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ABSTRACT 
 

 

We report herein that IL-10-treated dendritic cells (DC) can be used effectively to reverse 

established severe asthma-like disease in a mouse model. Our lab had shown previously that 

allergen-presenting splenic CD8α+ DCs could ≈50% reduce airway hyper responsiveness 

(AHR), eosinophilia, and Th2 responses in asthma-phenotype mice, but only marginally reduce 

IgE/IgG1 levels. We now show that bone marrow-derived DCs that have been differentiated in 

the presence of IL-10 (DCIL-10) are effective in reversing the asthma phenotype.  Co-culture of 

DCIL-10 with T memory (TM) cells from asthma-phenotype mice was associated with lack of Th2 

responses, and this was partially reversed by IL-2. Immunostimulatory DC activated these Th2 

cells. In vivo, delivery of allergen-pulsed DCIL-10, either into the airway or intraperitoneally 

abrogated AHR from weeks 3-10 post-treatment, and ameliorated lung eosinophilia and Th2 

(IL-4, -5, -9, & -13, IgE) responses, as well as circulating allergen-specific IgE responses for at 

least 32 weeks following treatment. Repeated OVADCIL-10 treatments kept AHR normalized for 8 

weeks as well as Th2 responses significantly low. In vivo, delivery of anti-IL-10R, but not anti-

TGF-β from day 12-21 after treatment had moderate effects on DCIL-10-driven tolerance, but 1-

methyl tryptophan (inhibitor of indoleamine-2,3-dioxygenase) treatment had significant effects 

on Th2 responses.  The mechanisms mediating tolerance in vivo are likely complex, but we 

speculate that infectious tolerance sustains this regulatory activity during the 32-week period in 

which we have observed tolerance to be in place. 
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1.0   INTRODUCTION 
 

Despite significant pharmacological advances in asthma therapy, the past two decades 

have seen alarming increases in the prevalence of this disease world-wide (American Lung 

association Epidemiology and statistics unit, March 2003). Allergic asthma is characterized by 

intermittent and reversible airway obstruction, airway hyperresponsiveness (AHR), and airway 

inflammation (Galli 1999), but these are driven by underlying Th2-type immune responses. 

Conventional treatments have not addressed the immunologic basis of this disease, but rather are 

primarily symptomatic in nature, targeting either the AHR (e.g., bronchodilators) or 

inflammatory responses (e.g., steroids) (Lin and Casale 2002). More refined approaches have 

included administering anti-IgE (Finn, Gross et al. 2003) or anti-cytokine, or anti-cytokine 

receptor antibody (Tomkinson, Duez et al. 2001; Foster, Hogan et al. 2002; Leckie 2003) or 

leukotriene antagonists (Ducharme, Hicks et al. 2002; Asakura, Ishii et al. 2004). Despite these 

efforts the incidence and severity of asthma continues to rise (Galli 1999). Co-administration 

with allergen of cytosine-guanidine motif-rich oligodeoxynucleotides reduces airway 

eosinophilia, Th2 cytokine induction, IgE production, and bronchial hyperreactivity in mouse 

models of (Lin and Casale 2002), but they do so by skewing of the allergic inflammatory 

responses to Th1-dominant mode, which itself carries significant health risks (i.e. allergen-driven 

hypersensitivity pneumonitis). Tolerance is strictly defined as the absence of an immune 

response but over the past few years, this concept has changed. Now tolerance is described as an 

active process which involves the same principles as self-tolerance i.e. deletion, anergy and 

 1



suppression. In principle, it would seem that immunologic tolerization could be a more 

appropriate means of reducing asthma pathology than would immune deviation1.  

Dendritic cells (DC) are initiators and modulators of immune responses.  They are 

thought to be the most powerful of all antigen-presenting cells that can activate naïve T cells 

(Banchereau and Steinman 1998). The capacity to induce active immunity versus tolerance (via 

regulatory cells) is in large part controlled at the level of the dendritic cell.  Immature or 

quiescent DCs can induce antigen-specific T cell tolerance, whether the DCs are differentiated in 

vitro (Jonuleit, Schmitt et al. 2000) or in vivo (Gordon, Li et al. 2005).  But induction of 

tolerance by DCs does not necessarily depend exclusively on their not having been exposed to 

inflammatory environments, since LPS-activated CD4-/CD8- splenic DCs can also potently 

induce tumor tolerance via up regulation of regulatory T cells (Zhang, Huang et al. 2005).  The 

ability of tolerogenic DC to prevent experimental antigen sensitization have been documented in 

model systems ranging from cancer (Steinbrink, Jonuleit et al. 1999) to allergic diseases (Muller, 

Muller et al. 2002), but few had reported on the ability of such cells to reverse the course of a 

pre-existing immunologic sensitivity. We recently reported that allergen-pulsed, otherwise 

quiescent splenic CD8α+ DCs can dampen allergic pathology in a mouse model of allergic 

asthma, although the reversal of the asthma phenotype was not complete (Gordon, Li et al. 

2005).  We did document a role for both contact-dependent and independent mechanisms (e.g., 

IL-10, indoleamine-2,3-dioxygenase; IDO) in this process (Gordon, Li et al. 2005).   

We wished to determine however whether we could increase the effectiveness of our 
                                                 
1 “immune deviation” was coined by Asherson in 1965. Few years later, inverse relationship between humoral and 
cell-mediated responses and vice versa defined this phenomenon. In mid to late 1970’s, immune deviation mediated 
by active T cell suppression represented “immunological tolerance”. Although in broader sense, it means a modified 
response to an antigen but with the emergence of Th1/Th2 paradigm, the term has been used in a more refined 
manner i.e. skewing Th2 to Th1 response (also used similarly for this thesis). With the discovery of regulatory T 
cells definition of tolerance has changed over time from “non-reactivity against self” to an active physiological 
process of non-pathological state wherein regulatory responses dominate over pathological responses without the 
Th1/ Th2 bias.  
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tolerization of the asthma-like phenotype by use of alternate dendritic cell-based strategies.  

Interleukin (IL)-10 is an anti-inflammatory cytokine known to have inhibitory effects on 

accessory functions of DCs (Muller, Muller et al. 2002), perhaps by inhibiting cellular 

maturation, such that IL-10-treated DCs express a tolerogenic phenotype (Steinbrink, Wolfl et al. 

1997; Steinbrink, Graulich et al. 2002). IL-10-modulated DCs can inhibit proliferation of, and 

cytokine production by, differentiated T cells and thereby induce antigen-specific anergy, even 

after a single contact with T effector cells. Indeed, DCs recovered from IL-10 secreting 

melanoma tumors anergize anti-tumor responses, and this can be reversed by neutralizing IL-10 

in this system and recapitulated in vitro by treating DCs with exogenous IL-10 (Steinbrink, 

Wolfl et al. 1997; Steinbrink, Jonuleit et al. 1999).  Interestingly, it was recently reported that 

IL-10-differentiated, allergen-presenting DC are completely ineffective in reversing the asthma 

phenotype after i.v. delivery to mice (Bellinghausen, Sudowe et al. 2006), while TGF-β-

differentiated bone marrow-derived DC also only modestly reduce the localization of allergen 

sensitivity to the lungs of systemically sensitized mice (Zhang-Hoover, Finn et al. 2005).  The 

few studies so far have either been done when DCIL-10 therapy is given before or during the 

sensitization phase or before the aerosol challenge (Zhang-Hoover, Finn et al. 2005; 

Bellinghausen, Sudowe et al. 2006; Koya, Matsuda et al. 2007). Recently, it was reported that 

DC engineered to express IL-10 induce prolonged tolerance in asthma model (Henry, Desmet et 

al. 2008) but the work presented in this thesis predates the above mentioned papers. 

Herein we explore the therapeutic usefulness of delivering tolerogenic DC to asthma-

phenotype, or ‘asthmatic’, mice, using bone marrow cells that are differentiated in vitro in the 

presence of IL-10.  In this study we generated tolerogenic DCs by culture of immature mouse 

bone marrow DCs in IL-10 (DCIL-10) and show that after pulsing with allergen, these cells can 
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abrogate AHR in a mouse model of severe allergic lung disease (ALD), and markedly attenuate 

all other pathologic characteristics of the asthma-like phenotype in these animals. We show that 

these cells can provoke a prolonged and highly effective allergen-specific tolerization of the 

pulmonary and systemic allergic responses in the treated animals. 
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2.0  REVIEW OF LITERATURE  
 
 

2.1 IMMUNOPATHOLOGY OF ASTHMA 

 

2.1.1 Definition, epidemiology and possible etiology 

Asthma is a chronic obstructive disease of the small airways of the lung and is 

characterized by varying degrees of intermittent and reversible airway obstruction and 

exaggerated airway responsiveness to a wide variety of physical and pharmacological agents or 

non-specific stimuli, in association with pathological inflammatory changes in the bronchial tree. 

All the above factors together with related chronic exposure to allergen leads to airway 

remodeling, including epithelial denudation, mucosal edema, mucus hypersecretion, sub-

epithelial fibrosis, increased airway vascularization, and smooth muscle hyperplasia. This further 

limits airflow and is clinically manifested as paroxysms of dyspnea, wheezing, cough and chest 

tightness (Bousquet, Jeffery et al. 2000; Busse and Lemanske 2001). 

 Being a multifactor and complex disease, asthma involves interactions between, for 

example the respiratory, immune, circulatory and neuronal systems, and both genetic (familial 

tendency to become sensitized and produce IgE antibodies in response to allergens (Cookson 

1999)) and environmental factors that contribute to its initiation and progression. The 

environmental factors include e.g. viruses (Lemanske 2004), allergens (Platts-Mills, Sporik et al. 

1997), and occupational exposure (Chan-Yeung, Malo et al. 2003). The classification of asthma 

has been recently revised to include allergic asthma (atopic or extrinsic asthma), resulting from 
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immunological reactions to common environmental antigens, and non-allergic asthma (non-

atopic or intrinsic asthma) caused by unknown antigens, possibly triggered by viral or 

autoantigens (Humbert, Menz et al. 1999; Johansson, Bieber et al. 2004). For the purpose of this 

thesis, we will for the most part address only allergic asthma, as treatment in our model targets 

the underlying immunoinflammatory pathology caused by Ovalbumin-induced allergic 

responses. 

 Asthma is now recognized as an epidemic, as it affects 2% of the world population and 8-

10% of the population of US. In 2003, it was estimated that 20 million Americans had asthma, 

including 6.2 million children under age 18 and 1.2 million under age 5. Of these, 11 million 

Americans, including 4 million children under 18, had had an asthma attack that year (National 

centre for health statistics. Raw data from national health interview survey 2003). The annual 

direct health care as well as indirect (e.g. lost productivity) costs of asthma in the US total 

approximately 1.6 billion dollars (National heart 2004). According to Statistics Canada, 8.4% of 

the population (aged 12 and over) has been diagnosed with asthma (2000-2001) and asthma has 

been reported to affect at least 12% of Canadian children. Direct costs of asthma, which include 

medical/nursing care and medication, in Canada were estimated at $600 million per year.
 
In 

1994, the cost of hospitalization alone for asthma was $135 million. The total cost of asthma care 

in Canada was estimated between $504 and $648 million dollars annually (reviewed in Fact 

sheet N° 1, revised 2005, Asthma Society of Canada). 

 

2.1.1.1 Overview of Pathophysiology of Asthma  

The pathophysiology of asthma is complex, involving a wide variety of cells interacting 

in different ways, leading to events ranging from acute to chronic phases of inflammation. To 
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have a clear picture of the pathophysiology I have summarized the events that take place 

sequentially. 

 In the phase of sensitization (Figure 1.1a), on its first encounter with the host the 

allergen is taken up by immature DCs located under the airway epithelium.  The antigen is 

directed to the endocytic pathway of APC where it is degraded and presented on the cell surface 

as MHC class II-peptide complexes. During this process DC undergo characteristic maturational 

changes and move under the influence of chemokines to the lymphoid organs, where they 

interact with and stimulate naïve T cells (Vermaelen, Carro-Muino et al. 2001; Vermaelen and 

Pauwels 2005). The naïve T cells then receive signals driving them towards Th2 response mode, 

depending on the hosts’ genetic status, the nature of the allergen, the microenvironment within 

lung and the inherent tendency of lung DCs to induce allergic response (Stumbles, Thomas et al. 

1998). In addition, extrinsic factors like viral infections and endotoxins have been reported to 

predispose to asthma (Schwarze and Gelfand 2002; Thorne, Kulhankova et al. 2005). In the 

presence of IL-4 secreted by T cells and CD40-CD40L interaction between T and B cells 

allergen-specific IgE is produced, and this binds FcεRI receptors on mast cells, basophils or 

APCs, increasing the efficacy of allergen responses on re-exposure. Finally, the sensitization 

phase involves the formation of a pool of allergen-specific memory CD4 T cells and B cells. 

Memory T cells can both home to peripheral lymphoid organs (central memory) or inflamed 

tissues (effector memory) and require low stimulation from DC to become activated (Medoff, 

Thomas et al. 2008). 

The elicitation phase: This phase comprises an early (EAR; Figure 1.1b) and a late 

asthmatic reaction (LAR; Figure 1.1c). Re-exposure of a sensitized individual to specific allergen 

cross-links the cell-bound IgE on mast cells etc, and leads within minutes to the immediate 
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release of preformed mediators such as histamine and the synthesis of leukotrienes and 

prostaglandins. The actions of these mediators’ accounts for the immediate symptoms (EAR), 

including mucus production, smooth muscle constriction, vasodilation, and increased vascular 

permeability (Busse 1998).  In addition, following exposure to inhaled antigen, airway 

macrophages secrete IL-1, TNF-α and IL-6 (via FcεRII) which acts on epithelial cells to induce 

their release of GM-CSF, IL-8 and RANTES, and thereby recruitment of inflammatory cells. 

Secretion of chemokines (e.g., eotaxin) and cytokines (e.g., IL-4, IL-5) by basophils and mast 

cells may also attract more T cells, APCs, and effector cells, such as eosinophils, to the site of 

insult.  

Simultaneously, DCs within the mucosa present allergen to T cells (Guermonprez, Valladeau et 

al. 2002), and within 6 to 48 hours (LAR), additional T cells are recruited to the area (Busse 

1998). The expression of FcεRI on the surface of DCs greatly facilitates their uptake, processing, 

and presentation of allergens to T cells during the LAR. Furthermore, the cytokine milieu created 

as a result of mast cell and basophil activation most likely drives a polarized Th2 response. 

Further production of Th2 cytokines at the local site augments the recruitment and activation of 

additional T cells and eosinophils. During the late phase, mediators released from mast cells, 

basophils, eosinophils, and T cells act in concert to induce the vascular changes, 

bronchoconstriction (via smooth muscle activation), and mucus changes observed during the 

LAR.  

The chronic inflammation: Repetitive allergen challenge leads to persistent 

inflammation in the lungs. The cytokines and chemokines released by mast cells, macrophages 

and the T cells further increase trafficking of activated T lymphocytes into the airways, and these 

continue to release Th2 cytokines i.e. IL-4, IL-5, IL-9 and IL-13, thus recruiting yet more  
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Figure 2.1 Pathogenesis of asthma (taken and modified; (Larche, Akdis et al. 2006). 

(a) Sensitization to allergens and development of specific B-cell and T-cell memory. 
Differentiation and clonal expansion of allergen-specific Th2  cells leads to the production of 
cytokines (IL-4 and IL-13), which induce immunoglobulin class switching to IgE and clonal 
expansion of naive and IgE+ memory B-cell populations. T-cell activation in the presence of IL-4 
increases differentiation into Th2 cells. (b) Early asthmatic reaction (EAR). Crosslinking of 
mast-cell and basophil cell-surface FcεRI (high-affinity receptor for IgE)-bound IgE by allergens 
leads to the release of vasoactive amines (such as histamine), lipid mediators, chemokines and 
other cytokines (such as IL-4, IL-5 and IL-13), and to the immediate symptoms of allergic 
disease. (c) Allergic inflammation (late phase of the allergic reaction, LPR). Following migration 
to sites of allergen exposure under the influence of chemokines and other cytokines, allergen-
specific T cells are reactivated and clonally expand. This further recruits and activates 
eosinophils, mast cells and basophils, which release histamine, chemokines and other cytokines 
and perpetuate the inflammatory cascade.  
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inflammatory cells sustaining the inflammatory cascade (Medoff, Thomas et al. 2008). Once the 

inflammatory reaction is initiated, eosinophil infiltration further contributes to tissue 

damage by the release of major basic protein, eosinophil cationic protein, leukotrienes and other 

inflammatory mediators (Wardlaw, Brightling et al. 2000). The repetitive cycle of tissue damage 

and inflammatory cell recruitment becomes chronic with time. Even in the absence of sustained 

allergen, the chronic inflammation persists. Other immune cells that are recruited to the lung wall 

during the late response as a result of T-cell activity are neutrophils and basophils. Neutrophils, 

eosinophils, and other cells involved in the inflammatory response produce alterations in the 

structure and function of resident mucosal cells such as smooth muscle, fibroblasts, and 

epithelial cells. Chronic airway changes include wall thickening, subepithelial fibrosis, increased 

mucus production and goblet cell mass, myofibroblast hyperplasia, and epithelial cell 

hypertrophy which cause bronchoconstriction and AHR. The state of chronic and relapsing 

airway constriction may further lead to permanent remodeling of the airways. The amplified 

inflammation and therefore the impaired airflow associated with it, is thought to persist as long 

as an increased number of leukocytes is maintained in an activated state in the airways.  Thus, 

asthma is an immunoinflammatory disease in which T cells orchestrate the pathologic events. 

The details of specific roles of each cells in asthma pathogenesis is discussed below. 

 

2.1.2 Cellular mechanisms in asthmatic inflammation 

 Over the past 100 years, different models have been proposed to explain the 

pathophysiology of this complex disorder. The most widely accepted is that airway inflammation 

drives the asthma phenotype (Walter and Holtzman 2005). A new paradigm of asthma causation 

is based on the observation that inflammation develops in individuals who manifest both 
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increased susceptibility to epithelial injury or impaired healing and Th2 allergic sensitization. 

The early and late asthmatic responses occur as a result of interactions between resident 

structural and immune cells which together orchestrate an inflammatory cell influx, culminating 

in an amplified and prolonged airway inflammatory cascade, airflow limitation and eventually 

airway remodeling (Ferreira 2004). An understanding of these complex interactions is important 

to the development of novel approaches to asthma therapeutics. The focus of this section of this 

thesis will be on various cells involved in asthmatic responses and their respective roles in 

asthma pathobiology.  

 

2.1.2.1 Mast cells and Basophils 

Mast cells are major players in responses to the various signals of innate and acquired 

immunity, and thus can undergo immediate and delayed release of inflammatory mediators.  The 

unique anatomic position of the mast cells in the mucosa, submucosa and alveolar walls 

(Schwartz 1998) allows them to participate in lung allergic reactions. Mast cells constitute 0.25-

0.5% of the total nucleated bronchoalveolar lavage (BAL) cells and 3-5% of the cells from 

enzymatically-dispersed lung in normal subjects (Forsythe and Ennis 1998). compared with the 

seven-fold elevated mast cell numbers seen in asthmatic patients (Koshino, Arai et al. 1996). 

 It is believed that mast cells are the critical trigger during episodes of acute asthma 

(Broide, Gleich et al. 1991). The inhaled allergen interacts with mast cells on the luminal surface 

of the airway epithelium, stimulating their release of histamine and other mediators, thus 

increasing epithelial permeability by disruption of epithelial tight junctions. This allows 

penetration of allergen to the submucosal mast cells and other cells (Norn and Clementsen 1988). 

Activation of these cells via cross linking of the high affinity IgE receptor (FcεRI) leads to the 
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release of both preformed (e.g. histamine, peroxidase, chemotactic factors and neutral proteases) 

and newly generated (e.g. cytokines, sulfidoleukotrienes (LTs) and prostaglandins (PGs)) 

mediators. These mediators are responsible for the symptoms of the immediate response. The 

preformed mast cell mediators induce acute bronchoconstriction, vasodilation, vascular leakage 

and increased mucus secretion while the de novo-synthesized mediators in addition establish a 

critical milieu in which the late phase inflammatory response can proceed (Busse 1998). 

 Preformed histamine stored in the granules is released within 5-30 minutes of FcεRI 

aggregation, although both spontaneous as well as IgE-mediated histamine release has been 

reported to be increased in BAL mast cells of asthmatic persons (Flint, Leung et al. 1985). 

Prostaglandins D2 (PGD2) and F2α (PGF2α) are potent bronchoconstrictors which, when 

inhaled at subthreshold contractile concentrations, increase airway AHR in asthmatic subjects 

(O'Byrne 2002). The cysteinyl leukotrienes (LTC4, LTD4, LTE4), which can cause 

bronchoconstriction with up to 1000-fold greater potency than histamine, bind to receptors on the 

smooth muscle cells (Griffin, Weiss et al. 1983). Cysteinyl leukotrienes (CysLTs) cause smooth 

muscle cell proliferation and hypertrophy (Porreca, Di Febbo et al. 1996). Thus Bradding et al 

(Bradding, Walls et al. 2006) suggested that the presence of mast cells within airway smooth 

muscle (ASM) may mediate ASM hypertrophy and hyperplasia, and the smooth muscle 

dysfunction that is related to AHR and variable airflow obstruction.  

Mast cells may further participate in late asthmatic response and in chronic inflammatory 

changes via elaboration of a number of cytokines, including IL-4, IL-5, IL-6 and TNF-α 

(Bradding, Roberts et al. 1994). Mast cell generation of IL-4 may be an important factor in 

orienting uncommitted T cells towards a Th2 phenotype (Chomarat and Banchereau 1998) and 

may thereby promote Th2 cells secretion of IL-5 thus setting the stage for eosinophilic 
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inflammation (IL-5 is an eosinophil differentiation factor). Mast cells orchestrate infiltration of 

eosinophils not only through inducing up-regulation of vascular cell adhesion molecule-1 

(VCAM-1) on endothelial cells but also through release of eosinophil-chemotactic factors like 

platelet activating factor (PAF) and LTB4. In addition they enhance eosinophil survival by 

release of GM-CSF and IL-5 (Resnick and Weller 1993). In IgE-mediated reactions, mast cells 

provide an immediate preformed source of TNF-α, which has multiple pro-inflammatory effects, 

including leukocyte trafficking via enhanced adhesion molecules and chemokine expression as 

well as enhanced AHR (Thomas 2001). TNF-α also provides important maturational signal for 

DCs involved in development of immune responses (Cumberbatch, Fielding et al. 1994), and 

activates alveolar macrophages and neutrophils for inflammatory mediator production (Sirois, 

Menard et al. 2000). Thus, mast cells clearly provide a link between the early asthmatic phase 

and the late inflammatory phase. 

  

2.1.2.2 Macrophages 

The alveolar macrophages (AMs) are found in the alveolar spaces and conducting 

airways and can be retrieved by BAL. They are multifunctional cells, capable of either enhancing 

or suppressing inflammatory responses according to their microenvironment (Peters-Golden 

2004). AMs express the low affinity IgE receptor (FcεRII), and do so at increased levels in 

asthmatic subjects (Williams, Johnson et al. 1992). Evidence as reviewed by Lane et al suggests 

that the total number of peroxidase stained -positive AM obtained from BAL fluid are increased 

at 48 and 96 hrs after allergen challenge (Lane, Sousa et al. 1994) . 

 Activation of AMs through FcεRII signaling causes release of the pro-inflammatory 

cytokines IL-1 and TNF-α as well as leukotrienes (Lane, Sousa et al. 1994). And AMs produce 
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substantial amounts of LTB4, a potent chemoattractant for neutrophils and eosinophils and a 

neutrophil activator (Wenzel 2003). On comparison with healthy subjects, the AMs of atopic 

asthmatics produce more IL-1, IL-6, TNF-α and IL-10 and less IL-12, explaining their 

preferential induction of Th2 responses. Expression of granulocyte/macrophage colony 

stimulating factor (GM-CSF) is increased in the airways of asthmatics; approximately 65% of 

GM-CSF-positive airway cells are macrophages (Lane, Sousa et al. 1994). GM-CSF expression 

in the lung not only amplifies eosinophilic inflammation but also enhances MHC-II expression 

on both monocytes and AMs (Hawrylowicz, Caulfield et al. 2001) ), which could increase their 

antigen-presenting capacity. On the other hand, in some systems, AMs are poor antigen-

presenting cells and actively suppress T cells responses (Holt 1993). But the presence of GM-

CSF could potentially reverse the immunosuppressive effects of AMs (Bilyk and Holt 1993). 

Furthermore, the production of IL-10, a potent anti-inflammatory cytokine which inhibits both 

antigen-presenting and T cell functions, is reduced in monocyte and AMs of asthmatic 

individuals (Borish, Aarons et al. 1996). AMs also release monocyte chemotactic protein-1 

(MCP-1), which causes recruitment and activation of additional monocytes and macrophages in 

the lung (Lane, Sousa et al. 1994), and MCP-4, a potent recruiting signal for eosinophils and 

lymphocytes. Thus, AM which are otherwise immunosuppressive under homeostatic conditions 

possibly loose their suppressive function under inflammatory conditions and further amplify 

asthmatic responses (Bilyk and Holt 1993; Takabayshi, Corr et al. 2006) 

 

2.1.2.3 Neutrophils 

The role for neutrophils in asthmatic inflammation has been recently recognized. There 

exists a strong association between neutrophilic inflammation and severe asthma, corticosteroid 
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dependent asthma, asthma exacerbations, nocturnal asthma, asthma in smokers, occupational 

asthma and sudden onset fatal asthma (Kamath, Pavord et al. 2005).  Neutrophils release a 

variety of inflammatory mediators including lipids (LTB4, PAF, thromoboxane A2 [TXA2], 

LTA4, cytokines [IL-1β, IL-6, IL-8, TNF, TGF-β], proteases [elastase, matrix metalloproteinase 

(MMP-9), collagenase], microbiocidal products [i.e. lactoferrin, myeloperoxidase (MPO), 

lysozyme], reactive oxygen intermediates and nitric oxide [NO]), which together can cause 

airway epithelial injury, mucus hyper secretion and airway obstruction (Sampson 2000).  

Allergen challenge is an important trigger for neutrophil influx, and 4 hrs after segmental 

allergen (focused to specific part of bronchial tree) challenge the increases in neutrophil numbers 

correlated with IL-8 expression, levels of which are allergen dose-dependent (Nocker, Out et al. 

1999). The increased numbers of neutrophils in lung autopsy specimens from patients who died 

suddenly from asthma suggests their participation in the acute asthmatic inflammatory response 

(Sur, Crotty et al. 1993). Significantly, increased numbers of induced sputum neutrophils have 

been found in severe asthmatics compared to mild asthmatics and normal controls even in the 

absence of recent infections. Interleukin (IL)-8 and MPO levels (both indicators of neutrophil 

activation) were also increased in asthmatics with highest levels found in severe asthma 

(Jatakanon, Uasuf et al. 1999). Woodruff et al suggested that chronic severe asthma may be 

attributed to either chronic airway infection with viruses or atypical bacteria or that chronically 

activated airway epithelial cells hypersecrete neutrophil chemoattractants as IL-8 (Woodruff and 

Fahy 2002). However, it is still unclear whether neutrophilia occurs as a primary pathological 

process or is secondary to high dose corticosteroid therapy (which prolongs neutrophil survival) 

and needs further investigation. 
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2.1.2.4 Epithelial Cells 

The bronchial epithelium, being the primary interface for inhaled antigens, plays a key 

role in interactions between the external environment and the internal milieu. Our thinking of its 

role from merely being a physical barrier has been transformed by the recognition of its playing a 

central role in modulating chronic inflammation and in the maintenance of mucosal integrity 

(Busse 1998). Epithelial cells can be activated by endogenous (IL-1, TNF, IL-4, IL-13, TGF) or 

exogenous (LPS, virus, air pollutants, proteolytic enzymes) agents (Takizawa 2005). In 

asthmatics, they bear FcεRI and FcεRII receptors suggesting that they can be activated directly 

by IgE-bound allergens (Campbell, Vignola et al. 1994; Campbell, Vachier et al. 1998).  

Activated bronchial epithelial cells are the cellular source of a wide array of pro-

inflammatory cytokines and chemokines like IL-6, GM-CSF, IL-8 (CXCL8), eotaxin (CCL11), 

RANTES (Regulated on Activation Normal T cell Expressed and Secreted; CCL5) and Thymus 

and Activation Regulated Chemokine (TARC). The CC chemokines, RANTES and eotaxin 

cause primarily eosinophil influx and also recruitment of other inflammatory cells characteristic 

of chronic airway inflammation (Takizawa 2005).  The epithelial damage and desquamation in 

the airways of asthmatics has been attributed to basic proteins released by activated eosinophils. 

The levels of major basic protein (MBP) and eosinophil-derived neurotoxin are elevated in 

BALF of asthmatics (Broide, Gleich et al. 1991). Bronchial and alveolar type 1 epithelial cells 

constitutively express intracellular adhesion molecule-1 (ICAM-1), the levels of which are 

increased in asthmatic patients (Bentley, Durham et al. 1993), and this is suggestive of 

heightened capacity for recruitment, localization and activation of neutrophils, eosinophils and 

lymphocytes. The increased expression in asthmatics of thymic stromal lymphopoietin (TSLP), 

produced at the epithelial interface, correlates with the expression of the chemokine 
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TARC/CCL17 which  play a role in chemoattracting Th2 cells into the airways thus further 

amplifying the inflammatory cascade (Ying, O'Connor et al. 2005) . 

 

2.1.2.5 T lymphocytes 

Lymphocytes play pivotal roles in activation and establishment of chronic and persistent 

inflammatory processes in asthma (Busse 1998). Peripheral blood lymphocytes of patients 

experiencing acute exacerbations of asthma show marked elevations in T cell activation markers, 

including the IL-2 receptor (CD25), class II HLA-DR and a very late activation antigen (VLA-1) 

compared to control subjects (Arm and Lee 1992). In addition, increased numbers of activated T 

cells found in BAL fluid of asthmatics correlate positively with eosinophil recruitment into the 

airway wall, a characteristic of chronic airway inflammation (Bradley, Azzawi et al. 1991). A 

critical role for Th2 cells in asthma has been widely accepted.  Polarized Th2 cells preferentially 

express the receptors CCR3, CCR4 and CCR8 and thereby interact with their ligands, i.e. 

eotaxin, monocyte-derived chemokine (MDC) and TARC (Larche, Robinson et al. 2003). Ying 

et al demonstrated increased eotaxin and CCR3 expression in bronchial biopsies of asthmatics 

(Ying, Robinson et al. 1997), and the increased expression of CCR4 and its MDC and TARC 

ligands on airway epithelium after allergen challenge suggests possible lymphocyte recruitment 

to asthmatic lungs (Panina-Bordignon, Papi et al. 2001). 

