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ABSTRACT 

The contribution of solar power in electric power system has been growing 

rapidly due to the significant negative impact of carbon emissions generated by 

conventional power sources.  Large scale photovoltaic (PV) and concentrated solar 

power (CSP) have been installed around the world.  However, these technologies 

involve major concerns regarding the reliability of system generation.  The output 

power generation from solar technologies acts quite differently from that of 

conventional generation.  The PV and CSP are composed of major components that 

have different failure characteristics.  The interactions of the different component 

topologies in various commercially available PV system configurations will 

significantly influence the reliability of a PV system.  Moreover, the output power of PV 

and CSP are highly variable and depend on the solar irradiation resulting in 

discontinuous and variable electricity generation.    All these factors have a direct 

impact on the overall generation system adequacy.  It is, therefore, vital to incorporate 

these factors in the reliability modeling of PV and CSP systems.  An analytical 

probabilistic technique is employed in this thesis to develop detailed reliability models 

of PV and CSP systems.  This thesis investigates the impact of PV/CSP system 

components on the reliability performance of PV/CSP systems. 
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Different studies were conducted on test systems in this thesis considering 

system load variation, growth in solar capacity, geographical location, and seasonal 

effects.  These analyses have been expanded to quantify the comparative reliability of a 

generation system with large scale PV and CSP.  The power output of PV is also 

affected by dust accumulation on PV panel surfaces.  The deposition of dust on PV 

panels will reduce the net solar irradiation absorbed by the solar panel, and lower the 

solar panel efficiency.  This project is extended to incorporate the cumulative dust in the 

reliability model of the PV system.  A regression model is adopted to develop a 

probabilistic model of PV power reduction caused by cumulative dust.  This work also 

investigates the impact of a dust-removal strategy on the overall system adequacy.  The 

concept and methodology discussed in this thesis can be used effectively by system 

planners and electric utilities to evaluate the reliability benefit of utilizing solar power 

in existing generation systems. 
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1 Introduction 

1.1 Reliability Evaluation in Power System Planning 

An electric power system is a large complex network of electrical components 

that supplies and transfers electricity to the consumers.  Its main function is to 

consistently fulfill the load demand at the minimum cost and an acceptable level of 

reliability with environmental compliance.  It is, therefore, vital to plan for the future 

needs of electricity considering the integration of environmentally friendly energy 

resources, ensuring that there would be adequate reserves to meet the increasing load 

demand.  Moreover, it is important to analyze power system reliability to limit the 

potential of an interruption in the electrical services.  The development of reliability 

models of the energy source supply is key for the design and operation of reliable 

power systems.  In general, power system reliability studies are utilized to analyze the 

ability of an electrical power system to provide an adequate and dependable electricity 

supply [1,2]. 

Power system reliability evaluation has a crucial role in the planning and 

operation of an electric power system.  The evaluation of the power system reliability 

typically focuses on two concerns: system adequacy and system security [2] as shown in 

Figure 1-1.  Adequacy is determined by the ability of the existing or planned system 

facilities to reasonably satisfy the overall system demand.  System security is defined as 



 2 

the ability of the power system to respond to disturbances that may occur during 

system operation and maintain a consistent power balance [2]. 

 

Figure 1-1: Subdivision of power system reliability 

The reliability evaluation of the entire power system is inherently complex due to 

the size of the system, the number of components and variables and their interrelations, 

and different functions and objectives of the subsystems.  Hence, the reliability studies 

on this subject are classified into three hierarchical levels (HL): HL-I, HL-II, and HL-III 

[3,4] as shown in Figure 1-2.  The HL-I reliability assessment defines the ability of the 

total system generation to meet the total demand load.  This evaluation can be carried 

out by creating a total system generation model and convolving it with the system load 

model.  The HL-II evaluation is concerned with the function of the generation facilities 

and transmission equipment (lines and transformers) in meeting the load point energy 

demand.  The HL-III analysis includes all three functional levels, i.e., generation, 

 
 

System Reliability 

 

System Adequacy 

 

System Security 
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transmission, and distribution, and generally only applied in past performance 

evaluation.  Generation planning is an important task in electric power utilities, as the 

investment in generation facilities dominates the economics of power systems. The 

reliability studies carried out during this task is within the domain of HL-I adequacy.  

The proposed research work described in this thesis focuses on the HL-I level adequacy 

evaluation of generation systems including alternative solar energy technologies. 

 

Figure 1-2: Hierarchical levels of power system reliability evaluation 

Utilizing a suitable technique to evaluate the system adequacy is vital during the 

planning of electric power systems.  Numerous research studies have presented criteria 

and methods used by electric utility companies in system generation planning [5,6].  

The two most common types of techniques used in generation system reliability 
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evaluation are deterministic and probabilistic.  The deterministic approach mainly 

employs simple rule of thumb methods, such as, specifying the Reserve Margin (RM) 

requirement equal to a fixed percentage of the system capacity, or a capacity reserve 

requirement to withstand the Loss of the Largest Unit (LLU) or (N-1).  The percent RM 

and N-1 criteria do not respond to the stochastic nature of the system behavior, system 

demand, or component failures.  A probabilistic technique, however, reflects inherent 

random system behavior [7].  Therefore, most electrical power utility companies have 

switched from using deterministic to probabilistic methods to provide risk-based 

information for generation system plans [7,8]. 

The probabilistic approach can be employed using either an analytical or a 

simulation methodology [3].  The analytical method mathematically represents the 

system model, and the results obtained from this method are usually long-term 

expected indices.  This technique can provide the expected index values in relatively 

short computation times, even though assumptions are often needed to simplify the 

calculation.  The simulation technique requires more computation time and resources. 

This thesis focuses on the development of reliability models of two different solar 

energy technologies—Photovoltaic (PV) and Concentrated Solar Power (CSP) 

integrating these models into power system evaluation and investigate the companied 

benefit of these renewable energy on the overall system adequacy.  The Ph.D. project is 
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further expanded to study the impact of the cumulative dust on the reliability modeling 

of the PV system. 

1.2 Power Systems Including Photovoltaic System  

The burning of fossil fuels has increased with growing demand for electricity.  

However, the world is concerned about global warming, which is believed to be caused 

by highly polluting emissions from conventional fossil-fueled energy sources.  

Reference [9] pointed out that global CO2 emissions from fossil fuel usage were 32.2 

billion tons in 2013, reaching a record high, which is almost 56.1% above the emission 

level in 1990 and 2.3% above 2012.  The use of alternative clean energy sources is 

essential to reduce the carbon emissions from electricity generation while meeting 

global energy demand.  Renewable energy sources are receiving considerable attention 

to offset energy production of electrical energy from fossil-fired energy generation.  

Renewable sources provide an environmentally friendly alternative as local energy 

resources.  CSP and PV sources are among the most promising options for 

environmentally friendly solar energy sources. 

Solar cell technology has been developing rapidly, leading to great 

improvements in solar cell efficiency.  Electricity generation through PV sources is 

being increasingly recognized as cost-effective for both small and large electric power 

systems.  Reference [10] is an annual report published by Solar Power Europe and 
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presents the statistics of installed PV capacity in various regions of the world.  The total 

PV capacity has increased exponentially from 100 GW in 2012 to 229.9 GW in 2015 to 

306.5 GW in 2016 to 358 GW by the end of 2017 [10].  The global installed PV capacity is 

expected to exceed 400 GW in 2018, 500 GW in 2019, 600 GW in 2020, 700 GW in 2021 

[10]. 

The structure of power electronic converters in commercially available PV 

systems can be classified into centralized inverters, string inverters, and micro-

inverters.  The structures of central and string PV systems have almost similar electric 

components; however, they are different in terms of the manner in which they connect 

the solar array to the inverter, as shown in Figures 1-3 and 1-4 [11].  In these two 

figures, for central PV system, each PV array has its own inverters, where one inverter 

is connected to each string.  Micro-inverter topology requires the connection of one 

inverter per solar cell as shown in Figure 1-5 [11].  The major concern of using PV 

sources is that the solar irradiation is intermittent and not always available when the 

electricity is required.  This is not a concern when energy is produced using 

conventional sources.  PV systems exist in different topologies with multi-components 

connected in different configuration. The ability to incorporate probability failure of 

individual components is important in developing reliability models for different PV 

design and topologies.  The development of detailed reliability models is required to 

incorporate PV energy sources in the overall power system reliability evaluation. 



 7 

 

Figure 1-3 Construction of a central PV system [11] 

 

Figure 1-4: Construction of a string PV system [11] 
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Figure 1-5: Construction of a micro-inverter system [11] 

1.3 Power Systems Including Concentrated Solar Power 

CSP differs from PV technology, as CSP is based on the concept of concentrating 

solar thermal energy to generate steam, which can then be utilized for generation of 

electricity using conventional power cycles.  This technology uses mirrors to 

concentrate direct beam solar irradiance to heat a liquid or gas that is then used in a 

downstream process for electricity generation.  CSP is a zero-carbon emission source of 

electricity that is best suited for areas of the world with high solar irradiation, such as 

Southern Europe, Northern Africa, the Middle East, South Africa, parts of India, China, 

PV Panel Micro-Inverter 
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Southern USA, and Australia.  Figure 1-6 [12] illustrates the potential regions to install a 

CSP.  The first large-scale CSP plant for producing electricity was built in the 1980s in 

California [12]. 

 

Figure 1-6: Appropriate areas for CSP [12] 

CSP systems are being widely commercialized, and the CSP market has seen an 

addition of up to 740 MW of generation capacity in the electric system network from 

2007 till the end of 2010 [13].  Spain installed 400 MW in 2010, taking the global lead 

with a total of 632 MW, while the US ended 2010 with 509 MW, after adding 78 MW 

[13].  The Middle East has also begun ramping up their plans to install CSP based 

projects and, as a part of these plans, Shams-I, the largest CSP project in the Middle 

East, has been installed in Masdar, Abu Dhabi.  At the end of 2016, Spain was 

producing a total capacity of 2.3 GW, followed by the United States with over 1.7 GW 

https://en.wikipedia.org/wiki/Megawatt
https://en.wikipedia.org/wiki/Shams_solar_power_station
https://en.wikipedia.org/wiki/Masdar
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[14].  By the end of 2016, 4.8 GW of solar thermal electricity projects were operational 

worldwide and almost half of this capacity was installed in Spain, establishing it as the 

global market leader for CSP [14].  The power output profile of CSP is different from 

conventional generation sources.  Increasing the penetration of CSP in an electric power 

system introduces major impacts on the power system reliability.  An appropriate 

reliability model and relevant data are essential to incorporate CSP technology in 

generation system reliability evaluation. 

Factors such as efficiency, economics, and reliability are key to the selection of 

the most appropriate solar technology for a power system at a specific geographic 

location.  The system of CSP technology has a higher annual energy production rate 

than the PV module considering the same nominal power for both technologies [15].  

Reference [16] performed a financial analysis on PV and CSP plants.  This study 

highlighted and summarized the initial investment cost assumptions for CSP and PV 

power plants for the same rate of power output.  The comparative analysis indicated 

that the initial investment costs for the CSP plant were higher than those for the PV 

power plant.  However, CSP plants have higher economic returns than PV power 

plants.  A reliability comparison of PV and CSP technologies has not been investigated 

in past work. 
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1.4 Research Motivation  

There is a continuous need to expand the electric power generation by building 

new power plants, as the demand for electricity steadily increases over time.  It is 

widely believed that average global temperatures have been rising owing to the 

burning of fossil fuels to generate electricity by conventional methods.  Renewable 

energy production, which does not emit greenhouse gases, has been recognized as an 

alternative source of electric power.  Solar power is currently receiving considerable 

attention as it exhibits potential for meeting the growing energy demand without 

adding to the air pollution and the impacts of global warming [17-19].  Many 

governments and organizations around the world strongly support financing the use of 

renewable energy, such as wind and solar power, in electric power systems. 

Solar power is recognized as an environmentally friendly resource for an electric 

generation system owing to its zero greenhouse gas emissions and zero fossil fuel 

consumption.  Moreover, this source is a locally available energy resource and can be 

operated and maintained easily.  These positive factors collectively make solar power 

an appealing energy source.  Currently, PV and CSP are the two main solar energy 

technologies that are receiving significant attention and becoming rapidly popular 

around the world. 
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There is an increase in the number of PV installations due to the advances in 

solar cell efficiency and decreasing prices.  The total PV output capacity has increased 

exponentially, from 1400 MW in 2000, to 358 GW in 2017 [10].  Recently, the European 

Photovoltaic Industry Association (EPIA) studied the PV market in five European 

nations: Germany, France, Italy, the United Kingdom, and Spain.  The study pointed 

out that PV will be more cost-effective in the coming years as a result of the decreasing 

prices of the solar cells [20].  Although there is evidence of the increasing PV 

penetration in electric system grids, the power output of PV systems is highly variable, 

due to weather and geographical climatic impacts. 

CSP is another form of solar power technology that has growing potential with 

regard to the generation of electricity in countries or regions having strong solar 

resources.  The International Energy Agency report [21] presents an extensive study on 

the potential growth of CSP.  This study examined the renewable energy potential in 

the Middle East and the North Africa region and stated that by 2050, CSP plants could 

contribute about half of the region’s electrical production with a total estimated capacity 

of 390 GW [21]. 

The reliability model of PV/CSP depend on design and configuration of each 

component.  A PV system consists of an inverter, a capacitor, and a switch, which have 

a direct impact on the availability of the PV capacity [22].  Moreover, the structure of PV 
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topology can affect the PV system’s adequacy.  Major components of a CSP system can 

impact the availability of the power output of the plant.  In addition, the output power 

of PV is highly variable, which can directly impact the overall system adequacy.  A 

limited amount of research has been conducted for developing proper PV and CSP 

reliability models.  The development of a quantitative framework to evaluate the 

reliability contribution of the entire PV or CSP system in a power system grid is, 

therefore, essential. 

1.4.1 Previous Research on Generation System Adequacy Including Photovoltaic 

Systems 

Many investigators have studied the different aspects of PV applications in 

electric power generation, from low to high-power system applications.  This thesis 

focuses on PV applications in electric system grids.  As the number of installations of 

PV generating units in electric power systems continues to increase globally, the 

influence of the random intermittency of PV sources on the overall system performance 

is recognized by many researchers.  The power output of a PV array is uncertain and 

intermittent in nature, and it is, therefore, important to study the reliability 

contributions made by PV generation to power systems. 

Although solar power provides clean energy, the power output of PV systems 

differs from that generated using conventional sources due to the high uncertainty of 
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the availability associated with PV system components [11], [23], environmental factors, 

and PV system configuration.  Electric companies and customers are, therefore, 

concerned about the reliability of grid-connected PV systems.  Previous studies have 

been carried out using both the analytical [5,6] and simulation techniques [3,4] to assess 

the adequacy benefit associated with installing solar energy in electric power systems.  

