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Abstract	
 

The Cambrian explosion bisects the history of life, separating relatively simple pre-

Cambrian life from a complex and diverse Cambrian fauna. Due to the paucity of the body-fossil 

record, trace fossils often offer the only available insight into these evolutionary milestones, 

representing a continuous record through the late Ediacaran-early Cambrian. The Chapel Island 

Formation (CIF) of the Burin Peninsula, Newfoundland, provides an exceptional record of these 

innovations. Currently, the Global Boundary Stratotype Section and Point (GSSP) for the basal 

Cambrian boundary is located 2.4 m above the base of member 2 of the CIF, delineated by the 

lowest observed appearance of the Treptichnus pedum Ichnofossil Assemblage Zone (IAZ). 

Currently, researchers are facing difficulties when attempting to correlate with a few sections 

worldwide, and a formal revision of the boundary has been proposed. We hypothesize that a 

revision of the ichnotaxonomy of the GSSP with an emphasis on trace fossil functional 

morphology may better illustrate evolutionary innovations at the Ediacaran-Cambrian boundary. 

In turn, this revised ichnotaxonomy may provide further support for the position of the 

Ediacaran-Cambrian GSSP. Through a bed-by-bed study, the ichnotaxonomy of the T. pedum 

IAZ was revised, and a stratigraphic section was measured. Twenty ichnospecies comprising 

thirteen ichnogenera were observed (Figure 0.1). The ichnospecies were grouped into five 

ichnoguilds, which were used to conduct an ecospace analysis of the section. The ichnofauna 

revealed a more gradual appearance of ichnofossil diversity at the boundary, and a more 

protracted transition between Ediacaran and Cambrian ecosystems than previously envisioned. 

The T. pedum IAZ in the CIF marks the appearance of novel methods of interacting with the 

substrate as documented by sub-horizontal branching burrows (treptichnids), equilibrium 

structures (Bergaueria isp.), and complex vertical burrows (Gyrolithes scintillus). Additionally, 

it marks the evolution of novel body plans, as revealed by the presence of arthropod scratch 

marks (Dimorphichnus cf. obliquus). However, remnants of Ediacaran matground ecology are 

also present. Farming feeding styles are utilized by the Gyrolithes scintillus ichnoguild, and mat 

grazing remains a common feeding style. These ichnotaxa provide valuable insight into the very 

beginnings of vertical, penetrative burrowing. They further illuminate the depth and rate at which 

this new lifestyle evolved, and shed light on the evolution of three-dimensional burrowing.



 

 

 

 

 

 

 
 

 
Figure 0.1 Block diagrams of the ichnofauna observed within the Harlaniella podolica IAZ and the Treptichnus pedum IAZ, as documented within the CIF at 

Fortune Head. Ichnofossils: Archaeonassa fossulata (An). Bergaueria isp. (Be). Bergaueria perata (Bp). Conichnus conicus (Cn). Cochlichnus anguineus (Co). 

Dimorphichnus cf. obliquus (Di). Gyrolithes gyratus (Gg). Gordia isp (Go). Gyrolithes scintillus (Gs). Helminthoidichnites tenuis (Hd). Helminthopsis tenuis 

(Hp). Monomorphichnus (isp. A, isp. B, isp. C) (Mo). Palaeophycus (isp. and tubularis) (Pa). Treptichnus coronatum (Tc). Treptichnus pedum (Tp). 

Trichichnus cf. simplex (Tr). Body fossils (in blue): Harlaniella podolica (Ha). Palaeopascichnus delicatus (Pp). 
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CHAPTER 1 

1. Introduction 
The Proterozoic-Phanerozoic transition is arguably the most profound time of evolutionary 

change in Earth’s History. It bisects the history of life between an enigmatic Precambrian biota 

and the appearance of shells and brains with the Cambrian fauna. It is therefore imperative that 

the geological evidence upon which the Precambrian-Cambrian boundary is placed reflects these 

significant evolutionary innovations. The onset of penetrative bioturbation has long been 

considered a pivotal component of the rapid animal diversification characteristic of the early 

Cambrian (Seilacher, 1999). The Ediacaran-Cambrian Chapel Island Formation (CIF) located on 

the Burin Peninsula, Newfoundland provides an excellent record of these innovations (Crimes 

and Anderson, 1985; Narbonne et al., 1987; Crimes, 1992; Landing, 1994; Gehling et al., 2001; 

Droser et al., 2002; Buatois et al., 2014). Of particular use are the thickness and repetitive nature 

of facies in the CIF. In 1992 the International Commission on Stratigraphy (ICS) chose the first 

penetrative branching burrows as a reliable criterion to delineate the basal Cambrian boundary 

(Brasier et al., 1994). This is represented by the Treptichnus pedum Ichnofossil Assemblage 

Zone (IAZ), whose lowermost limit was placed at the lowest observed occurrence (First 

Appearance Datum) of Treptichnus pedum at the time of ratification (Landing, 1994). This 

decision was based on ichnological studies conducted in the late 1980’s (Crimes and Anderson, 

1985; Narbonne et al., 1987; Landing et al., 1988). While there has been a resurgence of interest 

in the lowermost Cambrian boundary section (Gehling et al., 2001; Droser et al., 2002; Buatois 

et al., 2014; Herringshaw et al., 2017) and the placement of the Global Boundary Stratotype 

Section and Point (GSSP) itself (Landing et al., 2013; Babcock et al., 2014; Geyer and Landing 

2016; Buatois, 2018), the ichnotaxonomic determinations of the trace fossils present in this 

section have remained relatively untouched. Recently, researchers have encountered difficulties 

when attempting to correlate the GSSP with a few boundary sections worldwide. As such, the 

placement of the GSSP along with the IAZ upon which it is based have received scrutiny, and a 

revision of the boundary has been formally proposed (Babcock et al., 2014).  
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1.1.  Conceptual background, Hypotheses and Objectives 
The T. pedum IAZ is currently placed 2.4 m above the base of member 2 in the Chapel Island 

Formation in Fortune Head, Newfoundland (Landing, 1994). At the time of ratification, the IAZ 

was described as consisting of Treptichnus pedum, Skolithos annulatus, Arenicolites isp., 

Monomorphichnus isp., Conichnus conicus, Helminthopsis tenuis, Phycodes isp., Gyrolithes isp., 

and Curvolithus isp. (Narbonne et al., 1987; Landing et al., 1988). Since ratification, the FAD of 

Treptichnus pedum has proven useful for lowermost Cambrian correlation in Namibia (Wilson et 

al., 2012; Buatois et al., 2013), southern and central Australia (Baghiyan-Yazd, 1998; Jensen et 

al., 1998; Droser et al., 1999), western United States (Jensen et al., 2002; Smith et al. 2016), 

central England (McIlroy and Horák, 2006), and northwestern Canada (MacNaughton and 

Narbonne, 1999; Carbone and Narbonne, 2014), among other sections.  

However, some researchers are currently facing problems when attempting to correlate the 

GSSP horizon, particularly as it pertains to the carbonate-dominated sections in Gondwana and 

Siberia (Babcock et al., 2014). As a result, the placement of the GSSP has recently resurfaced as 

a topic of interest (Gehling et al. 2001; Droser et al. 2002; Babcock et al. 2014). In 2013, the 

International Subcommission on Ediacaran Stratigraphy (ISES) organized a Working Group on 

the Terreneuvian Series and Fortunian Stage. Their purpose is to investigate concerns and to 

consider the possibility of adjusting or redefining the GSSP (Babcock et al., 2014). 

A revision of the T. pedum IAZ may assist in broadening the constraints of the GSSP and 

improve the ability to use these ichnotaxa in global correlations. In addition to a taxonomic 

revision, re-examination of the interval containing the Ediacaran-Cambrian boundary and 

lowermost Fortunian strata with an emphasis on novel behavioural strategies is critical. 

Ichnofossils are a direct result of organism behaviour, anatomy, and mode of life. Increased 

ichnofossil complexity can thus be reasonably used as a proxy for increased behavioural and 

anatomical complexity. Likewise, the appearance of novel ethologic categories implies novel 

modes of life. The appearance of ichnofossils evidencing increased substrate penetration, as well 

as novel ethologic categories, such as Domichnia, Fodichnia, and Repichnia, thus represents true 

evolutionary innovations. Further, the first possible coelomate bilaterian was likely macroscopic 

with a benthic lifestyle (Valentine, 1994; Budd and Jensen, 2000; Collins and Valentine, 2001; 

Budd and Jensen, 2017). There is a growing consensus that the first bilaterians may have 

produced traces and that there is evidence of bilaterian ichnofossils in Ediacaran strata (Budd and 



 3 

Jensen, 2000; Mángano and Buatois, 2014; Buatois and Mángano, 2016; Budd and Jensen, 

2017).  

 

The following hypotheses will be evaluated: 

(1) Will a reassessment of the ichnotaxonomy of the GSSP section provide further support 

for the position of the Ediacaran-Cambrian boundary? 

(2) Does a detailed revision of the Treptichnus pedum Ichnofossil Assemblage Zone with an 

emphasis on trace-fossil functional morphology better illustrate evolutionary innovations 

across the Ediacaran-Cambrian boundary (i.e., major metazoan radiation = Cambrian 

explosion)? 

 

Through this project we aim to:  

(1) Provide a revision of the ichnology at the Ediacaran-Cambrian GSSP. 

(2) Evaluate the appearance of evolutionary innovations at the Ediacaran-Cambrian GSSP. 

(3) Redefine the Treptichnus pedum Ichnofossil Assemblage Zone based on a re-evaluation 

of the ichnologic content of the GSSP. 

 
1.2.  A review of Ichnology 

Ichnology, the study of trace fossils, is a unique blend of paleontology and sedimentology 

(Pemberton et al., 1992). This field comprises the study of sedimentary structures (traces) 

produced by organisms. This encompasses all features of bioturbation (trails, tracks, and 

burrows), bioerosion (borings), and biodeposition (e.g., fecal pellets) (Bromley, 1990; 1996; 

Buatois and Mángano, 2011). After the discovery of the first fossil footprints by Dr. Duncan in 

1828 (Duncan, 1828, Pemberton and Gingras, 2003), the study of vertebrate ichnology gained 

brief popularity (Figure 1.1). Invertebrate trace fossils, however, were commonly misclassified 

as fossil algae (“fucoids”) (Osgood, 1975a). Once it was determined that these fossils were in 

fact ichnofossils by Nathorst in 1881, interest in the study waned (Figure 1.1) (Osgood, 1975a), 

although some systematic studies from this time do exist (Richter, 1927; 1931; 1941). This was 

in large part due to the fact that it is often difficult to assign a specific tracemaker to an 

ichnotaxon. This is owing to a few key principles in ichnology (Frey, 1975; Bromley, 1981; 
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1990; 1996; Ekdale et al., 1984; Pickerill, 1994; Pickerill and Narbonne, 1995; Bertling et al., 

2006; Buatois and Mángano, 2011):  

 

(1) A single organism may produce multiple ichnotaxon  

(2) A single ichnotaxon may be produced by multiple organisms  

(3) Multiple organisms may produce a single structure  

 

Eventually classification and cataloging of ichnofossils grew (Seilacher, 1953; Häntszchel, 1962; 

1965), yet interest in the study remained limited (Figure 1.1). In 1967, Dolf Seilacher showed 

that rather than provide information on a tracemaker, trace fossils uniquely record the behaviour 

of ancient organisms (Seilacher, 1967). He demonstrated that they provide a rare opportunity to 

observe organism behaviour through time, which led to a “renaissance” (resurgence) of the field 

throughout the late 1900’s (Figure 1.1). This resurgence was followed by a focus by the 

scientific community to provide a classification framework and taxonomical structure for 

biogenic sedimentary structures (for a review see: Buatois and Mángano, 2011, section 1.1).  

 

 
Figure 1.1 Graph of the usage frequency of the words “ichnofossil(s)”, “ichnology”, and “trace fossil(s)” over time. 

Usage frequency was calculated by dividing the number of times a word was used in a specific year by the number 

of words in the database (Google Books) for that year. Graph created using Google ngram viewer; for more 

information see Michel et al. (2011).  
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1.2.1. Seilacher’s (1964) and Martinsson’s (1970) preservational categories 
One such classification framework deals with the stratinomy (preservation, excluding 

alteration) of ichnofossils (for reviews see Hallam, 1975; Frey and Pemberton, 1985; Buatois and 

Mángano 2011 section 1.3.1). Two schemes are currently used today (Seilacher, 1964; 

Martinsson, 1970), and deal with the relationship between the trace fossil and its casting medium 

(Figure 1.2). If an ichnofossil is preserved at the top of a stratum, it is described as being 

preserved in ‘epirelief’ (Seilacher, 1964) or as ‘epichnia’ (Martinsson, 1970). An ichnofossil 

preserved at the base of a stratum is referred to as preserved in ‘hyporelief’ (Seilacher, 1964) or 

as ‘hypichnia’ (Martinsson, 1970). Those ichnofossils preserved within a stratum are described 

as preserved in ‘full relief’ (Seilacher, 1964), or separated into ‘endichnia’ if preserved within 

the casting medium and ‘exichnia’ if preserved outside of it (Martinsson, 1970). For Seilacher’s 

(1964) ‘epirelief’ and ‘hyporelief’ structures, the terms positive (concave) and negative (convex) 

are employed to describe trace fossil relief.  

 
Figure 1.2 Block diagram illustrating Seilacher’s (1964) and Martinsson’s (1970) stratinomic classification terms 

(modified from Buatois and Mángano, 2011). 

1.2.2. Ichnotaxonomy 
Since ichnotaxa cannot be tied to single producers, it is impossible to place them within 

the classical biotaxonomic scheme. As a result, ichnologists work within a unique taxonomic 

scheme while still following ICZN rules. Where phylogeny is the governing principle in the 

biotaxonomic scheme, behaviour is the governing principle in ichnotaxonomy (Bromley, 1990; 

1996). While the interpretation of a tracemakers behaviour may be revised (e.g; Cruziana as an 
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internal burrow (Seilacher, 1955b, 1970, 1982; Goldring, 1985) rather than a surface trail 

(Baldwin, 1977)), the morphology of the ichnotaxon does not. Ichnologists employ the 

morphology of a trace fossil as a reflection of the producer’s behavior in order to classify the 

structure. They use several distinctive yet variable morphological features, called 

ichnotaxobases, to guide classification (Bromley, 1990, 1996; Buatois and Mángano, 2011). The 

variability in an ichnotaxobase reflects behavioural variability, and as a result indirectly links 

ichnotaxonomic classification with fossil behaviour. Currently, five ichnotaxobases are accepted: 

(1) general form (2) wall (3) branching (4) fill (5) spreite (Bromley, 1990, 1996). They are 

concisely explained in Buatois and Mángano (2011, section 2.3). Size, producer, type of passive 

fill, substrate consistency, geological age, geographic location, facies environment, and 

preservational aspects are not accepted as useful ichnotaxobases (Magwood, 1992; Pickerill, 

1994; Bertling et al., 2006; Buatois and Mángano, 2011). 

 General form of a trace fossil is the highest ranking ichnotaxobase (Pickerill, 1994). 

This includes configuration (e.g., straight, winding, meandering, tube, helical, U-shaped, J-

shaped, network, boxwork, and sinusoidal), orientation (e.g., vertical, sub-vertical, horizontal, 

sub-horizontal, and inclined), and placement with respect to stratification (e.g., positive or 

negative epirelief, positive or negative hyporelief, and full relief). The presence or absence of a 

wall and features of the burrow boundary are also considered a valid and high rank 

ichnotaxobase. Bromley (1990, 1996) noted seven main types of burrow boundary that are 

commonly recognized: unlined walls, dust films, constructional linings, zoned fills, wall 

compaction, diagenetic haloes, and wall ornaments. Similarly, the presence or absence of 

branching in an ichnotaxon is considered distinctive, with three main types of branching 

recognized: secondary successive, primary successive, and simultaneous (Bromely and Frey, 

1974; D’Alessandro and Bromley, 1987; Bromley, 1990, 1996). “False branching” occurs when 

burrow overlap or overcrossings are mistaken for branching, is common, but does not constitute 

a valid ichnotaxobase (Buatois and Mángano, 2011). The nature of the fill of an ichnotaxon is an 

important ichnotaxobase, as it clearly relays information regarding trophic type. Passive fill is 

due to material infilling the burrow gravitationally and is typically structureless, although 

laminated and draught-fill canals exist as well (Seilacher 1968; Bromley, 1990, 1996; Goldring, 

1996; Buatois et al., 2002). Active fill occurs when the infilling material was actively 

manipulated by the tracemaker, and can be either massive, meniscate (also known as “backfill”) 
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or concentric. This is different from spreite, which is an ichnotaxobase in its own right. Spreite, 

the thin laminations produced as a result of successive repositioning of the burrow, is produced 

either as a response to erosion/sedimentation at the water-sediment interface or as a method of 

strip-mining for food resources.   

The variability within an ichnotaxobase should reflect the ethology of the producer 

(Buatois and Mángano, 2011). By doing so, the ichnotaxonomy of a burrow is tied to the 

functional morphology, and by extension the ethology, of a burrow (Bromley, 1996). 

Nevertheless, it is crucial that ichnotaxonomic classification and ethological classification 

remain separate. Single ichnotaxa often have multiple functions (e.g., Gyrolithes as a dwelling, 

feeding, and farming burrow; see section 4.1.9), meanwhile a single ethology can show a wide 

morphologic diversity (Vallon et al., 2016). 

1.2.3. Ethology 
The concept of ethological categories was pioneered by Seilacher (1953). He proposed five basic 

ethologies: cubichnia (resting traces), repichnia (locomotion traces), pascichnia (grazing traces), 

fodinichnia (feeding traces), and domichnia (dwelling traces). Since this time, at least 34 new 

ethologies have been proposed (Vallon et al., 2016). It is well agreed upon that the number of 

ethological categories should remain small (Frey and Pemberton, 1985; Buatois and Mángano, 

2011; Vallon et al., 2016) and summaries of current categories have been produced at fairly 

regular intervals (Frey and Pemberton, 1984, 1985; Ekdale, 1984; Bromley, 1990, 1996; Vallon 

et al., 2016). The most recent summary of the status of current ethological categories (Table 1.1) 

was conducted by Vallon et al. (2016), who created an updated ethological scheme (Figure 1.3 

and Table 1.1).  

Only the ethological categories agrichnia, chemichnia, cubichnia, domichnia, fodinichnia, 

pascichnia, and repichnia are represented in this study. A summary of common characteristics 

for these ethologies be seen in table 1.2. Other factors can influence ethological determinations 

as well, such as environmental conditions at the time of trace fossil emplacement. Thus, while 

general trends exist between ichnofossil morphology and ethological categories, behavioural 

interpretations must be conducted on a case-by-case basis. 
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Figure 1.3 A summary of ethological categories and sub-categories as determined by Vallon et al. (2016). Ethology 

names are abbreviated (lacking the suffix –ichnia), and subcategories are indicated with brackets (Vallon et al., 

2016). 



 

Table 1.1 Status of all proposed ethological categories.  

ETHOLOGICAL 
CATEGORIES AUTHORS BEHAVIOUR 

GOOGLE 
SCHOLAR 

“HITS” 
(01/02/18) 

CURRENT STATUS 

GENERALLY ACCEPTED 

DOMICHNIA Seilacher (1953) dwelling 1170 

Original categories (Seilacher, 1953); generally accepted (Bromley, 1996; 
Buatois and Mángano, 2011; Vallon et al., 2016) 

FODINICHNIA Seilacher (1953) feeding + dwelling 914 

PASCICHNIA Seilacher (1953) feeding + locomotion 707 

REPICHNIA Seilacher (1953) directed locomotion 634 

CUBICHNIA Seilacher (1953) temporary immobility 
(resting) 594 

FUGICHNIA Frey (1973) sudden escape 496 Generally accepted category (Bromley, 1996; Buatois and Mángano, 2011; 
Vallon et al., 2016) 

AGRICHNIA Ekdale et al. 
(1984) 

trapping/gardening + 
dwelling 245 Generally accepted category (Bromley, 1996;  Buatois and Mángano, 2011; 

Vallon et al., 2016) 

PRAEDICHNIA Ekdale (1985) predation 221 Generally accepted category (Bromley, 1996; Buatois and Mángano, 2011; 
Vallon et al., 2016) 

CALICHNIA Genise and Bown 
(1994) breeding 86 Generally accepted category (Bromley, 1996; Buatois and Mángano, 2011; 

Vallon et al., 2016) 

FIXICHNIA De Gibert et al. 
(2004) anchoring 76 Generally accepted category (Buatois and Mángano, 2011; Vallon et al., 2016) 

SUBCATEGORIES 

NAVICHNIA Gingras t al. 
(2007) 

swimming (in a 
soupground) 61 Subcategory of repichnia (Vallon et al., 2016) 

CURSICHNIA Müller and 
Gründel (1962) 

locomotion with 
appendages 24 Subcategory of repichnia (Bromley, 1990, 1996; Buatois and Mángano, 2011; 

Vallon et al., 2016) 

NATICHNIA Müller and 
Gründel (1962) 

swimming (near 
sediment surface) 27 Subcategory of repichnia (Bromley, 1990, 1996; Buatois and Mángano, 2011). 

VOLICHNIA Müller and 
Gründel (1962) landing/take-off traces 24 Subcategory of repichnia and cubichnia (Buatois and Mángano 2011, Vallon et 

al., 2016) 

TAPHICHNIA Pemberton et al. 
(1992) 

unsuccessful attempts 
to escape burial 15 Reassigned to fugichnia (Bromley, 1996; de Gibert et al., 2004; Buatois and 

Mángano 2011; Vallon et al., 2016) 
XYLICHNIA Genise (1995) wood feeding borings 17 Subcategory of fodichnia (Genise, 1995; Vallon et al., 2016) 

MORDICHNIA ? predation marks on 
hard substrates 14 Subcategory of praedichnia (Vallon et al., 2016) 

IRRETICHNIA Lehane and 
Ekdale (2013) trapping 4 Subcategory of praedichnia (Vallon et al., 2016) 
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AESTIVICHNIA Verde et al. 
(2007) 

aestivation 
(dormancy/ 
hibernation) 

3 Subcategory of domichnia (Verde et al., 2007; Buatois and Mángano, 2011; 
Vallon et al., 2016) 

RECENTLY PROPOSED, REASSIGNED, OR REVISITED 

EQUILIBRICHNIA Frey and 
Pemberton (1985) gradual adjustment 168 Generally accepted (Buatois and Mángano, 2011) Reassigned to domichnia and 

fodinichnia (Vallon et al., 2016) 

CHEMICHNIA Bromley (1996) chemisymbiosis 75 Generally accepted category (Bromley, 1996; Vallon et al., 2016) Reassigned to 
agrichnia (de Gibert et al., 2004) 

MORTICHNIA Seilacher (2007) death traces 54 Generally accepted (Buatois and Mángano, 2011). Reassigned to Repichnia, 
praedichnia and ecdysichnia (Vallon et al., 2016) 

PUPICHNIA Genise et al. 
(2007) pupation 64 Generally accepted (Buatois and Mángano, 2011). Subcategory of ecdysichnia 

(Vallon et al., 2016) 

IMPEDICHNIA Tapanila (2005) bioclaustration 
structures 19 Generally accepted (Buatois and Mángano, 2011). Body fossils; recommended 

term impeditaxa (Vallon et al., 2016) 

DIGESTICHNIA Vallon (2012), 
Vialov (1972) digestion processes 12 Recently revived category (Vallon et al., 2016) 

QUIETICHNIA Müller and 
Gründel (1962) Resting traces 2 Supercategory proposed for domichnia + cubichnia; not in current use (Vallon et 

al., 2016) 

ECDYSICHNIA Vallon et al. 
(2016) molting traces 6 Recently proposed category (Vallon et al., 2016) 

REASSIGNED 

AEDIFICICHNIA Bown and 
Ratcliffe (1988) 

above-ground 
structures 22 Reassigned to calichnia (Genise and Bown, 1994a; Buatois and Mángano, 2011)  

and/or domichnia (Vallon et al., 2016) 

POLYCHRESICHNIA Hasiotis (2003) social insect 
structures 18 Reassigned to calichnia and domichnia (Buatois and Mángano 2011, Vallon et 

al., 2016) 

SPHENOICHNIA Mikuláš (1999) plant root penetration  
traces 14 Attributed to plants (Vallon et al., 2016) 

CORROSICHNIA Mikuláš (1999) plant corrosion traces 16 Attributed to plants (Vallon et al., 2016) 

MOVICHNIA Müller and 
Gründel (1962) moving traces 12 Equivalent to repichnia (Müller and Gründel 1962, Vallon et al., 2016) 

CIBICHNIA Müller and 
Gründel (1962) feeding traces 10 Equivalent to fodinichnia (Vallon et al., 2016) 

CECIDOICHNIA Mikuláš (1999) plant reaction tissues 7 Attributed to plants, considered as body fossils (Bertling et al., 2006); 
recommended term cecidotaxa (Vallon et al., 2016) 
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Table 1.2 Common features of the ethologies mentioned in this dissertation. 

ETHOLOGY 
(behaviour) 

COMMON ICHNOTAXOBASE EXPRESSION 
FORM WALL BRANCHING FILL SPREITE Morphology orientation stratiform 

AGRICHNIA 
(farming = 
dwelling + 

feeding) 

Complex (branched meanders, 
spirals, or nets) horizontal (+) hyporelief none simultaneous 

branching common passive rare 

CHEMICHNIA 
(chemo-symbiotic 

feeding) 

Deep burrows (simple, or a 
causative tube and multiple 

branches) 

vertical and 
horizontal full relief none 

primary and 
secondary 

successive common 
active rare 

CUBICHNIA 
(resting) 

Reflect latero-ventral anatomy 
of producer horizontal (+) hyporelief, 

(-) epirelief 
no 

wall/lining unbranched passive none 

DOMICHNIA 
(dwelling) 

Variable (straight, U- shaped, 
branched systems, plug 

shaped) 

vertical to 
oblique, 

some 
horizontal 

full relief 
wall and 
linings 

common 

simultaneous 
branching common passive none 

FODINICHNIA 
(feeding = 
dwelling + 

feeding) 

Variable complexity of 
burrows (i.e., simple, 

branched systems, radial, or 
U-shaped) 

Variable 
(horizontal, 
inclined, or 

vertical) 

full relief no 
wall/lining 

primary and 
secondary 

successive common 
active common 

PASCICHNIA 
(grazing = 

locomotion + 
feeding) 

Trails (i.e., simple, curved, 
circular, or meandering horizontal (+) hyporelief, 

(-) epirelief 
no 

wall/lining unbranched passive none 

REPICHNIA 
(locomotion) 

Trackways, trails (i.e., simple, 
bilobate, or chevronate) horizontal (+) hyporelief, 

(-) epirelief 
no 

wall/lining unbranched passive none 

11 
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1.3.  A review of the Ediacaran-Cambrian transition 
The appearance of the complex, mineralized Cambrian fauna has fascinated scientists for 

decades. This pivotal time in Earth’s evolution was seemingly devoid of a fossil record, and 

famously led Darwin to propose it as a missing link in his theory of evolution (Darwin, 1859). 

With the discovery of localities with an Ediacaran biota, such as Mistaken Point (Anderson and 

Misra, 1968), and the Ediacaran Hills (Sprigg, 1947), it is clear that the fossil record is not nearly 

as barren as it once appeared. In turn, the discovery of exceptional Cambrian Burgess Shale-type 

Lagerstätten, such as Burgess Shale (Whittington, 1971, Coway Morris 1986), Chengjiang (Hou 

et al., 1989), and Sirius Passet (Conway Morris et al., 1987) has led to a greater understanding of 

the Cambrian fauna. Nevertheless, the relationship between these two biotas remains enigmatic. 

There exists a general consensus that the Ediacaran biota marks the advent of multicellular 

organisms (Bonner, 1998; Budd, 2008). However, their specific phylogeny remains hotly 

contested. Some Ediacaran forms have been proposed as stem-group metazoans (i.e., 

Kimberella), some as large rhizopod protists (Seilacher et al., 2003), and others as housing 

chemosynthetic bacteria (Burzynski et al., 2017) (for a review, see Droser and Gheling, 2015). 

The Cambrian fauna, however, is more easily assigned to various phylogenetic ranks (Conway-

Morris, 1979; Erwin et al., 1997; Davidson and Erwin, 2006; Chen, 2009). With few similarities 

in constructional morphologies, the relationship between the Ediacaran and Cambrian biotas 

remains enigmatic (Droser and Gheling, 2015). This has led many researchers to question what 

caused this faunal turnover, commonly referred to as the “trigger” to the “Cambrian Explosion”. 

The proposed hypotheses are numerous (for review see Conway Morris, 2000; Marshall, 2006; 

Zhang et al., 2014) and are broadly categorized into genetic, ecological, and environmental 

causes (Erwin, 2015).  

