative method to an optical imaging system for flow profiling consists of physically 

sampling the flow. Various methods could be employed but a system that is similar to the work of Santos, 

Tambourgi et al. (2011) would be simplest to implement. The termination of the conveying line consisted 

of 9 square tubes that were made to fit into the pipe. The ends of these tubes were fitted with nylon bags 

to collect the particles that were located in that section of pipe and then the mass fraction per unit area was 

calculated. While this method is much simpler to execute it has some major disadvantages such as: being 

intrusive, lack of flexibility in the imaging location (must be at the end of the conveying line), and the grid 

spacing (and therefore profile resolution) is limited by the pipe and particle diameter.  

The concept of using a laser to illuminate a thin sheet of a fluid flow is not new (Adrian and Yao 1985, 

Maas, Gruen et al. 1993, Westerweel 1997, Yan and Rinoshika 2011). Laser light sheet flow visualization 
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has been around in many forms since the 1980’s and has been used to visualize the behavior of fluid flows 

seeded with small particles that are assumed to mimic the fluid’s behavior (Adrian 1991). Other methods 

such as Particle Imaging Velocimetry (PIV), Stereo PIV, and Particle Tracking Velocimetry (PTV) use 

and have expanded on many of the same principles of visualizing a flow using laser light and tracer 

particles (Adrian and Westerweel 2011).  

While these are all well understood techniques in experimental fluid mechanics for flows seeded with 

very small particles, they are not as widespread in pneumatic conveying systems that are designed to 

convey larger particles. Giddings, Azzopardi et al. (2011) used PIV to image the fluid behavior in a 

Venturi section of a coal conveying system. This study also included a brief description of laser sheet 

illuminated cross-sectional distributions of coal particles with a size range up to 140 μm. These images 

were used to visually describe the system but were minimally processed and were not the focus of the 

research. Yan and Rinoshika (2013) undertook a similar study using high-speed PIV to image large scale 

particles (≈2 mm). The main focus of these studies and others like them was to determine the velocity of 

the particles, not the probability of occurrence in a cross-sectional location.  

 METHODS AND MATERIALS 
The optical flow profiling method that was developed to explore the location of product flow has two 

main subsystems: imaging and mechanical. The imaging portion of the apparatus was developed in order 

to quantify the flow behaviour of large agricultural particles being conveyed, while the mechanical system 

is used to position, align, and allow for movement along the conveying line.  

3.2.1  Optical System 
Selective illumination of a thin cross-section of the conveying line is achieved through the use of a red 

laser and a line generating optic. This creates a thin sheet of laser light perpendicular to the conveying line 

and the nominal direction of flow. As particles travel through the sheet of light they are illuminated. An 

image of this laser sheet and any particles that happen to be passing through it is captured with a machine 

vision camera and mirror. Subsequent images are taken and together they are used to develop a probability 

density map (PDM). The intensity of each pixel in the map indicates the probability of a particle travelling 

through that pixel location within the conveying line. 

Figure 3.1 shows a schematic version of the optical system with the major components labeled. These 

include a 5 mW-635 nm laser and a Prosilica GC 1290 machine vision camera (Allied Vision Technologies 

GmBH, Stadtroda, Germany). The camera has a resolution of 1280 by 960 pixels and was operated at 15 
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frames per second with an exposure time of 0.05 seconds. This relatively long exposure was chosen as a 

compromise between available light, particle blur, and frame rate. The images of the cross section are 

captured through the use of a mirror and a band-pass interference filter that allows only light with the 

same wavelength as the laser to reach the camera sensor. This helps to remove noise due to extraneous 

lab lighting and enables future work with different laser wavelengths in the same enclosure. The laser 

sheet is created by a 635 nm red laser that is shaped using a cylindrical line generating lens, with a 30° 

spread with a Gaussian intensity profile.  The optical system is mounted on an optics bread board attached 

to linear bearings and bearing rails. This and the rest of the mechanical system will be discussed in greater 

detail in the following section. 

 
Figure 3.1: Schematic of the optical flow profiling apparatus. Distances not to scale but indicate test 

locations in mm. Red laser sheet illuminates a plane perpendicular to the product flow. Single images 
are taken, compiled, and averaged to give a map of the probability of a product being located at a given 

pixel. 
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The optical flow profiling apparatus was tested by affixing a 25 mm diameter sphere to the bottom of 

a clear acrylic section of the pneumatic conveying line (63.5 mm outer diameter, 57.3 mm inner diameter). 

This disturbance created a very noticeable change in the flow path of the conveyed product that illustrated 

the applicability of this two-phase flow visualization method. The apparatus was moved along the bearing 

rails to obtain incremental cross-sections upstream, adjacent to, and downstream of the sphere. 

Wheat seed with properties as shown in Table 3.1 was metered at an approximate rate of 5 kg/min into 

a 20 m/s airflow [Reair only ≈ 7.1x104, Reparticle ≤ 4.8x103 depending on superficial air velocity]. The wheat 

was dispensed from a lab-scale air cart using a meter roller controlled by a stepper motor. Conveying air 

was supplied by an electrically-controlled centrifugal fan with feedback loop to maintain a stable velocity.  

Table 3.1: Average properties of the wheat used 
1000 Seed Count Mass (g) 36.47 
Bulk Density (kg/m3) 812 
Particle Density (kg/m3) * 1424 
Equivalent Spherical Diameter 
(mm) * 

3.7 

* Particle Density and Equivalent Diameter were calculated from the average kernel volume 
determined using a gas pycnometer. 

Cross-sectional probability density maps for particles were obtained by acquiring and processing 

successive images of the laser sheet and particles passing through it. An example of a single frame 

(captured with a different camera) taken at the mid-plane of the sphere (position 12.5 mm in Figure 3.1) 

is shown in Figure. 3.2. 
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Figure. 3.2: Cross-section at mid-plane of sphere. Only particles directly in the laser sheet are 

illuminated and imaged with the machine vision camera. The double-ring artifact from the inner and 
outer surfaces of the tube are also visible. This image was taken with a handheld camera as an example 

of the particle behaviour. 
 In addition to particles reflecting light, the tube wall also intercepts and scatters part of the laser sheet 

to the camera. This artifact needed to be removed from the images as the intense ring of light would 

oversaturate the compiled image and wash out the much fainter reflections from the particles. The first 

step in this process was to develop an average reference frame without product flow. The average 

reference frame was then subtracted from the test images to minimize the artifacts caused due to the 

scattering of the laser sheet by the acrylic tubing. It was assumed that this tube wall interference was 

relatively consistent throughout the test. The proof of concept test was completed using Equation 3.1 with 

50 reference frames collected, averaged and then subtracted from each of 1000 test frames with product 

flowing. A generalized schematic of this process is found in Figure 3.3. 
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Figure 3.3: Schematic of the artifact removal process.  An average reference image was compiled 

from 50 successive images with no product flow. This reference was then subtracted from each test 
image (with product flow) to obtain 1000 individual modified test images. This operation removes the 

majority of the static laser artifacts around the edge of the images. 
Artifact removal was completed on-the-fly as each image was collected using National Instruments 

LabVIEW data acquisition software with the NI Vision module (National Instruments, Austin, TX.). After 

artifact removal an average of the images was calculated, as shown in Figure 3.4, to obtain a raw 

probability density map of the particle location within the conveying line. 

 
Figure 3.4: Generalized method to create an averaged and normalized image. Successive images are 

added together, the intensity of the pixels are summed, and then normalized by the number of total 
images. 

The normalized cross-section of each location was post-processed using ENVI+IDL image analysis 

software (Exelis Visual Information Solutions, Boulder, CO.) to develop the probability density maps and 



 

30 
 

to determine the location of the centroid of these maps. An example of an unprocessed image is shown in 

Figure 3.5. The top of the conveying line is to the right of the image. 

 
Figure 3.5: Example of an unprocessed output from LabVIEW and NI Vision Acquisition Software. 

The majority of laser artifacts were removed using the air only reference image but some residual light 
sheet interaction with the tube wall remains. This will be cropped in post-processing along with rotation 

and scaling operations. 
The cross-sections were manually evaluated to determine the centre coordinates of the image, as minor 

variations were observed between imaging locations. The x and y coordinates of the pipe edge were 

determined and the centre point was calculated using Equation 3.2. The centre positions were used to align 

images prior to resizing and applying a rough crop of unwanted data. 
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3.2 

The image was then resized by applying a stretch factor based on the ratios of the ranges of maximum 

and minimum x and y values. The stretch was applied in the x-axis to correct for perspective distortion 

(Figure 3.6-A) and then rotated counter clockwise around the centre point to adjust for camera position 

with respect to true vertical (Figure 3.6-B). To evenly remove unnecessary data (any part of the image 

outside of the pipeline) a mask was manually applied in ENVI to remove as many laser artifacts as possible 

(Figure 3.6-C). This mask was then applied as the cropping boundary for all successive images to 
minimize any human application error. 



 

31 
 

 
Figure 3.6: Sequence of post-processing steps performed on the unprocessed image shown in Figure 

3.5. Panel A: image is resized to account for perspective distortion and rough cropped. Panel B: image is 
rotated counter clockwise 90 degrees. Panel C: mask is applied to remove remaining wall effects. 

The processed images were then used to calculate the probability density maps and the vertical centroid 

of the distribution for each map. This was calculated by multiplying the individual pixel intensity by the 

vertical location of each pixel. This value was then divided by the overall intensity as shown in Equation 

3.3. 
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3.3 

3.2.2 Mechanical System 
The mechanical system gives the optical flow profiling apparatus the ability to image particles in many 

orientations and in differing styles of pneumatic conveying systems Figure 3.7. The structural stand 

supports the imager itself and provides both coarse and fine height adjustment using a series of threaded 

rods, winch and cable, and safety pins. A sliding carriage is attached to the main upright and contains the 

height adjustment mechanism and serves as an attachment point for the rotation hub. This hub enables the 

imaging system to rotate from horizontal to a vertical position in either direction. 
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Figure 3.7: CAD model of Optical Flow Profiler and stand. Major components are labeled with a 

brief description and approximate overall dimensions are listed. 
Attached to the rotation hub and carriage is the imaging platform. This is shown in Figure 3.8 and 

includes the optical flow profiling sled, bearing rails, cable tray, and rotating end mounts. The sled 

contains an optical bread board on which the laser, camera, and other optical components are mounted. 

This is contained in a housing painted flat black to minimize laser reflection and reduce stray light 

affecting the image. 
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Figure 3.8: Imaging platform: optical sled can slide along pipeline on the bearing rails and two-piece 

end mounts allow for rotation around the acrylic conveying line. 
A key innovation in the mechanical platform was in the design of the end mounts. These serve to 

maintain alignment of the imaging systems with the conveying line, and facilitate rotation of the imaging 

system around the conveying line. The mounts were designed so that the imager can rotate 360° around 

the conveying line, giving flexibility in positioning the laser plane source with respect to the conveying 

line. The end mounts and rotational guide track also allow the imager to be inserted around the conveying 

line, instead of having to disconnect the conveying line and threading it through the end mounts. In this 

application, the ability to position the imager around different sections of conveying line without having 

to disturb the line is advantageous. As illustrated in Figure 3.9, the top piece of the end mount is removable 

to allow the imaging platform to be positioned on a section of conveying line as shown.  The clamping 

collar can be replaced to image pipe up to 18 cm in diameter.   
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Figure 3.9: Exploded view of imager endmount. In the neutral position (as shown) the top section can 

be removed to allow for insertion of the conveying line. 
The design of the optical flow profiler attempted to prevent or minimize alignment errors wherever 

possible but some cautions must be taken. Positional variation between successive images is on the order 

of 0.1 to 1 millimetre, while repositioning the mechanical system can shift the framing of the pipeline 

within the image by upwards of a centimetre. Manual determination of the centre point of each averaged 

image was implemented as described previously in Equation 3.2 to overcome this error  

 RESULTS AND DISCUSSION 
The probability density maps of the particle occurrence and the resulting centroids were developed 

upon completion of the testing. From the following results, the particle behavior due to the effect of the 

obstruction can clearly be determined. 