A system well-being model has also been used in past works [24,25] that combines the 

deterministic and probabilistic techniques to provide useful reliability indices for power 

systems containing renewable energy.  The reliability contribution of PV and wind 

energy sources is evaluated in these studies.  These studies, however, do not consider 

the detail PV system topology, component configurations and the impact of component 

level failure/repair characteristics on the reliability performance of the PV system.  The 

topology of PV systems can be classified as centralized inverters, string inverters, and 

micro-inverters in terms of the structure of their power electronic converters.  As stated 

earlier, the power output of PV systems is highly variable and uncertain due 

uncertainty in weather conditions, such as cloud cover, and random failures of system 

components [11], [27,28].  PV technologies are composed of vulnerable electric 

components that have different failure rates [11]. These vulnerable electric components, 

such as capacitor, inverter, and switching, should be considered when evaluating the 

reliability benefit for the entire PV system.  Most previous works, such as [26] mainly 

focus on the reliability assessment of PV systems without considering the component-
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level assessment of the PV system.  A detailed quantitative reliability assessment is 

essential for the entire PV system in order to accurately determine the overall reliability 

contribution of solar power to electric power systems. 

This thesis focuses on assessing the PV system adequacy in an electric power 

system to address the problems discussed earlier in this chapter.  The work in this thesis 

was carried out to identify the key system parameters that affect the reliability 

contribution of PV systems, develop appropriate evaluation models, and conduct 

different case studies to investigate the reliability contribution of PV in an electric 

power system. 

1.4.2 Previous Research on Generation System Adequacy Including Concentrated 

Solar Power 

A CSP system can pose capacity planning challenges owing to the variable and 

uncertain nature of the power output [29].  Therefore, obtaining accurate estimates of 

the capacity value of such resources is vital for planning purposes.  As the penetration 

of CSP increases in an electric power system, other considerations also become 

prominent, such as its impact on the overall power system reliability.  Reliability 

evaluation is crucial for the design and operation management of a CSP plant.  Very 

limited research has been conducted addressing the reliability model of a CSP plant, 

including all major CSP system components.  Therefore, the quantitative assessment of 
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reliability for an entire CSP system is essential for determining the overall reliability 

contribution of a CSP plant to electric power systems. 

A study reported in [29] evaluated the capacity value of CSP plant for five sites 

in the southwestern of United States.  In this study, weather data from several years 

were taken, and an analytical approach was used to quantify the capacity factor for the 

equivalent CSP plants.  Capacity factor is the ratio of the average power generated to 

the total installed power rating. Reference [30] provides recommendations and 

estimations of the effect of solar energy on power systems, and how the storage systems 

of CSP contribute to power system flexibility.  Another study in [31] proposed a 

sequential Monte Carlo method, which included a series of possible trajectories of CSP 

production to find the capacity value of this technology. 

CSP systems without thermal energy storage cannot generate power 

continuously due to the lack of solar energy during nighttime, adverse weather 

conditions during the day as well as random failures of the CSP system major 

components [16], [32].  These major components, such as mirrors and thermal plant 

components, should be taken into account when developing the reliability model of the 

CSP system.  The contribution of a given technology or plant to system reliability is 

quantified by its capacity value considering the effective load-carrying capability 

(ELCC) of the CSP. 
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Reference [16] presented a technical–economic comparison between PV and CSP.  

It evaluated the initial costs, the maintenance costs, and the benefits derived from both 

the government economic incentives and sale of energy for a 40 MW PV plant and a 40 

MW CSP plant.  The study found that, under the same environmental conditions, the 

same rated power, and the same location, the economic return on CSP was significantly 

higher than that of a PV system [16].  The areas of land occupied by CSP plants are 

slightly smaller than those taken up by PV.  However, the initial cost for the installation 

of CSP is considerably higher.  Reference [33] proposed a mathematical model for the 

calculation of the levelized cost of electricity generated by PV and CSP. 

There is a lack of research on comparative analysis of the reliability contribution 

and capacity value of adding CSP and PV to an electricity system.  This thesis analyzes 

the comparative reliability of PV and CSP based on the key system variables and 

parameters.  The developed reliability models for PV and CSP systems are utilized in 

this work to investigate the comparative capacity credit of the two solar technologies. 

1.4.3 Previous Research on Generation System Adequacy Including Photovoltaic 

System Incorporating Cumulative Dust 

Although significant advances have been made in PV systems in the past few 

decades, weather conditions are proving to be a significant factor for the PV system 

performance.  As an example, the government of the Kingdom of Saudi Arabia (KSA) 
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announced their investment for installing a solar power system in KSA with a capacity 

of 7.2 GW in 2019 and 200 GW by 2030 [34], but the location of KSA is associated with 

relatively high levels of atmospheric dust concentrations, which causes high rates of 

dust accumulation on solar PV panels.  This accumulation of dust particles can block 

solar light from the outer layer, causing the total solar power output to drop.  The 

impact of dust accumulation on the output power of the PV system depends on 

seasonal dust events and the size of the dust particles. 

Reference [35] studied the effect of dust on the PV module performance.  This 

study quantified the accumulation of dust per day on a square meter of flat surface and 

the number of days in various parts of Saudi Arabia.  Another study [36] analyzed the 

effect of dust on the power output based on the density of the deposited dust, the 

composition of the dust, and its particle distribution.  Reference [37] evaluated the 

humidity level, air velocity, and dust in the area where PV systems were installed.  

Reference [38] studied the impact of dust on the performance of a PV system in 

Bangladesh.  The results of this study showed that the output power of the PV system 

was reduced by 34% at the end of the month for tropical weather conditions.  Another 

study [39] developed analytical models of correlation between dust particle 

accumulation on PV modules and the reduction in the output power of a PV system in a 

dry region.  This study took into consideration the grain sizes of dust.  Other 

researchers [11], [40] analyzed the impact of PV electronic components on the 
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availability of the PV power output.  Reference [41] developed a probabilistic reliability 

model of a PV system that considered PV system electronic components and PV system 

configuration. 

The literature review presented in this section focuses on the dust event, dust 

density, dust concentration in the air, dust accumulation, and the reliability model of 

the PV system components.  The reliability contribution of the PV system has always 

been a major point of inquiry as the output power of this technology cannot be 

controlled easily.  However, the reliability model of a PV system including the 

accumulation of dust on the PV surface modules have not been fully explored. 

This work presents a PV system reliability model incorporating cumulative dust.  

The probabilistic model of PV power reduction caused by cumulative dust is developed 

first and then combined with the reliability model of the PV system.  The application of 

dust modeling in reliability evaluation is demonstrated by using a reliability test model 

and is assumed to be in Riyadh and Medina, located in the KSA.  The polynomial 

regression model was adopted from an experimental measurement of cumulative dust 

conducted by the College of Engineering, King Saud University [42,43].  The seasonal 

dust events recorded by [44] were used in this thesis to construct the linear regression 

model of the accumulation of dust. 
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1.5 Research Objectives 

There is growing interest in reliability research for renewable energy 

technologies in electric power systems.  Most of these studies focused on wind energy.  

Solar energy is also emerging as an important renewable resource in power grid 

applications.  There is, however, relatively less work reported on solar energy and its 

contribution to grid reliability.  The PV and CSP solar technologies are developing 

rapidly and are therefore considered in this project.  The intermittency in the output 

power of PV and CSP can have severe impacts on the performance of overall system 

reliability.  The PV and CSP plants are composed of major components that can affect 

the system adequacy.  The literature review in Section 1.4 discussed a lack of reported 

knowledge on suitable reliability modeling of PV and CSP systems as well as a 

methodology to assess the overall power system reliability.  The proposed research 

work will focus on fulfilling the following tasks: 

1. Developing an appropriate PV system reliability model. 

2. Developing a suitable CSP system reliability model. 

3. Developing methodologies to integrate the PV/CSP models to power the 

system adequacy evaluation. 

4. Performing case studies to assess the reliability contribution of PV/CSP energy 

systems to power system adequacy. 
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5. Comparing adequacy assessment of the large CSP and PV-integrated electric 

power system analysis. 

6. Developing a reliability modeling of PV system incorporating cumulative dust. 

1.5.1 Develop Reliability Models of Different Photovoltaic Topologies 

The application of PV in large power systems is garnering considerable attention.  

The output power of PV systems varies depending on the availability of the PV system 

components and sunlight as well as the configuration of PV systems.  The aim of this 

step is to develop a suitable analytical PV system reliability model that includes all 

major components for adequacy assessment.  Probabilistic models will be developed for 

different PV topologies, such as central, string, and micro-inverter PV systems.  In this 

step, the hierarchical Reliability Block Diagram will be developed to model the behavior 

of the overall PV system.  Several types of system-level reliability models will be 

considered to come up with the most suitable model. 

1.5.2 Adequacy Assessment of Different PV Topologies Integrated Electric Power 

System 

A number of case studies will be performed with different combinations of PV 

topology energy sources to assess the contribution of these topologies to the overall 

system reliability.  Sensitivity studies will also be carried out to assess the impact of 

different system parameters on the system adequacy.  System parameters, such as site-
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specific solar profile, outage probability of system components, and the system load 

levels, can have a direct impact on the overall system reliability.  Solar irradiation data 

from different geographical locations were collected for use in the study.  The data 

include solar irradiation incremented at five-minute intervals from 2000 to 2005 for 

different Saudi Arabian sites [45].  A reliability test system such as the Small Isolated 

Power System (SIPS) will be used in this work.  The incremental peak-load-carrying 

capability and CC of PV different system topologies will be evaluated. 

1.5.3 Probabilistic Reliability Models of Concentrated Solar Power Plants 

 A CSP plant includes components such as a reflector and receiver to focus direct 

solar radiation onto a fluid to capture thermal energy.  The captured heat can then be 

converted into mechanical energy in a turbine that drives a generator to produce 

electricity.  The growing share of CSP plants in electric power systems creates the need 

for including CSP in power system reliability studies.  The availability of power from 

CSP is affected by factors such as the failure and repair of the reflector, receiver, and 

thermal unit in addition to the variability of solar irradiation.  These factors will be 

taken into account in developing a proper analytical CSP reliability model.  The CSP 

power plant generation also depends on Direct Normal Irradiation (DNI) and, 

therefore, needs to be included in the generation model.  An appropriate reliability 

network model of the CSP system will be developed taking into consideration the key 
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system components and parameters as well as creating a probabilistic model of the 

power output from the CSP. 

1.5.4 Adequacy Assessment of Concentrated Solar Power Integrated Electric Power 

System 

A suitable system adequacy evaluation technique that integrates the reliability 

models developed in Section 1.5.3 will be developed in this step.  The focus of this work 

is on adequacy assessment at the HL-I level and the capability of the entire generation 

system to incorporate different combinations of CSP capacity to satisfy continuously the 

total system demand.  The electric generation and load models are combined to produce 

the risk model.  A suitable test system consisting of conventional generation and CSP 

will be utilized to implement the overall system adequacy model developed in this 

work. 

1.5.5 A Comparative Reliability Analysis of Electric Power Systems with A High 

Penetration of CSP and PV 

The proposed system generation model that combines PV and CSP models to 

compare the system adequacy indices in a PV- or CSP-integrated power system is 

illustrated on a test power system.  The Roy Billinton Test System (RBTS) [46] is used to 

perform the reliability comparison presented in this work.  Several case studies have 

been carried out, including the impact of load growth and the growth in CSP and PV 
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penetration.  The reliability indices obtained, with and without considering PV and CSP 

curtailment, are compared.  The comparative analysis is categorized into the loss of load 

expectation (LOLE), loss of energy expectation (LOEE), effective load carrying 

capability (ELCC), and capacity credit (CC). 

1.5.6 Incorporating the Effect of Cumulative Dust in Reliability Models of 

Generation System Including PV System 

The main objective of this work is to incorporate cumulative dust into reliability 

modeling of the PV system.  The application of the new analytical model in this section 

is demonstrated using the test power system to quantify the impact of cumulative dust 

on the reliability contribution of the PV system.  The LOLE and LOEE indices are 

evaluated for both the dust-free conditions and the accumulated dust conditions in the 

PV system.  This work is then extended to examine the impact of scheduling dust 

removal from the PV arrays on the generation system adequacy. 

1.6 Thesis Outline 

Appropriate analytical models and methods for conducting reliability 

assessment of the generation system encompassing different solar technologies are 

developed in this thesis.  Several case studies are analyzed and discussed to 

demonstrate the applications of the proposed analytical models in a practical system.  



 25 

Seven chapters are arranged and presented in this thesis to illustrate the contribution of 

this research project.  The main content of each chapter is outlined as follows: 

Chapter 1 presents a brief review of reliability evaluation concepts applicable to 

power system planning and the utilization of solar energy technologies in the electric 

system network.  This chapter provides a literature review related to generation system 

adequacy evaluation incorporating PV and CSP.  The problem statements and the main 

objectives are presented in this chapter. 

Chapter 2 introduces a short background on the concept of generation system 

adequacy evaluation.  The analytical generation model and system indices that are 

widely used in generation system reliability evaluation are presented in this chapter.  

The details of the two test systems and load models used in this work for the purpose of 

analyzing the application of the developed model is described in this chapter. 

The detailed reliability model of PV system configurations is explained in 

Chapter 3.  The Reliability Block Diagram is created for central, string, and micro PV 

systems with all major components taken into consideration.  Chapter 3 also 

demonstrates the application of the developed model in a small isolated power system.  

The correlation of different system adequacy indices with key factors, such as system 

load variation, different amounts of solar energy installed, and different system PV 

topologies, is analyzed in this chapter. 
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Chapter 4 describes the reliability model of the generation system including the 

CSP system.  The developed model considers the CSP components model and the 

probabilistic model of the output power of CSP.  The probability distribution associated 

with different seasons is taken into account to build the overall COPT of a CSP.  A 

simplified method that integrates the developed CSP model into the electric system is 

developed to examine the reliability contribution of CSP in a large grid-connected 

power system.  The system reliability evaluation is quantified using different reliability 

indices such as LOLE, LOEE, ELCC, and CC.  The impact of varying latitudes, peak-

load variation, and seasonal effects on the generation system adequacy including the 

CSP system are examined in this chapter. 

Chapter 5 provides a comprehensive analysis of the comparative reliability 

contribution of convolving a high penetration of CSP and PV to the electric power 

system.  In order to compare the benefit of the two technologies studies carry out 

assuming the two technologies were installed at the same capacity energy level for both 

technologies. 

