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ABSTRACT 

Serotoninergic type 3 receptors (5HT3Rs) are members of the Cys-loop family of ligand-

gated ion channels (LGIC), which includes nicotinic ACh, glycine, GABA-A and GABA-C 

receptors. All members of this family are widely expressed in the central and peripheral nervous 

systems, where they mostly participate in fast synaptic transmission. Activation of 5HT3Rs on 

vagal sensory nerve endings affect respiration, circulation, emesis and nociception; and in the 

central nervous system they are implicated in anxiety, depression, and drug dependence. In 

contrast, the function of 5HT3Rs in sympathetic neurons has not been fully determined. We 

discovered that 5HT3Rs interact with nicotinic acetylcholine receptors (nAChRs), the main 

drivers of the fast cholinergic autonomic synapse, through cross-talk mechanisms. We examined 

cross-talk by the patch-clamp technique on cultured mouse superior cervical ganglia (SCG) 

neurons. Co-stimulation of 5HT3Rs and nAChRs resulted in the generation of a combined 

current that was smaller than arithmetically predicted if the receptors did not interact with one 

another. This interaction, which we quantified as mean peak amplitude and mean ionic charge, 

was dependent on activation of 5HT3Rs and nAChRs, and independent of metabotropic 

receptors, Ca
2+

 entry and Ca
2+

 second messenger pathways, and of the direct action of 5HT on 

nAChRs. Preliminary data using an antibody targeted to the M3-M4 linker region of the 5HT3A 

subunit revealed that 5HT3Rs and nAChRs possibly cross-talk through physical interactions. 

These results revealed a potential role of the 5HT3R in the regulation of sympathetic synaptic 

transmission through cross-talk inhibition of nAChRs. 
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CHAPTER 1  

GENERAL INTRODUCTION 

 

The function of the autonomic nervous system (ANS) is to maintain physiological  

homeostasis. Three autonomic divisions participate in this critical task, including the sympathetic 

(SNS), the parasympathetic (PSNS), and the enteric (ENS) nervous systems. In this thesis we 

will concentrate particularly on function and regulation of the SNS. The SNS is important for 

homeostasis. It modulates a wide variety of body functions, including vascular dynamics, 

sweating, piloerection and temperature control, bronchial dilatation, pupillomotor function, heart 

rate, GI motility, and reproduction (Langley, 1903; Janig and McLachlan, 1992; Boron and 

Boulpaep, 2009). In addition to homeostasis, the SNS plays a pivotal role in the control of the 

body’s immediate adaptations to acute environmental stressors. A classical physiological 

outcome driven by SNS is the “fight-or-flight response” (Jansen et al., 1995). This is triggered by 

a perceived harmful or threatening stimulus. This response causes an increase in heart rate, 

respiration, focus, and overall arousal and energy providing the body with increased strength and 

speed in anticipation of fighting or running (Boron and Boulpaep, 2009). Malfunctions of the 

ANS, or dysautonomia, can compromise multiple organ systems. The symptoms can include 

cardiovascular problems such as resting tachycardia and orthostatic hypotension, metabolic 

disorders such as hypoglycemia unawareness in diabetes, and gastrointestinal (GI) problems such 

as constipation. In patients with long standing diabetes, dysautonomia contributes to the 

manifestation of cardiovascular disease which accounts for up to 80% of premature deaths 

(Canadian Diabetes Association; http://www.diabetes.ca/Section_About/prevalence.asp). The 

key to understanding how the SNS functions in health and disease is to study how it 

http://www.diabetes.ca/Section_About/prevalence.asp
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communicates within itself and with the rest of the body. Function and regulation of the SNS is 

mediated by communication through its neurotransmitters and receptors. How a subset of these 

components modulate the SNS is the focus of this thesis.  

 

1.1 Sympathetic Nervous System 

 

1.1.1 Anatomy 

 

 The SNS is one of the three divisions of the ANS, complemented by the parasympathetic 

nervous system (PSNS) and the enteric nervous system (ENS). These systems are autonomic 

because of their abilities to function without modulation from supraspinal centers (Boron and 

Boulpaep, 2009).  

CNS control of the SNS lies in the nucleus tractus solitarii (NTS), but also includes the 

area postrema, ventrolateral medulla, medullary raphe, reticular formation, locus coeruleus, and 

the parabrachial nucleus (Boron and Boulpaep, 2009). The NTS receives and transmits signals 

with the paraventricular nucleus of the hypothalamus, as well as the central nucleus of the 

amygdala (Andresen and Kunze, 1994). It also has peripheral afferents from chemo- and baro- 

receptors from the arteries, heart, lungs, airways, GI system, liver, and tongue. Medial lesion or 

pharmacological blockade of the NTS will affect baroreflex responses in heart rate, blood 

pressure, and sympathetic nerve activity (Andresen and Kunze, 1994).  

 In the SNS, the most important efferent projections from the NTS travel along the 

intermediolateral column of the spinal cord (Andresen and Kunze, 1994; Fig. 1-1).The NTS 

projections within this column synapse onto preganglionic neuronal cell bodies located in the 
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thoracic 1 to lumbar 3 sections (T1 

to L3) of the spinal cord. The 

preganglionic neurons exit the spinal 

cord at the ventral roots, via white 

rami communicantes (myelinated 

fibers), only at sections T1 to L3. 

There are two groups of ganglia that 

the preganglionic neurons synapse onto, 

the left and right sympathetic chains (paravertebral ganglia, shown in Fig. 1-1), flanking each 

side of the spinal cord, and the prevertebral plexus (not shown in Fig. 1-1), consisting of a 

network of interconnecting ganglia and nerve fibers that run adjacent to- and branch alongside- 

major arteries in the abdomen. The sympathetic chains extend beyond their vertebral origins, 

going from the cervical to the coccygeal levels of the spinal cord. This arrangement serves as a 

distribution system that enables preganglionic neurons, which are limited to the thoracic and 

upper lumbar segments, to activate postganglionic neurons organized in autonomic sympathetic 

ganglia that innervate all body segments. However, there are fewer ganglia than there are spinal 

segments because some of the segmental ganglia fuse during development. An example of this is 

the superior cervical ganglion (SCG), which is the first ganglion of the sympathetic chain, and 

represents the fused cervical ganglia of C1 through C4 (Boron and Boulpaep, 2009).  

 The SCG is particularly useful in SNS research because of its large size, ease of access, 

and well characterized physiology (Savastano et al., 2010; Asamoto, 2005; Tubbs et al., 2002). 

The SCG supplies sympathetic innervations to the head and neck, sweat glands in the face and 

forehead, smooth muscle of eyelid, pupillary dilator muscle in iris, gustatory glands, and heart. 

Fig. 1-1. Sympathetic Efferent Pathway. 

(Modified with permission from Chien, 1967) 
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Thus, cultured SCG neurons are an accepted in vitro model to study sympathetic function at the 

cellular level.  

 

1.1.2 SNS Function 

 

 Langley and Anderson (Langley, 1903) first defined the major functions of the SNS (and 

PSNS). Working mainly on cats, they were able to describe SNS anatomy, and showed that that 

the SNS modulates a wide variety of body functions, including vasoconstriction, vasodilatation, 

sweating, piloerection, bronchial dilatation, pupillomotor function, GI motility, and reproduction 

(Langley, 1903; Janig and McLachlan, 1992). Within the same time period (1915), Walter 

Cannon coined the idea that the SNS has generalized effects, especially in comparison to the 

effects of the PSNS (Janig and McLachlan, 1992). 

 Today, many studies have confirmed their findings, and have added considerable details 

to how the system functions (Janig and McLachlan, 1992; Boron and Boulpaep, 2009), including 

blood clotting time, glucose release, insulin secretion, and blood cell mobilization by spleen 

contraction. In addition, we now know the SNS is a ‘diverging’ system, in that the 

postganglionic fibers outnumber the preganglionic fibers by an estimated 200 times, which 

broadens the areas controlled by the signal originating in the brainstem.  

 

1.1.3 Neurotransmitters and Receptors 

 

 Perhaps the most significant advance in the understanding of the SNS was the 

identification of the neurotransmitters and receptors that form the basis of its function. The 
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neurotransmitter systems can be organized into (1) the neurotransmitters and receptors involved 

in synaptic transmission, and (2) the neurotransmitters and peptides involved in modulation of 

SNS functions. 

 One of the main characteristics of the SNS is that the synapse between the preganglionic 

neuron and the postganglionic neuron at the sympathetic ganglia is cholinergic, while the 

synapse between the postganglionic neuron and the target tissue is adrenergic (Lundberg, 1996). 

The effects caused on the target tissue depend on the type of receptors that that tissue expresses 

(Boron and Boulpaep, 2009).  

The effect of noradrenaline and adrenaline on the target tissue is mediated by multiple 

types of adrenergic receptors (AR) (Boron and Boulpaep, 2009). There are two main types of 

adrenergic receptors, α and β, with different patterns of expression and function. All adrenergic 

receptors are G-protein coupled receptors, with α1-ARs activating phospholipase C (PLC) and 

α2-ARs acting through inhibitory G-proteins (Gαi). The β-ARs (β1-, β2-, and β3-ARs) all act 

through Gαs protein and have distinct tissue distribution. The β1-ARs are highly expressed in the 

heart, where their activation increases cardiac output. The β2-ARs are highly expressed in the 

lungs, where they relax the smooth muscle in the airways. The β3-ARs are expressed mainly in 

adipose tissue, where they are involved in lipolysis (Boron and Boulpaep, 2009).  