 The increased expression by T cells of IL-4, IL-5 and GM-CSF in the bronchi of 

asthmatics emphasizes the central role for Th2 lymphocytes in the pathogenesis of this complex 

disorder (Robinson, Hamid et al. 1992). As reviewed previously, IL-4 is a switch factor for IgE 

production, up-regulates vascular cell adhesion molecule -1 (VCAM-1; enabling thereby 

eosinophil recruitment), and is a Th2-differentiation factor (O'Byrne, Inman et al. 2004). Studies 
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from IL-4 knock-out (KO) mice revealed no Th2 cytokine secretion by T cells recovered from 

airways, and this correlated with the absence of inflammatory airway changes (Chung and 

Barnes 1999).  Experiments with anti-IL-4 antibody experiments suggests that treatments given 

before sensitization prevent allergic inflammation, but those given after priming and before 

allergen challenge are not effective in preventing sequelae to allergic inflammation. Together, 

this indicates a role for IL-4 in the initiation and development of Th2-polarized allergen-specific 

immune responses. On the other hand IL-13 has been implicated in the effector phase of the 

immune response, such that it is sufficient to induce AHR and sub-epithelial fibrosis (Wills-Karp 

2004). Interestingly, a recent study showed that, independent of IL-13, IL-4 can still induce AHR 

and goblet cell hyperplasia, suggesting that an IL-13–dominant induction of these effects reflects 

either a greater production, persistence, or potency of IL-13 than IL-4 (Perkins, Wills-Karp et al. 

2006). 

 Other cytokines secreted by T cells include IL-3, IL-5 and GM-CSF (Busse 1998). IL-5 

plays an important role in the development, differentiation, activation, recruitment and survival 

of eosinophils (O'Byrne, Inman et al. 2004), all of which are important to late asthmatic phases 

(see section 2.1.2.6 below). IL-9, a T cell growth factor, increases in expression after allergen 

provocation in asthmatics (Erpenbeck, Hohlfeld et al. 2003) and IL-9 has been shown to promote 

eosinophil maturation in synergy with IL-5 (Louahed, Zhou et al. 2001). In addition IL-9 

transgenic mice display significantly enhanced eosinophilic airway inflammation, elevated serum 

total immunoglobulin E, and AHR following lung challenge (McLane, Haczku et al. 1998) thus  

suggesting its important role in asthma pathogenesis.  

 Thus, T cells act as important initiators and perpetuators of asthmatic inflammation 

through elaboration of various cytokines. Depletion of CD4+ T lymphocytes with anti-CD4 
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monoclonal antibody eliminates both eosinophilia and airway reactivity (Gavett, Chen et al. 

1994). Thus, T cells are the critical mediators of asthmatic inflammation but so far, asthma 

therapies available have not been able to address this immunoinflammatory cause. 

 

2.1.2.6 Eosinophils 

Blood and lung eosinophilia is a cardinal feature of bronchial asthma (Arm and Lee 

1992). Following allergen challenge, eosinophils appear in BAL fluid during the late response 

and are associated with decreases in peripheral eosinophil counts and appearance of eosinophil 

progenitors in the circulation (Busse 1998). Biopsy studies reviewed by Wardlaw et al confirmed 

that eosinophils were enriched by 100-fold (relative to neutrophils) in the airway submucosa of 

asthmatic subjects (Wardlaw, Brightling et al. 2000). Eosinophils develop from the bone marrow 

under the influence of IL-3, GM-CSF and late differentiation factor, IL-5, each of which are 

produced by T lymphocytes (Wardlaw, Brightling et al. 2000). Originally, it was believed that 

IL-5 alone stimulated eosinophil egress from the bone marrow. Overproduction of IL-5 in 

transgenic mice results in profound eosinophilia, while deletion of the IL-5 gene causes a marked 

reduction of eosinophils in the blood and lungs after antigen challenge (Rothenberg and Hogan 

2006). However, eotaxin has also been shown to stimulate eosinophil mobilization from the bone 

marrow of guinea pig femurs (Palframan, Collins et al. 1998). Eosinophil migration depends on 

the cooperative actions of chemotactic and priming signals. It has been demonstrated that 

eotaxin-evoked eosinophil accumulation in vivo is upregulated by co-administration of IL-5 

(Collins, Marleau et al. 1995). In addition double eotaxin-1/IL-5 gene deleted mice show greater 

suppression of eosinophilic recruitment to the lung and abolition of AHR associated with 

reduced IL-13 production (Mattes, Yang et al. 2002). Thus, IL-5 increases the pool of eotaxin-
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responsive cells and primes them to respond via chemokine receptor-3 (CCR3), which is 

expressed at high levels on eosinophils. In addition to the eotaxins, other chemokines, such as 

RANTES, monocyte chemoattractant protein -3 (MCP-3), MCP-4 and macrophage inflammatory 

protein-1α (MIP-1α), can each bind to the CCR3 receptors and are chemotactic for eosinophils. 

The fact that IL-4 and IL-13 are potent inducers of eotaxins (via STAT-6) support that T cells are 

critical to allergic inflammation (Menzies-Gow and Robinson 2001; Rothenberg and Hogan 

2006).  

 The extravasation of eosinophils from the circulation into the asthmatic airways is a 

tightly regulated process.  The signals generated at the site of allergic inflammation activate both 

endothelial cells and circulating leukocytes to express adhesion molecules (Arm and Lee 1992). 

Endothelial cells express P (Platelet)-selectin, ICAM-1 (Intercellular Adhesion Molecule-1) and 

VCAM-1 (Vascular Cell Adhesion Molecule-1) on stimulation with cytokines such as IL-4, IL-

13 and TNF. Eosinophils express P-selectin glycoprotein ligand-1 (PSGL) by which they bind to 

P-selectin (Wardlaw 1999). ICAM-1, which is the ligand for leukocyte function-associated 

antigen-1 (LFA-1) and Mac-1, binds to both neutrophils and eosinophils and VCAM-1 binds 

selectively to eosinophils via VLA-4 receptor (Bochner, Luscinskas et al. 1991). Wardlaw 

suggested a multistep model for eosinophil trafficking. The capture step (tethering) seems to be 

important in selective eosinophil migration through cooperative effects of PSGL-1/P-selectin and 

VLA-4/VCAM-1 in mild to moderate asthma, whereas in asthma exacerbations VLA-4/VCAM-

1 play dominant receptor-mediating roles in eosinophil capture. In the activation and arrest stage, 

eosinophils up-regulate their surface receptors in response to chemoattractants, such that 

eosinophil adhesion and transmigration is mediated by VLA-4/VCAM-1 and β2 (CD18) 

integrins binding to ICAM-1 (Wardlaw 1999). 
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BAL eosinophils recovered 19 hr after segmental bronchial allergen challenge was found 

to be hypodense compared to control subjects. Hypodense eosinophils are activated, expressing 

increased IgG and complement receptors, and producing inflammatory mediators (e.g. 

thromboxane B2) in response to stimuli (Kroegel, Liu et al. 1994). The cytokines IL-3, IL-5 and 

GM-CSF can activate eosinophils. Both FcγR and FcεR are expressed on the eosinophil surface, 

such that their binding by IgG and IgE respectively, induces eosinophil degranulation (Seminario 

and Gleich 1994).   

Mucosal damage in asthma seems to be caused by cytotoxic and proinflammatory 

mediators released by activated eosinophils. The basic proteins which are stored in distinctive 

secondary granules are major basic protein (MBP), eosinophil cationic protein (ECP), eosinophil 

peroxidase (EPO) and eosinophil derived neurotoxin (EDN), and all are toxic to bronchial 

epithelial cells (Wardlaw, Brightling et al. 2000). MBP is present in the sputum during severe 

asthma and has been localized by immunofluorescence to sites of respiratory epithelial damage 

(Filley, Holley et al. 1982). MBP is also capable of activating basophils, mast cells, neutrophils 

and platelets. ECP, a neurotoxin, has been shown to be toxic to guinea pig trachea, and is present 

in the submucosa of patients who died from asthma (Arm and Lee 1992). EPO functions both as 

a cationic toxin in the absence of hydrogen peroxide and as a peroxidase in the presence of 

hydrogen peroxide (Gleich, Adolphson et al. 1993). The combined EPO, hydrogen peroxide and 

halide enzyme system induces substantial damage to the airway epithelium and induces 

histamine release from airway mast cells (Davis 2002).  

Eosinophils also produce PAF, which is a chemotactic factor (for eosinophils and 

neutrophils) and powerful bronchoconstrictor. Eosinophils also preferentially synthesize LTC4, 

another potent mediator causing bronchoconstriction and changes in vascular permeability 
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(Gleich, Adolphson et al. 1993). Furthermore, eosinophils express mRNA for cytokines such as 

transforming growth factors (TGF-), TGF-α, TGF-β, IL-1, GM-CSF, and IL-5, and they secrete 

IL-1, GM-CSF, and IL-3 thus affecting other cells as well their autoactivation (Gleich, 

Adolphson et al. 1993). The experimental models of airway inflammation in which mice are 

gene-targeted to remove eosinophils showed structural changes compared to wild type mice thus 

suggesting key role of eosinophils in airway remodeling (Humbles, Lloyd et al. 2004; Lee, 

Dimina et al. 2004; Kay 2005). Anti-IL-5 treatments cause a reduction in bronchial mucosal 

eosinophils and are associated with decreased levels of TGF-β in BAL fluid, suggesting that 

eosinophil-derived TGF-β may regulate lung tissue modeling. Thus, eosinophils are not only 

central effector cells in chronic asthmatic inflammation, but may also contribute to airway 

remodeling (Flood-Page, Menzies-Gow et al. 2003) and their activation and recruitment depends 

greatly on T cells. 

 

2.1.3 AIRWAY HYPERRESPONSIVENESS (AHR) 

AHR or airway hyperreactivity is the hallmark feature of asthma and is defined as an 

increased ability of the airways to constrict in response to non-specific stimuli, such as 

histamine, methacholine, leukotrienes, chemicals and pharmacological or physical stimulation. It 

is important to measure the severity of AHR, as it is strongly correlated with severity of asthma 

(i.e. inflammation) and therefore with the treatment levels required for the existing symptoms. 

Multiple independent and interdependent pathways mediate the development of AHR in allergic 

inflammation. Airway narrowing may be caused by changes in neural tone, airway epithelial 

damage, airway wall edema, mucus hypersecretion and smooth muscle hypertrophy, each of 

which may be attributed to various inflammatory cells and mediators. On the other hand, AHR 

 23



can be induced even in the absence of inflammation. Thus, it is very important to dissect the 

underlying mechanisms in order to intelligently design appropriate treatment. 

 

2.1.3.1 AHR, nerves and neuropeptides 

The lungs and airways are innervated by a complex system of autonomic nerves with 

afferent and efferent effector functions. Three types of nerves control airway function.  The 

parasympathetic neurons in the vagus nerve play important roles in neural bronchoconstrictor 

mechanisms of the airway.  The main neurotransmitter released by this system is acetylcholine 

(Ach) which acts via muscarinic receptors (M1, M2 and M3). The airway smooth muscles 

express M3 receptors that cause bronchoconstriction, while mucosecretion is mediated by both 

M1 and M3 receptors expressed by submucosal glands. The M2 receptors are inhibitory type 

receptors that are expressed on cholinergic nerves and negatively regulate the release of Ach.  

Evidence suggests that in animal models of AHR and asthma there is increased release of Ach 

(Larsen, Fame et al. 1994).  

The sympathetic nervous system does not affect the airways directly but influences the 

cholinergic tone of the airway smooth muscles. Adrenaline and noradrenalin are the 

neurotransmitters that mediate their effect through stimulation of α or β receptors. The β2 

receptors are important in asthma as they mediate bronchodilatory effects by relaxation of 

smooth muscle (Rhoden, Meldrum et al. 1988). Another important system involved with neural 

airway control is the non-adrenergic non-cholinergic (NANC) system, which is described as 

excitatory (e-NANC) or inhibitory (i-NANC). The e-NANC consists of non-myelinated sensory 

C fibres and mediates their bronchoconstriction effects through the release of neuropeptides 

substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) (also called tachykinins), and 
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calcitonin gene related peptide (CGRP). These tachykinins bind to neurokinin receptors NK1 

(found on blood vessels), NK2 (expressed on smooth muscle cells) and NK3 (expressed on 

cholinergic nerves), respectively. Increased levels of SP and NKA have been detected in the 

airways of asthmatic patients (Howarth, Springall et al. 1995; Heaney, Cross et al. 1998), and 

inhalation or intravenous administration of NKA leads to bronchoconstriction in asthmatic 

subjects (Groneberg, Quarcoo et al. 2004). The i-NANC system mediates bronchodilatory effect 

through release of vasoactive intestinal peptide (VIP) and nitric oxide (NO). There are various 

mechanisms (explained below) by which neural control of the airways can be altered. 

 

2.1.3.2 AHR and inflammation   

Airway inflammation is currently considered an important part of the complex 

mechanisms causing AHR (Walter and Holtzman 2005). It has been suggested that AHR is a key 

indicator for inflammation (Gibson, Saltos et al. 2000). On the contrary the nonatopic subjects 

who never experienced asthma but had quadriplegia displayed increased AHR in response to 

methacholine without evidence of airway inflammation (Grimm, Chandy et al. 2000). In 

addition, it has been shown that sensitization of mice with limiting doses of Ovalbumin (OVA) 

can induce AHR in the absence of airway inflammation (Schneider, Li et al. 2001). Various 

inflammatory cells and mediators have been implicated in AHR. Degranulating mast cells 

release histamine, prostaglandins (PGD2), leukotrienes (LTC4, LTD4 and LTE4), TXA2, PAF, 

etc, which potently increase airway responsiveness in asthmatics compared to normal subjects. 

Mast cells also release proteases (e.g. tryptase) which signal to neurons via proteinase activating 

receptor-2 (PAR2) to stimulate the release of neuropeptides SP and CGRP (Steinhoff, Vergnolle 

et al. 2000). Evidence suggests a role for mast cells in AHR, as mast cell-deficient mice 
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pretreated with anti-IgE do not develop AHR (Martin, Takeishi et al. 1993), but, on the other 

hand, IgE-deficient mice can develop AHR and airway inflammation, suggesting that 

mechanisms other than IgE mediated mast cell degranulation may be induce AHR (Mehlhop, van 

de Rijn et al. 1997). 

 Eosinophils are the main effector cells of chronic asthmatic inflammation (Saeed, Badar 

et al. 2002; Rothenberg and Hogan 2006) and eosinophilia is of course related to AHR, but 

whether eosinophilic inflammation causes AHR is still a contentious issue. As reviewed above, 

eosinophils secrete a myriad of mediators (e.g., leukotrienes, PAF and eosinophil basic proteins) 

which are strong bronchoconstrictors. The latter mediators are cytotoxic to airway epithelial 

cells, and epithelial damage exposes sensory nerve endings to external stimuli. These then 

release neuropeptides which cannot be degraded (due to loss of enzyme production by damaged 

epithelium) and hence causes enhanced airway responses (Wills-Karp 1999). In addition, MBP 

has been shown to potentiate contraction of airway tissues in vitro without causing epithelial 

damage. Furthermore, the degree of M2 receptor dysfunction is related to the number of 

eosinophils surrounding the airway nerves (Fryer, Adamko et al. 1999). MBP has been shown to 

cause smooth muscle hyperreactivity by competitively inhibiting binding of Ach to M2 

receptors, thus increasing release of Ach and hence AHR (Wills-Karp 1999). Recently Lee et al 

showed using eosinophil lineage knock-out (PHIL) mice that following OVA sensitization and 

allergen challenge there was no mucus accumulation or AHR, suggesting an essential role of 

eosinophils in AHR and asthma pathology (Lee, Dimina et al. 2004). IL-5 gene knock-out or 

anti-IL-5 neutralizing antibody suppresses eosinophilia and AHR, while IL-5 gene over-

expression enhances these parameters (Sugita, Kuribayashi et al. 2003).  On the contrary, 

eosinophilic inflammation can occur without AHR, as eosinophilic bronchitis patients who have 
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never experienced asthma symptoms, develop eosinophilic inflammation on allergen challenge, 

but not AHR (Brusasco, Crimi et al. 1998). Humbles et al created eosinophil-depleted mice by 

manipulation of the GATA-1 promoter and found that, following asthma sensitization, AHR and 

mucus secretion were unaffected (Humbles, Lloyd et al. 2004).  Similarly,  anti-IL-5 suppressed 

eosinophilia but not AHR in asthmatic atopic patients (Sugita, Kuribayashi et al. 2003). 

Allergen-driven Th2 responses also develop in the absence of eosinophils (Humbles, Lloyd et al. 

2004). While a role for eosinophils in asthmatic pathology and to some extent in AHR is evident, 

other contributing factors may also be operative in AHR. The Th2 cytokine IL-13 is a central 

mediator in induction of AHR in the allergic lung (Wills-Karp, Luyimbazi et al. 1998). In 

addition, the role of undefined genetic components has been suggested in different strains of 

mice in the development of AHR irrespective of inflammatory input (Wilder, Collie et al. 1999).  

The variation in the association between eosinophil and development of AHR may be because of 

the differences in degranulation of eosinophils in different model systems or the probable role of 

IL-5 in release of tachykinins which is independent of its effect on eosinophils (Wills-Karp 

1999). 

 

2.1.3.3 AHR and smooth muscle 

 Smooth muscle connects the cartilaginous rings in the larger airways whereas it encircles 

the smaller airways, and thus the constriction of the latter causes more severe airway narrowing 

than the former (Ingram 1991). And equivalent degrees of airway smooth muscle (ASM) 

shortening, will have greater effect in airways with thickened (i.e., versus normal) walls (Hogg 

1993) as occurs in the bronchi of the patients dying of asthma (Schmidt and Rabe 2000). Such 

increases in the ASM may be attributed to hypertrophy and/or hyperplasia. The hypertrophic 
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response might result from mechanical restraint or pressure or volume stimulus, whereas 

hyperplasia may result from inflammatory mediators such as histamine, tryptase, PDGF, 

endothelins, etc. that bathe the smooth muscles of  the asthmatic airways (Black and Johnson 

1996). Cytokines such as IL-1 and IL-6 in the asthmatic airways can also potentiate ASM 

proliferation (Wills-Karp 1999). Smooth muscle contraction is dependent on intracellular 

calcium levels and activation of myosin light chain kinase (MLCK),  and cytokines  such as IL-

1β and TNF-α  modulate calcium signaling in ASM exposed to contractile agonists (Schmidt and 

Rabe 2000). In addition, IL-1 and TNF-α alter β-adrenoceptor signaling mechanisms, thus 

impairing the relaxation of smooth muscle (Wills-Karp 1999).  IL-5 or GM-CSF can also cause 

increased responses to Ach  in rabbit airways (Schmidt and Rabe 2000).  

In conclusion, a complex phenomenon such as AHR, where a myriad of interacting 

mediators, cytokines and cells are involved, is difficult to be attributed to a single specific 

causative agent.  

 

2.1.4 Immunogloblin E and G: Role in asthma pathobiology  

2.1.4.1 IgE antibody and its receptor 

Immunogloblin E (IgE), discovered 40 yrs ago by K. and T. Ishizaka (Kuby 2006) plays 

an important role in hypersensitivity reactions, and presently, including both early and late phase 

asthmatic reactions (Wills-Karp 2003). IgE has the shortest half-life of the immunoglobulins (2.5 

days) and much of it is found in the tissues. In normal healthy individuals, the serum 

concentration of IgE is ≈150 ng/ml.  In parasitized or atopic individuals the concentration of IgE 

can spike as high as 1000 ng/ml (Gould, Sutton et al. 2003; Wills-Karp 2003). B cell switching 

to IgE synthesis is a two-signal process; signal-1 is provided by Th2 cytokines IL-4 and IL-13, 
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which activate transcription at the IgE-specific locus, while the second signal is a B cell-

activating signal that involves engagement of CD40 on B cells by CD40 ligand (CD40L) on T 

cells, resulting in deletional switch recombination (Prussin and Metcalfe 2006). Mast cells and 

basophils can be important sources of IL-4 and 1L-13 (Bradding, Roberts et al. 1994; 

Devouassoux, Foster et al. 1999) and perhaps CD40L (Schonbeck and Libby 2001), so could 

provide both signals, but this would likely play greater roles in IgE amplification rather than in 

IgE induction. Furthermore, IgE responses in IL-4-deficient mice were found to be restored by 

reconstitution with T cells and not non-T cells (Schmitz, Thiel et al. 1994) suggesting 

importance of T cells in generating antibody responses. 

IgE binds to effector cells through the high affinity FcεRI receptor and/or the low affinity 

FcεRII receptor (i.e. CD23). The FcεRI receptor is abundant in mast cells and basophil 

membranes (200,000 molecules/cell) but it is expressed at lower levels on peripheral blood DCs, 

monocytes and Langerhan cells (Wills-Karp 2003). Ligation of FcεRI by cross-linking of IgE-

allergen complexes on mast cells triggers release of preformed and newly generated mediators, 

and this induces mucosal edema, mucus production and smooth muscle constriction in bronchial 

mucosa. Allergen activation of mucosal mast cells may also foster interaction with local cells 

expressing CD40 (e.g., B cells) and, in the presence of IL-4 and IL-13, induce IgE class-switch 

and thereby enhance local IgE synthesis (Gould, Sutton et al. 2003). When targeted to FcεRI on 

DCs through binding with allergen-specific IgE, allergens can effectively reduce the threshold of 

the DCs allergen recognition, allowing lower doses of allergen to efficiently trigger T cell 

stimulation. In addition, higher levels of FcεRI are found on the lung DCs of atopic asthmatics 

relative to healthy subjects.  Thus, IgE is a positive regulator of its receptors (Yamaguchi, Lantz 

et al. 1997).  
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2.1.4.2 IgG antibodies 

Immunoglobulin G (IgG) antibodies can mediate hypersensitivity reactions in animal 

models, but this has not been validated in humans. In normal healthy individuals the serum 

concentration of IgG is 10 mg/ml. IgG (primarily IgG1) mediates its action through activation 

receptors FcγRI, FcγRIIA and FcγRIIIA and inhibitory receptor FcγRIIB (Ravetch and Bolland 

2001). Evidence suggests that anaphylactic reactions can be triggered through IgG (Fc-specific) 

mediated mast cell activation in IgE deficient mice (Oettgen, Martin et al. 1994). Mast cells 

express IgG1 FcRs RIIB and RIII. Attenuation of passive anaphylaxis induced by IgG1 in Fcγ 

chain-deficient and FcγRIII-deficient mice while enhanced anaphylaxis in FcγRIIB-deficient 

mice suggests importance of IgG1 and its receptor in mast cell activation in vivo (Ravetch and 

Bolland 2001).  On the other hand, in human subjects the risk factor for asthma is allergen 

sensitization  or IgE antibodies and the presence of IgG (allergen-specific total IgG and IgG4) 

antibodies are not associated with development of asthmatic response (Platts-Mills, Vaughan et 

al. 2001; Platts-Mills 2001). 

In conclusion, both IgE and IgG1 in the mouse model and IgE in human subjects are 

important triggers for allergic inflammation in the airways. In animal models IgE has been 

suggested to transfer both acute and late phase reaction to allergen challenge (Babu and Arshad 

2001; Platts-Mills 2001). In clinical studies anti-IgE therapy thus has potential for attenuating 

both the early and late phase responses (Fahy, Fleming et al. 1997). 

In brief, on allergen exposure, DCs take up the allergen and migrate to the draining 

lymph nodes where they present antigen to T cells, polarizing them towards Th2 type cells. The 

latter secrete IL-4 and IL-5, which are required for IgE production and for recruitment and 

maintenance of eosinophils respectively.  On subsequent allergen exposures, IgE-activated mast 
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cells release an array of mediators that effect the immediate allergic reaction, whereas in the late 

phase reactions Th2 cells (by elaboration of cytokines and chemokines and further inflammatory 

cell recruitment) drive the immunopathology.  

 

2.1.5 Asthma therapeutics 

The goal of asthma therapeutics is minimization of symptoms, restoration of lung 

function as well as reversal of pathological changes within the airways. Some currently available 

asthma therapies are highly effective in controlling the asthmatic symptoms when used correctly. 

However, asthma is a disease involving abnormal immunological function, such that recent 

research strategies are being directed to addressing the immunoinflammatory basis of the 

disease. 

 

2.1.5.1 Pharmacological agents in asthma treatment 

Conventional treatments that have been used are primarily symptomatic in nature, 

targeting either the AHR (e.g., bronchodilators) or inflammatory responses (e.g., steroids) (Lin 

and Casale 2002). More refined approaches have included anti-IgE (Finn, Gross et al. 2003), -

cytokine, cytokine receptor Ab (Tomkinson, Duez et al. 2001; Foster, Hogan et al. 2002; Leckie 

2003), leukotriene antagonists (Ducharme, Hicks et al. 2002; Asakura, Ishii et al. 2004) or Th1 

skewing unmethylated cytosine-guanine dinucleotides (i.e. CpG motifs) (Jain, Kitagaki et al 

2003).  

Bronchodilators constitute an important part of asthma management, such that β2-

adrenoreceptor agonists are the most effective drugs for symptom relief. They induce smooth 

muscle relaxation by increasing intracellular levels of cyclic adenosine monophosphate and 
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opening potassium channels (Rabe and Schmidt 2001).  In addition, some studies show that they 

may have mast cell-stabilizing effects and thereby inhibit airway microvascular leak (Barnes 

1993). But evidence suggests that regular use of salbutamol can augment airway 

CXCL8/interleukin-8 responses to allergen challenge which could contribute to the airway 

inflammatory response (Gordon, Swystun et al. 2003). Some studies suggest that drug tolerance 

and worsening of the underlying inflammation (masked by the relieving effects of 

bronchodilation) cause delay in seeking treatment and thereby worsening of the unmanaged 

condition. As per the guidelines, short-acting inhaled β2-agonists should only be used on demand 

and for prevention of exercise-induced bronchospasm, and long-acting inhaled β2-agonists 

(LABAs) should only be used as required as adjunctive therapy with inhaled corticosteroids in 

patients whose asthma is not controlled with low to medium doses of the inhaled corticosteroid 

(Kelly 2005). Methylxanthines such as theophylline are non-selective phosphodiesterase 

inhibitors which, being effective both in early and late asthmatic responses, are used as an 

adjunct therapy with corticosteroids. Their use is limited due to their non-selective inhibition of 

PDEs (Rabe and Schmidt 2001).  

Corticosteroids (CS) are the mainstay of modern asthma management because of their 

anti-inflammatory effects.  Long term use of systemic corticosteroids is limited by side effects, 

such as adrenal suppression and withdrawal symptoms (Rabe and Schmidt 2001), but inhaled 

corticosteroids are the drugs of first choice in long-term asthma treatment. Corticosteroids bind 

to the glucocorticoid receptor (GR) localized in the cytoplasm of target cells, which then 

translocate to the nucleus where it binds DNA-specific sequences (glucocorticoid response 

elements) resulting in altered transcription (Barnes 1993).  Corticosteroids increase eosinophil 

apoptosis, decrease mast cell numbers and inhibit mediator expression by macrophages and 
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cytokine release by T cells (Barnes 1993).  Corticosteroids, not only inhibit T cell migration but 

appear to arrest DCs in an immature state, characterized by retained endocytic activity and 

reduced expression of MHC II, costimulatory receptors, and T cell–activating cytokines such as 

IL-12  (Georas 2004). It has also been suggested that CSs also inhibit GM-CSF dependent uptake 

of  antigen by DCs, but not the antigen (pre-processed) presentation per se (Holt and Thomas 

1997).  Due to concerns with safety issues, CSs with high local anti-inflammatory properties 

such as ciclesonide which were earlier under trial (Taylor, Jensen et al. 1999) have now been 

shown to inhibit T cell migration and cytokine production (Heijink, Kauffman et al. 2007; 

Magnussen, Hofman et al. 2007). 

Mast cell stabilizers such as cromolyn and nedocromil sodium have anti-inflammatory 

effects attributable to their inhibition of mediator release by mast cells, but not the 

bronchodilator effect and are used for prophylactic treatment (Barnes 1993).  Anti-leukotrienes 

are the class of drugs that inhibit either LT synthesis by inhibition of 5-lipoxygenase or via their 

interaction with LT-receptors. They significantly improve lung function by causing 

bronchodilation as well as preventing eosinophil accumulation and are used as add-on therapy 

with inhaled corticosteroids (Rabe and Schmidt 2001; Ducharme, Schwartz et al. 2004). 

 

2.1.5.2  Allergen-Specific Immunotherapy (SIT) 

SIT is disease modifying, rather than palliative. It involves subcutaneous or more recently 

sublingual injections of gradually increasing quantities of specific allergens over time to an 

allergic patient, until a dose is reached that induces active immunity to the allergen, thereby 

minimizing symptomatic expression of the disease as well as reducing medication usage (Larche, 

Akdis et al. 2006).  Successful SIT is associated with increases in allergen-specific IgG4 
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antibodies, which block the allergen’s epitopes access to FcεRI-bound IgE and thereby prevents 

allergen engagement by IgE thus reducing IgE-induced mast cell degranulation (Larche, Akdis et 

al. 2006), but also IgE-facilitated allergen presentation mediated by CD23 (van Neerven, 

Wikborg et al. 1999). In contrast, if allergen-specific IgG and IgE are directed against distinct 

allergen epitopes the IgG will not block the IgE-dependent response (Denepoux, Eibensteiner et 

al. 2000). It has been suggested that in the absence of pro-inflammatory signals, as occurs in SIT, 

allergen presenting DCs are modulated into IL-10- producing cells, which induces T-regulatory 

cell differentiation, thus inhibiting inflammatory responses (Larche, Akdis et al. 2006).  SIT also 

modulates T cell responses through induction of both T cell anergy and IL-10-producing T 

regulatory -1 (Tr1) cells and/or CD4+ CD25+ regulatory T cells in sufficient numbers to down-

regulate the allergic response (Till, Francis et al. 2004; Schmidt-Weber and Blaser 2005).  It is 

the only treatment available for specific allergy but is not very effective in patients with multiple 

sensitivities, which is the usual case (Adkinson, Eggleston et al. 1997). Long-term duration of 

therapy along with uncertainty to achieve tolerance adds to its disadvantages.  

