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Abstract 

X-ray Photoelectron Spectroscopy (XPS) and Electron Energy Loss Spectroscopy (EELS) are 

strong candidate techniques for characterizing steel surfaces and substrate-coating interfaces 

when investigating the selective oxidation and reactive wetting of advanced high strength steels 

(AHSS) during the continuous galvanizing process. However, unambiguous identification of 

ternary oxides such as Mn2SiO4, MnSiO3, and MnAl2O4 by XPS or EELS, which can play a 

significant role in substrate reactive wetting, is difficult due to the lack of fully characterised 

standards in the literature. To resolve this issue, samples of Mn2SiO4, MnSiO3 and MnAl2O4 
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were synthesized and characterized by XPS and EELS. The unique features of the XPS and 

EELS spectra for the Mn2SiO4, MnSiO3 and MnAl2O4 standards were successfully derived, 

thereby allowing investigators to fully differentiate and identify these oxides at the surface and 

subsurface of Mn, Si and Al alloyed AHSS using these techniques. 

Keywords: X-ray Photoelectron Spectroscopy, Electron Energy Loss Spectroscopy, selective 

oxidation, manganese silicates, manganese aluminates 

1 Introduction 

In order to meet Corporate Average Fuel Economy (CAFE) requirements, automobile 

manufacturers are increasing their use of advanced high strength steels (AHSS) such as dual 

phase steels (DP) and transformation induced plasticity (TRIP) steels and and are demanding 

third generation AHSS (3G AHSS) steels such as quench and partition (Q&P) and so-called 

medium manganese 3G AHSS. These steels employ significant alloying levels of manganese and 

tend to have significant alloying levels of silicon and\or aluminum [1-6]. These alloying 

elements form selective oxides on the steel surface during annealing prior to continuous 

galvanizing, which can result in poor reactive wetting during galvanizing and bare spot defects in 

the zinc coating. Many studies have focused on identifying these selective oxides and relating 

them to the reactive wetting behaviour in the metallic coating bath [1-3,7- 17]. However, 

accurate identification of these compounds has been challenging due to a lack of high resolution 

X-ray photoelectron spectroscopy (XPS) and electron energy loss spectroscopy (EELS) data on 

the ternary oxides MnSiO3, Mn2SiO4 and MnAl2O4. Both XPS and EELS spectra are required as 

XPS is suitable for chemical analysis of the steel surface after selective oxidation and prior to 

metallic coating and EELS is suitable for studying the steel-coating interface, which may have 
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oxides remaining at the interface after metallic coating, or within the bulk steel itself due to 

selective internal oxidation [1-3,8,9,12,13,15-17].  The use of these surface (XPS) and near-

surface sensitive (EELS) techniques is necessary to identify these oxides since neither technique 

requires that the oxides be highly ordered to study them, as is required when using X-ray 

diffraction for quantitative phase analysis. 

The XPS binding energies for elemental Mn, Si and Al and the binary oxides MnO, SiO2 and 

Al2O3 are readily available in the literature [18-22]. However, limited XPS binding energy data 

are available for the ternary oxides Mn2SiO4 and MnAl2O4, as summarized in List of Figures 

Figure 1: Powder X-ray diffraction patterns from (a) MnAl2O4, (b) MnSiO3, and (c) Mn2SiO4 
collected using a Cu Kα1 X-ray source. The collected diffraction patterns are compared to the 
calculated diffraction patterns determined using the known structures of the materials [29].  The 
major peaks from the impurity phases are marked with an asterisk in the powder XRD patterns. 

Figure 2: Background subtracted Mn 2p3/2 high resolution XPS spectra from (a) MnAl2O4, (b) 
MnSiO3, and (c) Mn2SiO4.  The background was removed using a Shirley-type background and 
the spectra were fitted using multiplet peaks and a shake-up satellite peak using the method 
described in [21]. The resulting fit is indicated by a grey line. 

