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ABSTRACT 

Surface mining of the Athabasca Oil Sands of Canada is occurring at an unparalleled rate 

resulting in large scale disturbances over vast areas. Soil water availability for plants is one of 

the key issues faced when reclaiming the landscape.  A factor which limits the soil water 

availability is soil water repellency (SWR). Soil water repellency is found on both natural and 

disturbed sites in this region and can cause reduced infiltration, reduced soil water storage, 

enhanced runoff, increased preferential flow, and reduced ecosystem productivity. Effective 

characterization of SWR, determination of the causes of SWR and understanding how it affects 

soil pores and water flow are important for environmental management.  

The main objective of this study is to examine the effect of SWR and fungal 

hydrophobicity on soil water dynamics in Athabasca Oil Sands.  This was accomplished by 

determining the relationship between the measurement of severity and persistence of SWR and 

the critical water content (CWC) where SWR is greatest between different soils in the region.  

Examining how the water conducting porosity and soil pores are affected by SWR. Developing 

methods to quantify fungal strains that cause SWR and testing of these fungal strains for their 

ability to alter the SWR and infiltration into soil.  

Results show that a high severity (Contact angle) of repellency does not necessarily 

denote long persistence (Water Drop Penetration Time) or high CWC in soils from the region.  A 

high severity of SWR in larger diameter pores decreased the water conducting porosity due to 

the larger pore contribution to the total liquid flux.  The modified microscopy approach and the 

alcohol percentage test (APT) resulted in improved characterization of fungal hydrophobicity. 

Fungal strains were classified as hydrophilic, hydrophobic and chrono-amphililic based on their 

surface properties from these measurements.  The surface property of selected fungi strains can 

alter the SWR in both a repellent and wettable soil and can also change the water infiltration rate. 

This research highlights the importance of characterization of SWR, the effects on water 

flow, and how fungal hydrophobicity can alter the SWR and infiltration.  This will aid in 

improving our understanding of SWR and improve remediation efforts on water repellent soils in 

the Athabasca Oil Sands region.       
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1. GENERAL INTRODUCTION 

1.1 Introduction 

Soil water repellency (SWR) has received increased attention by the scientific 

community in recent years since it has been found to be a much more widespread property in 

soils than previously thought (Hallett, 2008; Müller and Deurer, 2011; Jordán et al., 2013).  Soil 

water repellency is a surface property which causes soil to reduce its affinity to water. This has a 

direct effect on the infiltration of water in and flow through soils.  The presence of SWR in soil 

often affects whether water moves to surface water as runoff, infiltrates into soil water storage, 

contributes to drainage into groundwater, or is lost by evaporation (Doerr et al., 2000). Likewise, 

SWR will also affect the soil's filtering and buffering capability of nutrients and contaminates. 

The efficient use of water for agricultural crops, forest development, reclamation practices and 

effective protection of fresh water from contamination could be greatly enhanced by a better 

understanding of relationship between SWR and soil water.   

The Athabasca Oil Sands of Canada is where surface mining of the oil sands is occurring 

at an unparalleled rate, resulting in large scale disturbances over vast areas. In order for the oil 

companies in the region to operate within a regulatory framework set within the Land Surface 

Conservation and Reclamation Act 1973 and the Environmental Protection and Enhancement 

Act 1992 (Government of Alberta, 1999), they are obligated to conserve and reclaim their 

disturbed lands.  The aim of reclamation entails the complete re-creation of landforms and 

ecosystems at the landscape scale, with the goal of producing suitable and sustainable habitats 

for plants and animals (Government of Alberta, 1999).  
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The soils and materials in the area used for the recreation of landforms originated from 

coarse textured glacial fluvial and eolian deposits (Turchenek and Lindsay, 1983). Additionally, 

the oil sands are also situated under the peat lands (bogs and fens) of the boreal forests. As such, 

reclamation entails using salvaged soil materials, tailings sand, peat, and surface organic matter 

for reclamation practices. Soil water availability for plants is one of the key issues facing 

reclaiming disturbed landscapes in the Athabasca Oil Sands Region of Canada due to the 

dominance of these materials.  A limiting factor to soil water availability is soil water repellency.  

Soil water repellency is found on both natural and disturbed sites in this region (Hunter et al., 

2011).   Observation of low infiltration rates on reclaimed / distributed landscapes compared to 

natural landscapes, suggest differences in the severity and persistence of SWR (Hunter et al., 

2011).  As such, effective characterization of the severity and persistence of water repellency 

must be done to accurately determine the influence on hydrological processes.  To better 

understand water flow in repellent soils, understanding what pores sizes are influenced by SWR 

and how SWR influences the conducting porosity is also important. Soil water repellency is 

dependent on many inter-related and dynamic factors including soil organic matter content, 

hydrocarbon concentration, fungi and plant exudates, fire, and water content (Doerr et al., 2000).  

Examination of the causes of SWR is important to provide us with more information on factors 

to consider when determining the implications of SWR.  As well, research into the causes of 

SWR will also aid in management and remediation practices of severely repellent sites.  One of 

the main causes of SWR is fungi; however correlations between SWR and specific fungal causes 

have been weak (Savage et al., 1969; Smits et al., 2003).  This is mainly due to difficulties with 

the classification of fungi based on their surface hydrophobicity which are known to cause SWR. 

The roughness of fungi and fungi mycelia does not allow for effective characterization of contact 
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angle on fungal surfaces (Smits et al., 2003).  More efficient methods are needed to quantify 

fungal hydrophobicity and to classify fungi by their ability to cause SWR.  The main objective of 

this research is to examine the effect of SWR and fungal hydrophobicity on soil water dynamics 

in the Athabasca Oil Sands, starting from the fundamental principles of SWR characterization (1) 

by examining the relationship between degree, persistence and the critical water content in water 

repellent soils, (2) examining  SWR effects on the conducting porosity and water flow, (3) 

development and, (4) modifications of methods to quantify fungal strains based on their surface 

property that can cause SWR and (5) by examining the effect of fungal strains in soils on SWR 

and infiltration.  

1.2 Organization of the Dissertation 

The research presented in this dissertation is organized in a manuscript format. Following 

this introduction and the literature review presented in Chapter 2, five studies are presented in 

Chapters 3 through 7. Chapter 3 focuses on the measurement of SWR. The issue with SWR 

measurement is there is little literature on the effect of water content on SWR measurement 

(DeJonge et al., 1999; Beatty and Smith, 2013). In addition, measurement techniques only focus 

on the severity or persistence as an indication of the presence of repellency.  Since SWR is a 

dynamic property affected by soil water content, the objective of this chapter was to examine the 

severity as a function of persistence and water content in water repellent soils.  This will aid our 

understanding of SWR under different water content conditions.  In the fourth chapter the 

objective is to examine the effect of SWR on the conducting porosity.  As the soil water content 

increases, the severity and persistence of SWR decreases.  This phenomenon will influence the 

water flow in certain pores.  Understanding how repellency affects water flow in certain pores is 

important in terms of water management. 



4 
 

Chapter 5 focuses on how to measure the hydrophobicity of fungal strains that cause 

water repellency.  The objective of this chapter was to develop a method to measure the 

hydrophobicity of different fungal strains.  This is useful for determining fungal strains that have 

the ability to change SWR. A challenge for both classification of water repellency in soil and 

hydrophobicity of fungal strain based on contact angle is surface roughness (Unestam, 1991; 

Smits et al., 2003).  This surface roughness is due to rough particle surfaces of soil and the 

mycelia of fungi.  In chapter 6, a previously developed method using different concentrations of 

ethanol solutions with different surface tension to measure the spread of solution on the soil 

surface or infiltration as indication of the severity (Chau et al., 2010) was tested on fungi. The 

objective of this chapter was to examine if the contact angles measured on the fungal surface are 

related to the percentages of alcohol droplets.  This method would be suitable for measurement 

of fungal culture with large aerial mycelia which would obscure the view of CA on fungi.   

Application of surfactants, amendments are not a economically and environmentally 

viable option to reclaim repellent soils due to cost of transport  and potential negative impact to 

the environment (Doerr et al., 2000).  In Chapter 7, the objective was to examine the use of 

fungal strains or the stimulation of fungal strains to change the SWR in soil.  In this dissertation, 

I have provided better measurement techniques for determination of SWR, determined which 

fungal strains could cause SWR, and improved our understanding of how the wetting behaviour 

of repellency is affected in different pore sizes and the influence on water flow.  Chapter 8 is the 

conclusion of this dissertation, where I summarize major findings, limitations and future 

directions of the research. 
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2. LITERATURE REVIEW 

2.1 Soil Water Repellency  

 Soil water repellency or hydrophobicity is defined as the state whereby the soil does not 

wet spontaneously when water is applied, and is increasingly recognized as a problem (Wallis, 

1992). Water repellent soils are found throughout the world on grasslands (Dekker and Ritsema, 

1994), forests (Buczko et al., 2002), agricultural lands (Hallett and Young, 1999), and also on 

disturbed/reclaimed areas (Roy and McGill, 1998; Wallach et al., 2005).  The main effects of 

SWR are reduced infiltration (DeBano, 1971; Wallis et al., 1993) and water storage (DeBano, 

1981; Hendrickx et al., 1993), increased overland flow and soil erosion (King, 1981; Dekker and 

Ritsema, 1994; Shakesby et al., 2000; Ellies et al., 2005; Cerdà and Doerr, 2007), development 

of fingered flow or preferential flow paths, creation of unstable, irregular wetting fronts 

(Hendrickx et al., 1993; Dekker and Ritsema, 1994; Bauters et al., 2000; DeBano, 2000; Buczko 

and Bens, 2006; Carrick et al., 2011) and delayed seed germination (Osborn et al., 1967).  

However, low levels or sub critical SWR has been shown to be important for stabilizing soil 

structure (Tillman et al., 1989) and soil aggregates (Hallett and Young, 1999), improving soil 

water storage (Kobayashi and Shimizu, 2007), and preventing dispersion and erosion of soil 

(Ellies et al., 2005).   

During the past years, SWR has been studied intensively. Studies examining the impacts of 

SWR have focused on water repellency in natural soils (Crockford et al., 1991; Woche et al., 

2005), finger flow and finger formation (Ritsema et al., 1997; Bauters et al., 1998), water flow in 

field studies (Wang et al., 2000b; Wallach et al., 2005), infiltration of water into water repellent 

soils (Wang et al., 2000b; Wallach et al., 2005; Lamparter et al., 2006; Carrick et al., 2011; Ganz 
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et al., 2013), and finally the effect of water content on water repellency (DeJonge et al., 1999; 

Doerr and Thomas, 2000; Liu et al., 2012). Management strategies such as reducing evaporation, 

increasing infiltration, optimizing water retention, controlling water movement in soils and 

amelioration of repellency have been implemented to improve soils affected by this condition 

(Ritsema and Dekker, 2003; Hallett, 2008; Müller and Deurer, 2011).  However, these strategies 

are neither cost effective nor entirely practicable due to our gaps in our understanding of how 

SWR functions in soil. 

2.2 Causes of Soil Water Repellency 

Soil water repellency occurs in many soils around the world (Leelamanie et al., 2010).  

Coarse textured soils are more susceptible to SWR (Tschapek, 1984; Harper and Gilkes, 1994; 

DeJonge et al., 1999; Woche et al., 2005; Karunarathna et al., 2010) due to lower surface area 

per unit volume than fine textured soils, meaning less hydrophobic material is required to coat 

soil to have the same severity of SWR (Doerr et al., 2000). Soil water repellency is primarily 

caused by hydrophobic compounds coating the mineral surfaces of soil particles (Tschapek, 

1984; Ma’shum et al., 1988; Doerr et al., 2000; Ellies et al., 2005; Diehl and Schaumann, 2007; 

Karunarathna et al., 2010). Soil mineral particles have a high affinity for water (Tschapek, 1984), 

but when coated with hydrophobic or amphiphilic compounds they become repellent in nature 

(Hudson et al., 1994; Ellies et al., 2005; Buczko and Bens, 2006). These organic compounds are 

derived from sources from vegetation (Bond, 1964; Franco et al., 2000), fungi (Bond and Harris, 

1964; Savage et al., 1969; Dekker and Ritsema, 1996), microorganisms (Schaumann et al., 2007; 

Fisher et al., 2010; Bond and Harris, 1964; York and Canaway, 2000), humic acids (Roberts and 

Carbon, 1972; Chen and Schnitzer, 1978), decomposed plant material (McGhie and Posner, 

1987; Doerr, 1998; Ellies et al., 2005), fires (Shakesby et al., 1993), and hydrocarbons (Roy and 
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McGill, 1998). Soil water repellency is a dynamic phenomenon that changes with water content 

(Dekker and Ritsema, 1994). Change in water content causes hydrophilic portions of amphiphilic 

organic compounds to reorient themselves, leaving mainly hydrophobic areas exposed (Savage et 

al., 1969; DeBano, 1981; Doerr, 1998; Lichner et al., 2007). Just as drying induces SWR, 

prolonged exposure to water weakens repellency by re-exposing hydrophilic portions of organics 

(Doerr et al., 2000).   

 The origin of SWR remains elusive, making it difficult to assess management strategies 

that control its occurrence in soil. Despite years of research (Wallis and Horne, 1992; DeBano, 

2000; Doerr et al., 2000; Hallett, 2008; Jordán et al., 2013), a comprehensive understanding of 

the repellency phenomenon from a biological perspective is still lacking.   Although studies are 

mixed on the causes, fungi are generally thought to be a prime cause of water repellency in soils 

(Hallett, 2008).  Hallett and Young (1999) found that stimulating the microbial biomass with 

nutrients can greatly enhance repellency in soils. As well, Feeney et al. (2006) reported a strong 

relationship between fungal biomass and SWR.  Furthermore, Hallett et al. (2001) selectively 

inhibited either fungi or bacteria on a sandy soil with biocides to separate the influence of each 

group on SWR. Inhibition of fungal growth decreased the development of SWR after 10 days of 

incubation in a nutrient amended soil. By inhibiting bacterial proliferation, SWR was greatly 

enhanced, possibly because bacteria can degrade hydrophobic compounds and/or the native fungi 

experienced less competition (Hallett et al., 2001b).  Research to date into soils has identified 

fungi as the dominant microbial group that causes water repellency, while bacteria may decrease 

repellency (Roper, 2004).  However, certain fungal strains do not express hydrophobic surface 

properties; instead express hydrophilic surface properties (Unestam and Sun, 1995).  Little is 

known about how these surface properties from fungi can alter SWR. 
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Hydrophobins, a class of small amino acids which are found in filamentous fungi 

(Wessels, 1996), has created interest in its connection to SWR (Rillig, 2005).  Linder (2009) 

found that the increase in fungal surface hydrophobicity is related to the amount of hydrophobins 

produced on fungal surfaces. Rillig et al. (2010) was the first to report a causal relationship 

between the growth of AM fungal mycelia and SWR. This relationship is due to the presence of 

a hydrophobin-related protein: glomalin.  They both speculated the hydrophobins and glomalin-

related surface proteins (GRSP) on fungal surfaces might be the cause of the increased SWR 

(Rillig, 2005). However, conflicting evidences suggest that hydrophobins and GRSP in some 

fungal strains does not necessarily confer water repellent surface properties (Hallett et al., 2009; 

Mosbach et al., 2011).  As such, the cause of SWR due to fungi remains inconclusive.  However, 

characterization of water repellency from fungal surfaces properties as a whole and its effect on 

SWR may give a better indication on the role that fungi play in SWR (Spohn and Rillig, 2012).  

Additional, the presence of fungal hyphae in soil will cause clogging of soil pores and effectively 

decrease infiltration (Fig. 1).  Coupling hyphae clogging of soil pores with fungal hydrophobicity 

would result in further decrease in infiltration (Fig.1.) (Seki et al., 1998; Fisher et al., 2010). 

Since fungi are one of the primary causes of SWR in soils, examining its effect on SWR will also 

improve our understanding of how SWR can alter infiltration in soils.   
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Fig. 1. Diagram of decreasing infiltration due to presence of hyphae and presence of 

hyphae and fungal hydrophobicity 

2.3 Measurement and Characteristics of Soil Water Repellency 

Several approaches exist for measuring and quantifying SWR. These include: water drop 

penetration time (WDPT) test, molarity of ethanol droplet (MED), repellency index (RI), and 

contact angles (CA) (Wallis and Horne, 1992; Letey et al., 2000).  Although these are simple 

tests which are easy to reproduce, the correlation between their results is often rather weak 

(Czachor, 2006).  The most direct way to determine SWR is to measure the contact angle (CA) 

of water on the soil surface. Quantitative measurements of soil contact angles are influenced by 

composition of the soil, porosity, surface roughness and chemical heterogeneity of natural soil 

grains (Busscher et al., 1984; Woche et al., 2005; Shang et al., 2008).  Several methods have 

been used to calculate or directly measure CA, including capillary rise (Emerson and Bond, 

1963) and modified capillary rise (Bachmann et al., 2003), Wilhelmy plate (Bachmann et al., 

2003) and sessile drop (Bachmann et al., 2000) methods.  The sessile drop method (Bachmann et 

al., 2000) is the preferred method to determine the CA directly from a droplet on the soil surface. 
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This method allows for measurement of CA in the range of 0-180º with an accuracy of < 6º 

(Bachmann et al., 2003). This direct measurement of CA is simple, accurate and requires the 

least amount of extrapolation. Shang et al. (2008) found that the sessile drop method yielded the 

most consistent results as compared to other contact angle measurements.  

 

Fig. 2. Diagram of the contact angle formed by a water droplet placed on a repellent 

surface. 

The severity can be described as how strongly the soil repels water, which is determined 

by measuring the CA (Fig. 2, 3a). When a water drop is placed on a repellent surface, the droplet 

is not absorbed, forming a bead on the surface which depends on the relation between the three 

interfacial energies; liquid-vapour (σLV), solid vapour (σSV) and solid liquid (σSL) formulated in 

Young’s equation (Eq. 2.1); 

( )
SLSVLV σσθσ -=cos                                                  (Eq. 2.1) 

where θ is the contact angle formed between the soil and the water droplet. Classification scheme 

for SWR using contact angles is described by King (1981). The severity (degree) of SWR can 

range from sub-critical (slightly) to extremely repellent. Subcritical SWR, defined as the contact 

angle of a water droplet on a soil surface larger than 0° but less than 90°, is often ignored when 

examining the effects of SWR on water flow (Tillman et al., 1989). This is due to less severe 

changes to hydrologic processes in the soil as observed in an extremely water repellent soil. 
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Severity provides information about the risk of runoff and erosion during a rain fall event, since 

water will not enter the soil when the severity is high (Cerdà and Doerr, 2007; Miyata et al., 

2007). 

  A water droplet may remain as a drop in a finite area (static), or it may spread or be 

absorbed over the surface (dynamic), which is indicative of a decrease in the persistence (Letey, 

1969; Letey et al., 2000). Persistence can be defined as how long the soil remains water repellent 

in the presence of water (Fig. 3a). Because SWR is temporally variable, its persistence is also of 

interest. An understanding of the persistence of water repellency provides information about 

wettability of the soil in the long term.  In general, quantitative classification of persistence is 

measured by the time it takes for water droplets to be absorbed/infiltrate, defined as the water 

drop penetration time (WDPT) (Dekker and Jungerius, 1990).  A decrease in the persistence is 

associated with the surface energy required to shift the soil from a repellent state to a more 

wettable state. Surface energy gained in forming the solid liquid interface should exceed the 

liquid air surface for spreading to occur (Eq. 2.2): 

LVSLSV σσσ >-                                                            (Eq. 2.2) 

 The surface energy is determined by the composition of the hydrophobic compounds, 

functional groups, orientation, and the nature of the intermolecular forces between them (Roy 

and McGill, 1998). Non-hydrophobic compounds are associated with non-polar molecules and 

dispersion forces, while hydrophobic compounds are associated with polar molecules, which 

have hydrogen bonding and dipole/dipole interactions (Roy and McGill, 1998).  There are both 

hydrophobic and non hydrophobic compounds that coat soil particle surfaces (Doerr et al., 2000). 

The arrangement of the molecules oriented on the surface of soil particles determines how the 

molecules reorientate themselves during the rewetting processes. This causes a shift the soil from 
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a repellent state to more a wettable state, relating to the persistence of the SWR. The time of 

infiltration of a water droplet is directly relevant to the erosion potential and potential water 

runoff since water will not infiltrate until the persistence of SWR is gone (Wessel, 1988).  

Another method for characterization of the severity of SWR is molarity of an ethanol 

droplet (MED) test (Watson and Letey, 1970; King, 1981; Doerr, 1998), dilutions or 

concentrations of ethanol and water, with known surface tensions (or energies), that are applied 

to the soil for determination of the surface energy of the soil.  The MED test is recorded as the 

lowest ethanol:water concentration to penetrate the soil (Crockford et al., 1991; Dekker and 

Ritsema, 1994; Doerr, 1998; Doerr and Thomas, 2000; Cofield et al., 2007). Roy and McGill 

(2002) found that the MED test is not reliable at field moist conditions as it is not sensitive to 

subcritical water repellency.  

The repellency index (RI) compares sorptivity of water and ethanol from the infiltration 

of these two liquids into soil (Fig. 3b) (Wallis et al., 1991). This uses the sorptivity, calculated 

from the unsaturated flow rate of two liquids in soil, determined using the tension infiltrometer 

(Tillman et al., 1989; Wallis et al., 1991). For a liquid to enter into soil, its surface energy must 

be less than that of the soil (Doerr, 1998). Thus, the infiltration of water will be impeded if the 

soil has a high surface energy, as is the case for water repellent soils. The test liquid will 

infiltrate if the surface energy (tension) is sufficiently lowered (Van’t Woudt, 1959). (95% v/v) 

Ethanol, with a much lower surface energy than water behaves in water repellent soil in a similar 

way that water would in the same soil if the soil were wettable (Letey et al., 1962). Because 

SWR affects infiltration of water but not ethanol, comparisons of their sorptivies in soil are used 

to characterize SWR (Roy and McGill, 2002; Lamparter et al., 2010).   The tension infiltrometer 

infiltrates a test liquid (water and ethanol for these studies) into soil under a negative tension to 
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exclude macropore flow. Sorptivity can be determined when cumulative infiltration is plotted 

against the square root of time. Initial or early time sorptivity, calculated from infiltration and 

time measurements is described by Philip, (1954) (Eq. 2.3) as 

2/1
Sti =                                                        (Eq. 2.3) 

where, i is the cumulative infiltration (L T-1), for each measured pressures, S is sorptivity (L T-1) 

of infiltrating liquid and t is the time (T). Sorptivity (S) can be determined at steady state by 

(Leeds-Harrison et al., 1994) (Eq. 2.4) 

br

Qf
S

4
=                                                        (Eq. 2.4) 

where Q is the steady state infiltration rate, b is the parameter dependent on the soil water 

diffusivity function, taken as 0.55 for soil with unknown b parameter (White and Sully, 1987), r 

is the radius of disc, and f is the fillable (air filled) porosity.   

Soil-water sorptivity is affected by SWR, whereas soil-ethanol sorptivity is not (Letey et 

al., 1962). As such, the corrected soil-ethanol sorptivity is used as the measure of the intrinsic 

property of soil against which the impeded soil-water sorptivity is compared to. The repellency 

index (RI) can be calculated with (Tillman et al., 1989) (Eq. 2.5). 