3.3.1 Particle Occurrence Probability Density Maps 
Nine of the most descriptive cross-sections are shown in Figure 3.10. These cross-sections are grouped 

by location: upstream of the sphere’s leading edge, around the sphere, and downstream of the sphere’s 

leading edge. Wheat was conveyed into a 20 m/s airstream at 5 kg/s. One thousand test frames were taken 

at each of the nine locations and then processed as described previously. The location of each cross-section 

is indicated in the figure with respect to the leading edge of the sphere (the point on the sphere furthest 

upstream). The striations noticeable in the figure are due to the manufacturing process of the acrylic tube 
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(extrusion marks) which could not be masked from the image as they are caused by reflection off the 

particles. While they are very noticeable in the final images, they do not affect the conclusions drawn from 

the data. 

The upstream particle occurrence maps (Figure 3.10-A) indicate a higher probability that a particle 

would be located in the lower third of the conveying line. A change in the distribution can be seen 20 mm 

upstream of the leading edge with a tendency for the product to begin moving to the upper portion of the 

air line. This trend is reinforced in the cross-sections around the sphere. A small arc of high probability is 

noticeable at the very top of the pipe which is attributed to reflection off the pipe wall. The use of reference 

frames was intended to minimize this effect but not all artifacts were removed completely in every image. 

Figure 3.10-B describes the three cross sections in the immediate vicinity of the sphere. The leading 

edge cross section has a high probability that a particle would be located at the very bottom of the 

conveying line. This trend is due to the particles being slowed down by the proximity of the sphere and 

influencing the intensity of the laser light reflected. A rapid upwards shift of particles begins at the centre 

image, with a high probability of particles being slowed down around the edge of the sphere. The majority 

of particles are located in the upper portion of the conveying line at the trailing edge. 

The downstream cross-sections (Figure 3.10-C) indicate a very high probability that a particle would 

be located in the upper third of the acrylic tube with a low probability of particles present in the wake of 

the sphere. The distribution of particles slowly descends to resemble the upstream distributions as shown 

in the cross-section taken at 525 mm downstream of the leading edge.  
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Figure 3.10: Particle Occurrence Probability Density Maps. (A) Cross-sections upstream of the 

sphere’s leading edge; (B) Cross-sections around the sphere; (C) Cross-sections downstream of the 
sphere’s trailing edge. 

3.3.2 Centroid of the Particle Occurrence Probability Density Maps 
The previously acquired maps provide a qualitative visual interpretation of the flow characteristics. 

Additionally, the data contained in the maps was used to perform a quantitative analysis of the occurrence 

of wheat particles. The centroid of the particle occurrence probability density map was calculated using 

Equation 3.3 for each location. The resulting pixel location of the centroid was converted into a distance 

in millimeters from the bottom of the conveying tube as shown in Figure 3.11. The axial profile shows the 

average distribution of the particles at each test location along the conveying line. It can be seen that the 

upstream cross-sections have a centroid that is below the centre line of the conveying pipe. The sphere 

causes a quick drop in the vertical centroid due to stagnant particles being trapped against the sphere. For 

the rest of the cross-sections, the sphere causes a noticeable vertical increase in the centroid location. This 

slowly returns to within 3 mm of the starting value 525 mm downstream of the leading edge.  



 

37 
 

 
Figure 3.11: Vertical centroids of particle occurrence PDM at varying cross-section locations. 

Negative horizontal distances indicate a location ahead of obstruction. 

 CONCLUSIONS 
An optical flow profiling method and associated apparatus were developed and tested for exploring the 

effect of obstructions or modifiers on pneumatic conveying system behavior. The specific test case was 

wheat particles in a conveying system similar to that used in commercial air seeders. The flow profiles 

were qualitatively useful in assessing the flow behavior in addition to being quantitatively used to 

determine the Centroid of the Particle Occurrence PDM which enabled the visualization of the flow’s 

axial profile.  

It was concluded that the addition of a noticeable flow obstruction could be fully explored and 

visualized. This method will be used for future pneumatic conveying research in tandem with more 

conventional pressure and velocity measurements.  

After successfully designing, building and implementing an optical flow profiling system the following 

recommendations are put forward for future work. 

• Develop and implement a traditional Particle Tracking Velocimetry system using the mechanical 

and imaging platforms developed in this work. This would provide additional data that will be useful 

in further studies. 

• Continue to work on quantifying and improving the positional accuracy of the imaging system. 
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CHAPTER 4: GAS EXTRACTION FOR ENABLING DIFFERENT ENTRAINMENT 

AND CONVEYING VELOCITIES IN A PNEUMATIC CONVEYING SYSTEM 

Using the optical flow profiling method that was outlined in the previous chapter a gas 

extraction system was explored. To enable flexible conveying at two separate velocities 

(entrainment and conveying) a gas extraction velocity reducer was designed, built, and tested.  

This paper was co-authored by Dr. Scott D. Noble. 

Design, preliminary analysis, and construction of the gas extraction system was undertaken by 

the author of this thesis under Dr. Noble’s guidance. The body of the apparatus as well as the 

butterfly valve was 3D printed in College of Engineering shops while I fabricated the other 

components. I preformed all data collection and analysis and wrote the manuscript. Dr. Noble 

proposed revisions and edited the manuscript. This chapter is not currently being submitted to any 

journal but the original proof of concept method was published in the proceedings of the 24th 

Canadian Congress of Applied Mechanics, CANCAM 2013. 

Keep, T. and Noble, SD. 2013. Exploration of Product Flow Behavior and Entrainment through 

Downstream Velocity Reduction. Proceedings of CANCAM 2013-the 24th Canadian Congress of 

Applied Mechanics. Saskatoon, Saskatchewan. 
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GAS EXTRACTION FOR ENABLING DIFFERENT ENTRAINMENT AND CONVEYING VELOCITIES IN 

A PNEUMATIC CONVEYING SYSTEM 

Tyrone Keep and Scott D. Noble 

Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, 

Saskatchewan, Canada S7N 5A9 

e-mail: tyrone.keep@usask.ca, scott.noble@usask.ca 

ABSTRACT 

Agricultural products are commonly conveyed in pneumatic, dilute phase systems. While there 

are power and product quality drawbacks, dilute phase conveying systems are required for many 

applications. The velocity of the conveying fluid plays has a negative role in both of these effects 

and as such, methods for reliably conveying a given mass of product at a lower velocity are desired. 

One such method to explore the effect of entraining wheat seeds at a high initial velocity and 

enabling the reduction of the conveying velocity downstream was developed and tested. This 

method required a set amount of air volume to be vented and measured, which in turn reduced the 

air velocity downstream of the device. Additionally, a flow visualization method was used to 

determine the centre of mass of the conveyed particles at varying locations to quantify the effect 

of the velocity changes on the entrainment of the particle.  

It was determined that reducing the downstream velocity had a negligible effect on the centre 

of mass directly downstream of the velocity reducer for many operation conditions but had a larger 

effect further downstream. This implies that once the particles were fully entrained at a higher 

upstream velocity, they can be conveyed at a lower velocity for short distances. Also, an increase 

in the particles’ entrainment level occurred due to the insertion of the velocity reducer which 

indicates that the effect of this method is not negligible and will need to be accounted for in future 

work.  

 

 

Keywords: air seeder; pneumatic conveying; imaging; seed transport; dilute phase flow; gas 
extraction; conveying velocity; minimum conveying velocity; entrainment; 
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 INTRODUCTION 
Dilute-phase pneumatic conveying of granular materials is commonly used in the agricultural 

industry. Seeding equipment and grain vacuums are examples of this, where the flexibility of 

positioning and inlet/outlet combination are key advantages of the approach. 

The disadvantages of conveying in the dilute flow regime include higher power per unit mass 

conveyed (Barbosa and Seleghim Jr. 2003), accelerated pipe wear, and product damage due to the 

higher conveying velocities (Klinzing, Rizk et al. 2010). 

Despite wide usage of dilute-phase pneumatic conveying in industry, agricultural product 

entrainment and conveying is not well understood or documented. This is particularly true of cases 

where fully developed flow cannot be assumed. To explore the conveying characteristics of 

agricultural products, the minimum conveying velocity, also referred to as the saltation velocity, 

needs to be known. While there are ample data in the literature (Cabrejos and Klinzing 1994, 

Hubert and Kalman 2003, Hubert and Kalman 2004, Kalman, Satran et al. 2005) for materials such 

as glass, plastic, and metal spheres, little information has been published on the types of biological 

materials that pertain to this project. Specifically, the interaction between conveying velocity, 

product flow rate, and entrainment is of interest for agricultural particles which have a large Stokes 

number.  

There are two common methods for determining the minimum conveying air velocity. The first 

method consists of metering a constant mass flow rate of product into an initially high-velocity air 

stream, and gradually reducing the overall system velocity until saltation occurs (Cabrejos and 

Klinzing 1994, Cabrejos and Klinzing 1994). The second method meters product into an air stream 

below the minimum conveying velocity and the distance the product travels from the feed point 

until they fall out of suspension and become stationary is measured (Hubert and Kalman 2003). 

This is repeated at various carrying velocities and a saltation length vs. gas velocity curve is 

developed, where the saltation length becomes asymptotic at the minimum conveying velocity. 

While these methods accurately describe the minimum conveying velocity in their respective 

systems, the same method might not directly apply to agricultural conveying systems where steady 

state conveying is typically not reached due to short straight runs, use of flexible hose, and lower 

operating pressures.  
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Rinoshika and Suzuki (2010) explored the use of a dune-shaped flow modification device that 

was inserted after product induction that reduced the minimum conveying velocity and the 

conveying power. While the exact reason the device worked was not fully explored, it was 

hypothesized to alter the particles entrainment level through a localized velocity increase, particle 

impact, and/or an increase in mixing forces. To further investigate the operating parameters and 

the entrainment characteristics of agricultural products in this work, the role of velocity needed to 

be explored. Therefore, it was hypothesised that the initial upstream velocity has no impact on 

downstream conveying and particle entrainment levels when operated at another, lower, velocity.  

To test the hypothesis, the system must be able to operate at two separate velocities. A higher 

velocity entrainment zone (upstream) with the ability to operate the rest of the system or conveying 

zone (downstream) at the same or lower velocity.  

 There are two options to achieve this that often appear in literature: a stepped diameter 

conveying line, or air extraction. A stepped pipe configuration is commonly used in industrial 

conveying to maintain a constant velocity over long distances. If the diameter of the pipe was not 

periodically increased, the gas velocity would constantly increase due to gas expansion 

(Marjanovic, Levy et al. 1999, Wypych 1999). Maintaining a constant, minimal velocity is critical 

in reducing pipe wear, minimizing product damage, and sustaining a constant mass flow ratio of 

product at the receiving end of the system (Mills 2004, Klinzing, Rizk et al. 2010). Air extraction 

accomplishes the same end goal but instead of increasing the area of the conveying line, air volume 

is directly bled off, which causes a proportional decrease in superficial conveying velocity (Link, 

Jama et al. 2000, Mills 2006). This method is proposed as an alternative to stepped pipe 

installations for experimental purposes with benefits that include: flexibility in choosing 

downstream velocity, ease of measurement of downstream velocity by calculating volume of gas 

extracted, simplified system design, and the ease of retrofitting existing systems (Klinzing and 

Dhodapkar 1993, Link, Jama et al. 2000). 

A method of gas extraction for reducing air velocity downstream of product entrainment was 

developed for use in testing the hypothesis and exploring the entrainment level of the particles 

(Keep and Noble 2013). This velocity reducer was used to bleed off a measured flow rate of air 

from the conveying line, thereby lowering the conveying air velocity while keeping the products 

in suspension in the main conveying line. This paper will briefly describe the preliminary testing 
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of the velocity reducer before focusing on the final implementation and its effect on the 

entrainment of conveyed particles.  

 METHODS AND MATERIALS 
A velocity reducing apparatus was designed and prototyped for use in exploring the effect of 

varying the upstream and downstream velocities on the conveying quality and entrainment level 

of agricultural materials. 

 
Figure 4.1: Velocity reducer schematic. Air is bled off from the screened section and is 

measured with a calibrated orifice plate and then vented to atmosphere. Where ṁg=gas mass 
flow rate, ṁp=particle mass flow rate, and ṁb=bleed-off gas mass flow rate. 