Bioturbation often plays a key role in environmentally caused hypotheses. During the 

Ediacaran-Cambrian transition and early Cambrian there exists a marked infaunalization, and a 

switch from an Ediacaran-style matground ecology to a Cambrian-style mixground ecology. This 

event has been subdivided into the three “Revolutions”, the “Cambrian Information Revolution” 

(Plotnick et al., 2010; Carbone and Narbonne, 2014), the “Agronomic Revolution” (Seilacher 

and Pflüger, 1994), and the “Cambrian Substrate Revolution” (Bottjer et al., 2000). The first 

revolution, the Cambrian Information Revolution, likely occurred in the Fortunian, as 

environments and food sources became increasingly heterogeneous (Plotnick et al., 2010; 
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Mángano and Buatois, 2017). It is posited that a coevolution occurred between heterogeneity 

(i.e., information) in marine environments and the development of sensory organs, capable of 

processing this new information (Plotnick et al., 2010; Mángano and Buatois, 2017). The 

Agronomic Revolution refers to the re-structuring of benthic communities, surrounding the onset 

of bioturbated substrates (Seilacher and Pflüger, 1994; Mángano and Buatois, 2017). This 

revolution is documented in the transition from Ediacaran matground communities to Cambrian 

mixground communities. This transition triggered the Cambrian Substrate Revolution (Bottjer et 

al., 2000) which deals with the impact of bioturbated substrates, as well as the evolution of 

hardground communities. It has been suggested that this transition (the Cambrian Substrate 

Revolution) may have prompted the Cambrian explosion as benthic metazoans would have 

needed to evolve to this new substrate (Thayer, 1979; Bottjer et al., 2000; Meysman et al., 2006). 

However, it has also been suggested that the Agronomic Revolution was a consequence of 

increased predation, and signifies organisms seeking refuge (Seilacher, 2007). Whether 

bioturbation is a cause or consequence of the Cambrian explosion ultimately relies on the drivers 

of infaunalization. In turn, the elucidation of these drivers will assist in understanding the 

selective pressures at this time in Earth’s evolution. While body-fossils are excellent sources to 

help reconstruct the phylogeny, they relay very little in terms of behaviour. For this, researchers 

must turn to ichnology, which provides an independent line of evidence to track not only the 

appearance of new body plans, but also the establishment of a Phanerozoic benthic ecosystem.  

 

1.4. Controversies surrounding the Ediacaran-Cambrian GSSP 
With fascinating discoveries coming from Ediacaran localities (Sprigg, 1947; Anderson 

and Misra, 1968), and even more prolific discoveries in Cambrian localities (Conway-Morris, 

1979; Conway Morris, 1987; Hou et al., 1989), scientists needed a way to correlate their sections 

worldwide. Two proposals at the 21st International Geological Congress in 1960 (Sørensen, 

2007) prompted the creation of a Subcommission on Cambrian Stratigraphy (SCS) in 1961 

(Shergold and Geyer, 2003). One task of this commission was to define a Precambrian-Cambrian 

boundary in order to aid global correlation for this pivotal time. In 1972, a working group on the 

Precambrian-Cambrian boundary was created.  

GSSP’s are the designated type section of the base (beginning) of a stratigraphic stage, 

marked in the section by the best possible marker events (Cowie et al., 1986). These events may 
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be biostratigraphic, choronometric, magnetic, geochemical, climatic or otherwise in nature 

(Figure 1.4) and ideally defined by several overlapping events. In turn, potential GSSP's must 

meet additional requirements, such as exposure over an adequate thickness with continuous 

sedimentation, as well as an absence of synsedimentary, tectionic, metamorphic or diagenetic 

events (Remane et al., 1996). Biostratigraphic event markers, the most commonly employed 

markers (Figure 1.4), are placed at the first or last appearance of an index fossil or index fossil 

zone.  

 
 Figure 1.4. Types of GSSP event markers, data from the International Commission on Stratigraphy online 

repository (International Commission on Stratigraphy, 2018). 

An index fossil must meet five general requirements: (1) have rapid rates of evolution, 

(2) found in a wide range of environments, (3) be abundant, (4) be easily identifiable, and (5) be 

readily preserved. In some cases, several biostratigraphic events can be used, such as the 

lowermost Maastrictian boundary where the first and last apperances of twelve biohorizons are 

used to delineate the boundary (Odin and Lamaurelle, 2001). 

The transition between the Ediacaran and Cambrian faunas is remarkably poor in body 

fossils. The body fossils that are preserved, the small calcified Small Shelly Fauna (SSF), are 

strongly provincial and are almost entirely restricted to carbonate lithologies (Bengston, 1988). 

Ichnofossils, in contrast, show continuous preservation from the Ediacaran to Cambrian, and are 
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demonstrably less facies controlled than SSF’s (Mángano and Buatois, 2014). After nearly two 

decades of research and deliberation, the committee selected the section located at Fortune Head, 

Newfoundland, Canada (Figure 1.5) as the Ediacaran-Cambrian GSSP in 1992 (Narbonne et al., 

1987; Landing, 1994). This was, and remains, the only boundary defined by the first observed 

appearance of an ichnofossil.  

 

Criticism of the GSSP placement deals with the usage of an ichnotaxon for such an 

important biostratigraphical purpose. Four points of contention have been outlined and were 

summarized by Buatois (2018). First, the ichnotaxonomic status of T. pedum causes confusion 

amongst non-ichnologists. Originally classified as Phycodes pedum (Seilacher, 1955a), the 

ichnofossil has subsequently been re-assigned to (in decreasing order of general acceptance by 

the scientific community): Treptichnus (Jensen, 1997), Trichophycus (Geyer and Uchman, 

1995), and Manykodes (Dzik, 2005). Second, it has been suggested that T. pedum does not 

adequately represent the evolutionary innovations characteristic of the “Cambrian Explosion” as 

it is not a true vertical burrow, but rather a horizontal burrow with inclined branches or “probes” 

(Babcock et al., 2014). Thirdly, concerns have been raised about possible facies control of T. 

pedum. This stems from the fact that ichnofossils are facies controlled (Seilacher, 2007; Babcock 

et al., 2014, Laing et al., 2016; Buatois, 2018). While this is true for ichnoassemblages or 

Figure 1.5 Map of the Ediacaran-Cambrian Boundary outcrop. Legend can be seen in Figure. 1.6. 
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ichnofacies in general, individual ichnotaxa often occur in a wide range of environments 

(Buatois, 2018). In fact, a broad environmental tolerance, ranging from the offshore to intertidal 

zones, for T. pedum has been demonstrated (Buatois et al., 2013). Additionally, Fortune Head 

facies and ecologies both below and above the first appearance of T. pedum are identical 

(Buatois et al., 2014). As such, false first appearances of T. pedum due to facies control have 

been eliminated by some authors (Landing et al., 2013). Regardless, its suitability as an index 

fossil is still questioned by some, who cited the diachronic appearance of this ichnospecies in the 

fossil record as evidence of facies control. Unaddressed in this is the well-known provincialism 

seen in earliest Cambrian body fossils, which could also account for the diachronous appearance 

of some ichnofossils (Landing et al, 2013). Finally, early and delayed appearances of T. pedum 

in some sections have led to questions surrounding the stratigraphic distribution of the index 

fossil (Babcock et al., 2014).  

However, the appearance of T. pedum is not the only correlatable event at Fortune Head. 

Aside from contemperaneous first appearances of a variety of ichnofossils, the Ediacaran fossils 

Harlaniella podolica and Palaeopascichnus delicatus make their last appearance within 2 m of 

the golden spike (Narbonne et al., 1987). In turn, the Fortune Head section was chosen for it's 

exceptional thickness with continuous sedimentation, and limited synsedimentary and tectonic 

disturbances (Landing, 1994).  

1.5.  Study Area 
The outcrops are located on the southwestern tip of the Burin Peninsula, Newfoundland. 

The Ediacaran-Cambrian boundary is located within the Fortune Head Ecological Reserve 

(FHER), 1.5 km west of Fortune, Newfoundland on the Burin Peninsula (Figure 1.6) and is 

protected by the Newfoundland and Labrador government, under Parks and Natural Areas. This 

strata documents 415 m of reasonably continuous sedimentation during the latest Ediacaran and 

earliest Fortunian (Narbonne et al., 1987). The section encompasses the last 10 m of member 1 

and all of members 2A and 2B of the Chapel Island Formation (CIF). A continuous section of 

member 1 was measured 7 km to the northeast, at Grand Bank Head, and the remaining members 

(members 3, 4, and 5) of the CIF have been measured 15 km to the southwest at Little Danzig 

Cove. Combined, these localities document a 1 km thick continuous succession of the CIF. Only 

the Fortune Head and Grand Bank Head sections document the Treptichnus pedum Ichnofossil 

Assemblage Zone, and were therefore the focus of this study. 
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Figure 1.6 Map of the study area. (A) Map of the northeastern coast of North America. NL= Newfoundland. Red 

box outlines the Burin Peninsula, seen in B. (B) Map of the Burin Peninsula. Blue dashed box outlines the study 

area, seen in C. (C) Map of the northwestern tip of the Burin Peninsula, showing Chapel Island Formation outcrop 

locations. The Treptichnus pedum IAZ is preserved at Fortune Head (FH) and Grand Bank Head (GBH), younger 

strata can be found at Little Danzic Cove (LDC). 

1.6.  Research Methods 

1.6.1. Measurement of stratigraphic sections and gathering of trace-fossil data 
 A 120 cm Jacobs staff was created with 10 cm increments marked. By laying the staff 

perpendicular to the bedding plane, bed thicknesses were measured and recorded on a cm-scale, 

along with grain size, sedimentary structures, bedding contacts, and faults. Removable 

stratigraphic height markers were placed roughly every 2 m. Photographs were taken at regular 

intervals to demonstrate typical sedimentary features. Marker beds were traced along the three 

sections, and noted in the stratigraphic logs. Then a thorough search for ichnofossils was 

conducted. When an ichnofossil or physical sedimentary structure was encountered, their 

stratigraphic position was measured from the closest marker and logged. Whenever possible, 

photographs were taken with stratigraphic height marked. 
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 Adobe IllustratorÓ was used for drawing the stratigraphic sections. Marker beds 

identified in the field were used for correlation. Special permission was granted by the Fortune 

Head Ecological Reserve for sampling. Sampling was done twice under the supervision of 

Richard Thomas from the Government of Newfoundland and Labrador under the provisions that 

sampling be discrete and kept to a minimum. Any sampling of Treptichnus pedum was 

prohibited and only five samples were taken from the GSSP section. These were taken back to 

the University of Saskatchewan and made into polished sections by Romain Gougeon, a PhD 

candidate. 

1.6.2. Ichnotaxonomy 
Using field observations and photographs, ichnotaxobases were identified and recorded; 

this characterization of structures allowed either a preliminary ichnotaxonomic classification or 

narrowing to a few potential names. A thorough literature research collating with observational 

data followed to test ichnotaxonomic assessments. Several resources were used to aid in this 

(Seilacher 2007; Buatois and Mángano 2011; Knaust and Bromley 2013, 83–94), as well as 

primary sources in the literature where the different ichnotaxa have been defined and relevant 

ichnotaxonomic reviews. Photographs of key ichnotaxa (G. scintillus, G. gyratus, 

Monomorphichnus isp., and Treptichnus) were traced in Illustrator. Dimensions (thickness, 

width, burrow depth) and ichnotaxobases (form, wall/lining, branching, fill, spreite) were 

recorded for every sample, when possible.  

1.7. Thesis structure 
This is a paper-based thesis. Chapter 1 provides an overview of the thesis. It outlines the purpose 

and objectives and and reviews pertinent core concepts, in order to frame the contribution of this 

research work. It also outlines the organization of the thesis. Chapter 2 offers a background of 

the geology and previous ichnotaxonomic work of the region. Chapter 3 examines the 

stratigraphy and ichnology at the section, and provides a detailed and up-to-date characterization 

of the Treptichnus pedum Assemblage Zone in Fortune Head. Chapter 4 documents a new 

ichnospecies of Gyrolithes from the Treptichnus pedum Assemblage Zone, discusses its 

ichnotaxobases, ethology, and potential tracemakers, and hypothesizes on selective pressures 

underlying the onset of infaunalization. Finally, Chapter 5 summarizes the research findings and 

presents conclusions.  
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CHAPTER 2 

2. Geological Background 
The rocks spanning the Ediacaran-Cambrian boundary in Newfoundland were formed in 

an extensional or transtentional basin (Smith and Hiscott, 1984). Fault-bounded Cambrian 

depocenters were formed (Landing, 2004), creating the accommodation potential necessary for 

the Rencontre, Chapel Island and Random formations to be preserved (Figure 2.1).  

 

Figure 2.1 Deposition of Avalonian sediments during the late Proterozoic to early Phanerozoic (modified from 

Landing, 2004).  

 The sedimentary infill of the Avalon depocenters of interest here have been subdivided 

into three formations, from base to top; the Rencontre Formation, the Chapel Island Formation, 

and the Random Formation (Figure 2.2). The Rencontre Formation encompasses alluvial, fluvial, 

and marginal-marine facies, recording active tectonics during rift stage. The Chapel Island 

Formation is broadly interpreted as recording sedimentation in a wave-dominated delta (Myrow, 

1987). It is interpreted as a transitional stage from active tectonism to more stable tectonic 

conditions. This was followed by tectonically stable conditions, characterized by intertidal to 

subtidal deposits of the Random Formation (Anderson, 1981; Hiscott, 1982; Smith and Hiscott, 

1984).  

 Initially, a global Cambrian transgression represented by the transition from the 

Rencontre to the Chapel Island formations was proposed (Anderson, 1981). Myrow (1993) 
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argued that tectonics and sedimentation rate may have played a larger role, but did note that the 

regional onlap of the Random Formation is more indicative of eustatic sea level rise. The three 

formations taper eastward into an unconformity. They overlie the volcanic Marystown Group, 

whose uppermost formation (the Mooring Cove Formation) has been U-Pb dated to 552 ± 3 Ma 

(Tucker and McKerrow, 1995, Ferguson, 2017).   

2.1. Chapel Island Formation 
           The Chapel Island Formation, defined by Hutchinson (1962), is formally divided into the 

Quaco Road Member and the Mystery Lake Member in New Brunswick (Landing, 1996). These 

members present differently in Newfoundland, and an informal five-fold subdivision of the CIF 

is more widely used there (Bengston and Fletcher, 1983). Informal members 1-4 (equivalent to 

the Quaco Road Member) are a reasonably continuous, nearly kilometer-thick succession of fine-

grained siliciclastics, with a disconformity high in member 4. This is overlain by member 5 

(equivalent to the Mystery Lake Member). These members are interpreted to have been 

deposited in a wide variety of shallow-marine environments, ranging from peritidal to shelf 

(Myrow and Hiscott, 1993). Time-equivalent rocks can be found in Nova Scotia, New 

Brunswick, Massachusetts, and the British Caledonides (Myrow and Hiscott, 1993). The most in-

depth sedimentary study on the Chapel Island Formation was conducted as part of Paul Myrow’s 

PhD thesis (Myrow, 1987; see also Myrow and Hiscott 1991, 1993; Myrow 1995). The GSSP is 

located within member 2, 2.4 m above the top of member 1. Therefore, only members 1 and 2 

are discussed in detail here. 

2.1.1. Member 1 
 Member 1 consists of gray, fine- to very fine-grained sandstone and siltstone which 

contain flaser, wavy, and lenticular bedding; shrinkage cracks; channel-fill sandbodies; and 

episodic sediment failure structures (Myrow, 1987). Phosphate and pyrite nodules occur locally. 

Due to a lack of typically abundant and diagnostic tidal features (e.g., herringbone cross 

stratification, reactivation surfaces, tidal bundles, and meter-scale fining upwards cycles), as well 

as a lack of wave-generated structures, it was determined that member 1 was deposited in a low 

energy microtidal to mesotidal coastline, besides a low relief, mixed sand/mud coastal plain 

(Myrow and Hiscott, 1993). Recurrent thick, sandstone beds indicate channel and storm deposits, 

and the presence of pyrite and phosphate imply dysaerobic conditions in the bottom waters.  
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Figure 2.2 Left: A 

generalized section of 

the Ediacaran-

Cambrian stratigraphy 

of the Burin Peninsula, 

NL, showing the 

Marystown volcanics, 

followed the 

sedimentary 

Rencontre, Chapel 

Island, and Random 

formations. Right: A 

generalized 

stratigraphic section of 

the Chapel Island 

Formation. Legend in 

figure 3.1. 
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2.1.2. Member 2 
Myrow and Hiscott (1991) have subdivided the 430 m thick member 2 into three lithofacies, 

namely unifite beds, raft-bearing beds, and slides. Unifite beds are siltstone and silty mudstone, 

graded to non-graded beds characteristically devoid of structure, and are interpreted to have been 

formed by single liquefaction and turbulence events. Raft-bearing beds are similar to unifite 

beds, except they contain clasts similar to the overlying and underlying layers, and they are 

interpreted to be a type of debris-flow. Slide deposits are a buckling of layers, and are interpreted 

as reflecting large storm-induced stresses (Myrow and Hiscott, 1991). Thick unifite beds and 

gutter casts characterize the Gutter Cast Facies, consisting of thin laminae to very thinly bedded 

fine-grained sandstone and siltstone with abundant wave ripples, synaeresis cracks, gutter casts, 

and pot casts common. The Siltstone-Dominated Facies consists of laminae to thin beds of fine-

grained sandstone and siltstone with pebble lags, flat-pebble conglomerates, uncommon gutter 

casts, and wave ripples. Raft-bearing beds, unifites, and rare slides are present. The Sandstone-

Dominated Facies is characterized by thinly laminated to medium-bedded, fine- to very fine-

grained sandstone and siltstone with abundant (generally starved) hummocky cross-stratification, 

with raft-bearing beds and slides (Myrow and Hiscott, 1991). Additionally, a 33 m thick, red, 

upward-fining sandstone unit in the bottom half of member 2 shows parallel-lamination and 

trough cross-stratified beds with channel-like geometries (Myrow, 1987).  

The siltstone units were likely firm at the time of burrow excavation, as shown by the 

lack of wall or lining in all burrows seen, the degree to which delicate imprints are preserved, 

and the preservation style of burrows (Droser et al., 2002; Jensen et al., 2005; Buatois et al., 

2014; Tarhan and Droser, 2014). Substrate consistency is likely due to stabilization of grains, 

caused by pervasive microbial mats (Buatois et al., 2014) combined with a lack of bioturbation 

and sediment mixing (Droser et al., 2002; Buatois et al., 2014). Member 2 was deposited in a 

deltaic setting in shallow subtidal and inner shelf environments, heavily influenced by storms 

and waves (Myrow, 1987; Myrow and Hiscott, 1991; Myrow and Hiscott, 1993). This 

interpretation is supported by several lines of evidence. Member 2 lies stratigraphically above the 

alluvial, fluvial, and marginal marine deposits of the Rencontre Formation, and below the mid-

shelf deposits of member 3. Member 2 has been subdivided into three facies: A Gutter Cast 

Facies (GC facies), Siltstone-Dominated Facies (SIS-D facies), and Sandstone-Dominated Facies 

(SS-D facies). Their depositional environments have been interpreted as nearshore, subtidal, and 
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Figure 2.3 Sedimentologic features of the T. pedum IAZ. A is from member 1, B-H are from member 2 (A) 

Mudclasts, viewed in cross-section. (B) Gutter cast, preferentially carbonate cemented, viewed in cross-section. (C) 

Gutter cast, preferentially carbonate cemented, and inclined bedding. Viewed in cross-section. (D) Pot hole cast, 

viewed from the top of a bed. (E) Synaeresis crack, viewed in cross-section. (F) Mudcracks, viewed on the top of a 

bed. (G) Wave ripples, viewed on the top of a bed. (H) Hummocky cross-stratification. 
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middle shelf respectively (Myrow, 1987; Myrow and Hiscott, 1993). The Gutter Cast Facies is 

confined to the lowest 100 m of member 2, and the Sandstone-Dominated Facies is most 

abundant in the upper part of member 2, particularly near the transition with member 3. Myrow 

and Hiscott (1993) interpreted this as reflecting an overall deepening in the formation; however, 

this is inconsistent with a deltaic environment and their interpretation needs to be revised. The 33 

m thick red sandstone bed abruptly appears (Sh facies), and has been interpreted as marginal-

marine deposits just upstream from a distributary mouth, although this interpretation may need 

revision as well. Additionally, the exceptional thickness of the mudstone-dominated section, as 

well as the prevalence of gravity flows indicates high rates of sedimentation and accumulation 

(Myrow, 1987; Myrow and Hiscott, 1991).  

2.1.3. Members 3 through 5 

Member 3 consists of 150 m of laminated carbonate-concretion-bearing siltstone, with the 

upper 15-20 m showing intense burrowing. It was likely deposited in a more distal shelf 

environment, below storm wave base (Myrow, 1987; Myrow and Hiscott, 1993). The overlying 

member 4 is a mudstone with red bioturbated sections, partly burrowed green sections, and gray, 

pyritiferous sections. It is punctuated by three limestone beds, each bed increasing in thickness 

and small shelly content stratigraphically upwards (Myrow, 1987). Member 4 was interpreted to 

have formed in a low-energy, muddy shelf in an oxygen-stratified basin. Limestone deposition 

was restricted to the peritidal zone, gray mudstone to deeper, dysaerobic shelf areas, and green 

and red mudstone in shallow subtidal under moderate to high oxygen levels respectively (Myrow 

and Hiscott, 1993). Finally, the 178 m thick member 5 consists of two intervals. The lower 

interval comprises thin to medium bedded sandy siltstone facies, possibly formed by turbidity 

currents. The upper half is a fine, red micaceous sandstone facies, likely formed between storm 

wave base and fair weather wave base in a wave-dominated setting (i.e., offshore) (Myrow and 

Hiscott, 1993).  

2.2. Previous Ichnological Work  
The first comprehensive study of the Chapel Island Formation ichnofauna was conducted 

by Crimes and Anderson (1985), who documented the ichnofauna in all members of the Chapel 

Island Formation and in the overlying Random Formation. This study was supplemented by 

additional work on the Ediacaran-Cambrian boundary horizon specifically, as part of the 1987 

stratotype proposal put forward by Narbonne et al. (1987). In this proposal, the Treptichnus 
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(Phycodes) pedum IAZ was erected (Figure 2.4). A trip to the Burin Peninsula was organized 

during the Geological Association of Canada’s Annual Meeting in 1988, which took place in St. 

John’s (Landing et al., 1988). In the guidebook for this trip, Gyrolithes? isp. was added to the T. 

pedum IAZ along with an additional occurrence of T. pedum (Figure 2.4) (Landing et al., 1988). 

Since then, the T. pedum IAZ has remained unchanged, save for the general re-classification of 

Phycodes pedum to Treptichnus pedum (Jensen, 1997) or less likely Trichophycus pedum (Geyer 

and Uchman, 1995). The Chapel Island Formation was later examined for tiering and ichnofabric 

changes, but no further refinements in trace-fossil classifications have been produced (McIlroy 

and Logan, 1999).  

The section regained international interest again during the 2001 Geological Association of 

Canada’s Annual Meeting. Gehling and workers (2001) discovered T. pedum below the 

Ediacaran-Cambrian boundary limit, sparking debate on the utility of the GSSP. However, this 

discovery is accounted for in the range offset of the ichnospecies. This phenomenon is 

recognized in GSSPs throughout the geological time scale (Landing et al., 2013; Buatois, 2018). 

Research concerning ichnofabrics at the section revealed the firm nature of the sediments and 

documented the common “floating style” preservation at the locality (Droser et al., 2002), also 

known as concealed bed junction preservation (Hallam, 1975). The exceptional preservation at 

this locality was highlighted subsequently, when it was suggested that the matground ecology 

characteristic of the Ediacaran persisted into this earliest Fortunian section (Buatois et al., 2014). 

In this study, the arthropod locomotion trace fossil Allocotichnus was described, along with 

various microbially induced sedimentary structures (MISS). The concept of bioturbators as 

ecosystem engineers was also explored for this section (Herringshaw et al., 2017). Finally, the 

International Symposium on the Ediacaran-Cambrian Transition (ISECT) led a field trip to the 

locality in June of 2017, and an updated field guide was produced (Landing et al., 2017). This 

guide book included an updated ichnotaxonomy of the section, reflecting the work done in this 

master’s thesis.  
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Figure 2.4 Original ichnologic section of the Ediacaran-Cambrian boundary. Determinations added in 1988 are 

shown in red (after Narbonne et al., 1987 and Landing et al., 1988). 
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Table 2.1 Summary of ichnotaxonomic studies conducted on the Chapel Island Formation 
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B.F	 Harlaniella	podolica*	 •	 •	 •	 •	 •	 100	 	 	 	 	 	 0	
B.F	 Palaeopascichnus	delicatus*	 	 •	 •	 •	 •	 80	 	 	 	 	 	 0	
HS	 Gordia	arcuata	 •	 •	 •	 	 	 60	 •	 •	 •	 	 •	 40	
HS	 Gordia	marina	 •	 •	 •	 	 	 60	 •	 •	 •	 	 •	 40	
HA	 Planolites	beverleyenis	 	 •	 •	 	 •	 60	 •	 •	 •	 	 •	 60	
HA	 Planolites	montanus	 	 •	 •	 •	 •	 60	 •	 •	 •	 •	 •	 80	
HS	 Buthotrephis	isp.	 •	 	 	 	 	 20	 •	 	 	 	 	 20	
HA	 Torrowangea	isp.	 	 	 	 	 •	 20	 	 	 	 	 	 0	
HB	 Treptichnus	isp.	 	 	 	 •	 	 20	 	 	 	 	 	 0	

	 ICHNODIVERSITY	 4	 5	 5	 4	 4	 	 	 	 	 	 	 	
	 ICHNODISPARITY	 2	 3	 3	 3	 2	 	 	 	 	 	 	 	

SM	 Monomorphichnus	isp.	 	 	 	 	 	 	 	 •	 •	 •	 •	 80	
VS	 Skolithos	annulatus	 	 	 	 	 	 	 	 •	 •	 •	 •	 80	
VU	 Arenicolites	isp.	 	 	 	 	 	 	 	 •	 •	 	 •	 60	
PS	 Conichnus	conicus	 	 	 	 	 	 	 	 •	 •	 •	 	 60	
TF	 Curvolithus	isp.	 	 	 	 	 	 	 	 •	 •	 	 •	 60	
VH	 Gyrolithes?	isp.	 	 	 	 	 	 	 	 	 •	 •	 •	 60	
HS	 Helminthopsis	tenuis	 	 	 	 	 	 	 	 •	 •	 •	 	 60	
HB	 Treptichnus	pedum	 	 	 	 	 	 	 	 •	 •	 •	 •	 60	
PS	 Bergaueria	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	
HS	 Cochlichnus	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	
BT	 Didymaulichnus	isp.		 	 	 	 	 	 	 	 	 	 	 •	 20	
SM	 Dimorphichnus	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	
HS	 Helminthoidichnites	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	
HP	 Palaeophycus	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	
HB	 Phycodes	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	
CA	 Psammichnites	isp.	 	 	 	 	 	 	 	 	 	 	 •	 20	

	 ICHNODIVERSITY	 	 	 	 	 	 	 	 9	 10	 7	 16	 	
	 ICHNODISPARITY	 	 	 	 	 	 	 	 8	 9	 7	 12	 	
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Table 2.2 Summary of architectural designs reported from the Chapel Island Formation (including this thesis). 

Code Architectural design (after Buatois et al., 2017) Ichnogenera 

B.F Ediacaran body fossils 
Harlaniella podolica, 

Palaeopascichnus delicatus 

BT Bilobate trails and paired grooves Didymaulichnus 

CA 
Complex actively filled (meniscate/pelletoidal) horizontal 

burrows 
Psammichnites 

HA 
Simple actively filled (massive) horizontal to oblique 

burrows 
Torrowangea, Planolites 

HB Horizontal burrows with horizontal to vertical branches Treptichnus, Phycodes 

HP Passively filled horizontal to oblique burrows Palaeophycus 

HS Simple horizontal trails 

Cochlichnus, Gordia, 

Helminthopsis, 

Helminthoidichnites 

PS Plug-shaped burrows Bergaueria, Conichnus 

SM Trackways and scratch marks 
Dimorphichnus, 

Monomorphichnus  

TF Trilobate flattened trails Curvolithus 

VD 
Burrows with shaft or bunch with downward radiating 

probes 
Trichichnus 

VH Vertical helical burrows Gyrolithes 

VS Vertical simple burrows Skolithos 

VU Vertical U- and Y- shaped burrows Arenicolites 
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CHAPTER 3 

3. Ichnology of the Treptichnus pedum Zone at the Ediacaran-

Cambrian GSSP 
  One complete stratigraphic section of the T. pedum IAZ at Fortune Head was measured 

(Figure 3.2), as well as one section from Grand Bank Head (Figure 3.3). Due to the presence of 

Trichichnus, as well as a distinctive white medium to very coarse sandstone, it is hypothesized 

that the base of the Grand Bank Head section is equivalent to roughly 22 m in the Fortune Head 

section. A smaller-scale section is included for Ediacaran-Cambrian boundary, in order to 

achieve a greater resolution at this critical interval (Figure 3.3).  

In total twenty ichnospecies were documented, belonging to thirteen ichnogenera: 

Archaeonassa fossulata, Bergaueria isp., Bergaueria perata, Cochlichnus anguineus, Conichnus 

conicus, Dimorphichnus cf. obliquus, Gordia isp., Gyrolithes gyratus, Gyrolithes scintillus, 

Helminthoidichnites tenuis, Helminthopsis tenuis, Monomorphichnus isp. A, Monomorphichnus 

isp. B, Monomorphichnus isp. C, Palaeophycus isp., Palaeophycus tubularis, Treptichnus 

coronatum, Treptichnus isp., Treptichnus pedum, and Trichichnus cf. simplex. These document 

seven categories of architectural design: simple horizontal burrows, plug-shaped burrows, 

passively filled horizontal to oblique burrows, horizontal burrows with horizontal to vertical 

branches, vertical helical burrows, and trackways and scratch marks (Table 3.1). In total this 

equates to an ichnodiversity of thirteen, and an ichnodisparity of seven. 

