
Beyond-the-Quark-Model Heavy Hadrons

from QCD Sum Rules

A Thesis Submitted to the

College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the degree of Doctor of Philosophy

in the Department of Physics & Engineering Physics

University of Saskatchewan

Saskatoon

By

Alex Palameta

c© Copyright Alex Palameta, July 2020. All rights reserved.



Permission to Use

In presenting this thesis in partial fulfilment of the requirements for a Postgraduate degree

from the University of Saskatchewan, I agree that the Libraries of this University may make

it freely available for inspection. I further agree that permission for copying of this thesis in

any manner, in whole or in part, for scholarly purposes may be granted by the professor or

professors who supervised my thesis work or, in their absence, by the Head of the Department

or the Dean of the College in which my thesis work was done. It is understood that any

copying or publication or use of this thesis or parts thereof for financial gain shall not be

allowed without my written permission. It is also understood that due recognition shall be

given to me and to the University of Saskatchewan in any scholarly use which may be made

of any material in my thesis.

Requests for permission to copy or to make other use of material in this thesis in whole

or part should be addressed to:

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

Department of Physics & Engineering Physics

University of Saskatchewan

116 Science Place, Rm 163

Saskatoon, SK S7N 5E2

Canada

i



Abstract

In this thesis, we examine three papers that my coauthors and I have published. The over-

arching theme of this work will be the use of QCD Laplace sum rules applied to quarkonium

or quarkonium-like systems containing heavy quarks in an attempt to explore ideas relating

to beyond-the-quark-model hadrons, including hybrids (mesons with gluonic content) and

multi-quark meson-like states.

In the first two papers [1, 2], we study mixing between conventional mesons and hybrids

in vector and axial vector charmonium-like and bottomonium-like systems. We compute

meson-hybrid cross-correlators within the operator product expansion, including condensate

contributions up to dimension-six. We then use the measured masses of heavy quarkonium-

like states as inputs into a QCD Laplace sum-rules calculation to probe known resonances

for nonzero coupling to both the conventional meson and hybrid currents. Nonzero coupling

to both of these currents would signal meson-hybrid mixing. We find nonzero mixing in a

number of resonances over all four of the mass spectra which we probed. The results from

both [1] and [2] are collected and discusses in section 2.7.

In the third paper [3], constituent mass predictions for axial vector cc and bb diquarks

are generated using QCD Laplace sum-rule methods. We calculate the diquark correla-

tor within the operator product expansion to next-to-leading-order, including condensate

contributions up to dimension-six. We find that the constituent mass of the cc diquark is

(3.51± 0.35) GeV and the constituent mass of the bb diquark is (8.67± 0.69) GeV. We then

use these diquark constituent masses as inputs to calculate several tetraquark masses within

the Type-II chromomagnetic interaction diquark-antidiquark tetraquark model. The results

from the calculations done in [3] are collected in section 3.3.
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Chapter 1

Introduction

1.1 Preamble

In this thesis, we explore several ideas related to beyond-the-quark-model hadrons in the

context of QCD sum rules. The research presented here is based on three papers I’ve pub-

lished in Physical Review D [1, 2, 3]. The first two papers [1, 2], presented in sections 2.3

and 2.5 of this thesis respectively, explore meson-hybrid mixing in heavy quarkonium using

QCD sum rules. In the third paper [3], presented in section 3.2, we use QCD sum rules to

predict constituent masses for cc and bb diquarks. We then use these constituent masses to

predict tetraquark masses.

In addition to presenting the research articles in chapters 2 and 3, we will include addi-

tional background and motivation for these topics as well as any additional discussion that

may not have made it to the published works. The goal will be to give context and clarify

the motivation for these articles while also expanding on the results and highlighting any

novel techniques which may not have been discussed in detail in the final articles. Note

that [1] and [2] are grouped and presented together in chapter 2 as the latter is an extension

of the former where we explore new quantum numbers. Then [3] is presented separately in

chapter 3. Finally at the end of the thesis we include appendices A.1 and A.2 both as a

reference and to clarify any convention dependence in the calculations.

Before we get into the research portion of this thesis, we begin with a brief overview of

the topics in modern particle physics that will be important in understanding this discussion

of beyond-the-quark-model hadrons. Much of the early work for the research presented

in [1] was done during my master’s degree and was presented in my master’s thesis [8].

There I presented the background needed to discuss these topics and the motivations for
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exploring meson-hybrid mixing. The motivation and necessary particle physics background

information have not changed as the work has progressed and so the following introduction

borrows heavily from that earlier work Ref. [8].

1.2 The Quark Model

By the 1950s, the idea that atoms were made up of a positively charged nucleus and some

number of negatively charged electrons bound together by the electromagnetic force had been

around for decades. The fact that these nuclei were themselves made up of more fundamental

nucleons, positively charged protons and neutral neutrons, had also been known for decades.

The discovery of the substructure of the nucleus originally raised questions about how

all of these positively charged protons could remain bound considering the electromagnetic

repulsion they experience. This problem was solved by introducing the strong nuclear force,

which acted as the binding force that provided the attraction for these nucleons. It was

understood that this force would need to be strong enough to overpower the electromagnetic

repulsion of the protons over short ranges, but it would also need to fall off quickly as distances

increased beyond the size of the atomic nucleus. A subatomic particle with a mass consistent

with the range of the nuclear force had also been theorized to mediate this strong nuclear

force.

By the early 1950s, pions had been discovered; these pions fit neatly into the particle

physics of that era as they could act as the carrier particles of the strong nuclear force. In

addition to these pions, other particles were being discovered around this time such as the

kaon (or K meson) and the lambda baryon. As time went on through the 1950s and early

1960s, more and more of these subatomic particles were being discovered. Around this time,

the term “hadron” was coined to serve as a blanket term for all of these particles. So many

hadrons were being discovered that it was quickly becoming obvious that they could not

be fundamental. A theory that explained all of these hadrons and their substructure was

needed, and this is where the quark model came in.

The quark model, which was independently proposed by Murray Gell-Mann [9] and

George Zweig [10] in 1964, is a classification scheme for hadrons in terms of their valence
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quarks. At this time, the quark model classified hadrons according to their quantum numbers,

which are determined by their constituent quarks and antiquarks.

From our current perspective, these quarks come in one of six flavours which are listed

here in ascending order by mass: up (u), down (d), strange (s), charm (c), bottom (b),

top (t). All of these are spin-1
2

fermions, and each of them has an intrinsic fractional electric

charge (Q). For the up, charm and top quarks, Q = 2
3
e, and for the down, strange and

bottom quarks, Q = −1
3
e where e is the elementary charge. Combinations of these quarks

and their antiquark counterparts in bound states give us the hadrons. In the quark model,

hadrons can be broken down into two categories: baryons, which are a fermionic bound state

of three quarks (or antiquarks), and mesons which are a bosonic bound state of a quark and

an antiquark (Figure 1.1).

Figure 1.1: Hadrons in the quark model.

1.2.1 The Quark Model and Colour Charge

The quark model was very successful at classifying the hadrons known in that era as well

as sorting them into the various geometric patterns of the eightfold way. In addition to

giving us a classification scheme for the hadrons and helping explain their substructure, the

quark model was also able to predict the existence of new hadrons such as the Ω−. The quark

model enjoyed many other successes including explaining mass splittings between mesons and

baryons within their respective multiplets, explaining and predicting the magnetic moments

of mesons and baryons, and explaining why there are no spin-1 baryons. The successes of the

quark model are well documented in the literature, for a particularly well curated collection

of papers on this topic see [11]. For all of its successes, the early quark model did, however,

have a couple of serious problems.

One major problem with the early quark model became clear when it was realized that
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the ∆++ baryon, with its intrinsic spin S = 3
2

and orbital angular momentum L = 0,

consisted of three up quarks with parallel spins. It was realized that this would lead to a

totally symmetric wave function, violating the Pauli exclusion principle. The best solution

to the problem turned out to be the ad hoc introduction of a new quantum number carried

by quarks that would come to be known as colour charge. Each quark would now carry a

colour: red, green, or blue. Antiquarks would carry anticolour, i.e., anti-red, anti-green, or

anti-blue. The colour charge portion of the ∆++ wave function could then be constructed as

totally antisymmetric. The addition of this new quantum number gave us the anti-symmetric

piece of the wave function which we need to satisfy the Pauli exclusion principle and thus fix

the problem of the ∆++.

Another serious problem was the question of free quarks. One might expect that, since

hadrons are made up of quarks, colliding hadrons with sufficient energy should liberate these

quarks, and we should be able to somehow detect these free quarks emerging from the collision

event. However, this is not what we find. Instead we see jets of hadrons emerging from these

collisions which leads to the following questions: If all hadrons are made up of quarks, why is

it that free quarks are never observed? Also, where are these hadrons that make up the jets

coming from? Another ad hoc addition to the quark model was needed to address this issue.

It was suggested that if free quarks are not observed, they must be confined to these hadrons.

Even if these hadrons are collided at sufficient energies to liberate a quark, the free quark

would never be observed; instead, these quarks would immediately undergo hadronization

(discussed briefly below), and our detectors would only pick up jets of hadrons emerging

from the collision event. This phenomenon became known as quark confinement. It was also

realized that perhaps this confinement could be characterized in terms of colour charge since

all bound states had been observed to be colour singlets. Thus, we refer to confinement as

colour confinement. While it can be useful to think of the colours of quarks in a hadron

as additive colours in a basic optical sense we should always have the idea that this colour

charge emerges from SU(3) gauge theory at the back of our minds.

Incorporating this idea of colour charge into the quark model gives us an updated picture

of which hadrons are allowed in the quark model. The three quarks that make up a baryon

must now carry one unit of each colour to form a colourless bound state. Likewise, the three
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antiquarks in an antibaryon must carry one unit of each of the three anticolours to form a

colourless bound state, and mesons can carry any colour and the appropriate anticolour. See

Figure 1.2 for hadronic configurations allowed in the quark model.

Figure 1.2: Hadrons in the quark model with colour charge.

Perhaps the way in which I have chosen to write about the quark model makes these

topics seem more discretized than they should be. In reality, the quark model evolved slowly

throughout the 1960s, with individual ideas being developed and incorporated, until it even-

tually became what we now think of as the quark model. It should also be mentioned that

many of the ideas in the quark model (particularly the colour hypothesis) were incorpo-

rated into and influenced the development of quantum chromodynamics (QCD) which will

be discussed shortly.

1.2.2 Quark Model Mesons

In the quark model, mesons are described as a bound state of a quark-antiquark pair. As we

know that all quarks are spin-1
2

fermions, we know that mesons must contain intrinsic spins

~S where our quantum numbers are s = 0 or s = 1. We can then write the total angular

momentum ~J of the bound state as

~J = ~S + ~L (1.1)

where ~L is the orbital angular momentum. Here ~L = 0 corresponds to the ground state of our

meson with higher values of ~L (increasing in integer steps) corresponding to excited states.

(Note that the excited states are generally considered to be distinct mesons.) Quantization

of angular momentum gives L2 = l(l + 1), l ∈ {0, 1, 2, ...}. Note that for the entirety of this
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thesis, we will be using natural units where ~ = c = 1.

There are two other quantum numbers that will be useful to us in classifying mesons.

These are parity (P ) and C-parity (also known as charge parity or charge conjugation number)

(C) which, for mesons, can be written as functions of angular momentum and spin quantum

numbers as

P = (−1)l+1, C = (−1)l+s. (1.2)

Collectively, we refer to the values J , P , and C as a particle’s JPC which gives us a

natural way of classifying many particles. Using (1.2), we can show that, for mesons,

JPC ∈ {0−+, 0++, 1−−, 1+−, 1++, 2−−, 2++, . . . }. Any other JPC values not appearing in this

list would be referred to as exotic quantum numbers for mesons.

1.3 Quantum Chromodynamics

Quantum chromodynamics is the quantum field theory (QFT) of strong interactions. In

essence, a QFT can be described as a mathematical framework which allows for the unification

of special relativity and quantum mechanics while incorporating the concept of fields and

allowing for the creation and annihilation of particles.

By the late 1960s and early 1970s, quantum electrodynamics (QED) was already well

established as the QFT of electrodynamics. Quantum electrodynamics mathematically de-

scribes all phenomena involving electrically charged, spin-1/2 particles interacting by means

of photon exchange. The successes of QED, coupled with the insights gained from the quark

model, led to attempts to form a QFT of strong interactions; this theory would become

known as QCD.

It was important for QCD to be able to explain experimental results such as deep inelastic

scattering (DIS) [12] as well as reproduce the known results from the quark model. It should

be mentioned that DIS is an experiment in which protons (or any other sufficiently stable

hadrons for that matter) are bombarded with very high energy electrons in an attempt to

resolve the substructure of these hadrons. It was experiments like this that provided the first

convincing evidence that quarks were, in fact, real particles and not simply a mathematical

construct of the theory as some had previously believed them to be. These DIS experiments
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also provided evidence that quarks are spin-1/2 particles and that protons are indeed made of

a d quark and two u quarks. To match the results of these DIS experiments, it was understood

that QCD would need to be an asymptotically free theory. An asymptotically free theory

can be described as a theory for which the strength of interactions between particles becomes

asymptotically weaker (i.e. approaches zero) as energy increases and distance decreases.

It was shown that in four spacetime dimensions, the only asymptotically free renormaliz-

able gauge theories were the class of theories known as Yang-Mills theories [13]. These theories

are invariant under local SU(N) transformations. It was also realized that the theory would

need to exhibit SU(3)colour symmetry as quarks of different colours are indistinguishable from

one another. This indicated that QCD should be constructed as an SU(3) Yang-Mills theory.

Furthermore, Yang-Mills theories are gauge theories, and, as such, our theory must introduce

mediating vector bosons which must carry our colour charge as we have (N ≥ 2). These vec-

tor bosons became known as gluons. There is a rich history surrounding the development of

QCD (see e.g., [14] and references therein for a historical perspective); however, we will focus

on some of the key concepts of the theory as they are understood today before we move on.

1.3.1 Key Concepts in QCD

Where the strong force was once thought of as the force holding the nucleus together, it is

now understood that the strong force is actually the force acting on colour-charged particles

(quarks) holding hadrons together. It is just the residual effect of this force that holds the

nucleus together, analogous to a dipole force in an electromagnetic context.

As we discussed earlier, all quarks are thought of as having one of three colours (red,

green, blue) and all antiquarks come in anticolours (anti-red, anti-green, anti-blue). Or in

SU(3) gauge theory terms, quarks in the fundamental 3 representation and antiquarks in the

3∗ representation. QCD has now introduced bicoloured gluons which have some combination

of colour and anti-colour. Or, again, in SU(3) gauge theory terms they reside in the adjoint 8

representation of SU(3). Hadrons are understood to exist only as colour singlet bound states

of these particles.

At close range, quarks are bound loosely inside a hadron. As more energy is put into the

system and distances increase, we reach a point where it is more energetically economical
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to produce new hadrons than to continue to have the distance between these bound quarks

grow. As such, hadron jets are produced and free quarks are never observed. This process is

what we call hadronization which was mentioned above.

It is important to note that one strong contrast between QED and QCD is that, unlike

photons, gluons (the force carrying vector bosons of QCD) carry colour charge and therefore

interact strongly. This will be an important characteristic of gluons for our work in this

thesis.

1.3.2 The QCD Lagrangian

We now turn our attention to the fundamental quantity of QCD in its Lagrangian formulation:

the Yang-Mills Lagrangian which can be written as

LQCD(x) = −1

4

(
Ga
µν (x)

)2
+
∑
F

Q̄F (x) (i /D −mF )QF (x) (1.3)

where

Ga
µν (x) = ∂µA

a
ν (x)− ∂νAaµ (x) + gsf

abcAbµ (x)Acν (x) (1.4)

is a gluon field strength tensor and

/D = Dµγµ = (∂µ − igstaAµa (x))γµ (1.5)

is a slashed covariant derivative. We will take a moment to go over some of the notation

here as much of it will be used repeatedly throughout this thesis. Here the quantities QF

and Abµ are quark and gluon fields respectively, and the subscript F is a quark flavour index.

The m indicates the mass of the particle, gs is our coupling constant, ta is a generator of

SU(3), and fabc are totally antisymmetric structure constants. Finally, any slashed variable

is understood to employ Feynman slash notation such as /D = Dµγµ.

We can now expand (1.3) and separate out the free terms from the interaction terms in

our Lagrangian. In doing so, and by suppressing the arguments and flavour sums, this gives
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us

LQCD = L0 +
gs
2
QγσλaQAaσ − gsfabc(∂ρAaσ)AρbAσc − g2

s

4
(f eabAaρA

b
σ)(f ecdAρcAσd) (1.6)

where L0 is our free Lagrangian and the λa = 2ta are Gell-Mann matrices. Having done this

expansion, we could now construct the Feynman rules for the theory. By inspection, we can

see that the first interaction term will lead to a quark gluon vertex where as the second and

third terms will give us three and four gluon vertices respectively (see Figure 1.3).

Figure 1.3: Interaction vertices available in QCD, image credit [5]

Details about the vertices shown in Figure 1.3 as well as more discussion on the QCD La-

grangian, can be found in many QFT texts (see e.g., [5]). Note that we use the quantized

QCD Lagrangian with a covariant gauge-fixing term and Fadeev-Popov ghosts (also discussed

in [5]), this leads to an additional ghost-gluon vertex not shown in Figure 1.3. These ad-

ditional terms do not enter into the calculations presented in the thesis but would occur in

higher-loop extensions of this work. These vertices highlight one of the main differences be-

tween QED and QCD; here (in QCD) we have our vector bosons able to have self-interactions

where in QED we do not. Moreover, all of these vertices share the same coupling strength

as required by SU(3) gauge symmetry. These facts hint that thinking about hadrons with

explicit gluonic degrees of freedom is perhaps a sensible thing to do. Some candidates for

these hadrons with gluonic degrees of freedom are hybrids and glueballs. Further discussion

of hybrids is postponed until Chapter 2 as hybrids are one of the central topics of our first

two papers [1, 2], glueballs are not discussed in this thesis.

An important side note: thus far, we have been somewhat careful about the position of

indices. This will not be the case in general throughout the thesis. Generally, indices will be

raised or lowered purely out of convenience. This will not affect our calculation at all and
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will serve to make the notation slightly more aesthetically pleasing. Also, we will make use

of a summation convention for repeated indices. All indices that appear twice in a single

term will imply summation over all values of that index.

1.3.3 The Correlation Function

Most of the labour intensive work done in all three of the papers that make up this thesis

is focused on calculating a specific quantity known as a correlation function. Note that,

throughout this thesis, I will use the terms correlator, cross-correlator and correlation function

interchangeably to refer to the quantity we are calculating. This quantity can perhaps most

simply be described as the vacuum expectation value of the time ordered product of fields.

At its simplest, a two point correlation function such as

〈0|T [φ(x)φ(y)] |0〉 (1.7)

in a free field theory, can be interpreted as the propagation amplitude for the particle from y to

x. Here φ(x) and φ(y) are simple field operators, T is the time-ordering operator, and 〈0| |0〉

represent the vacuum in our free theory. In our case, these field operators will be replaced

with composite operators containing several fields. These composite operators, which we

call currents, will be selected specifically to probe the hadronic states we are interested in

examining and will differ in each of the three papers. In general, these currents must be

colour singlets (however in [3], where we study diquarks, this requirement is relaxed) and

they must have the appropriate quantum numbers for the states we want to probe. We get

into the details of these currents when we start the calculation in each of the three papers

presented here. But, in principle, for any two point function we will be looking at, eqn. (1.7)

will now become

〈Ω|T [ jµ(a)(x) jν(b)(0)] |Ω〉 (1.8)

where jµ(a)(x) and jν(b)(0) are currents at x and 0 respectively which probe the states we are

interested in examining (in the Heisenberg picture when written this way) and 〈Ω| is our
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QCD vacuum. This time-ordered product can be written in the interaction picture as

Πµν(q) = i

∫
ddx eiq·x〈Ω|T [ jµ(a)(x) jν(b)(0) ei

∫
dyLint(y)]|Ω〉 (1.9)

where only connected diagrams are kept on the right-hand side. Here, ei
∫
dyLint(y) contains

QCD interaction Lagrangian terms we discussed in (1.6), and we have taken the momentum

space Fourier transform of the correlation function. Notice that the integral is d dimensional

as we will be using dimensional regularization in all three papers presented here (see [5]

for details on dimensional regularization). Note also, that all integrals in this thesis where

bounds are not explicitly written are taken to be over the full range of their variables.

In this section, we have briefly gone over how we could write our correlator, but we also

need to understand what it is and why we want to calculate it. Without introducing several

new terms and ideas, perhaps the easiest way to describe the correlator is to describe how

it will be used. The correlator is the quantity that contains all the QCD information about

our system, and it is what we feed into the dispersion relation which we will discuss shortly

in section 1.3.10.

1.3.4 The Operator Product Expansion

We will now take a quick look at some of the tools we will need to simplify our correlator.

