
Design and Testing of a Digital Diplexer for DOCSIS

4.0 Networks

A Thesis Submitted

to the College of Graduate and Postdoctoral Studies

in Partial Fulfillment of the Requirements

for the Degree of Master of Science

in the Department of Electrical and Computer Engineering

University of Saskatchewan

by

Weicheng Wang

Saskatoon, Saskatchewan, Canada

© Copyright Weicheng Wang, July, 2021. All rights reserved.

Unless otherwise noted, copyright of the material in this thesis belongs to the author

Permission to Use

In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree

from the University of Saskatchewan, it is agreed that the Libraries of this University may

make it freely available for inspection. Permission for copying of this thesis in any manner,

in whole or in part, for scholarly purposes may be granted by the professors who supervised

this thesis work or, in their absence, by the Head of the Department of Electrical and

Computer Engineering or the Dean of the College of Graduate and Postdoctoral Studies at

the University of Saskatchewan. Any copying, publication, or use of this thesis, or parts

thereof, for financial gain without the written permission of the author is strictly prohibited.

Proper recognition shall be given to the author and to the University of Saskatchewan in

any scholarly use which may be made of any material in this thesis.

Request for permission to copy or to make any other use of material in this thesis in

whole or in part should be addressed to:

Head of the Department of Electrical and Computer Engineering

57 Campus Drive

University of Saskatchewan

Saskatoon, Saskatchewan S7N 5A9

Canada

OR

Dean

College of Graduate and Postdoctoral Studies

University of Saskatchewan

116 Thorvaldson Building, 110 Science Place

Saskatoon, Saskatchewan S7N 5C9

Canada

i

Abstract

The cable television industry has experienced massive growth since it began in the United

States as a commercial business in 1950’s. As cable television subscribers continued to grow in

numbers, the demand for higher transmission rates increased. This led to the advent of Data-

Over-Cable Service Interface Specification (DOCSIS). DOCSIS was developed by CableLabs

and contributing companies to supervise the manufacturing of new digital equipment and

ensure the compatibility of products from different manufacturers. New versions of the

DOCSIS standards were released consecutively over the years to fulfill the raising demand

for larger bandwidths and higher transmission rates. The latest version of the DOCSIS

standards at the time of this writing is DOCSIS 4.0, in which the upstream and downstream

signals are separated in frequency to eliminate interference.

A diplexer is a three-port device that implements this frequency-domain multiplexing,

allowing bidirectional data transmission. It multiplexes two ports (e.g. L and H) onto a

third port (e.g. S). The frequency bands occupied by the signals on ports L and H are

separated by a transition band, which means that the signals on ports L and H can coexist

on port S without interfering with each other. Commonly, the signals on port L will occupy

a lower frequency band and the signals on port H will occupy a higher frequency band. In

that case, a lowpass filter connecting ports L and S and a highpass filter connecting ports H

and S are implemented in the diplexer. Conventional diplex filters have fixed passband and

stopband corner frequencies, which means that they must be replaced every time there is a

change in the bandwidth allocation due to customer demand. Furthermore, a conventional

diplex filter usually has a large transition band due to the challenges of building a shard

filter using radio frequency (RF) components, which results in wasted frequency spectrum

in the network. One possible solution to the problems above is replacing conventional diplex

filters with diplex filters built using digital hardware, which offers an unique advantage that

allows filter parameters to be adjusted freely and precisely.

This thesis aims to design a hardware efficient digital diplexer for use in hybrid fiber-

coaxial (HFC) networks. A digital diplexer samples the incoming analog signals, then per-

ii

forms filtering digitally. The downstream and upstream sampling frequencies were optimized

based on the DOCSIS 4.0 frequency division duplex spectrum options. The computation re-

sults showed that the ideal downstream sampling frequency is 3588 MHz, whereas the ideal

upstream sampling frequency is 1616 MHz. Further, the frequency specifications of digital

diplex filters were determined based on the frequency allocation defined by the DOCSIS

standard. Multiple filter implementation structures were compared and contrasted to find a

structure that supports high sampling frequencies at the lowest hardware cost. After careful

consideration, block-based frequency domain filtering structure was selected and applied to

the design.

Based on the filtering structure and parameters, a fixed point model of the digital diplexer

was constructed in the Verilog hardware description language. A simulation was then con-

ducted in ModelSim to verify the performance of the model in the FPGA development

environment. Another fixed point model of the digital diplexer was built and tested in

MATLAB. The testing results were evaluated and compared with the simulation results ob-

tained in ModelSim, which aimed to verify the functionality of the designed diplexer. After

that, more ModelSim and MATLAB simulations were conducted to verify that the designed

diplexer achieves a signal quality that can support the highest modulation order specified in

DOCSIS (4096-QAM) and allows for dynamic switching of the upstream/downstream tran-

sition point. In addition, several digital diplex filters with different sizes of transition band

were designed and simulated in MATLAB. The results showed that digital diplex filters can

achieve sharper transition bands and the ’wasted’ bandwidth associated with higher split

points can be reduced as compared to the conventional approach.

iii

Acknowledgments

It is a pleasure to take this opportunity to express gratitude to those who made this

thesis possible with their kindness and support.

First, I would like to thank my supervisor Dr. Brian Berscheid for helping me achieve the

goal of completing this thesis and helping me throughout the research and writing process. It

has truly been my honour and rewarding experience to work under his supervision. I would

also like to thank Dr. Ha H. Nguyen for his guidance during the early stage of my research.

A very special thanks goes to Dr. Eric Salt. He offered valuable information regarding the

difference between masters programs available in University of Saskatchewan. I decided to

pursue the degree of master of science after taking his advice.

My deepest love and gratitude go to my parents for supporting my studies with enthu-

siasm and encouragement. You have both allowed me to follow my dreams and have given

me the opportunities needed to do so. My special thanks are extended to all my past and

current research group members for sharing their knowledge and invaluable assistance.