As mentioned before the synapses in the sympathetic chain are cholinergic and driven by 

the release of acetylcholine (ACh), which activates nicotinic ACh receptors (nAChR) and 

muscarinic ACh receptors in the postganglionic neuron. nAChRs are ligand-gated ion channels 

(LGIC) that are cation permeable (Na
+
, K

+
, and Ca

2+
), and are responsible for the excitatory 

postsynaptic currents (EPSC) that drive SNS ganglionic transmission (section 1.2.2 describes 

this in more detail). This differs from muscarinic ACh receptors (and ARs), which are G-protein 
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coupled receptors (GPCR). There are three main types of muscarinic receptors expressed in 

sympathetic ganglia, the M1, M2, and M3 subtypes. M1 receptors are present in the postsynaptic 

membrane and facilitate ganglionic transmission through PLC activation. M2 receptors are Gαi 

coupled and are present on the presynaptic membrane where they are responsible for negative 

feedback regulation. M3 receptors are present in the smooth muscle of sweat glands and 

stimulate secretion through PLC activation (Lundberg, 1996; Boron and Boulpaep, 2009).  

There are a couple of exceptions to the SNS functional organization described above. In 

the case of the sweat glands, the postganglionic fibers are cholinergic like the preganglionic 

fibers. The second case is in the adrenal medulla where preganglionic neurons synapse onto 

chromaffin cells, which take on the role of postganglionic neurons. These cells primarily release 

adrenaline (Boron and Boulpaep, 2009).   

There are numerous other neurotransmitters and neuromodulators which “tune” SNS 

function. These transmitters have classically been called the non-adrenergic non-cholinergic 

(NANC) transmitters and they include vasoactive intestinal peptide (VIP), substance P (SubP), 

calcitonin gene related peptide (CGRP), numerous tachykinins, histamine (Hist), nitric oxide 

(NO), ATP, and neuropeptide Y (NPY). These transmitters can be responsible for co-inducing 

vascular smooth muscle contraction, such as with ATP release in postganglionic terminals onto 

ionic purinergic P2X or G-protein coupled P2Y receptors (Lundberg, 1996). NANC transmitters 

can also be responsible for inducing vasodilation, such as in the case of the gaseous transmitter 

NO, synthesized by the enzyme nitric oxide synthase (NOS) from L-arginine (Lundberg, 1996). 

New research is continuing to discover how these NANC transmitters modulate the SNS and 

how they are relevant in SNS disorders.  
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1.1.4 Modulation and Disease 

 

 The SNS is commonly known as the “fight-or-flight system”, but its function extends 

beyond extreme circumstances. The SNS is constantly working such as during eating, exercise, 

or sex. The SNS actively helps to regulate body temperature, deal with visceral pain, control 

bladder and bowel movements, and trigger emesis during nausea. Other factors, such as stress, 

anxiety and fear can significantly influence SNS function. This complexity requires fine control, 

which is mediated by a large number of neurotransmitters and peptides, and their respective 

receptors. Thus, examining transmitters and their receptors is a good starting point when 

studying the pathologies of the SNS. The focus of this section and the rest of the thesis will be on 

the receptors within the sympathetic ganglia, and how they are involved in the function and 

dysfunction of the SNS.  

 Normal SNS function is maintained by fast synaptic transmission at sympathetic ganglia, 

which can be detected by the generation of EPSCs mediated by nAChRs on the postganglionic 

neuron. Thus, pathological conditions that target the function of the nAChRs can lead to serious 

autonomic conditions. This occurs in type I and type II diabetes, where the hyperglycemia-

induced accumulation of reactive oxygen species (ROS) in the cytoplasm of postganglionic SCG 

neurons led to autonomic neuropathy in diabetic mice (Campanucci et al. 2010). They found that 

ROS targeted conserved cysteine residues located in the cytoplasmic side of nAChR pores, 

inactivating the channels (Campanucci et al., 2008, 2010). Inactivation of these receptors led to 

depression of autonomic synaptic transmission and the onset of autonomic complications 

associated with neuropathy in diabetes. Animal models expressing nAChRs in which the 
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conserved cysteine residues have been mutated to a non-oxidizing residue (e.g. alanine) were 

resistant to the hyperglycemia-mediated effect (Campanucci et al., 2010). Although nAChRs are 

driving sympathetic transmission, there are other neurotransmitters modulating the function of 

the postganglionic neuron.  

 

1.2 Two Cys-Loop Receptor Family Members: The Nicotinic Acetylcholine and Serotonin 3 

Receptors 

 

 The nAChRs and 5HT3Rs are members of the Cys-loop receptor super-family, which in 

mammals includes the GABAA and glycine ion channels (Lester et al., 2004). These are called 

Cys-loop receptors because of a characteristic 13 amino acid loop formed by a disulfide bond 

between two cysteine residues in the extracellular N-terminal of each subunit (Tsetlin, et al., 

2011; Jackson and Yakel, 1995). All Cys-loop receptors are pentameric structures formed from 5 

homologous or heterologous subunits (Cooper et al., 1991; Lester et al., 2004). Starting from the 

large N-terminal, each subunit crosses the membrane 4 times, with each domain named M1, M2, 

M3, and M4 (Peters et al., 2005). The M2 section of each subunit combines to create the ion 

selective pore of the channels, with the M1-M2 intracellular region in close proximity 

determining conductivity and kinetics (Tsetlin et al., 2011). The M3-M4 intracellular loop is 

particularly large, at 140 amino acids long in the mouse 5HT3A (Maricq et al., 1991). This large 

region is particularly active in channel gating, receptor assembly and trafficking, and as a 

phosphorylation target for kinases such as protein kinase C (PKC) (Peters et al., 2005; Coultrap 

and Manchu, 2002). A few amino acid differences within the M2 filter region split the Cys-loop 
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receptors into two categories: the anion (glycineR, GABAA) and cation (nAChR, 5HT3R) 

selective channels (Gunthorpe and Lummis, 2001).  

 

1.2.1 The 5HT3 Receptor 

 

The 5HT3R is unique amongst 5HT receptors in that it is an ion channel, while the rest 

are metabotropic GPCRs. Of the Cys-loop receptors, it is the most closely related to the nAChR, 

with 27% and 30% amino acid homology with the α2 and α7 nAChR subunits, respectively 

(Jackson, 1995; Noda et al., 1983). 5HT3Rs can be found in the CNS, including the 

hippocampus, striatum, lateral amygdala, area postrema, and NTS, but are mainly found in the 

PNS, such as the myenteric plexus, submucosal plexus, nodose ganglion, SCG, vagus nerve, and 

DRG (Jackson and Yakel, 1995). These channels mediate fast activating and fast desensitizing 

currents (Jackson and Yakel, 1995). In the CNS, they are known to be involved in anxiety and 

emesis; the latter is especially relevant in chemotherapy. Specific antagonists for 5HT3Rs such 

as granisetron, ondansetron, and tropisetron are widely used as anti-emetics in conjunction with 

chemotherapy (Mochizuki et al., 1999; Jackson and Yakel, 1995).  

The pentameric structure of 5HT3Rs can be homomeric, composed of only 5HT3A 

subunits, or heteromeric, composed of the 5HT3A and 5HT3B subunits (Davies et al., 1999; 

Dubin et al., 1999; Hanna et al., 2000). The 5HT3B subunit has ~45% sequence identity with the 

5HT3A subunit, but cannot form a functional homomeric structure (Park et al., 1995). Receptors 

containing the 5HT3A are found in the spinal cord, and peripheral ganglia, while those 

containing the 5HT3B subunit are found in the nodose, superior cervical, trigeminal, and dorsal 
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root ganglia (Morale and Wang, 2002). 5HT3Rs are activated by 5HT and are non-selective 

cation channels, highly permeable to Na
+
, K

+
 and Ca

2+
 ions (Yang et al., 1992).  

The homomeric and heteromeric 5HT3Rs have marked functional differences in ion-

permeabilities, current-voltage relationship, and single channel conductance (Davies et al., 

1999). Ca
2+

 permeability is higher for the homomeric form, which is accompanied by inward 

rectification. In contrast, the heteromeric receptors have more linear current-voltage relationships 

and larger single channel conductances than homomeric receptors (Peters et al., 2005).  

Currently, there is little information regarding the exact source and pattern of release of 

5HT within the sympathetic ganglia. Small intensely fluorescent (SIF) cells within the SCG of 

guinea pigs and rats are known to contain 5HT, and to be regulated by preganglionic cholinergic 

neurons (Kanagawa et al., 1986; Hadjiconstantinou et al., 1982). Thus, the examination of SIF 

cells would be important for understanding the ganglionic circuit. Other sources of 5HT can 

come from the blood that supplies the sympathetic ganglia (Tubbs et al., 2002). Most 5HT within 

blood is synthesized in the enterochromaffin cells of the gut (Gershon, 1999), and absorbed and 

stored by blood platelets (Ohkawa et al., 2005). In fact, free 5HT levels were found to be low in 

serum, at 5.7 ± 3 nM (Hirowatari et al., 2004).    