 Ichnogenera previously reported from the T. pedum IAZ which were confirmed by this 

study include: Cochlichnus, Conichnus, Bergaueria, Dimorphichnus, Gordia, Gyrolithes, 

Helminthoidichnites, Monomorphichnus, Palaeophycus, and Treptichnus. Various ichnotaxa 

were re-assigned. Skolithos annulatus has been reassigned to Gyrolithes gyratus, due to the 

helical nature of the burrow. It is suspected that due to the difference in infill and host rock 

lithology, many Palaeophycus were misclassified as Planolites. While Arenicolites is commonly 

reported from the section, no cross-section showing the distinctive U-shape of this ichnogenera 

has been documented in the literature or observed during the course of our study. 
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Uncontroversial specimens of Curvolithus, Didymaulichnus, Phycodes, or Psammichnites were 

not found within the T. pedum IAZ. While Archaeonassa, Helminthoidichnites, and 

Helminthopsis were recorded within T. pedum IAZ strata at Fortune Head, they are also found 

within the underlying Ediacaran Harlaniella podolica IAZ strata and are therefore not 

constituents of the T. pedum IAZ. 
Table 3.1 Ichnotaxa recorded within the T. pedum IAZ at Fortune Head. 

ICHNOGENERA ICHNOSPECIES 

Simple horizontal burrows (HS) 

Archaeonassa fossulata 

Cochlichnus anguineus 

Gordia isp. 

Helminthoidichnites tenuis 

Helminthopsis tenuis 

Plug-shaped burrows (PS) 

Bergaueria 
 isp. 

perata 

Conichnus conicus 

Passively filled horizontal to oblique burrows (HP) 

Palaeophycus 
isp. 

tubularis 

Horizontal burrows with horizontal to vertical branches (HB) 

Treptichnus 

coronatum 

isp. 

pedum 

Vertical helical burrows (VH) 

Gyrolithes 
gyratus 

scintillus 

Trackways and scratch marks (SM) 

Dimorphichnus cf. obliquus 

Monomorphichnus 

isp. a 

isp. b 

isp. c 

Burrows with shaft or bunch with downward radiating probes (VD) 

Trichichnus cf. simplex 

 



 31 

 
Ichnotaxonomic determinations were refined, and a few new ichnotaxa were added. The deep 

chemichnial burrow Trichichnus cf. simplex was observed, appearing for the first time roughly 

10 m above the boundary. A plug-shaped equilibrium vertical burrow, Bergaueria isp., is 

described for the first time, as well as a firmground ichnospecies of Palaeophycus. Two 

ichnospecies of Gyrolithes are documented a few meters after the Ediacaran-Cambrian boundary 

level and the range of Treptichnus coronatum has been extended to the lowermost Cambrian in 

this section. Several specimens of arthropod scratch marks were observed, including 

Dimorphichnus cf. obliquus and Monomorphichnus isp. C.  

 Shallow-tier ichnofossils (such as scratch marks and grazing trails) are less likely to be 

preserved, due to their propensity to be eroded. This phenomenom likely accounts for the 

dominance of deeper-tier ichnofossils, such as Gyrolithes, Treptichnus, and Trichichnus. In turn, 

outcrop exposure affects the likelihood of observing certain ichnotaxa. For example, Grand Bank 

Head has a more prolific exposure of bed bases. As a result, hypichnial ichnotaxa such as 

Dimorphichnus, Monomorphichnus and Treptichnus, are more likely to be observed at this 

section. In sections where more cross-sections are exposed, Gyrolithes and Trichichnus are more 

likely to be observed. Interestingly, within the GC, SIS-D, and SS-D facies, little to no 

correlations between facies and ichnotaxa can be observed at this time. In turn, Treptichnus 

pedum, Palaeophycus isp., and Palaeophycus tubularis are the least facies-controlled ichnotaxa, 

appearing within member 1 and the Sh facies of member 2a. 
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Figure 3.1 Legend for the stratigraphic sections seen in figures 2.2, 3.2 and 3.3.
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Figure 3.2 Stratigraphic section of the T. pedum IAZ (first 200m of member 2 of the CIF) at Fortune 

Head, with ichnologic and ichnoguild data. For a legend see Figure 3.1. Sedimentology from Myrow, 

1987. 
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Figure 3.3 Stratigraphic sections of Grand Bank Head stop 6 and Fortune Head stop 1. Legend in Figure 3.1
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3.1. Systematic Ichnology 
Ichnogenus Archaeonassa Fenton and Fenton, 1937 

Archaeonassa is commonly reported as epireliefs composed of two convex parallel lateral levees 

separated by a flat, convex, or concave central zone. The levees and the central zone may be 

either smooth or variably ornamented (after Buckman, 1997). While present in the latest 

Ediacaran, documented Archaeonassa occurrences increase at the beginning of the Cambrian, 

and are present globally (Figure 3.4). 

 

 
Figure 3.4 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Documented Archaeonassa localities with 

probable age ranges which include either 560 Ma or 541 Ma are marked. Star denotes specimens recorded in this 

study. For data used in these reconstructions, see Appendix A 

 

Archaeonassa fossulata Fenton and Fenton, 1937 

Figure 3.28 A 

Material 

Approximately 10 specimens identified and photographed in the field (FH 2.6 m and 159.9 m). 

Diagnosis 

As for the ichnogenus. 

Description 

Smooth, shallow furrows, 0.75-1 mm wide, preserved in epirelief on very fine-grained 

sandstone. Ridge is 0.75-1 mm wide. Course very slightly meandering with no loops or 

overcrossings. Commonly observed associated with microbially induced sedimentary structures 

(MISS). 

Remarks 
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The presence of levees distinguishes this horizontal trail from Helminthoidichnites and 

Helminthopsis. Only one type ichnospecies of Archaeonassa has been erected, Archaeonassa 

fossulata. Other ichnospecies of Archaeonassa have been identified, but none formally named 

(Rodriguez-Tovar et al., 2014). These are in places distinguished by the presence of loops, which 

the Chapel Island Formation ichnospecies lack. Potential tracemaker of Archaeonassa include 

gastropods and arthropods, but worms cannot be excluded (Buckman, 1994; Yochelson and 

Fedonkin, 1997). Archaeonassa fossulata likely represents the trail of a microbial mat grazer 

(Mángano and Buatois, 2003). The simple, horizontal morphology with an absence of resting 

traces suggests continuous movement. The slightly meandering course would be an inefficient 

mode of locomotion, suggesting an additional purpose for the trail. Prevalent MISS on or near 

the trace fossil-bearing bed indicates the presence of a rich microbial-mat food source, further 

supporting the idea that this trail likely records grazing activities (Pascichnia) (Buatois and 

Mángano, 2004; 2012).  

 

Ichnogenus Bergaueria Prantl, 1945 

Bergaueria is a smooth cylindrical to hemispherical, vertical burrow with a rounded base and a 

circular to elliptical cross-section. The base may or may not possess a shallow, central depression 

and radial ridges, and the fillings are structureless (after Pemberton et al., 1988). These burrows 

are commonly perceived as burrows of actinarian anenomes, due to their radially symmetrical 

nature (Alpert, 1973). Known from the late Ediacaran, Bergaueria became more common at the 

lowermost Cambrian boundary, with most specimens around Baltica and Avalonia (Figure 3.5). 

 
Figure 3.5 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Documented Bergaueria localities with 

probable age ranges which include either 560 Ma or 541 Ma are marked. Star denotes specimens recorded in this 

study. For data used in these reconstructions, see Appendix A 
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Bergaueria isp. 

Figures 3.6 A, 3.8 C 

Material 

Thirteen photographed specimens (FH 3.2 m, 76.3 m, 87 m). 

Description 

Endichnial, vertical to sub-vertical plug-shaped burrows with subtle constrictions. Burrows is 1-5 

mm wide and 2-26 mm long, with an average length to width ratio of 3.7 (range: 1.7-5.2). No 

backfill visible, burrow fill consists of very fine-grained sand, in places preserved in “floating” 

preservation-style. Burrows are observed crossing thin (<1 mm) very fine-grained sandstone 

beds, and are commonly found topped by thicker (>2 mm) very fine-grained sandstone beds. 

 
Table 3.2 Diameter and heights (in mm) of Bergaueria isp. specimens found in the T. pedum IAZ on the Burin 

Peninsula, Newfoundland. 

  Diameter 
(mm) 

Height 
(mm) 

D/H 

B
E

R
G

A
U

E
R

IA
 IS

P.
 1 5 0.20 

1 2 0.50 
4 9 0.44 

1.5 6.5 0.23 
3 5 0.60 
5 26 0.19 

Remarks 

The plug-shaped nature of this burrow imparts resemblance to the anemone resting trace 

Bergaueria. Indeed, the range of this burrows diameter to height ratio falls within observed ratios 

in Bergaueria, skewed towards smaller values (Figure 3.7).  The constrictions and length imply 

vertical movement of the burrow, which is best observed in the bottom half of figure. 3.6 A. It is 

possible to reconstruct the history of these two burrows (Figure 3.6 B). A specimen of 

Bergaueria perata which shows no vertical burrow re-adjustment can be seen in the bottom left. 

Adjacent to this burrow is a larger Bergaueria isp., with one vertical re-adjustment of the burrow 

preserved (Figure 3.6 A). Both tracemakers colonized the same surface, denoted by a thin very 

fine-grained sandstone bed (Figure 3.6 B1). The smaller Bergaueria perata organism was unable 

to respond to the subsequent sedimentation event, or was plucked out of their burrow during the 

event (Figure 3.6 B2). The larger Bergaueria isp. organism readjusted their burrow, as evidenced 
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by the constrictions coincident with the last colonization surface (Figure 3.6 B3). When a larger, 

higher velocity sedimentation event deposited the overlying thicker, very fine-grained sandstone 

bed, the larger Bergaueria isp. organism likely died, or was plucked from their burrow (Figure 

3.6 B4). Eventually, the surface was recolonized by two more Bergaueria isp. producers.  

Lateral displacement has been observed in Bergaueria sucta (Seilacher, 1990; Hofmann 

et al., 2012; Mángano et al., 2013); however, the displacement is horizontal and much more 

limited than in Bergaueria isp. While Kulindrichnus shares a similar diameter to height ratio, it is 

distinctly shell-filled, phosphatically-lined, and does not display the constrictions found in 

Bergaueria isp. A fossil of a similar shape and with constrictions present was described by Tada 

(1966), but is much larger than the specimens described herein. Plug-shaped equilibrium 

structures are figured by Buck and Goldring (2003, Figure 13A) and Menon et al. (2013). These 

likely appear different to the plug-shaped equilibrium structures described herein, due to 

differences in sediment consolidation. Additionally, equilibrium behaviour has been interpreted 

for Conichnus (Bromely,1996; Savdra, 2003). The constrictions in the burrow imply punctuated 

upward vertical movement. One likely cause would be burrow re-location with sedimentation, 

suggesting an equilibrichnia ethology for the burrow. The rounded basal morphology of 

Bergaueria isp. suggests a radially symmetrical producer, and it has been argued that these type 

of burrows were created by actinarian anenomes (Alpert, 1973). As a result, the burrowers were 

likely predators. The vertical to sub-horizontal orientation of the burrow and lack of active fill 

imply that this was primarily a dwelling or resting burrow 

Some ichnospecies of Bergaueria are likely resting burrows (e.g., Bergaueria sucta, 

Seilacher, 1990; Hoffman et al., 2012; Mángano et al., 2013), and it has been suggested that 

Cubichnia and Domichnia variants of Bergaueria may be distinguished by the absence or 

presence of a burrow lining, respectively. While Bergaueria isp. from the CIF lacks a lining, 

excavation within a firmground (Droser et al., 2002) likely made additional stabilization features 

(such as a lining) unnecessary. In turn, it would require considerable effort to excavate a burrow 

in this firm substrate, effort that was likely not expended simply for resting.  

Documented “Skolithos annulatus” (now G. gyratus, see Laing et al., 2018) from below 

the GSSP are wider and shorter than G. gyratus (Gehling et al., 2001) and are likely instead 

Bergaueria isp.  
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Figure 3.6 (A) Left: field photograph of three Bergaueria isp. specimens and one Bergaueria (bottom left). Scale 

bar = 1 cm, stratigraphic height = 3.6 m. Right: Schematic of the field photograph. Sand beds denoted by a darker 

grey. (B) Schematic interpretation of the sequence of events preserved in the bottom half of the field photograph. 1. 

Colonization by two Bergaueria organisms. 2. Sedimentation event plucks or smothers the smaller organism (cyan). 

3. The larger Bergaueria organism (pink) adjusts their burrow. 4. A higher velocity sedimentation event plucks or 

smothers the larger organism (pink). 5. Recolonization of the surface.
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Figure 3.7 A box plot showing the diameter to height ratios of various plug-shaped burrows. Ratios for Conichnus, 

Begaueria, Kulindrichnus, Conostichnus and Astropolichnus taken from Pemberton et al. (1988). Ratios for 

Bergaueria are from this dissertation, and can be seen in Table 3.2. The values for Astropolichnus are expressed on 

the blue axis (right-most y-axis), and the remaining values are on the green axis (left-most y-axis). 

Bergaueria perata (Prantl, 1945) 

Figure 3.6 A 

Material 

Five specimens observed and photographed in the field. 

Diagnosis 

Bergaueria with smooth, unornamented walls and a flat to rounded base that may have faint 

radial ridges; one or more central depressions; concentric circular impressions (after Pemberton 

et al., 1988). 

Description 

Smooth, rounded, unornamented vertical burrows, 1-10 mm wide, 1-8 mm in height, preserved 

in full relief with no wall or lining present. Infilled with very fine-grained sandstone.  

Remarks 

The rounded basal morphology of these burrows distinguish them from Conichnus, and 

may suggest construction by an actinarian anemone (Alpert, 1973). Prominent radial ridges, a 

diagnostic feature of Conostichnus, are not present. The lack of lateral constrictions prevents 

classification as Begaueria isp. These specimens lack a thick lining, distinguishing them from B. 

langi. Bergaueria has been interpreted as either dwelling or resting structures, depending on the 
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presence of a lining (Pemberton et al., 1988). The CIF Bergaueria perata are likely domichnial 

burrows. Lining is common in softground dwelling burrows, as it provides burrow stability. 

However, these specimens were emplaced in a firmground, and a lining would be unnecessary. 

In turn, more effort would be required for excavation in a firmground environment, making a 

resting ethology unlikely. In turn, the specimens are smaller in both diameter and height than 

average Bergaueria's whose average diameter and height are 29 mm and 18 mm respectively 

(Pemberton et al., 1988). Care must be taken when identifying Bergaueria perata in the CIF, 

especially within the gutter-cast facies (Myrow, 1987; 1992), as many pot-casts may resemble 

the rounded morphology distinctive of Bergaueria (Figure 3.8 A and B).  

Bergaueria perata and Bergaueria isp. are likely produced by the same organism, with 

Bergaueria perata being present on only one colonization surface (Figure 3.6 B). With the high 

sedimentation rates in the CIF (Myrow and Hiscott, 1991; 1993), these organisms likely had to 

react to multiple sedimentation events in their lifetimes. As a result, the probability of a 

Bergaueria organism only colonizing one surface was likely low, and may explain the rarity of 

these specimens at this locale.  

 

 
Figure 3.8 (A-B) Pot and gutter casts in the gutter cast facies of Myrow (1987), viewed in cross-section. Pot casts 

may resemble Bergaueria. (C) Conichnus conicus (white arrow) and Bergaueria isp. (black arrow) preserved in 

“floating” style full relief, viewed in cross-section. Scale bars are 1 cm. 
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Ichnogenus Cochlichnus Hitchcock, 1858 

Cochlichnus is described as regular, sinusoidal, horizontal trails and burrows resembling a sine 

curve (after Fillion and Pickerill, 1990, modified from: Hitchcock 1858; Häntzschel 1975). 

Altough a few specimens have been recorded from the late Ediacaran, available evidence if 

inconclusive. By the lowermost Cambrian, however, Cochlichnus has a global distribution 

(Figure 3.9). 

 
Figure 3.9 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Cochlichnus is absent from 560 Ma strata, 

however, all documented Cochlichnus localities with probable age ranges which include 541 Ma are marked. Star 

denotes specimens recorded in this study. For the data used in these reconstructions, see Appendix A.  

Cochlichnus anguineus Hitchcock, 1858 

Figure 3.28 D 

Material 

Roughly 20 field identifications (FH 12.5 m). 

Diagnosis 

Simple, smooth, horizontally undulating trails. Slight vertical undulations can be present as well. 

The first-order path is either straight or slightly curved. Horizontal wave length may change 

along the path and is markedly larger than the wave amplitude (after Gámez Vintaned et al., 

2006). 

Description 

Sinusoidal, unbranching, smooth trails following a gently curving second-order path. Commonly 

preserved in concave epirelief. Two and a half wavelengths preserved (16.2 mm, 16.7 mm). The 

trail is 0.5-0.6 mm wide, with an amplitude of 4.4-4.5 mm.  

Remarks 
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The perfectly sinusoidal first-order path of the specimen distinguishes Cochlichnus from 

Helminthopsis and Helminthoidichnites. The regular sinusoidal 1st order path in Cochlichnus 

distinguishes it from Cosmorhaphe. Cochlichnus kochi displays regular second-order meanders, 

which C. anguineus lacks. The perfect regularity of the sinusoidal first-order pattern of 

Cochlichnus has led some authors to suggest it is a result of the mode of locomotion of the 

producer (Moussa, 1970), rather than representing a complex feeding pattern. Commonly found 

associated with MISS structures (Buatois et al., 2014), the CIF specimens are likely pascichnial 

trace fossils. 

 

Ichnogenus Conichnus Männil, 1966 

Conichnus is a conical or acuminated sub-cylindrical structures oriented perpendicular to 

bedding with either a rounded base a distinct, papilla-like protuberance. The burrow fill does not 

show medusoid symmetry, but may be patterned (after Pemberton et al., 1988). Conichnus first 

appears at the Ediacaran-Cambrian boundary, with only a few documented occurrences (Figure 

3.10)  

 
Figure 3.10 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Conichnus is absent from 560 Ma strata, 

however, all documented Conichnus localities with probable age ranges which include 541 Ma are marked. Star 

denotes specimens recorded in this study. For the data used in these reconstructions, see Appendix A.  

Conichnus conicus (Männil, 1966) 

Figure 3.8 C 

Material 

Two specimens identified in the field (FH 6.9 m, 87 m). 

Diagnosis 

Indistinctly to thinly lined Conichnus tapering to a smooth, rounded, but distinct basal apex (after 

Pemberton et al., 1988). 
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Description 

Vertical, unornamented, unlined, conical burrows, 10-15 mm deep, preserved in full relief. 

Infilled with structureless very fine-grained sandstone, found either in “floating” style 

preservation, or on the base of thin sandstone. Base is rounded, 1-3 mm wide. Top is cuspate, 13-

15 mm wide. 

Remarks 

The conical burrow Amphorichnus has been synonymized with Conichnus (Frey and Howard, 

1981; Pemberton et al., 1988). Most specimens of Conichnus are found as isolated burrows. 

Occasional interpenetration or vertical-lateral successions has been observed, suggesting the 

organism was capable of keeping pace with sedimentation (Frey and Howard, 1981). The distinct 

conical morphology of this burrow distinguishes it from Bergaueria. It lacks the transverse 

constrictions and longitudinal ridges observed in Conostichnus. Conichnus papillatus Männil, 

1966 has a distant basal protuberance, which the CIF specimens lack. The vertical orientation, 

simple morphology, and lack of active infill imply this burrow was primarily a dwelling burrow 

(Frey and Howard, 1981; Pemberton et al., 1988). It has been suggested that the lack of 

medusoid structure in Conichnus may reflect a slightly different behaviour or feeding strategy 

than Bergaueria (Frey and Howard, 1981). No vertical movement has been observed in CIF 

Conichnus.  

 

Ichnogenus Dimorphichnus Seilacher 1955b 

Dimorphichnus is comprised of asymmetrical trackways with two different types of impressions: 

thin, straight, or sigmoidal ones, and blunt ones; both types arranged in series oblique to the 

direction of movement (Fillion and Pickerill, 1990, modified from Seilacher, 1955b). The genera 

Dimorphichnus is restricted to the Cambrian, with only a few documented appearances at the 

lowermost boundary (Figure 3.11).  

Discussion 

Structures interpreted as arthropod scratch marks have been assigned to the ichnogenera 

Dimorphichnus (Seilacher, 1955b) and Monomorphichnus (Crimes, 1970). Both ichnogenera 

possess at least one set of straight to sigmoidal scratch marks, either grouped in pairs or singular. 
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Figure 3.11 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Dimorphichnus is absent from 560 Ma strata, 

however, all documented Dimorphichnus localities with probable age ranges which include 541 Ma are marked. Star 

denotes specimens recorded in this study. For the data used in these reconstructions, see Appendix A 

These sets are commonly called ‘raking marks’ due to their interpretation as the result of a 

trilobite raking the seafloor with one side of legs (Seilacher, 1955b). A second set of scratch 

marks are present in Dimorphichnus, called ‘pusher marks’, and are interpreted as the result of 

one side of legs anchoring the trilobite (Seilacher, 1955b). Monomorphichnus lacks this 

secondary set of scratch marks.  

The difference between ichnogenera (the presence or absence of pusher marks) has been 

attributed to undertrack preservation (i.e. preservation on different planes), with 

Monomorphichnus being the deep undertrack of Dimorphichnus (Seilacher 1985, 1990). 

However, Jensen (1997) noted that most raker marks are reported shallower than pusher marks. 

This would suggest that an undertrack of Dimorphichnus would only have the pusher marks 

preserved and lack the raker marks. Goldring and Seilacher (1971) suggested that the pusher 

marks are spread out, acting as snow shoes, and are thus shallower than the raker marks. 

Additionally, it has been suggested by Seilacher (1985, 1990), and subsequently 

contested by Fillion and Pickerill (1990) that the type specimen of Monomorphichnus has faint 

elongate pusher marks preserved, as well as partially superimposed raking marks. Jensen (1997) 

notes that the illustration of the holotype (Crimes 1970, PL12C) shows overlapping between the 

laterally repeated sets, with another set at an angle. If these are genetically related or there are 

pusher marks preserved, then the holotype is of Dimorphichnus-type, making Monomorphichnus 

a junior synonym of Dimorphichnus. Regardless, there are likely still specimens attributed to 

Monomorphichnus that cannot be placed in Dimorphichnus (Mángano and Buatois, 2003). In 

turn, “true” Monomorphichnus likely represents a different behavioural strategy, due to the 
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absence of pusher marks. It has been posited that Monomorphichnus is a swimming trace 

(Crimes, 1970) or a trilobite caught in the current (Osgood, 1975b). Jensen (1997) remarked that 

the possible behavioural differences between Monomorphichnus and Dimorphichnus warrants 

continued distinction between the ichnogenera. This has led multiple authors to retain both 

Monomorphichnus and Dimorphichnus and in cases of uncertainty to label the traces as 

‘arthropod scratch marks’ (Feng et al., 2017; Jago and Greenhouse, 2014; Tiwari et al., 2013; 

Hofmann et al., 2012; Kumar and Pandey, 2008; Such et al., 2007; Mángano and Buatois, 2003; 

Jensen, 1997; McMenamin, 1984). In turn, Monomorphichnus is a term deeply entrenched in the 

literature (Figure 3.12). While a new type ichnospecies may need to be designated, the 

ichnogenus Monomorphichnus may be retained to avoid confusion (per ICZN guidelines, section 

70.3) (Welter-Schultes, 2012, p. 111). As a result, Monomorphichnus is herein retained to 

describe unpaired groups of scratch marks, until a re-examination of the type material is 

conducted.  

To complicate matters further, deep undertracks of Cruziana and Rusophycus can easily 

be mistaken for Monomorphichnus (Mángano et al., 1996; Mángano and Buatois 2003). Some  

specimens of Dimorphichnus may in fact be misclassified Diplichnites, as they do not 

demonstrate a clear distinction between “pusher” and “raker” marks, other than being oriented 

oblique to the direction of movement (e.g., Kumar and Pandey, 2008).  

 

 
Figure 3.12 Graph of the usage frequency of the words “Monomorphichnus” and “Dimorphichnus” over time. 

Usage frequency was calculated by dividing the number of times a word was used in a specific year by the number 

of words in the database (Google Books) for that year. Graph created using Google ngram viewer; for more 

information see Michel et al. (2011). 
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Dimorphichnus cf. obliquus Seilacher 1955b 

Figure 3.29 

Material 

Two slabs in the field (GBH6 10.5 m, 11 m), containing at least nine specimens. 

Diagnosis 

Asymmetrical trackways with two different types of imprints; thin straight or sigmoidal scratch 

marks and blunt imprints; both types arranged in series oblique to direction of movement (Fillion 

and Pickerill, 1990, modified after Seilacher, 1955b). 

Description 

Asymmetrical trackways with two different types of imprint sets, slightly offset or overlapping, 

oriented in the same direction. One set is comprised of a series of 6-8 thin (0.1-0.2 mm, avg. 0.14 

mm) straight to sigmoidal long (7-10.8 mm, avg. 9.6 mm) scratch marks. The other set is 

comprised of 1 to 4 thick (0.1-0.3 mm, avg. 0.2 mm), shorter (2.2-10.9 mm, avg. 5.8 mm), 

straight scratch marks (Table 3.3). Preserved in positive hyporelief on variably fluted and 

bioturbated very fine-grained sandstone beds.  

Remarks 

While the material is fragmentary and no continuous tracks are easily recognized, two 

morphologies can be distinguished. The first set is the straight to sigmoidal long scratch marks, 

herein interpreted as the “raker” marks. The second set is the straight, think, shorter scratch 

marks, herein interpreted as the “pusher” marks. The original diagnosis of D. obliquus included a 

stipulation that the raking scratch marks must be sigmoidal (Seilacher, 1955b). However, the 

pattern of the raking marks likely records the action of the current, rather than the producer, and 

is considered non-diagnostic (Fillion and Pickerill, 1990). This specimen is similar to Crimes 

(1970) Dimorphichus isp. from Locality 5 which has blunt pusher marks and elongate non-

sigmoidal raker marks (Crimes, 1970, Figure 4, p. 56). Additionally, he noted the resemblance 

between his specimen and D. obliquus, and interpreted the trackway as produced by a trilobite 

moving obliquely under current influence. For a discussion on possible tool mark affinities of D. 

cf. obliquus, see the remarks of Monomorphichnus. isp. B. 
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Table 3.3 Dimensions of three specimens of D. cf. obliquus. 

 

Following the directional clues outlined by Seilacher (1955b; 1990; 2007), it is possible 

to discern tentative trackway directions for some the CIF material. For the uppermost two sets of 

the green trackway (Figure 3.29 A), the organism moved from the top right corner towards the 

bottom left. This is evidenced by the slight tapering seen in the pusher marks (Figure 3.29 C), as 

well as the strike of the rakers. The marching direction is unable to be determined. If the 

bottommost green set is related, the organism then switched direction, moving towards the 

bottom right corner.  

Ichnogenus Gordia Emmons, 1844 

Gordia is a predominatly horizontal, unbranched, winding, or irregularly meandering trace fossil, 

that tend to from loops (after Uchman, 1998, modified from Pickerill and Peel, 1991 and Fillion 

and Pickerill, 1990). In contrast to Helminthoidichnites, Gordia demonstrte nonrandom 

behaviour (Hofmann, 1990). This trace fossil first occurs in the Ediacaran, with a global 

distribution. At the lowermost Cambrian boundary the number of occurrences increases 

significantly (Figure 3.13). 
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Figure 3.13 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Documented Gordia localities with probable 

age ranges which include either 560 Ma or 541 Ma are marked. Star denotes specimens recorded in this study. For 

the data used in these reconstructions, see Appendix A 

Gordia isp.  

Material 

Two specimens in the field (FH 12.5 m, 142 m) plus roughly 25 specimens identified in the field. 

Description 

Horizontal, smooth, trails preserved in convex or concave epirelief, showing occasional 

overcrossing and loops. Trail is 0.50-0.75 mm wide. 

Remarks 

These trails with occasional overcrossing closely match the description of Gordia isp. of Fillion 

and Pickerill (1990). These differ from Gordia marina Emmons, since they do not have fully 

developed level crossing. The lack of annulations prevents classification as G. nodosa. The lack 

of apical arcuate bends differentiates this ichnospecies from G. arcuata. Gordia is commonly 

viewed as a pascichnial trace, due to its simple horizontal morphology and lack of active infill. 

As a result, the CIF likely represent a grazing behaviour that was of similar complexity to that of 

Helminthoidichnites or Helminthopsis. 

 

Ichnogenus Gyrolithes de Saporta, 1884 

Gyrolithids are spiraled burrows, whose helix is essentially vertical with rare branchings. Their 

coils are not in contact, and can dextral, sinistral, or reversing (after Uchman and Hanken, 2013, 

modified from Bromley and Frey, 1974). They are restricted to the Cambrian, with their first 

occurrence a few meters above the Ediacaran-Cambrian boundary. Interestingly, they show a 

strong provincialism, and are restricted to Baltica and Avalonia (Figure 3.14). 
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Figure 3.14 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Gyrolithes is absent from 560 Ma strata, 

however, all documented Gyrolithes localities with probable age ranges which include 541 Ma are marked. Star 

denotes specimens recorded in this study. For the data used in these reconstructions, see Appendix A 

 

Discussion 

Vertical spiral burrows, termed “Gyrolithen” by Debey (1849), were classified under the 

ichnogenus Gyrolithes by de Saporta in 1884. Over time several ichnospecies were erected, 

likely due to a lack of clarification regarding Gyrolithes ichnotaxobases. Uchman and Hanken 

(2013) revisited the ichnogenus, and reduced the number of valid ichnospecies from 18 to 13. 