Figure 3: Crystal structures of (a) MnAl2O4, (b) MnSiO3, and (c) Mn2SiO4. Mn-O polyhedra 
are shown in green, Si-O polyhedral are shown in purple, and Al-O polyhedral are presented in 
blue.  Mn is 4-coordinate in MnAl2O4, whereas distorted 6- and 7-coordinate Mn ions are 
present in MnSiO3, while Mn occupies distorted octahedral environments in Mn2SiO4. 

Figure 4: Background subtracted O 1s high resolution XPS spectra from (a) MnAl2O4, (b) 
MnSiO3, and (c) Mn2SiO4.  The spectra were fitted by three component peaks to adequately 
reproduce each spectrum.  The lowest energy peak represents O ions bound to Mn/Al/Si while 
the highest energy peaks likely represents adsorbed water and hydroxide functional groups [36]. 

Figure 5: Background subtracted high resolution Al 2p XPS spectrum from (a) MnAl2O4 and 
high resolution Si 2p XPS spectra from (b) MnSiO3 and (c) Mn2SiO4.  Each spectrum has been 
fitted by a set of spin-orbit split 2p3/2 (low energy) and 2p1/2 (high energy) peaks having a 2:1 
intensity ratio. 

Figure 6: Mn-L2,3 edge electron energy loss spectra. The spectra were aligned to the most 
intense fine structure of the L3 edge at approximately 640 eV. The spectra were normalized to 
have an equal intensity of the L3 edge and were offset for clarity. 
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Figure 7: O-K edge electron energy loss spectra. The alignment and normalization of the spectra 
were performed with respect to the most intense fine structure of the Mn-L3 edge (Figure 6) and 
the spectra were offset for clarity. 

List of Tables 

Table 1: XPS binding energies for Mn2SiO4 and MnAl2O4 available in the literature. 

Table 2: Summary of experimentally determined XPS binding energies (eV). 
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Table 1 []. No XPS binding energy data could be found for MnSiO3 when present as a pure 

species. Limited binding energy data are also available for Mn2SiO4 and MnSiO3 when present 

with other species [24-27]. Thus, the purpose of the present contribution is to provide these 

spectra using MnSiO3, Mn2SiO4 and MnAl2O4 standards prepared by the ceramic method. 

2 Experimental Methods 

2.1 Synthesis 

All materials examined were synthesized using the ceramic method. MnAl2O4 was synthesized 

by heating a stoichiometric mixture of MnO (Alfa Aesar; 99.99%) and Al2O3 (Aldrich; 98% 

minimum) at 1000°C for a total of approximately six days before being cooled to room 

temperature over a period of approximately five hours. The synthesis of MnAl2O4 was performed 

under the cover of flowing forming gas (5% H2, 95% N2 (vol%)). MnSiO3 and Mn2SiO4 were 

synthesized by heating stoichiometric quantities of MnO and SiO2 (Alfa Aesar; 99.99%) in 

alumina crucibles enclosed in evacuated fused silica tubes at 1050°C for approximately 4 days. 

After the initial reaction, the purity of the MnSiO3 was improved by adding approximately 5% 

(by mass) SiO2 to the mixture before firing again at 1050°C under the same conditions described 

above for approximately two days [28]. The MnSiO3 and Mn2SiO4 materials were quench cooled 

in air after the final firing. 

The phase purity of the synthesized materials was determined using a PANalytical Empyrean 

powder X-ray diffractometer and a Cu Kα1 X-ray source. The phase purity of the materials was 



6 
 

determined by comparing the experimentally collected patterns to patterns that were calculated 

based on the structure of the target materials, the precursor oxides, and other related oxides.  All 

materials were confirmed to have a phase purity of greater than 90% when compared to the 

established diffraction patterns of these materials [29]. It was unlikely that the minor impurities 

present affected the spectral results to be presented below owing to the resolution of the XPS and 

EELS spectra. 