 

1.2.2 The Nicotinic Acetylcholine Receptor 

 

 The nAChRs have been one of the most heavily studied LGICs in history due to their 

critical function in mammalian physiology, diverse tissue expression, and the flexibility their 

subunit-diversity imparts on receptor function. Our understanding of the structure of Cys-loop 

receptors stems from the study of the nAChR rich electric organ of the Torpedo electric ray 
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(Brejc et al., 2001; Miyazawa et al., 2003; Unwin, 2005). The nAChRs have major functions in 

both the CNS and PNS. In the CNS, where they are mostly expressed presynaptically, they 

participate in the modulation of hippocampal inhibitory circuitry and dopamine transmission in 

the basal ganglia; while in the PNS, where they are expressed mostly postsynaptically, they are 

involved in receiving motor inputs at neuromuscular junctions and driving autonomic ganglionic 

transmission (Hurst et al., 2013). Similar to 5HT3Rs, these channels mediate fast depolarizing 

currents, carried by Na
+
, K

+
, and Ca

2+
 ions. The nAChRs have been implicated in Alzheimer’s 

disease, Parkinson’s disease, and nicotine addiction (Albuquerque et al., 2009).  

Like other Cys-loop receptors, the structure of the nAChRs is pentameric (Cooper et al., 

1991). In muscles, the nAChRs are mainly composed of 2 different subunit combinations: α1, 

β1, δ, and γ in embryonic muscle, and α1, β1, δ, and ε in postnatal muscle (Saito, 2002). Both 

combinations include two α1 subunits, where the ACh binding pocket is located (Albuquerque et 

al., 2009). In CNS and PNS neurons, there are 7 α subunits (α2-7, 9, 10), and 3 β subunits (β2-

β4) (Albuquerque et al., 2009).Thus far, the α3-5, α7, β2, and β4 subtypes have been identified in 

SCG (Gotti and Clementi, 2004; Rust et al., 1994; Corriveau and Berg, 1993). Most nAChRs in 

the SCG are formed by the heteromeric α3β4 combination (55%), while α3β4α5 and α3β4β2 

correspond to 24% and 21% respectively (David et al., 2010; Skok, 1999; Voitenko, 2001). All 

heteromeric combinations include two α subunits and the only functional homomeric receptors 

are formed by α7 subunits (Skok, 2002; Role, 1999).  

In the SCG, nAChRs are responsible for the generation of fast EPSCs (Derkach et al., 

1983). Currents carried by α3β4-containing receptors show strong inward rectification, caused by 

the pore blocking effect of intracellular spermine at positive potentials (Haghighi and Cooper, 

2000). In addition, nAChRs are known to be highly Ca
2+

 permeable compared to other cations 
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(Trouslard et al., 1993). High Ca
2+

 permeability allows the receptor to activate multiple Ca
2+

 

dependent kinases, including phosphoinositol 3 kinase (PI3K), PKC, protein kinase A, 

calmodulin-dependent protein kinase II (CAM kinase II), and extracellular signal-regulated 

kinases (ERK) (Albuquerque et al., 2009). In addition to these cellular effects of activating 

nAChRs in central and peripheral neurons, they can also interact with other LGICs, such as 

P2X2 receptors. The main focus of this thesis will be to study the functional interaction between 

the nAChRs and 5HT3Rs in sympathetic neurons, and the consequence on SNS function.  
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CHAPTER 2  

CHARACTERIZATION OF 5HT-INDUCED MODULATION OF  

nAChR-MEDIATED CURRENTS 

 

2.1 Introduction 

 

Interaction, or cross-talk, between receptors has been particularly studied in the Cys-loop 

receptor super-family. Both the 5HT3Rs and nAChRs show the ability to interact with other 

LGICs, especially the purinergic P2X receptors. In the guinea pig intestine, and when co-

expressed in Xenopus oocytes, cross-talk between 5HT3Rs and P2X2Rs was revealed by the co-

application of 5HT and ATP, which evoked a current smaller than the addition of individually 

evoked currents (Barajas-Lopez et al., 2002; Boue-Grabot et al., 2003). The mechanism behind 

this effect was determined to be independent of Ca
2+

, receptor phosphorylation, G-protein 

coupling, and GABAc receptors, suggesting a physical receptor-receptor interaction. 

Mutagenesis experiments show that these receptors were interacting at the P2X2 C-terminus and 

the 5HT3 M3-M4 linker (Boue-Grabot et al., 2003, 2004).  

 nAChRs have also been shown to cross-talk with P2XRs in a similar fashion to the 

interaction between P2X2Rs and 5HT3Rs. In both rat SCGs and guinea pig myenteric neurons, 

co-application of ACh and ATP produced smaller currents than were expected if the P2X and 

nAChR receptors worked independently (Zhou and Galligan, 1998; Nakazawa, 1994). 

Experiments in which P2X2Rs and α3β4-containing nAChRs were heterologously co-expressed 

in Xenopus oocytes revealed that P2X2Rs inhibited the opening of nAChRs, and that the effect 

was mediated by physical interaction (Khakh et al., 2000; Decker and Galligan, 2010). 
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 These findings emphasize the ability of the 5HT3Rs and nAChRs to interact with other 

LGICs, and point to the possibility that they interact with each other. nAChRs are essential for 

fast synaptic transmission in autonomic ganglia, and deletion of the α3 subunit, which is the 

highest expressed α-nicotinic subunit in SCGs, abolishes autonomic function in mice (Xu et al., 

1999). Despite not being directly involved in fast synaptic transmission, 5HT3Rs are also 

expressed in the SCG (Tecott et al., 1993; Morales and Wang, 2002), but their contribution to 

autonomic function is still unclear.  

In the current thesis I examined the interaction between 5HT3Rs and nAChRs in primary 

cultures of mice SCG neurons. My findings reveal that these receptors interact with each other, 

possibly through a cross-inhibitory mechanism involving physical interaction. 

 

2.2 Methods 

 

2.2.1 Primary SCG Cultures 

All experiments were approved by the University of Saskatchewan’s Animal Research 

Ethics Board, and adhered to the Canadian Council on Animal Care guidelines for humane 

animal use. Primary SCG from neonatal C57BL/6 mice between postnatal day 1 to 3 (P1-P3) 

were used for the preparation of the dissociated SCG neuron cultures. The methods used to 

dissociate the neurons have been described previously (McFarlane & Cooper, 1992; Campanucci 

et al., 2008). Briefly, mice were euthanized by cervical transection in a sterile environment.  

SCG were collected into a petri dish with serum-containing media (L15 supplemented with 

vitamins, cofactors, penicillin-streptomycin and 5mM glucose, and 10% horse serum). Forceps 

were used to remove the remaining efferent and afferent nerves from the ganglia. Once the 
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ganglia were cleaned, they were enzymatically dissociated (0.1% trypsin; Worthington, 

Freehold, NJ, USA) at 37°C for 30-45min, followed by mechanical dissociation with fire-

polished pipettes.  

The resulting cell suspension was transferred to growth media consisting of L-15 

supplemented with vitamins, cofactors, penicillin-streptomycin, 5% rat serum, 7S Nerve Growth 

Factor (10ng/ml) and 5mM of glucose. The neurons were plated on laminin-coated coverslips, 

which were attached to modified 35mm tissue culture dishes. Cells were maintained at 37°C in a 

95% air and 5% CO2 environment and fed every 3-4 days with fresh growth media. To eliminate 

non-neuronal cells, cultures were treated with cytosine arabinoside (10M; Sigma, St. Louis, 

MO, USA) from day 2 to day 4. Cells were allowed to recover and develop for two weeks, after 

which they were subjected to electrophysiological experiments. 

 

2.2.2 Electrophysiology and Agonist Application 

Agonist-evoked currents were recorded using the whole-cell patch-clamp technique 

(Hamill et al., 1981). All cells were voltage-clamped at -60mV. Membrane currents were 

recorded with a Multiclamp 700A patch-clamp amplifier (Axon Instruments, Molecular Devices 

LLC., Sunnyvale, CA) at room temperature and sampled at 5kHz. Recording electrodes were 

filled with intracellular fluid (ICF) with the following composition (in mM): 60 KAc, 70 KF, 5 

NaCl, 1 MgCl2, 1 CaCl2, 2 MgATP, 10 EGTA, and 10 HEPES, with pH adjusted to 7.2 using 

KOH. The extracellular fluid (ECF) contained the following composition (in mM): 140 NaCl, 

5.4 KCl, 0.33 NaH2PO4, 0.44 KH2PO4, 1 MgCl2, 1 CaCl2, 10 HEPES, and 5 glucose, with pH 

adjusted to 7.4 using NaOH. For calcium free experiments, ECF containing 0mM Ca
2+

/50µM 

EGTA and ICF containing 5mM BAPTA was perfused for 10-15min before recording (Barajas-



16 
 

Lopez, 2002). Tetrodotoxin 

(TTX, 0.5µM) was added to 

the ECF to avoid the 

generation of spontaneous 

action potentials.  

Cells were exposed to 

agonists using a three barrel 

pipette controlled by a SF-77B 

fast-step perfusion system 

(Warner Instruments LLC, 

Hamden, CT; Fig. 2-1). 

Agonist application protocols were controlled by pClamp 10 software (Molecular Devices LLC, 

Sunnyvale, CA). ECF perfusion through all three barrels was turned on during recording, with 

each barrel fed by a set of syringe reservoirs containing control and agonist solutions. Perfusion 

was driven by a pressurized system (VPP-6, Warner Instruments LLC, Hamden, CT). Chamber 

fluids were siphoned out at a rate matching that of perfusion. 