A schematic of the velocity reducer is shown in Figure 4.1. The mass flow rate of the conveying 

gas and the particles being conveyed enter from the left (indicated by ṁg and ṁp respectively) and 

a portion of the conveying gas is bled off in a screened section (ṁb) and rerouted vertically in this 

image to be measured by an orifice plate. The remaining air and all the particles exit on the left. 
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Figure 4.2: Close up of the window in the Velocity Reducer with the rolled screen in the 

background. Note gap between the screen and the reducer wall for bleed-off air.  
A rolled mesh screen (Figure 4.2) was inserted into the centre section to retain the particles in 

the main conveying line. The top piece has a cut-out into which an acrylic window was fitted to 

allow for particle observation. Conveying air is bled off over the length of this screened section 

and then rerouted through the outer wings on the way to the wye collector and exhaust pipe (Figure 

4.3).  
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Figure 4.3: Velocity Reducer before assembly and insertion of screen/viewing window. Air is 

bled off around the outer two wings and is combined in the wye collector (chimney at rear of 
image) where it is routed to the orifice plate to measure the air flow. 

The downstream portion of the initial implementation of the velocity reducer is shown in Figure 

4.4. This includes the exhaust piping, bleed-air orifice plate, preliminary velocity reducer 

assembly, and the first iteration of the optical flow profiling apparatus for studying entrainment is 

in the foreground. This configuration was used as a proof of concept test for gas. The flow rate of 

exhausted air was measured through the use of a calibrated orifice plate and pressure transducers. 

The change in pressure was less than 10 kPa over the system and the air is assumed to behave as 

an ideal gas due to very low air velocities (≈Mach 0.09). This volume was then used in conjunction 

with the measured upstream velocity to calculate the remaining air velocity in the downstream 

conveying line.  
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Figure 4.4: Velocity Reducer as oriented during preliminary testing. 

The velocity reducer system worked as intended, but the desired differential between upstream 

and downstream velocity was not attainable using the horizontal and passive gas extraction line. 

Therefore, the system needed to be further developed to include a powered exhaust vent to achieve 

a greater velocity differential between the upstream and downstream sections. 

Figure 4.5 shows a schematic of the velocity reducer with the powered gas extraction system. 

A vertical orientation was chosen to simplify the lab layout as well as remove one 90o
 bend. The 

bleed-off air is routed through the reducer in the same manner as the previous iteration but the 

powered vent and the vertical orientation allowed a larger volume of air to be extracted, which in 

turn created a lower downstream air velocity. The refined system included an automated servo-

motor controlled butterfly valve to adjust the air velocity. The control loop used an orifice plate to 

measure the volume of air that was bled off, which was then subtracted from the measured 

upstream flow rate to determine the downstream velocity. 
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Figure 4.5: Velocity Reducer with Power Vent 

All conditions were tested using a dilute phase conveying system that is shown in Figure 4.6. 

The prime mover consisted a centrifugal fan powered by a 5 HP, three-phase motor and variable 

frequency drive. It also included a venturi velocity meter section, wye splitter and shut-off valves, 

upstream entrainment section, grain cart and metering system, downstream conveying section, 

imaging system, and product collection bin. To investigate the impact of the velocity reducing 

apparatus on particle flow and entrainment an optical flow profiling imager was used (Keep and 

Noble 2015). 
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Figure 4.6: Bird’s-eye view of the conveying system with the optical flow profiling apparatus 

downstream of the velocity reducer. [1: Centrifugal Fan, 2: Upstream Venturi, 3: Wye-Splitter, 
4: Air Cart and Metering System, 5: Powered Vent, 6: Orifice Plate, 7: Velocity Reducer, 8: 

Optical Flow Profiler, and 9: Product Collection Box.] 

 RESULTS AND DISCUSSION 
The effect of implementing a gas extraction system to reduce conveying velocity downstream 

of product induction was be explored in two parts: (1) a velocity reducing system and apparatus 

used without gas being extracted and (2) the final implementation of a powered gas extraction 

system.  

4.3.1 Impact of the Velocity Reducer Without Gas Extraction 
To test the effect of adding the velocity reducer to the pneumatic conveying system, the 

entrainment level was compared upstream of the velocity reducer (Condition 1), and 300 cm 

downstream of the velocity reducer location with the velocity reducer inserted (Condition 2) or an 

equivalent length of acrylic tubing in its place (Condition 3). These conditions are illustrated 

alongside the results in Figure 4.8. The tests were performed with a wheat mass flow rate of 0.088 

kg/s and a superficial air velocity that ranged from 14 to 24 m/s in increments of 2 m/s. Conditions 
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1 and 3 consisted of three randomized trials of each air velocity. Condition 2 consisted of two 

randomized trials of each velocity; the third trial was removed due to a system positioning error.  

Using the flow profiling system described by Keep and Noble (2015), the cross-sectional 

particle distributions were recorded and centre of mass (C.o.M.) calculated for each condition and 

trial. These C.o.M. trials are plotted in Figure 4.8. A linear correlation was observed between the 

centre of product distribution and the system velocity for Conditions 1 and 2 (with the velocity 

reducer in the system but not bleeding off air-flow). The centres of the distributions ranged from 

approximately 24 mm to 7 mm for Condition 1 and approximately 15 mm to 6 mm for Condition 

2. Condition 2 was lower than Condition 1 as the particles tended to settle out the further they 

travel from the metering system. 

Distributions for Condition 3 had a lower centre of mass than either 1 or 2. The centre of mass 

of condition 3 also displayed a non-linear trend with the overall system velocity. This could be 

attributed to effects introduced by the velocity reducer and/or the product separation screen that 

appear to encourage product entrainment in the air stream for longer distances.  

Figure 4.7 shows a cross-section of the acrylic conveying line with inner and outer diameters noted. 

An example location of the vertical Centre of Mass (C.o.M.) in mm measured from the inside 

bottom wall of the conveying pipe is shown.  

 
Figure 4.7: Cross-section of the conveying line with an example centre of mass shown. The 

C.o.M. is noted as a distance in mm from the bottom of the conveying line.  
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Figure 4.8: Centre of Mass of product distribution for all Conditions at set system velocities 

ranging from 14-24 m/s. No air bled off through velocity reducer. 

4.3.2 Impact of Gas Extraction on Entrainment 
A similar set of experiments were completed using the same imaging method as described 

above with the velocity reducer removing air from the conveying stream. The centre of mass of 

the particle distribution was calculated using the optical flow profiling method of Keep and Noble 

(2015) at various locations along the conveying system. Wheat seed mass flow rates of 0.0205, 

0.0620, and 0.1020 kg/s (which correspond to meter roller speeds of 10, 30, and 50 RPM on this 

system) were tested. Upstream conveying velocities of 30, 25, 20, 18, 16, and 14 m/s were the 

starting point for varying the downstream velocity. At each upstream velocity set point, the 

downstream velocity was set at a variety of set points by bleeding off air volume as shown in Table 

4.1 
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To simplify comparisons across conveying velocities and product flow rates, the mass loading 

ratio ϕ (also known as the mass flow ratio and is sometimes denoted as μ in some literature) was 

calculated as: 

 
𝜙𝜙 =

𝑚̇𝑚𝑝𝑝

𝑚̇𝑚𝑓𝑓
 

4.1 

where 

𝑚̇𝑚𝑝𝑝 is the mass flow rate of the solid (wheat) and  

𝑚̇𝑚𝑓𝑓 is the mass flow rate of the fluid (conveying air). 

Table 4.1: Gas Bleed-off test conditions 
Upstream Velocity 

[m/s] ± 0.05 
Downstream Velocity 

[m/s] ± 0.05 * 
ϕ at 0.0205 kg/s 

ϕ ± 0.001 
ϕ at 0.0620 kg/s 

ϕ ± 0.001 
ϕ at 0.1020 kg/s 

ϕ ± 0.001 

30 

30 0.22 0.66 1.09 
25 0.26 0.80 1.31 
20 0.33 1.00 1.64 
15 0.44 1.33 2.19 
10 0.66 1.99 3.28 

25 

25 0.26 0.80 1.31 
20 0.33 1.00 1.64 
15 0.44 1.33 2.19 
10 0.66 1.99 3.28 
5 1.32 3.99 6.56 

20 

20 0.33 1.00 1.64 
15 0.44 1.33 2.19 
10 0.66 1.99 3.28 
5 1.32 3.99 6.56 

18 

18 0.37 1.11 1.82 
16 0.41 1.25 2.05 
14 0.47 1.42 2.34 
12 0.55 1.66 2.73 
10 0.66 1.99 3.28 
8 0.82 2.49 4.10 
6 1.10 3.32 5.47 

16 

16 0.41 1.25 2.05 
14 0.47 1.42 2.34 
12 0.55 1.66 2.73 
10 0.66 1.99 3.28 
8 0.82 2.49 4.10 

14 
14 0.47 1.42 2.34 
12 0.55 1.66 2.73 
10 0.66 1.99 3.28 

* Variation in the downstream velocity depended on operating conditions and potential for 
plugging. Even with the powered vent the amount of air bled off was not large enough to achieve 
all downstream velocities for all upstream conditions. 
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The centre of mass for five different locations were calculated. These imaging locations are 

shown in Figure 4.9 relative to the velocity reducer. 

 
Figure 4.9: Imaging locations, referenced to the velocity reducer, where the particle centre of 

mass images were collected.  
 Figures 4.10 to 4.15 show a plot of the vertical C.o.M. in mm at varying values of ϕ for the 

three experimental solid mass flow rates with respect to the downstream mass loading ratio. In 

each upstream velocity series, the mass flow ratio had an inverse relationship to the downstream 

conveying velocity. As the mass flow rate increased, the system was unable to convey product at 

some of the lower upstream/downstream velocity conditions and as such data for these 

combinations could not be captured.  

 The data used to create Figure 4.10 were obtained one metre upstream of the velocity reducer. 

As expected, the reduction in downstream velocity did not significantly affect the centre of mass. 

The lower upstream velocities at the two higher mass flow rates did not fully entrain the particles 

before reaching the imaging plane. This resulted in some slug flow and piling in the bottom of the 

pipe which was the cause of the higher centre of mass for the lower upstream velocities and higher 

product rates when compared to the 0.0205 kg/s trials. 
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Figure 4.10: Centre of Mass acquired one metre upstream of velocity reduction 

Flow profile and C.o.M. data were obtained one metre downstream of the velocity reducer. 

These data were plotted in Figure 4.11 and changes in the centre of mass were observed. Most 

noticeably the C.o.M. was higher for all conditions as compared to one metre upstream. This 

indicated that the insertion of the velocity reducer and/or product separation screen increased the 

entrainment level of the conveyed particles. Comparing 20 m/s upstream and downstream of 

velocity reduction for example gives a difference in C.o.M. of about 5mm. At the same velocity 

the test outlined in Figure 4.8 (with and without the velocity reducer) gives approximately the 

same change in C.o.M. From this it would appear that just the addition of the velocity reducer 

gives an increase in C.o.M. of a similar magnitude as reducing the velocity through gas extraction. 

Additionally, a slight reduction in C.o.M. occurred as more air volume was bled off (higher ϕ due 

to lower downstream velocity). 
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Figure 4.11: Centre of Mass as imaged one metre downstream of velocity reduction 

Images were obtained two metres downstream of the velocity reducer and the results are shown 

in Figure 4.12. The general behavior is similar to those from one metre downstream, but the centre 

of mass is lower. This indicates that the particles obtain a boost to their entrainment level after the 

velocity reducer. This effect peaks somewhere between the reducer and this test location. 

 
Figure 4.12: Centre of Mass taken two metres downstream of velocity reduction 
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An interesting trend between the vertical centre of mass and the downstream conveying velocity 

was seen for the three highest upstream velocities. The vertical position of the centre of mass was 

better correlated with upstream velocity than downstream velocity. This suggested that if the 

product was entrained at a high initial velocity, it could then be conveyed downstream at a much 

lower velocity with minimal effect on the distribution centroid. While data were limited, lower 

initial entrainment velocities did not appear to afford the same advantage to lower downstream 

velocities.  

 
Figure 4.13: Centre of Mass imaged six metres downstream of velocity reduction 

Data for Figure 4.13 and Figure 4.14 were taken at six and seven metres downstream 

respectively. As the velocity was lowered the centre of mass dropped off quickly for these 

locations. For higher bleed-off rates the entrainment of the particles was very low with the majority 

of the product being conveyed along the bottom of the pipe. Additionally, many of the lower 

upstream velocity test conditions had some form of plugging taking place at these locations. 