95.1=
W

E

S

S
RI                                                     (Eq. 2.5)

 

 

where SE is the sorptivity of 95% ethanol (L T-1/2), SW is the sorptivity of water (L T-1/2), and 1.95 

is a constant to correct for viscosity and density differences between water and 95% ethanol 

(Tillman et al., 1989; Wallis et al., 1991). Multiple methods of measuring SWR are required to 
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get a clear picture of the state of SWR in soils. Furthermore, the conditions under which SWR 

are tested should be carefully controlled and clearly reported (Shirtcliffe et al., 2006; Douglas et 

al., 2007). 

 The knowledge of the severity and persistence of SWR in soil is crucial for understanding 

and predicting how SWR affects hydrological processes; for optimizing plant growth, and for 

reducing groundwater contamination risk and improving infiltration. However, there is a poor 

understanding of the persistence of SWR and its effect on soil water infiltration and flow (Doerr 

et al., 2000). Although it is well known that soils can lose their water-repellent characteristics 

during a long period of wetting (Crockford et al., 1991), little is known about the exact wetting 

mechanisms involved, and the threshold conditions needed for SWR to disappear (Doerr et al., 

2000). Leelamanie and Karube (2009) performed a study on the severity of SWR and its relation 

to SWR persistence in hydrophobized sand. They concluded that WDPT, or the persistence, is 

positively correlated to the initial contact angle. Further, the persistence measured at any point 

during the wetting processes is the same as that of a soil at the same initial contact angle. 

Therefore, the relationship between persistence and contact angle is unique, regardless of the 

initial conditions. If this was truly the case, a single measurement for either the severity or 

persistence is needed to assess SWR. However, not all water repellent soils will follow this 

scenario as some soils may have a lower initial severity, but a longer persistence (Dekker and 

Ritsema, 1994).  If the severity and persistence operate independently, management scenarios 

become more complex. To assess the relationship between severity and persistence, multiple 

soils must be tested to prove if a high severity equates to high persistence and vice versa (Ju et 

al., 2008; Lamparter et al., 2010).  
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Another important factor controlling SWR is the critical water content (CWC). The CWC 

is an important transition zone where soil turns from a repellent state to a wettable state (Fig. 3c) 

(Ritsema and Dekker, 2003; Shirtcliffe et al., 2006; Liu et al., 2012). It is the water content at 

which the effects of SWR are no longer present. Since the measurement of the severity and 

temporal persistence of repellent soils are usually performed at a single water content, 

measurements of CWC should be performed because it explains how SWR behaves under 

different water contents. The soil moisture-related aspect of SWR has important repercussions 

for land use management due to effects of SWR in soils which have not reach the threshold of 

the CWC.  Determining the relationship between the contact angle, WDPT, and the CWC would 

be helpful in understanding SWR because the measured WDPT data could be correlated to a 

range of CA or CWC.  Additionally the applicability of this relationship in different types of 

soils needs further attention. 
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Fig. 3. Diagram illustrating the characterization of soil water repellency. a) Degree and 

persistence measured as contact angles formed on the soil surface and water drop 

penetration or spreading time respectively. b) Water repellency index determined by 

sorptivity ratio of 95 % ethanol and water through infiltration.  c) Critical water content is 

the water content at which soil water repellency is no longer present (no contact angle on 

soil surface or instantaneous spreading or penetration of water droplet). 

2.4 Conducting Porosity in Water Repellent Soils 

The soil water conducting porosity is crucial for understanding water, solute, and 

pollutant infiltration and movement through soils (Beven and Germann, 1982; Ankeny et al., 

1990; Luxmoore, 1990). Macroporosity (diameter >1.0 x 10-3m) and mesoporosity (diameter 

from 1.0x 10-5 – 1.0 x 10-3 m) are the major fractions of the total soil porosity that contributes to 



17 
 

the water conducting porosity in saturated soil (Luxmoore, 1981). Not all these pores contribute 

to the flow as they can include pores that are non-continuous, dead ended and have irregular pore 

geometry, which restricts the transport of water (Bodhinayake et al., 2004). Pore toruosity and 

surface roughness are also known to decrease the conducting porosity.   

 Since the entry and transport of water from the soil surface is controlled by the 

conducting porosity (Watson and Luxmoore, 1986), examination into the relationship between 

SWR and the conducting porosity must be performed. Soil water repellency is highly spatially 

variable (Hallett et al., 2004) and it operates at the millimeter-scale, making measurements 

extremely difficult. However, with recent advances using the miniaturized infiltrometer for 

assessing SWR (Tillman et al., 1989), more accurate characterization at smaller scales has been 

done (Hallett et al., 2004). Tension infiltrometers measure the infiltration rate at negative water 

pressures with respect to the atmosphere (Clothier and White, 1981). Since capillary pressure is 

related to the equivalent pore diameter, the change in the tension or pressure head can estimate 

the range of pore size contribution to infiltration (Jarvis et al., 1987). Alternatively, tension 

infiltrometers are being used to observe hydraulic properties or time dependent changes in water 

repellent soils (Doerr and Thomas, 2000; Hallett et al., 2004; Lichner et al., 2007). Pore water 

pressures need to be or become negative before infiltration occurs as compared to ponded 

infiltration techniques.  Given that SWR is water content dependent and infiltration under tension 

is responsive to initial positive pore water pressures and air-entry pressures, the changes in the 

rate of infiltration into soil or discharge from the tension infiltration instruments can provide 

useful indications of changes in surface tension of soil (or contact angle change) and associated 

changes in wettability as time of exposure to water increases (Beatty and Smith, 2013). 
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Ethanol is considered to be a completely wetting liquid due to its low surface tension as 

discussed above.  As such flow of ethanol into and through water repellent soil is independent of 

the severity of water repellency of the soil (Watson and Letey, 1970). Tillman et al. (1989) found 

that infiltration using ethanol under tension, the measurement of the intrinsic sorptivity can be 

determined. The intrinsic sorptivity is defined as soil sorptivity independent of surface properties 

and only depends on the pore geometry of the porous system.  Surface properties of the soil are 

an issue when sorptivity is measured with an incomplete wetting liquid, such as the case of water 

in a water repellent soil. Lamparter et al. (2006) and  Jarvis et al. (2008) both used ethanol and 

water as the infiltrating liquids under tension to evaluate the effect of SWR on hydraulic 

processes. They found reductions in water infiltration rates caused by SWR as compared to 

ethanol (Lamparter et al., 2010).  The ratio of the two sorptivities from the early time or steady 

state infiltration curve can also give an indication of how repellent the soil is under different 

water content situations. In this way, the overall contribution of SWR to the total conducting 

porosity excluding the macropores is assessed. However, this does not distinguish the 

contribution of specific water repellent pore sizes to the total water flux. There is little research 

on how the RI changes with exclusion of different pore sizes (decreasing pressure head).  

 Many methods have been developed to calculate the water conducting porosity. Watson 

and Luxmoore (1986), Dunn (1991) and Bodhinayake et al. (2004) utilized minimum equivalent 

pore radius, mean pore radius, and a range of pore radii for determination of the conducting 

porosity, respectively. Due to the overestimation of the conducting porosities from Watson and 

Luxmoore (1986) and Dunn (1991), Bodhinayake et al. (2004) is the preferred method for 

characterization of the conducting porosity. Nevertheless these conducting porosity estimations 

do not take into account the presence of SWR. Using 95% ethanol infiltration, the intrinsic 
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conducting porosity can be determined which is the conducting porosity independent of soil 

surface properties (Lamparter et al., 2010).  
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3. RELATIONSHIP BETWEEN THE SEVERITY, PERSISTENCE OF SOIL 

WATER REPELLENCY AND THE CRITICAL SOIL WATER 

CONTENT IN WATER REPELLENT SOILS
1
 

3.1 Preface 

Characterization of SWR is difficult due to fact that SWR is dependent on water content 

and exposure time to water (Shirtcliffe et al., 2006).  Previous studies focus only on the presence 

or absence of repellency in site as indicator of SWR (Letey, 1969; Müller and Deurer, 2011).  

Soil water repellency is often measured for severity, persistence or the soil critical water content 

independently.  Measurements of severity and persistence are related to the differences and 

changes in surface energy between water and the soil surface respectively and may operate 

independently of each other. However, these measurements will not give consistent results 

(Shang et al., 2008). Characterizing and understanding the severity, persistence and CWC 

together are valuable when determining how SWR will affect soil water flow. The objective of 

this study was to determine the relationship between the severity of SWR and its persistence and 

to determine the critical water content (CWC).  The severity of SWR as a function of persistence 

was assessed by measuring the change of water drop contact angles (modified sessile drop 

method) with time (WDPT, water drop penetration time) and by water content on soils.                                                                                                                               

3.2 Abstract  

Soil water repellency (SWR) causes reduced soil water storage and enhanced runoff and 

reduced ecosystem productivity. As such, characterization of SWR is a prerequisite for effective 

                                                
 
1 This work has been previously published in Chau, H.W., Biswas A, Vujanovic, V. and Si, B.C. (2013), 
Relationship between the severity, temporal persistence and the critical soil water content in water repellent soils.  
Accepted in Geoderma (GEODER-S-13-00167). Minor modifications have been made for consistency.   
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environmental management. The objective of this study was to determine the relationship 

between the severity of SWR and its persistence and to determine the soil critical water content 

(CWC). Soils were collected from thirteen soil sites; five from natural jack pine (Pinus 

banksiana) ecosites (AE1, AE2, SV 10, 26 and 27), six from reclaimed/disturbed sites (ALFH, 

CPA, SS trial, ATS, SCB, and SW30) located in the Athabasca Oil Sands region and two from 

agricultural sites (Goodale and Melfort) in Central Saskatchewan, Canada. The severity of SWR 

as a function of persistence was assessed by measuring the change of water drop contact angles 

(modified sessile drop method) with time (WDPT, water drop penetration time). The CWC was 

determined for all the soils by measuring water drop contact angles on soils with predetermined 

water contents from oven dried to 0.20 kg kg-1. In natural, reclaimed and agricultural soils, a high 

severity (contact angle) of repellency does not necessarily denote long persistence (WDPT) or 

high CWC. Measurement of severity and persistence are related to the differences and changes in 

surface energy between water and the soil surface respectively. Although the CWC gives us the 

water content at which above it SWR is negligible, the trend between contact angle and 

increasing water content proved to be more informative. Characterizing and understanding the 

severity, persistence and CWC together are valuable when determining the effects of SWR on 

hydrological processes as the mechanisms involved may differ from one another. 

3.3 Introduction 

The Athabasca Oil Sands of Canada are estimated to contain over 170 billion barrels of 

oil, making it the second largest viable oil deposit in the world (Kraemer et al., 2009). Surface 

mining of the oil sands is occurring at an unparalleled rate, resulting in large scale disturbances 

over vast areas. The oil companies in the region are obligate to operate within a regulatory 

framework to conserve and reclaim their disturbed land as set out within the Land Surface 
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Conservation and Reclamation Act 1973 and the Environmental Protection and Enhancement 

Act 1992 (Government of Alberta, 1999). The aim of reclamation entails the complete re-

creation of landforms and ecosystems at the landscape scale, with the goal of producing suitable 

and sustainable habitats for plants and animals (Government of Alberta, 1999).  

The soils in the area originated from coarse textured glacial fluvial and eolian deposits 

(Turchenek and Lindsay, 1983). Additionally, the oil sands are also situated under the peat lands 

(bogs and fens) of the boreal forests. As such, reclamation entails using salvaged soil materials, 

tailings sand, peat, and surface organic matter for reclamation practices. Given the presence of 

hydrocarbon, and that coarse textured and organic soils dominate the Athabasca Oil Sands region 

(Government of Alberta, 1999), the issue of water repellency in soil has yet to be addressed 

(Hunter et al., 2011). The low surface area per unit volume of coarse textured soils (Doerr et al., 

2000; Lehrsch and Sojka, 2011) and excessive drying of both soil and organic materials 

stockpiles (Moskal et al., 2001) for future reclamation projects may contribute or enhance 

expression of water repellency in soil.  

Soil water repellency (SWR) has an effect on hydrological processes due to reduced 

infiltration, increased overland flow, increased preferential flow, decreased soil water storage, 

and increased soil erosion (Doerr et al., 2000). It has been reported in many types of soils at 

variable severities (DeBano, 1981) and is considered as the “norm rather than the exception” 

(Wallis et al., 1991). Water repellent soils are found throughout the world on grasslands (Dekker 

and Ritsema, 1994), forests (Buczko et al., 2002), agricultural land (Hallett and Young, 1999), 

and also on disturbed mining sites in Athabasca Oil Sands (Roy and McGill, 1998; Wallach et 

al., 2005). Additionally SWR has been found to affect the spatial distribution of vegetation in 

landscapes leading to patchiness of growth (DeBano, 1981; Lozano et al., 2013). As such, the 
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role SWR plays in water flow processes is important for effective drought mitigation and water 

management to improve vegetation growth. 

 The effect of SWR on soil is related to its severity and persistence. The severity can be 

described as how strongly the soil repels water, which is measured by water drop contact angles. 

When a water drop is placed on a repellent surface, the droplet does not absorb, forming a bead 

on the surface which depends on the relation between the three interfacial energies; liquid-

vapour, solid-vapour, and solid-liquid. The severity (degree) of SWR can range from sub-critical 

(slightly) to extremely repellent. Subcritical SWR, defined as the contact angle of a water droplet 

on a soil surface larger than 0° but less than 90°, is often ignored when examining the effects of 

SWR (Hallett et al., 2001a). This is due to less severe changes to hydrologic processes in the soil 

as observed in an extremely water repellent soil. Additionally, methods such as MED (Molarity 

of ethanol droplet method), are unsuitable for determination of the severity of SWR in sub-

critically repellent soils since different subcritical severities of water repellency are difficult to 

distinguish (King, 1981). 

 A water droplet may remain as a drop in a finite area (static), or it may spread or be 

absorbed over the surface (dynamic), which is indicative of a decrease in the difference between 

the soil surface tension and liquid surface tension. Persistence can be defined as how long the 

soil remains water repellent in the presence of water. In general, quantitative classification of 

persistence is measured by the time it takes for water droplets to be absorbed/infiltrate, defined 

as the water drop penetration time (WDPT) (Doerr, 1998). Persistence of SWR can be classified 

by WDPT as described by Dekker and Jungerius (1990). Persistence of SWR is associated with 

the surface energy required to shift the soil from a repellent state to a more wettable state. 

Surface energy gained in forming the solid liquid interface should exceed the liquid air surface 



24 
 

for spreading to occur. The surface energy is determined by the composition of the hydrophobic 

compounds, functional groups, orientation, and the nature of the intermolecular forces between 

them (Roy and McGill, 1998; Cheng et al., 2009, 2010). Non-hydrophobic compounds are 

associated with non-polar molecules and dispersion forces, while hydrophobic compounds are 

associated with polar molecules, which have hydrogen bonding and dipole/dipole interactions 

(Roy and McGill, 1998). There are both hydrophobic and non hydrophobic compounds causing 

coatings on the soil particle surface (Doerr et al., 2000; Horne and McIntosh, 2000). The 

arrangement of the molecules orientated on the surface of soil particles determines how the 

molecules reorientate themselves during the rewetting processes (Roy and McGill, 2000). This is 

necessary to shift the soil from a repellent state to more a wettable state. 

 The knowledge of the severity and persistence of water repellency in soil is crucial for 

understanding and predicting how it affects hydrological processes; for optimizing plant growth, 

and for reducing groundwater contamination risk on reclaimed land. However, there is a poor 

understanding of the persistence of SWR and its effect on soil water flow (Doerr et al., 2000; 

Ganz et al., 2013). Although it is well known that SWR may decrease or disappear during long 

wetting periods (Crockford et al., 1991), little is known about the exact wetting and rewetting 

mechanisms involved, and the threshold conditions needed for SWR to disappear (Doerr et al., 

2000; Jordán et al., 2013). Leelamanie and Karube (2009) performed a study on the severity of 

SWR and its relation to persistence in hydrophobized sand. They concluded that persistence of 

SWR (measured as WDPT) is positively correlated to the initial contact angle. Further, the 

persistence measured at any point during the wetting processes is the same as that of a soil at the 

same initial contact angle. Therefore, the relationship between persistence and contact angle is 

unique, regardless of the initial conditions (Leelamanie and Karube, 2009). If this was truly the 



25 
 

case, a single measurement for either the severity or persistence is needed to assess SWR. 

However, not all water repellent soils will follow this scenario as some soils may have a lower 

initial severity, but a longer persistence (Dekker and Ritsema, 1994; Ganz et al., 2013). If the 

severity and persistence operate independently, management scenarios become more complex. 

To assess the relationship between severity and persistence, multiple soils must be tested to 

prove if a high severity of SWR equates to high persistence of SWR and vice versa (Ju et al., 

2008; Lamparter et al., 2010). Additionally, naturally water repellent soil material should be 

tested to assess moisture dependent wettability. 

Another important factor controlling SWR is the critical water content (CWC). The CWC 

is an important transition zone where soil turns from a repellent state to a wettable state (Ritsema 

and Dekker, 2003). It is the water content at which above it the expression of SWR is no longer 

present. Since the measurement of the severity and persistence of repellent soils are usually 

performed at single water content, measurements of CWC should be performed because it 

explains how SWR behaves under different water contents. The soil moisture-related aspect of 

SWR has important repercussions for land use management due to the effects of SWR in soils 

which have not reached the threshold of the CWC. In an effort to better quantify the effect that 

different SWR has on hydrological processes such as infiltration. It is important to determine 

relationship between severity and persistence in water repellent soils. The purpose of this study 

was to determine the relationship between the severity, persistence and the CWC in soils with 

varying SWR. I hypothesized that there is a difference in the relationship between the severity, 

persistence of SWR and the critical water content.  
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3.4 Materials and Methods 

3.4.1 Study Sites and Soil Description 

The study areas are located in the Canadian Boreal Forest Region within the Central 

Mixed Wood Region in Alberta, Canada and in Central Saskatchewan, Canada within the Aspen 

Parkland Region (Natural Regions Committee, 2006). Sites used in this study from the Canadian 

Boreal Forest Region were located in Athabasca Oil Sands, characterized by a continental boreal 

climate with long, very cold winters and short cool summers. The climate of the study area is 

humid continental with long term mean annual precipitation of 455 mm and mean daily 

temperature of -18.8°C in January and 16.8°C in July (Environment Canada, 2003). The average 

elevation of the study site is 369 m (Huang et al., 2012). The area is comprised of valleys incised 

into broad muskeg covered plains (Carrigy and Kramers, 1973). Approximately, 20% of the area 

is comprised of coarse textured glacial fluvial and eolian deposits on which Brunisolic  

(Inceptisol) soils have developed (Turchenek and Lindsay, 1983). Sites were selected from 

natural jack pine (Pinus banksiana) ecosites (long term soil and vegetation plots) and 

disturbed/reclaimed sites located on Suncor Energy Inc., Shell Albian Energy Inc. and Syncrude 

Canada Inc. leases. The long term soil and vegetation plots: SV 10 (N 57°07’44”, W 

111°59’44’’), SV 26 (N 57°51’92’’, W 111°43’04’’) and SV 27 (N 57°50’51’’, W 111°43’70’’) 

as well as AE1 (N 57°26’68’’, W 111°55’48’’) and AE2 (N 57°20’55’’, W 111°51’95’’) sites 

were on undisturbed jack pine stands with a lichen covered forest floor on coarse-textured, 

nutrient poor, eolian and glaciofluvial parent material, classified as an A ecosite (Beckingham 

and Archibald, 1996). Ecosites are ecological units developed under similar environmental 

conditions (climate, moisture, nutrient regime) (Beckingham and Archibald, 1996). A ecosites 

are developed under dry conditions with fast drainage and pore nutrient status in the soil.  
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 Additional sites from reclaimed and disturbed open pit oil sands mining operations 

include the Albian Shallow-Stripping trial (SS trial) (N 57°25’55’’. W 111°52’017’’), Syncrude 

South West (SW 30) (N 56°99’13’’, W 111°61’85’’), Aurora LFH Capping Study (ALFH) (N 

57°07’18’’, W 111°50’66’’), Center-pit at Aurora (CPA) (N 57°32’46’’, W 111°54’05’’), Albian 

Tailings Sands (ATS) (N 57°25’55’’, W 111°52’01’’), and Suncor Coke Bulk (SCB) (N 

57°00’56’’ W 111°50’16’’). The SS trial had a reclamation prescription with 0-10 cm of LFH/Ae 

horizon mix overlaid on to 10-50 cm of peat/mineral sand mix and 50-100 cm of tailing sands. 

The Aurora LFH Capping Study site was constructed of 0-10 cm of LFH (litter, fermentation and 

humus) overlaid onto 10-100 cm peat mineral mix soil located on a southeast facing complex 

slope of a saline sodic overburden. The SW 30 site is a large overburden shale site constructed 

with 15 cm layers of peat/mineral mix, overlaying a layer of 20 cm of glacial till or 

glaciolacustrine clay. The CPA site was a disturbed open pit mining site, which comprised of 

Brunisolic soils typical of the region. The SCB site is mixture of sand and coke, a waste product 

formed during the heavy oil upgrading processes of bitumen. Coke is proposed to be added 

between tailings sand and a peat layer for reclamation covers. The ATS site is composed of by-

products of the oil sand extraction process; settled sand, silts, clays and hydrocarbon residues 

from tailing ponds that will be used for future reclamation prescriptions. Additionally, two 

agricultural sites, Melfort (N 52°81’21’’, W 104°51’18’’) and Goodale (N 52°03’66’’, W 

106°35’38’’) from central Saskatchewan were selected for comparison of SWR with soils with 

finer particle sizes (Fig. 4). The two agricultural sites in Central Saskatchewan were previously 

cropped with canola (Brassica napus). These areas are characterized with warm summers and 

very cold winters. The climate of the study area is humid continental with long term mean annual 

precipitation of 350 mm and mean daily temperature of -17°C in January and 18.2°C in July 
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(Environment Canada, 2003). The average elevation of the study site is 480 m. The soils in these 

sites are Dark Brown Chernozemic soils under the Canadian system (Typic Borolls, USDA 

taxonomy system).  

 

Fig. 4. Map of 13 sites in Northern Alberta and Central Saskatchewan (���� natural jack pine 

sites, ���� reclaimed/disturbed sites, and ���� agricultural sites). 

3.4.2 Laboratory Analysis 

 Total Carbon and Nitrogen contents were determined using a LECO CNS-2000 analyzer 

(LECO Corp., St. Joseph, MI). Particle size distribution was also analyzed for determination of 

soil texture classification (USDA) using a Laser Scattering Particle Size Distribution Analyzer 
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(Horiba LA - 950, Horiba Instruments Inc., Irvine, CA) after air-drying, sieving to 2 mm and 

removal of organic matter using hydrogen peroxide (35% v/v). Bulk composite soil samples 

were taken from 0-5 cm soil surface (excluding the LFH whenever possible) where repellency is 

the greatest on the surface (Miyata et al., 2007). Soils were passed through a 2 mm sieve to 

remove plant roots and debris, as well to ensure a uniform and smooth surface for contact angle 

determination. Samples were then oven dried to 40 °C for 24 hrs and kept air dry at 20°C before 

testing to obtain the potential SWR and minimize extreme alteration to the soil surface (Dekker 

et al., 1998). Modified sessile drop contact angle was measured on a thin layer of sieved soil 

fractions affixed to a glass slide using double sided adhesive tape (Bachmann et al., 2000).  