 

 

 

 

 

 

 

Figure 2-1. Fast-Step Perfusion System. A three barrel glass 

pipette was used to direct fluid flow over the selected cell. 

Drug application was achieved by stepping pipette over to a 

barrel which was perfusing the agonist (Adapted from Warner 

Instruments). 
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Antagonists Type Receptor Working 

Concentration 

Dose 

Determination 

Company Reference 

Asenapine Anti-psychotic 5HT2 20nM 50-1000nM 

affected *5HT- and 

*ACh-induced 

current amplitude 

and desensitization 

rate 

Sigma – 

A7861 

Meltzer et 

al., 2009 

Methiothepi

n 

Anti-psychotic 5HT1, 

5HT6, 

5HT7 

20nM 50-1000nM 

affected 5HT- and 

ACh-induced 

current amplitude 

and desensitization 

rate 

Sigma – 

M149 

Schoeffter 

et al., 1996 

Atropine Competitive M1-M5 1µM See reference Sigma – 

A0132 

Morishima 

et al., 2013 

MDL 72222 Competitive 5HT3 500nM <500nM does not 

block 5HT3R-

mediated currents 

and 1000nM 

inhibits ACh-

induced current 

Tocris - 

0640 

Fozard, 

1984 

Y25130 Competitive 5HT3 10nM <5nM does not 

block 5HT3R-

mediated currents 

Tocris - 

0380 

Sakamori, 

1992 

Table 2-1. Antagonists. 

*all antagonist concentrations were determined based on agonist concentrations used in thesis 
 

 

 

 

Agonist Type Receptor Working 

Concentration 

Dose Determination Company Reference 

5HT Non-specific, 

endogenous 

Multiple 

5HTRs 

100µM Compared with size of 

current and charge of 

other currents (see 

section 3.1.1) 

Sigma – 

H9523 

Mochizuki 

et al., 1999 

mCPBG Specific 5HT3R 50µM ‘’ Sigma – 

C144 

Kilpatrick et 

al., 1990 

ACh Non-specific, 

endogenous 

Multiple 

AChRs 

15-100µM ‘’ Sigma – 

A6625 

Campanucci 

et al., 2010 

Nicotine specific Nicotinic 

AChRs 

50µM ‘’ Sigma - 

36733 

Hu et al., 

2007 

Table 2-2. Agonists.  
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2.2.3 Statistics and Analysis 

 

 All currents evoked by co-application of agonists were compared to a predicted current. 

The predicted current (always reported in red) was calculated in three steps. First, the ACh and 

5HT currents stimulated before co-application of agonists were added together within Clampfit 

software, and then the peak amplitude or charge of the summated current was measured. Then, 

the same two currents stimulated after co-application were added together, and the peak 

amplitude or charge of the current was measured. Finally, the two peak amplitude values were 

averaged to obtain the predicted current. These calculations took into consideration the typical 

changes in amplitude of the 5HT and ACh-evoked currents.  

 All current peak amplitudes were normalized to the cell capacitance and expressed as 

current density (pA/pF). Ionic charge was calculated as the integrated area under the current 

trace (from 0.2s before agonist onset to 2s after removal) and expressed in nanocoulombs (nC). 

All values were reported as mean ± SEM.  

 We used the paired t-test to compare mean current densities and mean charge, with the 

level of significance set at P < 0.05.  

  

2.3 Results 

 

To test the hypothesis that the nAChRs and 5HT3Rs expressed in SCG neurons were 

involved in cross-talk mechanisms, we used a modified protocol previously described to examine 

cross-talk between 5HT and ATP-evoked currents (Boue-Grabot et al., 2003). To do this, we first 

evoked whole-cell currents by applying ACh and 5HT or the 5HT3R selective agonist methyl-
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chlorophenylbiguanide (mCPBG) separately (for 1s), followed next by the co-application (1s) of 

ACh and 5HT (or mCPBG). At the end of the stimulation protocol we re-probed with 5HT and 

ACh separately as a recovery test. Figure 2-2 outlines these experiments, showing currents from 

representative cells using 5HT (Fig. 2-2A) and mCPBG (Fig. 2-2C). Representative current 

examples show individually stimulated currents before (left), co-applied agonists (center), and 

individual currents (recovery) after co-application of agonists (right). Note the predicted current 

obtained by the addition of the individual evoked currents (for calculation see methods) is 

represented in red (Fig. 2-2A-F).   

As previously described (see section 1.2.1 and 1.2.2) the kinetic profiles of ACh and 

5HT-evoked currents in cultured SCGs were markedly different. While both inward currents 

were fast activating, the ACh-evoked currents were slightly slower than the 5HT-evoked currents 

(David et al., 2010; Solt et al., 2007). In addition, the desensitization phase of the individual 

currents was markedly different, with 5HT-evoked currents desensitizing at a faster rate and 

showing total desensitization by 1-2s (Fig. 2-2). 

It is important to note that to obtain an accurate predicted current we chose agonist 

concentrations that produced currents similar in size. But because currents evoked through each 

receptor type varied in amplitude over the course of an experiment, with ACh-evoked currents 

potentiating (~10%) and 5HT-evoked currents running-down (~25%), we were required to 

compensate for these changes by averaging the currents before and after the co-application of 

agonists to calculate the predicted current. 
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2.3.1 Peak amplitudes of nAChR- and 5HT3R-mediated currents were non-additive  

 

Figure 2-2A shows a representative example where ACh- and 5HT-evoked currents were 

non-additive. The comparison between the actual (black trace) and the predicted (red trace) 

current revealed that the fast desensitization characteristic of 5HT3Rs was absent in the actual 

current. In fact, the kinetics of the actual current resembled that of the nAChR mediated current, 

i.e. with slow desensitization. In addition, the amplitude of the actual current was approximately 

25% smaller than that of the predicted current, suggesting there were cross-inhibitory effects 

between the receptors (Fig. 2-2B, P < 0.001, n = 14 neurons).  

5HT can also activate multiple 5HT-metabotropic receptors (m5HTRs) in SCG neurons, 

which are known to express 5HT1, 5HT2, 5HT3, 5HT6, and 5HT7 receptors (Pierce et al., 

1996). To test whether m5HTRs contributed to the cross-inhibitory effects between ACh- and 

5HT-evoked currents, we used the 5HT3R specific agonist, mCPBG (50µM), instead of 5HT 

(Fig. 2-2C). Under these conditions the actual current was not only smaller than the predicted but 

the effect was more pronounced than when using 5HT, resulting in an actual current 

approximately 40% smaller than the predicted (Fig. 2-2D, P < 0.01, n = 6).  

SCG neurons also express metabotropic (muscarinic) ACh receptors, including M1, M2, 

and M3 subtypes, which have been reported to hyperpolarize or depolarize the neuronal resting 

potential through K
+
 and Ca

2+
 channels (Lundberg, 1996; Boron and Boulpaep, 2009). 

Therefore, to test whether metabotropic receptors contribute to the cross-inhibitory effect we 

next repeated our experiments in the presence of antagonists to block all possible muscarinic 

receptors and m5HTRs naturally expressed in SCG neurons. We used the muscarinic antagonist 

atropine (Atr, 1µM); the 5HT1R, 5HT6R and 5HT7R antagonist methiothepin (Met, 20nM); and 
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the 5HT2R antagonist asenapine (Ase, 20nM). This drug cocktail allowed us to obtain currents 

mediated solely by nAChRs and 5HT3Rs. Consistent with our data showing that 5HT3Rs were 

involved in the cross-inhibition (Fig. 2-2C and 2-2D), the actual currents generated in the 

presence of the antagonist cocktail remained smaller than predicted, suggesting that metabotropic 

receptors were not involved in cross-inhibition (Fig. 2-2E and 2-2F, P < 0.001, n = 15 neurons).  
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Figure 2-2. nAChR and 5HT3R-mediated currents were non-additive. nAChR- and 5HT3R-

mediated currents were evoked by single or combined application of agonists in cultured SCG 

(A, C & E) Representative example traces, show the characteristics of the individual and 

combined currents used in this experiments. (A & B) The co-application of ACh- and 5HT 

evoked non-additive currents (P < 0.001, n = 14 neurons). (C & D) The co-application of ACh 

and the 5HT3R specific agonist mCPBG  also induced non-additive currents (P < 0.01, n = 6 

neurons). (E & F) The co-application of 5HT and ACh in the presence of the metabotropic 

antagonists atropine (Atr, 1µM), methiothepin (Met, 20nM), and asenapine (Ase, 20nM) evoked 

non-additive currents as well (P < 0.001, n = 15 neurons). All current amplitudes (B, D, F) were 

normalized to cell capacitance (current density, pA/pF) and expressed as mean ± SEM. (* P < 

0.05; ** P < 0.01; *** P < 0.001).  
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2.3.2 Ionic charges conducted by nAChRs and 5HT3Rs were non-additive 

 

 As explained above, the kinetic profiles of the currents mediated by 5HT3Rs and 

nAChRs were markedly different, particularly due to the faster activation and desensitization of 

the 5HT-evoked currents. These differences were not considered when calculating the predicted 

current using peak amplitudes. Therefore, to account for these differences, we calculated and 

compared the ionic charge for each current.  

 To obtain the ionic charge we integrated the area under the curve in a given current trace. 