During their revision, they re-examined Gyrolithes ichnotaxobases, which was further expanded 

upon by De Renzi et al. (2017) and Laing et al. (2018). Kim et al. (2005) reassigned Skolithos 

gyratus Hofmann to the ichnogenus Gyrolithes, and Laing et al. (2018) erected the ichnospecies 

G. scintillus, expanding the number of valid ichnospecies to 15. 

 

Gyrolithes gyratus (Hofmann), 1979 

Figure 3.28 B, C, E 

Material 

Seven photographed field specimens (FH 7.7 m, 10.7 m, 40 m) plus roughly 20 specimens 

identified in the field. 

Description 

Unlined, smooth, narrow-form, tightly coiled Gyrolithes. Specimens are unbranched, passively 

infilled, circular helical burrows. They are oriented vertical to the bedding plane, and consist of 

coils which are variably in contact. Burrows are circular in cross-section, with radii ranging from 

0.2–0.38 mm, with an average radius of 0.27 mm. Whorl radius is 0.25–0.4 mm with an average 
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length of 0.34. Height between whorls is 0.5 and 1 mm, with an average height of 0.82 mm. 

Burrows have between 5 and 15 whorls, with an average of 10 whorls. Overall burrow depth is 

4-14.9 mm, with an average depth of 8.7 mm. Burrow radius was measured along both the x- and 

y- axis when possible. Assuming an original circular cross-section, the difference between the y-

axis and x-axis burrow radius can be attributed to compression, and an average compression ratio 

of 33% was calculated. 

Remarks 

These burrows were previously classified as Skolithos annulatus Howell; however, a re-

evaluation of these specimens demonstrated that they are in fact Gyrolithes with an exceptionally 

narrow form and tight coils (Laing et al., 2018). These burrows are interpreted as agrichnial 

burrows, where the helical morphology served as a sediment anchor and increased surface area 

for bacterial gardening. For a full review see Chapter 4. 

 

Gyrolithes scintillus Laing et al, 2018 

Figure 3.28 G, H, 3.30 A 

Material 

Twenty-four photographed field specimens (FH 7.1 m, 8.1 m, 14.8 m, 15 m, 15.2 m, 17.6 m, 29 

m, 33 m, 42 m, 52 m, 69 m, and 146 m) plus numerous specimens identified in the field. 

Description 

Unlined, smooth, wide-form, variably coiled Gyrolithes oriented vertical to oblique to bedding. 

Endichnial, unbranched burrows, infilled by very fine-grained sand. Coils not in contact. 

Burrows are circular in cross-section, and range between 0.25-1 mm in width. Whorl radius, 

measured from the middle of the burrow, ranged from 0.70-4.65 mm. Height between whorls 

ranges between 1.4-8 mm. Elongated bottom compartments are locally present. 

Remarks 

These burrows were previously classified as G. isp. or G. polonicus Fedonkin (Landing et al., 

1988; Tarhan and Droser, 2014; Mángano and Buatois, 2016; Herringshaw et al., 2017). 

However, G. polonicus only has one to two closely spaced coils, and commonly displays 

striations. As a result, these burrows were classified as Gyrolithes scintillus isp. nov. Laing et al., 

2018. These burrows are interpreted to be agrichnial burrows, similar to G. gyratus. For an in-

depth discussion see Chapter 4. 
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Ichnogenus Helminthoidichnites Fitch, 1850 

Simple, unbranched, horizontal trails or burrows which are straight, curved, or more rarely 

circular and commonly overlap amoung specimens but no no self-overcross are classified as 

Helminthoidichnites (after Buatois et al., 1998). This simple trace fossil is present globally in the 

latest Ediacaran, and becomes more common after the Ediacaran-Cambrian boundary (Figure 

3.15).  

 
Figure 3.15 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Documented Helminthoidichnites localities 

with probable age ranges which include either 560 Ma or 541 Ma are marked. Star denotes specimens recorded in 

this study. For the data used in these reconstructions, see Appendix A.  

 

Helminthoidichnites tenuis Fitch, 1850 

Figure 3.30 B 

Material 

Numerous specimens identified in the field.  

Diagnosis 

Horizontal, small, thin, unbranched, simple, straight or curved burrows that commonly display 

overlap among specimens, but lack self-overcrossing (modified from Buatois et al., 1998). 

Description 

Horizontal, smooth, unbranched, gently curving trails or burrows, preserved in convex or 

concave hyporelief or epirelief. Diameter is 1-3 mm, with several sizes of trails commonly seen 

on one slab, commonly overlapping one another. 

Remarks 

Helminthoidichnites is distinguished from Helminthopsis by its lack of meanders (Buatois et al., 

1998). The newly erected H. multiaqueatus Pokorný differs from H. tenuis by the dominance of 
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circular to curved trails, and is more densely arranged (Pokorný et al., 2017). 

Helminthoidichnites is regarded as a grazing trace, likely produced by arthropods or vermiform 

animals, and is common in Ediacaran and Cambrian strata (Hofmann and Mountjoy, 2010; 

Carbone and Narbonne, 2014). This is supported in this section by its common association with 

microbial mat sedimentary structures (Buatois et al., 2014). 

 

Ichnogenus Helminthopsis Heer, 1877 

Helminthopsis is described as simple, horizontal, unbranched burrows or trails, with curves, 

windings, or irregular open meanders (after Wetzel and Bromley, 1996). While present globally 

during the Ediacaran, the ichnogenera became much more common after the Ediacaran-

Cambrian boundary (Figure 3.16). 

 
Figure 3.16 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Documented Helminthopsis localities with 

probable age ranges which include either 560 Ma or 541 Ma are marked. Star denotes specimens recorded in this 

study. For the data used in these reconstructions, see Appendix A. 

 

Remarks 

Helminthopsis differs from Gordia by its distinct meanders yet minimal overcrossings. During 

the mid 1990’s, two different approaches to the ichnotaxonomy of Helminthopsis were proposed. 

Han and Pickerill (1995) re-analyzed this ichnogenus and suggested three valid ichnospecies: H. 

abeli, H. granulata, and H. hieroglyphica. They argued that the differing fill in H. granulata 

distinguished it as an ichnospecies. Based on a mathematical analysis, they suggested that H. 

tenuis and H. abeli can by synonymized, with the latter having priority. However, Wetzel and 

Bromley (1996) argued that the type specimen of H. tenuis Książkicwicz (1968) lacked 

horseshoe-like turns, and as such had a different morphology from H. abeli, which possesses 
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horseshoe-like turns. Additionally, they argued that if fill is to be considered a pertinent 

ichnotaxobase, then H. granulata should be reassigned to the ichnogenus Alcyonidiopsis. As a 

result, Wetzel and Bromley (1996) suggested three valid ichnospecies of Helminthopsis: H. 

abeli, H. tenuis, and H. hieroglyphica. In a response, Pickerill et al. (1998) argued that while 

Książkicwicz’s (1968) type specimen of H. tenuis lacks horseshoe-like turns, additional 

specimens from the type locality assigned to H. tenuis possess horseshoe-like turns 

(Książkicwicz, 1977), demonstrating the author’s original intentions. In a subsequent reply, 

Wetzel et al. (1998) showed errors in the statistical treatment employed by Han and Pickerill 

(1995), demonstrating that synonymizing of H. abeli and H. tenuis on this basis was incorrect.  

 

Helminthopsis tenuis Książkicwicz, 1968 

Figure 3.28 F, 3.30 C 

Material 

Roughly 30 specimens identified in the field.  

Description 

Smooth, horizontal, burrows or trails, 1-3 mm wide, with irregular, U-shaped windings. 

Preserved in convex or concave epirelief or hyporelief on both very fine sandstone and siltstone 

beds. 

Remarks 

Helminthopsis tenuis is differentiated from H. abeli by the absence of horseshoe-like turns 

(Wetzel and Bromley, 1996; Wetzel et al., 1998). Cosmorhaphe possesses regularly winding-

meanders, whilst the meanders in Helminthopsis are irregular. Helminthopsis is commonly 

regarded as a grazing trace, and is common in Ediacaran and Cambrian strata (Carbone & 

Narbonne, 2014; Mángano and Buatois 2016). This is supported in this section by its common 

association with microbially induced sedimentary structures (Buatois et al., 2014). 

 
Ichnogenus Monomorphichnus Crimes 1970 

Monomorphichnus is described as a series of straight or slightly sigmoidal, parallel or 

intersecting striae, isolated or grouped in sets, in places repeated laterally and typically preserved 

in convex hyporelief (Fillion and Pickerill, 1990, modified from Crimes, 1970). Both M. isp. A, 

M. isp. B, and D. cf. obliquus are found clustered, evenly spaced, and deeply impressed. Skim 
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marks, and to a lesser extent prod marks and drag marks, have a similar morphology to 

individual grooves in M. isp. B, M. isp. A, and D. cf. obliquus. However, the probability of 

having several identical tool marks, spaced evenly apart, is essentially zero. This points to a 

biologic origin for the impressions. In the absence of large skeletal organisms, possible tools are 

restricted to tubes and vendotaenids (Landing et al., 1989). Jensen et al. (2002) documented tools 

(“Kullingia”) created by a tubular organism at this locality; however, these are not ornamented 

enough to create the deep isolated grooves observed in M isp. B, M. isp. A, or D. cf. obliquus. In 

turn, all three ichnospecies are found in various directions on the same bedding surface, 

essentially eliminating a tool mark origin for these impressions. The genus is restricted to the 

Phanerozoic with a global distribution at the beginning of the Cambran (Figure 3.17) 

 

Figure 3.17 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Monomorphichnus is absent from 560 Ma 

strata, however, all documented Monomorphichnus localities with probable age ranges which include 541 Ma are 

marked. Star denotes specimens recorded in this study. For the data used in these reconstructions, see Appendix A. 

Monomorphichnus isp. A  

Figure 3.32 1-3 

Material 

Four specimens on one slab (Slab B, GBH6, 10.5 m) in the field, photographed and measured 

(Table 3.4), plus an additional 5 field identifications (FH 7 m, 10 m, 165 m). 

Description 

Series of six to nine thin (0.1-0.4 mm, avg. 0.3 mm), moderately long (1.7-10.5 mm, avg. 6.25 

mm), evenly spaced, arcuate striations, occasionally paired, preserved in positive hyporelief on 

very fine grained sandstone beds. Paired striations are slightly thinner (0.1-0.3 mm) than those 

that are single (0.2-0.4 mm).  
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Table 3.4 Dimensions of three sets of M. isp. A.  

 

Remarks 

The absence of pusher marks inhibits classification as Dimorphichnus; however, these relatively 

elongated scratch sets also resemble the rakers of Dimorphichnus, so the possibility of 

undertrack fallout cannot be totally discarded. For a taxonomic discussion on Monomorphichnus 

and Dimorphichnus, see the remarks of Dimorphichnus. The presence of straight, deep, equal 

length scratches in Monomorphicnus isp. A clearly differs from M. multilineatus, M. 

semilineatus and M. intersectus. Based on the limited number of specimens and the fact that 

many are isolated sets, it is challenging to provide an ethologic interpretation for 

Monomorphichnus isp. A. Monomorphichnus has been previously interpreted as a swimming 

trace (Crimes, 1970), or as a trilobite caught in the current (Osgood, 1975b). Specimens of 

Monomorphichnus isp. A in the CIF are oriented in a wide variety of directions, including 

perpendicular and oblique to the current direction. It is therefore unlikely that this ichnospecies 

was the result of an arthropod caught in the current. If this specimen is of Dimorphichnus-type, 

with the pusher marks obscured due to undertrack fallout, then a grazing ethology may be more 
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applicable (Seilacher, 1955b). For a discussion on a tool-origin for Monomorphichnus isp. A see 

the remarks of Monomorphichnus isp. B. 

Monomorphichnus isp. B  

Figure 3.32 6 

Material 

Seven specimens on one slab in the field (Slab B, GBH6, 10.5 m) examined and measured by 

photograph (Table 3.5).  

Description 

Groups of three to four parallel, short (0.8-6.0 mm, avg. 2.8 mm), wide (0.15-0.9 mm, avg. 0.4 

mm), oval-shaped grooves preserved in positive hyporelief on very fine-grained sandstone. 

Impressions are deepest and widest towards the middle and shallower and thinner near the ends, 

and are close and evenly spaced apart (0.2-0.9 mm, avg. 0.4 mm). In some specimens the 

innermost grooves are thicker and longer than the outermost grooves (e.g., specimen 3.1). In 

others, only one side of the outermost grooves are thicker and longer than the rest of the grooves 

(e.g., specimens 2.1, 2.3, 3.2, 4.1, 4.2).  

 

Figure 3.18 Widths of individual oval-shaped impressions per specimen of M. isp. B. (blue bars) with the width of 

the oval-shaped impression in M. isp. C. specimens (red and orange bars). 
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Remarks 

One specimen of M. isp. B is located below a single M. isp. C, and both specimens are oriented 

in a similar direction, oblique to the current. The oval-shaped groove which encompasses the 

more delicate scratch marks of M. isp. C, has a similar size to the grooves in some specimens of 

M. isp. B (Figure 3.18). Given this close relationship in morphology and size, it is likely that the 

two ichnospecies are related, and perhaps were created by the same organism. While undertrack 

fallout is a common phenomenon in arthropod trackways (Seilacher, 1990), it is unlikely that M. 

isp. B is an undertrack preservation of M. isp. C, due to the frequency of isolated M. isp. C. 

specimens. Affinities between M. isp. B and M. isp. C will be further discussed in the remarks of 

M. isp. C.  

 The absence of an association with longer, thinner, scratch marks that could be 

identified as rakers inhibits classification as Dimorphichnus, although this may be due to 

undertrack fallout. The width comparative to the length of these specimens distinguishes them 

from the thinner and longer M. linearis, M. bilinearis, M. biserialis, and M. semilineatus. A few 

specimens of M. isp. B share characteristics with M. multilineatus, where some specimens have 

deeper innermost grooves (e.g, specimen 2.2 and 3.1). Although, most specimens of M. isp. B 

show only one deeper groove, and therefore as a whole they do not match the diagnosis of M. 

multilineatus. The lack of intersecting striations distinguished M. multilineatus from M. 

intersectus.  

Monomorphichnus isp. C 

Figure 3.19, 3.32 4 

Material 

Seven specimens on one slab in the field (GBH6, slab B, 10.5 m), photographed. Four specimens 

were measured.  

Description 

Small, short, delicate sets of impressions. Sets of four to six parallel short (3-4.3 mm, avg. 3.9 

mm), sub-equal, thin (0.1 mm), mostly evenly spaced (0.1 mm, a single striation 0.3 mm apart) 

striations. These are located on, and extend past for a few tenths of a millimeter, highly convex, 
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Table 3.5 Dimensions of seven sets of M. isp. B specimens. 

  

 

oval-shaped impressions. Oval-shaped impressions are short (1.6 -3.5 mm, avg. 2.6 mm) and 

wide (0.8-0.9 mm, avg. 0.87 mm). Preserved in positive hyporelief on very fine-grained 

sandstone beds. Specimens are mostly isolated and do not form any clear trackway yet are often 

found close to other arthropod scratch marks, commonly oriented in a similar direction. In one 

instance they are found next to M. isp. B, while in another they are found related to long 

unidentifiable arthropod scratch marks. For a complete discussion on the affinity of M. isp. B see 

Section 3.3.6. 
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Remarks 

A biologic origin is suggested by the even spacing between the striae. The pseudofossil 

Eophyton (Savazzi, 2015), a sail-assisted drag mark (Frey and Dashtgard, 2012), is superficially 

similar to M. isp. C, but has uneven spacings between striae which do not extend past the 

elongate larger groove as in M. isp. C (Figure 3.36, B). In turn, M. isp. C is substantially shorter 

than skim marks, and does not demonstrate the strong asymmetry seen in prod marks (Figures 

3.19, 3.36 F, G). 

 

Figure 3.19 Monomorphichnus. isp. C. (A) Two specimens of M. isp. C (detail of Figure 3.33 6, upper right) (B) A 

specimen of M. isp. C, notice evenly separated central impressions and more separated distal impression.  (C) 

Isolated specimens in slab with diverse orientations do not seem to form a trackway. Notice two specimens cross-

cutting each other (upper left) (detail of Figure 3.33 4.)  

As a result, M. isp. C was probably produced by an organism, and is the result of actual 

behaviour, rather than the transportation of a deceased or current-swept organism. This is 

revealed by two features of the ichnofossil. First, M. isp. C is found in a variety of directions, 
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eliminating current as a mode of transportation (Figure 3.19, 3.32, 3.33). When found aligned to 

the direction of current, M. isp. C is more elongate (Figure 3.19, A, B). Yet when found oblique 

or perpendicular to the current, M. isp. C is shorter (Figure 3.19 C-E). Second, the presence of 

two superimposed specimens at slightly different angles (Figure 3.19, C) demonstrates an 

intentional digging into the substrate. Therefore, Monomorphichnus isp. C was produced by a 

limbed organism, most likely a primitive arthropod. This ichnofossil may have been created by 

the endopodite, however it is more likely formed by an exopodite or another ornamented body 

part such as a telson. For a complete discussion on the affinity of M. isp. C see Section 3.3.6.  

Table 3.6 Dimensions of four specimens of M. isp. C.  

 

Ichnogenus Palaeophycus Hall, 1847 

Branched or unbranched burrows with smooth, ornamented, or lined walls with an essentially 

circular cross-section and passive infill are classified as Palaeophycus. This genera was present 

during the latest Ediacaran, and became much more common with the onset of the Cambrian 

(Figure 3.20)  

 
Figure 3.20 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Documented Palaeophycus localities with 

probable age ranges which include either 560 Ma or 541 Ma are marked. Star denotes specimens recorded in this 

study. For the data used in these reconstructions, see Appendix A. 
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Palaeophycus isp.  

Figure 3.30 F 

Material 

Approximately 50 specimens identified in the field.  

Description 

Small, horizontal, burrows preserved in full relief within siltstone beds. Circular to sub-circular 

in cross-section, infilled with very fine-grained sandstone. Burrow width is 1-10 mm.  

Remarks 

These burrows have previously been classified as Planolites (Narbonne et al., 1987; Gehling et 

al., 2001). While these burrows are small in diameter (1-2 mm) they show distinct characteristics 

of Palaeophycus. Pivotal to this distinction is the characteristic active infill and unlined burrow 

walls present in Planolites versus the passive infill and ghost-lined burrow walls in 

Palaeophycus (Pemberton and Frey, 1982). While the infill in the Fortune Head burrows does 

differ from the siltstone host rock, it is identical to the very fine-grained sandstone in the section, 

and there is no evidence of Planolites characteristic active infill. These burrows were excavated 

in a muddy firmground environment and were then passively infilled by overlying sand (Droser 

et al., 2002; Jensen et al., 2005). Due to the substrate stability, a burrow lining was not needed. 

Since substrate stability is not viewed as a valid ichnotaxobase (Bromley, 1990), these burrows 

are classified as Palaeophycus. They differ from P. striatus Hall and P. sulcatus Miller and Dyer 

by their lack of striae, despite optimal conditions for their preservation. The burrows differentiate 

from P. tubularis and P. heberti de Saporta due to the lack of a lining. Thalassinoides has a 

characteristic branching, which Palaeophycus lacks. Palaeophycus is commonly regarded as a 

dwelling burrow of either a passive predator or filter feeder.  

 

Palaeophycus tubularis Hall, 1847 

Plate 3.21, D-E, G 

Material 

Numerous specimens identified in the field.  
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Description 

Small, horizontal, burrows with a ghost lining, preserved in full relief in very fine sandstone 

beds. Circular to sub-circular in cross-section, infilled with very-fine sandstone. Burrow collapse 

is common. Burrow width is 0.5-1 mm. 

Remarks 

These burrows differ from Palaeophycus isp. by the presence of a thin lining. They are 

commonly found within sandstone beds, rather than within the siltstone units. The lack of 

striations found in the burrows differentiate them from P. striatus and P. sulcatus, and the 

presence of a thin rather than thick burrow wall distinguishes these specimens from P. heberti. 

Palaeophycus is commonly regarded as a dwelling burrow of either a passive predator or filter 

feeder. 

 

Ichnogenus Treptichnus Miller, 1889 

Treptichnus is described as simple or zig-zag, straight or curved segments associated with 

vertical or oblique tubes comprising a three-dimensional burrow system. Joined points of 

segments exhibit small pits or short twig-like projections (after Buatois and Mángano, 1993). A 

few treptichnids appeard in the Ediacaran, the most credible of which have maximum age 

constraints of at most 551 Ma. The two treptichnids present at 560 Ma have wide age constraints 

(635 Ma to 529 Ma and 521 Ma), and it is difficult to refine the age of the ichnofossils further. 

However, at the beginning of the Cambrian the number and distribution of treptichnids increases 

(Figure 3.21). 

 
Figure 3.21 Palaeogeographic reconstructions at 560 Ma and 541 Ma. Treptichnus is absent from 560 Ma strata, 

however, all documented Treptichnus localities with probable age ranges which include 541 Ma are marked. Star 

denotes specimens recorded in this study. For the data used in these reconstructions, see Appendix A. 
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Due to the three-dimensional nature of Treptichnus, multiple expressions of this ichnotaxon 

exist. This phenomenom was illustrated by Maples and Archer (1987), who demonstrated that 

Plangtichnus was simply the expression of Treptichnus bifurcus through its middle plane. This 

was expanded upon by Buatois and Mángano (1993), who reconstructed Treptichnus pollardi in 

a similar fashion. These authors recognized that the difference between Plangtichnus and 

Treptichnus is simply the plane through which the ichnofossil is preserved, and suggested that 

the two genera be regarded as synonyms. When the three-dimensional morphology cannot be 

reconstructed (i.e., when the middle level is not found), the ichnofossil can be classified to the 

ichnogenus level, as Treptichnus isp. This concept was further expanded upon by Jensen et al. 

(2000), where they lowered the plane of intersection and demonstrated another preservation style 

of Treptichnus. The variety of preservational styles thus has likely led to a proliferation of 

ichnotaxon.  

For example, the upper plane of a treptichnid has commonly been classified as 

Saerichnites or Bicavichnites (Figure 3.22) (Seilacher et al., 2005). With only this expression, it 

is impossible to decipher the overall three-dimensional morphology of the specimen. In this 

situation the upper plane of a variety of ichnotaxa may produce Saerichnites, such as 

Arenicolites, Hormosiroidea, Treptichnus, or Skolithos (Figure 3.22). This phenomenom 

underscores the need to carefully examine an outcrop for multiple expressions. Additionally, 

possible three-dimensional morphologies of an ichnotaxon must be carefully examined before 

classification can be attempted. 

 
Treptichnus coronatum (Crimes and Anderson, 1985) 

Figure 3.31 A 

Material 

Four photographed specimens, plus roughly 10 field identifications (FH 2.1 m, 81.50 m; GBH 11 

m). 

Description 

Burrow trajectory forms a complete circle, smooth, unlined, and parallel to bedding. Vertical 

branches extend from the main circular burrow, evenly spaced. Burrow width is 1-3 mm with 
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branches spaced between 5-97 mm apart (measured from middle of branches). Preserved as 

positive hyporeliefs, or as endichnial structures infilled with very fine sandstone. 

 
Figure 3.22 Schematic illustrating possible 3D morphologies which may produce “Saerichnities” or 

“Bicavichnites”. 

Remarks 

T. coronatum is distinguished from T. pedum due to its overall circular shape, with no burrow 

segments leading to or from the burrow. T. coronatum and the graphoglyptid Lorenzinia show 

similarities, in that they both have a main circular burrow with vertical branches, and it has been 

suggested that T. coronatum is a primitive Lorenzinia (Uchman, 1998). As mentioned in the 

remarks for T. pedum, it is possible that a loop of T. pedum may be mistaken for T. coronatum. A 

revision of T. coronatum is warranted, to determine if its construction is similar or different than 

that of T. pedum. A closed circular burrow with vertical protuberances would not function well 

as a feeding burrow. This morphology would however serve well as a graphoglyptids-style 

burrow as proposed by Uchman (1998), or as the dwelling burrow of a passive predator (Vannier 

et al., 2010).  
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Treptichnus isp. 
Figure 3.30 H, 3.35 B  

Material 

One specimen photographed and measured, plus roughly 5 field identifications. 

Description 

Burrow consisting of smooth, unlined, curved segments massively infilled with very fine 

sandstone. The segments join each other longitudinally. Segments are irregular, ranging from 1-3 

mm in length, and 1-2 mm in width. Burrow trajectory is straight to slightly meandering, no 

loops are observed. Preserved as positive hyporeliefs on very fine sandstone beds. 

Remarks 

Treptichnus isp. has been previously documented at Fortune Head, and is distinguished from 

Treptichnus pedum due to its lack of angled protuberances.   

 

Treptichnus pedum (Seilacher, 1955a) 

Figure 3.23, 3.31 B, C, E 

Material 

Eight photographed specimens (FH 1.35 m, 2.4 m, 55.50 m, 81.50 m, 136.0 m, 136.5 m, 139.8 

m, 145.0 m), plus approximately 30 field identifications. 

Description 

Burrow consisting of smooth, unlined, curved segments. The segments either join each other 

either at low angles or longitudinally, forming short projections. Burrow trajectory forms arcuate 

bends or follow a straight to slightly sinuous course. Arcuate bends may create loops. 

Burrow is 2-5 mm wide, with segment length between 6-11 mm. Preserved as positive 

hyporeliefs or as full-relief infilled with very fine sandstone, or as negative epireliefs. 

Remarks 

Previously described as Phycodes pedum (Crimes and Anderson, 1985, Narbonne et al., 

1987), this ichnotaxon defines the beginning of the Cambrian and the T. pedum Ichnofossil 

Assemblage Zone. Jensen (1997) reassigned Phycodes pedum to Treptichnus pedum, noting the 

distinctive treptichnid-style construction through the addition of segments. Interestingly, 
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Treptichnus pedum appears in the Sh facies (Myrow, 1987), as well as member 1, demonstrating 

an wide environmental tolerance. 

 

 
 

 

Due to the alternation of very fine-grained sandstone and siltstone at Fortune Head, multiple 

expressions of T. pedum can be found (Figure 3.23). The upper plane preservation of Treptichnus 

in the early Cambrian has occasionally been classified as Hormosiroidea, such as Hormosiroidea 

canadensis Crimes and Anderson. This ichnospecies has since been synonymized with 

Ctenopholeus kutcheri Seilacher and Hemleben (Fürsich et al, 2006). Hormosiroidea is 

characterized by subspherical bodies connected by a horizontal “string” (Uchman 1998), rather 

than by the addition of curved segments as Treptichnus. Jensen (1997) argued that what is 

Figure 3.23 Possible three-dimensional expression of Treptichnus pedum, with field photographs from the T. 

pedum IAZ of the CIF. The hypothetical “Plangtichnus” expression was not documented in the CIF. All scale 

bars are 1cm. 
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commonly referred to as Hormosiroidea isp., is in fact 

treptichnid whose segments are added in succession, 

rather than at an angle (Figure 3.24). Prior to the re-

evaluation of Hormosiroidea by Uchman (1998), this 

misclassification was common. In turn, heart-shaped 

bodies connected by a horizontal tube, now classified as 

Halimedides, have formerly been classified as 

Hormosiroidea (Figure 3.24) (Uchman, 1998; Gaillard 

and Olivero, 2009). As a result, previous reports of 

Hormosiroidea must be carefully re-examined. Arcuate 

bends in T. pedum may form loops, which may strongly 

resemble T. coronatum Crimes and Anderson. However, 

T. pedum has burrows leading to or from the loop, 

whereas T. coronatum does not. It is possible that 

documented T. coronatum’s are simply portions of a 

greater T. pedum. Crimes and Anderson (1985) argued 

that the irregularity of arcuate bends in T. pedum in 

comparison to T. coronatum, as well as the difference in 

angle of projection of the segments from the main burrow 

can be used to distinguish between T. pedum and T. 

coronatum. There is a general consensus that T. pedum is a 

feeding trace. The original interpretation of T. pedum (then 

Phycodes pedum) was as a deposit feeder (Seilacher 

1955a); however, backfilling and other active-fill 

structures have yet to be observed within T. pedum. Seilacher (2007) noted that this ichnotaxon 

is restricted to thin sand beds, and never penetrates into underlying mud layers. This author 

suggested that this featureis evidence that the tracemaker was a more sophisticated undermat 

miner (Seilacher, 2007). The passive infill commonly seen in T. pedum may suggest a dwelling 

ethology, as proposed by Jensen (1997) and Vannier et al., (2010). In this scenario, the organism 

lives in the burrow and feeds from detritus (Jensen, 1997) or epibenthic animals (Vannier et al., 

2010) on the surface of the sea floor. Regardless of the specific mechanism, it is evident that 

Figure 3.24 Various three-
dimensional interpretations of 
Treptichnus, Hormosiroidea, and 
Halimedides. Illustrations modified 
from Crimes and Droser (1992), 
Jensen (1997), and Uchman (1998). 
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Treptichnus pedum represents a sophisticated mode of feeding for this time in Earth history 

(Buatois, 2018). 