Substituting the appropriate currents into (1.9) gives us the equation we will now be working

with. Remembering that each of the three factors on the right hand side of (1.9) will contain

some number of operators in the form of quark and gluon fields, we will need some tools to

help us evaluate the products of these non-local fields and their vacuum expectation values

(VEV)s. The operator product expansion (OPE) states that, for a product of operators O1

and O2 acting at spacetime coordinates x and y, we can write

O1(x)O2(y)→
∑
n

Cn
12(x)On(y) as x→ y (1.10)

where the Cn
12 factors are c-numbered functions known as Wilson coefficients [15]. This, in

effect, allows us to write the product of fields at two distinct space-time points in terms of
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fields at one of those points in the limit where x→ y [15]. In practice, for our calculation, O1

and O2 will be our currents and both sides of the equation will be wrapped in a time-ordered

product (TOP) and be inside a VEV. In essence, this will relate our correlation function to

the expansion that will allow us to simplify it. The right hand side of this expression will

give us a series of local VEVs, including a perturbative contribution and non-perturbative

terms that will be characterized by condensates, which we will look at briefly after a quick

discussion on Wick’s theorem.

1.3.5 Wick’s Theorem

Wick’s Theorem allows us to write the TOP of some collection of operators in terms of the

normal-ordered product (NOP) of the sum of those operators, and their contractions. These

contracted fields are then written in terms of propagators. Much more detail about this

process is available in most QFT texts including [5] but, in essence, we are now able to write

T{φ1(x1)φ2(x2) . . .φn(xn)} =

= N{φ1(x1)φ2(x2) . . . φn(xn) + all possible contractions}
(1.11)

where N indicates a NOP. Each of the terms in the right hand side of (1.11) can be thought

of as representing a Feynman diagram. Those terms, where the fields are fully contracted,

and which yield connected diagrams, could be evaluated using the QCD Feynman rules.

These diagrams represent the perturbative contribution to our cross-correlator. The terms

where fields remain uncontracted, and thus leave us with the VEVs of uncontracted fields,

are generally taken to be zero. In the case of QCD however, these VEVs can be non-zero

due to the complexity of the QCD vacuum, and, as mentioned above, these terms will be

characterized in terms of condensates. Once evaluated, these non-zero VEVs will represent

the non-perturbative contribution to our correlator.

1.3.6 Condensates and the QCD Vacuum

As mentioned above, through the application of the OPE and Wick’s theorem, we will gener-

ate a number of terms that will contain the VEV of uncontracted local operators. In theories
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with a simpler vacuum, these terms would be taken to be zero. However the QCD vacuum is

more complex and results in non-zero values for these VEVs. See section 2.6.1.1 for a detailed

discussion on the calculation of these VEVs. For now however, it will be enough to remember

that the complexity of the QCD vacuum and the non-zero nature of these VEVs are driven

by spontaneous symmetry breaking (SSB) of global symmetries in QCD. Spontaneous sym-

metry breaking manifests in a theory where a symmetry associated with the Lagrangian is

not shared by the ground state of the theory. Here, our ground state is the QCD vacuum

and our Lagrangian is the Yang-Mills QCD Lagrangian. Spontaneous symmetry breaking

is a topic that is well covered in most QFT texts including [5]. For our purposes it will be

enough to understand that these local VEVs are non-zero, and that their numeric values are

external inputs to the theory that need to be extracted phenomenologically.

1.3.7 Regularization

Once we have applied the OPE and Wick’s theorem to our correlator and gone through the

considerable algebra needed to simplify our expression, we will be left with an expression

phrased in terms of an internal momentum integral. These integrals can be complicated and

are often divergent in four dimensions. The technique we use to deal with these divergent

integrals is known as dimensional regularization (dim-reg). Dim-reg is perhaps the simplest

regularization scheme which preserves the symmetries of QCD; it is widely used and well

described in many QFT texts including [5]. Put simply, in dim-reg we promote our divergent

four dimensional integral to a d dimensional integral that can be evaluated, and this result

can be analytically continued to other dimensions. In essence, we compute our integral as a

function of the dimensionality of spacetime. Our final expression will be phrased in terms of

our spacetime dimension d where we let d→ 4 + 2ε, a convention consistent with [16]. Then,

the exact result is Laurent-expanded around ε = 0 and that the divergences at d = 4 show

up as poles in this series.

In principle, dim-reg gives us a framework within which all of our integrals can be eval-

uated, but, in practice, solving these integrals can still be quite complicated. Generally,

one-loop integrals can be solved without much trouble, but two-loop integrals often require

the application of recurrence relations [17, 18] to simplify the integrals before they are in a
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solvable form. We will be using the TARCER [19] Mathematica software package to help in

evaluating these two-loop integrals. TARCER can be thought of as a tool which will allow

us to write complicated two-loop integrals in terms of master integrals with known solutions,

some of which are discussed in [20] and [21].

1.3.8 Renormalization

It is important to note that some of the currents we will be using are not renormalized.

Using an unrenormalized current as we do in some of these calculations will result in non-

polynomial divergences in our final answer. When doing the sum rules analysis of these

correlators, polynomial divergences will not pose a problem as they will be eliminated by a

Borel transform [22] defined by

B̂ = lim
N,Q2→∞
τ=N/Q2

(−Q2)N

Γ(N)

(
d

dQ2

)N
. (1.12)

Note that the relation between the Borel transform and the inverse Laplace transform L̂−1

is given by

1

τ
B̂
{
f(Q2)

}
= L̂−1

{
f(Q2)

}
=

1

2πi

∫ c+i∞

c−i∞
f(Q2)eQ

2τdQ2
(1.13)

where c is any real number for which f(Q2) is analytic for Re(Q2) > c. This identity (1.13) will

be useful shortly. The non-polynomial divergences will still need to be addressed before the

correlator is ready for a sum rules analysis. To deal with these non-polynomial divergences,

we introduce some notation. If we let a square bracket indicate a renormalized quantity and

a quantity with no brackets indicate a bare quantity, as described in [23], we know that

[
jν(a)

]
= Z1j

ν
(a) + Z2O2 + · · ·+ ZnOn. (1.14)

In this case, the Zn are renormalization constants, the On are composite operators with the

same quantum numbers as our jν(a) that have dimension less than or equal to that of jν(a) [23].
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The ideas about renormalization discussed here are further discussed in [23]. We will make

use of these ideas when we come to deal with the non-polynomial divergences in some of our

calculations. More details about the specifics of the renormalization used in each of the three

papers are included in the papers themselves.

1.3.9 The Dispersion Relation

Once our correlator has been sufficiently simplified and renormalized, we will feed it into the

dispersion relation [24]. The dispersion relation can be written as

Π(Q2) =
(Q2)n

π

∫ ∞
M2
Q

Im[Π(t)]

tn(t+Q2)
dt+ · · · , Q2 > 0, Q2 = −q2 (1.15)

where the · · · represent subtraction constants, collectively a polynomial in q2, and the

Im[Π(t)] is our hadronic spectral function. This dispersion relation is an expression of

quark/hadron duality. On the left hand side, we have our correlator calculated in terms

of quarks via QCD and the dispersion relation relates this quantity to the hadronic spectral

function on the right, which contains information about hadrons. In practice, this allows us

to calculate in terms of quarks and make predictions about hadrons. Our hadronic spectral

function could, in principle, be modelled in terms of Dirac delta functions and Heaviside step

functions which would respectively represent the resonances and continuum we would expect

to see in the hadronic spectrum. In turn, this would allow us to extract the physical mass of

our theorised particle.

1.3.10 The Laplace Sum Rule

Once we have our dispersion relation and the correlator in the necessary form, we apply the

Borel transform (1.12) as mentioned above in section 1.3.8. Again, this will eliminate all

remaining polynomial divergences, and it will allow us to write the 0th-order Laplace sum

rule (LSR) [25] in the form shown in equation (1.16). For a more recent review of QCD sum
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rules (QCDSR) see [26].

R(τ) ≡ 1

τ
B̂
{

Π(Q2)
}

=

∫ ∞
t0

e−tτ
1

π
ImΠ(t)dt (1.16)

We then implement a resonance(s)-plus-continuum model [25] which amounts to setting

1

π
ImΠ(t)→ ρ(had)(t) +

1

π
ImΠ(OPE)(t)θ(t− s0) (1.17)

where ρ(had) represents the resonance content of the spectral function, θ is the Heaviside step

function, and s0 is the continuum threshold. Then by subtracting the continuum contribution

from the 0th-order LSR (1.16) we can define the continuum-subtracted 0th-order LSR

R(τ, s0) ≡ R(τ)−
∫ ∞
s0

e−tτ
1

π
ImΠ(OPE)(t)dt =

∫ s0

t0

e−tτρ(had)(t)dt. (1.18)

We then make use of the identity that relates the Borel transform to the inverse Laplace

transform (1.13) and proceed with the substitution of the terms that make up ImΠ(OPE)

into (1.18). Note that the LSR suppresses the high-energy region, reducing our sensitivity to

continuum contributions while still allowing the signal from the resonance contributions to

persist. We will not write the final form of the 0th-order continuum-subtracted LSR here as

it will depend on the specific systems we are trying to model (i.e. the specific content of the

ImΠ(OPE)), and so we leave that for the discussions contained in each of the three papers.

This LSR (equation 1.18) is the quantity that we are calculating for all of the QCDSR

calculations presented in this thesis. For each paper presented here, once the respective LSR

had been prepared, it allowed us to probe the systems in question. In the case of [1, 2] the

LSR allowed us to probe resonances for meson-hybrid mixing and in the case of [3] the LSR

was used to extract diquark constituent masses. We relegate the discussions of the specific

analysis methodologies used in each of these cases to their respective papers. But, at their

core, each of these analyses contains an LSR like the one shown in equation (1.18).
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1.4 Motivations

We have spent the last few sections introducing some of the key theoretical ideas that frame

the work done in this thesis. Let us now turn our attention to the experimental and theoretical

findings and predictions that motivated the questions we set out to answer in these three

papers.

1.4.1 Motivations from Theory

QCD and colour confinement require only that a bound state be colourless to be a phys-

ically observable state. After incorporating colour confinement, the quark model gave us

the baryons, antibaryons, and mesons shown in Figure 1.2 as possible hadron configurations.

These three configurations of quarks (and antiquarks) are the simplest arrangements that

satisfy colour confinement, but they do not form an exhaustive list. We could easily imagine

hadrons built out of four, five, or even more quarks. In addition, QCD introduces gluons as

a potential building block of hadrons. Again, unlike photons, gluons carry the charge of the

theory, they are bicoloured, (in the adjoint 8 representation of SU(3)), and so we may expect

that they should be treated similarly to quarks when it comes to building hadrons. With

these ideas in mind, we could build a much richer palette of potential beyond-the-quark-

model hadron configurations that would satisfy colour confinement. Some of these potential

configurations are shown in Figure 1.4.
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Figure 1.4: Potential configurations for beyond-the-quark-model hadrons.

For the work presented in this thesis, we will be focused first on hybrids, which are central

to the first two papers [1, 2], and then on tetraquarks, one of the topics in the third paper [3].

1.4.2 Motivations from Experiment

As we mentioned in section 1.2, a large number of hadrons are now known to exist and this

number is growing all the time. Many of these hadrons are well-explained by the quark

model, but a growing number of them seem to defy quark model interpretation. In the

research presented in this thesis, we focus on the heavy quarkonium spectrum and what

are known as the XYZ resonances. These XYZ states are hadrons that have been detected

experimentally and have been seen to decay to final states which consist of a heavy quark-

antiquark pair but do not fit neatly into the quark model’s qq̄ scheme [6] (see also [27] for a

recent review). As an example of how these XYZ resonances fit into the heavy quarkonium

spectra, we now look at the charmonium and charmonium-like meson spectrum in Figure 1.5

It is these XYZ resonances, which seem to defy quark model interpretation, that have moti-

vated much of the research into beyond-the-quark-model hadrons.
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Figure 1.5: The spectrum of charmonium and charmonium like mesons, image credit
Olsen, Front. Phys. 10 (2015) 101401 [6].
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As we move into the specific research done in each of the three papers presented in this

thesis, we will dig deeper into the motivations that drove those specific projects. But to sum

up our overall motivations for the work presented here, we are trying to answer key questions

concerning the XYZ resonances. In particular, the XYZ resonances have been detected and

they seem to defy quark model interpretation. Given that colour confinement and QCD

seem to allow for beyond-the-quark-model hadrons, can we explain the XYZ resonances as

beyond-the-quark-model hadrons? Also, if our characterization of confinement is correct, we

should expect to find all of these beyond-the-quark-model hadrons in nature—so where are

they?

In the first two papers [1, 2] we find nonzero mixing parameters in several resonances

in the vector and axial vector charmonium and bottomonium sectors. This result suggests

that hybrids with non-exotic quantum numbers exist as quantum mechanical superpositions

of pure mesonic states and hybrid states. It also suggests that some of the resonances that

we’ve assigned to pure mesonic states are better described as mixed states. In other words,

the hybrids are hiding in resonances that we previously thought of as pure mesonic resonances.

Then, in the third paper [3], we calculate constituent diquark masses for axial vector [cc] and

[bb] diquarks using QCD Laplace sum rules. These mass predictions stabilize and we then

use these results to predict tetraquark masses. These mass predictions can be used to guide

experimental searches for tetraquarks. Also, if tetraquarks with masses close to those we

predict are found it would lend support to the idea that tetraquarks exist with additional

substructure in the form of constituent diquarks.
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Chapter 2

Meson-Hybrid Mixing

2.1 Meson-Hybrid Mixing

As discussed in Section 1.4.1, QCD seems to allows for looser restrictions on the makeup

of hadrons when compared to the conventional quark model, and it also supplies us with

more building blocks (gluons). In the quark model, we were only able to build hadrons out

of either three quarks, three antiquarks or a quark/antiquark pair (as shown in Figure 1.2).

Our present characterization of colour confinement and our understanding of QCD seem to

suggest that bound states need only be colourless. Also, QCD supplies us with bicoloured

gluons as another potential constituent of our hadrons. Turning our attention back to bound

states containing a quark and an antiquark, and considering only the colourless bound state

requirement, there is no reason one could not build a bound state out of a quark, an antiquark,

and a gluon. Such particles have been theorized for some time and are known as hybrids (as

shown in Figure 1.4).

One promising hybrid search strategy would be to look for meson-like bound states with

what would be exotic quantum numbers for a quark-antiquark meson. Discovering a meson-

like bound state with exotic quantum numbers would point strongly to the existence of

beyond-the-quark-model hadrons as it would be difficult to explain these quantum numbers

without additional degrees of freedom (extra constituent quarks or constituent gluons). Ex-

perimental efforts to find meson-like states with exotic quantum numbers continue with some

promising hybrid candidates emerging; however, results are still inconclusive [28].

In the first paper presented in this chapter, we will be exploring charmonium and bot-

tomonium hybrids with JPC = 1−−, and, in the second paper, we look at similar systems with

JPC = 1++. As we are dealing with non-exotic quantum numbers for mesons, this makes
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finding such particles even more difficult. Some experimental findings that might suggest

that these hybrids exist would be the overpopulation of resonances for a particular JPC in

a particular spectrum. Also, branching ratios that differ significantly from those predicted

by conventional mesonic models would also suggest that hybrids may be present [29, 30, 31].

Detection of these non-exotic hybrids could be further complicated by the fact that they may

mix with conventional mesonic states. It is this last point about potential mixing that we

will explore further in the first two papers presented in this thesis.

2.2 1−− Motivation and Initial Discussion

We began this series of two papers on meson-hybrid mixing in vector heavy quarkonium

by first looking at charmonium-like XYZ mesons with JPC = 1−−. Specifically, we were

interested in charmonium-like XYZ mesons with JPC = 1−− that do not fit into the cc̄

mass spectrum which includes the J/ψ and its radial excitations. The XYZ resonances

that fit this description are the Y (4260), Y (4360) and Y (4660). The Y (4260) and Y (4360)

were discovered by BaBar in the π+π−J/ψ and π+π−ψ′ systems respectively via e+e− →

γisrπ
+π−J/ψ and e+e− → γisrπ

+π−ψ′ [32, 33]. These results were later confirmed by the Belle

Collaboration [34, 35] which also found another peak in the π+π−ψ′ system, the Y (4660).

We can see how these states fit into the charmonium and charmonium-like meson spectrum

in Figure 1.5.

It’s difficult to interpret these particles in the context of a quark model description of

mesons as all of the 1−− cc̄ states near their detected masses have already been assigned to

other resonances. It has been suggested that the Y (4260) is a charmonium hybrid state [36].

Also there have been theoretical explorations of cc̄g hybrid currents with JPC = 1−− done

using QCDSR resulting in mass predictions in the range of 3.36±0.15 GeV [37]. These unas-

signed resonances and the fact that QCD allows for mesonic states with an explicit gluonic

degree of freedom have served as the motivation for much of the research into charmonium

hybrids.

Expanding on some of these ideas, in this first paper, we explored the idea that perhaps

some of these resonances do not exist as pure mesonic states, but rather as quantum me-
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chanical superpositions of pure cc̄ and hybrid states (cc̄g). Keeping in mind the findings

in [37] where the cc̄g current with JPC = 1−− was predicted to have a mass of 3.36 ± 0.15

GeV, it seems plausible that the reason we do not see this resonance in the charmonium

spectrum might be because it exists as a quantum mechanical superposition with the J/ψ.

Said another way, perhaps the resonance we have assigned to the J/ψ is in fact a mix of pure

cc̄ with cc̄g.

After completing the meson-hybrid mixing analysis of the JPC = 1−− charmonium system,

we then turned our attention to analyzing the JPC = 1−− bottomonium system as well. The

results of these analyses were then collected and published as the first paper in this series on

meson-hybrid mixing, presented here in Section 2.3.

The following work may be found published in:

A QCD Sum-Rules Analysis of Vector (1−−) Heavy Quarkonium

Meson-Hybrid Mixing,

A. Palameta, J. Ho, D. Harnett, and T.G. Steele.

Phys. Rev. D 97, 034001 (2018)

DOI:10.1103/PhysRevD.97.034001

I played a leading role in the work presented in this manuscript. I calculated the cross-

correlator, generated the Laplace sum-rule, built models of the hadronic spectra in question

and performed the analysis to extract the mixing parameters. I also made significant contri-

butions to the editing of the manuscript.

2.3 Manuscript: A QCD Sum-Rules Analysis of Vector

(1−−) Heavy Quarkonium Meson-Hybrid Mixing

Abstract: We use QCD Laplace sum-rules to study meson-hybrid mixing in

vector (1−−) heavy quarkonium. We compute the QCD cross-correlator between

a heavy meson current and a heavy hybrid current within the operator product
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expansion. In addition to leading-order perturbation theory, we include four- and

six-dimensional gluon condensate contributions as well as a six-dimensional quark

condensate contribution. We construct several single and multi-resonance mod-

els that take known hadron masses as inputs. We investigate which resonances

couple to both currents and so exhibit meson-hybrid mixing. Compared to single

resonance models that include only the ground state, we find that models that

also include excited states lead to significantly improved agreement between QCD

and experiment. In the charmonium sector, we find that meson-hybrid mixing

is consistent with a two-resonance model consisting of the J/ψ and a 4.3 GeV

resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing

in the Υ(1S), Υ(2S), Υ(3S), and Υ(4S).

2.3.1 Introduction

Hybrids are hadrons containing explicit gluon degrees of freedom in addition to a constituent

quark and antiquark. They are colour singlets and so should be allowed within QCD. How-

ever, they have yet to be conclusively identified in experiment (see, e.g., ref. [28] for a com-

prehensive review).

Hybrids can be broadly classified as having quantum numbers (i.e., JPC) that are exotic

or non-exotic. Exotic quantum numbers (e.g., 0−−, 0+−, 1−+, 2+−) are those not accessible

to conventional quark-antiquark (qq) mesons; the rest of the quantum numbers are non-exotic

and are accessible to both qq-mesons and hybrids. Looking for resonances with an exotic

JPC is a promising hybrid search strategy being used, for example, at GlueX. Furthermore,

hybrids with exotic JPC would be unable to quantum mechanically mix with qq-mesons (as

no conventional meson could have the JPC in question), and so could perhaps appear as

pure, unmixed states. In contrast, hybrids with non-exotic JPC are expected to mix with

qq-mesons resulting in hadrons that would be superpositions of both conventional meson and

hybrid.
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In this article, we consider meson-hybrid mixing in (non-exotic) vector (1−−) charmonium

(cc) and bottomonium (bb). The heavy quarkonium sectors have received considerable at-

tention lately due primarily to the discovery of the XYZ resonances (see [38, 39] for reviews

and [40] for some recent developments). These XYZ resonances are a collection of hadrons

many of whose properties (e.g., masses, widths, and decay rates) do not agree with quark

model predictions [41]. Unsurprisingly, the XYZ resonances have generated a lot of discussion

concerning outside-the-quark-model hadrons such as hybrids. We focus on 1−− rather than

some other JPC because more is known about the spectra of 1−− heavy quarkonium than is

known about the spectra for the other quantum numbers [4].