We calculated the ionic charge from 0.2s before agonist application to 3s after agonist removal, 

inclusive. This time period was chosen to encompass the entirety of the currents. 

As with peak amplitude analysis, the charges conducted by nAChRs and 5HT3Rs were 

non- additive. Figure 2-3A shows representative current traces indicating the difference between 

the actual and predicted currents, which was summarized by plotting the mean ionic charge (Fig. 

2-3B; P < 0.01, n = 8 neurons). In addition, it can be observed that with lower ACh 

concentrations (15µM instead of 50µM), the actual combined current had kinetic features that 

resembled those of the 5HT3R-mediated current (faster activation and desensitization). This 

suggests that although the actual currents obtained by co-application of agonists resembled those 

generated by nAChRs, both receptors contribute to the kinetics of the evoked current and the 

extent of the contribution is determined by the concentration of the agonists.  

The resemblance of the actual combined current to the 5HT3R-mediated current was 

more pronounced when applying mCPBG and ACh, than when using 5HT (Fig. 2-3C and D), 

showing faster activation and desensitization kinetics (Fig. 2-3C). Again the values of the actual 
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ionic charges were significantly less than predicted, with a stronger effect when using mCPBG 

instead of 5HT (Fig. 2-3D, P < 0.001, n = 9 neurons).  

These data indicate that even after accounting for the different current kinetics, the 

5HT3R- and nAChR-mediated currents were still non-additive.  
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Figure 2-3. nAChR and 5HT3R-mediated ionic charges were non-additive. These 

experiments summarize the currents evoked by single and combined applications of agonists 

expressed as ionic charge (area under the curve) calculated from t = 0.8 to 4s. Please note the 

concentration of ACh was lowered to 15µM to obtain comparable 5HT and ACh ionic charges. 

(A & B) The combined application of ACh (15µM) and 5HT (100µM) resulted in significantly 

lower actual charges than predicted (P < 0.01, n = 8). (C & D) The combined charges resulting 

from co-application of the 5HT3R specific agonist mCPBG (50µM) with ACh (15µM) also 

resulted in significantly lower charges than predicted (P < 0.001, n = 9). All data in this figure is 

presented as mean ± SEM, in nanocoulombs (nC). Means are tested with the paired t-test (* P < 

0.05; ** P < 0.01; *** P < 0.001)  
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2.3.3 Activation of 5HT3Rs during extended ACh application induced inhibition of ACh-

evoked currents 

 

 So far we demonstrated that the currents mediated by the two receptors were non-

additive. Next we concentrated on identifying the characteristics of this interaction. In this series 

of experiments, we aimed to examine whether 5HT3Rs inhibit the nAChRs. Unfortunately, the 

possibility that nAChRs inhibit 5HT3Rs was not possible due to the fast desensitization kinetics 

of the latter. To test for 5HT3R inhibition of nAChRs, we designed experiments where 5HT 

(100µM; 1s) was applied during a prolonged (100µM; 5s) ACh-evoked current (Fig. 2-4). 

Charges were compared by integrating the area under the curve. We have arbitrarily selected the 

time from t = 2.25s (immediately when 5HT application begins) to 3.75s (0.5s after 5HT 

removal). This time period allowed us to encompass the entire time course of the depression of 

ACh-evoked currents.  

The results from these experiments supported the previous findings, i. e. 5HT and ACh-

induced currents were non-additive, but also described two aspects of the interaction unseen in 

the 1s application protocol. The first aspect was that application of 5HT during the 

desensitization phase of ACh-evoked currents caused an inhibition. This was clearly seen in the 

combined agonist trace in figure 2-4A. When 5HT was applied during the ongoing ACh-evoked 

currents, not only did the currents not increase, but under this experimental protocol, they 

decreased. The effect was even stronger when using mCPBG to selectively activate 5HT3Rs 

(Fig. 2-4C). A more detailed example of the inhibitory strength of mCPBG on ACh-evoked 

currents is shown in figure 2-4F, where we applied mCPBG for the last 6s of a 7s long 

application of ACh, resulting in an inhibition of approximately 80% of the current. The ionic 
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charge data for 5HT and mCPBG applications are summarized in figures 2-4B and D, 

respectively. The combined actual currents were significantly smaller than the predicted currents 

for both 5HT (Fig. 2-4B, P < 0.05, n = 6) and mCPBG (Fig. 2-4D, P < 0.05, n = 4). To ensure 

that the inhibition induced by activation of 5HT3Rs was not an artifact due to possible 

disturbances in the ACh concentration during the fast-step protocol, we controlled for this by 

removing 5HT (or mCPBG) from the solution reservoir, leaving only ACh. Figure 2-4E shows a 

representative control trace where there was no disturbance of the ACh-evoked current.  

 The second, and puzzling, aspect of the interaction is also depicted in more detail in 

figure 2-4F, where we extended the application of mCPBG in the above protocol to 6s. As 

expected, mCPBG depressed the ACh-evoked current as shown in our previous experiment; 

however, this extended trace shows that the depression does not correspond with the kinetics of 

the mCPBG-evoked current. The mCPBG-evoked current reaches maximal amplitude at the 

beginning of agonist application and decays by desensitization over time (see example trace in 

Fig. 2-3C). Thus, this should result in a stronger inhibition at the beginning of the mCPBG 

application. This was clearly not the case in figure 2-4F, where an inverse effect is shown. Based 

on these puzzling findings, the next set of experiments aimed to further examine the relevance 

5HT and 5HT3Rs to the cross-inhibitory effect between the two receptors.   
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Figure 2-4. Short application of 5HT or mCPBG during a prolonged ACh application 

induced inhibition of ACh-evoked currents. 1s of 5HT (100µM) or mCPBG (50µM) was 

applied during a 5s application of ACh (100µM), 1s after ACh onset. Red traces and bars 

indicate predicted currents. Ionic charges were measured from immediately before 5HT/mCPBG 

application, up to 0.5s after removal (1.5s range). (A & B) Show the depression in prolonged 

(5s) ACh-evoked current caused by 1s application of 5HT, which resulted in significantly less 

charge than predicted (P < 0.05, n = 6 neurons). (C & D) Application of mCPBG also depressed 

ACh-current, indicating that the effect was specific to the 5HT3R. The actual charges were 

significantly less than predicted (P < 0.05, n = 4). (E) Representative example showing the 

control for the perfusion fast-step system, where 5HT was removed from the reservoir containing 

5HT and ACh, leaving only ACh. Note, the lack of depression of the ACh-evoked current in the 

absence of 5HT, indicating the effect was entirely due to 5HT or mCPBG application. (F) 

Prolonged application of mCPBG not only depressed ACh-evoked current, but also this effect 

was inversely related to the 5HT3R-mediated current kinetics.  All data in figure is presented as 

mean ± SEM in nanocoulombs (nC) (* P < 0.05; ** P < 0.01; *** P < 0.001).  
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2.3.4 Does the inhibition of ACh-evoked current require the activation of 5HT3Rs? 

 

Our results summarized in section 2.3.3 suggested that once nAChRs have been 

activated, activation of 5HT3Rs causes the inhibition of the ACh-evoked current. However, the 

inconsistency between the kinetic properties of 5HT3R-mediated currents and the characteristics 

of the inhibition made us wonder whether this effect was indeed mediated by 5HT3Rs or an 

alternative mechanism. To examine if the 5HT- and mCPBG-induced inhibition of ACh-evoked 

currents were dependent on the activation of 5HT3Rs, we next repeated our experiments in the 

presence of 5HT3R selective antagonists. We used two different 5HT3R specific competitive 

antagonists: MDL 72222 (bemisetron, 500nM) and Y25130 (10nM) (Fozard, 1984; Sakamori et 

al., 1992). The antagonists were applied to all perfusion solutions. First we recorded a set of 

control current traces for ACh and 5HT (not shown), followed by recording in the presence of 

the antagonists (see Fig. 2-5). Before recording in the presence of antagonist, we confirmed 

5HT-evoked currents were completely inhibited by the antagonists (not shown). Figure 2-5 

displays representative traces for experiments showing the effect of 1s application of 5HT on 5s 

application of ACh (or nicotine)-evoked currents.  

If 5HT3R activation was indeed mediating the inhibition of ACh-evoked currents we 

would expect that the use of the antagonists would prevent this effect. However, 5HT induced a 

depression in the ACh-evoked currents despite being antagonized by MDL 72222 (Fig. 2-5A and 

B) and Y25130 (Fig. 2-5C and D). Next, to confirm that this inhibitory effect of 5HT was acting 

on nAChRs, we repeated the experiment using the nAChR specific agonist, nicotine (50μM, Fig. 

2-5B and D). These results showed that in the presence of 5HT3R specific antagonists, 5HT 

induced a depression in ACh- and nicotinic-evoked currents.  
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In summary, our results using pharmacological blockers for 5HT3Rs revealed that 5HT 

still caused a marked inhibition of nAChRs. These unpredicted results were only observed when 

5HT was applied during a long ACh-evoked current and contrasts with our previous experiments 

(Fig. 2-2C), in which 5HT3Rs were required to cause the cross-talk effects. Therefore, further 

experiments are required to increase our N values and to evaluate the relevance of this findings, 

as well as to repeat these experiments in the presence of m5HTR antagonists and mCPBG, which 

were conditions not tested thus far that would help to clarify these differences. In the next section 

we will consider an alternative mechanism for this effect, namely if 5HT has a direct effect on 

nAChRs.  
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Figure 2-5. 5HT inhibited ACh and nicotine-evoked currents in the presence of 5HT3R 

antagonists. Two competitive 5HT3R specific antagonists, MDL 72222 (500nM) and Y25130 

(10nM) were applied immediately following control recordings (using the 5s ACh protocol 

discussed previously). Each antagonist was perfused for 2min prior to and during the recording 

of the second set of traces. Confirmation of complete 5HT current blockage was done for every 

cell (not shown). (A & B) In the presence of MDL 72222, which completely inhibited 5HT-

evoked currents, 5HT was still able to inhibit ACh- and nicotine-evoked currents, respectively.  