2.2 XPS data acquisition 

XPS measurements were performed using a Kratos AXIS Ultra spectrometer fitted with a 

monochromatic Al Kα (1486.7 eV) X-ray source located at Surface Science Western, the 

University of Western Ontario. The area analyzed was approximately 700 ´ 300 µm. Finely 

ground powders were placed on a non-conductive adhesive and mounted on an electrically 

grounded sample holder. High-resolution spectra of the Mn 2p, O 1s, Al 2p, Si 2p, and C 1s core 

lines were collected with a pass energy of 20 eV, a step size of 0.05 eV and a sweep time of 

180 s. The precision of the measured binding energies was ±0.1eV. The charge neutralizer was 

used during collection of all spectra to counter the effects of differential charging. All XPS 

spectra were calibrated by setting the main C 1s feature resulting from adventitious C to 284.8 

eV. The background from the high-resolution core-line XPS spectra was removed by fitting a 

Shirley-type background. All XPS spectra were fitted with component peaks having a combined 

Gaussian (70%) and Lorentzian (30%) line profile.  

2.3 EELS data acquisition 

EELS spectra were acquired using a FEI Titan 80-300 microscope (FEI Company, Eindhoven, 

The Netherlands), equipped with a monochromated S-FEG and a Gatan Tridiem 865 energy 

filter (GIF) (Gatan Inc., Pleasanton, CA). The microscope was operated at acceleration voltage 
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of 80keV, the energy resolution in monochromated mode was tuned to 0.08 eV FWHM at the 

zero-loss peak. The powder samples were finely ground and ultrasonicated in anhydrous ethanol 

for 5 minutes. A drop of each solution was deposited on a holey carbon TEM grid (SPI Supplies, 

West Chester, PA). The grids were heated to 160°C for 12 hours in a vacuum chamber to remove 

any hydrocarbon contamination present. 

EELS spectra were acquired in scanning transmission electron microscopy (STEM) mode by 

sampling various areas of the sample. The beam current was set to approximately 100 pA, the 

exposure time per spectrum was 0.2 s, the GIF acceptance angle was 7 mrad and the energy 

dispersion was 0.1 eV/channel. The Mn-L2,3 edge and O-K edge for all samples were recorded in 

one spectrum. To minimize beam damage to the sample, an area of several nm2 was sampled 

with a total of a few hundred spectra each. 

Processing of the EELS spectra was performed in Gatan Digital Micrograph 2.3. The pre-edge 

background was removed using a power-law function [30]. The Mn-L2,3 and O-K edges were 

aligned in energy using the highest intensity feature of the Mn-L3 edge and were normalized for 

baseline and intensity. 

3 Results and Discussion 

3.1 Powder X-ray Diffraction 

Powder X-ray diffraction (XRD) patterns from the synthesized MnAl2O4, MnSiO3, and Mn2SiO4 
are presented in  
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Figure 1 along with their calculated powder patterns [29]. Each diffraction pattern was found to 

contain either MnAl2O4 (cubic spinel; Fd-3m), MnSiO3 (triclinic; C-1) or Mn2SiO4 

(orthorhombic; Pbnm) as the dominant phase. The powder pattern for MnAl2O4 was observed to 

contain an impurity of MnO of less than a 5% whearas the diffraction pattern for MnSiO3 

indicated phase-purity and the diffraction pattern for Mn2SiO4 contained a minor impurity 

(≤10%) of MnSiO3.  The materials studied were all considered to be highly crystalline owing to 

the flat background of the collected diffraction patterns, as any amorphous fractions present with 
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a concentration above the detection limit of the instrument (≤1 wt%) would show broad peaks in 

the 2θ of 20-40o (cf. references 40,41).   

