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Abstract  
 
This study was conducted as part of the Alternative Cropping Systems (ACS) study at Scott, 
Saskatchewan. The 18 year study was initiated in 1995 to evaluate the sustainability of nine 
arable crop production systems. The nine cropping systems, derived from combinations of 
three input levels (organic, reduced, and high) and three cropping diversity levels (low, 
diversified annual grains, and diversified annual perennials), were designed to monitor and 
assess alternative input use and cropping strategies for arable crop production on the 
Canadian Prairies. Field data including leaf area index (LAI) and spectral reflectance were 
collected three times during the growing season of 2003: early growing season (June), mid 
growing season (July) and late growing season (August). LAI was measured with an 
LAI-2000 plant canopy analyzer. The spectral measurements were made with a handheld 
ADS spectroradiometer, which covers wavelengths from 350 nm to 2500 nm with 2151 
bands. Results showed that remote sensing can be used to indicate different crop conditions. 
The spectral and LAI differences among input levels were significant at early to mid growing 
seasons. Mid July was the best season and the red over near infrared spectral ratio as well as 
the normalized difference vegetation index based on these two bands were the best vegetation 
indices to use for crop vigor monitoring.  
 
Introduction 
 
Remote sensing technologies have been widely applied to agriculture, such as in soil survey 
(including land cover and land use), agricultural resource investigations and meteorological 
disaster inspections, especially for monitoring crop vigor and predicting crop yields (Gitelson 
et al. 1996). Remote sensing can be used to monitor crop health, growth status and changes 
of crops in large areas. Growth and development parameters, such as leaf area, leaf color and 
leaf moisture content result in variation in spectral reflectance. The changes in the spectral 
reflectance and various vegetative indices can be monitored during the growing season of the 



crop to access changes in crop vigor. . 
 
Most of the research reported in the literature has been developed using conventional remote 
sensing data from a few crops. However, it has been difficult to response to special spectral 
features and difference among vegetation because of fewer wavelength and lower spectral 
resolution in conventional broad band remote sensing data, such as Landsat Thematic Mapper 
(TM), and also it was easily influenced by other factors such as vegetative cover, leaf color 
and soil color that reduce the accuracy of monitoring. Hyperspectral remote sensing, with 
higher spectral resolution and imaging spectrum data of numerous wavelengths, is able to 
solve some of the problems that occur with conventional remote sensing data and also to 
decrease the impact of other factors which will increase monitoring preciseness (Malthus and 
Madeira 1993).  
 
Studies on hyperspectral remote sensing generally focus on the potential of spectral data for 
estimating biochemical parameters (Card et al. 1988), chlorophyll content of leaves 
(Chappelle et al. 1992, Daughtry et al. 2000) and biomass of crops (Wang et al. 1993). Few 
investigations have dealt with the relationship between the Leaf Area Index (LAI) of crops 
and the hyperspectral reflecting features of crop leaves. The objectives of this study were 1) 
to identify suitable seasons, hyperspectral wavelength regions and vegetative indices fitting 
for monitoring Leaf Area Index (LAI), 2) to evaluate the methods of monitoring crop vigor 
using hypersptctral remote sensing data, and 3) to quantify LAI of wheat using first 
derivative from hyperspectral bands. 

 
Material and Methods 
 
This study was conducted at Agriculture and Agri-Food Canada’s Alternative Cropping 
Systems (ACS) experiment site located at Scott, SK (52022’19”N, 108052’33”W). The 
experiment is a four replicate split plot experiment with main plot treatments consisting of 
three input levels (Organic, Reduced and High) and sub-plots comprised of three cropping 
diversity levels (Low, Diverse Annual Grains and Diverse Annual Perennial) each on a six 
year rotation cycle (Figure 1) (Ulrich et al. 2001). 

 

Figure 1. Scott AAFC ACS experiment field layout (Adapted from Ulrich et al. 2001). 



In 2003, LAI and field level remotely sensed data were collected in the first two replicates at 
three times during the growing season: early growing season (June 13), mid growing season 
(July 18) and late growing season (August 11). LAI was collected with a Li-Cor LAI-2000 
Plant Canopy Analyzer and remotely sensed data were collected using an ASD portable 
Spectroradiometer with spectral range of 350-2500 nm. Digital pictures were taken for each 
plot on each date. For each plot, spectral data were the average of five measurements. LAI 
was the average of three measurements each with one above canopy reading and five below 
canopy readings. Spectral readings were collected within two hours of solar soon on very 
clear days (10:30am-1:30pm). Calibration was made every 10-15 minutes to a white 
reflectance panel (LabSphere Spectralon) board. LAI-2000 was shaded when observations 
were being taken to reduce the effect of glazing from direct sunshine.  
 