We investigate meson-hybrid mixing with QCD Laplace sum-rules (LSRs) [25, 42, 43,

44]. Using the operator product expansion (OPE) [15], we compute the cross-correlator

between a qq-meson current and a hybrid current (see (2.3) and (2.4) respectively below).

In the cross-correlator calculation, we include leading-order (LO) QCD contributions from

perturbation theory and non-perturbative corrections due to the four-dimensional (4d) and

6d gluon condensates as well as the 6d quark condensate. We then analyze several single

and multi-resonance models of the hadron mass spectra that take known resonance masses

as inputs. We determine which resonances couple to both currents and so can be considered

mixed. The QCD sum-rules methodology has been applied to hadron mixing problems in a

number of systems including pseudoscalar meson-glueball mixing [45], scalar meson-glueball

mixing [46], 1++ charmonium hybrid-DD∗ molecule mixing [47], and open-flavour heavy-light

meson-hybrid mixing [48].

We find that multi-resonance models that include excited states in addition to the ground

state lead to significantly improved agreement between QCD and experiment when compared

to single resonance models that include only the ground state. In addition, we show explicitly

that the higher mass excited states make numerically significant contributions to the LSRs

despite the tendency of LSRs to suppress such resonances. Finally, we find that meson-hybrid

mixing in the charmonium sector is described well by a two-resonance model consisting of the

J/ψ and a 4.3 GeV state such as the X(4260). In the bottomonium sector, we find evidence

for meson-hybrid mixing in all of the Υ(1S), Υ(2S), Υ(3S), and Υ(4S).
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2.3.2 The Correlator

We consider the following cross-correlator

Πµν(q) = i

∫
d4x eiq·x 〈0|τ j(m)

µ (x) j(h)
ν (0)|0〉 (2.1)

=

(
qµqν
q2
− gµν

)
Π(q2) (2.2)

between quarkonium meson current

j(m)
µ = QγµQ (2.3)

and quarkonium hybrid current [49]

j(h)
ν =

gs
2
Qγργ5λaG̃a

νρQ (2.4)

where

G̃a
νρ =

1

2
ενρωζG

a
ωζ (2.5)

is the dual gluon field strength tensor and ενρωζ is the totally antisymmetric Levi-Civita

symbol. The function Π in (2.2) probes 1−− states.

We calculate the correlator (2.1) within the OPE in which perturbation theory is supple-

mented by non-perturbative terms, each of which is the product of a perturbatively computed

Wilson coefficient and a nonzero vacuum expectation value, i.e., a QCD condensate. In ad-

dition to perturbation theory, we include OPE terms proportional to the 4d and 6d gluon

condensates and the 6d quark condensate defined respectively by

〈
αG2

〉
= αs

〈
:Ga

ωφG
a
ωφ:
〉

(2.6)

〈
g3G3

〉
= g3

sf
abc
〈
:Ga

ωζ G
b
ζρG

c
ρω:
〉

(2.7)〈
J2
〉

= Tr
(〈

: JνJν:
〉)

(2.8)
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where

Jν =
−ig2

s

4
λa
∑
A

qAλaγνq
A. (2.9)

In (2.9), the sum on the right-hand side is over quark flavours. We use the vacuum saturation

hypothesis [25] to express 〈J2〉 in terms of the 3d quark condensate

〈
qq
〉

=
〈
: qαi q

α
i :
〉

(2.10)

resulting in 〈
J2
〉

=
2

3
κ g4

s

〈
qq
〉2

(2.11)

where κ quantifies deviations from exact vacuum saturation. Throughout, we set κ = 2 (see,

e.g., ref. [44] and references cited therein). The diagrams that contribute to (2.1) at LO in

the coupling gs are shown in Figure 2.1 where we have suppressed a second set of similar

diagrams in which the quark line runs clockwise. Wilson coefficients are computed using

the fixed-point gauge method (see [50, 51], for example), and divergent integrals are handled

using dimensional regularization in D = 4 + 2ε dimensions at MS renormalization scale µ.

As in [52], we use the following convention for a dimensionally regularized γ5:

γ5 =
i

24
εµνσργ

µγνγσγρ. (2.12)

We employ TARCER [53], a Mathematica package that implements the recurrence al-

gorithm of [17, 18], to express dimensionally regularized integrals in terms of a small set of

master integrals. An exact calculation of each needed master integral is either found in [20, 21]

or is a well-known one-loop result. We denote the OPE computation of Π from (2.2) as Π(OPE)

which we then decompose as

Π(OPE) = Π(I) + Π(II) + Π(III) + Π(IV) + Π(V) + Π(VI) (2.13)

where the superscripts in (2.13) correspond to the labels of the diagrams in Figure 2.1. For

Π(I), we find an exact ε-dependent result
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Diagram I Diagram II Diagram III

Diagram IV Diagram V Diagram VI

Figure 2.1: The LO Feynman diagrams that contribute to the cross-correlator (2.1)
which we decompose in (2.13).

Π(I)(z; ε) = −αs e
−2εm4(1+ε)Γ(−ε)

3π3(3 + 2ε)(4π)2ε

(
(1 + 2ε+ 4z(1 + ε))Γ(−ε)

× 3F2

(
1,−1− 2ε,−ε; 1

2
− ε, 2 + ε; z

)
+
π(1 + 2ε)Csc(πε)

Γ(1 + ε)

(
− 4 + 3(1 + 4z(1 + ε)) 2F1

(
1,−ε; 3

2
; z

)

− 2(z − 1) 3F2

(
1,−2ε,−ε; 1

2
− ε, 2 + ε; z

)))
(2.14)

where

z =
q2

4m2
, (2.15)

m is a heavy quark mass (i.e., mc or mb), Γ is the gamma function, and pFq(· · · ; · · · ; z)

are generalized hypergeometric functions (see [54], for example). Expanding (2.14) in ε and

dropping terms polynomial in z as they will not contribute to the LSR, we find

Π(I)(z) =
2αsm

4z(1 + 4z) 2F1

(
1, 1; 5

2
; z
)

9π3

1

ε
+

d

dε
Π(I)(z; ε)

∣∣∣
ε=0
. (2.16)
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For the sake of brevity, we do not include an explicit expression for the derivative term on

the right-hand side of (2.16). (Note that (2.16) is ultimately superseded by (2.27), and we

provide a complete expression for the latter.) Expanding the remaining terms on the right

hand side of (2.13) in ε, we find

Π(II)(z) =
z
(
− 3 + 2F1

(
1, 1; 5

2
; z
))

18π(z − 1)

〈
αG2

〉
(2.17)

Π(III)(z) =

(
2 + 5z − 4z2 − (2− 7z + 10z2 − 4z3) 2F1

(
1, 1; 5

2
; z
))

2304π2m2(z − 1)3

〈
g3G3

〉
(2.18)

Π(IV)(z) =

〈
g3G3

〉
4608π2m2(z − 1)3

(
− 22 + 41z − 16z2 + (10− 25z + 22z2 − 8z3) 2F1

(
1, 1; 5

2
; z
))

(2.19)

Π(V)(z) =

〈
g3G3

〉
4608π2m2(z − 1)2

(
− 15 + 12z + (3− 2z) 2F1

(
1, 1; 5

2
; z
))

(2.20)

Π(VI)(z) =
2α2

s

〈
qq
〉2

81m2(z − 1)3

(
2 + 5z − 4z2 + (−2 + 7z − 10z2 + 4z3) 2F1

(
1, 1; 5

2
; z
))
. (2.21)

Perturbation theory (2.16) contains a nonlocal divergence. Following [47, 48], this diver-

gence is eliminated via operator mixing under renormalization. The meson current (2.3) is

renormalization-group (RG) invariant and so we only need consider the operator mixing of

the hybrid current (2.4) which induces operator mixing with (2.3) and with

j(c)
ν = QiDνQ (2.22)

where Dν = ∂ν − i
2
gsλ

aAaν is the covariant derivative. Thus,

j(h)
ν → j(h)

ν +
C1

ε
j(m)
ν +

C2

ε
j(c)
ν (2.23)

where C1 and C2 are as-yet-undetermined renormalization constants. Substituting (2.23)

into (2.1) (in D rather than four dimensions) gives

i

∫
dDx eiq·x〈Ω|τj(m)

µ j(h)
ν |Ω〉 → i

∫
dDx eiq·x〈Ω|τj(m)

µ j(h)
ν |Ω〉

29



Diagram RI Diagram RII

Figure 2.2: Renormalization-induced Feynman diagrams that provide a LO pertur-
bative contribution to the mixed correlator. The square insertion denotes the cur-
rent (2.22).

+ i
C1

ε

∫
dDx eiq·x〈Ω|τj(m)

µ j(m)
ν |Ω〉+ i

C2

ε

∫
dDx eiq·x〈Ω|τj(m)

µ j(c)
ν |Ω〉. (2.24)

The last two terms on the right-hand side of (2.24) each generate a new renormalization-

induced Feynman diagram, the pair of which are shown in Figure 2.2. Note that a square

insertion represents the current (2.22). Evaluating these two diagrams and choosing C1 and

C2 such that the right-hand side of (2.24) is free of nonlocal divergences, we find

C1 = −10m2αs
9π

(2.25)

C2 =
4mαs

9π
(2.26)

as well as an updated expression for Π(I) from (2.13) that is free of nonlocal divergences

Π(I)(z) =
2αsm

4z

81π3

(
18(z − 1) 3F2

(
1, 1, 1; 3

2
, 3; z

)
− 2z(4z + 1) 3F2

(
1, 1, 2; 5

2
, 4; z

)
+ 3

(
3(4z + 1) log

(
m2

µ2

)
+ 26z + 6

)
2F1

(
1, 1; 5

2
; z
))

(2.27)

where, again, we have omitted polynomials in z as they will not contribute to the LSR.

In summary, taking operator mixing into account, the LO QCD expression Π(OPE) can be

decomposed as in (2.13) with the terms on the right-hand side given by (2.27) & (2.17)–(2.21).

30



2.3.3 QCD Laplace Sum-Rules

The function Π from (2.2) satisfies a dispersion relation

Π(Q2) =
Q6

π

∫ ∞
t0

ImΠ(t)

t3(t+Q2)
dt+ · · · , Q2 = −q2 > 0 (2.28)

where Π on the left-hand side is to be identified with the QCD prediction Π(OPE); ImΠ(t) is

the hadronic spectral function; t0 is the hadron threshold parameter; and · · · represents sub-

traction constants, collectively a quadratic polynomial in Q2. To eliminate these subtraction

constants as well as local divergences in Π(OPE) and to accentuate the resonance contributions

of the hadronic spectral function to the integral on the right-hand side of (2.28), we apply

the Borel transform

B̂ = lim
N,Q2→∞
τ=N/Q2

(
−Q2

)N
Γ(N)

(
d

dQ2

)N
(2.29)

with Borel parameter τ to formulate the 0th-order LSR [25]

R(τ) ≡ 1

τ
B̂
{

Π(Q2)
}

=

∫ ∞
t0

e−tτ
1

π
ImΠ(t)dt. (2.30)

On the right-hand side of (2.30), we use a “resonance(s) plus continuum” model

1

π
ImΠ(t) = ρ(had)(t) +

1

π
ImΠ(OPE)(t)θ(t− s0) (2.31)

where ρ(had) represents the resonance content of the spectral function (to be discussed further

in Section 2.3.4), θ is the Heaviside step function, and s0 is the continuum threshold. Then,

we define the continuum-subtracted 0th-order LSR

R(τ, s0) ≡ R(τ)−
∫ ∞
s0

e−tτ
1

π
ImΠ(OPE)(t)dt =

∫ s0

t0

e−tτρ(had)(t)dt. (2.32)

To compute R(τ, s0), we use the following identity relating the Borel transform to the

inverse Laplace transform L̂−1 [25]:

1

τ
B̂
{
f(Q2)

}
= L̂−1

{
f(Q2)

}
=

1

2πi

∫ c+i∞

c−i∞
f(Q2)eQ

2τdQ2 (2.33)
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where c is any real number for which f(Q2) is analytic for Re(Q2) > c. Generalized hyper-

geometric functions of the form pFp−1 have a branch cut along the positive real semi-axis

originating at the branch point z = 1. As such, in the complex Q2-plane, Π(OPE)(Q2) is ana-

lytic except for a branch cut along the negative real semi-axis originating at a branch point

Q2 = −4m2. In (2.33), we let f(Q2) = Π(OPE)(Q2) and deform the integration contour on

the right-hand side to that shown in Figure 2.3. Then, we apply definitions (2.30) and (2.32)

to find

R(τ, s0) =

∫ s0

4m2(1+η)

e−tτ
1

π
ImΠ(OPE)(t)dt+

1

2πi

∫
Γη

eQ
2τΠ(OPE)(Q2)dQ2 for η → 0+ (2.34)

where

ImΠ(OPE)(t) =
V I∑
i=I

ImΠ(i)(t) (2.35)

and, from (2.27) and (2.17)–(2.21), we get

ImΠ(I)(t) =
αs

18π2t
√
t− 4m2

(
24m3

√
t

4m2
− 1

(
2m4 − 2m2t+ t2

)
sinh−1

(√
t

4m2
− 1

)

+
√
t
(
t− 4m2

)(
18m4 + 8m2t− t2 + 6m2(t+m2)

)
log

(
m2

µ2

))
(2.36)

ImΠ(II)(t) =
m2

3
√
t(t− 4m2)

〈
αG2

〉
(2.37)

ImΠ(III)(t) =
t3 − 10m2t2 + 28m4t− 32m6

96πt3/2(t− 4m2)5/2

〈
g3G3

〉
(2.38)

ImΠ(IV)(t) =
−t3 + 11m2t2 − 50m4t+ 80m6

96πt3/2(t− 4m2)5/2

〈
g3G3

〉
(2.39)

ImΠ(V)(t) =
−t+ 6m2

96πt3/2(t− 4m2)3/2

〈
g3G3

〉
(2.40)

ImΠ(VI)(t) =
16πα2

s(t
3 − 10m2t2 + 28m4t− 32m6)

27t3/2(t− 4m2)5/2

〈
qq
〉2
. (2.41)

For both Π(I) and Π(II), the first integral on the right-hand side of (2.34) converges and the

second vanishes for η → 0+. For Π(III)–Π(VI), however, each integral diverges although their

sum is finite. To isolate this finite contribution, we first expand the imaginary parts (2.38)–
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Figure 2.3: The integration contour used to compute the LSR (2.34)

(2.41) near t = 4m2:

ImΠ(III)(t) + ImΠ(IV)(t) + ImΠ(V)(t) + ImΠ(VI)(t) =

−m
864π

√
t− 4m2

(
m2
(

27
〈
g3G3

〉
+ 1024π2α2

s

〈
qq
〉2
)

(t− 4m2)2
+

27
〈
g3G3

〉
− 1024π2α2

s

〈
qq
〉2

8(t− 4m2)
+ p(t)

)
(2.42)

where

p(t) =
−27

8(2m+
√
t)2t3/2

(
16m3 + 16m2

√
t+ 4mt+ t3/2

)〈
g3G3

〉
+

1024π2α2
s

8m(2m+
√
t)2t3/2

(
32m4 + 32m3

√
t− 4m2t− 15mt3/2 − 4t2

)〈
qq
〉2

(2.43)

is analytic in a neighbourhood about t = 4m2. When (2.42) is inserted into the first integral

on the right-hand side of (2.34), the part of the result stemming from the p(t) term converges

whereas the parts stemming from the (t− 4m2)−2 and (t− 4m2)−1 terms diverge. Focusing

on these divergent parts, we have

∫ s0

4m2(1+η)

e−tτ
1

π

(
−m

864π
√
t− 4m2

(m2
(

27
〈
g3G3

〉
+ 1024π2α2

s

〈
qq
〉2
)

(t− 4m2)2
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+
27
〈
g3G3

〉
− 1024π2α2

s

〈
qq
〉2

8(t− 4m2)

))
dt

=
e−4m2τ

10368π2

(
−

27
〈
g3G3

〉
+ 1024π2α2

s

〈
qq
〉2

η3/2

+
3
(

27(8m2τ − 1)
〈
g3G3

〉
+ 1024(8m2τ + 1)π2α2

s

〈
qq
〉2
)

2η1/2

)

+
m e−4m2τ

384π2

(
√
πτ
(

3− 8m2τ
)

erf
(√

(s0 − 4m2)τ
)

+
e−s0 τ

(s0 − 4m2)3/2

(
− 8es0 τm2

√
π
(
(s0 − 4m2)τ

)3/2
+ e4m2 τ

(
3s0 + 32m4τ − 8m2(1 + s0τ)

)
+ 6es0 τm2 E5/2

(
(s0 − 4m2)τ

)))〈
g3G3

〉
+

8 αs m e−4m2τ

81

(
−
√
πτ
(

3− 8m2τ
)

erf
(√

(s0 − 4m2)τ
)

+
e−s0 τ

(s0 − 4m2)3/2

(
− 24es0 τm2

√
π
(
(s0 − 4m2)τ

)3/2
+ e4m2 τ

(
− 3s0 + 8m2(1− 4m2τ + s0τ)

)
+ 18es0 τm2 E5/2

(
(s0 − 4m2)τ

)))〈
qq
〉2

(2.44)

for η → 0+. In (2.44), erf is the error function and En is the exponential integral function

erf(z) =
2√
π

∫ z

0

e−t
2

dt (2.45)

En(z) =

∫ ∞
1

e−zt

tn
dt. (2.46)

On the right-hand side of (2.44), note that the terms proportional to η−3/2 and η−1/2 diverge

whereas the remaining terms are finite. Next, we consider the contributions of Π(III)–Π(VI)

to the second integral on the right-hand side of (2.34). Parameterizing

Q2 = −4m2 + 4m2ηeiθ (2.47)

for θi = −π+ to θf = π−, we find that

1

2πi

∫
Γη

eQ
2τ
(

Π(III)(Q2) + Π(IV)(Q2) + Π(V)(Q2) + Π(VI)(Q2)
)
dQ2
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= − e−4m2τ

10368π2

(
−

27
〈
g3G3

〉
+ 1024π2α2

s

〈
qq
〉2

η3/2

+
3
(

27(8m2τ − 1)
〈
g3G3

〉
+ 1024(8m2τ + 1)π2α2

s

〈
qq
〉2
)

2η1/2

)
+
e−4m2τ

384π2

〈
g3G3

〉
(2.48)

for η → 0+. When (2.44) and (2.48) are added together, the divergent terms which go like

η−3/2 and η−1/2 cancel leaving a finite result. Finally, collecting together (2.34), (2.35), (2.42),

(2.44), and (2.48), we have

R(τ, s0) =

∫ s0

4m2

e−tτ
1

π

(
ImΠ(I)(t) + ImΠ(II)(t)− m p(t)

864π
√
t− 4m2

)
dt

+
m e−4m2τ

384π2

(
1

m
+
√
πτ
(

3− 8m2τ
)

erf
(√

(s0 − 4m2)τ
)

+
e−s0 τ

(s0 − 4m2)3/2

(
− 8es0 τm2

√
π
(
(s0 − 4m2)τ

)3/2
+ e4m2 τ

(
3s0 + 32m4τ − 8m2(1 + s0τ)

)
+ 6es0 τm2 E5/2

(
(s0 − 4m2)τ

)))〈
g3G3

〉
+

8 αs m e−4m2τ

81

(
−
√
πτ
(

3− 8m2τ
)

erf
(√

(s0 − 4m2)τ
)

+
e−s0 τ

(s0 − 4m2)3/2

(
− 24es0 τm2

√
π
(
(s0 − 4m2)τ

)3/2
+ e4m2 τ

(
− 3s0 + 8m2(1− 4m2τ + s0τ)

)
+ 18es0 τm2 E5/2

(
(s0 − 4m2)τ

)))〈
qq
〉2

(2.49)

where, again, p(t) is given in (2.43), and the imaginary parts ImΠ(I) and ImΠ(II) are given

in (2.36) and (2.37). The integral on the right-hand side of (2.49) can be evaluated analyti-

cally; however, the result is long and so we omit it for the sake of brevity.