iv

Table of Contents

Permission to Use i

Abstract ii

Acknowledgments iv

Table of Contents v

List of Tables vii

List of Figures viii

List of Abbreviations xi

1 Introduction 1

1.1 History of Cable Television . 1

1.2 History of DOCSIS . 3

1.3 DOCSIS 4.0 . 5

1.4 Problem Statement . 10

1.5 Thesis Outline . 12

2 Filter Design Requirements 13

2.1 Digital Filter Overview . 13

2.2 QAM and OFDM Systems . 16

2.3 Filter Requirements . 23

2.3.1 Sampling Rate Requirements . 25

2.3.2 Filter SNR Requirements . 27

3 Filter Implementation Structures 31

3.1 Introduction . 31

3.2 Time Domain and Frequency Domain Filtering 31

3.2.1 Time Domain Filtering . 32

v

3.2.2 Frequency Domain Filtering . 38

4 Amplifier Design and Testing 46

4.1 Introduction . 46

4.2 Filter Testing Methodology . 48

4.3 Testing of Individual Filters . 55

4.4 Amplifier Testing with Sinusoidal Signals . 58

4.5 Amplifier Testing with DOCSIS 4.0 Signals 59

4.5.1 Test 1 - Basic Functionality and Dynamic US/DS Split Tests 64

4.5.2 Test 2 - Narrow Transition Band Test 67

4.5.3 Test 3 - Practical Transmitter Test 72

5 Conclusions 76

5.1 Summary . 76

5.2 Contributions . 77

5.3 Results and Conclusions . 77

5.4 Future Work . 78

References 78

A Defining FFT IP Core Signals 83

B Complete Amplifier Test Simulation Results 85

vi

List of Tables

1.1 The evolution of DOCSIS . 4

2.1 DOCSIS modulation types and associated SNR threshold values 29

3.1 Hardware costs of various filtering structures . 44

3.2 Throughputs of various filtering structures . 45

4.1 FFT IP core parameters . 52

4.2 Resource utilization summary . 53

4.3 Frequency specifications of filters being tested 55

4.4 Analysis and comparison of simulation results 56

4.5 Parameters for simulated DOCSIS 4.0 channels 63

4.6 Test 1 - MER measurements for received downstream DOCSIS channels 65

4.7 Test 1 - MER measurements for received upstream DOCSIS channels 66

4.8 Test 2 - MER measurements for received channels 72

4.9 Test 3 - MER measurements for received channels 75

A.1 FFT IP core signals - Part 1 . 83

A.2 FFT IP core signals - Part 2 . 84

vii

List of Figures

1.1 The DOCSIS network . 4

1.2 DOCSIS 4.0 frequency division duplex spectrum options 7

1.3 Optical node and amplifiers in an HFC network 8

1.4 DOCSIS 4.0 optical node interface . 8

1.5 Basic concept of a traditional diplexer . 9

2.1 The magnitude response template for a digital lowpass filter 17

2.2 The phase response template for a linear phase digital filter 17

2.3 Basic block diagram of a QAM transmitter . 19

2.4 Constellations of 4-QAM and 16-QAM . 20

2.5 Basic block diagram of a QAM receiver . 21

2.6 Constellations of 4-QAM and 16-QAM with Gaussian noise 22

2.7 Basic block diagrams of OFDM transmitter and receiver with IDFT/DFT . . . 24

2.8 Digital-diplexer-based amplifier . 26

2.9 The frequency spectrum of the output signal of an anti-aliasing filter 27

2.10 The frequency spectrum of the lowpass filtered signal 30

3.1 Direct form implementation of a M th-order FIR filter 33

3.2 2-parallel FIR filter implementation . 36

3.3 Reduced-complexity 2-parallel FIR filter implementation 37

3.4 The overlap-add method: overlapping data blocks 41

3.5 Frequency domain filter implementation . 42

4.1 The general procedure of building and testing the digital diplex filter 49

4.2 Values of some FFT IP core parameters . 51

4.3 FFT IP core interface . 53

4.4 RAM interface . 53

4.5 The detailed signal flow graph of the logic circuit built in ModelSim 54

4.6 Screenshot of waveform viewer at the end of a simulation 54

viii

4.7 Graphical comparison between y dft[n] and y modelsim[n] 57

4.8 Magnitude responses of various signals . 58

4.9 Detailed block diagram of the diplexer built in ModelSim 59

4.10 Graphical demonstration of input signals in DS and US paths 60

4.11 Graphical demonstration of output signals in DS and US paths 61

4.12 Detailed block diagram of the OFDM receiver 63

4.13 Test 1 - Upstream and downstream spectra at amplifier input (492/580 split) . . 65

4.14 Test 1 - Upstream and downstream spectra at amplifier output (492/580 split) . 66

4.15 Test 1 - received signal constellation for downstream channels (492/580 split) . 67

4.16 Test 1 - received signal constellation for upstream channels (492/580 split) . . . 68

4.17 Test 2 - Upstream and downstream spectra at amplifier input (684/732 split) . . 70

4.18 Test 2 - Upstream and downstream spectra at amplifier output (684/732 split) . 71

4.19 Test 3 - Upstream and downstream spectra at amplifier input (492/580 split) . . 73

4.20 Test 3 - Upstream and downstream spectra at amplifier output (492/580 split) . 74

B.1 Test 1 - received signal constellation for downstream channels (300/354 split) . . 85

B.2 Test 1 - received signal constellation for upstream channels (300/354 split) . . . 86

B.3 Test 1 - Upstream and downstream spectra at amplifier input (300/354 split) . . 87

B.4 Test 1 - Upstream and downstream spectra at amplifier output (300/354 split) . 88

B.5 Test 1 - received signal constellation for downstream channels (492/580 split) . . 89

B.6 Test 1 - received signal constellation for upstream channels (492/580 split) . . . 90

B.7 Test 1 - Upstream and downstream spectra at amplifier input (492/580 split) . . 91

B.8 Test 1 - Upstream and downstream spectra at amplifier output (492/580 split) . 92

B.9 Test 1 - received signal constellation for downstream channels (684/808 split) . . 93

B.10 Test 1 - received signal constellation for upstream channels (684/808 split) . . . 94

B.11 Test 1 - Upstream and downstream spectra at amplifier input (684/808 split) . . 95

B.12 Test 1 - Upstream and downstream spectra at amplifier output (684/808 split) . 96

B.13 Test 2 - received signal constellation for downstream channels 97

B.14 Test 2 - received signal constellation for upstream channels 98

B.15 Test 2 - Upstream and downstream spectra at amplifier input 99

ix

B.16 Test 2 - Upstream and downstream spectra at amplifier output 100

B.17 Test 3 - received signal constellation for downstream channels 101

B.18 Test 3 - received signal constellation for upstream channels 102

B.19 Test 3 - Upstream and downstream spectra at amplifier input 103

B.20 Test 3 - Upstream and downstream spectra at amplifier output 104

x

List of Abbreviations

δp Passband Ripple

δs Stopband Attenuation

ωp Passband Corner Frequency

ωs Stopband Corner Frequency

fc Carrier Frequency

H(ejw) Frequency Response

ADC Analog-to-Digital Converter

ALM Adaptive Logic Module

ALUT Adaptive Look-Up Table

ASIC Application-Specific Integrated Circuit

ASK Amplitude-Shift Keying

AWGN Additive White Gaussian Noise

CATV Cable Television

CM Cable Modem

CMTS Cable Modem Termination System

CP Cyclic Prefix

DAC Digital-to-Analog Converter

dB Decibel

DFT Discrete Fourier Transform

DOCSIS Data-Over-Cable Service Interface Specification

DS Downstream

DSL Digital Subscriber Line

DSP Digital Signal Processing

FDD Frequency-Division Duplexing

FDM Frequency-Division Multiplexing

FDX Full Duplex

xi

FFA Fast Finite Impulse Response Algorithm

FFT Fast Fourier Transform

FIR Finite Impulse Response

FPGA Field Programmable Gate Array

GUI Graphical User Interface

HDL Hardware Description Language

HFC Hybrid Fiber-Coaxial

HPF Highpass Filter

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

IP Intellectual Property

ISBE International Society of Broadband Experts

ISI Inter-Symbol Interference

LE Logic Element

LNA Low Noise Amplifier

LPF Lowpass Filter

LSB Least Significant Bit

MSB Most Significant Bit

MSE Mean Squared Error

NCTA National Cable and Telecommunications Association

OFDM Orthogonal Frequency-Division Multiplexing

OFDMA Orthogonal Frequency-Division Multiple Access

PA Power Amplifier

PHY Physical Layer

QAM Quadrature Amplitude Modulation

QoS Quality-of-Service

xii

RAM Random-Access Memory

RF Radio Frequency

S-CDMA Synchronous Code-Division Multiple Access

SC-QAM Single-Carrier Quadrature Amplitude Modulation

SCTE Society of Cable Telecommunications Engineers

SNR Signal-to-Noise Ratio

SOPC System-On-a-Programmable-Chip

US Upstream

VHSIC-HDL Very High Speed Integrated Circuit Hardware Description Language

xiii

1. Introduction

1.1 History of Cable Television

Cable television (CATV) originated in the United States in the late 1940’s and early

1950’s, a time when few television stations were operating and could only be found in major

urban areas. The main purpose of CATV was to enhance poor reception of over-the-air

television signals in rural areas due to geographic factors. Innovators in Arkansas, Oregon

and Pennsylvania independently created community antenna/access television systems [1].

An antenna tower would be erected on mountain tops or other elevated points in the commu-

nity to capture television signals broadcast from neighboring major cities, and homes were

connected to the antenna tower via coaxial cables, where amplifiers were placed properly to

compensate for the attenuation of the cables.