3.4.3 Measurement of Severity and Persistence 

The severity and persistence were measured on eight of the sites (natural sites: AE1, SV 

10, SV 26, and SV 27; reclaimed/disturbed Sites; CPA, SW 30, ALFH, and SS Trial) by 

measuring the mobile sessile drop contact angle and water drop penetration time. Measurements 

were performed in an enclosed chamber with relative humidity (RH) at 80-85 % and temperature 

at 22.5°C, using saturated salt (KCL) solution to mitigate the evaporation influence of the soil 

surfaces. Control samples were taken to measure the amount of water content change within the 

samples during the experiment in the chamber due to evaporation and condensation. The water 

loss and gain from the soil using the modified sessile drop method was negligible. A PG-X 

goniometer (FIBRO System AB) was placed on top of prepared soil surfaces. Drops of 4 µL of 

distilled water were deposited on the soil surface and pictures of the static contact angle were 

taken from an integrated camera - captured 6 images min-1 (640x480 pixels) until the droplet 

spread across the soil surfaces. Contact angles were measured on images from 5 replicate 

droplets from a composite sample of the soil. The measurement of severity and persistence was 
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categorized by scheme developed by King, (1981) and Dekker and Jungerius, (1990), 

respectively (Table 1). At a significance level of P = 0.05, Paired t tests were used to compare 

the severity and persistence of SWR among sites. Pearson Correlation Coefficient was used to 

assess the linear relationship between severity, persistence of SWR, total C, and total N at 

significance level of P = 0.05. 
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Table 1. Soil water repellency (SWR) classification of soils based on the severity (Contact angles: 

King, 1981) and the persistence (WDPT: Dekker and Jungerius, 1990). 

Severity Persistence 

Contact angles (°) SWR Classification WDPT (s) SWR Classification 

<75* Not significantly water repellent <5 Wettable 

75-80* Very low water repellent 5-60 Slightly repellent 

81-86* Low water repellent 60-600 Strongly water repellent 

87-93* Moderately repellent 600-3600 Severely water repellent 

94-97 Severely repellent >3600 Extremely water repellent 

>97 Very severely repellent   

*Subcritical soil water repellency (0° > contact angle < 90°)
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3.4.4 Measurement of Critical Water Content (CWC) 

Soil CWC was determined on all 13 soils by measuring sessile drop contact angle with 

increasing water contents on the soil surface until the soil changed from a repellent to a wettable 

state. The range of water contents were obtained by separating oven dried soil samples into 100 

gram fractions into sealed containers. Distilled water was applied manually by spraying soil 

samples with predetermined amounts of water calculated by mass. Soil water contents ranged 

from 2.5, 5.0, 7.5, 8.5, 10.0, 12.5, 15, 17.5 and 20.0 % gravimetric water content. Oven dried and 

ambient air dried soil samples were also included in the measurement. Samples were 

subsequently shaken, mixed thoroughly and left for a week to equilibrate. As shown in King 

(1981), and Badía et al. (2013) the action of sieving and mixing of soil sample has the potential 

to decrease the severity of repellency as hydrophobic coatings may be removed from the soil 

surface. As such all samples at specific water contents including oven and ambient air dried were 

subject to the same manipulations to minimize the influence of degradation of SWR due to the 

mixing. The actual water content was determined by taking a subsample and measuring 

gravimetrically the water content before contact angle measurements were taken. Five droplets 

of 4ul were placed on each of the five subsamples (25 measurements per water content). The 

experiment was replicated twice. By comparing contact angle (severity) versus water content, the 

CWC was determined to be the water content at which the contact angle reaches 0 degrees (Point 

at which the soil changes from repellent to wettable state and vice versa).  

3.4.5 Contact Angle Measurements 

 Measurement of contact angles from the images obtained by the PGX goniometer were 

measured by using open source multi-platform java image processing program Image J, available 

at http://rsb.info.nih.gov/ij/ as well as using a Low Bond Axisymmetric Drop Shape Analysis 
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Model of Drop Shape Analysis (LB_ADSA) approach (Stalder et al., 2010). This method 

allowed for fitting of the whole drop profile based on the Young-Laplace equation. It allows for 

contact angle determination on obscured view due to roughness of soil particles, overcoming the 

baseline issues of the goniometer approach as the whole drop profile is taken into account when 

determining the contact angle.  

3.5 Results and Discussion 

3.5.1 Severity and Persistence 

The eight soil tested exhibited some severity of SWR, of which six sites showed a high 

severity with contact angles above 90° (Table 2). Ranking the sites with initial contact angles in 

ascending order were SV 10, SW 30, SV 26, ALFH, SS trial and AE1 with contact angles of 

95±3°, 121±1°, 129±2°, 132±4°, 145±3° and 145±1°, respectively. This resulted in SWR 

classification of severely water repellent (SV 10) to very severely water repellent (SW 30, SV 

26, ALFH, SS trial and AE1) based on the contact angle and classification scheme in Table 1 

(Fig. 5a). The WPDT values as a measure of persistence of SWR in SW 30, SV 10, SS trial, 

AE1, ALFH, and SV 26 were 5±0.2, 86±2, 94±4, 135±2, 158±6 and 167±17 minutes, 

respectively (Table 2). This resulted in an extremely water repellent SWR classification for five 

of the six soils based on WDPT and classification scheme (Table 1). Though these soils have the 

same classification based on both the contact angle and the WDPT measurement, the severity as 

a function of persistence for these soils is different as the curves cross (Fig. 5a). This suggests 

that a high contact angle (severity) does not necessarily denote long WDPT (persistence). The 

SW 30 site, however, had a severely water repellent classification based on its persistence 

(WDPT) (Table 2). This difference in persistence compared to severity could be due to its 

peat/mineral mix composition (Table 2). The peat composition of the soil would be water 
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repellent when dry; however when wet it can absorb a substantial amount of water (Lachacz et 

al., 2009). This resulted in a high severity (contact angle) initially, but with the breakdown of 

repellency in this soil, it absorbs water rapidly as compared to the other repellent soils. The short 

persistence is likely due to the reversible nature of repellency under the presence of water and the 

composition of the peat material in the site (Lachacz et al., 2009).  
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Table 2. Soil texture and soil water repellency (SWR) classification of the soils based on the severity (contact angles) and 

persistence (WDPT) independently and the soil critical water content 

Soils Soil Texture Severity Persistence 

Soil Critical 

Water 

Content 

 USDA 
Contact angles 

(°)† 
SWR Classification WDPT (Min)† SWR Classification θ (kg kg

-1
) 

SV 27 Sand 65±5 Not significantly water repellent 95±12 Extremely water repellent 4% 

CPA Sand 75±2 Very low water repellent 60±7 Extremely water repellent 0% 

SV 10 Sand 95±3 Severely repellent 86±2 Extremely water repellent 3% 

SW 30 Clay 121±1 Very severely repellent 5±0.2 Severely water repellent >17% 

SV 26 Sand 129±2 Very severely repellent 167±17 Extremely water repellent 8% 

ALFH Sand 132±4 Very severely repellent 158±6 Extremely water repellent 6% 

SS Trial Sandy Loam 145±3 Very severely repellent 94±4 Extremely water repellent 16% 

AE1 Sand 145±1 Very severely repellent 135±2 Extremely water repellent 5% 

AE2 Sand 89±3 Moderately repellent n/a n/a 8% 

SCB Loam Sand 114±2 Very severely repellent n/a n/a >19% 

ATS Sand 111±3 Very severely repellent n/a n/a 2% 

Melfort Clay Loam 81±1 Low water repellent n/a n/a >12% 

Goodale Sandy Loam 79±1 Very low water repellent n/a n/a 12% 

†Contact angles and WDPT were measured on 5 replicates with standard error in severity and minutes respectively. 
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Fig. 5. a) The severity of SWR (contact angles) as a function of persistence (time) on extremely water repellent sites classified 

by contact angles measured; AE1, SS trial, SV 26, ALFH, SW30 and SV 10. b) The severity of SWR (contact angles) as a 

function of persistence (time) on subcritical repellent soils classified by contact angles measured; SV 27 and CPA. 
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There was no obvious trend between CA and the carbon and nitrogen content with r of 

0.21 (p>0.05) and 0.20 (p> 0.05) respectively. Additionally WDPT was negatively correlated 

with carbon and nitrogen content with r of -0.70 (p>0.05) and -0.71 (p>0.05) and was not 

statistically significant. Since all the soils originated from different locations, it is expected that 

the relationship normally found between carbon and repellency is not present in this study. The 

arrangement and source of hydrophobic and non hydrophobic molecules on the different soil 

surfaces could be the cause for the differences observed between SWR severity and persistence 

(Douglas et al., 2007). 

 Site SV 26 had significantly lower severity (smaller contact angle) of SWR than other 

extremely repellent soils: AE1 (P<0.01), SS Trial (P<0.01), and SW 30 (P<0.01). According to 

the assumptions of Leelamanie and Karube (2009), contact angle should decrease exponentially 

with soil water contact time and WPDT should respond to initial contact angle, but not to 

reductions in contact angle with soil water contact time. This suggests that high degree should be 

associated with high persistence. Therefore, SV 26 theoretically should have a shorter 

persistence than these repellent soils. However, this soil showed significantly larger WDPT at 

167±17 minutes (Fig. 5a) as compared to SS Trail (P<0.01) and SW 30 (P<0.01). This implies 

that the initial severity of SWR is not necessarily related to persistence (Dekker and Ritsema, 

1994; Shirtcliffe et al., 2006).  The SWR in site SV 27 and the CPA was in the sub-critical range 

(CA < 90°) and classified as not significantly water repellent and very low water repellent, 

respectively (Table 2). The CPA had a higher severity with a contact angle 75±2° of SWR 

compared to SV 27 with a contact angle of 65±5°, however it was not statistically significant 

(P>0.05).  SV 27 did however have statistically significant longer persistence (95±12 minutes) 

(P<0.05) than the CPA (60±7 minutes) (Fig. 5a, 5b). Therefore, in this subcritical range, the 
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same severity of water repellency does not always equate to long persistence as indicated by the 

crossing of the soil curves (Fig. 5b). Subcritical SWR has the ability to buffer the water storage 

property of sandy soils to facilitate plant and microbial growth (Doerr et al., 2000). It may be 

advantageous in decreasing the hydraulic conductivity of the soil to slow down deep drainage 

and allow for longer water residence time in soil for plant water uptake (Lichner et al., 2007). As 

discussed by Doerr et al. (2000) and DeBano (1981), the presence or absence of a soil water 

repellent layer can result in drastic change in hydrological processes. These results demonstrate 

that severity is not always related to persistence in both an extremely repellent and subcritical 

repellent soil. Contact angles were not strongly correlated with WDPT and were not statistically 

significant (r = 0.37, p > 0.05). This suggests that the role SWR plays in hydrological processes 

is more complex. For example, a soil with a high severity of SWR but low persistence would 

result in more initial runoff and less infiltration, but will subsequently become wettable, negating 

the influence of the water repellency. Assessing differences between severity and persistence is 

important when determining runoff scenarios considering the magnitude and frequency of the 

rainfall events (Beatty and Smith, 2013). The difference between contact angle and WDPT is due 

to wetting mechanisms occurring at the surface of soil particles. Contact angles formed on the 

soil surface are caused by the difference in surface energy between water, soil surface and air. 

The larger the difference in surface energy between the soil and liquid, the larger the contact 

angles will be.  Assuming that the surface energy of water and air remains constant, the change 

in soil surface energy causes persistent repellency measured by WDPT.  Although a soil surface 

may have a large surface energy compared to water, the rate at which surface energy changes is 

dependent on the composition of hydrophobic coating on the soil surface (Chen and Schnitzer, 

1978). As such, comparison between the severity and persistence measured by contact angles 
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and WDPT between soils are much more complex considering they measure different properties 

for determination of SWR.  

3.5.2 Critical Water Content 

Critical water contents ranged from 0% in the CPA site to > 19% in the SCB site (Table 

2, Fig. 6). This is similar to the finding by Doerr and Thomas (2000) who indicated that 

repellency can occur in soils with water content up to 28%. A soil with a high CWC would be 

more difficult to remediate as more surfactant or water will be needed to overcome the repellent 

nature of the soil. Four trends were observed in the determination of the CWC from the change 

in contact angle as a function of water content (Fig. 6, 7). As water content increased in the SV 

10, SV 27, CPA, and ATS sites from 0%, the severity of repellency or the water drop contact 

dropped drastically to zero (Fig. 6). This suggests that repellency is easily reversible in these 

sites and when water is present repellency disappears rapidly.  In sites SV 26, SS Trial, AE 1, AE 

2, the severity of repellency or the water drop contact angle decreases slowly until it reaches its 

CWC (Fig. 6). This indicates that repellency is not as easily reversible in these sites and is more 

persistent as soil is wetted from oven dried moisture conditions. As shown in sites SCB and 

Goodale, with increasing water content, the contact angle does not decrease until water content 

reaches > 8% (Fig. 6). This suggests that the SWR in these soils are very persistent at water 

contents < 8%. After reaching 8%, SWR drops slowly until the CWC is reached.   With 

increasing water content in sites SW 30 and Melfort, the decrease in contact angle was not 

reached in this study. The exact critical water content was not determined for these soils, 

however the CWC would be expected to be >17% and > 12% for SW 30 and Melfort 

respectively. Additionally, SW 30 and Melfort sites had persistent repellency at lower water 

contents. The critical water content was not reached in the Goodale and Melfort sites. In sites 
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SCB, SW 30, Goodale, and Melfort the contact angle also increased initially from 0% water 

content and then decreased slowly until the CWC was reached (Fig. 6). It has been suggested that 

as water content goes from oven dried conditions (0%) to the soil’s permanent  wilting point, the 

soil increases to its maximum SWR, followed by a decrease in SWR as it approaches the water 

content at field capacity (King, 1981). Through the examination of CWC between different soils, 

we observe that the value CWC is not only important but the trends observed are also important.  

The trends show how repellency changes as a function of water content (Fig. 7). A more rapid 

decrease in repellency (measured by contact angle) with increases in water content would 

indicate less severe repellency even though the initial severity may be high (Fig. 7a, 7b). A slow 

decrease or persistent repellency at low water contents would indicate more severe repellency in 

a site (Fig. 7c, 7d). As water content increases such as after a rainfall event, the soil will 

approach its critical water content. The expression of repellency is important to determine as the 

soil increases in water content. If the soil does not reach the critical water content, soil 

infiltrability in the soil matrix will be reduced, with a increased chance of preferential flow and 

runoff causing a decrease in soil water storage in the soil profile.  



 

41 
 

0.00 0.05 0.10 0.15 0.20

0

30

60

90

120

150

0.00 0.05 0.10 0.15 0.20
0

30

60

90

120

150

0

30

60

90

120

150

C
o

n
ta

c
t 

A
n

g
le

0

30

60

90

120

150

AE1

SCBAE 2

ALFH

SW30SV10

Water content (kg kg-1)

0.00 0.05 0.10 0.15 0.20
0

30

60

90

120

150

ATS

CPA

Melfort

SV26 Goodale

SS Trial

SV27

 

Fig. 6. Contact angle as a function of water content for all sites for determination of the 

critical water content.  Error bars represents the standard error of mean for 5 droplets on 

5 subsamples. 
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Fig. 7.  Trends observed from contact angle (severity) as function of water content (kg kg-

1): a) Contact angles decreases rapidly with increase in water content, b) Contact angles 

drops slowly with increase in water content, c) Contact angles are persistent until a water 

content is reached, thereafter contact angles drops slowly with increase water content. d) 

As water content increases past 0% there is increase in contact angle initially followed by 

decrease in contact angle. 

In terms of reclamation, natural sites did show lower CWC compared to 

reclaimed/disturbed sites (Fig. 6). This is more likely due to the composition or nature of 

repellent materials in each of the soils (Horne and McIntosh, 2000). In the agricultural sites, the 

effects of SWR can also be seen in finer textured soils as illustrated by high CWC (Fig. 6). 

Additionally similar cropped sites with finer soil textures showed differences in CWC, 

suggesting that the repellency is site specific soil. CWC is important to assess the effect of water 

repellency in soils as it determines at which water contents the effect of SWR are negligible. A 

soil with a high CWC would be more susceptible to preferential flow and runoff due to the soil 

remaining repellent at higher water contents. Additionally it was found that severity of 
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repellency is not necessarily related to critical water content as some of the soils with high 

severity of repellency had low CWC (Table 2). Furthermore soils with low severity of repellency 

were also found to have a high critical water content. This is most likely due to the composition 

of hydrophobic compounds causing the repellency. Hydrophobic compounds in soils with high 

CWC indicate that the difference between the surface tension from water and the soil surface at 

low water contents is persistent. However when water is present and the soil reaches the CWC, 

the particles reorientate rapidly, making the effect negligible and making SWR manageable 

(Doerr et al., 2000; Lehrsch and Sojka, 2011). While hydrophobic compounds in soils with lower 

initial severity and higher critical water contents have more complex organic compounds which 

take substantially longer time to reorientate when subject to wetting. The complex nature of 

compounds that cause repellency further complicates measurement as differences in amount and 

type will determine the severity, persistence and CWC of repellency in the soil (Horne and 

McIntosh, 2000).  

 Classification of SWR could be inconsistent between soils; depending on if the 

classification is based on the contact angles, the WDPT, or the critical moisture content due to 

fact that they measure a different property of repellency under different conditions (Table 2). The 

ability to measure contact angles with time during rewetting and CWC gives us a more detailed 

understanding of how the severity of SWR is changing with persistence and at which water 

content repellency is still present. On reclaimed land, soils with a high severity of SWR and 

CWC may increase the chance of runoff and evaporation, particularly for materials placed on a 

slope (Arbel et al., 2005). However, the shorter persistence and CWC means that a storm may 

remove the SWR more rapidly. This will mitigate the effect of SWR on soil due to its 

disappearance after a rainfall event. Much of the soils in the Athabasca Oil Sands are comprised 
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of coarse textured sandy soils. These sandy textured soils have a lower water retention and 

higher hydraulic conductivity as compared to finer textured soils. This makes re-vegetation of 

plant communities difficult due to less available water in the soil profile. However, the 

expression of subcritical SWR in sandy soils does slow the rapid infiltration of water through the 

root zone (Hallett et al., 2004). Therefore, sandy soils displaying sub-critical repellency will have 

a smaller hydraulic conductivity compared to non-water repellent soils, resulting in an increased 

soil water residence time in the soil profile (Andry et al., 2009).  This would potential increase 

the water storage capability of sandy soils or prevent the loss of water to deep percolation. The 

severity and persistence and CWC are major indicators of SWR and must be examined 

accurately to determine the role water repellency plays in the environment.  

3.5.3 Conclusions 

In this study, the relationship between severity, persistence of SWR, and critical water 

content was determined using soils from the Athabasca oil sands region and agricultural sites in 

central Saskatchewan. Regardless of the land use, a high severity (Contact angle) of repellency 

does not necessarily denote long persistence (WDPT) or high CWC.  Measurement of severity 

and persistence are related to the surface tension differences and changes in surface energy 

between water and the soil surface respectively. Critical water content allowed us to determine 

how persistent SWR was under different water contents. This is important for predicting runoff 

scenarios due different magnitude and frequency of rainfall events in water repellent sites. 

Characterizing and understanding the severity, persistence and CWC together are valuable tools 

when determining the effects of SWR on hydrological processes as they operate under different 

mechanisms.  
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4. DETERMINATION OF THE CONDUCTING POROSITY AND WATER 

REPELLENT AFFECTED PORES SIZES IN SOILS UNDER 

DIFFERENT TENSIONS
2
 

4.1 Preface 

 Water in soil primarily flows through long continuous connected pores.  The conducting 

porosity is the percentage of long continuous connected pores in soil compared to the total 

volume.  Pore properties including tortuosity, surface roughness, discontinuity and dead end 

pores can impede water flow through soil (Bodhinayake et al., 2004). Although the presence of 

soil water repellency (SWR) has been documented in many soils (Doerr et al., 2000), the issue of 

water repellent pores has yet to be examined.   Infiltration using tension infiltrometer at different 

pressure heads and using water and equivalent pressures using 95% ethanol, the contribution of 

specific pores sizes (derived by the capillary rise relationship) to water  flow can be determined.  

Also the repellency index (RI) is dependent on including all pores size excluding macropores to 

determine the SWR in soil.  Does the exclusion of certain pore size influence the measurement of 

the RI?  The objective of this study was to determine if SWR affects the conducting porosity in 

soil and if the measurement (repellency index (RI)) of SWR is influenced by pores sizes. This 

study will aid in our understanding of how water moves through repellent soil and how to best 

measure SWR using RI. 

                                                
 
2 This work has been previously submitted in Chau, H.W., Li, M., Biswas, A, Vujanovic, V. and Si, B.C. (2013). 
Soil water repellency and the conducting porosity in water repellent soils under different tensions.  Under review 
European Journal Soil Science (EJU 165-13). Minor modifications have been made for consistency.   
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4.2 Abstract 

 The conducting porosity in soil is of critical importance to the movement of water, and 

transport of solute and pollutants through soil. Pore properties including tortuosity, surface 

roughness, discontinuity and dead end pores influence the conducting porosity in soil. As soil 

water repellency (SWR) is present in all types of soils to a certain degree, the issue of water 

repellent pores has yet to be addressed. The objective of this study was to determine if SWR 

affects the conducting porosity in soil and if the repellency index (RI) is dependent on different 

tensions. Tension infiltrometer measurements were taken at 5 pressure heads using water (-0.3, -

3.0, -7.0, -10.0 and -13.0 cm) and equivalent pressures using 95% ethanol (-0.11, -1.31, -2.64, -

3.77 and -4.9 cm) at five randomly selected locations on a Jack Pine (Pinus banksiana) stand 

(SV 26) in Northeastern Alberta and two agricultural fields (Goodale and Preston) in Central 

Saskatchewan. The total conducting porosity in soil was higher under ethanol infiltration 

compared to water at all the locations in all the three sites. The effect of SWR on the conducting 

porosity is related to the severity of repellency and at which pore diameter range water flow is 

impeded. The RI under -3 cm was more representative of the total repellency in the soil as more 

contributing diameter pores to the water flux were included in the measurement.  A high RI 

affecting larger diameter pores has more influence on the conducting porosity due to the 

contribution to the total liquid flux.  To accurately determine the actual conducting porosity in 

soil, SWR must be taken into account. 

4.3 Introduction 

 Soil water repellency (SWR) has been recognized as a worldwide phenomena affecting 

many types of soils (Wallis and Horne, 1992). It has considerable influence on soil water 

dynamics through decreasing infiltration and increasing preferential flow, runoff and erosion. 
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Since the transport of water from the soil surface is controlled by the conducting porosity 

(Watson and Luxmoore, 1986), examination into the relationship between SWR and the 

conducting porosity must be performed. The soil water conducting porosity is crucial for 

understanding water, solute, and pollutant movement through soils (Beven and Germann, 1982; 

Ankeny et al., 1990; Luxmoore, 1990). Characterization of this property is paramount for 

research and practical application in agriculture, forestry, pedology and hydrology. With the 

development of the tension infiltrometer (Perroux and White, 1988), determination of the water 

conducting porosity has improved. This also allowed for the determination of which pore 

diameters contribute more to infiltration. Macroporosity (diameter >1.0 x 10-3m) and 

mesoporosity (diameter from 1.0 x 10-5 – 1.0 x 10-3 m) are the major fractions of the total soil 

porosity that contributes to the water conducting porosity in soil (Luxmoore, 1981). Not all these 

pores contribute to the flow as they can include pores that are non-continuous, dead ended and 

have irregular pore geometry, which restricts the transport of water (Bodhinayake et al., 2004). 

