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Abstract 

 

Enantioselective conjugate addition (ECA) reactions between organometallic 

reagents and cyclohexadienone 165 are being investigated.  Previous studies have 

shown that ECAs, of organometallic reagents to α,β-unsaturated cyclohexadienones, are 

useful in many natural product syntheses.  The substrates used in earlier studies were 

simple 2,5-cyclohexadienones, with a proton at the C-3 position, resulting in the 

synthesis of a trisubstituted C-3 atom. ECAs that afford all-carbon quaternary 

stereogenic centers are a much more challenging problem and few examples have been 

reported.  Some natural products contain a γ-hydroxy group, however, no ECA 

substrates have incorporated this motif.  ECAs have been accomplished with substrates 

having a γ-ether substituent.  The cyclohexadienone 165 system presents three 

challenging problems to overcome for an ECA reaction: the tertiary methyl substituents 

at the 3 and 5 positions, facial selectivity and enantioselectivity.  An ECA to 165 using 

an organoaluminum reagent and an external chiral ligand 26 was successful in 

producing a product that showed the reaction was moderately stereoselective.  A 

diastereoselective conjugate addition reaction (DCA) to 165 using a chiral auxiliary 68 

was also successful in producing a product that showed the reaction was moderately 

enantioenriched.  Lastly, a variable temperature NMR study was performed to establish 

the presence of dynamic motions of the C=N bond present in sulfinyl imines 229 and 

230.   As a result, the sulfinyl imines 229 and 230 were found to be interconverting at -

78°C.   
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CHAPTER 1:  LITERATURE REVIEW OF STEREOSELECTIVE 

CONJUGATE ADDITION REACTIONS 

 

1.1 Enantioselective Conjugate Addition (ECA) 

Enantioselective syntheses have the potential to generate large quantities of 

chiral products with high enantioselectivities from small quantities of chiral 

catalysts.  This characteristic of being a simple and atom-economic process, in 

comparison to enzyme catalysis, permits a much broader substrate scope and can 

provide access to both enantiomers of the product by simply switching the chirality 

of the chiral catalyst.1  Processes such as the reduction of carbonyls, imines, and 

alkenes, additions to enones, enolate alkylations, aldol reactions, and cycloadditions, 

as well as sigmatropic rearrangements have all been tailored to yield non-racemic 

products.2  Increased attention and financial importance has been granted to 

enantioselective synthesis methods as pharmaceutical companies are exchanging 

racemic drugs for non-racemic ones to extend the patents on profitable compounds.3 

In the year 2001 the Nobel Prize in Chemistry was awarded to W. S. 

Knowles, R. Noyori, and K. B. Sharpless for their revolutionary developments of 

catalytic asymmetric hydrogenation and oxidation reactions.  These developments 

of catalytic methods for asymmetric synthesis were amongst some of the foremost 

and unprecedented recent achievements of chemistry.4 Many catalytic asymmetric 

oxidation and reduction methods have been developed.  However, currently few 

catalytic asymmetric methods for constructing carbon-carbon (C-C) bonds have 

been developed.5   

The formation of a C-C bond can be attained by a conjugate addition 

reaction (Figure 1).6   
O

R1

O

R1

R

1 2
1. R2CuLi

2. H2O

R = CH3
* R1 = R

 
Figure 1. Conjugate addition reaction forming a C-C bond. 
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This reaction involves the addition of a carbon nucleophile R to a substituted double 

or triple bond conjugated to a carbonyl group as in 1.  Conjugate addition reactions 

can lead to the formation of a stereogenic center (*).  The development of 

diastereoselective addition to chiral acceptor substrates to form a stereogenic center 

is an area of conjugate addition chemistry that has been well established.7  On the 

other hand, much less is known about enantioselective conjugate additions (ECAs) 

of chirally modified nucleophiles to prochiral substrates or achiral substrates that 

can be converted to chiral products in a single step (Figure 2).1   
O

1. R2Zn, L*
2. H2O

O

R

>99% ee
L*--chiral ligand

3 4  
Figure 2. An example of enantioselective conjugate addition (ECA) reaction. 

 
 Conjugate addition of alkyl-containing reagents to α,β unsaturated organic 

substrates is an important method of assembling structurally complex organic 

molecules.8  According to Seyden-Penne,9 a conjugate addition reaction can achieve 

enantioselectivity through methods such as:  1) the use of a chiral non-transferable 

group (CG*) bonded to the nucleophile (Nu); 2) the use of an external chiral ligand 

(L*), which in turn complexes to the nucleophile (Nu); 3) the use of an external 

chiral ligand (L*) that joins to the acceptor compound and directs the nucleophile 

(Nu); 4) the use of an external chiral ligand (L*) and an external metal salt (M*) that 

directs in motion the acceptor compound to the nucleophile (Nu); 5) and the use of 

an external chiral unit (CU*) that unites collectively both the acceptor and donor 

compounds (Nu) (Figure 3).  The final four methods presented allow the possibility 

of using catalytic amounts of a chiral component; however, the first method does 

not.  Lastly, all the methods presented require a ligand or auxiliary as a chiral 

component. 
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O

R

O

R

Nu

6 7
*

*GC Nu +

5

*GC

O

R

O

R

Nu

6 9
*

*L Nu +

8

O

R

O

R

Nu

6 9
*

Nu +

10

*L

O

R

O

R

Nu

6 9
*

Nu +
10

*L*M

O

R

O

R

Nu

6 9
*

Nu +

10

*
L

Method 1

Method 2

Method 3

Method 4

Method 5

 
Figure 3.  Seyden-Penne’s classification of ECA methods. 

 

The knowledge base of chemistry today provides ECA methods to create 

many tertiary stereocenters with excellent levels of enantiocontrol and chemical 

yields (Figure 4). Various methodologies for tailor-made ligands have been 

developed and are commonly used with a wide variety of acceptor substrates in 

organic synthesis.1  ECAs forming tertiary stereocenters have been successfully 

applied to cyclic10, 11 and acyclic enones,12 lactones,13 lactams,14 nitro olefins,15 

amides16 and malonates.17  However, whatever the addition acceptor, many of these 

ECA reaction methods with β,β-disubstituted acceptors have failed.18 

O

R1

O

R1

R

1 11

O O

R
3 4

ECA ECAOR

 
Figure 4.  ECA to produce a tertiary stereocenter. 
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Carbon atoms bonded to four other carbon substituents are termed as all-carbon 

quaternary centers.  The synthesis of these all-carbon quaternary centers is a 

gigantic challenge in modern chemistry, because the creation of these centers is 

complicated by steric repulsion between the carbon substituents.1  Catalytic 

enantioselective methods that successfully produce a C-C bond of all-carbon 

quaternary stereocenters reactions are rare (Figure 5).   

O

R1

O

R1

R2

12 13

O O

R
14 15

ECA? ECA?OR
R2

R1

R
R1

 
Figure 5. Hypothetical ECA to produce an all-carbon quaternary stereocenter. 

 

Precedent C-C bond formation reactions that form all-carbon quaternary 

stereocenter are Diels-Alder cycloadditions, Pd-allylations reactions and conjugate 

additions (Figure 6).4  One successful example using an ECA reaction method to 

synthesize an all-carbon quaternary stereocenter was reported by Alexakis18 (Figure 

6c).  The construction of quaternary stereocenters still remains a significantly 

underdeveloped research area. 

 The goal of this research is to develop an ECA reaction to a specific class of 

α,β-unsaturated β-disubstituted γ-trisubstituted ketones based on previously reported 

ECA reactions to α,β-unsaturated β-disubstituted and α,β-unsaturated ketones.  This 

study can be achieved through the synthesis of a simple α,β-unsaturated β-

disubstituted γ-trisubstituted bearing small side groups.  The 4-alkyl-4-hydroxy-3,5-

dimethylcyclohexa-2,5-dienone system allows for this type of reaction.  

Furthermore, this type of system could be used as a model for other natural product 

syntheses.  We hypothesized that existing ECA methods for sterically demanding 

substrates could be adapted to the 4-alkyl-4-hydroxy-3,5-dimethylcyclohexa-2,5-

dienone system to produce an ECA product with high ee, yield and catalytic 

efficiency.    
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I

O

O
I

O

O

H

B
ON

H

H
Ph

Ph

+ a

NTf2

93% yield, 99% ee

a) Diels-Alder Cycloaddition.

16
17 19

18
a) 20 mol % (18), CH2Cl2, -78°C.

b) Pd Allylation.

O

O O

O
+

b
O

93% yield, 95% ee

Ph2P
N

O
N

O

HH
Ph2P

Fe

Fe

20
21

23

22

b) 7.5 mol % (22), 2.5 mol % [(allyl)PdCl]2, LDA (1.5 equiv.), THF, RT.

c) Conjugate Addition.

O O

c
O
O

P N

(S,R,R)-1

24 25

26
c) Et3Al, CuTC, (S,R,R)-1 (26), Et2O, -30°C.

72% yield, 82% ee

(Corey, 2003)

(Zhu, 2001)

(Alexakis, 2005)

 

Figure 6.  Known C-C bond formation reactions that form an all-carbon quaternary 
stereocenter.4 
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1.2 ECAs to Enones. 

Conjugate additions to enones are common reactions in many natural 

product syntheses.19 Due to a large variety of donor and acceptor compounds that 

can be employed in this reaction, tremendous effort has been devoted over the last 

three decades to develop enantioselective asymmetric variants.20  Copper mediated 

ECAs of organolithium and Grignard reagents to α,β-unsaturated systems covalently 

modified with chiral auxiliaries were the first successful approaches.21 In addition, 

other preliminary methods utilized organocopper compounds with chiral 

nontransferable groups.20,21  In 1997, the application of organolithium reagents in 

the presence of stoichiometric quantities of the chiral amine, (-)-sparteine 28, was 

developed (Figure 7). 

O

O

t-Bu

OMe

t-Bu
O

O

t-Bu

OMe

t-Bu
a

N
N

H

H

a) MeLi, (-)-sparteine (28), PhMe, -78°C

27 29
28

73% yield, 96% ee

 
Figure 7.  ECA with an organolithium reagent and a chiral amine. 

 
ECAs of organolithium reagents to α,β-unsaturated systems possessing sterically 

crowded esters resulted in good yields (>70%) and high enantioselectivities (>90% 

ee).22  Although the use of organolithium reagents produced practical results, the 

loading of chiral catalyst was large, (>10 mol %). 

The high reactivity associated with organolithium reagents is a major 

problem in the development of catalytic asymmetric 1,4-addition reactions.  The 

major problems faced with reactions using highly reactive organolithium reagents 

include a favoured 1,2-addition reaction and the co-existence of competing chiral 

and achiral 1,4-addition reactions.  The development of an efficient chiral catalyst 

that avoids this regioselective preference is challenging.  In order to overcome this 
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major regioselectivity problem, chemists have used large loading quantities of chiral 

catalysts, >10 mol %.23 

The first reported ECA of a Grignard reagent to an enone, using catalytic 

quantities of a Cu-amide complex was performed by Lippard and coworkers in 1988 

(Figure 8).24   
O

a

O

N
Cu

N

H

Ph

H

Ph

3 31

30

a) MeMgCl, H(CHIRAMT) (30), THF, -78°C

81% yield, 74% ee

 
Figure 8.  First ECA with a Grignard reagent and a Cu-amide complex. 

 

Shortly following this influential work, diverse catalytic systems were 

developed based on copper thiolates25-31 and monophosphine ligands.32-35  However, 

the majority of these systems produced products with enantioselectivities seldom 

attaining 90% ee.  Some exceptions include those of Tomioka34 and Sammakia35 

where enantioselectivities of >92% ee were achieved for the addition of BuMgCl to 

cyclic enones.  However, Tomioka used 32 mol% of a chiral amidophosphine and 

Sammakia used 12 mol% of a chiral ferrocenyl monophosphine in their additions to 

cyclic enones. Unfortunately, the loading of these chiral catalysts was still greater 

then the practical amount of <10 mol%.36   

Grignard reagents have several limitations associated with the Cu-catalyzed 

conjugate addition.  The problems faced with reactions using Grignard reagents in 

enantioselective reactions include: fast uncatalyzed side reactions, the existence of 

competing chiral and achiral copper complexes in solution and the usually 

detrimental effect of the presence of halides on enantioselectivity.37  The nature of 

this halide effect is unknown; however, the use of alkylmagnesium chloride reagents 

have shown greater enantioselectivities then the use of alkylmagnesium iodide 
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reagents.38   In 2004, Feringa found that Grignard reagents could be added to cyclic 

enones with high enantioselectivity (>95%) and regioselectivity with the use of 

commercially available bidentate ligands.39  All other ECA ligands found in the 

literature functioned by means of a Cu catalyst and the use of a P, S, or Se with N or 

O donor atoms within the ligand structure.  Usually the Cu catalyst is selectively 

coordinated to the Mg component of the organometallic species to fulfill the criteria 

of the conjugate addition.40-42 Feringa notes that phosphoramidites ligands were 

initially tested but resulted in poor enantioselectivities.43 In addition, Feringa 

observed that reactions with Grignard reagents in the presence of any free Cu salt in 

the system would result in an uncatalyzed reaction, even at -78°C.  Therefore, 

Feringa proposed that a ligand that binds Cu ions tightly, such as a bidentate ligand, 

might be essential.  Accordingly, the chiral ferrocenyl diphosphine ligand provided 

excellent stereocontrolled products in good yields >75%, despite the high reactivity 

of the Grignard reagents and the presence of halide ions (Figure 9).  In addition, the 

ECA system using Taniaphos functioned with a moderate catalyst loading of 5 

mol%.39   

Fe
PPh2

NPh2P

O

a

O

3 31

a) MeMgBr, Taniaphos (32), CuCl, Et2O, 0°C.

32
Taniaphos

83% yield, 90% ee

 
Figure 9.  Feringa’s ECA with a Grignard reagent and Taniaphos. 

 

Grignard reagents possessed such high reactivity that even in the presence of 

a chiral ligand, they often resulted in an undesired racemic reaction.  As a result, 

chemists set out to explore the use of less reactive organometallic species, such as 

organo-zinc, copper, aluminum, silicon, or boron reagents, in combination with 
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different metal sources (Cu, Rh, Pd, Ni, Co).  Dialkylzinc reagents were first 

employed by Alexakis in the mid-1990’s (Figure 10)10 and they have dominated the 

field of ECAs since.44-49.   
O

a

O

3 34

a) Et2Zn, (33), CuI, PhMe, RT.

N
P

O
N

33

81% yield, >95% ee

 
Figure 10.  First ECA with a dialkylzinc reagent. 

 

Dialkylzinc reagents possess many advantages because, compared with 

Grignard reagents, they demonstrate low reactivity in an uncatalyzed reaction and 

high tolerance for functional groups both in the substrate and the zinc reagent. 

Copper-catalyzed dialkylzinc additions have been useful in many reactions 

involving conjugated cyclic substrates such as cyclohexenones,10 cyclopentenones,11 

unsaturated lactones13 and lactams.14  In addition, progress has been achieved with 

dialkylzinc reagents and challenging acyclic substrates such as chalcones,12 

benzylideneacetones,50 aliphatic α,β-unsaturated ketones,51 malonates17 and 

nitroolefins.15  Dialkylzinc reagents are compatible with a variety of functional 

groups.52  As a result, the use of organozinc reagents eliminates other reactions such 

as 1,2-addition which is a problematic reaction with organomagnesium 

nucleophiles. Dialkylzinc reagents also have some disadvantages. For example, 

dialkylzinc reagents possess low atom efficiency, since the stoichiometry of the 

desired transfer ligand to zinc ratio is 2:1. In addition, dialkylzinc reagents are also 

much harder to synthesize and handle than reagents such as organomagnesium 

reagents.53 The process of hydroboration alkyl-transfer permits the formation of 

functionalized organozinc reagents.54  

Over the last decade, the reaction between dialkylzinc reagents and cyclic 

enones has been extensively studied.44-49 Most studies of an ECA organozinc 
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reaction with cyclic enones were carried out in similar conditions.  Typically, an 

organozinc ECA reaction is performed with diethylzinc and cyclohexenone in 

toluene in the presence of 0.5-5 mol% of a Cu salt and in the presence of 1-10 mol% 

of a chiral ligand.  Fortunately, Cu-catalyzed organozinc reactions occur at a very 

slow rate in any solvent without the presence of a ligand.55 Thus, the reaction is 

ligand-accelerated and adjusted according to the character of the chiral ligand. ECA 

organozinc reactions are carried out in solvents such as, PhMe, Et2O, DCM, THF, 

EtOAc and ACN.  Coordinating solvents usually result in the deceleration of the 

reaction.36  High enantioselectivities have been obtained using all solvents.   

The copper salt is essential for high catalytic activity and high 

enantioselectivity. Both Cu+1 and Cu+2 salts have been used successfully. The most 

widely used copper salt has been Cu+1 triflate, however, its demonstrated catalytic 

activity was equal to that of Cu+2 triflate. Cu+2 triflate is the preferred Cu salt as it is 

easily handled in open air, whereas, Cu+1 triflate is very sensitive to oxidation and 

should be handled with care.56 The equal catalytic activity of the two Cu triflate 

species is explained by the fact that Cu+2 salt is reduced in situ to the Cu+1 salt, 

which is the true catalytic species. The Cu+2 triflate’s higher catalytic activity over 

copper halides is thought to be explained by the enhanced Lewis acidity of triflate 

Cu salts.57 On the other hand, the high efficiency in catalytic activity of copper 

carboxylates salts was explained by their lipophilicity or solubility in a non-polar 

solvent. The best enantioselectivities using Cu carboxylates were found with copper 

thiophene-2-carboxylate, CuTC.36   

The chiral ligand is the centerpiece of this reaction as it increases the rate 

and produces an enantioselective reaction.  The level of enantioselectivity is entirely 

due to its presence. The main type of ligand and most successful associated with 

organozinc reagents is the family of chiral phosphorus-based ligands. Other ligands 

include sulfonamides and bis(oxazolines), but they have been much less studied.  

Sources of trivalent phosphorus ligands, such as phosphanes, phosphites, 

phosphoramidites and phosphonites, have shown to strongly accelerate organozinc 

ECA reactions.55 Most phosphorus ligands commonly exist as monodentate or 

bidentate type structures.  During a typical organozinc ECA, two equivalents of 
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ligand are required per Cu ion.10  As shown for the catalytic cycle in Figure 11, the 

first equivalent of phosphorus ligand is required to guide the reaction and the second 

equivalent is replaced by π complexation of the selected enone to the Cu species.58-

61  The accepted mechanism of ECA with the use of organozinc reagents is 

understood to follow a pathway where there is an oxidative addition to a Cu+3 

intermediate, followed by reductive elimination.62  
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Figure 11.  Mechanistic pathway of an ECA with dialkylzinc reagents.62 

 

To date, the most studied ligands are those bearing three heteroatoms around 

the phosphorus atom: phosphites and phosphoramidites (Figure 12).  These 

phosphites and phosphoramidites usually possess a phosphorus atom incorporated in 

a ring formed from a diol or an amino alcohol. The chirality of these ligands 

originates from the diol unit, the exocyclic unit, or both. These types of ligands can 

also be associated with a matched or mismatched relationship where dissimilar 

catalytic behaviour can occur for each of the synthetically possible diastereomeric 

ligands.  TADDOL ligands 45 are composed of a phosphorus atom in a seven-

membered ring. Several ECAs incorporating this type of ligand have been 
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synthesized and tested.58,63,64  In addition, this type of ligand can exist in two forms, 

those that possess an exocyclic chiral group and those that do not.  However, the 

absence of an exocyclic chiral moiety, results in low to moderate enantioselectivity 

on enones.58 Binaphthol-based ligands 47 are the most studied subclass of the 

phosphite and phosphoramidite ligand family. The most successful ligands of this 

subclass are those bearing a chiral exocyclic moiety, such as an alcohol for 

phosphites or an amine for phosphoramidites.65 Similar to the TADDOL ligand 

class, binaphtol-based ligand diastereomers also have matched or mismatched 

relationships.  Non-phosphorus ligands have rarely been utilized with dialkylzinc 

reagents.  However, sulfonamides,66 diaminocarbenes,67 modified binaphthols,68-70 

sugar-derived ligands,71 thiazolidines72 and oxazolines73 have been shown to 

accelerate the conjugate addition of dialkylzinc. Non-phosphorus ligands have a 

tendency to promote an efficient reaction with 2-cyclohexenone, but they work 

poorly with other enones.74   
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Figure 12.  Phosphites and phosphoramidites backbone structures. 

 

The most widely studied substrate for organozinc ECAs has been 2-

cyclohexen-1-one (3). Cyclohexenone is a very reactive species and, in most 

articles, it is the only enone screened against several ligands.  The cyclic structure of 

cyclohexenone avoids the problem of conformer interconversion.  In 1997, 

Feringa75 reported that successful ECAs were obtained using a Cu(OTf)2 

phosphoramidite ligand system in combination with dialkylzinc reagents and 

cyclohexenone 3 (Figure 13). 
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O O

a

a) Et2Zn, Cu(OTf)2, (S,R,R)-1 (26), PhMe, -30°C.

O
O

P N

(S,R,R)-1
3 34

26

94% yield, >98% ee

 

Figure 13.  Feringa’s ECA to 2-cyclohexen-1-one. 

 
The reaction between Et2Zn, compound 3 and the catalyst prepared from Cu(OTf)2, 

(2 mol%) and 26 (4 mol%) provided 34 in 94% yield and an ee value greater than 

98%. Excellent yields and enantiomeric excesses ranging from 94% to greater than 

98% were obtained for cyclohexenone with a variety of zinc reagents.  The high 

stereocontrol observed in the formation of a number of 3-alkyl cyclohexanones (R = 

Me, Et, i-Pr) led Feringa to examine catalytic 1,4-additions of diheptyl zinc and 

functionalized dialkylzinc reagents. Although the yields of the reactions were 

diminished slightly as the size of the alkylzinc reagent increased, the enantiomeric 

excesses achieved were >90%.   Feringa noted that the phosphoramidite catalyst 

also tolerated ester and acetal functionalities.  Based on a crystal structure of the 

phosphoramidite catalyst, Feringa proposed a transition state (Figure 14).  It consists 

of a copper atom bonded to two phosphoramidite ligands and to an ethyl group from 

the zinc reagent.  In addition, the copper atom is coordinated to the enone 

functionality of the cyclohexenone substrate.   
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Figure 14.  Cu-Phosphoramidite Ligand Transition State Proposed by Feringa.75 

 

Methods using metals other then copper have also been developed.  ECAs to 

enones using alkenylboronic acids and chiral rhodium catalysts have produced 

products with high yields and enantioselectivities.   The activation in these types of 

reactions76 is thought to occur by means of transmetalation to a chiral 

alkenylrhodium species (Figure 15). 
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Figure 15.  Transmetalation to a chiral alkenylrhodium species. 

 

Recently, Chong77 demonstrated that esterification of boronic acids with 

suitable chiral diols could be utilized as an alternative method of activation.   It was 

hypothesized that a chiral diol could be turned over during the reaction and the 

reaction mechanism would not involve a transition metal catalyst.  Chong found that 

a 1,4-alkenylation of chalcone 56 using a boronate 57 could be achieved using 

catalytic amounts of binaphthol 58 (Figure 16).  
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Figure 16.  Chong’s 1,4-alkenylation of chalcone. 

 

Many binaphthols were examined and were all able to catalyze the addition to 

produce 59 with high enantioselectivity.  The reaction proceeded with as little as 3 

mol% of catalyst with no decrease in yield or enantioselectivity.  Chong further 

investigated this reaction with other enones where the phenyl groups of 56 were 

exchanged for other functionalities.  Again, this reaction demonstrated high 

selectivities for virtually all the enones tested.  Highest selectivities, >99% ee, were 

observed for enones substituted at the β-position with relatively large aryl groups. 

Conjugated dienones, where the phenyl group at the β-position was replaced by 

CH=CHPh 60 (Figure 17) or CMe=CHPh, also produced 1,4-addition products with 

high selectivities, 99% ee. 
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Figure 17.  Chong’s 1,4-alkenylation of the conjugated dienone 60. 

 

Enones where the phenyl group at the β-position was replaced with different alkyl 

groups produced high selectivities, >94% ee, regardless of whether the group was a 

methyl, n-alkyl, or branched.  Lastly, an enone where the phenyl group at the β-

position was replaced by a carbomethoxy group reacted to produce high selectivity, 

>96% ee.  The high selectivities of these reactions led Chong to suggest a possible 

favoured transition state demonstrating the link between the boronic acid-chiral diol 

complex and the enone substrate (Figure 18).   
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Figure 18.  Chong’s 1,4-alkenylation favoured transition state. 

 

Chong discovered the first example of ECA alkenylation methodology that does not 

rely on transition metals. 

 

1.3 Diastereoselective Conjugate Addition (DCA) to Enones.   

Chiral auxiliaries are extremely versatile synthetic components for DCA 

reactions.78 As a result, the product formed from a DCA reaction can then be 

converted into an enantioenriched product by the removal of the chiral auxiliary.  

D’Angelo first reported the use (R)-1-phenylethylamine a chiral auxiliary in an 

intermediate step in the total synthesis of (+)-vincamin 67.79 The intermediate 64 



 20

was prepared by converting lactam 62 at elevated temperature with (R)-1-

phenylethylamine (63) and with two equivalents of methyl acrylate (65) to yield the 

conjugate addition product in 70% yield and 92% ee after cleavage of the auxiliary 

(Figure 19). 
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Figure 19.  DCA in the synthesis of (+)-vincamin. 
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The auxiliaries utilized in these types of reactions are readily condensed with the 

ketone and can be recovered almost quantitatively after workup.  