The demand for CATV service continued to grow in rural America. By 1960’s, there were

approximately 800 cable systems in operation, which provided services to almost 850,000 sub-

scribers. Large corporations such as Westinghouse, TelePrompTer and Cox started putting

investments into the business [1]. The early economic structure of CATV showed clear evi-

dence that the birth and evolution of CATV was driven by custore demand [2]. The drastic

growth of CATV was also caused by the introduction of several technological innovations over

the decade. One of the most important innovations was the addition of upstream channel

that makes two-way communication possible. Paul Baran, founder of Arpanet and analyst of

RAND Corporation, made a significant contribution to the development of the concept [3].

As a result, the market of CATV expanded beyond rural areas and reached saturation by

the late 1960’s.

The number of proposed interactive services for CATV systems was very large. E. K.

1

Smith created four main categories of interactive services that were explored during the

upstream prototyping phase in 1970’s [4]:

1. “narrow-band subscriber response services (e.g. opinion polling, sensor monitoring,

pay-TV);”

2. “shared two-way channels (e.g. local ombudsman, remote medical diagnosis, neighbor-

hood program origination);”

3. “subscriber-initiated services (e.g. computer time sharing, reservation and banking

services, catalogue shopping);”

4. “point-to-point services (e.g. high-speed data-exchange, teleconferencing, and facsim-

ile).”

Only a few services were offered before the introduction of digital cable years later, among

which pay-TV was recognized as the most popular service, which motivated most CATV

service providers and manufacturers to shift their focus towards developing effective pay-TV

networks.

The advent of the internet in the late 1980’s and early 1990’s changed the cable industry

dramatically. The cable industry began making the transition from analog to digital signal

distribution due to the rising demand for more efficient services. This transition involved

replacing the traditional distribution networks with hybrid fiber-coaxial (HFC) networks,

which is a broadband network that combines fiber optic and coaxial cable. The HFC net-

works introduced faster and higher quality data transmission to customers, which allowed

it to compete with digital subscriber line (DSL) technology provided by many telephone

companies [5]. The HFC networks can also offer multichannel video, two-way voice, and

high definition and advanced digital video services [1].

Initially, there were no industry-wide standards in place to manage the cable equipment

demanded by the CATV service providers. The absence of standards resulted in the service

providers being forced to purchase proprietary equipment at whatever price demanded by

2

the manufacturer. The other issue caused by the lack of standards was the incompatibility of

the equipment manufactured by rival companies, which forced the service providers to trade

with a particular company. As a result, the service providers collaborated to form CableLabs,

a not-for-profit organization that generated open standards to ensure the compatibility of

cable equipment between various equipment manufacturers. The most important standard

developed by CableLabs was the data-over-cable service interface specification, DOCSIS.

1.2 History of DOCSIS

By 1997 CableLabs released the first data-over-cable service interface specification stan-

dard, DOCSIS 1.0. The physical network defined by DOCSIS was comprised of multiple

cable modems (CMs) connected to a cable modem termination system (CMTS) over an

HFC network [6], as shown in Figure 1.1. The CMTS is locted at the service provider’s

headend and connects to many optical nodes via fiber optic cables. The optical signal from

the CMTS is converted into radio frequency (RF) and transmitted to multiple taps via cop-

per coaxial cables [7]. Each tap delivers a portion of the signal power on the cables to the

CMs at users’ locations.

A DOCSIS network enables two-way transmission. The transmission from the CMTS to

the CMs through the HFC network is called forward path or downstream (DS) transmission,

and return path or upstream (US) transmission refers to the transmission from the CMs to

the CMTS. There were limited changes to the physical structure of DOCSIS network despite

the fact that CableLabs has released new versions of DOCSIS standard over the years. The

updates to the DOCSIS standard typically involve improving both upstream and downstream

data rates. These updates have included versions 2.0, 3.0, 3.1 and 4.0, which was released in

2019 and is the latest version. It is worth mentioning that the transmission rate of fiber optic

cable is higher than that of copper coaxial cable, which means the copper coaxial cable is

the bottleneck in the network. Therefore, updates to the DOCSIS standard aim to increase

the transmission rate over copper coaxial cable through updates to the physical signaling

and medium access control protocol. Table 1.1 compares several aspects of each DOCSIS

version, including their maximum data rates.

3

Figure 1.1: The DOCSIS network

Table 1.1: The evolution of DOCSIS

Specification DOCSIS

1.0 [6]

DOCSIS

1.1 [8]

DOCSIS

2.0 [9]

DOCSIS

3.0 [10]

DOCSIS

3.1 [11]

DOCSIS

4.0 [12]

Release Date 1996 1999 2001 2006 2013 2019

Downstream

Capacity

40 Mbps 40 Mbps 40 Mbps 1 Gbps 10 Gbps 10 Gbps

Upstream

Capacity

10 Mbps 10 Mbps 30 Mbps 200 Mbps 1-2 Gbps 6 Gbps

Multiplexing

Technique

FDMA,

TDMA

FDMA,

TDMA

FDMA,

TDMA,

S-CDMA

FDMA,

TDMA,

S-CDMA

OFDM,

TDMA,

S-CDMA

OFDM,

TDMA,

S-CDMA

4

1.3 DOCSIS 4.0

DOCSIS 4.0 technology introduced the next generation of data-over-cable’s hybrid-fiber

coaxial networks. It allowed for multi-gigabit symmetric services while supporting high

reliability, high security and low latency. DOCSIS 4.0 included many significant enhance-

ments over DOCSIS 3.1. Most notably, the maximum upstream capacity increased from 1.5

Gbps [11] to 6 Gbps [12]. The maximum downstream capacity remained unchanged, which is

10 Gbps [12]. There was a considerable increase in the bandwidths allocated to transmission

in the upstream and downstream directions as well. The downstream bandwidth could span

from 108 MHz to 1794 MHz, and the upstream bandwidth traditionally spans from 5 MHz

to 85 MHz [12]. Many future applications that are currently under development can ben-

efit from higher upstream transmission rates, which include interactive video conferencing,

remote learning and health care applications.

The implementation of OFDM and OFDMA has made an important contribution to the

sharp increase in data rates in DOCSIS 3.1 and 4.0. OFDM is a flexible and efficient modu-

lation technique that transmits over a large number of closely spaced orthogonal subcarriers

in parallel at low symbol rate instead of delivering a high-rate data stream with a single

subcarrier.

In an OFDM system, the input data stream is modulated by the serial-to-parallel con-

verter and distributed amongst the subcarriers. The QAM mapper then maps information

bit from each active subcarrier to a QAM constellation, resulting in a complex symbol stream.

Following mapping, the symbol stream is converted to its time domain equivalent by taking

an inverse fast Fourier transform (IFFT). Next, a very important operation called cyclic pre-

fix (CP) extension is performed on the complex symbol at the output of IFFT. This cyclic

prefix can effectively eliminate inter-symbol interference (ISI) between the complex symbols,

given that it has a greater length than the channel delay spread.

The upstream transmission is built based on the OFDMA digital modulation scheme.

OFDMA is a multi-user version of OFDM that assigns subcarriers to various users on a

frame-by-frame basis, allowing for simultaneous transmission from multiple users at low

5

data rate.

The potential for the upstream and downstream signals to interfere with each other in

DOCSIS networks is high due to their coexistence on the same coaxial cable. This problem

is traditionally solved in DOCSIS by utilizing a scheme called frequency-division duplex-

ing (FDD), where the upstream and downstream signals are allocated to non-overlapping

frequency bands. Wherease earlier versions of DOCSIS specified fixed upstream and down-

stream frequencies, DOCSIS 4.0 introduced a new mode which allows the upstream band

to extend to 300 MHz, 492 MHz, and 684 MHz. A summary of the various frequency band

options allowed in DOCSIS 4.0 is demonstrated in Figure 1.2. Since the achievable data rate

in a network is related to the allocated bandwidth, this mode gives cable network operators

the ability to balance their upstream and downstream network capacity based on actual

customer demand.