(C & D) Similarly results were obtained in the presence of Y25130, which completely blocked 

5HT-evoked currents (not shown), yet 5HT still inhibited ACh- and nicotine-evoked currents, 

respectively.   
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2.3.5 Does 5HT act directly on nAChRs? 

 

 Data presented in the previous section suggested that 5HT could directly interact with 

nAChRs without activation of 5HT3Rs. In fact, this possibility has been previously considered in 

rat trigeminal neurons, where 5HT directly inhibited nAChRs in a non-competitive manner (Hu 

et al., 2007). Therefore, to explore the possibility that 5HT directly inhibited nAChRs in SCG 

neurons, we performed a dose response curve for ACh-evoked currents with and without 5HT 

pre-incubation, and in the continuous presence of blockers for muscarinic receptors, m5HTRs 

and 5HT3Rs.  

 Using the experimental protocol previously described by Hu et al. (2007), we first 

exposed the cell to ACh and 5HT individually without any antagonists, demonstrating the 

expression of these receptors (see Fig. 2-6A for diagram of experiment). Next, we perfused the 

cell with Atr (1µM), Met (20nM), Ase (20nM), and MDL72222 (500nM), blocking all 

muscarinic receptors, m5HTRs and 5HT3Rs. After 2min, ACh and 5HT-evoked currents were 

re-probed to check for both normal ACh-evoked currents and complete blockage of 5HT3R. 

After this confirmation, we bathed the cell in 5HT (100µM) for 5min. Next, we stimulated the 

cell with ACh again to check for any current changes. Following this, we removed 5HT and 

allowed nAChRs to recover, after which we applied ACh one last time to test for recovery. The 

3
rd

 ACh trace was compared to the average of the 2
nd

 and 4
th

 ACh-evoked traces in each 

experiment (see Fig. 2-6A). The entire process was repeated for 10, 100, and 1000µM 

concentrations of ACh (Fig. 2-6B), and the results were plotted onto a dose response chart. 

Remarkably, our data indicated there was no significant changes between the dose 

responses obtained with or without 5HT (Fig. 2-6C; P > 0.05; 10µM, n = 5; 100µM, n = 6; 
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1000µM, n = 4). Although these were preliminary results and they needed to be confirmed by 

increasing not only the N values but also the concentrations tested to properly fit the data to a 

sigmoidal dose response curve, it is important to note that the concentration range tested here 

corresponds to the one showing marked differences in trigeminal neurons (Hu et al., 2007). 

Therefore, our findings suggest that different mechanisms to those described in trigeminal 

neurons underlie the cross-inhibition of ACh-evoked currents in SCG neurons. 
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Figure 2-6. 5HT did not act directly on nAChRs. (A) The first ACh- and 5HT-induced 

currents demonstrated normal currents in SCG neuron. Following this, Atr (1µM), Met (20nM), 

Ase (20nM), and MDL 72222 (500nM) were perfused onto the neuron to eliminate muscarinic 

AChRs, m5HTRs and 5HT3Rs. Next, 2min after this perfusion, the ACh and 5HT-evoked 

currents were tested again demonstrating that 5HT3R-mediated currents were eliminated and 

nAChR-mediated currents were intact. This was then followed by a 5 min application of 5HT 

(100µM) and next by ACh. This 3
rd

 trace of ACh was expected to be inhibited if 5HT directly 

interacts with nAChRs. The final ACh current was obtained 2min after 5HT removal as 

recovery. For analysis, the average of the 2
nd

 and 4
th

 traces (red in B and C) was compared to the 

3
rd

 trace (black in B and C). (B) Example traces from 10, 100, and 1000µM ACh. (C) Dose 

response comparison between currents recorded with and without 5HT show no difference at all 

three concentrations of ACh used (P > 0.05 at all points; 10µM, n = 5; 100µM, n = 6; 1000µM, n 

= 4). Current densities are displayed as mean ± SEM.  
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2.3.6 Cross-talk between 5HT3Rs and nAChRs was Ca
2+

-independent
 

 

There is considerable evidence supporting the involvement of Ca
2+

 in the regulation of 

both 5HT3Rs and nAChRs through direct and indirect mechanisms. The M3-M4 intracellular 

loop of both receptors is known to be targeted by the Ca
2+

-dependent PKC. The 5HT3A receptor 

subunit had been shown to be potentiated by PKC (Coultrap and Manchu, 2002), while nAChRs 

were also regulated by PKC in addition to numerous other Ca
2+

-dependent kinases (Albuquerque 

et al., 2009). Increases in extracellular Ca
2+

 also directly regulated both of these receptors, 

inhibiting 5HT3R currents (van Hooft and Wadman, 2002; Niemeyer and Lummis, 2001) and 

increasing the open probability of nAChRs (Amador and Dani, 1995). Moreover, removal of 

extracellular Ca
2+

 eliminated ganglionic long term potentiation (gLTP) in sympathetic ganglia 

(Koyano et al., 1984; Briggs et al., 1985). Finally, recent evidence suggests that cross-talk 

between the 5HT3Rs and nAChRs in CNS presynaptic terminals is mediated through Ca
2+

 or 

Ca
2+

-dependent second messengers (Dougherty and Nichols, 2009).  

Since our findings suggest that 5HT may act through other mechanisms not involving 

direct inhibition of nAChRs, we explored the possibility that Ca
2+

may have contributed to the 

inhibitory effect. To examine the dependence of cross-talk on Ca
2+

, experiments were performed 

in the absence of this cation. To achieve this, neurons were bathed in extracellular solution 

containing 0mM Ca
2+

/50µM EGTA and intracellular (pipette) solutions containing the Ca
2+

 

chelator BAPTA (5mM; Barajas-Lopez, 2002). After achieving the whole-cell configuration, a 

10min period was allowed for BAPTA to diffuse into the cell cytoplasm before recording 

currents. The 1s ACh protocol described in figure 2-2 was used to record ACh- and 5HT-induced 

currents.  
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 Our results showed that Ca
2+

 was not required to induce the cross-talk of ACh-evoked 

current by 5HT (Fig. 2-7). The combined actual current was significantly smaller in amplitude 

than predicted (Fig. 2-7B; P < 0.01, n = 5). Therefore, much like the cross-talk between P2X2Rs 

and 5HT3Rs (Barajas-Lopez et al., 2002; Boue-Grabot et al., 2003), the interaction between 

nAChRs and 5HT3Rs does not seem to depend on Ca
2+

.  
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Figure 2-7. Cross-talk between 5HT3Rs and nAChRs did not require the presence of Ca
2+

. 

The same 1s ACh protocol as described in figure 2-2 was used in this experiment. However, in 

this experiment, Ca
2+

 was removed from the intracellular and extracellular solutions. Cells were 

bathed in extracellular solution containing 0mM Ca
2+

/50uM EGTA and patched with 

intracellular solution containing the Ca
2+

 chelator BAPTA (5mM) (Barajas-Lopez, 2002). After 

achieving whole-cell, 10min was allowed for BAPTA to diffuse into the cytoplasm before 

recording currents. (A) A representative cell recorded without Ca
2+

. The combined actual current 

remained smaller in amplitude than predicted. (B) Current densities of actual and predicted 

currents were analyzed and found to be significantly different (P < 0.01, n = 5). (* P < 0.05; ** P 

< 0.01; *** P < 0.001).  
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2.3.7 Is cross-talk between the 5HT3Rs and nAChRs dependent on physical interaction? 

 

 The data presented so far indicate that the interaction between 5HT3Rs and nAChRs does 

not depend on Ca
2+

, the direct effect of 5HT on nAChRs, or metabotropic receptors. Since it was 

shown that P2X2/5HT3 receptors, and nACh/P2X receptors interact in a physical manner, we 

next examined the possibility that 5HT3Rs inhibit nAChRs through physical interactions 

(particularly with their intracellular domains).  

 Previous reports have shown that the 5HT3Rs and P2X2Rs interact physically at the 

cytosolic M3-M4 linker of 5HT3Rs (Boue-Grabot et al., 2003, 2004). In order to test this, an 

antibody targeted to the M3-M4 linker of the 5HT3A subunit (i.e. amino acids 342-355; 

Alomone Labs.) was used in an attempt to prevent the interaction with nAChRs at that site. The 

antibody was applied through the patch pipette and allowed to diffuse into the cytosol before 

recording. Figure 2-8 includes representative traces of these experiments. The antibody dose 

used here was 1:200, which was the recommended dose for immunocytochemistry and Western 

blotting (Alomone Labs.; Fig. 2-8A), and a more concentrated 1:20 dilution (Fig. 2-8B).  