 

2.1.5.3  Immunomodulatory Treatment  

As reviewed earlier, IgE is an important mediator of asthmatic inflammation in the 

airways and can transfer early and late phase reactions, making it an important target for asthma 

therapeutics.  Moreover, anti-IgE has been shown to attenuate early and late phase responses in 

clinical trials (Fahy, Fleming et al. 1997). Recently, US Food and Drug Association (FDA) has 

approved humanized monoclonal anti-IgE antibodies such as Omalizumab for use in patients 

refractory to the treatment with corticosteroids. It is directed against the receptor-binding domain 

of IgE, thus preventing IgE binding to FcεRI receptors on mast cells and basophils and inhibiting 
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IgE and allergen-dependent degranulation and mediator release. As FcεRI receptors are 

expressed on DCs and CD23 on B cells, it has been suggested that anti-IgE might interfere with 

antigen presentation to T cells (Avila 2006). So far the clinical trials done indicate that 

Omalizumab reduces inflammation, provides symptomatic relief and reduces steroid use in 

patients with allergic asthma (Buhl 2005). However, Omalizumab does not improve airway 

hyperreactivity, but is used as add-on treatment with corticosteroids (Busse, Corren et al. 2001; 

Djukanovic, Wilson et al. 2004). High cost, injection site reactions, risk of anaphylaxis are 

significant side-effects associated with anti-IgE therapy (Avila 2006). 

 The critical role of cytokines in allergic inflammation has lead to the development of 

strategies to modulate cytokine activity as a novel therapeutic approach for asthma. Since IL-4 

has the ability to drive Th2 differentiation, it is an attractive target for inhibition. Numerous IL-

4-blocking agents, such as soluble IL-4 receptors, anti-IL-4 antibodies, IL-4 mutein (binds to and 

blocks IL-4Rα and IL-13Rα1), anti-IL-4 receptor antibody and STAT-6 inhibitors interfering 

with downstream IL-4 signaling have been tried. Due to conflicting findings, some of the 

treatments have been withdrawn while others need further investigation (Barnes 2003). Although 

IL-4 antagonism has been shown to be effective in humans and mice (Henderson, Chi et al. 

2000; Steinke and Borish 2001), it has been shown to be unnecessary for the maintenance of 

memory T cells (Yamashita, Shinnakasu et al. 2004) which might explain its’ less than optimal 

efficacy.  

IL-5 mediates eosinophilic inflammation, such that anti-IL-5 therapy can reduce AHR 

and eosinophilia in asthma-phenotype guinea pigs (Mauser, Pitman et al. 1993). In human trials 

with a monoclonal anti-IL-5 (Mauser, Pitman et al. 1993) the subjects showed reductions in 

sputum and circulating eosinophils but not reduced AHR or late phase responses (Leckie, ten 
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Brinke et al. 2000). Similarly, blood and sputum, but not tissue eosinophilia, can be reduced 

without inhibiting AHR (Flood-Page, Menzies-Gow et al. 2003). Anti-IL-13 effectively 

suppresses lung inflammation and partially suppresses airway remodeling, goblet cell 

hyperplasia, and subepithelial fibrosis. Anti-IL-13 had little effect on AHR (Kumar, Herbert et 

al. 2004) in one study, but in another study it was found to be effective (Yang, Volk et al. 2004). 

A soluble form of the IL-13 receptor, IL-13Rα2, has been used as a decoy receptor for secreted 

IL-13 and was found to be effective in blocking IgE generation, pulmonary eosinophilia and 

AHR in mice (Wills-Karp, Luyimbazi et al. 1998). As reviewed by O’Byrne, soluble TNF-α 

receptor-IgG1Fc fusion protein (i.e. Etanercept) therapy improves lung function and 

methacholine AHR in severe asthmatics and in patients unresponsive to steroids (O'Byrne 2006). 

Nevertheless, overall, current evidence suggests that targeting individual cytokines in asthma 

will not be an appropriate therapeutic approach. 

Immune deviation (one of the aspects of which is skewing Th2 to Th1) has recently been 

proposed as a viable therapeutic option. Gavett, O’Hearn et al showed that administration of IL-

12, a regulator of Th1 cell responses, to rats inhibited allergic inflammation. In human trials IL-

12 treatments resulted in a significant decrease in blood and sputum eosinophil counts, but had 

no such effect on allergen-induced AHR or late asthmatic responses (O'Byrne 2006). Interferon-γ 

(IFN-γ) inhibits Th2 cells, but administration of nebulized IFN-γ to asthmatic subjects did not 

reduce eosinophilic inflammation (Boguniewicz, Martin et al. 1995) despite the fact that it 

ameliorated inflammation in animal models (Barnes 2003). It has also been suggested that 

increasing biological responsiveness to Th1-promoting cytokines like IL-12 and IL-18 (resulting 

in enhanced IFN-γ production) by using chemically modified allergen glutaraldehyde-

polymerized OVA prevents Th2-responses without necessarily changing expression of the 
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cytokines themselves (Lewkowich, Rempel et al. 2005). Unmethylated cytosine-guanine 

dinucleotides (i.e. CpG motifs) are enriched in bacterial DNA. They specifically interact with 

Toll like receptor-9 (TLR-9) and, through upregulation of costimulatory molecules, stimulate the 

production on IL-12 and IL-18 by APCs and IFN-γ by NK cells, and thereby induce a strong 

Th1-biased response (Wohlleben and Erb 2006).  Numerous reports confirm the protective effect 

of CpG-ODNs given with, or conjugated to allergen in acute and chronic allergic inflammation 

and airway remodeling (Jain, Kitagaki et al. 2003). Evidence suggests that CpG-ODNs inhibit 

the Th2 responses by induction of IFN-γ and IL-10 (Kitagaki, Jain et al. 2002). These effects are 

associated with, but not dependent on Th1 responses, as studies have confirmed the anti-allergic 

effects of CpGs are independent of IFN-γ and IL-12 (Kline, Krieg et al. 1999). Since Th2 

responses to inhaled allergen recur as little as 4 weeks after a single dose of CpG DNA (Broide 

and Sriramarao 2001), imposing limitation to its use. Furthermore, Th1 responses stimulate 

delayed type hypersensitivity or cellular immunity which does not occur in healthy subjects and 

is likely not desirable as a therapeutic outcome. 

 

2.2 DENDRIIC CELL IMMUNOBIOLOGY 

DCs are a family of antigen-presenting cells (APC) whose ability to process and present 

antigens makes them crucial in regulating immune responses. The decision whether or not 

encounter with an antigen will lead to an immune response is in some respects controlled at the 

level of APC and is subject to tight regulation (Lambrecht, Pauwels et al. 1996). DCs located in 

the peripheral tissues, such as mucosal surfaces, skin, spleen etc, form an efficient detection 

system for foreign antigens (Steinman 1991). 
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2.2.1 Dendritic cells (DC) in the lung 

DCs develop from hemopoietic precursors. They are broadly classified as either 

conventional DCs, which includes both the myeloid and lymphoid subsets, or plasmacytoid DCs 

(pDCs). Human DC1 are analogous to the conventional DCs in mice, while in the human DC2 

subset is analogous to pDCs (Grayson 2006). Two models have been suggested with regards to 

generation of functionally distinct subsets of DC. The functional plasticity model suggests that 

all DC come from a single hematopoietic lineage, and that specific subsets represent different 

activation states, which arise under local environmental conditions. On the other hand, the 

specialized lineage model emphasizes separate developmental lineages that produce specialized 

and functionally committed DC subsets. But Shortman et al have suggested that a mixture of 

these two models may be operative, and have proposed functional plasticity as a general feature 

(Shortman and Liu 2002).  

DCs are distributed throughout the lung and can be found in the airway wall, lung 

parenchyma, alveolar surface, visceral pleura and pulmonary vascular bed. In most species, the 

steady state density of DCs in the airway epithelium ranges from 500-1000 per mm2.  The half-

life of lung DCs ranges from 1.5-2 days in the airways to 3-4 days in the periphery, and these 

turnover rates increase markedly in inflammatory conditions (Stumbles, Upham et al. 2003; 

Grayson 2006).  The DCs in the conducting airways of mice are of myeloid origin, expressing 

CD11c, MHC II and CD11b, and low to intermediate levels of CD205 (DEC-205). The origin of 

the DC in the conducting airways of mice is unknown, but they are irregularly-shaped cells 

comparable to blood-derived DCs located in the epithelial and subepithelial tissue of bronchi and 

bronchus-associated lymphoid tissue (BALT) (de Heer, Hammad et al. 2005).  The interstitial 

DCs in mice and humans are immature CD11c+ cells of myeloid origin, express low levels of 
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costimulatory markers like CD40, CD80, CD86, and have a longer half-life of about 10 days. 

The same is true for human alveolar DCs (de Heer, Hammad et al. 2005). On the other hand, 

mouse alveolar DCs, which are CD11c+, CD11b+ and F4/80+, have been shown to retain antigen 

for about 8 weeks in situ, which could in part explain the chronic inflammatory nature of asthma 

(Julia, Hessel et al. 2002). Recently, a plasmacytoid DC (pDC) population was identified in the 

human enzymatic lung digests characterized by their unique phenotype (i.e., IL-3 receptor 

(CD123)+, blood-derived cell antigen-2 (BDCA-2)+, CD11c- with no expression of maturation 

markers (Demedts, Brusselle et al. 2005). Similarly, in mice, pDCs found in enzymatic lung 

digests are CD11cdim, positive for the granulocyte marker Gr-1, B cell marker B220 and 120G8, 

and secrete IFN-α  on exposure to virus (de Heer, Hammad et al. 2005) 

In mouse lymphoid tissues, at least five subsets of DC have been described based on 

expression of  MHC class II, CD11b, CD205, CD4, and CD8 (Shortman and Liu 2002). 

However, in the mouse respiratory tract (RT), a large population of CD11chighCD4–CD8–

CD11b+CD205+ "myeloid" DC (the most likely DC population involved in trafficking from the 

RT to the draining lymph nodes), a small pDC-like population of CD11cintI-Ad low120G8pos cells 

(Asselin-Paturel, Brizard et al. 2003)) and a prominent population of CD11cneg120G8pos cells 

was observed in both lung and airways (von Garnier, Filgueira et al. 2005). In addition to these 

DCs, a CD11chighI-Ad lowCD2pos macrophage population is found in the lung parenchyma, and 

these have a potentially suppressive activity, and therefore   could play an important role in 

immunological homeostasis (von Garnier, Filgueira et al. 2005). 

Culture of mouse bone marrow in GM-CSF/IL-4 results in expansion of myeloid DC 

(Lutz, Kukutsch et al. 1999), and similar culture of human CD14+ blood monocytes give rise to 

CD11c+ HLA-DRlow E-cadherin- langerin- (i.e., myeloid) DC (Sallusto and Lanzavecchia 1994). 
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In the absence of inflammatory signals these DCs remain immature in phenotype, while on 

addition of maturational signals such as LPS or TNF-α, they become morphologically and 

functionally mature (Lutz, Kukutsch et al. 1999). 

 

2.2.2 DCs, antigen presentation and peripheral surveillance 

DCs continuously patrol the respiratory mucosal surfaces for inhaled foreign as well as 

endogenous antigens. This process includes (i) a constant immigration of the DCs to the lung, (ii) 

their capacity to take up and process these antigens and (iii) their transport and efficient 

presentation to T cells in the draining lymph nodes, and ideally culminates in the induction of 

appropriate immune responses (Vermaelen and Pauwels 2005).  Under steady-state conditions, 

DC or their precursors are constantly recruited from the blood to the lung (Holt, Haining et al. 

1994). DC homeostasis in lymphoid organs is maintained by migration of DC precursors 

(through the blood) which mature into DCs, divide a few times and then die, leaving a void to be 

replenished by bone marrow precursors (Liu, Waskow et al. 2007). It has also been suggested 

that DC are continuously replaced through successive cell divisions of antigen-bearing precursor 

cells that pass antigen molecules onto their progeny thus maintaining antigen presence in the 

population (Diao, Winter et al. 2007). Under inflammatory conditions, increased number of lung 

DCs are recruited to lung through the chemokine RANTES, macrophage inflammatory protein-

1α (MIP-1α) and MIP-3α which are secreted by epithelium and chemoattract immature DCs 

expressing CCR1, CCR5 and CCR6 receptors (Vermaelen and Pauwels 2005). The capacity of 

the DC to capture and process antigens is highly dependent on their stage of differentiation. 

Immature DCs have an immense capacity to phagocytose particles and microbes (Henderson, 

Watkins et al. 1997). DCs extend their pseudopodia into the airway lumen and capture antigen 
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there in, processing these into small immunogenic peptides. Immature DCs can take up antigen 

very efficiently by macropinocytosis or endocytosis via mannose, CR3, FcγR, FcεR, Toll-like 

receptors, DC-SIGN i.e. DC-specific intercellular adhesion molecule [ICAM]-3-grabbing 

nonintegrin receptors. Deslee et al recently illustrated the role of the mannose receptor in house 

dust mite (i.e., Der p 1) allergen uptake by monocyte derived-DCs and showed that this process 

is more efficient in dust mite-sensitive patients compared to healthy donors (Deslee, Charbonnier 

et al. 2002). As noted above in secondary responses, IgE and FcεR1-mediated allergen uptake is 

another important mechanism of allergen presentation which may lower the antigen recognition 

threshold of atopic patients and possibly perpetuate allergic tissue inflammation (Lambrecht, 

Pauwels et al. 1996; Hammad 2003). Once DC takes up the antigen the process of antigen 

processing and cellular maturation starts.   

Chemokine receptors involved in homing of DCs to peripheral tissues (primarily CCR1, 

CCR5, and CCR6) are down-regulated (Luster 2002) allowing the maturing DC to escape from 

the tissue and enter the lymph flow. Associated with this change is up-regulation of CCR7, 

which allows the dendritic cell to respond to CCL19/CCL21. CCL19 (MIP-3β) and CCL21 are 

expressed by high endothelial venules of the draining lymph node. Thus, the DC attains the 

ability to hone in to the lymph node (Saeki, Moore et al. 1999). While expression of  CCR5, 

which binds MIP-1α,  MIP-1β and RANTES, is reduced as maturation progresses, the expression 

CCR7, a receptor for the lymphoid chemokines,  stromal cell-derived factor-1α (SDF-1α; a 

CXCR4 ligand), MIP-3β (a.k.a  EBI1 ligand chemokine, ELC) and CC chemokine 6Ckine 

(secondary lymphoid tissue chemokine, SLC) is enhanced (Austyn 2000; Grayson 2006). This 

indicates that mature DCs respond preferentially to chemokines expressed in T cell-rich areas of 

secondary lymphoid tissues (Lin, Suri et al. 1998).  
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Several other phenotypic changes occur as DC enter lymph nodes, such as increases in 

expression of costimulatory and antigen presentation-associated molecules, including 

CD80/CD86 (B7.1/B7.2), CD1, intercellular adhesion molecule-1 (CD54), lymphocyte function 

associated antigen 3 (LFA-3), and MHC class I and II expression (Reis e Sousa 2006). The DCs 

also undergo significant shape change, with development of prominent dendrites. While these 

phenotypic changes are occurring, the antigen taken up by the above-noted mechanisms 

accumulate in the acidic endocytic compartment, where they are proteolytically degraded into 

peptides of 13 or more amino acids. These are then loaded on newly synthesized or recycling 

MHC-II molecules, which are then transported to the DC plasma membrane for presentation. 

The phagocytic capacity of DCs decreases as the antigen presentation ability increases with 

maturation (Guermonprez, Valladeau et al. 2002). 

DC may interact with any passing T cell in the lymph node, but the antigen-specific 

receptor on the T cell (the TCR) scans the allergen peptide located MHC molecules on the DC. 

On presentation of the appropriate antigen in the correct MHC context, the TCR will fully 

engage forming a well-characterized immunologic synapse between the T cell and dendritic cell, 

thereby activating the T cell (Grayson 2006). A naïve T cell becomes an effector cell by the 

signals it receives from the DCs.  Signal 1 is delivered through the TCR when it engages an 

appropriate peptide-MHC complex, signal 2 is the co-stimulation signal through CD28 when it 

engages CD80 and/or CD86, and signal 3 is the signal from APC to T cells to differentiate later 

to an effector cell (Reis e Sousa 2006). 

 

2.2.3 Dendritic cells and Th2 polarization 
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The environment in which the DC is stimulated, the type of stimulus present and 

importantly the origin of the DCs are known to play important roles in shaping the effects that 

DCs have on the differentiation of the naive T cells to Th1, Th2 or regulatory T cell phenotypes 

(Reid, Penna et al. 2000). Th1 cells secreting IFN-γ develop predominantly in response to 

intracellular pathogens (bacteria and virus) whereas Th2 cells producing IL-4, -5 and -13 develop 

in response to extracellular pathogens (parasites and allergens) (Grayson 2006).  

Under resting conditions, lung DCs do not secrete IL-12, but do express IL-6 and IL-10 

so that airway mucosal responses are Th2-biased (Constant, Brogdon et al. 2002). On the 

contrary, mouse skin DCs produce IL-12 in response to contact allergens and hence promote Th1 

response (Grabbe and Schwarz 1998). It has been shown that injection into syngeneic mice of 

DC subsets pulsed ex vivo with a protein antigen, keyhole limpet hemocyanin, directs the 

development of distinct Th cells. Antigen-pulsed GM-CSF-treated CD8α- DCs induce a Th2-

type response, whereas injection of similarly treated CD8α+ DCs leads to Th1 differentiation in 

vivo (Maldonado-Lopez, De Smedt et al. 1999). However, antigen-pulsed CD8α+ DCs (not 

treated with maturation or tolerogenic stimuli) have been shown to tolerize asthma in a mouse 

model (Gordon, Li et al. 2005). It has also been suggested that  Th2 might be a default pathway, 

that is type 2 T cells would develop spontaneously in the absence of an IL-12 signal  (STAT-4) 

that represses the Th2-polarizing transcription factor GATA-3 (Moser and Murphy 2000). In 

addition, it has been shown that splenic or bone marrow-derived DCs (both OVA-pulsed and 

GM-CSF-treated) when given locally (Lambrecht, De Veerman et al. 2000; Sung, Rose et al. 

2001) or systemically (Graffi, Dekan et al. 2002) can sensitize Th2 cells for induction of airway 

eosinophilia and AHR, suggesting that the lung environment preferentially induces Th2-

responses. Not only the specific tissue or organ environment, but also the antigen dosage, affinity 
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and length of response may also affect Th1/Th2 polarization (Rogers and Croft 1999). It has 

been shown that while high levels of lipopolysaccharide (LPS) results in Th1-responses, low- 

level LPS exposure provides a positive stimulus (signal through TLR-4) for induction of Th2-

dependent immunity via affects on DCs (Eisenbarth, Piggott et al. 2002). Signals from the tissue 

microenvironment (e.g., epithelial cell-derived TSLP, PGE2, histamine, or β2-agonists) can also 

polarize myeloid DCs to induce Th2 responses (Upham and Stumbles 2003).  

On encounter with T cells, mature DCs present not only pathogen- derived antigens as 

MHC-peptide complexes (signal 1) and costimulatory molecules (signal 2) but also molecules 

that polarize the T cells (signal 3). For example, bacterial CpG-DNA motifs induce type 1 DCs 

(which expressed elevated levels of IL-12) promote Th1 cells, whereas helminth eggs or worms 

induce type 2 DCs (which had low IL-12 production) induce Th2 cells through expression of 

OX40L. Thus pathogens evoke host-protective immune responses by conditional priming of 

immature DCs (Kalinski, Hilkens et al. 1999; Reis e Sousa 2006). 

 

2.3 IMMUNOLOGICAL TOLERANCE 

Tolerance is defined as the acquisition of non-reactivity of immune system towards a 

particular antigen. The importance of tolerance towards self-antigens was first appreciated by 

Erhlich and Morgenroth when they discovered that goats injected with red blood cells from 

another goat always produced haemolytic antibodies, whereas goats immunized with their own 

red blood cells produced no antibody response. They coined the term “horror autotoxicus” to 

describe this (reviewed by (Paul 2003)). Tolerance is fundamental to the normal functioning of 

the immune system, but we have known for sometime that it is also possible to induce tolerance 

to non-self antigens (e.g. through oral tolerance) (Lowney 1965). This changing conceptual 
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framework of tolerance came with organ transplantation studies (Billingham and Brent 1956; 

Scully, Qin et al. 1994) that provided compelling evidence that tolerance is an acquired state, and 

that mechanisms such as anergy (lymphocyte survival in an inactive form), immune privilege, 

activation induced cell death and dominant regulation (suppression) may be important.  Thus 

immunological tolerance may be defined as a mechanism by which potentially pathogenic 

adaptive immune responses are prevented, suppressed or shifted to a non-pathological mode 

(Weiner 2001) without changing the Th1/Th2 balance. In the context of allergic disease, a 

poignant question in my own work is why a portion of the population is allergic but the rest are 

unresponsive to allergens i.e. they are tolerant. Three different mechanisms are of importance in 

allergen tolerance. 

2.3.1 Immune Deviation 

Although immune deviation in broader sense means deviating allergic immune response 

to any other protective response but for the purpose of this thesis, we have used it relative to 

Th1/ Th2 balance. With the recognition of Th1 and Th2 cells, it was thought that it was Th1 

versus Th2-specific cytokines (i.e., IFN-γ versus IL-4, IL-5 and IL-13, respectively) that 

determined healthy versus allergic status. Some early reports in which limiting dilution analysis 

was performed to quantify the frequency of  grass pollen-reactive IL-4- versus IFN-γ-producing 

cells in the peripheral blood of healthy and allergic subjects suggested that Th1-skewed 

responses predominated in healthy subjects (Li, Simons et al. 1996). This incited a search for 

methods to skew atopic/Th2 responses to a “protective” Th1 mode. Various strategies, including 

use of IL-12, IFN-γ and CpG-ODN motifs as skewing adjuvants were used, with limited success, 

as discussed above. Although CpG-containing immunostimulatory DNA sequences (ISS) have 

been reported to shut down Th2 responses quite effectively (Hessel, Chu et al. 2005) they have 
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been reported to reduce allergic lung inflammation for 4-6 weeks (Sur, Wild et al. 1999; Broide 

and Sriramarao 2001) Besides this, they do not inhibit IgE-mediated mast cell/basophil 

degranulation (Ikeda, Miller et al. 2003). 

2.3.2 Anergy 

As stated by Schwartz, T cell anergy is a tolerance mechanism in which the lymphocyte 

is functionally inactivated following an antigen encounter, although it remains alive for an 

extended period in a hyporesponsive state. Models of T cell anergy affecting both CD4+ and 

CD8+ cells fall into two broad (but not perfect) categories (Schwartz 2003). One is a state of 

growth arrest called T cell clonal anergy, and the other represents a more generalized inhibition 

of proliferative and effector functions, which is called adaptive tolerance, but is sometimes 

referred to by others as in vivo anergy (Perez, VanParijs et al. 1997).  

The induction of an anergic state in Th2 cells represents an active process, and is 

mediated by modulation of APC i.e. by down regulating the T cell activating capacity of APC 

(Taams and Wauben 2000).  The anergized cells can be either CD4+ or CD8+ (Sato, Yamashita 

et al. 2002) and they produce very little in the way of immunoregulatory cytokines as IL-2, IL-4, 

IL-10, IFN-γ or TGF-β. It has been reported that suppression by anergic T cells is mediated via 

the APC, either through modulation of the T cell-activating capacity of the APC (APC/T cell 

interaction), or by inhibition of T cells recognizing peptide/MHC in close proximity on the same 

APC (T/T cell interaction) (Taams, van Rensen et al. 1998).  Evidence suggests that allospecific 

mouse T cell clones rendered unresponsive inhibit proliferation by other responsive T cells 

specific for the same alloantigens. This inhibition requires the presence of APC, such that the 

coculture of anergic T cells with bone marrow-derived DCs leads to profound inhibition of the 

ability of the DC to stimulate T cells subsequently with the same or a different specificity. The 
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affected DC expressed low levels of MHC class II, CD80 and CD86. (Vendetti, Chai et al. 

2000). This suppression is not attributable to passive competition for ligands on the APC surface, 

IL-2 consumption, or cytolysis, and is not mediated by soluble factors or reversed by addition of 

neutralizing anti-IL-4, anti-IL-10, and anti-TGF-β antibodies. Once the APCs are affected, they 

themselves can directly tolerize naïve T cells (Taams, Boot et al. 2000). Anergic T cells have 

been shown to profoundly inhibit the proliferation of responsive T cells in an antigen-specific 

manner and to greatly reduce their secretion of IL-2, IFN- γ, IL-4, IL-10 and TGF- β (Chai, 

Bartok et al. 1999). Reversal of the anergy can be accomplished with human clones by the 

addition of IL-2 (Essery, Feldmann et al. 1988).  

2.3.3 Regulatory /Suppressor T cells 

2.3.3.1  Naturally occurring CD4+CD25+ T regulatory cells (Treg):  
 

CD4+CD25+ Treg cells were first described in mice with potent regulatory functions 

(Sakaguchi, Sakaguchi et al. 1995; Sakaguchi, Sakaguchi et al. 2001) and similar population was 

also described in humans (Jonuleit, Schmitt et al. 2001).  

CD25+ cells comprise 5% of thymic CD4+CD8− T cells and rely on radio-resistant 

elements of the thymus such as epithelial cells for their selection (Bach and Francois Bach 2003). 

Evidence has been provided that CD25+ T cells emigrate from the thymus to populate the 

periphery after they are educated on medullary DCs during the process of specific selection 

(Shevach 2002). Phenotype markers have also been used to define and deplete Treg cells in vivo. 

When freshly isolated they proliferate poorly and express CD25 (IL-2Rα) (Itoh, Takahashi et al. 

1999) but CD25 is expressed on all recently activated cells (Annacker, Pimenta-Araujo et al. 

2001). A number of  other markers have been associated with human and/or murine Tregs, 

including cytotoxic T lymphocyte activation antigen (CTLA- 4; CD152), neuropilin-1 (Nrp-1), 
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glucocorticoid-induced tumor necrosis factor family-related receptor (GITR), the chemokine 

receptors CCR4 and CCR8, and CD62L (L-selectin), lymphocyte activation gene-3 (LAG-3)  

and integrin αEβ7 (CD103) (Beissert, Schwarz et al. 2006). In vitro studies suggest that the 

regulatory effect requires cell-cell contact mechanism mediated at least in part by granzyme B 

(Gondek, Lu et al. 2005). Also, signaling through the inhibitory “costimulatory” molecule 

CTLA-4 has been shown to play an important role (Read, Malmstrom et al. 2000; Loser, Scherer 

et al. 2005). Once activated, Tregs directly suppress self-reactive effector cell functions in an 

antigen non-specific manner (Thornton and Shevach 2000) although influenza peptide-specific 

Treg cells have been reported (Jordan, Riley et al. 2000). CD4+CD25+ T cells depend on 

exogenous IL-2 but inhibit the proliferative responses of CD4+CD25− T cells by suppressing the 

capacity of the responders to transcribe IL-2 (Thornton, Donovan et al. 2004).  

Studies in animals suggest that signal transducer and activator of transcription 1 (STAT1) 

signaling  and transcription factor FoxP3 might be involved in the development and function of 

Treg cells, and that a disturbed balance of CD4+CD25+ Treg cells occurs in the  STAT1-deficient 

and Scurfy (mutation of FoxP3) mice (Brunkow, Jeffery et al. 2001; Nishibori, Tanabe et al. 

2004). However, in humans expression of FoxP3 is reportedly a normal consequence of CD4+ T 

cell activation, so cannot be used as an exclusive marker of CD4+CD25+ Tregs cells (Allan, 

Crome et al. 2007). Tregs expressing CTLA-4 (constitutively or induced) can condition DCs to 

produce IFN-γ, thereby inducing activation of indoleamine 2,3-dioxygenase (IDO), which causes 

tryptophan degradation resulting in apoptosis of the effector T cells (Fallarino, Grohmann et al. 

2003). Recently, high expression of LAG-3 (a CD4-related molecule that binds MHC class II) 

was found on CD4+CD25+ T cells upon activation and CD4+CD25+ T cells isolated from LAG-

3–/– mice displayed reduced suppressor capacity (Huang, Workman et al. 2004). 
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 The role of CD4+CD25+ Treg cells may be complex in allergic disease.  A recent study 

reported no differences in numbers of circulating CD4+CD25+ T cells in normal versus asthmatic 

subjects, although their numbers were raised during acute asthma exacerbation (Shi, Li et al. 

2004). In addition, no differences in the suppressive activity of CD4+CD25+ Treg cells were 

observed between normal and atopic asthmatics (Shi and Qin 2005). However, the CD25+ T cells 

from non-allergic, but not from allergic, donors suppressed proliferation and IL-5 secretion by 

autologous allergen-stimulated CD4+CD25-T cells during symptomatic periods, when pollen 

counts were highest (Ling, Smith et al. 2004). This suggests that there were increases in numbers 

of CD4+CD25+ T cells numbers during asthma exacerbations, and possibly a functional 

impairment that disturbs the balance between tolerance and immunity. A recent report suggests 

reversal of AHR by CD4+CD25+Foxp3+Lag-3+CTLA-4+CD45RC+ T cells during chronic 

exposure of “asthmatic” rats to allergen aerosols, and that this may be mediated by CD86 down 

regulation on the airway DCs (Strickland, Stumbles et al. 2006).  OVA-specific CD4+CD25+ T 

cells have been shown to suppress airway inflammation, but not AHR in response to inhaled 

OVA in mice (Hadeiba and Locksley 2003). Thus, evidence suggests Treg cells play important 

roles in dampening the allergic responses, and thus that methods to upregulate the function of 

these cells could provide promising results in asthma therapy. 

2.3.3.2  Tr-1 regulatory cells 

Tr1 cells are a subset of human and mouse IL-10-producing Treg cells. They produce 

high levels of IL-10 and TGF-β, moderate amounts of IFN-γ and IL-5 IL-2 or IL-4 (Levings, 

Bacchetta et al. 2002). T cells activated by splenic APCs in the presence of IL-10 develop a 

unique cytokine secretion profile (IL-10+IL-5+/−IFN-γ+TGF-β+) and are capable of inhibiting the 

development of colitis induced in SCID mice by pathogenic CD4+CD45RBhigh splenic T cells 
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(Groux, O'Garra et al. 1997). Tr1 cells can also be induced by repetitive stimulation of human 

CD4+ T cells in vitro in the presence of IL-10 (Levings and Roncarolo 2000). Tr1 regulate the 

function of naïve and memory T cells in vitro and in vivo and can suppress both Th1 and Th2 

responses to tumors, alloantigens and pathogens (Roncarolo, Bacchetta et al. 2001).  Tr1 cells 

express the ‘gene’ repressor of GATA-3’ (ROG); GATA-3 is the promoter-enhancer element 

essential to Th2 responses (Yamashita, Ukai-Tadenuma et al. 2004). Regulatory T cells that are 

distinct from Tr1 and CD4+CD25+ Tregs can reportedly also be generated after culturing 

conventional CD4+CD25− murine T cells in the presence of IL-10 and TGF-β (Chen, 

O'Shaughnessy et al. 2003). Besides this, evidence suggests that CD4+CD45RBlow Treg cells 

maintain tolerance, in part indirectly, through the differentiation of IL-10-secreting Tr1 cells in a 

mouse model of inflammatory bowl disease (Foussat, Cottrez et al. 2003). Repetitive stimulation 

with Ag-loaded APCs (Steinman, Turley et al. 2000) or chronic antigen stimulation 

(Chakraborty, Li et al. 1999) leads to emergence of CD4+ T cells that suppress naïve T cell 

responses via  IL-10-dependent mechanism. 