Pore toruosity and surface roughness are also known to decrease the water flow in soils.  

As we know SWR is highly variable in site (Hallett et al., 2004); it can also operate at the 

millimeter-scale, making measurements extremely difficult. However, with recent advances 

using the miniaturized infiltrometer for assessing SWR (Tillman et al., 1989), more accurate 

characterization at smaller scales has been done (Hallett et al., 2004). Tension infiltrometers 

measure the infiltration rate at negative water pressures with respect to the atmosphere (Clothier 

and White, 1981). Since capillary pressure is related to the equivalent pore diameter, the change 

in the tension or pressure head can estimate the range of pore size contribution to infiltration 

(Jarvis et al., 1987).   
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 Calculation of the repellency index (RI) is a common method for determination of the 

severity of SWR. This method involves the infiltration of two liquids: commonly water and 95% 

ethanol (not influenced by repellency) under -3 cm pressure head to minimize macropore flow. 

The ratio of the two sorptivities from the early time or steady state infiltration curve gives an 

indication of how repellent the soil is. In this way, the overall contribution of SWR to the total 

conducting porosity excluding the macropores is assessed. However, this does not distinguish the 

contribution of specific water repellent pore sizes to the total water flux. There is little research 

on how the RI changes with exclusion of different pore sizes (decreasing pressure head).  

 Many methods have been developed to calculate the water conducting porosity. Watson 

and Luxmoore (1986, 1988), Dunn (1991), and Bodhinayake et al. (2004) utilized minimum 

equivalent pore radius, mean pore radius, and a range of pore radii for determination of the 

conducting porosity, respectively. Due to the overestimation of the conducting porosities using 

minimum equivalent pore radius and mean pore radius (Watson and Luxmoore, 1986; Dunn, 

1991), using a range of pore radii (Bodhinayake et al., 2004) is the preferred method for 

characterization of the conducting porosity.  Nevertheless these conducting porosity estimations 

do not take into account the presence of SWR. Through using 95% ethanol infiltration we can 

determine an intrinsic conducting porosity; that is the conducting porosity independent of soil 

surface properties (Lamparter et al., 2010). The objective of this study was to examine how SWR 

affects water conducting porosity at different pore sizes by examining the change in RI under 

different pressure heads.  I hypothesized that SWR will decrease the conducting porosity in soil 

and the extent will be determined by which pores sizes SWR is affecting.    
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4.4 Materials and Methods 

4.4.1 Site Information 

 The study areas are located in the Canadian Boreal Forest Region within the Central 

Mixed Wood Region in Alberta and in Central Saskatchewan within the Aspen Parkland Region 

(Natural Regions Committee, 2006). Three field experiments using a tension infiltrometer to 

infiltrate water and 95 % (vol vol-1) ethanol were performed on one field site in Northeastern 

Alberta, Canada (N 57º 30’ 39”, W 111º 25’ 48”) and two sites in Central Saskatchewan, Canada 

(N 52 º 03’ 66’’ W 106 º 30’ 38’’, N 52º 07’ 98” W 106º 37’ 53’’). The site in Northeastern 

Alberta is characterized by a continental boreal climate with long and cold winters and short cool 

summers. The average annual precipitation is 455 mm, with mean daily temperature of -18.8°C 

in January and 16.8°C in July (Environment Canada, 2003). This site is an undisturbed jack pine 

(Pinus banksiana) stand with a lichen covered forest floor on coarse-textured, nutrient poor soils, 

designated as SV 26 (Long Term Soil Vegetation Plot 26), an A ecosite, respectively 

(Beckingham and Archibald, 1996). This long term soil vegetation plot is a typical site that the 

Athabasca Oil Sands industries need to recreate in their reclamation/restoration projects (Johnson 

and Miyanishi, 2008). The soil in the area is described as Dystric Brunisol (Dystrochrept 

inceptisol, USDA taxonomy system) developed on glacial fluvial and eolian parent material. The 

two agricultural sites in Central Saskatchewan are the Goodale (Goodale Crop Research Farm) 

and Preston (Animal Science Field) sites, which were previously cropped with canola (Brassica 

napus). This area is characterized with warm summers and very cold winters. The average 

annual precipitation is 350 mm, with mean daily temperature of -17°C in January and 18.2°C in 

July for these sites. (Environment Canada, 2003). The soils in these sites are Dark Brown 

Chernozemic soils under the Canadian system (Typic Borolls, USDA taxonomy system). 
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Site SV 26, Goodale, and Preston sites were classified with a Canadian/USDA texture of 

sand, sandy loam and loam designation respectively. Initial assessment showed the presence of 

natural SWR in the sites (Hunter et al., 2011). Soil texture was determined by measuring particle 

size distribution using a Laser Scattering Particle Size Distribution Analyzer (Horiba LA - 950, 

Horiba Instruments Inc., Irvine, CA) after air-drying and sieving to 2 mm. Gravimetric water 

content and bulk density was determined at locations adjacent to where the infiltration occurred 

before the experiment (Table 3). To test for SWR in the soil initially, contact angles were 

determined using the sessile drop method and Low Bond Axisymmetric Drop Shape Analysis 

(Bachmann et al., 2000; Stalder et al., 2010).   
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Table 3. Location specific information: bulk density and initial volumetric water content from each location in each of three 

sites; SV 26, Goodale, and Preston before infiltration. 

 SV 26 Goodale Preston 

 Bulk density 

(g cm-3) 

Initial field water 
content (θv) 

Bulk density 

(g cm-3) 

Initial field water 
content (θv) 

Bulk density 

(g cm-3) 

Initial field water 
content (θv) 

Location 1 1.39 0.17 1.08 0.09 0.85 0.06 

Location 2 1.29 0.13 1.25 0.27 0.87 0.05 

Location 3 1.34 0.17 1.24 0.26 0.76 0.15 

Location 4 1.42 0.12 0.98 0.10 0.86 0.17 

Location 5 1.32 0.16 0.91 0.08 1.00 0.05 
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4.4.2 Tension Infiltrometer  

 Before infiltration measurements were performed, an area of 0.6 cm diameter was 

selected and surface debris was carefully removed from the surface to ensure good contact. 

Tension infiltrometers with a 0.2 m diameter disc (Soil Moisture Measurement Systems, Tucson, 

AZ) were used to measure infiltration rate as a function of time at different pressure heads for 

two liquids on 5 locations randomly selected in each of the three fields. SWR can vary at the 

millimeter scale due to the presence of unevenly distributed hydrophobic material (Orfánus et al., 

2008). The five locations were not taken as replicates as averaging the locations would not allow 

us to see the true effect of repellent pores on the RI and the conducting porosity.  The nylon 

mesh attached to the tension infiltrometer disc had an air entry value of about -3.0 to 3.2 kPa 

pressure head. Tension infiltrometer measurements were taken at five pressure heads using water 

(-0.3, -3.0, -7.0, -10.0 and -13.0 cm water pressure head corresponding to 1 x 10-2, 1 x 10-3, 4.2 x 

10-4, 3.0 x 10-4, and 2.3 x 10-4 m equivalent pore diameters). Pressure heads were adjusted for 

infiltration of ethanol to account for differences in surface tension and density as compared to 

water. Using the capillary rise equation (Eq. 4.1) with γ of 2.19 x 10-2 N m-1 and ρ of 8.07 x 102 

kg m-3 for 95% ethanol the pressures head used were -0.11, -1.31, -2.64, -3.77 and -4.9 cm. The 

water and 95% ethanol pressure heads corresponded to 1 x 10-2, 1 x 10-3, 4.2 x 10-4, 3.0 x 10-4, 

and 2.3 x 10-4 m equivalent pore diameters.   Since the pressure head were equivalent between 

the water and 95% ethanol, the liquid content in soil at each pressure head is equal.  Water and 

ethanol (95%) were infiltrated side by side, on the same location from low to high pressure 

heads, beginning with the -13.0 cm and -4.9 cm for water and ethanol respectively to reduce the 

effect of spatial variability (Logsdon and Jaynes, 1993). This reduces the hysteresis where 

drainage occurs close to the tension infiltrometer disk while wetting continues near the wetting 
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front (Reynolds and Elrick., 1991). The water infiltrating into the soil was measured by 

recording the drop in water level as a function of time. When the rate of water infiltrating in soil 

did not change with time for three consecutive measurements taken at 30 second intervals, steady 

state was assumed. Steady state occurred around 18-20 minutes. 

4.4.3 Estimation of the Conducting Porosity 

 The capillary rise equation, (Eq. 4.1) (Bear, 1972) gives the maximum filled pore size, r, 

(L) at a specific pressure head, h (L). 

 
( )

ρ g h

 γ
r=

αcos2

 (Eq. 4.1)
 

which γ is the surface tension of the liquid (M T-2), α is the contact angle between the liquid and 

the pore wall (assumed to be zero), ρ is the density of the liquid (M T-2), and g is the gravity 

acceleration constant (L T-2). Modification of the capillary rise equations for different liquids for 

determination of the maximum filled pore size must be corrected for differences in the surface 

tension and the density of the liquids.   

 The steady state infiltration rate obtained from measurement under the five pressure 

heads was used to determine unsaturated hydraulic properties using Gardner's (1958) exponential 

hydraulic conductivity function, (Eq. 4.2); 

           (Eq. 4.2)  

 

where K(h) is the unsaturated hydraulic conductivity (L T-1), as a function of pressure head, h 

(L), α is the inverse macroscopic capillary length parameter (L-1) and Kfs is the saturated 

)exp(=)( hαKhK fs
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hydraulic conductivity (L T-1). Under a circular disc and steady state condition, Eq. 4.3 can be 

used for determination of the unknown parameter Kfs and α (Wooding, 1968). 

 ( ) ( )hαK
rαπ

hq fs

d

exp)
4

+1(=∞
 (Eq. 4.3)

 

q∞ is infiltration rate at steady state (L T-1) as a function of pressure head, h (L), rd is the radius, 

(L), of the circular disc, and Kfs is the saturated hydraulic conductivity (L T-1).  

 Given Kfs and α, the soil water conducting porosity, ε, for a given range of pore radii or 

pressure heads was estimated by (Bodhinayake et al., 2004) (Eq. 4.4) 
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where a is the lower limit for the pore diameter (L), b is the upper limit of the pore diameter (L), 

α is the hydraulic property (L-1), ρ is the density of liquid (M L-3), g is the gravity acceleration, 

(L T-2), Kfs is the saturated hydraulic conductivity (L T-1), γ is the surface tension (M T-2), and µ  

is the viscosity (M L-1 T-1).  Estimation of the conducting porosity was done on the following 

pore diameter ranges from 1.0 x 10-3 to 1.0 x 10-2, 4.2 x 10-4 to 1.0 x 10-3, 3.0 x 10-4 to 4.2 x 10-4, 

2.31 x 10-4 to 3.0 x 10-4 and 2.3 x 10-4 to 1.0 x 10-2 m. We assumed that the maximum pore 

diameter at the site is 1.0 cm.  

4.4.4 Water Repellency Index 

 Early time sorptivity was determined by (Philip, 1954)
 
(Eq. 4.5) 

2/1= Sti       (Eq. 4.5) 
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where, i is the cumulative infiltration (L T-1), for each measured pressures, S is sorptivity (L T-1) 

of infiltrating liquid and t is the time (T). Sorptivity (S) was determined at steady state by (Leeds-

Harrison et al., 1994) (Eq. 4.6) 

     
br

Qf
S

4
=      (Eq. 4.6) 

where Q is the steady state infiltration rate, b is the parameter dependent on the soil water 

diffusivity function, taken as 0.55 for soil with unknown b parameter (White and Sully, 1987), r 

is the radius of disc, and f is the fillable (air filled) porosity.  The repellency index (RI) can be 

calculated with (Tillman et al., 1989) (Eq. 4.7). 

 95.1=
W

E

S

S
RI

 (Eq. 4.7)
 

where SE is the sorptivity of 95% ethanol (L T-1), SW is the sorptivity of water (L T-1), and 1.95 is 

a constant to correct for viscosity and density differences between water and 95% ethanol. 

However, utilizing different pressure heads to assess the conducting porosity of soil, the 

viscosity and density were factored in to the pressure head differences at different pore sizes for 

infiltration, so the 1.95 correction factor is not needed, and RI can be calculated with (Eq. 4.8); 

      
W

E

S

S
RI =              (Eq. 4.8)  

An RI greater than 1 indicates the presence of SWR in the site. The RI was determined for each 

of the 5 pressure heads and compared to the equivalent pore diameter ranges.  

4.5 Results and Discussion 

The RI in each of the five locations in SV 26, Goodale and the Preston site using water 

pressure heads (-0.3,-3.0,-7.0, -10.0, and -13.0) and corresponding 95% ethanol pressure heads (-



 

56 
 

0.1, -1.3, -2.6, -3.7 and -4.9) are displayed in Fig. 8 a) and 8 b) for early time and steady state 

conditions, respectively. The pressure heads were set sequentially from -13.0, -10.0, -7.0, -3.0, 

and -0.3 cm; corresponding to increasing equivalent pore diameter sizes. This will allow us to 

determine the differences in RI excluding larger pore sizes or increasing pressure head to -0.3 

cm. Steady state RI was lower than early time RI (Fig. 8). This is related to initial water content 

in soil before the measurement (Table 3). Parameter θ, contact angle is an indication of the 

wettability of soil; however it is often neglected as it is assumed to be constant at 0° in fully 

wettable soil.  Assuming the wetting fluid does not change in surface tension due to increase in 

hydrophobic compounds leaching into the fluid during transport through soil (Arye et al., 2007).  

Additionally, discussion of fractionally wettability, in which some pores expressing contact 

angle, may not be filled at a given pressure (Beatty and Smith, 2013).  This is further 

complicated when we have subcritical contact angle (CA<90°), suggesting partially filled pore, 

or completely empty pore not contributing to water flow.  The pores contributing to flow must be 

wettable or else it would not contribute to water flow due to the discontinuity in pores not being 

filled.  Under steady state conditions, if the persistence of repellency is low, we can expect that 

all the pores filled and conducting water will contribute to the conducting porosity.  If the 

persistence of repellency is long, then we can assume that the some of the pores that are repellent 

will not fill and conduct water, which will not contribute to the conducting porosity.  
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Fig. 8. Water repellency index (RI) as a function of water pressure head (cm) for the 5 locations calculated from sorptivity 

obtained at a) early time and b) steady state on SV 26, Goodale and Preston. Macropore and mesopore contributions to flow 

separated at -3 cm pressure head. Location 1 (����), 2 (����), 3 (����), 4 (����), and 5 ().  Dashed vertical line indicates RI values at 

different locations under -3 cm tensions. 
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Water repellency indexes calculated from either the early time or the steady state varied 

with pressure head (Fig. 8).  For example, in location 1 for SV 26, RI varies from approximately 

5 at the pressure head of -13.0 cm, to 7 at the pressure head of -10.0 cm, to 9 at pressure head of 

-7.0 cm, to 33 at the pressure head of -3.0 cm and to 2 at the pressure head of -0.3 cm (Fig. 8a). 

However, the patterns of the RI variation with pressure head were different from location to 

location and from site to site (Fig. 8).  This gives a indication of how variable the severity and 

persistence of SWR is between sites and within site. In most cases, RI increased with the 

increase in pressure head from -13.0 cm to -3.0 cm, and then decreased from pressure head = -

3.0 to -0.3 cm (Fig. 8).  This suggests that the role of repellency is less of a factor since the 

smaller pores contribute less to the total flux and repellency affects capillary flow more than 

gravitational flow. However, there were locations where the patterns were different. For 

example, at location 5 of SV 26, RI decreased from pressure head = -13.0 cm to -10.0 cm, 

increased from pressure head =-10.0 to – 7.0 cm and then decreased from pressure head =-7.0 to 

-0.3 cm (Fig. 8a).  This is likely due to the highly variable nature of repellency in soils and in soil 

pores and that repellency affects water transport at smaller scales and larger scales like in 

macropores (Hallett et al., 2004).  

Though the general patterns in the RI vs. pressure head relationship were similar between 

the early time and the steady-state at a location (Fig. 8), the repellency indices calculated from 

the early time were much larger than that calculated from the steady-state as discussed 

previously. For example, the largest RI value from location 1 of SV 26 was 33 at pressure head 

of -3.0 cm from the early time and was 7 from the same water pressure head from the steady-

state. According to Hunter et al. (2011), who examined only early time infiltration, severely 

water repellent soil has RI > 19.5, and sub critically water repellent soil has RI between 1.95 and 
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19.5. According to this classification, location 1 of SV 26 could be classified as severely water 

repellent from the early time analysis, and sub critically water repellent from the steady-state 

analysis. This is due to fractionally wettability of the pores, with more exposure to water the soil 

will reach the critical water content and the equivalent pore under a certain pressure head will be 

filled and conduct water.  

 The early time analysis and steady-state analysis lead to different RI values. 

Determination of the RI from sorptivities at early time infiltration, would give us an indication of 

the repellency in the soil at the water content initially before infiltration. As well, the RI at steady 

state would be more related to repellency after all the equivalent pore diameters (corresponding 

to the tension applied from the disc) are filled with water. Therefore, the RI at steady state as 

compared to early time is lower due to the change in water contents (Fig. 8) (Logsdon and 

Jaynes, 1993).  For examining the influence of SWR on the RI excluding the certain pore 

diameters, the RI at steady state would be more useful as all the conducting pores should be 

filled regardless of the persistence of SWR. As such our discussion will focus on repellency at 

steady state conditions.  

 At the highest pressure head, -0.3 cm, we see that all the locations in site SV26, Preston 

and Goodale (except for location 5 in Goodale) have a RI below 5 and have a lower RI than at 

pressure head -3.0 cm (Fig. 8).  This suggests that when all the pores with diameters ≤ 1.0 x 10-2 

m are included, the contribution of non-water-repellent pores may reduce the overall water 

repellency. This is also likely due to the temporal removal of water repellency under this 

pressure head as we see a drop in RI from early time to steady state (Fig. 8). When the water 

content increases as more conducting pores are involved and filled, repellency can be temporally 

removed as the soil has passed its critical water content (Wang et al., 2000a).  At -3.0 cm 
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pressure head, we see that RI increases for most of the locations for the 3 sites, because SWR 

measured in soil theoretically excluded in all the macropores (diameters ≥ 1 x 10-3 m) (Fig. 8).  

At this pressure head, the macropores were empty and did not contribute to the flow 

measurement. Only the mesopores contributed to the flow much like at field capacity where all 

gravity water has drained out of the macropores (Luxmoore, 1981). This indicates that SWR still 

affected water flow at these conditions. We know that SWR will affect the infiltration rate 

(Wang et al., 2000b) during a wetting event when soil water content increases past a certain 

water content. However, the effect of SWR during gradual drying is still unknown.  

 As the pressure head decreases, we notice that repellency is still being detected by the 

repellency index at lower pressures heads (smaller pore diameters) (Fig. 8b). This suggests that 

SWR affects both flow through macropores and mesopores (Nyman et al., 2010). Repellency at 

smaller pore sizes may be less influential as liquid flux is smaller in pores with smaller 

diameters. As such repellency index measured under the -13.0 cm pressure head would be less 

significant as the liquid through pores are less influential to the total flux. The result that 

repellency was present under different pressure heads validates that the measurement under 

different pressure head is important to determine the role SWR plays in certain pores (Hunter et 

al., 2011).  If the repellency index was determined under only one pressure head neglecting a 

specific pore size range, the overall influence of SWR to soil water transport would be incorrect. 

This is the first demonstration of the RI as a function of pressure head or exclusion of certain 

filled pore diameter.  

  Fig. 9 depicts the steady state infiltration with corresponding pressure heads for location 

1 in the sites of SV 26, Goodale, and Preston, respectively.  The infiltration rate decreases with 

the decrease in pressure head due to exclusion of larger diameter pores and number of pores. 
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Similar to water infiltration, steady state infiltration of ethanol decreased with the increase in 

ethanol head. All 3 sites showed a higher steady state infiltration rate of ethanol than that of 

water (Fig. 9). This is mainly due to the effect of SWR on the infiltration. Infiltrating 95% 

ethanol instead of water will give us an intrinsic infiltration rate, which is the infiltration not 

influenced by repellency of pores in soil. When the steady state infiltration rate is the same for 

both water and 95% ethanol, repellency has no effect on the infiltration as equivalent pores are 

filled under both liquids. 
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Fig. 9. Steady-state infiltration rate (x 10-2 m s-1) from location 1 on a) SV 26, b) Goodale, c) Preston; calculated from water 

pressure head (cm) on the bottom axis, and equivalent 95 % ethanol head (cm) on top axis. Water (����), Ethanol (����) 
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  The liquid flux at a defined pore diameter range was calculated from subtracting the 

liquid flux at an upper constrained pressure head with the liquid flux at a lower constrained 

pressure head. For example at -0.3 cm of pressure head the water flux was subtracted from the 

pressure head of -3.0 cm which give us the water flux contribution from 1.0 x 10-2 to 1.0 x 10-3 m 

pore sizes. Water fluxes are subtracted with decreasing water pressure head from -0.3 to -3.0 cm, 

-3.0 to -7.0 cm, -7.0 to -10.0 cm, and -10.0 to -13.0 cm. This corresponds to the water flux 

through pores diameter ranges of 1.0 x 10-2 to 1.0 x 10-3, 1 x 10-3 to 4.2 x 10-4, 4.2 x 10-4 to 3.0 x 

10-4, 3.0 x 10-4 to 2.3 x 10-4 and ≤ 2.3 x 10-4 m equivalent pore diameters.  Since the water flux 

compared to 95% ethanol flux was lower, I assumed that the 95% ethanol flux is our liquid flux 

in soil not affected by repellency (surface properties).  This is true when soil water contents are 

higher than its critical water content.  In SV 26 site for location 1, 2, 3, and 5, most of the liquid 

flow occurred at 1.0 x 10-2 to 1.0 x 10-3 m pore diameter range and for location 4 at the 1.0 x 10-2 

to 4.2 x 10-4 m diameter range (Fig. 8a). In the Goodale site, most of the five locations show that 

liquid flows through the 1.0 x 10-2 to 1.0 x 10-3 m, with the exception of location 3 as some of the 

liquid flow went through the pores with a diameter ≤ 2.3 x 10-4 m (Fig. 8b). For the Preston site, 

most of the liquid flowed through the pores with a diameter between 1 x 10-2 to 1 x 10-3 m at 

locations 1, 3, and 4, while at locations 2 and 5 it flowed through the pores with diameter 

between 1.0 x 10-3 to 4.2 x 10-4 m (Fig. 8c). Since more liquid flows through larger diameter 

pores than through small diameter pores, the large diameter pore ranges contribute more to the 

total liquid flux.   
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Under the same tension, with 95% ethanol and water, we can calculate the pore size 

range that is involved in the water conducting process.  For example under the 13 cm and 4.9 cm 

of water and ethanol tension respectively, the pores that are involved are >2.3 x 10-4 m.  However 

if repellency affects a portion of pores, then a significant portion of water conducting is lost due 

to change in CA in pores preventing or limiting the conduction in soil.  Slightly water repellent 

soil have lower actual pore radii conducting flow compared to potential pore radii (The actual 

pore radii available for flow taking into account reduced wettability) (Beatty and Smith, 2013). 