 
Ichnogenus Trichichnus Frey, 1970 

Trichichnus cf. simplex Fillion and Pickerill, 1990 

Figure 3.26, 3.31 D, F 

Material 

Approximately 25 specimens photographed in the field. 

Description 

Unbranched, unlined, 0.3-0.5 mm wide, cylindrical burrows, forming a mostly vertical burrow 

system. Preserved as endichnial structures with a distinctive iron-oxide fill. Burrow system is 

dominated by a mostly vertical portion with straight to sinuous burrows reaching depths of up to 

31 mm (Figures 3.25 and 3.26, part B), with rare horizontal portions with sinuous, occasionally 

crossing sections (Figures 3.25 and 3.26, part A).  

Remarks 

Trichichnus simplex Fillion and Pickerill differs from Trichichnus linearis by the absence of a 

lining. Whether or not this lining is a diagenetic (Uchman, 1995, 1998) or not remains to be 

determined. Unlined Trichichnus with rare horizontal portions has been documented in the type 

specimen in the Upper Cretaceous of Kansas (Frey, 1970) and in the Miocene of Italy (McBride 

and Picard, 1991), however no known Cambrian occurrences exist. Foraminifera have been 

observed creating burrows of a similar thickness to Trichichnus, as they escape from silty 

sediment (Severin, 1982), although these burrows are more sinuous than Trichichnus. 3-D 

microCT scanner images reveals an overall structure of Trichichnus which is more consistent 

with a colony of large sulfur bacteria. This, combined with its prevalence in dysoxic 

environments, has led some researchers to suggest a chemichnial ethology for Trichichnus 

(Kędzierski et al., 2015). In this model, the tracemaker of Trichichnus takes advantage of a redox 

gradient between the sediment and seawater. In the oxidizing zone, nitrate respiration and carbon 

fixation occur while in the reducing zone, sulphate reduction occurs. Filamentous bacteria 

facilitate electron transport between the two zones, forming a symbiotic relationship with the 

larger sulfur bacteria. Over time framboidal pyrite or greigite naturally precipitate within the 

burrow and, assisted by bacteria pili and biofilms, form a conductive filament in the deeper 
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portions of the burrow system. This serves as a bioelectric wire, transporting electrons derived 

from the reducing zone upwards, to be utilized by the large sulfur bacteria (Kędzierski et al., 

2015). It is generally accepted that the sediments in Cambrian oceans were oxygen stratified 

(Seilacher, 1999; Callow and Brasier, 2009; Boyle et al., 2014; Mángano and Buatois, 2014), 

although there is discussion on the specific amount of dissolved oxygen (Sperling et al., 2013). 

This gradient would provide an optimal environment for a chemosynthetic organism such as 

sulphate reducing bacteria.  

 
Figure 3.25 A schematic reconstruction of Trichichnus cf. simplex in the CIF. Two successions of Trichichnus cf. 

simplex are shown. (A) horizontal mesh-like section of the burrow system (B) vertical section of the burrow system. 

Scale bar is 1cm. 
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Figure 3.26 Field photograph of Trichichnus cf. simplex with both horizontal burrows (A) and vertical burrows (B). 

 

3.2. Other ichnofossils and body fossils 
Tubular organism 

Figure 3.27 

Material 

Two specimens (FH ~4 m and 37 m), photographed and measured. 

Description 

Vertical, annulated, cylindrical tube. Width ranges from 0.5-1.5 mm, depth ranges from 5-6 mm. 

Annulations are 0.3-0.7 mm wide.  

Remarks 

One specimen (Figure 3.27 A) seems to become thinner with depth, and has more regular 

constrictions. However, the other specimen (Figure 3.27 B) maintains a similar width with depth, 

with constrictions which are more irregular and seem to “buckle” (like a corrugated tube being 

compressed). These specimens are somewhat similar to poor preservations of Gyrolithes gyratus, 

however they are differentiated by their construction out of a solid material and lack of a helical 

morphology.  

 
Figure 3.27 Unidentified tubes from the CIF. All scale bars 1cm. (A) A slightly cone-shaped tube, with regular 

annulations. Note the deformation of the underlying sand layer, implying the tube was lithified at the time of 

sediment compaction (black arrow). (B) A cylindrical tube, with irregular annulations.  
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Algae 
Figure 3.35 D 

Material 

One specimen photographed in the field (FH ?10 m). 

Description 

Thin (0.2-05 mm), non-continuous, dark grey curving cylindrical sheaths. Located on the top of a 

very fine sandstone bed. 

Remarks  

Vendotaenids (specifically Tyrasotaenia) are commonly found within the T. pedum IAZ at the 

CIF (Landing et al., 1988). 

 

Wide, tightly beaded burrow 

Figure 3.35 C 

Material 

One specimen, photographed and measured (FH 1.45). 

Description 

A thick (2-2.5 mm) burrow with distinct sub-rounded segments, each 1.5-2 mm long infilled 

with very fine sandstone. Preserved in positive hyporelief on the base of a very fine-grained 

sandstone bed.  

Remarks 

Towards the top of figure 3.35 C, the burrow seems to curve upwards, bearing resemblance to a 

treptichnid. However, the specimen does not appear to be constructed by the addition of U-

shaped segments, and the segments have a considerably smaller length to width ratio than in a 

treptichnid. Instead, the burrow was likely created by the addition of ball-shaped segments. 

Planolites annularis is less regular, and is characterized by ring-like annulations, rather than 

rounded expansions.  
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Thin ?branching meandering burrow 

Figure 3.35 E, F 

Material 

Seven samples photographed and measured in the field (FH, 6 m, 12 m, 15.10 m, 86.90 m, 154 

m) plus roughly 5 field identifications.  

Description 

Thin (0.5-0.75 mm wide) slightly meandering, circular in cross-section, burrows. Found in 

relatively high density on bedding planes. Turns 2 to 8 mm wide. Burrows occasionally 

interpenetrate each other, and it is difficult to discern if they are cross-cutting each other or are 

secondary successive branches. Meander loops are sometimes horse-shoe shaped. Other meander 

loops bend sharply (~90°) at the apex of the curve, and then change convexity, forming a shape 

similar to the bottom half of the lowercase Greek letter lambda (l). Preserved in positive 

hyporelief as well as positive and negative epirelief. 

Remarks 

Specimens resemble Helminthopsis most closely, and it is possible that they are simply 

Helminthopsis which has been cross-cut by a similar horizontal simple burrow. However, 

burrows often terminate when intersected by another burrow, and display a strong tendency to 

avoid each other. As such, it is hypothesized that they may in fact have a network-like 

morphology, most similar to Multina.  
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Figure 3.28 

(A) Archaeonassa fossulata preserved in negative epirelief (FH 2.6m) (B, C, E).  Gyrolithes gyratus preserved in 

full relief, viewed in cross-section (B: FH 44.5m; C, E: ?6m). (D) Cochlichnus anguineus preserved in negative 

epirelief (FH 12m). (F) Helminthopsis tenuis preserved in negative epirelief (FH 142.0m). (G) Gyrolithes scintillus 

preserved in full relief, viewed in cross-section (FH 14.8m). (H) Gyrolithes scintillus preserved in full relief, viewed 

on the top of a bed. (FH 52m). All scale bars are 1cm. 
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Figure 3.28 Caption on previous page. 



 

 
Figure 3.29 Slab A, showing several Dimorphichnus cf. obliquus at Grand Bank Head (GBH6, 11m). All scale bars are 1cm. (A) The trackways viewed in A, 

preserved in positive hyporelief on a very fine-grained fluted sandstone bed. (B) Schematic reconstruction of area highlighted in A. potentially related sets (i.e. 

conforming a trackway are shown in the same color. Some directionality of the trackway can be inferred (see remarks of D. cf. obliquus). Current direction is 

inferred from observed flute casts. (C) One set of slightly sigmoidal raker marks (D) One set of blunt, straight, pusher marks. This set is crosscut by another 

probable set of pusher marks, oriented parallel to current. A conservative approach was taken, and any marks parallel to current were excluded, in the unlikely 

case that they were tool marks.  
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Figure 3.30 

(A) Gyrolithes scintillus preserved in full relief, viewed in cross-section (GBH). (B) Helminthoidichnites tenuis 

preserved in negative hyporelief (C) Helminthopsis tenuis preserved in positive hyporelief (FH 82.0m) (D) 

Palaeophycus tubularis preserved in positive hyporelief (FH 83m). (E) Palaeophycus tubularis preserved in positive 

epirelief, viewed from the top of a bed. (FH 20.9m). (F) Palaeophycus isp. preserved in full relief, viewed in cross-

section. (G) Palaeophycus tubularis preserved in positive epirelief, viewed from the top of a bed. (H) Treptichnus 

isp. preserved in positive hyporelief (FH ?1m). All scale bars are 1cm. 
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Figure 3.30 Caption on previous page.  
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Figure 3.31 

(A) Treptichnus coronatum preserved in full relief, viewed on the base of a bed. (GBH). (B) Treptichnus pedum 

preserved in full relief, viewed on the top of a bed. (FH 55.5m). (C, E) Treptichnus pedum preserved in positive 

hyporelief (C: FH 1.35m). (D, F) Trichichnus isp. preserved in full relief, viewed in cross-section (D: FH 25m; F: 

GBH). All scale bars are 1cm. 
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Figure 3.31 Caption on previous page.  
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Figure 3.32 Close up photographs of sections on Slab B at GHB 6 (10.5m) outlined in figure 3.33. All specimens 

preserved in positive hyporelief on the base of a very-fine sandstone bed. All scale bars are 1 cm. (1) 

Monomorphichnus. isp A. (2) M isp. A. (3) M isp. A. (4) Arthropod scratch marks oriented roughly perpendicular to 

current, with various M. isp. C specimens. (5) Various arthropod scratch marks. (6) 3 specimens of M. isp. B., along 

with two specimens of M. isp. C. towards the top of the photo. 
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Figure 3.33 

Slab B at Grand Bank Head 6 (10.5m), the base of a very fine sandstone bed, some flutes visible. Boxes outline 

photos in figure 3.32 Scale bar is 6 cm long. 



 

 

Figure 3.33 Caption on previous page. 
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Figure 3.34 

Tracing of arthropod scratch marks in slab B., seen in Figure 3.33. Boxes correspond to photographs in Figure 3.32. 

Arrows next to outlined sections illustrate the direction of the arthropod scratch marks



 

 

Figure 3.34 Caption on previous page. 
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Figure 3.35 

(A) Unidentified beaded burrow preserved in positive and negative epirelief (FH 94 m). (B) Treptichnus isp. 

preserved in negative epirelief (FH ?4 m). (C) Wide tightly beaded burrow preserved positive hyporelief (FH 1.45 

m). (D) Possible algae preserved in the top of a bed (FH ?10 m). (E, F) Thin ?branching meandering burrow 

preserved in positive hyporelief (FH 15.10 m). 
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Figure 3.35 Caption on previous page. 
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Figure 3.36 A revised classification of took marks in terms of kinetics. Classification revised from Allen (1982, 

Figure 13-2). A) Drag marks (after Allen, 1982). B) Sail-assisted drag marks (after Frey and Dashtgard, 2012). C) 

Tilting marks (after Wetzel, 2013). D) Scratch marks Left: complete scratch circle (after Jensen et al., 2002) Right: 

A flag scratch circle, showing current direction (after Uchman and Rattazzi, 2013). E) Roll marks (after Seilacher, 

2007) F) Prod marks (after Allen, 1982). G) Skim marks (after Allen, 1982). H) Tumble marks (after Seilacher, 

2007). I) Saltation marks (after Allen, 1982).
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Table 3.7 Tool marks created by an organic tool, with their associated cast types and potential pseudofossil or fossil 

misinterpretations. 

 

  

Pseudofossil Tool Type of casts Source 

 Nautiloids 
Saltation, prod, and 

roll casts. 
Kelling and Whitaker, 1970 

 Graptolites 
Drag marks and prod 

casts. 
Trewin, 1979 

 Algae Drag marks Haines, 1997 

“Kullingia” 

“Laevicyclus” 

Medusoids 

Anchored tubular 

organism (sabelliditid?) 

Scratch circle (drag 

marks) 
Jensen et al., 2002 

 Plant leaves and stems 
Wind-generated tool 

marks (drag marks) 
Jones, 2006 

“Undichnia”, 

“Protichnites”, 

“Koupichnium” 

Seaweed-assisted 

gravel 

Sail-assisted tool 

marks (drag marks) 
Frey and Dashtgard, 2012 

 Foramnifera 
Drag marks (flag 

scratch circles) 
Uchman and Rattazzi, 2013 

Various trace 

fossils 

Varies, from jellyfish 

to wood 
Tilting marks Wetzel, 2013 

“Eophyton” 

Burrows 

Unknown—sail 

attached to a smaller 

circular structure 

Drag (sail-assisted 

tool) marks 
Savazzi, 2015 

 
Tabulate corals or 

crinoid stems 
Drag marks Vinn and Toom, 2016 

Medusoids Seaweed 
Scratch circles (drag 

marks) 
Seilacher, 2007 

Fish trace fossils Ammonite shells Roll to tumble marks Seilacher, 2007 

“Paleodictyon” Tabulate corals Roll marks Seilacher, 2007 

“Oklahomaichnus” Fish verterbrae Tumble marks 
Lucas and Lerner 2001; 

Seilacher, 2007 

“Ichnispica” Cattail stems Roll marks Seilacher, 2007 

“Chloephycus” Seaweed Drag marks Seilacher, 2007 
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3.3. Ecospace analysis 

Ecospace, as it pertains to paleoecology, describes the ecological space (i.e., mode of life) that an 

organism occupies (for a review of the term “ecospace” in modern ecology see Brunbjerg et al., 

2017). Due to the time-averaging nature of the fossil record, the ecological parameters that 

paleontologists can discern are limited. Instead, paleontologists rely heavily on functional 

morphology to glean insights on the lifestyles of ancient organisms (Bambach et al., 2007). The 

guild concept (Bambach, 1983) draws on this, and is a framework for classifying fossil taxa 

using discernable ecological parameters. Bush et al. (2007) refined this method, and noted that 

three ecologic properties can be somewhat reliably determined with fossil data: tiering, motility, 

and feeding. They argued that these three properties defined one ecospace, and could be used to 

systematically analyze changes in ecospace utilization through time. As a result, they constructed 

a 6 by 6 by 6 matrix to represent all possible ecospaces, with each ecological property 

representing an axis (Figure 3.37).  

 Bromley (1990) modified the bambachian guilds to better suit ichnological data, and 

categorized ecological complexity by a ichnofossils bauplan (equivalent to motility in Bush et al. 

2007), food source, and tier. In turn, Minter et al. (2016a) created an adapted framework for 

ecospace occupation, specifically for ichnologists. This framework is useful for examining 

ichnofossil ecospace occupation through time, as demonstrated in his work on continental 

ichnofossils (Minter et al., 2016b, 2017). However, two disparate schemes for body fossils and 

ichnofossils inhibits collaboration between the two bodies of evidence. In turn, both Bush’s et al. 

(2007) original ecospace occupation framework and Bambach’s et al. (2007) ecospace analysis 

emphasized ichnofossils, in an effort to include this pivotal body of evidence. Herein, a slightly 

modified version of Bush’s et al. (2007) ecospace occupation framework is employed.  

In order to achieve a greater resolution of ecological changes, especially as it pertains to 

ichnofossils, some ecologic categories were subdivided, as per Minter’s et al. (2016a) scheme. 

For example, a classification of shallow infaunal as living in the top ~5 cm of sediment is broad, 

and may dilute evolutionary signals. In this case, the ecospace “cube” was divided in half, to 

represent two subdivisions of the “shallow infaunal tier” (Figure 3.37). In this way, ichnofossil 

and body fossil data may be combined into a single ecospace occupation framework.
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Figure 3.37 Modified ecospace occupation framework, wherein some ecospace sections have been subdivided to 

better encompass ichnologic data (modified from Bush et al., 2007 with subdivisions from Minter et al. 2016).
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Table 3.8 Ecospace and ichnoguild analysis of the Chapel Island Formation Treptichnus pedum Ichnofossil 

Assemblage Zone ichnofossils. 

 

In cases of uncertain affinities, Bambach et al. (2007) applied a conservative approach and 

assigned all possible ecospace cubes. Similarly, this can be applied for the new subdivisions. For 

instance, when combining “5- shallow infaunal” Ediacaran body fossils within the new 

subdivided ecospace occupation framework herein, it is more conservative to occupy both the 

“5a- very shallow” and the “5b- shallow” ecospace “cubes”. Likewise, in cases of uncertain 

ichnofossil affinities (in this case, usually within the feeding parameter), multiple ecospace cubes 

were occupied. Five ichnoguilds were recognized within the T. pedum IAZ (Table 3.8). These 

ichnoguilds are colour-coded and plotted in a stratigraphic framework (Figures 3.2 and 3.3). 

3.3.1. Bergaueria isp. ichnoguild 

The Begaueria isp. ichnoguild consists of Bergaueria isp., Bergaueria perata, and 

Conichnus conicus. All three are plug-shaped, probable anemone burrows (Alpert, 1973). As a 

result, it is hypothesized that they fed through predation. In turn, while Bergaueria perata and 
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Conichnus conicus are very shallow, semi-infaunal burrows, Bergaueria isp. demonstrates 

burrow adjustment with sedimentation (Figure 3.6), and can attain depths of 26 mm. As a result, 

this ichnoguild occupied both the semi-infaunal tier as well as the very shallow infaunal tier. In 

turn, the tracemaker actively anchored itself within the sediment, and in the case of Bergaueria 

isp. demonstrated motility with sedimentation. Therefore, they are classified as attached, 

facultative motile burrowers. 

3.3.2. Dimorphichnus cf. obliquus ichnoguild 

The Dimorphichnus cf. obliquus ichnoguild consists of Dimorphichnus cf. obliquus, 

Monomorphichnus isp. A, Monomorphichnus isp. B, and Monomorphichnus isp. C. Broadly, 

these ichnofossils may be categorized as arthropod scratch marks. They are all the result of an 

arthropod walking on, or scratching, a sediment surface and as such occupied the surficial tier. 

This also demonstrates that they were fast fully motile organisms. The feeding habits of these 

primitive arthropods is still a debated topic among researchers. Dimorphichnus is generally 

regarded as a “grazing” track, however it is not clear whether or not this organism grazed on 

microbial mats, meiofauna, or detritus (see remarks of D. cf. obliquus). As a result, all three 

possible feeding ecospaces were shown as occupied in Figure 3.38.  

3.3.3. Gyrolithes scintillus ichnoguild 

The Gyrolithes scintillus ichnoguild consists of Gyrolithes gyratus, Gyrolithes scintillus, 

and Trichichnus cf. simplex. These were all vertical burrows, attaining a maximum depth of 29 

mm, classifying them as very shallow tier burrowers. They were likely originally deeper 

however, as all samples have been truncated by erosion. The gyrolithids were likely constructed 

by a vermiform organism (Laing et al., 2018), while Trichichnus was formed by large bacteria 

colonies (Kędzierski et al., 2015). They are both slow, fully motile organisms. Trichichnus is 

suspected to have fed through chemosynthesis, while Gyrolithes scintillus and G. gyratus likely 

fed through microbial gardening. 

3.3.4. Helminthoidichnites tenuis ichnoguild 

The Helminthoidichnites tenuis ichnoguild consists of Archaeonassa fossulata, 

Cochlichnus anguineus, Gordia isp., Helminthoidichnites tenuis, and Helminthopsis tenuis. 

These were all simple, horizontal burrows or trails, occupying the uppermost 0.5 cm of sediment 

(semi-infaunal). These ichnofossils are all viewed as pascichnial trails or burrows, combining 
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feeding and locomotion, and as a result were likely slow fully motile. In turn, their common 

association with MISS suggest they all fed on microbial mats, classifying them as grazers.  

3.3.5. Treptichnus pedum ichnoguild 

The Treptichnus pedum ichnoguild consists of Palaeophycus isp., Palaeophycus tubularis, 

Treptichnus coronatum, Treptichnus isp., and Treptichnus pedum. These sub-horizontal to 

horizontal burrows penetrated deeper than 0.5 cm (but less than 3 cm) into the substrate, and as a 

result constituted the very shallow tier. As burrowers of a probable vermiform affinity, they are 

classified as slow fully motile. The feeding mechanism of these tracemakers is difficult to 

discern, and it would be premature to create multiple ichnoguilds due to this uncertainty. As a 

result, only one ichnoguild is currently proposed; however, this may need to be subdivided when 

more information of the life style of the burrowers is made available. 

 

By plotting these ichnoguilds in a stratigraphic (Figure 3.2 and 3.3) and ecospace (Figure 3.38) 

framework, a few initial trends can be observed. The Helminthoidichnites tenuis ichnoguild is 

documented within the Harlaniella podolica IAZ (Crimes and Anderson, 1985; Narbonne et al., 

1987; Landing et al., 1988), and extends further backward into the Ediacaran worldwide. The 

Treptichnus pedum and Bergaueria isp. ichnoguilds appear just below the Ediacaran-Cambrian 

boundary, documenting a deeper tier than the stratigraphically older Helminthoidichnites tenuis 

ichnoguild. Additionally, the treptichnids as well as Bergaueria isp. document more 

sophisticated methods of interacting with the substrate. T. pedum and T. coronatum are the 

earliest penetrative burrows, while Begaueria isp. may represent the first equilibrium structure. 

Finally, the deeper agrichnial and chemichnial ichnofossils (Gyrolithes scintillus ichnoguild), as 

well as those indicative of fast freely motile organisms (Dimorphichnus cf. obliquus ichnoguild), 

occur slightly after the Ediacaran-Cambrian boundary. These represent the first true vertical 

burrows as well as the first evidence of limbs recorded in this section, perhaps globally.  

The interval documented by the T. pedum IAZ is notoriously body-fossil poor, and ecospace 

analyses have been restricted to the Ediacaran and early-middle Cambrian (Bambach et al., 2007, 

Laflamme et al., 2012). The CIF ichnofossils therefore provide an important window between 

these two disparate faunas. When contrasted with the modes of life hypothesized for Ediacaran 

fauna and early-middle Cambrian fauna (Figure 3.38), a few initial trends can be observed. First, 
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a transition in feeding styles can be seen. While the Ediacaran fauna is dominated by “other” and 

grazing feeding styles, early-middle Cambrian feeding types are similar to those recorded in 

modern benthic ecosystems. Interestingly, the CIF ichnofauna document a transition between the 

two. The Gyrolithes scintillus and H. tenuis ichnoguilds document more Ediacaran-like feeding-

styles, such as chemosynthesis and mat grazing. However, the more Cambrian-like predatory and 

deposit- feeding modes of life are documented by the three remaining ichnoguilds (B. isp., D. cf. 

obliquus, and T. pedum). Second, burrowers (slow fully motile organisms) begin to explore 

deeper tiers than previously documented. Finally, motile modes of life became more common, 

with the first appearance of fast freely mobile organisms. This likely reflects an evolution of 

body plans.  

 

3.3.6. Early arthropods and CIF scratch marks 

Limbed organisms capable of producing ichnofossils such as Dimorphichnus or 

Monomorphichnus had most likely evolved by the lowermost Fortunian (Waloszek et al., 2005; 

Budd and Telford, 2009). Whether or not these were trilobites remains to be determined; 

however, it is likely they were arthropods (sensu stricto), more likely euarthropods (Budd and 

Telford, 2009). It has been hypothesized that primitive arthropods had biramous limbs similar to 

extant arthropod appendages (Hughes 2003; 2007). These primitive limbs consisted of two rami, 

an endopodite and exopodite, connected to the body by the basipod (Watling and Thiel, 2012). 

The endopodite (also known as telopodite) is generally regarded as the walking limb of 

arthropods, and consisted of a segmented rod-like, lightly sclerotized leg, attached to the inside 

of the basipod. This limb produces the majority of arthropod scratch mark ichnogenera in the 

trace fossil record, such as Diplichnites and Dimorphichnus. Dimorphichnus cf. obliquus and 

Monomorphichnus isp. A from the CIF were likely created by primitive arthropod endopodites.  

The exopodite (also known as epipodite, exite, or “gill branch”) is sometimes thought to be used 

for respiration (Waloszek et al., 2005), however more recent research supports a non-respiration 

purpose (Liu et al, 2007; Suzuki and Bergström, 2008). The primitive exopod is a paddle-shaped 

ramus attached to the outside edge of the basipod, with spines evolving in Euarthropoda. While 

exopodites have been historically viewed as gills, due to their high surface area, they were in fact  

 



 

 

Figure 3.38 Ecospace analysis for the Ediacaran to early- middle Cambrian. Black boxes represent ecospace occupied by body fossils, globally and grey boxes 

represent ecospace occupied by trace fossils (data from Laflamme et al., 2013). Coloured boxes represent ecospace occupied by CIF T. pedum IAZ ichnoguilds, 

colour scheme found in Table 3.8. 
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more robust (Bergström, 1969; 1972; Seilacher 1970) and may have been used for swimming 

(Waloszek et al., 2005; Stein, 2010) or burrowing (Seilacher, 1970, Bergström, 1976). 

 

Figure 3.39 Possible three-dimensional expressions of a groove created by a spinose paddle shaped tool. (A) 

Uppermost expression, ressembling M. isp. B. (B) Middle expression, ressembling M. isp. C. (C) Lowermost 

expression.  

The spiny flap-shaped exopod would be therefore capable of producing an impression 

similar to M. isp. C. All primitive arthropods had multiple biramous limbs, each which would 

possess a similar exopod (Watling and Thiel, 2012). Therefore, their scratch marks would likely 

be preserved in sets. One specimen of M. isp. C is found in close proximity with M. isp. B, 

oriented in a similar direction (Figure 3.32, 6). Monomorphichnus isp. B does not possess the 

fine striations found in M. isp. C, however the oval-shaped impression of M. isp. C is of similar 

dimensions as M. isp. B (Figure 3.18). One possible explanation is that M. isp. C is a deeper 

preservation of M. isp. B, where M. isp. C preserves the impression of the exopodal spines, and 

M. isp. B preserves the overall flap shape. However, it is unlikely that in a set of limbs only one 

exopod would be deeper impressed. In turn, the specimen of M. isp. C associated with M. isp. B 

is oriented slightly oblique to the M. isp. B set. An exopodal flap explanation for M. isp. C also 

does not explain the frequency of isolated specimens found.  

Some stem-group euarthropods (Briggs and Collins, 1999) also possessed a spiny, flap or 

V-shaped telson. It has been hypothesized that this telson may have been used to ‘steer’ a 

swimming arthropod (Briggs, & Whittington, 1985). The telson would dig into the sediment, 

acting as a rudder, aiding to direct or balance the organism. In other arthropods, the telson is used 
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to right an overturned organism (Lin et al, 2009). Given the frequent isolated specimens, a telson 

imprint is a more likely cause of M. isp. C. This hypothesis aligns well with the observation that 

when M. isp. C is more oblique to flow, the impression is shorter. More effort (i.e., a shorter, 

deeper prod with the telson) would be needed to maintain a swimming course oblique to the 

current. When swimming with the current, the organism would only need to lightly graze the 

ground to maintain its balance and course.  

 

Figure 3.40 Reconstruction of the Leanchoilid Alalcomenaeus cambricus (from: Briggs and Collins, 1999, Figure 

13) 

Several M. isp. C specimens are found oriented parallel to elongate arthropod scratch 

marks but oblique to the dominant current direction (Figures 3.19 and 3.32 4). If these two 

scratch marks are related, these marks suggest an euarthropod with a spiny telson swimming 

over the surface. The elongate marks would be similar in genesis to M. biserialis (see Mikuláš, 

1995 fig. 2), where the euarthropod is swimming parallel to the scratch marks, with similarly 

oriented telson “rudder” marks preserved. Likely, this would reflect a grazing behaviour. 

Due to the absence of arthropod body fossils from the lowermost Fortunian, it is difficult 

to assign a specific arthropod tracemaker for the CIF scratch marks. However, if M isp. C was 

formed by an exopodite, then this signifies the presence an ornamented exopodite, a distinctive 

feature of euarthropods (Watling and Thiel, 2012). Possible stem-group euarthropods 
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(Leanchoilids) have been discovered and described in detail from the Chengjiang and Burgess-

Shale lagerstätten (Briggs and Collins, 1999; García-Bellido and Collins, 2007; Liu et al., 2007). 

Most authors hypothesize that the leanchoilids were nektobenthonic, since the endopodites are 

angled inwards and would be poor walking legs (Briggs & Whittington, 1985; Haug et al., 2012). 