Sulfinyl imines are a special class of imines that display unique reactivity 

and stereoselectivity due to the presence of the stereogenic and electron 

withdrawing nitrogen-sulfinyl group.76 N-tert-Butanesulfinyl imines are members of 

the class that are exceptionally versatile synthetic intermediates. N-tert-

Butanesulfinyl imines are readily prepared by condensation of tert-

butanesulfinamide with aldehydes or ketones. Diastereoselective addition of diverse 

nucleophiles followed by acidic removal of the sulfinyl group efficiently provides 

enantioenriched amine or ketone products.80,81  Lately, the Ellman group has 

embarked on an effort to access more complex amine products with multiple 

stereocenters by first performing diastereoselective transformations on starting N-

tert-butanesulfinyl imines to provide more complex imine intermediates that could 

be subsequently converted to enantioenriched amine products (Figure 20).82  
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Figure 20.  Ellman’s DCA via the formation of a sulfinyl imine intermediate. 

 

The α,β-unsaturated tert-butanesulfinyl ketimines 69 and 70 were produced in good 

yield, however, a 2:1 mixture of E/Z isomers was observed.  Ellman also observed 

that following the ECA the diastereoselectivity of the product 71 greatly exceeded 

the modest E/Z isomer ratio.  This, in turn, suggested that one of the imine isomers 

reacted preferentially with the cuprate concomitant with a rapid imine isomer 

equilibration (Figure 21).  Ellman suggested that the chiral sulfinyl imine 

functionality directly assisted the alkyllithium addition through a cyclic transition 

state as in 72 (Figure 22).    
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Figure 21.  Ellman’s suggested reaction pathway. 

 
Figure 22.  Ellman’s suggested sulfinyl imine intermediate. 

 

The type of cuprate also seemed to play an important role as diastereomeric ratios 

varied depending on the copper source. These first examples of ECAs to α,β-

unsaturated tert-butanesulfinyl ketimines provided insights that sulfinyl imines 

could be potentially useful intermediates in the asymmetric synthesis of a variety of 

natural products.82 
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1.4 ECAs to β,β-Disubstituted Enones. 

Conjugate addition75 of carbon nucleophiles to β,β-disubstituted enones or 

electron-deficient olefins is a strategy used to create all-carbon quaternary 

stereocenters.48 There are only a few literature examples of creating all-carbon 

quaternary stereocenters and this may be credited to the inherent poor reactivity of 

β,β-disubstituted alkene acceptors.1  In 2006 Fillion83 reported an asymmetric 

synthesis of all-carbon benzylic quaternary stereocenters.  These quaternary 

stereocenters were formed through Cu-catalyzed addition of dialkylzinc reagents to 

5-1-arylalkylidene or Meldrum’s acids in the presence of a phosphoramidite ligand 

(Figure 23). 
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Figure 23.  Fillion’s synthesis of all-carbon benzylic quaternary stereocenters. 

 

The asymmetric synthesis of ECA reactions with Meldrum’s acids to produce all-

carbon stereocenter derivatives resulted in excellent conversions (95%) and good 

enantioselectivities (>70% ee).  It was also noted that enhanced enantioselectivity 

occurred with the introduction of a halogen group in the para position of the 

aromatic ring. A variety of dialkylzinc reagents, Et2Zn, Me2Zn, i-Pr2Zn and n-

Bu2Zn were utilized to react with 73.  With the exception of i-Pr2Zn resulting in a 

low enantioselectivity, the remaining alkylzinc reagents resulted in excellent 

enantioselectivities (90-95% ee).  This method described was the first highly 

enantioselective synthesis of all-carbon benzylic quaternary stereocenters via an 
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ECA of dialkylzinc reagents to an acyclic site of Meldrum’s acids in the presence of 

a phosphoramidite ligand. 

 In 2007, Hoveyda84 reported the design of a new chiral N-heterocyclic 

carbene (NHC) ligand that could be used for ECA synthesis of all-carbon quaternary 

stereogenic centers to cyclic β-keto esters with the use of organozinc reagents 

(Figure 24). 
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Figure 24.  Hoveyda’s ECA construction of a quaternary stereogenic center. 

 

This investigation examined the ability of Cu complexes generated from the 

reaction of 77 and Cu(OTf)2·C6H6 to support an ECA of Me2Zn to six-membered 

ring β-keto esters 75.  Hoveyda observed that a sulfonate-containing chiral NHC 

promoted the addition of Me2Zn to a six-membered ring β-keto ester 75 with 

significantly higher efficiency (>98% conversion) and superior enantioselectivity 

(>80% ee) than with previous NHC ligands.84  Hoveyda did not make any mention 

of how this reaction proceeded.  However, Hoveyda did state that the steric and 

electronic attributes of these ligands must have assisted these catalytic reactions by 

producing higher reactivities and selectivities.  

In 2005, Alexakis4 reported the first successful example of constructing an 

all-carbon quaternary stereocenter within a cyclic enone.  An ECA was performed 

to 3-substituted cyclohexenones in the presence of phosphoramidite ligands (Figure 

25). 
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Figure 25.  First ECA to a cyclic enone to form an all-carbon stereocenter. 

 

Alexakis first acknowledged that Cu-catalyzed ECAs of organozinc reagents 

had been successfully applied to many β-substituted substrates.  However, he also 

added that ECA reactions with organozinc reagents and β,β-disubstituted substrates 

failed, perhaps resulting from some steric reasons.  As a result, Alexakis changed 

from zinc to aluminum reagents.  Trialkyaluminum reagents have been known to 

react with α,β-unsaturated cyclic85 and acyclic enones86 and nitro olefins.87  

Furthermore, Alexakis used the rationale that the stronger Lewis acidity of Al would 

create a better activation of the β,β-disubstituted substrate than Zn, thus overcoming 

the inherent steric hindrance.4  The mechanism of ECA reactions with the use of 

alkylaluminum reagents was thought to follow a similar mechanistic pathway to that 

of dialkylzinc reagents (Figure 26).88   
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Figure 26.  Mechanistic pathway of an ECA with alkylaluminum reagents. 

 

 

1.5 ECAs to Dienones. 

The chemistry of dienones is known to be similar to that of masked p-

quinols and includes many reactions, such as 1,2-addition reactions to the carbonyl 

functionality, as well as 1,4-addition and annulation reactions of the enone 

functionality. The synthetic utility of all of these reactions is limited by the tendency 

of dienones to aromatize. Dienones can aromatize through the dienone-phenol 

rearrangement in acidic conditions.  As shown in Figure 27, the dienone-phenol 

rearrangement of unsymmetrical cyclohexa-2,5-dienones can lead to four potential 

aromatic products.6 
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Figure 27.  Dienone-phenol rearrangement pathways.6 

 

Although dienones undergo rearrangements easily under acidic conditions, 

dienones such as substituted cyclohexadienones have been shown to react smoothly 

with dialkylzinc reagents to produce high enantioselectivities.  Feringa89 reported 

that successful ECAs were obtained using a Cu(OTf)2 phosphoramidite ligand 

system in combination with dialkylzinc reagents and several symmetric 4,4-

disubstituted cyclohexadienones (Figure 28). 
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Figure 28.  Feringa’s ECAs to 4,4-disubstituted cyclohexadienones. 

 

Using a phosphoramidite ligand 26, ECAs to the cyclohexadienone 97 possessing a 

MeO and a Me substituent at the 4 position produced the formation of two  

diastereoisomers 98 and 99. The diastereomeric ratio was 9/1, and the enantiomeric 

excess of the major and minor products were 97% and 85%, respectively (Figure 

29).  Feringa noted that the basis of the observed diastereoselectivity may be a result 

of a steric or syn coordination effect from the oxygen atom of the alkoxy moiety to 

the catalytic species.    
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Figure 29.  Feringa’s diastereoselective ECA. 

 

In addition, it was also noted that if the Me substituent of 97 were replaced with a 

much larger benzyl group, the diastereomeric ratio of 98 and 99 was increased to 
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97/3 and the enantioselectivity remained excellent (93% ee) for the major 

diastereoisomer.  Feringa demonstrated that a copper-phosphoramidite chiral 

catalyst reacted with 4,4-disubstituted enones to produce ECA products with 

excellent stereoselectivity. As a result, a new catalytic method was discovered in 

order to synthesize several multifunctional cyclohexenones with high 

diastereoselectivity and high enantioselectivity. 

In 1996, Carreno90 investigated the behavior of the chiral dienone 100 upon 

reaction with organoaluminum reagents. The chiral dienone 100 possessed a chiral 

sulfoxide moiety as well as a hydroxyl moiety at the γ position of the carbonyl 

(Figure 30).   
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Figure 30.  Carreno’s 1,4-addition to 100. 

 

Carreno found that a 1,4-addition proceeded to 100 without other metal catalysts in 

good yields and mild conditions. Carreno also observed a similar result to that of 

Feringa and Ellman where there was a coordination effect from the oxygen atom.  In 

this case, a crystal structure determined that the reaction took place on the same face 

as the hydroxyl moiety.  As a result, total facial diastereoselectivity and an effective 

desymmetrization of the dienone moiety were achieved.  Carreno also observed that 

when the free hydroxyl moiety was protected or the sulfoxide moiety was absent, a 

1,4-addition using an organoaluminum reagent did not proceed.  Carreno explains 

this 1,4-addition reaction where 100 proceeds through a chair-like transition state 

where the hydroxyl and sulfoxide moieties assist the aluminum species to perform 

the addition (Figure 31). 
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Figure 31.  Formation of a chair-like conformation between 100 and Me3Al. 

 

Another recent communication by Hayashi91 reported the development of a 

rhodium-catalyzed ECA of arylboronic acids to 2-methyl-1,4-naphthoquinone 

providing a 1,4 addition product in moderate yield (70%) and in high 

enantioselectivity (>99% ee) (Figure 32). 
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Figure 32.  Hayashi’s ECA construction of a quaternary stereogenic center. 
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Hayashi discovered a new method to perform an ECA to an α,β-unsaturated β,β-

disubstituted cyclic enone via a rhodium-binap catalyst and the use of boronic acids.  

The faces of enone 102 were differentiated by the Rh-binap catalyst.  Hayashi 

attempted to explain the observed regioselectivity in these ECAs of arylboronic 

acids to 2-methyl-1,4-naphthoquinone proposing a transition state where there was 

an extreme steric repulsion between the methyl substituent of 102 and the phenyl 

group of the catalyst in the transition state (Figure 33). 
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Figure 33. Hayashi’s sterically hindered 105 and less hindered 106 transition states. 

 

 

1.6  Cyclohexadienones Ketals 

Cyclohexadienone ketals are potentially useful building blocks for natural 

product synthesis.   So far, four types of cyclohexadienones have proven to be 

useful in the synthesis of racemic compounds (Figure 34).2 
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Figure 34.  Four types of potentially useful chiral cyclohexadienone substrates.3 

 

The masked o-benzoquinone substrate has played a key role in the early 

steps of the synthesis of calicheamicinone, a precursor in the synthesis of the 

antitumor antibiotic calicheamicin92 (Figure 35). 
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Figure 35.  Preliminary steps in the synthesis of calicheamicinone. 
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Magnus93 reports the use of a masked o-benzoquinone core in the synthesis of 

calicheamicinone 114.  The reaction of phenol 111 with PIDA in MeOH affords the 

dimethoxy o-benzoquinone ketal 112.  Next, the 1,2-addition of a lithium acetylide 

115 to the ketone functionality of 112 followed by TBAF deprotection of the 

acetylene and protection of the resulting tertiary alcohol as the TES siloxy ether 

affords 113 in >60% overall yield. Then, after several additional steps, this 

intermediate 113 can be converted into calicheamicinone 114.   

The second substrate of the cyclohexadienone family is the class of o-

quinols.  O-quinols have also been used to synthesize antibiotic and antitumor 

natural products.  For example, Corey’s94 beginning steps during the synthesis of 

ovalicin, an antibiotic isolated from Pseudorotium ovalis cultures, demonstrated the 

utilization of this type of starting substrate (Figure 36). 
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Figure 36.  Preliminary steps in the synthesis of Ovalicin. 

 

Corey demonstrated that subjecting compound 116 to NaIO4 generates the 

spirocyclohexadienone 117 in a 61% yield. Next, the reduction of 117 with diimide 

affords the desired epoxide 118 in 77% yield. Next, the 1,2-addition of an unusual 

vinyllithium reagent 121 to the carbonyl group occurs in a diastereoselective 
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fashion, results in 119. Lastly, subsequent functional group manipulations provide 

ovalicin 120. 

 Of the four types of cyclohexadienones that contain a heteroatom at the sp3-

hybridized site within the six-membered ring system, the masked p-benzoquinone 

ketal is the best studied and most exploited.2  The masked p-benzoquinone ketal has 

served as the key building block in the total syntheses of five major natural product 

families: the munumycins95, huperzines96, torreyanoids97, diepoxins98 and illudines99 

(Figure 37).  
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Figure 37.  Natural products synthesized from masked p-benzoquinone ketals. 

 

Porco97 made use of a masked p-benzoquinone ketal to complete the total synthesis 

of torreyanic acid 124 (Figure 38).  The construction of torreyanic acid begins with 

the oxidation of 127 with PIDA in the presence of MeOH, which results in the 

masked p-benzoquinone ketal 128.  This adduct is then transketalized to give the 
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more stable masked p-benzoquinone ketal 129.  Epoxidation was accomplished with 

freshly prepared anhydrous Ph3COOH deprotonated with KHMDS.  As a result, 

these conditions afforded the epoxide 129.  Subsequent Stille coupling with the 

vinyl bromide and deprotection under acidic conditions results in an immediate 

[4+2] dimerization, which upon oxidation with DMP furnished 124. 
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Figure 38.  Total synthesis of torreyanic acid. 

 

Although the masked p-benzoquinone ketal is the most prominently studied 

substrate of cyclohexadienones, the knowledge base of its counterpart class p-

quinols is much less developed.   

 

 

1.7 p-Quinols and Their Natural Product Applications 

Natural products from the structural types of griseofulvinoids, futoquinoids, 

sorbicillinoids and ananorosinoids are total natural product syntheses that were 

constructed using the p-quinol class of cyclohexadienones.2  The total synthesis of 

griseofulvin from the family of griseofulvinoids was first accomplished in 1959.100  

Unfortunately, all methods of synthesizing griseofulvin resulted in a racemic 
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product.  Later, Danishefsky101 and Taub102 found that compound 131 can undergo 

an oxidation reaction to form enone 132 which possessed a newly formed five 

membered lactone ring. Next, it was found that hydrogen added from the less 

hindered face of the enone 132 to afford 133 via a diastereoselective hydrogenation 

(Figure 39).  Although griseofulvin had been constructed by a diastereoselective 

dearomatization of 131,102-105 a method to obtain an enantioselective 

dearomatization has yet to be developed.   
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Figure 39.  Synthesis of Griseofulvin. 

 

Yamamura synthesized several members of the futoquinoids class of natural 

products by an electrochemical oxidation in methanol.106 As shown in Figure 40, the 

chiral phenol 134 was electrochemically oxidized to form one diastereomer of 

isodihydrofutoquinol 135.  Next, Yamamura discovered that exposing 135 to 

dehydrogenation with DDQ generated diastereomerically pure futoquinol 136.  

Although futoquinol 136 had been synthesized by a diastereoselective 

electrochemical route of 134, a method to obtain product 136 from an achiral 

starting material has yet to be invented.   
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Figure 40.  Synthesis of Futoquinol. 

 

A member of the sorbicillinoid family, epoxysorbicillinol 141, was 

synthesized by Pettus.107  The synthesis began with the oxidation of the phenol 137 

to provide 138.  Subsequently, the epoxide 139 as a single diastereomer was 

afforded by the treatment with of 138 with PhIO. The newly formed lactone product 

139 was then treated with an alkyl aluminum reagent 142 to obtain an amide 

product 140.  Lastly, the natural product epoxysorbicillinol 141 was obtained by the 

reaction of the vinylogous ester 140 with SnCl4 (Figure 41). 
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Figure 41.  Synthesis of Epoxysorbicillinol. 

 

Aranorosin 147 from the family of ananorosinoids has been synthesized 

from p-quinol derivatives by Wipf,108 McKillop,109 and Hoshino.110  Wipf reported 

p-quinol 144 could be synthesized via an oxidation of phenol 143 with the use of 

PIDA.  Furthermore, Wipf reported that after protection of the nitrogen atom with a 

second Cbz residue to afford 145, a 1,2-addition of benzyloxymethyl lithium to the 

carbonyl functionality produced the major diastereomer 146 in a 5:1 mixture of 

diastereomers.  Next, directed epoxidations followed by the deprotection of 

protection groups and the addition of the remaining side-chain 148 to 146 provided 

the natural product aranorosin 147 (Figure 42).   



 39

OH

HO O

N
H

Cbz

O

O

ONCbz
H

O

O

ONCbz
Cbz

O

ONCbz
Cbz

OHBn

O

O

OHNH
O

O O

143 144 145

146147

a b

c

d

40% 84%

a) PIDA. b) Cbz2O. c) BnCH2Li. d) 1. m-CPBA, 2. (148), Ph2POCI, NMM, THF, 3. NaBH4, CeCl3.

Aranorosin

OH
O

148

 
Figure 42.  Synthesis of Aranorosin. 

 

p-Quinols and their derivatives have been used in some natural product total 

syntheses.  Aranorosin, to the best of my knowledge, is the only natural product 

possessing a p-quinol motif that has been synthesized in an enantioselective manner.  

This synthesis was accomplished starting from chiral reagents.  As a result, there is 

a necessity to develop other methods to attend to non-racemic p-quinol derivatives.  

In addition, if such methods were developed and available, several natural products 

could be synthesized in an enantioselective manner (Figure 43). 
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Figure 43.  Enantioselective syntheses candidates from p-quinol intermediates. 

 

Abscisic acid (ABA) is a plant hormone that regulates a wide range of 

pathways involved in plant growth, including the development and germination of 

seeds, transpiration, growth inhibition and adaptive responses to environmental 
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stress.111 Metabolism of abscisic acid (ABA) in plants occurs principally through 

oxidation of one methyl of the gem dimethyl group of the cyclohexenone ring, that 

is syn to the hydroxyl group.  ABA analogues that are altered at the 8'-carbon (a 

numbering system adopted in the plant hormone field), have been shown to act as 

plant growth regulators.  The application of ABA itself as a plant growth regulator 

has been limited by its rapid catabolism in plants.112  Abrams112 reported the 

synthesis of various biologically active 8'-altered analogues where groups including 

a methoxymethyl, an ethyl, a methylene and an acetylene functionality have 

replaced the 8’ gem methyl group.   In particular 8'-acetylene ABA has shown 

exceptionally high biological activity and a prolonged lifetime over ABA.  Abrams 

reported an improved synthesis of several 8’-substituted analogues using the 

synthesis in Figure 44. 

O
O

O CH2OLi
+

O

O

CH2OH
OH O

O

OH
CH2OH

OH
COOCH3

O
OH

COOCH3

O

R

a b

d

c

a) 1,2-Addition. b) Reduction, Red-Al. c) MnO2, NaCN, MeOH. d) RMgX.

157 158
159 160

161162

8'

Li

 
Figure 44.  Synthesis of MeABA analogues.112 

 

The synthesis of MeABA proceeds in high yields and the final step is a 

diastereoselective addition reaction.  The Grignard addition reaction occurs only at 

the 8’-position and is facially selective, through the direction by the hydroxyl 

moiety.  The addition reaction is limited to reactive Grignard reagents, as increased 

temperatures result in the formation of an epoxide side product 164 (Figure 45).112  

Very reactive Grignard reagents such as allylmagnesium bromide produce a 1,2 

addition product.  In addition, Abrams113 has found that the addition of a Lewis acid 

promotes the formation of the desired product 162.   However, the addition of a 
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Lewis acid has also been found to promote the formation of a rearrangement 

product 163, the result of a double 1,2 migration of the alkenyl group in compound 

161 (Figure 45).    
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Figure 45.  Grignard addition reaction and side products. 

 

The Abrams improved ABA synthetic route produces a racemic product 162 from 

the final Grignard conjugate addition reaction to 161. Therefore, an enantioselective 

synthesis of ABA via an enantioselective conjugate addition reaction would offer 

considerable commercial value as well as a more elegant synthesis and access the 

non-racemic product. 

 

 

1.8 Proposal and Methodology 

An overview introducing many different methods of performing an ECA to 

acyclic and cyclic dienones has been presented in this chapter.  There is a necessity 

to establish a method to perform ECAs to cyclohexadienones, as the syntheses of 

numerous natural products could be developed using this type of addition reaction.20  

For example, the synthesis of ABA would greatly benefit from an ECA to p-quinols.  

One such system that has not been thoroughly investigated is ECAs to α,β-

unsaturated β-disubstituted γ-trisubstituted ketones such as 165 (Figure 46).   
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Figure 46.  Proposed investigation study. 

 

This investigation would provide some methodology studies about the construction 

of all-carbon quaternary stereocenters with the use of an α,β-unsaturated β-

disubstituted γ-trisubstituted ketone substrate possessing a hydroxyl motif at the γ 

position.  In addition, this study would benefit the total syntheses of some natural 

products, such as the total synthesis of ABA.  There are many successful methods of 

performing an ECA to α,β-unsaturated ketones, however, there are very few 

methods of performing an ECA to cyclic α,β-unsaturated β -disubstituted ketones 

similar to 165 where R is an alkyl group or an alkenyl group as in the ABA 

intermediate 165.  Furthermore, very little is known about ECAs to substrates with a 

γ hydroxyl motif.  Variables such as temperature, solvent, types of nucleophiles, and 

types of ligands will be very important in this study, as conditions that give high 

selectivity for one substrate may not work for an apparently similar substrate.  

Therefore, each new type of ECA reaction may require a methodology study to 

determine the feasibility of using that template for a planned targeted synthesis of 

166. 
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CHAPTER 2:  RESULTS AND DISCUSSION 

 

Reactions that produce enantio-enriched cyclohexadienone-derived natural 

products have been, and continue to be, of interest to many chemists.2  The absence 

of general enantioselective methods using cyclohexadienone structures109 has 

prevented their widespread use in total synthesis.  Several reactions, documented in 

the literature, to create different types of possible tertiary stereocenters with 

excellent levels of enantiocontrol and chemical yields are known (see Introduction).   

Enantioselective C-C bond formation reactions to produce all-carbon 

quaternary stereocenters are much less well known.1  Reactions developed by 

Tomioka,22 Feringa,39,75 Hoveyda,84 Alexakis,18 Chong,77 Hayashi91 and Ellman82 

were surveyed in order to perform an ECA to cyclohexadienone 165.  Described 

herein were my efforts to: i) perform an ECA to 165 by means of external chiral 

ligand methods and ii) perform an ECA to 165 via a sulfinyl imine chiral auxiliary. 
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Figure 47. Proposed ECA to compound 165. 

 

The symmetrical nature of compound 165 presents a difficult challenge.  In 

order to perform an ECA to the achiral compound 165 the direction of attack must 

distinguish between the Re and Si faces of the molecule as well as the molecule’s 

pro-R and pro-S reaction sites.  The reaction between compound 165 and a 

nucleophile other then a methyl group will result in the creation of two 

stereocenters.  Thus, the reaction between compound 165 and a nucleophile R, 

where R≠CH3, can result in four potential stereoisomers (Figure 48).         
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Figure 48.  The four possible products from a conjugate addition reaction to 165. 

 

However, if the nucleophile is a methyl group only one stereocenter is formed and 

only two potential stereoisomers can be formed (Figure 49).  In some cases, a 

reaction to compound 165 may be diastereoselective and favour only one face of the 

molecule.  For example, in a Grignard reaction with compound 165 the hydroxyl 

moiety may assist the reaction to produce facial selectivity and in turn the products 

171 and 172. 
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Figure 49.  The two possible products from a conjugate addition reaction to 165 
where R=CH3. 
 

 

 

2.1 Determination of Enantiomeric Ratios. 

The purpose of this study was to develop an enantioselective conjugate 

addition reaction.  As a result, an analytical method to measure the proportion of 

different enantiomers was required.  The key principle in measuring the ratio of 

enantiomers in a sample is to situate them in a chiral environment and exploit some 

difference in the new diastereoisomeric species.114 All techniques for determining 

selectivity are either chromatogragraphic or involve coupling enantiomers.  
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Chromatographic techniques include HPLC and GC using chiral columns.  

Coupling methods involve covalent or non-covalent bonding with an 

enantiomerically pure compound.114 To separate enantiomers of 166 a number of 

HPLC chiral columns were tried, with nonpolar, polar organic and reversed phase 

solvents systems.  One column Pirckle (R,R)-Whelk-01 gave a reasonable 

resolution.   The Whelk-01 column was reported to be useful for the separations of 

underivatized enantiomers in a number of families including amides, epoxides, 

esters, ureas, carbamates, ethers, aziridines, phosphonates, aldehydes, ketones, 

carboxylic acids, alcohols, and non-steroidal anti-inflammatory drugs.115 

Abrams112 reported the use of HPLC with the chiral Whelk-01 column to separate 

the enantiomers of the ABA analogue 162, a similar system to 166.  Using the same 

literature experimental conditions as a starting point, enantiomers of 166 were 

separated by HPLC using normal phase solvents hexane and isopropanol in 

combination with a Pirckle (R,R)-Whelk-01 chiral column and an isocratic solvent 

mixture.  The analytes were detected by UV light at wavelength 230 nm which was 

the maximum absorption of the α,β-unsaturated ketone chromophore.  The resulting 

peaks of the chromatogram were then integrated.  Chromatograms from a racemic 

sample of 171 and 172 displayed a peak area ratio of 1:1 (Figure 50).  Non-racemic 

samples (Figure 51) were analyzed with the same method and the enantiomeric 

excess (ee) was calculated using the following relationship. 

ee = ( | (R – S) | / (R + S) ) x 100% (A.1) 

 
Figure 50.  HPLC chromatogram of a racemic sample of 171 and 172 produced 
from a facially selective Grignard addition reaction with 165 and ethylmagnesium 
bromide. 
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Figure 51.  HPLC chromatogram showing of a non-racemic sample of 167, 168, 
169 and 170 produced from a triethylaluminum reaction with 165 with a 
phosphoramidite ligand (Table 15, Entry 2). 
 