The conducting porosity (calculated as the % of the total volume) in soil was generally higher 

under 95% ethanol infiltration than under water infiltration for all the locations in SV 26, 

Goodale and Preston sites at each pore diameter range.   This resulted in an overall higher 

conducting porosity under 95% ethanol compared to water (Table 4). The difference is most 

likely caused by water repellency restricting flow through certain pores. This also supports the 

idea that all soils show some severity of repellency, therefore causing the difference in calculated 

conducting porosity. When examining water repellent soils, the larger the change in conducting 

porosity the higher the severity of SWR present. As SWR does not affect 95% ethanol 

infiltration, the lower conducting porosity in water than in ethanol would also indicate the 

presence of water repellent pores. The 95% ethanol infiltration was also used to determine the 

intrinsic conducting porosity (Lamparter et al., 2010).  
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Table 4. Estimation of the water conducting porosity (WCP) and intrinsic (95% ethanol) conducting porosity (ECP) (% of 

total soil volume) for pore diameter of 0.0231 to 1 mm for the five locations in each site 

Pore Diameter Location 1  Location 2 Location 3 Location 4 Location 5 

(a-b), cm (WCP) (ECP) (WCP) (ECP) (WCP) (ECP) (WCP) (ECP) (WCP) (ECP) 

 %  % % % % 

SV 26 3.04 x10-3 5.76 x10-2 5.20 x10-3 1.62 x10-2 4.29 x10-3 1.70 x10-2 5.65 x10-3 4.93 x10-2 1.11 x10-3 2.17 x10-2 

Goodale 1.25 x10-4 1.38 x10-3 4.40 x10-4 1.02 x10-3 5.78 x10-6 4.19 x10-4 1.54 x10-4 1.18 x10-3 6.37 x10-5 3.81 x10-2 

Preston 4.61 x10-4 6.39 x10-3 4.83 x10-3 6.77 x10-3 6.19 x10-4 6.06 x10-3 1.12 x10-3 2.74 x10-2 1.25 x10-3 6.83 x10-3 
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At the pore diameter ranges of 2.3 x 10-4 – 1.0 x10-2 m, locations are ranked in order of 

decreasing total water conducting porosity; Location 4, 2, 3, 1, and 5 for SV 26; Location 2, 1, 4, 

5, and 3 for SV 26; Location 2, 5, 4, 3, and 1 for SV 26 (Table 4).  For the intrinsic (95% 

ethanol) conducting porosity in the pore diameter range of 2.3 x 10-4 – 1.0 x10-2 m, locations 

were ranked in terms of decreasing intrinsic total conducting porosity; Location 1, 4, 5, 3, and 2 

for SV 26; Location 1, 4, 2, 3, and 5 for Goodale site; Location 5, 1, 4, 2 and 3 for Preston (Table 

4). This difference in rank between water and 95% ethanol supports that RI measured under each 

pressure head varies in each location as the intrinsic total conducting porosity order has changed. 

The changes in the conducting porosity for all five locations for each of the 3 sites are shown Fig 

8. The SWR had more of an effect on location 1, 4, as compared to 2, 3, and 5 because the 

change (2.3 x 10-4 – 1.0 x10-2 m diameter range) between the water and intrinsic conducting 

porosity was greater at location 1 and 4 than at location 2, 3, and 5 in site SV 26 (Fig. 11a). This 

is mainly due to the more pronounced effect of SWR on the water conducting porosity at the 

pore diameter ranges of 1.0 x 10-3 – 1.0 x10-2 m and 4.2 x 10-4 – 1.0 x10-3 m which constitutes 

62% and 28% respectively of the liquid flux for location 1 in site SV 26 (Fig. 8a). At location 4, 

there is more mesopore contribution to water flow due to the higher bulk density (Table 3). This 

suggests that a large percentage of the total liquid flux in this location was contributed from the 

mesopores (85% of total flux came from diameters ≤ 1.0 x 10-3 m). Therefore, the change in the 

conducting porosity in location 4 is larger than locations 2, 3 and 5 in the SV 26 site.  
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Fig. 11. The change in the estimated conducting porosity (95% ethanol conducting porosity – water conducting porosity) (% of 

total volume) in the five locations on a) SV 26, b) Goodale, and c) Preston.  
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In the Goodale and Preston site, the largest change in conducting porosity was observed 

in location 5 and location 4 respectively (Fig. 11b, 11c). In the Goodale site, Location 5 had only 

34% of the total liquid flux flowing through 1.0 x 10-2 to 1.0 x 10-3 m pore diameter range, 

compared to Location 1 having 98% (Fig. 10b). However at 1.0 x 10-3 to 4.2 x 10-4 m pore 

diameter ranges, 64% of the total liquid flux flowed through these pores in location 5. As such 

the high RI observed at early time and steady state conditions in location 5 results in a larger 

change in the conducting porosity as compared to all locations in the Goodale Site (Fig. 11b). At 

location 4 in the Preston site, 80% of the total liquid flux occurred through1.0 x 10-2 to 1.0 x 10-3 

m pore diameter sizes (Fig. 10c). With larger RI observed at early time than from steady state, 

this resulted in the largest change in conducting porosity compared to other locations in the 

Preston site (Fig. 10c). 

Examining location 2 and 3 in SV 26, Goodale, and Preston sites, we observe lower 

levels of repellency as compared to all other locations in each of the 3 sites at all pressure heads 

(or all the pore sizes) except for location 2 in the Preston site (Fig. 8). Location 2 in the Preston 

site had a large repellency index at the most negative pressure head (pore diameter size ≤ 2.3 x 

10-4). However at this pressure head the liquid flowing through this pore diameter range did not 

contribute much to the total liquid flux. This resulted in not much change to the conducting 

porosity.  In all the sites, Location 2 and 3’s water conducting porosity between the pore 

diameter ranges of 1.0 x 10-3 – 1.0 x10-2 m and 4.2 x 10-4 – 1.0 x10-3 m did not change much 

with the intrinsic conducting porosity. This indicates that SWR will have less of an effect on the 

total conducting porosity in these two locations as the pore diameters that contribute more to the 

total liquid flux had a smaller RI as compared to the other three locations. This also suggests the 

SWR effect on the water conducting porosity originated mainly from the reduced infiltration 
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through the larger pores. The effect of SWR on the conducting porosity is directly related to how 

much the infiltration through these pores is reduced and how severe the repellency is in pore 

diameter ranges which contribute to majority of the total liquid flux.   

4.6 Conclusions 

This study revealed that ethanol infiltration through a tension infiltrometer can be used to 

determine the intrinsic conducting porosity (unaffected by surface properties) in water repellent 

soils.  The obtained intrinsic conducting porosity is much higher than that from water conducting 

porosity if the soil is water repellent.  We also determined how RI varies under different pressure 

heads. RI values obtained under different pressure heads are different due to all pore size ranges 

tested showing some degree of repellency.  This suggests that some pores are not being filled 

under certain pressures at equilibrium.  This would suggest that water retention in soil would be 

affected by water repellency since some pores are not being filled under certain pressure 

conditions.  The effect of RI on the water conducting porosity is related to how many and how 

much of each equivalent pore is filled under a certain pressure head to the total liquid flux. Large 

diameter pores contribute more to the liquid flux than smaller sized pores. As a result a high RI 

in the macropores in contrast to high RI at the mesopore ranges will result in a decrease in the 

water conducting porosity. The determination of the RI under different pressure heads gives a 

better indication of how SWR will affect water flow through different pore diameters.  

Additionally, determining RI using a tension which includes the pore diameters that contribute 

more to the total liquid flux would give a better indication of the role repellency plays in soil 

water transport.   
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5. A NOVEL METHOD FOR IDENTIFYING HYDROPHOBICITY ON 

FUNGAL SURFACES: CONTACT ANGLES
3
 

5.1 Preface 

Fungal surface hydrophobicity has many ecological functions and is speculated to be a 

major cause of SWR (White et al., 2000; Feeney et al., 2006).  Water contact angles are a direct 

and simple approach for characterization of SWR and fungal surface properties (Wessel, 1988; 

Bachmann et al., 2000; Letey et al., 2000).  However due to roughness of the surface of soil and 

fungi, water contact angles are often obscured and hard to measure (Smits et al., 2003).  With 

advances in contact angle measurements, new fitting schemes have been developed to fit contact 

angle on obscured surfaces such as fungi and soil (Stalder et al., 2010).  The objective of this 

study was to evaluate if utilization of in-vitro growth conditions coupled with versatile image 

analysis allows for more accurate fungal contact angle measurements.  Fungal strains classified 

by the surface properties were utilized in Chapter 7 for assessment of the change in SWR and 

infiltration rate in soil.  

5.2 Abstract 

Fungal surface hydrophobicity has many ecological functions and water contact angles 

measurement is a direct and simple approach for its characterization. The objective of this study 

was to evaluate if in-vitro growth conditions coupled with versatile image analysis allows for 

more accurate fungal contact angle measurements. Fungal cultures were grown on agar slide 

media and contact angles were measured utilizing a modified microscope and digital camera 

                                                
 
3  This work has been previously published in Chau, H.W., Si, B.C., Goh, Y.K., and Vujanovic, V. (2009). A novel 
method for identifying hydrophobicity on fungal surfaces. Mycological Research. 113:1046-1052. Minor 
modifications have been made for consistency.   
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setup. Advanced imaging software was adopted for contact angle determination. Contact angles 

were observed in hydrophobic, hydrophilic and a newly created chronoamphiphilic class 

containing fungi taxa with changing surface hydrophobicity. Previous methods are unable to 

detect slight changes in hydrophobicity, which provide vital information of hydrophobicity 

expression patterns. Our method allows for easy and efficient characterization of hydrophobicity, 

minimizing disturbance to cultures and quantifying subtle variation in hydrophobicity. 

5.3 Introduction 

 Microbial surface characteristics via the cell wall interactions have important implications in 

a variety of processes (Dague et al., 2007). It is one of the surface properties influencing 

microbial interactions at the fungal interface (Van Loosdrecht et al., 1987; Gannon et al., 1991). 

Key functions include supporting internal turgor pressure, appressorium formation in the cells 

and also providing structure, shape, adhesion and aggregation (Lee and Dean, 1994; Dague et al., 

2007). Microorganisms and their interactions at the interfaces are known to be controlled by 

physicochemical properties of the cellular surface (Smits et al., 2003). Research suggested that 

the presence of hydrophobic moieties causes the fungal cell surface to exhibit hydrophobic 

properties (Hazen, 1990; Hazen et al., 1990; Lopez-Ribot et al., 1991; De Vries et al., 1993). 

Spore dispersal, adhesion, pathogenesis and breaking surface tension have been linked to fungal 

hydrophobic moieties, which were identified as a class of cysteine rich proteins called 

hydrophobins (Hazen, 1990; Stringer et al., 1991; Wessels et al., 1991; Wessels, 1992; Bidochka 

et al., 1995a; b). The relationship between hydrophobins and fungal hydrophobicity is well 

understood (Wösten and de Vocht, 2000), but how the expression of these proteins affects 

contact angle measurement of fungal surfaces has not been addressed. It is known that changes in 

the developmental stages of a fungus cause expression of different hydrophobins, which is likely 
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one of causes of change in fungal surface hydrophobicity (Peñas et al., 1998). Besides 

hydrophobins, secondary metabolites such as despides and depsidones were also found to 

contribute to surface hydrophobicity in lichen mycobionts (Lange et al., 1997; Huneck, 2003; 

Lumbsch et al., 2006). Other fungal metabolites and repellents including mycotoxins and free 

radicals may also contribute to fungal hydrophobicity (Teertstra et al., 2006; Orciuolo et al., 

2007; Peiris et al., 2008). Examinations into the causes of fungal surface hydrophobicity should 

also encompass compounds beside hydrophobins. 

 Current methods employed to characterize/assess microbial cell surface hydrophobicity 

include binding to aliphatic acids, hydrocarbons, microsphere assay, colony imprints, dielectric 

permittivity, hydrophobic interaction chromatography, imprint assay, rolling drop assay, salt 

aggregation test and two phase partitioning (Doyle, 2000). These methods are subjected to 

criticism as they are indirect methods to quantify hydrophobicity of the microbial cell surfaces. 

Time, temperature, pH, ionic strength, and interaction species concentration are factors that 

affect these methods especially when dealing with adhesion techniques (Ofek and Doyle, 1994). 

Microbial adhesion methods involve both electrostatic effects and hydrophobic interactions to 

bind, which suggest other interactions may influence the results (Geertsema-Doornbusch et al., 

1993; Doyle, 2000). Current methods involve manipulation of the specimen (washing, staining, 

extraction, adhesion and drying), which may drastically impact the hydrophobicity assessment. 

 Behaviours such as excretion of exudates, resistance to flooding, production of aerial 

mycelia, spores and fungal growth are the basis of some of methods for indirect differentiation 

between hydrophobic and hydrophilic fungal surface properties (Stenström, 1991; Unestam and 

Sun, 1995). The way that fungi and microorganism in general grow and develop, will determine 

the method employed (Hazen, 1990). In an effort to maintain consistency and reproducibility, 
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much of the research requires sample manipulation to ensure standard conditions. Manipulation 

of the sample will undoubtedly affect the hydrophobicity, resulting in incorrect measurements. 

This is more prevalent when a change is made to hydrophobic samples such as fragile fungal 

cultures. Due to its delicate and multifaceted nature of fungal growth, they have been largely 

excluded from hydrophobicity measurements (Hazen, 1990; Smits et al., 2003). Unestam (1991) 

proposed a simple method which required placing small droplets (≤0.01 µl) on fungal structures 

and observing water drop penetration for at least 2 h at 20 °C. This method allows for direct 

characterization of hydrophobicity with minimized disturbances to fungal surfaces, but is time-

consuming, subjective and does not provide information of surfaces energies (or degree of 

hydrophobicity). 

 An important parameter in surface science is contact angles; defined as the angle formed 

between liquid–vapour and the liquid–solid interfaces, at solid–liquid–vapour three phase contact 

area (Lam et al., 2002). Contact angles are a common measure of the degree of surface 

hydrophobicity, as well as surface energies, heterogeneity and roughness (Lam et al., 2002). 

Measurements are simple and result in high confidence level in assessing hydrophobicity (Doyle 

and Rosenberg, 1990; Doyle, 2000), making it one of the most widely used techniques (Lam et 

al., 2002). However acquiring consistent contact angles is a challenge because the effectiveness 

of contact angle measurement relies on the quality of the sample surface (Lam et al., 2002). 

Traditional methods for contact angle acquisition such as the goniometry, measure the angle by 

placing a tangent to the water drop at its base (Lam et al., 2002). However, due to background 

discrepancy and roughness of the sample surface, distinct baselines may not always be visible 

(Duncan et al., 1995; Stalder et al., 2006; Goclawski and Urbaniak-Domagala, 2007; Hauck et 

al., 2008). 
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 To address the limitations of the goniometer method on fungal surfaces, Smits et al. (2003) 

measured contact angles on fungal cultures overgrown on filter paper, which was previously 

done on bacteria cells (Absolom et al., 1983). However, the amount of fungal accumulation on 

the filter paper may also affect the result (Van der Mei et al., 1991). In addition, the contact angle 

on filter grown with fungal cultures requires manipulations of sample (washing and air drying 

filter), which may have a direct influence on fungal surface hydrophobic properties. A simple 

method that utilizes an undisturbed sample and can accurately measure the subtle variations in 

both the persistence and degree of hydrophobicity is required. 

 The objective of this study was to develop and apply a simple and rapid method for 

assessing water contact angles on fungal cultures grown on slide media using a modified 

microscope. I hypothesized that this method can measure water contact angles on fungal 

cultures. With this method, we can evaluate both the contact angle (degree of hydrophobicity) 

and the water drop penetration (persistence of hydrophobicity) in effort to determine fungal 

hydrophobic properties. Contact angles at different growth stages can be compared to analyze 

how the age of the culture affects hydrophobicity. To assess if this method is successful in 

quantifying fungal surface property, we compared our results to fungal strains previously 

analyzed.  

5.4 Materials and Methods 

5.4.1 Fungal Inocula 

 Eleven fungal strains from phyla Ascomycota, Basidiomycota and Zygomycota were 

selected for quantifying fungal surface properties. Some of these fungal strains were previously 

analyzed by Smits et al. (2003) and Unestam (1991) and Unestam and Sun (1995). Cultures of 

Alternaria sp. SMCD 2122, Penicillium aurantiogriseum SMCD 2151, Cladosporium 
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cladosporioides SMCD 2128, Cladosporium minourae SMCD 2130, Suillus tomentosus UAMH 

9089/SMCD 2263, Cenococcum genophilium (Strain UAMH 5512) SMCD 2264, Trichoderma 

harzianum SMCD 2166, Mortierella hyalina SMCD 2145, Laccaria laccata UAMH 

10033/SMCD 2265 and Laccaria trichodermophora SMCD 2267 were obtained from the 

Saskatchewan Microbial Collection and Database (SMCD) and the University of Alberta 

Microfungus Collection and Herbarium (UAMH). These strains were maintained on Oxoid 

potato dextrose agar (PDA) plates (39 g potato dextrose agar in 1 L distilled H2O) or Modified 

Melin Norkrans (MMN) Media (UAMH Recipe) in plastic Petri dishes at 22.5 °C.  

5.4.2 Preparation of Slide Media 

Pre-cleaned microscope slides (76.2 mm x 25.4 mm) were aseptically sterilized by 

dipping in 95% ethanol solution and flaming.  The sterilized slides were then aseptically 

transferred to sterilized petri dishes. Approximately 2 mL of the PDA or MMN media was 

spread uniformly on the slide using a micropipette.  Then the slide media was allowed to harden. 

5.4.3 Fungal Slide Culture 

Under aseptic conditions, a small scraping of fungi from an active growing culture was 

inoculated on the center of the slide media.  The slide was then incubated in the dark at 22oC, 

and examined every day until adequate growth occurred. The slides were then taken from the 

sterile plates and placed on sample stage.  Contact angles of 5 to 6 water droplets of 10µL were 

measured from one edge of the slide to the other edge on two replicate slides. Additional 

measurements on the PDA slide were preformed to assess reproducibility of contact angles of the 

strains. 
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5.4.4 Contact Angle Acquisition 

The experimental apparatus for contact angle measurements consisted of three main 

parts: sample stage, image observation and acquisitions device, and contact angle analysis 

software. Sample stage was a biochem* support jacks Brand tech (16cm (L) x 13 cm (W) x 27.5 

cm (H)).  It allowed for easy movement of a slide for image viewing and manipulations.  Slide 

samples were viewed at a maintained temperature of 25oC and at 30% relative humidity.  

Viewing and acquisition of contact angle images was conducted using a modified stereo 

microscope with a horizontal light path (Fig. 12).  A Zeiss SV 6 Stereomicroscope was modified 

by moving the view from a vertical direction to a horizontal direction.  Coupled with Nikon Cool 

Pix 8400 camera with 3264 x 2448 resolutions contact angles were viewed through the 

microscope and images were captured with the camera (Fig. 12).  The images were then 

transferred to a computer that contains imaging software. 
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Fig. 12. Diagram of the modified microscope setup for image acquisition and contact angle 

measurement. 

5.4.5 Contact Angle Measurement 

The software utilized in this study is the open source multi-platform java image 

processing program ImageJ, which is publicly available at http://rsb.info.nih.gov/ij/. 

Measurement of contact angles was obtained by using the Low Bond Axisymmetric Drop Shape 

Analysis Model of Drop Shape Analysis (LB_ADSA) plug in, which is available online for free 

at http://bigwww.epfl.ch/demo/dropanalysis/. This model utilized image gradient energy and 

cubic spine interpolation to obtain high precision contact angle image measurements (Stalder et 

al., 2006). This global model utilized first order perturbation solution of the Laplace equation for 

measuring axis-symmetric drops while fitting the whole drop profile (Stalder et al., 2006). Fitting 

of the whole drop profile allows for contact angle determination on fungal cultures obscured due 
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to aerial mycelia by overcoming the baseline issues of the goniometer approach. Stalder et al. 

(2006) suggested that this computational solution was more efficient than the numerical 

integration and allowed for more accurate contact angle measurements (ADSA approach). 

5.5 Results and Discussion 

5.5.1 Hydrophobic / Hydrophilic Fungi  

 Alternaria sp., Cladosporium cladosporioides, Cladosporium minourae and Penicillium 

aurantiogriseum illustrated hydrophobic surface properties due to contact angles measurement 

>90° (Table 5, Fig. 13). Fungal strains such as Alternaria sp., C. cladosporioides, C. minourae 

exhibited uniform colony growth on slide media, and allowed for characterization of growth rate 

(cm of growth/time). Water contact angles were evaluated from the point of inoculation to the 

end of the slide to assess how hydrophobicity changes with time (Fig. 13a). We observed only a 

slight difference in the contact angles assessed with the four hydrophobic strains as the standard 

deviation was low (Table 5). Fig. 13b shows similar water contact angles from 10 µl water 

droplets deposited onto the surface of C. cladosporioides. Cladosporium strains showed typically 

higher contact angle values, but were still within the same hydrophobicity classes (Table 5). The 

lower values previously recorded from the fungal filter technique (Smits et al., 2003) may be 

attributed to lack of fungal cell accumulation in the filter or that washing/drying the filter 

membrane may have reduced the hydrophobicity. For example, excretions of exudates and 

spores formation may be washed off the surface, which explains why smaller contact angles 

were observed from manipulative methods than from the proposed contact angle method. 
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Table 5. Comparison of contact angles obtained from the modified microscope approach on fungal slide cultures with similar fungal 

species from literature. 

Fungus Culture 
Time PDA† MMN‡ Fungal Surface 

Classification 

Literature Fungal surface classification 

 (Days) θw θw   

Cladosporium 

cladosporioides 
10 

142 º ± 1 
(106±2) § 

135 º ± 1 
(100±3) § 

Hydrophobic Cladiosporium sp. Hydrophobic (Smits et al., 2003) 

Cladosporium minourae 10 
142 º ± 5 
(106±2) § 

141 º ± 1 
(100±3) § 

Hydrophobic Cladiosporium sp. Hydrophobic (Smits et al., 2003) 

Penicillium 

aurantiogriseum 
10 128 º ± 1 124 º ± 1 Hydrophobic n/a 

Alternaria sp. 5 122 º ± 1 124 º ± 2 Hydrophobic n/a 
Suillus tomentosus 30 89 º - 134 º 96 º - 118 º Chronoamphiphilic Suillus tomentosus Hydrophobic (Unestam, 1991) 

Trichoderma harzianum 3 
61 º - 117 º 
(27±3) § 

43 º - 108 º 
(25±3) § 

Chronoamphiphilic Trichoderma harzianum Hydrophilic (Smits et al., 2003) 

Cenococcum geophilum 30 68 º -133 º 74 º - 81 º Chronoamphiphilic 
Cenococcum geophilum Hydrophilic (Unestam and Sun, 
1995) 

Laccaria laccata 30 0 º 0 º Hydrophilic Laccaria laccata Hydrophilic (Unestam and Sun, 1995) 
Laccaria 

trichodermophora 
21 0 º 53 º - 82 º Hydrophilic Laccaria sp. Hydrophilic (Unestam and Sun, 1995) 

Mortierella hyalina 7 59 º ± 1 31 º - 51 º Hydrophilic n/a 
† Potato Dextrose Agar Media 
‡ Melin Norkrans Media 
§ Referenced Values 
¶ No measured contact angles
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Fig. 13. a) Diagram of placement of 10uL water droplets in respect to the point of 

inoculation. b) Images of 10 µl water droplets on the surface of Cladosporium 

cladosporioides grown on a PDA slide. c) Images of 10 µl water droplets on the surface of 

Suillus tomentosus grown on a PDA slide media.   