In turn, thin-section analysis of a phosphatized three-dimensional axial structure in Leanchoilia 

revealed the presence of midgut glands (Butterfield, 2002). These are common storage feature in 

predators, and it is therefore likely that these primitive arthropods were predators. However, a 

deposit feeding and scavenging lifestyle cannot be excluded (Briggs and Whittington, 1985). A 

reconstruction of the leanchoilid Alalcomenaeus cambricus shows spiny inward-projecting 

endopods (Figure 3.40), suggesting that they were better-suited for capturing and dissecting prey, 

then for walking (Briggs & Whittington, 1985; Briggs and Collins, 1999). 
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complex burrowing 
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from the Ediacaran-Cambrian boundary section in Fortune Head, Newfoundland, Canada: 
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4.1. Abstract 

The beginning of the Cambrian explosion is characterized by the onset of infaunalization 

and the appearance of systematic patterns of burrowing. The trace fossil Gyrolithes is common in 

the Ediacaran-Cambrian Global Stratotype Section and Point, where it shows a higher diversity 

and burrow depth than previously reported from any Cambrian spiral vertical burrows. Two 

ichnospecies are present: G. scintillus isp. nov. exhibits a small burrow radius to whorl radius 

ratio, whereas G. gyratus (Hofmann) exhibits an exceptionally large ratio that formerly led to its 

identification as an aberrant ichnospecies of Skolithos. The helical morphology of these 

Cambrian Gyrolithes is interpreted as having served two purposes: as an anchor a relatively high-

energy environment, and as an optimal shape for maximizing surface area for bacterial 

gardening. These shallow-marine gardening burrows share a similar feeding strategy as 

graphoglyptids and suggests that shallow early Cambrian sediments may have been relatively 

poor in organics and thus further support the model for onshore-offshore migration of gardening 

burrows.  
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4.2. Introduction 

The onset of penetrative bioturbation has long been considered part of the rapid animal 

diversification characteristic of the early Cambrian. In 1992 the International Commission on 

Stratigraphy (ICS) chose the first penetrative branching burrows as a reliable criterion to place 

the basal Cambrian boundary upon. This is represented by the Treptichnus pedum Ichnofossil 

Assemblage Zone (IAZ), whose lowermost limit was placed at the lowest observed occurrence 

(First Appearance Datum) of Treptichnus pedum at the time of ratification (Landing, 1994). 

Included in the T. pedum IAZ is the helical burrow Gyrolithes de Saporta, 1884 (Narbonne et al., 

1987; Landing, 1994; Laing et al., 2016). This IAZ was based upon the zonation of ichnofossils 

within the Chapel Island Formation at Fortune Head, Newfoundland. Gyrolithes isp. (Narbonne 

et al., 1987) or Gyrolithes polonicus Fedonkin, 1981 (Gehling et al., 2001; Herringshaw et al., 

2017) have previously been documented at this section. Because of its importance as a 

biostratigraphic indicator, most attention in trace fossil studies of the Ediacaran-Cambrian 

transition has focused on Treptichnus pedum (e.g., Vannier et al., 2010; Buatois et al., 2013; 

Buatois, 2017), with Gyrolithes remaining poorly explored. This is somewhat unfortunate 

because Gyrolithes is undoubtedly an archetypical representative of the infaunalization 

associated with the Cambrian explosion. In fact, this ichnotaxon can be regarded as the earliest 

vertical burrow recorded to date.  

Although Cambrian occurrences are still poorly understood, the common occurrence of 

the helical ichnofossil Gyrolithes throughout the Phanerozoic has led to much research regarding 

its potential tracemakers (Dworschak and Rodrigues, 1997), paleoenvironmental significance 

(Gernant, 1972; Netto et al., 2007), and intergradations with other ichnotaxa (Bromley and Frey, 

1974; Mayoral and Muñiz, 1995, 1998). At present, only one Gyrolithes ichnospecies has been 

identified with certainty prior to the Permian —the relatively small (2 to 15 mm wide) Cambrian 

G. polonicus, consisting of one to two tightly spaced whorls.  

The aims of this paper are to: (1) describe and analyze in detail these earliest Cambrian 

occurrences of Gyrolithes, (2) clarify their ichnotaxonomic status, and (3) discuss their 

significance with respect to the evolution of burrowing during the Cambrian explosion. 
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4.3. Geologic and stratigraphic setting  

Sedimentary units spanning the Ediacaran-Cambrian boundary on the Burin Peninsula of 

Newfoundland, Nova Scotia, and New Brunswick (Figure 4.1 A) were deposited within a 

transtensional regime, infilling a horst and graben basins (Landing, 1996, 2004). The 

conglomerates and sandstones of the Rencontre Formation were deposited first, recording 

sedimentation in a fluvial and marginal marine environment (Smith and Hiscott, 1984). The 

Rencontre Formation is overlain by the Chapel Island Formation (CIF). The Chapel Island 

Formation was defined by Hutchinson (1962) and subdivided into five informal members by 

Bengtson and Fletcher (1983) that have been widely used by subsequent workers describing the 

geology and paleontology of the Burin Peninsula.  Members 1-4 are a continuous, nearly 

kilometer-thick succession of fine siliciclastics collectively equivalent to the formally defined 

Quaco Road Member in New Brunswick (Landing, 1996) and are disconformably overlain by 

member 5 which is equivalent to the Mystery Lake Member in New Brunswick (Landing, 1996). 

These members, are interpreted to have been deposited in a wide variety of shallow-marine 

environments, ranging from peritidal to shelf (Myrow and Hiscott, 1993). The overlying 

sandstones of the Random Formation records deposition dominantly in nearshore settings 

(Hiscott, 1982; Landing et al., 1988). 

The outcrops are located within the Fortune Head Ecological Reserve (FHER), 1.5 km 

west of Fortune, Newfoundland on the Burin Peninsula (Figure 4.1) and are protected by the 

Newfoundland and Labrador government, under Parks and Natural Areas. They document 415 m 

of reasonably continuous sedimentation during the latest Ediacaran and earliest Fortunian 

(Narbonne et al., 1987). The section encompasses the last 10 m of member 1 and all of members 

2A and 2B of the Chapel Island Formation (CIF). A continuous section of member 1 was 

measured 7 km to the northeast, at Grand Bank Head, and the remaining members (members 3, 

4, and 5) of the CIF have been measured 15 km to the southwest at Little Danzig Cove. 

Combined, these localities document a 1 km thick continuous succession of the CIF.  

Member 2 is interpreted to have been deposited within a storm-dominated shallow-

marine setting at times displaying deltaic influence (Myrow, 1987; Myrow and Hiscott, 1993; 

Buatois et al., 2014). Fine-grained gravity-flow deposits occur locally (Myrow and Hiscott, 

1991). Overall, member 2 deposits are heterolithic, with massive siltstone punctuated by very 

fine- to fine-grained sandstone beds. Wave-ripple cross-lamination, hummocky cross-
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stratification, gutter and pot casts, and carbonate concretions occur in the sandstone (Myrow, 

1987). 

The siltstone units were likely firm at the time of burrow excavation, as shown by the 

lack of wall or lining in all burrows seen, the degree to which delicate imprints are preserved, 

and the preservation style of burrows (Droser et al., 2002; Jensen et al., 2005; Buatois et al., 

2014; Tarhan and Droser, 2014). Substrate consistency is likely due to stabilization of grains, 

caused by pervasive microbial mats (Buatois et al., 2014) combined with a lack of bioturbation 

and sediment mixing (Droser et al., 2002; Buatois et al., 2014).   

 

 
Figure 4.1 (A) Map of eastern Canada and the United states. The red box denotes the Burin Peninsula, shown in 

map B. (B) Map of the Burin Peninsula, Newfoundland. The blue dased box is highlighting the field locality, on the 

northwestern corner of the Peninsula, shown in map C. (C) Map of outcrop localities on the Burin Peninsula. LDC= 

Little Danzig Cove, FH= Fortune Head, GBH= Grand Bank Head. The red box denotes map D. (D) Map of the 

Ediacaran-Cambrian GSSP at the Fortune Head Ecological Reserve in Fortune, Newfoundland. Star denotes the 

location of the field holotype of G. scintillus. GSSP denotes the GSSP section. 
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4.4. Systematic ichnology 

Both ichnospecies of Gyrolithes are preserved as endichnial structures excavated in the 

siltstone and infilled with very fine-grained sand from above. The burrows may either be 

connected or unconnected to overlying sandstone beds, the latter having been described as a 

“floating preservation” style (Droser et al., 2002). They occur throughout member 2 of the CIF 

(Figure 4.2).  

Most specimens in this study are from the Global Stratotype Section and Point (GSSP) 

for the Cambrian System in the Fortune Head Ecological Reserve. Scientific permits are required 

to study the section and the collecting of fossil specimens from outcrop is forbidden. All 

specimens figured in this paper, including the holotype of Gyrolithes scintillus isp. nov., remain 

in situ in Fortune Head Ecological Reserve where they are protected by provincial law. This 

situation is similar to the regulations at the nearby Mistaken Point Ecological Reserve, which 

contains in situ field holotypes for the soft-bodied Ediacaran megafossils Hapsidophyllas 

flexibilis Bamforth and Narbonne, 2009 and Beothukis mistakensis Brasier and Antcliffe, 2009. 

 

Ichnogenus Gyrolithes de Saporta, 1884 

1849 Gyrolithen Debey. 

1884 Gyrolithes de Saporta. 

1884 Siphodendron de Saporta. 

1895 Syringodendron Fuchs. 

1927 Xenohelix Mansfield. 

1969 Conispiron Vialov. 

1994 Spirocircus Mikuláš and Pek. 

 

Type Ichnospecies  

Gyrolithes davreuxi de Saporta, 1884 (Häntzschel, 1962)  

Diagnosis 

Rarely branched, spiraled burrows; helix essentially vertical, consisting of dextral, 

sinistral, or reversing coils, which are not in contact (Uchman and Hanken, 2013, modified from 

Bromley and Frey, 1974).  
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Discussion 

Debey (1849) loosely termed vertical spiral burrows “Gyrolithen”, which were later 

assigned to Gyrolithes by de Saporta in 1884 (Bromley and Frey, 1974). Burrow can be smooth, 

ornamented, or possess a wall. Lack of clarification regarding Gyrolithes ichnotaxobases may 

have resulted in a proliferation of ichnospecies. Uchman and Hanken (2013) revised all current 

ichnospecies of Gyrolithes, and reduced the number of valid ichnospecies from 18 to 13. They 

proposed that the burrow width (d) to whorl radius (R) ratio be used to distinguish ichnospecies 

of Gyrolithes and plotted all available data on the morphometric parameters of Gyrolithes 

ichnospecies on a R:d diagram. They then synonymized any overlapping ichnospecies, given 

they had similar burrow margin features.  

This method was then further refined by De Renzi et al. (2017), who applied a 

mathematical approach to the problem. They used the burrow radius (r), whorl radius (R), whorl 

height (h), and the slope of the helix (s) to mathematically describe Gyrolithes (Figure 4.3). 

In their approach De Renzi et al. (2017) worked with circular helices (i.e., helices whose 

measured values, r, R, and h, do not change with depth). They erected three dimensionless 

parameters to describe these circular helices: 

k=r/R .......................................................................................................................................... (4.1) 

d=h/(2r) ...................................................................................................................................... (4.2) 

b=h/(2pR)=tan(s)  ..................................................................................................................... (4.3) 

These three parameters are related by d=(p/k)b. As a result, only two of these parameters are 

necessary to accurately describe the morphology of a circular helix. Herein, k and d are the 

employed parameters.  

However, many Gyrolithes are in fact conic helices, with whorl radius’ and heights that 

change with depth. This is observed for example in G. polonicus (Jensen, 1997) and G. krameri 

(Mayoral, 1986). Raup’s (1966) seminal paper on shell coiling dealt with conical helices, and he 

erected four dimensionless parameters to describe these. Since the burrow radius does not change 

within these trace fossils, Raup’s (1966) parameters which deal solely with burrow radius (r) can 

be omitted when describing Gyrolithes. In turn, Raup’s (1966) “D” (distance from axis) is 

similar to, and is herein replaced by, De Renzi et al. (2017) “K”. Therefore, the only parameter 

which must be added to accurately describe conical helices is a variation of Raup’s (1966) “T” 

(translation rate). Raup’s T assumes that both the height between whorls (h) and the whorl radius 
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(R) will change. This is true for conic helices with a constant helix angle (q). However, conic 

helices may have either a constant helix angle, or a constant pitch (height between whorls). For 

conic helices with a constant pitch (h), Raup’s T does not work. As such, this parameter has been 

modified to reflect the conical angle, as this must remain constant in all forms of conic helices. 

tanl=(R1-R2)/h1 ..................................................................................................................... (4.4) 

For circular helices, tanl is 0, and is not a useful parameter. In turn, b, while a useful 

term to describe circular helices, is not useful for conic helices. This results in three 

dimensionless parameters to describe circular helices (k, d, and b) and conic helices (k,d, and tan 

l) each. The relationship between these dimensionless parameters and the overall morphology of 

the burrow can be visualized with a computer-generated model of Gyrolithes (Figure 4.4). The 

surface of a helix with measured burrow radius (r), whorl radius (Rn), and inter-whorl height (h), 

is given by the parameterization: 

 
Where n is the number of spirals, q is the polar angle, and f is the azimuthal angle where q and f 

are between 0 and 2p. When R1=R2, where tanl=0, the parameterization describes a circular 

helix. When R1¹R2 the parameterization describes a conical helix. This surface is modified from 

a parameterization of a seashell in von Seggern (2007). Since the parameters k, d, b, and tanl are 

all ratios, they are independent of size, and instead describe the shape of the ichnofossil. As a 

result, they are pertinent ichnotaxobases (Bromley, 1990; Bertling et al., 2006), and present an 

effective method for distinguishing ichnospecies of Gyrolithes. The parameter k incorporates the 

morphometric parameters used by Uchman and Hanken (2013) to differentiate ichnospecies, and 

should continue to be used as the primary parameter to distinguish ichnospecies of Gyrolithes. 

Uchman and Hanken (2013) suggested three “lineages” of Gyrolithes ichnospecies based 

on the relationship between the burrow diameter (2r) and the whorl radius (R). The davreuxi 

“lineage” contains wide, proportional forms ratios are contained within the krameri “lineage”, 

and the variabilis “lineage” contains narrow forms. While these “lineages” are not true  



 107 

 

1 1 

Figure 4.2 A stratigraphic column of member 2 of the CIF showing G. scintillus and G. gyratus occurrences at both 

Fortune Head and Grand Bank Head outcrops. The star denotes the stratigraphic position (3.45 m above the base of 

member 2) of the G. scintillus holotype. The first appearance of G. scintillus and G. gyratus occur 0.2 m and 0.5 m 

above the base of member 2, respectively. An interval rich in both ichnospecies occurs between 3.5 m to 8 m above 

the base of member 2.
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Figure 4.3 Left: a circular helix, with measured variables (r, R, and h) and dimensionless parameters (k, d, and b) 

annotated. Right: a conical helix with constant pitch (h), with measured variables (r, R, and h) and dimensionless 

parameters (k, d, and tanl) annotated.  

evolutionary lineages (i.e., do not imply that the producers were phylogenetically related), they 

may provide information of the turning radius of the producer.  

Jensen (1997) suggested all vertical spiral burrows should be synonymized under the 

ichnogenus Gyrolithes. Uchman and Hanken (2013) argued to retain the continental ichnogenus 

Ichnogyrus Bown and Kraus (1983). As a result, they added the phrase “…coils which are not in 

contact.” to the diagnosis of the ichnogenus Gyrolithes in order to retain Ichnogyrus as a separate 

ichnogenus. Compression or other taphonomic processes may cause the coils to appear in 

contact, when it may not have been originally the case. Where possible, these taphonomic 

overprints must be carefully evaluated and filtered out of the ichnotaxonomic classification. 

Daimonhelix a palaeocastor dwelling burrow restricted to the Oligocene to Miocene (Martin and 

Bennett, 1977), shows spacing between whorls and is characterized by very tight coils (k @ 1). 

However, additional architectural elements, such as an ascending or descending tunnels and a 

terminal chamber (Meyer, 1999), differentiates Daimonhelix from Gyrolithes .  

In rare cases, vertical helical burrows have also been classified as Skolithos Haldeman, 

1840 (Hofmann, 1979; Volohonsky et al., 2008), although some have suggested these may be 

better suited in Gyrolithes (Kim et al., 2005). With coiling absent from diagnoses of Skolithos 

(Alpert, 1974), it is not advisable to retain any helical burrows under this ichnogenus and doing 

so would only further compound taxonomic issues. It is herein suggested that all helical 

Skolithos be reassigned to Gyrolithes if d > 1 or Ichnogyrus if d £ 1.  
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Figure 4.4 Computer-generated Gyrolithes, showing the morphological effects of changes in k, d, and tanl. b is 

related to k and d by the equation b=d(k/p).
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Gyrolithes scintillus new ichnospecies 
Figures 4.5 A-C, E 

 

? 1986 Gyrolithes polonicus Pacześna, 1986, plate III, fig. 2, fig. 3. 

? 1996 Gyrolithes polonicus Pacześna, 1996, plate XII, fig. 1A, fig. 2. 

1999 Gyrolithes isp. Jensen and Mens, 1999, p. 190, fig. 2, fig. 3. 

? 2013 Gyrolithes Högström et al., 2013, p. 102, fig. 5H. 

2014 Gyrolithes isp. Tarhan and Droser, 2014, p. 318. fig. 9B. 

2016 Gyrolithes isp. Mángano and Buatois, 2016, p. 90, fig. 3.9C. 

2017 Gyrolithes polonicus: Herringshaw et al., p. 375, fig. 3B. 

Etymology 

From the Latin word scintillusm (“spark”). An extension of the metaphor of the Cambrian 

explosion.  

Material and holotype 

24 specimens were photographed and measured in the field, and numerous field identifications 

were made. Field holotype is located in the Fortune Head Ecological Reserve (denoted by a star 

in Figure 4.1), 3.45 m above the base of member 2, and can be seen in Figure 4.5A.  

Type horizon and location. —  Siltstones and sandstones near the basal Cambrian Global 

Stratotype Section and Point at Fortune Head Newfoundland, 3.45 m above the base of member 

2 of the Chapel Island Formation.  

Diagnosis 

Unlined, smooth, wide-form, variably coiled Gyrolithes. Low burrow radius to whorl radius ratio 

i.e., wide-form (k=0.1-0.4; avg. 0.3), variable height between whorls to burrow width ratio i.e., 

variably coiled (d=1.5-5.83; avg. 3.58), and low height between whorls to whorl circumference 

ratio i.e., shallow whorl incline (b=0.2-0.6; avg. 0.3). 

Description 

Unbranched, passively infilled, circular helical burrows, oriented vertical to oblique to the 

bedding plane, consisting of coils which are not in contact. Burrows are circular in cross-section, 

with radii (r) ranging from 0.25-1 mm, with an average of 0.51 mm. Whorl radius (R) was 

measured from the middle of the burrow, and is 0.70-4.65 mm with an average of 2.10 mm. 

Height between whorls (h) ranged from 1.4-8 mm, with an average height of 3.69 mm.  
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Figure 4.5 

Fortunian (earliest Cambrian) Gyrolithes at the Ediacaran-Cambrian GSSP. All photographs are taken perpendicular 

to bedding. All scale bars are 1 cm long. (A) Field holotype of Gyrolithes scintillus. Location of the specimen is 

denoted in Figure 4.1. (B) Oblique specimen of Gyrolithes scintillus, forming a compound burrow with 

Palaeophycus isp. (C) A smaller Gyrolithes scintillus, maintaining similar k values. (D) Gyrolithes gyratus. (E) 

Gyrolithes scintillus, with 7 whorls present, penetrating 2 cm into the sediment. (F) Four specimens of Gyrolithes 

gyratus. 



 112 

 

Figure 4.5 Caption on previous page. 
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Complete specimens show up to 7 whorls, with an average of 3 whorls. This average is likely 

biased towards smaller values, as several top whorls were possibly truncated by erosion. Two 

specimens (Figure 4.5 B) form compound burrows with Palaeophycus, extending from the 

bottommost helix. Burrow depth is 5-27.9 mm, with an average burrow depth of 10.44 mm. 

Assuming an originally circular burrow shape, the difference between burrow radius on the y and 

x axes can be equated to sedimentary compression, and was found to be 30%. 

Remarks 

Although recent workers have included these specimens in G. polonicus (e.g., Herringshaw et 

al., 2017), Gyrolithes scintillus has a higher number of whorls, and penetrates much deeper into 

the substrate than G. polonicus. Moreover, G. polonicus has k  values between 0.39 and 0.50, 

while G. scintillus averages at 0.26 (with a range of 0.11-0.40). This places G. polonicus within 

group 2, and G. scintillus within group 1. In multiple specimens where more than one whorl can 

be found with G. polonicus, the second whorl has a decreased whorl radius (e.g., Jensen, 1997 

fig. 35 E), suggesting that it forms a conic helix shape. In contrast, the whorls in G. scintillus 

maintain a consistent radius, forming a circular helix shape. Additionally, Gyrolithes polonicus 

only has 2 to 3 whorls, whereas G. scintillus can have up to 9 whorls. Furthermore, G. polonicus 

has documented striations (Jensen, 1997; Uchman and Hanken, 2013). Despite excavation in a 

firmground, with exquisite preservation of very fine details (Droser et al., 2002; Buatois et al., 

2014), G. scintillus does not show striations. In turn, Gyrolithes lorcaensis (Uchman and 

Hanken, 2013) also has much larger !  values (0.38-0.50) than G. scintillus.  

Many Cambrian Gyrolithes have been classified only at ichnogeneric level as Gyrolithes 

isp. (Liñán, 1984; Jensen and Grant, 1998; Jensen and Mens, 1999; Högström et al., 2013). Many 

of these specimens share morphological traits with G. scintillus and may be better reassigned to 

this ichnospecies (e.g, Jensen and Mens, 1999; Högström et al., 2013). Some Gyrolithes 

previously classified as G. polonicus (Pacześna, 1986, 1996) may be better classified as G. 

scintillus. We are unable to substantiate the G. polonicus documented at the GSSP by Gehling et 

al. (2001), based on the available photograph and the fact that the specimen has been apparently 

removed by coastal erosion. 
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Gyrolithes gyratus (Hofmann, 1979) 

Figure 4.5 (D, F), 4.6 (A), 4.8 

 

*1979 Skolithos gyratus isp. nov.: Hofmann, 1979, pl. 15, A-E. 

1987 Skolithos annulatus: Narbonne et al., p. 1287, fig. 6H. 

2017 Skolithos annulatus: Herringshaw et al., p. 375, fig. 3A. 

Material 

Seven specimens photographed and measured in the field, plus numerous field identifications.  

Location: Siltstones and sandstones of member 2 of the Chapel Island Formation, on the Burin 

Peninsula, Newfoundland. A G. gyratus-rich horizon is situated from 3-10 m above the base of 

member 2 at Fortune Head.  

Diagnosis 

Unlined, smooth, narrow-form, tightly coiled Gyrolithes. High burrow radius to whorl radius 

ratio i.e., narrow-form (k=0.5-1; avg. 0.8), low height between whorls to burrow width ratio i.e., 

tightly coiled (d=1.3-2.5; avg. 1.6), and low height between whorls to whorl circumference ratio 

i.e., shallow whorl incline (b=0.3-0.4; avg. 0.4). 

Description 

Specimens are unbranched, passively infilled, circular helical burrows. They are oriented vertical 

to the bedding plane, and consist of coils which are variably in contact. Burrows are circular in 

cross-section, with radii (r) ranging from 0.2-0.38 mm, with an average radius of 0.27 mm. 

Whorl radius (R) is 0.25-0.4 mm with an average length of 0.34. Height between whorls (h) 

ranges between 0.5-1 mm, with an average height of 0.82 mm. Burrows have between 5 and 15 

whorls, with an average of 10 whorls. Overall burrow depth ranges between 4 and 14.9 mm, with 

an average depth of 8.7 mm. Burrow (r) radius was measured along both the x and y axis when 

possible. Assuming an original circular cross-section, the difference between the y-axis and x-

axis burrow radius can be attributed to compression, and an average compression ratio of 33% 

was calculated. 

Remarks 

Kim et al. (2005) reassigned Skolithos gyratus (Hofmann) to Gyrolithes, a decision endorsed 

here, since spiraling is absent from the definition of Skolithos. Vertical burrows at Fortune Head 

have previously been included in Skolithos annulatus (Howell) (Narbonne et al., 1987; Gehling 
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et al., 2001; Babcock et al., 2014; Herringshaw et al., 2017), but Mángano and Buatois (2016) 

have suggested that they may more properly belong in Gyrolithes. Our detailed study supports 

this, and it is herein proposed that they be reclassified to Gyrolithes as G. gyratus. Gyrolithes 

gyratus is unlike other Gyrolithes with its remarkable small size, high number of whorls, and 

large k value. The helical nature of G. gyratus differentiates it from Skolithos. The variable 

presence of spacing between whorls (d > 1) distinguishes G. gyratus from Ichnogyrus, which 

consistently lacks spacing between whorls (d £ 1). Gyrolithes gyratus is distinguished from S. 

helicoidalis (Volohonsky) by their d values, as S. helicoidalis shows consistent spacing between 

whorls (d > 1). 

In cross-section, G. gyratus appears as several oval-shaped segments nested one upon the 

other. The segments can be in contact with one another or separated (Figure 4.6). Three possible 

burrow morphologies that may account for this expression are envisioned: (1) a vertical burrow 

with a series of successive horizontal probes (A in Figure 4.6), (2) a compressed annulated 

vertical burrow, such as Skolithos annulatus (B in Figure 4.6), and (3) a small helical burrow (C 

in Figure 4.6). In the first case (A- a vertical burrow with horizontal probes), it would be 

expected that multiple other expressions of this burrow would be observed given its complex 

three-dimensional structure and the sheer volume of burrows observed. The absence of these 

expressions makes this explanation unlikely.  

Previous authors considered these segments as the annulations of Skolithos annulatus (B 

in Figure 4.6). The annulations in Skolithos annulatus are horizontal “ring-like annulations” with 

minimal to absent expansion between them (Alpert, 1974) and in the holotype these annulations 

are irregularly spaced (Howell, 1957, p. 21, fig. 1). This is in stark contrast with the segments in 

Gyrolithes gyratus, which all have similar thicknesses and are evenly spaced. Given that these 

beds have been compressed by roughly 30%, it is possible to re-create what a hypothetical 

Skolithos annulatus might look like after compression at Fortune Head (Figure 4.7). Each 

segment in the compressed Skolithos annulatus is only very slightly more convex after 

compression. The resulting burrow would not show separated segments in cross-section, 

eliminating compression as evidence for the spacing between the segments in G. gyratus along 

with their high convexity. 

The nested segments all maintain an internally consistent dip (Figure 4.8). One possible 

explanation for this could be that S. annulatus (B in Figure 4.6) buckled during compression, 
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preferentially bending upon the annulations (as an analogy, envision a corrugated tube being 

compressed). However, it is statistically unlikely that every segment would buckle in the same 

direction if force was applied from above. Directional stress may perhaps account for this 

phenomenon. However, the observation of two adjacent burrows with both dextrogyre (dextral) 

and levogyre (sinistral) patterns refutes this hypothesis (Figure 4.8). The observed morphology 

is, however, consistent with the compression of a helical burrow. Each whorl would originally be 

dipping in a similar direction within the same burrow, but not necessarily between two different 

burrows.  
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Figure 4.7. Illustration of the effect of local compression in the Chapel Island Formation on a hypothetical Skolithos 

annulatus modelled after the holotype shown in Howell (1957, p. 21, fig. 1).    

Figure 4.6.  Left box: Field photo of G. gyratus [Specimen 18] with white line depicting burrow outline, viewed 

in cross-section. To the right is an idealized illustration of a cross section of G. gyratus, based upon field 

observations. Right box: Possible three-dimensional morphologies (A to C) which could result in the cross-

section seen in the box to the left . (A) A vertical shaft with horizontal probes (B) A Skolithos annulatus, with 

directional stress compressing the burrow and inclining the annulations (C) The preferred interpretation as a 

small, tightly coiled Gyrolithes. See text for explanation.  
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Figure 4.8. The dips of each whorl within three specimens of G. gyratus.From left to right: A field photographs of 

G. gyratus. Scale bar =1 mm. Sketches of the field photographs of G. gyratus, with dip ticks for each whorl 

superimposed. Dips were calculated from an imaginary horizontal plane striking right. A rose diagram, illustrating 

the strong trend seen in the dips of G. gyratus. 
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Table 4.1 Measured values (r, R, and h) and calculated parameters (k,d, and b) for the specimens of G. gyratus and 

G. scintillus used in this study. Specimen 2, outlined by a darker green infill, denotes the type specimen of G. 

scintillus. FH= Fortune Head, GBH= Grand Bank Head. Height measurements start two meters below the base of 

member 2, and match the stratigraphic column seen in Fig. 4.2. 