 

2.2 Enantioselective Conjugate Addition (ECA) Methods Using an External 

Chiral Ligand 

Multi-gram quantities of 4-hydroxy-3,4,5-trimethylcyclohexa-2,5-dienone 

165 were required for this project.  To date, two methods of synthesizing compound 

165 have been reported.  Liotta116 reported the first synthesis of compound 165 via a 

1,2 addition reaction using MeLi and 2,6-dimethylbenzoquinone.  Imamoto also 

reported the synthesis of compound 165 by a 1,2 addition reaction to compound 173 

using MeLi and CeCl3.  Compound 173, 2,6-dimethylbenzoquinone monoketal, was 

commercially available.  This compound was reported to be prepared by an 

oxidation reaction between 2,6-dimethylphenol, ethylene glycol and iodobenzene 

diacetate117.  Thus, using compound 173 as a starting point, the two precedent 

reactions were employed to produce 4-hydroxy-3,4,5-trimethylcyclohexa-2,5-

dienones were synthesized 165 (Figure 52). 
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Figure 52.  Conditions to synthesize dienone 165. 

 

The general procedure for the synthesis of 174 was performed by a 1,2 

addition reaction of MeLi·LiBr at low temperature (-78°C) to 173.  The crude 

product compound 174 was purified by crystallization and followed by the removal 

of the ketal functionality with dilute hydrochloric acid to give cleanly 165 in an 

overall yield of 88%.  Liotta116 observed that the reaction between 2,6-

dimethylbenzoquinone and MeLi in the presence of tetramethylethylenediamine 

(TMEDA) proceeded in a 1,2 addition fashion at the more hindered position.  Liotta 

explains this phenomenon by the fact that small nucleophiles such as a CH3
-, and 

only weakly solvated, electronic factors dominate the transition state, resulting in a 

regioselective addition to the more electrophilic carbonyl carbon (site a) (Figure 53).  

However, Liotta also noted that in the case of 2,6-dimethylbenzoquinone 175, the 

1,2 addition reaction of a methyl carbanion in the absence of TMEDA occurs at the 

less hindered carbonyl site.   In this case the less hindered site was protected as ketal 

173 and 1,2 addition reactions performed on 173 to produce 174 in the presence and 

absence of TMEDA resulted in 85% and 88% yields, respectively.  The protection 

of the less hindered carbonyl of 2,6-dimethylbenzoquinone with a ketal permits only 

one location for a desired 1,2 addition reaction to take place.  Therefore, large scale 

1,2 addition reactions to 174 omitted the use of TMEDA as the yields of the two 

reactions were comparable.   
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Figure 53.  Liotta’s regioselective 1,2 addition to compound 175. 

 

Imamoto118 reported that 1,2 addition reactions of organolithium reagents to 

α,β-unsaturated carbonyl compounds such as 175 can be effected with high 

regioselectivity with the use of anhydrous CeCl3.  Imamoto’s 1,2 addition of MeLi 

to compound 173 produced a 97% yield.  This result was validated as we achieved a 

similar yield of 92%.  Later, Imamoto suggested that this result supported Liotta’s119 

hypothesis that stated the reaction takes place via a single electron transfer 

mechanism based on the relationship between the rate of the reaction and the size of 

the donating carbanion group.  Imamoto’s CeCl3 addition reaction led to a slightly 

higher yield then Liotta’s MeLi method.  However, due to difficulties in handling 

anhydrous CeCl3 and the fact that the CeCl3 reaction did not result in a significantly 

higher yield then the MeLi reaction, Imamoto’s reaction method was abandoned.  

The product collected after the addition reaction and the removal of the ketal 

functionality was structurally elucidated by 1H NMR, 13C NMR, IR, MS and UV.  

The product was shown to be compound 165.  Compound 165 was described in the 

literature as a known compound however, no characterization data was reported.  

The 1H NMR spectrum demonstrated 3 expected peaks at 5.96 ppm, 2.08 ppm and 

1.42 ppm (Figure 54).  These peaks represented the olefinic (HC-6, HC-2), (Table 1, 

Entry1), vinyl methyl (H3C-7, H3C-9), (Table 1, Entry 2), and remaining methyl 

(H3C-8) protons (Table 1, Entry 3), respectively.  The 13C NMR spectrum further 

supported the structure by displaying the correct number of magnetically 

nonequivalent carbons.  For example, 165 showed 4 carbon peaks representing the 

diene ring at 186.05 ppm (C-1’), 164.38 ppm (C-3’, C-5’), 125.31 ppm (C-2’, C-6’), 

and 71.38 ppm (C-4’).  In addition, the 13C NMR spectrum demonstrated the 

remaining three methyl group carbon atoms by 2 peaks at 25.89 ppm (C-8’) and 
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18.19 ppm (C-7’, C-9’).  The IR spectrum revealed the presence of a hydroxyl 

stretch at 3408 cm-1, an α,β-unsaturated carbonyl stretch at 1669 cm-1 and an alkene 

stretch at 1618 cm-1.  The strong alkene stretch found in the IR spectrum is 

commonly observed in conjugated cyclohexadienones.117 Further proof was attained 

from the electron impact mass spectrum where the molecular ion peak was found to 

be 152.0839 (calc. 152.0837). Lastly, the UV spectrum of 165 portrayed a single 

absorption at 237 nm with an extinction coefficient of 1.3 x 104 M-1·cm-1.  These 

two values are comparable to the known literature values of 228 nm and 1.2 x 104 

M-1·cm-1 for the similar p-dienone structure 4-hydroxy-4-methylcyclohexadien-1-

one.120 

 
Figure 54.  1H NMR spectrum of compound 165. 
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Table 1.  Chemical shifts of the 1H NMR spectrum of compound 165. 

Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 
1 HC-2, HC-6 5.96 2H, s 
2 H3C-7, H3C-9 2.08 6H, s 
3 H3C-8 1.42 3H, s 

 

 

2.1.1 Alkyllithium Conjugate Additions. 

The objective of this study was to develop a stereoselective addition to the 4-

hydroxy-3,4,5-trimethylcyclohexa-2,5-dienone 165 system via an ECA (Figure 46).  

A decision was made to begin this project by attempting reactions on readily 

available simpler model systems such as α,β-unsaturated acyclic enones 27 and a 

more common simple cyclic enone, 2-cyclohexen-1-one 3.  These reactions 

included organolithium, Grignard, organozinc, organoaluminum and boronic acid 

addition reactions.  The addition reactions were firstly validated to confirm the 

relevant literature report and to ensure that the reagents and techniques were 

adequate.  If the addition reaction was successfully repeated, the reaction was then 

employed with substrate 165.   

ECA reactions to enones with organolithium reagents and a chiral diamine 

ligand are precedented22.  Organolithium reagents are also known to possess high 

reactivity and favour a 1,2 addition reaction with cyclic enone structures.121  The 

reactivity of organolithium reagents is affected by complexation with different 

solvents and additives.  Such effects have usually been attributed to changes in the 

aggregation states and solvation of the lithium species involved.121 It is well 

established that many organolithium reagents form various aggregates in ethereal 

solutions, and that stronger coordinating solvents tend to move the average 

aggregation state to lower numbers. Lithium demonstrates a strong propensity for 

tetracoordination.122   As a result, MeLi is a monomeric lithium compound that can 

coordinate three solvent molecules.  The biggest structural change for solvent 
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coordinated MeLi occurs when the carbon-lithium bond is broken and the contact 

ion pair (CIP) monomer is converted to a separated ion pair (SIP).  A CIP is a pair 

of oppositely charged ions held together by a Coulomb attraction without formation 

of a covalent bond, whereas an SIP is a pair of oppositely charged ions not held 

together.  This conversion of a CIP to an SIP causes a dramatic reactivity effect.   

The effect of additives in favoring 1,4- over 1,2-addition of some types of 

lithium reagents under conditions of kinetic control was first reported in 1977.123 

The proposal was made that this effect of additives was a consequence of 

conversion from CIP to SIP structures.123-126  Several computational studies that 

examined the addition of monomeric organolithium species to carbonyl compounds 

have predicted cyclic 4-membered transition states.127-129  Such cyclic transition 

states cannot operate for 1,4-additions to cyclic enones.121 However, once ion 

separation by solvent or additive coordination is accomplished, 1,4-addition can 

occur smoothly to form the more stable 1,4-adduct (Figure 55). This hypothesis was 

further supported by evidence produced by experiments performed at low 

temperatures where a 1,4-addition reaction was favoured.123  Generally SIP states 

are favoured over CIP states at low temperatures.   
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Figure 55.  Mechanistic hypothesis for the regioselectivity of organolithium 
additions to enones.123 

 

The substrate 27 (Figure 7) published by Tomioka was foreseen as a 

reasonable precedent for an ECA reaction.  Although compound 27 was acyclic it 

was thought to be a good starting point and perhaps a structure that would have 

similar reactivity to that of a cyclic substrate.  The sterically crowded type structure, 

with the presence of a trisubstituted phenyl group, of compound 27 was thought to 

be similar to the rigid structure of compound 165.  In addition, the catalyst 28 was 

readily available.  Thus, the conditions published by Tomioka were then applied to 

165.  Unfortunately, the crude product only displayed a 1:1 diastereomeric mixture 

of two 1,2 addition products in 70 % yield (Figure 56). 
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Figure 56.  ECA to 182 using organolithium reagents. 

 

The 1H NMR spectrum of the crude product and comparison to the known 
1H NMR spectrum of compound 182 confirmed the presence of a mixture of 1,2 

addition products by the appearance of 4 expected peaks at 5.38 ppm, 1.85 ppm, 

1.19 ppm and 1.15 ppm (Figure 57).130  The peak at 5.38 ppm represented the 

olefinic protons (HC-2, HC-6) of the 1,2 addition products (Table 2, Entry1).  The 

vinyl methyl protons (H3C-8, H3C-10) of the mixture of products were represented 

by a large singlet peak at 1.85 ppm (Table 2, Entry 2).  The remaining methyl group 

protons (H3C-7, H3C-9) were represented by two singlet peaks at 1.19 and 1.15 ppm 

(Table 2, Entries 3 and 4).  The crude 1H NMR spectrum also displayed the 

presence of compound 165 (*) and (-)-sparteine 28.  Purification was then attempted 

in order to isolate the 1,2 addition product from any remaining starting material by 

chromatography and distillation techniques but, the crude product 182 decomposed. 
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(*)Denotes compound 165 and (#) denotes compound 182. 

 

Figure 57.  1H NMR spectrum of the crude reaction product containing a 
diastereomeric 1,2 addition mixture 165. 

 

Table 2.  Chemical shifts of the 1H NMR spectrum of compound 182. 

Entry Proton Chemical Shift 
(ppm) 

Multiplicity 
(Hz) 

Literature 
Value133 (ppm) 

1 HC-2, HC-6 5.38 2H, s 5.35 
2 H3C-8, H3C-10 2.08 6H, s 2.05 
3a H3C-7, H3C-9 1.19 3H, s 1.17 
4b H3C-7, H3C-9 1.15 3H, s 1.13 

aH3C-7, H3C-9 protons of the first diastereomer. bH3C-7, H3C-9 protons of the second 
diastereomer. 

 

Tomokia22 observed that when excess alkyllithium reagent was added to the 

reaction with compound 27, the 1,4 addition reaction would produce a racemic 

product.  As a result, the lithium species would compete with a chelated lithium-

ligand species to form an selective product.  Tomokia added that preferential 

formation of the chelated complex with alkyllithium and a chiral ligand was 

necessary for the reaction to be highly efficient.   As a result, Tomokia selected the 
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chiral diamine 28 ligand to satisfy the above requirement, because nitrogen atoms 

have a high coordinating ability to lithium.  However, when the diamine ligand was 

utilized in combination with our cyclic system, the 1,4-addition reaction did not 

proceed.  Thus, the organolithium reagent may have been acting as a CIP in a higher 

aggregation state.  Therefore, a possible higher aggregation state in combination 

with a complex β,β-disubstituted cyclic system accounts for the 1,2-addition 

mechanism to 165 to produce 182.   

 

 

2.1.2 Grignard Conjugate Additions. 

 Conjugate addition reactions using Grignard reagents are precedented.39,112  

Reactions aimed at synthesizing racemic compound 183 were performed (Figure 58) 

and the results are summarized in Table 3.   
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Figure 58.  MeMgBr Grignard addition reaction to produce racemic 183. 

 

Table 3.  Validating the reaction conditions using Grignard reagents reported by 
Feringa. 

Entry Catalyst T 
(°C) 

t 
(h) 

Cu Salt Grignard Solvent Yield 
(%) 

1 -- -78 5 -- MeMgBr THF 70 
2 -- -78 5 -- CD3MgI THF 55 

 

Compound 165 was alkylated in modest yields to obtain a racemic mixture, 

compound 183.  Compound 183 was previously reported but not characterized.130  

As a result, compound 183 was structurally characterized by 1H NMR, 13C NMR, 

IR, MS and UV.  The 1H NMR spectrum demonstrated 8 expected peaks at 5.79 
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ppm, 2.36 ppm, 2.31 ppm, 2.00 ppm, 1.55 ppm, 1.37 ppm, 1.06 ppm and 1.05 ppm 

(Figure 60).  The singlet peak at 5.79 ppm (Table 4, Entry 1) and the two doublets at 

2.36 ppm  and 2.31 ppm (Table 4, Entries 2 and 3) represented the olefinic (HC-2, 

HC-6) protons respectively.  The vinyl methyl (H3C-7) (Table 4, Entry 4), and the 

three remaining methyl (H3C-8, H3C-9, H3C-10) (Table 4, Entries 6, 7 and 8) 

protons were found to be represented by singlet peaks at 2.00 ppm, 1.37 ppm, 

1.06ppm and 1.05 ppm, respectively.  The 13C NMR spectrum further supported the 

structure by revealing 10 peaks representing the correct number of magnetically 

nonequivalent carbons.  For example, 183 showed 4 carbon peaks representing the 4 

methyl groups at 23.84 ppm (C-8’), 22.88 ppm (C-9’), 22.58 ppm (C-10’) and 19.18 

ppm (C-7’).  In addition, the 13C NMR spectrum demonstrated the remaining 6 

carbon atoms representing the ring structure by 6 peaks at 197.95 ppm (C-1’), 

165.50 ppm (C-3’), 125.98 ppm (C-2’), 50.18 ppm (C-4’), 40.80 ppm (C-6’) and 

29.70 ppm (C-5’).  The IR spectrum revealed the presence of a hydroxyl stretch at 

3393 cm-1 and a carbonyl stretch at 1643 cm-1.  However, the alkene stretch found in 

the IR spectrum of compound 165 was absent in the IR spectrum of compound 183.  

Further proof was attained from the electron impact mass spectrum, where the 

molecular ion peak was found to be 168.1150 (calc. 168.1150). Lastly, the UV 

spectrum of 183 produced a single absorption at 235 nm and an extinction 

coefficient of 1.4 x 104 M-1·cm-1.  These two values are comparable to the known 

literature values of a α,β-unsaturated ketone chromophores.131 
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Figure 59.  Grignard addition using deuterium labeled MeMgBr reaction to 165. 

 

Using deuterium labeled MeMgBr, a Grignard addition reaction was 

performed to produce 184 (Table 3, Entry 2) (Figure 59).  The Grignard experiment 

was conducted to confirm the facial selectivity of the reaction and to distinguish the 
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gem dimethyl signals in the 1H and 13C NMR spectra.  The product 184 of the 

deuterium labeled Grignard experiment demonstrated an 1H NMR spectrum similar 

to that of compound 183.  However, the 1H NMR spectrum of 184 demonstrated the 

disappearance of a methyl group peak (Figure 61).  This result also suggested that 

the methyl or deuteryl group was adding to 165 on the same face as the hydroxyl 

moiety.      

 
Figure 60.  1H NMR spectrum of compound 183. 

 

Table 4.  Chemical shifts of the 1H NMR spectrum of compound 183. 

Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 
1 HC-2 5.79 1H, s 
2 HC-6 2.36 1H, d, J = 17.1 
3 HC-6 2.31 1H, d, J = 17.1 
4 H3C-7 2.00 3H, s 
5 HO-11 1.55 1H, s 
6 H3C-8 1.37 3H, s 
7 H3C-9 1.06 3H, s 
8 H3C-10 1.05 3H, s 

 

2 6

7

8 

9 

9

8

7 

6 

10 

10 

O

OH

6

9

8

7

2

11

184

10



 59

 
Figure 61.   1H NMR spectrum of compound 184. 

 

Facial diastereoselectivity to p-quinol 165 type structures is 

precendented.90,112  Carreno90 reported that the reaction between cyclohexa-2,5-

dienone 100 containing a chiral auxiliary and trimethylaluminum proceeds with 

complete facial diastereoselectivity (Figure 62).  The methyl group was added to the 

same face containing the hydroxyl moiety. 
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Figure 62.  Carreno’s 1,4-addition to 100. 
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Abrams112 reported a conjugate addition reaction to a p-quinol 161 type 

structure as the final step in their total synthesis of ABA and ABA analogues.  

Unlike Carreno, the Abrams group made use of Grignard reagents to perform this 

addition reaction.  The conjugate addition reaction to 161 with a deuterium 

containing Grignard reagent was shown to react with facial diastereoselectivity 

(Figure 63).  Abrams made use of feeding studies of corn suspension cells to 

confirm facial selectivity.112 Corn cells have the enzyme ABA 8’-hydroxylase 

which is an enzyme that has high activity for the metabolism of ABA.  Specifically 

the enzyme oxidizes ABA 186 to form 8’-OH ABA 187.  The 8’-OH ABA 187 then 

undergoes a spontaneous 1,4 addition to form phaseic acid 188.  The isolated 

phaseic acid from the corn cells was found to contain two deuterium atoms which 

confirmed that the deuterium labeled Grignard reagent had added to compound 161 

diastereoselectively.   

a) CD3MgBr, THF, -78°C. b) KOH, EtOH, H2O 50°C.
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Figure 63.  Abrams conjugate addition to 161115. 

 

Enantioselective conjugate addition reactions using Grignard reagents are 

precedented.39 A short study aimed at repeating the reported reaction conditions by 

Feringa was launched.  The results are summarized in Table 5.  The reaction 
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involved Grignard reagents, 2-cyclohexen-1-one 3 and a ferrocene-based ligand 

called Taniaphos 32 (Figure 64). 
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3 31

a) MeMgBr, Taniaphos (32), CuCl, Et2O, 0°C.
32
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Figure 64.  Feringa’s ECA’s reported conditions using Grignard reagents. 

 

Table 5.  Validating the reaction conditions using Grignard reagents reported by 
Feringa. 

Entry Catalyst T 
(°C) 

t 
(h) 

Cu Salt Solvent Yield (%) eea 

1 -- 0 2 CuCl Et2O 80 0a 
2 32 0 2 CuCl Et2O 77 89a 

aee determined by chiral GC analysis (CyclodexB). 

 

Feringa’s reaction results of 83% yield and 90% ee were successfully repeated 

(Table 5, Entry 2).  The reactions were performed on 100 mg scale and the products 

were purified by thin layer chromatography.  Attempts to purify using distillation 

were unsuccessful due to the similarity in boiling points of compounds 3 and 31.  

The enantioselectivity of the reaction (Table 5, Entry 2) was measured by gas 

chromatography (GC) using a chiral column.  The peaks of the GC chromatogram 

(Figure 65) were integrated and substituted into the formula A.1 to establish an 

enantioselectivity value. 



 62

min5 10 15 20 25

pA

10

20

30

40

50

 FID1 A,  (KIRK07\KM APR 21 07 001.D)

 2
.6

63

 4
.3

38
 4

.8
96

 6
.3

30
 7

.0
81

  A
rea

: 2
0.9

81

 1
4.

74
6

  A
rea

: 3
11

.40
7

 1
5.

81
3

 1
8.

75
4

 
Figure 65.  GC chromatogram using a chiral column of product 31 from a MeMgBr 
Grignard addition reaction to compound 3 with Taniaphos. 

 

 After validating the reaction conditions published by Feringa, the same 

conditions were applied to 165 (Figure 66).  The results are summarized in Table 6. 
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Figure 66.  Grignard reaction using conditions reported by Feringa to 165. 

Table 6.  Grignard reaction using conditions reported by Feringa to 165. 

Entry Catalyst T 
(°C) 

t 
(h) 

Cu Salt Grignard Solvent Yield 
(%) 

eea 

1 32 0 2 CuCl MeMgBr Et2O 72 3a 
2 32 0 2 CuCl MeMgBr THF 70 3a 
3 32 -78 2 CuBr·SMe2 MeMgBr THF 88 3a 
4 32 -78 2 CuBr·SMe2 MeMgBr PhMe 54 3a 

        aee determined by chiral HPLC analysis ((R,R)-Whelk-(O,1)). 
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Compound 165 was alkylated in modest yields to obtain compound 183.  

Unfortunately, poor enantiomeric excess was observed.  Only 3% ee was observed 

for the reaction (Table 6, Entry 1) that utilized the same conditions as the conditions 

published by Feringa.  Reactions with highly reactive Grignard reagents are 

sometimes faced with problems such as fast uncatalyzed side reactions and the 

presence of competing chiral and achiral copper complexes in solution.51  The low 

enantioselectivities observed demonstrated that the racemic or uncatalyzed reaction 

was dominating or that the ligand did not impart selectivity.  Although a mechanism 

for enantioselective conjugate addition to cyclic enones with a Taniaphos ligand is 

unknown, a mechanism for enantioselective conjugate addition to acyclic enones 

with a Josiphos ligand has been proposed.  Josiphos is a similar ferrocene-based 

ligand (Figure 67) that has been found to be the ligand of choice for enantioselective 

conjugate addition reactions to acyclic enones.132   
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Figure 67.  Ferrocene-based ligand structures. 

 

The Josiphos ligand has been shown to be highly efficient at forming copper 

complexes, which avoids the presence of free copper salts that could promote the 

uncatalyzed racemic reaction.  The acyclic ECA mechanism using Josiphos (Figure 

68) has been thoroughly explored and supported by kinetic, spectroscopic, and 

electrochemical analysis.132  
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Figure 68.  Acyclic ECA mechanism using Josiphos. 

 

The monomeric complex 192, formed by the transmetalation of the dimeric Josiphos 

complex 190 by a Grignard reagent 191, was identified as the active catalytic 

species.133  The π complexation of 192 to the substrate leads to a fast equilibrium 

involving a Cu+1 π complex and Cu+3 σ complex, which is followed by the rate-

limiting reductive-elimination step to afford the magnesium enolate of the final 

product.132  Although this was not a demonstrated mechanism for enantioselective 

conjugate addition using Taniaphos, the ligand structures of Taniaphos and Josiphos 

were similar.  It was then assumed that these ligands followed similar reaction 

mechanisms.  As a result, the equilibrium step or transition state 194 was modeled 

using compound 165 and Taniaphos (Figure 69).  In addition, the transition state 

194 was also modeled using Taniaphos and the successful result, compound 3 

(Figure 70).  The modeled transition state 194 using compound 165 indicated that 

there was a possible steric interaction between the β-methyl substituent of 

compound 165 and the two phenyl rings of the Taniaphos ligand.  However, in the 

case of the modeled transition state 194 using compound 3 there was no indication 

of a steric interaction due to the absence of a β-methyl substituent.  
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Figure 69.  Modeled transition state 194 using compound 165 and Taniaphos. 

 
Figure 70.  Modeled transition state 194 using compound 3 and Taniaphos. 

 

Variables such as temperature, Cu salt and solvent (Table 6, Entries 2, 3 and 

4) were altered in order to try to increase the enantioselectivity of the reaction and 

perhaps relieve a possible steric interaction.  Reactions (Table 6, Entries 1, 2, 3 and 

4) afforded similar isolated yields in both strong non-coordinating solvents and 
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weak non-coordinating solvents.  However, in the case of PhMe there was a 

reduction in the yield of the reaction.  This observation is contrary with later work 

done by Feringa134 where weak non-coordinating solvents were replaced by stronger 

non-coordinating solvents in order to increase yields.  It is well understood that the 

polarity and Lewis basicity of the solvent can significantly affect the aggregation of 

the Grignard reagent species in solution.135   Solvent effects are usually explained by 

the Lewis basicity of the solvent. The THF solvent assists in an addition reaction by 

acting as a sterically demanding coordinating agent.  Thus, the higher Lewis basicity 

of THF forces it to form a more rigid complex with the Grignard reagent.  However, 

Et2O possesses a lower Lewis basicity which results in a less rigid complex and in 

turn a less sterically demanding coordinating agent.136  Although Et2O should result 

in less aggregation and consequently higher yields, this is not the case for this 

reaction.  The importance of the Cu salt (Table 6, Entries 2 and 3) was shown as the 

yield of the reaction was augmented significantly with the addition of CuBr·SMe2. 