3.2 X-ray Photoelectron Spectroscopy Spectra 

XPS is a very useful technique to investigate surface selective oxidation owing to its surface 

sensitivity and the sensitivity of the spectra to changes in composition and chemistry. In the 

present contribution, XPS has been used to identify differences in the core-line spectra from 

MnAl2O4, MnSiO3, and Mn2SiO4. In particular, the XPS core-line spectra change in lineshape 

and shift in binding energy with changes in the chemical environment of the absorbing atom 

[21,31,32]. For example, the binding energy of a core-line spectrum generally shifts to a higher 

binding energy with increasing oxidation state as a result of reduced screening of the nuclear 

charge. Such a shift is referred to as a ground state effect; however, final-state effects (i.e. those 

that occur as a result of the excitation of the core-electron) can also shift the binding energy 

because of final-state relaxation [33]. Separating ground-state effects from final-state effects can 

make true assignment of the electronic structure of materials by analysis of XPS spectra alone 

difficult. In this current work, the focus was to identify differences in the spectra for these 

important standard materials and not to develop a complete understanding as to why shifts in 

binding energy were observed. 

3.2.1 Mn	2p	XPS	spectra	

The background subtracted Mn 2p3/2 XPS spectra for MnAl2O4, MnSiO3, and Mn2SiO4 are 

presented in  
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Figure 2. All three spectra are similar, but do show some differences. For example, each 

spectrum contains an intense signal resulting from direct excitation of a 2p electron that was 

broadened because of (final-state) multiplet spitting. The broad lineshape observed for these 

spectra is a common observation for 2p XPS spectra from first-row transition metals having a 

high-spin electron configuration [21,31,32]. A weak satellite peak can be observed at slightly 

higher binding energies, which is generally described as resulting from a ligand-to-metal charge 

transfer shake-up process [21,31,32]. 
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As has been shown previously, both the lineshape and separation in energy between the core-line 

and shake-up satellite peak can be used to identify the oxidation state of transition metals 

[21,31]. In this case, all three Mn 2p3/2 spectra resemble those from Mn2+, as would be expected 

based on the chemical formulae of the materials [21]. Examination of the spectra from the three 

materials show that the core-line peaks shift in energy and change slightly in lineshape as a 

function of the composition and structure of the materials. As was mentioned above, the spectra 

were broadened by multiplet splitting, which results from coupling between the unpaired 2p 

core-electron after excitation and unpaired 3d valence electrons [21]. It has been found that 

ligand effects can shift the energy of the final-states, and, therefore, change the lineshape of the 

spectra [21,32,34]. Here, it is proposed that the change in lineshape observed between MnAl2O4, 

MnSiO3, and Mn2SiO4 can be ascribed to such effects. 

Along with a change in lineshape, as can be seen from  
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Figure 2, the binding energies of the Mn 2p3/2 core-line peak also changed as a function of 

composition, with MnSiO3 having the highest binding energy, followed by MnAl2O4 and then 

Mn2SiO4. The spectra were fitted by a collection of multiplet component peaks using a 

previously developed procedure to accurately determine the Mn 2p3/2 binding energy for each 

material [21]. Based on this fitting procedure, the weighted average Mn 2p3/2 binding energy was 

determined to be 641.8 eV for MnAl2O4, 641.9 eV for MnSiO3 and 641.5 eV for Mn2SiO4, where 

the calculation of the binding energy did not include the fitted shake-up satellite peak. These 

binding energy values are summarized in Table 2. Comparison of the Mn 2p3/2 binding energy 

for MnAl2O4 (641.8 eV) established in the present study agrees well with the previously 

established value of 641.6 eV [20] (Table 1). 

It is interesting to note that Mn2+ is present almost exclusively in a tetrahedral site in MnAl2O4 

while it is found in higher coordination sites in the other two materials investigated (Figure 3) 

[29,35]. It has been relatively recently found that a decrease in coordination number leads to a 

decrease in the binding energy of Fe 2p3/2 spectra for SrFe1-xZnxO3-δ [33]. Noting this, the Mn 

2p3/2 binding energy from MnAl2O4 was located between that of Mn2SiO4 and MnSiO3 (Table 2). 

The reason for these shifts in binding energy is not fully known, but may be related to variations 
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in the Mn-O bond covalency and Mn-O bond lengths between the materials, as the composition 

and structure also varied widely between the materials studied. 