Based on sample requirements for statistics, only mean spectral response curves of wheat, 
barley and canola were plotted against wavelength to determine the best season for remote 
sensing application. Investigation of input levels was studied on wheat only. Pearson’s 
Correlation analysis was conducted for LAI with each single band, first derivative, and 
different vegetation indices (Table 1). Stepwise regression analysis was applied with spectral 
indices that showed a significant relationship with LAI. The developed regression model was 
tested by fitting field measurements into the equation to test the accuracy. Spectral data were 
also simulated to Landsat TM red and near infrared bands to calculate the normalized 
difference vegetation index (NDVI) to test the difference of significance among different 
treatments using analysis of variation (ANOVA) test. Spectral data preprocessing was based 
on FieldSpec v2.1 software that was included with the equipment and SPSS v11.5 was used 
for statistical analysis.  
 
Results 
Spectral responses of wheat, barley and canola over the growing season. 
 
Figure 2 shows the spectral characteristics of spring wheat, barley and canola over the 
growing season. All three crop types showed typical vegetation spectral curves in July with 
higher near infrared reflectance and lower red reflectance because of chlorophyll absorption 
and the spectral difference among them is obvious. In June, crops were emerging and bare 
ground was dominating the spectral component as all spectral curves were close to each other 
and there was no significant red absorption region. July could be the best season for crop 
study using remote sensing as plants reached to maximum photosynthesis activity as 
indicated by strong red and water absorptions in red and middle infrared wavelength regions 
and plant cell structural reflectance in near infrared region. In August, the measurements were 
made prior to harvest. The linear line from visible to near infrared wavelength region 
indicated that wheat and barley had senesced. Canola showed moderate photosynthesis 
activity during the late growing season. However, for wheat, the optimal growing stage is 
prior to barley and canola spectrally as the spectral curves showed photosynthesis trend in 
June and the chlorophyll absorption is reduced in July and the line is more straight in August.  
 
Relationship between LAI and growth vigor for wheat 



Spectrally and biophysically, input levels significantly influenced the vigor of the spring 
wheat crop. The three measurements during the growing season coincided with the spring 
wheat growth stages of elongation, flag leaf and milk stage, respectively. The wheat LAI 
curve was parabolic during the growing season (Figure 3), being low at early stage and late 
stage but being high at flag leaf stage at which wheat was in vigorous growth. Under the three 
input levels, LAI values were different significantly (P=0.016, 0.028 and 0.010 respectively), 
in which LAI was greatest for high and least for organic treatments. The results show that 
wheat growth conditions under high treatment were the best and photosynthetic area was the 
largest while growth conditions of the wheat under organic treatment were the worst and 
plant photosynthesis was the lowest. Spectral response curves of wheat under three 
treatments were plotted in Figure 4 and the ANOVA test was applied for their NDVI values. 
Results showed that the spectral differences were only significant at early and mid growing 
seasons (P=0.000, 0.007 and 0.341 respectively). Digital pictures showed the visual 
differences of wheat under three inputs levels over the growing season (Figure 4). The results 
indicated that crop vigor can be monitored, and analysis of LAI of wheat using remote 
sensing data can be used to monitor growth and vigor of the crop. 
 

 

Figure 2. Spectral response curves of wheat, barley and canola in the experiment field during 
the growing season of 2003. Noisy regions were deleted at around 1300, 1900 and 2500nm.   

 
The relationship between wheat LAI and hyperspectral reflectance 
 
The valid time of monitoring growth vigor of wheat 
A correlation analysis between wheat LAI and hyperspectral reflectance was carried out 
(Figure 6). Correlation coefficients at different sampling times indicated that values for July 
18th were the highest and were the lowest for August 11th. The reasons why values in August 
were poor are that wheat had matured and was senescing (leaves have wilted, turned yellow 
and lost water), and the impact on the spectrum is larger than the impact on the LAI. 
 



Figure 3. LAI of wheat under three input 
levels over the growing season. The 
figure was smoothed by continuously 
measured LAI data in the growing season 
of 1997 at Scott. 

Figure 4. Spectral response curves of wheat 
under three input levels in July. 

 

 

Figure 5. Wheat under three input levels at the three growing stages. 

 
The large LAI values suggest the optimal time to monitor growth and vigor of the crop using 
remote sensing in Saskatchewan is from June 20 to July 20, when wheat is in late stem 
elongation stage to heading (florescence) phase. During this period, measurements could be 
used to predict wheat yields. In early August, the monitoring is unreliable because the color 
and moisture content cause variable results. Therefore, the further analyses focused on data 
from July. 
 