The result in entry 3 produced an 18% increase in yield in comparison to Entry 2.  

Cu+1 salt are known to have a 1,4-directing effect when used with Grignard 

reagents.137  In addition, it has also been demonstrated that Cu salt-free conjugate 

addition reactions may be slower138 than other organocopper complexes or even 

totally inactive.139    Thus, this is in agreement with our observation that higher 

yields can be obtained in the presence of a Cu salt. 

 Grignard addition to 165 was facially diastereoselective and the hydroxyl 

moiety seemed to be assisting the addition.  As a result, it was hypothesized that 

ethers or protected hydroxyl substituents would behave in the same manner by 

providing coordination from the oxygen atom.  Thus, the hydroxyl moiety of 165 

was protected as methoxy (OMe), methoxy methyl (MOM) and methoxyethoxy 

methyl (MEM) ethers (Figure 71).  Lastly, it was thought that if a conjugate addition 

reaction to an ether substrate was successful, the ether substituent could be altered 

into a chiral ether substituent that would in turn lead to a diastereoselective reaction.   
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Figure 71.  Synthesis of ethers. 

 

 The methyl ether 197 was synthesized using a method adapted from the 

synthesis of a methoxy-trimethylcyclohexenone derivative 201 by Abrams (Figure 

72).140  Compound 174 was used as starting material.  The free alcohol group was 

reacted with one equivalent of methyllithium to form a lithium salt.  The lithium salt 

was then alkylated with methyl iodide and the ketal functionality was removed with 

10% hydrochloric acid to give compound 197 in a 60% yield (Figure 73).  Camps141 

reported the synthesis of compound 197 in a 56% yield via an oxidation reaction in 

MeOH of 3,4,5-trimethylphenol with iodobenzene diacetate.  The known structure 

of compound 197 was then confirmed by 1H and 13C NMR.  The 1H NMR spectrum 

displayed four singlet peaks at 6.13 ppm, 2.92 ppm, 1.97 ppm and 1.35 ppm (Figure 

74).  The peak at 6.13 ppm represented the two olefinic protons (HC-2, HC-6) 

(Table 7, Entry 1).  The methyl ether group protons were represented by the peak at 

2.92 ppm (H3C-10) (Table 7, Entry 2).  The vinyl methyl group protons (H3C-7, 

H3C-9) (Table 7, Entries 3) were found to be represented by a peak at 1.97 ppm.  

The remaining methyl group protons (H3C-8) (Table 7, Entries 4) were found to be 

the one remaining peak at 1.35 ppm.  The 13C NMR spectrum further supported the 

structure by revealing seven peaks representing the correct number of magnetically 

nonequivalent carbons.      
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Figure 72.  Abrams synthesis of a methoxy-trimethylcyclohexenone derivative 201. 
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a) MeLi, MeI, THF, -78°C    RT.  b) 10% HCl, THF, RT.
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Figure 73.  Synthesis of compound 197. 

 

 
Figure 74.  1H NMR spectrum of compound 197. 
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Table 7.  Chemical shifts of the 1H NMR spectrum of compound 197. 

Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 
1 HC-2, HC-6 6.13 2H, s 
2 H3C-10 2.92 3H, s 
3 H3C-7, H3C-9 1.97 6H, s 
4 H3C-8 1.35 3H, s 

 

The methoxymethyl ether 198 was synthesized using a method reported by 

Narasaka142 which facilitates the protection of tertiary alcohols.  The MOMCl was 

treated with NaI in a Finkelstein reaction to produce a more reactive species MOMI.  

Next, compound 165 was combined with the newly formed reactive intermediate, 

DIPEA and DME.  The solution was refluxed for twelve hours to produce 

compound 198 in 78% yield (Figure 75).  Compound 198 was structurally 

characterized by 1H NMR, 13C NMR, IR, MS and UV.  The 1H NMR spectrum 

depicted 5 peaks at 6.11 ppm, 4.33 ppm, 3.39 ppm, 2.04 ppm and 1.42 ppm (Figure 

76).  The singlet peak at 6.11 ppm (Table 8, Entry 1) represented the olefinic (HC-2, 

HC-6) protons.  The MOM alkyl group protons (H2C-10, H3C-11) were depicted by 

two singlet peaks at 4.33 ppm and 3.39 ppm (Table 8, Entries 2 and 3).  The vinyl 

methyl group (H3C-7, H3C-9) (Table 6, Entry 4), and the remaining methyl group 

(H3C-8) (Table 8, Entry 5) protons were found to be represented by singlet peaks at 

2.04 ppm and 1.42 ppm, respectively.  The 13C NMR spectrum further supported the 

structure by revealing 8 peaks representing the correct number of magnetically 

nonequivalent carbons.  The IR spectrum revealed the presence of a carbonyl stretch 

at 1674 cm-1 and an α,β-unsaturated carbonyl stretch at 1635 cm-1.  Further evidence 

was obtained from the electron impact mass spectrum, where the molecular ion peak 

was found to be 196.1107 (calc. 196.1107). Lastly, the UV spectrum of 198 

produced a single absorption at 236 nm and an extinction coefficient of 1.6 x 104 M-

1·cm-1 which is comparable to the known literature values of a similar p-dienone 

structures.131 
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Figure 75.  Synthesis of compound 198. 

 

 
 

Figure 76.  1H NMR spectrum of compound 198. 

   

Table 8.  Chemical shifts of the 1H NMR spectrum of compound 198. 

Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 
1 HC-2, HC-6 6.11 2H, s 
2 H2C-10 4.33 2H, s 
3 H3C-11 3.39 3H, s 
4 H3C-7, H3C-9 2.04 6H, s 
5 H3C-8 1.42 3H, s 
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The methoxyethoxy methyl ether 199 was synthesized using a method 

reported by Corey.143   The method involved treating compound 165 with MEMCl 

and DIPEA in DCM at room temperature for three hours.  As a result, the reaction 

produced compound 199 in a moderate 48% yield (Figure 77).  Compound 199 was 

structurally elucidated by 1H NMR, 13C NMR, IR, MS and UV.  The 1H NMR 

spectrum demonstrated 7 peaks at 6.06 ppm, 4.39 ppm, 3.66 ppm, 3.46 ppm, 3.29 

ppm, 2.04 ppm and 1.37 ppm (Figure 78).  The singlet peak at 6.06 ppm (Table 9, 

Entry 1) represented the olefinic (HC-2, HC-6) protons.  The vinyl methyl protons 

(H3C-7, H3C-9) (Table 9, Entry 6), and the remaining methyl group protons (H3C-8) 

(Table 9, Entry 7) were found to be represented by singlet peaks at 2.04 ppm and 

1.37 ppm, respectively.  The alkyl protons in the MEM functionality were found 

two be represented by a singlet peak at 4.39 ppm (H2C-10) (Table 9, Entry 2), two 

triplet peaks at 3.66 ppm (H2C-12) (Table 9, Entry 3) and 3.46 ppm (H2C-11) (Table 

9, Entry 4), and another singlet peak at 3.29 ppm (H3C-13) (Table 9, Entry 5).  The 
13C NMR spectrum further supported the structure by revealing 10 peaks 

representing the correct number of magnetically nonequivalent carbons.  The IR 

spectrum revealed the presence of a carbonyl stretch at 1671 cm-1 and an ether 

stretch at 1072 cm-1.  Further proof was attained from the chemical ionization mass 

spectrum, where the protonated molecular ion peak was found to be 241.1439 (calc. 

241.1439). Lastly, the UV spectrum of 199 produced a single absorption at 236 nm 

and an extinction coefficient of 2.0 x 104 M-1·cm-1 which is comparable to the 

known literature values of a similar p-dienone structures.131 
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Figure 77.  Synthesis of compound 199. 

 

 
Figure 78.  1H NMR spectrum of compound 199. 
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Table 9.  Chemical shifts of the 1H NMR spectrum of compound 199. 

Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 
1 HC-2, HC-6 6.06 2H, s 
2 H2C-10 4.39 2H, s 
3 H2C-12 3.66 2H, t, J = 4.7 
4 H2C-11 3.46 2H, t, J = 4.8 
5 H3C-13 3.29 3H, s 
6 H3C-7, H3C-9 2.04 6H, s 
7 H3C-8 1.37 3H, s 

 

a

a) R1MgBr, THF, -78°C.

O

OR
197 R = Me

198 R = MOM
199 R = MEM

OR

R1HO

202 R = Me
203 R = MOM
204 R = MEM

 
Figure 79.  Grignard addition to ethers 202, 203 and 204. 

 

Table 10.  Grignard addition reaction to 197, 198 and 199.  

Entry Ether 1,2-
addition 

Cu Salt Grignard Yield 
(%)a 

1 197 202 -- EtMgBr 74 
2 197 202 CuCl EtMgBr 90 
3 198 203 -- EtMgBr 73 
4 198 203 CuCl EtMgBr 85 
5 199 204 -- MeMgBr 78 

aisolated yields. 

The newly formed ether products, 197, 198 and 199, were submitted to a Grignard 

addition reaction (Figure 79 and 80).  The results are summarized in Table 10.  

However, unlike compound 165, compounds 197, 198 and 199 reacted with a 

Grignard reagent to produce a mixture of 1,2-addition diastereomeric products.  The 

methyl and MOM ether products produced a diastereomeric ratio of approximately 

~1:7.  The MEM ether product produced a diastereomeric ratio of approximately 

~1:1.5. Coordination from the oxygen atom to produce a facially selective 1,4 

addition product was not observed.  The comparison of the diastereomeric ratios 
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suggested that coordination from the oxygen to produce a facially selective 1,2 

addition product is also not observed and that the 1,2 addition reaction was 

governed by the size of the ether.  Organometallic reagents144 have been shown to 

react with γ-substituted α,β-unsaturated carbonyl compounds to produce 1,2-

addition products.   In particular, Grignard reagents have been shown to react with 

the substrate 4,4-dimethyl-2-cyclohexen-1-one to produce a 1,2 addition product.  

The reasoning for this 1,2 addition (Table 10, Entries 2 and 4) was thought to be due 

to steric effects by the two methyl groups bonded to the γ-position of the 

cyclohexen-1-one ring and due to the absence of the hydroxyl moiety assisting the 

reaction.  Thus, in this study, protecting the hydroxyl group of compound 165 and 

converting it to an ether functionality increased the size of the substituent.  This 

increase in size resulted in an increase in steric bulk at the γ-position of compounds 

197, 198 and 199.  Therefore, the increase in steric bulk may have sheltered the β 

reaction sites of compounds 197, 198 and 199 to produce the 1,2 addition products 

202, 203 and 204.   

Entries 2 and 4 in Table 10 were reactions that made use of a Cu salt.  

Consequently, the yields of the reactions were increased by 10-15%.  The use of Cu 

salts in combination with Grignard reagents to increase yields is precedented.144  

The Cu salts act as coordinating agents to Grignard reagents.  In turn, the reactivity 

as well as the regioselectivity of Grignard reagent coordinated species is 

increased.144  However, in this study, the β reaction sites of compounds 197, 198 

and 199 seemed to be sterically sheltered by the γ substituents.  As a result, the 

copper-modified Grignard reagents were directed towards the less hindered 

carbonyl functionality resulting in 1,2 addition products 202, 203 and 204.  Finally, 

this increased reactivity by the Cu salt must account for this increase in yield. 
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Figure 80.  Grignard addition reaction to 202. 

 

The mixture of diastereomeric products 202 was structurally characterized 

by 1H NMR, 13C NMR, IR, MS and UV.  The 1H NMR spectrum demonstrated 6 

expected peaks for the major diastereomer at 5.56 ppm, 2.88 ppm, 1.73 ppm, 1.52 

ppm, 1.22 ppm and 0.69 ppm.  The singlet peak at 5.56 ppm represented the two 

olefinic (HC-2, HC-6) (Table 11, Entry 1) protons (Figure 81).  The methyl ether 

protons (H3C-12) (Table 11, Entry 2) were found to be represented by the singlet 

peak at 2.88 ppm.  The vinyl methyl (H3C-9, H3C-11) (Table 11, Entry 3), and the 

remaining methyl (H3C-10) (Table 11, Entry 5) protons were found to be 

represented by two singlet peaks at 1.73 ppm and 1.22 ppm, respectively.  The 

remaining ethyl group (H2C-7, H3C-8) (Table 11, Entries 4 and 6) protons were 

represented by the quartet and triplet peaks at 1.52 ppm and 0.69 ppm, respectively.  

The 13C NMR spectrum supported the structure of the mixture of diastereomers 202 

by revealing 9 major peaks representing the correct number of magnetically 

nonequivalent carbons.  For example, the spectrum demonstrated 4 peaks at 137.23 

ppm (C-3’, C-5’), 131.03 ppm (C-2’, C-6’), 75.24 ppm (C-4’) and 69.76 ppm (C-

1’), representing the 6 carbon ring structure.  The 13C NMR spectrum also showed 2 

peaks at 34.04 ppm and 8.72 ppm, representing the ethyl group (C-7’, C-8’) carbon 

atoms.  The remaining peaks in the spectrum at 50.89 ppm, 24.38 ppm and 16.98 

ppm represented the methyl ether carbon (C-12’), the methyl carbon (C-10’) and the 

vinyl methyl carbons (C-9’,C-11’), respectively.  The IR spectrum showed the 

presence of a hydroxyl stretch at 3423 cm-1 and an ether stretch at 1066 cm-1.  

Further proof was attained from the electron impact mass spectrum where a 

fragment ion peak of 178.1356 (calc. 178.1356) was found. Lastly, the UV spectrum 



 76

of 202 portrayed a single absorption at 204 nm with an extinction coefficient of 1.4 

x 104 M-1·cm-1 M-1·cm-1 which is in agreement with the literature value of 

alkenes.131 

 
Figure 81.  1H NMR spectrum of compound 202. 

 

 

Table 11.  Chemical shifts of the 1H NMR spectrum of compound 202. 

Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 
1 HC-2, HC-6 5.56 2H, s 
2 H3C-12 2.88 3H, s 
3 H3C-9, H3C-11 1.73 6H, s 
4 H2C-7 1.52 2H, q, J = 7.5 
5 H3C-10 1.22 3H, s 
6 H3C-8 3.29 3H, t, J = 7.5 
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Figure 82.  1H NMR spectrum of compound 203. 

 

Compounds 203 and 204 possessed similar structural data to the 

diastereomeric mixture compound 202. Compounds 203 and 204 were also 

diastereomeric mixtures, however, a few differences were found in their 1H NMR 

spectra.  Compound 203 had an extra proton signal at 4.42 ppm (H2C-12) in its 1H 

NMR spectrum (Figure 82).  The proton signal represented the two CH2 protons in 

the MOM protection group.  Compound 204 also had extra proton signals at 4.51 

ppm, 3.66 ppm and 3.50 ppm (H2C-11, H2C-13, H2C-12) (Figure 83).  These proton 

signals represented the 6 CH2 protons in the MEM protection group.  In addition, 

the addition reaction to compound 204 was performed with a methyl Grignard 

reagent thus, the appearance of an extra methyl group at 1.19 ppm (H3C-7). The 

remaining 13C NMR, IR, MS and UV characterization data further confirmed the 

synthesis of compounds 203 and 204. 
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Figure 83.  1H NMR spectrum of compound 204. 

 

 

2.1.3 Dialkylzinc Conjugate Additions. 

 The use of dialkylzinc reagents to perform conjugate addition reactions is 

precedented75.  ECA of dialkylzinc reagents to simple cyclic enones has been 

previously reported by Feringa.   As a result, an effort to repeat the reported reaction 

conditions by Feringa commenced.  The results are summarized in Table 12.  The 

reaction involved dialkylzinc reagents, 2-cyclohexen-1-one 3 and a phosphoramidite 

ligand 26 (Figure 84). 
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Figure 84.  Feringa’s ECA reported conditions using dialkylzinc reagents. 

 

Table 12.  Validating the reaction conditions using dialkylzinc reagents reported by 

Feringa. 

Entry Catalyst T 
(°C) 

Dialkylzinc
Reagent 

Solvent Yield 
(%) 

eea 

1 -- -30 Et2Zn PhMe 94 0a 
2 -- -30 Me2Zn PhMe NR -- 
3 26 -30 Et2Zn PhMe 90 85a 

aee determined by chiral GC analysis (CyclodexB). 

 

Feringa’s reaction conditions were successfully repeated in Table 12, Entry 3.  A 

yield of 90% was achieved which is comparable to Feringa’s yield of 94%.  

However, the enantioselectivity obtained was slightly lower than the enantiomeric 

excess of >98% reported by Feringa.  The slight drop in enantioselectivity may be a 

result of the dryness of the conditions.  It has been reported that the addition of more 

than 1.0 mol% of water results in a dramatic decrease in enantioselectivity and 

chemical yield.145   

The effects of different alkylzinc reagents were also tested (Table 12, Entry 

2) where Me2Zn was used instead of Et2Zn.  Dimethylzinc was attempted because 

ideally the target of this project was to add a methyl group to 165.  However, after 

24 hours there was no reaction between 2-cyclohexen-1-one 3 and Me2Zn.  Me2Zn 
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is known to be ten times less reactive than Et2Zn61.  As a result, reactions involving 

Me2Zn may require higher reaction temperatures and longer reaction times61. 

 After validating the dialkylzinc reaction conditions published by Feringa, the 

conditions were applied to 165 (Figure 85).  It was anticipated that the addition of 

methyl groups at the 3 and 5 positions would not affect the addition reaction.  The 

results are summarized in Table 13. 
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26
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Figure 85.  Dialkylzinc reaction using conditions reported by Feringa to 165. 

 

Table 13.  Dialkylzinc reaction using conditions reported by Feringa to 165. 

Entry Enone T (°C) t 
(h) 

Cu Salt Dialkylzinc 
Reagent 

Yield 
(%) 

ee 

1 165 Gradienta 24 Cu(OTf)2 Et2Zn NR -- 
2 165 Gradienta 24 Cu(OTf)2 Me2Zn NR -- 
3 165 Gradienta 24 Cu(OTf)2 2eq Et2Zn NR -- 
4 165 Gradienta 24 Cu(OTf)2 1eq MeLi 

1eq Et2Zn 
NR -- 

5 197 Gradienta 24 Cu(OTf)2 Et2Zn NR -- 
6 197 Gradienta 24 Cu(OTf)2 2eq Et2Zn NR -- 
7 198 Gradienta 24 Cu(OTf)2 Et2Zn NR -- 
8 198 Gradienta 24 Cu(OTf)2 2eq Et2Zn NR -- 

aThe initial temperature for all reactions was –78°C and if no reaction was observed after 3 hours 
then the temperature was raised every 2 hours in 20°C increments to reflux. 
 

Unfortunately no reaction was observed between compound 165 and 

dialkylzinc reagents.  Conditions such as temperature and equivalents of dialkylzinc 

reagent were altered, however, no product formation was ever observed.  The 

presence of the hydroxyl moiety of compound 165 was hypothesized to be the cause 

of the lack in reactivity.  Feringa’s work made use of cyclohexadienone 97.  As a 



 81

result, dialkylzinc reactions were performed using protected ethers compounds 197 

and 198.  Again, no reaction was observed.  Lastly, no reaction was observed when 

excess equivalents of dialkylzinc and temperature elevation were combined with 

compounds 197 and 198.  Compound 197 is similar to compound 93, but possesses 

methyl groups at the 3 and 5 positions.  These methyl substituents at the β positions 

of the molecule must add an increased steric requirement for alkylzinc reagents to 

overcome. 

Conjugate addition of dialkylzinc reagents to β-substituted enones has been 

reported by Hoveyda.84   The β-substituted enone, compound 75 was synthesized 

using an allylic oxidation reaction reported by Catino.146  Catino’s reaction involved 

treating compound 209 with TBHP and Rh2(cap)4 in DCM at room temperature for 

one hour.  As a result, the method produced compound 75 in a high 90% yield 

which was comparable to the 92% yield achieved by Catino (Figure 86).    
O

O

O209 75

a

a) DCM, K2CO3, Rh2(cap)4, TBHP

92% yield
O

O

 
Figure 86.  Synthesis of compound 75 by Catino's allylic oxidation. 

 

With compound 75 in hand, the reported reaction conditions by Hoveyda were 

repeated and validated.  The results are summarized in Table 14.  The reaction 

reported by Hoveyda involved dimethylzinc reagents, cyclic β-keto ester 75 and a 

new chiral N-heterocyclic carbene (NHC) ligand 77 (Figure 87).  Hoveyda’s 

reaction conditions were successfully repeated in Table 14, Entry 1.  The yield of 

70% obtained was similar to Hoveyda’s yield of 72%.  In addition, the obtained 

enantioselectivity of 86% was exactly the same as the enantioselectivity reported by 

Hoveyda. 
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Figure 87.  Hoveyda’s ECAs reported conditions using dialkylzinc reagents. 

 

Table 14.  Reactions using dimethylzinc reagents reported by Hoveyda. 

Entry Enone Yield (%) eea 
1 O

O

O

75  

70 86 

2 O

165
OH

 

NR -- 

3 O

24  

NR -- 

4 O

3  

NR -- 

aee determined by GC analysis (β-cyclodex). 
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Figure 88.  Dialkylzinc reaction using conditions reported by Hoveyda to 165. 

 

After validating the dimethylzinc reaction conditions published by Hoveyda, 

the conditions were applied to 165 (Figure 88).  Unfortunately no reaction was 

observed between compound 165 and dimethylzinc (Table 14, Entry 2).  As a result, 

the reaction was attempted with 3-methyl-2-cyclohexen-1-one 24 as well as 2-

cyclohexen-1-one 3 in order to decide whether the β-keto ester functionality played 

a key role in this reaction.  Again, no reaction was observed with substrates 24 and 

3.  The β-keto ester seemed necessary for a reaction to occur.  Hoveyda indicated 

that β-keto esters are activating functionalities.84  In other words, the ester has an 

increased Lewis acidity which, in turn, activates or increases the Lewis basicity of 

the substrate.147  As a result, the β-position of the substrate bearing the β-keto ester 

becomes more electrophilic.  Thus, this increase in electrophilicity permits the 

dialkylzinc reagent to overcome the steric hindrance of a β-substituent. 

 

 

 

2.1.4 Trialkylaluminum Conjugate Additions. 

Enantioselective conjugate addition reactions that make use of 

organoaluminum reagents are precedented.18  In 2005, Alexakis reported ECAs of 

alkylaluminum reagents to β,β-disubstituted cyclohexenones in the presence of a 
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phosphoramidite ligand 26 (Figure 89).  An effort to repeat the published reaction 

conditions was then put forth.  The results are summarized in Table 15.   

O O

a
O
O

P N

(S,R,R)-1

24 25

26
a) Et3Al, CuTC, (S,R,R)-1 (26), Et2O, -30°C.

72% yield, 82% ee

 

Figure 89.  Alexakis’ ECA reported conditions using trialkylaluminum reagents. 

 

Table 15.  Validating Alexakis’ reaction conditions using trialkylaluminum 

reagents. 

Entry Catalyst t 
(h) 

Cu Salt Dialkylzinc
Reagent 

Solvent Yield 
(%) 

ee 

1 -- 18 CuTC Et3Al Et2O NR -- 
2 26 18 CuTC Et3Al Et2O 70 81a 

aee determined by chiral GC analysis (β-cyclodex). 

 

Alexakis’ reported reaction conditions of 72% yield and 82 % ee were 

validated (Table 15, Entry 2).  The yield and enantioselectivity achieved were 

comparable to Alexakis’ results.  In addition, in an attempt to make the racemate of 

25, it was also observed (Table 15, entry 1), that the reaction would not proceed 

without the presence of the chiral catalyst 26.  This lack of reactivity was also 

observed by Careno90 where 165 was reacted with Me3Al in the absence of a chiral 

auxiliary and no product was obtained.  Despite the lower reactivity of 

trialkylaluminum reagents, Alexakis’ published reaction conditions were applied to 

165 (Figure 90). The results by Alexakis are summarized in Table 16. 
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Figure 90.  Trialkylaluminum reaction to 165 using conditions reported by 
Alexakis. 
 

Table 16.  Conjugate addition to 165 using Alexakis’ reaction conditions. 

dra 
O

OH  
-anti addition to 

OH 

O

OH  
-syn addition to 

OH 

Entry 
 

T (°C) 

(-) (+) (-) (+) 

Yield (%) 
 

1 -30 -- -- -- -- NR 
2 -15 7 17 16 60 15 

 adr determined by chiral HPLC analysis ((R,R)-Whelk-01).  

 

Upon repeating the conditions reported by Alexakis, no reaction was 

observed (Table 16, Entry 1).  However, when the temperature was raised to -15°C 

(Table 16, Entry 2) from -30°C compound 165 was successfully alkylated to 

produce a mixture of stereoisomeric compounds 210, 211, 212 and 213.  The yield 

obtained for the mixture of compounds 210, 211, 212 and 213 was low and modest 

enantioselectivities were observed.   

 

 

 

2.1.4.1 Determination of the Syn Addition Compounds 210 and 211. 

Compound 165 was reacted with ethylmagnesium bromide in a Grignard 

reaction to produce a standard for compounds 210 and 211.  Previous work with 

Grignard reagents demonstrated that Grignard reagents were assisted by the 
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alkoxide substituent of compound 165 to produce a diastereoselective product.  In 

other words, the products of the reaction between ethylmagnesium bromide and 

compound 165 would be facially selective due to the hydroxyl moiety guiding the 

Grignard reagent to the same face of the molecule (Figure 91).  The HPLC of the 

diastereomerically pure product displayed two peaks with a 1:1 integration ratio 

(Figure 50).  The mixture of compounds 210 and 211 was separated by preparative 

HPLC.  The 1H NMR spectra of the isolated compounds were found to be identical 

(Figure 92).      