Renormalization-group improvement [55] implies that the strong coupling and quark mass

in the simplified (2.34) get replaced by corresponding running quantities evaluated at renor-

malization scale µ, i.e., αs → αs(µ) and m→ mc,b(µ). At one-loop in the MS renormalization

scheme, we have for charmonium

αs(µ) =
αs(Mτ )

1 + 25αs(Mτ )
12π

log
(
µ2

M2
τ

) (2.50)
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mc(µ) = mc

(
αs(µ)

αs(mc)

)12/25

(2.51)

and for bottomonium

αs(µ) =
αs(MZ)

1 + 23αs(MZ)
12π

log
(
µ2

M2
Z

) (2.52)

mb(µ) = mb

(
αs(µ)

αs(mb)

)12/23

(2.53)

where [4]

αs(Mτ ) = 0.330± 0.014 (2.54)

αs(MZ) = 0.1185± 0.0006 (2.55)

mc = (1.275± 0.025) GeV (2.56)

mb = (4.18± 0.03) GeV. (2.57)

For charmonium, we set µ to mc; for bottomonium, we set µ to mb. Finally, we use the

following values for the gluon and quark condensates [56, 57, 58]:

〈
αG2

〉
= (0.075± 0.02) GeV4 (2.58)〈

g3G3
〉

= ((8.2± 1.0) GeV2)
〈
αG2

〉
(2.59)〈

qq
〉

= −(0.23± 0.03)3 GeV3. (2.60)

2.3.4 Analysis and Results

To extract hadron properties from the LSR (2.49) we must first select an acceptable range

of τ values, i.e., a Borel interval (τmin, τmax). To do so, we follow the same methodology as

in [47, 48, 59, 60]. To choose τmax, we demand that the LSR converge in the following sense:

the magnitude of the 4d gluon condensate contribution (stemming from Π(II)) must be less

than one-third that of the perturbative contribution (stemming from Π(I)), and the magnitude

of the sum of the 6d gluon and quark condensate contributions (stemming from Π(III)–Π(VI))
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must be less than one-third that of 4d gluon condensate contribution. For charmonium, we

find τmax = 0.6 GeV−2; for bottomonium, we find τmax = 0.2 GeV−2. To choose τmin, we

consider the pole contribution
R(τ, s0)

R(τ, ∞)
, (2.61)

i.e., the ratio of the LSR’s hadron contribution to its hadron plus continuum contribution,

and demand that it be at least 10%. In both the charmonium and bottomonium analyses,

the value of τmin selected using this prescription depends weakly on s0, a parameter not

known at the outset. Hence, we first choose reasonable seed values for s0: s0 = 25 GeV2

for charmonium and s0 = 130 GeV2 for bottomonium. When input into (2.61), these two

seed values correspond to τmin = 0.1 GeV−2 for charmonium and τmin = 0.01 GeV−2 for

bottomonium. After making predictions for s0 through the optimization procedure explained

below, we then update τmin using the new, predicted value of s0. In all cases considered, the

effect on τmin was insignificant.

Next, we turn our attention to ρ(had) from (2.31). As ρ(had) represents the resonance(s)

portion of the hadronic spectral function, it contains those hadrons which couple to both

the meson current (2.3) and the hybrid current (2.4). Such hadrons can be thought of as

mixtures that have a qq-meson and a hybrid component. Our analysis approach is to input

known vector heavy quarkonium resonances into ρ(had) in order to test them for meson-hybrid

mixing. In Table 2.1, we list all vector charmonium resonances that have a Particle Data

Group entry in [4], and in Table 2.2, we do the same for bottomonium. (Note that, in

Table 2.1, states named with a ψ or J/ψ have IG = 0− whereas those named with an X have

unknown IG.) All resonances listed in the two tables have widths . 100 MeV. In general,

LSRs are insensitive to resonance widths of up to several hundred MeV, and so, we ignore the

widths of individual resonances. But, for a cluster of resonances for which the mass difference

between successively heavier states is . 250 MeV, we amalgamate the cluster into a single

resonance with nonzero effective width. And so, we consider a variety of ρ(had) of the form

ρ(had)(t) =
n∑
i=1

ρ
(had)
i (t) (2.62)

where n is the number of distinct resonances (or clusters of resonances) and where each ρ
(had)
i
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Table 2.1: Particle Data Group masses of vector charmonium resonances [4].

Name Mass (GeV)

J/ψ 3.10

ψ(2S) 3.69
ψ(3770) 3.77

ψ(4040) 4.04
ψ(4160) 4.19
X(4230) 4.23
X(4260) 4.23
X(4360) 4.34
ψ(4415) 4.42
X(4660) 4.64

is either a narrow (Γi = 0) resonance

ρ
(had)
i (t) = ξiδ(t−m2

i ) (2.63)

or, for a resonance cluster, a rectangular pulse

ρ
(had)
i (t) =

ξi
2miΓi

θ
(
t−mi(mi − Γi)

)
θ
(
mi(mi + Γi)− t

)
(2.64)

with effective width Γi 6= 0 in which the resonance strength is uniformly distributed over

mi(mi − Γi) < t < mi(mi + Γi). The {ξi}ni=1 are mixing parameters related to the combined

effect of coupling to the hybrid and qq-meson currents. A state with both qq-meson and

hybrid components has ξi 6= 0; a pure qq-meson or pure hybrid state has ξi = 0. The specific

models for which we present results are defined for the charmonium and bottomonium sectors

in Tables 2.3 and 2.4 respectively.

Substituting (2.62) into (2.32) gives

R(τ, s0) =
n∑
i=1

∫ s0

4m2

e−tτρ
(had)
i (t)dt (2.65)
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Table 2.2: Particle Data Group masses of vector bottomonium resonances [4].

Name Mass (GeV)

Υ(1S) 9.46

Υ(2S) 10.02

Υ(3S) 10.34
Υ(4S) 10.58

Υ(10860) 10.89
Υ(11020) 10.99

Table 2.3: A representative collection of hadron models analyzed in the charmonium
sector.

Model m1 Γ1 m2 Γ2 m3 Γ3

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

1 3.10 0 - - - -
2 3.10 0 3.73 0 - -
3 3.10 0 3.73 0 4.30 0
4 3.10 0 3.73 0 4.30 0.30
5 3.10 0 3.73 0.05 4.30 0.30
6 3.10 0 - - 4.30 0
7 3.10 0 - - 4.30 0.30

Table 2.4: A representative collection of hadron models analyzed in the bottomonium
sector.

Model m1 Γ1 m2 Γ2 m3 Γ3

(GeV) (GeV) (GeV) (GeV) (GeV) (GeV)

1 9.46 0 - - - -
2 9.46 0 10.02 0 - -
3 9.46 0 10.02 0 10.47 0
4 9.46 0 10.02 0 10.47 0.22
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where ∫ s0

4m2

e−tτρ
(had)
i (t)dt =

ξie
−m2

i τ , Γi = 0

ξie
−m2

i τ
sinh
(
miΓiτ

)
miΓiτ

, Γi 6= 0

. (2.66)

As a specific example, consider a ρ(had) that has three resonances with masses {m1, m2, m3}.

If the first two resonances are narrow (i.e., Γ1 = Γ2 = 0) and the third has Γ3 6= 0, then

ρ(had)(t) = ξ1δ(t−m2
1) + ξ2δ(t−m2

2) +
ξ3

2m3Γ3

θ
(
t−m3(m3−Γ3)

)
θ
(
m3(m3 + Γ3)− t

)
(2.67)

and

R(τ, s0) = ξ1e
−m2

1τ + ξ2e
−m2

2τ + ξ3e
−m2

3τ
sinh

(
m3Γ3τ

)
m3Γ3τ

. (2.68)

For particular choices of {mi}ni=1 and {Γi}ni=1, the quantities {ξi}ni=1 and s0 are extracted

as best-fit parameters to (2.65). More precisely, we partition the Borel interval (τmin, τmax)

into N = 20 equal length subintervals with {τj}Nj=0 and define

χ2(ξ1, . . . , ξn, s0) =
N∑
j=0

(
R(τj, s0)−

n∑
i=1

∫ s0

4m2

e−tτjρ
(had)
i (t)dt

)2

. (2.69)

With the specific ρ(had)(t) given in (2.67), for example, eqn. (2.69) becomes

χ2(ξ1, ξ2, ξ3, s0) =
N∑
j=0

(
R(τj, s0)− ξ1e

−m2
1τj − ξ2e

−m2
2τj − ξ3e

−m2
3τj

sinh
(
m3Γ3τj

)
m3Γ3τj

)2

. (2.70)

Minimizing (2.69) gives predictions for {ξi}ni=1 and s0 corresponding to the best fit agreement

between QCD and the hadronic model in question. For the models defined in Tables 2.3

and 2.4, our results are shown in Tables 2.5 and 2.6 respectively. Rather than present each

ξi, we instead present ζ and ξi
ζ

where

ζ =
n∑
i=1

|ξi|. (2.71)

The errors included are associated with the strong coupling reference values (2.54)–(2.55),

the quark mass parameters (2.56)–(2.57), the condensates (2.58)–(2.60), and an allowed
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Table 2.5: Predicted mixing parameters with their theoretical uncertainties and con-
tinuum thresholds for hadron models defined in Table 2.3.

Model s0 χ2 × 106 ζ ξ1
ζ

ξ2
ζ

ξ3
ζ

(GeV2) (GeV12) (GeV6)

1 12.5 4.33 0.514(21) 1 - -
2 13.9 3.17 0.734(40) 0.726(34) 0.274(34) -
3 24.1 0.164 2.88(25) 0.215(12) −0.022(49) 0.762(30)
4 24.2 0.162 2.97(26) 0.210(12) −0.032(48) 0.758(25)
5 24.2 0.162 2.97(26) 0.210(12) −0.032(48) 0.758(25)
6 23.7 0.184 2.68(25) 0.228(19) - 0.772(19)
7 23.6 0.204 2.66(25) 0.228(20) - 0.772(19)

Table 2.6: Predicted mixing parameters with their theoretical uncertainties and con-
tinuum thresholds for hadron models defined in Table 2.4.

Model s0 χ2 × 104 ζ ξ1
ζ

ξ2
ζ

ξ3
ζ

(GeV2) (GeV12) (GeV6)

1 107 42.0 140(3) 1 - -
2 100 36.5 189(9) 0.774(14) −0.226(14) -
3 132 0.0860 1377(33) 0.203(2) −0.380(3) 0.418(5)
4 132 0.0879 1375(32) 0.203(2) −0.379(3) 0.418(5)

±0.1 GeV variability in the renormalization scale [61]. We also allow for the end points

of the Borel interval to vary by half the value of τmin, i.e., 0.05 GeV−2 in the charmonium

sector and 0.005 GeV−2 in the bottomonium sector. We don’t vary κ from (2.11) as the

numerical contribution to the LSR (2.49) stemming from the 6d quark condensate diagram

is negligible. Our results are most sensitive to varying the quark mass parameters.

2.3.5 Discussion

As can be seen from Tables 2.5 and 2.6, in both the charmonium and bottomonium sectors,

the inclusion of a third heavy resonance cluster in the analysis significantly improves the

fit between QCD and experiment as measured by (2.69). The improvement is particularly

dramatic for bottomonium. It is important to note that these third resonance clusters make

large contributions to the LSR, i.e., the right-hand side of (2.65), despite the fact that high

mass states are suppressed relative to low mass states due to the exponentially decaying
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kernel. As a quantitative measure of the excited state signal strength, consider

∫ s0
4m2 e

−tτρ
(had)
3 (t)dt∑3

i=1

∣∣∣∫ s04m2 e−tτρ
(had)
i (t)dt

∣∣∣ , (2.72)

the ratio of the third resonance’s net contribution to the LSR to the sum (of the magni-

tudes) of the contributions made by all three resonances. In the charmonium sector, evaluat-

ing (2.72) for model 3 from Table 2.5 gives 0.43. In the bottomonium sector, evaluating (2.72)

for model 3 from Table 2.6 gives 0.35. Thus the signal strength of the excited state is signif-

icant, as expected by its clear effect of reducing the χ2-values in Tables 2.5 and 2.6.

Including one or more resonance widths in the analysis has almost no impact on the

quality of fit between QCD and experiment as can be seen from the value of the minimized

χ2 of model 3–5 in Table 2.5 and models 3–4 in Table 2.6. This is unsurprising given the

general insensitivity of LSRs to resonance width.

In both charmonium and bottomonium sectors, including a fourth resonance or resonance

cluster in ρ(had) leads to a χ2 that minimizes at s0 ≈ m2
4, i.e., the heaviest resonance essentially

merges with the continuum, contrary to the initial assumption articulated in (2.31) that

there is a separation between resonance physics and the continuum. Furthermore, as can

be seen from both Tables 2.5 and 2.6, the two-resonance scenario model 2 also suffers from

this problem which gives us another reason to disfavour it compared to the three-resonance

models.

Focusing on the three-resonance models in the charmonium sector (model 3–5 in Ta-

ble 2.5), we find a nonzero mixing parameter for the J/ψ; essentially no evidence for mixing

in the ψ(2S), ψ(3770) resonance cluster; and a large mixing parameter corresponding to a

resonance (or resonance cluster) of mass (or average mass) 4.3 GeV. We investigated the

effect of varying the mass of the third resonance, m3, from 4.0 GeV–4.6 GeV. We found that

the minimum value of the χ2 was indeed lowest for m3 = 4.3 GeV, about one-third the value

for either m3 = 4.0 GeV or m3 = 4.6 GeV.

Given the lack of evidence for meson-hybrid mixing in the ψ(2S), ψ(3770) resonance

cluster, it is reasonable to exclude it from ρ(had). As can be seen from models 6–7 in Table 2.5,

doing so has a small effect on the fitted values of ξ1, ξ3, and s0 as well as the minimum value
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of the χ2.

Focusing on the three-resonance models in the bottomonium sector (models 3–4 in Ta-

ble 2.6), we find a nonzero mixing parameter for all three resonances, i.e., the Υ(1S), the

Υ(2S), and the Υ(3S), Υ(4S) resonance cluster, indicating that all have qq-meson and hybrid

components.

In summary, the best agreement between our QCD predictions and experiment is achieved

with three-resonance models in both the charmonium and the bottomonium sectors although,

in the charmonium sector, omitting the second heaviest resonance cluster has minimal effect

on the results. In fact, qq-meson-hybrid mixing in the charmonium sector is well-described by

a two resonance model consisting of the J/ψ and a second state with mass 4.3 GeV. It has been

hypothesized that the X(4260) might be a resonance with a significant hybrid component [62,

63, 36]. Our results are certainly consistent with this idea. In the bottomonium sector, our

results indicate that there is nonzero qq-meson-hybrid mixing in the Υ(1S), the Υ(2S), and

in the Υ(3S), Υ(4S) pair.
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2.4 1++ Initial Discussion

In the second paper in this series, we turn our attention to meson-hybrid mixing in JPC = 1++

heavy quarkonium. In Tables 2.7 and 2.8, we can see the known resonance masses that we

will use as inputs into our model. It is these resonances that will now be probed for meson-

hybrid mixing. The computation of the cross-correlator and subsequent generation of the

LSR in [2] follow quite closely from the work done in [1].
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I played a leading role in the work presented in this manuscript. In the second paper in this

series I again calculated the cross-correlator, generated the Laplace sum-rule, built models of

the hadronic spectra in question and performed the analysis to extract the mixing parameters.

However here I also wrote the first draft of the manuscript and made significant contributions

to subsequent edits.

2.5 Manuscript: Meson-Hybrid Mixing in JPC = 1++

Heavy Quarkonium from QCD Sum-Rules

Abstract: We explore conventional meson-hybrid mixing in JPC = 1++ heavy

quarkonium using QCD Laplace sum-rules. We calculate the cross-correlator be-

tween a heavy conventional meson current and heavy hybrid current within the

operator product expansion, including terms proportional to the four- and six-

dimensional gluon condensates and the six-dimensional quark condensate. Using

experimentally determined hadron masses, we construct models of the 1++ char-

monium and bottomonium mass spectra. These models are used to investigate

which resonances couple to both currents and thus exhibit conventional meson-

hybrid mixing. In the charmonium sector, we find almost no conventional meson-

hybrid mixing in the χc1(1P ), minimal mixing in the X(3872), and significant

mixing in both the X(4140) and X(4274). In the bottomonium sector, we find

minimal conventional meson-hybrid mixing in the χb1(1P ) and significant mixing
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in both the χb1(2P ) and χb1(3P ).

2.5.1 Introduction

Hybrids are hadrons which consist of a quark-antiquark pair and exhibit explicit gluon degrees

of freedom. Hybrids are allowed by QCD as they are colour singlets; however, they have not

yet been definitively experimentally identified [28].

Hybrids can be classified by JPC , quantum numbers that can be separated into two

categories, non-exotic and exotic, depending on whether the quantum numbers are accessible

to conventional (quark-antiquark) mesons or not. Hybrids with exotic JPC would not be able

to quantum mechanically mix with conventional mesons; however, hybrids with non-exotic

quantum numbers can potentially mix with conventional mesons. This mixing would result

in hadrons that are superpositions of both conventional meson and hybrid.

In this article, we extend our work from [64] on vector (i.e., 1−−) conventional meson-

hybrid mixing to axial vector (i.e., 1++) charmonium (cc) and bottomonium (bb). Of par-

ticular interest in the charmonium sector is the X(3872) [65, 4], the first of the XYZ reso-

nances [66, 67, 68, 69, 38], a collection of charmonium-like hadrons many of which are not

easily accommodated by the constituent quark model. The X(3872) has been studied in

the context of conventional meson-tetraquark mixing [70] as well as tetraquark-hybrid mix-

ing [71] (see also [72, 73] for other approaches to mixing). Our analysis complements these

two by considering conventional meson-hybrid mixing. At present, the 1++ channel is the

only channel other then the 1−− with enough experimentally observed resonances to allow

for the multi-resonance analysis methods of [64].

We use the operator product expansion (OPE) [15] to compute the cross-correlator be-

tween a heavy conventional meson current and a heavy hybrid current. In this calculation

we include leading-order (LO) contributions from perturbation theory and non-perturbative

corrections proportional to the four-dimensional (4d) and 6d gluon condensates as well as

the 6d quark condensate. Then, using QCD Laplace sum-rules (LSRs) [25, 42, 43, 44], we

analyze several single and multi-resonance models of the 1++ charmonium and bottomonium

mass spectra. These models take known resonance masses as inputs and allow us to probe
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the resonances to determine whether they couple to both the conventional meson current and

the hybrid current. Resonances which couple to both currents are considered to be quantum

mechanical mixtures of conventional meson and hybrid. The QCD sum-rules methodology

has been applied to hadron mixing in a number of systems [64, 45, 46, 47, 74].

We find that multi-resonance models which include excited states in addition to the

ground state lead to a significant improvement in agreement between QCD and experiment

when compared to single resonance models. We show explicitly that the higher mass states

make numerically significant contributions to the LSRs despite the LSR’s exponential sup-

pression of such resonances. In the charmonium sector, we find very little conventional

meson-hybrid mixing in the χc1(1P ), minimal mixing in the X(3872), and large mixing in

both the X(4140) and the X(4274). In the bottomonium sector, we find minimal conventional

meson-hybrid mixing in the χb1(1P ) and large mixing in both the χb1(2P ) and χb1(3P ).

2.5.2 The Correlator

For the conventional meson current

j(m)
µ = Qγµγ

5Q (2.73)

and the hybrid current [49]

j(h)
ν =

gs
2
QγρλaG̃a

νρQ (2.74)

where Q is a heavy quark (i.e., charm or bottom) field and

G̃a
νρ =

1

2
ενρωζG

a
ωζ (2.75)

is the dual gluon field strength tensor, we consider the cross-correlator

Πµν(q) = i

∫
d4x eiq·x 〈0|τ j(m)

µ (x) j(h)
ν (0)|0〉 (2.76)

=
qµqν
q2

Π0(q2) +

(
qµqν
q2
− gµν

)
Π1(q2). (2.77)
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In (2.77), the function Π0(q2) probes spin-0 states and Π1(q2) probes spin-1 states. We focus

on Π1(q2) as we are interested in probing 1++ states.

We evaluate the cross-correlator (2.76) within the OPE where perturbation theory is

supplemented by non-perturbative corrections. Each of these non-perturbative corrections

is the product of a perturbatively computed Wilson coefficient and a QCD condensate. We

include terms proportional to the 4d and 6d gluon condensates and the 6d quark condensate

defined respectively as follows:

〈
αG2

〉
= αs

〈
:Ga

ωφG
a
ωφ:
〉

(2.78)

〈
g3G3

〉
= g3

sf
abc
〈
:Ga

ωζ G
b
ζρG

c
ρω:
〉

(2.79)〈
J2
〉

= Tr
(〈

: JνJν:
〉)

(2.80)

with

Jν =
−ig2

s

4
λa
∑
A

qAλaγνq
A (2.81)

where, in (2.81), q is a light quark (i.e., up, down, or strange) field and the sum is over

flavours. We use the vacuum saturation hypothesis [25] to express 〈J2〉 in terms of the 3d

quark condensate 〈
qq
〉

=
〈
: qαi q

α
i :
〉

(2.82)

resulting in 〈
J2
〉

=
2

3
κ g4

s

〈
qq
〉2

(2.83)

where κ quantifies deviations from vacuum saturation. As in [64], we set κ = 2 [44].

The diagrams that contribute to (2.76) at LO are given in Figure 2.4. Each diagram is

multiplied by two to account for additional diagrams in which the quark lines run in the

opposite directions. Diagram IV gets another factor of two due to symmetry under exchange

of the two interaction vertices. We calculate Wilson coefficients via fixed-point gauge meth-

ods [50, 51], and divergent integrals are dealt with through dimensional regularization in

D = 4+2ε dimensions at MS-scale µ. The Mathematica package TARCER [53] which imple-

ments the recurrence relations of [17, 18] is used to express results in terms of known master
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Diagram I Diagram II Diagram III

Diagram IV Diagram V Diagram VI

Figure 2.4: Feynman diagrams that contribute to the cross-correlator (2.76) at LO.

integrals including those of [20, 21]. Following [52] we use the γ5 convention

γ5 =
i

24
εµνσργ

µγνγσγρ. (2.84)

The OPE computation of Π1 from (2.77), denoted Π(OPE), is decomposed as

Π(OPE) = Π(I) + Π(II) + Π(III) + Π(IV) + Π(V) + Π(VI) (2.85)

where the superscripts in (2.85) correspond to the labels of the diagrams in Figure 2.4.