Generally, a slugging flow would develop, and static dunes would form as the velocity was 

lowered. This is seen to a greater extent with the two higher product mass flow rates where some 

of the centres of mass (especially for lower downstream velocities) increased with increasing 

loading ratios due to the effect of the piling on the C.o.M. measurements. 
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Figure 4.14: Centre of Mass seven metres downstream of velocity reduction 

 CONCLUSIONS 
A functional velocity reducer was designed, built, and tested to provide for downstream velocity 

reduction. The passive venting scenario did not allow for the desired range of use which lead to 

the implementation of a powered gas extraction system. 

 The reducer had a noticeable effect on the product entrainment versus the test conditions with 

no reducer apparatus installed. The addition of a screen and/or the effect of a large dead space 

around the screen when no air is bled off is hypothesized to have a small beneficial entrainment 

effect.  

For many of the tested conditions, operating the system at the same downstream velocity but 

with two different entrainment velocities did have an affect on the centre of mass of the conveyed 

particles. Therefore, the hypothesis that upstream velocity has no effect on downstream conveying 

must be rejected as there was a difference in particle centre of mass between operating at an 

initially high entrainment velocity and then conveying at a lower velocity when compared to 

operating the entire system at this lower velocity.  

 RECOMMENDATIONS 
After successfully designing, building, implementing a velocity reducing apparatus, the 

following recommendations are put forward for future work. 
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• Further testing to quantify the effect of the velocity reducer should be undertaken and 

any future use of the velocity reducer should take this effect into account 

• Further explore the effect of a velocity reduction downstream of an initially higher local 

velocity 

• While entraining at an initially high velocity and conveying at a lower velocity does 

change the centre of mass of the conveyed particles there is a breaking point where this 

is no longer the case. This is likely correlated with the minimum conveying velocity of 

the particles but more work needs to be done to confirm this hypothesis. 
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CHAPTER 5: THE EFFECT OF VARYING ENTRAINMENT AND CONVEYING 

VELOCITY ON SPECIFIC PRESSURE DROP, ENERGY, AND PARTICLE 

ENTRAINMENT CHARACTERISTICS 

To further explore the effect of gas extraction on particle entrainment characteristics, 

specifically the effect on pressure drop and conveying power, the gas extraction velocity reducer 

that was outlined in the previous chapter was used to collect pressure and velocity data.  

Instrumentation and calibration of the air handling system was completed by myself with advice 

from Dr. Noble. I performed all data collection and analysis along with writing the manuscript. 

Dr. Noble provided editing and suggested content revisions.   
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ABSTRACT 

The effects of using different entrainment and conveying velocities for the dilute-phase 

pneumatic conveying of wheat were tested. Entrainment level, conveying quality, and energy 

required for transport were the primary comparison metrics. An air bleed-off system was used to 

create downstream conveying air velocities that were lower than the entrainment velocities. For 

non-vented conditions (velocity ratio=1) the system agreed with Gasterstadt’s equation relating 

specific pressure drop and mass loading ratio along with the results of others including Cabrejos 

and Klinzing (1992). The K-value [slope] for the downstream conveying section was 0.17 with no 

air bleed-off. K-values decreased linearly with decreasing velocity ratios with a zero K-value 

occurring at a velocity ratio of 0.65.  

When plotting specific pressure drop versus mass loading ratio, a slope of zero indicates that 

the pressure drop due to the air and the product is equal to the pressure drop of air only. This would 

occur when the slip velocity is near zero, meaning the product and conveying gas velocities are 

the same. Eventually the product would decelerate due to wall effects and other forces, but for 

short distance conveying these results indicate there is a stable set of velocity conditions that would 

not normally be attainable in a conventional pneumatic conveying system. Under these conditions, 

the product is accelerated over a small entrainment section and over a short conveying length there 

is potential for a net power savings.  

 

 

Keywords: air seeder; pneumatic conveying; seed transport; dilute phase flow; gas extraction; 
minimum conveying velocity, specific pressure drop; mass loading ratio; specific energy; power 
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 INTRODUCTION 
Agricultural products such as seed and granular fertilizer are commonly transported using 

dilute-phase, low-pressure pneumatic conveying due to the flexibility of product placement and 

multiple inlet/outlet combinations. The conveyance of large particles in dilute-phase flow presents 

a unique set of challenges such as higher power required per unit mass, increased pipe wear, and 

greater product damage (Klinzing, Rizk et al. 2010). Agricultural products typically have an 

approximate equivalent diameter range of 1 to 10 mm, which is larger than most commonly 

conveyed products represented in the literature. Wheat seed was used in this work as it is a very 

common agricultural product that is of medium size.   

A research group at Yamagata University have published multiple papers exploring the power 

and pressure relationships of large particles conveyed in the dilute phase while modifying the flow 

and/or entrainment characteristics of the particles (Rinoshika and Suzuki 2010, Yan and Rinoshika 

2011, Yan, Rinoshika et al. 2012, Yan and Rinoshika 2013, Yan and Rinoshika 2013, Rinoshika 

2014). One such method that showed substantial power savings was the insertion of a dune-shaped 

object just downstream of the product metering location. This object was able to reduce the power 

required for stable conveying by 34% and decreased the minimum conveying velocity by 19%.  

The use of a similar device or process to enable comparable power savings is desired in an 

agricultural air-seeder. However, it is not clear why this device provided such substantial savings. 

In an attempt to explain this effect, the following hypotheses were developed:  

• Increased velocity in the entrainment zone due to reduced cross-sectional area accelerates 
the particles to the steady state conveying velocity quickly and therefore allows the 
system to operate at a lower overall velocity (dune forms an eccentric venturi). 

• The dune creates an upward mixing force that increases the entrainment level of the 
particles. 

• Impact off the face of the dune launches the particle into a higher velocity portion of the 
flow with a trajectory that avoids impacts with the pipeline for greater distances, thereby 
facilitating entrainment and conveying.  

In this work, the role of dissimilar air velocities in the upstream and downstream conveying 

sections of the pipeline was considered. The effect of this velocity difference was explored to 

determine its role on product entrainment level, pressure drop, and power consumption.  
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To simplify comparisons across conveying velocities and product flow rates, the mass loading 

ratio2 was used. This is shown in Equation 5.1 where 𝑚̇𝑚𝑝𝑝 and 𝑚̇𝑚𝑓𝑓 are the mass flow rate of the 

particle (wheat) and the fluid (conveying gas) respectively. 

 
𝜙𝜙 =

𝑚̇𝑚𝑝𝑝

𝑚̇𝑚𝑓𝑓
 

5.1 

Specific pressure drop (α) is the ratio of the pressure drop per unit length of the mixture of gas 

and solid (Δps+g) and the pressure drop per unit length of the gas only (Δpg) at the same gas flow 

rate.  

 
𝛼𝛼 =  

∆𝑝𝑝𝑠𝑠+𝑔𝑔
∆𝑝𝑝𝑔𝑔

 5.2 

Gasterstadt (1924) first proposed a link between specific pressure drop and the mass loading 

ratio. For developed flow and at equal superficial gas velocities (i.e. the same conditions both with 

and without product in the airflow), the specific pressure drop is related to the mass loading ratio 

by the following equation. 

 α = K𝜙𝜙 + 1 5.3 

where α is the specific pressure drop, 

ϕ is the mass loading ratio, and 

K is the slope of the linear relationship. 

 

In addition to the above parameters, this study requires a description of the relationship between 

entrainment and conveying velocity. The ratio of the downstream (conveying) to the upstream 

(entrainment) velocity, the velocity ratio (δ), is defined as: 

 
𝛿𝛿 =

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉
𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉

 5.4 

The results of Farbar (1949), Hinkle (1953), and Cabrejos and Klinzing (1992) were in 

agreement with Gasterstadt’s original findings. Cabrejos and Klinzing (1992) used this 

relationship and the published data of those before them to propose a non-intrusive method to 

determine mass flow rates in fully accelerated horizontal conveying. The K-value varied between 

                                                 
2 Sometimes called the mass flow ratio or the solids loading ratio and can be denoted as µ 
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datasets due to pipe diameter, system configuration (vertical or horizontal), particle properties, and 

pipe style but it can be determined for each conveying system and then used to predict mass flow 

rate of the product knowing the conveying gas velocity, so long as fully-developed flow can be 

assumed.  

Figure 5.1 shows a sample of data from Cabrejos and Klinzing (1992) for 450 μm diameter 

glass beads conveyed in a 50 mm diameter pipe at various velocities. The data agreed well with 

Equation 5.3 and were used to develop a model that predicted the solid mass flow rate for other 

air velocities. The authors recommended the following two conditions for accurate prediction of 

mass flow rate using their developed model:  

1) Fully developed flow is required and 
2) Air velocity must be maintained at 50% above saltation velocity for the K-value to be 

independent of conveying gas velocity. 

 
Figure 5.1: Specific pressure drop for glass beads (D=450 μm, ρp= 2480 kg/m3 [type of 

density not given]) in a 50 mm I.D. horizontal conveying line. Adapted from Cabrejos and 
Klinzing (1992). 

In the present case of varying entrainment and conveying velocities it was hypothesised that 

there would be differences from the standard Gasterstadt relationships. Additionally, a higher 

upstream velocity might increase the entrainment level of the product and therefore allow the 
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system to be operated at a lower overall velocity. Working through the possible effects of having 

different entrainment and conveying velocities led to the following three hypothesized operating 

conditions: 

1) A standard pneumatic conveying system where upstream and downstream superficial-
velocities are equal. This would give a velocity ratio of one and would follow 
Gasterstadt’s equation with a positive slope (K-Value) as demonstrated by many previous 
works and within the limits proposed by  Cabrejos and Klinzing (1992). A generic case is 
shown as Line A in Figure 5.2. 

2) A gas extraction system with a high entrainment velocity and a much lower conveying 
velocity. This would give a very small velocity ratio and was hypothesized to have a 
negative slope (K-Value) due to the difference between velocities being very large. The 
product would be going faster than the remaining conveying air and experience a 
significant negative drag force. This would act to resist the motion of these particles and 
slow them down. The relationship is shown as Line B in Figure 5.2.  

3) Assuming continuous data there should be at least one condition between the two 
extremes where a slope (K-Value) of zero exists. (Line C in Figure 5.2). This would 
indicate a stable set of entrainment and conveying velocities where no extra pressure is 
required to convey the air plus product versus the air only case.  

 
Figure 5.2: Generic relationship hypothesized between specific pressure drop and solids 

loading ratio at 3 different velocity ratios.  δA=1, δB <1, and δA> δC > δB. 

 METHODS AND MATERIALS 
To explore the relationship between specific pressure drop and solids loading ratio, product 

needed to be metered into a conveying pipe at various mass flow rates with provisions for enabling 

differing air velocities in the entrainment (upstream) and conveying (downstream) zones of the 

pipeline.  
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To enable variation between upstream entrainment and downstream conveying velocity there 

are two feasible options: stepped conveying line and air extraction. Conveying systems with 

stepped pipe diameters are commonly used in industry to maintain velocities over very long (>100 

m) conveying distances. A periodic increase in pipe diameter mitigates the increase in velocity due 

to gas expansion (Wypych 1999). Air extraction accomplishes the same goal by removing air from 

the system which reduces the conveying air velocity. The air extraction method was implemented 

in this work due to the following benefits: ease of measurement of downstream velocity 

(volumetric flow rate of gas extracted is known), simplified physical system design, and most 

importantly, flexibility in varying the velocity ratio. 

In their previous work Keep and Noble (2015) used an air extraction and velocity reducing 

system was built and tested to explore the effect of entraining the particles at a higher velocity than 

in the downstream conveying section. The location of the conveyed particles in the air stream was 

quantified using the imaging system that was outlined in the previous chapters.  

The conveying system was instrumented to collect air velocity, mass flow rates, pressure drop, 

and other system parameters. The schematic of the conveying system including centrifugal fan, 

grain cart, velocity reducer, catch box, and sensor locations can be seen in Figure 5.3. Labels and 

descriptions of the various sensors are listed in Table 5.1.  

 
Figure 5.3: Sensor layout and pneumatic conveying system schematic. Dimensions in metres. 