165

O

OH

a

a) Grignard addition reaction with EtMgBr

O

OH

O

HO
210 211

+

 
Figure 91.  The diastereomeric products of a Grignard addition reaction to 165. 

 

 
Figure 92.  1H NMR spectrum of compound 210. 
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2.1.4.2 Separation of the Trialkylaluminum Reaction Mixture. 

The reaction product mixture 210, 211, 212 and 213 in Figure 90 produced 

an HPLC chromatogram that displayed 4 peaks at 230 nm (Figure 51).  The four 

compounds were separated and collected by preparative HPLC (Figure 93).  The 

compounds from the peaks at 13.8 min and 17.9 min produced identical 1H NMR 

spectra (Figure 94) and were found to be enantiomers.  The compounds from the 

peaks at 17.2 min and 19.6 min produced identical 1H NMR spectra (Figure 94) and 

were also found to be enantiomers.  The peaks of the HPLC chromatogram from the 

organoaluminum reaction where then compared to the peaks of the HPLC 

chromatogram from the Grignard reaction.  The compounds represented by the 

HPLC peaks at 17.2 min and 19.6 min were found to be either compound 210 or 

211.  The optical rotations confirmed that the compounds represented by the HPLC 

peaks at 13.8 min and 17.9 min were enantiomers (Table 17, Entries 1 and 3).  In 

addition, the optical rotations confirmed that the compounds represented by the 

HPLC peaks at 17.2 min and 19.6 min were enantiomers.  

Table 17.  Optical rotations of compounds 210, 211, 212 and 213.  

Entry HPLC Chromatograms Peak (min) [α]365
20 

1 13.8 -29 
2 17.2 -57 
3 17.9 +29 
4 19.6 +57 
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Isolation of diastereomeric compounds by HPLC: 

 
--Peak retention times:  13.8, 17.2, 17.9 and 19.6.  

 

HPLC of 1st peak: 

 
--Peak retention time:  13.8; [α]365

20 -29 (c 0.1, CHCl3) 

 

HPLC of 2nd peak: 

 
--Peak retention time:  17.2; [α]365

20 -57 (c 0.1, CHCl3)  
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HPLC of 3rd peak: 

 
--Peak retention time:  17.9; [α]365

20 +29 (c 0.1, CHCl3) 
HPLC of 4th peak: 

 
--Peak retention time:  19.6; [α]365

20 +57 (c 0.1, CHCl3)  

 

Figure 93.  HPLC chromatograms of the isolated compounds 210, 211, 212 and 
213. 
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Figure 94.  1H NMR spectrum of compound 212. 

 

 
Figure 95.  1H NMR spectrum of compound 210. 
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Table 18.  Chemical shifts of the 1H NMR spectrum for the diastereomers 210 and 
212. 

Compounds 210 and 211 
Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 

1 HC-2 5.77 1H, s 
2 HC-6 2.38 1H, d, J = 17.9 
3 HC-6 2.23 1H, d, J = 17.9 
4 H3C-7 1.97 3H, s 
5 H2C-10 1.54 2H, m 
6 H2C-10 1.46 2H, m 
7 H3C-8 1.36 3H, s 
8 H3C-9 0.96 3H, s 
9 H3C-11 0.77 3H, t, J = 7.6 

Compounds 212 and 213 
Entry Proton Chemical Shift (ppm) Multiplicity (Hz) 

10 HC-2 5.80 1H, s 
11 HC-6 2.39 1H, d, J = 17.9 
12 HC-6 2.23 1H, d, J = 17.9 
13 H3C-7 1.98 3H, s 
14 H2C-10 1.55 2H, m 
15 H2C-10 1.47 2H, m 
16 H3C-8 1.37 3H, s 
17 H3C-9 0.94 3H, s 
18 H3C-11 0.79 3H, t, J = 7.6 

 

The diastereomers 210 and 212 were structurally characterized by 1H NMR, 
13C NMR, IR, MS and UV.  The 1H NMR spectra of the two diastereomers 210 and 

212 each displayed 9 expected peaks at similar chemical shifts (Figure 94 and 95).  

The syn addition diastereomer 210 possessed a singlet peak at 5.77 ppm and two 

doublet peaks at 2.38 ppm and 2.23 ppm.  The peaks represented the olefinic (HC-2, 

HC-6) protons respectively (Table 18, Entries 1, 2 and 3).  The vinyl methyl (H3C-

7), and the two remaining methyl (H3C-8, H3C-9) protons were found to be 

represented by singlet peaks at 1.97 ppm, 1.36 ppm and 0.96 ppm, respectively 

(Table 18, Entries 4, 7 and 8).   The final ethyl group protons (H2C-10, H3C-11) 

were represented by two double quartet peaks at 1.54 ppm and 1.46 ppm as well as a 

triplet peak at 0.77 ppm (Table 18, Entries 5, 6 and 9).  The anti addition 

diastereomer 212 possessed almost all identical chemical shifts with the exception 

of the triplet peak representing a section of the ethyl group (H3C-11) which was 
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found at 0.79 ppm (Table 18, Entry 18).  The 13C NMR spectrum of each 

diastereomer further supported their structures by revealing 11 peaks representing 

the correct number of magnetically nonequivalent carbons.  The IR spectra of each 

diastereomer revealed the presence of a hydroxyl stretch at 3427 cm-1 and a 

carbonyl stretch at 1648 cm-1.  Further proof was attained from the electron impact 

mass spectra of each diastereomer where the molecular ion peaks were both found 

to be 182.1304 (calc. 182.1307).  In addition, the mass spectra of each diastereomer 

also displayed a base peak at 112 m/z which indicated that a retro Diels-Alder 

fragmentation reaction was occurring in the mass spectrometer.  Lastly, the UV 

spectrum of the two diastereomers depicted a single absorption at 238 nm with an 

extinction coefficient of 1.5 x 104 M-1·cm-1 which is in agreement with known 

literature values of a α,β-unsaturated ketone chromophores.131 

 

 
 
 
2.1.4.3 Expansion of the Trialkylaluminum ECA. 

O O

a
O
O

P N

165 214

26

a) Et3Al, CuTC, (26), Et2O, -15°C.

OH OH

 
Figure 96.  Altering the conditions of an ECA reaction with trialkylaluminum 
reagents. 
 
In an effort to increase the yield of the reaction a series of different variables were 

altered (Figure 96).  The time of the reaction was increased from 18 hours to 72 

hours (Table 19, Entry 1) but, unfortunately there was no increase in yield.  The 

results from entry 1 indicated that the catalyst was being poisoned.  Therefore, in an 

attempt to counter this poisoning effect the equivalents of chiral ligand were 
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doubled.  Unfortunately, the doubling of chiral ligand equivalents resulted in a slight 

drop in yield (Table 19, Entry 2).  The addition of a Lewis acid has been reported to 

increase chemical yields during alkylaluminum conjugate additions.148  The addition 

of the Lewis acid AlBr3 to this study (Table 19, entry 3) was found to be detrimental 

and no reaction occurred.   In a final effort to increase the yield of the reaction the 

temperature of the reaction was elevated to 0°C and room temperature (Table 19, 

entries 4 and 5).  The elevation in temperature produced a mixture of products.  The 

mixture included the desired product compounds 210, 211, 212 and 213 and some 

other unidentified rearrangement product.  Due to the similarity in polarities of the 

products within the mixture, there was a great difficulty in obtaining the pure 

products 210, 211, 212 and 213.  A different alkylating reagent Me3Al was 

attempted (Table 19, entry 7), but again no reaction was observed.  The reaction was 

also attempted with a methyl ether substrate 197 and the precursor to synthesize 

MeABA 161 (Table 19, Entries 6 and 8), but no reaction was observed.  This result 

shows that the γ-substituent affected the reaction.  A transition state model was 

constructed based on the catalytic mechanism of ECA reactions using 

alkylaluminum reagents87 in an attempt to explain this result (Figure 97).  The 

model suggested that there was a possible steric interaction between γ-substituents 

and the binaphtol group from the ligand 26.  Another interesting observation was 

that unlike previous experiment the β-substituent seemed to fit comfortably without 

a steric interaction. 

 

 

 

 
 
 
 
 
 



 94

 

 

Table 19.  ECA with trialkylaluminum using altered conditions. 

dra 

O

OH  
-anti addition 

to OH 

O

OH  
-syn addition to 

OH 

Entry Ligand T 
(°C) 

t 
(h) 

(-) (+) (-) (+) 

Yield 
(%) 

1 26 -15 72 30 12 8 50 13 
2 (2 equiv) 

26 
-15 18 60 5 11 24 11 

3 (AlBr3) 
26 

-15 18 -- -- -- -- NR 

4 26 0 18 7 14 14 65 27b 
5 26 23 18 8 17 10 65 35b 
6c 26 -15 18 -- -- -- -- NR 
7d 26 -15 18 -- -- -- -- NR 
8e 26 -15 18 -- -- -- -- NR 

adr determined by chiral HPLC analysis ((R,R)-Whelk-01).  bProduct was obtained as a mixture of 
the desired product and a rearrangement byproduct. C197 was used as a starting material.  dMe3Al 
was used as the alkylating reagent.  e157 was used as a starting material. 
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Figure 97.  Transition state model of an ECA reaction using triethylaluminum and 
compound 165. 
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Trialkylaluminum reagents are known to react with functionalities such as 

ketones and alcohols to produce rearrangement products149.  The number of 

equivalents of alkylaluminum reagent was thought to possibly influence the yield of 

the desired product 165.  Therefore, the effects of different equivalents of 

alkylaluminum reagent were examined in as reported in Table 19.  Table 20, entry 

1, the same number of equivalents as Alexakis’ result, produced the highest yield 

with modest enantioselectivity.  The doubling of Et3Al equivalents (Table 20, entry 

2) resulted in a slight drop in yield but, the enantioselectivity of anti diastereomer 

was reversed from 7:17 to 27:16.  Decreasing the equivalents of Et3Al (Table 20, 

entries 3 and 4) resulted in modest enantioselectivities but lower yields.  Overall the 

major stereoisomer in all cases was the (+)-syn addition product. 

   

Table 20.  ECA to 165 using Alexakis’ reaction conditions and different equivalents 
of Et3Al. 

dra 

O

OH  
-anti addition 

to OH 

O

OH  
-syn addition to 

OH 

Entry Equivalent Et3Al 

(-) (+) (-) (+) 

Yield (%) 

1 1.4 7 17 16 60 15 
2 2.8 27 16 7 49 11 
3 0.7 9 11 17 63 10 
4 0.4 33 8 19 40 3 

adr determined by chiral HPLC analysis ((R,R)-Whelk-01). 

 

Solvent can have a major role in the formation of carbaions and their 

subsequent reaction with electrophiles.  The choice of solvent will influence the 

aggregation states of the alkylating reagents.  The effect of some commonly used 

solvents, for the reaction of compound 165 with triethylaluminum and the 

phosphoramidite ligand 26 were surveyed in Table 21.  The reaction using Et2O 

gave the best yield (Table 21, entry 1).  The reaction using PhMe gave a lower yield 

than Et2O but displayed a slightly better selectivity where one diastereomer, the 
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addition product syn to the hydroxyl moiety, was enantiomerically pure with the 

(+)-form predominating (Table 21, entry 2).  The reaction using THF gave the 

lowest yield but demonstrated good selectivity where again one diastereomer, the 

addition product anti to the hydroxyl moiety, was enantiomerically pure with the (-)-

form predominating (Table 21, entry 3).  As a result, the ECA reaction between 

triethylaluminum and compound 165 achieved higher yields in non-coordinating 

solvents then in coordinating ones.  Alexakis also observed this trend when 

performing conjugate additions to cyclic enones with dialkylzinc reagents.36,54  In 

addition, the (+)-syn addition was the major stereoisomer in non-coordinating 

solvents.  In THF, a coordinating solvent, the major stereoisomers were both the 

(+)-syn addition and the (-)-anti addition products. 

 

Table 21.  ECA to 165 using Alexakis’ reaction conditions in different solvents. 

dra 

O

OH  
-anti addition 

to OH 

O

OH  
-syn addition to 

OH 

Entry Solvent 

(-) (+) (-) (+) 

Yield (%) 

1 Et2O 7 17 16 60 15 
2 PhMe 12 18 <1 70 11 
3 THF 41 <1 19 40 7 

adr determined by chiral HPLC analysis ((R,R)-Whelk-01). 

 

Copper-catalyzed conjugate addition reactions to enones are highly sensitive 

to the nature of the copper salt used.150 The effects of some commonly used Cu salts 

in conjugate addition chemistry were surveyed in Table 22.  Alexakis’ system made 

use of CuTC which produced the highest yield and modest enantioselectivities 

(Table 22, entry 1).  The copper halide salts CuCl, CuI and CuBr·SMe2 also 

produced modest enantioselectivities but poor yields (Table 22, entries 2, 3 and 6).  

The remaining triflate salts produced similar yields and enantioselectivities to that 

of the CuTC reaction (Table 22, entries 4 and 5).  Overall the (+)-syn addition 
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product was the major stereoisomer.  However, with the exception of the CuTC and 

Cu(OTf)2 entries, the syn addition products were produced with poor 

enantioselectivity.  For example, the reactions using CuCl and CuBr·SMe2 produced 

mostly syn addition racemic products.            

 

Table 22.  ECA to 165 using Alexakis’ reaction conditions with different Cu salts. 

dra 

O

OH  
-anti addition 

to OH 

O

OH  
-syn addition to 

OH 

Entry Cu Salt 

(-) (+) (-) (+) 

Yield (%) 

1 CuTC 7 17 16 60 15 
2 CuCl 3 7 40 50 5 
3 CuI 3 7 38 52 3 
4 Cu(OTf) 10 9 32 49 11 
5 Cu(OTf)2 17 7 16 60 13 
6 CuBr·SMe2 <1 5 46 49 2 

adr determined by chiral HPLC analysis ((R,R)-Whelk-01). 

 

The success of the phosphoramidite ligand resulted in a further study of that 

family of ligands.  As a result, the ligands (Figure 98) were screened using the same 

conditions as in Figure 89. 
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Figure 98.  Phosphoramidite ligands screened. 
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Table 23.  ECA to 165 using Alexakis’ reaction conditions with different ligands. 

dra 

O

OH  
-anti addition 

to OH 

O

OH  
-syn addition to 

OH 

Entry Ligand 

(-) (+) (-) (+) 

Yield (%) 

1 216 21 23 <1 56 6 
2 217 50 15 <1 35 6 
3 26 7 17 16 60 15 
4 218 46 2 <1 52 12 
5 219 64 16 <1 20 4 
6 220 37 29 <1 34 3 
7 221 70 10 <1 20 5 
8 222 80 <1 <1 20 3 
9 223 70 15 <1 15 2 

adr determined by chiral HPLC analysis ((R,R)-Whelk-01). 

 

The binaphthol chiral ligands 26 and 218 produced the best yields.  However, the 

two ligands produced very different selectivities.  Ligand 218 produced two 

diastereomers that were almost enantiomerically pure, whereas, ligand 26 produced 

two diastereomers; both that possessed modest enantioselectivity.  Even though the 

ligands 26 and 218 are very similar in structure with the exception of the amine 

configurations the results show a matched/mismatched effect.  This 

matched/mismatched was also observed by Alexakis18 where similar binaphthol 

ligands were used.  The remaining phosphoramidite ligands tested produced modest 

enantioselectivities where one diastereomer was enantiomerically pure but, much 

poorer yields were also achieved.  One structural difference between the remaining 

ligands and ligands 26 and 218 is the amine functionality.  The reaction was 

observed to function with highest yields when the amine functionality possessed 

two large chiral bulky substituents.   Ligands 219 and 220 demonstrated that one 

large chiral substituent on the amine functionality resulted in poor yields.  Ligands 

221, 222 and 223 all possessed an altered binaphthol backbone structure.  As a 

result, these reactions favoured the (-)-anti addition product.  Based on the model 
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above (Figure 98) an altered binaphthol backbone structure must reorientate 

compound 165 so that the addition occurs on the opposite face of the one containing 

the OH group.   

Recently, several examples of the use of trialkylaluminum reagents as 

nucleophiles in copper-catalyzed asymmetric transformations with phosphoramidite 

ligands have been described151.  In addition, the sense of chirality of the amine part 

of the ligand has proven to exert a major influence on the stereochemical outcome 

of the reaction (Table 23, entries 3 and 4), with an almost complete reversal of 

absolute configuration.  These results conflict with the normal trend in which the 

BINOL part controls the enantioselectivity in conjugate additions.151  In 2006, 

Alexakis, while working on asymmetric transformations using bicyclic 

hydrazines,152 observed by phosphorus NMR a reaction between the 

phosphoramidite ligands and alkylaluminum reagents.  Alexakis observed a 

complete disappearance of the characteristic phosphorous signal of the 

phosphoramidite ligand 26 as soon as a solution of Me3Al was added to the same 

NMR tube.  After further workup and chromatographic purification, Alexakis 

isolated two compounds 224 and 225 (Figure 99).   

O
O

P N

26

a
OH

P N
OH

Me

Me
+

224 225

a) Me3Al, CH2Cl2.  
Figure 99.  Degradation of phosphoramidite ligand 26 in the presence of Me3Al. 

 

Alexakis concluded that 225 formed in situ based on the cleavage of the BINOL 

moiety by an organoaluminum reagent triggered by a precoordination.153  The 

degradation of the phosphoramidite ligand was also found to be much slower in 
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more coordinating solvents such as THF or with the less-oxophilic organozinc 

reagents.  In Alexakis’ system ligand 225 appeared to be the real ligands in the 

copper-catalyzed nucleophilic ring opening of bicyclic hydrazines.   This study 

indicates that perhaps the catalyst is being degraded by the alkylating reagent in 

combination with the selected solvent and thus accounting for the poor yields.     

   

 

 

2.1.5 Boronic Acid Conjugate Additions. 

Boronic acids have been used to perform conjugate addition reactions.77,91  

Chong demonstrated a 1,4-alkenylation of chalcone 56 using a boronate 57 and 

catalytic amounts of binaphthol 58 (Figure 100).77  The reported reaction conditions 

by Chong were repeated and validated.  Chong’s reaction conditions were 

successfully repeated (Table 24, Entry 1).  A yield of 88% was comparable to 

Chong’s yield of 92%.  However, the enantioselectivity of 90%was 8% lower than 

the enantioselectivity reported by Chong. 
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a) (57), (58), CH2Cl2, 4A MS, 40°C.  
Figure 100.  Chong’s ECAs reported conditions using boronic acids. 
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Table 24.  Reactions using boronic esters reported by Chong. 

Entry Enone Yield (%) eea 
1 O

56

88 90 

2 O

165
OH

 

NR -- 

3 O

24  

NR -- 

aee determined by chiral HPLC analysis (Chiralcel-OD). 

 

X
a

B
O

O

Br

Br

OH
OH

57

58

a) (57), (58), CH2Cl2, 4A MS, 40°C.

O O

165 226
OH OH

 
Figure 101.  Boronic ester reaction to 165 using conditions reported by Chong. 

 

After validating the boronic ester reaction conditions published by Chong, 

the method was applied to 165 (Figure 101).  Unfortunately no reaction was 

observed between compound 165 and the boronic ester using the chiral diol 58 

(Table 24, Entry 2).  As a result, the reaction was attempted with a simple substrate 
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3-methyl-2-cyclohexen-1-one 24 in order to determine whether the β-methyl 

substituent was hindering the reaction.  No reaction was observed with substrates 

24.  The β-methyl substituent was sterically hindering the reaction. 

Conjugate addition of boronic acids to β-substituted enones has been 

reported by Hayashi.91  Hayashi reported a rhodium-catalyzed ECA of arylboronic 

acid to 2-methyl-1,4-naphthoquinone providing a 1,4 addition product (Figure 102).  

Thus, the reported reaction conditions by Hayashi, summarized in Table 25, were 

validated.    Hayashi’s reaction conditions were successfully repeated (Table 25, 

Entry 1).  A yield and enantioselectivity of 70% and 99% respectively were 

identical to Hayashi’s report. 
O

O

O

O

Ph
a

Rh+ Rh+

Cl-

Cl-

102 103 104

O

O

O

O

Ph
a

Rh+ Rh+

Cl-

Cl-

a) PhB(OH)2, (R)-binap, (104), KOH, Dioxane/H2O, 50°C.  
Figure 102.  Hayashi’s ECAs reported conditions using boronic acids. 
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Table 25.  Reactions using boronic acids reported by Hayashi. 

Entry Enone Yield (%) eea 
1 O

O
102

O

O

 

70 99 

2 O

165
OH

 

NR -- 

3 O

24  

NR -- 

4 O

HO

O

O

227  

NR -- 

5 O

O
175  

NR -- 

aee determined by optical rotation from literature value, [α]D
20 = +29.0 (c 0.1, CHCl3).  
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a) PhB(OH)2, (R)-binap, (104), KOH, Dioxane/H2O, 50°C.

104

O O
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OH OH
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228

 
Figure 103.  Boronic acid reaction using conditions reported by Hayashi to 165. 

 
After validating the reaction conditions (Table 25, Entry 1) published by 

Hayashi, the method was applied to 165 (Figure 103).  Unfortunately no reaction 

was observed between compound 165 and arylboronic acid (Table 25, Entry 2).  

Hayashi reported a possible transition state where compound 102 fits into a pocket 

formed by the rhodium-phosphine catalyst.  As a result, in order to test this 

hypothesized transition state, a variety of substrates were attempted with this 

reaction.  Firstly, the reaction was attempted with 3-methyl-2-cyclohexen-1-one 24 

in order to determine whether the reaction was not proceeding due to the γ-

substituents.  The γ-substituents of 165 possessed sp3 bonds versus the γ-substituent 

of the model that was an sp2 bonded carbonyl moiety.  Nonetheless, compound 24 

did not react.   Compound 227 was then used as a substrate for this reaction to 

observe whether the naphthoquinone backbone structure was necessary for the 

reaction to proceed.  However, there was no reaction between arylboronic acid and 

compound 227.  In a final effort to understand this system, compound 175 was used 

as a starting substrate in this reaction.  It was hypothesized that the two sp2 bonded 

carbonyls acted as coordinating structures.   This was not the case, as again no 

reaction occurred.  As a result, it was shown that both the ketone and aromatic 

regions of compound 102 are required for this reaction to proceed.   
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2.2 Diastereoselective Conjugate Addition (ECA) Methods Using a Chiral 

Auxiliary 

Although this study was aimed at developing a stereoselective addition to 

compound 165 via an ECA, the lack of reactivity and low yields attained from 

enantioselective methods forced this project in a different direction.  A decision was 

made to begin focusing efforts with a diastereoselective method using a chiral 

auxiliary.  However, if this newly developed system was to be applied to the ABA 

total synthesis the chiral auxiliary could be bonded at specific locations on 

compound 165.  Firstly, a chiral auxiliary was used to react with compound 165 to 

form a chiral intermediate.   

 

 

2.2.1 Synthesis of tert-Butanesulfinyl Imines 

Sulfinamides have been used as chiral auxiliaries in combination with 

similar enones to compound 165 to form reactive sulfinyl imines intermediates.  

These sulfinyl imine intermediates have been used to perform diastereoselective 

conjugate additions.82 Ellman demonstrated the use of a sulfonamide 68 and 2-

cyclohexen-1-one 3 to produce N-tert-butanesulfinyl imines 69 and 70.  The N-tert-

butanesulfinyl imine products were then submitted to a diastereoselective conjugate 

addition reaction to provide the enantioenriched amine product 71 (Figure 104).82  

The reported reaction conditions by Ellman were then validated.  Ellman’s reaction 

conditions were successfully repeated (Table 26, Entry 1).  A yield and 

diastereomeric ratio of 86% and 2:1 was obtained identical to Ellman’s results.  
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Figure 104.  Ellman’s ECA via the formation of a sulfinyl imine intermediate. 
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Figure 105.  Sulfinyl imine formation from compounds 165 and 197. 
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Table 26.  Sulfinyl imine formation. 

Entry Chiral 
Auxiliary 

Enone Solvent t (h) Yield 
(%) 

dra 

1 
S

NH2

O

68  

O

3  

THF 24 86 66:33 

2 
S

NH2

O

68  

O

165
OH

THF 24 NR -- 

3 
S

NH2

O

68  

O

165
OH

PhMe 24 40 55:45 

4 
S

NH2

O

68  

O

197

O

PhMe 24 70 55:45 

adr ratio was measured by comparing the integration of peaks 6 and 6’ of the 1H NMR (Figure 106). 

 

After validating reaction conditions published by Ellman, the conditions 

were applied to compound 165 (Figure 105).  Unfortunately no reaction was 

observed (Table 26, Entry 2) between compound 165 and the sulfonamide 68 in 

THF.  The solvent was then changed to PhMe and the temperature was increased.  

As a result, the reaction was successful in producing compounds 229 and 230 with 

40% yield.  In addition, the 1H NMR of the mixture of compounds 229 and 230 

displayed a 1.2:1 diastereomeric ratio (Figure 106).   
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Figure 106.  1H NMR spectrum of the sulfinyl imine intermediates 229 and 230. 

 

 

Table 27.  Chemical shifts of the 1H NMR spectrum of compounds 229 and 230. 