3.2.2 O	1s	XPS	spectra	

The fitted O 1s XPS spectra for all the compounds studied are presented in  

  

 

Figure 4. Similarly to the Mn 2p3/2 spectral observations, the O 1s binding energy for Mn2SiO4 

was observed to be below that of MnAl2O4 and MnSiO3. In the present case, the binding energy 

of the most intense, lowest energy feature in the spectra was determined to be 531.1 eV for 

MnAl2O4, 530.9 eV for MnSiO3 and 530.6 eV for Mn2SiO4. It should be noted that the O 1s 

 

536 535 534 533 532 531 530 529 528

a) O 1s

In
te

ns
ity

 (c
ps

)

Binding Energy (eV)

 MnAl2O4

 Fit

 

536 535 534 533 532 531 530 529 528

b)

In
te

ns
ity

 (c
ps

)

Binding Energy (eV)

 MnSiO3

 Fit

 

536 535 534 533 532 531 530 529 528

c)

In
te

ns
ity

 (c
ps

)

Binding Energy (eV)

 Mn2SiO4

 Fit



14 
 

binding energy reported here agrees well with the literature value reported in Table 1 (i.e. 531.3 

eV [20]). However, contrary to the observations during analysis of the Mn 2p3/2 spectra, the O 1s 

peak maximum binding energy for MnAl2O4 was slightly above that of MnSiO3. As can be easily 

observed in  

  

 

Figure 4, the O 1s lineshape from the materials changed considerably with composition. Such a 

change may result from the O ions being found in different chemical environments in the 

materials investigated. However, it should be noted that as the surfaces of the materials were not 

cleaned after being introduced into the vacuum chamber of the XPS instrument, it was likely that 
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the highest binding energy features (at least partially) resulted from adsorbed water and/or 

hydroxyl functional groups [36]. These binding energy data are also summarized in Table 2. 

3.2.3 Al	2p	and	Si	2p	XPS	spectra	

The fitted Al 2p and Si 2p XPS spectra for all experimental compounds are presented in Figure 

5. All spectra were fitted by spin-orbit split 2p3/2 and 2p1/2 component peaks. Using this method, 

the Al 2p3/2 binding energy from MnAl2O4 was determined to be 74.3 eV while the 2p peak 

maximum energy was 74.5 eV (Figure 5(a)). This latter value is in good agreement with the 

previously reports Al 2p binding energy of 74.2 eV reported by Strohmeier and Hercules [20] 

(Table 1). Quite obviously, the presence of this XPS peak can be used to unambiguously 

distinguish MnAl2O4 from the Mn-silicates. 

Using this same spin-orbit split peak fitting procedure, the Si 2p3/2 binding energy was 

determined to be 102.0 eV for MnSiO3 and 101.4 eV for Mn2SiO4 whereas the Si 2p peak 

maximum energy was found to be 102.1 eV and 101.6 eV for MnSiO3 and Mn2SiO4, respectively 

(Figure 5(b,c)). From this analysis, it can be said that the Si 2p3/2 and Si 2p binding energies for 

Mn2SiO4 were significantly less than those of MnSiO3. These observations are important, as they 

provide the means by which the analyst can differentiate between the two Mn-silicates when 

studying the selective oxidation of advanced high strength steels using XPS. The Al and Si 

binding energy values derived in the present study are also summarized in Table 2.  

3.3 Electron Energy Loss Spectroscopy 

The Mn-L2,3 energy loss near edge structure (ELNES) for MnSiO3, MnAl2O4, and Mn2SiO4 are 

presented in Figure 6. It should be pointed out that the spectra have been aligned with respect to 

the highest intensity fine structure (FS) at 640 eV and do not allow direct comparison of the 
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absolute energy scale. Examination of the overall spectral weight of the Mn-L3 edge towards low 

energy is consistent with the one found for MnO [37], and indicates an oxidation state close to 

2+ for all the compounds investigated. This Mn valence was expected from a pure ionic 

description of the compounds, and is in agreement with the XPS results in the present study. 