Mouse Tr1 clones derived by antigen stimulation in the presence of IL-10 could prevent 

Th2 sensitization and IgE production if adoptively transferred prior to sensitization (Cottrez, 

Hurst et al. 2000). Akdis et al showed an increased frequency of allergen-specific IL-10-

producing CD4+ T cells in the blood of nonatopic individuals versus atopics and, that these IL-

10–producing T cells could specifically inhibit allergen-activated IL-4–producing T cells (Akdis, 

Verhagen et al. 2004). 

 

2.3.3.3 Th3 regulatory cells  

Weiner originally described Th3 cells as CD4+ T cells, which produce TGF-β and not IL-

10, IL-4 or IFNγ following induction by low doses of oral antigen. They are closely associated 
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with gastrointestinal tolerance, as they provide help in IgA secretion (Weiner 2001). Our lab has 

already reported that in mice given low doses of allergen-alum conjugates the lung-infiltrating 

lymphocytes secrete IgA and TGF-β with no evidence of Th1/Th2 responses (Schneider, Li et al. 

2001) which is similar to Th3-regulated profile. We have also found that very low (1 ng) doses 

of allergen-alum induce anergic tolerance in these animals (unpublished data from our lab). This 

contrasts with the situation with oral tolerance where low doses induce Th3 cells and high doses 

anergy or deletion (Weiner 2001) which suggests that Treg induction might depend on antigen 

dose or the specific compartment. It has been demonstrated that Th3 cells could suppress the 

activation of Th1-cell as well as Th2-cell clones (Weiner 1997). 

2.3.4 Infectious Tolerance 

With the development of new tolerogenic strategies in transplantation studies, in 

particular the use of non-depleting anti-CD4 monoclonal antibodies (Mab) (Waldmann and 

Cobbold 1998) much emphasis came to the role of T cell mediated suppression. It was originally 

described in mice made tolerant to transplantation antigens after administration of anti-CD4 

antibodies. They developed a powerful form of immune regulation that not only suppressed 

antigen-specific naïve or primed CD4 or CD8 T cells, but also responses to closely linked 

antigens (linked suppression). This form of tolerance is mediated by CD4 cells which suppress 

subsequent generations of cells by a phenomenon termed infectious tolerance (Cobbold and 

Waldmann 1998; Waldmann, Adams et al. 2006). Evidence suggests that TGF-β/IL-2- 

stimulated CD4+CD25+ Treg cells can induce CD25- T cells to differentiate into CD4+CD25+ 

cytokine-independent suppressor cells, which in turn induce other CD25- cells to become 

CD4+CD25+ Treg cells in a TGF-β- and IL-10-dependent manner, thus maintaining the powerful 

circuit of immunoregulation by sustaining CD4 Treg cells (Zheng, Wang et al. 2004).  
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Two distinct subsets of CD25+ Treg cells have been reported, including integrin α4β7-

positive cells which can convert CD4+ T cell into IL-10-producing Tr1-like cells, and integrin 

α4β1-positive Tr cells which induce TGF-β-producing Th3-Like cells (Stassen, Fondel et al. 

2004). These integrins are homing receptors for cellular migration of T lymphocytes to mucosal 

surfaces and inflamed compartments, respectively. Therefore, it can be said that α4β1 CD25+ 

Treg cells migrate in vivo to inflamed tissues where they inhibit T cell responses and α4β7 

CD25+ Treg cells migrate to mucosal tissues to prevent chronic mucosal inflammation. Another 

important aspect of infectious tolerance is that regulatory T cells can render regional DCs 

tolerogenic by inhibiting the costimulatory molecule (MHC-II, CD80, CD86, CD40 and IL-12) 

expression, such that the DC can no longer support efficient T cell stimulation (Vendetti, Chai et 

al. 2000; Min, Zhou et al. 2003). As mentioned above, CD4+CD25+ Tregs expressing CTLA-4 

can also activate IDO expression in DCs, which lends to tryptophan catabolism and thereby 

activation of apoptosis in effector T cells (Fallarino, Grohmann et al. 2003). 

2.3.5 Interleukin-10 (IL-10) and Tolerance 

Interleukin-10 was originally described as a mouse Th2 cell factor that inhibited cytokine 

synthesis by Th1 cells (Fiorentino, Bond et al. 1989). However, neutralization of IL-10 in 

peripheral blood mononuclear cell (PBMC) cultures reconstitutes both type 1 and type 2 

cytokine production and proliferative responses. Indeed, increasing evidence indicates that IL-10 

also acts as an inhibitor of Th2 cell responses. In particular, IL-10 down regulates IL-5 

production by human resting T cells and Th2 clones (Schandene, Alonso-Vega et al. 1994; 

Zuany-Amorim, Haile et al. 1995; Zuany-Amorim, Creminon et al. 1996). As reviewed by 

Hawrylowicz et al, IL-10 modulates many cells and effector functions associated with allergic 

diseases, including inhibiting the activation of, and cytokine generation by, mast cells, inhibiting 
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survival and cytokine production by eosinophils, inhibiting activation of Th2 cells and 

maturation of DCs, and enhancing IgG to IgE ratio by immunoglobulin switching (Hawrylowicz 

and O'Garra 2005). Evidence suggests that non-atopic subjects have an increased frequency of 

IL-10-secreting allergen-specific T cells, relative to atopic individuals (Akdis, Verhagen et al. 

2004). 

In allergen specific immunotherapy (SIT), increased IL-10 production by Treg cells 

causes specific anergy in peripheral T cells and skews specific antibody production toward IgG4-

isotype response. Bee-keepers who have become tolerant to repeated stings and stung non-atopic 

individuals, both display augmented T cell IL-10 response (relative to bee-allergic individuals), 

and this further support the contention that IL-10 regulates tolerance to allergen (Akdis, Blesken 

et al. 1998). In these individuals, IL-10 acts directly on the CD28 signaling pathway and this is 

an important mechanism leading to anergy. IL-10 inhibits the antigen-induced secretion of both 

Th1 and Th2 cytokines, including IL-2, IFN-γ, IL-4, IL-5 and IL-13, such that neutralization of 

IL-10 significantly increases T cell proliferation and both Th1 and Th2 cytokine production 

(Joss, Akdis et al. 2000). It has also been shown that  T cells engineered to produce IL-10 can 

downregulate Th2-induced airway hyper reactivity and inflammation, and this strongly suggest 

that IL-10 plays an important inhibitory role in allergic asthma (Oh, Seroogy et al. 2002). In 

addition, adoptive transfer of pulmonary DCs from wild type IL-10(+/+), but not IL-10 knock 

out (-/-), mice previously tolerized by exposure to soluble respiratory antigen induces antigen-

specific unresponsiveness in recipient mice (Akbari, DeKruyff et al. 2001). Recent evidence 

suggests that passive transfer of CD4+CD25+ T cells from normal, but not IL-10-/-, mice into 

sensitized mice results in reduced AHR and inflammation and increases in IL-10 and TGF-β 

(Joetham, Takada et al. 2007). Similarly, pulmonary delivery of an IL-10 transgene to mice 
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before sensitization or during allergen aerosol exposure strongly suppresses Th2 reactivity and 

AHR via overall suppression of CD11c+ APCs of the lung (Nakagome, Dohi et al. 2005). It has 

also been shown that the direct T-cell suppression by IL-10 is mediated by SHP-1 (Dominant-

negative src homology 2 domain-containing protein tyrosine phosphatase 1) induced inhibition 

of CD28 or ICOS costimulatory pathways (Taylor, Akdis et al. 2007). However, a disadvantage 

of using IL-10 by itself as a therapeutic is its relatively short biological half-life (Hawrylowicz 

and O'Garra 2005). 

2.3.6 Dendritic cells, Interleukin -10 and Tolerance 
 

Under quiescent conditions DCs are immature sentinel cells that are avidly endocytic 

(Sallusto, Cella et al. 1995). Under steady-state conditions DC critically define immunologic self 

and thereby prevent the induction of autoimmunity and chronic inflammation triggered by 

innocuous environmental proteins, and this is indicative of their tolerogenic state (Steinman and 

Nussenzweig 2002). Resting state CD8α+ DC have also been shown to have tolerogenic potential 

(Kronin, Fitzmaurice et al. 2001) and indeed antigen pulsed CD8α+ DC can partially reverse 

AHR and pulmonary immunoinflammatory responses after local passive transfer into asthma 

phenotype mice (Gordon, Li et al. 2005). Specific subsets of DCs may differentially affect the 

development of antigen-specific Treg cells. For example, in the respiratory tract, mature myeloid 

CD8α- DCs that transiently produce IL-10 and express inducible co-stimulator (ICOS)-ligand 

can induce Th2 regulatory cells (secreting IL-4 and IL-10) that express GATA-3 and Foxp3 and 

mediate respiratory tolerance (Akbari, DeKruyff et al. 2001). In contrast, mature CD8α+ that 

have been activated with heat-killed Listeria monocytogenes produce both IL-10 and IL-12 and 

induce Th1 regulatory cells that expressed IL-10, IFN-γ, T-bet and Foxp3 and thereby protect 

against airway hyperreactivity (Stock, Akbari et al. 2004; Umetsu and DeKruyff 2006). 

 54



Following ligation of CD80/86, CD8α+  and B220+ populations of DC express indoleamine 2,3-

dioxygenase (IDO), an enzyme that mediates T cell suppression through tryptophan catabolism 

(Mellor, Baban et al. 2003). IDO expression can also be induced in CD8α- DCs by exposing 

them to CTLA4-immunoglobulin, which mimics signaling by CTLA4-expressing Treg subsets 

(Fallarino, Grohmann et al. 2003; Mellor and Munn 2004). Although the presence of CD8α+ 

DCs has not been documented in the lung (von Garnier, Filgueira et al. 2005), the plasmacytoid 

DCs (pDCs) that are present are crucial for maintaining tolerance to inhaled harmless antigens. 

Indeed passive transfer of pDC blocks subsequent attempts at allergen sensitization (de Heer, 

Hammad et al. 2004). Splenic pDCs secrete high levels of IL-10 after activation and, when 

pulsed with antigen, they induce specific Treg cell development and tolerance (Wakkach, 

Fournier et al. 2003). It was shown that when influenza virus peptide-pulsed immature DCs are 

injected, IFN-secreting virus-specific IFN-γ virus CD8+ T cells virtually disappear from the 

blood stream and in their place appear IL-10-secreting T regulatory cells (Dhodapkar, Steinman 

et al. 2001). IL-10-producing DC isolated from respiratory lymph nodes can similarly induce 

antigen-specific anergic/regulatory cells (Akbari, Freeman et al. 2002), and it is well 

acknowledged that T cells activation is strictly dependent upon their interactions with DC 

(Lanzavecchia and Sallusto 2001). Indeed it has been postulated that the immunosuppressive 

effects of IL-10 on T cells are largely realized through the effects of this cytokine on DC 

(Beissert, Hosoi et al. 1995; De Smedt, Van Mechelen et al. 1997). 

DCs express certain molecules (eg. IL-10, TGF-β) with potential to inhibit T cell 

proliferation, so that genetic engineering of DCs  to express immunosuppressive cytokines or 

other molecules is, in theory, an attractive approach to enhance tolerance in the context of 

allograft rejection and possibly autoimmune disorders (Lu, Lee et al. 1999). Earlier trials 
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suggested that viral IL-10 (encoded by Epstein barr virus and homologous to mammalian IL-10) 

may have therapeutic potential in inhibiting undesired immune response to allo- or auto-antigens 

(Takayama, Nishioka et al. 1998). It was shown in a mouse model of colitis that IL-10 gene 

therapy can induce complete remission of disease (Lindsay, Ciesielski et al. 2001). IL-10 gene-

modified DCs induce antigen-specific tolerance in an experimental autoimmune myocarditis 

model, probably related to NF-κB pathway inhibition and downregulation of costimulatory 

molecules (Li, Liu et al. 2006). DCs, either at immature or  semi-mature stages, can influence the 

differentiation of both naturally-occurring CD4+CD25+ Treg cells and adaptive, IL-10-secreting 

CD4+ type 1 (Tr1) cells either in vitro or in vivo (Vigouroux, Yvon et al. 2004; Battaglia, Gregori 

et al. 2006). It was reported some time ago that immature DCs differentiated with IL-10 for the 

last 2 days of culture show a strongly diminished capacity to stimulate CD4+ T cell responses in 

an allogenic mixed lymphocyte reaction. This clearly suggested that IL-10 can render immature 

DCs into tolerogenic DCs, which could be a useful therapeutic tool (Steinbrink, Wolfl et al. 

1997) in treating autoimmune or allergic disease. A recent report has shown treatment with 

OVA-presenting, IL-10-differentiated DC inhibits subsequent sensitization to OVA and 

proliferation of OVA-specific T cells upon transferred into OVADCIL-10-recipient mice. 

Rechallenge with the antigen in vitro and in vivo could not alter the inhibitory effects of IL-10-

treated DCs (Muller, Muller et al. 2002).  

As the outcome of innocuous environmental antigen challenge is allergen tolerance in 

healthy (i.e. non-allergic) individuals, a tolerogenic role for DCs seems ideal outcome to asthma 

therapeutics. In addition, tolerance is a more desirable therapeutic approach than immune 

deviation because non-allergic reactions are characterized by the absence of inflammatory cells, 

including Th1 cells or a modified Th2 response (Platts-Mills, Blumenthal et al. 2000). 
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Respiratory DCs acquire antigen regularly and move to the draining lymph nodes for antigen 

presentation, but they secrete IL-10 as they do so (Stumbles, Thomas et al. 1998). And IL-10 

secreting DCs  are tolerogenic in as much as they induce the differentiation of  IL-10-secreting 

Treg cells in vivo (Akbari, DeKruyff et al. 2001). Inflammatory signals in the airways can turn 

off this default IL-10 DC response and can induce the DCs to shift from a tolerogenic to  an 

immunogenic mode (Holt and Stumbles 2000). Nevertheless, we hypothesize that tolerization is 

superior to simple Th2-Th1 immune deviation in asthma therapeutics.  
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3.0 HYPOTHESIS AND OBJECTIVES 
 

3.1 Hypothesis 

 

 Allergen-presenting interleukin-10 treated bone marrow-derived DCs can be used for 

therapeutic tolerization of the severe allergic lung disease in a mouse model of asthma. 

 

3.2 Objectives 

 

The main objectives of this study are: 

 

1. To generate and characterize normal, tolerogenic or immunogenic DCs. 

2. Test the capacity of IL-10-differentiated DCs (DCIL-10) to induce functional tolerance in mouse 

model of allergic lung disease/asthma. 

3. To test the effectiveness of one or more DCIL-10 treatments over time. 

4.  Characterize the complex mechanisms involved in DC-induced tolerance. 
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4.0 MATERIALS AND METHODS 
 

4.1 Mice 

Female BALB/c mice (6-10 weeks of age) were purchased from the University of 

Saskatchewan (U of S) Animal Resource Centre and housed in the animal facility of Western 

College of Veterinary Medicine, U of S. They were housed in plastic cages, fed a standard 

laboratory diet, and given food and water ad libitum. The animal care protocols were approved 

by the U of S Animal Care Committee in strict accordance with the guidelines issued by the 

Canadian Council on Animal Care. All mice were euthanized under halothane (MTC 

Pharmaceutical., Cambridge, ON) inhalant anesthesia by cervical dislocation. 

 

4.2 Generation of bone marrow-derived dendritic cells (BM-DC) 

The principle method for generating BM-DC with GM-CSF was adapted from previous 

publications (Inaba, Inaba et al. 1992; Scheicher, Mehlig et al. 1992; Lutz, Kukutsch et al. 1999) 

with some modifications.  Bacteriological Petri dishes with a 100 mm diameter were used 

(Falcon, No. 1029/Becton Dickinson, Heidelberg, Germany). The cell culture medium (R10) 

employed was RPMI-1640 (Gibson, Grand Island, NY) supplemented with penicillin (100 U/ml; 

Sigma Chemical Co, Mississauga, ON), streptomycin (100 go/ml; Sigma), L-glutamine (2 mM; 

Sigma), 2-mercaptoethanol (50 µM; Sigma), and 10% heat-inactivated, fetal bovine serum (FBS) 

(Gibco, Grand Island, NY). At day 0, 4-5×106 bone marrow leukocytes were seeded at 37°C into 

100 mm dishes in 5 ml R10 medium containing 200 U/ml (= 20 ng/ml) recombinant mouse 
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granulocyte/ monocyte colony-stimulating factor (rmGM-CSF) (Biosource International Inc., 

California, USA). After day 3 another 5 ml of fresh R10 medium containing 200 U/ml rmGM-

CSF was added to the plates. On days 6 and 8, half of the culture medium was collected from 

each plate, centrifuged, and the cell pellet resuspended in 10 ml fresh R10 containing 200 U/ml 

and 75 U/ml (7.5 ng/ml) rmGM-CSF and placed back in the original plates. The GM-CSF dose 

was reduced to minimize granulocyte growth. The day 10 culture non-adherent cells were 

collected by gentle pipetting, centrifuged at 300×g for 10 min at room temperature, resuspended 

in 5 ml fresh R10, and transferred into fresh 20 mm plastic tissue culture dishes (Falcon, No. 

1029/Becton Dickinson, Heidelberg, Germany) containing 75 U/ml rmGM-CSF alone (to 

generate immature DC), or along with either IL-10 at 50 ng/ml (for tolerogenic DC) or tumor 

necrosis factor-α (TNF-α) at 10 ng/ml (for mature DC). The cells were then cultured for 3 more 

days. On day 13, the cells were incubated for 1-2 hours at 37°C with grade V Ovalbumin (OVA; 

50 µg/ml; Sigma), and then the cells were washed two times. The individual DC populations 

were harvested separately and characterized as noted below. 

 

4.2.1 Evaluation of Cell yields 
 

Cultured cells were washed twice and a 10 µl aliquot was mixed 1:1 with trypan blue solution 

(0.05% in saline; Sigma). Trypan blue-negative leukocytes (erythrocytes were excluded by size 

and shape) were counted as viable under the microscope (40x objective) using a Neubauer 

hemocytometer.  

 

4.2.2 Fluorescence-activated cell sorter (FACS) analysis 
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  Cultured cells (2-4×105) were suspended in 100 µl of R10 media and then 1 µl of 

fluorescein isothiocynate (FITC)-conjugated marker-specific or isotype-matched control 

antibody was added for 30 min on ice (4°C). These cells were then washed and resuspended in 

100 µl of fresh R10 media, then fixed by addition of 100 µl of 1% paraformaldehyde, and stored 

at 4°C until analyzed. The samples were analyzed with a FACScan (Becton Dickinson, Mountain 

View, CA, USA) within 48 hrs of the staining procedure. The mouse marker-specific FITC-

labeled antibodies used were directed against mouse CD3 (pan-T cell marker; isotype rat IgG2b), 

CD4 (rat IgG2b), CD8 (rat IgG2a), CD11b (macrophage marker rat IgG2b), CD11c (DC marker 

hamster IgG1), CD14 (monocyte marker rat IgG1)), CD16 (neutrophil marker rat IgG2b), CD19 

(B cell marker rat IgG2a), CD25 (activated T cell marker rat IgM), CD40 (hamster IgM), 

CD45RB (rat IgG2a), CD54 (hamster IgG1), CD80 (hamster IgG2), CD86 (rat IgG2a), MHC-I 

(mouse IgG2a), MHC-II (mouse IgG2b) (PharMingen Canada Inc., Mississauga, ON), DEC-205 

(DC marker) and F4/80 (macrophage marker rat IgG2b ) (Serotec Ltd, Oxford, UK). Isotype 

controls were purchased from PharMingen Canada Inc.  

 

4.2.3 Phagocytosis 

The phagocytic capacity of the BM-DC was analyzed as described elsewhere (Sallusto, 

Cella et al. 1995; Lutz, Rovere et al. 1997; Lutz, Kukutsch et al. 1999).  Briefly, 2-4×105 cells 

were incubated for 30 min with FITC-conjugated dextran (FD40S, Sigma) at 100 µg/ml (a dose 

selected from preliminary dose-response curves; 50 µg-2 mg/ml). The incubations were either 

done on ice to control for non-specific binding of the FITC-dextran or at the endocytosis-

enabling temperature of 37°C. The cells were then washed with ice-cold phosphate-buffered 
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saline (PBS), fixed with 100 µl of 1% paraformaldehyde and were analyzed with a FACScan, as 

above. 

 

4.2.4 Cytokine ELISAs 

The basic ELISA protocol employed has been reported previously (Gordon, Zhang et al. 

2000). For the cytokine assays paired capture and biotinylated detection antibodies and 

recombinant protein standards were individually optimized for the assays, but otherwise 

employed as recommended by the supplier. The recombinant cytokine standard curves covered 

the concentration range of 0–1000 pg/ml; cytokine values are expressed in pg/ml. The BM-DC 

culture supernatants, BAL and mononuclear cell culture supernatant fluids were not diluted for 

assay, but plasma samples were diluted 1:10 in PBS-0.5% Tween20 (Polyoxyethylene-sorbitan 

monolaurate, Sigma Chemical Co.) (PBST).  

 Immunolon-4 96-well flat-bottom plates (Dynatech laboratories Inc., Chantilly, VA) were 

coated overnight at 4°C with the appropriate capture antibody in 50 µl of coating buffer (1M 

NaHCO3, 1M Na2CO3; pH 9.6). The next day, the wells were washed twice with PBST and 

blocked for two hours at room temperature with 200 µl of PBST supplemented with 10% heat-

inactivated (56o C for 1 hour) FBS. Following another 4 washes, 100µl volumes of recombinant 

protein standards or samples were added to the wells. The recombinant proteins were diluted in 

the same medium contained within the samples, while blank wells were filled with 100 µl of 

PBST and plates covered and incubated at 4° C overnight. Biotinylated antibodies (100 µl 

volumes) were added to the wells after four washes with PBST and the plates were incubated at 

37° C for 1 hour. Following another six washes with PBST, 100 µl of streptavidin-conjugated 

horseradish peroxidase (Vector Laboratories Inc., Burlingame, CA), diluted 1:1000 in PBS/10% 
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FBS, was added to each well and the plates were again incubated at 37° C for 1 hour. The plates 

were then washed 8 times with PBST and 100 µl of 2, 2’-azinobis (3-ethylbenthiazoline-sulfonic 

acid) (ABTS) peroxidase substrate (Kirkegaard and Perry Laboratories, Gaithersburg, MD) was 

added to each well. After 5-15 min (when the color developed), the plates were read at an 

wavelength of 405 nm by a computer-assisted ELISA plate reader (Bio-Rad Model 3550 

Microplate reader, Bio-Rad Laboratories, Hercules, CA) utilizing the Microplate Manager 

program for the Macintosh. The results were expressed in pg/ml (± SEM) with reference to the 

standard curves. All the samples were assayed in duplicate. Capture and biotinylated detection 

antibody pairs and recombinant protein standards for IFN-γ, IL-1β, IL-4, IL-5, IL-6, IL-9, IL-10, 

IL-12, IL-13, TGF-β, TNF-α and GM-CSF (R & D Systems, Minneapolis, MN) were used.  

 

4.2.5 OVA-specific antibody ELISA 

For the OVA-specific IgE assays, the wells were coated with 50 µl of goat anti-mouse 

IgE capture antibody (2 mg/ml, 1M NaHCO3, 1M Na2CO3; pH 9.6) and the plasma/serum 

samples were diluted 1:10 in PBST. The washing of the plates was done as before (section 

4.2.4). The use of biotinylated OVA at 2 µg/ml (prepared as noted in section 4.6) as the detection 

reagent for the IgE assay dramatically increased the sensitivity of the assay, but prohibited 

expression of the data in terms of a absolute concentration of immunoglobulin, so that these 

results are presented in optical density (OD405) units.  

The wells of 96-well Immulon-4  plates were coated with 50 µl of 20 µg/ml OVA (IgG1 

and IgG2a assays) in coating buffer or capture antibodies in coating buffer (IgE assay) overnight 

at 4o C. The rest of the protocol performed was identical to the one mentioned in section 4.2.4.  

The standard curves for IgG1 and IgG2a were generated from recombinant antibody standards 
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and covered the range of 0-10,000 picograms (pg)/ml. The capture antibodies and recombinant 

proteins for IgG1, IgG2a, goat anti-mouse IgE capture antibody, and biotinylated anti-mouse 

IgG1 and IgG2a were purchased from PharMingen Canada Inc. 

 

4.2.6 Chemotaxis assay 

The chemotactic responses of the three populations of DCs to MIP-1α and MIP-3β (R & 

D Systems, MN) were examined using modified Boyden microchemotaxis chambers 

(Neuroprobe, Gaithersberg, MD) with polyvinylpyrrolidone-free 5 µm pore-size polycarbonate 

filters. Ten-fold dilutions of the chemokines MIP-1α and MIP-3β (0.1 ng/ml to 100 ng/ml) were 

placed in the lower chambers of duplicate wells, while the DC populations (2 x 106/ml) were 

placed in the upper chambers. After incubation for 2 hrs at 37°C the cells that had not migrated 

into the membranes were wiped from the upper surfaces with a clean glass slide, and then the 

membranes were fixed and stained using a Diff-Quik kit (American Scientific Products, McGaw 

Pk, IL). For each sample, the numbers of cells that had migrated into or through to the underside 

of the filters were enumerated by direct counting of at least six 40x objective fields. The results 

are expressed as the mean number of cells/40x field (± standard error of mean i.e. SEM). 

 

4.3 Animal Sensitization and Challenge 

  Our lab has fully characterized the model of Ovalbumin (OVA)-induced asthma or 

asthma-like disease (ALD) (Schneider, Li et al. 2001). Briefly, 6-8 week old BALB/c mice from 

our institutional breeding colony were sensitized with two intraperitoneal injections of 2 µg of 

OVA-alum (200 µl of saline, 1 mg of alum) on days 0 and 14. On days 30, 32, and 34 the 

animals were exposed in an enclosed flow-through chamber for 20 min to an aerosol of 1% OVA 
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in sterile saline, generated using an ultrasonic nebulizer (Ultra-Neb 99, Devilbiss Co., Somerset, 

PA) set at a flow rate of 0.5 liters/min. The aerosolization chamber was comprised of a 

polypropylene box (30cm X 17cm X 8.5cm) equipped with an input hose for aerosol delivery 

(mean particle size < 4µm) and an output hose to ensure adequate airflow. By day 35 the mice 

displayed a severe ALD, characterized by 40-60% airway eosinophilia, strong AHR to 

methacholine (Mch), high-level serum OVA-specific IgE and IgG1 antibodies and pulmonary 

expression of Th2 cytokines (Schneider, Li et al. 2001; Gordon, Li et al. 2005). After a two week 

period, during which the animal’s pulmonary inflammatory responses, but not AHR or Th2 

reactivity, subsided, the mice (n = 5/group) were surgically anaesthetized with ketamine (100 

mg/kg) and xylazine (10 mg/kg). A small incision was made through the skin over the trachea, 

and the fascia and musculature over the trachea were bluntly dissected and carefully reflected 

with forceps. After this, 20 µl of saline, either alone or containing 1x106 DCGM-CSF (immature), 

DCIL-10 (tolerogenic) or DCTNF (mature) was delivered intratracheally into groups of ALD mice 

(n = 5)  using a 30 gauge needle. Normal control mice were similarly given 20 µl of saline. The 

cutaneous incisions in the animals were closed with 2-0 nylon suture thread. AHR was measured 

weekly and the animals were euthanized at 3 weeks, either without aerosol challenge or one day 

after receiving a 20-minute allergen aerosol challenge, as above. All samples from each animal 

were stored at -20°C and assayed independently.  

 

4.4 Airway Hyperresponsiveness (AHR) 

AHR was assessed in conscious animals by head-out whole body plethysmography 

(Schneider, Li et al. 2001; Gordon, Li et al. 2005). Briefly, air was supplied to the head and body 

compartments of the plethysmograph via a small animal ventilator (Kent Scientific, Litchfield, 
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CT) and changes in the airflow through the body compartment were monitored using a flow 

sensor (TRS3300; Kent Scientific) linked via a preamplifier and A/D board (Kent Scientific) to a 

computer-driven real-time data acquisition/analysis system (DasyLab 5.5; DasyTec USA, 

Amherst, NH). The head compartment of the plethysmograph was connected to an ultrasonic 

nebulizer (Ultra-Neb 99) for exposure of the mice to Mch (Sigma) aerosols (mean particle size < 

4µm). The bronchoconstriction data were gathered as running 1-sec means of the airflow at the 

50% point in the expiratory cycle (Flow @ 50% TVe1; TV = tidal volume, e = expiratory cycle, 

1 = 1 sec). This parameter has been demonstrated previously to accurately reflect bronchiolar 

constriction, as opposed to alveolar constriction or airway occlusion (Vijayaraghavan, Schaper et 

al. 1993; Vijayaraghavan, Schaper et al. 1994). Each mouse was sequentially exposed to 

aerosols of saline alone and then doubling doses of Mch (0.75–25 mg/ml of saline) over ≈15 

min.  

 

4.5 Harvesting of Samples from Mice 

 

4.5.1 Serum collection 

Serum was collected, only in the experiments where repeated sampling was required. 

Blood was withdrawn (every 3 weeks) from the tail vein in conscious mice by making a small 

nick with a scalpel blade. About 0.2 ml of blood was recovered from each animal into 

Microtainer Brand Serum Separator Tubes (VWR International, Mississauga, ON) which were 

centrifuged at 10,000 rpm for 5 min. Serum was then collected and aliquoted into 500 µl 

polypropylene tube, and stored at -80oC until analyzed. 

 

 66



4.5.2 Plasma collection 

Blood was collected immediately post-mortem in 1 ml syringes equipped with a 25-gauge 

needle and containing 100 µl heparin (1000 U/ml, Sigma Chemical Co.) via cardiac puncture or 

from the vena cava. Typically, 0.8 - 1 ml of blood was recovered from each animal. Duplicate 

blood smears were made immediately from each mouse, with the remainder of the blood being 

put in 1.5 ml polypropylene tubes. All samples were processed separately for each mouse. After 

approximately 1 hour on ice (while the animals were being processed), the tubes were 

centrifuged at 2500 rpm for 15 min and the supernatant plasma was collected and aliquoted in 

500 µl polypropylene tubes and stored at -80oC until analyzed. The blood smears were stained 

with Wrights-Giemsa solution (Papp, Middleton et al. 2000) and differential counts performed 

on 200 cells per sample and data is expressed as percentage of cells. 