Entry Proton Chemical Shift 
(ppm) 

Multiplicity (Hz) 

1 HC-6’’ 7.01 1H, s 
2 HC-6 6.93 1H, s 
3 HC-2, HC-2’’ 6.04 2H, s 
4 HO-14’’ 3.31 1H, s 
5 HO-14 2.80 1H, s 
6 H3C-7, H3C-9, H3C-7’’, H3C-9’’ 2.07-2.03 12H, s 
7 H3C-8 1.36 3H, s 
8 H3C-8’’ 1.35 3H, s 
9 H3C-11, H3C-12, H3C-13 1.21 9H, s 
10 H3C-11’’, H3C-12’’, H3C-13’’ 1.19 9H, s 

 

The mixture of diastereomers 229 and 230 could not be separated by HPLC.  

Thus, the mixture was characterized 1H NMR, 13C NMR, IR, MS and UV.  The 1H 

NMR spectrum (Figure 106) displayed 10 expected peaks at 7.01 ppm, 6.93 ppm, 

6.04 ppm, 3.31 ppm, 2.80 ppm, 2.07 ppm, 1.36 ppm, 1.35 ppm, 1.21 ppm and 1.19 

ppm.  The singlet peaks in the aromatic region at 7.01 ppm and 6.93 ppm 
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represented the two olefinic (HC-6, HC-6’’) protons interacting with the sulfoxide 

moiety (Table 27, Entries 1 and 2).  The opposing unaffected free olefinic (HC-2, 

HC-2’’) protons were found to be represented by a singlet peak at 6.04 ppm (Table 

27, Entry 3).  The vinyl methyl protons (H3C-7, H3C-9, H3C-7’’, H3C-9’’) were 

found to be represented by a multiplet made up of four singlet peaks at 2.03-2.07 

ppm (Table 27, Entry 6).  The remaining methyl protons (H3C-8, H3C-8’’) were 

found to be represented by two singlet peaks at 1.36 ppm and 1.35 ppm, 

respectively (Table 27, Entries 7 and 8).  The hydroxyl group (HO-14’’, HO-14) 

protons were represented by two broad singlet peaks at 3.31 ppm and 2.80 ppm 

(Table 27, Entries 4 and 5).  Finally, the tert-butyl group protons (H3C-11, H3C-12, 

H3C-13, H3C-11’’, H3C-12’’, H3C-13’’) were found to be represented by two large 

singlet peaks at 1.21 ppm and 1.19 ppm (Table 27, Entries 9 and 10).  The 13C NMR 

spectrum supported the structures of the diastereomers 229 and 230 by revealing 22 

peaks representing the correct number of magnetically nonequivalent carbons.  For 

example, the 13C NMR spectrum demonstrated 12 peaks at 165.40 ppm (C-1’’’), 

164.25 ppm (C-1’), 159.65 ppm (C-3’’’), 158.61 ppm (C-3’),  157.14 ppm (C-5’’’), 

155.80 ppm (C-5’), 125.50 ppm (C-6’’’), 125.19 ppm (C-6’), 118.11 ppm (C-2’’’), 

117.61 ppm (C-2’), 71.26 ppm (C-4’’’) and 71.12 ppm (C-4’) representing the two 6 

carbon ring structures of the two diastereomers.  The 13C NMR spectrum also 

showed 5 peaks at 57.60 ppm (C-10’’’), 57.07 ppm (C-10’), 22.90 ppm (C-13’’’,C-

13’), 22.48 ppm (C-12’’’, C-12’) and 22.26 ppm (C-11’’’, C-11’) representing the 

two tert-butyl group sets of carbon atoms.  The remaining 5 peaks in the spectrum at 

25.76 ppm (C-8’’’), 25.54 ppm (C-8’), 18.81 ppm (C-7’’’,C-7’), 18.07 ppm (C-9’’’) 

and 17.93 ppm (C-9’) represented the 6 methyl group carbon atoms.  The IR 

spectrum revealed the presence of a hydroxyl stretch at 3283 cm-1, an imine 

absorption at 1543 cm-1 and a sulfoxide absorption at 1043 cm-1.  Further proof was 

attained from the electron impact mass spectrum where a molecular ion peak of 

256.1378 was found. Lastly, the UV spectrum of the diastereomers 229 and 230 

portrayed a single absorption at 254 nm an extinction coefficient of 2.3 x 104 M-

1·cm-1 which is in agreement with the literature value of similar sulfinyl imines with 

extended conjugation.131 
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Methyl ether compound 197 also reacted with the sulfonamide 68 to produce 

products 231 and 232 with a 70% yield.  Compounds 231 and 232 were also found 

to be in a 1.2:1 diastereomeric ratio.  Compounds 231 and 232 also possessed 

similar structural data to compounds 229 and 230.  The compounds 231 and 232 

were inseparable by HPLC like their counterparts compounds 229 and 230, 

however, the main difference was found in their 1H NMR and 13C NMR spectra.  

Compounds 231 and 232 had an extra proton signal at 2.90 ppm (H3C-9’’’, H3C-9’) 

in their 1H NMR spectrum representing the methyl ether protons.  The 13C NMR 

spectrum possessed an extra two carbon atom signals at 52.28 ppm (C-14’’’’) and 

52.06 ppm (C-14’) again representing the two methyl ether carbon atoms.    

 

 

 

2.2.2 Conjugate Addition to tert-Butanesulfinyl Imines 

Due to the inseparability of the imine diastereomers, the mixtures of 

compounds 229 and 230 as well as of compounds 231 and 232 were submitted to 

conjugate addition reactions with an organolithium reagent and with a Grignard 

reagent in an attempt to produce compounds 233, 234, 235 and 236 (Figure 112).   

The results are summarized in Table 29. 
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Figure 107.  Conjugate addition reactions to diastereomeric mixtures. 
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Table 28.  Grignard addition to chiral sulfinyl imine mixtures. 

Entry Sulfinyl Imine Mixture Alkylating 
Reagent 

t (h) Yield (%)a erb 

1 229 and 230 MeLi 5 NR -- 
2 229 and 230 CH3MgBr 5 45 60:40 
3 229 and 230 CD3MgI 5 40 60:40 
4 231 and 232 CH3MgBr 24 NR -- 

aIsolated yield of hydrolyzed imine. ber of hydrolysed imine was measured by chiral HPLC ((R,R) 

Whelk-01). 

 

In an attempt to repeat the conditions published by Ellman82 using MeLi, no 

reaction was observed (Table 29, Entry 1).  The diastereomeric mixture of 

compounds 229 and 230 only reacted successfully with a Grignard reagent.  

However, compounds 233 and 234 were not isolated.  Instead, hydrolysis product 

183 was obtained in a modest yield of 45% and 20% ee (Table 29, Entry 2).  

Compounds 229 and 230 likely reacted with MeMgBr to form in situ intermediate 

compounds 233 and 234 that were then hydrolyzed upon work-up to form 

compound 183 (Figure 113). 
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Figure 108.  Conjugate addition to diastereomeric mixtures to produce 183. 

   

Using deuterium labeled MeMgBr, a Grignard addition reaction was 

performed (Table 29, entry 3) with the diastereomeric mixture of compounds 229 

and 230 was performed.  The 1H NMR displayed the same result as previously 

discussed when performing a Grignard addition reaction to 165.  The spectrum 

showed the complete disappearance of one methyl peak (Figure 114).  This 

suggested that the hydroxyl moieties of compounds 229 and 230 were assisting the 

Grignard reagent to produce facial selectivity. 
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Figure 109.  1H NMR comparison of 183 and deuterium labeled 184. 

 

The Grignard addition reaction appeared to have functioned by the use of the 

oxygen of the hydroxyl group assisting the addition of the Grignard reagent.  Thus, 

the facial assistance of a Grignard reagent with conformer 229 as well as with 

conformer 230 was modeled (Figure 115 and 116).  The model of the Grignard 

addition to compound 229 appeared to be unhindered by the tert-butyl moiety.  The 

addition of the Grignard reagent could likely occur to either side of the diene ring.  

Thus, a Grignard addition reaction to compound 229 would likely be unselective.  

However, the model of the Grignard addition to compound 230 appears to be 

hindered on one side of the diene ring by the tert-butyl moiety.  The addition of the 

Grignard reagent would likely favour one side of the dienone ring.  Thus, a Grignard 

addition reaction to compound 230 would likely be selective.  The poor selectivity 

achieved in the conjugate addition to the mixture of compounds 229 and 230 is 

perhaps indicative of both conformers reacting.  If the rates of addition to each 

diasteromer were identical and compound 230 was the major imine (1.2:1) from the 

beginning synthesis of the tert-butanesulfinylimine mixture, then it can be 

calculated using an additive effect and the fact that the tert-butyl moiety is hindering 

one side of the diene ring to produce a product ratio of 1:2.6.  However, if 

compound 230 was the minor imine (1:1.2) from the beginning synthesis of the tert-

butanesulfinylimine mixture then it can be calculated that the tert-butyl moiety is 

hindering one side of the diene ring to produce a product ratio of 1:4.   
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Figure 110.  Modeled Grignard addition to compound 229. 
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Figure 111.  Modeled Grignard addition to compound 230. 

 

Chirality transfer or asymmetric induction from chiral catalysts or chiral auxiliaries 

is the basis for asymmetric synthesis of enantiomerically enriched chiral 

molecules.157 The efficiency of the chirality transfer is largely dependent on how 

tight the interaction is between the chirality source and the reacting site. A short 

distance is normally considered being favorable for highly efficient chirality transfer 

or asymmetric induction154.  It is of interest to study stereocontrol among remote 

sites.155 In this study compounds 229 and 230 each possess an axis of chirality along 

with a stereocenter whose configuration is fixed.  However, after the conjugate 
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addition reaction, the product 183 possessed a new stereocenter with a loss to the 

axis of chirality present in compounds 229 and 230.  As a result, a transfer of axial 

to central chirality occurred.  Normally, axial to central chirality transfers are 

separated by two bond lengths.155-156 The chirality transfer that occurred in this 

system is over four bond lengths.  Although chirality transfer over large bond 

distances is rare, one recent extreme example reported by Clayden and co-workers 

illustrated the state of art in achieving remote stereocontrol in two sites separated by 

more than twenty bond lengths or a linear distance of >2.5 nm.155  Nonetheless few 

cases of a chirality transfer over two bond lengths have been reported.156 

  

 

 

2.2.3 Sulfinyl Imine C=N Bond Rotation Study 

 The dynamic internal motions of organic imines have been a source of 

interest leading to numerous NMR spectroscopic studies since the 1950s.157  The 

unique property of 229 and 230 is that the C=N bond has two diastereomeric 

orientations: a t-butyl group anti to the hydroxyl substituent, tanti, and a t-butyl group 

syn to the hydroxyl substituent, tsyn (Figure 107).  The poor selectivity afforded 

during the conjugate addition reaction to the mixture of 229 and 230 indicated that 

perhaps there was an interconversion of the C=N bond issue between compounds 

229 and 230.  
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Figure 112.  Two orientations of the C=N bond. 
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As a result, an 1H NMR variable temperature experiment was performed with a 

sample of 229 and 230 in DMSO.  The olefinic proton 2, 2’, 6 and 6’ peaks (Figure 

108) were observed to slowly broaden and become one peak at 356 K.  The 

resulting spectrum can then be modeled and simulated using the computer program 

WinDNMR (Figure 109).  The computer simulation then calculates a rate constant k 

by measuring the line width of the 1H NMR spectrum.  The line width is the 

minimal obtainable peak width distance at the half-height of a peak (Figure 109). 
 

 
Experimental                              Simulation 

Figure 113.  Variable temperature 1H NMR experiment of 229 and 230 in DMSO. 

 



 120

 
Figure 114.  Line width of a simulated NMR peak. 

 

From the values of the rate constant k a plot of ln k versus inverse temperature 

representing the Arrhenius equation as well as a plot of ln (k/T) versus inverse 

temperature representing the Eyring equation was constructed (Figure 110).  Finally, 

the slopes and intercepts were extracted from these the plots to provide the 

thermodynamic parameters in Table 28.     
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Figure 115.  Arrhenius and Eyring plots. 
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Table 29.  Thermodynamic parameters of the C=N bond within 229 and 230. 

Entry Sample Ea Ar 
(kJ mol-1) 

ΔH‡
 Ar 

(kJ mol-1) 
ΔS‡

 Ar 
(J mol-1 K-1) 

ΔG‡
 Ar 

(kJ mol-1) 
1 229 and 230 

DMSO 
68.76 ± 1.83 66.28 ± 1.83 -4.22 ± 4.82 67.54 ± 1.83 

Entry Sample Ea Ey 
(kJ mol-1) 

ΔH‡
 Ey 

(kJ mol-1) 
ΔS‡

 Ey 
(J mol-1 K-1) 

ΔG‡
 Ey 

(kJ mol-1) 
2 229 and 230 

DMSO 
68.16 ± 1.83 65.68 ± 1.83 51.48 ± 5.07 50.33 ± 3.34 

 

The Ea of rotation obtained was approximately 68 kJ mol-1.  However, the computed 

line positions depend on the level of sophistication of the theory programmed.  

Thus, 229 was modeled using the computer program Spartan as a comparison result.  

The program calculated the energy barrier of rotation of the gas phase of 229 to be 

81.07 kJ mol-1.  The Ea of rotation value obtained was expected to be slightly lower 

than the modeled value since it was in the liquid state.  This modeled result further 

supports the result Ea of rotation value obtained.   Avdeenko158 found that a similar 

system of N-aryl-sulfonyl-1,4-benzoquinonimines experience ΔG‡ of rotation to be 

65-80 kJ mol-1 (Figure 111).   
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229
G‡ = 50-70 KJ mol-1  

Figure 116.  ΔG‡ of rotation of similar systems. 

 

The 1H NMR simulation was validated in this study as the C=N bond of 229 

behaved in a similar manner to that of other imines such as 211.  In addition, 1H 

NMR simulation demonstrated that the imines 229 and 230 were interconverting 

approximately 222 times per second at 356 K.  Therefore, a conjugate addition 

reaction at -78 °C will slow down the interconversion of the imines 229 and 230 to 

122 times per second.  In other words, the imines 229 and 230 will interconvert 
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once every 8.2 x 10-3 seconds.  Therefore, although some selectivity was observed 

with the use of this system, there is an interconversion issue that must be 

considered.   

 

 

2.3 Conclusion and Suggestion for Future Work 

The initial work in this thesis concentrated on preparing 165 as the key 

substrate that could be used for the enantioselective synthsis of ABA.  An ECA to 

165 could act as a model system for further ECA studies with other substrates, such 

as 161.  Reactions using organolithium, Grignard, organozinc, organoaluminum and 

boronic acids were performed to 165 in order to achieve an ECA reaction.  In 

addition, a chiral auxiliary 68 was added to 165 and used in a DCA reaction that 

resulted in an enantioenriched product 183. 

Attempts to perform an ECA to 165 using organolithium, Grignard, 

organozinc and boronic acids were unsuccessful.  Two methods were developed to 

perform a stereoselective conjugate addition to 165, but resulted in poor yields and 

moderate enantioselectivities.  An ECA using an external chiral ligand 26 and 

triethylaluminum was successful in producing a moderate stereoselective product.  

The major product for most of the triethylaluminum ECA reaction trials was the (+)-

syn addition stereoisomer.  A DCA using a chiral auxiliary 68 was also successful in 

producing a moderately enantioenriched product 183.  ECA reactions using an 

external chiral ligand have been developed for many α,β-unsaturated carbonyl 

compounds.  However, these ECA reactions did not extend their reaction scope to 

β,β-disubstituted-α,β-unsaturated carbonyl compounds.  In fact, very few methods 

to achieve an ECA with β,β-disubstituted-α,β-unsaturated carbonyl compounds are 

known.  In addition, even fewer methods are known to achieve an ECA with γ-

substituted-β,β-disubstituted-α,β-unsaturated carbonyl compounds.  Many literature 

works speculate as to why these compounds possess such a lack in reactivity.  The 

main suggested reasoning for this lack of reactivity is that the extra γ and β 
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substituents, which add an excessive steric requirement, must be overcome in order 

to produce a reaction. 

In order to avoid these steric issues, future experiments would be to attempt 

other chiral auxiliary DCA reactions that would affect the product in a 

diastereoselective fashion.  The chiral sulfoxide moiety used by Carreno90 is an 

example of a chiral moiety that could be used as an alternate chiral auxiliary 

strategy.  In any event, the chiral auxiliary used must be one that is easily added to 

and removed from compound 165 and easily removed at a later stage.  One could 

also look at new ways of performing an ECA to compound 165 by designing a new 

chiral external ligand.  ECA reactions to γ-substituted-β,β-disubstituted-α,β-

unsaturated carbonyl compounds remains a great challenge in synthetic chemistry.         

 Finally, a study of the dynamic motions of the C=N bond found in the 

structure of sulfinyl imines 229 and 230 was performed.  The study used variable 

temperature NMR in combination with the computer software WinDNMR.  As a 

result, the thermodynamic parameters Ea, ΔH‡, ΔS‡ and ΔG‡ of this C=N bond 

interconversion were calculated to be 68 kJ mol-1, 66 kJ mol-1, 51 kJ mol-1 and 50-

68 kJ mol-1, respectively.   Therefore, the imines 229 and 230 were found to be 

interconverting once every 1.5 seconds at -78 °C and it was concluded that DCA 

reactions using this system must consider the issue of C=N bond interconversion.        
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CHAPTER 3:  EXPERIMENTAL 

 

3.1 General methods 

 All air sensitive reactions were carried out under dry argon.  

Tetrahydrofuran, dimethoxyethane and diethyl ether were distilled under argon from 

sodium and benzophenone.  Dichloromethane and toluene were distilled from 

calcium hydride.  Grignard, alkylzinc, alkylaluminum and alkyllithium reagents 

were obtained as stock solutions from commercial sources and used without further 

purification.  Other chemical reagents, solvents were obtained from the Aldrich 

Chemical Company, Alfa Aesar, Strem Chemicals, or Frontier Scientific and used 

as received unless stated otherwise.  All reactions were performed at least twice.  

Yields and selectivity measurements were reported with an accuracy of ±2%.   

 High pressure liquid chromatography (HPLC) was performed using a 

Hewlett Packard 1090 Series instrument.  Preparative high pressure liquid 

chromatography (PREP HPLC) was performed using a Hewlett Packard 1100 Series 

instrument.  HPLC separations were carried out on an (R,R)-WHELK-01 chiral 

column (250 mm x 4.6 mm) and a ChiralCel-OD (250 mm x 4.6 mm) chiral column, 

respectively. PREP HPLC separations were carried out on an (R,R)-WHELK-01 

chiral column (25 cm x 21.1 mm).  Flash column chromatography (FCC) was 

carried out using Silicycle silica gel (40-63 μm).  Thin layer chromatography (TLC) 

was performed on precoated glass plates and precoated aluminium sheets (Merck, 

silica gel 60, F254).  Preparative thin-layer chromatography (PTLC) was carried out 

on glass plates (20x20 cm) precoated (0.25-1.00 mm) with silica gel 60 F254.  Spots 

on TLCs were detected using UV light (254 nm) or by immersing the TLC in a 

developing solution and charring the plate or sheet on a hot plate.  The developing 

solution was prepared by dissolving concentrated sulfuric acid (35 mL), cerium (IV) 

sulfate (10 g) and phosphomolybdic acid hydrate (40 g) in water (1 L). 

 Proton magnetic resonance (1H NMR) and carbon magnetic resonance (13C 

NMR) spectra were recorded on a Bruker 500 MHz spectrometer in chloroform-d 

solvent unless otherwise noted.  Chemical shifts are reported in ppm of δ scale with 
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chloroform-d (δ = 7.24 ppm for 1H NMR) or (δ = 77.0 ppm for 13C NMR) as the 

internal standard.  Infrared (IR) spectra were recorded on a Biorad FTS-40 Fourier 

transform interferometer using a diffuse reflectance cell (DRIFT) or on a Bruker 

Optics Tensor 27 Spectrometer using a diffuse reflectance cell (DRIFT).  In 

addition, only the diagnostic peak frequencies are reported.  Mass spectra were 

performed by Ken Thoms at the Saskatchewan Structural Science Center and were 

recorded on a double speed VG 70-250-VSE (high resolution) and are reported as 

m/z ratio (relative intensity).  Electron impact (EI) ionization was accomplished at 

70 eV.  Gas Chromatography/Mass Spectrometry (GC/MS) was performed on an 

Agilent Technologies 6890N Network GC System equipped with a 7683 Series 

Injector and a 5973 Network Mass Selective Detector.  GC separations were carried 

out on a CylodexB (0.25 mm x 30 m x 0.25 μm) or a β-cyclodex (0.25 mm x 30 m x 

0.25 μm) chiral column using helium at flow of 0.5 mL/min.  The oven was held at 

100 °C for 45 minutes and then raised to 240 °C at a rate of 10 °C/min.  Optical 

rotations were measured on a PerkinElmer Model 341 LC Polarimeter (1 dm, 1 mL 

cell) at 589 nm; all concentrations are given in g/100 mL. Ultra violet (UV) spectra 

were recorded on a PerkinElmer Lambda 35 UV/Vis spectrometer.  Melting points 

and boiling points are uncorrected.  Melting points were measured using an 

electrothermal IA9000 Series digital melting point apparatus.  Boiling points were 

measured using a Kugelrohr Buchi KGR-50 apparatus.  The mass of compounds (20 

mg-2 g) was reported with an accuracy of ±1 mg. (The balance used, a Mettler AE 

240, Deltarange®, has reproducibility of ±0.1 mg).     
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3.2 Experimental Procedures and Notes 

7,8,9-Trimethyl-1,4-dioxaspiro[4.5]deca-6,9-dien-8-ol 

OO

O OH

OO

173 174  
 Method 1: 7,9-Dimethyl-1,4-dioxaspiro[4.5]deca-6,9-dien-8-one, 173 (10.0 

g, 55.5 mmol) was dissolved in dry tetrahydrofuran (200 mL) at room temperature.  

The solution was then cooled to -78 °C and methyllithium (37 mL, 55.5 mmol), as a 

complex with lithium bromide, was added dropwise.  In some cases TMEDA (7 mL, 

55.5 mmol) was then added to the solution dropwise.  The reaction mixture was left 

stirring for two hours and then quenched with saturated aqueous NaHCO3 (10 mL).  

The aqueous phase was extracted with diethyl ether (3 x 20 mL), dried over Na2SO4 

(5.0 g), and concentrated under vacuum.  The crude product was then dissolved in 

ethyl acetate (50 mL) and recrystallized with the addition of hexanes (250 mL).  The 

white needles that precipitated were collected by filtration and washed with chilled 

hexane (200 mL), affording product 174 as an off-white solid (9.8 g, 90%). 

 

 Method 2: Anhydrous CeCl3 (371 mg, 1.5 mmol) was placed in a 25 mL 

round-bottomed flask equipped with a magnetic stir bar.  Next, dry tetrahydrofuran 

(5 mL) was added and the suspension was stirred overnight at room temperature to 

ensure that most of the CeCl3 was dissolved.  The newly formed white slurry was 

cooled to 0 °C and methyllithium (0.57 mL, 1.5 mmol), as a complex with lithium 

bromide, was added dropwise.  Following the addition of MeLi, the solution was 

left stirring for 90 min.  In a second 25 mL round bottom flask, 7,9-Dimethyl-1,4-

dioxaspiro[4.5]deca-6,9-dien-8-one 173 (180 mg, 1.0 mmol) was dissolved in 

tetrahydrofuran (10 mL).  The dienone solution was then cannulated to the cooled (0 

°C) cerium chloride suspension.  After 30 min, the reaction was quenched with 10% 

aqueous acetic acid (1 mL) and washed with brine (5 mL).  The aqueous phase was 

extracted with diethyl ether (3 x 20 mL), dried over Na2SO4 (5.0 g), and 
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concentrated under vacuum.  FCC chromatography (hexane/AcOEt gradient) gave 

the product 174 as an off-white solid (185 mg, 90%). 

OH

2

7

9

8

6

4' 3'
7'

2'
1'

5'8'

9'

6'

OO
10

11

12

11'
10'

174  
mp: 84-86°C. 

IR (NaCl) νmax: 3384 (OH), 2986 (CH), 1668 (CO); 1617 (C=C) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.46 (2H, s, HC-6, HC-2), 3.97 (4H, s, H2C-10, 

H2C-11), 1.86 (6H, s, H3C-7, H3C-8), 1.28 (3H, s, H3C-9). 
13C NMR (125.76 MHz, CDCl3) δ: 144.96 (s, C-2’, C-6’), 125.74(s, C-1’), 

122.20(s, C-3’, C-5’), 100.59(s, C-4’), 64.75 (s, C-10’, C-11’), 24.68 (s, C-9’), 

17.34 (s, C-7’, C-8’).  

HRMS (EI+): calcd. for C11H16O3 (M)+: 196.1099; found 196.1099. 

UV-Vis (MeOH): (λmax, ε): 205 nm, 1.4 x 104 M-1·cm-1. 
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4-Hydroxy-3,4,5-trimethyl-2,5-cyclohexadien-1-one  

OO

OH
174 165

O

OH

 
 Compound 174 (5.0 g, 25.5 mmol) was dissolved in tetrahydrofuran (200 

mL) in a 500 mL round-bottomed flask equipped with a magnetic stir bar. Next, 

10% aqueous hydrochloric acid (50 mL) was added to the solution.  After stirring 

the solution at room temperature for 24 hours, the reaction was diluted with water 

(50 mL).  The aqueous phase was extracted with diethyl ether (3 x 20 mL).  The 

organic layers were collected, dried over Na2SO4 (5.0 g) and concentrated under 

vacuum. FCC chromatography (hexane/AcOEt gradient) gave the product 165 as a a 

light brownish solid (3.8 g, 98%). 
O
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165  
mp: 75-78°C. 