Small differences were observed between the spectra. For example, at low energy, the FS at 

approximately 639 eV is clearly visible for Mn2SiO4, whereas it is much weaker for MnSiO3 and 

MnAl2O4 (Figure 6). In addition, at approximately 642 eV, the FS is more clearly defined for 

MnSiO3 and MnAl2O4 than it is for Mn2SiO4 (Figure 6). It can be argued that the highest 

intensity FS is actually located at higher energy for Mn2SiO4 than for MnAl2O4 and MnSiO3, 

hence revealing the lowest energy shoulder and hindering the FS at 642 eV, which might be 

related to a slightly higher Mn oxidation state in Mn2SiO4 than in MnAl2O4 and MnSiO3. 

Nevertheless, the noticeably higher intensity in the range 641.5-646 eV in the case of MnSiO3 

could also indicate a slightly higher oxidation state. Interpretation from calculations, such as the 

multiplet approach [38], would be necessary to discuss the structural origin of the spectral 

differences observed, but is beyond the scope of this study. 

The O K-edge shows very distinct near edge structures for all the compounds, as shown in 

Figure 7. For example, the Mn2SiO4 spectrum (Figure 7, bottom curve) displays a shoulder at the 

edge onset just above 530 eV, two intense FSs and a shoulder at approximately 540 eV and 

finally a large structure from 550 eV corresponding to the first extended FS. This extended FS is 

also present in the case of the MnSiO3 spectrum (Figure 7, top curve), but the near edge 

structures differ. In particular, in the case of the MnSiO3 spectrum there is a low intensity pre-

edge structure at approximately 526 eV which is absent in the two other spectra, a weak shoulder 

on the edge onset at approximately 530 eV and a relatively featureless and intense structure 
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between approximately 530 and 540 eV which is distinctly different from the Mn2SiO4 and 

MnAl2O4 spectra.  

The O K-edge ELNES of MnAl2O4 (Figure 7, middle curve) is in agreement with the one 

reported in a recent investigation [39] and shows major differences versus the silicates. Several 

FSs are clearly visible: the FS at 530 eV, attributed to O p – Mn p,d hybridization [39], the 

highest intensity FS at approximately 537 eV, the shoulder at approximately 540 eV and the two 

FSs at approximately 543 and 545 eV. Furthermore, the extended fine structure between roughly 

550 and 560 eV is more intense and has a narrower energy range than the similar FS observed 

for Mn2SiO4 and MnSiO3. The differences observed in the O K-edge ELNES of these three 

compounds likely arise from the varying local environment around the O sites in these structures 

and can be discussed in terms of chemical bonding, but these determinations are beyond the 

scope of the present paper. However, the above results show that both the Mn L2,3 and O K-edge 

EELS spectra have significant variances between the investigated compounds which can be used 

by the analyst to unambiguously identify these compounds in the TEM. 

4 Conclusions 

XPS and EELS spectra were acquired from Mn2Al2O4, MnSiO3 and Mn2SiO4 standards 

fabricated using the ceramic method with the objective of providing spectral data to aid in 

identifying these compounds when studying the selective oxidation of advanced high strength 

steels. It was determined that the Mn 2p3/2, O 1s, and Si 2p XPS spectra of Mn2SiO4 had a 

significantly lower binding energy versus those of MnSiO3, with the difference in binding energy 

being greater than the precision of the instrument used in this study (± 0.1 eV). Noting this, 

however, the difference in Mn 2p3/2 binding energy between MnAl2O4 and MnSiO3 was within 
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the precision of the instrument, making identification of these two materials by analysis of the 

Mn 2p3/2 binding energy alone difficult. However, the lineshape differences in the Mn 2p3/2 core-

line peak spectra between the two materials can aid in identification. Further, the presence of the 