Correlation analysis between wheat LAI and primary spectrum 
Figure 6 shows that the correlations between LAI and reflectance were negative when the 
wavelengths are less than 722 nm with correlation coefficients being maximum and formed a 
valley at 684 nm. The correlations were positive when wavelengths are larger than 723 nm 



with a maximum at 764 nm, and the correlation coefficients decreased slowly after 770 nm. 
The relationships were significant for the visible region (400-700 nm except for 520-580 nm) 
and infrared region (740-924). The maximum coefficients at 684 nm and 764 nm were –0.657 
and 0.620, respectively. Therefore, it can be considered that the optimum hyperspectral 
regions should be inside 600-700 nm and 740-900 nm, in which the sets of spectrum 
reflectance and vegetative index can be used to monitor wheat LAI. 
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Figure 6. Correlation coefficients between LAI and hyperspectral single band over the 
growing seasons, June 13 (a), July 18 (b) and August 11 (c). The red lines are critical 
significant r values at p=0.05 and blue lines are critical r values at p=0.01. 
 
Correlation analysis between wheat LAI and the first derivative 
In the region of 550-900 nm, the relations between LAI and the first derivative were negative 
inside 552-681 and 830-900 nm, while were positive in the region of 706-755nm. All the 
correlation coefficients are significant; the maximum coefficients are –0.789 and 0.769, at 
631 and 742nm, respectively (Figure 7). The wavelength of 742 nm is the most variable band 
within red edge region. The analysis revealed that regions of 550-680 nm and 710-760 nm 
were optimal regions to measure wheat LAI. 
 
Estimating models of monitoring wheat LAI using hyperspectral remote sensing data 
 



Selection of variables and vegetative indices 
Based on analyses above, the spectrum reflectance of red valley and near infrared peak inside 
regions of 600-700nm and 740-900nm and their located band positions were selected as 
variables, as were peak and valley of first derivative spectrum within regions of 550-680nm 
and 710-760nm and their positions in regions (Table 1). Peak of red edge (680-780nm), red 
edge position and red edge area are usually used to monitor chlorophyll, physiological 
activity and biomass of crops (Boochs et al. 1990, Filella et al. 1994) and were selected as 
variables. Studies of applying conventional remote sensing data to agriculture have shown 
that vegetative indices are important variables. Therefore, in this study, the ratio vegetative 
index, normalized vegetative index (NDVI), simple vegetative index and logarithm 
vegetative index were chosen. A total of 15 spectral variables were selected to relate to wheat 
growth and vigor (Table 1). The analysis was carried out to determine whether these factors 
can be used to predict wheat LAI. Two statistical methods were used in this study. First, 
correlation analysis was applied to verify if the correlation coefficients were significant. 
Second, a stepwise multiple regression method was used to select variables for the prediction 
equation. 
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Figure 7. Correlation coefficients between LAI and spectral first derivative. The red lines are 
critical significant r values at p=0.05 and blue lines are critical r values at p=0.01. 

 
Table 1 shows that the correlation coefficients between the hyperspectral variables and wheat 
LAI are highly significant except for X3, X4 and X8. The coefficient of X12 (ratio vegetative 
index) was the highest (r= -0.8249), and the second highest was NDVI (r=0.824). The data 
suggest that the changes in these variables are related to wheat LAI. Further, the stepwise 
regression analysis indicated that only one factor, the ratio vegetative index, was needed to 
account for the majority of the variation of wheat LAI. The remaining variables were highly 
correlated with the ratio vegetation index and are not required to explain the variation in 
wheat LAI. 
 
Model development 
The ratio vegetative index was correlated negatively to wheat LAI, illustrating that the 
smaller the index, the larger the LAI. Linear, logarithm and exponential models were tested 



and the exponential model was found to give the best fit (R2= –0.732, p=<0.001 (Table 2). 
 
Table 1. Correlation coefficients between the hyperspectral variables and wheat LAI. 

Variables 
Correlation 

coefficient(r) 
description 

X1 -0.7845** the minimum spectral reflectance within red region of 600-700nm  
X2 0.7306** corresponding wavelength of red valley   
X3 0.5085* the maximum spectral reflectance within near infrared region of 740-900nm 
X4 -0.5520* corresponding wavelength of near infrared peak 
X5 0.7449** The minimum1st derivative spectrum within regions of 550-680nm and 710-760nm  
X6 0.7496** corresponding wavelength of the minimum1st derivative spectrum 
X7 -0.6525** The maximum1st derivative spectrum within region of 710-760nm 
X8 -0.1182 corresponding wavelength of the maximum1st derivative spectrum 
X9 0.7449** The maximum1st derivative spectrum within red edge region of 680-780nm 

X10 0.7775** Red edge position, that is, corresponding wavelength of the maximum red edge 

X11 0.7252** Red edge area 
X12 -0.8249** Rr/Ri, ratio vegetative index 
X13 0.8240** (Ri-Rr)/(Ri+Rr)，normalized vegetative index(NDVI) 
X14 0.6763** Ri-Rr simple vegetative index  

X15 0.8151** Log(Ri/Rr) logarithm vegetative index 
Note: r with * and ** denote those that have passed significance tests at 0.05 and 0.01, respectively (the 
same below). 
    