1 

Sample Site Height	(m) r R h K	(r/R) δ	(h/2*r) β	(h/(2*pi*R) Depth #	of	whorls

18 FH 2.3 0.38 0.38 1 1 1.33 0.42 12 14
19b FH 2.3 0.38 0.38 1 4.5 5
19d FH 2.3 0.2 0.25 0.50 0.8 1.25 0.32 5 8
19e FH 2.3 0.25 0.25 1 4
27b FH 2.3 0.2 0.4 1.00 0.50 2.50 0.40 14.9 14
27c FH 2.3 0.25 0.35 0.90 0.71 1.80 0.41 5.8 7
37 FH 7.2 0.25 0.38 0.7 0.67 1.33 0.30 14.8 15

0.27 0.34 0.82 0.81 1.64 0.37 8.71 10.50

2 FH 4.2 1 4.4 5.00 0.23 2.50 0.18 17 4
22a FH 4.7 0.5 1.25 0.40 1
22b FH 4.7 0.5 1.3 2.50 0.38 2.00 0.31 9.25 3
22c FH 4.7 0.4 2 2.60 0.20 3.25 0.21 6.5 2
23 FH 5.3 0.5 1.3 4.6 0.38 4.6 0.56 5.5 2
15a FH 5.3? 1 3 3.00 0.33 1.50 0.16 8.75 3
15b FH 5.3? 0.45 2.9 5.25 0.16 5.83 0.29 10 3
4 FH 8.03 0.2 0.7 1.4 0.29 3.5 0.32 5.5 5
5 FH 8.05 0.4 1.35 2 0.30 2.5 0.24 5.1 3
3 FH 14.8 1 3 3.60 0.33 1.80 0.19 21 5
1a FH 15 0.4 1.5 2.20 0.27 2.75 0.23 14 3
1b FH 15 0.4 1.5 3.00 0.27 3.75 0.32
31 FH 15.1 0.5 2.5 4.2 0.20 4.20 0.27 27.90 7.00
7a FH 42 0.25 1 0.25 5.5
7b FH 42 0.25 1.25 0.20 5
7c FH 42 0.25 1.6 0.16 7.75 3
6 FH 51.7 0.6 4.65 0.13 1
11 FH 52 0.5 2 3.00 0.25 3.00 0.24 7.5 3
26 FH unknown 0.75 2.25 8.00 0.33 5.33 0.57 15 2
9 FH unknown 0.5 1.9 4.10 0.26 4.1 0.34 14 3
10 FH unknown 0.35 1.4 4 0.25 5.71 0.45
12 FH unknown 0.3 2.75 3.50 0.11 5.83 0.20 10.5 3
13 FH unknown 0.75 2.25 5 0.33 3.33 0.35 6.75 2
25 GBH unknown 0.6 2.65 3.10 0.23 2.58 0.19 6.25 3

0.51 2.10 3.69 0.26 3.58 0.30 10.44 3.05

Gyrolithes	gyratus

Average:

Gyrolithes	scintillus

Average:

Gyrolithes 	specimens	on	the	Burin	Peninsula,	Newfoundland,	Canada.
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4.5. Discussion 

4.5.1. Morphometric parameters of Gyrolithes 

While the parameters k, d, b, and "#$l are valid ichnotaxobases for distinguishing and 

describing Gyrolithes ichnospecies, further refinement to this method is needed. First, there is 

ambiguity with respect to where the measurement of the whorl radius (R) ends. Some workers 

measure the radius from the center of the whorl to the inside of the burrow wall, some to the 

middle, and some to the end. This in turn affects the calculated parameters. It is suggested that all 

future whorl radius measurements are taken to the centre of the burrow (see Figure 4.3), as 

defined by Uchman and Hanken (2013) as well as De Renzi et al. (2017). Due to this the whorl 

radius (R) will always be greater than or equal to the burrow radius (r) and the range of all 

possible k values is between 0 and 1.00. 

Additionally, in order for this classification to function properly, it is imperative that 

future observations include burrow radius (r), whorl radius (R), and whorl height (h), for every 

specimen. Once this has been done, the dimensionless parameters can be calculated and averaged 

out. When the relationship between values for the burrow radius (r), whorl radius (R), and whorl 

height (h) are unknown, the values for k, d, b, and tanl can only be inferred.  

Unfortunately, previous studies typically expressed morphometric parameters as a range. 

In this study, it was assumed that the minimum value for burrow radius was found in the 

specimen with the minimum value for whorl radius, and likewise for maximum values. Possible 

k values for all retained Gyrolithes ichnospecies were calculated following this assumption, and 

their ranges plotted (Figure 4.9) 

Two artefacts of data collection can be seen, likely because k values were inferred from 

given burrow and whorl radii ranges and not calculated on a per-specimen basis. First, there are 

two ichnospecies, G. okinawensis Myint and Noda, 2000 and G. variabilis Mayoral and Muñiz, 

1995, which have k values greater than one, and as such exceed the range of possible k values. 

Second, the ranges of these same two ichnospecies are too wide to be properly usable as 

distinguishing features.  

Similar to Uchman and Hanken’s (2013) “lineages”, the range of possible k values can be 

easily divided into three groups (Figure 4.9). However, the ichnospecies included in these groups 

are in some cases drastically different from the Uchman and Hanken (2013) “lineages”. This is



 

 

 

 
Figure 4.9 The ranges of !  values for all Gyrolithes ichnospecies. Smooth Gyrolithes are grouped into three groups recognized by Uchman and Hanken (2013). 

The first group contains ichnospecies which are loosely coiled, in theory corresponding with the davreuxi “lineage”. The second group contains ichnospecies 

which are moderately coiled, in theory corresponding with the krameri “lineage”. The third group are those with tight coils, in theory corresponding with the 

variabilis “lineage”. 
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especially evident in the groups with small k values, group 1 herein and the davreuxi “lineage” 

in Uchman and Hanken (2013). The ichnospecies included in the davreuxi “lineage” of Uchman 

and Hanken (2013) maintain a similar burrow radius (roughly 3.5-7.5 mm) with a wide variety of 

whorl radius’ (roughly 11-65 mm). This in turn, gives them a wide variety of possible k values, 

which do not necessarily coincide with an exceptionally small k value. As a result, the davreuxi 

“lineage” is rather a “lineage” of similar burrow radii, rather than a grouping of similar k values 

. This underscores the need for future work to include measurements of discrete values for k, d, 

b, and tanl per specimen. As a result, the groups proposed herein may change with more 

detailed data collection.  

Group 1 is proposed to encompass ichnospecies with k values between 0 and 0.33, and 

Group 2 is proposed to include any ichnospecies with k values between than 0.33 and 0.66. 

Group 3 is proposed to encompass ichnospecies with k values between 0.66 and 1.  

These lineages co-occurred during the early Cambrian, with G. scintillus in group 1, G. 

polonicus in group 2, and G. gyratus in group 3, and are not herein suggested as evolutionary 

lineages. Rather, they are suggested as an additional means of distinguishing ichnospecies, and 

may prove useful when determining possible tracemakers or ethologies of Gyrolithes in the 

future.     

There are cases where the range of k values for an ichnospecies spans through the field of 

two groups. A producer may easily create a whorl larger than its turning radius. However, it may 

never create a whorl smaller than its turning radius. Therefore, the larger k value better 

represents the turning radius of the producer, and the ichnospecies should be assigned to the 

lineage with the larger k value.   

 

4.5.2. Cambrian occurrences of Gyrolithes 

The ichnogenus Gyrolithes is widespread across the lower Cambrian (Table 4.2), and may serve 

as a valuable tool to aid in the delineation of the Ediacaran-Cambrian boundary. While some 

Cambrian occurrences of Gyrolithes have been attributed to G. polonicus (Pacześna, 1986, 1996; 

Jensen, 1997; Systra and Jensen, 2006), many authors have avoided ichnospecific classification 

(Liñán, 1984; Jensen and Grant, 1998; Jensen and Mens, 1999; Högström et al., 2013). A re-

examination of the r:w ratio of Cambrian Gyrolithes yields possible additional specimens of G. 
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scintillus (Jensen and Mens, 1999; Högström et al., 2013). Pickerill and Peel (1990) documented 

three poorly preserved specimens of G. saxonicus from Greenland. However, these are in need of 

re-examination. Here, they are tentatively classified as G. polonicus based on the incomplete 

whorl and presence of striations. Jensen (1997) suggested that Gyrolithes. isp found from 

southwestern Spain (Liñán, 1984) is better classified as G. polonicus, a decision endorsed here 

on the basis of the specimen’s k value  

 

4.5.3. Tracemaker 

The majority of Permian to Recent Gyrolithes were likely produced by decapod crustaceans 

(Uchman and Hanken, 2013), an interpretation supported by their common intergradation with 

galleries typically produced by decapod crustaceans, such as Thalassinoides, Ophiomorpha, and 

Spongeliomorpha (Bromley and Frey, 1974). Cambrian Gyrolithes considerably predate the 

evolution of decapod crustaceans, which first appeared in the Late Devonian (Schram, 1981) but 

became abundant only as a result of the Mesozoic Marine Revolution (Buatois et al., 2016). 

Rather, they were likely produced by a coelomate worm-like organism. One possibility is a 

polychaete worm tracemaker (Powell, 1977), an interpretation that probably applies to their 

horizontal equivalents Helicodromites and Helicolithus (Gingras et al., 2008; Knaust and 

Bromley, 2013). Horizontal to oblique corkscrew burrows exhibiting small width (0.5-1.1 cm) 

and whorl radius (0.9-2.0 cm) are produced by the capitellid polychaete Notomastus lobatus in 

modern shallow-marine sediments (Powell, 1977). Alternatively, Van der Horst (1934, 1940) 

described helical burrows formed by the enteropneust Saccoglossus inhacensis in a tidal flat on 

the island of Inhaca, Mozambique. These helical burrows are mostly vertical to sub-vertical, but 

may in some cases create horizontal helices (Van der Horst 1940). They reach a maximum depth 

of 7cm with burrow diameters between 0.1-0.2 cm, and the specimens figured by Van der Horst 

(1934) have k values between 0.40 and 0.44. Due to their overall small size, Powell (1977) 

dismissed enteropneusts as the tracemaker of Gyrolithes. However, G. scintillus and G. gyratus 

are the smallest Gyrolithes discovered to date, and are similar in size to the helical burrows of 

Saccoglossus inhacensis. The oldest enteropneust fossils likely come from the Burgess Shale 

(508 Ma) (Conway Morris, 1979; Boulter, 2003; Caron et al. 2013), although due to their low 

preservation potential, an earlier evolutionary origin of enteropneusts can not be dismissed 

(Maletz, 2014). Additionally, recent estimates (Hedges and Kumar, 2009, p. 71) placed the  
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Table 4.2 Summary of recorded Cambrian Gyrolithes occurrences. 

Period Stratigraphy Location Ichnospecies Reference 

Stage 4 
Mickwitzia 
Sandstone Member, 
File Haidar Fm. 

Västergötland, 
South Central 
Sweden 

G. polonicus Jensen (1997) 

Stage 3 

Bastion Fm. northeast Greenland 
? G. polonicus (G. 
saxonicus in 
original study) 

Cowie and Spencer 
(1970); Pickerill and Peel 
(1990) 

Kaplonosy Fm. 
Southern Lublin 
region southeastern 
Poland 

G. scintillus (G. 
polonicusin 
original study) 

Pacześna (1996) 

Radzyń Fm. 
Southern Lublin 
region southeaster 
Poland 

G. scintillus (G. 
polonicus in 
original study) 

Pacześna (1996) 

Member 3, 
Arumbera Fm. 

Amadeus Basin, 
Central Australia. 

? G. polonicus (G. 
polonicus in 
original study) 

Walter et al. (1989); Baghiyan-
Yazd (1998) 

Bastion Fm. northeast Greenland 
? G. polonicus (G. 
saxonicus in 
original study) 

Cowie and Spencer 
(1970); Pickerill and Peel 
(1990) 

Stage 2 

Kaplonosy Fm. 
Southern Lublin 
region southeastern 
Poland 

G. scintillus (G. 
polonicusin 
original study) 

Pacześna (1996) 

Radzyń Fm. 
Southern Lublin 
region southeaster 
Poland 

G. scintillus (G. 
polonicusin 
original study) 

Pacześna (1996) 

Taebla Member, 
Voosi Fm. 

eastern Latvia and 
western Estonia 

G. scintillus 
(G. isp. in original 
study) 

Jensen and Mens 
(1999); Jensen and Mens (2001) 

Lower Breidvika and 
Manndrapselva 
Members, Vestertana 
Group 

northeastern 
Finnmark, northern 
Norway 

G. scintillus 
(G. isp. in original 
study) 

Banks (1970); Högström et al. 
(2013); Jensen et al. (2017) 

Fortunian 

Lower interval, 
Dividalen Group 

East of Kilpisjärvi, 
Northern Finland G. polonicus Systra and Jensen (2006) 

Lower Siltstone 
Member, Torneträsk 
Formation, Dividalen 
Group 

Torneträsk area, 
northern Sweden G. isp. Jensen and Grant (1998) 

Upper interval, 
Maiva Member, 
Såvvovare Fm. 

Laisvall-Storuman 
area, Northern 
Sweden 

G. isp. Moczydłowska et al. (2001) 

Mazowsze Fm. 
Southern Lublin 
region, southeastern 
Poland 

G. scintillus (G. 
polonicusin 
original study) 

Pacześna (1985, 1986, 1996) 

Chapel Island Fm. 
Burin Peninsula, 
Newfoundland, 
Canada. 

G. scintillus and G. 
gyratus 

Narbonne et al. 
(1987), Tarhan and Droser 
(2014), Mángano and Buatois 
(2016), Herringshaw et al. 
(2017). 

**Bolded sources contain a photograph of Gyrolithes. These photographs were used to reassess the ichnospecific 

determination of the specimens. 
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divergence of polychaetes at 581 Ma, consistent with the Early Cambrian age of the Fortune 

Head Gyrolithes. 

In short, available information collectively implies that a worm-like organism, possibly a 

polychaete, enteropneust, or some other unknown affinity, was the most likely producer of the 

Fortune Head Gyrolithes.  

 

4.5.4. Ethology 

Gyrolithes has been assigned various ethologies, including feeding, dwelling, and 

farming burrows. In both decapod crustacean- and polychaete-produced burrows it has been 

suggested that Gyrolithes acted as a feeding burrow (Fodinichnia), spiraling to profit from 

nutrient rich localized infaunal areas (Netto et al., 2007; Gingras et al., 2008). However, this 

ethology is unlikely for the Fortune Head Gyrolithes — they show no evidence of active infill or 

fecal pellets.  

The most common ethology assigned to Gyrolithes is that of stable structures that served 

as domiciles to protect their inhabitants (Domichnia). The Fortune Head Gyrolithes, as open 

burrows passively infilled from above, make good candidates for dwelling burrows (Bromley, 

1990; Buatois and Mángano, 2011). It has also been suggested that both Gyrolithes and 

Helicodromites burrows functioned as bacterial farming structures (Agrichnia), spiraling to 

increase the sediment to burrow margin ratio (Felder, 2001; Netto et al., 2007; Poschmann, 

2015). The Fortune Head Gyrolithes also share many features with typical agrichnial burrows, as 

they were open and later cast by the overlying sand layer (Seilacher, 1977; Bromley, 1990; 

Buatois and Mángano, 2011). In order to determine if the Fortune Head Gyrolithes are dwelling 

or farming burrows, the behaviour of the organism (the reason it spiraled) must be investigated. 

Most post-Permian Gyrolithes burrows occur in marginal marine environments (Gernant, 

1972; Powell, 1977; Beynon et al., 1988; Buatois et al., 2005; Netto et al., 2007). This has led 

many authors to suggest that the spiral morphology of Gyrolithes helps in mitigating salinity 

fluctuations (Beynon and Pemberton, 1992; Netto et al., 2007). While deep infaunalization has 

been shown to protect the tracemaker from salinity fluctuations (Rhoads, 1975), it is unclear why 

a helical morphology would provide an advantage. In fact, spiraling in post-Permian Gyrolithes 

may simply be an artefact of a decapod crustacean producer, serving as a ramp to aid the trace-

maker to crawl up and down (Felder, 2001). In contrast, Cambrian Gyrolithes have been reported 
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from normal marine settings and in Fortune Head this ichnotaxon occurs within a wave-

dominated shelf. Therefore, it is unlikely that the Fortune Head Gyrolithes spirals are a result of 

salinity fluctuations.  

It has also been proposed that the helical morphology is a response to high-population 

densities (Gingras et al., 2008). This is also an unlikely cause for the Fortune Head Gyrolithes, 

given that the burrows are relatively sparse.  

If interpreted as a dwelling burrow, the helical morphology could serve as an in-sediment 

anchor (Gingras et al., 2008), protecting the burrower from fast currents as well as predation 

(Felder, 2001). This is consistent with the Fortune Head Gyrolithes, which occur in sediments 

with abundant erosional and wave-generated structures (Myrow, 1992).  

Farming burrows imply that the organism inhabiting the structure used it at the same time 

to cultivate bacteria (Bromley, 1990). As a farming burrow, the spiral morphology in Gyrolithes 

could serve to maximize the burrow margin area (Felder, 2001; Poschmann, 2015), providing a 

sharp redox gradient across the burrow boundary, facilitating bacterial gardening. While there is 

discussion about the amount of dissolved oxygen in Cambrian oceans (Sperling et al., 2013) it is 

generally accepted that the sediments were strongly oxygen-stratified. Matgrounds most likely 

effectively sealed the sediment-water interface and in turn created highly reducing sediments 

(Seilacher, 1999; Callow and Brasier, 2009; Boyle et al., 2014; Mángano and Buatois, 2014). 

Open burrows connected to the sediment water interface would create ideal redox conditions in 

their (Aller and Aller, 1998), to attract bacteria which the Gyrolithes organism could then use as 

a source of food (Papaspyrou et al., 2006). This is not unusual behaviour in polychaetes; 

neoichnological work shows bacterial farming within the burrow of Arenicola marina 

(Grossmann and Reichardt, 1991; Kristensen, 2005). In turn, enteropneusts filter out microbes 

from consumed sediment (Dobbs and Guckert, 1988). 

Therefore, based on available evidence the most plausible scenario for the Fortune Head 

Gyrolithes is that they functioned as a protective, permanent domicile with the main purpose of 

farming bacteria. The helical morphology would serve a double purpose: as a sediment holdfast 

in a high-energy environment, and as an optimal shape for maximizing surface area for bacterial 

gardening.  
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4.5.5. Onshore-offshore trends 
The interpretation of Cambrian Gyrolithes from Fortune Head as dwelling structures 

produced to cultivate bacteria is consistent with the onshore-offshore model. According to this 

model, the fossil record exhibits a pattern of onshore origination of evolutionary innovations and 

their later expansion to deeper water (e.g., Jablonski et al., 1983; Sepkoski and Sheehan, 1983; 

Sepkoski and Miller, 1985). This pattern has been recognized in the trace-fossil record as well 

(Seilacher, 1986; Bottjer et al., 1988; Droser and Bottjer, 1989; Buatois and Mángano, 2016). No 

onshore-offshore trend has been identified for the ichnogenus Gyrolithes, which is essentially a 

shallow-marine ichnotaxon. However, graphoglyptids, the archetypal trace fossils displaying 

farming strategies, occurred in shallow water in the early Cambrian, but later migrated to the 

deep sea (Crimes and Anderson, 1985; Jensen and Mens, 1999). Because farming strategies are 

typical of food-depleted settings, it has been suggested that their onshore-offshore pattern may 

reflect limited food supply in early Cambrian shallow-marine ecosystems (Buatois and Mángano, 

2003). The farming strategy of the Gyrolithes tracemaker may be interpreted within this 

framework. Interestingly, at least in one of these Cambrian occurrences Gyrolithes is associated 

with the graphoglyptid Dendroraphe (Jensen and Mens, 1999). 

 

4.5.6. Gyrolithes and the Cambrian explosion 

Because the base of the Treptichnus pedum Zone is used to delineate the base of the 

Cambrian Period, most attention in the Ediacaran-Cambrian ichnologic literature has focused on 

this ichnotaxon (e.g., Vannier et al., 2010; Buatois et al., 2013; Buatois, 2017). The significance 

of T. pedum relies on the fact that this ichnospecies represents the onset of complex and 

systematic burrowing patterns allowing the exploitation of the infaunal ecospace. Whereas 

Ediacaran ichnofaunas are overwhelmingly dominated by simple and non-specialized, superficial 

or very shallow-tier grazing trails, the onset of the Cambrian is characterized by the appearance 

of more sophisticated burrows recording a diverse set of producers that show the ability of the 

benthos to penetrate into the sediment (e.g., Seilacher, 1999; Jensen, 2003; Vannier et al., 2010; 

Buatois et al., 2014; Buatois and Mángano, 2016; Mángano and Buatois, 2014, 2016). 

In this regard, Gyrolithes scintillus and G. gyratus are typical representatives of the 

Cambrian explosion. In fact, whereas T. pedum is a horizontal burrow with obliquely oriented 

branches, the Fortunian ichnospecies of Gyrolithes are true vertical burrows. Given their 
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stratigraphic occurrence at and immediately above the Ediacaran-Cambrian boundary, they 

represent the earliest vertical burrows recorded to date.  

 

4.6. Conclusions  
 Cambrian Gyrolithes have previously been regarded as shallow burrows restricted to 

one ichnospecies of dwelling burrow, Gyrolithes polonicus. Research at the Ediacaran-Cambrian 

GSSP at Fortune Head shows two ichnospecies of Gyrolithes: G. scintillus n. isp and G. gyratus 

(Hofmann). These ichnospecies illustrate a more diverse assemblage of Cambrian Gyrolithes, 

which penetrate deeper into the substrate and may represent a wider variety of ethologies than 

previously thought. These ichnospecies occur concurrent with the appearance of T. pedum in the 

section, and represent the first true vertical burrowing (up to 2.8 cm in depth) in the very earliest 

Fortunian. This study underscores the need for a detailed re-examination of all other T. pedum 

IAZ components, in order to evaluate the factors promoting infaunalization during the Cambrian 

explosion. 

(1) The ichnofossil previously described as Gyrolithes. isp or G. polonicus at the GSSP has 

been reassigned to the new ichnospecies G. scintillus. This encompasses passively 

infilled, vertical helical burrows, with an average k (r/R) value of 0.26.   

(2) The ichnofossil previously described as Skolithos annulatus at the GSSP is reassigned to 

Gyrolithes gyratus as it shows a distinct helical morphology.  

(3) The revised morphometric parameters of Uchman and Hanken (2013) and De Renzi et al. 

(2017) are sufficiently robust to include all vertical spiral burrows. Uchman and 

Hanken’s (2013) “lineages” are slightly revised as groups, and assigned specific k value 

ranges: group 1 for those Gyrolithes where 0 < k < 0.33; group 2 for those Gyrolithes 

where 0.33 < k < 0.66; and group 3 for those Gyrolithes where 0.66 < k < 1.  

(4) In addition to serving as a protective domicile, burrows may have provided a strong 

redox gradient, facilitating bacterial gardening. This suggests that Cambrian shallow 

marine settings may have been relatively nutrient deficient, which aligns with the 

onshore-offshore model proposed for graphoglyptids (agrichnial burrows).  

(5) Gyrolithes scintillus and G. gyratus represent some of the earliest true vertical burrows in 

Earth evolution. As constituents of the T. pedum IAZ, G. scintillus and G. gyratus aid in 
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documenting the onset of the Cambrian explosion. They may serve as useful 

biostratigraphic guides for the base of the Cambrian. 

 

4.7. Acknowledgments 
We thank Richard Thomas for facilitating our work in the Fortune Head Ecological Reserve 

under a Scientific Research Permit from Parks and Natural Areas, Newfoundland and Labrador. 

Robert MacNaughton provided helpful discussion on the possible three-dimensional 

morphologies of G. gyratus. Modelling of Gyrolithes was possible thanks to Zoë Vestrum’s 

expertise and kind assistance. Sören Jensen, Fernando Muñiz, Anna Żylińska and one 

anonymous reviewer provided very useful and constructive reviews. Funding: This work was 

supported by Natural Sciences and Engineering Research Council (NSERC) Discovery Grants to 

G.M.N., L.A.B., and M.G.M., (05561-2014, 311726-13, and 311727-15 respectively) a Queen’s 

University Research Chair to G.M.N., and a 2016 Student Research Grant from the Society for 

Sedimentary Geology and a 2016 Research Grant from the Geological Society of America to 

B.A.L.   

  



 130 

  

 

CHAPTER 5 

5. Conclusions 
A redefinition of the Treptichnus pedum Ichnofossil Assemblage Zone in the Chapel 

Island Formation was achieved through a thorough systematic study of observed ichnofauna, and 

the creation of ichnologic sections. Possible modes of life for the ichnofauna were researched 

and hypothesized upon, allowing for an analysis of ecospace utilization in the section to be 

conducted. 

 In total twenty ichnospecies were documented: Archaeonassa fossulata, Bergaueria 

isp., Bergaueria perata, Cochlichnus anguineus, Conichnus conicus, Dimorphichnus cf. 

obliquus, Gordia isp., Gyrolithes gyratus, Gyrolithes scintillus, Helminthoidichnites tenuis, 

Helminthopsis tenuis, Monomorphichnus isp. A, Monomorphichnus isp. B, Monomorphichnus 

isp. C, Palaeophycus isp., Palaeophycus tubularis, Treptichnus coronatum, Treptichnus isp., 

Treptichnus pedum, and Trichichnus cf. simplex. This corresponds to an ichnodiversity of 

thirteen. Seven categories of architectural design (ichnodisparity) were recorded: simple 

horizontal burrows, plug-shaped burrows, passively filled horizontal to oblique burrows, 

horizontal burrows with horizontal to vertical branches, vertical helical burrows, and trackways 

and scratch marks.  

A few ichnofauna documented by previous studies were either reassigned or not 

observed. Uncontroversial specimens of Curvolithus, Didymaulichnus, Phycodes, or 

Psammichnites were not found within the T. pedum IAZ. It is hypothesized that many 

Palaeophycus were misclassified as Planolites, and many treptichnids misclassified as 

Arenicolites. In turn, Skolithos annulatus has been reassigned to Gyrolithes gyratus. 

From hypothesized modes of life, five ichnoguilds were erected. The Bergaueria isp. 

ichnoguild is characterized by semi-infaunal to very shallow infaunal, attached facultatively 

motile predators. The Dimorphichnus cf. obliquus ichnoguild contains surficial, fast, fully motile 

grazers, predators, or surficial detritus feeders. The Gyrolithes scintillus ichnoguild consists of 

very shallow tier, slow fully motile organisms that use non-conventional feeding styles (other) 

such as chemosynthesis or microbial gardening. The Helminthoidichnites tenuis ichnoguild 
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includes semi-infaunal, slow, fully motile grazers. Finally, the Treptichnus pedum ichnoguild 

comprises very shallow tier, slow, fully motile organisms, with suspension, mining, or predatory 

feeding styles. 

 In this body- fossil poor interval, the T. pedum IAZ in the CIF illustrates a transitionary 

period in Earth’s history, between the Ediacaran and Cambrian faunas. This is observed through 

the ichnoguild and ecospace analysis conducted in this study. Ediacaran modes of feeding 

persisted into the lowermost Fortunian, such as chemosynthesis and mat-grazing, documented by 

the Gyrolithes scintillus and Helminthoidichnites tenuis ichnoguilds respectively. More modern 

feeding styles appear, such as predation and deposit-feeding, represented by the Bergaueria isp, 

Dimorphichnus cf. obliquus, and Treptichnus pedum ichnoguilds. While shallow-tier ichnofauna 

persist (H. tenuis ichnoguild), burrowers begin to penetrate deeper into the substrate than 

previously recorded. This is represented first by the T. pedum ichnoguild, then by the even 

deeper G. scintillus ichnoguild. Finally, the appearance of the Dimorphichnus cf. obliquus 

ichnoguild signifies the appearance of fast fully motile organisms, likely primitive arthropods, 

and may represent the first documented evidence of arthropods. 

This transitionary period is exemplified by the trace fossils Gyrolithes scintillus and 

Gyrolithes gyratus. These vertical, helical burrows penetrate up to 3 cm into the substrate, and 

are hypothesized to profit from the strong redox gradient between their burrow walls and the 

sediment to farm bacteria. In addition, morphological analysis of the ichnogenus allowed for 

revised morphometric parameters, as well as a 3D digitization of the ichnogenus to be 

constructed. Through the implementation of these revised morphometric parameters, the novel 

ichnospecies G. scintillus was erected. In turn, Skolithos annulatus from the CIF was shown to 

have a helical nature, and re-assigned to Gyrolithes gyratus. 

 This study demonstrates that a careful analysis of ichnotaxa may yield important 

information regarding modes of life and evolutionary innovations, especially in periods or facies 

that are body fossil poor. Through the study and correlation of ichnofauna in Fortunian sections 

worldwide, a more complete image of innovations surrounding the Ediacaran-Cambrian 

boundary may be achieved. Additionally, this study emphasizes the importance of re-evaluating 

ichnotaxonomic determination worldwide, which in turn may yield a more robust T. pedum IAZ. 

This may aid in mitigating some of the issues researchers are facing in correlation. Possible 
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members of a global T. pedum IAZ include Dimorphichnus, Gyrolithes, Monomorphichnus, 

Treptichnus and Trichichnus.  

 The revision of the ichnotaxonomy of the CIF T. pedum IAZ has revealed several novel 

modes of interacting with the seafloor and reflect the evolutionary innovations characteristic of 

the Cambrian. Deeper, penetrative burrows (Gyrolithes, Treptichnus, and Trichichnus) reflect the 

Cambrian Substrate Revolution, documenting the transition from Ediacaran matgrounds to 

Cambrian mixgrounds. Meanwhile, arthropod scratch marks such as Dimorphichnus cf. obliquus 

and Monomorphichnus reflect the evolution of novel body plans and their interaction with the 

substrate. The ichnofauna of the CIF T. pedum IAZ document pivotal information which is 

uncaptured by the body fossil record, and demonstrates a more transitional nature of the 

Ediacaran and Cambrian boundary.  