IR (NaCl) νmax: 3408 (OH), 2988 (CH), 1669 (CO), 1618 (C=C) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.96 (2H, s, HC-2, HC-6), 2.08 (6H, s, H3C-7, 

H3C-9), 1.59 (1H, s, HO-10); 1.42 (3H, s, H3C-8). 
13C NMR (125.76 MHz, CDCl3) δ: 186.05 (s, C-1’), 164.38 (s, C-3’, C-5’), 125.31 

(s, C-2’, C-6’), 71.38 (s, C-4’), 25.89 (s, C-8’), 18.19 (s, C-7’, C-9’).  

HRMS (EI+): calcd. for C9H12O2 (M)+: 152.0837; found 152.0839. 

UV-Vis (MeOH): (λmax, ε): 237 nm, 1.3 x 104 M-1·cm-1. 
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Procedure A.  Representative procedure for Cu-Catalyzed conjugate addition of 

alkyllithium reagents. 

 

In a 50 mL Schlenk flask equipped with a magnetic stir bar, (-)-sparteine 28 

(1.8 equiv.) was dissolved in freshly distilled toluene (5 mL) and cooled to -78 °C.  

Next, MeLi (2.6 equiv.) as a complex with lithium bromide was added, drop wise.  

In a second 50 mL Schlenk flask equipped with a magnetic stir bar, the enone (1 

equiv.) was dissolved in freshly distilled toluene (5 mL) and cooled to -78 °C. After 

the solutions were stirred at -78 °C for 30 minutes, the solution containing the enone 

was added dropwise to the MeLi solution. The newly formed reaction mixture was 

then stirred for two hours.  Work-up consisted of addition of MeOH (1.0 mL) and 

extraction with diethyl ether (3 x 20 mL).  The combined organic layers were dried 

over Na2SO4 (5.0 g) and concentrated under vacuum.  

 

Procedure B.  Representative procedure for Cu-Catalyzed conjugate addition of 

Grignard reagents. 

 

In a 50 mL round-bottomed flask equipped with a magnetic stir bar, a 

mixture of CuCl (5 mol%) and the chiral ligand Taniaphos 32 (6 mol%) was 

dissolved in Et2O (2.5 ml). After stirring under argon at room temperature for thirty 

minutes the enone (1 equiv.) dissolved in Et2O was added dropwise.  After 

additional stirring for ten minutes, the corresponding Grignard reagent (1.1 equiv) in 

Et2O was added dropwise and the solution was stirred for 2-5 hours.  The work-up 

consisted of the addition of saturated ammonium chloride (3.0 mL) to quench the 

reaction.  The reaction mixture was then warmed to room temperature and extracted 

with diethyl ether (3 x 20 mL).  The combined organic layers were dried over 

Na2SO4 (5.0 g) and concentrated under vacuum.  The recovered crude product was 

purified by chromatography (hexane/AcOEt).  The racemates were prepared using 

Grignard reagent solutions (5 equiv.) in THF at -78ºC. 
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Procedure C.  Representative procedure for Cu-Catalyzed conjugate addition of 

dialkylzinc reagents. 

 

In a 50 mL Schlenk flask equipped with a magnetic stir bar, a Cu salt (2 

mol%) and the chiral ligand 26 (5 mol%) were added under an inert atmosphere. 

PhMe (2 mL) was then added to the Schlenk flask to wash down any residual solids 

to the bottom. The reaction mixture was allowed to stir at room temperature for 

thirty minutes and then cooled to -78ºC. The alkylzinc reagent solution (1.1 M) in 

PhMe was then added to the Schlenk flask dropwise, and the resulting solution 

stirred for five min. A solution of enone (1.0 equiv) in PhMe (2 mL) was then added 

dropwise. The reaction mixture was allowed to warm up slowly to -30 ºC. After 

eighteen hours of stirring, work up consisted of the addition of 5% HCl and Et2O to 

quench the reaction mixture. The reaction mixture was then extracted with diethyl 

ether (3 x 20 mL).  The combined organic layers were dried over Na2SO4 (5.0 g) and 

concentrated under vacuum.  The recovered crude product was purified by 

chromatography (hexane/AcOEt).  The racemates were prepared using Grignard 

reagent solutions (5 equiv.) in THF at -78 ºC. 

 

Procedure D.  Representative procedure for Cu-Catalyzed conjugate addition of 

trialkylaluminum reagents.   

 

A 50 mL Schlenk flask equipped with a magnetic stir bar was charged with a 

Cu salt (2 mol%) and a chiral ligand 26 (4 mol%). Diethyl ether (2 mL) was then 

added and the mixture was stirred at room temperature for thirty minutes before 

being cooled to -30 ºC. Trimethylaluminum (1.0 mL, 2.0 M) solution in heptane was 

added dropwise at such a rate that the temperature did not rise above -30 ºC, and the 

reaction mixture was stirred at -30 ºC for a further five minutes before the enone (1 

equiv.) in diethyl ether (0.5 mL) was added dropwise. Once the addition was 

complete the reaction mixture was raised to -15 ºC and held overnight. The reaction 

was quenched at -15 ºC by the addition of MeOH (0.5 mL) and then water. The 

reaction mixture was then extracted with diethyl ether (3 x 20 mL).  The combined 
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organic layers were dried over Na2SO4 (5.0 g) and concentrated under vacuum.  The 

recovered crude product was purified by chromatography (hexane/AcOEt).  The 

racemates were prepared using Grignard reagent solutions (5 equiv.) in THF at         

-78 ºC. 
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1,2,4,6-Tetramethyl-2,5-cyclohexadiene-1,4-diol 

OH

OH

165 182

O

OH

 
Procedure A was followed for the addition to compound 165. Compound 

165 (100 mg, 0.65 mmol) was then added as the electrophile.  The recovered crude 

product was found to be a mixture of starting material and a mixture of 1,2 addition 

diastereomeric products 182 (72.5 mg, 65%).  The recovered crude product was 

purified by pTLC (hexane/AcOEt 3:1) and produced a mixture of decomposed 

products (26 mg).   

OH

OH
6 2

8

9

10

7

182  
1H NMR δ: 5.38 (2H, s, HC-2, HC-6); 1.85 (6H, s, H3C-8, H3C-10); 1.19 (6H, s, 

H3C-7, H3C-9); 1.15 (6H, s, H3C-7, H3C-9). 
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4-Hydroxy-3,4,5,5-tetramethyl-2-cyclohexen-1-one  

165

O

OH
(±) 183

O

OH

 
Procedure B was followed for the addition to compound 165.  Compound 

165 (100 mg, 0.65 mmol) was then added as the electrophile.  Methylmagnesium 

bromide (1.1 mL, 3.0 M) in Et2O was added dropwise and the solution was stirred 

for 5 hours.  The recovered crude product was purified by PTLC (hexane/AcOEt 

3:1) and produced product 183 as a white solid (71 mg, 65%).  Optical purity was 

determined by chiral HPLC analysis in comparison with authentic racemic material 

(3% ee; (R,R)-WHELK-01 chiral column, 95:5 Hexanes:i-PrOH, 27°C, 1.5 

mL/min).   
O

OH

6

9

8

7

2

4' 5'
9'

6'
1'

3'7'

8'

2'

11

10
10'

183  
mp: 79-83°C. 

IR (NaCl) νmax: 3393 (OH); 2970 (CH); 1643 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.79 (1H, s, HC-2), 2.36 (1H, d, J = 17.1 Hz, 

HC-6), 2.31 (1H, d, J = 17.1 Hz, HC-6), 2.00 (3H, s, H3C-7), 1.55 (1H, s, HO-11), 

1.37 (3H, s, H3C-8), 1.06 (3H, s, H3C-9), 1.05 (3H, s, H3C-10). 
13C NMR (125.76 MHz, CDCl3) δ: 197.95 (s, C-1’), 165.50 (s, C-3’), 125.98 (s, C-

2’), 50.18 (s, C-4’), 40.80 (s, C-6’),  29.70 (s, C-5’), 23.84 (s, C-8’), 22.88 (s, C-9’), 

22.58 (s, C-10’), 19.18 (s, C-7’).  

HRMS (EI+): calcd. for C10H16O2 (M)+: 168.1150; found 168.1150. 

UV-Vis (MeOH): (λmax, ε): 235 nm, 1.4 x 104  M-1·cm-1. 
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4-Hydroxy-3,4,5,5-tetramethyl-2-cyclohexen-1-one-d3 

165

O

OH
(±) 184

O

OH

CD3

 
Procedure B was followed for the addition to compound 165.  Compound 

165 (100 mg, 0.65 mmol) was then added as the electrophile.  Methyl-d3-

magnesium iodide (3.2 mL, 1.0 M) in Et2O was added dropwise and the solution 

was stirred for five hours.  The recovered crude product was purified by pTLC 

(hexane/AcOEt 3:1) and afforded product 184 as a white solid (62 mg, 55%). 
O

OH

6

9

8

7

2

4' 5'
9'

6'
1'

3'7'

8'

2'

11

CD310'

184  
mp: 80-84°C. 

IR (NaCl) νmax: 3395 (OH); 2966 (CH); 1644 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.76 (1H, s, HC-2), 2.32 (1H, d, J = 17.1 Hz, 

HC-6), 2.28 (1H, d, J = 17.1 Hz, HC-6), 1.97 (3H, s, H3C-7), 1.34 (3H, s, H3C-8), 

1.03 (3H, s, H3C-9). 
13C NMR (125.76 MHz, CDCl3) δ: 198.31 (s, C-1’), 166.28 (s, C-3’), 125.71 (s, C-

2’), 50.03 (s, C-4’), 40.54 (s, C-6’),  29.61 (s, C-5’), 24.38 (s, C-8’), 23.71 (s, C-9’), 

22.43 (s, C-10’), 20.50 (s, C-7’).  

HRMS (EI+): calcd. for C10H13D3O2 (M+H)+: 172.1339; found 172.1411. 

UV-Vis (MeOH): (λmax, ε): 236 nm, 1.4 x 104 M-1·cm-1. 
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3-Methylcyclohexan-1-one 

3

O O

31  
Procedure B was followed for the addition to compound 3.  Compound 3 (24 

μL, 0.25 mmol) was then added as the electrophile.  Methylmagnesium bromide 

(1.1 mL, 3.0 M) in Et2O was added dropwise and the solution was stirred for two 

hours.  The recovered crude product was purified by bulb to bulb distillation 

producing a yellow oil product 31 (25 mg, 80%).  Optical purity was determined by 

chiral GC analysis in comparison with authentic racemic material (89% ee; 

CyclodexB chiral column, 100 °C, 0.5 mL/min). 

31

3

74

5

26

O

 
bp: 167-169°C at 750 torr, lit. 167-170°C.39 

ee 89%; lit. 88%.39 
1H NMR (500.13 MHz, CDCl3) δ: 2.42-2.19 (4H, m, H2C-2, H2C-6), 2.10-1.83 

(1H, m, HC-3), 1.70-1.64 (3H, m, H2C-4, H2C-5), 1.36 (1H, m, H2C-4), 1.02 (3H, d, 

J = 6.3 Hz, H3C-7).  
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4-Methoxy-3,4,5-trimethyl-2,5-cyclohexadien-1-one  

OO

OMe
174 197

O

OH

 
Compound 174 (4.0 g, 20.4 mmol) was dissolved in freshly distilled 

tetrahydrofuran (100 mL) and cooled to –78 °C.  Methyllithium (13.6 mL, 1.5 M) as 

a complex with lithium bromide was added dropwise to the solution.  The solution 

was then stirred for 30 minutes.  Afterwards, the solution was warmed to 0 °C and 

an excess of iodomethane (12.7 mL, 0.20 mol) was added.  The reaction mixture 

was then warmed to room temperature and left stirring overnight.  The reaction was 

then quenched with water (10 mL).  Next, the aqueous phase was extracted with 

diethyl ether (3 x 20 mL), dried over Na2SO4 (5.0 g) and concentrated under 

vacuum.  The crude product was purified by FCC (hexane/Et2O 7:3) to give a 

mixture of 197 and a dioxaspirodiene product (2.53 g, 60%).  The mixture was then 

dissolved in tetrahydrofuran (100 mL) and 10% hydrochloric acid (50 mL) was 

added.  The reaction was left stirring at room temperature for 24 hours.  Later, the 

reaction was diluted with water (50 mL).  The aqueous phase was extracted with 

diethyl ether (3 x 50 mL), dried by filtration with Na2SO4 (5.0 g) and concentrated 

under vacuum to produce product 197 as an off-white solid (2.0 g, 60%).    
O

O

2

7

8

9

6

4' 3'
7'

2'
1'

5'9'

8'

6'

10 10'

197  
mp: 69-71°C, lit. 70-71°C.141 
1H NMR (500.13 MHz, CDCl3) δ: 6.13 (2H, s, HC-2, HC-6), 2.92 (3H, s, H3C-10), 

1.97 (6H, s, H3C-7, H3C-9), 1.35 (3H, s, H3C-8). 
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13C NMR (125.76 MHz, CDCl3) δ: 185.28 (s, C-1’), 160.76 (s, C-3’, C-5’), 129.17 

(s, C-2’, C-6’), 76.84 (s, C-4’), 52.24 (s, C-10’),  24.84 (s, C-8’), 17.68 (s, C-7’, C-

9’). 
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4-Methoxymethyl-3,4,5-trimethyl-2,5-cyclohexadien-1-one  

O
165

198

O

OH

O

O

 
 Sodium iodide (3.95 g, 0.26 mol) was combined with chloromethyl methyl 

ether (2.6 mL 34.2 mmol) in a 500 mL round-bottomed flask and dissolved in 

anhydrous DME (100 mL).  The solution was stirred at room temperature for ten 

minutes.  In a second 200 mL round-bottomed flask, compound 165 (1.0 g, 6.5 

mmol) was combined with diisopropylethylamine (6.30 mL, 36.2 mmol) and 

dissolved in DME (100 mL).  The second solution was stirred at room temperature 

for one hour.  Next, the first solution was added to the second solution, dropwise.  

Afterwards, the newly formed solution was refluxed for twelve hours. The reaction 

was then cooled to room temperature and quenched with saturated sodium carbonate 

(30 mL) and water (30 mL).  The aqueous phase was extracted with methylene 

chloride (4 x 30 mL), dried over Na2SO4 (5.0 g) and concentrated under vacuum.  

The recovered crude product was purified by FCC (hexane/Et2O 7:1) and produced 

product 198 as a colourless liquid (0.91 g, 78%). 
O

O

O

2

7

8

9

6

10'

1111'

10

4' 3'
7'

2'
1'

5'9'

8'

6'

198  
bp: 40-44°C at 0.2 torr. 

IR (NaCl) νmax: 2993 (CH), 1674 (CO), 1635 (C=C) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 6.11 (2H, s, HC-6, HC-2), 4.33 (2H, s, H2C-10), 

3.39 (3H, s, H3C-11), 2.04 (6H, s, H3C-7, H3C-9), 1.42 (3H, s, H3C-8). 



 139

13C NMR (125.76 MHz, CDCl3) δ: 185.19 (s, C-1’), 160.31 (s, C-3’, C-5’), 128.47 

(s, C-2’, C-6’), 93.55 (s, C-10’), 76.34 (s, C-4’), 56.92 (s, C-11’), 24.77 (s, C-8’), 

18.07 (s, C-7’, C-9’).  

HRMS (EI+): calcd. for C11H16O3 (M)+: 196.1107, found 196.1107. 

UV-Vis (MeOH): (λmax, ε): 236 nm, 1.6 x 104 M-1·cm-1. 
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4-((2-Methoxyethoxy)methoxy)-3,4,5-trimethylcyclohexa-2,5-dienone 

O
165

199

O

OH

O

O

O

 
 In a 50 mL round-bottomed flask, compound 165 (2.0 g, 13.2 mmol) was 

combined with diisopropylethylamine (3.44 mL, 19.7 mmol) and dissolved in DCM 

(10 mL).  The solution was stirred at room temperature for thirty minutes.  MEM 

chloride (2.25 mL, 19.7 mmol) was dissolved in anhydrous DCM (5 mL) in a 

second 50 mL round-bottomed flask.  The second solution was stirred at room 

temperature for ten minutes.  The first solution was then added to the second 

solution, dropwise.  Afterwards, the newly formed solution was left stirring at room 

temperature for three hours. The reaction was then quenched with saturated sodium 

carbonate (20 mL) and water (20 mL).  The aqueous phase was extracted with 

diethyl ether (4 x 30 mL), dried over Na2SO4 (5.0 g) and concentrated under 

vacuum.  The recovered crude product was purified by FCC (hexane/Et2O 5:1) and 

produced product 199 as a colourless liquid (1.48 g, 48%). 

199

O

O

O

2

7

8

9

6

10'

1111'

10

4' 3'
7'

2'
1'

5'9'

8'

6'

O
12'

13'

12

13

 
bp: 42-48°C at 0.2 torr. 

IR (NaCl) νmax: 2885 (CH), 1671 (CO), 1072 (CO) cm-1. 
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1H NMR (500.13 MHz, CDCl3) δ: 6.06 (2H, s, HC-2, HC-6), 4.39 (2H, s, H2C-10), 

3.66 (2H, t, J = 4.7 Hz, H2C-12), 3.46 (2H, t, J = 4.8 Hz, H2C-11), 3.29 (3H, s, H3C-

13), 2.04 (6H, s, H3C-7, H3C-9), 1.37 (3H, s, H3C-8). 
13C NMR (125.76 MHz, CDCl3) δ: 185.09 (s, C-1’), 160.20 (s, C-3’, C-5’), 128.47 

(s, C-2’, C-6’), 92.50 (s, C-10’), 76.35 (s, C-4’), 71.53 (s, C-12’), 68.63 (s, C-11’), 

58.95 (s, C-13’), 24.74 (s, C-8’), 18.08 (s, C-7’, C-9’).  

HRMS (CI+): calcd. for C11H16O3 (M+H)+: 241.1362, found 241.1439. 

UV-Vis (MeOH): (λmax, ε): 236 nm, 2.0 x 104  M-1·cm-1. 
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4-Methoxy-1-ethyl-3,4,5-trimethyl-2,5-cyclohexadien-1-ol 

OMe
197

O

OMe

OH

202  
Procedure B was followed for the addition to compound 197.  Compound 

197 (42 mg, 0.25 mmol) was added as the electrophile.  CuCl (1.2 mg, 12.5 μmol) 

was used as the Cu salt.  Ethylmagnesium bromide (0.29 mL, 1.0 M) in Et2O was 

added dropwise and the solution was stirred for five hours.  The recovered crude 

product was purified by pTLC (hexane/AcOEt 3:1) and produced a pale yellow oil 

product 202 (44.2 mg, 90%). 
7

2

9

10

8

11

6

HO

O

13

12

8'7'

1' 2'

9'
3'4'

10'

11'

6'

12'

5'

202  
bp: 42-46°C at 0.2 torr. 

IR (NaCl) νmax: 3423 (OH); 2971 (CH); 1066 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.56 (2H, s, HC-2, HC-6), 2.88 (3H, s, H3C-12), 

1.73 (6H, s, H3C-9, H3C-11), 1.52 (2H, q, J = 7.5 Hz, H2C-7), 1.22 (3H, s, H3C-10), 

0.69 (3H, t, J = 7.5 Hz, H3C-8). 
13C NMR (125.76 MHz, CDCl3) δ: 137.23 (s, C-3’, C-5’), 131.03 (s, C-2’, C-6’), 

75.24 (s, C-4’),  69.76 (s, C-1’), 50.89 (s, C-12’), 34.04 (s, C-7’), 24.38 (s, C-10’), 

16.98 (s, C-9’, C-11’), 8.72 (s, C-8’).  

HRMS (EI+): calcd. for C10H16O2 (M-H2O)+: 178.1463; found 178.1356. 

UV-Vis (MeOH): (λmax, ε): 204 nm, 1.4 x 104 M-1·cm-1. 
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4-Methoxymethyl-1-ethyl-3,4,5-trimethyl-2,5-cyclohexadien-1-ol 

O

198

O

O

O

OH

203

O

 
Procedure B was followed for the addition to compound 198.  Compound 

198 (46.8 μL, 0.25 mmol) was added as the electrophile.  CuCl (1.2 mg, 12.5 μmol) 

was used as the Cu salt.  Ethylmagnesium bromide (0.29 mL, 1.0 M) in Et2O was 

added dropwise and the solution was stirred for five hours.  The recovered crude 

product was purified by pTLC (hexane/AcOEt 3:1) and produced a pale yellow oil 

product 203 (46.0 mg, 85%). 
7

2

9

10

8

11

6

HO

O

13

12

8'7'

1' 2'

9'
3'4'

10'

11'

6'

12'

5'

203

O
13'

14

 
bp: 46-50°C at 0.2 torr. 

IR (NaCl) νmax: 3415 (OH); 2965 (CH); 1015 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.56 (2H, s, HC-2, HC-6), 4.42 (2H, s, H2C-12), 

3.37 (3H, s, H3C-13), 1.80 (6H, s, H3C-9, H3C-11), 1.53 (2H, q, J = 7.5 Hz, H2C-7), 

1.29 (3H, s, H3C-10), 0.70 (3H, t, J = 7.5 Hz, H3C-8). 
13C NMR (125.76 MHz, CDCl3) δ: 137.25 (s, C-3’, C-5’), 130.88 (s, C-2’, C-6’), 

92.64 (s, C-12’), 75.06 (s, C-4’),  69.65 (s, C-1’), 56.50 (s, C-13’), 33.88 (s, C-7’), 

24.27 (s, C-10’), 17.45 (s, C-9’, C-11’), 8.56 (s, C-8’).  

HRMS (EI+): calcd. for C10H16O2 (M+H)+: 227.1569; found 227.1284. 

UV-Vis (MeOH): (λmax, ε): 203 nm, 1.6 x 104 M-1·cm-1. 
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4-((2-Methoxyethoxy)methoxy)-1,3,4,5-tetramethylcyclohexa-2,5-dienol 

O

O

O

O

OH

O

O O

199 204  
Procedure B was followed for the addition to compound 199.  Compound 

199 (60.0 μL, 0.25 mmol) was added as the electrophile.  CuCl (1.2 mg, 12.5 μmol) 

was used as the Cu salt.  Ethylmagnesium bromide (0.29 mL, 1.0 M) in Et2O was 

added dropwise and the solution was stirred for five hours.  The recovered crude 

product was purified by pTLC (hexane/AcOEt 3:1) and produced a pale yellow oil 

product 204 (52.7 mg, 78%). 
7

2

9

10
8

11

6

HO

O

13

12

8'

7'

1' 2'

9'

3'4'

10'

11'

6'

12'

5'

204

O

13'

14

O
14'

15

 
bp: 52-56°C at 0.2 torr. 

IR (NaCl) νmax: 3423 (OH); 2926 (CH); 1006 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.65 (2H, s, HC-2, HC-6), 4.51 (2H, s, H2C-11), 

3.66 (2H, t, J = 5.0 Hz, H2C-13), 3.50 (2H, t, J = 5.0 Hz, H2C-12), 3.31 (3H, s, H3C-

14), 1.76 (6H, s, H3C-8, H3C-10), 1.24 (3H, s, H3C-9), 1.19 (3H, s, H3C-7). 
13C NMR (125.76 MHz, CDCl3) δ: 135.31 (s, C-3’, C-5’), 132.43 (s, C-2’, C-6’), 

91.63 (s, C-11’), 74.95 (s, C-4’),  71.60 (s, C-13’), 67.81 (s, C-12’), 65.77 (s, C-1’), 

58.96 (s, C-14’), 28.65 (s, C-7’), 24.07 (s, C-9’), 17.51 (s, C-8’, C-10’).  

HRMS (EI+): calcd. for C10H16O2 (M)+: 256.1675; found 256.2585. 
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UV-Vis (MeOH): (λmax, ε): 203 nm, 1.8 x 104 M-1·cm-1. 
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3-Ethylcyclohexan-1-one 

3 34

O O

 
Procedure B was followed for the addition to compound 3.  Compound 3 (24 

μL, 0.25 mmol) was then added as the electrophile.  Ethylmagnesium bromide (1.1 

mL, 3.0 M) in Et2O was added dropwise and the solution was stirred for two hours.  

The recovered crude product was purified by bulb-to-bulb distillation producing a 

colourless liquid product 34 (25 mg, 80%).  Optical purity was determined by chiral 

GC analysis in comparison with authentic racemic material (89% ee; CyclodexB 

chiral column, 100 °C, 0.5 mL/min). 

34

3

7

8

4

2

5

O
6

 
ee: 85%; lit. 98%.75 

bp: 190-192°C at 750 torr, lit. 191-192°C.75 
1H NMR (500.13 MHz, CDCl3) δ: 2.47-2.22 (4H, m, H2C-2, H2C-6), 2.10-1.83 

(3H, m, HC-3, H2C-5), 1.67 (2H, m, H2C-4), 1.36 (2H, m, H2C-7), 0.92 (3H, t, J = 

7.0 Hz, H3C-8). 
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Methyl 3-oxocyclohex-1-enecarboxylate 
O

O

O209 75

O

O

 
A 25 mL flask equipped with a stirbar was charged with compound 209 (2.0 

g, 14.2 mmol), DCM (10 mL), K2CO3 (0.99 g, 7.1 mmol), and Rh2(cap)4 (7.1 mg, 

14.2 μmol). The flask was sealed with a septum. An empty balloon was added to 

capture oxygen generated during the course of the reaction. Next, TBHP (14.2 mL, 

71.4 mmol) was added in one portion to the flask where the colour of the solution 

immediately turned from light blue to deep red. Oxygen generation was observed 

(filling the balloon). After one hour, the solution was filtered through a short plug of 

silica gel to remove the catalyst. The crude product was then concentrated under 

vacuum.  The recovered crude product was purified by FCC chromatography 

(hexane/Et2O 3:1) and produced product 75 as a colourless liquid (1.98 g, 90%).  