Chapter 6 illustrates the impact of cumulative dust on the reliability modeling of 

the PV system.  The polynomial regression model is created based on an experimental 

test provided by a group of researchers in KSA [42,43].  The impact of the accumulated 

dust on the PV surface on the reliability contribution of the PV system is studied.  
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Thereafter, scheduling dust removal is applied to quantify the impact of scheduled 

maintenance on the system adequacy of PV. 

Chapter 7 summarizes the main contributions of this research work. 

1.7 Summary 

An extensive survey has been presented in this chapter to determine the state of 

art research done on the reliability modeling of solar technologies.  This review 

highlighted the required parameters to develop a new appropriate reliability modeling 

generation system incorporating PV and CSP systems.  These parameters include major 

components and system topologies.  Moreover, the literature survey underlined the 

lack of research of incorporating the cumulative dust on the reliability modeling of PV 

system.  The methodology and application of the developed PV/CSP model have been 

addressed.  The importance of developing proper PV/CSP models and creating 

methodology to integrate them in the overall system model are discussed in this 

chapter. 



 28 

 

2 Review Generation System Adequacy Assessment 

2.1 Introduction 

  System adequacy evaluation is an important task in the planning, design, 

maintenance, and upgrade of an electric power system.  The generation system 

connected to an electric power system network should be able to produce adequate 

power to meet the load demand at all times.  Therefore, system planners should 

periodically assess the availability of the generation system to make sure that a 

specified adequacy criterion is continually met.  Figure 2.1 shows the conceptual 

reliability model at the HL-I level in which the entire system generation is represented 

by a generation model and is connected to the overall system load model. 

 

Figure 2-1: Generation adequacy evaluation model 
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The transmission system is not considered in the generation system reliability 

evaluation at the HL-I level.  The basic concepts involved in the development of the 

generation system model, load model, and reliability assessment methods are 

introduced in this chapter.  The common reliability indices used to quantify system 

adequacy are also discussed in this chapter. 

Deterministic methods were conventionally used to estimate the required 

generation capacity reserve in a power system to maintain acceptable system adequacy. 

These methods are easy to apply and are still used in different areas of power systems 

to ensure acceptable reliability. The following section describes the various 

deterministic approaches used in generation system adequacy. 

2.2 Deterministic Techniques for Generation System Adequacy 

Deterministic methods have been adopted in power system planning for many 

years [47], [48].  These methods have been used to determine the system RM or the 

required capacity in a generation system to satisfactorily meet the system demand.  The 

most commonly used deterministic criteria in capacity planning are: 

1. Capacity Reserve Margin 

RM is defined as the amount of generation capacity beyond the system peak load 

(PL) and is required to account for generating-unit random failures and uncertainty in 

customer demand.  RM is expressed as a percentage of the system PL or the total 
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installed capacity (IC), as shown in (2.1).  A fixed percentage of RM is used as a criterion 

for evaluating the capacity requirement in this method. 

 (2-1) 

2. Loss of the Largest Unit (LLU) or (N-1) 

The LLU or N-1 criterion [3] requires the RM of the generation system to be at 

least equal to the largest generating unit in the system.  This criterion ensures that the 

system load is satisfied even when the largest generating unit is out of service.  In other 

words, the load will not be curtailed if any single generating unit in the system fails. 

3. Loss of the Largest Unit and Capacity RM 

The LLU and capacity RM is a combination of the previous two criteria, in which 

the capacity RM should be equal to or greater than the sum of the largest unit and a 

fixed percentage of the PL or IC system. 

The deterministic method can be used easily to evaluate the total capacity 

required in the overall power system.  However, it is not capable of accounting for the 

random nature of power system behavior [2].  The three aforementioned criteria do not 

define the true risk in the power system.  Most electric power companies have the 

propensity to use probabilistic techniques for capacity planning with the increase in 
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uncertainty in power generation due to rapid growth of renewable and intermittent 

generation sources.  Table 2-1 illustrates the results of a survey conducted in 1964–1977 

regarding the criteria used in capacity reserve planning [7].  Table 2-1 shows that 

electric power companies have gradually adopted probabilistic criteria.  In 1987, most 

utilities turned to probabilistic techniques, with only one utility using a deterministic 

criterion along with supplementary checks for the probabilistic index. 

Table 2-1: Criteria used in generation capacity planning 

Criterion 

Survey Date 

1964 1969 1974 1977 1979 1987 

Percent RM 1 4 2 2 3 1* 

LLU 4 1 1 1 - - 

Combination of 1 and 2 3 6 6 6 2 - 

Probabilistic Method 1 5 4 4 6 6 

Other Methods 2 1 - - - - 

*With supplementary checks for probabilistic index LOLE 
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2.3 Probabilistic Techniques for Generation System Adequacy  

Probabilistic methods are capable of responding to the stochastic nature of power 

systems and can provide quantitative risk assessment in generation system adequacy 

evaluation.  The need for the application of probabilistic methods for evaluating the risk 

indices [1,2] to respond to the random nature of system behavior has been widely 

recognized.  Probabilistic techniques have been implemented by the majority of 

Canadian electric utilities for system adequacy evaluation at the HL-I level [7]. 

The HL-I reliability indices quantify the ability of a particular generation 

configuration to continuously satisfy the load demand.  These indices are influenced by 

a range of factors, such as the number and capacity of generating units, unit failures, 

load levels, and load variation patterns.   The unavailability (U) of a generating unit [1], 

[3] is defined as the probability of the unit undergoing a random failure and not being 

available to serve the load.  This is conventionally known as the forced outage rate 

(FOR).  This is an essential input parameter of each generating unit that is required to 

create the generation model for HL-I evaluation [1], [3].  The availability (A) is the 

complement of the unavailability, or A = 1 – U.  Because of the various operating 

conditions as shown in Figure 2.2 [49], a generating unit may be available or 

unavailable at any point in time. 
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Figure 2-2: Generating-unit states 

  Probabilistic approaches can be broadly classified into the following two 

techniques: 1) the analytical technique and 2) the simulation technique [3], [4].  The 

adequacy evaluation results from the application of these two probabilistic approaches 

are outlined in the following sections: 

2.4 Analytical Techniques 

Analytical techniques represent the system using numerical models and evaluate 

the system indices from these models using mathematical solutions.  These approaches 

estimate the system risk using a mathematical mode.  These techniques can provide 

accurate system indices through a simple method in a short time.  The broad range of 

analytical techniques utilized in HL-I and HL-II studies is demonstrated in [5], [50-52].  
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The basic approach in HL-I adequacy evaluation is to develop a generation model and a 

load model for the complete power system and then convolve the two models to 

formulate the system risk model as shown in Figure 2-3. 

 

Figure 2-3: Elements of generation reliability evaluation 

2.4.1 Generation and Load Models 

The FOR or the unavailability of each generating unit is required to construct the 

system generation model [3].  The base-load generating units that operate continuously 

are represented by a two-state Markov model, in which the generating unit can be 

represented as being either in the operating or “Up” state, or failed or “Down” state, as 

shown in Figure 2-4.  The A and U can be defined using Equations (2-2) and (2-3), 

respectively [3], where λ and μ are the failure rate and repair rate of the generating unit.  
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The reciprocals of λ and μ are the mean time to failure (MTTF) and the mean time to 

repair (MTTR) respectively.  The generating system model used for generation capacity 

adequacy evaluation is a discrete probability distribution of available or unavailable 

capacities, that can be tabulated in the form of a capacity outage probability table 

(COPT).  Table 2-2 depicts the layout of a COPT where the first and second columns 

represent the capacity on outage and the corresponding probability. 

 

 (2-2) 

 (2-3) 

where: 

m = Mean time to failure =   (2-4) 

r = Mean time to repair =  (2-5) 

Up Down 

λ 

µ 

Figure 2-4: Two state generation model 
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Table 2-2: Typical capacity outage probability table (COPT) 

Capacity Out Associated Probability 

List all combinations of possible 

capacity outage states 

List all corresponding probabilities of 

each capacity state 

A test SIPS and the RBTS [46] were employed in this thesis to illustrate the 

reliability analysis.  The contrasts between these systems are the size and the 

configuration.  A SIPS is usually located in a remote area or in island communities with 

a typically low load demand.  This system, in fact, may or may not have transmission 

lines, and it is not connected with any other electric power system.  The test system 

adopted in this thesis has one 70-kW and two 40-kW generating units with a total 

system capacity of 150 kW.  Each generating unit has a FOR of 5%.  The peak load is of 

80 kW.  This system is designated as SIPS and meets the deterministic LLU or N-1 

criterion [3].  A 1995 survey of SIPS in Canadian utilities is shown in Table 2-3 [53]. 
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Table 2-3: SIPS in Canadian utilities 

Utility 

Number of 

SIPS 

Total Installed 

Capacity (kW) 

Largest 

System (kW) 

Smallest 

System (kW) 

Newfoundland 

Hydro 

30 46,775 18,750 90 

Hydro Quebec 21 56,000 11,200 550 

Ontario Hydro 23 20,226 2,350 170 

Manitoba Hydro 12 18,445 4,085 350 

Saskatchewan 

Power 

1 132 132 132 

Alberta Power 

Ltd. 

27 35,295 16,880 40 

BC Hydro 9 35,550 9,420 1,850 

NWT Power 

Corp. 

47 188,000 52,560 70 

Yukon Electrical 7 8,855 5,050 245 

The RBTS has been employed for over 20 years by researchers conducting 

reliability assessments and other probabilistic applications in electric power systems.  

This system was developed at the University of Saskatchewan for learning and research 
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purposes.  It is larger than SIPS and includes 11 generating units, six buses, and nine 

transmission lines, as illustrated in Figure 2-5.  The generating-unit data for RBTS are 

shown in Table 2-4.  The total installed generation capacity is 240 MW, and the system 

peak load is 185 MW.  The annual chronological hourly load profile of the IEEE-RTS 

[54] is shown in Figure 2-6 and is utilized in both test systems.  Both test systems utilize 

the annual chronological hourly load profile of the IEEE-RTS [54]. 

 

Figure 2-5: Roy Billinton test system [46] 
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Table 2-4: RBTS data 

Unit 

Type 

No. of 

Units 

Rated 

Power 

(MW) 

MTTF (hr) MTTR (hr) FOR 

Hydro 1 40 2920 60 0.02 

Thermal 1 10 2190 45 0.02 

Thermal 1 20 1752 45 0.025 

Hydro 2 5 4380 45 0.01 

Thermal 2 40 1460 45 0.02 

Hydro 4 20 3650 55 0.015 
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Figure 2-6: Hourly load model 

2.4.2 System Risk Indices 

The system generation model in the form of a COPT [4] is convolved with the 

system load model to obtain the system risk indices.  The loss of load expectation 

(LOLE) and the loss of energy expectation (LOEE) are the most widely used adequacy 

indices at the HL-I level [3].  The LOLE is the expected number of days (or hours) in a 

year that the system generation cannot meet the system load demand.  The LOEE is an 

energy-based index defined as the expected energy not supplied in a year due to 

inadequate capacity, and it provides information about the magnitude of the forced 
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outage.  The LOLE and LOEE are determined using Equations (2-6) and (2-7), 

respectively, as shown in Figure 2-7. 

, (2-6) 

, (2-7) 

where, 

n  = the number of capacity outage states, 

kp = probability of the capacity outage kO , 

kt  = the time for which load loss will occur due to kO , 

kP  = cumulative outage probability for capacity state kO , 

kE = energy not supplied. 
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Figure 2-7: Evaluation of loss of load expectation (LOLE) and loss of energy expectation 

(LOEE) using an hourly load curve. 

The capacity contribution of an installed generation unit in maintaining the 

reliability of the overall system is a function of many factors.  These include the rated 

capacity, type, and FOR of the generation unit, the system load profile, and the 

acceptable system risk level.  The expected load carrying capability (ELCC) and capacity 

credit (CC) are used in this work to evaluate the capacity value contribution of the solar 

generation systems.   The capacity credit of a conventional generating unit is close to its 

rated value. The capacity credit of intermittent generation sources, such as PV and CSP 

are much lower than their rated values.  The methodology for calculating the ELCC is 

described in [55,56].  Figure 2-8 shows the mathematical method for the estimation of 

the ELCC. 
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Figure 2-8 illustrated that the ELCC is the additional load that can be carried 

with the addition of new generation while maintaining the LOLE at a constant 

value.  When ELCC is expressed as a percentage of the rated capacity CA of the 

generating unit, as expressed in Equation (2-8), it is known as its CC This is another 

important index in capacity value evaluation.  The overall system reliability 

evaluation process is shown in Figure 2-9. 
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Figure 2-8: Evaluation of effective load-carrying capability (ELCC). 
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Figure 2-9: Generation system adequacy model construction process 
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2.5 Base Case Studies for SIPS and RBTS 

A generation capacity adequacy evaluation of the test SIPS and the RBTS were 

performed using the analytical method.  The first study was carried out on the SIPS.  

The total installed generation capacity of SIPS is 150 kW, and the system peak load is 80 

kW.  The LOLE and LOEE results are shown in Table 2-5.  A similar study was also 

conducted on the RBTS.  The total installed generation capacity of the RBTS is 240 MW, 

and the system peak load is 185 MW.  The LOLE and LOEE of RBTS are given in Table 

2-5.  The base case LOLE and LOEE results shown in Table 2-5 provide a base reference 

framework for system development and sensitivity analysis presented in subsequent 

chapters. 

Table 2-5: The annual system indices for using SIPS and RBTS 

SIPS RBTS 

LOLE (h/y) LOEE (kWh/y) LOLE (h/y) LOEE (MWh/y) 

32.26 483.46 1.09 9.86 

2.6 Summary 

System adequacy evaluation is an important aspect in electric generation 

system expansion planning.  This assessment is periodically done to ensure that 

the generation capacity is sufficient to deliver the adequate electricity when 
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required.  A wide range of methods have been developed and used to evaluate the 

generation system adequacy.  This chapter discussed the deterministic methods 

and the probabilistic methods used in HL-I evaluation.  The analytical method 

signifies the system model mathematically and computes the system reliability 

indices using a numerical solution. The process involved in the analytical method 

in terms of generation, load, and risk models are illustrated.  This chapter 

discussed the reliability indices LOLE, LOEE, ELCC, and CC that are important in 

HL-I adequacy measurement.  Two test systems, designated as the RBTS and the 

SIPS, are described and utilized to illustrate the analytical method.  The LOLE and 

LOEE results obtained in the base case study presented in this chapter will 

provide a e reference for further studies that are reported in the following chapters 

of the thesis.  
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3 Reliability Models of Generation Systems Including Different Photovoltaic Topologies 

3.1 Introduction 

PV systems contain solar cell panels, power electronic converters, high-power 

switching, and often, transformers.  These components collectively play an important 

role in determining the reliability of PV systems.  Moreover, the power output of PV 

systems is variable, so it cannot be controlled as easily as conventional generation 

owing to the erratic nature of the weather conditions.  Therefore, solar power has a 

different influence on generation system reliability as compared with conventional 

power sources.  Recently, different PV system designs have been constructed to 

maximize the output power of PV systems.  These different designs are commonly 

adopted based on the scale of a PV system.  Large-scale grid-connected PV systems are 

generally connected in a centralized or a string structure.  Central and string PV 

schemes are different in terms of the nature of the connection of the inverter to PV 

arrays.  Another PV topology is the micro-inverter system.  It is, therefore, important to 

evaluate the reliability contribution of the PV systems under these topologies. 