 

4.5.3 Bronchoalveolar lavage (BAL) 

To obtain cells from the airways, BAL was performed. Briefly, the mice were euthanized 

as indicated above and a surgical incision was made over the trachea, which was exposed with a 

pair of blunt forceps. A small incision was made in the trachea about three tracheal rings from 

the larynx, and a length of tygon tubing, equipped at one end with a 23-gauge lock needle 

attached to 3ml syringe was fed into the trachea and ligated in place with cotton thread. The 

lavage fluid employed was Ca/Mg-free Hanks’ Balanced Salt solution (HBSS; Gibco BRL) 

containing 1% antibiotics/antimycotics (10,000 U/ml penicillin G sodium, 10,000 µg/ml 

streptomycin sulfate, 25 µg/ml amphotericin B in 0.85% saline; Gibco BRL) and 1% FBS. Two 

BAL washes of 1.5 ml were performed gently to ensure adequate recovery of airway cells; we 

routinely recovered ≈70-80% of the injected BAL fluid. The BAL samples were then centrifuged 
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for 10 min at 400xg, and the supernatants were collected, aliquoted and stored at -80oC, while 

the cells were resuspended in 0.5 ml PBS and counted. Cytocentrifuge preparations of each 

sample (≈1x105 cells) were stained with Wrights-Giemsa solution and differential cell counts 

were done (200 cells/slide) for each mouse. 

 

4.5.4 Lung cell suspensions 

Lung digestions were carried out to generate single cell suspensions from the lung tissues 

as described (Lowman, Rees et al. 1988). Briefly, the lungs were removed from each mouse, 

minced mechanically with scalpels and tweezers and put in 6 ml polypropylene tubes containing 

5 ml of digestion medium (HBSS/10% FBS containing 0.75 mg/ml Type 4 collagenase and 2 

mg/ml hyaluronidase [both Worthington Biochemical Corporation, Freehold, NJ, USA]). The 

tissues were digested for 1 hour at 37°C, and then further dispersed by repeated gentle aspiration 

through a 20-gauge needle using a 5 ml syringe. The cells were filtered through four layers of 

sterile gauze into conical-bottom polypropylene tubes and washed with complete Dulbecco’s 

Modified Essential Medium (DMEM) supplemented with heat-inactivated FBS, 1% 

antibiotics/antimycotics (10,000 U/ml penicillin G sodium, 10,000 µg/ml streptomycin sulfate, 

25 µg/ml amphotericin B in 0.85% saline), 1% of 50 mM of 2- mercaptoethanol and 1% of 200 

mM L-glutamine.  This medium is our standard culture medium and will be referred to hereafter 

as complete DMEM-10% FBS. The cells were washed twice by centrifugation at 400xg and the 

viable cell recovery was determined using a hemocytometer and trypan blue dye. The cells were 

dispensed at 2 x 106 cells/ml into 24-well tissue culture plates. For assessment of cytokine 

secretion, the cells were cultured for 48 hours at 37°C, without exogenous OVA in experiments 

in which mice were aerosolized with OVA 48hr before sacrifice and with OVA (50 µg/ml) when 
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no such aerosolization had been performed. The culture supernatants were harvested using 

standard procedures, aliquoted, and frozen at -800C.  

4.6 Biotinylation of Ovalbumin 

Biotinylation of OVA was done using EZ-Link NHS-PEO4-Biotinylation kit (Pierce 

Chemical Co, Rockford, IL). To 6 ml of OVA was added 135 µl of 20mM solution of NHS-

PEO4-Biotin. After 2hr incubation on ice, the reaction mixture was dialyzed against multiple 

changes of PBS using Zeba Desalt Spin Column, and then this biotinylated OVA was aliquoted 

and stored at -80oC. We also tested the level of biotinylation using HABA assay and titrated 

(dilutions ranging 1:250 – 1:3000) the amounts of antibody required for our IgE assay. 

4.7 Assessing the long term effects of DCIL-10 treatment 

The allergic mice were injected intratracheally with 1x106 OVADCIL-10, OVADCGM-CSF, or 

OVADCTNF or saline alone, each in 20 µl of saline, as above. Normal mice treated with saline 

were used as additional controls. The AHR to methacholine was assessed weekly for 1-4 weeks 

and then every two weeks until hyperreactivity waned. OVA-specific plasma IgE levels were 

determined every three weeks through to 32 weeks post-treatment, when the mice were 

sacrificed and challenged with 1% OVA aerosol and assessed for airway eosinophilia, antibody 

responses, BAL cytokine levels and dispersed lung cell cytokine secretion. 

4.8 Assessing the effect of multiple DCIL-10 treatments and approaches 

Allergic lung disease was induced in BALB/c mice as indicated above. At two weeks after 

the last sensitizing dose of allergen exposure, the mice were given either saline or 1x106 OVA-

presenting DCIL-10 intratracheally, intraperitoneally or subcutaneously (n = 4) every second week 

for a total of four treatments. The animal’s AHR was measured after every treatment as well as 7 
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and 14 days after the last treatment, then the mice were given allergen aerosols (20 minutes, 1% 

OVA in saline) and harvested two days later. Animal samples for BAL fluid, plasma, lung 

cultures, blood smears were collected as indicated above. 

 

4.9 In vitro assessment of the effects of OVADCIL-10 therapy.  

  Asthma-like disease was induced in BALB/c mice as noted above (Schneider, Li et al. 

2001; Gordon, Li et al. 2005).  Following the last aerosol exposure, the mice were left untreated 

for a period of 3 wks to allow T central memory (TCM) cells to develop, then their CD4+ cells 

were purified by positive selection using magnetic cell separation (MACS) from a pool of 

dispersed lung, spleen and lymph node mononuclear cells, as noted (Gordon, Li et al. 2005; 

Zhang, Huang et al. 2005).  Briefly, the cells collected from lungs (enzymatically treated), 

spleens and lymph nodes (mechanically with tweezers) were dispersed; the mononuclear cells 

were purified by density gradient centrifugation using lymphocyte separation medium (LSM; 

Valeant Pharmaceuticals, CA, USA) and spun for 15 minutes at 400xg. The cells at the interface 

were collected and washed with PBS and sedimented by centrifugation for 10 minutes at 300xg, 

then resuspended and enumerated using a hemocytometer and their viability determined by 

trypan blue dye exclusion (as above). The cells were sedimented at 250xg for 20 minutes at 

10oC. They were then resuspended at 107 cells/90 µl of MACS buffer (PBS [pH=7.2], 5 % FBS 

and 2 mM EDTA; PBS/EDTA) along with 90 µl of anti-mouse CD4 paramagnetic beads 

(Miltenyi Biotec, Auburn, CA) and incubated at 6-12oC for 15 minutes. About 1 ml of the 

MACS buffer was added per 107 cells, which were sedimented (300xg for 10 minutes at 4oC) 

and resuspended at 108 cells/0.5 ml of MACS buffer.  These were then applied onto large 

separation (LS) columns (2x109 cell maximum capacity; Miltenyi Biotec) which were then 
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washed three times with MACS buffer (3 ml/ wash) before the column was removed from the  

MACS magnet. The bound CD4+ cells were flushed out of the column with one 5 ml aliquot of 

MACS buffer, then one more time with 1 ml of the buffer using a column plunger to rapidly and 

forcibly expel the cells into a sterile tube.  The cells were washed in PBS, then with plain 

DMEM and resuspended at 2x106/ml in complete DMEM/10% FBS.   The purity (≈90-94%) of 

the CD4 cells was confirmed by FACS.   

To assess the effects of OVADCIL-10 treatments on T cells, 2x106 of the purified CD4+ T cells 

were cultured for three days in complete medium with 2x105 OVA-presenting DCIL-10 or DCGM-

CSF or DCTNF.  To implicate specific effector molecules in the cultures, we assessed the effects of 

adding purified anti-IL-10R (25 µg/ml; HB12538, American Type Culture Collection (ATCC); 

generously provided by Dr. Henry Tabel) or anti-TGF-β (25 µg/ml; a kind gift from Genentec 

Inc., South San Francisco, CA) antibodies, recombinant IL-2 (10 U/ml), or the indoleamine 2,3- 

dioxygenase (IDO) antagonist, 1-methyl tryptophan  (1-MT) (200 µM; Sigma) (Gordon, Li et al. 

2005).  The 72 h culture supernatants were analyzed by ELISA for their Th2 cytokine contents. 

 

4.10 In vivo assessments of the mechanisms mediating DCIL-10-dependent tolerization of the 

asthma-like phenotype. 

Asthma-phenotype mice were treated with saline or 1x106 OVA-presenting DCIL-10 or 

DCTNF intratracheally, as above (n = 5-7).  On days 12, 15, 18, and 21 post-treatment, the mice 

were injected i.p. with rat anti-IL-10R (5 mg/kg body weight) (Shi, Pan et al. 2003), mouse anti-

TGF-β (4 mg/kg body weight) (Liu, Hu et al. 2003; Neptune, Frischmeyer et al. 2003), or 

equivalent amounts of isotype control antibodies (rat and mouse IgG, respectively) in 200 µl of 

pyrogen-free saline.  Alternately, on day 12 we surgically implanted s.c. 1-MT or placebo slow 
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release polymer pellets (reported release rate, 10 mg/day; Innovative Research of America, 

Sarasota, FL) (Sakurai, Zou et al. 2002).  On day 23, all mice were given 1% OVA aerosols (20 

min), then harvested 2 day later for assessment of systemic and pulmonary responses as above. 

4.11 RNA purification and quantitative real-time PCR.  

Expression of IDO was determined by quantitative RT-PCR. We isolated the RNA from 

the upper right lung lobes using RNeasy mini kit (Qiagen). Briefly, about 30 mg of lung tissue 

was harvested from ALD and OVA-presenting DCIL-10-treated mice and about 600 µl of RLT 

buffer (i.e., guanidine isothiocyanate) was added. The tissue was disrupted and homogenized 

using a conventional rotor-stator homogenizer (IKA-Labortechnik, Staufen, Germany) until it 

was fully dispersed (usually 20-40 seconds). The lysate was centrifuged at 8000x g for 3 minutes 

(all centrifugation steps were done at 20-25°C) and the supernatant was collected and 

supplemented with 1 volume of 70% ethanol. About 700 µl of the sample was transferred to an 

RNeasy spin column placed in a 2 ml collection tube and centrifuged for 15 seconds at 8000x g.  

The flow-through was discarded and another 700 µl of Buffer RW1 (contains ethanol) was added 

to the RNeasy spin column and spun as above to wash the spin column membrane. After again 

discarding the flow-through, 500 µl of Buffer RPE was added to the RNeasy spin column, which 

was spun as above, three times. Lastly, the RNeasy spin column was placed in a new 1.5 ml 

collection tube and 30-50 µl RNase-free water was added directly to the spin column membrane 

and spun as above for 1 min to elute the RNA. The RNA was quantified using a 

spectrophotometer and purity was checked measuring 260/280 ratio. The RNA was reverse-

transcribed to cDNA using a one step RT-PCR kit (Invitrogen) starting with 500 ng of total RNA 

(pretreated with DNAse 1 for 15 min at 25˚C) for each 25 µl of PCR reaction. PCR primer pairs 

were as follows: IDO, forward primer 5’–AGT GTG TGA ATG GTC TGG TCT CTG-3’, 
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reverse primer 5’-ACA TTT GAG GGC TCT TCC GAC T-3’; β–actin, forward primer 5’ –AGA 

GGG AAA TCG TGC GTG AC-3’; reverse primer 5’-CAA TAG TGA TGA CCT GGC CGT – 

3’. The PCR was run in a Mx3005P QPCR system (Stratagene) equipped with the MxPro QPCR 

software package (Version 3), with PCR parameters set at: 50°C for 30 min, 95°C for 10 min, 

95°C for 30 sec, 63°C for 30 sec, 72°C for 30 sec, 95°C for 1 min, 55°C for 30 sec and 95°C for 30 

sec for up to 40 cycles. All IDO mRNA levels were normalized to beta-actin levels. Controls 

were used to detect the absence of DNA. 

4.12 Statistics.  

All data were expressed as the mean ± SEM.  Group differences were examined for 

significance using single factor analysis of variance. For in vitro experiments, paired t-tests were 

used. For AHR, analysis of covariance and a Fisher’s LSD post hoc test (XL-stat 2007, 

Addinsoft, New York, USA) was used.  Significance was established at p ≤ 0.05.  
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5.0  RESULTS 
 

5.1 In vitro characterization of tolerogenic dendritic cells 

 

Normal healthy mice between the ages of 8-10 weeks were sacrificed and their bone 

marrow harvested and pooled. DCs were cultured from bone marrow for 13 days as indicated in 

the Material and Methods in the presence of GM-CSF either alone (immature; DCGM-CSF), or 

with either IL-10 (tolerogenic; DCIL-10) or TNF (mature; DCTNF).  DCGM-CSF and DCIL-10 

displayed smaller dendritic or veil-like processes, while cells DCTNF had relatively prominent 

dendrites or appendages (Figure 5.1).  

 

5.1.1 Dendritic cell surface markers 

 

On FACS analysis, both DCGM-CSF and DCIL-10 showed low to moderate levels for 

costimulatory molecules required for T cell stimulatory responses compared to the mature 

DCTNF. The DCGM-CSF and DCIL-10 expressed significantly lower levels of CD40 and CD54 

(ICAM-1) compared to DCTNF.  CD80 (B7.1, a ligand for CD28 and CTLA-4) expression levels 

were similar for all the three DC populations, while CD86 (B7.2, also a ligand for CD28 and 

CTLA-4) levels were moderately higher in DCTNF population compared to the DCIL-10 group 

(p=0.057, Figure 5.1.1A, 5.1.1B). Surface MHC-II expression by DCIL-10 was moderate (29 ± 6%  
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Figure 5.1 Morphological appearance of different populations of dendritic cells following 
cytocentrifuge preparation.   Cytospin slides were prepared for all the three (OVADCGM-CSF (A 
and B), OVADCIL-10 (C and D) and OVADCTNF (E and F) populations of cells using ≈1x105 cells 
from the day 13 cultures and stained with Giemsa-Wright stain. The pictures were taken under 
the microscope at 40x and 100x magnification. 
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Figure 5.1.1A FACS characterization of immature (DCGM-CSF), tolerogenic (DCIL-10), and 
mature (DCTNF) bone marrow-derived dendritic cells for a panel of relevant cell surface 
markers. Bone marrow cells from BALB/c mice were cultured in high (20 ng/ml), then low (7.5 
ng/ml) dose GM-CSF and were further treated with GM-CSF alone (immature phenotype), GM-
CSF + IL-10 (50 ng/ml) (tolerogenic phenotype) or GM-CSF + TNF-α (10ng/ml) (mature 
phenotype).  On day 13, the cells were stained for analysis of cell surface CD40, CD54, CD80, 
CD86 and MHC-II by flow cytometry using FITC-labeled antibodies (solid lines). Isotype-
matched monoclonal irrelevant specificity antibodies were used as controls (light lines). One 
representative experiment of five replicates is shown. 
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Figure 5.1.1B FACS characterization of immature (DCGM-CSF), tolerogenic (DCIL-10), and 
mature (DCTNF) bone marrow-derived dendritic cells for a panel of relevant cell surface 
markers. Bone marrow cells from BALB/c mice were cultured as indicated in Figure 5.1.1A  On 
day 13, the cells were stained for analysis of cell surface CD40, CD54, CD80, CD86 and MHC-
II by flow cytometry using FITC-labeled antibodies. Isotype-matched monoclonal irrelevant 
specificity antibodies were used as controls (light lines). Mean values ± SEM from five 
experiments are shown (This is the similar data as in Figure 5.1.1A). *p≤0.05 compared to 
DCTNF group.  
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of cells were positive, relative to the isotype control) but was not significantly different from the 

m

(

m

C

fo

F

v

 

 

im

m

 

5

 

d

a

4

fo

1

[M

c

 

ature populations (Figure 5.1.1A, B). As expected the DCGM-CSF expressed significantly low 

p=0.01) levels of MHC-II compared to DCTNF population. All three populations expressed 

oderate levels of CD11b (Mac-1) and CD45RB, and low levels of the other DC markers as 

D11c and CD205 (DEC205). The cultured DC populations had moderate levels of expression 

r markers of monocytes (CD14), macrophages (F4/80) or B cells (CD19) as determined by 

ACS (Table 5.1.1). The contamination with polymorphonuclear cells was found to be 3±1 % on 

isual examination of cytospin slides under the microscope. 

To summarize, based on the cell surface marker expression, IL-10 treated-DCs similar to 

mature DCs (except for MHC-II), expressed low/moderate level expression of costimulatory 

olecules compared to the mature population.  

.1.2 Functional phagocytic capacity 

To assess the capacity of our DCs to endocytose soluble antigens we carried out FITC-

extan (M.W=40,000, similar to our antigen, OVA) phagocytosis assays. The same populations 

ssessed above were incubated with FITC- dextran (50 µg-2 mg/ml) for 30 minutes at 37oC or  

oC (a control for non- specific FITC-dextran binding). The 100 µg/ml dose was selected from 

r subsequent studies. As expected of immature and semi-mature cells (Lutz, Kukutsch et al. 

999), DCGM-CSF and DCIL-10 avidly phagocytosed FITC-dextran (mean fluorescence intensity 

FI], 6 and 8, respectively; Figure 5.1.2) while DCTNF displayed the very low phagocytic 

apacity typical of mature cells (MFI, 3). 
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15 ±64 ±215 ±72 ±116 ±525 ±348 ±10TNF

19 ±28 ±120 ±53 ±215 ±618 ±445 ±6IL-10

12 ±54 ±119 ±102 ±011±1024 ±629 ±3GMCSF

F4/80CD19CD14CD205CD11cCD45RBCD11b

15 ±64 ±215 ±72 ±116 ±525 ±348 ±10TNF

19 ±28 ±120 ±53 ±215 ±618 ±445 ±6IL-10

12 ±54 ±119 ±102 ±011±1024 ±629 ±3GMCSF

F4/80CD19CD14CD205CD11cCD45RBCD11b

 
 
 
 
 
 
 
 
 
 
 
 
Table 5.1.1 FACS characterization of immature (DCGM-CSF), tolerogenic (DCIL-10), and 
mature (DCTNF) bone marrow-derived dendritic cells. The indicated DC populations were 
stained for an array of cell surface markers for alternate cell contaminations. The proportion 
(expressed as mean % ± SEM) of the cells in each population that were positive for the indicated 
marker (relative to isotype control antibody staining) are indicated. Data from three experiments 
are presented. 
 
 
 
 
 
 
 
 

 79



 
 
 
 
 
 FITC-DEX

DCGM-CSF

DCIL-10

DCTNF

MFI=6±0.5

MFI=8±2

MFI=3±0.25

40C 370C

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 
Figure 5.1.2 Phagocytosis of FITC-dextran by immature (DCGM-CSF), tolerogenic (DC IL-10) 
and mature (DC TNF) generated as in Figure 5.1.1. BM-DC cells were incubated with FITC-
dextran (50 µg/ml to 2 mg/ml) on ice or at 37°C for 2 hrs and then washed and assessed by FACS 
for FITC-dextran uptake. DC IL-10 were avidly phagocytic. The graphs on left panel show 
endocytosis at 4°C.  This data is representative of two experiments. Mean fluorescent intensity 
(MFI) values of 2 experiments are stated.  
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5.1.3 Capacity of DCs to respond to inflammatory and lymph node-homing chemokines 

 

Immature DCs respond to “inducible chemokines” that are expressed at sites of 

inflammation (e.g. MIP-1α [CCL3], a CCR5 ligand). In contrast, mature DCs respond 

preferentially to chemokines constitutively expressed in T cell-rich areas of secondary lymphoid 

tissues (e.g. MIP-3β [CCL19], CCR7 ligand). For this reason, we ran in vitro chemotaxis assays 

with each population of DC, using CCL3 and CCL19 as the agonists, as outlined in section 4.2.5 

of Material and Methods.  DCGM-CSF and DCIL-10 were strongly chemoattracted by CCL3 and 

only modestly so by CCL19, while DCTNF were CCL19 but not CCL3 responsive (Figure 5.1.3). 

These above results suggest that the majority of the immature and tolerogenic cells could 

potentially migrate to inflammatory sites but, at the same time, they showed a modest 

responsiveness to lymph node-homing chemokines, suggesting that a subpopulation could 

potentially also migrate to the lung-draining lymph node in vivo. 

 

5.1.4 Cytokine secretion  

 

The release of a number of DC-relevant cytokines by our otherwise unstimulated DCs 

was assessed by ELISA. Specifically, we looked at their expression of immunoregulatory 

cytokines (IL-10 and TGF-β), inflammatory cytokines (IL-1β and IL-6) and Th1-skewing 

cytokines (IL-12 and IFN-γ) as outlined in section 4.2.4 (Figure 5.1.4). DCIL-10 secreted 

significantly higher levels of IL-10 (p≤0.01) compared to the immature and mature cell 
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Figure 5.1.3 Chemotaxis assay for BM-DC to CCL3 (left panel) or CCL19 (right panel). 
The migration patterns of the three populations of DC to chemokines CCL3 (a CCR5 ligand) and 
CCL19 (a CCR7 ligand) were determined using microchemotaxis assays as indicated in the 
material and methods. The migration responses at a chemokine concentration of 100 ng/ml are 
shown above. The dotted line represents the control with no chemokine. The DCs that migrated 
in response to no chemokine were less than 20 cells for each of three groups of DC. Four 
experiments with similar results were performed. The results are expressed as mean ± SEM, *** 
p<0.0001. 
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populations. Although, the mean level of TGF-β secretion by DCIL-10 was ≈40% higher than 

other two populations, this was not statistically significant (p≥0.05). Both DCIL-10 and DCTNF 

secreted significantly more IL-1β (p≤0.05) than DCGM-CSF, upper panel), and the mean levels of 

IL-6 in the DCTNF cultures were higher (≈80%) than in the DCGM-CSF and DCIL-10 cultures, but 

again this was not statistically significant (p=0.06). Interestingly, there were no differences in IL-

12 or IFN-γ expression by the 3 populations.  

In conclusion, the IL-10-treated DCs displayed a semi-mature phenotype, expressing 

low/moderation levels of costimulatory markers. They were avidly phagocytic, migrated in 

response to inflammatory chemokines and secreted high levels of the immunoregulatory 

cytokine IL-10. These characteristics would be consistent with IL-10-treated DCs expressing a 

tolerogenic phenotype.  

 

5.2 In vivo tolerization by IL-10-treated dendritic cells 

 

As explained in the material and methods section 4.3, normal healthy BALB/c mice were 

sensitized with two doses of 2 µg OVA/alum, delivered two weeks apart, and then exposed three 

times to 1% OVA aerosols (day 30, 32 and 34). They invariably develop many features typical of 

allergic asthma in humans, including AHR to methacholine, airway eosinophilia (40-70 % 

eosinophils), and local and systemic Th2-type immune reactivity to allergen (Schneider, Li et al. 

2001; Gordon, Li et al. 2005).  In the present study, at two weeks following the last aerosol 

exposure of the sensitizing regimen, when the allergen-induced eosinophilic inflammatory 

environment within the airways had waned somewhat (Schneider, 2001; Gordon, 2005), we 

delivered 1x106 OVA-pulsed immature DCGM-CSF (OVADCGM-CSF), mature DCTNF (OVADCTNF), 
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putatively tolerogenic DCIL-10 (OVADCIL-10), or saline (20 µl) alone into the airways of each 

mouse. We assessed their AHR weekly thereafter, and either exposed them to a 1% OVA aerosol 

for 20 minutes 48 hrs before sacrifice (day 23), or left them unexposed. 

 

5.2.1 Airway Hyperresponsiveness (AHR) 

 

AHR is the hallmark of asthma and can be measured by several methods. We used a 

whole-body head-out plethysmograph, which measures the bronchiolar constriction response, as 

explained in section 4.4. AHR was assessed every week and each mouse was exposed to 

increasing doses of Mch (0-25 mg/ml) over 15-20 and each mouse was exposed to increasing 

doses of Mch (0-25 mg/ml) over 15-20 minutes. The air flow rate at the 50% point of the 

expiratory cycle was measured, and the data expressed as loss of function (i.e., negative values 

Figure 5.2.1). None of the treatments had significant effects on the AHR of the asthma-

phenotype mice when assessed at the one-week time-point, but by day 14 the OVADCIL-10 group 

began to show significant (p=0.03) signs of improvement in AHR versus saline-treated asthma-

phenotype mice. By day 21 the bronchial responsiveness of the OVADCIL-10 treatment group was 

fully normalized, while the OVADCGM-CSF and OVADCTNF groups as well as the saline-treated 

animals remained hyperresponsive (Figure 5.2.1; p<0.01, versus saline-treated asthma-phenotype 

mice).  At 3 weeks no significant differences were observed between the normal and OVADCIL-10-

treated animals.   In  all experiments in which we assessed AHR (n=15), it was fully normalized 

within 3 weeks of OVADCIL-10-treatment. 

.  
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Figure 5.2.1 Treatment of asthma phenotype mice with OVADCIL-10 reverses airway 

hyperresponsiveness (AHR) within 3 weeks. BALB/c mice with severe ALD (≈60% airway 

eosinophils on airway allergen challenge) were given 1x106 OVADCTNF, OVADCGM-CSF, OVADCIL-10 

or saline intratracheally.  Over the next 3 weeks their AHR was assessed weekly by head-out 

whole body plethysmography, following exposure to increasing doses of methacholine, as 

explained in the materials and methods.  The data are expressed as running 1-sec means of the 

airflow rate at 50% point (i.e., 50% tidal volume) in the expiratory cycle. Normal mice were 

included as negative controls. This experiment is representative of 15 experiments (n=5/group) 

in which we found that, beginning at 14 days post-transfer, the AHR of OVADCIL-10-treated mice, 

but not those treated with either  OVADCTNF, OVADCGM-CSF or saline, disappears. The data 

represent the mean percent decreases in airflow (i.e., bronchoconstriction) with increasing doses 

of Mch. The SEM values ranged between 1-3%, but are not presented in order to maintain 

graphic clarity. The OVADCIL-10-treated mice were significantly less hyperresponsive than 

OVADCTNF, OVADCGM-CSF and saline-treated mice at 2 and 3 weeks post-treatment. * and **, 

p≤0.05 and 0.01. 
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5.2.2 Airway Eosinophilia 

 

The OVADCIL-10 treatments also affected eosinophilic inflammation and the Th2 responses 

of the asthma phenotype mice.  In a first series of experiments, saline, OVADCTNF, OVADCGM-CSF, 

or OVADCIL-10 were introduced into the airways two weeks after the last sensitizing regime OVA 

aerosol exposure, as above, but these mice were not exposed to allergen again.  Three weeks 

later, when the saline-treated ALD mice were still hyperresponsive, the airway eosinophilia of 

these mice (which by this time had not been exposed to OVA for 5 weeks) had largely waned.  

On the other hand, the airways of the mice given immunocompetent OVADCGM-CSF or OVADCTNF 

as antigen-presenting cells showed eosinophilia (p≤0.01 and p<0.05, versus OVADCIL-10 group), 

while those of the mice that received the putatively tolerogenic OVADCIL-10 contained fewer 

eosinophils than the saline-treated ALD controls (p=0.02, Figure 5.2.2A). This also strongly 

suggests that these immature OVADCGM-CSF matured into fully competent APCs in vivo.  

In our next and all subsequent experiments, the mice were treated with OVADCGM-CSF, 

OVADCTNF, or OVADCIL-10 as above, but they were challenged with OVA aerosols (20 min of 

nebulized OVA; 10 mg/ml) 48 hrs before sacrifice in order to induce the recall responses. Here 

we found that the airways of the OVADCTNF-, OVADCGM-CSF- and saline-treated, asthma-phenotype 

animals were replete with eosinophils (Figure 5.2.2B), while the eosinophilia of the ALD mice 

treated 3 wk previously with OVADCIL-10 was reduced by ≈59% (p<0.01) relative to the 

OVADCGM-CSF-treated mice, by ≈42% (p=0.048) relative to the OVADCTNF-treated mice and by 

51% (p=0.02) relative to the saline-treated ALD mice. Thus, OVADCIL-10 treatment of asthma 

phenotype mice ameliorates eosinophil influx into the airways following allergen challenge, one 

of the most pathogenic components of the late phase asthmatic response (Flood-Page, Menzies- 
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Figure 5.2.2 OVADCIL-10-treatments diminish airway eosinophilia following allergen recall 
response challenge. BALB/c mice with severe ALD were treated as in Figure 5.2.1 and were 
harvested after 3 weeks without (A) or 48 hrs after (B) aerosol challenge with 1% OVA aerosol 
(20 min exposure). The airway cells were recovered by bronchoalveolar lavage and differentials 
done on 200 cells from each mouse. The controls were the saline-treated ALD mice, OVADCTNF, 
OVADCGM-CSF and normal mice. * or ** = p≤0.05 or p≤ 0.01, respectively versus the OVADCIL-10 
group. This is representative of four experiments. Mean values ±SEM of five mice per group are 
presented. 
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Gow et al. 2003). 

 
 
5.2.3 Antibody Responses 

 

We also examined the effects of the treatments on the levels of plasma OVA-specific 

antibodies in the treated animals. Aerosolization of the mice 48 hr before sacrifice had no 

discernible effect on the circulating OVA-specific antibody levels relative to non-aerosolized 

mice. So, the data presented here is representative of all the five +/- aerosol experiments. We 

observed significant reductions in IgE levels following OVADCIL-10 treatment relative to the 

saline-treated ALD mice in all 5 of 5 experiments (Figure 5.2.3A). In 4 experiments depicted, no 

differences were detected in IgE levels in OVADCGM-CSF- or OVADCTNF-treated mice relative to the 

OVADCIL-10-treated mice at 3-week time point. However, in one other experiment, the OVADCIL-10-

treated mice had 35% lower IgE levels than OVADCGM-CSF-treated animals (p≤0.05) and in 30% 

lower IgE than OVADCTNF- treated mice (p≤0.05). Overall, the OVA-specific plasma IgE levels 

were not reduced within DC groups 3 wks following OVADCIL-10 treatment.  

Interestingly, in four experiments, the circulating levels of OVA-specific IgG1 were 

significantly reduced in the OVADCIL-10- relative to saline-treated ALD mice (p≤0.01; Figure 

5.2.3B). In three of these OVA-specific IgG1 levels were significantly lower (p≤0.05) in the 

OVADCIL-10-treated mice relative to OVADCTNF- treated animals (Figure 5.2.3B), while no 

differences were detected between OVADCGM-CSF- and OVADCIL-10-treated mice.  