Mortierella hyalina, Laccaria laccata and Laccaria trichodermophora had water contact 

angle readings <90° and thus were classified as hydrophilic (Table 5). L. trichodermophora and 

M. hyalina did however show an increase in the contact angle as the placed droplets approached 

the area of inoculation. Fig. 13c shows lower contact angles further away from the point of 

inoculation from water droplets placed on the surface of Suillus tomentosus. Busscher et al. 

(1984) suggested this change in contact angle was due to denser colonization at the zone of 

inoculation. However, Smits et al. (2003) found no morphological differences between the two 

zones of colonization using scanning electron microscopy and thus concluded that it must be 

A

B 

C 

2mm
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caused by an increase in hydrophobicity. We agreed with Smits et al. (2003), but proposed that 

the increase in hydrophobicity is due to a change in growth state from the point of inoculation to 

the edge of the slide. Our observations and results from Smits et al. (2003) suggested that the 

possible accumulation of hydrophobic substances as fungi aging might have caused the shift in 

hydrophobicity due to age and stability of fungi hydrophobicity after a certain time period. 

Therefore, to obtain consistent and stable water contact angle readings require stability of fungal 

growth. Understanding fungal life cycle, gene expression and metabolism may also provide 

insights into how fungal surface properties change due to external factors. C. cladosporioides 

and C. minourae, P. aurantiogriseum and Alternaria sp. showed little difference between contact 

angles on the two types of media, while L. trichodermophora showed the highest change (Table 

5). It was also noted that the increase in contact angle was not large enough to change the 

classification of the strain. Depletion of carbon source in MMN medium as compared to PDA 

medium may have resulted in the change in contact angles. Smits et al. (2003) and Nielsen et al. 

(2001) noted that depletion of carbon sources may potentially shift the metabolism of a particular 

fungus, resulting in changes in surface property. Moreover, Vergara-Fernández et al. (2006) 

found that type of carbon source and cultivations conditions affect the surface hydrophobicity of 

Fusarium solani. Glucose- and nitrogen-depleted media were also observed to show high or 

increased in expression of certain hydrophobin-encoding genes in Trichoderma reesei (Nakari-

Setälä et al., 1997). 

5.5.2 Chronoamphiphilic 

S. tomentosus and T. harzianum had a contact angle > 90o at the point of inoculation, but 

contact angles became smaller further away from the point of inoculation. At the end of growth, 

contact angles were < 90o on the slide (Fig. 13c). Therefore, these two strains showed 

A B C 
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hydrophobic characteristics at the point of inoculation, but growth further away from the point of 

inoculation showed hydrophilic characteristics. However, S. tomentosus was classified as 

hydrophobic by Unestam (1991) and T. harzianum was described as hydrophilic by Smits et al. 

(2003). Unestam (1991) also speculated that hydrophobic fungus must also have hydrophilic 

structures to aid in uptake of water which might be the case in S. tomentosus. 

The presence of sporulation, and change in life cycles may also result in a shift in 

hydrophobic property (Smits et al., 2003).  For example, after approximately 3 days of growth on 

PDA and MMN, T. harzianum started producing green spores as opposed to the visible white 

mycelia growth (Smits et al. 2003).  Conidia were collected from 1st, 3rd, and 5th days of T. 

harzianum PDA grown cultures according to the procedures outlined in Whiteford and Spanu 

(2001). Amount of conidia was counted with haemacytometer and day 5 had the highest average 

number of conidia (1.6x106 cells mL-1) as compared to day 1 and day 3 (1.7x104 cells mL-1 and 

4.0x105 cells mL-1 respectively).  Fig. 14a and 14b visualizes a substantial increase in spore 

number from the zone of older growth when compared to the younger growth on the same plate. 

As T. harzianum aged in culture, generation of hydrophobic spores can further affect water 

contact angle (Smits et al., 2003). Nakari-Setälä et al. (1997) discussed that most of the 

hydrophobins are found in fungal aerial structures, such as spores or conidia and these cells are 

highly hydrophobic. Furthermore, production of suitable substrates and moisture could 

drastically increase the spore production in Trichoderma species, which would undoubtly affect 

its surface properties (Cavalcante et al., 2008).  We recognize that temporal changes in surface 

hydrophobicity can occur and proposed a new Chronos (Greek: time) – amphiphilic (Greek: 

loving both) class containing fungal taxa with shifting hydrophobicity over time and space. With 

the additional of a new class, emerging hydrophobicity expression patterns within the same 
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species can be quantified more accurately throughout growth chronosequences, time and space 

scales. This provides further insights into the functional significance of fungal surface properties. 

 

 

Fig. 14. Wet mount of spores extracted from Trichoderma harzianum from two areas from 

the same fungal cultures: a) Older growth (green area/centre portion) and b) Younger 

growth (white area/outer region).  * Drops of 10µl sterile dH2O were spotted onto fungal 

cultures of both centre and outer portions. Water droplets were pipetted few times and 

transferred to slides for microscopy observation.   

With the proposed method, we can assess variations in fungal hydrophobicity and test 

shifts in surface properties of actively growing fungi. To perform the latter assessment and tests, 

the microscopic slide can be exposed to varying environmental parameters, e.g. temperature, 

humidity, oxygen concentrations and/or UV radiation. Since agar is the support medium, the 

nutrient content of the support media can also be modified in order to analyze behavioural 

changes of particular fungal strain (Fig. 14. T. harzianum). Inhibitory compounds can further be 

used to evaluate induced changes in fungal hydrophobicity.  
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Finally, our study proposes a more efficient method for monitoring fungal 

hydrophobicity— taking into account variations in environmental factors influencing fungal 

surface properties. Therefore, this novel method is particularly important for understanding 

fungal biological cycles and ecological functions, which are closely related to surface properties.  
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6. ASSESSMENT OF ALCOHOL PERCENTAGE TEST FOR FUNGAL 

SURFACE HYDROPHOBICITY MEASUREMENT
4
 

6.1 Preface 

Measurement of contact angles on fungal surfaces and soils are often difficult to measure 

due to obscured measurement due to fungal mycelia and roughness of soil particles (Chapter 5).  

Alternative measurement techniques have been developed to measure water repellency on soil 

(Roy and McGill, 2002).  Utilizing different concentration of ethanol solutions (molarity of 

ethanol method or alcohol percentage test) with different surface tension and measuring the 

lowest concentration of water/ethanol solution that resist wetting, this provides an indication of 

water repellency in soils. My aim was to extend this method further and apply it on fungal 

surfaces for characterization of fungal hydrophobicity. The objective of this study was to 

determine whether assessing the penetration of solutions with different concentrations of ethanol 

(Alcohol Percentage Test: APT) on fungal surfaces is effective in characterization of 

hydrophobicity on fungal surfaces.  Results were also validated against contact angle 

measurements obtained in Chapter 5.    

6.2 Abstract 

The aim of this study was determine whether assessing the penetration of solutions with different 

concentrations of ethanol (Alcohol Percentage Test: APT) on fungal surfaces is effective in 

characterization of hydrophobicity on fungal surfaces. Alcohol percentage test and contact angle 

measurements were conducted on nine hydrophobic and two hydrophilic fungal strains from the 

                                                
 
4 This work has been previously published in Chau, H.W., Goh, Y.K., Si, B.C., and Vujanovic, V. (2010). Assessing 
ethanol sorptivities on fungal surfaces: a measure of the degree of hydrophobicity.  Letters in Applied Microbiology. 
50:295-300. Minor modifications have been made for consistency.   
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phyla of Ascomycota, Basidiomycota and Zygomycota. There was a strong positive correlation 

(R2=0.95) between the APT test and contact angle measurements from eight out of the nine 

hydrophobic stains (four pathogenic and mycotoxigenic Fusarium taxa, one melanosporaceous 

biotrophic taxon, Alternaria sp, Penicillium aurantiogriseum, and Cladosporium 

cladosporioides). Hydrophilic control strains, Mortierella hyalina and Laccaria laccata had 

contact angles < 90o and no measurable degree of hydrophobicity using the APT method. The 

APT method was effective in measuring the degree of hydrophobicity and can be conducted on 

different zones of fungal growth. Characterization of fungal surface hydrophobicity is important 

for understanding of its particular role and function in fungal morphogenesis and pathogenesis. 

The APT is a simple method that can be utilized for fungal hydrophobicity measurements when 

CA cannot be measured due to obscured view from aerial mycelia growth.   

6.3 Introduction 

Microbial cell walls and hydrophobicity of cell surfaces have recently been recognized 

for their importance in ecology, medicine, food industry, chemistry and biology. Surface 

hydrophobicity is crucial for several key functions, such as appressorium formation in the cells 

and also providing structure, shape, adhesion and aggregation (Lee and Dean, 1994; Dague et al., 

2007). These key functions may increase the virulence and pathogenicity of human and plant 

pathogenic microorganism.  Research into fungal surface hydrophobicity has increased 

dramatically in recent years due to the discovery of hydrophobins. Hydrophobins are proteins 

that are ubiquitous to filamentous fungi and are often implicated as one of the metabolites that 

contribute to fungal surface hydrophobicity (De Vries et al., 1993; Wessels, 1994). These 

proteins are usually found and secreted on the outer surfaces of conidia, spores, aerial hyphae, 

infection structures and fruiting bodies (Wessels, 1996; Kershaw and Talbot, 1998; Wösten, 
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2001; Linder et al., 2005). They also have important functions such as allowing the escape from 

aqueous environments, which then allows fungi to produce aerial mycelia and spores (Schuren 

and Wessels, 1990; Linder et al., 2005).    

Hydrophobicity mediates fungal attachment processes on other hydrophobic surfaces, 

which is an important step of fungal pathogenesis initiation (Howard and Valent, 1996; Linder et 

al., 2005). Inhibition of this surface hydrophobicity might hinder fungal pathogenesis initiation 

(Tucker and Talbot, 2001) and decrease aerial spore production, attachment, spread, 

pathogenicity, and symbiotic association with a host (Talbot et al., 1993; Tucker and Talbot, 

2001).  The degree of fungal hydrophobicity also has important implications for human health. 

The relationship between surface hydrophobicity and human pathogenic fungi is well 

documented in Candida albicans and Aspergillus fumigatus (Karkowska-Kuleta et al., 2009).  

Tighter adherence to epithelial cells, endothelial cells and extracellular proteins in C. albicans as 

well as adhesion to albumin and collagen in A. fumigatus are the result of hydrophobic surface 

properties (Karkowska-Kuleta et al., 2009).  Due to hydrophobic phenomena on fungal surfaces, 

characterization of this property is important for understanding its functions and role in the 

environment as well as the host.  

Despite the noted importance of fungal surface hydrophobicity, characterization methods 

are limited to the manner in which the fungus grows. The majority of methods are based on 

indirect observations, such as growth behaviour on plates and broth cultures, excretions of 

hydrophobic compounds and aerial growth of mycelia and spore formation (Smits et al., 2003). 

Techniques used to assess microbial hydrophobicity are also subject to criticism, as most of these 

approaches are based on adhesion properties (Chau et al., 2009).  Microbial adhesion techniques 

involve both electrostatic effects and hydrophobic binding interactions, which led to the 
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conclusion that other factors may influence the results (Geertsema-Doornbusch et al., 1993; 

Doyle, 2000).  Also, adhesive methods involve manipulation of the specimen (washing, staining, 

extraction, adhesion and drying), which may drastically affect the hydrophobicity assessment 

through degradation of fungal cultures. In order to ensure accurate hydrophobicity assessment, 

the techniques employed must be direct and offer minimal disturbance to the culture.  

Two simple techniques that are currently employed for characterization of 

hydrophobicity are the water drop penetration time (WDPT; Letey (1969)) and contact angle 

(CA) methods (Letey et al., 1962). WDPT measures the time taken by a water droplet to either 

penetrate or spread on a surface. Typically WDPT is assessed on porous surfaces, but it is also 

applicable on planar surfaces by means of absorption (Unestam, 1991).  The WDPT is a measure 

of the persistence of hydrophobicity on a particular surface. Contact angles refer to the angle of 

the liquid/vapour interface where a particular liquid meets the surface. It is also commonly 

known as a measurement of the degree of hydrophobicity. The acquisition of contact angles is 

affected by the surface smoothness and uniformity, properties of the measuring liquids and the 

methodological approach.  Unfortunately, due to the ability of fungi to produce aerial mycelia, 

contact angles may be difficult to measure as the angle and baseline where it is measured is often 

obscured.  In these certain instances, an additional method is required.   

Contact angle measurements and WDPT have been employed extensively in analyzing 

surface hydrophobicity and SWR (Letey et al., 2000). However, Unestam (1991) proposed a 

technique similar to WDPT on fungal surfaces, by observing the absorption of 0.01 µl water 

droplets on ectomycorrhizal short roots, mycelia, rhizomorphs and mats. This allowed for a 

direct measure of persistence of hydrophobicity on fungal surfaces. 
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A liquid surface tension that has a surface CA of 90° was proposed as an index of water 

repellency by Watson and Letey, (1970). This procedure is predicated on the assumption that a 

liquid can only completely wet a surface if the CA is less than 90°. For surfaces with a CA less 

than 90° the surface tension of the droplet is assumed to be less than that of the surface. When 

the CA is greater than 90°, surface tension of the droplet (liquid) is greater than that of the 

surface and thus will prevent wetting of the surface.  Theoretically, a series of solutions 

providing various surface tensions can be prepared and placed onto a hydrophobic surface. The 

solutions with higher surface tension will tend to reside on the surface and contribute to a higher 

degree of hydrophobicity, while solutions with lower surface tension will either penetrate or 

spread on the surfaces due to a lower degree of hydrophobicity. As discussed earlier, surface 

tension with a CA equal to 90° is the surface tension of a solution where there is a transition 

from wetting, to repelling on the surface.  Fluids with low surface tension can be mixed with 

miscible fluids that have high surface tension to create a series of solutions with varying surface 

tensions. Alcohol percentage test (APT) (Dekker and Ritsema, 1994), more commonly referred 

to as the Molarity of Ethanol method (MED) (Watson and Letey, 1970) was developed based on 

the fact that ethanol has a smaller surface tension (0.0219 N m-1) than water (0.0719 N m-1). The 

APT uses aqueous ethanol solutions with different concentrations to determine the lowest 

concentration of ethanol solution that absorbs or wets the surface (Watson and Letey, 1970). The 

higher the ethanol concentration that wets the surface, the more severe the degree of 

hydrophobicity. For soil test, five and 10 s are commonly utilized as the reference time for 

absorption or wetting (Letey et al., 2000). Application of this technique on fungal surfaces has 

yet to be assessed and may offer another direct measure of the degree of hydrophobicity. 

However, this approach on fungi may present some challenges due to the delicate nature of fungi 
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as it may cause degradation of its hydrophobicity. As such, a reference point of approximately 5 

s or less is more reasonable for assessing hydrophobicity on fungal surfaces due to the effect of 

hydrophobicity degradation (Crockford et al., 1991).  The objective of this study was to 

determine if APT is an effective approach to characterize the hydrophobicity on fungal surfaces. 

I hypothesized that APT can be used to measure the hydrophobicity on fungal surfaces. 

6.4 Materials and Methods 

6.4.1 Fungal Strains 

Eleven fungal strains from phyla of Ascomycota, Basidiomycota and Zygomycota were 

selected for assessing the application of the APT method.  Four Fusarium strains (F. avenaceum, 

F. oxysporum, 3- and 15-Acetyldeoxynivalenol-producing F. graminearum chemotypes), one 

biotrophic mycoparasite - Sphaerodes mycoparasitica SMCD 2020, Alternaria sp. (Kunze) 

Wiltshire SMCD 2122, Penicillium aurantiogriseum Dierckx SMCD 2151, Cladosporium 

cladosporioides (Fresen.) G.A. de Vries SMCD 2128, Cladosporium minourae Iwatsu SMCD 

2130, Mortierella hyalina (Harz), W. Gams SMCD 2145 and Laccaria laccata Scop & Cooke 

UAMH 10033 /SMCD 2265, were obtained from Saskatchewan Microbial Collection and 

Database (SMCD) and University of Alberta Microfungus Collection and Herbarium (UAMH). 

The fungal isolates were maintained on potato dextrose agar (PDA) (Difco) supplemented with 

antibiotics (100 mg L-1 streptomycin sulphate and 12 mg L-1 neomycin sulphate) (Sigma-

Aldrich) prior to the experiments to prevent contamination.   

6.4.2 Contact Angles 

Fungal cultures were inoculated onto slide media (Chau et al., 2009) and were incubated 

in the dark at 23°C. Growth was assessed daily until complete coverage of the glass slide was 
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observed (Table 6). Approximately five to ten, 10 µl droplets of water were deposited onto 

fungal surfaces.  Pictures were taken immediately following deposition of the droplets. Contact 

angles of the droplets were measured by obtaining the images using a modified microscopy 

apparatus and fitting a drop profile using Low Bond Axisymmetric Drop Shape Analysis Model 

of Drop Shape Analysis (LB_ADSA) (Stalder et al., 2006; Chau et al., 2009). Fungal plates were 

prepared in triplicates, while the experiment was repeated twice. Contact angles obtained on 

slide cultures were used to validate the APT method by linear regression.   
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Table 6. The age of cultures for complete coverage of slide media and contact angles 

obtained from surface measurements. 

Fungus Cultures Time 

(Days) 

PDA* 

(θw)  

Fusarium avenaceum 7 108 º ± 3 

Fusarium oxysporum  7 116 º ± 1 

3-Acetyldeoxynivalenol Fusarium graminearum 7 124 º ± 1 

15-Acetyldeoxynivalenol Fusarium graminearum 7 125 º ± 2 

Sphaerodes mycoparasitica 7 125 º ± 1 

Cladosporium cladosporioides 10 142 º ± 1 

Cladosporium minourae 10 142 º ± 5 

Penicillium aurantiogriseum 10 128 º ± 1 

Alternaria sp. 5 122 º ± 1 

Laccaria laccata 30 0 º ±  0 

Mortierella hyalina 7 59 º ± 1 

* Potato Dextrose Agar Media 
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6.4.3 Alcohol Percentage Test 

A series of aqueous ethanol solutions were prepared in 5% increments starting from 0 to 

100 % ethanol (Dekker and Ritsema, 1994).  Conversions of alcohol percentages to molarity, or 

surface tension, can be performed by using the relationship illustrated in Watson and Letey 

(1970) or refer to previous published data in Butler and Wightman (1932) and Roy and McGill 

(2002).  The APT/MED protocol described by Watson and Letey (1970) and Crockford et al. 

(1991) was used.  Four microlitre droplets of ethanol solutions were applied on the surface of 

fungal colonies and the time interval used for infiltration of the solution droplets was <5-s. This 

short penetration time was vital to ensure that hydrophobicity decay did not affect our results 

(Crockford et al., 1991).  Inner and outer zones of fungal colony growth were defined by 

observations of two distinct zones, with differences in color, structure and aerial mycelia. 

Replicates of three droplets on each zone were assessed on three replicates of fungal cultures.   

6.5 Results and Discussion 

L. laccata and M. hyalina were the control strains and showed no hydrophobicity with 

CAs less than 90°, resulting in an APT reading of zero (Fig. 15a).  Strains with the highest CA 

were Cladosporium (> 140°), while F. avenaceum strains had the lowest CA (108°) among all 

hydrophobic fungal strains (Fig. 15a). This APT reading (degree of hydrophobicity) was due to 

surface tension of the fungus (> 0.0719 Joules m-2) being greater than that of any of the aqueous 

ethanol solutions.  
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Fig. 15  a) Plot of fungal strains versus the alcohol percentage (ethanol) absorbed into fungal surfaces on PDA grown cultures 

and contact angles of water droplets on the fungal inoculated PDA agar slides (Chau et al., 2009): (����) Contact Angles, (����) 

Inner zone APT (%) and (����) Outer Zone APT (%).  Note: Strains designated as L. laccata (LL), M. hyaline (MH), F. 

avenaceum (FH), F. oxysporum (FA), Alternaria sp. (A),  C. minourae (CM), S. mycoparasitica (SA), 3-Acetyldeoxynivalenol F 

graminearum (3A-FG), 15-Acetyldeoxynivalenol F. graminearum (15A-FG), P. aurantiogriseum (PA) and C. cladosporioides 

(CC). b) The relationship between the ethanol percentage method and water contact angle measurements on agar inoculated 

hydrophobic fungal cultures (fitted by linear regression R
2
= 0.95): (����) Fungal strains and () C. minourae.  

*Removed from linear correlation due to interaction effects from ethanol solutions. 
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Through characterization of hydrophobicity using the APT method, we found that 

Alternaria sp., C. cladosporioides, C. minourae and 15-Acetyldeoxynivalenol-producing F. 

graminearum chemotype exhibited two zones of hydrophobicity. It was observed that mycelial 

growth further from the point of inoculation showed growth into the media; while in the center 

aerial mycelia were being produced. However, it was noted that 15-Acetyldeoxynivalenol-

producing F. graminearum chemotype showed higher degrees of hydrophobicity on white/aerial 

mycelia (APT = 73±3%) than the red pigment growth in the center (APT = 55±0%) (Fig. 15a). 

The red pigment growth eventually replaced the growth of the white mycelia.  

Linear relationships between CA and APT between hydrophobic strains were low (R2 

=0.50) and mainly due to one of the fungal strains, that is, C. minourae. Indeed, removal of this 

strain resulted in a better correlation (R2 = 0.95) (Fig. 15b). APT values for C. minourae of 45% 

may be attributed to some interaction between the ethanol and fungal surfaces or the effect of 

ethanol on fungal cultures.   

6.6 Conclusions 

Results presented in this study revealed differential expressions of fungal hydrophobicity, 

which may be based on the age of mycelia growth. Understanding the expression pattern of 

fungal hydrophobicity may further provide insight into its implications, such as pre-pathogenesis 

in plant pathogenic fungi and attachment to host in human pathogenic fungi (Tucker and Talbot, 

2001; Karkowska-Kuleta et al., 2009). Wessel et al., (1991) found that accumulation of 

hydrophobins on older mycelia growth as compared to younger growth may cause a decrease in 

hydrophobicity assessment at the location further away from the point of inoculation.  