This chapter provides a comprehensive overview of the reliability models of PV 

systems and presents the reliability quantification process of central, string, and micro-

inverter PV systems.  The developed models are embedded in the reliability evaluation 
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methodology to obtain a discrete probability distribution in the form of COPT [3].  This 

is done using individual component failure and repair rates assuming the exponential 

distribution of times to failure and repair 

The LOLE [3] and LOEE [3] indices are used in this work to quantify the 

reliability of the PV-integrated systems.  The CC and ELCC are calculated to estimate 

the capacity values of the different PV system topologies.  The application of system 

reliability risk indices provides valuable quantitative risk measures and is illustrated 

using a small isolated power system.  The main contribution of this work is the 

development of a detailed analytical reliability model of a PV system that accounts for 

PV system components and topologies.  The benefits of adding the different PV system 

topologies are quantified using the indices, LOLE, LOEE, ELCC, and CC. 

3.2 Modeling of PV Systems 

This section presents a probabilistic framework for developing an overall 

reliability model of the PV system.  There are three types of system-level reliability 

models: part-count, combination, and state-space models.  Part-count is utilized in this 

project because this model can provide adequate reliability estimation.  Three 

assumptions are made in order to apply this model. 

A. The overall system will fail if any component or subsystem fails. 

B. The failure rate of each component remains constant during its useful lifetime. 
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C. The overall system is modeled as a series reliability block network as shown in 

Figure 3-1. 

The probability of an up (Pup) and down (Pdown) state system model can be 

evaluated using Equations (3-1) and (3-2), respectively.  This section is divided into four 

subsections. 

 (3-1) 

 (3-2) 

l1 

µ1

l2 

µ2

l3 

µ3

ln 

µn
 

Figure 3-1: Series reliability block network with n subsystems 

3.2.1 Modeling the Output Power of a Solar Cell 

The analytical model used in evaluating the power output of solar cells depends 

on the following two main factors: solar cell efficiency and solar irradiation.  The 

efficiency of a solar cell varies with the amount of solar irradiation, and it can be 

evaluated applying (3-3) and (3-4) [57].  The power output from a solar cell can be 

calculated using (3-5) and (3-6) as shown in Figure 3-2 [57]. 
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Figure 3-2: The power output of a solar cell 

, (3-3) 

, (3-4) 

, (3-5) 

, (3-6) 

where P is the power output of the solar cell in W; Gbi is global solar irradiation in 

W/m2; Gstd is solar irradiation in a standard environment set as 1000 W/m2; Rc is a certain 

irradiation point set as 150 W/m2; and Psn is the equivalent rated capacity of PV in W.  

The solar irradiation data is grouped into a number of intervals.  A step size of 50 W/m2 

was used to create these intervals.  The output power associated with each interval is 

represented by the mid value of the interval.  The probability of the power output can 
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be obtained from Equation (3-7), where Ni is the number of data occurrences in the 

interval i. 

 (3-7) 

The power output and its probability are calculated for each interval, and a 

discrete probability distribution of available power from the PV system created to form 

the PV capacity model.  This approach was used to create the capacity model for PV 

system considering historical solar irradiation data of Medina located in Saudi Arabia 

[45].  The data include solar irradiation at five-minute intervals during 2000–2005 for 

different sites [45].  The total collected data of solar irradiation at five-minute intervals 

for five years are 525,600 samples.  The power output of the solar cell device depicted in 

Table 3-1 is in per unit (pu) and was created using Equations (3-3)– (3-7). 
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Table 3-1: Capacity model of PV considering 100% reliable PV system components 

State Capacity (pu) Probability State Capacity (pu) Probability 

1 0 0.4774 12 0.525 0.023 

2 0.004 0.0763 13 0.575 0.0223 

3 0.037 0.0313 14 0.625 0.0255 

4 0.104 0.0217 15 0.675 0.0300 

5 0.175 0.0195 16 0.725 0.0274 

6 0.225 0.0252 17 0.775 0.0239 

7 0.275 0.0212 18 0.825 0.0223 

8 0.325 0.0201 19 0.875 0.0244 

9 0.375 0.0172 20 0.925 0.0193 

10 0.425 0.0219 21 0.975 0.0182 

11 0.475 0.0235 22 1 0.0081 

Since PV systems can produce power during daytime only, a daytime capacity 

model is developed to model the contribution of these intermittent power sources.  

Different seasons have different durations of daylight time depending on the 

geographical location.  The same process using (3-3)– (3-7) as described earlier is 
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applied for different seasons considering respective daytime data.  Tables 3-2, 3-3, 3-4, 

and 3-5 show the daytime capacity model of a PV at the Medina location.   

Table 3-2: Winter daytime capacity model of PV considering 100% reliable PV system 

State Capacity (pu) Probability State Capacity (pu) Probability 

1 0.004 0.1426 12 0.575 0.0627 

2 0.037 0.0798 13 0.625 0.0789 

3 0.104 0.0466 14 0.675 0.0798 

4 0.175 0.0219 15 0.725 0.0627 

5 0.225 0.0561 16 0.775 0.0342 

6 0.275 0.0523 17 0.825 0.0314 

7 0.325 0.0513 18 0.875 0.0181 

8 0.375 0.0257 19 0.925 0.0000 

9 0.425 0.0494 20 0.975 0.0000 

10 0.475 0.0542 21 1 0.0000 

11 0.525 0.0523  
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Table 3-3: Spring daytime capacity model of PV considering 100% reliable PV system 

State Capacity (pu) Probability State Capacity (pu) Probability 

1 0.004 0.1439 12 0.575 0.0406 

2 0.037 0.0403 13 0.625 0.0401 

3 0.104 0.0492 14 0.675 0.0401 

4 0.175 0.0472 15 0.725 0.0398 

5 0.225 0.0454 16 0.775 0.0474 

6 0.275 0.0296 17 0.825 0.0517 

7 0.325 0.0388 18 0.875 0.0606 

8 0.375 0.0354 19 0.925 0.0574 

9 0.425 0.0430 20 0.975 0.0522 

10 0.475 0.0391 21 1 0.0241 

11 0.525 0.0341  
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Table 3-4: Summer daytime capacity model of PV considering 100% reliable PV system 

State Capacity (pu) Probability State Capacity (pu) Probability 

1 0.004 0.1339 12 0.575 0.0322 

2 0.037 0.0819 13 0.625 0.0279 

3 0.104 0.0362 14 0.675 0.0447 

4 0.175 0.0162 15 0.725 0.0531 

5 0.225 0.0396 16 0.775 0.0356 

6 0.275 0.0482 17 0.825 0.0478 

7 0.325 0.0400 18 0.875 0.0672 

8 0.375 0.0191 19 0.925 0.0591 

9 0.425 0.0287 20 0.975 0.0719 

10 0.475 0.0452 21 1 0.0262 

11 0.525 0.0453  
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Table 3-5: Fall daytime capacity model of PV considering 100% reliable PV system 

State Capacity (pu) Probability State Capacity (pu) Probability 

1 0.004 0.1620 12 0.575 0.0396 

2 0.037 0.0312 13 0.625 0.0592 

3 0.104 0.0469 14 0.675 0.0643 

4 0.175 0.0526 15 0.725 0.0592 

5 0.225 0.0497 16 0.775 0.0620 

6 0.275 0.0308 17 0.825 0.0488 

7 0.325 0.0369 18 0.875 0.0438 

8 0.375 0.0460 19 0.925 0.0212 

9 0.425 0.0431 20 0.975 0.0043 

10 0.475 0.0421 21 1 0.0078 

11 0.525 0.0485  

3.2.2 Modeling Central PV System 

Each component of the PV system is represented by 2-state Markov model in 

which the component is either in the operation state or the failed with certain 

probabilities. The multi-state PV capacity model described in Section 3.2.1 is combined 

with a two-state model of central PV system components described in this section.  The 

main components of a typical central PV system are illustrated in Figure 3-3.  This 
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central PV system consists of a solar array, bulk DC-link capacitor, inverter, line filter, 

AC switch, AC circuit breaker, and transformer.  The functional block diagram of this 

PV system is shown in Figure 3-4. 

Past reliability research of power electronic components has focused on the 

failure rate models of conductors, capacitors, and magnetic devices [58,59].  However, 

field experience has demonstrated that electrolytic capacitors and switch devices are the 

most vulnerable components [60].  The MIL-HDBK-271F second edition military 

handbook [61] provides an extensive reliability database for power electronic 

components.  This database was used in this work to evaluate the failure rate of power 

electronic components. 

DC
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Bulk DC-Link 
Capacitance Line Filter AC Switch

Circuit Breaker Transformer 

DC

AC

Solar Array

Figure 

3-3: Schematic of a typical central PV system 

Inverter 
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Figure 3-4: A functional block diagram of a central PV system 

 Solar panel 

Solar panels consist of solar cells.  The solar cells have a very low failure rate.  

Most manufacturers offer a warranty of 20–25 years on their solar module [62] and have 

demonstrated very high reliability in the field with a mean time between failure (MTBF) 

of 522 and 6666 years for residential and utility systems, respectively [63].  The effect of 

PV panel architecture on the overall system reliability is therefore not considered in this 

work. 

 DC-link Capacitor 

The failure rate of capacitors is considered as one of the major factors that lead to 

the failure of PV systems.  Capacitors can be made from different materials, such as an 
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electrolytic capacitor, paper, plastic film, tantalum, and ceramic [64].   The failure rate 

[64] depends on the material.  The electrolytic capacitor is considered in this work.  The 

failure of inductors is not considered because it has a low failure rate [65].  Equations (3-

8)–(3-10) are used to evaluate the failure rate of capacitors (λcap) [66-68], where n is the 

total number of components in the system; λbase is the base failure rate of capacitors and 

equal to 0.0314 occur/year; πE is the effect of environmental stress and is equal to 1; πQ is 

the quality factor and is equal to 1; C is the capacitance value in microfarad (µF); and Tj 

is the junction temperature, which is 50 °C.  The total failure rate of the DC-link 

capacitor is 0.4449 occur/year. 

 (3-8) 

 (3-9) 

  (3-10) 

 Inverter 

The MTBF of a PV inverter is between 1 and 16 years [63].  The inverter is 

considered as another major factor in the failure of PV systems.  A three-phase two-

level voltage-source inverter is considered in this work.  This inverter has six switches 

and diodes.  This work does not treat the inverter as one black box.  Each component 

inside the inverter is considered a major factor in failure.  A Reliability Block Diagram 
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[69,70] is developed in this project based on reliability network modeling concepts.  This 

technique involves the use of switches and diodes connected in series, and this is 

known as a series Reliability Block Diagram as shown in Figure 3-1.  The failure rate of 

the inverter (λinv) can be evaluated using Equation (3-11).  Equations (3-12)– (3-15) are 

used to evaluate the failure rates of diodes (λdiode) [66-68]. 

, (3-11) 

, (3-12) 

, (3-13) 

, (3-14) 

, (3-15) 

where n is the total number of components in the system; λbase is the base failure rate of 

diodes and is equal to 0.025 occur/year; πE is equal to 6; πS is the electric stress factor; 

the operating voltage and rated voltages are 607 V and 690 V respectively; πQ is equal to 

5.5; πj is the temperature stress factor; Tj is equal to 50 °C; and πc is the contact 

construction factor.  Equations (3-16) and (3-17) are used to evaluate the failure rates of 

the switches (λswitch) [66-68]. 
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,       (3-16) 

,         (3-17) 

where λbase is the base failure rate of the switches, which is 0.012 occur/year; πE is equal 

to 1; πQ is equal to 5.5; and Tj is equal to 50 °C.  The total failure rate of the inverter is 

0.095 occur/year. 

 AC Circuit Breaker and Transformer 

The reliability database provided by [71] is used to calculate the probability of 

failure of these components.  The reliability data of common PV system components are 

presented in Table 3-6.  The probability of up and down states of a central PV system is 

shown in Table 3-7.  Table 3-7 is then combined with Tables 3-2 to 3-5 to build the overall 

central PV system model.  This model represents the multi-states model of the power 

output of a central PV system including the component failure factors as shown in 

Figure 3-5. 
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Table 3-6: Failure and repair data 

Component Failure Rate (occur/year) Repair Time (hour) 

Capacitor 0.0314 100 

Diode 0.025 96 

IGBT 0.012 513 

Circuit Breaker 0.003 54 

Transformer 0.006 168 

Table 3-7: The two-state model of a central PV system 

State Probability 

Up 0.98 

Down 0.02 
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Figure 3-5: Seasonal daytime capacity models of a central PV system 

3.2.3 Modeling a String Inverter PV System 

As noted earlier, the schematic construction of a PV inverter plays an important 

role in the availability of power from a PV system.  A typical PV inverter system, as 

illustrated in Figure 3-6, is utilized in this work.  In this design, each string inverter is 

rated at 10 kW, and hence, five string inverters are required to produce 30% of the total 

installed capacity.  The functional block diagram of this PV system is illustrated in 

Figure 3-7. 
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Figure 3-6: Schematic of one string PV system inverter 
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Figure 3-7: A functional block diagram of a string PV inverter 

 DC/DC Converter 

The boost converter used in this work has one switch, two diodes, and one 

capacitor.  The two DC/DC converters are considered in redundancy.  Each component 

inside the converter is considered as a major factor for failure in this work.  The failure 

rate of the converter (λDC/DC) can be defined using Equation (3-18).  The methodology used 

to evaluate the failure rate of each component can be found in MIL-HDBK-217F second 
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edition [61].  Equations (3-12)–(3-17) are used to evaluate the failure rates λdiode and λswitch 

[66-68], where Tj is 60 °C. 

 (3-18) 

 DC-Link Capacitor 

As mentioned earlier, the capacitor is recognized as a major contributor to the 

failure of PV systems.  Equations (3-8)– (3-10) are utilized to estimate the failure rate of 

capacitors (λcap) [66]-[68].  The probability of up states and down states in a string PV 

inverter system is shown in Table 3-8.  This table is then combined with Tables 3-2 to 3-5 

to build the multi-state capacity model of a string PV system including the component 

failure factors as shown in Figure 3-8.  A multiple string PV system is used in this work; 

therefore, the multi-state models obtained are aggregated to obtain the overall capacity 

model for the multi-string PV system. 