These data showed that while the combined actual currents were still smaller than 

predicted at 1:200 dilutions (Fig. 2-8A), this effect was less pronounced at 1:20 dilutions (Fig. 2-

8B). More importantly, allowing the antibody more time to diffuse intracellularly (10min) 

decreased this difference making the actual currents similar to the predicted current (with the 

exception of kinetics). Unfortunately, since these were preliminary experiments, there was not 

enough data (n = 3) to statistically analyze actual versus predicted currents. However, this data 

supports for the first time that a physical interaction between 5HT3Rs and nAChRs may be 

responsible for the cross-talk mechanisms described in this thesis.  
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Figure 2-8. The polyclonal antibody against the intracellular M3-M4 linker in the α-5HT3A 

subunit interferes with nAChR and 5HT3R cross-talk. The antibody was diluted in the 

intracellular solution and applied through the patch pipette and allowed 5-10min to diffuse to the 

cytosol before recording. Two antibody dilutions were used: (A) 1:200 and (B) 1:20. A 5min 

diffusion time did not totally prevent the cross-talk between the receptors at either dose, but the 

10min diffusion time minimized the difference between the actual and predicted currents. Note, 

the 1:20 dilution had a stronger effect preventing the interaction between the receptors even at 

5min diffusion time.  There was not enough data collected to compare the means of the 

combined actual and predicted currents.  
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CHAPTER 3 

GENERAL DISCUSSION 

 

 In this thesis we revealed a novel cross-inhibitory mechanism between nAChRs and 

5HT3Rs. Using a specific agonist and multiple antagonists, we showed that the effect was 

specific to nAChRs and 5HT3Rs, and that no metabotropic receptors were required for the cross-

inhibition. In addition, we found that the effect was Ca
2+ 

independent and did not involve the 

previously described direct effect of 5HT on nAChRs (Hu et al., 2007). Rather, here we describe 

a cross-talk mechanism that is possibly mediated by receptor-receptor interaction.  

 

3.1 Experiments and Analysis 

 

3.1.1 Predicting the current 

  

 The key measure of our effect laid in the difference between the combined actual 5HT 

and ACh evoked currents and the one predicted. Thus, the calculation of the predicted current 

was a crucial factor in determining cross-talk between 5HT3Rs and nAChRs. 

Two factors influenced how we calculated the predicted current. First, both 5HT and 

ACh-evoked currents changed in amplitude over time. ACh-evoked currents slightly potentiated 

at the beginning of the experiment, while 5HT-evoked currents ran down continuously over time. 

To account for these changes, the predicted current was calculated by averaging the currents 

occurring before and after the combined application of the agonists. Second, since both of the 

currents had different kinetics, with 5HT having a fast activation and desensitization and ACh 
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having a slower desensitization phase, the peak amplitudes of each current did not occur at the 

same point in time. Thus, the summation of the peak amplitude values would result in an 

inaccurate predicted peak. To address this issue, we used Clampfit software to arithmetically 

combine the obtained single currents to generate a predicted current, resulting in a single larger 

current with different peak amplitude and kinetics. Thus, our method provides a more accurate 

predicted current; however, it is worth noting that this calculation assumes that the ACh and 

5HT-evoked currents changed linearly with time. 

To calculate the predicted current we also considered the contribution of 5HT3Rs and 

nAChRs to the predicted current. For example, if the ACh-evoked current was five times larger 

than the 5HT-evoked current, as was observed in many cells, the predicted current would not be 

statistically different than the individual ACh-evoked current. Therefore, in order to make the 

calculation of the predicted current more reliable, we emphasized the difference between the 

actual and predicted currents by adjusting the concentrations of ACh and 5HT/mCPBG to 

produce currents similar in amplitude or charge.  

 

3.1.2 The interaction between 5HT- and ACh-evoked currents 

 

It initially seemed by examining figure 2-2A and B that there was cross-talk occurring 

between ACh- and 5HT-evoked currents. We originally used the peak amplitudes of the evoked 

currents to calculate and compare the actual vs. predicted currents generated by co-application of 

agonist. However, the accuracy of this method was questionable mainly due to the marked 

difference in current kinetics for these two receptors. Due to the fast activation and 

desensitization of 5HT3R-mediated currents vs. the slower activation and desensitization of 
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nAChR-mediated currents, the use of peak amplitude, which measures one single time point, will 

not take into consideration current changes occurring before and after the time of the peak. 

Therefore, to compare the actual vs. predicted currents in a way that would more closely 

represents the current experienced by the cell, we measured the ionic charge conducted through 

each receptor by integrating the area under the current traces (Fig. 2-3). Our results measuring 

ionic charge confirmed our original findings using peak amplitude.  

In addition, these experiments also revealed the effect of lowering the concentration of 

one of the agonists on the desensitization of the actual combined current. As explained before, to 

calculate the ionic charge we reduced the concentration of ACh to 15µM (instead of 50µM), 

which resulted in an increase in the desensitization rate of the actual combined current (Fig. 2-

3A). These experiments suggest that 5HT3Rs are still functional in the actual combined currents 

but at 50µM ACh, the nAChRs are mostly responsible for the slower current kinetics.   

 

3.1.3 Cross-talk was Ca
2+

-independent 

 

To investigate whether Ca
2+ 

entry through both 5HT3Rs and nAChRs could participate in 

cross-talk mechanisms we designed experiments in Ca
2+

 free conditions, as previously described 

for synaptosomes (Dougherty and Nichols, 2009). In these experiments, 5HT3Rs and nAChRs 

inhibited each other’s function through Ca
2+

ions. However, our results showed that Ca
2+

 and 

Ca
2+

-dependent second messenger pathways were not involved in the mechanisms behind cross-

talk in the SCG (see Fig. 2-7). It is important to note that the type of receptors and their 

anatomical location are markedly different between the synaptosomes and the SCG, which may 

account for the difference in the cross-talk mechanisms. In the CNS, nAChRs mostly contain 4 
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subunits and they are located pre-synaptically where they are mainly involved in the regulation 

of neurotransmitter release. On the other hand, nAChRs in the PNS (particularly in the SCG) 

mostly contain 3 subunits and they are located post-synaptically where they drive autonomic 

synaptic transmission (reviewed by Hurst et al., 2013). Thus, these differences between the CNS 

and PNS may be essential for the type of regulation the nAChRs are subjected to. While Ca
2+

 is a 

key player during neurotransmitter release, and directly regulates the interaction between 

5HT3Rs and nAChRs at synaptosomes, other mechanisms could be more relevant for the 

interaction at sympathetic ganglia, including a physical interaction. 

   

3.1.4 The specificity of cross-talk to 5HT3Rs and nAChRs 

 

Since SCG neurons express multiple receptors that respond to both ACh and 5HT, to 

study the nature of the cross-talk mechanisms between these currents we used specific agonist 

and antagonists to isolate the currents mediated by solely nAChRs and 5HT3Rs.  

We used multiple methods to isolate currents through 5HT3Rs and nAChRs because 

pharmacological specificity among members of the Cys-loop family has been shown to be 

insufficient (Papke et al., 2004), something we have also observed in our own experiments (1µM 

MDL 72222 inhibits nAChRs, not shown). First we used the nAChR specific agonist nicotine 

and the 5HT3R specific agonist mCPBG (see Fig. 2-2C, 2-3C, 2-4C). Under these conditions we 

demonstrated that the actual current generated by the co-application of agonists was still 

significantly smaller than the calculated predicted current. These results suggested that the cross-

talk required nAChRs and 5HT3Rs.  



44 
 

Second, to isolate currents mediated through 5HT3Rs and nAChRs, we created a cocktail 

of antagonists that blocked metabotropic receptors sensitive to ACh and 5HT (Fig. 2-2E). These 

antagonists permitted us to use the endogenous agonists. These conditions also resulted in 

combined currents that were smaller than predicted, thus also suggesting that cross-talk required 

nAChRs and 5HT3Rs. 

Here, the use of agonists specific to 5HT3Rs and nAChRs, and antagonists that isolate 

currents by 5HT3Rs and nAChRs were able to show that cross-talk was specific to these two 

receptors. In fact, our findings indicated that cross-talk was even stronger when mCPBG was 

used (Fig. 2-2D, Fig. 2-3D, Fig. 2-4D). Thus, these data strongly suggest that the cross-talk 

mechanisms observed specifically involved 5HT3Rs and nAChRs.  

 

3.1.5 Does 5HT have a direct effect on nAChRs?  

 

To study whether 5HT3Rs were cross-talking with nAChRs, or vice versa, we designed 

experiments in which 5HT or mCPBG was applied in the middle of a prolonged ACh pulse (see 

Fig. 2-4). Unfortunately we could not do the opposite experiment, in which ACh was applied 

during a long 5HT pulse, because of the strong desensitization of the 5HT3R-mediated current. 

Our experiments confirmed that activation of 5HT3Rs during prolonged ACh-evoked currents 

induced not only a non-additive current, but also an inhibition of the ACh-evoked current. This 

effect was stronger in the case of mCPBG application (Fig. 2-4B). An interesting aspect of this 

inhibition is that it is inversely proportional to the amount of current that should be passing 

through the 5HT3R due to the activation by mCPBG. This aspect made us wonder if this effect 

was mediated by an alternative mechanism contributing to the interaction of the receptors but 
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independent of 5HT3Rs. To confirm this, we repeated the experiments in the presence of the 

5HT3R specific antagonists, MDL 72222 and Y25130 (Fig. 2-5). Surprisingly, under these 

conditions, 5HT still caused an inhibition of the ACh-evoked currents. These puzzling results 

raised the question whether in these conditions, where 5HT is applied during a prolonged ACh 

application, 5HT maybe acting directly on nAChRs without involving the function of 5HT3Rs.  