For Π(I), the ε-dependent result is given by

Π(I)(z; ε) =
αs m

4(1+ε)(1 + ε)Γ2(−1− ε)
6π3z(3 + 2ε)2(4 + 3ε)(4π)2ε

(

− 12z(ε+ 1)(2ε+ 1)(3ε+ 4)
(
z(4ε+ 5)− 2ε2 − 7ε− 5

)
2F1

(
1,−ε; 3

2
; z

)
+
(
4z2(ε+ 1)(2ε+ 3)(7ε+ 8) + z(2ε+ 1)(ε(4ε+ 7) + 4) + (ε+ 2)(2ε+ 1)(4ε+ 5)

)
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× 3F2

(
1,−2ε− 1,−ε; 1

2
− ε, ε+ 2; z

)
+ 2(z − 1)(2ε+ 1)(z(ε(8ε+ 19) + 12) + (ε+ 2)(4ε+ 5)) 3F2

(
1,−2ε,−ε; 1

2
− ε, ε+ 2; z

))
(2.86)

where

z =
q2

4m2
, (2.87)

and all polynomials in z have been omitted as they will not contribute to the LSR. In (2.86),

m is a heavy quark mass, Γ is the Gamma function, and pFq(· · · ; · · · ; z) are generalized

hypergeometric functions [54]. Expanding (2.86) in ε, we find

Π(I)(z) =
20αsm

4z(z − 1) 2F1

(
1, 1; 5

2
; z
)

27π3

1

ε
+

d

dε
Π(I)(z; ε)

∣∣∣
ε=0
. (2.88)

We do not include an explicit expression for the derivative term on the right-hand side

of (2.88) as it will be replaced by (2.99) shortly. Expanding the remaining terms from (2.85)

in ε, we find

Π(II)(z) =
z
(

3− 2F1

(
1, 1; 5

2
; z
))

36π(z − 1)

〈
αG2

〉
(2.89)

Π(III)(z) =

(
− 3 (44z2 − 108z + 73) + (24z3 − 56z2 + 38z + 3) 2F1

(
1, 1; 5

2
; z
))

13824π2m2(z − 1)3

〈
g3G3

〉
(2.90)

Π(IV)(z) =

〈
g3G3

〉
13824π2m2(z − 1)2

(
132z − 183 +

(
−24z2 + 38z + 3

)
2F1

(
1, 1; 5

2
; z
))

(2.91)

Π(V)(z) =

〈
g3G3

〉
4608π2m2(z − 1)2

(
12z − 15− (2z − 3) 2F1

(
1, 1; 5

2
; z
))

(2.92)

Π(VI)(z) =
4α2

s

〈
qq
〉2

243m2(z − 1)3

(
3
(
44z2 − 108z + 73

)
−
(
24z3 − 56z2 + 38z + 3

)
2F1

(
1, 1; 5

2
; z
))
.

(2.93)

The perturbative result (2.88) contains a nonlocal divergence. We eliminate this nonlocal
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Diagram RI Diagram RII

Figure 2.5: Renormalization-induced Feynman diagrams resulting from (2.96). The
square insertion denotes the current (2.94).

divergence through operator mixing under renormalization as in [64, 47, 74]. The meson

current (2.73) is renormalization-group (RG) invariant, and so we only need to consider the

operator mixing of the hybrid current (2.74). The only operators that can mix with (2.74)

and possibly generate nonzero contributions to the LO renormalized correlator are j
(m)
ν given

in (2.73) and

j(c)
ν = Qiγ5DνQ (2.94)

where Dν = ∂ν − i
2
gsλ

aAaν is the covariant derivative. Then, the replacement

j(h)
ν → j(h)

ν + Z1 j
(m)
ν + Z2 j

(c)
ν (2.95)

for renormalization constants Z1 and Z2 must result in a perturbative contribution free of

nonlocal divergences. Substituting (2.95) into (2.76) in D dimensions gives

i

∫
dDx eiq·x〈Ω|τj(m)

µ j(h)
ν |Ω〉 → i

∫
dDx eiq·x〈Ω|τj(m)

µ j(h)
ν |Ω〉

+ i Z1

∫
dDx eiq·x〈Ω|τj(m)

µ j(m)
ν |Ω〉+ i Z2

∫
dDx eiq·x〈Ω|τj(m)

µ j(c)
ν |Ω〉. (2.96)

The two terms in (2.96) containing Z1 and Z2 each generate a renormalization-induced dia-

gram, both of which are shown in Figure 2.5. Evaluating these two diagrams and selecting

Z1 and Z2 such that the right-hand side of (2.96) is free of nonlocal divergences, we find
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Z1 = −10m2αs
9πε

(2.97)

Z2 = −4mαs
9πε

. (2.98)

Substituting (2.97) and (2.98) into (2.96) and expanding in ε gives a renormalized expression

Π(I)(z) =
m4αs
243π3

(
9(6z2 − z − 5) 3F2

(
1, 1, 1; 3

2
, 3; z

)
− z

(
48z2 + 2z + 5

)
3F2

(
1, 1, 2; 5

2
, 4; z

)
+ 9z

(
20(z − 1) log

(
m2

µ2

)
+ 8z + 5

)
2F1

(
1, 1; 5

2
; z
))

(2.99)

where, again, we have omitted polynomials in z as they will not contribute to the LSR.

Finally, collecting (2.89)–(2.93) and (2.99) and then substituting them into (2.85) gives

us the LO expression for Π(OPE) up to 6d condensates.

2.5.3 QCD Laplace Sum-Rules

For Euclidean momentum Q2 = −q2 > 0, the quantity Π1 from (2.77) satisfies the dispersion

relation

Π(Q2) =
Q6

π

∫ ∞
t0

ImΠ(t)

t3(t+Q2)
dt+ · · · (2.100)

where Π on the left-hand side represents the QCD result Π(OPE) and ImΠ(t) on the right-

hand side is the hadronic spectral function. Equation (2.100) is a statement of quark-hadron

duality and allows us to interpret QCD information contained in the cross-correlator in the

context of hadrons. In (2.100), t0 is the hadron production threshold and the · · · represents

unknown subtraction constants (a polynomial in Q2). To eliminate these subtraction con-

stants, eliminate local divergences in Π(OPE), and accentuate the resonance contributions of

the hadronic spectral function, we apply to (2.100) the Borel transform

B̂ = lim
N,Q2→∞
τ=N/Q2

(
−Q2

)N
Γ(N)

(
d

dQ2

)N
(2.101)
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where τ is the Borel parameter. This results in the formation of the 0th-order LSR [25]

R(τ) ≡ 1

τ
B̂
{

Π(Q2)
}

=

∫ ∞
t0

e−tτ
1

π
ImΠ(t)dt. (2.102)

We then introduce a “resonance(s) plus continuum” model

1

π
ImΠ(t)→ ρ(had)(t) +

1

π
ImΠ(OPE)(t)θ(t− s0) (2.103)

where ρ(had) represents the resonance portion of the spectral function, θ is the Heaviside step

function, and s0 is the continuum threshold, and define the continuum-subtracted 0th-order

LSR

R(τ, s0) ≡ R(τ)−
∫ ∞
s0

e−tτ
1

π
ImΠ(OPE)(t)dt =

∫ s0

t0

e−tτρ(had)(t)dt. (2.104)

To compute R(τ, s0), we exploit the following relation between the Borel transform and

the inverse Laplace transform L̂−1 [25]:

1

τ
B̂
{
f(Q2)

}
= L̂−1

{
f(Q2)

}
=

1

2πi

∫ c+i∞

c−i∞
f(Q2)eQ

2τdQ2
(2.105)

where c ∈ R is selected such that f(Q2) is analytic for Re(Q2) > c. Generalized hyperge-

ometric functions of the form pFp−1(z), (such as those appearing in Π(OPE)) have a branch

cut originating at the branch point z = 1 that extends along the positive real semi-axis.

As such, in the complex Q2-plane, Π(OPE) is analytic everywhere except along the negative

real semi-axis for z < −Q2/(4m2). In (2.105), we let f → Π(OPE) and warp the contour of

integration to that shown in Figure 2.6. We then apply definitions (2.102) and (2.104) to get

R(τ, s0) =

∫ s0

4m2(1+η)

e−tτ
1

π
ImΠ(OPE)(t)dt+

1

2πi

∫
Γη

eQ
2τΠ(OPE)(Q2)dQ2 for η → 0+

(2.106)

where

ImΠ(OPE)(t) =
V I∑
i=I

ImΠ(i)(t) (2.107)
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Figure 2.6: The contour of integration used in the evaluation of the LSR (2.106)

and, from (2.89)–(2.93) and (2.99)

ImΠ(I)(t) =
αs

108π2t2
√
t− 4m2

(
12m2

√
t− 4m2

(
20m6 − 6m4t− 6m2t2 + 5t3

)
sinh−1

(
1

2m

√
t− 4m2

)

+
√
t
(
t− 4m2

)(
60m6 + 22m4t− 7m2t2 + 30m2t

(
t− 4m2

)
log

(
m2

µ2

)
− 6t3

))
(2.108)

ImΠ(II)(t) =
−m2

6
√
t(t− 4m2)

〈
αG2

〉
(2.109)

ImΠ(III)(t) =
24m6 + 76m4t− 28m2t2 + 3t3

288πt3/2(t− 4m2)5/2

〈
g3G3

〉
(2.110)

ImΠ(IV)(t) =
6m4 + 19m2t− 3t2

288πt3/2(t− 4m2)3/2

〈
g3G3

〉
(2.111)

ImΠ(V)(t) =
m2(6m2 − t)

96πt3/2(t− 4m2)3/2

〈
g3G3

〉
(2.112)

ImΠ(VI)(t) =
−64πα2

s(24m6 + 76m4t− 28m2t2 + 3t3)

81t3/2(t− 4m2)5/2

〈
qq
〉2
. (2.113)

Evaluating the integrals on the right-hand side of (2.106) for all six OPE terms leads to

several divergences in η that, when summed, delicately cancel leaving us with a finite LSR.

A detailed treatment of the evaluation of (2.106) for similar inputs is available in [64]. Here,

for the sake of brevity, we omit these details and present the LSR:
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R(τ, s0) =

∫ s0

4m2

e−tτ
1

π

(
ImΠ(I)(t) + ImΠ(II)(t) + p(t)

)
dt

− m e−4m2τ

384π2

(
√
πτ
(

3− 8m2τ
)

erf
(√

(s0 − 4m2)τ
)

+
162e−s0 τ

(s0 − 4m2)3/2

(
− 8es0 τm2

√
π
(
(s0 − 4m2)τ

)3/2
+ e4m2 τ

(
3s0 + 32m4τ − 8m2(1 + s0τ)

)
+ 6es0 τm2 E5/2

(
(s0 − 4m2)τ

)))〈
g3G3

〉
− 8 m α2

s e
−8m2τ

243

(
196m2τ 3/2e4m2τ

(
4
√
π − 3 Γ

(
−3

2
,
(
s0 − 4m2

)
τ

))
+

31e−s0 τ

(s0 − 4m2)3/2

(
2e8m2τ

(
32m4τ − 8m2(s0τ + 1) + 3s0

)
− 2
√
πτ
(
s0 − 4m2

)3/2 (
8m2τ − 3

)
eτ(4m2+s0)erf

(√
τ (s0 − 4m2)

)))〈
qq
〉2

(2.114)

where

p(t) =
−1

20736πt3/2
(√

t+ 2m
)2√

t− 4m2

(
81m

(
16m3 + 16m2

√
t+ 4mt+ t3/2

) 〈
g3G3

〉
+ 2048π2α2

s

(
48m4 + 48m3

√
t+ 188m2t+ 127mt3/2 + 24t2

) 〈
qq
〉2

)
(2.115)

and the imaginary parts ImΠ(I) and ImΠ(II) are given in (2.108) and (2.109) respectively. The

integral on the right-hand side of (2.114) can be evaluated analytically; however, we omit the

result for the sake of brevity.

Renormalization-group improvement [55] requires that the strong coupling and quark

mass get replaced by their corresponding running quantities evaluated at renormalization

scale µ. At one-loop in the MS renormalization scheme, for charmonium we have

αs → αs(µ) =
αs(Mτ )

1 + 25αs(Mτ )
12π

log
(
µ2

M2
τ

) (2.116)

m→ mc(µ) = mc

(
αs(µ)

αs(mc)

)12/25

(2.117)
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and for bottomonium

αs → αs(µ) =
αs(MZ)

1 + 23αs(MZ)
12π

log
(
µ2

M2
Z

) (2.118)

m→ mb(µ) = mb

(
αs(µ)

αs(mb)

)12/23

(2.119)

where [4]

αs(Mτ ) = 0.330± 0.014 (2.120)

αs(MZ) = 0.1185± 0.0006 (2.121)

mc = (1.275± 0.025) GeV (2.122)

mb = (4.18± 0.03) GeV. (2.123)

For charmonium, µ → mc and for bottomonium, µ → mb. Finally, the following values are

used for the gluon and quark condensates [56, 57, 58]:

〈
αG2

〉
= (0.075± 0.02) GeV4 (2.124)〈

g3G3
〉

= ((8.2± 1.0) GeV2)
〈
αG2

〉
(2.125)〈

qq
〉

= −(0.23± 0.03)3 GeV3. (2.126)

2.5.4 Analysis and Results

We now turn our attention to ρ(had) (recall (2.103)) which represents the resonance portion

of the hadronic spectral function and contains the experimentally determined resonances we

wish to probe for conventional meson-hybrid mixing. Resonances in ρ(had) which couple to

both the conventional meson current (2.73) and the hybrid current (2.74) can be thought of

as meson-hybrid mixtures.

Our analysis approach is to build a variety of models of the 1++ heavy quarkonium mass

spectra (i.e. a variety of choices for ρ(had)) that take known resonance masses as inputs, and

test them for conventional meson-hybrid mixing. In Table 2.7, we list all 1++ charmonium

resonances that have a Particle Data Group entry in [4], and in Table 2.8, we do the same
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Table 2.7: Particle Data Group masses of 1++ charmonium resonances [4].

Name Mass (GeV)

χc1(1P ) 3.51
X(3872) 3.87
X(4140) 4.15
X(4274) 4.27

Table 2.8: Particle Data Group masses of 1++ bottomonium resonances [4].

Name Mass (GeV)

χb1(1P ) 9.89
χb1(2P ) 10.26
χb1(3P ) 10.51

for bottomonium. Note that, in Table 2.7 and Table 2.8, all entries have IG = 0+.

Laplace sum-rules are generally insensitive to resonance widths, and so we consider ρ(had)

to be a sum of narrow resonances, i.e.,

ρ(had)(t) =
n∑
i=1

ξiδ(t−m2
i ) (2.127)

where n is the number of resonances in the model. The {ξi}ni=1 are mixing parameters

(products of hadron masses, signed hadronic couplings, and mixing angle factors) which are a

measure of the combined coupling to both the conventional meson current and hybrid current.

For example, in a simple case of two-state mixing, we would have ξ1 = m2
Hm

2
MfHfM sin2 θ

and ξ2 = −m2
Hm

2
MfHfM cos2 θ where θ is a mixing angle between pure hybrid and meson

states with corresponding couplings fH and fM . A state with both conventional meson and

hybrid components has ξi 6= 0. A pure conventional meson state or pure hybrid state has

ξi = 0. The specific models for which we present results are given for the charmonium and

bottomonium sectors in Tables 2.9 and 2.10 respectively.

Substituting (2.127) into (2.104) gives

R(τ, s0) =
n∑
i=1

ξie
−m2

i τ . (2.128)
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Table 2.9: A representative collection of hadron models analyzed in the charmonium
sector.

Model m1 m2 m3 m4

(GeV) (GeV) (GeV) (GeV)

C1 3.51 - - -
C2 3.51 3.87 - -
C3 3.51 3.87 4.15 -
C4 3.51 3.87 4.15 4.27

Table 2.10: A representative collection of hadron models analyzed in the bottomonium
sector.

Model m1 m2 m3

(GeV) (GeV) (GeV)

B1 9.89 - -
B2 9.89 10.26 -
B3 9.89 10.26 10.51

To extract hadronic properties from (2.128) together with LSR (2.114), we must first, for

each model, select an acceptable range of τ values, i.e., a Borel window (τmin, τmax). To

determine the Borel window, we follow the same methodology as in [47, 74, 59, 60]. To select

τmin, we consider
R(τ, s0)

R(τ, ∞)
, (2.129)

i.e., the ratio of the LSR’s hadron contribution to its hadron plus continuum contribution.

We demand that this ratio be at least 10%. To select τmax, we demand that the LSR

converge where convergence is taken to mean that the magnitude of successive OPE terms

be at most one-third that of any previous term. This means that we require the magnitude

of the 4d gluon condensate contribution be less than one-third that of the perturbative

contribution. We also require that the magnitude of the sum of the 6d gluon and quark

condensate contributions be less than one-third that of 4d gluon condensate contribution.

For particular choices of {mi}ni=1, the quantities {ξi}ni=1 and s0 are extracted as best fit

parameters to (2.128). To do so, we partition the Borel window into N = 20 equal length
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subintervals with {τj}Nj=0, and define

χ2(ξ1, . . . , ξn, s0) =
N∑
j=0

(
R(τj, s0)−

n∑
i=1

ξie
−m2

i τj

)2

. (2.130)

Minimizing (2.130) gives predictions for {ξi}ni=1 and s0 corresponding to the best fit agreement

between QCD and the hadronic model in question.

The procedure described above for selecting a Borel window depends on s0. However, s0

is not known at the outset. It is one of the parameters that emerges from the minimization

of (2.130). But the definition of (2.130) requires a Borel window. Hence, we determine both

the Borel window and s0 iteratively. We start with a seed value of s0 = 2m2
max where mmax

is the mass of the heaviest resonance in the model. This seed value separates the continuum

from the resonances by a generous margin. We generate a Borel window for this s0 value

according to the criteria outlined above. Minimization of (2.130) then yields an updated

value for s0. This process is iteratively repeated until s0 and the Borel window settle. For

all the models examined in the charmonium sector, we found that the Borel window settled

to τmin = 0.17 GeV−2 to τmax = 0.41 GeV−2, and, in the bottomonium sector, all of the

models have Borel windows that settled to τmin = 0.02 GeV−2 to τmax = 0.12 GeV−2. These

persistent values for the Borel window across different models in each sector demonstrates

the LSR’s insensitivity to changes in s0 and is consistent with our findings in [64].

We extract {ξi}ni=1 and s0 for each of the models defined in Tables 2.9 and 2.10, and

present our results in Tables 2.11 and 2.12 respectively. Instead of presenting each ξi, we

present ζ and ξi
ζ

where

ζ =
n∑
i=1

|ξi|. (2.131)

The errors included are associated with the strong coupling values (2.120)–(2.121), the quark

masses (2.122)–(2.123), the condensates (3.33)–(3.35), and an allowed ±0.1 GeV variability

in the renormalization scale [61]. We also allow for the end points of the Borel window to vary

by 0.1 GeV−2 in the charmonium sector and 0.01 GeV−2 in the bottomonium sector. The

vacuum saturation parameter κ from (3.7) is not varied because the numerical contribution to

the LSR (2.114) stemming from the 6d quark condensate diagram is negligible. Our results are
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Table 2.11: Continuum thresholds and χ2 values for hadron models defined in Ta-
ble 2.9 and their resulting extracted mixing parameters with their theoretical uncer-
tainties.

Model s0 χ2 × 109 ζ ξ1
ζ

ξ2
ζ

ξ3
ζ

ξ4
ζ

(GeV2) (GeV12) (GeV6)

C1 18.8 7990 0.18(1) 1 - - -
C2 28.8 76.3 0.83(7) 0.47(2) −0.53(2) - -
C3 18.8 27.4 2.6(4) 0.21(2) −0.45(1) 0.34(2) -
C4 31.7 0.0586 44(6) 0.03(1) −0.16(1) 0.46(1) −0.35(1)

Table 2.12: Continuum thresholds and χ2 values for hadron models defined in Ta-
ble 2.10 and their resulting extracted mixing parameters with their theoretical uncer-
tainties.