Table 3-8: The two-state model of a string PV system  

States Probability 

Up 0.9880 

Down 0.0119 
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Figure 3-8: Seasonal daytime capacity models of a string PV system 

3.2.4 Modeling a Micro-Inverter PV System 

The main components of a micro-inverter PV system are illustrated in Figure 3-9.  

The functional block diagram of this PV system is shown in Figure 3-10.  The steps 

described in Sections 3.2.2 and 3.2.3 are utilized in this section to build the capacity 

model of a micro-inverter PV system.  The probabilities of up and down states of micro-

inverter PV system components are presented in Table 3-9.  Thereafter, this model is 

combined with the overall PV system model shown in Tables 3-2 to 3-5.  The result of 

this combination is the multi-state capacity model of a micro-inverter PV system as 

shown in Figure 3-11.  A multiple micro-inverter PV system is used in this work; 
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therefore, the multi-state capacity models obtained for each string are aggregated to 

obtain the overall capacity model. 
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Figure 3-9: Schematic of a micro-inverter PV System 

Solar Array

DC/AC

DC/DC

DC-Link Capacitance

 

Figure 3-10: A functional block diagram of a micro-inverter PV System 

Table 3-9: The two-state model of micro-inverter PV system components 

States Probability 

Up 0.9869 
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Down 0.0131 

 

Figure 3-11: Seasonal daytime capacity models of a micro-inverter PV system 

3.3 Generation System Reliability Model Including PV Generation 

The conceptual generation system adequacy model for an electrical power 

system including PV system is shown in Figure 3-12.  The output power of a PV unit is 

represented by a multi-state probabilistic capacity model described previously. 

Conventional 

Generation

PV System

Load 

Model

 

Figure 3-12: Basic reliability evaluation model of a PV-integrated power system 
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3.4 Sensitivity Case Studies 

The reliability impact of the different PV technologies is illustrated on the test 

SIPS described in Section 2.4.1.  Many SIPSs use the deterministic N-1 criterion, also 

known as the “LLU” criterion, to determine the capacity reserve required in their 

systems.  This criterion ensures that the peak load can be satisfied in the event of the 

failure of the largest generating unit.  The test SIPS with 150 kW of installed capacity 

and a peak load of 80 kW just meets the N-1 criterion.  The LOLE and LOEE of the test 

system are 32.26 h/year and 483.46 kWh/year respectively.  This LOLE value is, 

therefore, chosen as the probabilistic risk criterion in the following studies. 

Two case studies were carried out to investigate the reliability impacts of the 

different PV technologies.  The first study examines the reliability contribution of 

adding PV generation to the SIPS.  The second study analyzes the capacity value of the 

installed PV system.  The three different PV topologies are taken into consideration in 

both studies.  Table 3-10 shows all studies investigated in this work.  Installed PV 

capacity levels of 15, 30, and 45 kW, corresponding to approximately 10%, 20%, and 

30% of the SIPS capacity respectively, are considered. 
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Table 3-10: Case studies 

Study Evaluation Factors Considered 

1 

System Adequacy 

(LOLE, LOEE) 

 Using different PV Topologies. 

 Increasing load demand for the 

test system by approximately 

10% every year ranging from 

80 to 118 kW. 

2 

Capacity Value 

(ELCC, CC) 

 Using LOLE of 32.26 h/year as 

the reliability criterion. 

 Using different system PV 

capacity ranging from 10% to 

30% capacity value (ELCC, 

CC). 

 Using different PV Topologies 

3.4.1 Impact of System Load Level and PV Technology on System Adequacy 

This study examines the reliability contribution of the three different PV 

technologies as a function of the system peak load.    Figures 3-13 and 3-14 show the 
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LOLE and LOEE of the SIPS respectively when 30% of PV is added to the system.  The 

historical solar irradiation data of Medina in Saudi Arabia located at 24.91° N, 46.41° E, 

are used to evaluate the power generation of the PV system [45].  It can be observed in 

these two figures that the LOLE and LOEE increase as the peak load increases in all PV 

topologies.  These two figures additionally show that using the micro-inverter topology 

can provide more incremental reliability benefits compared with the other PV 

topologies.  However, this increment decreases at certain percentages of the installed 

PV system where no more benefit can be obtained by further increasing the installed PV 

capacity, as discussed in the next section. 

 

Figure 3-13: Variation in risk level (LOLE) with system demand load for 

different PV topologies. 



 72 

100

600

1100

1600

2100

2600

3100

70 80 90 100 110 120

L
O

E
E

 (
k
W

h
/y

)

Peak Load (kW)

SIPS With No PV

Central Inverter

String Inverter

Micro-Inverter

 

Figure 3-14: Variation in risk level (LOEE) with system demand load for 

different PV topologies. 

3.4.2 Impact of Different PV Topologies on ELCC 

The ELCC of a PV system for different PV topologies are investigated in this 

work.  The LOLE was used in this study to evaluate the ELCC for each PV topology.  

The maximum allowable peak load at adequacy risk of system generation of 32.26 

h/year is used.  The amount of load that can be carried by a PV system is estimated by 

calculating the difference between the two risk indices of LOLE before and after adding 

PV systems.  Figure 3-15 shows the ELCC associated with the addition of 10–30% of PV 

systems to SIPS at the three different PV topologies. 
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Figure 3-15: Effective load-carrying capability for different PV topologies. 

3.4.3 Replacing a Conventional Generating Unit with a PV System 

This work evaluates PV capacity required to replace conventional generation 

capacity while maintaining the same level of system reliability.  This study compares 

replacing diesel generation with a PV system considering the different PV topologies.  

The 40 kW diesel generating unit is first removed from the test SIPS.  The LOLE is 

increased to 340.34 h/y when the 40-kW conventional unit is removed from the system.  

Table 3-11 represents the required capacity of the PV technology to maintain the LOLE 

criterion of 32.26 h/year.  When the central PV capacity is used, the LOLE is restored to 

32.26 h/year if 270 kW of PV is added.  This indicates that 270 kW of PV capacity using a 
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central PV system is capable of replacing a 40-kW conventional generating unit.  

However, a 180 kW and 98 kW string and micro-inverter PV capacity is required to 

maintain the system risk level at the original level of LOLE = 32.26 h/year. 

The equivalence between the replaced conventional generating unit and 

replacing PV system can be expressed by the ratio of PV capacity to conventional 

generating unit, and this ratio is known as the risk-based equivalent capacity ratio 

(RBECR) [72].  Equation (3-19) is used to determine the RBECR.  The results indicate 

that one unit of conventional capacity is approximately equivalent to 7, 5, and 3 units of 

central, string, and micro-inverter PV capacity respectively, as shown in Table 3-11. 

  (3-19) 

Table 3-11: Replacing a conventional generating unit by a PV System 

PV Topology 

PV Capacity Required 

(kW) 

RBECR 

Central 270 6.75 

String 180 4.50 

Micro-inverter 98 2.45 
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3.4.4 Impact of Increasing PV Penetration on its Capacity Credit 

Equation (2-8) is utilized in this case to evaluate the capacity value of PV systems 

for different PV topologies.  Figure 3-16 demonstrates the PV CC for the three different 

topologies.  Several important observations can be obtained from this analysis. 

There is evidence of improvement in the overall system adequacy when more PV 

systems are installed.  However, the relative reliability benefits estimated by capacity 

value decrease with the addition of PV capacity.  Previous studies have also found that 

the capacity value of PV declines when installing more PV in the electric power system 

[73,74].  The PV topology plays an important role in the contribution of PV capacity 

value as shown in Fig. 3-16.  The result clarifies that the micro-inverter PV system 

provides the largest PV capacity contribution.  The CC of the PV system increases from 

19% to almost 31.68% when the central PV inverter topology is replaced with a micro-

inverter at a 30% installed level of PV. 
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Figure 3-16: Capacity credit for three different topologies. 

3.5 Summary 

PV systems are composed of components that are vulnerable to failures with 

different probabilities.  The structure of power electronic converters in PV systems can 

be broadly classified into centralized inverters, string inverters, and micro-inverters.  

The structures of central and string PV systems often have similar electric components 

but are differently configured in terms of the manner of connecting the solar array to 

the inverter.  A central PV system topology is composed of multi-string topologies that 

are connected to only one inverter.  However, one inverter is connected to each string in 

a string PV system topology.  Micro-inverter topology, on the other hand, requires one 

inverter per solar panel.  Previously published works did not consider all the 
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aforementioned topologies.  The quantitative assessment of reliability for an entire PV 

system is essential for determining the overall reliability contribution of adding solar 

power to electric power systems.  This has not been sufficiently addressed in the 

existing pool of literature. 

This chapter introduces a detailed reliability model of a PV system.  All major electrical 

components of PV systems are involved in the model.  This model is then applied to a 

test system to quantify the reliability contribution of adding PV generation considering 

all three PV topologies.  Different factors, such as the effect of system peak load and the 

installed PV capacity for different PV topologies, are discussed in this work. 

The reliability contribution of PV is expressed in terms of LOLE, LOEE, ELCC, 

and CC.  The results indicate that the inverter can have a significant impact on the 

reliability contribution as compared with other electric and electronic devices in a PV 

system.  The analysis also indicates that the reliability contribution of the PV capacity is 

highly dependent on the PV system configuration.  The result demonstrates that using a 

micro-inverter PV system provided the largest reliability contribution from the installed 

PV generation.  The system adequacy indices utilized in this work provide a practical 

approach to evaluate the reliability of the generation system. 
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4 Probabilistic Reliability Models of Generation Systems Including CSP 

4.1 Introduction 

CSP is an emerging technology in the field of renewable energy and is a 

promising addition to electric power systems.  Generating electric power using solar 

thermal technology is a good substitute for reducing the negative environmental 

impacts of conventional energy sources.  The output power of CSP is highly variable 

owing to the intermittent nature of solar energy resources and the availability of CSP 

components.  Limited research has been conducted with regard to the development of 

CSP reliability models.  Therefore, the development of a quantitative framework to 

evaluate the reliability contribution of CSP systems in a power system grid is essential.  

Moreover, obtaining accurate estimates of CSP’s CC is important for capacity planning 

purposes. 

A probabilistic model of CSP has been developed for determining the effects of 

variation in direct solar irradiation and air temperature on generation system adequacy.  

The developed model is applied to the RBTS to investigate the impact of various factors 

on the reliability indices, such as the LOLE, LOEE, CC, and ELCC, of a CSP-integrated 

power system.  The impact of factors, such as the system peak load, installed CSP 

capacity, and different sites, are taken into consideration in this work. 
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4.2 Modeling of CSP Systems 

The evaluation of a CSP plant performance requires the application of multiple 

disciplines, such as concentrator optics, heat transfer, and thermodynamics.  

Preliminary analysis is often performed using thermodynamic models or commercially 

available tools such as NREL’s System Advisor Model (SAM) [29].  SAM is provided by 

the National Renewable Energy Laboratory (NREL), which is operated by the Midwest 

Research Institute (MRI) for the Department of Energy (DOE). 

SAM utilizes detailed weather data, including solar radiation and ambient 

temperature as the input data to model the dynamics of the solar field.  The software 

determines how much solar thermal energy is collected by the solar field of the CSP 

plant every hour.  It also accounts for the effects of temperature on the efficiency of the 

solar field with regard to collecting solar thermal energy.  SAM produces a range of 

outputs related to the cost and performance of systems, including system power output, 

peak and annual system efficiency, levelized cost of electricity (LCOE), and hourly 

system production.  SAM and other available programs simulating CSP plant [75] can 

provide relatively high accuracy; however, they require extensive input data which 

demands more computational time. For example, in an individual CSP system based on 

Parabolic Troughs, the Solar Tower requires a large input of data parameters.  
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There exist a variety of CSP simulation programs and models; yet, most of them 

are computationally complex.  The models used in commercially available programs is 

not fully known and they cannot incorporate new models or variations in applied 

methodology.  This work addresses the gap created by simplified models, particularly 

for models that predict the energy output of solar thermal systems.  This study 

accomplishes this by focusing only on the major parameters.  The adequacy results 

obtained from the reduced models is compared with the predictions made by the SAM. 

There are several types of CSPs in the commercial space today: such as the 

Parabolic Trough (PT), Central Tower (CT), Linear Fresnel (LF), and Solar Dish (SD).  In 

this work, a PT is used because it is considered to be the most mature technology 

available.  In general, a CSP consists of three important components, as shown in the 

reliability block diagram in Figure 4-1.  They are Direct Normal Irradiation (DNI), a 

solar field (SF) that includes a solar collector and receiver, and a power block (PB) that 

uses a heat engine to convert thermal energy into electricity.  The aim of this study is to 

develop a simple probabilistic reliability model.   
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Figure 4-1: Equivalent Functional Block Diagram of CSP 

4.2.1 Component Reliability Modeling of CSP 

The CSP components consist of two important features; a SF with a collector and 

a PB with a heat exchanger, pump, condenser, turbine, and generator.  The collector has 

demonstrated high reliability in the field; therefore, the FOR is neglected for these 

components.  The FOR of a conventional thermal unit is considered for the PB of CSP.  

The MTTF and MTTR of the PB are taken as 2941 h and 58.24 h, respectively, in the 

study.  Table 4-1 shows the two-state model of CSP components using (4-1) and (4-2). 

 (4-1) 

 (4-2) 

 

DNI 

 

SF 
 

PB 

 

Power Output of CSP 
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Table 4-1: Two-state model of CSP 

State Probability 

Up 0.98 

Down 0.02 

4.2.2 Modeling the Output Power of CSP 

The CSP is operated like a large Rankine steam power plant, apart from the fact 

that it acquires its thermal energy from a large solar collector.  This technology 

produces electric power when the sun shines, and shuts down or runs on a backup 

source, such as fossil or biomass fuel, when solar energy is not available.  In this study, 

it is assumed that there is no auxiliary backup to supply the thermal plant when there is 

no sun or when the DNI is not sufficient to heat the thermal fluid to produce electric 

power.  Therefore, the CSP starts up and shuts down daily.  In other words, the solar 

field is operated whenever sufficient DNI is available to generate power.  The energy 

required to warm up the fluid heat transfer in the solar field is based on the amount of 

DNI.  In the adopted model, the lower limit of DNI is assumed to be in the plane to heat 

up the collector, which is approximately 300 W/m2 [76].  The SF produces electric power 

when the warm up is completed using (4-3) [77]. 