26

8

5

4

O

O

O
75  

bp: 102-105°C at 750 torr, lit. 95-100°C.146 
1H NMR (500.13 MHz, CDCl3) δ: 6.71 (1H, s, HC-2), 3.80 (3H, s, H3C-8), 2.57 

(2H, m, H2C-6), 2.41 (2H, m, H2C-5), 2.03 (2H, m, H2C-4). 
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Ag Complex 3 

237

N
N

SO
O

O

NN

SO

Ag

N
N

S
O

Ag

O

O

O

O

77  
Imidazolium salt 237 (10 mg, 0.02 mmol), Ag2O (9.3 mg, 0.04 mmol) and 

4Å MS (50 mg) were weighed out into a 10 mL round-bottomed flask. The flask 

was fitted with a reflux condenser, and wrapped with aluminum foil to exclude 

light.  Tetrahydrofuran (1.0 mL) followed immediately by benzene (1.0 mL) were 

added to the flask, resulting in a black heterogeneous mixture. The mixture was 

allowed to stir at 80 °C.  After three hours, the mixture was allowed to cool to room 

temperature.  The mixture was filtered through a short plug of Celite 545 and eluted 

with THF (20 mL). The solution was then concentrated to produce 11.9 mg (0.02 

mmol, 98.0%) of Ag complex 77 as a white solid, which was stored in the dark.84  
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77  
mp: 245-248°C, lit. 247-249°C.84 
1H NMR (500.13 MHz, CDCl3) δ: 8.27 (2H, d, J = 7.3 Hz, HC-18, HC-39), 

7.50−6.95 (22H, m, HC-7, HC-8, HC-9, HC-10, HC-11, HC-13, HC-14, HC-15, 

HC-16, HC-17, HC-20, HC-28, HC-29, HC-30, HC-31, HC-32, HC-34, HC-35, 

HC-36, HC-37, HC-38, HC-41), 6.80 (4H, s, HC-19, HC-21, HC-40, HC-42), 6.55 

(2H, d, J = 10.4 Hz, HC-12, HC-33), 6.33 (4H, s, HC-5, HC-2, HC-23, HC-25), 

5.18 (2H, d, J = 10.4 Hz, HC-6, HC-27), 2.46 (6H, s, H3C-26, H3C-4), 2.29 (6H, s, 

H3C-22, H3C-3), 1.42 (3H, s, H3C-24, H3C-1). 

 

 

 

 

 

 

 

 

 

 

 



 150

Methyl 1-methyl-3-oxocyclohexanecarboxylate 

75

O

O

O

O

O

O
76  

A 50 mL round-bottomed flask equipped with a magnetic stir bar was 

charged with chiral Ag complex 77 (2.9 mg, 4.8 μmol) and (CuOTf)2•C6H6 (2.4 mg, 

4.8 μmol). Next, tert-butylmethylether (1.0 mL) was added to the flask.  The 

resulting solution was allowed to stir for five minutes before being cooled to –78 

°C. Dimethylzinc (0.04 mL, 0.6 mmol) was added and the resulting light yellow 

mixture was allowed to warm to –30 °C.  After ten minutes at –30 °C, methyl 3-

oxocyclohex-1-enecarboxylate 75 (30 mg, 0.2 mmol) was added to the mixture.  

After fifteen hours at –30 °C, the reaction was quenched upon addition of a 

saturated aqueous solution of ammonium chloride (1 mL) and H2O (1 mL). The 

reaction vessel was allowed to warm to room temperature, where it was washed 

with EtOAc (2 x 1 mL) and passed through a short plug of silica gel (4 cm x 1 cm) 

eluted with EtOAc. The resulting solution was concentrated to give a pale yellow oil 

that was purified by pTLC (hexane/Et2O 3:1) and produced product 76 as a 

colourless liquid (27.2 mg, 82%). 

76

26
9

8

5

4

O

O

O

 
ee: 86%; lit. 86%.84 

bp: 162-164°C at 750 torr. 
1H NMR (500.13 MHz, CDCl3) δ: 3.64 (3H, s, H3C-8), 2.69 (1H, d, J = 17.0 Hz, 

H2C-4), 2.14 (1H, d, J = 17.0 Hz, H2C-4), 2.39-1.98 (2H, m, H2C-6), 1.93-1.42 (2H, 

m, H2C-5, H2C-2), 1.24 (3H, s, H3C-9). 
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3-Ethyl-3-methylcyclohexanone 
OO

24 25  
Procedure C was followed for the addition to compound 24.  Compound 24 

(97.1 mg, 0.88 mmol) was then added as the electrophile.  Triethylaluminum (1.2 

mL, 2.0 M) in decane was added drop-wise and the solution was stirred for eighteen 

hours.  However, the temperature of the reaction vessel remained at -30 °C for the 

entire reaction time.  The recovered crude product was purified by pTLC 

(hexane/AcOEt 3:1) and produced product 25 as a colourless liquid (98.8 mg, 80%).  

Optical purity was determined by chiral GC analysis in comparison with authentic 

racemic material (% 68 ee; β-Cyclodex chiral column, 100 °C, 0.5 mL/min). 

25

2

9

6

5

4

8

7

O

 
ee: 81%; lit. 82%.18 

bp: 179-182°C at 750 torr. 
1H NMR (500.13 MHz, CDCl3) δ: 2.26 (2H, t, J = 6.6 Hz, H2C-6), 2.16 (1H, d, J = 

13.6 Hz, HC-2), 2.08 (1H, d, J = 13.6 Hz, HC-2), 1.85 (2H, m, H2C-5), 1.64-1.48 

(2H, m, H2C-4), 1.33 (2H, q, J = 7.3 Hz, H2C-7), 0.88 (3H, s, H3C-9), 0.83 (3H, t, J 

= 7.4 Hz, H3C-8). 
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4-Hydroxy-5-ethyl-3,4,5-trimethyl-2-cyclohexen-1-one 

165

O

OH

O

OH

O

HO

O

OH

O

HO
210 211 212 213

+ + +

 
Procedure C was followed for the addition to compound 165.  Compound 

165 (100 mg, 0.65 mmol) was then added as the electrophile.  Triethylaluminum 

(1.3 mL, 2.0 M) in decane was added drop-wise and the solution was stirred for 

eighteen hours.  The recovered crude product was purified by pTLC (hexane/AcOEt 

3:1) and afforded a mixture of products 210, 211, 212 and 213 as an off-white solid 

(16.5 mg, 15%).  The ratio of products was determined by chiral HPLC analysis in 

comparison with authentic racemic material.  ( (R,R)-WHELK-01 chiral column, 

80:20 Hexanes:i-PrOH, 27 °C, 1.5 mL/min) 

The four compounds 210, 211, 212 and 213 were separated and collected by 

preparative HPLC (Figure 93).  The mixture of products 210, 211, 212 and 213 

from 20 trials were firstly pooled together.  The pooled mixture of products 210, 

211, 212 and 213 (300 mg) was weighed into a 6 mL HPLC vial.  The mixture of 

products 210, 211, 212 and 213 in the HPLC vial was then dissolved in 3 mL of 

solvent (80:20 Hexanes:i-PrOH).    The dissolved mixture (100 μL) was then 

injected into the preparative HPLC at 27 °C and at a flow rate of 1.5 mL/min.  The 

compounds were isolated at the retention times of 13.8 min, 17.2 min, 17.9 min and 

19.6 min.  Lastly, the fractions from each retention time were concentrated and the 

optical rotations of the compounds were determined.           
O
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mp: 81-85°C, 81-85°C 

[α]D
20: [α]365

20 -57 (c 0.1, CHCl3), [α]365
20 +57 (c 0.1, CHCl3) 

IR (NaCl) νmax: 3427 (OH); 2970 (CH); 1648 (CO) cm-1. 
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1H NMR (500.13 MHz, CDCl3) δ: 5.77 (1H, s, HC-2), 2.38 (1H, d, J = 17.9 Hz, 

HC-6), 2.23 (1H, d, J = 17.9 Hz, HC-6), 1.97 (3H, s, H3C-7), 1.54 (1H, m, H2C-10), 

1.46 (1H, m, H2C-10) 1.36 (3H, s, H3C-8), 0.96 (3H, s, H3C-9), 0.77 (3H, t, J = 7.6 

Hz, H3C-11). 
13C NMR (125.75 MHz, CDCl3) δ:  197.98 (s, C-1’), 166.45 (s, C-3’), 126.23 (s, C-

2’), 77.00 (s, C-4’), 45.32 (s, C-6’),  43.48 (s, C-5’), 25.87 (s, C-10’), 22.77 (s, C-

8’), 19.58 (s, C-9’), 19.39 (s, C-7’), 8.61 (s, C-11’).  

HRMS (EI+): calcd. for C11H18O2 (M)+: 182.1307; found 182.1304. 

UV-Vis (MeOH): (λmax, ε): 238 nm, 1.5 x 104 M-1·cm-1. 
O

OH

6

9

8

7

2

4' 5'
9'

6'
1'

3'7'

8'

2'

1110'

212

11'

10

12

O

OH

6

9

8

7

2

4' 5'
9'

6'
1'

3'7'

8'

2'

1110'

213

11'

10

12

 
mp: 81-85°C, 81-85°C 

[α]D
20: [α]365

20 -29 (c 0.1, CHCl3), [α]365
20 +29 (c 0.1, CHCl3) 

IR (NaCl) νmax: 3427 (OH); 2970 (CH); 1648 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.80 (1H, s, HC-2), 2.39 (1H, d, J = 17.9 Hz, 

HC-6), 2.23 (1H, d, J = 17.9 Hz, HC-6), 1.98 (3H, s, H3C-7), 1.55 (1H, m, H2C-10), 

1.47 (1H, m, H2C-10) 1.37 (3H, s, H3C-8), 0.94 (3H, s, H3C-9), 0.79 (3H, t, J = 7.6 

Hz, H3C-11). 
13C NMR (125.75 MHz, CDCl3) δ:  197.96 (s, C-1’), 166.43 (s, C-3’), 126.23 (s, C-

2’), 77.02 (s, C-4’), 45.32 (s, C-6’),  43.49 (s, C-5’), 25.87 (s, C-10’), 22.78 (s, C-

8’), 19.58 (s, C-9’), 19.39 (s, C-7’), 8.62 (s, C-11’).  

HRMS (EI+): calcd. for C11H18O2 (M)+: 182.1307; found 182.1304. 

UV-Vis (MeOH): (λmax, ε): 238 nm, 1.5 x 104 M-1·cm-1. 
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4-Hydroxy-5-ethyl-3,4,5-trimethyl-2-cyclohexen-1-one 

165

O

OH

O

OH

O

HO
210 211

+

 
Procedure B was followed for the addition to compound 165.  Compound 

165 (100 mg, 0.65 mmol) was then added as the electrophile.  Ethylmagnesium 

bromide (1.1 mL, 3.0 M) in Et2O was added dropwise and the solution was stirred 

for five hours.  The recovered crude product was purified by pTLC (hexane/AcOEt 

3:1) and produced products 210 and 211 as an off-white solid (71 mg, 65%).     
O
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mp: 81-85°C. 

IR (NaCl) νmax: 3427 (OH); 2970 (CH); 1648 (CO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 5.76 (1H, s, HC-2), 2.38 (1H, d, J = 17.9 Hz, 

HC-6), 2.22 (1H, d, J = 17.9 Hz, HC-6), 1.96 (3H, s, H3C-7), 1.53 (1H, m, H2C-10), 

1.45 (1H, m, H2C-10) 1.36 (3H, s, H3C-8), 0.95 (3H, s, H3C-9), 0.77 (3H, t, J = 7.6 

Hz, H3C-11). 
13C NMR (125.75 MHz, CDCl3) δ:  197.98 (s, C-1’), 166.45 (s, C-3’), 126.23 (s, C-

2’), 77.00 (s, C-4’), 45.32 (s, C-6’),  43.48 (s, C-5’), 25.87 (s, C-10’), 22.77 (s, C-

8’), 19.58 (s, C-9’), 19.39 (s, C-7’), 8.61 (s, C-11’).  

HRMS (EI+): calcd. for C11H18O2 (M)+: 182.1307; found 182.1304. 

UV-Vis (MeOH): (λmax, ε): 238 nm, 1.5 x 104  M-1·cm-1. 
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Dimethyl oct-1-enylboronate 

B
O

O
B

HO

OH
238 57  

Alkenylboronic acid 238 (100 mg, 0.64 mmol) and 3Å MS (50 mg) were 

weighed out into a 25 mL round bottom flask. The flask was fitted with a reflux 

condenser and a Dean Stark trap.  Methanol (2.0 mL) followed immediately by 

chloroform (4.8 mL) were added to the flask. The mixture was allowed to stir at 

reflux for 48 hours.  Later, the mixture was allowed to cool to room temperature.  

The crude product was concentrated and purified by bulb-to-bulb distillation, 

producing a colourless oil product 57 (108 mg, 92%). 

57

8

51

29

3

4 6

7

B
O

O
10

 
bp: 162-165°C at 750 torr. 
1H NMR (500.13 MHz, CDCl3) δ: 6.52 (1H, m, HC-2), 5.55 (1H, m, HC-1), 3.59 

(3H, s, H3C-10), 3.58 (3H, s, H3C-9), 2.20-2.12 (m, H2C-3), 1.90-0.98 (8H, m, H2C-

4, H2C-5, H2C-6, H2C-7), 0.86 (3H, s, H3C-8). 
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1,3-Diphenylundec-4-en-1-one 

O
O

56
59  

Compound 56 (20 mg, 0.1 mmol), chiral diol 58 (4.4 mg, 0.01 mmol) and 

4Å MS (100 mg) were weighed out into a 25 mL round bottom flask. The flask was 

fitted with a reflux condenser.  Next, DCM (6 mL) and alkenylboronic ester 57 (55 

mg, 0.3 mmol) were added to the flask at room temperature. The mixture was 

brought to reflux for 12 hours.  Methanol (0.5 mL) was added after the reaction was 

cooled to room temperature.  The resulting solution was concentrated and purified 

by pTLC (hexane/AcOEt 3:1) and afforded product 59 as a colourless liquid (27 mg, 

88%).  Optical purity was determined by chiral HPLC analysis in comparison with 

authentic racemic material (90% ee; ChiralCel-OD chiral column, 95:5 Hexanes:i-

PrOH, 27 °C, 1.5 mL/min) 
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ee: 90%; lit. 98%.77 

bp: 160-164°C at 0.2 torr. 
1H NMR (500.13 MHz, CDCl3) δ: 7.92 (2H, d, J = 7.4 Hz, HC-12, HC-16), 7.53 

(1H, t, J = 7.3 Hz, HC-14), 7.43 (2H, m, HC-13, HC-15), 7.34-7.21 (4H, m, HC-17, 

HC-18, HC-20, HC-21), 7.16 (1H, t, J = 7.3 Hz, HC-19), 5.62 (1H, dd, J = 15.3, 7.1 

Hz, HC-4), 5.43 (1H, dt, J = 15.3, 7.0 Hz, HC-5), 4.07 (1H, q, J = 7.1 Hz, HC-3), 
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3.45-3.27 (2H, m, H2C-2), 1.96 (2H, q, J = 6.9 Hz, H2C-6), 1.35-1.13 (8H, m, H2C-

7, H2C-8, H2C-9, H2C-10), 0.86 (3H, t, J = 7.0 Hz, H3C-11). 
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2,3-Dihydro-2-methyl-2-phenylnaphthalene-1,4-dione 
O

O

O

O
102 103  

[RhCl(C2H4)2]2 (0.6 mg, 2.9 μmol) and (R)-binap (1.9 mg, 3.1 μmol) were 

weighed out into a 10 mL round-bottomed flask.  Next, 1,4-dioxane (1 mL) was 

added to the flask and the newly formed solution was stirred for fifteen minutes at 

room temperature. PhB(OH)2 (42.5 mg, 0.35 mmol) and KOH (58 μL, 58 μmol) 

were then added to the flask and the resulting solution was stirred for five minutes at 

room temperature. Compound 102 was then added along with an additional 1,4-

dioxane (0.50 mL) to the flask and the resulting mixture was stirred for three hours 

at 50 °C. Later, the solution was cooled and passed through a pad of silica gel with 

EtOAc.  The final solution was concentrated and purified by pTLC (hexane/AcOEt 

3:1) to produce product 103 as a white solid (20 mg, 70%).  Optical purity was 

determined by comparison of the optical rotations. 
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ee: 99%; lit. >99%.91 

[α]D
20: [α]589

20
 –30.0 (c 0.73, CHCl3); lit. [α]589

20 –29.0 (c 0.73, CHCl3). 

mp: 105-108°C. 
1H NMR (500.13 MHz, CDCl3) δ: 8.03 (1H, d, J = 7.8 Hz, HC-7), 7.93 (1H, d, J = 

7.7 Hz, HC-10), 7.66 (1H, m, HC-8), 7.61 (1H, m, HC-9), 7.28-7.14 (5H, m, HC-12, 

HC-13, HC-14, HC-15, HC-16), 3.66 (1H, d, J = 16.5 Hz, HC-2), 3.23 (1H, d, J = 

16.5 Hz, HC-2), 1.63 (3H, s, H3C-17). 

 

 

 



 159

Procedure E.  Representative procedure for sulfinyl imine formation. 

 

In a 50 mL round-bottomed flask equipped with a magnetic stir bar, THF or 

PhMe was added to the enone (1.2 equiv) to form a 0.5 M solution.  In a second 50 

mL round-bottomed flask Ti(OEt)4 (3.3 equiv) was combined with some solvent.  

Next, the solution from the first flask was added to the second flask. Tert-

Butanesulfinamide (1 equiv) was then added and the resulting mixture was heated to 

reflux and monitored by TLC. The reaction mixture was then poured into an equal 

volume of saturated aqueous NaHCO3 with rapid stirring and was immediately 

filtered through celite. The filter cake was washed with EtOAc and the aqueous 

layer was separated and washed once with EtOAc. The combined organic layers 

were dried over Na2SO4 and concentrated to give the crude product. The crude 

product was then purified by chromatography (hexane/AcOEt). 
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Sulfinyl Imine 1 

N
S

ON
S

O

O

3
7069

+

 
 

Procedure E was followed for the addition to compound 3.  Compound 3 

(100 mg, 1.0 mmol) was added as the electrophile.  THF (5 mL) was used as the 

solvent and the reaction was refluxed for 24 hours.  The recovered crude product 

was purified by pTLC (hexane/AcOEt 3:1) and produced a pale yellow oil of 

products 69 and 70 (170 mg, 86%). 

6867
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bp: 192-195°C at 750 torr, lit. 192-195°C.82 
1H NMR (500.13 MHz, CDCl3) δ: 6.97 (1H, d, J = 10.2 Hz, HC-2’), 6.54 (2H, m, 

HC-3, HC-3’), 6.09 (1H, d, J = 10.0 Hz, HC-2), 2.89 (2H, m, H3C-4’), 2.71 (2H, m, 

H3C-4), 2.45 (2H, m, H3C-6), 2.16 (2H, m, H3C-6’), 1.79 (4H, m, H3C-5, H3C-5’), 

1.11 (18H, s, H3C-7, H3C-7’). 
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Sulfinyl Imine 2 

N

OH

S
O N

OH

S
O

O

OH
165

229 230  
Procedure E was followed for the addition to compound 165.  Compound 

165 (100 mg, 0.65 mmol) was added as the electrophile.  PhMe (5 mL) was used as 

the solvent and the reaction was refluxed for 24 hours.  The recovered crude product 

was purified by pTLC (hexane/AcOEt 30:1) and produced a colourless oil of 

products 229 and 230 (67.1 mg, 40%). 
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bp: 102-106°C at 0.2 torr. 

IR (NaCl) νmax: 3283 (OH); 2978 (CH); 1543 (CN); 1043 (SO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 7.01 (1H, s, HC-6’’), 6.93 (1H, s, HC-6), 6.04 

(2H, s, HC-2, HC-2’’), 3.31 (1H, s, HO-14’’), 2.80 (1H, s, HO-14), 2.07-2.03 (12H, 

m, H3C-7, H3C-9, H3C-7’’, H3C-9’’), 1.36 (3H, s, H3C-8), 1.35 (3H, s, H3C-8’’), 

1.21 (9H, s, H3C-11, H3C-12, H3C-13), 1.19 (9H, s, H3C-11’’, H3C-12’’, H3C-13’’). 
13C NMR (125.76 MHz, CDCl3) δ: 165.40 (s, C-1’’’), 164.25 (s, C-1’), 159.65 (s, 

C-3’’’), 158.61 (s, C-3’),  157.14 (s, C-5’’’), 155.80 (s, C-5’), 125.50 (s, C-6’’’), 

125.19 (s, C-6’), 118.11 (s, C-2’’’), 117.61 (s, C-2’), 71.26 (s, C-4’’’), 71.12 (s, C-

4’), 57.60 (s, C-10’’’), 57.07 (s, C-10’), 25.76 (s, C-8’’’), 25.54 (s, C-8’),  22.90 (s, 

C-13’’’,C-13’), 22.48 (s, C-12’’’, C-12’), 22.26 (s, C-11’’’, C-11’), 18.81 (s, C-

7’’’,C-7’), 18.07 (s, C-9’’’), 17.93 (s, C-9’).   

HRMS (EI+): calcd. for C10H16O2 (M+H)+: 256.1293; found 256.1378. 
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UV-Vis (MeOH): (λmax, ε): 254 nm, 2.3 x 104 M-1·cm-1. 
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Sulfinyl Imine 3 

197
231 232

N

O

S
O N

O

S
O

O

OMe

 
Procedure E was followed for the addition to compound 197.  Compound 

197 (100 mg, 0.65 mmol) was added as the electrophile.  PhMe (5 mL) was used as 

the solvent and the reaction was refluxed for 24 hours.  The recovered crude product 

was purified by pTLC (hexane/AcOEt 30:1) and produced a yellow solid of 

products 231 and 232 (123.9 mg, 70%). 

231

N
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S
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11'
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232

N
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2'''

7''
3'''5'''

8'''

4'''

9'''

6'' 1'''

10'''

11''

12''
13'''

14'''14'

 
bp: 98-102°C at 0.2 torr. 

IR (NaCl) νmax: 3468 (OH); 2983 (CH); 1664 (CO); 1550 (CN); 1092 (SO) cm-1. 
1H NMR (500.13 MHz, CDCl3) δ: 7.28 (1H, s, HC-6’’), 6.95 (1H, s, HC-6), 6.24 

(2H, s, HC-2, HC-2’’), 2.90 (6H, s, H3C-14’’, H3C-14), 1.98-1.93 (12H, m, H3C-7, 

H3C-9, H3C-7’’, H3C-9’’), 1.33 (6H, s, H3C-8, H3C-8’’), 1.22 (18H, s, H3C-11, 

H3C-12, H3C-13, H3C-11’’, H3C-12’’, H3C-13’’). 
13C NMR (125.76 MHz, CDCl3) δ: 164.58 (s, C-1’’’), 164.18 (s, C-1’), 156.62 (s, 

C-3’’’), 156.32 (s, C-3’),  153.67 (s, C-5’’’), 153.32 (s, C-5’), 129.03 (s, C-6’’’, C-

6’), 122.99 (s, C-2’’’), 121.80 (s, C-2’), 77.00 (s, C-4’’’, C-4’), 57.48 (s, C-10’’’), 

57.33 (s, C-10’), 52.28 (s, C-14’’’’), 52.06 (s, C-14’), 25.22 (s, C-8’’’), 24.82 (s, C-

8’),  22.41 (s, C-11’’’,C-11’, C-12’’’, C-12’, C-13’’’, C-13’), 18.71 (s, C-7’’’,C-7’), 

17.55 (s, C-9’’’, C-9’).  
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HRMS (EI+): calcd. for C10H16O2 (M+H)+: 269.1449; found 269.1426. 

UV-Vis (MeOH): (λmax, ε): 248 nm, 2.3 x 104 M-1·cm-1. 
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Sulfinyl Imine 4 

N

OH

S
O N

OH

S
O

O

OH

+

229 230
183

 
Procedure B was followed for the addition to compounds 229 and 230.  The 

mixture of compound 229 and 230 (100 mg, 0.39 mmol) was then added as the 

electrophile.  Methylmagnesium bromide (1.1 mL, 3.0 M) was added dropwise and 

the solution was stirred for five hours.  The recovered crude product was purified by 

pTLC (hexane/AcOEt 3:1) and produced product 183 as a white solid (36.2 mg, 

55%).  The ratio of products was determined by chiral HPLC analysis in comparison 

with authentic racemic material (20% ee; (R,R)-WHELK-01 chiral column, 95:5 

Hexanes:i-PrOH, 27 °C, 1.5 mL/min).   
O

OH

6

9

8

7

2

4' 5'
9'

6'
1'

3'7'

8'

2'

11

10
10'

183  
mp: 79-83°C. 
1H NMR (500.13 MHz, CDCl3) δ: 5.79 (1H, s, HC-2), 2.36 (1H, d, J = 17.1 Hz, 

HC-6), 2.31 (1H, d, J = 17.1 Hz, HC-6), 2.00 (3H, s, H3C-7), 1.55 (1H, s, HO-10), 

1.37 (3H, s, H3C-8), 1.06 (3H, s, H3C-9), 1.05 (3H, s, H3C-10). 
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