Model s0 χ2 × 106 ζ ξ1
ζ

ξ2
ζ

ξ3
ζ

(GeV2) (GeV12) (GeV6)

B1 128 2580 49(1) 1 - -
B2 282 1980 70(4) 0.30(1) 0.70(1) -
B3 241 0.832 1905(28) 0.16(1) −0.48(1) 0.36(1)

most sensitive to varying the value of τmin and varying the value of the quark masses (2.122)

and (2.123). In Figure 2.7, we plot relative residuals representing the difference between the

QCD prediction and the resonance plus continuum hadronic model,

r(τ) =
R(τ, s0)−

∑n
i=1 ξie

−m2
i τ

R(τ, s0)
, (2.132)

(the numerator in (2.132) is the difference between the left- and right-hand sides of (2.128))

for models C2–C4 using the optimized values of s0 and {ξi} from Table 2.11. In Figure 2.8,

we do the same for models B1–B3 using the optimized values from Table 2.12.

2.5.5 Discussion

As shown in Tables 2.11 and 2.12, the inclusion of heavy resonances beyond the ground state

significantly improves agreement between QCD and experiment in both the charmonium

and bottomonium sectors. In particular, in the charmonium sector, going from three to
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Figure 2.7: Relative residuals (2.132) for models C2–C4 using the optimized values
of s0 and ξi from Table 2.11. Residuals for model C1 are not shown because they are
much larger than the scales of the figure.

Figure 2.8: Relative residuals (2.132) for models B1–B3 using the optimized values
of s0 and ξi from Table 2.12.
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four resonances (i.e., from model C3 to C4 in Table 2.11) decreases the value of the χ2

(recall (2.130)) by a factor of 468 while in the bottomonium sector, going from two to three

resonances (i.e., from model B2 to B3 in Table 2.12) decreases the χ2 by a factor of 2380. This

improvement can also be seen from the trend of decreasing magnitude of relative residuals

with increasing number of resonances depicted in Figures 2.7 and 2.8. For the highest mass

resonance in a given model we define a measure of its contribution to the LSR as in [64]:∣∣∣∫ τmax

τmin
ξne
−m2

nτdτ
∣∣∣∑n

i=1

∣∣∣∫ τmax

τmin
ξie−m

2
i τdτ

∣∣∣ (2.133)

where n is the number of resonances in the model. The highest mass resonances make

substantial contributions to the LSRs in spite of the exponential suppression inherent in

LSRs: in the charmonium sector, evaluating (2.133) for model C4 gives 0.25, and in the

bottomonium sector, evaluating (2.133) for model B3 gives 0.30. These results, coupled with

the dramatic improvement in χ2-values when compared to models containing less resonances,

indicate the significant impact that the highest mass resonances have on the LSRs, and cause

us to favour models C4 and B3.

In the charmonium sector, model C4 indicates that there is almost no conventional meson-

hybrid mixing in the χc1(1P ), minimal mixing in the X(3872), and significant mixing in both

the X(4140) and X(4274). Assuming the χc1(1P ), the lightest known resonance in this sector,

has a large conventional meson component [75], then our results indicate that it has very little

hybrid component. Regarding the interpretation of the X(3872), if the X(3872) does have

a significant hybrid component, a possibility put forth in [71], then our results indicate that

it does not have a significant conventional meson component. However, if the X(3872) does

have a large conventional meson component as argued in [70], then our results indicate that

it does not have a large hybrid component. In addition, our results imply that the X(4140)

and the X(4274) both contain significant conventional meson and hybrid components.

In the bottomonium sector, model B3 indicates that there is minimal conventional meson-

hybrid mixing in the χb1(1P ) and significant mixing in both the χb1(2P ) and the χb1(3P ).

Thus, assuming the χb1(1P ), the lightest observed resonance in this sector, contains a sig-

nificant conventional meson component [75], our results imply that it does not have a large
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hybrid component. Also, our results indicate that the χb1(2P ) and the χb1(3P ) each contain

significant conventional meson and hybrid components.
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2.6 Meson-Hybrid Mixing Discussion

Now that we’ve reviewed the two papers [1, 2] which present our findings on the topic of

meson-hybrid mixing in vector heavy quarkonium, we will discuss a few interesting inter-

mediate details of the calculation before we get to the conclusion where we summarize our

findings.

2.6.1 Non-perturbative Contributions

In this section, we’re going to take a closer look at one technical detail involved in the

calculation of the correlators (2.1) and (2.76). In the discussion about Wick’s theorem in

Section 1.3.5, we mentioned that the VEVs of uncontracted fields can be non-zero due to the

nature of the QCD vacuum. We will now consider the contribution to the cross-correlators

from these terms containing non-zero VEVs. In both [1] and [2], these contributions corre-

spond to the contributions from Diagrams II–VI in Figures 2.1 and 2.4. While computing

the contributions from these diagrams, we will encounter several non-local VEVs which take

the following forms 〈
:Ga

ωζ(0)Abσ(z):
〉

(2.134)〈
:Aaα(y)Gb

βγ(0)Acδ(z):
〉

(2.135)〈
:Ga

αβ(0)Abγ(y)Acδ(z):
〉
. (2.136)

The first non-local VEV (2.134) will emerge from diagrams where a single interaction vertex

is present, such as diagrams II, III and VI from Figure 2.1 and 2.4, and will yield a 4d and

62



a 6d gluon condensate contribution as well as a 6d quark condensate contribution. The next

two VEVs (2.135) and (2.136) will emerge from diagrams with two interaction vertices such

as diagrams IV and V and will yield 6d gluon condensate contributions in these calculations.

In the previously mentioned master’s thesis [8], we included a detailed discussion of how

the 4d and 6d gluon condensate contributions (from diagrams II, III of Figure 2.1) were

calculated and a discussion of how the needed VEVs could be evaluated. I will include the

discussion of how these VEVs are evaluated here. I will then, for the sake of brevity, skip

a detailed discussion of how the rest of these VEVs are evaluated and simply present the

substitutions which are necessary to proceed with the calculation and evaluate the remaining

diagrams.

2.6.1.1 Expansion of the Non-local VEV

Including a pre-factor from elsewhere in the calculation, we will want to evaluate

g2
s Tr[λaλb]

〈
:Ga

ωζ(0)Abσ(z):
〉
. (2.137)

We are going to want to start by expanding this non-local VEV into an infinite series of local

VEVs. To do that we can use the ideas discussed in [16]. Specifically, we know that working

in the fixed point gauge where xµAµ(x) = 0, we can write our gluon field at z as an infinite

series of terms involving the commutator of covariant derivatives D and gluon field strength

tensors G at the origin as follows:

Aσ(z) =
∞∑
n=0

1

n!(n+ 2)
zφzρ1zρ2. . . zρn [Dρ1(0), [Dρ2(0), [. . . [Dρn(0), Gφσ(0)] . . . ]]]. (2.138)

Note that in the perturbative calculation, when contracting gluon fields, we chose to work in

the Feynman gauge; however, here we have chosen to work in the fixed point gauge. Perhaps

the easiest way to think about why we are free to do this is to realize that for each gauge

invariant contribution to our correlator, we are free to make whatever gauge choice we wish.

A more detailed discussion on this topic is available in [76]. It will also be useful to note that
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we can write our gluon field strength tensor Gµν in the following form:

Gµν=
igs
2
λaGa

µν . (2.139)

Also, we can write individual gluon fields Aµ similarly as follows:

Aµ=
igs
2
λaAaµ. (2.140)

Now, substituting (2.139) and (2.140) into (2.138) and then substituting the result into (2.137)

will give us

g2
s Tr[λaλb]

〈
:Ga

ωζ(0)Abσ(z):
〉

=

= g2
s Tr[λaλb]

{1

2
zφ
〈
:Ga

ωζ(0)Gb
φσ(0):

〉
+

1

3
zφzρ1

〈
:Ga

ωζ(0)[Dρ1(0), Gb
φσ(0)]:

〉
+

1

8
zφzρ1zρ2

〈
:Ga

ωζ(0)[Dρ1(0), [Dρ2(0), Gb
φσ(0)]]:

〉
+ . . .

}
= −2 zφ Tr[

〈
:Gωζ(0)Gφσ(0):

〉
]− 4

3
zφzρ1 Tr[

〈
:Gωζ(0)[Dρ1(0), Gφσ(0)]:

〉
]

− 1

2
zφzρ1zρ2 Tr[

〈
:Gωζ(0)[Dρ1(0), [Dρ2(0), Gφσ(0)]]:

〉
]− . . .

(2.141)

where the second equality holds because of another application of (2.139). The VEV in the

first term on the right will give us our term proportional to what we will call the 4d gluon

condensate. The second term on the right will go to zero. An easy way to see this is there

are an odd number of Lorentz indices in this term, and there would be no way to write this

term using only metric tensors. The VEV in the third term will give us a term proportional

to what we will call the 6d gluon condensate. This third term will also yield the 6d quark

condensate contribution which we will discuss shortly. We truncate the series at this point

ignoring higher order terms which will be increasingly suppressed by factors of 1
m

and 1
q
.

2.6.1.2 Evaluating the 4d VEV

The 4d VEV can be written in terms of metric tensors as follows:

Tr[
〈
:GωζGφσ:

〉
] = Agωζgφσ +Bgφζgωσ + Cgωφgσζ (2.142)
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where A, B and C are unknown constants we will need to solve for. But we know that our

gluon field strength tensors are antisymmetric under the exchange of their indices, so A→ 0.

Now we can group the remaining two terms while maintaining antisymmetry under ω ↔ ζ

and φ↔ σ with a new arbitrary constant F as follows:

Tr[
〈
:GωζGφσ:

〉
] = F

[
gωσgζφ − gωφgζσ

]
. (2.143)

We can now start solving for F by contracting both sides of the equation with gωσgζφ giving

us

Tr[
〈
:GωφGφω:

〉
] = F

[
d2 − d

]
. (2.144)

Then, by again using (2.139) and evaluating the remaining trace using Tr[λaλb] = 2δab, we

can solve for F . We find that

F =

〈
g2
sG

2
〉

2d(d− 1)
(2.145)

where 〈
g2
sG

2
〉

= g2
s

〈
:Ga

ωφG
a
ωφ :
〉

(2.146)

is the 4d gluon condensate. We can now substitute (2.145) back into (2.143) and, us-

ing (2.139), rewrite the left hand side (LHS) of the expression. If we then substitute this back

into the first term in (2.141) and, keeping just that first term, this results in an expression

proportional to the 4d gluon condensate contribution. This result is the contribution to the

correlator that corresponds to diagram II in Figures 2.1 and 2.4.

2.6.1.3 Evaluating the 6d VEV (gluonic contribution only)

Now, returning back to equation (2.141), we have one more term in our series that will

contribute. To get at the 6d gluon condensate contribution, we will need to simplify the

trace in the last term in (2.141). We could again write out all of the combinations of metrics

that this 6d term could depend on like we did in the 4d case in equation (2.142). If we did, we

would find 15 possible combinations of metrics. After taking into account the antisymmetric

nature of the gluon field strength tensors, we could immediately eliminate five of these leaving

us with ten terms. We could then start to carefully group these terms so that the symmetries
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of the gluon field strength tensors are preserved until we found that this expression could be

written as follows:

Tr[
〈
:Gωζ(0)[Dρ1(0),[Dρ2(0), Gφσ(0)]]:

〉
] =

= A gρ1ρ2(gωφgζσ − gφζgωσ)+

+B
[
gφρ2(gωρ1gζσ − gρ1ζgωσ)− gσρ2(gφζgωρ1 − gωφgζρ1)

]
+

+ C
[
gρ1σ(gωρ2gφζ − gωφgζρ2)− gρ1φ(gωρ2gζσ − gωσgρ2ζ)

]
(2.147)

where A, B and C are unknown constants for which we will need to solve. We will now need

to generate three equations to solve for our three unknowns. The easiest way to do this is to

select three different contraction schemes that will fully contract the right hand side (RHS)

of the equation without sending it to zero. We will then apply these contraction schemes

to both sides of the equation to generate the three equations in three unknowns. We have

selected the following three products of metrics to contract both sides

gρ1ρ2gωφgζσ

gφρ2gωρ1gζσ

gρ1σgωρ2gφζ .

(2.148)

The simplification of the RHSs of our three new expressions is fairly straightforward. We

simply contract the indices and make use of the fact that gµµ = d. The simplification of the

LHSs will be a bit more involved. To simplify the LHSs we will need to make use of the

Jacobi identity [16] which in this context can be stated as follows:

[Dµ, [Dν , Dρ]] + [Dρ, [Dµ, Dν ]] + [Dν , [Dρ, Dµ]] = 0. (2.149)

We will also make use of the definition [Dµ, Dν ] = −Gµν , and we will set [Dµ, Gµν ] = Jν → 0.

The reason for setting Jν → 0 is that these terms will lead to the 6d quark condensate

contribution and we want to keep those separated for the moment. We will now take a

look at how the simplification of the LHS would work for the first contraction scheme found

in (2.148). The other two contractions would follow similarly. Applying the metrics in
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contraction scheme (1) to the LHS of (2.147) and making use of (2.149) while suppressing

the arguments and the trace allows us to write

〈
:Gωζ [Dρ1 , [Dρ1 , Gωζ ]]:

〉
= −

〈
:Gωζ [Dρ1 , [Dζ , Gρ1ω]]:

〉
−
〈
:Gωζ [Dρ1 , [Dω, Gζρ1 ]]:

〉
. (2.150)

We can also use (2.149) to show that

[Dρ1 , [Dζ , Gρ1ω]] = [Gρ1ω, Gρ1ζ ] and [Dρ1 , [Dω, Gζρ1 ]] = [Gζρ1 , Gρ1ω]. (2.151)

Substituting these results back into (2.150) and flipping commutators in one factor and

indices in another to pick up some minus signs gives us

〈
:Gωζ [Dρ1 , [Dρ1 , Gωζ ]]:

〉
=
〈
:Gωζ [Gρ1ζ , Gρ1ω]:

〉
+
〈
:Gωζ [Gρ1ζ , Gρ1ω]:

〉
= −4

〈
:Gωζ Gζρ1Gρ1ω:

〉 (2.152)

where the second equality is realized by expanding the commutators, rearranging indices

and grouping terms. Now, wrapping both sides of the equation in a trace (as we must to

regain (2.147)) and making use of (2.139) allows us to write

Tr
[〈

:Gωζ [Dρ1 , [Dρ1 , Gωζ ]]:
〉]

= −4
(igs

2

)3

Tr[λaλbλc]
〈
:Ga

ωζ G
b
ζρ1
Gc
ρ1ω

:
〉
. (2.153)

The identity Tr[λaλbλc] = 2(dabc + ifabc), which can be found in [16], where the dabc is real

and totally symmetric and the fabc is again a totally antisymmetric structure constants, can

be used to simplify this expression. Then, using the totally symmetric nature of dabc and the

fact that Ga
µν is antisymmetric in µ and ν to argue away the first term, we can write

Tr
[〈

:Gωζ [Dρ1 , [Dρ1 , Gωζ ]]:
〉]

= −
〈
g3
sG

3
〉

(2.154)

where 〈
g3
sG

3
〉

= g3
sfabc

〈
:Ga

ωζ G
b
ζρ1
Gc
ρ1ω

:
〉
. (2.155)
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We can now perform similar simplifications using all three of the contraction schemes in (2.148)

on (2.147). Doing so generates the following system of equations:

d(d− 1)(dA+ 2B − 2C) = −
〈
g3
sG

3
〉

d(d− 1)(A+ (d− 1)B − C) = 0

− d(d− 1)(A+B − (d− 1)C) =

〈
g3
sG

3
〉

2
.

(2.156)

Then, solving this system for our three unknowns A, B and C and substituting the results

back into (2.147) with some simplification will give us

Tr
[〈

:Gωζ(0)[Dρ1(0), [Dρ2(0), Gφσ(0)]]:
〉]

=

=

〈
g3
sG

3
〉

2d(d2 − 4)

[
− 2 gρ1ρ2(gωφgζσ − gφζgωσ)+

+
3

d− 1

[
gφρ2(gωρ1gζσ − gρ1ζgωσ)− gσρ2(gφζgωρ1 − gωφgζρ1)

]
+

+
[
gρ1σ(gωρ2gφζ − gωφgζρ2)− gρ1φ(gωρ2gζσ − gωσgρ2ζ)

]]
.

(2.157)

Here, we have highlighted the calculation of two of the VEVs needed in simplifying the

correlators in [1, 2]. In addition to the ones we’ve discussed here, there is a 6d quark

condensate and versions of the 6d gluon condensate emerging from two interaction vertices

as seen in 2.135 and 2.136 all of these would be derived using the techniques discusses above.

2.7 Meson-Hybrid Mixing Summary

We will now collect our results and present some final reflections or our exploration of meson-

hybrid mixing in vector heavy quarkonium. In [1, 2], we explore meson-hybrid mixing in the

JPC = 1−− and JPC = 1++ charmonium-like and bottomonium-like mass spectra. Using

the experimentally determined resonance masses listed in Tables 2.1, 2.2 and Tables 2.7, 2.8

and again collected here in Figure 2.9, we employ QCDSRs and a multi-resonance analysis

methodology to probe these resonances for meson-hybrid mixing.

Focusing in on each of the models in the four sectors we examined that showed the best
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Figure 2.9: JPC = 1−− and JPC = 1++ charmonium and bottomonium mass spectra.
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agreement between QCD and experiment (Model 3 from Table 2.3 and Table 2.5, Model 3

from Table 2.4 and Table 2.6, Model C4 from Table 2.11 and Model B3 from Table 2.12),

we can draw several conclusions. First we collect all of these models and present them in

Figure 2.10.

Figure 2.10: From the top row to the bottom row, these entries correspond to the
following models respectively: Model 3 from Table 2.3 and Table 2.5 (1−− charmonium
results), Model 3 from Table 2.4 and Table 2.6 (1−− bottomonium results), Model
C4 from Table 2.11 (1++ charmonium results) and Model B3 from Table 2.12 (1++

bottomonium results). All of these models represent the best fit between QCD and
experiment in their respective sectors. Note that the masses are given in GeV.

• In the 1−− charmonium sector (corresponding to the top row in Figure 2.10), we see

non-zero mixing in the J/ψ, no evidence for mixing in the ψ(2S), ψ(3770) cluster, and

a large mixing parameter in the 4.3 GeV cluster. Note that, as mentioned in [1], the

X(4260), which would be a member of the cluster at 4.3 GeV, has often been interpreted

as having significant hybrid content and our results are consistent with this idea.

• In the 1−− bottomonium sector (corresponding to the second row in Figure 2.10), we

see non-zero mixing in all three resonances, the Υ(1S), the Υ(2S) and the two-state

cluster containing the Υ(3S) and Υ(4S).

• In the 1++ charmonium sector (corresponding to the third row in Figure 2.10), we see

almost no mixing in the χc1(1P ), minimal mixing in the X(3872) and significant mixing

in both the X(4140) and the X(4274). Note that (as mentioned in [2]) the X(3872) has

been interpreted as having significant tetraquark content and our result is consistent

with that idea.

• In the 1++ bottomonium sector (corresponding to the bottom row in Figure 2.10), we

see minimal mixing in the χb1(1P ) and significant mixing in both the χb1(2P ) and the

χb1(2P ).
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Chapter 3

Diquarks and Tetraquarks

3.1 Tetraquarks from Diquarks

Again, as discussed in Section 1.4.1, QCD and colour confinement allow for looser restrictions

on the makeup of hadrons than the quark model does. Considering only the restriction

that hadrons must be colourless, we saw in Section 1.4.1 that we could construct bound

states consisting of two quarks and two antiquarks, so-called tetraquarks. In the paper

presented in Section 3.2, we explored one potential interpretation of what the underlying

substructure of these tetraquarks may resemble and what implications that would have for

particular tetraquark masses. The introduction in Subsection 3.2.1 mentions three potential

configurations for what the substructure of these tetraquarks might look like. Here, we

include a schematic diagram in Figure 3.1 to illustrate these ideas.

Figure 3.1: Potential configurations of tetraquark substructure: (1) No additional
substructure. (2) Meson-meson molecular state. (3) Quarks and antiquarks pair off to
form a diquark and an antidiquark.

In the first model, the two quarks and two antiquarks have no additional substructure. The

four objects exist with no additional strong correlations between them (qqq̄q̄). In the second
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model, the quarks and antiquarks pair off to form meson-like substructures. This leads to

a tetraquark that resembles a meson-meson molecule ([qq̄][qq̄]). Finally, in the third model,

the antiquarks and quarks pair off to form an antidiquark and a diquark ([q̄q̄][qq]).

In the following manuscript, we briefly point to some of the literature involving models

(1) and (2) from Figure 3.1, but all of our work focuses on model (3), the diquark-antidiquark

model of tetraquarks. We begin by using QCD and the OPE to calculate the constituent

masses of these diquarks/antidiquarks. Once the constituent masses are calculated, they

are used as inputs into a chromomagnetic interaction (CMI) model of diquark-antidiquark

tetraquarks [77]. We discuss this model in subsection 3.2.4, and additional information is

available in the papers cited in that section including [77]. The CMI model is then used

to predict the masses of the tetraquarks we are examining. Note that the diquarks and

antidiquarks are not colourless, they must carry net colour charge, and so they must be

thought of as the building blocks of hadrons and not hadrons themselves. Constituent masses

that we generate in this paper must therefore be used as inputs in some intermediate step

on the way to producing a physically measurable quantity (a tetraquark mass in this case).