, (4-3) 
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Where: 

PCSP(t) : The output power of CSP at time t 

Gb(t) : Hourly Direct Normal irradiation (W/m2) 

A : Net aperture area 

SF : Efficiency of collector and receiver 

par : Parasite efficiency, depends on the solar multiple (96.1 – 1.4  SM) %  [78](in this 

work, SM = 1 is used) 

th : Thermodynamic efficiency or Carnot efficiency equal to Z  (1 – Tamb/TA), where 

Z = 0.6 [78] 

The power block efficiency (PB) is defined as the ratio of the electrical power 

produced to the thermal power collected in the solar field, and it depends on the hourly 

DNI and ambient temperature.  Equation (4-4) shows the mathematical model to 

estimate this ratio [77]. 

 (4-4) 

PB : Power block efficiency (some study assumed this between 35 and 48%) 

l : Conversion factor, 3.6  106 J/kWh [79] 
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U : Convective losses coefficient equal 2 W/m2/K [79] 

TA : Absorber temperature equal 653 K [79] 

Tamb : Ambient temperature, (in this work, hourly ambient temperature is used) 

 : Emissivity (0.04795 + 0.0002331  TA) [79] 

opt : Optical efficiency equal 75% [79] 

Fg : Geometric factor (
C

 ) [79] 

C : Concentrating Factor equal 80 [79] 

 : Constant (5.67  10–8 W/m2/K4) [77] 

The approach described in Figure 4-2 is used to create the multi-state model of 

the solar thermal power generation capacity.  The multi-state model is obtained by 

dividing the DNI into segments.  The states associated with zero solar irradiation are 

categorized into an individual state.  Equation (4-5) is used to calculate the probability 

of a given state, where Ni is the number of occurrences of state i.  The multi-state model 

obtained in this step is combined with the two-state models, shown in Table 4-1, in 

order to obtain the overall CSP system reliability model. 

 (4-5) 
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The probabilistic model is applied to an example system, taking solar irradiation 

data from Seville (located in Spain) into consideration.  Figure 4-3 shows the annual 

CSP model using the probabilistic model described in this section and the SAM model.  

The probability of zero output power of CSP is 0.7 and 0.73 for the probabilistic and 

SAM models, respectively. 

 

 

Figure 4-2: Dispatch Strategy of CSP 

Obtain Hourly DNI 

Zero Output 

Is DNI sufficient to 

warm-up SF? 
No Yes 

 

Deliver power to System 
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Figure 4-3: The annual CSP generation model in pu at Seville 

The main observations and summary from this study are as follows: 

 The performance of the developed probabilistic analytical reliability model of CSP is 

validated using SAM simulations as the baseline reference. 

 The total number of required parameters to predict CSP plant production using the 

adopted model is less than the parameters required for SAM. 

 The probabilistic analytical model is sufficient to provide a realistic pattern of the 

plant production throughout the year as well as to provide the typical values of the 
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yearly energy output.  Therefore, this model is used in all the following studies to 

obtain the CSP output power states owing to its simplicity compared with SAM. 

4.3 Reliability Evaluation Model for a CSP-integrated Generation System  

The CSP produces more power during summer and less during winter.  The 

annual indices of LOLE and LOEE are therefore divided into season classes and the 

hourly load profile of each day is divided into day and night loads.  The nighttime load 

is supplied with conventional generation and the daytime load is supplied with both 

conventional and CSP generation.  The total annual LOLE and LOEE can be evaluated 

using (4-6) and (4-7). 

 (4-6) 

  (4-7) 

To conduct this study, first, the probabilistic reliability model of CSP is 

developed and then combined with the RBTS model.  The physical system generation 

model utilized for this study is shown in Figure 4-4.  The CSP and RBTS generation 

models are combined with the load models for the designated periods to obtain the 

system reliability indices. A range of studies were conducted in this work to investigate 

the reliability impact of load growth, growth in CSP penetration, and the geographical 
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locations of the CSP installations when CSP is integrated with the test system.  The 

reliability impacts are quantified using the system indices LOLE, LOEE, and ELCC. 

 

 

Figure 4-4: System reliability evaluation model incorporating CSP generation 

Figures 4-5, 4-6, 4-7, and 4-8 represent the COPT of CSP for different seasons in 

Medina.  As noted earlier, the RBTS LOLE before installing CSP was 1.09 h/y.  A study 

was carried out considering the additional CSP plant using solar data from different 

locations. 

 

RBTS 

 

CSP system 

Load model 
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Figure 4-5: The probability distribution of available capacity of a CSP system during the winter 

season 

 

Figure 4-6: The probability distribution of available capacity of a CSP system during the spring 

season 
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Figure 4-7: The capacity available probability of a CSP system for summer 

 

Figure 4-8: The capacity available probability of a CSP system for fall 
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4.4 Sensitivity Case Studies 

4.4.1 The Impact of Load Variation 

The developed generation system model demonstrated in Section 4.3 was 

convolved with the appropriate load model considering different system load 

variations to investigate the impact of load variation on the system adequacy of CSP.  

This study was repeated using solar data from different sites: Daggett (located in the 

USA), Seville (located in Spain), and Medina (located in Saudi Arabia).    Figure 4-9 to 4-

12 represent the discrete probability distribution of the output power of CSP at Seville 

and Daggett for the four seasons. 

 

Figure 4-9: The capacity available probability of a CSP system for winter 
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Figure 4-10: The capacity available probability of a CSP system for spring 

 

 

Figure 4-11: The capacity available probability of a CSP system for summer 
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Figure 4-12: The capacity available probability of a CSP system for fall 

A study was carried out considering the addition of a 24-MW CSP plant to the 

RBTS.  The ratio of the CSP capacity to the overall system generation capacity, or the CSP 

penetration, is 10%.  Solar data from three different locations, Daggett, Seville, and 

Medina, were used in the study.  Figures 4-13 and 4-14 show the results obtained upon 

using Equations (4-6) and (4-7) for calculating the annual system risk of LOLE and 

LOEE of the RBTS integrated with the CSP system.  The results are shown for the peak 

loads of 166.5, 185, and 203.5 MW.  At the peak load of 203.5 MW, the system LOLE is 

almost 4.75 h/y and the LOLE becomes approximately 2.1, 2.81, and 2.76 h/y upon adding 

24 MW of CSP at Medina, Seville, and Daggett, respectively.  It can also be seen that the 

LOLE and LOEE indices increase significantly with load growth, and therefore, justify 

capacity additions to maintain an acceptable level of reliability as the load grows over 
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time.  The figures also show that the LOLE and LOEE decrease as the CSP is added to 

the test system for all locations but not to the same degree.  Figure 4-15 quantifies the 

LOEE impacts of CSP addition at different locations for the peak load of 185 MW.  It 

clearly shows that the reliability contribution of CSP greatly depends on the solar 

irradiation data available at the installation site. 
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Figure 4-13: Variation in LOLE with load growth considering CSP at different locations 
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Figure 4-14: The variation in LOEE with load growth for considering a CSP at different 

locations 

 

Figure 4-15: System LOEE comparison CSP installation at different locations 
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4.4.2 The Impact of Adding Different Amounts of CSP 

The planning of capacity expansion is required over time to supply the annual 

incremental system load.  A study was carried out to assess the reliability impact of 

growth in CSP penetration in a power system using Daggett’s solar data.  The CSP 

capacity was increased from 24 MW to 48 MW to 72 MW in accordance with the 10%, 

20%, and 30% addition to RBTS, respectively.  Figure 4-16 shows the system LOLE of 

the CSP-integrated RBTS considering a peak load of 185 MW.  The results indicated a 

decrease in the incremental reliability contribution benefits of adding CSP capacity to 

the power system. 

 

Figure 4-16: System LOLE comparison of the CSP installation at Daggett 
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4.4.3 CSP Capacity Value at Different Geographical Locations 

The capacity value of a CSP system installed at different locations is evaluated in 

this work.  A study was done with 24 MW of CSP added to the RBTS considering solar 

data from Daggett, Medina, and Seville.  Figure 4-17 shows the LOLE for a range of 

peak loads with the solar data from the three locations.  The amount of load that can be 

carried by the added CSP at the same reliability level was evaluated by measuring the 

difference in the LOLE profile before and after the CSP was added, as shown in Figure 

4-17.  The results obtained in this step indicated that installing 24 MW of CSP at Daggett 

and Seville can carry almost a similar amount of load of 4 MW.  However, the ELCC 

associated with adding similar CSP capacity at Medina is 7 MW. 

 

Figure 4-17: Variation in the RBTS LOLE upon installing 10% of CSP at different 

locations with the annual peak load 
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Figure 4-18 shows the ELCC of the RBTS after increasing the CSP penetration 

from 10% to 30% at the three different locations.  The results obtained in this study 

highlight the fact that the CSP at different locations provide different contributions to 

system reliability and environmental benefits. 
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Figure 4-18: Effective load-carrying capabilities for different locations 

This work was expanded to evaluate the CC of CSP for different penetration 

levels and at different locations.  The CC, characterized by (2-8), can be used to 

represent the capacity value of CSP and applied during system capacity planning.  It 

can be seen from Figure 4-19 that the CC of the CSP plant expressed as a percentage of 

its capacity decreases as CSP penetration is increased in the system.  The CC values 

greatly depend on the locations of the CSP plant. 
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Figure 4-19: Capacity credit for three different locations 

4.5 Summary 

This chapter proposes a practical method to evaluate the reliability contribution 

of adding CSP to a power system.  A reliability model of the integrated system is 

developed and presented, and the results are validated using the SAM program.  The 

adequacy of a CSP-integrated power system has been evaluated considering several 

different system parameters, mainly the load growth, increase in CSP penetration, and 

geographic location of the CSP installations.  The results indicate that the system 

adequacy performance improves upon increasing the CSP capacity.  However, the 

improvement in reliability due to CSP addition is relatively small compared with the 
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addition of conventional power generation.  There is a decaying benefit in the reliability 

contribution of CSP with the increase in penetration of CSP. 
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5 Comparative Reliability Analysis of Electric Power Systems with High Penetration 

of CSP and PV 

5.1 Introduction 

The demand for electric energy increases with time, and the rate of growth 

depends on various factors.  For example, the annual electricity demand is increasing at 

the rate of 8% [80] in the Kingdome of S. A.  The two major consumptions driving this 

high rate are water desalination for human requirements and high air conditioning load 

for the hot summer months from May to the end of September.  Although KSA 

currently meets its electric energy requirements using fossil fuels, including coal and 

natural gas, it has implemented policies to gradually remove oil subsidies to support 

the use of alternative energy sources.  The government of KSA plans to integrate 

alternative solar energy sources into the electric power system.  Both PV and CSP have 

been investigated to determine the proper solar technology for investment. Large-scale 

CSP and PV generation systems are also being installed in other regions. 

The methodologies presented in Chapters 3 and 4 are be applied to conduct a 

comparative reliability assessment of a power system including large-scale integration 

of CSP and PV.  Historical data on solar irradiation, including DNI, diffuse horizontal 

irradiance (DIF), and global horizontal irradiance (GHI), were obtained at five-minute 

intervals in the period between 2000 and 2005 from different sites [45] in west KSA.  The 

http://www.3tier.com/en/support/glossary/#dni
http://www.3tier.com/en/support/glossary/#dif
http://www.3tier.com/en/support/glossary/#dif
http://www.3tier.com/en/support/glossary/#ghi
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solar irradiation data collected at five-minute intervals over the period of five years 

from Medina, located in Saudi Arabia [45], are considered in this chapter for analyzing 

the impact of the two solar technologies on generation system adequacy. 

5.2 Solar Irradiation and Power Output of CSP and PV Systems 

The reliability contributions of solar power sources in solar integrated power 

generation systems largely depend on the amount of DNI and GHI incident on the CSP 

and PV collectors/panels.  The GHI is the net amount of irradiation received by the 

surface, including both direct and diffused irradiation.  The DNI is the amount of solar 

irradiation that comes straight from the sun.  Figures 5-1 and 5-2 show the amount of 

DNI and GHI evidenced in Medina on a sunny and a cloudy day.  Although the power 

output of a PV system is influenced by the total solar irradiance, the output of a CSP 

system is mainly dictated by the DNI. It can be observed that on a typical sunny day, a 

CSP can collect more DNI and generate more power than a PV of an equal rating.  

However, the PV system can absorb more total irradiation on cloudy days in Medina 

and generate more power than a CSP because the amount of GHI is higher than DNI.  

This work, therefore, is intended to provide a comprehensive comparative adequacy 

analysis of a system generation incorporating CSP and PV systems. 
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Figure 5-1: Solar irradiation during a sunny day 

 

Figure 5-2: Solar Irradiation during a cloudy day 

The PV and CSP power models developed for the Medina location were created 

as shown in Figures 5-3 and 5-4.  Subsequently, the hourly day and night system load 
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models were developed from historical power consumption patterns.    A yearly 

analysis is performed to incorporate the effect of seasonality by dividing a year into 

four seasons: Winter (December to February), Spring (March to May), Summer (June to 

August), and Fall (September to November).  The daytime load can be supplied by solar 

and conventional generation, and the nighttime load can only be supplied by 

conventional generation. 

 

Figure 5-3: Probability Distribution of PV output Power 
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Figure 5-4: Probability Distribution of CSP output Power 

5.3 A Comparison of the Reliability Contribution of CSP and PV 

The RBTS integrated with CSP and PV is utilized to perform the reliability 

analysis to assess the reliability contribution of the CSP and PV system located at the 

same latitude.  The capacity and load models created for each seasonal and diurnal 

periods are convoluted to obtain the reliability indices. The indices obtained for each 

season are aggregated to obtain the two annual system reliability indices, the LOLE and 

LOEE.  The reliability contributions of CSP and PV can also be quantified through their 

capacity values in terms of ELCC and CC.  The studies conducted in this chapter 

present a comparative analysis of the CSP and PV systems on the reliability 

contribution of these two technologies. 
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The annual incremental peak load is a key parameter in the reliability evaluation 

of a generation system, as generally, the system load increases with time.  This 

parameter has been considered in this study for calculating the LOLE and LOEE with 

the effect of adding 10% of CSP and PV to the RBTS at the same site.  Different peak 

load levels of 166.5, 185, 203.5 MW were also considered in this study to compare the 

impact of load variation on the system adequacy of CSP and PV.  Figures 5-5 and 5-6 

illustrate the relation between the installed PV and CSP capacity and the resulting 

system reliability indices of LOLE and LOEE for the different peak loads.  The results 

demonstrate that the system LOLE and LOEE decrease significantly upon adding both 

the solar technologies, and the indices increase with an increase in the system peak 

load.   It can be observed that the reliability benefit from the CSP system is significantly 

higher than that obtained from the PV system using the Medina data.  The results 

showed that the CSP system is provides a higher reliability benefit than the PV system 

in specific areas or atmospheric conditions with high DNI. 
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Figure 5-5: System LOLE considering 10% CSP and PV penetration 

 

Figure 5-6: Loss of energy indices after addition of 10% CSP and PV 
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5.4 A Comparison of Capacity Values of CSP and PV in an Electric Power System 

The capacity values of CSP and PV systems were investigated in this section by 

evaluating the system ELCC and CC of the respective solar technologies considering a 

different solar power capacity levels.  A study was carried out using the RBTS modified 

with the addition of 24 MW, 48 MW, and 72 MW of CSP and PV, which correspond to 

10%, 20%, and 30% of the RBTS capacity, respectively.  The additional system peak load 

that can be carried by the system with the addition of CSP or PV in the system is 

evaluated at the acceptable LOLE criterion of 1.09 hours/year. 