 

CHAPTER 6 

6. Appendix  
 Appendix A Global occurences of T. pedum IAZ ichnotaxa between 635 Ma and 521 Ma.  

Max.	age	
(Ma)	

Min.	age	
(Ma)	 Ichnotaxon	 Reference;	Original	reference	 Unit	 Country	

ARCHAEONASSA	

635	 541	 Archaeonassa	fossulata	 Buatois	&	Mángano	(unpub);	Narbonne	&	
Aitken	(1990)	

Blueflower	 Canada	

635	 541	 Archaeonassa	isp.	 Carbone	&	Narbonne	(2014)	 Ingta	 Canada	
635	 541	 Archaeonassa	isp.	 Hofmann	&	Mountjoy	(2010)	 Upper	Miette	 Canada	
556	 541	 Archaeonassa	fossulata	 Jenkins	(1995)	and	Glaessner	(1969)		 Rawnsley	Quartzite	 Australia	
550	 541	 Archaeonassa	isp.	 Crimes	&	Germs	(1982)	 Vingerbreek	 Namibia	
541	 529	 Archaeonassa	fossulata	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 529	 Archaeonassa	fossulata	 Buatois	&	Mángano	(unpub);	Germs	(1972)	 Zamnarib	 Namibia	
529	 521	 Archaeonassa	fossulata	 Buatois	&	Mángano	(unpub);	Liñán	(1984)	 Julia	 Spain	
529	 521	 Archaeonassa	isp.	 Crimes	&	Anderson	(1985)	 Random	 Canada	

529	 521	 Archaeonassa	isp.	 Buatois	&	Mángano	(unpub);	Li	&	Yang	
(1988)	

Shiyantou	 China	

BERGAUERIA	
635	 541	 Bergaueria	isp.	 Zhu	(1997)	 Xiaowaitoushan	 China	
635	 541	 Bergaueria	sucta	 Menon	et	al.	(2013)	 Fermeuse	 Canada	
635	 541	 Bergaueria	isp.	 Grazhdankin	&	Krayushkin	(2007)	 Verhovka	and	Erga	 Russia	
541	 529	 Bergaueria	isp.	 Crimes	&	Anderson	(1985)	 Chapel	Island	M2	 Canada	

541	 529	 Bergaueria	isp.	 Buatois	&	Mángano	(unpub);	McIlroy	&	
Brasier	(2017)	

Lower	Breivik	 Norway	

541	 529	 Bergaueria	langi	 Fernandez-Remolar	et	al.	(2005)	 Upper	Ibor	 Spain	

541	 529	 Bergaueria	perata	 Jensen	&	Grant	(1998)	
Tornetrask	Lower	
Siltstone	

Sweden	

541	 521	 Bergaueria	isp.	 Pacześna	(1996)	 Mazowsze	 Poland	
529	 521	 Bergaueria	isp.	 Weber	et	al.	(2007)	 Shiyantou	 China	
529	 521	 Bergaueria	isp.	 Mángano	et	al.	(2000);	Liñán	(1984)	 Julia	 Spain	
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COCHLICHNUS	
541	 529	 Cochlichnus	anguineus	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 529	 Cochlichnus	anguineus	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Lintiss	Vale	Beds	 Australia	

541	 529	 Cochlichnus	anguineus	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	2	

Canada	

541	 529	 Cochlichnus	anguineus	 Buatois	&	Mángano	(unpub);	MacNaughton	
&	Narbonne	(1999)	

Upper	Ingta	 Canada	

541	 529	 Cochlichnus	anguineus	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 529	 Cochlichnus	anguineus	 Banks	(1970)	 Lower	Breivik	 Norway	
541	 529	 Cochlichnus	isp.	 Farmer	et	al.	(1992)	 Lower	Breivik	 Norway	
541	 529	 Cochlichnus	isp.	 Liñán	(1984)	 Tierna	 Spain	
541	 521	 Cochlichnus	anguineus	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
529	 521	 Cochlichnus	anguineus	 Crimes	&	Anderson	(1985)	 Random	 Canada	
529	 521	 Cochlichnus	anguineus	 Goldring	&	Jensen	(1996)	 Bayan	Gol	 Mongolia	
529	 521	 Cochlichnus	isp.	 Liñán	(1984)	 Julia	 Spain	

CONICHNUS	

547	 541	 Conichnus	isp.	 Darroch	et	al.	(2016)	
Unnamed	
Schwarzrand	

Namibia	

541	 529	 Conichnus	conicus	 Narbonne	et	al.	(1987)	 Chapel	Island	 Canada	
529	 521	 Conichnus	isp.	 Hiscott	et	al.	(1984)	 L'Anse-au-Clair	 Canada	

DIMORPHICHNUS	
541	 529	 Dimorphichnus	isp.	 Parcha	&	Singh	(2010)	 Phe	 India	
541	 529	 Dimorphichnus	isp.	 McIlroy	&	Brasier	(2017)	 Lower	Breivik	 Norway	
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GORDIA	
635	 541	 Gordia	arcuata	 Vidal	et	al.	(1994)	 Estenilla	 Spain	
635	 541	 Gordia	isp.	 Vidal	et	al.	(1994)	 Estenilla	 Spain	
635	 541	 Gordia	marina	 Vidal	et	al.	(1994)	 Estenilla	 Spain	
635	 541	 Gordia	marina	 Narbonne	&	Hofmann	(1987)	 Siltstone	Unit	1	 Canada	
556	 541	 Gordia	marina	 Glaessner	(1969)	 Rawnsley	Quartzite	 Australia	
551	 541	 Gordia	isp.	 Crimes	&	Anderson	(1985)	 Chapel	Island	member	1	 Canada	
541	 529	 Gordia	arcuata	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 529	 Gordia	marina	 Crimes	&	Anderson	(1985)	 Chapel	Island	member	2	 Canada	
541	 529	 Gordia	isp.	 Geyer	&	Uchman	(1995)	 Rosenhof	 Namibia	
541	 529	 Gordia	isp.	 Geyer	&	Uchman	(1995)	 Rosenhof	 Namibia	
541	 521	 Gordia	marina	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 521	 Gordia	isp.	 Weber	et	al.	(2013)	 Chulaktau	 Kazakhstan	
529	 521	 Gordia	isp.	 Liñán	(1984)	 Julia	 Spain	
529	 521	 Gordia	marina	 Crimes	&	Anderson	(1985)	 Random	 Canada	

GYROLITHES	
541	 529	 Gyrolithes	isp.	 Farmer	et	al.	(1992)	 Lower	Breivik	 Norway	
541	 529	 Gyrolithes	isp.	 Jensen	&	Grant	(1998)	 Tornetrask	Lower	Siltstone	 Sweden	
541	 529	 Gyrolithes	isp.	 Moczydłowska	et	al.	(2001)	 Upper	Maiva	 Sweden	
541	 529	 Gyrolithes	polonicus	 Crimes	&	Anderson	(1985)	 Chapel	Island	member	2	 Canada	
541	 529	 Gyrolithes	polonicus	 Systra	&	Jensen	(2006)	 Dividalen	 Finland	

541	 529	 Gyrolithes	polonicus	 Buatois	&	Mángano	(unpub);	McIlroy	&	
Brasier	(2017)	

Lower	Breivik	 Norway	

541	 529	 Gyrolithes	scintillus	 Laing	et	al.	(2018);	Gehling	et	al.	(2001)	 Chapel	Island	 Canada	
541	 529	 Gyrolithes	scintillus	 Laing	et	al.	(2018);	Jensen	&	Mens	(1999)	 Lontova	 Latvia	

541	 529	 Gyrolithes	gyratus	 Laing	et	al.	(2018);	Gehling	et	al.	(2001);	
Narbonne	et	al.	(1987)	

Chapel	Island	member	2	 Canada	

541	 521	 Gyrolithes	scintillus	 Laing	et	al.	(2018);	Banks	(1970)	 Upper	Breivik	 Norway	
541	 521	 Gyrolithes	scintillus	 Laing	et	al.	(2018);	Pacześna	(1996)	 Mazowsze	 Poland	
529	 521	 Gyrolithes	isp.	 Liñán	(1984)	 Julia	 Spain	
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HELMINTHOIDICHNITES	

635	 541	 Helminthoidichnites	tenuis	 Buatois	&	Mángano	(unpub);	Kowalski	(1987)	 Brzegi	Shale	 Poland	

635	 541	 Helminthoidichnites	isp.	 Carbone	&	Narbonne	(2014)	 Blueflower	 Canada	
635	 541	 Helminthoidichnites	isp.	 Carbone	&	Narbonne	(2014)	 Ingta	 Canada	
635	 541	 Helminthoidichnites	isp.	 Corsetti	&	Hagadorn	(2003)	 Hynes	Tongue	 USA	
635	 541	 Helminthoidichnites	tenuis	 Aitken	(1989)	 Blueflower	 Canada	

635	 541	 Helminthoidichnites	tenuis	 Buatois	&	Mángano	(unpub);	Narbonne	&	Aitken	
(1990)	

Blueflower	 Canada	

635	 541	 Helminthoidichnites	tenuis	 Carbone	&	Narbonne	(2014)	 Blueflower	 Canada	
635	 541	 Helminthoidichnites	tenuis	 MacNaughton	et	al.	(2000)	 Blueflower	 Canada	
635	 541	 Helminthoidichnites	tenuis	 Aitken	(1989)	 Ingta	 Canada	
635	 541	 Helminthoidichnites	tenuis	 MacNaughton	&	Narbonne	(1999)	 Lower	Ingta	 Canada	
635	 541	 Helminthoidichnites	tenuis	 Buatois	&	Mángano	(unpub);	Fritz	&	Crimes	(1985)	 Lower	Stelkuz	 Canada	
635	 541	 Helminthoidichnites	tenuis	 Hofmann	&	Mountjoy	(2010)	 Upper	Miette	 Canada	
635	 529	 Helminthoidichnites	tenuis	 Aitken	(1989)	 Ingta;	Blueflower	 Canada	
556	 541	 Helminthoidichnites	tenuis	 Jenkins	(1995)	 Rawnsley	Quartzite	 Australia	
556	 541	 Helminthoidichnites	isp.	 Droser	et	al.	(1999)	 Ediacara	 Australia	
551	 541	 Helminthoidichnites	tenuis	 Weber	et	al.	(2007)	 Shibantan	 China	
550	 541	 Helminthoidichnites	tenuis	 Hagadorn	&	Waggoner	(2000)	 Lower	Wood	Canyon	 USA	

550	 541	 Helminthoidichnites	tenuis	 Buatois	&	Mángano	(unpub);	Corsetti	&	Hagadorn	
(2003)	

Wyman	 USA	

547	 541	 Helminthoidichnites	tenuis	 Seilacher	et	al.	(2005);	Gibson	(1989)	 Floyd	Church	 USA	
541	 529	 Helminthoidichnites	tenuis	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 529	 Helminthoidichnites	isp.	 Buatois	&	Mángano	(unpub);	Webby	(1984)	 Copper	Mine	Range	Beds	 Australia	
541	 529	 Helminthoidichnites	isp.	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Lintiss	Vale	Beds	 Australia	
541	 529	 Helminthoidichnites	tenuis	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Lintiss	Vale	Beds	 Australia	
541	 529	 Helminthoidichnites	tenuis	 MacNaughton	&	Narbonne	(1999)	 Upper	Ingta	 Canada	
541	 529	 Helminthoidichnites	tenuis	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 521	 Helminthoidichnites	tenuis	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
529	 521	 Helminthoidichnites	tenuis	 Hofmann	&	Patel	(1989)	 Ratcliffe	Brook	 Canada	
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HELMINTHOPSIS	
635	 541	 Helminthopsis	abeli	 Hofmann	&	Mountjoy	(2010)	 Upper	Miette	 Canada	

635	 541	 Helminthopsis	hieroglyphica	 Han	&	Pickerill	(1995);	Narbonne	&	Aitken	
(1990)	

Blueflower	 Canada	

635	 541	 Helminthopsis	isp.	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Fowlers	Gap	Beds	 Australia	

635	 541	 Helminthopsis	isp.	 Buatois	&	Mángano	(unpub);	Narbonne	&	
Aitken	(1990)	

Blueflower	 Canada	

635	 541	 Helminthopsis	isp.	 Carbone	&	Narbonne	(2014)	 Blueflower	 Canada	
635	 541	 Helminthopsis	isp.	 Fritz	&	Crimes	(1985)	 Lower	Stelkuz	 Canada	

635	 541	 Helminthopsis	isp.	 Buatois	&	Mángano	(unpub);	Hofmann	&	
Mountjoy	(2010)	

Upper	Miette	 Canada	

566	 541	 Helminthopsis	isp.	 Cope	(1983)	 Coomb	Volcanic	 UK	

551	 541	 Helminthopsis	isp.	 Buatois	&	Mángano	(unpub);	Pacześna	
(1996)	

Lublin	 Poland	

547	 541	 Helminthopsis	isp.	 Gibson	(1989)	 Floyd	Church	 USA	
541	 529	 Helminthopsis	abeli	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 529	 Helminthopsis	isp.	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Lintiss	Vale	Beds	 Australia	
541	 529	 Helminthopsis	tenuis	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 521	 Helminthopsis	tenuis	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	

529	 521	 Helminthopsis	abeli	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	3	

Canada	

529	 521	 Helminthopsis	abeli	 Crimes	&	Anderson	(1985)	 Random	 Canada	

529	 521	 Helminthopsis	abeli	 Crimes	&	Jiang	(1986)	 Shiyantou	 China	

529	 521	 Helminthopsis	abeli	 Weber	et	al.	(2007)	 Shiyantou	 China	

529	 521	 Helminthopsis	tenuis	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	3	

Canada	
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MONOMORPHIHCNUS	
550	 541	 Monomorphichnus	isp.	 Waggoner	&	Hagadorn	(2002)	 Wood	Canyon	 USA	
541	 529	 Monomorphichnus	isp.	 Parcha	&	Singh	(2010)	 Phe	 India	
541	 529	 Monomorphichnus	bilinearis	 McIlroy	&	Brasier	(2017)	 Lower	Breivik	 Norway	

541	 529	 Monomorphichnus	isp.	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	2	

Canada	

541	 529	 Monomorphichnus	isp.	 Fernandez-Remolar	et	al.	(2005)	 Upper	Ibor	 Spain	
541	 529	 Monomorphichnus	isp.	 Jensen	et	al.	(2002)	 Wood	Canyon	 USA	

541	 529	 Monomorphichnus	lineatus	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	2	

Canada	

541	 529	 Monomorphichnus	lineatus	 Brasier	et	al.	(1979)	 Pusa	Shales	 Spain	

541	 521	
Monomorphichnus	
multilineatus	 Alpert	(1976)	 Upper	Deep	Spring	 USA	

541	 521	 Monomorphichnus	bilinearis	 MacNaughton	&	Narbonne	(1999)	 Backbone	Ranges	 Canada	
541	 521	 Monomorphichnus	isp.	 Weber	et	al.	(2013)	 Chulaktau	 Kazakhstan	

529	 521	 Monomorphichnus	bilinearis	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	3	

Canada	

529	 521	 Monomorphichnus	bilinearis	 Crimes	&	Anderson	(1985)	 Random	 Canada	
529	 521	 Monomorphichnus	bilinearis	 Liñán	(1984)	 Julia	 Spain	

529	 521	 Monomorphichnus	isp.	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	3	

Canada	

529	 521	 Monomorphichnus	isp.	 Crimes	&	Anderson	(1985)	 Random	 Canada	

529	 521	 Monomorphichnus	isp.	 Buatois	&	Mángano	(unpub);	Nowlan	et	al.	
(1985)	

Vampire	 Canada	

529	 521	 Monomorphichnus	isp.	 Goldring	&	Jensen	(1996)	 Bayan	Gol	 Mongolia	
529	 521	 Monomorphichnus	isp.	 Kowalski	(1987)	 Upper	Czarna	 Poland	
529	 521	 Monomorphichnus	isp.	 Alvaro	et	al.	(1993)	 Embid	 Spain	
529	 521	 Monomorphichnus	isp.	 Liñán	(1984)	 Julia	 Spain	
529	 521	 Monomorphichnus	lineatus	 Fritz	&	Crimes	(1985)	 Boya	 Canada	

529	 521	 Monomorphichnus	lineatus	 Crimes	&	Anderson	(1985)	
Chapel	Island	
member	3	

Canada	

529	 521	 Monomorphichnus	lineatus	 Crimes	et	al.	(1977)	 Herreria	Member	1	 Spain	
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PALAEOPHYCUS	

635	 541	 Palaeophycus	isp.	 Buatois	&	Mángano	(unpub);	Hofmann	&	
Mountjoy	(2010)	

Upper	Miette	 Canada	

635	 541	 Palaeophycus	isp.	 Moczydłowska	et	al.	(2001)	 Lower	Maiva	 Sweden	

635	 541	 Palaeophycus	striatus	 Buatois	&	Mángano	(unpub);	Walter	et	al.	
(1989)	

Elkera	 Australia	

635	 541	 Palaeophycus	tubularis	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Fowlers	Gap	Beds	 Australia	
635	 541	 Palaeophycus	tubularis	 Carbone	&	Narbonne	(2014)	 Blueflower	 Canada	
635	 541	 Palaeophycus	tubularis	 Narbonne	&	Aitken	(1990)	 Blueflower	 Canada	

635	 541	 Palaeophycus	tubularis	 Buatois	&	Mángano	(unpub);	Fritz	&	Crimes	
(1985)	

Lower	Stelkuz	 Canada	

635	 529	 Palaeophycus	isp.	 Parcha	&	Singh	(2010)	 Phe	 India	
635	 521	 Palaeophycus	isp.	 Sour-Tovar	et	al.	(2007)	 Puerto	Blanco	 Mexico	
630	 529	 Palaeophycus	tubularis	 Bartley	et	al.	(1998)	 Platonovskaya	 Russia	(Asian)	
555	 541	 Palaeophycus	isp.	 Banks	(1970)	 Manndraperelv	 Norway	
551	 541	 Palaeophycus	isp.	 Weber	et	al.	(2007)	 Shibantan	 China	

551	 541	 Palaeophycus	isp.	 Buatois	&	Mángano	(unpub);	Pacześna	
(1996)	

Lublin	 Poland	

551	 541	 Palaeophycus	tubularis	 Weber	et	al.	(2007)	 Gaojiashan	 China	
550	 542	 Palaeophycus	isp.	 Geyer	&	Uchman	(1995)	 Nasep	 Namibia	
550	 541	 Palaeophycus	isp.	 Waggoner	&	Hagadorn	(2002)	 Wood	Canyon	 USA	
541	 529	 Palaeophycus	isp.	 Geyer	&	Uchman	(1995)	 Rosenhof	 Namibia	

541	 529	 Palaeophycus	isp.	 Buatois	&	Mángano	(unpub);	Fernandez-
Remolar	et	al.	(2005)	

Middle	Ibor	 Spain	

541	 529	 Palaeophycus	isp.	 Jensen	&	Grant	(1998)	
Tornetrask	Lower	
Siltstone	

Sweden	

541	 529	 Palaeophycus	isp.	 Moczydłowska	et	al.	(2001)	 Upper	Maiva	 Sweden	
541	 529	 Palaeophycus	isp.	 Walker	&	Driese	(1991)	 Unicoi	 USA	
541	 529	 Palaeophycus	isp.	 Jensen	et	al.	(2002)	 Wood	Canyon	 USA	
541	 529	 Palaeophycus	tubularis	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 529	 Palaeophycus	tubularis	 Buatois	&	Mángano	(unpub);	Webby	(1984)	 Copper	Mine	Range	 Australia	



 

Beds	
541	 529	 Palaeophycus	tubularis	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	

541	 529	 Palaeophycus	tubularis	 Buatois	&	Mángano	(unpub);	Pacześna	
(1996)	

Wlodawa	 Poland	

541	 521	 Palaeophycus	ferrovittatus	 Hofmann	(1983)	 Backbone	Ranges	 Canada	
541	 521	 Palaeophycus	isp.	 Weber	et	al.	(2013)	 Chulaktau	 Kazakhstan	

541	 521	 Palaeophycus	tubularis	 Buatois	&	Mángano	(unpub);	Fritz	&	Crimes	
(1985)	

Stelkuz	 Canada	

541	 521	 Palaeophycus	tubularis	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 521	 Palaeophycus	tubularis	 Grazhdankin	&	Krayushkin	(2006)	 Padun	 Russia	(European)	
529	 521	 Palaeophycus	isp.	 Kowalski	(1987)	 Middle	Czarna	 Poland	
529	 521	 Palaeophycus	isp.	 Loughlin	&	Hillier	(2010)	 St.Non's	Sandstone	 UK	
529	 521	 Palaeophycus	isp.	 Walker	&	Driese	(1991)	 Nichols	 USA	
529	 521	 Palaeophycus	striatus	 Hofmann	&	Patel	(1989)	 Ratcliffe	Brook	 Canada	

529	 521	 Palaeophycus	tubularis	 Buatois	&	Mángano	(unpub);	Fritz	&	Crimes	
(1985)	

Boya	 Canada	

529	 521	 Palaeophycus	tubularis	 Crimes	&	Anderson	(1985)	 Chapel	Island	5	 Canada	
529	 521	 Palaeophycus	tubularis	 Hiscott	et	al.	(1984)	 L'Anse-au-Clair	 Canada	
529	 521	 Palaeophycus	tubularis	 Hofmann	&	Patel	(1989)	 Ratcliffe	Brook	 Canada	
529	 521	 Palaeophycus	tubularis	 MacNaughton	&	Narbonne	(1999)	 Vampire	 Canada	
529	 521	 Palaeophycus	tubularis	 Nowlan	et	al.	(1985)	 Vampire	 Canada	
529	 521	 Palaeophycus	tubularis	 Goldring	&	Jensen	(1996)	 Bayan	Gol	 Mongolia	
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TREPTICHNUS	

551	 541	 Treptichnus	isp.	 Gheling	et	al.	(2001);	Crimes	&	Anderson	
(1985)	

Chapel	Island	1	 Canada	

550	 541	 Treptichnus	isp.	 Jensen	et	al.	(2000)	 Huns	 Namibia	
550	 541	 Treptichnus	pedum	 Jensen	et	al.	(2007)	 Domo	Extremeno	 Spain	
547	 541	 Treptichnus	isp.	 Seilacher	et	al.	(2005);	Gibson	(1989)	 Floyd	Church	 USA	
541	 529	 Treptichnus	pedum	 Parcha	&	Singh	(2010)	 Phe	 India	
541	 529	 Treptichnus	bifurcus	 Jensen	et	al.	(2007)	 Rio	Huso	 Spain	
541	 529	 Treptichnus	coronatum	 Crimes	&	Anderson	(1985)	 Chapel	Island	2	 Canada	
541	 529	 Treptichnus	coronatum	 MacNaughton	&	Narbonne	(1999)	 Upper	Ingta	 Canada	
541	 529	 Treptichnus	isp.	 Crimes	&	Anderson	(1985)	 Chapel	Island	2	 Canada	
541	 529	 Treptichnus	isp.	 Liñán	(1984)	 Julia	 Spain	

541	 529	 Treptichnus	isp.	 Buatois	&	Mángano	(unpub);	Fernandez-
Remolar	et	al.	(2005)	

Middle	Ibor	 Spain	

541	 529	 Treptichnus	isp.	 Buatois	&	Mángano	(unpub);	Jensen	et	al.	
(2007)	

Rio	Huso	 Spain	

541	 529	 Treptichnus	isp.	 Geyer	&	Uchman	(1995)	 Rosenhof	 Namibia	

541	 529	 Treptichnus	isp.	 Jensen	&	Grant	(1998)	
Tornetrask	Lower	
Siltstone	

Sweden	

541	 529	 Treptichnus	lublinensis	 McIlroy	&	Brasier	(2017)	 Lower	Breivik	 Norway	
541	 529	 Treptichnus	pedum	 Narbonne	et	al.	(1987)	 Chapel	Island	 Canada	
541	 529	 Treptichnus	pedum	 Buatois	et	al.	(2013)	 Dolkraals	 South	Africa	
541	 529	 Treptichnus	pedum	 Liñán	(1984)	 Julia	 Spain	
541	 529	 Treptichnus	pedum	 Buatois	et	al.	(2013)	 Kalk	Gat	 South	Africa	
541	 529	 Treptichnus	pedum	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Lintiss	Vale	Beds	 Australia	
541	 529	 Treptichnus	pedum	 Banks	(1970)	 Lower	Breivik	 Norway	
541	 529	 Treptichnus	pedum	 McIlroy	&	Brasier	(2017)	 Lower	Breivik	 Norway	

541	 529	 Treptichnus	pedum	 Hagadorn	&	Waggoner	(2000)	
Lower	Wood	
Canyon	

USA	

541	 529	 Treptichnus	pedum	 Corsetti	&	Hagadorn	(2003)	 Middle	Deep	Spring	 USA	
541	 529	 Treptichnus	pedum	 Wilson	et	al.	(2012)	 Nomtsas	 Namibia	



 

541	 529	 Treptichnus	pedum	 Buatois	&	Mángano	(unpub);	Kowalski	
(1987)	

Osiek	Sandstone	 Poland	

541	 529	 Treptichnus	pedum	 Brasier	et	al.	(1979)	 Pusa	Shales	 Spain	
541	 529	 Treptichnus	pedum	 Buatois	&	Mángano	(unpub);	Germs	(1972)	 Rosenhof	 Namibia	
541	 529	 Treptichnus	pedum	 Crimes	&	Germs	(1982)	 Rosenhof	 Namibia	
541	 529	 Treptichnus	pedum	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 529	 Treptichnus	pedum	 Buatois	et	al.	(2013)	 Stofkraal	 South	Africa	

541	 529	 Treptichnus	pedum	 Jensen	&	Grant	(1998)	
Tornetrask	Lower	
Siltstone	

Sweden	

541	 529	 Treptichnus	pedum	 MacNaughton	&	Narbonne	(1999)	 Upper	Ingta	 Canada	
541	 529	 Treptichnus	pedum	 Jensen	et	al.	(2002)	 Wood	Canyon	 USA	
541	 529	 Treptichnus	pedum	 Weber	et	al.	(2007)	 Zhongyicun	 China	
541	 529	 Treptichnus	pollardi	 Carbone	&	Narbonne	(2014)	 Ingta	 Canada	
541	 529	 Treptichnus	pollardi	 Buatois	&	Mángano	(unpub);	Webby	(1970)	 Lintiss	Vale	Beds	 Australia	
541	 529	 Treptichnus	pollardi	 Buatois	&	Mángano	(2004)	 Puscoviscana	 Argentina	
541	 529	 Treptichnus	pollardi	 Geyer	&	Uchman	(1995)	 Rosenhof	 Namibia	

541	 529	 Treptichnus	tripleurum	 Buatois	&	Mángano	(unpub);	Geyer	&	
Uchman	(1995)	

Zamnarib	 Namibia	

541	 521	 Treptichnus	pedum	 Sour-Tovar	et	al.	(2007)	 Puerto	Blanco	 Mexico	
541	 521	 Treptichnus	bifurcus	 Pacześna	(1996)	 Mazowsze	 Poland	
541	 521	 Treptichnus	coronatum	 MacNaughton	&	Narbonne	(1999)	 Backbone	Ranges	 Canada	
541	 521	 Treptichnus	isp.	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 521	 Treptichnus	lublinensis	 Pacześna	(1996)	 Mazowsze	 Poland	
541	 521	 Treptichnus	pedum	 Carbone	&	Narbonne	(2014)	 Backbone	Ranges	 Canada	
541	 521	 Treptichnus	pedum	 MacNaughton	&	Narbonne	(1999)	 Backbone	Ranges	 Canada	
541	 521	 Treptichnus	pedum	 Gehling	et	al.	(2001)	 Chapel	Island	 Canada	
541	 521	 Treptichnus	pedum	 Weber	et	al.	(2013)	 Chulaktau	 Kazakhstan	
541	 521	 Treptichnus	pedum	 Dzik	(2005)	 Kessyusa	 Russia	(Asian)	

541	 521	 Treptichnus	pedum	 Buatois	&	Mángano	(unpub);	Pacześna	
(1996)	

Mazowsze	 Poland	

541	 521	 Treptichnus	pedum	 Corsetti	&	Hagadorn	(2003)	 Upper	Deep	Spring	 USA	



 

541	 521	 Treptichnus	pedum	 Droser	et	al.	(1999)	 Uratanna	 Australia	
541	 521	 Treptichnus	pollardi	 Shahkarami	et	al.	(2017)	 Soltanieh	 Iran	
541	 521	 Treptichnus	tripleurum	 Dzik	(2005)	 Kessyusa	 Russia	(Asian)	
541	 521	 Treptichnus	triplex	 Pacześna	(1996)	 Mazowsze	 Poland	
529	 521	 Treptichnus	bifurcus	 Goldring	&	Jensen	(1996)	 Bayan	Gol	 Mongolia	
529	 521	 Treptichnus	isp.	 Goldring	&	Jensen	(1996)	 Bayan	Gol	 Mongolia	
529	 521	 Treptichnus	isp.	 Fritz	&	Crimes	(1985)	 Boya	 Canada	
529	 521	 Treptichnus	isp.	 Crimes	&	Anderson	(1985)	 Chapel	Island	3	 Canada	
529	 521	 Treptichnus	isp.	 Crimes	&	Anderson	(1985)	 Chapel	Island	5	 Canada	
529	 521	 Treptichnus	isp.	 Crimes	&	Anderson	(1985)	 Random	 Canada	
529	 521	 Treptichnus	isp.	 Li	&	Yang	(1988)	 Shiyantou	 China	
529	 521	 Treptichnus	pedum	 Goldring	&	Jensen	(1996)	 Bayan	Gol	 Mongolia	

529	 521	 Treptichnus	pedum	 Buatois	&	Mángano	(unpub);	Fritz	&	Crimes	
(1985)	

Boya	 Canada	

529	 521	 Treptichnus	pedum	 Buatois	&	Mángano	(unpub);	Nowlan	et	al.	
(1985)	

Vampire	 Canada	

529	 521	 Treptichnus	pollardi	 Zhu	(1997)	 Shiyantou	 China	
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