We also assessed the circulating levels of OVA-specific IgG2a, to determine whether our 

treatment success was attributable to immune deviation (i.e. Th2 → Th1). We observed no  

 

 90



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  
 
 
 
 
 
 
 
 
 
IgG1 and IgG2A are expressed as mean ± SEM (5 mice/group) in pg/ml and the data is 
representative of 4 experiments each.  All comparisons were done relative to ALD mice. ** = 
p≤0.01 and N.S. = non-significant. The dotted line in each graph represents the values in normal 
mice. 
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Figure 5.2.3 OVADCIL-10-
treatments reduced OVA-
specific IgE and IgG1 levels 
without affecting IgG2a 
antibody responses. BALB/c 
mice with severe ALD were 
treated as in Figure 5.2.1 and 
harvested 2 days after OVA 
aerosol challenge at 3 weeks. 
OVA-specific plasma antibody 
levels were assessed by ELISA as 
indicated in the materials and 
methods. The controls were 
saline-treated ALD mice, 
OVADCTNF, OVADCGM-CSF and 
normal mice. IgE levels are 
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significant differences in plasma IgG2a levels between OVADCIL-10-treated and saline-treated 

asthma phenotype mice (Figure 5.2.3C).In summary, OVADCIL-10 treatment significantly reduced 

both the OVA-specific IgE and OVA-specific IgG1 antibody responses while the levels of IgG2a 

antibody remained unaffected.  

 

5.2.4 Impact of OVADCIL-10 treatment on airway cytokine levels 

 

We also assessed the pulmonary Th2 cytokine responses of the saline-, OVADCTNF-, 

OVADCGM-CSF- and OVADCIL-10-treated ALD animals. As above, in the first series of experiments, 

mice treated 3 wk earlier with saline, OVADCTNF, OVADCIL-10 and OVADCGM-CSF were euthanized 

without further exposure to antigen. Bronchoalveolar lavage (BAL) was done on each mouse 

(n=5/group) and the BAL fluid was tested for IL-4, IL-5, IL-9, IL-12 and IL-13 (Figure 5.2.4A). 

The OVADCIL-10-treated mice showed no significant decreases in the levels of IL-4, -5, -9 and IL-

13 versus saline-treated ALD mice (Figure 5.2.4A, upper panel).  In addition, no difference in 

cytokine levels, except IL-5 (p=0.01), was seen in the OVADCIL-10-treated group compared to the 

OVADCGM-CSF-treated group.  
OVADCTNF-treated animals also displayed no differences in BAL 

cytokines versus OVADCIL-10-treated mice. The expression of IL-12 was significantly depressed 

(80-88%, p=0.01) in the OVADCIL-10-treated animals relative to both the OVADCTNF- and 

OVADCGM-CSF-treated mice (Figure 5.2.4A, lower right panel) but no significant differences were 

detected relative to saline-treated ALD mice. 

 In a second series of experiments, we exposed the mice to allergen aerosols 48 hrs before 

sacrifice and found significantly reduced cytokine levels in the BAL of the OVADCIL-10-treated 

mice compared to the saline-treated animals. Thus, one allergen exposure served as a full recall  
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Figure 5.2.4A Effect of OVADCIL-10 treatments on BAL fluid cytokine levels. BALB/c mice 
with severe ALD were treated as in Figure.5.2.2 and 5.2.3 and were harvested after 3 weeks 
without prior OVA re-challenge and assessed for cytokine levels in the BAL fluid by ELISA as 
stated in the materials and methods. The data is representative of 2 experiments (n=5/group). 
Data was normalized using log transformations and statistics was done on log-transformed data. 
N.S. = not significant versus ALD saline controls. 
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Figure 5.2.4B Effect of OVADCIL-10 treatments on BAL fluid cytokine levels. BALB/c mice 
with severe ALD were treated as in Fig 5.2.2 and 5.2.3 and were harvested, 48 hrs after OVA 
challenge (day 23), and assessed for cytokine levels in the BAL fluid by ELISA as stated in the 
materials and methods. The data is a is presented as means ± SEM of 4 experiments (n=4-
5/group). * p≤0.05 versus ALD-saline control. N.S. = not significant versus saline-treated ALD 
mice. 
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challenge, and reverted the ALD mice back to a complete asthma phenotype (i.e., AHR, 

eosinophilia and Th2 cytokines, Figure 5.2.4B). All the cytokines i.e. IL-4, -5, -9 and -13 were 

significantly reduced (p≤0.01 for IL-4, IL-9 and IL-13, p≤0.05 for IL-5) in OVADCIL-10-treated 

animals relative to saline-treated ALD mice (Figure 5.2.4B). Marked differences were also 

detected between these two groups with respect to the levels of IL-12 (p≤0.05). However, 

exposure to aerosol partially affected the BAL cytokine profile within the OVADCTNF-, OVADCGM-

CSF- and OVADCIL-10-treated groups.  OVADCGM-CSF-treated animals secreted significantly 

increased BAL IL-5 (p=0.04) versus OVADCIL-10-treated animals. BAL IL-5 and -13 levels were 

not significantly different in OVADCGM-CSF- or OVADCTNF- treated animals (Figure 5.2.4B, upper 

panel first graph) compared to saline-treated ALD controls. Interestingly, like OVADCIL-10-treated 

animals we found that IL-4 and -9 levels in OVADCGM-CSF group as well as in OVADCTNF group 

were also significantly (p≤0.05) lower compared to the ALD mice.   

 The above observations show that the OVADCIL-10 treatment of allergic mice reduced all 

the BAL Th2 cytokines without affecting the expression of Th1- skewing cytokines, while 

OVADCTNF and OVADCGM-CSF were also able to partially ameliorate the Th2 responses. 

 

5.2.5 Pulmonary parenchymal responses 

 

Following BAL, the lungs were removed from each animal, and single cell suspensions 

were prepared by enzymatic dispersion of the tissues (see section 4.5.4). The cells were 

enumerated and plated at 2x106 cells/ml with or without OVA for 48 hours at 37oC. The lung 

culture supernatants were harvested after 2 days and analyzed for various cytokines by ELISA. 
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 Since, we thought that exposure to OVA aerosol might elicit the movement of the cells to 

the airways, we performed two series of experiments. In the first line of experiments, we 

harvested the mice without aerosol allergen challenge 48 hrs earlier and cultured the lung 

mononuclear cells with OVA (50 µg/ml). There was no appreciable difference in the cytokine 

secretion of saline- and OVADCIL-10-treated animals. This might be due to the difference in the 

DC: T cell ratios in the ALD whole lung cultures compared to other cultures from DC-treated 

groups. Since very low amount of cells were obtained on purification of single lung cultures so 

we did not titrate the amount of DCs to T cells. Also, we observed that IL-4, IL-9 and IL-13, but 

not IL-5 secretion was significantly lowered (p≤0.05) in OVADCIL-10-treated group relative to the 

OVADCGM-CSF-treated group (Figure 5.2.5A). In addition, only IL-5 secretion was markedly 

lowered (p≤0.05) in OVADCIL-10- treated mice relative to OVADCTNF-treated mice. There was no 

difference in IL-12 secretion within any of the groups. 

 In a second series of experiments, we aerosolized the mice with 1% OVA 3 weeks post-

treatment and sacrificed them two days later. We observed no significant differences in the 

secretion of Th2 cytokines between saline and OVADCIL-10 treatments (Figure 5.2.5B). In addition, 

we observed that IL-5 secretion was significantly lowered (p≤0.05) in OVADCIL-10-treated animals 

relative to OVADCGM-CSF- and OVADCTNF-treated animals (Figure 5.2.5B) while IL-13 levels were 

decreased compared to OVADCTNF- treated mice.  

 The parenchymal responses above depicted a different picture than the BAL fluid 

responses.  As no differences were detected between the saline-treated ALD and OVADCIL-10-

treated mice, this suggests that the airway compartment responds separately from the 

parenchymal compartment, at least in the terms of kinetics or that the tolerance has yet not been 

achieved in the latter. Besides this, the DC:T cell ratio in the cultures may also cause this  
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Figure 5.2.5 Effect of OVADCIL-10 treatments on lung parenchymal mononuclear cell 
cytokine secretion. BALB/c mice with ALD were treated as above and were harvested after 3 
weeks with (A) or without (B) OVA challenge. The lung mononuclear cells were purified from 
enzyme-dispersed lung tissues (section 4.5.4, materials and methods), then established in culture 
@ 2 x 106 cells/ml, with (A) or without (B) exogenous OVA (50 µg/ml) for 48 hrs. The culture 
supernatants were assessed for the indicated Th2 cytokines by ELISA. The upper and the lower 
panels are representative of 2 experiments each. N.S. = not significant versus the saline-treated 
ALD animals. * p≤0.05.   
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difference as the whole lung cultures from the mice treated in a similar manner with different DC 

populations showed significant differences. Immunoreactive OVADCGM-CSF  significantly 

enhanced the allergic responses (IL-4, -9 and -13, p≤0.05) relative to OVADCIL-10-treated mice 

(Figure 5.2.5A) on exogenous OVA addition in cultures while the ALD mice which had not 

received 106 DCs earlier showed diminished responses. However, only IL-5 levels were 

decreased in OVADCIL-10-treated animals (Figure 5.2.5B) suggesting that tolerance might just be 

starting to initiate in this compartment and IL-5 might be the first cytokine to be affected in this 

phenomenon. 

 To summarize the above in vivo observations, OVADCIL-10-treated animals show 

physiologically normal airway function 3 weeks post-treatment. At this point, in time if they had 

not been exposed to recall antigen challenge in vivo they show overall reduced eosinophilia and 

OVA-specific IgG1, with no discernible difference in Th2 cytokine secretion in the BAL or by 

lung parenchymal mononuclear cells relative to saline-treated ALD mice. The antigen challenge 

of mice at this time point revealed that there still existed a potential to develop eosinophilia. The 

OVA-specific IgE and IgG1 antibody levels were reduced moderately but not to the background 

levels. The BAL fluid cytokine profile showed significantly reduced levels compared to saline-

treated ALD controls but not OVADCGM-CSF or 
OVADCTNF.  The parenchymal Th2 responses of the 

OVADCIL-10-treated animals were not different from ALD mice. Since IL-5 cytokine levels were 

significantly reduced in OVADCIL-10-treated mice versus other DC groups suggests that tolerance 

induction had occurred in the bronchoalveolar component and was beginning to initiate in lung 

parenchyma and IL-5 may be the first cytokine to be effected (discussed later). 

 

5.3 Time period for effectiveness of DCIL-10 therapy   
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To determine whether the OVADCIL-10 therapy could induce robust tolerization of the 

asthmatic responses given sufficient time, we next treated the mice as above with OVADCIL-10 and 

followed the tolerization process across an 8 month period. We monitored AHR and serum IgE 

levels as a non-invasive surrogate measure of tolerance. The ALD mice were given saline, 

OVADCTNF, OVADCGM-CSF or OVADCIL-10 intratracheally, and then we assessed levels of OVA-

specific-IgE antibody levels every three weeks until they were near background levels. We then 

aerosolized the mice at 32 weeks, two days before harvest and assessed the asthmatic phenotype 

of our mice as noted above.  

 

5.3.1 Airway hyperresponsiveness (AHR) 

 

AHR was measured weekly for 4 weeks from the time DCs were injected into the 

airways, then every second week until 10 weeks, and finally every third week until 16 weeks. 

Interestingly, the tolerogenic effects of the OVADCIL-10 treatment on the animals’ AHR were 

transient. AHR was completely normalized at 3 weeks and at 2 months post-treatment (Figure 

5.3.1) (p≤0.01; relative to saline-, DCGM-CSF- or OVADCTNF-treated ALD mice). At 10 weeks the 

bronchial responsiveness of the OVADCIL-10 group was still significantly different from the 

OVADCGM-CSF-treated animals (p≤0.01), but hyperresponsiveness had begun to return, such that 

this group was now also significantly different from the normal controls (p=0.024). The AHR 

was only borderline in the OVADCTNF- and saline-treated ALD animals (p=0.06 and p=0.055 

respectively) versus the OVADCIL-10-treated animals. Moreover, at 13 weeks post-treatment the 

AHR of the OVADCIL-10-treated group had fully reverted to the asthma phenotype (p>0.05). Thus, 

the OVADCIL-10 treatment only transiently (for ≈ 10 weeks) normalized airways function.  
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Figure 5.3.1 OVADCIL-10-dependent amelioration of AHR is transient. BALB/c mice with 

severe ALD were given 1x106 OVADCIL-10, OVADCGM-CSF, OVADCTNF  or saline intratracheally as 

above and AHR was measured over 13 weeks using head-out whole body plethysmography with 

increasing doses of methacholine (0 to 25 mg) as explained in the materials and methods. The 

data depict AHR of the mice at 8, 10 and 13 weeks post-treatment as in Figure 5.2.1. This 

experiment is representative of 3 others performed. Each data point represents the mean value of 

5 mice. The SEM values ranged between 1-5% (at 8wks), 2-6% (at 10 wks) and 1-4% (at 13 

wks). The OVADCIL-10-treated mice were significantly (p≤0.01) different from DCGM-CSF- or 

saline-treated mice at 8 and 10 weeks post-treatment, and were significantly different from 

DCTNF only until the 8 week time point. *p≤0.05.  
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5.3.2 Airway Eosinophilia 

 

              As noted above, the ALD mice that had been treated 32 weeks earlier with saline, 

OVADCTNF, OVADCGM-CSF or OVADCIL-10 were exposed for 20 minutes to OVA aerosols and 

sacrificed 48 hrs later. We found that the airways of the mice given immunocompetent 

OVADCGM-CSF or OVADCTNF cells were eosinophilic (18% and 13% eosinophils respectively, 

p<0.05) relative to the OVADCIL-10-treated animals (Figure 5.3.2). On the other hand, the saline-

treated ALD mice which had not been exposed to antigen for ≈9 months (versus the OVADCTNF 

and OVADCGM-CSF groups which were given immunostimulatory OVA-loaded DCs ≈8 months 

earlier) displayed a decided airway eosinophilia. The mice receiving the tolerogenic OVADCIL-10 

contained 82% and 75% fewer eosinophils than OVADCTNF- (p=0.02) and OVADCGM-CSF- 

(p=0.025) treated mice, respectively. There was no statistically significant difference between the 

saline- and OVADCIL-10-treated animal’s airway eosinophilia, despite the apparent 46% reduction 

in mean values (Figure 5.3.2).   

 

5.3.3 Antibody responses 

 

In this experiment the mice were treated as above, and their circulating OVA-specific 

antibodies were periodically assessed until 8 months post-treatment, when the animals were 

exposed one last time to OVA aerosols 48hr before sacrifice.  The circulating OVA-specific IgE 

levels of the OVADCIL-10-treated asthmatic mice progressively diminished, such that by 16 weeks 

they had declined 81% relative to saline-treated ALD mice (p≤0.001) and 77% and 73% relative 
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Figure 5.3.2 Long-term effect of a single OVADCIL-10-treatment on airway eosinophilia. 
BALB/c mice with severe ALD were treated with saline, OVADCTNF, OVADCGM-CSF or OVADCIL-10, 
but were harvested at 32 weeks, 48hr after a single aerosolized OVA challenge, and then 
assessed for airway cells as in Figure 5.2.2 (n=5). The controls were the saline-treated ALD mice 
and normal mice. * p≤0.05 versus the DCGM-CSF and DCTNF groups. All the DCs were cultured 
with OVA antigen before being delivered to animals. The above data is representative of three 
experiments performed. 
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to the OVADCTNF- and  DCGM-CSF-treated mice (p≤0.001; Figure 5.3.3, upper left).  At the time of 

euthanasia (i.e., two days after their final allergen exposure) their plasma IgE levels remained 

substantially lower than those of the saline-treated ALD control (54% lower; p≤0.001), 

OVADCTNF- (22% lower; p≤0.05) or DCGM-CSF-treated mice (60% lower; p≤0.001). 

 The OVA-specific IgG1 levels were significantly reduced in OVADCIL-10-treated relative 

to the saline-, OVADCTNF- and DCGM-CSF-treated ALD mice (p≤0.05, Figure 5.3.3, upper right 

panel) both during the 32 week period of no antigen exposure as well after experiencing the 

allergen contact 48 hrs before sacrifice. Interestingly, we also found that the antibody levels 

started to rise between 19-29 weeks and on antigen challenge at 32 weeks an increase in antibody 

levels was found in all the groups. 

Unlike earlier, where we found no difference in IgG2a antibody levels at 3 weeks, we 

observed noticeable decreases (p≤0.001, Figure 5.3.3, lower panel) in IgG2a levels at 8,16 and 

32 weeks in OVADCIL-10 compared to saline-, OVADCTNF- and DCGM-CSF-treated mice. Similarly, 

IgG2a Ab levels were augmented between 19-29 weeks and after exposure to the antigen the 

levels of antibody were increased in all the three groups but the relative decrease in OVADCIL-10 

compared to saline-, OVADCTNF- and DCGM-CSF-treated groups remained statistically significant.  

To summarize, the OVADCIL-10 treatment significantly reduced the OVA-specific IgE over 

a period of time, although the OVA-specific IgG1 levels remain markedly low throughout the 8 

months period, even though by 8 months they appeared to be increasing. In addition, IgG2a 

antibodies were considerably decreased in OVADCIL-10-treated compared to saline-, OVADCTNF- 

and DCGM-CSF-treated animals although overall the levels were increased at 32 weeks. This data 

also suggests that like AHR, T cell tolerance also starts to wane sometime between 19-32 weeks. 
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Figure 5.3.3 OVADCIL-10 treatments significantly affect OVA-specific IgE and IgG1 as well 
as IgG2a antibody responses over a period of 8 months. BALB/c mice with severe ALD were 
treated as above and were harvested after 32 weeks and assessed for plasma or serum antibody 
levels as indicated in material and methods by OVA-specific ELISA. The controls were the 
saline-, OVADCTNF-   and OVADCGM-CSF- treated ALD mice. IgE is expressed as OD405 and IgG1 
and IgG2a are expressed in pg/ml. * or ** = p≤0.05 or p≤0.01 versus each of the control groups. 
These are the results from one of three experiments (n=5/group) 
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5.3.4 Cytokine secretion in the bronchoalveolar lavage (BAL) fluid 

 

The BAL levels of Th2 cytokines at this time (i.e. 8 months post treatment and 48hr after 

a single antigen exposure) were also markedly affected. The levels of IL-4, and IL-5 in the 

OVADCIL-10 treatment group were dramatically reduced (p≤0.001) compared to the saline-, 

OVADCTNF and OVADCGM-CSF treatments (Figure 5.3.4). The BAL levels of IL-9 in OVADCIL-10-

treated animals were considerably reduced compared to the saline- (p=0.002) and OVADCGM-CSF-

treated groups (p=0.025). The levels of IL-13 (p=0.03) were also notably lower compared to 

saline-treated ALD controls, but not significantly lower than the OVADCTNF- and OVADCGM-CSF- 

treated ALD controls  (Figure 5.3.4). These results indicate that OVADCIL-10 treatment 

significantly decreased the Th2 cytokine response in the airways over a period of 8 months. 

Besides, this it also suggests that OVADCGM-CSF acts as an immunoreactive population that 

possibly matures in the inflammatory environment of lungs such as that of asthmatic lungs in our 

mouse model.  

 

5.3.5 Lung parenchymal cytokine secretion 

 

We also assessed the release of Th2 cytokines over 48 hrs by lung parenchymal 

mononuclear cells, as noted above. As seen earlier at 3-week time point, the saline-treated ALD 

mice showed no differences compared to the OVADCIL-10-treated mice (except IL-9). The IL-9 

secretion by the cells from the OVADCIL-10-treated mice was considerably decreased (p≤0.001, 

Figure 5.3.5).  While the mean values for IL-4 and IL-13 were ≈51% (p>0.05) and 99%  
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Figure 5.3.4 A single OVADCIL-10 treatment ameliorates airway Th2 cytokine responses to 
recall allergen challenge after a period of 8 months. BALB/c mice with severe ALD were 
treated as above and were harvested at 32 weeks, 48 hrs after a 1% OVA challenge and assessed 
for BAL fluid cytokine levels by ELISA, as noted in the materials and methods. The controls 
were the saline-, OVADCTNF- and OVADCGM-CSF-treated ALD mice.  ** = p≤0.001 versus all the 
controls. “a” and “c”= p≤0.05 versus ALD group, “b”= p≤0.05 versus OVADCGM-CSF treated 
animals. (n=5/group). 
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(p=0.055) lower, respectively, compared to saline-treated ALD mice but neither was statistically 

significant. The levels of IL-5 were not significantly different between the saline- and OVADCIL-

10-treated groups. As discussed earlier, we did not titrate the DC: T cells due to cell number 

constraint. However, the lung cells of the OVADCIL-10-treated mice released much less IL-4, IL-5, 

IL-9 and IL-13 in culture than those from the immunoreactive OVADCGM-CSF-treated animals 

(each, p≤0.001, Figure 5.3.5). Similarly the cells from the OVADCIL-10-treated mice released less 

IL-4, IL-5, IL-9 and IL-13 in culture compared to those from the OVADCTNF-treated animals 

(each, p≤0.05). Thus, this data shows that the treatment of allergic mice with tolerogenic cells 

ameliorates lung parenchymal responses.  

These data not only indicate that the tolerance was in place at this time but also that, 

despite an 8 month interval since their last allergen exposure, a fully functional population of T 

effector-memory (TEM) cells presumptively resided in the lungs or associated lymphoid tissues of 

the saline-treated ALD animals. In addition, the tolerance which was not observed at 3 weeks in 

the lung parenchyma was now clearly obvious and differential effects of all the three DC 

populations were quite evident. 

 To summarize, the OVADCIL-10-treatments reduced airway eosinophilia, decreased the 

OVA-specific antibody responses and diminished the lung Th2 cytokine responses as determined 

at 8 months post-treatment, although the OVADCIL-10 treatment had transient affects on the AHR.  

 

5.4 Effect of various routes and repeated administration of OVADCIL-10 therapy in tolerance 

induction. 

Our data indicated that a single OVADCIL-10 treatment can transiently ablate AHR, and has 

long-term effects on eosinophilic inflammation and Th2 responses, although the allergen-specific 

 107



 

 

 
 
 

a 
*

0

200

400

600

IL-4 IL-5 IL-9 IL-13

ab **

ab

ab
0

200

400

600

IL-4 IL-5 IL-9 IL-13

ab **

ab

ab

OVADCIL-10ALD OVADCTNF
OVADCGMCSF

OVADCIL-10ALD OVADCTNF
OVADCGMCSF

0

3000

6000

9000

12000

0

3000

6000

9000

12000

0

3000

6000

9000

12000

0

3000

6000

9000

12000

C
yt

ok
in

e 
se

cr
et

io
n 

(p
ic

og
ra

m
s/

m
l) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.3.5 DCIL-10 treatments suppressed the lung parenchymal Th2 responses after an 8 
month period.  BALB/c mice with severe ALD were treated as above and were harvested at 32 
weeks, 48 hrs after exposure to 1% OVA aerosols. Their lung parenchymal mononuclear cells 
were cultured for 48 hrs without exogenous OVA challenge, and the culture supernatant were 
assayed for Th2 cytokine levels by ELISA.  *** = p≤0.001 relative to the saline treated ALD 
group. “a”= p≤0.001 versus OVADCGM-CSF group and “b”= p≤0.05 versus OVADCTNF -treated 
group. (n=5/group). 
 
 
 

 

 

 108



B cell responses were somewhat more resistant to tolerization, (e.g. 3-week data). Also the long-

term experiment suggested that OVADCIL-10-induced tolerization was progressively effective. 

Therefore we wanted to know whether we could augment the tolerogenic effects of OVADCIL-10 

treatment by repeated delivery of these cells. Secondly, the transience of its effect on AHR led us 

to investigate whether this was a direct effect of OVADCIL-10 delivery into the airways. We 

therefore also assessed the effect of delivering DC to distant sites, but in this experiment we also 

explored whether repeated treatments would be better than a single treatment. 

 We introduced 1x106 OVADCIL-10 either intratracheally, intraperitoneally (i.p.) or 

subcutaneously (s.c.) a total of four times (weeks 0, 2, 4, and 6), then challenged the recipients 

with OVA aerosols at week 8, and sacrificed them the 2 weeks later. The controls were treated 

with saline or OVADCTNF.  

  

5.4.1 Airway Hyperresponsiveness (AHR) 

 

We assessed the AHR of all animals at week 3 and again at 8 weeks, just prior to 

sacrifice.  As expected, we found that repeated intratracheal OVADCIL-10, but and not the 

OVADCTNF or saline, treatments normalized the bronchial responsiveness at 3 weeks and these 

remained normalized at 8 weeks. The AHR with i.p. treatments was also normalized by 3 weeks 

and remained normalized by week 8 with respect to the respective saline and OVADCIL-10 

treatments. The AHR of the ALD mice receiving DCIL-10 s.c. was completely unaffected, even 

after four treatments (Figure 5.4.1). This clearly indicates that repeated OVADCIL-10 

administration, whether by i.t. or i.p. route, reverses bronchial hyperreactivity. This suggests that  
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Figure 5.4.1 Repeated intratracheal or intraperitoneal but not subcutaneous 
administration of OVADCIL-10, reverses AHR. ALD was induced as earlier indicated in the 
materials and methods. Tolerogenic DCs (OVADCIL-10) or mature DCs (OVADCTNF) were given 
either i.t., i.p. or s.c., every second week for a total of 4 treatments. Control mice received equal 
volumes of saline via the same route as their matched DC recipients. We measured the AHR a 
week after each treatment by head-out whole body plethysmograph as indicated earlier. These 
are the results of one experiment performed (n=5 mice/group). 1x and 4x represents AHR after 
first and fourth treatment.*, p≤0.05 for DCIL-10 versus saline-treated ALD mice. N.S. = non-
significant, relative to normal mice. The data is presented as mean values. The SEM ranged 
between 0.5-5% for all graphs. 
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this effect either is not related to direct effects of IL-10 secretion by the tolerogenic DC within 

the airways, or perhaps that the DC given i.p. may somehow traffic by themselves into the lungs.  

 

5.4.2 Airway eosinophilia 

 

               Repeated airway delivery of OVADCIL-10   reduced airway eosinophilia following 

allergen challenge by ≈90% (p=0.003), versus the matched saline controls and by ≈91% (p=0.04) 

compared to the matched OVADCTNF group (Figure 5.4.2). In addition, while the i.p. treatments 

reduced eosinophilic inflammation by 83% (p=0.02), versus saline treatments and 76% (p=0.01) 

compared to the matched OVADCTNF group, the s.c. treatments were less effective (≈55-60% 

reductions) versus the airway OVADCTNF (p=0.05) and saline (p=0.052) treatment groups. 

Additional significant difference (p=0.01) was observed between the OVADCIL-10 i.t. and s.c. 

treatments. Thus repeated delivery of tolerogenic cells augmented the reductions in eosinophilia 

in the airways of severely allergic mice.  

 

5.4.3 Antibody responses 
 

 The repeated intratracheal OVADCIL-10 treatments reduced the IgE and IgG1 responses by 

90% and 93%, respectively, compared to the saline-treated ALD animals, and by 85% and 88%, 

respectively, versus the matched OVADCTNF treatments (Figure 5.4.3). This was a substantially 

better outcome than that following a single treatment (Figure 5.2.3). OVA-specific IgG2a 

responses were reduced by 91% and 85% compared to their respective saline and OVADCTNF 

groups. Intraperitoneal delivery of OVADCIL-10 similarly tolerized the allergen-driven antibody  
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Figure 5.4.2 Repeated intratracheal or intraperitoneal but not subcutaneous 
administration of OVADCIL-10, reverses airway eosinophilia. ALD mice which received 
tolerogenic DC (OVADCIL-10), mature DC (OVADCTNF) or saline treatments either i.t., i.p. or s.c., 
as described in Figure.5.4.1, were aerosolized with 1% OVA for 20 min at 8 weeks (2 weeks 
after the last DC delivery). After 48 hrs the mice were euthanized and BAL eosinophil responses 
were assessed. The controls were the saline- and OVADCTNF-treated ALD mice. There was no 
difference in controls given saline i.p. or s.c., so they are presented as one bar. * = p≤0.05 versus 
the saline- and OVADCTNF-treated group. These are the results of a single experiment performed 
(n=4 mice/group). 
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Figure 5.4.3 Repeated intratracheal or intraperitoneal but not subcutaneous 
administration of OVADCIL-10, ameliorates OVA-specific antibody responses. ALD mice 
which received tolerogenic DC (OVADCIL-10), mature DC (OVADCTNF) and saline treatments either 
intratracheally (i.t.), i.p. or s.c., as described in Figure.5.4.1, and were aerosolized and euthanized 
as indicated in Figure.5.4.2. OVA-specific ELISAs were done as explained in the materials and 
methods.* or ** = p≤0.05 or p≤0.01 compared to both saline and OVADCTNF treatments. “a” = 
p≤0.01 compared to respective the saline treatment and “b”= p≤0.01 compared to the respective 
saline treatment. OVA-specific IgE is expressed as OD405 and IgG1 and IgG2a are expressed in 
pg/ml. These are results of one experiment performed (n=4/group). 
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responses, reducing IgE, IgG1 and IgG2a levels by 84%, 94%, and 87%, respectively, relative to 

the saline-treated animals, and by 84%, 86% and 82%, respectively, versus the OVADCTNF  

treatments. The s.c. delivery of OVADCIL-10 was not nearly as effective, reducing the IgE, IgG1, 

and IgG2a responses by 41%, 84%, and 49%, respectively, versus the saline controls. 

Interestingly, the OVADCTNF groups given their cells via i.p. or s.c., not the i.t., route also showed 

significant decreases (p≤0.01) in IgG1 and IgG2a compared to their respective saline controls. In 

addition, significant differences were seen within the OVADCIL-10 treatments given via different 

routes. OVADCIL-10 given i.t. or i.p. showed significantly (p≤0.05) lower levels of IgE, IgG1 and 

IgG2a antibodies relative to the mice given the cells s.c. Thus, while the 8-week IgE and IgG1 

responses had been relatively resistant to a single OVADCIL-10 treatment (Figure 5.3.3), repeated 

treatments over 8 weeks brought these responses to near back-ground levels. In addition, the i.t. 

and i.p. routes tended to be better routes for effective therapeutic delivery of cells than was the 

s.c. route.     

 

5.4.4 Cytokine secretion in bronchoalveolar lavage (BAL) fluid 

 

Overall, the airway Th2 responses (i.e., BAL IL-4, -5, -9, and -13) to allergen challenge 

were reduced by +/-80% versus saline controls in the animals repeatedly given tolerogenic DC, 

irrespective of the route (Figure 5.4.4A). In addition, when comparing with matched OVADCTNF 

treatments, we found significant decreases in IL-4 and IL-5 when the DCs were given via airway 

and in IL-13 when the cells were given via i.p. delivery. No significant differences were seen 

between the OVADCIL-10 and OVADCTNF treatments when the cells were given s.c.  
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Figure 5.4.4 Repeated intratracheal or intraperitoneal but not subcutaneous 
administration of OVADCIL-10, reduces BAL Th2 responses. ALD mice which were treated as 
in Figure 5.4.1 were aerosolized and euthanized. The BAL fluid Th2 cytokine levels were 
assessed by ELISA as indicated in materials and methods. “*”= p≤0.05 compared to their 
respective saline treatments, “a”= p≤0.05 versus their respective OVADCTNF group. ** p≤0.001 
versus saline-treated ALD mice. These are results of the one experiment performed (n=4 
mice/group). 
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Intriguingly, the levels of TGF-β in the airways of the i.t. and i.p. DC-recipient mice were 

upregulated substantially (>4-fold), while this did not occur in the s.c. DC treatment (Figure 

5.4.4B). Specifically, BAL TGF-β levels in the saline-, i.t. OVADCTNF- and i.t. OVADCIL-10-treated 

ALD mice were 84, 99 and 338 pg/ml, respectively. These findings suggested that repeated 

airway OVADCIL-10 treatments substantially ameliorate Th2 responses and that TGF-β could 

potentially be involved.  