Differences in the zones of growth may also be due to depletion of nutrients at the point of 

inoculation, resulting in a shift from primary to secondary metabolism (Smits et al., 2003). As 
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we know, submerged and aerial hyphae have been shown to have differences in functions and 

surface hydrophobicity (Wösten and Willey, 2000). Fungi tend to acquire their nutrients by 

hydrophilic means (Unestam, 1991). However, when nutrients are depleted, formation of 

hydrophobic aerial structures and spore productions will occur. Distinguishing the differences in 

aerial and submerged hyphae hydrophobicity may aid in understanding spore dispersal patterns 

of certain types of fungi (Wösten and Willey, 2000). The APT method allows for the assessment 

of hydrophobicity on these two morphologically or chemically different regions because this 

method is a direct measurement and requires very little solution (< 10 µl).  

The 15-Acetyldeoxynivalenol-producing F. graminearum chemotype showed a higher 

degree of hydrophobicity on white/aerial mycelia than the red growth in the center. This could be 

due to the generation of more soluble toxin or pigment compounds when compared to white 

aerial mycelia growth. In several previous studies, few Fusarium mycotoxins were found to be 

more hydrophobic than others (Yoshizawa and Morooka, 1973; Elosta et al., 2007).  Red 

pigmentation is related to melanin or aurofusarin production and might offer protection against 

desiccation stress (Butler and Day, 1998). However, Prota (1992) found that melanin contains 

large amounts of water to preserve the structure of the pigment. The ability of melanin to store 

water and ions may suggest lower degrees of hydrophobicity as compared to the aerial mycelia 

(White, 1958). More research is needed to better understand the importance of morphological 

and hydrophobic regions as well as their relationship with Fusarium function and pathogenicity. 

Furthermore, additional research is needed to examine how hydrophobicity will change 

due to alteration of growth conditions, such as nutrient status, pesticide and chemical treatment, 

and the presence of host plant and biocontrol organisms such as bacteria. In the case of altering 

growth conditions, there is the potential for alteration of fungal surface hydrophobicity in 
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response to the changes (Smits et al., 2003; Feeney et al., 2006; Chau et al., 2009). It is also 

possible that any changes that may occur will result in a decrease in pathogenicity of plant 

pathogens (Talbot et al., 1993; Kazmierczak et al., 2005).   

Hydrophilic classification of fungi is not suitable from APT measurements, due to the 

fact that surface tensions of fungal surfaces are always lower than the tension of aqueous ethanol 

solutions. Therefore, the result is an instantaneous infiltration or spreading of the solution.  With 

the current limitations of the contact angle approach, related to its subjective nature and the 

possibility of obscured views, the APT method may offer an alternative approach for 

characterization of fungal hydrophobicity.  This study has shown that the APT method is useful 

for analyzing the degree of hydrophobicity of hydrophobic fungal strains through comparison of 

CA measurements on the fungal surfaces. The APT measurements were also useful for 

characterization of different zones of hydrophobicity on the same culture. This will aid in 

providing a better understanding of the expression patterns of hydrophobicity in zones of colour 

changes and aged growth due to different morphological, chemical, or metabolic reasons. Given 

the advantages of the APT method such as the reproducibility and simplicity, it should be 

considered as one of the methods for quantifying the degree of hydrophobicity on fungal 

surfaces.  
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7. WETTING PROPERTIES OF FUNGI MYCELIUM ALTER SOIL 

INFILTRATION AND SOIL WATER REPELLENCY IN A γ 

STERILIZED WETTABLE AND REPELLENT SOIL
5
 

7.1 Preface 

Reduced infiltration, increased runoff, increased leaching and preferential flow, reduced 

plant growth and seed germination and increased soil erosion are some of the common issues 

with soil water repellency (SWR). Previous management strategies to remediate water repellency 

in soils such as clay addition, surfactant treatment and intensive irrigation are unfeasible due to 

the lack of clay material, toxicity of surfactants, and cost and access to water (DeBano, 2000; 

Franco et al., 2000). Alternative strategies are preferred (McKenna et al., 2002).  Hydrophobic 

fungal structures and exudates have been known to be a major contributor in changing the soil 

water relationship in natural soils (Unestam, 1991; Unestam and Sun, 1995).  Effective 

characterization of fungal strains that may cause and suppress SWR has not been examined to 

date.  However, with results from Chapter 5 and 6, we were able to classify fungi based on its 

surface property.  The surface property of fungi is one of the mechanism in which fungi can 

change the water repellency in soil.  The ability of fungi to alter the SWR and enmesh soil 

particles can result in changes to the infiltration dynamics in soil. The objective of this study was 

to determine whether SWR and infiltration could be manipulated through inoculation with 

classified fungi based on surface properties.  This study would improve our understanding of 

how fungi can change the SWR in soil and alter the infiltration rate.  Also fungal inoculation or 

                                                
 
5 This work has been previously published in Chau, H.W., Goh, Y.K., Si, B.C., and Vujanovic, V. (2012). Surface 
properties of fungi mycelium alters soil infiltration and soil water repellency in a γ sterilized wettable and repellent 
soil. Fungal Biology 116:1212-1218. Minor modifications have been made for consistency.  
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stimulation of native fungal species could be explored as a suitable remediation strategy for 

SWR. Fungal strains selected for this study were previously characterized for fungal 

hydrophobicity (Chau et al., 2009). The suitability for inoculation in field must take into account 

fungal pathogenicity and virulence. 

7.2 Abstract 

Soil water repellency (SWR) has a drastic impact on soil quality resulting in reduced 

infiltration, increased runoff, increased leaching, reduced plant growth and increased soil 

erosion. One of the causes of SWR is hydrophobic fungal structures and exudates that change the 

soil water relationship. The objective of this study was to determine whether SWR and 

infiltration could be manipulated through inoculation with fungi. The effect of fungi on SWR 

was investigated through inoculation of three fungal strains (hydrophilic-Fusarium proliferatum, 

chrono-amphiphilic-Trichoderma harzianum and hydrophobic-Alternaria sp.) on a water 

repellent soil (WR-soil) and a wettable soil (W-soil). The change in SWR and infiltration was 

assessed by the water repellency index and cumulative infiltration respectively.  F. proliferatum 

decreased the SWR on WR-soil and slightly increased SWR in W-soil, while Alternaria sp 

increased SWR in both the W-soil and the WR-soil.  Conversely T. harzianum increased the 

SWR in the W-soil and decreased the SWR in the WR soil.  All strains showed a decrease in 

infiltration in W-soil, while only the F. proliferatum and T. harzianum strain showed 

improvement in infiltration in the WR-soil.  The ability of fungi to alter the SWR and enmesh 

soil particles results in changes to the infiltration dynamics in soil.      

7.3 Introduction 

Soil water repellency (SWR) is a worldwide issue that affects soil quality, resulting in 

reduced water infiltration, increased runoff, leaching of nutrients and pesticides, reduced plant 
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available water and increased soil erosion (Bauters et al., 1998; Doerr et al., 2000; Rillig, 2005).  

SWR may be beneficial through contribution to water stable aggregates; this has a positive 

influence on soil structure and carbon storage (Piccolo and J.S.C., 1999; Spaccini et al., 2002).  

SWR is primarily caused by hydrophobic compounds coating the mineral surfaces of soil 

particles (Diehl and Schaumann, 2007).  There are many factors further exacerbating SWR 

including soil moisture, organic matter, fire, soil texture and microorganism interactions (Rillig, 

2005). In addition, fungal biomass and exudates are also known to increase SWR. This 

phenomenon can be seen in the highly localized water repellency of fairy rings caused by 

basidiomycetous fungi (York and Canaway, 2000).   

Hallett and Young (1999) found that stimulating the microbial biomass with nutrients can 

greatly enhance repellency in soils. As well, Feeney et al. (2006) reported a strong relationship 

between fungal biomass and SWR.  Furthermore, Hallett et al. (2001a) selectively inhibited 

either fungi or bacteria on a sandy soil with biocides to separate the influence of each group on 

SWR. Inhibition of fungal growth decreased the development of SWR after 10 days of 

incubation in a nutrient amended soil. By inhibiting bacterial proliferation, SWR was greatly 

enhanced, possibly because bacteria can degrade hydrophobic compounds and/or the native fungi 

experienced less competition (Hallett et al., 2001b).  Research to date into sandy soils has 

identified fungi as the dominant microbial group that causes water repellency, while bacteria 

may decrease repellency (Roper, 2004).  However, certain fungal strains do not express 

hydrophobic wetting properties; instead they express hydrophilic wetting properties (Unestam 

and Sun, 1995).  Little is known about how these wetting properties from fungi can alter SWR. 

Hydrophobins, a recently discovered class of small amino acids which is a ubiquitous 

protein found in filamentous fungi (Wessels, 1996) has created interest in its connection to SWR 
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(Rillig, 2005).  Linder (2009) found that the increase in hydrophobic wetting properties is related 

to the amount of hydrophobins produced on fungal surfaces. Rillig et al. (2010) was the first to 

report a causal relationship between the growth of Arbuscular mycorrhiza fungal mycelia and 

SWR.   This relationship is due to the presence of a hydrophobin-related protein; glomalin.  They 

both speculated the hydrophobins and glomalin-related soil proteins (GRSP) on fungal surfaces 

might be the cause of the increased SWR (Rillig, 2005). However, conflicting evidence suggests 

that hydrophobins and GRSP in some fungal strains does not necessarily confer hydrophobic 

wetting properties (Feeney et al., 2006).  As such, the cause of SWR due to fungi remains 

inconclusive.  However, characterization of water repellency from fungal wetting properties as a 

whole (Chau et al., 2009) and its effect on SWR may give a better indication on the role that 

fungi play in SWR (Spohn and Rillig, 2012).   

The objective of this study was to determine whether SWR and infiltration in soil could 

be manipulated through inoculation with fungi. Three extensively researched species capable of 

exhibiting varying wetting properties were investigated, namely, Alternaria sp., Trichoderma 

harzianum and Fusarium proliferatum (Chau et al., 2009). I hypothesized that the wetting 

properties of fungi are a main determinant of SWR and that a change in the surface property of 

the soil will result in a change in SWR and infiltration behavior. 

7.4 Materials and Methods  

7.4.1 Fungal Cultures  

Cultures of Alternaria sp. SMCD (Saskatchewan Microbial Community Database) 2122, 

Trichoderma harzianum SMCD 2166 and Fusarium proliferatum SMCD 2241 were maintained 

on potato dextrose agar (PDA) (Difco Laboratories, Detroit, MI) plates (39 g potato dextrose 

agar in 1 litre distilled H2O) at 22.5 oC (room temperature) in darkness.  The wetting properties 
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of the fungal surface mycelium for Alternaria sp. T. harzianum and F. proliferatum were 

determined by measuring the water droplet contact angle on growing PDA cultures following the 

procedure proposed by Chau et al. (2009). Fungi from an active growing culture were inoculated 

on the center of the slide PDA media.  The slides were replicated three times.  The slides were 

then incubated in the dark at 22 oC until complete coverage of the slide media was obtained.  

Contact angles of 5 water droplets of 10 µL were measured across the slide. In addition, 

Alternaria sp., F. proliferatum, and T. harzianum were also tested for wetting properties using 

the alcohol percentage test (APT) as described by Chau et al. (2010).  A series of aqueous 

ethanol solutions were prepared in 5% increments starting from 0 % to 100 % ethanol (Chau et 

al., 2010).  Ethanol solutions (4 µl) were applied on the surface of fungal colonies. Three 

droplets were assessed on three replicates of fungal cultures with a time interval used for 

infiltration of less than five seconds. Alternaria sp. had contact angles of 122°±1 and an alcohol 

percentage value of 50%, therefore it was classified as hydrophobic, while F. proliferatum had 

contact angle of 0° and thus classified as hydrophilic.  Trichoderma harzianum had contact 

angles that ranged from 61-117°, and was classified as chrono-amphiphilic (change in wetting 

properties with time). T. harzianum and F. proliferatum could not be measured using the APT 

due to having contact angles below 90°, which resulted in an APT reading of 0%. 

7.4.2 Soil Water Repellency 

 The soils for this study were taken from a study area located in the Canadian Boreal 

Forest Regions, within the Central Mixed wood sub region (Natural Regions Committee, 2006).  

This area is characterized by a continental boreal climate with long and cold winters and short 

cool summers.  The average annual precipitation is 455 mm, with mean daily temperatures of   
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-18.8°C in January and 16.8°C in July (Environment Canada, 2002).  Approximately 20% of the 

land in the region is comprised of coarse textured glacial fluvial and eolian deposits on which 

Brunisolic soils (Inceptisols) have developed. These soils support a variety of ecosite types 

described by Beckingham and Archibald (1996) and are of critical importance for reclamation 

practices of the Athabasca Oil Sands industry.  Ecosites are classified ecological units developed 

under similar environmental conditions (climate, moisture, and nutrient regime) (Beckingham 

and Archibald, 1996).  The poor water storage property of these coarse textured soil materials 

with the additional concerns of SWR makes reclamation of these ecosites difficult.  However, 

mitigating the influence of SWR on soil will improve the outcome of these reclamation scenarios 

(Müller and Deurer, 2011). 

 Laboratory experiments were performed on coarse textured, Brunisolic, sandy soil 

materials typical of this region.  Two sandy soils were selected from sites previously observed to 

show the presence of SWR by Hunter et al. (2011). The first site,(ALFH) was a constructed of 0-

10 cm of LFH (litter, fermentation and humus) overlaid onto 10-100 cm peat mineral mix soil 

located on a southeast facing complex slope of a saline sodic overburden. The second site (CPA) 

was a disturbed open pit mining site, which was comprised of Brunisolic soils typical of the 

region. Soil texture  was determined using a Laser Scattering Particle Size Distribution Analyzer 

(Horiba LA - 950, Horiba Instruments Inc., Irvine, CA) after air-drying and sieving to 2 mm. 

Total C and N contents were also determined using a LECO CNS-2000 analyzer (LECO Corp., 

St. Joseph, MI). To test for SWR in the soil initially, contact angles were determined using the 

sessile drop method and the Low Bond Axisymmetric Drop Shape Analysis (Bachmann et al., 

2000; Stalder et al., 2010).  The soil from the first site (57°04`N, 111°30`W) was coarse-textured 

(93% sand, 5 % silt and 2% clay), nutrient poor (carbon 0.96 g g-1, nitrogen 0.05 g g-1) and had a 
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WDPT (water drop penetration time) after 2 hrs with an initial contact angle of 128°±2.  This soil 

would be classified as extremely water repellent (WR-soil) based on the description from 

Bauters et al. (2000).  The soil from the second site selected (57°19`N, 111°32`W) was also 

coarse textured (98 % sand, 2% silt and 0% clay) and nutrient poor (Carbon 0.08 g g-1, Nitrogen 

0.015 g g-1), however it was found to be non-water repellent due to instantaneous infiltration of 

water droplets (WDPT=0) and with an initial 0° contact angle. Therefore, this soil was classified 

as wettable soil (W-soil) (Bauters et al., 2000). 

7.4.3 Preparation of Soil for Inoculation 

The soils were air-dried for a week and were subsequently sieved through a 2 mm sieve 

to remove any large debris and plant material.  The soils were then subject to gamma sterilization 

using γ – irradiation (562.32 Gy/hr for 3 days and 5 hours) in sealed polyethylene cylinders 

(Trevors, 1996). After irradiation, the soils were frozen to decrease the change in soil prior to 

experimentation and were maintained under sterile conditions (Trevors, 1996). Serial dilutions 

were performed on irradiated soils and no colony forming units were present on LB (lysogeny 

broth) and PDA media incubated at 30°c and 23°C in the dark respectively.  Soil was loosely 

packed into glass petri dishes with dimensions of 5.3 cm diameter x 1.3 cm height for fungal 

inoculations.    

7.4.4 Preparation of Fungal Inocula 

Two fungal plugs (1 cm x 1cm) from each of the three strains from actively growing 

plates were aseptically transferred to separate 100 mL of potato dextrose broth (PDB) (24 g of 

Difco PDB in 1 litre of distilled water) solutions.  Uninoculated 100 mL PDB served as controls.  

The fungal cultures were incubated for 7 days (23oC, in darkness and 250 revolutions per minute 

(RPM) on an orbital shaker).  After 7 days, fungal suspensions were filtered through sterile 
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cheese cloth to remove the spent media, and the fungal mass was weighed.  Weighted fungal 

mass of 1.6 grams was transferred to sterile 50 mL Falcon tubes (Falcon Plastics, Los Angeles, 

California).  Additionally, fresh PDB with sterile glass beads was added to falcon tubes.  The 

tubes were then vigorously agitated by shaking and using the vortex until a uniform suspension 

of fungal mycelia was obtained.  The suspension was then filtered through a layer of sterile 

cheese cloth to remove the glass beads.  The fungal suspension was then aseptically transferred 

to a 150 mL conical flask and PDB was added to make the final concentration of fungus/PDB 

(1.6 g 80 mL-1).  Five mL of PDB-fungal suspension (Alternaria sp, T. harzianum and F. 

proliferatum) was applied to the soil.  Un-inoculated PDB solutions served as controls.  The 

procedure discussed above was repeated for inoculation of the WR-soil.  In addition, 5 mL of 

distilled water was mixed into the WR-soil, to increase soil above its critical water content (water 

content at which soil changes from repellent to wettable) (Dekker and Ritsema, 1994) and 

facilitate wetting of the soil fungal suspension.  Without increasing the water content of WR-soil 

prior to inoculation, the fungal suspension would not infiltrate the soil surface and colonize the 

soil.  Addition of water does not change the characteristics of SWR in our soils as drying the 

sample prior to experimentation resulted in reestablishment of SWR.   Each inoculation was 

replicated three times with five sampling times, giving a total of 18 inoculated soils for each two 

soil conditions (wettable and water repellent). Soils were then incubated in a closed plastic 

chamber in the dark at 25°C with a relative humidity of 80-85%.  The W-soil was tested on days 

0, 3, 5, 7 and 21, while the WR-soil was tested on day 0, 6, 12, 18, 21.  The WR-soil was tested 

at different days as fungal colonization was slower in the WR soil as compared to the W-soil.  

Soils were taken out and subsequently dried at 45°C for 24 hrs to maximize SWR and provide 
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uniform water content between all the samples before the infiltration measurement (Hallett and 

Young, 1999).   

7.4.5 Water Repellency Index 

To obtain the small scale hydraulic properties, a miniaturized infiltrometer (Fig. 16) was 

constructed, modified from the design of Leeds-Harrison et al. (1994).  The infiltrometer tip had 

a contact radius of 2 mm, which is standard for typical miniaturized infiltrometers.  The design 

consisted of glass tubing, a 250 mL plastic bottle and a 200 uL plastic pipette tip cut to 2mm 

verified with a digital calliper under a conventional stereo microscope.  Porous sponge (Leeds-

Harrison et al., 1994) and fibers used by Hallett et al. (2004) were not suitable as ethanol caused 

the cellulose to harden and not allow adequate liquid flow through the tip and also did not restrict 

the air entry.  Instead the tip was modified by affixing nylon mesh to the end of the infiltrometer 

using cyanoacrylate (superglue) adhesive.  The nylon mesh had an air entry value of about -3.0 

cm (-3 to -3.2 kpa) water pressure head.  This worked best as it did not impede liquid transport 

and it restricted the air entry (Hallett et al., 2004).  The amount of liquid entering the soil was 

measured by recording the weight loss in reservoir as a function of time.  The infiltrometer was 

set at 2 cm pressure head to minimize the influence of macropores.  Cumulative infiltration from 

both 95% ethanol and water was plotted against the square root of time (t1/2) to obtain the early 

time infiltration curve.  Early time sorptivity was determined for both liquids by using the 

formula, described by Philip (1954) (Eq. 7.1);   

2/1StI =  Eq. 7.1 

where, I is the cumulative infiltration, (L T-1), for each measured pressures,  S is sorptivity, (L T-

1), of infiltrating liquid and t is the time, (T).  
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Fig. 16.  Miniaturized infiltrometer to measure the infiltration of two liquids (water and 

95% ethanol) in a small circular surface area.  Caption: modified infiltrometer tip using 

nylon membrane affixed to 200 ml pipette tip.  Inner diameter measures 2 mm. 

Sorptivity values determined from water and 95% ethanol infiltration into soil from early 

time infiltration curve were used to determine the change in SWR. Water repellency index (RI) 

was determined by (Eq. 7.2): 









=

W

E

S

S
RI 95.1     Eq. 7.2                                                                     

where SE and SW are the sorptivity measurements of 95% ethanol and water, respectively. 

(Tillman et al., 1989).  The constant, 1.95 accounts for the differences in the liquid’s surface 

tension and viscosity.  An RI value that is greater than one implies the presence of SWR in soil. 

7.5 Results and Discussion 

 Uninoculated W-soil showed no initial water repellence (RI=1) and no change in RI 

during the 21 day period of incubation (RI=1) (Fig. 17a).  The uninoculated WR-soil showed 
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high initial water repellence (RI>1000) and no change in RI as a function of time (Fig. 17b). 

WR-soil had at least 1000 times (1000x) higher RI than W-soil (Fig. 17). The inoculated WR-

soil showed more dense colonization on the top of the soil than W-soil.  Moreover, visible 

mycelia growth was found later on the inoculated WR-soil, compared to the W-soil. The WR-

soil was initially wetted, so that inoculation with the fungal suspension could occur.  This led to 

temporary removal of SWR, which allowed for penetration of the fungi suspension into the soil.   

Re-establishment of SWR was evident after a drying event (Fig. 17b).  There was no change to 

SWR as wetting the soil only altered the water content during the inoculation and incubation of 

the soil.   
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Fig. 17.  Plot of the water repellence index as a function of time (days) for incubation of 3 

strains of fungi and the control on a) wettable soil, and b) water repellent soil. Errors bars 

represent the standard error of the mean. (���� Alternaria sp.-hydrophobic, ���� F. 

proliferatum-hydrophilic, ���� T. harzianum-chrono-amphilic and ���� control-uninoculated 

soil) 
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 Water repellent characteristics of a soil inoculated with fungus are drastically affected by 

the fungal wetting properties, due to growth of the fungi around the soil particles (particle 

enmeshment) (Tisdall, 1994; Degens, 1997; Tisdall et al., 1997). F. proliferatum was classified 

to be hydrophilic due to 0° contact angle on the surface mycelium.  After day 21 the RI value of 

F. proliferatum-inoculated W-soil was 10 times (10x) that of the uninoculated W-soil (Fig. 17a).  

In the WR-soil, inoculation of F. proliferatum decreased RI by 100 times (100x) after 21 days of 

incubation compared to the control.  Using fungal strains to manipulate SWR might be effective 

in remediating extremely water repellent soils (Hallett et al., 2006).   