(Larger format available in Appendix D) 
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Table 5.1: Sensor labels, location, and description 

Sensor Description 

A1 Venturi Gauge Pressure 
A2 Venturi Differential Pressure 
B1 Metering Gauge Pressure 
B2 Metering Differential Pressure 
E1 Upstream Gauge Pressure 
E2 Upstream Differential Pressure 
E3 Velocity Reducer Differential Pressure 
E4-E14 Downstream Differential Pressure 
G1 Downstream Gauge Pressure 
H1 Downstream Gauge Pressure (outlet) 
P1 Orifice Plate Gauge Pressure 
P2 Orifice Plate Differential Pressure 
T1 Venturi Air Temperature 
T2 Orifice Temperature 
ATM Atmospheric Pressure, Temperature, and Humidity 

The venturi provides feedback to the centrifugal fan controller, which maintains the set air flow 

rate and consequently the superficial air velocity. A calibrated airlock-style metering system 

coupled with a stepper motor controls the product flow rate. The upstream section is located 

directly after product metering but before the gas extraction system. The downstream section is 

between the gas extraction device and the pipe outlet. 

Wheat seed with properties shown in Table 5.2 was metered into the airflow at mass flow rates 

of 0.0205, 0.0620, and 0.1020 kg/s (meter roller speeds of 10, 30, and 50 RPM respectively). The 

upstream velocities were 30, 25, 20, 18, 16, and 14 m/s. The downstream velocities for a given 

trial were equal to or less than the corresponding upstream velocity (i.e. δ ≤ 1). A selection of the 

conveying conditions are shown in Table 5.3, with the full test matrix in Appendix F: The system 

was set to the test condition of interest and was run for approximately one minute to allow the 

system to stabilize before data were acquired for 60 seconds. The raw data were then averaged 

over this 60 second window. Three sets of data were collected in randomized order over multiple 

weeks.  
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  Table 5.2: Average properties of the wheat used 
1000 Seed Count Mass [g] 36.5 ± 0.1 
Bulk Density [kg/m3] 812 ± 3 
Particle Density [kg/m3] * 1424.9 ± 0.7 
Equivalent Spherical Diameter [mm] * 3.66 ± 0.01 
Sphericity [%] 60 ± 3 
Geldart Classification Group D 
* Particle Density and Equivalent Diameter were calculated from 
the average kernel volume determined using a gas pycnometer. 

Table 5.3: Test conditions for 30 m/s upstream. Mass loading ratio given for the three product 
mass flow rates at 10, 30, and 50 RPM. Full table in Appendix F. 

Upstream 
Velocity [m/s] 

Downstream 
Velocity ± 0.05 [m/s] 

Velocity 
Ratio ± 0.01 

0.0205 kg/s 
at 10 RPM 

0.0620 kg/s 
at 30 RPM 

0.1020 kg/s 
at 50 RPM 

ϕ ± 0.001 ϕ ± 0.001 ϕ ± 0.001  

30 ± 0.05 

30 1.00 0.22 0.66 1.09 
29 0.97 0.23 0.69 1.13 
28 0.93 0.24 0.71 1.17 
27 0.90 0.24 0.74 1.21 
26 0.87 0.25 0.77 1.26 
25 0.83 0.26 0.80 1.31 
24 0.80 0.27 0.83 1.37 
23 0.77 0.29 0.87 1.43 
22 0.73 0.30 0.91 1.49 
21 0.70 0.31 0.95 1.56 
20 0.67 0.33 1.00 1.64 
19 0.63 0.35 1.05 1.73 
18 0.60 0.37 1.11 1.82 
17 0.57 0.39 1.17 1.93 
16 0.53 0.41 1.25 2.05 
15 0.50 0.44 1.33 2.19 
14 0.47 0.47 1.42 2.34 
13 0.43 0.51 1.53 2.52 
12 0.40 0.55 1.66 2.73 
11 0.37 0.60 1.81 2.98 
10 0.33 0.66 1.99 3.28 

*Excerpt. Test conditions for the other upstream velocities [25, 20, 18, 16, 14, 12, 10, and 8 m/s] 
follow a similar pattern with the lowest downstream velocity dependant on operating conditions 
and potential for plugging. Even with the powered vent the amount of air bled off was not large 

enough to achieve equal downstream velocities for all upstream velocities.  

 RESULTS AND DISCUSSION 
Specific pressure drops and mass loading ratios were calculated for each test condition. Models 

of the form of Equation 5.3 were fit to these data. Specific pressure drop is length-dependent and 

was calculated individually for the upstream and downstream sections. The downstream section 
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was further subdivided into five parts, summarized in Table 5.4, to explore any location dependant 

changes in pressure drop. 

Table 5.4: Pressure drop groupings, sensors used, and length of test section. 
Location Pressure Sensors Used Test Section Length [m] 
Upstream E2 0.92 

Downstream E4-E14 9.18 
D1 E4, E5 1.84 
D2 E6, E7 1.84 
D3 E8, E9 1.84 
D4 E10, E11 1.84 
D5 E12, E13, E14 1.35 

Data were grouped into velocity ratio bins with a span of 0.05 to facilitate comparison. Three 

representative plots of the downstream section are shown in Figure 5.4 and the curve fit slope (K-

value) for all the cases is plotted in Figure 5.5.  

Specific pressure drop was calculated using the differential line pressures at each section and 

Equation 5.2. A linear relationship between the specific pressure drop and the mass loading ratio 

was observed. A bi-square weighted regression technique was used to determine the following 

linear fit equations for the three data sets plotted in Figure 5.4 . This was chosen specifically to 

remove the effect of very large outliers and minimize the weighting of smaller outliers on the curve 

fit (NIST 2012). These outliers were due to large pressure spikes that occurred at very low system 

velocities and high mass flow rates right before plugging.  

 α0.95−1.00 =  0.170𝜙𝜙 + 1.04 5.5 

 α0.60−0.65 =  0.002𝜙𝜙 + 0.94 5.6 

 α0.30−0.35 = −0.065𝜙𝜙 + 0.61 5.7 
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Figure 5.4: Specific pressure drop vs mass loading ratio at the following velocity ratio ranges: 

0.30-0.35, 0.60-0.65, and 0.95-1.00. 
Figure 5.4 displays the relationship between specific pressure drop in the entire downstream 

section and mass loading ratio, plotted in velocity ratio bands of 0.30-0.35, 0.60-0.65, and 0.95-

1.00. For the 0.95-1.00 velocity ratio band, which coincides with no gas extraction, the relationship 

observed is in agreement with Gasterstadt’s equation. Using Equation 5.5, a K-value of 0.17 is 

obtained in the downstream conveying section.  

The slope of the curve fit to data for a velocity ratio of 0.6 to 0.65 gave a much different result 

compared to larger velocity ratios. The curve fit of Equation 5.6 gave a slope of 0.002. A slope of 

zero indicates that the specific pressure drop in this section of the conveying system is independent 

of mass loading ratio, and therefore conveying velocity at this ratio. The zero slope condition is 

interesting as it shows that the product can be conveyed at a much lower velocity than it was 

entrained at regardless of mass flow rate. This indicates a potential for velocity reduction and 

therefore power savings downstream of entrainment. The data show there is no additional pressure 
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drop in the downstream section over the air-only case when the velocity ratio is approximately 0.6 

to 0.7.  

The remaining velocity ratio band of 0.30-0.35 shows a negative relationship between specific 

pressure drop and mass loading ratio. Equation 5.7 gives a slope of -0.06 and an intercept of 0.6. 

This indicates that small velocity ratios do not follow Gasterstadt’s equation as the conveying 

velocity is approaching the saltation velocity. Visual observations of the product behaviour at these 

low velocity ratios determined the product was over accelerated as they were essentially being 

fired out of the conveying line at a higher velocity than the conveying air. This would indicate they 

were experiencing a negative drag force and that power was wasted accelerating the product to a 

higher velocity than needed to convey them through the pipeline.  

To bring together the behaviour of all tested conditions, the slope (K-value) for each of the 

locations of interest in Figure 5.5 were plotted against the velocity ratio. The velocity ratios were 

plotted in bands as there were too many velocity ratios to show all the plots and there are more 

than one combination of velocities that would give similar velocity ratios. The velocity ratio bands 

are indicated by the upper bound to simplify the figure, with the lower bound being 0.05 less. 

The downstream conditions have some variation between locations but aside from D1 are 

relatively consistent. It is assumed that stable conveying conditions were not attained in this section 

due to its proximity to the gas extraction system. K-Values converge between bands 0.6 and 0.65 

at a value of 0. A zero slope indicates that the specific pressure drop is independent of the mass 

loading ratio, and therefore downstream velocity, at a given velocity ratio. Given that this is 

consistent at all downstream locations it appears that at a velocity ratio between 0.6 to 0.7 will 

allow for the greatest reduction in downstream conveying velocity. Stated differently, at this 

velocity ratio the product requires no additional downstream pressure drop to convey when 

compared to the air only pressure drop.  
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Figure 5.5: Slopes of the specific pressure drop plotted against the mass loading ratio for all 

velocity ratio bands. Grouped by location. 
Downstream power was calculated as shown in Equation 5.8 using the total downstream 

pressure drop and the volumetric flow rate of air. The value for power was then normalized by the 

solids mass flow rate and the conveying length to obtain specific energy as shown in Equation 5.9. 
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Figure 5.6 shows the relationship between specific energy and velocity ratio, organized by 

upstream air velocity. Because upstream velocity was held constant, a velocity ratio <1 indicates 

that gas was extracted and the product is conveyed at a lower velocity downstream. This figure 

shows that it takes less energy in the downstream conveying section for any velocity ratio less than 

1.  
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Figure 5.6: Average specific energy plotted by upstream air velocity. Each panel is a plot of a 

different mass flow rate (set meter roller RPM of 10, 30, and 50 from left to right respectively). 
One trial is shown for clarity as the values between trials are very similar. A figure with all trials 

is located in Appendix G:  
Based on results from Figure 5.5, a K-value of 0 occurred nearest to a velocity ratio of 0.6-0.65. 

Looking at the difference between no gas extraction (velocity ratio of 1.0) and this point in Figure 

5.6: Panel 1 (0.0205 kg/s) gives an energy difference of 74% for 18 m/s, 75% for 20 m/s, 78% for 

25 m/s, and 78% for 30 m/s upstream. Compared to entraining and conveying at 18 m/s, there is a 

savings of approximately 10, 8, and 5 J/kg m for 0.205, 0.0625, and 0.1020 kg/s respectively when 

entraining at 30 m/s and conveying at 18 m/s. Therefore, a conveying length and mass flow-rate 

dependant energy savings is achieved by operating at a lower velocity downstream while 

entraining at a higher velocity.  

Panel 2 of Figure 5.6 depicts the specific energy at a mass flow rate of 0.062 kg/s. The overall 

trend is very similar to the previous plot but the specific energy per unit mass and length is lower 
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due to the higher product mass flow rate. The energy difference between the no bleed-off condition 

and a K-value of zero is approximately 79% for the three highest upstream velocities. 

The specific energy required to convey wheat at 0.1020 kg/s is displayed in Figure 5.6: Panel 

3. Again, the overall trend is similar with less energy required to convey per kilogram at the higher 

mass flow rate. The difference between no gas extraction and a K-value of zero is approximately 

80% for the four highest upstream set velocities. 

It was initially hypothesized that there would exist three conditions when the specific pressure 

drop was plotted against the mass loading ratio: A positive K-Value at a velocity ratio of one that 

follows Gasterstadt’s equation and the results of other work, a negative K-Value if the velocity 

ratio was much less than one, and a condition in-between where the K-Value was zero. From the 

data collected and shown in the above figures all three of these conditions were observed using a 

gas extraction system in an agricultural pneumatic conveying setup.  

For this to be useful from an industry perspective a few conditions would need to be satisfied, 

namely the benefit of using a differential velocity must be greater than the extra power required to 

accelerate the particles in the entrainment zone. A system with similar conditions to those used in 

this analysis would need to be designed to create a velocity ratio of approximately 0.6 to 0.7 with 

the least amount of extra power required. Whether this design would be a long venturi, eccentric 

venturi, or a stepped pipe would depend on individual conveying requirements of the system and 

the type of product conveyed.  

 CONCLUSIONS 
A gas extraction system was used to explore the effect of varying upstream and downstream 

conveying air velocity ratios on the specific pressure drop and specific energy required to convey 

wheat at three mass flow rates. For a velocity ratio of one (ug down = ug up), the system agreed with 

Gasterstadt’s equation with a K-value of 0.17 for the downstream section.  