The system LOLE profile obtained for a range of peak loads before and after 

adding 24 MW of solar technologies is shown in Figure 5-7.  The peak load was varied 

from 166 MW to 203.5 MW considering an annual load growth of 10%.  It can be noticed 

from Figure 5-7 that there are observable load-carrying capability benefits from the CSP 

and PV.  The ELCCs of the systems approximately increase by 4 MW to 7 MW with 

replacing PV by CSP.  This figure indicates that the relative reliability benefits from 

solar energy depend on the type of added solar technologies. 
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Figure 5-7: Variation in the RBTS LOLE upon the installation of 10% CSP and PV and 

the annual peak load 

This work was extended to assess the ELCC with an increase in solar power 

penetration in the RBTS.  The results are shown in Figure 5-8.  The comparison of the 

results shown in this figure illustrates that there is further ELCC benefit with growth in 

penetration levels for both solar technologies; however, this benefit does contribute to 

both to the same extent.  With regard to the different ELCC contributions made by the 

two solar technologies, the amount that can be carried by adding 30% of CSP and PV 

are 10.01 MW and 7.8 MW, respectively. 
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Figure 5-8: Incremental peak-load-carrying capability using CSP or PV 

The obtained ELCC results, shown in Figure 5-8, are utilized as input data for 

Equation (2-8) to compute the CC of CSP and PV.  The rated capacity is equal to 24, 48, 

and 72 MW.  The system CC for the PV and CSP system using different penetration 

levels is shown in Figure 5-9.  The capacity value for both technologies decreases with 

an increase in the penetration level of CSP and PV.  The improvement of reliability 

tends to saturate when the capacity rating exceeds 24 MW for CSP and PV.  The 

outcome analysis indicates that the CC of solar technology increases from 17.8% to 

approximately 28% upon replacing the PV system with CSP.  The analysis indicates that 

CSP has the highest capacity value contribution when considering the Medina data. 
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Figure 5-9: Capacity credit of CSP or PV at different penetration levels 

5.5 The Impact of Seasonality on Capacity Credit of CSP and PV 

The solar irradiation differs for different seasons owing to variations in the 

sunrise and sunset times and the strength of the solar irradiance at that particular time.  

An initial study of the mean seasonal variation in DNI and GHI (W/m2) in Medina is 

shown in Figure 5-10.  It is evident that seasons have a significant impact on the amount 

of DNI and GHI.  The maximum amount of GHI and DNI is observed in the summer, 

followed by spring, fall, and winter. 
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Figure 5-10: Seasonal average solar irradiation 

The solar data of DNI and GHI for Medina were used to study the seasonal 

impact on the system CC of CSP and PV.  Four models pertaining to the four different 

seasons were first developed to conduct this study.  The PV and CSP capacity models 

developed for the four seasons were convolved with the RBTS capacity model and then 

combined with the corresponding seasonal load models to obtain the seasonal adequacy 

indices of the system.  Different CSP and PV capacity rating of 24, 48, and 72 MW were 

added to the RBTS to compare the CC associated with the solar technologies for the 

different seasons. 

Figures 5-11, 5-12, 5-13, and 5-14 represent the CC of the CSP and PV systems for 

the winter, spring, summer, and spring, respectively.  The obtained results show that 
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the CC of CSP and PV systems change over time owing to weather, e.g., during winter 

and summer.  The analysis indicated that summer provided the most reliable 

contribution, followed by fall, spring, and winter, in both technologies.  Upon 

comparing the CC of PV and CSP, all figures presented in this study clearly indicated 

that, throughout the seasons, the CC value of the CSP system remains significantly 

higher than that of the PV system.  For example, the CC for solar technology increases 

to almost twice its value, from 16.36% to 31% upon replacing 24 MW of PV with 24 MW 

of CSP during spring.  The output results of this study cannot be generalized for all 

regions of KSA, especially those in the south, which have low DNI and high GHI.  The 

reliability benefit of the CSP system is not always higher than that of the PV system, as 

the results depend on the irradiation data specific to the geographical locations. 
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Figure 5-11: Capacity credit value after installing CSP or PV during winter 

 

Figure 5-12: Capacity credit value after installing CSP or PV during spring 
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Figure 5-13: Capacity credit value after installing CSP or PV during summer 

 

Figure 5-14: Capacity credit value after installing CSP or PV during fall 
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5.6 Summary 

The integration of the CSP and PV power systems with electric power systems is 

expected to increase in the coming years.  The study in this chapter presented a 

comparative analysis of the reliability contribution of large-scale integration of CSP and 

PV.  The study utilized a test system model using the solar data from Medina, located in 

Saudi Arabia.  This work considered the impact of load growth, added capacities of CSP 

and PV, and seasons on system reliability. 

The utilization of the LOLE, LOEE, ELCC, and CC metrics led to a better 

understanding of the overall system adequacy contribution.  The results obtined 

showed that the atmospheric conditions had a significant impact on the overall system 

reliability.  The study demonstrated that the reliability contribution of solar power 

relied significantly on the form of solar technology being used.   when the PV capacity 

was replaced with CSP, the reliability contribution and CC increased notably.  This 

work provides an insight regarding the reliability of both technologies, which provides 

useful inputs for future plans of installing PV and CSP. 
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6 Reliability Model for Photovoltaic Power System Incorporating Cumulative 

Dust 

6.1 Introduction 

The output power of the PV system is mainly dependent on solar irradiation, 

availability of PV system components, and solar cell efficiency.  Other factors related to 

weather conditions can also have a great impact on the output power of PV systems.  

Among these, dust deposition is a major concern since cumulative dust on solar panels 

reduces net solar energy yields.  This can also have a significant impact on the reliability 

contribution of a PV system.  It is, therefore, important to consider cumulative dust in 

the reliability modeling of a PV system. 

A probabilistic model that describes the relationship between cumulative dust 

and power reduction was developed and combined with the reliability model of the PV 

system to incorporate the impact of the dust on overall system adequacy.  The impact of 

implementing a dust-removal schedule in PV system maintenance planning on the 

reliability contribution of PV systems was also studied.  This chapter illustrates the 

application of the proposed PV reliability model incorporating cumulative dust on the 

adequacy evaluation of the RBTS by conducting selected case studies.  The analyses 

discussed in this study quantifies the impact of cumulative dust on the system 

reliability indices during spring and summer seasons. 
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6.2 Probability Distribution of Power Reduction due to Cumulative Dust on PV 

Panels 

Deposition of dust particles on the solar panel highly affects the operation of the 

PV system, especially in desert regions where dust is prevalent.  In other words, the 

efficiency of solar collectors drops gradually as dust piles up on the solar panel surface.  

Therefore, the rate of decreasing output power depends mainly on the rate of dust 

accumulation.  Reference [42] performed an experimental test located in Saudi Arabia 

for accounting the daily dust deposition, as expressed in g/m2 on the PV module 

surface.  The accumulation of dust during a period is measured as shown in Figure 6-1 

[42].  The regression model has been developed from this figure, which describes the 

amount of cumulative dust at different times of the year.  A regression model involving 

the dates and cumulative dust was created and found to be a polynomial regression 

model using Equation (6-1).  The polynomial Equation (6-1) is used in this work to 

assess the accumulation of dust in the different seasons. 

Equation (6-1) was used to predict the dust accumulation during the winter, 

spring, summer, and fall periods in Riyadh and Medina, where the number of dust 

events is shown in Table 6-1 [44].  The obtained data was then used to create a discrete 

probability distribution of PV power reduction.  The probability of each state can be 
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obtained using (6-2), where Yi is the total occurrences in the interval of CDi and CDi+1.  

The power reductions of each interval  were calculated using Equation (6-3). 

 

Figure 6-1: Cumulative dust deposition on the module surface [42]. 

, (6-1) 

, (6-2) 

, (6-3) 

where: 

CD:  Cumulative Dust g/m2 

Dy:  The number of dust event 
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PCDi:  The probability of each state for cumulative dust 

Yi:  Total occurrences in the interval i 

TNDEi:  The total number of dust event for each season  

T:  Reduction of the transmission coefficient 

Table 6-1 was used as the input data for Equation (6-1) to estimate the 

accumulation of dust in the different seasons.  Figure 6-2 shows the amount of dust 

accumulation in the Spring season based on the data recorded for Riyadh.  Thereafter, 

the probability distribution of power reduction caused by dust for the season was 

created using Equations (6-2) and (6-3), and the output power distribution is shown in 

Figure 6-3.  This figure is combined with Figure 3-5, as discussed in Chapter 3, to obtain 

the overall discrete probability distribution of the output power of the PV system.  The 

process is repeated for the other seasons to obtain the PV capacity model for winter, 

summer, and fall seasons as well. 

The developed framework was applied to a reliability test system containing the 

conventional generation unit and PV system to investigate the impact of cumulative 

dust on the reliability contribution of the PV system.  The conventional generation 

reliability data from the RBTS are used in this work with a total installed capacity of 240 

MW [46].  The generation reliability model is convolved with the hourly load model.  
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Several sensitivity analyses were performed to test the effectiveness of this 

methodology. 

 

Table 6-1: Mean Dust Events [44] 

 

Riyadh 

Winter Spring Summer Fall 

36 days 77 days 53 days 23 days 

Medina 

Winter Spring Summer Fall 

33 days 57 days 30 days 7 days 
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Figure 6-2: Cumulative dust deposition during spring 
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Figure 6-3: Probability distribution of power reduction, Riyadh (spring) 
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6.3 The Impact of Dust Accumulation on Reliability Contribution of the PV 

System  

The system LOLE and LOEE indices were evaluated taking into consideration 

the two cases: (1) PV panel free from dust, and (2) PV panel surface with accumulated 

dust.  In Case 2, the accumulated dust was removed from the PV panel surface at the 

end of each season, as shown in Figure 6-4.  The probability distributions of power 

reduction were created for all the seasonal periods of the year.  The obtained 

probabilistic model of power reduction is shown in Figures 6-5 and 6-6. 

 

Figure 6-4: Cumulative dust 
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Figure 6-5: Probability distribution of power reduction, Riyadh (winter) 

 

Figure 6-6: Probability distribution of power reduction, Riyadh (summer) 
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The seasonal hourly system load was used to create the load model for the 

respective period. The LOLE and LOEE were evaluate for each season, and the annual 

system indices can be evaluated by summing up the respective seasonal LOLE and 

LOLE indices using Equations (4-6) and (4-7).  The peak load varied from 166.5 MW to 

203.85 MW to investigate the impacts of load variation and dust accumulation on the 

system adequacy.  The winter, spring, summer, and fall reliability system indices were 

calculated by first considering the addition of 24 MW of the PV system.  Figures 6-7 and 

6-8 show annual reliability indices of LOLE and LOEE respectively, with and without 

dust accumulation on the PV panels for the various peak loads.  The figures 

demonstrate that the PV system reliability is very sensitive to change in system peak 

load.  The incremental reliability contribution of PV decreases significantly when the 

cumulative dust factor is considered.  The annual system LOLE increased from 5.5 to 7.0 

h/y due to the impact of accumulated dust, as shown in Figure 6-9. 
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Figure 6-7: Impact of dust on the system LOLE as a function of the system peak load at 

a Riyadh location 

 

Figure 6-8: Variation in risk level of LOEE with system peak load at Riyadh 
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Figure 6-9: System LOEE for a peak load of 185 MW at Riyadh 

6.4 The Impact of Seasonal Dust Accumulation on Effective Load-Carrying 

Capability and Capacity Credit of PV 

The system incremental loads that can be carried with the addition of 24 MW of 

PV in the RBTS with a peak load of 185 MW were first evaluated with and without 

considering dust accumulation in this study.  Equation (2-8) was utilized to evaluate the 

CC of PV.  Table 6-2 indicates that there is a reduction in the CC of PV due to 

accumulated dust in the different seasons, but not to the same extent.  The results also 

indicate that the impact of cumulative dust on the CC of PV is low during fall and high 

during spring. 
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Table 6-2: Capacity Credit for Different Seasons, Riyadh 

Winter 

Clean PV 14.75% 

Cumulative Dust 12.77% 

Spring 

Clean PV 16.48% 

Cumulative Dust 8.60% 

Summer 

Clean PV 23.79% 

Cumulative Dust 17.08% 

Fall 

Clean PV 16.18% 

Cumulative Dust 15.38% 

A similar study was also conducted to investigate the impact of dust 

accumulation on the CC of PV in the Medina location.  The net amount of cumulative 

dust using Equation (6-1) was found to be 32.37 g/m2 for Medinah.  It should be noted 

that the Riyadh has a dust accumulation of 57.24 g/m2 in the same season. The discrete 

power reduction distribution for the Medina site is shown in Figure 6-10.  This figure 

was convolved with the COPT of PV of Medina shown in Figure 3-5, to build the overall 
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probabilistic model of PV.  Figure 6-11 shows that the system CC of PV for clean and 

dusty PV in the spring season are 16.24% and 11.3% respectively. The corresponding 

CC for the Riyahd location were 16.48% and 8% respectively. 

 

Figure 6-10: Probability distribution of power reduction in Medina (spring) 
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Figure 6-11: Capacity credit (%) for the spring period 
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6.5 Impact of Dust-Removal Schedule on the Reliability Contribution of the PV 

System 

The accumulation of dust substantially decreases the PV system availability and 

therefore, reduces the reliability contribution of PV.  Incorporating a proper dust 

removal schedule in maintenance planning of PV systems can increase the energy 

production and improve the reliability contribution from these energy sources.  It is 

evident that the reliability contribution of PV in Riyadh during spring and summer is 

higher than that during winter and fall, as shown Figure 6-9.  It can also be seen from 

this figure that the cumulative dust has a significant impact on the reliability 

contribution of PV during spring and summer, compared with winter and fall.  

Therefore, it is important to take these facts into consideration while planning an 

effective dust removal schedule.  In this section, the following two cases are considered 

for removing the accumulated dust. 