One of the key elements in an HFC network is the optical node, which acts as the interface

between the optical and electrical portions of the network. An optical node consists of a

optical receiver that recovers and then transmits the downstream signal from the CMTS

to the CMs, and a reverse optical transmitter that delivers the upstream signals from the

CMs back to the CMTS. Figure 1.3 demonstrates how optical nodes are utilized in an

HFC network, whereas the basic structure of an optical node is shown in Figure 1.4. The

physical layer (PHY) device is utilized to set up communication with the CMTS at the

service provider’s headend. The downstream PHY receives the downstream optical signal

from the CMTS and converts it to a radio frequency signal that is transmitted to the CMs

via a coaxial cable [13]. The digital-to-analog converter (DAC) ensures that the RF signal at

the output of the optical node is analog. Before the RF signal enters the coaxial cable, a tilt

in the frequency domain must be added to the RF signal to compensate for the attenuation

of coaxial cable network. The tilt is opposite to the slope of the attenuation in the cable

network. Following the tilt compensator, a power amplifier (PA) is implemented to boost

the power in the transmitted signal so the signal has enough power to reach the CMs located

farthest away on the coaxial cable network.

The path of the upstream signal is adjacent to that of the downstream signal. As il-

6

Figure 1.2: DOCSIS 4.0 frequency division duplex spectrum options7

Figure 1.3: Optical node and amplifiers in an HFC network

Figure 1.4: DOCSIS 4.0 optical node interface

lustrated in Figure 1.4, a low noise amplifier (LNA) is used to increase the power in the

upstream signal sent by the CM. The signal is then sampled by the analog-to-digital con-

verter (ADC). It becomes an optical signal after being demodulated by the upstream PHY

and travels to the CMTS over a fiber-optic cable.

To facilitate the bidirectional operation of the optical node, a device known as a diplexer

is used to separate the downstream and upstream signals coexisting on the same coaxial

cable, as shown in Figure 1.4. A diplexer is a three-port network that implements frequency-

domain duplexing. As discussed earlier, in a DOCSIS network, the upstream signal will

occupy a lower frequency band and the downstream signal will occupy a higher frequency

band. In that case, the diplexer functions as a lowpass filter (LPF) for the upstream signal,

8

Figure 1.5: Basic concept of a traditional diplexer

and serves as a highpass filter (HPF) for the downstream signal, essentially separating the

signals into separate upstream and downstream paths within the optical note, as shown

as shown in Figure 1.5 [14]. It is important to note that the lowpass and highpass filters

discussed above are collectively referred to as diplex filters, which are designed to eliminate

or receive signals that fall in certain areas of the RF spectrum. The purpose of the diplexer is

to prevent the downstream and upstream signals from interfering each other. The insertion

loss between the input and output ports of the diplex filter is approximately 0.5 dB [15].

As introduced in Figure 1.3, amplifiers are another important component of HFC net-

works. The electrical signals that travel between the optical node and the CMs are attenuated

as they propagate down the coaxial cable [16]. At a certain point, their signal level becomes

too low for reliable communication. In order to extend the signal reach from the optical

node, amplifiers are placed periodically along the cable. It is important to note that due

to the bidirectional frequency division duplexing nature of the network, the amplifier is not

merely a simple device that boosts the level of an input signal, as studied in introductory

electronics courses. Rather, the amplifiers in HFC networks utilize a diplexer to first separate

the upstream and downstream signals, invididually amplify the two signal paths, then apply

9

another diplexer to recombine the signals onto a single coaxial cable. Once again, it is seen

that the construction and operation of the HFC network relies upon the use of diplexers to

manage the bidirectional signals.

1.4 Problem Statement

HFC networks have experienced rapid growth since their inception in the early 1990s.

Network operators have continually introduced technological innovations and provided ever-

increasing bandwidth capacities to fulfill the user demand for higher upstream and down-

stream transmission rates. To increase bandwidth capacities under DOCSIS 4.0, the up-

stream and downstream frequency bands can be reallocated on the frequency spectrum.

However, doing so means the filters inside the diplexers need to be modified to match the

updated frequency spectrum. Unfortunately, traditional diplex filters are built from fixed

RF components (resistors, capacitors, inductors, etc.) and therefore have fixed passband and

stopband cutoff frequencies. This means that network service providers must replace every

diplexer in the HFC network when changing the way frequencies are partitioned between

the upstream or downstream direction. This upgrade process can be very expensive when

conducted across an entire country or continent [17].

Furthermore, the traditional diplex filters require a relatively large guard band between

the upstream and downstream frequency bands to accommodate the filter transition region.

As already mentioned in the previous section, diplex filters are designed to transmit or

receive RF signals. Due to the limitations of analog RF components, the size of the required

transition band increases as the upstream or downstream frequency band becomes larger.

This can be seen in Figure 1.2, where the transition band in for an 85MHz DOCSIS upstream

is 23 MHz, while the transition band in a 684MHz DOCSIS upstream is 124 MHz. In

other words, increasing the upstream bandwidth to meet customer demand for interactive

applications would cause the transition band to be increased, wasting a huge portion of the

frequency spectrum since no signals may fall in the transition region.

DOCSIS 4.0 specification introduced a technology called Full-Duplex DOCSIS (FDX)

that could aimed to solve the problems above. This technology enables upstream and down-

10

stream transmissions to occur in the same frequency band at the same time. The advantage

of utilizing FDX is that it potentially allows upstream bandwidth expansions to occur with-

out reducing downstream bandwidth commensurately. FDX also removes the transition

band between the upstream and downstream frequencies, thereby making full use of the

frequency spectrum. In addition, the overlapping frequency bands can occupy a variety of

ranges: 108 204 MHz, 108 300 MHz, 108 396 MHz, 108 492 MHz, or 108 684 MHz [17],

allowing for flexible upstream and downstream band edges. Unfortunately, FDX solutions

do not currently work with amplifiers. Although some efforts are underway to combine

FDX operation with amplifiers, the current solutions require fairly complex echo cancella-

tion schemes [18] [19]. As such, FDX may only be useable by the CATV service providers

that are willing to spend significant time and money replacing all of the amplifiers in their

networks with optical nodes.

Another an alternative method of solving the problems associated with conventional

diplexers and unlocking the potential of DOCSIS 4.0 is to design a flexible and dynamically

configurable diplexer. This thesis investigates the possibility of designing such a device based

on digital filtering, rather than analog filtering using RF components. The physical structure

of a digital diplexer will be discussed in detail in later sections of the thesis, but involves

sampling the incoming analog signals, performing digital filtering, then finally converting

the digital signals back into analog and placing them on the coaxial cable. The utilization

of digital filters offers a powerful benefit to this appilcation, in that the filter’s response

can be programmable or adaptive [20]. In other words, digital filters can have flexible cut-

off frequencies, allowing for adjustable upstream and downstream bandwidths. The size of

transition band is also adjustable for the same reason.

Such a diplexer based on digital filtering could be included within the optical node and the

amplifiers within DOCSIS networks, providing the opportunity for the network to dynami-

cally allocate frequency resources between the upstream and downstream paths. However,

there are important challenges to be solved. First, since the signals of interest have wide

bandwidths, the sampling rates, computational complexity, and hardware costs of the digital

diplexer could be very high. Second, since DOCSIS networks aim to provide very high data

11

rates, the signal quality must not be degraded by the diplexing operation. Thus, one of

the key objectives of this thesis is to design a functional digital diplexer that can support

DOCSIS 4.0 data rates at the minimum hardware cost.

1.5 Thesis Outline

This thesis is organized as follows. Chapter 2 will provide an overview of digital filters

and briefly explain why digital filters are preferred over analog filters. The digital filter

design requirements for this application will be discussed in two aspects: sampling rate and

signal-to-noise ratio. In addition, there will be a detailed discussion of the underlying QAM

and OFDM systems used in DOCSIS in Chapter 2.

Chapter 3 will consider various filtering structures for implementing the digital diplexer

and evaluate their performance and hardware costs. The advantages and disadvantages of

these structures will be discussed, which will ultimately lead to the selection of a filtering

structure for the diplexer.