 Alternaria sp. was classified as hydrophobic with contact angles of 122°±1 and APT 

value of 50% on the surface of the mycelium.  The Alternaria sp. in the W-soil increased the RI 

after 21 days of incubation.  This increase in RI was 1000 times (1000x) greater than 

uninoculated W-soil (Fig. 17a).  The inoculated Alternaria sp soil showed an increase by 2 times 

(2x) in RI in WR-soil compared to the uninoculated WR-soil (Fig. 17b).  As the wetting 

properties of fungi are a main determinant of fungal derived-SWR, the repellency in this 

inoculated soil would never increase past levels observed on the fungal surface. The increase in 

SWR caused by hydrophobic fungal strains will have implications in water transport in soil, as 

increases in SWR are associated with preferential flow, runoff, erosion and decreased water 

storage (Morales, 2010).  Hydrophobic fungi may be used as a bio-barrier Kim (2004) or 

bioclogging agent (Seki et al., 1998) to change the water flow characteristics by changing the 

repellency of certain type of soils. Furthermore, low levels of repellency may also slow down 

water movement (through altering soil hydraulic properties) (Hallett et al., 2004) in soil, 

therefore increasing water residence time for plant uptake. This is particularly useful in sandy 

soils where drainage and water retention properties are a major limiting factor. 
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 The chrono-amphiphilic strain, T. harzianum changes its wetting properties as a function 

of time with contact angles from 61-117° (Chau et al., 2009).  The most interesting results from 

this fungal strain, is that it’s wetting properties also changes depending on the nutrient conditions 

it is under.  T. harzianum strain increased the RI by 1000x at 21 days of incubation in W-soil 

(Fig. 17a).   As well, the T. harzianum strain decreased the RI 100x at 21 days incubation in WR-

soil (Fig. 17b.).  Such a dynamic organism can possibly survive under both flooding and 

desiccation situations.  The possibility of using T. harzianum for manipulating or remediating 

SWR should be examined further as this organism is also found to be useful as a bio-control 

agent (Grondona et al., 1997).   

 At 21 days of incubation, we observe the largest change in the RI for all the strains under 

both soil types.  Cumulative infiltration at 21 days was higher for the W-soil than for the WR-

soil (Fig. 18).  Fig. 18a depicts the change in the cumulative infiltration (mm) as function of time 

(sec) from F. proliferatum, Alternaria sp, T. harzianum strains and uninoculated control on W-

soil after 21 days of incubations.  All strains showed a decrease in cumulative infiltration as 

compared to the uninoculated control (Fig. 18a).   The smallest decrease in cumulative 

infiltration was found for the F. proliferatum inoculated sample, followed by the T. harzianum 

and the Alternaria sp. inoculated sample.  Although F. proliferatum was classified as 

hydrophilic, some impedance to infiltration was observed.  However, this was not to the same 

extent from the two more repellent strains.  Due to colonization and enmeshment of soil particles 

from fungal mycelia, the sizes of pores would decrease resulting in a decrease in hydraulic 

conductivity and thus infiltration into soil is reduced (Ritz and Young, 2004).  As such we can 

conclude fungal inoculation, irrespective of their wetting properties, will alter the infiltration in 

soil that is not repellent. 
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Fig. 18.  Plot of cumulative infiltration as a function of time from 21 days of incubation for 

3 strains of fungus and the control on a) wettable soil, and b) water repellent soil. (���� 

Alternaria sp.-hydrophobic, ���� F. proliferatum-hydrophilic, ���� T. harzianum-chrono-

amphilic and ���� control-uninoculated soil) 
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 The change in the cumulative infiltration (mm) as function of time (sec) from F. 

proliferatum, Alternaria sp, T. harzianum strains and uninoculated control on WR-soil after 21 

days is shown in Fig. 18b.  Cumulative infiltration in the uninoculated control in the WR-soil 

was drastically less than the control W-Soil.  F. proliferatum and T. harzianum both showed 

increase in cumulative infiltration as compared to the uninoculated control (Fig. 18b).  However, 

Alternaria sp showed a decrease in the cumulative infiltration (Fig. 18b). The improvement in 

infiltration and water absorption in the WR-soil suggest enmeshment and colonization of fungi 

with hydrophilic wetting properties on the soil surface.   

Using fungal strains to manipulate SWR (improving infiltration) might be effective in 

remediating extremely water repellent soils.  However this bioremediation would require 

surfactants for the fungus to penetrate the soil as illustrated by our prewetting to reach the critical 

water content in our WR-soil.  Also, some fungal strains have hydrocarbon degrading 

capabilities (Hallett et al., 2006).  The use of them synergistically to degrade pollutants and then 

remediate the SWR caused by the pollutant may be a possible novel approach to improving soil 

hydrology in hydrocarbon contaminated soils.  However the ability of fungi to enmesh water 

repellent soil and thus alter the SWR is not the mechanism that is occurring in these soils.  

Degradation of hydrophobic compounds in these hydrocarbon contaminated sites results in 

decrease in SWR related to the decrease in quantity of hydrophobic compounds.  The 

shortcoming of this is a particular strain with the ability to degrade the hydrocarbon 

contaminants also increases the water repellent property of soil. This is mainly due to a fungal 

strain exhibiting its own hydrophobic wetting properties (Hallett et al., 2006). For the fungal 

strain to grow and uptake contaminants, some degree of hydrophobic interactions must occur 
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(Johnsen et al., 2005).  It would be beneficial to select strains that have hydrocarbon degrading 

qualities as well as hydrophilic wetting properties.   

Soil water repellency is commonly considered detrimental to soil quality, however the 

presence in soils around the world suggest a beneficial role not yet realized.  Subcritical (low 

level) repellency is known to decrease the saturated hydraulic conductivity and increase the 

residence time of water due to bioclogging and decreasing the effective water conducting 

porosity (Morales et al., 2010).  Further studies should encompass the role that fungi play in soils 

which have subcritical SWR (White et al., 2000). 

7.6 Conclusions 

 This is the first demonstration of fungal effects on SWR and infiltration as a function of 

the wetting properties of the fungal strain added.  The ability of fungi to enmesh soil particles 

and fill pore spaces allows for the alteration of SWR and infiltration.  Under these conditions, the 

use of fungal strains to decrease the repellency can be proposed.  However, in our setup, we 

focused only on the effect of fungal strains on γ-sterilized sandy soil.  Further testing should be 

done to assess the interacting effect between strains from native species in a water repellent soil.  

Additionally further testing of these strains under stress and limited nutrient conditions should be 

performed, as the wetting properties in fungi might change due to sporulation.    
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8. SYNTHESIS AND CONCLUSION 

Soil water repellency causes reduced infiltration, reduced soil water storage, enhanced 

runoff, increased preferential flow, and reduced ecosystem productivity.  Improving the water 

dynamics in water repellent soils is difficult due to inconsistence in measurements, 

understanding in water flow through repellent soil and some of the causes of SWR.  Although 

the presence of SWR has been documented in many soils (Doerr et al., 2000), the issue of water 

repellent pores has yet to be examined.  Pore properties including tortuosity, surface roughness, 

discontinuity and dead end pores can impede water flow through soil, however less is known 

about the effect of SWR in soil pores.  

Fungi are a major contributor to SWR, however there is a lack of knowledge of which fungal 

strains has the ability to cause SWR.  Most studies focus on the ability of fungi to decrease SWR 

through decomposition of hydrophobic organic matter in soil (White et al., 2000; Feeney et al., 

2006). Few studies examined the surface property as an indicator of fungi ability to cause SWR.  

Water contact angles are a direct and simple approach for characterization SWR and fungal 

surface properties (Unestam, 1991).  However due to roughness of the surface of soil and fungi, 

water contact angles are often obscured and hard to measure (Busscher et al., 1984; Krishnan et 

al., 2005).  With advances in contact angle measurements (Stalder et al., 2010), new fitting 

schemes have been developed to fit contact angle on obscured surfaces such as fungi and soil. 

Alternative surface tension measurements have been developed to measure water repellency on 

soil (Roy and McGill, 2002; Lamparter et al., 2010).  Utilizing different concentrations of 

ethanol solutions with different surface tension and measuring the lowest concentration of 

ethanol solution that resist wetting, provides an indication of water repellency in soils. Extending 
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this method further and applying on fungal surface for characterization of fungal hydrophobicity 

would be useful.  

 Previous management strategies to remediate water repellency in soils such as clay addition, 

surfactant treatment and intensive use of irrigation are unfeasible due to lack of clay material, 

toxicity of surfactants, and cost and access to water (Franco et al., 2000; Ritsema and Dekker, 

2003; Hallett, 2008; Müller and Deurer, 2011). Hydrophobic fungal structures and exudates have 

been known to be a major contributor in changing the soil water relationship in natural soils 

(Unestam, 1991; Unestam and Sun, 1995; Sun et al., 1999).  Effective characterization of fungal 

strains that may cause and suppress SWR has not been examined to date.  The surface property 

of fungi is one of the mechanisms in which fungi can change the water repellency in soil.   

The research presented in this dissertation addresses knowledge gaps on the characterization 

of SWR, understanding the causes of SWR and its effect on conducting porosity and infiltration.  

The objectives of this research was to understand the relationship between severity, persistence 

and CWC in water repellent soils, effect of SWR on pores and conducting porosity, to develop 

and modify methods for classification of fungal strains that cause SWR and to determine the 

effects of fungal hydrophobicity on SWR and infiltration in soil.   

8.1 Summary of Findings 

Soil water repellency is a key issue faced by farmers and land managers throughout the 

world. The issue with SWR measurement is there is little literature on the dynamic properties of 

SWR (Beatty and Smith, 2013).  Often the measurement technique will influence the results.  In 

addition, measurement techniques only focus on the severity or persistence as indication of the 

presence of repellency. Furthermore severity and persistence are done at one antecedent moisture 

content and this will likely influence the results of the measurement due to change in water 
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content with time.  Since SWR is a dynamic property affected by soil water content, our 

objective was to examine the severity as a function of persistence and as a function of water 

content (Chapter 3).  The results demonstrate that severity is not always related to persistence in 

both an extremely repellent and subcritical repellent soil. Contact angles were not strongly 

correlated with WDPT and were not statistically significant (r = 0.37, p > 0.05) (Chapter 3). This 

is due to the nature of  the hydrophobic material causing repellency in these soils. This also 

suggests that the role SWR plays in hydrological processes is more complex than what was 

previously thought (Chapter 3). For example, a soil with a high severity of SWR but low 

persistence would result in more runoff on slope and less infiltration (Cerdà and Doerr, 2007), 

but will subsequently become wettable, negating the influence of the water repellency. 

Differences between severity and persistence would be important when determining runoff 

scenarios considering the magnitude and frequency of the rainfall events (Beatty and Smith, 

2013). The difference between contact angle and WDPT is due to wetting mechanism occurring 

at the surface of soil particles. Contact angles formed on the soil surface are caused by the 

difference in surface energy between water, soil surface and air. Although a soil surface may 

have a large surface energy compared to water, the rate at which surface energy changes is 

dependent on the composition of hydrophobic coating on the soil surface (Chen and Schnitzer, 

1978). As such comparison between the severity and persistence measured by contact angles and 

WDPT between soils are much more complex considering they measure different properties for 

determination of SWR. In natural, reclaimed and agricultural soils, a high severity (Contact 

angle) of repellency does not necessarily denote long persistence (WDPT) or high CWC.  

Measurement of severity and persistence are related to the differences and changes in surface 

energy between water and the soil surface respectively.  Although the CWC gives the water 
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content at which above it SWR is negligible, the trend between contact angle and increasing 

water content proved to be more informative.  The trends show how repellency changes as a 

function of water content (Fig. 7). A more rapid decrease in repellency (measured by contact 

angle) with increases in water content would indicate less severe repellency even though the 

initial severity may be high (Fig. 7a, 7b). A slow decrease or persistent repellency at low water 

contents would indicate more severe repellency in a site (Fig. 7c, 7d). As water content increases 

such as after a rainfall event, the soil will approach its critical water content. The expression of 

repellency is important to determine as the soil increases in water content. If the soil does not 

reach the critical water content, soil infiltrability in the soil matrix will be reduced, with an 

increased chance of preferential flow and runoff causing decrease in soil water storage in soil 

profile.  

Additionally, it was found that the severity of repellency is not necessary related to 

critical water content as some of soils with high severity of repellency had low CWC (Table 2). 

Furthermore soils with low severity of repellency were also found to have high critical water 

content. This is most likely due to the composition of hydrophobic compound causing the 

repellency. Hydrophobic compounds in soils with high CWC indicate that the difference 

between the surface tension from water and the soil surface at low water contents is persistent. 

However when water is present and the soil reaches the CWC, the particles reorientate rapidly 

making the effect negligible and making SWR manageable (Doerr et al., 2000; Lehrsch and 

Sojka, 2011). While hydrophobic compounds in soils with lower initial severity and high critical 

water contents have more complex organic compounds which take substantially longer time to 

reorientate when subject to wetting. The complex nature of compounds that cause repellency 
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further complicates measurement as differences in amount and type will determine the severity, 

persistence and CWC of repellency in the soil (Horne and McIntosh, 2000).  

As the soil water content increases, the severity and persistence of SWR decreases.  This 

phenomenon will influence the water flow in certain pores.  Understanding how repellency 

affects water flow in certain pores is important (Chapter 4). This study revealed that ethanol 

infiltration through tension infiltrometer can be used to determine the intrinsic conducting 

porosity (unaffected by surface properties) in water repellent soils.  The obtained intrinsic 

conducting porosity is much higher than that from water conducting porosity if the soil is water 

repellent.  We also determined how RI varies under different pressure heads. RI values obtained 

under different pressure heads are different due to all pore size ranges tested showing some 

degree of repellency.  This suggests that pores that will be filled with water in wettable soils 

under certain pressure, are not being filled under the same pressures at equilibrium due to water 

repellency in water repellent soils (Beatty and Smith, 2013).  This would also suggest that water 

retention in soil would be affected by water repellency since some pores are not being filled 

under certain pressure conditions.  The effect of RI on the water conducting porosity is related to 

how many and how much of each equivalent pore is filled under a certain pressure head to the 

total liquid flux. Large diameter pores contribute more to the liquid flux than smaller sized pores. 

As a result a high RI in the macropores in contrast to high RI at the mesopore ranges will result 

in a decrease in the water conducting porosity. The determination of the RI under different 

pressure heads gives a better indication of how SWR will affect water flow through different 

pore diameters. The RI under -3 cm of pressure was more representative of the total repellency in 

the soil as more contributing diameter pores to the water flux were included in the measurement.  

A high RI affecting larger diameter pores has more influence on the conducting porosity due to 
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the contribution to the total liquid flux.  To accurately determine the actual conducting porosity 

in soil, SWR must be taken into account.  Additionally, determining RI using a tension which 

includes the pore diameters that contribute more to the total liquid flux would give a better 

indication of the role repellency plays in soil water transport.   

One issue with measuring contact angles for determining water repellency in soils and 

hydrophobicity of fungal strain is surface roughness.  This surface roughness is due to rough 

particle surfaces soil and the mycelia of fungi.  How can we measure which fungal strains have 

the ability to change the SWR in soil?  Firstly our objective was to develop a method to 

accurately characterized repellency on fungi surfaces (Chapter 5).   Fungal cultures were grown 

on agar slide media and contact angles were measured utilizing a modified microscope and 

digital camera setup, with advanced imaging software for contact angle determination. Contact 

angles were observed in hydrophobic, hydrophilic and a newly created Chrono-amphiphilic class 

containing fungi taxa with changing hydrophobicity.  Our study proposes a more efficient 

method for monitoring fungal hydrophobicity, taking into account variations in environmental 

factors influencing fungal surface properties. Therefore, this novel method is particularly 

important for understanding fungal ecological functions, which are closely related to surface 

properties and affect the SWR. 

 A method was developed using different concentration of ethanol solutions with different 

surface tension to measure the spread on soil surface or infiltration as indication of the severity 

(Roy and McGill, 2002).  The objective of this study was to examine if the contact angles 

measured on fungal surface is related to the percentages of alcohol droplets (Chapter 6).  This 

method would be suitable for measurement of fungal culture with large aerial mycelia which 

would obscure the view CA on fungi.  APT and contact angle measurements were conducted on 
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nine hydrophobic and two hydrophilic fungal strains from the phyla of Ascomycota, 

Basidiomycota and Zygomycota. There was a strong positive correlation (R2=0.95) between the 

APT test and contact angle measurements from eight out of the nine hydrophobic stains (four 

pathogenic and mycotoxigenic Fusarium taxa, one melanosporaceous biotrophic taxon, 

Alternaria sp, Penicillium aurantiogriseum, and Cladosporium cladosporioides). Hydrophilic 

control strains, Mortierella hyalina and Laccaria laccata had contact angles < 90o and no 

measurable severity of hydrophobicity using the APT method. This study has shown that the 

APT method is useful for analyzing the degree of hydrophobicity of hydrophobic fungal strains 

through a comparison of CA measurements on the fungal surfaces. APT measurements were also 

useful for characterization of different zones of hydrophobicity on the same culture. This will aid 

in providing a better understanding of the expression patterns of hydrophobicity in zones of 

colour changes and aged growth due to different morphological, chemical, or metabolic reasons. 

Given the advantages of the APT method such as the reproducibility and simplicity, it should be 

considered as one of the methods for quantifying the degree of hydrophobicity on fungal 

surfaces.  

In terms of management scenarios, application of surfactants  to reclaim repellent soils 

are costly and may have a negative impact to the environment (Franco et al., 2000; McKenna et 

al., 2002; Ritsema and Dekker, 2003; Hallett, 2008; Müller and Deurer, 2011).  In Chapter 7 we 

examined the use of fungal strains or the stimulation of fungal strains to change the SWR in soil.  

The objective of this study was to determine whether SWR and infiltration could be manipulated 

through inoculation with fungi. The effect of fungi on SWR was investigated through inoculation 

of three fungal strains (hydrophilic-Fusarium proliferatum, chrono-amphiphilic-Trichoderma 

harzianum and hydrophobic-Alternaria sp.) on a water repellent soil (WR-soil) and a wettable 
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soil (W-soil). The change in SWR and infiltration was assessed by the RI and cumulative 

infiltration respectively.  This is the first demonstration of fungal effects on SWR and infiltration 

as a function of the wetting properties of the fungal strain added.  The ability of fungi to enmesh 

soil particles and fill pore spaces allows for the alteration of SWR and infiltration.  The measured 

surface properties of fungi determined the level of SWR in the soil and affected the infiltration 

rate. Under these conditions, the use of fungal strains to decrease or to change the repellency in 

soil can be proposed.   

8.2 Future Research 

Soil water availability for plants is one of the key issues facing reclaiming disturbed 

landscapes in the Athabasca Oil Sands Region of Canada due to the dominance of coarse 

textured soils, organic soils and hydrocarbons.  A major limiting factor to soil water availability 

is the presence of soil water repellency.  The work presented in this dissertation will aid in 

improving reclamation practices to maximize soil water availability to plants by mitigating and 

understanding SWR in these soils.  We proposed effective characterization of the severity and 

persistence of water repellency and CWC must be done to accurately determine the influence on 

soil water availability.  To better understand water flow in repellent soils, determination of what 

pores sizes are influenced by SWR and how SWR influences the conducting porosity is also 

important. Since soil water repellency is dependent on many inter-related and dynamic factors 

including soil organic matter content, hydrocarbon concentration, fungi and plant exudates, fire, 

and water content (Doerr et al., 2000), examination of the causes of SWR is important to 

understand how they relate to  degree and persistence of SWR and provides us with more 

information on factors to consider when determining the implications of SWR.  As well, research 
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into the causes of SWR will also aid in management and remediation practices of severely 

repellent sites.   

The hydrological implications of SWR are closely related to the soil hydraulic properties; 

hydraulic conductivity and soil water retention characteristics. In order to assess the hydrological 

implications of SWR, it is important to gain more insights about the relationship between SWR 

and hydraulic properties. Yet, investigations of a direct, causal link between SWR and hydraulic 

properties are mainly restricted to the laboratory scale or single methods to evaluate SWR 

(Bauters et al., 2000). However, in recent studies of SWR, it has become increasingly apparent, 

that the use of only one method to assess the SWR is not sufficient (Chapter 3) (Bachmann et al., 

2003). A few studies exist which examine the effect of SWR on the soil hydraulic properties. 

Bauters et al. (1998) conducted infiltration experiments on artificially hydrophobized materials 

and reported that the water entry pressures increased according to the degree of SWR reaching a 

positive value for the extremely water repellent materials. In contrast drainage curves showed 

that only the non-repellent sand was different compared with the artificial hydrophobic mixtures. 

Czachor (2006) determined drainage and infiltration water saturation curves of various soil types 

with different degrees of SWR. It was shown that in the case of drainage the effect of SWR is 

less pronounced than in case of infiltration. Lamparter et al. (2010) examined the effect of SWR 

on the water saturation curves for initially dry materials using artificially hydrophobized sand.  

For the same pressure head value, less water was taken up by the dry materials for a higher 

degree of SWR. Although there are a few studies which examine the effect of SWR on soil 

hydraulic properties, they are limited to classical hydraulic properties measurements. 

Measurement of soil hydraulic properties using water can be difficult and may lead to 

erroneous results because of different water contents present at an equal capillary pressure in 
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water-repellent soils compared with completely wettable soils (Bauters et al., 2000; Beatty and 

Smith, 2013).  Additionally, the water phase in water repellent soils might be discontinuous, 

leading to decreased water infiltration rates (Chapter 4). SWR is not a static soil property. It 

changes with water content and the time the soil has been in contact with water (Chapter 3) 

(DeJonge et al., 1999). The changing wettability with time complicates the measurement of soil 

hydraulic properties (Clothier et al., 2000).   
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10. APPENDIX A 

Table A.1. P values from t-tests comparing the severity of soil water repellency between sites. 

 

 

 
SV 27 CPA SV10 SV 30 SV26 ALFH SS AE1 AE2 SCB ATS Melfort Goodale 

SV 27 1.0000 0.1004 0.0009 0.0001 0.0001 0.0001 0.0001 0.0001 0.0034 0.0001 0.0001 0.0138 0.0252 

CPA 
 

1.0000 0.0005 0.0001 0.0001 0.0001 0.0001 0.0001 0.0047 0.0001 0.0001 0.0278 0.1114 

SV 10 
  

1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.1950 0.0008 0.0055 0.0022 0.0010 

SW 30 
   

1.0000 0.0720 0.0284 0.0001 0.0001 0.0001 0.0140 0.0133 0.0001 0.0001 

SV 26 
    

1.0000 0.5212 0.0022 0.0001 0.0001 0.0007 0.0011 0.0001 0.0001 

ALFH 
     

1.0000 0.0316 0.0135 0.0001 0.0038 0.0030 0.0001 0.0001 

SS Trial 
      

1.0000 1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 

AE1 
       

1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 

AE2 
        

1.0000 0.0001 0.0008 0.0353 0.0133 

SCB 
         

1.0000 0.4295 0.0001 0.0001 

ATS 
          

1.0000 0.0001 0.0001 

Melfort 
           

1.0000 0.1950 

Goodale 
            

1.0000 
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Table A.2. P values from t-tests comparing the persistence of soil water repellency between sites. 

 
SV 27 CPA SV 10 SW 30 SV 26 ALFH SS Trial AE1 

SV 27 1 0.0358 0.4806 0.0001 0.0086 0.0015 0.9889 0.0111 

CPA 
 

1 0.0073 0.0001 0.0004 0.0001 0.0029 0.0001 

SV 10 
  

1 0.0001 0.0015 0.0001 0.1114 0.0001 

SW 30 
   

1 0.0001 0.0001 0.0001 0.0001 

SV 26 
    

1 0.6311 0.0031 0.0985 

ALFH 
     

1 0.0001 0.0066 

SS Trial 
      

1 0.0001 

AE1 
       

1 
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11. APPENDIX B 
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 Fig. B.1. Soil particle size distribution for five natural jack pine ecosite. 
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Fig. B.2. Soil particle size distribution for five disturbed/reclaimed sites. 
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