Al 2p or Si 2p XPS core-line peaks can be used to distinguish MnAl2O4 from MnSiO3 in this 

case. Analysis of the EELS spectra for Mn2Al2O4, MnSiO3 and Mn2SiO4 revealed distinguishing 

features between the compounds in both the Mn L2,3- and O K-edges. In particular, the O K-edge 

spectra for the three compounds were found to have very distinct fine structures, allowing the 

compounds to be easily distinguished from one another. Overall, the present contribution has 

provided both XPS and EELS spectral data which can be used to unambiguously distinguish 

MnAl2O4, MnSiO3 and Mn2SiO4 when investigating the selective oxidation of advanced high 

strength steels in continuous galvanizing line process atmospheres. 
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Table 1: XPS binding energies for Mn2SiO4 and MnAl2O4 available in the literature. 

Compound Al 2p O 1s Mn 2p3/2 Mn 2p1/2 Si 2p Reference 
MnAl2O4 74.2 531.3 641.6 653.4  [20] 
Mn2SiO4     ~102.5 [23] 

 

 

Table 2: Summary of experimentally determined XPS binding energies (eV). 

Compound Al 2p (Al 2p3/2) O 1s Mn 2p3/2 Si 2p (Si 2p3/2) 

MnAl2O4 74.5 (74.3) 531.1 641.8 -- 

MnSiO3 -- 530.9 641.9 102.1 (102.0) 

Mn2SiO4 -- 530.6 641.5 101.6 (101.4) 
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Figure 1: Powder X-ray diffraction patterns from (a) MnAl2O4, (b) MnSiO3, and (c) Mn2SiO4 
collected using a Cu Kα1 X-ray source. The collected diffraction patterns are compared to the 
calculated diffraction patterns determined using the known structures of the materials [29]. The 
major peaks from the impurity phases are marked with an asterisk in the powder XRD patterns. 
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Figure 2: Background subtracted Mn 2p3/2 high resolution XPS spectra from (a) MnAl2O4, (b) 
MnSiO3, and (c) Mn2SiO4.  The background was removed using a Shirley-type background and 
the spectra were fitted using multiplet peaks and a shake-up satellite peak using the method 
described in [21]. The resulting fit is indicated by a grey line.  
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Figure 3: Crystal structures of (a) MnAl2O4, (b) MnSiO3, and (c) Mn2SiO4. Mn-O polyhedra are 
shown in green, Si-O polyhedral are shown in purple, and Al-O polyhedral are presented in blue.  
Mn is 4-coordinate in MnAl2O4, whereas distorted 6- and 7-coordinate Mn ions are present in 
MnSiO3, while Mn occupies distorted octahedral environments in Mn2SiO4. 
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Figure 4: Background subtracted O 1s high resolution XPS spectra from (a) MnAl2O4, (b) 
MnSiO3, and (c) Mn2SiO4.  The spectra were fitted by three component peaks to adequately 
reproduce each spectrum.  The lowest energy peak represents O ions bound to Mn/Al/Si while 
the highest energy peaks likely represents adsorbed water and hydroxide functional groups [36]. 
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Figure 5: Background subtracted high resolution Al 2p XPS spectrum from (a) MnAl2O4 and 
high resolution Si 2p XPS spectra from (b) MnSiO3 and (c) Mn2SiO4.  Each spectrum has been 
fitted by a set of spin-orbit split 2p3/2 (low energy) and 2p1/2 (high energy) peaks having a 2:1 
intensity ratio. 
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Figure 6: Mn-L2,3 edge electron energy loss spectra. The spectra were aligned to the most intense 
fine structure of the L3 edge at approximately 640 eV. The spectra were normalized to have an 
equal intensity of the L3 edge and were offset for clarity. 
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Figure 7: O-K edge electron energy loss spectra. The alignment and normalization of the spectra 
were performed with respect to the most intense fine structure of the Mn-L3 edge (Figure 6) and 
the spectra were offset for clarity. 

 