Chapter 4 will explain how to implement the proposed digital diplexer from Chapter 2

and 3 and will investigate its practical limitations. The general implementation and testing

procedure will be discussed in detail, and the performance of the newly developed system

will be evaluated based on simulation results.

Finally, Chapter 5 will conclude the thesis by summarizing the main developments and

discussing potential future work.

12

2. Filter Design Requirements

This section first provides an overview of the fundamentals of digital filters, then discusses

the key concepts of QAM modulation and OFDM communications as used in DOCSIS 4.0.

Finally, this material is used to develop key requirements for the filters used to construct the

digital diplexer.

2.1 Digital Filter Overview

A digital filter is a discrete-time system which takes an input signal and produces an

output signal that is a modified version of the input signal. In situations where the signal

to be processed is an analog signal (as in the current application), the implementation of a

digital filter is generally comprised of an analog-to-digital converter, a digital logic circuit

such as a microprocessor, peripheral components such as memory, and a digital-to-analog

converter (DAC). The analog-to-digital converter (ADC) serves to sample the input signal,

while filter coefficients and data are stored in the memory. The programmed instructions

running on the microprocessor enable it to perform mathematical operations on the signal

obtained by the ADC. Finally, the filtered signal is converted back into the analog domain

using the DAC. In some high-performance applications which require high sampling rates

or multiple parallel operations, a field programmable gate array (FPGA) or application-

specific integrated circuit (ASIC) is preferred over a general-purpose microprocessor. The

digital logic device that was used in this thesis is an FPGA, which is a semiconductor device

consisting of programmable logic elements (LEs) as well as reconfigurable interconnections

which can be used to produce any types of complex logic circuits [21]. Implementation

of a digital filter in a practical situation typically requires using software or mathematical

13

optimization routines to determine appropriate filter coefficients based on the parameters

defined by users [20].

Digital filters are different from analog filters in many ways. First, a digital filter is

typically less efficient in size and power, while being less component-sensitive, than its analog

counterpart. Generally, the disparity in efficiency rises as the frequency of signal increases,

as the digital logic needs to operate at higher sampling rates. Secondly, the hardware cost

of a digital filter may be higher than that of an equivalent analog filter due to the increased

complexity. However, digital filters allow many designs that are impractical or impossible as

analog filters, as mathematical operations can be performed at very high precision. Lastly,

digital filters occasionally have problematic latency (the difference in time between the input

and the response) when being used in the circumstances of real-time analog systems, which

is due to the associated analog-to-digital and digital-to-analog conversions and logic delays

associated with the implementation in the digital circuit.

A digital filter is usually defined by its transfer function, or equivalently, its difference

equation. A transfer function of a filter is a mathematical function that generates the

theoretical output signal for each possible input signal. The filter response to any given input

can be modeled through mathematical analysis on the transfer function of the filter. Thus,

designing a digital filter requires generating specifications based on the problem definition,

and then building a transfer function that fulfills the specifications. The transfer function

of a linear, causal, and time-invariant digital filter can be demonstrated as a function in the

z-transform domain [22]:

H(z) =
B(z)

A(z)
=
b0 + b1z

−1 + b2z
−2 + . . .+ bNz

−N

1 + a1z−1 + a2z−2 + . . .+ aMz−M
(2.1)

where bn and an are known as the coefficients of the filter. The filter order of the digital

filter is defined as the greater of N and M in the above equation.

There are various mathematical methods that can be utilized to design a digital filter

and simulate its performance. These methods often help developing the basis of a filter

specification. Generally, a digital filter can be characterized through computing its response

to a simple input such as an impulse, which can then be extended to calculate the filter

14

response to more complicated signals.

In the time domain, a digital filter is entirely characterized by the impulse response h[n],

which is the measurement of the filter output in response to an impulse. Generally, there are

two basic types of digital filters: finite impulse response (FIR) and infinite impulse response

(IIR) filters. The impulse response completely matches the sequence of filter coefficients in

the case of a linear time-invariant FIR filter [22]:

y[n] = x[n] ∗ h[n] =
N∑
k=0

x[k]h[n− k] (2.2)

where x[n] and y[n] represent the input and output signals to the filter. In an IIR filter, the

output not only depends on current input, but also relies on previous inputs and outputs.

The typical form of an IIR filter is therefore [22]:

M∑
m=0

y[m]a[n−m] =
N∑
k=0

x[k]b[n− k] (2.3)

An IIR filter is recursive in any case. While a recursive filter may have a finite impulse

response, the impulse response of a non-recursive filter will always be finite.

In the frequency domain, one of the fundamental concepts to understand with a digi-

tal filter is its frequency response which represents the magnitude scaling and phase shift

experienced by an input signal that is passed through the filter. In general, a magnitude

response is the ratio between the amplitude of an input signal at a particular frequency and

the amplitude of the output at that same frequency. Similarly, a phase response is the ratio

of the phase of the input signal to that of the output signal passing through the filter at a

particular frequency. Together, the magnitude response and phase response of make up the

frequency response, H(ejw), which can be characterized by the formula below [22]:

H(ejω) = DTFT (h[n]) =
N∑
n=0

h[n]e−jωn (2.4)

So that

Y (ejω) = X(ejω)H(ejω) (2.5)

Note that DTFT means discrete-time Fourier transform. As shown in the above equation,

the convolutive relationship between input and output in the time domain is converted into

15

a multiplicative relationship in the frequency domain through computing the DTFT of each

signal.

The first step in designing a digital filter is selecting the key characteristics of the filter’s

frequency response. This essentially defines the functionality of the filter, and involves de-

ciding which frequencies should be attenuated, boosted, etc. The target magnitude response

template for a digital lowpass filter is shown in Figure 2.1. As illustrated in the figure, there

are a number of key parameters of the magnitude response that must be selected, including

passband corner frequency ωp, stopband corner frequency ωs, passband ripple δp and stop-

band attenuation δs. ωp defines the area in the filter’s frequency response where a signal is

allowed to pass, whereas ωs defines the beginning of the stopband region where the power

of a signal is strongly attenuated. The transition band is the set of frequencies between ωp

and ωs. Passband ripple δp is the amount of change in the amplitude of frequencies in the

passband of the filter. Since the average passband gain is set to 1, the actual passband gain

ranges between 1− δp and 1 + δp. Stopband attenuation δs defines the minimum attenuation

level of the filter, which is usually measured with respect to the passband gain. As for phase

responses, they can be classified into two main categories: linear phase and nonlinear phase.

Linear phase means the phase response of the filter is a linear function of frequency within

the passband, which implies that all frequency components of the input signal are delayed

in time by the same amount and so the input signal is not distorted. Nonlinear phase makes

the phase response a nonlinear function of frequency. Linear phase is important due to its

ability to preserve the waveshape of a signal, knowing that the amplitudes of some frequen-

cies might be changed by the action of the filter. Figure 2.2 illustrates an example of linear

phase response.

2.2 QAM and OFDM Systems

As mentioned in Chapter 1, multi-carrier OFDM was introduced in DOCSIS 3.1 as a

new technique that allows the throughput of DOCSIS network to be greatly enhanced.