To address this possibility that 5HT directly acts on nAChRs, we repeated the 

experiments performed by Hu et al. (2007), who previously demonstrated that 5HT had a direct 

effect on nicotinic-evoked currents in sensory neurons. Our results were in stark contrast to what 

was published before (Fig. 2-6C). In SCG neurons, 5HT did not produce any changes in the dose 

response relationship of the ACh-evoked current suggesting that it did not have any direct effect 

on nAChRs, either competitive or non-competitive. A few reasons may explain this difference. 

First, our data comes from primary cultures from autonomic neurons, which may respond 

differently to 5HT than sensory neurons. Second, we used antagonists for m5HTRs and 

muscarinic ACh receptors in the generation of our ACh dose-response curve in the presence and 

absence of 5HT. It is worrying that these antagonists were omitted by Hu et al., particularly since 

some of the effects reported could be explained by metabotropic receptor function. Thus, we 

concluded from our own data that the 5HT3R did not directly interact with the nAChR. 

Note that the experiments presented in figure 2-6 do not support our findings with the 

prolonged ACh application experiments described above (Fig. 2-4). Here, 5HT may have been 

acting differently, perhaps directly, on nAChRs during the desensitization phase. This possibility 

needs to be addressed in future experiments where the potential direct effect of 5HT is tested 

using the prolonged ACh application protocol.  
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3.1.6 The physical interaction of 5HT3Rs and nAChRs 

 

So far our findings revealed that the cross-talk between 5HT and ACh-evoked currents do 

not require metabotropic receptors, Ca
2+

 ions or Ca
2+

-mediated 2
nd

 messenger pathways, or, at 

least in part, the direct effect of 5HT on nAChRs. Therefore, we next examined the possibility of 

physical interaction between the two receptors. This was a mechanism that had been previously 

described between P2X/nAChRs and P2X2/5HT3Rs (see section 2.1).   

To address this possibility of physical interaction, we performed experiments with an 

antibody against the M3-M4 linker of the 5HT3A subunit (Fig. 2-8). To increase the quantity of 

antibodies bound to the 5HT3A M3-M4 linker, we used a polyclonal antibody. Our preliminary 

results suggested that cross-talk inhibition between the 5HT3R and nAChRs depended on the 

availability of the M3-M4 linker of 5HT3A. These data suggested for the first time a modulation 

by 5HT3Rs on nAChRs in autonomic neurons mediated receptor-receptor interaction. However, 

further experiments need to be performed, increasing time and concentration of antibody 

incubation to ensure complete interference of the M3-M4 linker. In addition, these experiments 

should be done at 37°C instead of room temperature to ensure optimal antibody binding. 

 

3.2 Summary 

 

 The data summarized in this thesis showed for the first time a cross-talk inhibition of 

nAChRs driven by 5HT3Rs. This effect was not dependent on Ca
2+

, metabotropic receptors, or, 

at least in part, the direct inhibition of nAChRs by 5HT. In addition, this effect was specific to 

5HT3Rs and nAChRs. This novel inhibitory effect is relevant to understand autonomic 
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physiology, particularly since autonomic synaptic transmission is strictly driven by nAChRs, and 

therefore modulation of their function maybe important for both physiological and pathological 

conditions.   

 

3.3 Significance of Findings  

 

We have discussed earlier that understanding the neurotransmitters and receptors of the 

SNS was critical to knowing how it behaves in normal and pathological states. Yet, in the 

literature there was extremely little information on the role of 5HT and the 5HT3R in the SNS 

(1.1.3). This may be because the role of 5HT in the PNS was being overshadowed by its role in 

the CNS (Villalon and Centurion, 2007). Our work aimed to significantly advance knowledge on 

the role of 5HT and the 5HT3R in the modulation of nAChR, and therefore SNS function.  

The purpose of ACh release in the SCG is to induce fast autonomic synaptic transmission 

and generation of action potentials that could propagate to the target tissues. Thus, the 

modulatory effect of 5HT3Rs on the sympathetic tone, by cross-talk with nAChRs, suggests a 

potential role of 5HT on SNS physiology, for example reducing heart rate, blood pressure, and 

bronchodilation.  

In fact, evidence for 5HT3R regulation of the SNS had been found in vivo. In a model of 

orthostatic intolerance in rats, in which the heart responds pathologically to inversion by 

lowering heart rate instead of raising it, the administration of two 5HT3R specific antagonists, 

MDL 72222 and ondansetron recovered the rats’ abilities to increase heart rate (Martel et al., 

1998). Why or how blocking 5HT3Rs recovered the heart rate in this rat model was unknown, 
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and perhaps inhibition of nAChRs by 5HT3R by cross-talk in sympathetic ganglia may play a 

role in the decreased heart rate seen in orthostatic intolerance.  

In humans, 5HT3R antagonists are used frequently as an antiemetic during chemotherapy 

(see section 1.2.1). This pattern of use has produced documented cases of bradycardia associated 

with granisetron use on children (Buyukavci et al., 2005). Although, it is unclear if cross-talk 

between nAChRs and 5HT3Rs is involved, these findings further support a role for 5HT3Rs in 

the SNS. In addition, hypertension has also been linked to 5HT3R function through gLTP 

(Johnston, 1992; Brown and McAfee, 1982; Koyano et al., 1985), which can be prevented by the 

blockage of 5HT3Rs with specific antagonists (Alkadhi et al., 2001, 2005; Gerges et al., 2002). 

These reports demonstrate the complexity of 5HT3R function within the body, and the need for 

whole animal experiments to understand how 5HT3Rs modulate physiological function.  

The 5HT3R and its effects on the SNS may also be critical for pathological conditions 

that target the autonomic nervous system, such as diabetic autonomic neuropathy (see section 

1.1.4). Recently it was reported that the nAChR have a cysteine residue sensitive to oxidation 

(Campanucci et al., 2008; 2010), which is particularly targeted in diabetes by the glucose-

induced accumulation of ROS. Oxidation of nAChRs in diabetic mice leads to depression of 

autonomic function and serious dysautonomia. 5HT3Rs also contained an analogous region with 

a conserved cysteine residue, located in the intracellular M1-M2 in the same position as the 

nAChRs. Our own unpublished observations reveal that this receptor is also sensitive to ROS, 

which causes a fast and irreversible run-down that can be prevented by previous exposure to 

antioxidants. The latter might be significant for understanding the function of the SNS under 

pathological conditions. Thus, further experiments on this effect, and how it affects cross-talk 

with  
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3.4 Future Directions 

 

 The key question left unanswered within this work was the mechanism behind the cross-

talk of these receptors. We have thus far only been able to eliminate a few possibilities including 

Ca
2+

, direct ligand-receptor interaction, and metabotropic receptors. At this stage, the most likely 

mechanism is receptor-receptor interaction between nAChRs and 5HT3Rs. We have begun 

preliminary experiments probing the 5HT3A M3-M4 linker, but there are numerous other 

directions we can progress in. The most anticipated experiments we plan to do is the mutation of 

the M3-M4 linker of 5HT3A and expression of the nAChR and 5HT3R within Xenopus laevis 

oocytes. These experiments would effectively isolate the two LGICs from the many confounding 

factors found in native neurons, and would also allow identification of the molecular 

determinants responsible for cross-talk.  

Another issue we have considered, but have been unable to test was the possibility that 

the subunits of 5HT3R and nAChR were combining together to form a chimeric channel. This 

has been shown as a possibility between 5HT3A and α4 receptor subunits; at least when injected 

into X. laevis oocytes (van Hooft et al., 1998). The resulting chimeric channel was biphasic, 

responsive to 5HT, but not ACh. As described in section 1.2.2, the primary nAChR type 

expressed in SCG neurons was α3β4. Note that the same work by van Hooft et al. (1998) also 

tested the α3 subunit, which did not co-assemble with the 5HT3A subunit to form a functional 

channel. Therefore, a 5HT3A/α4 chimeric channel may form only a small portion of the total 

functional channels in SCG neurons. Nevertheless, given this possibility, it may be worth 

examining, especially when it becomes possible in our laboratory to use a system capable of 

expressing the neuronal nAChR.  
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3.5 Final Words 

 

 Here we show a cross-talk inhibition between the nAChRs and 5HT3Rs in mice SCG 

neurons. 5HT and ACh-induced currents were non-additive when the agonists were applied 

together. This interaction was also specific to the nAChRs and 5HT3Rs, as shown by the use of 

specific agonists, mCPBG (5HT3R) and nicotine (nAChR), and antagonists, MDL 72222 and 

Y25130 (5HT3R), methiothepin and asenapine (metabotropic 5HT receptors), and atropine 

(muscarinic receptors). It was also apparent that cross-talk inhibition did not depend on 5HT 

directly acting on the nAChR, although it could not be entirely discarded as an explanation in 

some experimental conditions. In addition to non-additive currents, it was also shown that 5HT 

induced depression in ACh-evoked current, which is physiological relevant for understanding the 

function of the sympathetic synapse. These results have many potential implications on SNS 

function in health and disease. Unfortunately, we have yet to discover the mechanism behind the 

cross talk. Further work will be necessary to complete the examination of the 5HT3R and 

nAChR interaction.  
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