 

5.4.5 Pulmonary parenchymal responses 

 
We also assessed Th2 cytokine secretion by enzymatically dispersed lung parenchymal 

mononuclear cells, using ELISAs on 48 hr lung culture supernatants. The lung cells of the i.t. 

OVADCIL-10-treated mice released much less IL-4, IL-5, IL-9 (p≤0.05) compared to the saline-

treated animals. In addition, OVADCIL-10-treated mice given cells i.t. also showed significantly 

lower levels for all cytokines relative to their matched OVADCTNF treatments (Figure 5.4.5). On 

the other hand, comparing with matched OVADCTNF treatments, we found significant decreases in 

IL-4 and IL-13 (p=0.04 each, i.p.-treated mice) and in IL-5 and IL-13 (s.c. delivery), while no 

differences were detected between the saline- and the matched OVADCIL-10-treated mice. 

Although the saline-treated groups had had no antigen exposure for ≈ 10 weeks prior to the final 

preharvest aerosolization, their parenchymal responses were significantly exaggerated compared 

to mice given OVADCIL-10 intratracheally. Therefore, repeated delivery of OVADCIL-10 markedly 

reduced the lung responses, and the intratracheal delivery route led to overwhelming reductions 

in lung parenchymal mononuclear cell responses compared to the i.p. and s.c. routes of delivery. 
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Figure 5.4.5 Repeated intratracheal or intraperitoneal but not subcutaneous 
administration of OVADCIL-10, reduces lung parenchymal Th2 responses. ALD mice which 
received tolerogenic DC (OVADCIL-10), mature DC (OVADCTNF) or saline treatments either 
intratracheally (i.t.), i.p. or s.c., as described in Figure 5.4.1 were aerosolized and euthanized as 
indicated in Figure 5.4.2. The lung mononuclear cells of the OVA challenged mice were 
assessed for cytokine secretion as in Figure 5.2.5. “*”= p≤0.05 compared to their respective 
saline and OVADCTNF treatments and “a”= p≤0.05 versus their respective OVADCTNF group. These 
are results of one experiment performed (n=4 mice/group). 
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5.4 Mechanisms mediating DCIL-10 induced tolerance in vitro and in vivo 

 

To dissect out the mechanisms involved in DCIL-10 induced tolerance we initially wanted to 

establish a relevant in vitro model. Allergic lung disease was established in mice as before, but 

then they were rested for 3 weeks to allow the allergen-activated T cells in the lungs to 

differentiate into a central memory T cell state (TCM). ).  At that point CD4-positive cells were 

MACS-purified from the lungs, spleens and lymph nodes and cocultured for 72 hrs with 

OVADCIL-10, OVADCTNF or OVADCGM-CSF. In our initial experiments, we used OVADCIL-10 and 

OVADCTNF but we found that the mice treated with the latter cells displayed some tolerance as 

determined by BAL Th2 cytokine levels.  While OVADCGM-CSF behaved as immunostimulatory 

cells in the in vivo experiments, we also assessed their effects on in vitro memory T cell 

responses, as compared to the putatively tolerogenic OVADCIL-10. To determine the roles of 

putative effector mechanisms in this system we added recombinant IL-2, anti-IL-10R or -TGF-β 

antibodies or the IDO antagonist 1-methyltryptophan (1-MT) to the cultures. The culture 

supernatants were analyzed for our target cytokines.  

 

5.5.1 Effectiveness of OVADCIL-10 treatment in vitro 

 

As expected, a general trend towards reductions in Th2 cytokines was observed in 

OVADCIL-10 treated cultures. The levels of IL-5 and IL-13 were significantly lower (p≤0.05) in 

OVADCIL-10-supplemented cultures compared to the OVADCTNF cultures. Also, the addition of 

OVADCIL-10 to the TCM cells markedly reduced their expression of IL-4, -5 and -13, relative to 

parallel OVADCGM-CSF co-cultures (Figure 5.5.1.1). There was ≈ 57% reduction in IL-9 release in  
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Figure 5.5.1.1 DCIL-10 do not activate memory T cells in vitro. ALD was induced in the mice 
as indicated in the materials and methods (section 4.3). After a period of 3 weeks, MACS-
purified CD4+ TCM cells were harvested from the lungs, spleens and lymph nodes of these ALD 
mice and cocultured for 72 hrs with OVADCTNF, OVADCGM-CSF or OVADCIL-10. The purity of the 
CD4+ cells was 90-94%. The first graph (A) represents the mean of 3 experiments. The other 
graphs (B, C and D) are from a single experiment (stats was not done because samples were 
pooled). The culture supernatants were analyzed for the indicated cytokines by ELISA. *p≤0.05 
compared to OVADCTNF-matched controls  
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the OVADCIL-10 co-cultures compared to the OVADCGM-CSF cultures, although we did not see this in 

OVADCTNF cultures. 

 The addition of rIL-2 did in part reverse the DCIL-10-dependent T cell unresponsiveness 

(Figure 5.5.1.2). The mean values for expression were increased by ≈ 45% with respect to IL-5 

and by ≈ 38% for IL-9, while that for IL-4 secretion was increased by 68% in the IL-2-

supplemented cultures, but none of these were statistically significant. However, the IL-13 

response was significantly increased (p≤0.05). Supplementation of cultures with anti-IL-10R or -

TGF-β antibodies had no discernible effect on this tolerance (Figure 5.5.1.3). Unlike what we 

observed previously with CD8α+ splenic DC-TCM co-cultures (Gordon et al, 2005), addition of 

the competitive IDO inhibitor 1-MT to the DCIL-10-TCM cell cultures also had no significant 

effects on their release of these mediators (Figure 5.5.1.3). Unlike OVADCTNF or OVADCGM-CSF, 

OVADCIL-10 did not support activation of TCM from ALD mice. Whether this was because they 

induced or initiated a bona fide state of immunologic tolerance cannot be deduced with assurance 

based on this data, but the observation that IL-2 in part reversed this effect is consistent an 

anergic process being present, as shown earlier (Essery, Feldmann et al. 1988). Although, rIL-2 

supplementation caused partial reversal of unresponsiveness anti-IL-10R or -TGF-β antibodies or 

1-MT addition had no evident effect in this system.  

.  

5.5.2 In vivo assessment of DCIL-10 induced tolerance 

 
We next turned our attention to the effector mechanisms of tolerance in our asthmatic 

animals.  We treated them with some of the above antagonists starting day 12 after the OVADC IL-

10 transfers, the time when evidence of tolerance first became physiologically discernible (AHR 

first became affected), and continued through until they were sacrificed 48 hrs after airway 
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Figure 5.5.1.2 Addition of IL-2 partially reverses Th2 responses in vitro. ALD was induced 
in mice as indicated in the materials and methods (section 4.3). After a period of 3 weeks 
MACS-purified CD4+ TCM cells were harvested from the lungs, spleens and lymph nodes of 
these mice and cocultured with OVADCIL-10 with or without supplementation with recombinant 
IL-2 (10 U/ml). The 72 hr culture supernatants were analyzed for the indicated cytokines by 
ELISA. This data represents mean of 3 experiments. *= p≤0.05 compared to OVADCIL-10 controls. 
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Figure 5.5.1.3 OVADCIL-10-induced T cell inactivation is not mediated by IL-10, TGF-β or 
IDO in vitro. ALD was induced in the mice as indicated in material and methods (section 4.3). 
After a period of 3 weeks MACS-purified CD4+ TCM cells were harvested from the lungs, 
spleens and lymph nodes of these mice and cocultured with  

OVADCIL-10 with or without 
supplementation with anti-IL-10 Ab (25 µg/ml), anti-TGF-β Ab (25 µg/ml) and 1-
methyltryptophan (1-MT; 200 µM). The 72 hr culture supernatants were analyzed for the 
indicated cytokines by ELISA. This data represents mean of 3 experiments.  
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allergen challenge (day 21). Anti-IL-10R (5 mg/kg B-wt), -TGF-β  (4 mg/kg B-wt), or isotype 

control antibodies were injected i.p., while continual delivery 1-MT (reported release rate, 10 

mg/day) or placebo pellets were surgically implanted subcutaneously. These levels of these 

antagonists were chosen based on their efficacy in other model systems (Sakurai, Zou et al. 

2002; Liu, Hu et al. 2003; Neptune, Frischmeyer et al. 2003; Shi, Pan et al. 2003). The mice 

were harvested two days after allergen aerosol challenge and were analyzed as earlier for airway 

function, pulmonary and systemic responses.  

 

5.5.2.1 Neutralization with Anti-IL-10R and -TGF-β antibodies (Abs) 

 

There were no significant effects of either anti-IL-10R or -TGF-β Ab treatments 

delivered from day 12-21 post-OVADCIL-10 treatment on the animal’s AHR, compared to their 

respective isotype controls (Figure 5.5.2.1A). There were no differences between normal, 

OVADCIL-10 and anti-IL-10R Ab-treated mice (p≥0.05) and each was markedly different (each, 

p≤0.01) from the saline-treated ALD controls. While, the anti-TGF-β treated mice were different 

(p≤0.05) from the normal mice and DCIL-10- treated mice (p≤0.05), they were not different from 

the saline-treated ALD controls or TGF-β isotype control mice.  

The airway eosinophilia was ≈95% increased by the anti-IL-10R antibody treatments, 

relative to the isotype control (p=0.02; Figure 5.5.2.1B, left panel) while it was unaffected by the 

anti-TGF-β treatments. There were no discernible effects of either anti-IL-10R or -TGF-

β treatments regarding OVA-specific IgE levels compared to their respective isotype controls 

 

 

 123



 

 
 

-80

-60

-40

-20

0

0
0.7

5 1.5 3 6 12 25

-80

-60

-40

-20

0

0
0.7

5 1.5 3 6 12 25

Methacholine (mg/ml)

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 R

R
E

SP
O

N
SI

V
E

N
E

SS
 

 
 
 
 
 
 
 
 

A
IR

W
A

Y
 H

Y
PE

(F
lo

w
 r

at
e 

@
50

%
T

V
e1

)

Methacholine (mg/ml)

Normal

ALD

DCIL-10

DCIL-10 + Anti-IL-10 Ab

DCIL-10 +Rat IgG

DCIL-10 +Anti-TGF-β Ab

DCIL-10 + MouseIgG

Anti- IL-10R Ab

Anti-TGF-β Ab

* *

*

 
 
 
 
 
 
 
 
Figure 5.5.2.1A AHR of ALD mice is not affected by antagonism of IL-10 or TGF-β from 
day 12-21 post-OVADCIL-10 treatment. Anti-IL-10R (5 mg/kg B-wt, upper panel), -TGF-β (4 
mg/kg B-wt, lower panel), or isotype control antibodies were injected i.p. from day 12-21 after 
OVADCIL-10 treatment and AHR was measured at 3 weeks as in Figure 5.2.1. The data are 
expressed as the airflow rate at the 50% point in the expiratory cycle. The control groups are 
normal mice and saline-treated ALD mice. This experiment was done one time and each group 
contained 5-6 animals. * p≤ 0.05. The data represents mean values and SEM ranges between 1-
3%. 
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Figure 5.5.2.1B Neutralizing anti-IL-10R, but not anti-TGF-β antibodies, affect airway 
eosinophilia but not OVA-specific IgE. As noted in Figure 5.5.2.1A anti-IL-10R and anti- 
TGF-β-treated ALD mice were sacrificed 48 hr after aerosol exposure and assessed for 
eosinophils in the bronchoalveolar lavage fluids (left panel). To determine the percentage of each 
cell type, 200 cells were counted on each of the 4 slides per group (n=5-6). The OVA-specific 
IgE antibody levels (right panel) were assessed by ELISA as described in the materials and 
methods. The controls included were the saline-treated ALD mice (positive control) and DCIL-10-
treated isotype control antibody-injected mice. * = p≤0.05 versus the anti-IL-10 Ab group.  This 
experiment was done one time only. (n=5-6/group). 
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(Figure 5.5.2.1B, right panel).  While the anti-IL-10R, but not anti-TGF-β, antibody treatments 

altered the BAL fluid mean values for IL-4 (by 95%) and IL-9 (by 64%; p=0.056) relative to the 

isotype control Abs, these were not statistically significant. The increases in BAL IL-5 levels 

(51%; p=0.02) and IL-13 (60%; p=0.016) were significant (Figure 5.5.2.1C, A).  The BAL fluid 

cytokine secretion was indistinguishable between the anti-TGF-β and its isotype control mice 

(Figure 5.5.2.1C, B). We also assessed the release of Th2 cytokines by parenchymal cells from 

the lungs of our treated animals. We found that mean values for IL-4, IL-5, IL-9 and IL-13 were 

not elevated by either anti-IL-10R or anti-TGF-β Ab treatments, versus their matched isotype 

controls (Figure 5.5.2.1D).  

  To summarize, the neutralization treatments with anti-IL-10R antibody reversed the 

airway eosinophilia and BAL Th2 responses partially while anti-TGF-β did not affect the 

tolerance, suggesting that IL-10 secretion might be involved in 
OVADCIL-10-induced tolerance.  

 

5.4.2.2 Role of indoleamine-2, 3-dioxygenase (IDO) in DCIL-10-induced tolerance.  

 

The impact on tolerance of inhibiting IDO with the competitive antagonist 1-MT was 

assessed using slow release polymer pellets which were surgically implanted s.c.  IDO inhibition 

did not affect AHR (Figure 5.5.2.2A, left panel) of the OVADCIL-10-treated ALD mice (mean 

values from 4 experiments are presented in the graph as we did not have enough cells to run the 

OVADCIL-10 controls).  
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Figure 5.5.2.1C Neutralizing level of anti-IL-10R, but not anti-TGF-β antibodies partially 
affects BAL Th2 cytokine secretion.  The ALD mice (n=5-6/group) as treated earlier with anti-
IL-10R Ab or anti-TGF-β Ab were sacrificed after aerosol exposure and assessed for BAL fluid 
Th2 cytokine levels by ELISA as in the materials and methods. The specific antibody-treated 
groups were compared with their respective isotype controls. * = p≤0.05 and N.S. = non-
significant relative to the matched isotype controls. 
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Figure 5.5.2.1D Neutralizing levels of anti-IL-10R or anti TGF-β antibodies, do not affect 
lung parenchymal Th2 cytokine levels.  The ALD mice (n=5-6/group) as treated earlier with 
anti-IL-10 Ab or anti-TGF-β Ab were sacrificed after aerosol exposure and assessed for lung Th2 
cytokine levels by ELISA as in the materials and methods. The specific antibody-treated groups 
were compared with their respective isotype controls.  N.S. = non-significant relative to matched 
antibody-treated group. 
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Figure 5.5.2.2A 1-methyl-DL-tryptophan (1-MT) treatments affected neither AHR nor 
airway eosinophilia. DCIL-10-treated ALD animals (n=5) were surgically implanted with slow 
release polymer pellets impregnated with 1-MT (release rate 10 mg/mouse/day) or placebo 
pellets s.c. AHR was estimated weekly for 3 weeks and airway eosinophils were assessed in 
BAL fluids. This experiment was done once. DCIL-10 values are the mean values from 4 other 
experiments as we didn’t have DCIL-10 controls. N.S. = non-significant relative to 1-MT treated 
mice. The AHR data is represented as mean values; and SEM ranged between 1-3%. 
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Similarly, OVADCIL-10-induced tolerization of airway eosinophilia was not reversed in the 

1-MT-treated animals compared to placebo-treated animals (Figure 5.5.2.2A, right panel).  IgE 

levels were not significantly (p=0.07) affected by 1-MT treatment. The IgG1 levels were lower 

in the OVADCIL-10 and placebo groups (p<0.01) compared relative to the 1-MT-treated mice. 

Nevertheless, considerable differences remained (p=0.01) in IgG1 levels between the saline-

treated ALD and 1-MT groups (Figure 5.5.2.2B, lower left panel). OVA-specific IgG2a levels 

were also increased (p<0.05) in the 1-MT-treated groups versus the placebo controls (Figure 

5.5.2.2B, lower right panel), but these were not different from those of the OVADCIL-10-treated 

animals. Inhibition of IDO was also associated with considerable increases in BAL fluid levels 

of IL-5 (p<0.001), IL-9 (p=0.02) and IL-13 (p<0.001) (Figure 5.4.2.2C) compared to the 

placebo-treated animals. The OVADCIL-10-treated mice were considerably different from the 1-

MT- treated mice with regards to BAL IL-9 and IL-13 levels only. However, the 1-MT 

treatments did not fully suppress tolerance as the 1-MT-treated mice still expressed lower levels 

of IL-9 (p=0.04) and IL-13 (p=0.03) relative to the saline-treated ALD controls. IL-4 values were 

below the detectable limits of the ELISA in this experiments so are not presented here. 

We also assessed the expression of IDO within the lung tissues of our animals by qRT-

PCR.  At 3 wk after transfer of 1x106 OVADCIL-10 into asthmatic mice, the overall lung levels of 

IDO mRNA levels were expressed at levels two-fold greater than saline-treated ALD controls 

(Figure 5.5.2.2D). We confirmed that the PCR product was bonafide IDO by sequencing the gel 

purified product (Figure 5.5.2.2E). The sequenced product had 100% identity with the Gene 

Bank sequence for mouse IDO (NCBI transcript accession No. NM008324). Taken together, this 
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Figure 5.5.2.2B Effect of 1-methyl-DL-tryptophan (1-MT) on plasma antibody levels. ALD 
mice treated as in Figure 5.5.2.2A were assessed for OVA-specific plasma IgE, IgG1 and IgG2a 
levels by ELISA. IgE was expressed as OD405 and IgG1 and IgG2a as pg/ml. * = p≤0.05 versus 
1-MT group. “a”= p≤0.05 versus saline-treated ALD mice. N.S. =non-significant relative to 1-
MT-treated animals. 
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Figure 5.5.2.2C Indoleamine-2, 3-dioxygenase (IDO) plays a role in DCIL-10-induced 
tolerance of asthma-like disease.  DCIL-10-treated ALD mice (n=5) were given s.c. slow release 
polymer pellets impregnated with 1-MT (release rate10 mg/mouse/day) or placebo. The mice 
were aerosolized and sacrificed after 3 weeks and BAL fluids were assessed for the indicated 
Th2 cytokines by ELISA. * = p≤0.05 versus 1-MT controls. This experiment was done once. 
DCIL-10 values are the mean values from 4 other experiments as we didn’t have DCIL-10 controls. 
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Figure 5.5.2.2D OVADCIL-10-treated ALD mice express increased levels of indoleamine-2, 3-
dioxygenase mRNA. The OVADCIL-10 treated ALD mice either i.t. or i.p. and saline controls were 
sacrificed after 3 weeks and the RNA purified from the lungs was analyzed for IDO expression 
by real time RT-PCR. The relative quantity of RNA is shown here.  
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Figure 5.5.2.2E OVADCIL-10 express indoleamine-2, 3-dioxygenase. The OVADCIL-10 treated 
ALD mice either i.t. or i.p. and saline controls were sacrificed after 3 weeks and the RNA 
purified from the lungs was analyzed for IDO expression by real time RT-PCR as in 
Figure.5.5.2.2.E and we confirmed it by running the PCR product (120 base pairs (bp)) from the 
same experiment (Figure 5.5.2.2 D) on a 2% agar gel.  
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data suggested that IDO might play a role in the effector mechanisms of tolerance in OVADCIL-10-

treated asthmatic animals.  

In summary, we can conclude that OVADCIL-10-treatments led to reduction in in vitro 

expression of Th2 cytokines compared to the OVADCGM-CSF and OVADCTNF treatments and 

supplementation with rIL-2, but not anti-IL-10R or -TGF-β Abs or 1-MT, causes partial reversal 

of this effect. In vivo, anti-IL-10R antibody treatments partially reversed eosinophilia and BAL 

IL-5 and IL-13 levels, while inhibition of IDO partially reversed tolerization of the IgE, IgG1 

and IgG2a and BAL Th2 cytokines.  
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6.0 DISCUSSION AND CONCLUSIONS 
 

Allergic asthma is a global health problem, characterized clinically by varying degrees of 

intermittent and reversible airway obstruction, exaggerated airway responsiveness to a wide 

variety of stimuli and eosinophilic airway inflammation (Busse and Lemanske 2001). However, 

it is well recognized that these manifestations are driven by underlying Th2-type immune 

responses (Gavett, Chen et al. 1994). Conventional asthma treatments do not address the 

immunologic basis of this disease, but rather are primarily symptomatic in nature, targeting 

instead the AHR (e.g., bronchodilators) or pulmonary inflammation (e.g., steroidal and non-

steroidal anti-inflammatory medications) (Lin and Casale 2002). As a less conventional 

approach, co-administration of allergen with CpG-oligodeoxynucleotides has been reported to 

reduce airway eosinophilia, Th2 cytokine induction, IgE production, and bronchial 

hyperreactivity in mouse models of asthma (Lin and Casale 2002), but does so by deviating of 

the allergic inflammatory responses to a Th1-dominant mode. This in itself carries significant 

health risks (i.e. allergen-driven hypersensitivity pneumonitis) (Kline, Waldschmidt et al. 1998). 

So far, specific allergen immunotherapy (SIT) is the only treatment available for specific allergy 

and is not very effective in patients with multiple sensitivities, which is the usual case 

(Adkinson, Eggleston et al. 1997).  However, SIT is a long term treatment and has risks of side 

effects like urticaria, bronchospasms or anaphylaxis in the worst case scenario (1997). Taking all 

the facts into account, tolerization to allergen seems to be a more appropriate means of reducing 

asthma lung pathology. 
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 DCs are the most potent stimulators of primary immune response known so far (Parra, 

Wingren et al. 1997) and as such they have been recognized as potentially important tools for 

immunotherapy and vaccine strategies (Porgador, Snyder et al. 1996; Cella, Sallusto et al. 1997). 

However, there is also increasing evidence that DC can perform a critical role in  the induction 

and maintenance of peripheral tolerance (Mahnke, Schmitt et al. 2002) and this depends upon the 

micromilieu during the maturation of the DC. Under certain experimental conditions, the process 

of DC maturation can be altered. The immunosuppressive cytokine IL-10 has been implicated in 

the production of tolerogenic/regulatory DCs (Mahnke, Schmitt et al. 2002). The effects of IL-10 

application have been investigated in various autoimmune and inflammation models, including 

experimental autoimmune encephalomyelitis (EAE), arthritis, pancreatitis, diabetes mellitus and 

experimental endotoxemia (Asadullah, Sterry et al. 2003). The anti-inflammatory effects of IL-

10 have also been used to prolong graft survival in transplantation studies (Zuo, Wang et al. 

2001). In humans it has been reported that IL-10 treatment of DCs enable them to inhibit both 

the allergen-specific Th1 and Th2 responses (Steinbrink, Wolfl et al. 1997; Bellinghausen, Brand 

et al. 2001). Also, in an OVA specific-T cell receptor transgenic model, IL-10-treated bone 

marrow-derived DCs (BMDC) have been shown to inhibit delayed-type hypersensitivity 

reactions in the footpads of animals vaccinated prophylactically or therapeutically (Muller, 

Muller et al. 2002). 

Following this line of reasoning, we decided to characterize and examine the effect of 

antigen-loaded IL-10-treated BMDCs in severe allergic lung disease in a mouse model. We had 

previously shown that CD8α+ DCs can be used to ≈50% reverse the asthma phenotype in mice 

(Gordon, Li et al. 2005). Others have shown that BMDC that are differentiated in TGF-β-

containing medium are also modestly effective, blunting the localization of systemic allergen 
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responsiveness to the lungs following airway allergen challenge (Zhang-Hoover, Finn et al. 

2005). So far, few groups have investigated the prophylactic role of IL-10- modulated DCs on 

Th2 responses in an allergic asthma model (Bellinghausen, Sudowe et al. 2006; Koya, Matsuda 

et al. 2007) and complete elicitation of IL-10- modulated DC therapy in established allergic lung 

disease still remains to be investigated. 

 Herein we have characterized IL-10-modulated, or tolerogenic, DCs (DCIL-10) as 

compared to control populations of “immature” DCGM-CSF. The mature populations of DCTNF   

were also characterized for control purposes. It was found that DCIL-10 possessed a phenotype 

more like DCGM-CSF on comparing the three populations. As had been reported earlier (Jonuleit, 

Schmitt et al. 2001) our FACS data revealed reduced levels of costimulatory markers CD40, 

CD54 and MHC-II in the DCIL-10 population. Studies done to date on DC differentiated with 

GM-CSF indicate the cells with purities of 60% by day 7-8 and 80-90% by day 10-12 were 

achieved, while 50-70% of cells differentiated with TNF-α or LPS have a mature DC phenotype 

(Lutz, Kukutsch et al. 1999). Masurier, et al reported the existence of two subpopulations of DCs 

cultured in GM-CSF, including MHC IIhi (30-50%) cells and MHC IIlow (50-70%) cells. Of the 

MHC- IIlow cells, 30% express CD11c, and 50% express 33D1 and  both sub-populations are 

DEC205- and F4/80+ (Masurier, Pioche-Durieu et al. 1999). We analyzed our DC populations as 

a whole for the presence of relevant markers and assessed alternate cell contamination. We 

designated our DCGM-CSF as immature based on their avid phagocytic activity and lower levels of 

costimulatory markers. On the other hand, DCTNF cells were grouped as mature because of their 

increased costimulatory marker expression, as observed earlier (Lutz, Kukutsch et al. 1999). 

Clearly there is no single specific marker for defining cultured BMDCs (e.g. they express 

macrophage markers Mac-1 and F4/80 and low levels of DC-specific markers), but the markers 
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we did use (CD40, CD54, CD80, CD86 and MHC-II) collectively define DC populations. The 

cultures were also tested for the presence of contaminating cells and were assessed for markers 

like CD19 (B cells; <8%) and CD14 (monocytes; <20%).  We acknowledge that there is a 

possibility of other cells being present in the cultures but at the same time DCs can express 

CD19 (Bjorck and Kincade 1998; Baban, Hansen et al. 2005) as well as CD14 (Mahnke, Becher 

et al. 1997). Neutrophils comprised 3%±1 of our cells. However, their ability to influence the 

outcomes in our experiments is likely very modest, in as much as even if they were introduced 

into asthmatic airways they would likely undergo apoptosis rapidly (e.g., within a day). 

Like immature DC, our tolerogenic DCs possessed strong chemotactic responses to the 

inducible CC chemokine CCL3 (a CCR5 ligand), a key mediator of inflammatory and immune 

responses. This could have been instrumental in their homing to the airways of OVA-asthmatic 

animals (Appendix-1; data generated by Dr. H. Huang) when given by the i.p. route and directly 

to the inflammatory foci in the lungs when given via an i.t. route. DCIL-10 and DCGM-CSF 

responded more weakly to the constitutively lymph node-expressed CC chemokine CCL19 (a 

CCR7 ligand, which is responsible for homing of maturing DCs to the lymphoid organs). 

Nevertheless, this indicates that a subpopulation of these cells would potentially have some 

capacity to migrate to, and prime T cells in, the lymphoid organs. It has been previously shown 

that these cells can induce tolerance on entry into the lymph nodes (Lin, Suri et al. 1998). Since 

the work reported in this thesis was completed, our lab has used OVADCIL-10 labeled with the lipid 

dye DiI and injected i.p. to track their localization in vivo. Significant numbers of labeled cells 

were recovered from the airways (with peak recovery at 2 week post-treatment), but modest 

numbers of cells were also found within the lung-draining (mediastinal) lymph nodes (Appendix-

1). The ingestion of FITC-coupled molecules via mannose receptor-directed macropinocytosis 
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has been described as an attribute of immature DCs (Sallusto, Cella et al. 1995). As expected, 

our putatively tolerogenic DCs were highly phagocytotic and this activity was downregulated in 

the mature DCTNF population (Sallusto and Lanzavecchia 1994; Sallusto, Cella et al. 1995). The 

secretion of low levels of inflammatory cytokines IL-1β, IL-6 and IL-12 by our DCIL-10, in 

conjunction with their increased secretion of IL-10, further suggested their tolerogenic nature. 

AHR, or hyper-irritability of bronchial smooth muscle is the hallmark of asthma (King, 

Pare et al. 1999) and so prevention of this response is an ideal outcome in asthma therapeutics. 

Thus, one of the most significant findings of this thesis was the abrogation of AHR in the 

severely allergic mice (i.e. showing more than 60% eosinophilia). AHR started to decrease 

within 2 weeks of treatment and was completely abolished by 3 weeks, indicating that smooth 

muscle-dependent bronchoconstriction was relieved and the lumen of the airways was fully 

patent. Our long-term assessments of the DCIL-10 treated animals showed that this therapeutic 

effect was maintained only until week ≈10 post-treatment, and that a return of full AHR had 

occurred by 13 weeks. We are not aware of any reports of transient correction of AHR to date 

and at this time we have no experimental insights into the mechanisms mediating this effect, 

particularly when allergen-driven pulmonary Th2 responses remain tolerized well beyond this 3-

month window.  

Evidence suggests that AHR can arise via two distinct cellular processes. One is via mast 

cell activation (Busse 1998; Thomas 2001), while the other is IgE/mast cell-independent, but 

eosinophil/IL-5-dependent (Kobayashi, Miura et al. 2000). It has also been suggested that 

development of AHR may be a two-step process. The first step involves the IL-5/eotaxin-

induced infiltration and activation of eosinophils in the airways, followed by release of sensory 

neuropeptides (e.g., neurokinin receptor-activating tachykinins) induced by eosinophil-derived 
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inflammatory mediators and causing epithelial damage and activation of sensory nerves 

(Kraneveld, Folkerts et al. 1997). Tachykinins, substance P, and particularly neurokinin-A 

(NKA) potently constrict human airway smooth muscles in vitro and have significantly greater 

potency in the smaller airways (Frossard and Barnes 1991). In guinea pigs it has been shown that 

AHR to histamine but not eosinophilia was completely blocked by pretreatment with neurokinin-

2 receptor antagonist (Kraneveld, Nijkamp et al. 1997). In addition, in a mouse model of 

inflammatory bowel disease, it has been shown that IL-10 suppressed neurokinin-1 receptor 

(NK-1; binds substance P, a tachykinin) mRNA expression and played an important role in 

regulation of intestinal mucosal inflammation.  Both substance P and its receptor NK-1 are found 

at increased levels in the lungs during airway inflammation (Kaltreider, Ichikawa et al. 1997). 