Before discussing the basic concepts of OFDM, it is mandatory to evaluate the Quadrature

Amplitude Modulation (QAM) theory and review its advantages and disadvantages, since

16

Figure 2.1: The magnitude response template for a digital lowpass filter

Figure 2.2: The phase response template for a linear phase digital filter

17

OFDM is an extension of Single-Carrier QAM (SC-QAM). SC-QAM utilizes a single carrier

frequency to deliver information bits, and was widely used prior to the release of DOCSIS 3.1

specification. QAM transfers two information bit streams through varying the amplitudes

of two sinusoidal carrier signals, using the amplitude-shift keying (ASK) digital modulation

scheme. The two carrier signals of the same frequency fc have a phase difference of π/2

radians, which ensures the orthogonality of the two carrier signals and avoids any interference

between them. These carrier signals are usually called quadrature carriers. The sinusoids

used for the modulation are typically the sine and cosine of the desired carrier frequency:

cos(2πfct) and sin(2πfct). In addition, the scaling factors use in the amplitude modulation

are commonly denoted by VI(t), which refers to the in-phase component, and VQ(t), which

is the quadrature component. Adding the two scaled carrier signals results in the final

transmitted signal S(t) [23]:

S(t) = VI(t)cos(2πfct)− VQ(t)sin(2πfct) (2.6)

Due to the orthogonality between the carriers, VI(t) and VQ(t) can be viewed as the real

and imaginary components of a quantity known as the complex baseband signal, Sbb(t) =

VI(t) + jVQ(t), which represents the underlying information signal before modulation. Since

Sbb(t) is represented in the form of a complex number, its value at a given point in time can be

visualized as a point on a two dimensional complex diagram where the real axis refers to the

in-phase component and the imaginary axis corresponds to the quadrature component. The

plot of all possible modulation symbols on a two dimensional complex diagram is usually

called constellation diagram, where the symbols are known as constellation symbols, or

points.

A basic block diagram of a practical QAM modulator is shown in Figure 2.3 [24]. The

input binary sequence enters the QAM symbol mapper at a rate of rb bits/s. In the QAM

symbol mapper, the binary bits are allocated to multiple groups, with each group containing

λ bits. These groups of binary bits are then mapped into different QAM symbols, which

means that each QAM symbol sent over the channel can carry λ bits. Since there are 2λ

different combinations of λ bits, the size of the QAM symbol mapper should be M = 2λ. A

previously noted, each QAM symbol consists of an in-phase component VI(t) and a quadra-

18

Figure 2.3: Basic block diagram of a QAM transmitter

ture component VQ(t), where t denotes the symbol index in time. Figure 2.4 demonstrates

examples of constellation diagram for λ = 2, 4 [24]. The QAM symbol mapper is followed by

two upsamplers that upsamples VI(t) and VQ(t) by a factor of L. Then pulse shaping filters

are utilized to limit the effective bandwidth occupied by the upsampled signals V
(u)
I (t) and

V
(u)
Q (t). Finally, the transmitted signal S(t) can be found by multiplying the filtered outputs

by with the sinusoidal carriers as discussed in the previous paragraph.

The structure of the QAM demodulator that corresponds to the QAM modulator in

Figure 2.3 is illustrated in Figure 2.5 [24]. The received signal R(t) is the sum of the trans-

mitted signal S(t) and zero-mean white Gaussian noise, which is usually denoted by W (t).

R(t) is first multiplied by the two quadrature carriers of frequency fc so that it can be

downconverted to baseband. Then the resulting signals are processed by the matched filters

that are similar to the pulse shaping filters used in the QAM modulator. The utilization

of matched filters not only allows the signal-to-noise ratio (SNR) to be maximized in the

presence of additive stochastic noise [24], but also eliminates the double-frequency compo-

nents that are generated by multiplications with sinusoids. Following the matched filters,

two downsamplers are implemented to downsample the output signals of the matched filters

19

(a) 4-QAM (λ = 2)

(b) 16-QAM (λ = 4)

Figure 2.4: Constellations of 4-QAM and 16-QAM

20

Figure 2.5: Basic block diagram of a QAM receiver

by M , resulting in the in-phase and quadrature components Y
(d)
I (t) and Y

(d)
Q (t). The com-

plex signal Y
(d)
I (t)+jY

(d)
Q (t) eventually enters the QAM symbol demapper, which maps each

received complex symbol into the corresponding set of binary bits.

The presence of Gaussian noise has a great impact on the received constellation. Figure

2.6 shows how the received constellation symbols (blue) deviate from their ideal positions

(red) after being passed through a noisy channel. This deviation makes it difficult of the the

QAM demodulator to identify which symbol was transmitted and recover the original binary

bits. Clearly, the performance of the receiver will depend on how how far apart the ideal

signal points are and how much power is present in the noise to move the received points

away from their ideal locations.

OFDM is a type of frequency-division multiplexing (FDM) scheme that is used as a digital

multi-carrier modulation method. It was introduced in DOCSIS 3.1 standard to utilize the

available frequency spectrum more efficiently. In OFDM, the available frequency spectrum is

divided into N independent subcarrier frequencies, where the chosen subcarrier frequencies

are orthogonal to each other over the duration of each transmitted symbol. Each subcarrier

is then modulated with the corresponding symbol from the input data stream. The concept

21

(a) 4-QAM (λ = 2)

(b) 16-QAM (λ = 4)

Figure 2.6: Constellations of 4-QAM and 16-QAM with Gaussian noise

22

of OFDM greatly simplifies the physical structures of both the transmitter and the receiver

by allowing the use of efficient Fourier transform logic.

An OFDM transmitter can be built by connecting multiple QAM modulators in parallel.

First, the input data stream is allocated to N groups by a serial-to-parallel converter. Each

group of symbols is assigned to an independent QAM modulator. For the nth QAM modu-

lator, the nth symbol in the group is modulated with the corresponding subcarrier frequency

fn. The sum of the outputs of all QAM modulators is then computed and transmitted as

S(t). In other words, a high-rate data stream is converted into multiple low-rate parallel

data streams. An OFDM receiver can be viewed as a combination of multiple QAM de-

modulators. The structures of the OFDM transmitter and receiver are illustrated in Figure

2.7 [23].

To fulfill the demand for subcarrier orthogonality, the subchannels need to be equally

spaced. The minimum spacing between two adjacent subchannels is ∆f = 1/TN , where TN

is the duration of each OFDM symbol. Nevertheless, building separate QAM modulators

or demodulators would require a vast number of sinusoidal oscillators and other hardware

resources, which increases the implementation cost and system complexity for practical appli-

cations. An effective way to meet the demand multiple subcarrier frequencies is to utilize the

discrete Fourier transform (DFT) and inverse discrete Fourier transform (IDFT). An OFDM

system that is based on DFT and IDFT needs only two oscillators: one at the transmitter

and one at the receiver, which greatly reduces the hardware cost and system complexity.

2.3 Filter Requirements

The main goal of this investigation is to develop a set of digital diplex filters for HFC

networks. The main goal of this section is to develop and specify requirements for the filters.

As discussed in the introdution, the diplexers are tightly integrated within the amplifiers

which exist within HFC networks, so it is important to understand the high level design of

the amplifiers in order to derive the filter requirements. Overall, the diplexer requirements

may be broken down into two main categories: sampling rate requirements and signal-to-

noise ratio (SNR) requirements.

23

Figure 2.7: Basic block diagrams of OFDM transmitter and receiver with IDFT/DFT

24

2.3.1 Sampling Rate Requirements

An amplifier is defined as an electronic device that utilizes electric power from an external

power supply to increase the power of a signal, allowing the signal to travel farther. The

amount of power boost offered by an amplifier can be computed by its gain, which is the

ratio of output voltage, current, or power to input. The gain of an amplifier is usually greater

than one. Amplifiers have wide application in DOCSIS networks. They are not only used

in optical nodes, as illustrated in Figure 1.4, but are also implemented in copper coaxial

networks, since the signals traveling in either the upstream or downstream direction need to

be amplified multiple times to reach the receivers located farthest away. Figure 1.3 describes

how amplifiers are used in a coaxial network. The taps distribute a small amount of the

signal power on the cable to the CMs at users’ locations, while the amplifiers increase the

signal power remaining on the cable to compensate for the power sent to the CMs and the

power loss due to transmission over long distances.

Since the upstream and downstream signals coexist on the same copper coaxial cable,

it is mandatory to use a diplexer to separate the upstream and downstream signals before

amplifying them. Figure 2.8 shows the basic structure of a diplexer-based amplifier. Two

directional couplers are used to separate or combine the upstream and downstream signals.