A K-value of approximately zero occurred at a velocity ratio of 0.60-0.65. This indicates that 

at this condition, the pressure required to convey the air and the product was equal to the pressure 

drop of air only. While data are not currently available, it is hypothesised that the slip velocity at 

this condition is essentially zero, meaning that the particle velocity would be equal to the 

conveying gas velocity. The over-accelerated product is able to maintain this velocity for the short 

conveying distance of the studied system. Eventually the product would decelerate back to normal 



 

72 

slip velocities due to wall and particle interactions, but for the tested operating conditions and short 

conveying lengths, the effect was stable. This indicated that a set of conditions exist that allow for 

accelerating wheat over the entrainment section and recovering the pressure drop over a relatively 

short conveying length.  

Conveying wheat at a velocity ratio of 0.60-0.65 had a specific energy approximately 75 to 80% 

lower than if it was conveyed at the entrainment velocity for the entire length. While this was a 

substantial difference, it is more realistic to compare 0.60-0.65 velocity ratio trials with the same 

downstream conveying velocity with a velocity ratio of 1. For these scenarios, the specific energy 

of entraining at a ratio of 0.6-0.65 is 8-16% lower than conveying at the same entrainment and 

downstream velocity.  

Further investigation is recommended as slip velocity likely plays a large role in the behaviour 

seen in this experiment. When these data were collected, a system for recording the particle 

velocity was not available, but a particle tracking system is being built that would allow the actual 

velocity of the particles to be determined under these test conditions. Additionally, it was assumed 

that the particles were traveling at the average downstream air velocity when the K-value is zero. 

This indicates that the pressure drop of air only is the same as that of air plus product. Further 

testing is needed to determine the origin of the energy savings that enables the product to be 

conveyed using the same energy as air only. The working theory is that the presence of particles 

in the air stream work to suppress turbulence and over the short conveying distances, this balances 

out the extra friction effects of the particles in the airstream.  

A gas extraction system implemented as used in this work did appear to add some benefit to the 

energy required to convey but it must be acknowledged that the initial particle acceleration to a 

higher entrainment velocity does come with an energy penalty. Therefore, the power saved in the 

conveying section must be greater than that which was initially required. From the data presented 

an overall energy savings can result if the particles can be accelerated for less than approximately 

10, 8, or 5 J/kg m (for 0.02, 0.062, 0.102 kg/s respectively).  
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CHAPTER 6: SUMMARY AND RECOMMENDATIONS 

The main objective of this research was to explore the effect of entrainment velocity on 

conveying quality (as defined by the entrainment level of the particles) and the energy required to 

convey a given amount of wheat, a very commonly conveyed agricultural product. Efficiencies are 

desired in agricultural pneumatic conveying systems as they typically operate in the dilute phase, 

which uses higher power per unit mass of product conveyed then other conveying methods.  

An imaging method using a laser to illuminate a cross-section of the flow was developed to 

create probability distribution maps of the conveyed particles in the pipeline. This system was built 

to allow for multiple imaging positions, ease of calibration, and was designed for both horizontal 

and vertical installations in dilute phase pneumatic conveying systems. Additionally, there are 

provisions for future work in implementing a particle tracking velocimetry system that would be 

able to determine the velocities of the particles. 

To enable conveying at multiple entrainment and conveying velocities, modifications were 

made to a lab-scale pneumatic conveying system. A gas extraction system was developed that was 

used to vent conveying air, which in turn lowered the downstream conveying velocity 

independently of the entrainment velocity. This system was used alongside the imager to quantify 

the statistical location of the particles in the flow. These images were used to determine the 

centroid of the particle distribution at various locations in the conveying system.  

The gas extraction system was used to explore the relationship between entrainment velocity 

and conveying velocity on the specific pressure drop at varying mass loading ratios. The slope of 

this relationship indicated the stability of the system. Typical published results of this relationship 

show a positive slope that is particle and conveying-line diameter dependant. A positive slope 

occurs because it requires more pressure to convey particles in the air flow than it does air alone. 

In this work a velocity ratio of approximately 0.6-0.65 had a slope of zero, which indicated that 

the same pressure drop was required for both product and conveying air as was required in the air-

only case.  

Outcomes of the research: 

1. The development of a novel cross-sectional imager was completed and tested that 

obtained qualitative images of the product’s behavior perpendicular to the direction of 
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flow. Additionally, these images were used to create a quantitative location of the centre 

of mass of the conveyed particles.  

2. The imager was used to show that particles conveyed at one downstream velocity but 

entrained at different velocities, had different entrainment levels. 

3. The slope of the specific pressure drop vs mass loading ratio line was zero at a velocity 

ratio of 0.6-0.65.  

From the above outcomes it was concluded that for a given conveying velocity downstream a 

higher upstream entrainment velocity produced two results when compared to operating the system 

at a single velocity. An increased entrainment level and a decrease in the specific energy required 

to convey particles in the downstream section were both observed. 

 RECOMMENDATIONS AND FUTURE WORK 
The main recommendations for further work are:  

• While the gas extraction system was chosen for its flexibility, it does have a small but 

significant effect on the particles’ behavior. If future work is undertaken, it is recommended 

that a stepped pipe configuration be explored. Multiple ratios could be tested, but at a 

minimum, a velocity ratio of approximately 0.6-0.7 should be used to see if the results are 

similar to those found in this work. The abrupt enlargement will also have an affect on the 

conveying characteristics as indicated in a numerical simulation by Marjanovic, Levy et 

al. (1999). Further testing should be completed to be determined whether the effect would 

be positive or negative in this conveying regime. 

• The effect of particle velocity was not explored in this work. The imaging platform has 

been further developed and can now perform particle tracking velocimetry parallel to the 

fluid flow. In future testing, collecting the particle velocity would be invaluable in drawing 

meaningful conclusions into the conveying behaviour. 

• The conveying length of the test setup was a longer straight horizontal run than found in 

agricultural pneumatic systems but quite a bit shorter than in many in published literature. 

It is possible that the zero slope of the specific pressure drop versus mass loading ratio 

occurs at a velocity ratio of 0.6-0.65 due the particles having enough momentum to 

continue through the pipe. While this might not be a stable condition on longer systems it 

does imply the possibility of designing a system to operate at the lowest possible velocity. 
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Further work is needed to describe the particle velocity compared to the conveying air 

velocity after gas extraction to explore this effect. 
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The following figures outline the air handling laboratory and the layout of the conveying 

equipment in greater detail then was necessary in the thesis.  

  
 Figure A-1:Air handling system components from top-left to bottom-right: product collection 

box, downstream conveying line, horizontal bleed-off, upstream conveying-line, product tank 
and metering system.  



 

80 

  
 Figure A-2: Powered gas-extraction system as seen from the top of the product tank. 

Product Tank and metering system 

The test tank was modified by CNH R+D Saskatoon as shown in the following figure for 

portability. It was originally a third tank add-on for an older generation of a Flexi-coil air cart. 
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 Figure A-3: Product holding tank and metering box before conversion to stepper motor drive.  

Stepper Motor 

The metering roller was converted from the standard 12-volt electric motor with hydraulic 

torque converter in the original implementation, to a programmable stepper motor. This change 

was made to allow for simple adjustment of shaft speeds, ease of setting the desired number of 

revolutions, and the option to vary the torque output. The stepper motor chosen was the IMS 

MDrive 42. The stepper motor was coupled with a 10:1 reduction APEX Dynamics gear head 

shown in  Figure A-4 for speed reduction and torque amplification. This gear box has less than 8 

arc minutes of backlash and is below 56 decibels. 
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 Figure A-4: APEX Dynamics High Precision Planetary Gearbox (APEX Dynamics 2010) 

The stepper motor was mounted to the test cart with a custom built three axis adjustable 

mounting system shown in  Figure A-5. This allowed for full adjustment of the motor positioning 

for flexibility in coupler choice, shaft length, and allowed for ease of roller change. 

 
 Figure A-5: Stepper Motor with a custom, fully adjustable mount and quick coupler. 

The fan used for testing is a production CNH air cart fan and is shown in  Figure A-6. It has 

been converted to run off three phase power and be controlled by an input current. This allows fan 

speed control with the use of LabVIEW and also allows for automation with the use of a feedback 

loop. 
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 Figure A-6: Converted 3 Phase Electric Drive CNH fan 

 
 Figure A-7: Inside of Test Cart tank  

 Figure A-7 shows the inside of the air cart and the top of the metering box can be seen. 
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 Figure A-8: Motor coupler and side view of metering box. 

In the left-hand photo of  Figure A-8 the quick connect coupler is shown mounted to the shaft 

and the stepper motor. The cam which controls the agitator bar (aids in preventing bridging and 

plugging of the product over the meter box) and the shaft sensor can be seen in the right-hand 

photo. 
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Figure A-9: Pneumatic Conveying System Schematic 
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The following figure shows the fan and the section that contains the venturi meter which is used 

to measure the air mass flow rate and therefore the air speed. The computer shown runs a 

LabVIEW program that monitors the resulting air speed and adjusts the control setting in a PID 

loop that outputs a 4-20mA signal to the VFD drive attached to the three-phase fan. 

 
 Figure B-1: Centrifugal fan, venturi (inside pipe), wye-splitter, control valves, variable 

frequency drive (VFD), and data acquisition system (DAQ). 
 Figure B-2 shows the Venturi meter drawing with the pressure taps. The venturi was rapid 

prototyped by CNH Canada Ltd and installed under the middle section of pipe (the air-lines can 

be seen running to the pressure taps).  
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 Figure B-2: Venturi Meter production drawing. 

While the venturi was modeled after a ISO 5167 standard venturi it was modified to fit our 

size constraints. Because of this the venturi was calibrated with multiple pitot tube traverses. 

Three traverses were completed: Vertical, 60o, and 120o clockwise which gives 60o spacing 

between lines. This is shown in the following figure.  
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 Figure B-3: Layout of pitot tube traverses. 

10 pressures were taken along each line at distances shown in Table B-1. The distance was 

calculated using a Log-Chebyshev’s approximation which is used to weight the velocities. 

 Table B-1: Traverse position and distance from starting point of traverse in mm 

Traverse 
Position 

Log-
Chebyshev Rule 

Multipliers 

Traverse 
Position (mm) 

 0 0.00 
1 0.019 1.14 
2 0.077 4.62 
3 0.153 9.17 
4 0.217 13.01 
5 0.361 21.65 
6 0.639 38.32 
7 0.783 46.95 
8 0.847 50.79 
9 0.923 55.35 
10 0.981 58.83 

 1 59.97 

 Table B-2 shows the averaged velocities after the separate traverse points were combined into 

a single velocity for that test condition. 
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 Table B-2: Averaged velocities calculated by pitot traverse used in calibration of venturi meter. 