Model Validation 
Table 2 indicates that preferable variables are X12 (ratio vegetative index) and X13 (NDVI). 
The exponential model performed better when wheat LAI was estimated by hyperspectral 
remote sensing data with correlation coefficients being 0.732 and 0.727, F variance value 
being 35.53 and 34.62 for the two spectral variables. When the equations of 

128957.43575.2 Xey .>  and 135448.3082.0 Xey >  were fitted to calculate LAI, differences 

between observed LAI and simulated LAIs are 1.515%and 1.32%, which means the models 
are very good at monitoring wheat LAI (Figure 8).  

 

Figure 8. Model fitting test for using ratio vegetation index. 



Table 2 Hyperspectral estimating models of monitoring wheat LAI 
Variables Models b0 b1 R2 F P 

X1 
LIN 
LOG 
EXP 

1.9422 
-2.2591 
2.8639 

-20.711 
-1.0474 
-24.148 

.615 

.620 

.684 

20.72 
21.23 
28.20 

.001 

.000 

.000 

X2 
LIN 
LOG 
EXP 

-4.2661 
-32.067 
.0020 

.0080 
5.0950 
.0093 

.534 

.532 

.596 

14.88 
14.75 
19.14 

.002 

.002 

.001 

X5 
LIN 
EXP 

.4275 

.4958 
-1949.9 
-2224.0 

.426 

.454 
9.64 

10.80 
.008 
.006 

X6 
LIN 
LOG 
EXP 

.0330 
5.8203 
.3194 

262.350 
.8561 

296.111 

.555 

.554 

.579 

16.20 
16.12 
17.89 

.001 

.001 

.001 

X7 
LIN 
LOG 
EXP 

-37.790 
-253.42 
9.2E-21 

.0534 
38.6148 

.0634 

.605 

.604 

.699 

19.88 
19.86 
30.22 

.001 

.001 

.000 

X9 
LIN 
LOG 
EXP 

.0330 
5.8203 
.3194 

262.350 
.8561 

296.111 

.555 

.554 

.579 

16.20 
16.12 
17.89 

.001 

.001 

.001 

X10 
LIN 
LOG 
EXP 

-36.235 
-243.22 
3.3E-20 

.0512 
37.0653 

.0617 

.562 

.562 

.667 

16.67 
16.67 
26.03 

.001 

.001 

.000 

X11 
LIN 
LOG 
EXP 

-.0683 
2.6585 
.2844 

5.8562 
.9630 

6.6212 

.526 

.526 

.551 

14.42 
14.41 
15.94 

.002 

.002 

.002 

X12 
LIN 
LOG 
EXP 

1.7904 
-.4385 
2.3575 

-4.2719 
-.8307 

-4.8957 

.680 

.664 

.732 

27.67 
25.73 
35.53 

.000 

.000 

.000 

X13 
LIN 
LOG 
EXP 

-1.1436 
1.7649 
.0822 

3.1009 
2.0367 
3.5448 

.679 

.680 

.727 

27.50 
27.60 
34.62 

.000 

.000 

.000 

X14 
LIN 
LOG 
EXP 

-.2107 
2.7006 
.2449 

5.6480 
1.0953 
6.3275 

.457 

.448 

.470 

10.95 
10.56 
11.53 

.006 

.006 

.005 

X15 
LIN 
LOG 
EXP 

-.4385 
1.4087 
.1851 

1.9127 
1.3598 
2.1779 

.664 

.676 

.706 

25.73 
27.17 
31.17 

.000 

.000 

.000 
 
Conclusions 
 
Results showed that hyperspectral remote sensing can be used to indicate different crop 
conditions. The spectral and LAI differences among input levels were significant at early to 
mid growing seasons. Late to mid July is the best season and the red over near infrared 
spectral ratio as well as the normalized difference vegetation index based on these two bands 



are the best vegetation indices to use remotely sensed data for wheat vigor monitoring. Based 
on the fact that the conclusions were based on field data in one growing season, the results 
may be differ in years with different growing conditions (i.e. the season may affect the timing 
of measurements). Further study will be conducted to include some meteorological data to 
“characterize” the growing season and a second growing season field campaign will be 
conducted.  
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