As illustrated in the figure, there are two paths in the diplexer-based amplifier. The top

path allows the downstream signal to pass, while the upstream signal follows the bottom

path. In the top path, the ADC converts analog signal on the coaxial cable to digital signal

to be sent to digital diplex filter. Then the filtered signal is sent from the digital diplex filter

through a DAC before it is amplified and sent back to the coaxial cable. The operations in

the bottom path are similar to those in the top path, except that all the devices are placed

in the reverse order compared to the top path.

For an ADC, it is significant to define the rate at which digital values are sampled

from an analog signal. This rate is commonly known as the sampling rate or sampling

frequency of the converter. The digital signal that is sampled from a continuously varying

band-limited signal can be sent to a DAC to reconstruct the original signal. According to

the Nyquist–Shannon sampling theorem, making the sampling rate higher than twice the

25

Figure 2.8: Digital-diplexer-based amplifier

highest frequency of an signal enables an accurate reconstruction of the original signal. Such

sampling rate is called Nyquist rate. However, frequencies above half the Nyquist rate are

incorrectly detected as frequencies below half the Nyquist rate when they are sampled. This

issue is commonly referred to as aliasing. Aliasing is caused by sampling a signal at two or

fewer times per cycle, which results in missed cycles and thus misdetected lower frequencies.

It can be avoided by applying a lowpass filter to the input signal before sampling to remove

frequencies above half the Nyquist rate. The said filter is known as an anti-aliasing filter,

which is crucial for a practical ADC that is used to sample analog signals with high frequency

content.

Due to the presence of aliasing, it is essential to study the frequency spectrum of the

input signal to an ADC before computing the Nyquist rate. Section 1.3 states that the

downstream bandwidth in a DOCSIS 4.0 network could span from 108 MHz to 1794 MHz,

which means that the highest possible frequency of a downstream signal is 1794 MHz. The

Nyquist rate is therefore 3588 MHz, which is twice the highest frequency. As a result, all

the electronic components in the downstream path must have a sampling rate of at least

3588 MHz. Since the downstream signal occupies the top path, the passband frequency of

the anti-aliasing filter in the top path must be higher than half the Nyquist rate, which is

1794 MHz. As for the bottom path, the passband frequency of the anti-aliasing filter needs

to be at least 684 MHz, which is the highest frequency of the upstream bandwidth. The

sampling rate, however, cannot be simply calculated by doubling the passband frequency

in this case. Figure 2.9 demonstrates the frequency spectrum of a signal that has been

26

Figure 2.9: The frequency spectrum of the output signal of an anti-aliasing filter

lowpass filtered, where the dashed line represents the lowpass filter. A small portion of

the downstream bandwidth remains in the filtered signal due to the presence of transition

band, and could alias onto the upstream bandwidth if the sampling rate is exactly twice the

passband frequency of the anti-aliasing filter. Thus, it is essential to make the sampling rate

higher than twice the stopband frequency instead of the passband frequency, which ensures

that aliasing does not occur. Since the stopband frequency is around 808 MHz, the sampling

rate must be at least 1616 MHz. In a practical anti-aliasing filter, higher frequency content

is attenuated rather than eliminated, which means that it still has effects on the sampled

signal due to aliasing. This type of aliasing generates noise in the sampled signal.

2.3.2 Filter SNR Requirements

Quadrature amplitude modulation, which is also known as QAM, offers multiple im-

portant benefits for data transmission, as introduced in the previous section. Many data

transmission systems, including DOCSIS 4.0 switch between different orders of QAM, such

as 16-QAM, 32-QAM, etc., depending on the link conditions. Generally, higher QAM orders

are more desirable since they allow for higher data rates [25]. However, the distance between

27

different points on the constellation diagram decreases as the QAM order rises. As discussed

in section 2.2, the white Gaussian noise introduced by the channel will spread the received

points on the constellation diagram, thereby decreasing the distance between received con-

stellation points. This increases the chance for these points to be misdetected by the receiver,

causing errors to occur while restoring the information bits carried by these points. In short,

higher orders of QAM lead to a higher possibility of data errors being introduced [25]. Thus,

it is important to find a balance between the data rate, the QAM order and the acceptable

bit error rate.

To achieve reliable transmission with higher QAM orders, the received signal must have a

decent SNR, otherwise data errors will occur. When the SNR deteriorates, it is necessary to

either amplify the transmitted signal or reduce the QAM order to preserve the bit error rate.

DOCSIS allows for many different constellations in both the upstream and downstream di-

rections so that the QAM order can be matched to the observed SNR. The concept of making

QAM order adapt to the power of white Gaussian noise is known as ”adaptive modulation”.

Table 2.1 lists multiple DOCSIS modulation types and associated SNR threshold values [11].

Note that SNR here represents the ratio of average signal power in the occupied bandwidth

to the average noise power in the same occupied bandwidth. In order for a receiver to comply

with the DOCSIS standard, it must be able to achieve a specified low bit error rate when

the input signal achieves the SNR levels specified in Table 2.1.

28

Table 2.1: DOCSIS modulation types and associated SNR threshold values

Constellation SNR(dB)

16-QAM 15.0

64-QAM 21.0

128-QAM 24.0

256-QAM 27.0

512-QAM 30.5

1024-QAM 34.0

2048-QAM 37.0

4096-QAM 41.0

For a diplexer-based amplifier to be marketable, it should utilize the highest-order QAM

that the network allows. According to Table 2.1, the highest QAM order is 4096, which

corresponds to an SNR of 41.0 dB. Based on this information, it is possible to compute the

passband ripple and stopband attenuation of a filter. The following analysis will reveal that

SNR is dependent upon these two filter parameters. The first step in the analysis finds the

mean squared error (MSE) of the signal that has been filtered by a linear phase, equiripple,

lowpass filter. The lowpass filter has peak ripple δp in the passband and a gain between ±δs
in the stopband. The frequency spectrum of the signal and lowpass filter is shown in Figure

2.10. The residual power in the stopband is noise, which is bounded by:

Pn ≤ Psignalδ
2
s (2.7)

This noise power is the only stopband contribution to the MSE, which means that:

MSEstopband ≤ Psignalδ
2
s (2.8)

The passband contribution to the MSE is computed in a similar way:

MSEpassband < Psignalδ
2
p (2.9)

The total MSE is therefore:

MSE = MSEpassband +MSEstopband < Psignalδ
2
p + Psignalδ

2
s = Psignal[δ

2
p + δ2s] (2.10)

29

Figure 2.10: The frequency spectrum of the lowpass filtered signal

The theoretical SNR is computed below by:

SNR =
Psignal
MSE

>
1

δ2p + δ2s
(2.11)

The analysis above provides bounds on the stopband attenuation and passband ripple

in order for the SNR requirement imposed by the 4096-QAM mode of DOCSIS 4.0 to be

met. However, it is important to remember that the signal at the diplexer will include

other sources of noise as well, including the quantization noise from the ADC, the noise and

distortion from the DAC, and any noise that may be present in the input signal from the

DOCSIS transmitter. When selecting specific filter parameters for an actual implementation,

it is important to provide adequate margin above the target values indicated above in order

to allow for such additional noise sources.

30

3. Filter Implementation Structures

3.1 Introduction

Filter design is the process of generating filter coefficients and structures to meet specific

filtering requirements. Chapter 2 already described the filtering requirements that fulfills

the demands of the digital diplex filter for DOCSIS 4.0. Once a set of coefficients has been

chosen, a particular filter implementation structure is selected and used to build the system.

A filter implementation structure shows how a signal propagates from the input port to

the output port sample by sample. Only after both design and implementation have been

performed can signals be filtered. There are many filter implementation structures that have

been proposed, since the transfer function or difference equation of a filter may be realized

in multiple ways. For example, evaluating a simple expression ax + bx + c is equivalent to

computing (a+ b)x+ c. Likewise, all filter implementation structures may be considered as

different factorizations of the same transfer function or difference equation. However, the

efficiency of some structures is higher since they require fewer operations or storage elements

for their implementation, while others offer advantages such as enhanced numerical stability

and decreased round-off error. Thus, the main objective of this chapter is to compare and

contrast various filter implementation structures that meet the requirements of a digital

diplex filter. Throughout the analysis, the FPGA hardware cost is used as the main basis

for the comparison.