Traverse Set Air 
Speed 

Venturi Velocity 
(m/s) 

Venturi 
Qv [m3/s] 

Venturi 
Qm [kg/s] 

Pv 
(inH2O) Pv (Pa) Pstatic 

(inH2O) 
Pstatic 

(Pa) 
Barometric 

Pressure (Pa) 

Air 
Density 
[kg/m3] 

Air 
Temp 

(K) 

Pitot 
Velocity 

(m/s) 

Pitot 
Qv 

(m3/s) 

Pitot 
Qm 

[kg/s] 

V
er

tic
al

 T
ra

ve
rs

e 

40.0 40.1 0.1 0.1 4.2 1043.3 0.1 31.0 97101.9 1.2 303.0 43.3 0.1 0.1 
38.0 38.0 0.1 0.1 3.6 907.0 0.1 25.6 97093.8 1.2 303.3 40.4 0.1 0.1 
36.0 36.0 0.1 0.1 3.2 808.2 0.1 23.0 97094.8 1.2 303.5 38.2 0.1 0.1 
34.0 34.0 0.1 0.1 2.9 715.9 0.1 19.8 97133.2 1.2 303.4 35.9 0.1 0.1 
32.0 32.0 0.1 0.1 2.5 630.5 0.1 17.3 97134.3 1.2 303.4 33.7 0.1 0.1 
30.0 30.0 0.1 0.1 2.2 553.1 0.1 15.2 97142.1 1.2 303.3 31.6 0.1 0.1 
28.0 28.0 0.1 0.1 1.9 477.6 0.1 13.4 97122.5 1.2 303.1 29.3 0.1 0.1 
26.0 26.0 0.1 0.1 1.7 411.5 0.0 11.4 97133.0 1.2 303.0 27.2 0.1 0.1 
24.0 24.0 0.1 0.1 1.4 349.4 0.0 9.4 97096.4 1.1 302.8 25.1 0.1 0.1 
22.0 22.0 0.1 0.1 1.2 292.5 0.0 8.0 97142.2 1.1 302.6 22.9 0.1 0.1 
20.0 20.0 0.1 0.0 1.0 240.7 0.0 6.5 97090.7 1.1 302.4 20.8 0.1 0.1 
18.0 18.1 0.1 0.0 0.8 196.4 0.0 5.2 97150.5 1.1 302.3 18.8 0.1 0.0 
16.0 16.1 0.0 0.0 0.6 155.0 0.0 4.0 97158.8 1.1 302.1 16.7 0.0 0.0 
14.0 14.1 0.0 0.0 0.5 118.9 0.0 3.0 97192.8 1.1 302.0 14.6 0.0 0.0 
12.0 12.1 0.0 0.0 0.4 87.7 0.0 2.1 97237.6 1.1 301.9 12.5 0.0 0.0 
10.0 10.1 0.0 0.0 0.2 61.5 0.0 1.4 97238.3 1.1 301.8 10.5 0.0 0.0 
8.0 8.1 0.0 0.0 0.2 39.7 0.0 0.7 97261.2 1.1 301.7 8.4 0.0 0.0 
6.0 6.0 0.0 0.0 0.1 23.4 0.0 0.2 97262.8 1.1 301.6 6.5 0.0 0.0 
4.0 4.0 0.0 0.0 0.0 11.3 0.0 -0.2 97243.7 1.1 301.5 4.5 0.0 0.0 

60
 D

eg
re

e 
Tr

av
er

se
 

40.0 40.0 0.1 0.1 4.0 1000.7 0.1 27.3 96250.0 1.2 303.8 42.7 0.1 0.1 
36.0 36.0 0.1 0.1 3.2 801.5 0.1 21.7 96262.4 1.2 304.1 38.2 0.1 0.1 
32.0 32.1 0.1 0.1 2.5 627.6 0.1 16.4 96289.6 1.2 304.0 33.8 0.1 0.1 
28.0 28.0 0.1 0.1 1.9 460.9 0.1 13.9 96237.9 1.1 303.7 29.0 0.1 0.1 
24.0 24.1 0.1 0.1 1.4 346.9 0.0 9.0 96310.7 1.1 303.3 25.1 0.1 0.1 
20.0 20.0 0.1 0.1 1.0 240.5 0.0 6.3 96269.0 1.1 303.2 20.9 0.1 0.1 
16.0 16.1 0.0 0.0 0.6 154.7 0.0 4.0 96281.6 1.1 302.8 16.8 0.0 0.0 
12.0 12.1 0.0 0.0 0.4 88.7 0.0 2.2 96375.8 1.1 302.6 12.7 0.0 0.0 
8.0 8.0 0.0 0.0 0.2 41.2 0.0 0.9 96435.7 1.1 302.4 8.6 0.0 0.0 
4.0 4.1 0.0 0.0 0.1 13.3 0.0 0.1 96458.0 1.1 302.3 4.9 0.0 0.0 

12
0 

D
eg

re
e 

Tr
av

er
se

 

40.0 40.0 0.1 0.1 4.1 1013.1 0.1 22.6 95659.5 1.2 273.6 40.9 0.1 0.1 
36.0 36.0 0.1 0.1 3.2 805.3 0.1 18.1 95654.7 1.2 273.6 36.4 0.1 0.1 
32.0 32.0 0.1 0.1 2.5 629.9 0.1 13.7 95617.8 1.1 273.6 32.2 0.1 0.1 
28.0 28.1 0.1 0.1 1.9 477.5 0.0 10.9 95652.9 1.1 273.5 28.1 0.1 0.1 
24.0 24.0 0.1 0.1 1.4 349.4 0.0 7.8 95682.3 1.1 273.5 24.0 0.1 0.1 
20.0 20.0 0.1 0.1 1.0 241.4 0.0 5.5 95679.6 1.1 273.4 19.9 0.1 0.1 
16.0 16.0 0.0 0.0 0.6 155.6 0.0 3.6 95755.8 1.1 273.4 16.0 0.0 0.0 
12.0 12.0 0.0 0.0 0.4 88.8 0.0 2.1 95817.6 1.1 273.4 12.1 0.0 0.0 
8.0 8.0 0.0 0.0 0.2 41.5 0.0 1.0 95812.1 1.1 273.5 8.3 0.0 0.0 
4.0 4.1 0.0 0.0 0.1 13.4 0.0 0.4 95841.5 1.1 273.6 4.7 0.0 0.0 
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 Figure B-4: Air mass flow rate when calculated by pitot tube and venturi meter. The equation of 
the line was used to correct the venturi meter. 

 

 Figure B-5: Air velocity when calculated by pitot tube and venturi meter. Data was retaken on a 
subsequent day to create this curve which is why the correction factor is slightly different. 
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To obtain particle entrainment images and centre of mass (C.o.M.) probability distributions 

Environment for Visual Images (ENVI) software and Interactive Data Language (IDL) code was 

used. Data analysis and image processing methodology will be detailed in this appendix along with 

the pertinent code. 

Version 1.0: Manual Image Processing 

ENVI was used manually to determine an image processing method that cleaned up laser 

artifacts, rotated the images, and stretched the images to compensate for camera angle to determine 

the best course of action.  

The following commands were used within ENVI Classic: 

Open Normalized file 

Rotate -90 degrees-saved file 

Resize Data-ENVI tool. Used the ratio of x-y to come up with a linear stretch size 

 Nearest Neighbor Interpolation 

Used ENVI Classic to make a Region of Interest.  

Make mask using Region of Interest 

 Basic Tools>Masking>Build Mask 

  Select Image-Display 1 most likely. 

  Under Options choose Import ROI’s>Choose your ROI>Apply 

 Basic Tools>Masking>Apply Mask 

  Select Image 

  Under Select Mask Choose Mask created previously. Apply and Save 

Then use the C.O.M file in IDL to calculate the C.O.M. and the sums. Import into excel and 

figure out the equivalent pixel to mm conversion. Remember that the value given is left to right 

and top to bottom so will need to subtract the value from the diameter of the pipe. 
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Version 2.0: Automated Image Processing 

Once the manual processing method showed satisfactory results the process was coded in IDL 

(shown at the end of this appendix). This allowed for batch processing of the images and greatly 

simplified the calculation of the center of mass of each image. The IDL code imports the specified 

images, determines the largest y dimension and then uses this to normalize the x dimension. The 

code then computes the amount of stretch required in both the x and y dimensions to correct for 

the viewing angle distortion of the image. The image is then rotated 90 degrees to correct for 

camera mounting. The region of interest still needs to be applied manually to allow for a best 

judgement call on how much of the laser artifact to remove during the cropping operation.  

Centre of Mass Proof of Concept Test 

To test the centre of mass code I created an image file that was completely white and 501x501 

pixels wide. The image was run through the C.o.M. code. There should be 250 pixels on either 

side of the center pixel. Since the first pixel is zero the actual center pixel will be indexed as 250 

(i.e. 250 + center pixel + 250=501).  

 

 Figure C-1: Initial C.o.M. Test image 
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Blank white image with a single black center pixel. Black border added for visualization but 

was not included during the test. 

Results obtained were:  
CG XPosition 
         250 
CG YPosition 
         250 
Sum 
       64005000. 
Sum / 1000 
       64005.000 

Then I cropped said image randomly to obtain this. 

 
 Figure C-2: Cropped C.o.M. test image 

When I ran it through the C.o.M. IDL program I obtained the following results 
% Compiled module: CENTRE_OF_MASS_THESIS. 
CG XPosition 
         240 
CG YPosition 
         260 
Sum 
       37182060. 
Sum / 1000 
       37182.060 

Which makes sense as the crop shifted the white image to the left (therefore centre of gravity 

X is now 240) and down (centre of gravity Y is now 260). But the take away is the center is still 
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referenced to the original image size. The center is 260 pixels down from the top of the original 

image.  

The solution was to manually determine the top pixel of the mask and the bottom pixel of the 

mask (or left and right if the CG X is needed). Then use this and the known inner dimensions of 

the pipe to normalize 

For the trial image above this equals 44 and 479 in the y-axis and 29 and 454 in the x-axis. 

 If I assume an inner dimension of 50 mm (this is a manufactured image so this calculation is for 

demonstration purposes only) the following example calculation will eventually give the centroids 

y position in mm from the bottom example tubing. 

 

y-axis 

Image Y Size: 479 px-44px=435px 

Pixels per mm: 435px/50mm=8.7px/mm 

 

Adjusted Centroid: 260-44=216px    -this gives the centroid location from the top of the masked 

image 

Realigned Centroid: 435px-216px=219px   -Subtracted centroid from Image Y size to give the 

dimension from the bottom of the image 

Height in mm from bottom of pipe: 219px/8.7px/mm=25.17mm 
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 Figure D-1: Schematic of sensor and data acquisition (DAQ) locations. Showing upstream and downstream conveying sections of the system.  

Typical spacing listed in metres.  95 
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To measure pressure in the air handling lab a combination of Dwyer 616 and 648 

differential pressure sensors were used. These sensors had a 4 to 20 mA current output. The reason 

for two different sensor series is due to the 616 being discontinued halfway through the project 

and was replaced with the 648. Both sensors have similar ranges and accuracy with the main 

difference being a manual zero and span on the 616 which was replaced by an automatic zeroing 

routine on the 648 (the span can still be adjusted manually if required). 

To confirm the sensor accuracy, zero, and span a Druck DPI 605 Pressure Calibrator was 

used. A syringe was used to apply a static pressure to both the Druck and the sensor being 

calibrated. The calibration procedure is as follows. 

1. Sensor and Druck are open to atmospheric pressure. The sensor is zeroed either 

manually or with the automatic routine depending on the sensor. 

2. System is carefully pressurised using a syringe to the maximum range of the 

sensor. The sensor is compared to the reading on the Druck and manually spanned 

if needed.  

3. Return the system to atmospheric pressure. Zero again if needed. 

4. Complete steps 2 and 3 until satisfied with the sensor calibration. 

 Figure D-2 and Figure D-3 are the manufacturer (Dwyer) supplied specification sheets for 

the two differential pressure transducers used in this work.  
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Model Range Max. Press. Model Range Max. Press.
616-00 0-1 in. w.c. 2 psig 616-8 0-10 psid 29 psig
616-0 0-2 in. w.c. 2 psig 616-9 0-20 psid 58 psig
616-1 0-3 in. w.c. 2 psig 616-10 0-30 psid 58 psig
616-2 0-6 in. w.c. 5 psig 616-11 0-50 psid 150 psig
616-3 0-10 in. w.c. 5 psig 616-12 0-100 psid 150 psig
616-4 0-20 in. w.c. 11 psig 616-3B 1.5-0-1.5 in. w.c. 2 psig
616-5 0-40 in. w.c. 11 psig 616-6B 3-0-3 in. w.c. 5 psig
616-6 0-100 in. w.c. 29 psig 616-10B 5-0-5 in. w.c. 5 psig
616-7 0-200 in. w.c. 29 psig 616-20B 10-0-10 in. w.c. 11 psig

DWYER INSTRUMENTS, INC. Phone: 219/879-8000 www.dwyer-inst.com
P.O. BOX 373 • MICHIGAN CITY, INDIANA 46361, U.S.A. Fax: 219/872-9057 e-mail: lit@dwyer-inst.com

The Series 616 Differential Pressure Transmitter senses the pressure
of air and compatible gases and sends a standard 4-20 mA output
signal. A wide range of models are available factory calibrated to specific
ranges as listed in the chart below. The span and zero controls are for
use when checking calibration. They are not intended for re-ranging to a
significantly different span. Versatile circuit design enables operation in
2, 3 or 4-wire current loops.

For applications requiring direct pressure readings or percent of full span
output, the optional Model A-701 Digital Readout makes an ideal
companion device. It provides a bright red 0.6  high, 3-1/2 digit LED
display while supplying power to the Series 616 transmitter. For
additional information on these and other transmitters, see the Dwyer
Instruments, Inc. Full Line catalog.