Case A 

The dust is removed twice during spring and summer and once during winter 

and fall.  Figure 6-12 shows the cumulative dust deposition in different seasons while 

taking the cleaning schedules into consideration.  The probability distribution of power 

reduction for Case A was created, and is shown in Figures 6-13 and 6-14.  After cleaning 

the dust, the output power of PV system greatly increased, which resulted in the 
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reduction of LOLE and LOEE as shown in Figures 6-15, 6-16, and 6-17.  Table 6-3 shows 

that there is significant increase in overall PV CC when the dust-removal schedule is 

implemented.  The annual CC increases from 12.29% to 15.79% with the dust-removal 

using the Case A schedule.  

 

Figure 6-12: Cumulative dust in Case 

B  

Figure 6-13: Probability distribution of power reduction considering Case A dust-

removal schedule (spring) 
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Figure 6-14: Probability distribution of power reduction considering Case A dust-

removal schedule (summer) 

 

Figure 6-15: Impact of Case A dust-removal schedule on system LOLE 
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Figure 6-16: Impact of Case A dust-removal schedule on system LOEE 

 

Figure 6-17: Impact of cumulative dust and removing dust on system LOLE at a peak 

load of 185 MW 
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Table 6-3: Capacity Credit for Different Periods, Riyadh 

Annual 

Clean PV 16.9% 

Cumulative Dust 12.29% 

Case A 15.79% 

Spring 

Clean PV 16.48% 

Cumulative Dust 8.60% 

Case A 14.9% 

Summer 

Clean PV 23.79% 

Cumulative Dust 17.08% 

Case A 21.81% 

Case B 

In this case, the dust is removed three time during spring and summer and twice 

during winter and fall.  Figure 6-18 shows the cumulative dust deposition during 

winter, spring, summer, and fall with the implementation of this dust-removal 

schedule.  The probability distribution of power reduction for Case B was created.  The 
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reliability contribution of PV improved significantly, as shown in Figures 6-19 and 6-20.  

It can however be seen that there is not much difference in the results between the two 

dust-removal schedules that were illustrated. Case B schedule provides slightly better 

results than Case A at the cost of more dust removal tasks which adds to the 

maintenance costs. The method illustrated in this work can be used to obtain the most 

cost-effective dust-removal schedule by comparing the costs with the resulting benefits.  

 

Figure 6-18: Cumulative dust in Case B 
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Figure 6-19: Annual indices of LOEE 

 

Figure 6-20: The system LOLE with using two scenarios of dust removal  
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6.6 Summary 

Many potential PV sites, such as the KSA, may be subject to dusty environment 

where the wind blows dust into the air and onto the surface of the PV modules.  As 

accumulated dust has a significant effect on the reliability contribution of PV, the effect 

of cumulative dust has been incorporated into this study.  This chapter presents a 

simplified model of PV that incorporates cumulative dust on the solar panel.  

Combining the PV system components model, the PV power-out model, and the 

probabilistic model of PV power reduction caused by the cumulative dust power 

reduction model yields the overall PV multi-state model.  The proposed method 

provides useful information regarding the quantitative impact of cumulative dust on 

the contribution of PV in terms of generation system adequacy. 

The results indicate that the accumulation of dust has a significant influence on 

the reliability contribution of the PV system and depends on the time of the year.  

Moreover, the analysis and results provide a better understanding of the effect of a 

dust-removal schedule on the overall PV system reliability.  The results indicate that the 

spring and summer periods require more dust removal than for winter and fall.  An 

appropriate dust-removal schedule can be developed using the methodology illustrated 

in this chapter to perform a cost-benefit analysis of potential dust cleaning schedules. 
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7 Summary, Conclusions and Future Work 

7.1 Summary and Conclusion 

Solar energy has been recognized as a clean power source, and has received 

different forms of financial subsidies from governments and organizations.  Recently, 

solar power technology has been receiving great attention from researchers and the 

power industry as an important source of renewable energy.  Solar power generation 

technologies can be broadly classified into two types: PV power technology and CSP 

technology.  PV and CSP systems include a combination of electric and thermal devices 

and relevant switchgear components which have different characteristics.  The output 

power of PV and CSP cannot be controlled easily as conventional generation due to the 

intermittent nature of solar irradiation and climactic conditions at different locations.  

PV systems can have different topologies which have direct impacts on the reliability 

contribution of the solar PV systems.  In this thesis, probabilistic techniques using 

analytical methods were employed to develop detailed reliability models of PV and 

CSP systems.  These models were then integrated into the overall system reliability 

model for the evaluation of system adequacy.  This work has been extended to 

incorporate the impact of cumulative dust on the reliability modeling of PV system. 



 139 

Chapter 1 presented the basic concepts of power system reliability.  This chapter 

discussed the research motivation and literature review.  The main contributions of this 

work are briefly presented in this chapter. 

Chapter 2 introduced an overview of generation system reliability concepts, 

including different methods for adequacy evaluation.  The generation system adequacy 

assessment approaches can be classified as deterministic and probabilistic techniques, 

and both methods are discussed in this chapter.  The deterministic approach cannot 

recognize the random system behavior and quantify the system risk in a given 

generation system.  Therefore, the probabilistic method is a more appropriate method 

for adequacy assessment of a generation system including variable power generation 

systems such as the PV and CSP.  An analytical probabilistic technique that uses 

relatively simple numerical calculations was developed and applied in the detailed 

studies in this thesis. 

The probabilistic model developed in this thesis utilizes mathematical 

approaches for adequacy evaluation.  A discrete probability distribution of available 

solar power is developed as the capacity model of the PV and CSP.  The overall system 

generation model is then developed by integrating the PV/CSP capacity models into 

electric generation system. The hourly load variation profile was utilized in this work.  

The system risk indices can be evaluated by combining the system generation model 

and the load model.   
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The detailed reliability modeling of a PV system for generation system adequacy 

assessment is presented in Chapter 3.  The output power of PV systems differs from the 

power generated by conventional sources due to the high uncertainty revolving around 

PV power output and the availability associated with PV system components and their 

relative configurations.  The PV system topology comprises major components such as 

DC-link capacitor, inverter, circuit breaker, and transformer.  The failure of these 

components can lead to the failure of a PV system.  The functional reliability block 

diagrams of the central, string, and micro PV system components were built to obtain 

the two-state operation model.  The PV power output curve is employed to derive the 

available PV power output from solar irradiation.  This analytical model depends on 

hourly solar irradiation and solar panel efficiency.  Significant hourly solar irradiation 

data are required in this section to create the multi-state capacity model of the PV.  The 

obtained multi-state model in this step is convolved with the two-state model of the PV 

system components to build the overall COPT of the PV system. 

The developed models and methodologies have been applied to perform a wide 

range of reliability sensitivity studies on a test generation system including PV system.  

Different key factors, such as peak-load variation, different installed PV are taken into 

consideration in these studies.  This work was conducted using five years’ solar 

irradiation data for Medina located at 24.52° N latitude.  The results obtained in this 

study noted an improvement in the system reliability when PV is added to the 
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generation system; however, this incremental benefit declines with installing more PV 

capacity.  The analysis indicates that the capacity value benefit of using the micro-

inverter PV system is highest in relation to the central and string PV system.  This can 

be noticed when the CC of PV increases from 19% to 35.5% after replacing the central 

PV system with the micro-inverter PV system. 

The equivalent share between removing a conventional generation unit and 

replacing this with equivalent PV while maintaining the system reliability at the same 

level is studied in Chapter 3.  The results demonstrated that the system LOLE can be 

maintained by replacing 40 kW of conventional generation with 270, 180, and 98 kW of 

string, central, and micro PV system, respectively.  The results showed that the risk-

based equivalent capacity ratios by replacing one unit of conventional generation are 7, 

5, and 3 units of central, string, and micro-inverter PV capacity, respectively. 

Chapter 4 involved the development of a concentrated solar power model in a 

probabilistic framework to compute the adequacy of a generation system including 

CSP.  The two-states of the CSP reliability component model were created first.  Next, 

the discrete probability distribution associated with the output power of CSP and their 

possible probabilities were obtained.  The overall COPT of the CSP system was 

constructed by convolving the multi-state model of the output power of CSP with two-

state models of the CSP components.  The developed model in Chapter 4 is applied to 

the RBTS to calculate the impact of load variation, CSP penetration level, and 
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geographical location on the reliability benefit of CSP.  The application of this study was 

assumed at three different latitudes of 34.86 N, 24.42 N, and 37.38 N corresponding 

to Daggett City located in the USA, Medina located in the KSA, and Seville located in 

Spain, respectively.  The results indicated that the reliability degraded significantly with 

an increase in peak load.  Moreover, the LOLE and LOEE indices decreased with 

increasing capacity levels of CSP to RBTS at all three locations.  The analysis indicated 

that the adequacy benefit of using CSP depends largely on the site resources where the 

CSP system is installed. 

The developed reliability models of PV and CSP systems are utilized in Chapter 

5 to perform a comparative reliability study of the generation system integrated with a 

large-scale central PV and CSP systems.  A wide range of indices, such as the LOLE, 

LOEE, ELCC, and CC were used for such comparison purpose.  The application of this 

study was illustrated utilizing RBTS and was assumed located in Medina.  A number of 

factors were included in the comparative study, such as system load variation, 

increasing PV and CSP capacity level, and seasonality.  The obtained results indicated 

that when both CSP and PV systems are applied to the same geographical location, the 

adequacy contribution of using CSP is significantly higher than that of PV.  The results 

confirmed that the summer period provides the largest CC contribution followed by 

spring, fall, and winter in both the technologies. 
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The amount of accumulated dust covering the PV surface greatly reduces the 

overall energy production.  Chapter 6 presented the impact of cumulative dust on the 

reliability modeling of the PV system.  This work utilized a polynomial regression 

model of cumulative dust obtained from an experiemental test carried out by 

researchers at KSU [42].  The regression model was used to predict the cumulative dust 

on the PV surface for each season at Riyadh and Medina.  Subsequently, the 

probabilistic model of the power drop caused by accumulated dust was created, and 

this was convolved with the overall system reliability model of PV system obtained in 

Chapter 6.  The developed analytical model in Chapter 6 was applied to the RBTS to 

analyze the impact of cumulative dust on the reliability contribution of PV and to 

investigate the impact of the dust-removal planning.  The results showed that the 

incremental reliability benefit of adding PV to electric generation system is reduced 

significantly due to the accumulation of dust on the PV module.  The output analysis 

indicated that the reliability contribution of PV system can be improved with 

incorporating a proper dust-removal strategy.  The method demonstrated in dust 

removal strategy can be utilized to estimate the cost-effective dust removal while 

maintaining the reliability indices at an acceptable risk level. 

In summary, the thesis presents some procedures that can be utilized to integrate 

different solar power technologies in existing generation systems to evaluate the 

reliability of solar power contribution.  The obtained results from different case studies 



 144 

conducted in this thesis demonstrated the sensitivity of the assessed reliability indices 

to a few important factors that were incorporated in the reliability analysis of CSP- and 

PV-integrated electric power generation systems. 

7.2 Future Work 

CSP plants can be operated as integrated solar combined cycles (ISCCs) that 

utilize different configurations [76], [81], [82] to reduce the average LCOE and to place 

the CSP system at a higher commercial position.  ISCCs are modern combined cycle 

power plants that involve conventional/nonconventional generation and thermal input 

of solar energy.  The main concept behind this technology is that solar plants can be 

operated partially using fuels [83], [84] that can be fossil or non-fossil derived, such as 

biomass [84], [85].  By taking advantage of the existing infrastructure associated with 

the development of a conventional thermal power plant, the economics of the 

concentrating solar thermal component can potentially be significantly enhanced. 

The ISCC, with a CSP solar field, essentially contains two main parts—a CSP 

component and a conventional generator.  These two main parts are connected in 

parallel.  The solar field includes CSP collectors and solar boilers.  The power block 

basically comprises of the following components: (1) Gas turbine, generator, 

compressor, and combustion chamber and (2) steam turbine, generator, condenser, and 

feed-water system.  [86] Studied the fuel saving of a coal-fired plant by installing a CSP 
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to form an ISCC.  The study found that there was 24.5% saving in fuel.  Another study 

[87] proposed integrating solar thermal power with an existing conventional generation 

to evaluate the CO2 reduction and fuel saving.  This work presented an economic model 

for investigating the methods and mechanisms of integrating a CSP Collector with coal-

fired power plants.  The results showed that the new integrated system had lower 

generation costs than conventional coal-fired power plants.  Reference [88] presented 

methods to integrate CSP with conventional power plants.  An economic assessment 

showed that the ISCC has lower generation costs than fossil-fuel-generation plants.  

Another study [89] estimated the optimum value of installing conventional generation 

and CSP to provide a stable power output using an integrated solar system. 

CSP–biomass hybrid plants are developing at a faster pace as a low-cost source 

of dispatchable renewable energy—a configuration that has a low environmental 

impact [90].  Reference [91] evaluated the combination of solar power and biomass, 

indicating that the levelized energy costs for hybrid solar–biomass power plants are 

competitive with other renewable energy systems in India.  Hybrid plant studies in the 

literature review have primarily focused on the LCOE.  There is a noticeable lack of 

research addressing the reliability impacts of ISCCs, which considers conventional or 

nonconventional generation, such as biomass.  Therefore, a quantitative reliability 

assessment of the different ISCC technologies is essential for determining the reliability 

contribution of CSP in electric power systems. 
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Integration of thermal energy storage (TES) with CSP systems is a potential 

solution to the limitation in the availability of solar energy.  TES can balance and 

compensate for variation in both load and generation systems.  In this manner, energy 

storage can play a vital role in the CSP system applications and create opportunities to 

integrate high penetration of CSP units in system grids.  The first commercial CSP/TES 

plant, including both CSP and power towers, was built and became operational in Spain 

in 2008 [91].  Developments like this, and others that have since been established, have 

made it necessary to conduct assessments for all the major components being used at 

these plants.  This is because the LCOE production through CSP, with or without 

storage, has fallen behind that of wind power and PV. 

TES, an additional component of the CSP system, has a significant influence on 

the plant operation.  A simulation model has been presented in [59] to facilitate the 

prediction of the power output of CSP–TES using a System Advisor Model.  The results 

indicated that the simulation model can be generalized to reproduce the performance of 

any trough plant.  References [92], [93] evaluated the performance of CSP solar plants in 

a system grid using a validation of the FLAGSOL performance model.  The validation 

was conducted by simulating an operating CSP solar thermal power plant and 

comparing the model’s output results with the actual plant.  The work published in [93] 

was expanded in [94], which assessed the economic benefits of adding energy storage to 

CSP.  In general, the charging and discharging operations of TES depend on the 



 147 

availability of thermal components in the energy storage.  There is a lack of research 

conducted regarding developing a proper reliability model of CSP that incorporates 

TES. 
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