The following work may be found published in:

Axial Vector cc and bb Diquark Masses from QCD Laplace Sum-Rules,

S. Esau, A. Palameta, R.T. Kleiv, D. Harnett, and T.G. Steele

Phys. Rev. D 100, 074025 (2019)

DOI:10.1103/PhysRevD.100.074025

My involvement in this paper again had me playing a leading role in the work presented in

this manuscript. I calculated the correlator, generated the Laplace sum-rule and performed

the analysis to extract the diquark constituent masses. I again wrote the first draft of the

manuscript here and made significant contributions to subsequent edits.
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3.2 Manuscript: Axial Vector cc and bb Diquark Masses

from QCD Laplace Sum-Rules

Abstract: Constituent mass predictions for axial vector (i.e. JP = 1+) cc and

bb colour-antitriplet diquarks are generated using QCD Laplace sum rules. We

calculate the diquark correlator within the operator product expansion to next-

to-leading-order, including terms proportional to the four- and six-dimensional

gluon and six-dimensional quark condensates. The sum-rules analyses stabilize,

and we find that the constituent mass of the cc diquark is (3.51± 0.35) GeV and

the constituent mass of the bb diquark is (8.67± 0.69) GeV. Using these diquark

constituent masses as inputs, we calculate several tetraquark masses within the

Type-II diquark-antidiquark tetraquark model.

3.2.1 Introduction

Outside-the-quark-model hadrons consisting of four (or more) valence quarks have been theo-

rized for decades. For example, the concept of tetraquarks, hadrons composed of four quarks

(qqqq), was introduced in [78, 79] in 1977. Jump forward to 2003 and the discovery of the

X(3872) by the Belle collaboration [65] and its subsequent confirmation by several other ex-

perimental collaborations [80, 81, 82, 83] places us in a new era of hadron spectroscopy. Since

then more and more of these hadrons have been discovered in the heavy quarkonium spectra.

These hadrons, now collectively referred to as the XYZ resonances, are difficult to explain

within the quark model [75]. These XYZ resonances have served as a strong motivator for

research into beyond-the-quark-model hadrons. See [84, 85] for a review of experimental

findings and [86, 87] for a review of several multiquark systems.

Looking at four-quark states in particular, there are several interpretations of what their

internal quark structure might resemble. One possibility is that there are no particularly

strong correlations between any of the quarks. However, another possible interpretation is
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that these states could be meson-meson molecule states in which two colour-singlet mesons

form a weakly bound conglomerate state. See [88, 89, 90, 91, 92, 93, 94, 95] for discussions

about the X(3872) in this configuration. Yet another possible interpretation is that four-quark

states are diquark-antidiquark states. Diquarks are strongly correlated, colour antitriplet

pairs of quarks within a hadron. (As such, their colour configurations are identical to those

of antiquarks.) See [96] for applications of diquarks and [97] for a discussion of possible

diquark configurations. In a diquark-antidiquark configuration, the diquark constituents

are strongly bound together in a four-quark configuration. See [98, 99, 100, 101, 102] for

discussions about the X(3872) in the diquark-antidiquark configuration. Also, see [103] for

additional discussions on the differences between the molecular and tetraquark models in the

context of a QCD sum-rules analysis.

QCD sum-rules analyses of diquarks in several channels have been presented in [104,

105, 106, 107, 108, 109]. Lattice QCD analyses of light diquarks have also been performed

[110, 111, 112]. In this paper, we use QCD Laplace sum-rules (LSRs) to calculate the

constituent masses of axial vector (i.e. JP = 1+) cc and bb diquarks. The axial vector is the

only quantum number that can be realized for colour antitriplet diquarks of identical flavours

in an S-wave configuration. We use the operator product expansion (OPE) [15] to compute

the correlation function between a pair of diquark currents (3.1)–(3.2). In this calculation,

in addition to leading-order (LO) pertubative contributions, we also include next-to-leading-

order (NLO) perturbative contributions and non-perturbative corrections proportional to the

four-dimensional (4d) and 6d gluon condensates as well as the 6d quark condensate. The

results of these calculations are summarized in Table 3.1. In particular, we find that the

constituent mass of the cc diquark is (3.51 ± 0.35) GeV and the constituent mass of the bb

diquark is (8.67± 0.69) GeV. Substituting these diquark constituent masses into the Type-II

diquark-antidiquark tetraquark model of Ref. [77], we calculate masses of several [cc][c̄c̄],

[cc][b̄b̄], and [bb][b̄b̄] tetraquarks.
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3.2.2 The Correlator

The axial vector, colour antitriplet diquark current is given by [105, 106]

jµ,α = εαβγQ
T
βCγµQγ (3.1)

with adjoint

j†µ,α = −εαβγQβγµCQ
T

γ (3.2)

where C denotes the charge conjugation operator, εαβγ is a Levi-Civita symbol in quark

colour space, and Q is a heavy (charm or bottom) quark field.

Using (3.2), we consider the diquark correlator

Π(q2) =
i

D − 1

(
qµqν
q2
− gµν

)∫
dDx eiq·x 〈0|τ [ jµ,α(x) Sαω(x, 0) j†ν,ω(0)]|0〉 (3.3)

where D is the spacetime dimension. In (3.3), Sαω(x, 0) is a path-ordered exponential, or

Schwinger string, given by

Sαω(x, 0) = P̂ exp

[
igs
λaαω
2

∫ x

0

dzµAaµ(z)

]
(3.4)

where P̂ is the path-ordering operator. The Schwinger string allows gauge-invariant informa-

tion to be extracted from the gauge-dependent current (3.1) [105, 106]. The explicit cancella-

tion of the gauge parameter has been shown for perturbative contributions up to NLO [113],

and in Landau gauge the NLO contributions from the Schwinger string are zero [105, 106];

hence Sαω(x, 0) → δαω. For non-perturbative contributions of QCD condensates, gauge-

invariance of the correlator (3.3) implies that fixed-point gauge methods used to obtain

OPE coefficients are equivalent to other methods [114]. As observed in Refs. [105, 106], the

Schwinger string will not contribute to the QCD condensate contributions in the fixed-point

gauge, and hence Sαω(x, 0)→ δαω. Thus, using Landau gauge for pertubative contributions

and fixed-point gauge methods for QCD condensate contributions, we can simplify (3.3)

by setting Sαω(x, 0) → δαω (as in [103]). Lattice QCD analyses of constituent light diquark

masses are also based on correlation functions of (coloured) diquark operators [110, 111, 112].
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Instead of the Schwinger string, gauge dependence of the correlation function is addressed in

lattice analyses either through gauge fixing or coupling to a heavy colour source.

We evaluate the correlator (3.3) within the OPE to NLO in perturbation theory and

include non-perturbative corrections proportional to the 4d and 6d gluon condensates and the

6d quark condensate. Each non-perturbative correction is the product of a LO perturbatively

computed Wilson coefficient and a QCD condensate. The 4d and 6d gluon and 6d quark

condensates are defined respectively by

〈
αG2

〉
= αs

〈
:Ga

ωφG
a
ωφ:
〉

(3.5)

〈
g3G3

〉
= g3

sf
abc
〈
:Ga

ωζ G
b
ζρG

c
ρω:
〉

(3.6)

〈
J2
〉

=
D

6
κ g4

s

〈
qq
〉2

(3.7)

where κ in (3.7) quantifies deviation from vacuum saturation. As in [64, 115], we set κ = 2

for the remainder of this calculation, e.g. see [44] and references contained therein.

The diagrams computed in the simplification of (3.3) are given in Figure 3.2. Each

diagram has a (base) multiplicity of two associated with interchanging the quark fields con-

tracted on the top and bottom quark lines. Diagrams II, IV, VI, VIII, X, and XI receive

an additional factor of two to account for vertical reflections. As noted earlier, Wilson

coefficients are calculated in the Landau gauge. Divergent integrals are handled using di-

mensional regularization in D = 4 + 2ε dimensions at MS renormalization scale µ. We use

a dimensionally regularized γ5 satisfying (γ5)2 = 1 and {γµ, γ5} = 0 [116]. The recurrence

relations of Refs. [17, 18] are implemented via the Mathematica package TARCER [53] re-

sulting in expressions phrased in terms of master integrals with known solutions including

those of [20, 21].

The OPE computation of Π, denoted ΠOPE, can be written as

ΠOPE(q2) =
XI∑
i=I

Π(i)(q2) (3.8)

where the superscript in (3.8) corresponds to the labels of the diagrams in Figure 3.2. Eval-
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Diagram I Diagram II Diagram III

Diagram IV Diagram V Diagram VI

Diagram VII Diagram VIII Diagram IX

Diagram X Diagram XI Diagram C1

Figure 3.2: Feynman diagrams that contribute to the correlator (3.3) to NLO and up
to dimension-six in the QCD condensates. Diagram C1 is the counterterm diagram used
to eliminate the non-local divergence in Diagram II. Feynman diagrams were created
using JaxoDraw [7].
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uating the first term in this sum, Π(I), expanding the result in ε, and dropping a polynomial

in q2 (which does not contribute to the sum rules—see Section 3.2.3), we find

Π(I)(z) =
4m2

3π2
z(2z + 1)H1(z) (3.9)

where m is a heavy quark mass and

z =
q2

4m2
. (3.10)

Also,

H1(z) = 2F1

(
1, 1;

5

2
; z

)
, (3.11)

where functions of the form pFq (· · · ; · · · ; z) are generalized hypergeometric functions, e.g., [54].

Note that hypergeometric functions of the form pFp−1(· · · ; · · · ; z) have a branch point at

z = 1 and a branch cut extending along the positive real semi-axis. In evaluating Π(II)(z),

we find a nonlocal divergence which is eliminated through the inclusion of the counterterm

diagram, Diagram C1, of Figure 3.2. From this point forward, we refer to the renormalized

contribution arising from the sum of Diagrams II and C1 as Π(II)(z). Note that, in Landau

gauge, Diagram III does not have a nonlocal divergence corresponding to the fact that the

(multiplicative) vector diquark renormalization constant is trivial [113]. The Mathematica

package HypExp [117] is used to generate the ε-expansions of Π(II)(z) and Π(III)(z). These

expansions are lengthy, and so we omit them for the sake of brevity; instead, we present the

exact (ε-dependent) results,

Π(II)(z; ε) =
−αsm2Γ(−ε)

(
m2

µ2

)ε
4π3(4π)2ε(z − 1)zε(2ε+ 1)

[
− 12z(4π)ε(2ε+ 1)+

m2ε
(
4z2ε(ε+ 1) + z

(
8ε3 + 18ε2 + 13ε+ 2

)
+ 1
)

Γ(−ε− 1)+

4z
(
3(4π)ε(2ε+ 1)(2zε+ 1)−m2ε(2z(ε+ 1)(2z + 2ε− 1) + 2ε+ 1)Γ(1− ε)

)
H2(z; ε)−

m2ε
(
−4z2(ε+ 1)(3ε+ 2) + zε(6ε+ 5) + 2(ε+ 1)

)
Γ(−ε− 1)H3(z; ε)+

m2ε
(
8z3ε(ε+ 1)− 8z2(ε+ 1)(3ε+ 1) + 2z(ε− 1)(2ε+ 1) + 2ε+ 1

)
Γ(−ε− 1)H4(z; ε)

]
(3.12)
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Π(III)(z; ε) =
αs(ε+ 1)m2ε+2Γ(−ε− 1)2

(
m2

µ2

)ε
(2π)3(4π)2ε(z − 1)zε(4ε(ε+ 2) + 3)2

[
(4ε(ε+ 2) + 3)(−z(−8z(ε+ 1) + ε(4ε(ε+ 2) + 7) + 2)− 2ε− 3)−

8z(ε+ 1)(2ε+ 1)(2ε+ 3)
(
4z2(ε+ 1) + zε(2ε+ 3) + 2ε2 + ε− 1

)
H2(z; ε)−

4z(ε+ 1)(2ε+ 1)(4ε(ε+ 2) + 3)
(
1− 2z(ε+ 1)

(
2(z − 1)ε2 + zε+ 2z + ε

))
H2(z; ε)2+

(2ε+ 3)(4ε(ε+ 2) + 3)
(
−8z2(ε+ 1)2 + zε(2ε+ 1) + 2(ε+ 1)

)
H3(z; ε)−

(4ε(ε+ 2) + 3)
(
− 16z3(ε+ 1)− 8z2(ε+ 1)(ε(2ε+ 7) + 2)−

2z(ε(4ε(ε+ 2) + 5)− 1) + 4ε(ε+ 2) + 3
)

H4(z; ε)

]
,

(3.13)

where

H2(z; ε) = 2F1

(
1,−ε; 3

2
; z

)
(3.14)

H3(z; ε) = 3F2

(
1,−2ε− 1,−ε; 1

2
− ε, ε+ 2; z

)
(3.15)

H4(z; ε) = 3F2

(
1,−2ε,−ε; 1

2
− ε, ε+ 2; z

)
. (3.16)

The ε-expanded results for the remaining terms in (3.8) can be written more concisely and

are given by

Π(IV)(z) =
−3 (8z2 − 17z + 6) + (2z2 − 11z + 6) H1(z)

288πm2(z − 1)3

〈
αG2

〉
(3.17)

Π(V)(z) =
12z − 15− (2z − 3)H1(z)

576πm2(z − 1)2

〈
αG2

〉
(3.18)

Π(VI)(z) =

〈
g3G3

〉
92160π2m4(z − 1)5z

(
416z5 − 1888z4 + 3078z3 − 1836z2 + 90z + 35+

5
(
8z5 − 36z4 + 42z3 − 20z2 + 20z − 7

)
H1(z)

)
(3.19)

Π(VII)(z) =
32z3 − 89z2 + 19z + 8− (12z4 − 66z3 + 73z2 − 37z + 8) H1(z)

55296π2m4(z − 1)4z

〈
g3G3

〉
(3.20)

Π(VIII)(z) =
α2
s

〈
qq
〉2

4860m4(z − 1)5z

(
3
(
576z5 − 2608z4 + 4458z3 − 3316z2 + 765z + 20

)
−

5
(
8z5 − 36z4 + 66z3 − 74z2 + 3z + 12

)
H1(z)

) (3.21)
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Π(IX)(z) =
160z3 − 478z2 + 386z + 7− (56z4 − 196z3 + 226z2 − 68z + 7) H1(z)

1944m4(z − 1)4z
α2
s

〈
qq
〉2

(3.22)

Π(X)(z) =
−8z3 + 19z2 + 7z − 3 + (4z4 − 22z3 + 23z2 − 13z + 3) H1(z)

55296π2m4(z − 1)4z

〈
g3G3

〉
(3.23)

Π(XI)(z) =
−3 (16z4 − 56z3 + 57z2 − z − 1)− (4z4 − 14z3 − 5z2 − 3z + 3) H1(z)

27648π2m4(z − 1)4z

〈
g3G3

〉
.

(3.24)

Finally, substituting (3.9), (3.12), (3.13) and (3.17)–(3.24) into (3.8) gives us ΠOPE.

Renormalization-group improvement requires that the strong coupling and quark mass be

replaced by their corresponding running quantities evaluated at renormalization scale µ [55].

At one-loop in the MS renormalization scheme, for cc diquarks, we have

αs → αs(µ) =
αs(Mτ )

1 + 25αs(Mτ )
12π

log
(
µ2

M2
τ

) (3.25)

m→ mc(µ) = mc

(
αs(µ)

αs(mc)

)12/25

(3.26)

and for bb diquarks,

αs → αs(µ) =
αs(MZ)

1 + 23αs(MZ)
12π

log
(
µ2

M2
Z

) (3.27)

m→ mb(µ) = mb

(
αs(µ)

αs(mb)

)12/23

, (3.28)

where [4]

αs(Mτ ) = 0.330± 0.014 (3.29)

αs(MZ) = 0.1185± 0.0006 (3.30)

mc = (1.275± 0.025) GeV (3.31)

mb = (4.18± 0.03) GeV. (3.32)

For cc diquarks, µ→ mc and for bb diquarks, µ→ mb. Finally, the following values are used
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for the gluon and quark condensates [56, 57, 58]:

〈
αG2

〉
= (0.075± 0.02) GeV4 (3.33)〈

g3G3
〉

= ((8.2± 1.0) GeV2)
〈
αG2

〉
(3.34)〈

qq
〉

= −(0.23± 0.03)3 GeV3. (3.35)

3.2.3 QCD Laplace Sum-Rules, Analysis, and Results

We now proceed with the QCD LSRs analysis of axial vector cc and bb diquarks. Laplace

sum-rules analysis techniques were originally introduced in [25, 42]. Subsequently, the LSRs

methodology was reviewed in [43, 118].

The function Π(q2) of (3.3) satisfies a dispersion relation

Π(q2) = q4

∫ ∞
t0

1
π
ImΠ(t)

t2(t− q2)
dt+ · · · (3.36)

for q2 < 0. In (3.36), t0 is an effective threshold and · · · represents a polynomial in q2. On

the left-hand side of (3.36), Π is identified with ΠOPE computed in Section 3.2.2. On the

right-hand side of (3.36), we express ImΠ(t), i.e. the spectral function, using a single narrow

resonance plus continuum model,

1

π
ImΠ(t) = 2h2

+ δ(t−M2) +
1

π
ImΠOPE(t)θ(t− s0), (3.37)

where M is the diquark constituent mass and h+ is the diquark coupling defined by

〈Ω|jµ,α|(cc)β, 1+〉 =

√
2

3
δαβεµh+, (3.38)

which aligns with the notation of Ref. [106]. Also, θ(t) is a Heaviside step function and s0 is

the continuum threshold parameter. Constituent diquark masses are key input parameters of

Type I & II diquark-antidiquark models of tetraquarks [98, 77] (see Section 3.2.4). However,

as the couplings are not parameters of Type I & II tetraquark models, we eliminate them by

working with ratios of LSRs (e.g. see (3.45)). Though not relevant for our purposes here, we
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note that knowledge of the coupling h+ for light diquarks allows estimation of baryon matrix

elements of the effective weak Hamiltonian [105, 106].

As discussed in Ref. [105], the duality relation (3.37) for diquarks is more subtle than

for hadrons because diquarks are constituent degrees of freedom rather than hadron states.

Ref. [105] argues that, similar to constituent quarks, the diquark mass and coupling should be

regarded as effective quantities which describe the correlator at intermediate scales. Above

the threshold s0, the diquark loses its meaning as a constituent degree of freedom, and the

correlator is dominated by the parton-level quark description (see Diagram I in Fig. 3.2).

In the context of lattice QCD, the coupling h+ is proportional to the signal strength, and

Ref. [110] finds a remarkably clean exponential decay indicative of a single narrow resonance

below the lattice cutoff 1/a2. In (3.37), s0 is analogous to the lattice cutoff 1/a2. Thus, in

the light quark sector studied in [110], there exists direct lattice QCD evidence supporting

the spectral decomposition (3.37).

Laplace sum-rules are obtained by Borel transforming (3.36) weighted by powers of Q2

(see [25, 42] as well as, e.g., [119, 44]). For a function such as ΠOPE computed in Section 3.2.2,

details on how to evaluate the Borel transform can be found in [64, 115] for instance. We

find

Rk(τ) ≡ 1

2πi

∫
Γ

(q2)ke−q
2τΠOPE(q2) dq2 +

∫ ∞
s0

tke−tτ
1

π
ImΠOPE(t) dt (3.39)

=⇒ Rk(τ) = 2h2
+M

2ke−M
2τ +

∫ ∞
s0

tke−tτ
1

π
ImΠOPE(t) dt (3.40)

where Rk(τ) are unsubtracted LSRs of (usually non-negative) integer order k evaluated at

Borel scale τ and where Γ is the integration contour depicted in Figure 3.3. Subtracting the

continuum contribution, ∫ ∞
s0

tke−tτ
1

π
ImΠOPE(t) dt, (3.41)

from the right-hand sides of (3.39) and (3.40), we find

Rk(τ, s0) ≡ 1

2πi

∫
Γ

(q2)ke−q
2τΠOPE(q2) dq2 (3.42)

=⇒ Rk(τ, s0) = 2h2
+M

2ke−M
2τ (3.43)
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Figure 3.3: The contour of integration used in the evaluation of the LSRs (3.44). We
use δ = 10−12 GeV2 and R = 2m2 generally in the calculation of (3.44) however other
values and contour shapes were tested to verify that the code was producing contour
invariant results as it must.

where Rk(τ, s0) are (continuum-)subtracted LSRs.