Series 616 Differential Pressure Transmitter
Bulletin E-43

Specifications – Installation and Operating Instructions
5/16

[7.950]

7/8
[22.23]

3-21/64
[84.53]

2-13/32
[61.12]

1/2
[12.70]

1/2
[12.70]
1-1/2

[38.10]
2-1/4

[57.15]

ø5/32 [3.97]
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 Figure D-2: Dwyer 616 Differential Pressure Transducer
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Figure D-3: Dwyer 616-C Differential Pressure Transducer 
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 Figure D-4 and Figure D-5 show the Druck Pressure Calibrator in use. Additionally, the 

pressure sensors in the downstream conveying section can be seen in  Figure D-4. 

  
 Figure D-4: Druck Pressure Calibrator with the differential pressure sensors in the background. 

 
 Figure D-5: Druck Pressure Calibrator in use.  

Table D-1 is a schematic of the laboratory wiring for data acquisition and control. DIN rail 
mounted wiring blocks and components were used and each table line indicates a wiring layer as 
seen facing the wiring cabinet.
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 Table D-1: Wiring Schematic for the data acquisition and control cabinet.  
Rail 1: Sensor Inputs  Rail 2: External Controls and Patch Bay(Sensors E-F) 

In Description Out DAQ Channel  In  Description Out 

Orange A1 sensor Red daqmod1-p0  
1k Resistor 

Power in for Manual 
Control Ref 

Orange/White power Red   Power to Manual Control 
Pot Orange 

Green A2 sensor Green daqmod1-p1  Red Control Switch to AMM Purple 

Green/White power Red   Red AMM to Local Kill Switch Black 

Green B1 sensor White daqmod1-p2  Green Local to Remote Kill 
Switch Black 

Green/White power Red   Green/White 
Kill Switch to Signal Out 

NC 

Orange B2 sensor Red daqmod1-p3  Orange/White NC 

Orange/White power Red   Orange Sig Return to Common White 

Green C1 sensor Green   NC Gnd for Shielding NC 

Black power Red    Holder  

Yellow C2 sensor Yellow      

Black power Red      

Yellow D1 sensor Blue      

Black power Red    Patch Bay*  

Shielding ground NC    Port Sensor  

Orange D2 sensor Yellow   Green 

1 

E1 sensor Green 

Black power Red   Green/White power Green/White 

Blue D3 sensor Blue   Orange E2 sensor Orange 

Black power Red   Orange/White power Orange/White 

Green E1 sensor Blue daqmod1-p4  Green 

2 

E3 sensor Green 

Green/White power Red   Green/White power Green/White 

Orange E2 sensor Green daqmod1-p5  Orange E4 sensor Orange 

Orange/White power Red   Orange/White power Orange/White 

Green E3 sensor Brown daqmod1-p6  Green 

3 

E5 sensor Green 

Green/White power Red   Green/White power Green/White 

Orange E4 sensor Red daqmod1-p7  Orange E6 sensor Orange 

Orange/White power Red   Orange/White power Orange/White 

Green E5 sensor White daqmod2-p0  Green 

4 

E7 sensor Green 

Green/White power Red   Green/White power Green/White 

Orange E6 sensor Orange daqmod2-p1  Orange E8 sensor Orange 

Orange/White power Red   Orange/White power Orange/White 

 ground NC   Green 

5 

E9 sensor Green 

Green E7 sensor Green daqmod2-p2  Green/White power Green/White 

Green/White power Red   Orange E10 sensor Orange 

Orange E8 sensor Black daqmod2-p3  Orange/White power Orange/White 

Orange/White power Red   Green 

6 

E11 sensor Green 

Green E9 sensor Brown daqmod2-p4  Green/White power Green/White 

Green/White power Red   Orange E12 sensor Orange 

Orange E10 sensor Blue daqmod2-p5  Orange/White power Orange/White 
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Orange/White power Red   Green 

7 

E13 sensor Green 

Green E11 sensor Green daqmod2-p6  Green/White power Green/White 

Green/White power Red   Orange E14 sensor Orange 

Orange E12 sensor White daqmod2-p7  Orange/White power Orange/White 

Orange/White power Red   Green 
8 

E15 sensor Green 

Green E13 sensor Orange daqmod3-p0  Green/White power Green/White 

Green/White power Red   Green 

9 

F1 sensor Green 

Orange E14 sensor Black daqmod3-p1  Green/White power Green/White 

Orange/White power Red   Orange F2 sensor Orange 

 ground NC   Orange/White power Orange/White 

Green E15 sensor Brown daqmod3-p2  Blue F3 sensor Blue 

Green/White power Red   Blue/White power Blue/White 

Green F1 sensor Blue daqmod3-p3  Brown F4 sensor Brown 

Green/White power Red   Brown/White power Brown/White 

Orange F2 sensor White daqmod3-p4  Green 

10 

F5 sensor Green 

Orange/White power Red   Green/White power Green/White 

Blue F3 sensor Orange daqmod3-p5  Orange F6 sensor Orange 

Blue/White power Red   Orange/White power Orange/White 

Brown F4 sensor Green daqmod3-p6  Blue F7 sensor Blue 

Brown/White power Red   Blue/White power Blue/White 

Green F5 sensor Black daqmod4-p0  Brown F8 sensor Brown 

Green/White power Red   Brown/White power Brown/White 

Orange F6 sensor White daqmod4-p1  Green 

11 

F9 sensor Green 

Orange/White power Red   Green/White power Green/White 

Blue F7 sensor Blue daqmod4-p2  Orange F10 sensor Orange 

Blue/White power Red   Orange/White power Orange/White 

Brown F8 sensor Orange daqmod4-p3  Blue F11 sensor Blue 

Brown/White power Red   Blue/White power Blue/White 

Green F9 sensor Black daqmod4-p4  Brown F12 sensor Brown 

Green/White power Red   Brown/White power Brown/White 

Orange F10 sensor Blue daqmod4-p5  Green 

12 

B1 sensor Green 

Orange/White power Red   Green/White power Green/White 

Blue F11 sensor Green daqmod4-p6  Orange B2 sensor Orange 

Blue/White power Red   Orange/White power Orange/White 

Brown F12 sensor Blue daqmod4-p7  Blue 

Spare** 

Blue 

Brown/White power Red   Blue/White Blue/White 

Spare Spare Spare Spare 
 Brown Brown 

 Brown/White Brown/White 
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Rail 3: Power 

In Description Out 

 

24 V Power Rail 

 

  

  

  

  

  

  

  

  

  

   

 

Power Common Rail 

 

  

  

  

  

  

  

  

  

  

   

 

10 V Regulator 

 

  

  

  

 
10V Rail 

 

  

 10V Return  
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Table F-1 is the full outline of the test conditions analyzed in Chapter 5. 

 Table F-1: Specific Pressure Drop and Velocity Ratio Testing Set Points. Full Table 
Upstream Velocity 

(m/s) 
Downstream 

Velocity (m/s) 
Velocity 

Ratio 
µ at 0.0205 

kg/s 
µ at 0.0620 

kg/s 
µ at 0.1020 

kg/s 

30 

30 1.00 0.22 0.66 1.09 
29 0.97 0.23 0.69 1.13 
28 0.93 0.24 0.71 1.17 
27 0.90 0.24 0.74 1.21 
26 0.87 0.25 0.77 1.26 
25 0.83 0.26 0.80 1.31 
24 0.80 0.27 0.83 1.37 
23 0.77 0.29 0.87 1.43 
22 0.73 0.30 0.91 1.49 
21 0.70 0.31 0.95 1.56 
20 0.67 0.33 1.00 1.64 
19 0.63 0.35 1.05 1.73 
18 0.60 0.37 1.11 1.82 
17 0.57 0.39 1.17 1.93 
16 0.53 0.41 1.25 2.05 
15 0.50 0.44 1.33 2.19 
14 0.47 0.47 1.42 2.34 
13 0.43 0.51 1.53 2.52 
12 0.40 0.55 1.66 2.73 
11 0.37 0.60 1.81 2.98 
10 0.33 0.66 1.99 3.28 

25 

25 1.00 0.26 0.80 1.31 
24 0.96 0.27 0.83 1.37 
23 0.92 0.29 0.87 1.43 
22 0.88 0.30 0.91 1.49 
21 0.84 0.31 0.95 1.56 
20 0.80 0.33 1.00 1.64 
19 0.76 0.35 1.05 1.73 
18 0.72 0.37 1.11 1.82 
17 0.68 0.39 1.17 1.93 
16 0.64 0.41 1.25 2.05 
15 0.60 0.44 1.33 2.19 
14 0.56 0.47 1.42 2.34 
13 0.52 0.51 1.53 2.52 
12 0.48 0.55 1.66 2.73 
11 0.44 0.60 1.81 2.98 
10 0.40 0.66 1.99 3.28 
9 0.36 0.73 2.21 3.64 
8 0.32 0.82 2.49 4.10 
7 0.28 0.94 2.85 4.69 
6 0.24 1.10 3.32 5.47 
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Upstream Velocity 
(m/s) 

Downstream 
Velocity (m/s) 

Velocity 
Ratio 

µ at 0.0205 
kg/s 

µ at 0.0620 
kg/s 

µ at 0.1020 
kg/s 

20 

20 1.00 0.33 1.00 1.64 
19 0.95 0.35 1.05 1.73 
18 0.90 0.37 1.11 1.82 
17 0.85 0.39 1.17 1.93 
16 0.80 0.41 1.25 2.05 
15 0.75 0.44 1.33 2.19 
14 0.70 0.47 1.42 2.34 
13 0.65 0.51 1.53 2.52 
12 0.60 0.55 1.66 2.73 
11 0.55 0.60 1.81 2.98 
10 0.50 0.66 1.99 3.28 
9 0.45 0.73 2.21 3.64 
8 0.40 0.82 2.49 4.10 
7 0.35 0.94 2.85 4.69 
6 0.30 1.10 3.32 5.47 

18 

18 1.00 0.37 1.11 1.82 
17 0.94 0.39 1.17 1.93 
16 0.89 0.41 1.25 2.05 
15 0.83 0.44 1.33 2.19 
14 0.78 0.47 1.42 2.34 
13 0.72 0.51 1.53 2.52 
12 0.67 0.55 1.66 2.73 
11 0.61 0.60 1.81 2.98 
10 0.56 0.66 1.99 3.28 
9 0.50 0.73 2.21 3.64 
8 0.44 0.82 2.49 4.10 
7 0.39 0.94 2.85 4.69 
6 0.33 1.10 3.32 5.47 

16 

16 1.00 0.41 1.25 2.05 
15 0.94 0.44 1.33 2.19 
14 0.88 0.47 1.42 2.34 
13 0.81 0.51 1.53 2.52 
12 0.75 0.55 1.66 2.73 
11 0.69 0.60 1.81 2.98 
10 0.63 0.66 1.99 3.28 
9 0.56 0.73 2.21 3.64 
8 0.50 0.82 2.49 4.10 
7 0.44 0.94 2.85 4.69 
6 0.38 1.10 3.32 5.47 

14 

14 1.00 0.47 1.42 2.34 
13 0.93 0.51 1.53 2.52 
12 0.86 0.55 1.66 2.73 
11 0.79 0.60 1.81 2.98 
10 0.71 0.66 1.99 3.28 
9 0.64 0.73 2.21 3.64 
8 0.57 0.82 2.49 4.10 
7 0.50 0.94 2.85 4.69 
6 0.43 1.10 3.32 5.47 
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Upstream Velocity 
(m/s) 

Downstream 
Velocity (m/s) 

Velocity 
Ratio 

µ at 0.0205 
kg/s 

µ at 0.0620 
kg/s 

µ at 0.1020 
kg/s 

12 

12 1.00 0.55 1.66 2.73 
11 0.92 0.60 1.81 2.98 
10 0.83 0.66 1.99 3.28 
9 0.75 0.73 2.21 3.64 
8 0.67 0.82 2.49 4.10 
7 0.58 0.94 2.85 4.69 
6 0.50 1.10 3.32 5.47 

10 

10 1.00 0.66 1.99 3.28 
9 0.90 0.73 2.21 3.64 
8 0.80 0.82 2.49 4.10 
7 0.70 0.94 2.85 4.69 
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 Figure G-1: Average specific energy plotted by upstream air velocity. Each panel is a plot of 

a different mass flow rate (set meter roller RPM of 10, 30, and 50 from left to right respectively). 
All Trials 
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