Therefore, there is a possibility that IL-10 secreted by our tolerogenic cells might directly inhibit 

neurokinin receptors and hence normalize AHR. The inflammatory responses could be 

downregulated by indirect affects of IL-10 on T cells or DCs as discussed below. We found that 

AHR returns at 13 weeks in spite of the continued dampening of the Th2 responses, but other 

experiments from our lab documented that re-treatment of post-13 week mice with another round 

of OVADCIL-10 switches off the AHR again (Nayyar et al. manuscript in preparation). This is 

consistent with the direct therapeutic effects of IL-10 released by OVADCIL-10 on AHR although 

other mechanisms may also be responsible. 

Our lab has already reported that AHR develops in the absence of classical allergic 

disease (i.e. OVA-specific IgE, Th2 response and eosinophilia) following sensitization with 

limiting doses (i.e., ≈100ng) of OVA-alum (Schneider, Li et al. 2001). In the present study, full 

tolerization of AHR occurred while IgE levels and eosinophil responses remained intact. 

Dampening of smooth muscle responses can be implemented even in the face of full spectrum 
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allergic responsiveness. It has been shown that expression of an IL-10 transgene within the 

airways suppresses AHR in the face of ongoing airway inflammation (Nakagome, Dohi et al. 

2005). In addition, IL-10 can block smooth muscle cell activation by inflammatory stimuli in 

vitro or in vivo, at least in part by directly inhibiting I-κB degradation and NF-κB nuclear 

translocation (Mazighi, Pelle et al. 2004).  Thus, IL-10 released locally by our OVADCIL-10 could 

potentially have been directly responsible for amelioration of AHR, and very recent data from 

our lab that silencing of IL-10 expression within our OVADCIL-10 eliminated their effects on AHR 

is consistent with this argument (Appendix-2).  Furthermore, it has been shown previously that 

passive transfer into naïve mice of IL-10-expressing, but not IL-10-/-, DCs from mice previously 

tolerized to aeroallergens can prevent the development of AHR (Akbari, DeKruyff et al. 2001). 

One OVADCIL-10 treatment led to a greater than 60% reduction in airway eosinophilia. The 

exposure of the mice to an OVA aerosol at the 3-week time-point led to a slight increase in 

eosinophilia, although it was significantly lower than that in the ALD, OVADCTNF and OVADCGM-

CSF group animals. The overall eosinophilia was reduced with time, eventually to ≈ 3% in the 

OVADCIL-10-treated animals (i.e., by 32 weeks; Figure 5.3.2), and repeated OVADCIL-10 treatments 

reduced eosinophilia to less than 1% (Figure 5.4.2). The modest eosinophilia on allergen aerosol 

challenge (at 3 weeks) indicated that the host allergic reactivity had not yet been fully moved 

into a tolerance mode, but we venture that such high doses (i.e., 10 mg/ml) of antigen would not 

be encountered in a normal environment, so it could well be that lower doses of allergen would 

not have induced any eosinophil response. Similarly, the 30-60% decrease in OVA-specific IgE 

observed at 3 weeks, together with the greater reduction observed in the IgE response at 16 

weeks, suggests that at 3 weeks tolerance was still progressing. That the repeated OVADCIL-10 

treatments reduced the OVA-specific IgE much more significantly at a much earlier time point 
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(Figure 5.4.3) suggests that achievement of tolerance is a progressive process that can be 

augmented by repeated treatments.  A significant decrease in the IgG1 observed at 3 weeks was 

also maintained until 32 weeks, and this effect could similarly be augmented with repeated DC 

treatments. Interestingly, we also found that overall IgG1 and IgG2a levels started to increase 

from 19 week onwards and were dramatically increased at 32 weeks after aerosol challenge 

(Figure 5.3.3). This suggests that like AHR, Th2 tolerance also starts to wear off around this time 

with respect to antibody levels although significant differences still remained between OVADCIL-

10 and control groups. The levels of different antibody isotypes in the plasma further supports the 

argument that tolerance rather than Th1 skewing occurs, as the levels of IgG2a antibody (as well 

as IL-12, representative of Th1 responses) were similar in all groups, and more often than not 

were decreased compared to control groups at 32 weeks, as well as on repeated treatments.   

Our OVADCIL-10 treatments also affected the recipients’ Th2 responses (i.e. BAL and 

parenchymal), but not via induction of Th2-to-Th1 immune deviation. IL-4 is a multifunctional 

cytokine that causes isotype switching of B cells to IgE synthesis (Bradding, Feather et al. 1992), 

IL-5 induces eosinophil expansion and recruitment (Ying, Humbert et al. 1997), and roles for IL-

9 and IL-13 (Nicolaides, Holroyd et al. 1997; Wills-Karp, Luyimbazi et al. 1998) have been well 

documented in enhancement of eosinophilia and AHR. For example, IL-9 activates epithelial 

cells to secrete CCL11 (eotaxin) and other eosinophil chemotactic chemokines (Dong, Louahed 

et al. 1999) and also stimulates goblet cells to secrete mucus, and at least some of these effects 

are dependent on IL-13 co-expression (Steenwinckel, Louahed et al. 2007). The Th2 cytokine 

levels of BAL fluids from DCIL-10-treated animals were markedly reduced compared to saline-

treated ALD mice at 3 weeks and this trend was effectively maintained until 32 weeks, as well as 

following repeated OVADCIL-10 treatments. On the other hand, the parenchymal responses were 
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moderately affected at the 3-week time-point but were significantly lower than those of saline-

treated ALD control animals at 32 weeks or following repeated OVADCIL-10 treatments. Again, 

this suggests that ongoing tolerogenic processes gain dominance over time and that repeated 

treatments can augment this process. That Th1-skewing does not occur was also supported by the 

BAL and parenchymal levels of the Th1-response inducing cytokine, IL-12, which was either 

reduced or unaffected in the OVADCIL-10-treated groups compared to the OVADCGM-CSF, OVADCTNF 

and saline treatments.  

Steady state DCs remain immature and can induce T cell anergy following interaction 

with naïve or memory T cells (Schwartz 2003). Furthermore, injection of immature DC in 

normal healthy humans can be tolerogenic (Dhodapkar, Steinman et al. 2001). The increased 

AHR and Th2 responses seen in our OVADCGM-CSF-treated animals may be attributable to the fact 

that these cells gained access to a residual inflammatory environment (the airways), which would 

have activated them to become immunostimulatory. Expression of inflammatory cytokines in the 

airway inhibits tolerance induction by increasing local antigen presentation and thereby 

facilitating the development of immunoinflammatory responses to otherwise innocuous antigens 

(Stampfli, Wiley et al. 1998). Mature DCs show increased TNF expression (Chen, Gordon et al. 

2002), while TNF-treated DCs mature both functionally and phenotypically and thereby 

effectively induce immune responses (Lutz, Kukutsch et al. 1999; Berthier-Vergnes, Bermond et 

al. 2005). We suggest that for these reasons both the OVADCGM-CSF and OVADCTNF treatment 

groups had increased AHR and Th2 responses compared to the OVADCIL-10-treated group. These 

differences between the three DC groups were not evident at 3 weeks but became clearly obvious 

at 32 weeks. In addition, we found that IL-5 was the only cytokine that was significantly reduced 

in the OVADCIL-10-treated group compared to other DC controls at 3 weeks and neutralization 
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with IL-10R Ab also reversed BAL IL-5 levels at this time point. This suggests that both the 

OVADCGM-CSF and OVADCTNF showed transient reduction in Th2 responses early on and, like 

OVADCIL-10 (which induce effective tolerance at 32 wks), induced immunostimulatory responses 

at later time points. IL-5 is probably the first Th2 cytokine to be effected in this series of 

tolerogenic events. 

 Interestingly, we found that with repeated OVADCIL-10 treatments, the BAL levels of 

TGF-β, but not of IL-10, were substantially increased (Figure 5.4.4). CD4+CD25+ cells from IL-

10-/- mice that have been supplemented with recombinant IL-10 have been associated with 

elevated BAL levels of TGF-β and suppressed AHR and inflammation (Joetham, Takeda et al. 

2007). It is possible that the Th2 responses might have been affected by IL-10 induction of TGF-

β, and particularly as TGF-β-treated tolerogenic DCs have shown to reduce airway inflammation 

(Zhang-Hoover, Finn et al. 2005). 

It has also been more recently shown in our lab that OVADCIL-10 treatments have allergen-

specific effects. In two of two experiments, treatment of OVA asthmatic mice with house dust 

mite allergen-loaded DCIL-10 (HDMDCIL-10) did not normalize the AHR at 1, 2, or 3 wk post-

transfer (Appendix-3), although these cells were fully capable of tolerizing the AHR of HDM-

allergic animals (Lu, et al, manuscript in preparation). ). These irrelevant allergen-presenting 

tolerogenic dendritic cells would nevertheless have been secreting IL-10, which suggests that the 

transient effect of OVADCIL-10 on AHR would not be due to direct effect of this IL-10, but rather 

would necessarily involve other mechanisms. In those experiments, the airway eosinophilia of 

the mice treated 3 wk previously with OVADCIL-10 or HDMDCIL-10, were reduced by 59.8 +/- 3.6% 

(p<0.001, versus OVADCGM-CSF mice; Appendix-3) or 4.2+/- 4.4% (p>0.05, versus asthma-

phenotype mice), respectively.  The circulating levels of IgE and IgG1 were also significantly 
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reduced in the OVADCIL-10- (Appendix-3), but not in the OVADCGM-CSF- or HDMDCIL-10-treated 

mice (for both, p>0.05 versus asthma-phenotype mice). In addition, others have reported antigen-

specific effects of IL-10-modulated DCs (Henry, Desmet et al. 2008).  

Lastly, on assessing the mechanisms involved in OVADCIL-10-induced tolerance we found 

that OVADCIL-10, but not OVADCGM-CSF or OVADCTNF, induced unresponsiveness in a memory T 

cell population (Figure 5.5.1.1). It has been shown that preculture of DC with IL-10 can induce a 

state of alloantigen-specific anergy in CD4+ T cells and of peptide-specific anergy in the 

influenza hemagglutinin-specific T cell clone HA1.7 (Steinbrink, Wolfl et al. 1997). 

Furthermore, administration of recombinant IL-2 has been reported to reverse anergy (Schwartz 

2003). Herein, our data show that IL-10 can induce a tolerogenic phenotype in DCs 

differentiated ex vivo, and that addition of IL-2 in our system partially reverses Th2 responses, as 

IL-13 was significantly increased (Figure 5.5.2.1). A partial reversal is consistent with 

tolerogenic process or at least in the induction of anergy (Itoh, Takahashi et al. 1999).  

On assessing the role of different mediators which we thought might be involved (e.g., 

IL-10, TGF-β and IDO) we observed contrasting results in vitro and in vivo. No discernible 

effect was seen with the neutralizing anti-TGF-β antibody either in vitro or in vivo. On the other 

hand, although anti-IL-10R antibody did not affect in vitro responses, in vivo experiments 

showed that anti-IL-10R antibody given at a time anticipated to target the effector phase of 

tolerance induction significantly reduces eosinophilia and BAL IL-5 and IL-13 levels. Recently, 

to address a role for IL-10 expression by OVADCIL-10 in tolerance more directly, Dr. H. Huang in 

our lab used an IL-10-specific siRNA approach and assessed the ability of the IL-10-targeting, 

versus nonsense control, siRNA-treated OVADCIL-10 to induce tolerance.  When he used these 

cells to treat asthma-phenotype mice, he found that the non-sense control siRNA-treated 
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OVADCIL-10 cells induced tolerance, while the IL-10 siRNA-treated cells had no discernible 

impact on AHR, pulmonary Th2 cytokine levels, airway eosinophilia, or circulating OVA-

specific IgE or IgG1 levels (Appendix-2).  This data indicates that IL-10 expression by OVADCIL-

10 is critical for the tolerogenic functions of these cells. There could be two possible explanations 

for why our neutralizing IL-10 was not highly effective. Either the levels of antibody employed 

were insufficient to completely neutralize IL-10, or timing of injection (day 12-21) may have 

been inappropriate. The doses of antibody used by others vary in the reported literature from 

0.25 - 1 mg/kg (Castro, Neighbors et al. 2000; Liu, Hu et al. 2003; Hammad, de Heer et al. 

2004). We used  a dose that has been reported previously to effectively block IL-10 function and 

cause early death in relatively resistant mice with of trypanosomiasis (Shi, Pan et al. 2003). An 

inappropriate timing of delivery of the neutralizing Ab may also be another cause of its 

ineffectiveness, as we injected it starting on day 12 (i.e., when the physiological appearance of 

tolerance first occurred). As seen in Dr. Huang’s experiment, when DCs that did not express IL-

10 were delivered on day 0, there was no reversal of asthmatic responses observed. This implies 

that although effective physiological responses begin to appear at 2 weeks, DCIL-10 might interact 

within the lung environment ahead of time to initiate the events during first 12 days to set the 

ground for tolerance induction later.   

Unlike our in vitro data, our in vivo data suggested a potential role in tolerance induction 

for IDO, a tryptophan-catabolizing enzyme that has regulatory effects on T cells. We found that 

1-methyl tryptophan  (1-MT) pellets on first use partially reversed Th2 responses (Figure 

5.5.2.2B and C). Similar to the IL-10R and TGF-β neutralization experiments we started the 1-

MT treatment on day 12. Both antibody responses and Th2 responses were enhanced compared 

to placebo-treated mice but were still significantly lower than ALD mice, again suggesting that 
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discernible tolerogenic events do take place during the first 12 days after DCIL-10 delivery. 

Recently, a report showed a probability of association between enhanced IDO activity and IL-10 

production in clinically unresponsive aeroallergen-sensitized atopic subjects. This effect 

involved T cell tolerance mediated by APCs (von Bubnoff, Fimmers et al. 2004). We think that 

in our model system IL-10 might possibly be involved in enhancing IDO upregulation in DCs. 

The lung cells of tolerogenic mice showed mRNA levels expressed at levels two-fold greater 

than those of ALD mice (Figure 5.5.2.2D). It has also been shown that Treg can induce IDO 

expression in DC via a CTLA-4 dependent pathway (Fallarino, Frohman et al. 2003), which 

suggests that IDO’s effects could also come into play after the induction of Tregs. Thus, IDO 

may have a role in this tolerance loop and this will require further assessment. We believe that 

these tolerogenic DCs interact with T cells directly to render them tolerogenic,  and these now 

tolerogenic T cells in turn interact directly with other T effector cells (Zheng, Wang et al. 2004) 

or with DCs to induce them tolerogenic also (Frasca, Carmichael et al. 1997; Waldmann and 

Cobbold 1998) in an infectious manner (i.e., infectious tolerance). 

It has been well acknowledged that interaction of T cells with DCs is important for 

generating appropriate immune responses to foreign antigen (Lanzavecchia and Sallusto 2001). 

The immunosuppressive effects of IL-10 on T cells are believed to be largely mediated indirectly 

by the effects of this cytokine on DC (Beissert, Hosoi et al. 1995; De Smedt, Van Mechelen et 

al. 1997). Moreover, we herein confirmed that IL-10-treated and -secreting DCs had therapeutic 

effects in allergic lung disease. Also, it has been reported that in vivo delivery of an IL-10 

transgene suppresses airway eosinophilia and airway hyperreactivity even during the effector 

phase of airway inflammation (Nakagome, Dohi et al. 2005), and also that pulmonary DCs, 

which transiently produced IL-10, from mice exposed to respiratory antigen stimulated 
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development of Tr-1 like cells (Akbar, DeKruyff et al. 2001). We think that induction of 

regulatory T cells seems to be the most logical explanation of the therapeutic efficacy of IL-10-

treated DCs although other possible mechanisms such as induction of regulatory B cells is 

certainly an alternate pathway that should be kept in mind.  It has been shown that B cells, by 

producing cytokines such as IL-10, can act as regulatory cells in chronic inflammatory 

environmental settings (Mizoguchi, Mizoguchi et al. 2002) 

In conclusion, IL-10 treatment of DC in vitro changes them to a tolerogenic phenotype. 

These cells can transiently induce complete reversal of AHR in our mouse model of severe 

allergic lung disease. These cells secrete modest amounts of IL-10, which H. Huang’s data 

suggest is critical for inducing allergen-specific tolerance. Further, we think that AHR and Th2 

reactivity might be differentially regulated. Normalization of AHR may be a direct effect of IL-

10 on the smooth muscles or airway nerve receptors, while Th2 responses may be dampened by 

upregulation of Treg cells and/or rendering other DCs tolerogenic. DCs may either become 

tolerogenic by direct effects of IL-10 on other DCs (by downregulating the costimulatory 

machinery) or through upregulation of the tryptophan-catabolizing enzyme IDO (which mediates 

T cell suppression /regulation). Subsequent data (unpublished) generated in our lab by Dr. Hui 

Huang indicates that OVADCIL-10 converts memory cells into regulatory cells both in vitro and in 

vivo. We thus think that our tolerogenic DCs possibly induce regulatory T cells that may then 

interact directly with other T cells in their vicinity to render them tolerogenic. This can occur by 

inducing of CD25- T cells to differentiate into CD4+CD25+ Treg cells (Zheng, Wang et al. 2004), 

which can themselves induce CD25- cells to differentiate to a CD4+CD25+ Tr1 regulatory cell 

type, establishing a cycle of tolerance. In addition, tolerogenic DCs or the regulatory T cells so 

induced may further interact with other DCs in the local environment to render them tolerogenic 
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by inhibiting their costimulatory signals, further inhibiting their antigen presenting ability, and 

thereby sustain infectious tolerance. Evidence suggests that, when injected into the lungs, CD8α+ 

DCs carrying immunogenic material can induce an immune response in the draining lymph node 

(Hammad, de Vries et al. 2004), and that allergen-presenting CD8α+ DCs can induce asthma 

tolerance (Gordon, Li et al. 2005). 

To our knowledge, this is one of the few studies in established allergic lung disease 

model with positive therapeutic effects. The few studies done so far have either been undertaken 

when the therapy is given before or during the sensitization phase or before the aerosol challenge 

(Zhang-Hoover, Finn et al. 2005; Bellinghausen, Sudowe et al. 2006; Koya, Matsuda et al. 

2007).  Bellinghausen et al. show that IL-10-treated DC inhibit the Th1 and Th2 stimulatory 

activity of DC and don’t affect systemic IgE and local airway inflammation, but do increase the 

IgG1 and IgG2a responses (Bellinghausen, Sudowe et al. 2006). This variability in the responses 

might result from varying doses or routes of DC delivery, time of delivery, and/or differences in 

the sensitization protocols. Bellinghausen et al used 5x105 DCs delivered three times via the 

intravenous route, in contrast to ours (i.e. 106 DCs via i.p. or i.t. route). Interestingly we also 

found that our OVADCIL-10 also had no effect when given i.v. (unpublished observation). We think 

the intratracheal as well as intraperitoneal route provides better therapeutic approach to the target 

organ i.e. the lung, which may explain the decreased eosinophilia, OVA-specific IgE as well as 

Th2 responses. In contrast, Koya et al found that i.v. delivery of IL-10-treated DCs reduces AHR 

and airway inflammation in C57BL/6 mice (Koya, Kodama et al. 2006). More recently, Dr. M. 

Lu in our lab has shown that asthmatic C57BL/6 mice that are given 1x106 OVADCIL-10 i.p. also 

become fully allergen-tolerant (Lu et al, unpublished). One of the reasons for these discrepancies 

may be the difference in the DC populations used. The DC populations used by Koya et al were 
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generated in GM-CSF and IL-4, and IL-10 was added at the starting of culture, generating 

comparatively immature DCs with low CD80, CD86 and MHC-II. In contrast, our DCs seem 

more mature, as IL-10 was added towards the end of culture. These DCs displayed with no 

differences in CD80 and CD86, but lower CD40 and CD54 expression relative to the mature 

DCs. The differences in the two reports might also be related to the route of DC delivery. Our 

results correlate well with those of Bellinghausen et al, (who used the BALB/c model) in which 

DCs given by the i.v. route were ineffective in inducing tolerance. Koya et al found no change in 

CD4+CD25+ T cells in OVA-pulsed versus -unpulsed IL-10-treated DC groups (Koya, Matsuda 

et al. 2007), which suggests that the effects induced by the IL-10-treated DCs were due to IL-10 

secreted by DCs and not Treg cells. Thus, it is possible that either very few cells are able to reach 

the lungs (Lappin, Weiss et al. 1999) or IL-10 inhibits the migration of DCs from the blood 

vessels to the target site. Our DCs are delivered i.t., and so could potentially access the lung 

inflammatory cells, especially the tissue and the BALT lymphocytes, to induce potent 

therapeutic effects, potentially inducing induction of regulatory cells. Data generated subsequent 

to the completion of the work in this thesis indicates that OVADCIL-10 cells given i.p. (Appendix-

1) are able to reach the lungs and that they were as effective as DC given i.t. in terms of inducing 

tolerance. 

To summarize, within 3 weeks of delivery into “asthmatic” mice, tolerogenic IL-10-

treated DCs begin to ameliorate eosinophilia, and reduce OVA-specific IgE and IgG1, and BAL 

and lung parenchymal Th2 cytokine secretion. At this time AHR has been abrogated, but this 

effect is only transient. This Th2 tolerance is presumed to be infectious in nature as even after 8 

months the IgE, eosinophilia, and Th2 responses remained relatively dampened.  It is unlikely 

that our treatment DCs would have survived and secreted IL-10 for 8 months.  Based on the 
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work in this thesis we can speculate that that the tolerogenic effects initiated by OVADCIL-10 cells 

would more than likely be maintained by other cells (regulatory DCs or T cells) which would 

keep active tolerance in place for prolonged periods. Subsequent work from our lab 

unequivocally confirms that both regulatory DCs and regulatory T cells are induced in DCIL-10-

treated asthmatic mice. Tolerogenic DCs have been shown by others to activate naturally-

occurring regulatory T cells (nTreg) (Vigouroux, Yvon et al. 2004)), or to induce the 

differentiation of Tr1 (Battaglia, Gregori et al. 2006) regulatory cells, and plasmacytoid DCs are 

thought to influence the activity of myeloid DCs, at least under some conditions (de Heer, 

Hammad et al. 2004). We do not have evidence indicating which of these possibilities was 

operative in our induction of tolerance to allergic asthma, but the prolonged time course of the 

tolerance observed in our system suggests the establishment of a durable form of regulatory 

activity (Figure 6.1), such as might be associated with regulatory T cells (proposed model below, 

Figure 6.2).  

Thus, IL-10-treated DC-induced tolerance would provide a novel approach to asthma 

therapeutics, but at the same time it poses challenges that need to be resolved. Primarily, we have 

to see if this therapy can be translated across to other strains of mice and eventually to humans. 

Two commonly used mouse models are C57BL/6 and BALB/c. If similar sensitization protocols 

are followed BALB/c are relatively high responders than C57BL/6 mice (Sugita, Kuribayashi et 

al. 2003) but both display similar characteristics of asthma i.e. AHR, airway inflammation and 

Th2 responses which could be ameliorated by OVADCIL-10 therapy. Recently, Dr. M. Lu has 

completely characterized the asthma C57BL/6 model and confirmed the effectiveness of 

OVADCIL-10 therapy in these mice.  Furthermore, our ex vivo human experiments showed  
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Figure 6.1 Effects of regulatory T cells and regulatory cytokines —IL-10 and TGF-β might 
contribute to the control of allergen-induced immune responses in five main ways: suppression 
of antigen-presenting cells (APCs) that support the generation of Th2 cells and Th1 cells (a); 
direct suppression of Th2 cells and Th1 cells (b); suppression of allergen-specific IgE 
production, (c); and suppression of mast cells, basophils and eosinophils (d). In addition, indirect 
inhibition of Th2-cell-associated phenomena (such as mucus production, and endothelial-cell 
activation and cellular influx) and Th1-cell-associated phenomena (such as epithelial-cell 
activation and apoptosis) is observed (e). (borrowed  and modified from (Larche, Akdis et al. 
2006) 
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Figure 6.2 Hypothesized model of infectious tolerance induced by tolerogenic dendritic 
cells. When injected into the airway OVADCIL-10 interact with the effector memory T cells and 
possibly converts them into antigen-specific regulatory T cells. These Tregs may secrete 
immunoregulatory cytokines like IL-10 or TGF-β, which would further induce Tregs in the lung 
environment. In addition, these Tregs could also induce regulatory DCs, possibly via IDO 
upregulation. IL-10 released endogenously or by Tregs may also induce regulatory DCs that can 
further induce Tregs thus maintaining the cycle of infectious tolerance for prolonged periods.  
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induction  of Th2 tolerance by DCIL-10 loaded with the allergens (e.g., HDM, grass, cat dander 

etc.) to which the subject was sensitive. Secondly, we induced antigen-specific tolerance to OVA 

but human subjects experience multiple allergies. Thus, suppressing immune responses to one 

antigen may not affect responses to others and this would be a challenge to clinical 

implementation of immunotherapy. Perhaps, the subject could be treated first for the allergen to 

which he/she is most sensitive and then later for lesser allergens. This would require repeated 

treatments but likely substantially be less often than required for SIT. Whether DC loaded with 

different allergens can be mixed and given at the same time to multi-allergic subjects is another 

question that remains to be answered. 

Thus, this amelioration of allergic responses by OVADCIL-10 therapy in asthmatic mice 

may well provide valuable insights into its successful implementation in asthmatic humans. 

Although a mouse model does not reproduce all the features of human asthma, mice develop a 

clinical syndrome that in many aspects closely resembles human asthma. We venture that our 

model shares more in common with human asthma than other models reported so far. Major 

studies have used primary sensitization and challenge models (not the case in humans). In our 

model, initial sensitization and allergen challenge was followed by a recovery period and then a 

single provocation challenge was given, mimicking the situation encountered in asthmatic 

subjects.  Further studies involving use of this therapy in humanized mice or other models 

closely related to humans (e.g., primates) may provide valuable information in determining its 

therapeutic effects. Although, it’s still very far from being applicable for treatment of human 

asthma, IL-10-treated DC therapy still provides information that has made us a step closer to 

achieving the goal. Thus, with limited availability of data, my hypothesis is still acceptable i.e. 
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allergen-presenting interleukin-10-treated bone marrow-derived DCs can be used for therapeutic 

induction of tolerance to severe allergic lung disease in a mouse model of asthma. 

 

CONCLUSIONS 

 

1. The IL-10-treated DCs were avidly phagocytic, expressed high levels of IL-10,  

responded strongly to CCR5 ligands in chemotaxis assays, and expressed low levels of 

cell surface markers CD40 and ICAM-1. 

 2.  Within 3 weeks of delivery into “asthmatic” mice, tolerogenic IL-10-treated DCs 

begin to ameliorate eosinophilia, and reduce OVA-specific IgE and IgG1, BAL and lung 

parenchymal Th2 cytokine secretion, and AHR was completely abrogated (but only 

transiently affected).  

 3.  The induction of AHR and Th2 tolerance suggests that these two parameters are 

controlled independently in this model system. 

 4.   This tolerance appears to be infectious in nature, as even after 8 weeks   IgE, 

eosinophilia, and Th2 responses were relatively dampened and maintained for 8  months. 

5.  Repeated OVADCIL-10 treatment kept AHR normalized and augmented the reduction in 

eosinophilia, OVA-specific IgE and IgG1 as well as BAL and parenchymal TH2 

responses.  

6.  Both the i.t. and i.p., but not s.c., routes of delivering tolerogenic cells were effective 

in ameliorating asthmatic responses. 

7.  Interleukin-10 and possibly IDO seem to contribute to tolerogenic DC-mediated 

effects.  
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*Contributed by Dr. Meiping Lu 
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Appendix -2* 
 
 
Silencing IL-10 expression within OVADCIL-10 ablates their abilities to induce tolerance in 
mice with allergic lung disease/asthma. ALD was induced in mice as in Figure 5.2.1, then the 
animals were given otherwise normal OVADCIL-10 (-) or OVADCIL-10 that had been transfected with 
either scrambled (n.s. siRNA) or IL-10-specific siRNA. The IL-10 siRNA OVADCIL-10 expressed 
normal levels of cell surface antigen-presenting machinery and CCR5, but did not express 
detectable levels of IL-10 protein or mRNA, or CCR7. The mice were otherwise treated as the 
animals in Figure 5.2.1 and euthanized at wk 3. (A) OVADCIL-10 that had been transfected with 
scrambled siRNA induced ALD tolerance as well as otherwise untreated OVADCIL-10, while 
OVADCIL-10 that had been transfected with IL-10-specific siRNA were incompetent at reversing 
AHR in the recipients. Similarly, the silencing of IL-10 expression in the OVADCIL-10 eliminated 
tolerance induction with respect to (B) eosinophilic inflammation and (C) BAL IL-4, IL-5, IL-9, 
and IL-13 responses to allergen provocation in recipients. The scrambled siRNA-treated cells 
were no different than untreated OVADCIL-10 in inducing tolerance. NS, p>0.05 versus ALD mice. 
 
 
 
 
 
 
 
*Contributed by Dr. Hui Huang 
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Appendix -3* 
 
 
 
DCIL-10 induces allergen-specific tolerance in asthma-phenotype mice. An asthma-like 
disease (ALD) was induced in BALB/c mice as indicated earlier. Two weeks later, the animals 
were given saline (ALD), or 1x106 OVA-pulsed immature DC (Imm. DC) or DCIL-10 (OVADCIL-10), 
or house dust mite allergen-pulsed DCIL-10 (HDMDCIL-10) by intratracheal injection. (A) Over the 
next 3 wk the AHR of the animals was assessed by head-out whole body plethysmography, in 
which the animals were exposed to increasing doses of Mch and their pulmonary airflow was 
measured as running 1-sec means at the 50% point in the expiratory cycle (Flow@50%TVe1) 
using a linked pressure transducer. From 14-21 day after cell transfer, the OVADCIL-10 recipients 
normalized their bronchial responsiveness to Mch, while the ALD and Imm. DC-treated animals 
remained hyper responsive. ALD mice treated with HDMDCIL-10 did not correct their AHR. (B) On 
day 21, following the assessments of AHR, the animals were exposed to nebulized 1% OVA 
aerosols for 20 min, and then 48 hrs later they were sacrificed. We performed bronchoalveolar 
lavages (BAL) on each animal and quantified their airway eosinophilia from differential cell 
counts and BAL cytokine levels by ELISA. We also measured the OVA-specific plasma IgE and 
IgG1 antibodies by ELISA. The OVADCIL-10 treatments had reduced the airway eosinophilic 
inflammation at 3 wk after cell transfer, as well as the circulating levels of OVA-specific IgE and 
IgG1. The HDMDCIL-10 did not reduce either of these parameters  
 
 
 
 
 
 
* taken from Nayyar et al in preparation 
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