In (3.42), explicitly parametrizing each Γi of Γ, we have

Rk(τ, s0) ≡ 1

2πi

[ ∫ 4m2−
√

R2−δ2

s0

(t− δi)ke−(t−δi)τΠOPE(t− δi)dt+∫ sin−1(δ/R)

2π−sin−1(δ/R)

(4m2 + Reθi)ke−(4m2+Reθi)τRieθiΠOPE(4m2 + Reθi)dθ+∫ s0

4m2−
√

R2−δ2
(t+ δi)ke−(t+δi)τΠOPE(t+ δi)dt

]
,

(3.44)

which is then calculated numerically. In (3.44), R is set to 2m2. Also, it is intended that

δ → 0+. In practice, this can be achieved by setting δ = 10−12 GeV2. Finally, using (3.43),

we find √
R1(τ, s0)

R0(τ, s0)
= M. (3.45)

To use (3.45) to predict diquark constituent masses, we must first select an acceptable

range of τ values, i.e., a Borel window (τmin, τmax). To determine the Borel window, we
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follow the methodology outlined in [103]. To generate τmax, we require OPE convergence of

the k = 0 LSRs as s0 → ∞. By OPE convergence, we mean that the total perturbative

contribution to the LSRs (pert), the total 4d contribution to the LSRs (4d), and the total

6d contribution to the LSRs (6d) must obey the inequality

|pert| ≥ 3× |4d| ≥ 9× |6d|. (3.46)

The lowest value of τ for which (3.46) is violated as s0 → ∞ becomes τmax. Additionally,

τmax is constrained by the requirement

R2(τ, s0)/R1(τ, s0)

R1(τ, s0)/R0(τ, s0)
≥ 1 (3.47)

where this inequality results from requiring that individually both R1(τ, s0) and R0(τ, s0)

satisfy the Hölder inequalities [120, 121] as per [103]. For the specific LSRs being studied

here, it turns out that the condition (3.46) is more restrictive than the condition (3.47). For

both diquark channels under consideration, the values of τmax obtained are given in the last

column of Table 3.1. To select τmin, in addition to the Hölder inequality constraint (3.47),

we require that
R1(τ, s0)/R0(τ, s0)

R1(τ,∞)/R0(τ,∞)
≥ 0.5 (3.48)

i.e. that the resonance contribution to R1/R0 must be at least 50%. The highest value

of τ which does not violate (3.47)–(3.48) becomes τmin. For both diquark channels under

consideration, the values of τmin obtained are given in the second-to-last column of Table 3.1.

The procedure described above for choosing a Borel window is s0-dependent. However, s0

is a parameter that is predicted using the optimization procedure described below. As such,

choosing a Borel window and predicting s0 are actually handled iteratively. Typically, the

Borel window widens as s0 increases. As such, we begin by selecting the minimum value of

s0 for which a Borel window exists. The corresponding Borel window is then used to predict

a new, updated s0. This new s0 is then used to update the Borel window which, in turn, is

used to update s0 and so on until both the Borel window and s0 settle. This iterative process

has been taken into account in reporting diquark constituent masses, continuum thresholds,
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and Borel windows in Table 3.1.

To predict s0 and M , we optimize the agreement between left- and right-hand sides

of (3.45) by minimizing

χ2(s0, M) =
20∑
j=0

(
1

M

√
R1(τj, s0)

R0(τj, s0)
− 1

)2

(3.49)

where we have partitioned the Borel window into 20 equal length subintervals with {τj}20
j=0.

For both diquark channels under consideration, the optimized values of s0 obtained are given

in the third column of Table 3.1. As a consistency check on our methodology, we require that

the optimized mass M from (3.49) actually yields a good fit to (3.45) and that the left-hand

side of (3.45) exhibits τ stability [103], that is

d

dτ

√
R1(τ, s0)

R0(τ, s0)
≈ 0 (3.50)

within the Borel window. And so, in Figures 3.4 and 3.5, we plot the left-hand side of (3.45)

at the appropriate optimized s0 versus τ over the appropriate Borel window for both di-

quark channels under consideration. For the bb diquark, the optimized M from (3.49) does

indeed yield a good fit to (3.45). Specifically, M = 8.67 GeV in agreement with Figure 3.5.

Regarding condition (3.50), over the Borel window,

1

M

∣∣∣∣∣∆
(√
R1(τ, s0)

R0(τ, s0)

)∣∣∣∣∣ ≈ 0.001, (3.51)

implying that the plot in Figure 3.5 can be considered flat to an excellent approximation.

For the cc diquarks, it is clear from Figure 3.4 that the fitted value of M will be biased by

the rapid increase at large τ values. We thus use the critical point d
dτ

√
R1/R0 = 0 for our

cc diquark mass prediction, i.e. M = 3.51 GeV. For both diquark channels under consider-

ation, predicted diquark constituent masses M are given in the second column of Table 3.1.

The theoretical uncertainties associated with the mass predictions take into account the un-

certainties arising from the strong coupling and mass parameters (3.29)–(3.32) as well as

those associated with the QCD condensate values (3.33)–(3.35). The dominant theoretical
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QQ MP (GeV) s0 (GeV2) τmin (GeV−2) τmax (GeV−2)

cc 3.51± 0.35 17.5± 3.4 0.10± 0.02 0.71± 0.07
bb 8.67± 0.69 80.0± 9.2 0.02± 0.01 0.21± 0.02

Table 3.1: constituent mass predictions and sum rule parameters for axial vector cc
and bb diquarks. The theoretical uncertainties are obtained by varying the QCD input
parameters in Eqs. (3.29)–(3.35).

uncertainty is associated with the quark masses.

In the s0 → ∞ limit, the left-hand side of (3.45) corresponds to an upper bound on

M for a wide variety of resonance shapes [122], allowing the sensitivity to the threshold s0

and resonance model to be explored. As shown in Figs. 3.6–3.7, within the Borel window

τ < τmax, we find M . 3.6 GeV for the cc case and M . 8.8 GeV for the bb case, remarkably

close to the Table 3.1 predictions.
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Figure 3.4: The left-hand side of (3.45) at the optimized continuum threshold param-
eter s0 (see Table 3.1) versus the Borel scale τ for the cc diquark.
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Figure 3.5: The left-hand side of (3.45) at the optimized continuum threshold param-
eter s0 (see Table 3.1) versus the Borel scale τ for the bb diquark.

3.2.4 Discussion

Compared with potential model approaches [123, 124, 125] (and others cited therein) our cc

central value diquark constituent mass prediction is slightly larger and bb is slightly smaller.

For Bethe-Salpeter approaches [126], there is closer alignment in the cc constituent mass

prediction, but the bb constituent mass prediction is still slightly smaller. However, taking

into account theoretical uncertainties, we find good agreement between our QCD LSRs mass

predictions and those of Refs. [123, 124, 125, 126], providing QCD evidence to support the

study of diquark-antidiquark tetraquarks and doubly-heavy baryons with diquark cluster

models.

Constituent diquark masses are key inputs into chromomagnetic interaction (CMI) models

of diquark-antidiquark tetraquarks. For example, consider the Type-II model of Ref. [77] in

which colour-spin interactions are ignored except between the quarks (antiquarks) within

the diquark (antidiquark). This simplification assumes that the diquark and antidiquark
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Figure 3.6: The left-hand side of (3.45) as the continuum threshold parameter s0 →∞
versus the Borel scale τ for the cc diquark.

within the tetraquark are point-like and well-separated. Focusing on S-wave combinations of

doubly-heavy, equal mass diquarks and antidiquarks, the Type-II CMI Hamiltonian reduces

to [77]

H = m[Q1Q1] +m[Q̄2Q̄2] + 2κQ1Q1(~SQ1 · ~SQ1) + 2κQ̄2Q̄2
(~SQ̄2

· ~SQ̄2
) (3.52)

where m[Q1Q1] and m[Q̄2Q̄2] are constituent diquark and antidiquark masses respectively and

where κQ1Q1 and κQ̄2Q̄2
are colour-spin interaction coefficients. (Note that κQ̄Q̄ and κQQ are

equal as are m[QQ] and m[Q̄Q̄].) As the (anti-)diquarks have J = 1, they must have S = 1

for L = 0 (where J, L, S are the usual angular momentum quantum numbers). Hence, the

Hamiltonian (3.52) simplifies to

H = m[Q1Q1] +m[Q̄2Q̄2] +
1

2

(
κQ1Q1 + κQ̄2Q̄2

)
. (3.53)

Our predictions for m[cc] and m[bb] are in Table 3.1; however, the coefficients κcc and κbb

are not known. In [77], the X(3870), Z(3900), and Z(4020) resonances were interpreted as
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Figure 3.7: The left-hand side of (3.45) as the continuum threshold parameter s0 →∞
versus the Borel scale τ for the bb diquark.

Type-II diquark-antidiquark tetraquarks and were used to predict κcq = 67 MeV where q is a

light quark. As the κ coefficients are expected to decrease with increasing quark masses [98],

we assume here that

0 < κcc, κbc, κbb < 67 MeV. (3.54)

The absolute uncertainties in our diquark constituent mass predictions in Table 3.1 are

significantly larger than 67 MeV, and so, as a first approximation, we simply ignore the

κ contributions to (3.53). Therefore, within the Type-II diquark-antidiquark model, we

predict JP ∈ {0+, 1+, 2+} tetraquark masses of 7.0 GeV for [cc][c̄c̄], 12.2 GeV for [cc][b̄b̄],

and 17.3 GeV for [bb][b̄b̄]. The relative uncertainty in these mass predictions is roughly 10%.

Furthermore, note that the [cc][c̄c̄] and [bb][b̄b̄] tetraquarks are charge conjugation eigenstates

where C = + for J = 0, 2 and C = − for J = 1 [127, 128]. The [cc][b̄b̄] tetraquarks are not

charge conjugation eigenstates.

Regarding [cc][c̄c̄] tetraquarks, taking into account 10% theoretical uncertainty, our Type-

II model mass predictions are in reasonable agreement with those of [127, 128, 129], although
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our central values are higher. However, our results are much higher than those of [130].

Furthermore, our tetraquark mass predictions are above both the ηc(1S)-ηc(1S) and J/ψ-J/ψ

thresholds indicating that the corresponding decay modes should be accessible as fall-apart

decays.

Regarding [cc][b̄b̄] tetraquarks, again factoring in 10% uncertainty, our Type-II model mass

predictions are in reasonable agreement with those of [127, 128], although our central values

are lower. With an electric charge of +2, two charm quarks, and two bottom antiquarks, such

a state would be easy to identify through its decay products, and could not be misinterpreted

as a conventional meson. Unfortunately, within theoretical uncertainty, we are unable to say

whether or not our tetraquark mass predictions lie above or below the B+
c -B+

c threshold.

Regarding [bb][b̄b̄] tetraquarks, taking into account theoretical uncertainty, our Type-II

model mass predictions are in reasonable agreement with those of [129] although our central

values are lower. Our results are about 10% lower than those of [130, 131], and are much

lower than those of [127, 128]. Tetraquarks with bbb̄b̄ quark composition (so-called “beauty-

full” tetraquarks) have attracted considerable attention recently due to the possibility that

some might have masses below the Υ(1S)-Υ(1S) threshold and perhaps even the ηb(1S)-

ηb(1S) threshold. For bbb̄b̄ tetraquarks with masses below the ηb(1S)-ηb(1S) threshold, fall-

apart modes would be inaccessible and decays would instead proceed through OZI-suppressed

processes. Central values of our Type-II diquark-antidiquark mass estimates put the 0++,

1+−, and 2++ states about 9% below the Υ(1S)-Υ(1S) threshold and about 7% below the

ηb(1S)-ηb(1S) threshold.

In summary, we have used QCD LSRs to predict the axial vector doubly-heavy cc and

bb diquark constituent masses. Our results are summarized in Table 3.1. These results

were obtained from a calculation of the diquark correlation function at NLO in perturbation

theory and to LO in the 4d and 6d gluon condensates as well as the 6d quark condensate.

That the LSRs analyses stabilized in both the double charm and double bottom diquark

channels provides QCD-based evidence for the existence of these structures. Within the

Type-II diquark-antidiquark tetraquark model of Ref. [77], we predict, with an uncertainty

of roughly 10%, 0++, 1+−, and 2++ [cc][c̄c̄] tetraquarks of mass 7.0 GeV; 0+, 1+, and 2+ [cc][b̄b̄]

tetraquarks of mass 12.2 GeV; and 0++, 1+−, and 2++ [bb][b̄b̄] tetraquarks of mass 17.3 GeV.
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Central values of our [bb][b̄b̄] tetraquark mass predictions are well below the Υ(1S)-Υ(1S) and

ηb(1S)-ηb(1S) thresholds, providing support for the possibility that fall-apart decay modes

are inaccessible to some bbb̄b̄ tetraquarks.
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3.3 Diquarks and Tetraquarks Conclusion

In [3], we began by using QCD LSRs to calculate constituent masses for [cc] and [bb] diquarks.

These results are again collected in Table 3.2.

QQ MP (GeV)

cc 3.51± 0.35

bb 8.67± 0.69

Table 3.2: Constituent mass predictions for axial vector cc and bb diquarks including
theoretical uncertainties from [3].

We then went on to use these diquark constituent masses as inputs into the Type-II CMI

model of diquark-antidiquark tetraquarks [77] which allowed us to extract the tetraquark

mass predictions collected in Table 3.3.

[QQ][Q̄Q̄] M (GeV)

[cc][c̄c̄] 7.0

[cc][b̄b̄] 12.2

[bb][b̄b̄] 17.3

Table 3.3: Tetraquark mass predictions from [3], all uncertainties are roughly 10%.
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As discussed in section 3.2.4 these tetraquarks have JP ∈ {0+, 1+, 2+}. Also, the [cc][c̄c̄]

and [bb][b̄b̄] are charge conjugation eigenstates with C = + for J = 0, 2 and C = − for

J = 1 [127, 128] and the [cc][b̄b̄] is not charge conjugation eigenstates.

The diquark masses shown in Table 3.2 could also be used in other applications. In [3], we

use them to generate the tetraquark masses shown in Table 3.3, but they could be used in a

number of other hadronic systems where diquark substructure is possible. From baryons [132]

to hexaquarks [133], hadrons with three or more constituent quarks have been modeled, in

some cases, as though they have additional intermediate diquark substructure. Depending on

the quark content of the hadron in question, these [cc], [c̄c̄], [bb] and [b̄b̄] diquark constituent

masses could be used as inputs for other models.
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Chapter 4

Conclusion

4.1 Closing Thoughts

The overarching goal of the work presented in this thesis was to explore several ideas related

to beyond-the-quark-model hadrons. We wanted to try to shed some light on potentially

allowable hadronic configurations beyond-the-quark-model. In the first two papers which

we presented in Chapter 2 of this thesis [1, 2], we explored meson-hybrid mixing in vector

heavy quarkonium. In the third paper [3] which we present in Chapter 3 of this thesis, we

computed constituent masses for cc and bb diquarks. We then used these constituent masses

to predict tetraquark masses. Let’s now take a moment to collect our results and restate

their implications one more time.

4.2 Results

4.2.1 Meson-Hybrid Mixing Results

When exploring meson-hybrid mixing in 1−− and 1++ charmonium and bottomonium [1, 2],

we found the following results:

• In the 1−− charmonium sector, we saw non-zero mixing in the J/ψ, no evidence for

mixing in the ψ(2S), ψ(3770) cluster, and a large mixing parameter in the 4.3 GeV

cluster. Again, we note that the X(4260), which would be a member of this cluster

at 4.3 GeV, has often been interpreted as having significant hybrid content, and our

results are consistent with this idea.
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• In the 1−− bottomonium sector, we saw non-zero mixing in all three resonances, the

Υ(1S), the Υ(2S), and the two-state cluster containing the Υ(3S) and Υ(4S).

• In the 1++ charmonium sector, we saw almost no mixing in the χc1(1P ), minimal

mixing in the X(3872), and significant mixing in both the X(4140) and the X(4274).

Again, we note that the X(3872) has been interpreted as having significant tetraquark

content, and our result is consistent with that idea.

• In the 1++ bottomonium sector, we saw minimal mixing in the χb1(1P ) and significant

mixing in both the χb1(2P ) and the χb1(2P ).

4.2.2 Diquark/Tetraquark Results

In [3], we started by computing the following constituent diquark masses

M[cc] = M[cc] = 3.51± 0.35 GeV (4.1)

M[bb] = M[bb] = 8.67± 0.69 GeV. (4.2)

From these constituent diquark masses, we then went on to calculate the tetraquark masses

which we have again collected in Table 4.1 (Now with accessible JPC/JP values listed).

[QQ][Q̄Q̄] M (GeV) JPC/JP

[cc][c̄c̄] 7.0 0++, 1+−, 2++

[cc][b̄b̄] 12.2 0+, 1+, 2+

[bb][b̄b̄] 17.3 0++, 1+−, 2++

Table 4.1: Tetraquark mass predictions from [3], all uncertainties are roughly 10%.

4.3 Error Checking

With calculations of these size there are a number of ways in which errors could be introduced

into the computation. To eliminate these errors parts of the calculation are verified with
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multiple methods whenever this is possible. The software that we have developed is tested

against known results and, when possible, against hand calculations. Finally, whenever

possible consistency checks are made against expected findings.

4.4 Future and Present Work

The work presented in this thesis also serves as a starting point for future work. Some

of the techniques and results generated here could and are being used to further explore

similar ideas in hadronic physics. For example, we are presently working at applying some

of the tools we’ve developed in the calculation of diquark masses in [3] to calculate [cb]

diquark constituent masses. There is additional complexity introduced by the additional

mass scale in the field theoretical calculation that will require more sophisticated numerical

techniques to be used, but that work is ongoing. Once complete, we will again be able to

use this constituent diquark mass to make further tetraquark mass predictions among other

applications.

Another interesting possibility is the application of the multi-resonance analysis method-

ology, which we developed in [1, 2], to other hadronic spectra. This work is in the early

stages, but there are several candidate hadronic spectra which we are exploring that may

make good research subjects.
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Appendix A

Identities, Definitions and Conventions

This appendix, which I also included in [8], serve as a collection of several of the identities
and definitions commonly used in these calculations. I included it here as a useful reference
and as clarification of the conventions used in our work. To begin with, for all calculations
in this thesis we use natural units where ~ = c = 1.

A.1 Colour Algebra

With regard to the use of δ functions we use a convention where a delta function appearing
with Latin indices is understood to exist in gluon colour space such that

δabδab = δaa = 8 (A.1)

and a delta function appearing with Greek indices is understood to exist in quark colour
space such that

δαβδ
αβ = δαα = 3 (A.2)

finally a delta function appearing with functional arguments (such as δ(p− q)) is understood
to be a d dimensional Dirac delta function.

Lambdas (λ) will be understood to be Gell-Mann matrices and they relate to the gener-
ators of SU(3) (which we represent with t) as follows

λa = 2ta. (A.3)

The traces of these Gell-Mann matrices obey the following identities, additional identities
can be found in [16]

Tr[λa] = 0 (A.4)

λaαβλ
b
βα = Tr[λaλb] = 2δab (A.5)

λaαβλ
b
βδλ

c
δα = Tr[λaλbλc] = 2(dabc + ifabc) (A.6)

where the dabc are totally symmetric and the fabc are totally antisymmetric structure con-
stants.

A.2 Dirac Algebra

We use the mostly minus sign convention for our Minkowski metric tensors (g) such that

Diagonal(gµν) = (1,−1,−1,−1) (A.7)
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and in d-dimensions they obey the following identities

gµνgµν = gµµ = d (A.8)

and
gµνpµqν = pνqν = p · q (A.9)

where p and q are some four-momenta. We define γ5 in d-dimensions by the following
convention

γ5 = − i

24
εµνσργ

µγνγσγρ (A.10)

which is consistent with [134]. With regard to the traces of gamma matrices we use the
following identities. Additional identities involving traces without γ5’s in them can be found
in [5]. For the sake of brevity we omit identities with larger traces.

Tr[γ5] = 0 (A.11)

Tr[γµγνγ5] = 0 (A.12)

Tr[γµγνγργσγ5] = −4iεµνρσ (A.13)

Tr[γµγνγργσγηγτγ5] = −4i
(
εµνρσgητ − ενρστgµη + ερσητgµν − ενσητgµρ+

ενρητgµσ + ενρσηgµτ + εµρστgνη + εµσητgνρ−
εµρητgνσ − εµρσηgντ − εµνστgρη + εµνητgρσ+

εµνσηgρτ + εµνρτgση − εµνρηgστ
) (A.14)

The most general contraction of two Levi-Civita symbols can be written as follows. Similar
(but more compact) identities where the Levi-Civita symbols share some indices can be found
in [5] among other places

εαβγδεµνρσ =− gασgβρgγνgδµ + gαρgβσgγνgδµ + gασgβνgγρgδµ − gανgβσgγρgδµ

− gαρgβνgγσgδµ + gανgβρgγσgδµ + gασgβρgγµgδν − gαρgβσgγµgδν

− gασgβµgγρgδν + gαµgβσgγρgδν + gαρgβµgγσgδν − gαµgβρgγσgδν

− gασgβνgγµgδρ + gανgβσgγµgδρ + gασgβµgγνgδρ − gαµgβσgγνgδρ

− gανgβµgγσgδρ + gαµgβνgγσgδρ + gαρgβνgγµgδσ − gανgβρgγµgδσ

− gαρgβµgγνgδσ + gαµgβρgγνgδσ + gανgβµgγρgδσ − gαµgβνgγρgδσ.

(A.15)
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