3.2 Time Domain and Frequency Domain Filtering

Periodic signals can be analyzed in two ways, or domains, which are usually called the

time domain and the frequency domain. For periodic signals, time is the inverse of frequency

31

and vice versa. Specifically, the period of a periodic signal defines the time it takes for the

signal to repeat itself, while the frequency shows how many times the signal repeats itself

in a given range of time. These two variables can be used to quantify a periodic signal, and

their relationship is demonstrated by the formula below:

period =
1

frequency
(3.1)

Since time and frequency are the inverse of each other, time domain analysis and frequency

domain analysis are inversely related in some ways.

3.2.1 Time Domain Filtering

The analysis of mathematical functions or signals with respect to time is known as a time

domain analysis. In the time domain, all values in the mathematical function or signal are

real numbers at different instances in the case of discrete-time or the case of continuous-time.

Time domain filtering is the most straightforward way to implement a filter, where input

and output are both sequences of time domain samples. There are several time domain rep-

resentations for FIR filters, including the difference equation, signal flow graph and impulse

response [26]. The difference equation is defined as a formula that uses past and present in-

put samples and past output samples in the time domain to calculate present output sample.

In the current application, we are interested in linear, causal, time-invariant filters, which

have difference equations of the following form:

y[n] = b0x[n] + b1x[n− 1] + · · ·+ bMx[n−M]

=
M∑
m=0

bmx[n−m] (3.2)

where x[n] is the input signal, y[n] is the output signal, and the constants bm are called the

filter coefficients. The signal flow graph is a specialized flow chart where nodes symbolize

variables and branches (lines, curves, or arrows) show the functional connections between

different nodes.

A straightforward approach for time domain implementation is the direct form structure,

where the difference equation is evaluated directly. This form is often suitable for small

32

Figure 3.1: Direct form implementation of a M th-order FIR filter

filters, but may be inefficient and impractical for large filters with complex designs [26]. The

difference equation shown in equation 3.2 specifies the direct form implementation of a filter

for the M th-order case. The corresponding direct form signal flow graph is shown in Figure

3.1. Generally, the FPGA hardware cost of a direct form implementation is computed in

terms of the number of required multipliers and adders. As shown in Figure 3.1, M + 1

multipliers and M adders are used in the direct form implementation.

For a given set of filtering requirements, the approximate number of coefficients h[n]

required is given by Bellanger’s equation [27]:

M ≈ 2

3
· log10(

1

10δpδs
) · 2π

ωs − ωp
(3.3)

where M is the number of coefficients in the filter. In other words, the filter order is M − 1.

Once the approximate number of coefficients is known, the specific coefficient values for a

given application may be found using software routines (i.e., Matlab’s FDAtool, etc) which

33

implement well-known algorithms such as [28] [29].

Using Bellanger’s equation along with the rough filter specifications (sampling rate, pass-

band attenuation, stopband ripple, etc) derived in Chapter 2, it can be shown that the re-

quired number of coefficients to implement the filter can be quite large. For example, a filter

for the 300MHz upstream case (passband edge at 300MHz, stopband edge at 354MHz) with

δs = δp = 0.001 requires 227 coefficients according to Bellanger’s equation. This example

shows one of the problems with the direct form structure. The hardware cost of the direct

form structure increases linearly with the number of coefficients.

The other problem regarding the direct form structure is that it does not support high-

speed transmission. Chapter 2 already defined the sampling rate of the input signal that

enters the digital filter. Due to the properties of the direct form structure, all multipliers,

adders and registers in the FPGA need to operate at the input sampling rate. Unfortunately,

the maximum clock rate of a modern FPGA is approximately 400 MHz, which is much less

than the input sampling rates chosen in Chapter 2. Thus, the direct form structure is not

suitable for the current application.

Parallel structures can be applied to digital FIR filters to either increase the data rate of

the original filter or decrease the power consumed by the original filter [30]. The formulation

of parallel FIR filters requires exploiting polyphase decomposition, a scheme commonly used

in multi-rate signal processing. For parallel FIR filters, the z-transform of the input signal

x[n] is decomposed into odd-numbered and even-numbered portions as follows:

X(z) = x[0] + x[1]z−1 + x[2]z−2 + x[3]z−3 + · · ·

= x[0] + x[2]z−2 + · · ·+ z−1(x[1] + x[3]z−2 + · · ·)

= X0(z
2) + z−1X1(z

2) (3.4)

where

X0(z) = x[0] + x[2]z−1 + x[4]z−2 + · · ·

X1(z) = x[1] + x[3]z−1 + x[5]z−2 + · · ·

X0(z
2) and X1(z

2) represent the z-transforms of x[2k] and x[2k+1] respectively, for 0 ≤ k ≤

34

∞. Equation 3.4 shows how X(z) is decomposed into two “phases”. The filter coefficients

H(z) can be decomposed in the same manner:

H(z) = H0(z
2) + z−1H1(z

2) (3.5)

where

H0(z) = h[0] + h[2]z−1 + h[4]z−2 + · · ·

H1(z) = h[1] + h[3]z−1 + h[5]z−2 + · · ·

In Equation 3.5, H0(z
2) and H1(z

2) are realized as even subfilter and odd subfilter, respec-

tively. The output signal Y (z) can then be computed as:

Y (z) = Y0(z
2) + z−1Y1(z

2)

= X(z)H(z)

= (X0(z
2) + z−1X1(z

2))(H0(z
2) + z−1H1(z

2))

= X0(z
2)H0(z

2) + z−1(X0(z
2)H1(z

2) +X1(z
2)H0(z

2))

+z−2X1(z
2)H1(z

2) (3.6)

Thus, Y0(z
2) and Y1(z

2) can be written as:

Y0(z
2) = X0(z

2)H0(z
2) + z−2X1(z

2)H1(z
2)

Y1(z
2) = X0(z

2)H1(z
2) +X1(z

2)H0(z
2) (3.7)

Note that Y0(z
2) and Y1(z

2) are the z-transforms of y[2k] and y[2k+1] respectively. Equation

3.7 specifies the filtering operation of a 2-parallel FIR filter, which processes two input

samples x[2k] and x[2k + 1] and produces two output samples y[2k] and y[2k + 1] every

iteration. Figure 3.2 illustrates the 2-parallel FIR filtering structure. This general process

can be repeated to generate arbitrary amounts of parallelism. For a K-parallel FIR filter of

length M , K2 subfiltering operations are required, each of which is of length M
K

and requires

M
K

multiplications. Therefore, the K-parallel FIR filter requires K2·M
K

= KM multipliers and

K2·M−1
K

= K(M−1) adders in total, which reveals that the hardware cost of a K-parallel FIR

filter is proportional to the block size K [31]. Since a K-parallel FIR filter receives K input

35

Figure 3.2: 2-parallel FIR filter implementation

samples and generates K output samples in one iteration, the input and output sampling

rates of the filter are K times higher than the sampling rate of each electronic component in

the filter (i.e., multipliers, adders, registers, etc). For example, assume that the electronic

components in an 8-parallel FIR filter are running at the maximum clock rate of an FPGA,

which is around 400 MHz. The filter is therefore able to process input samples and generate

output samples at a rate of 3200 MHz, which is 8 times higher than the maximum clock rate

of an FPGA. The sampling rate of a K-parallel FIR filter is also proportional to the block

size K, which means that it is important to find the balance between the sampling rate and

the hardware cost.

Section 2.3.1 explained that the sampling rate of the filters in the downstream direction

must be at least 3588 MHz. Given that the maximum clock frequency of an FPGA is

approximately 400 MHz, the minimum number of paths that are required by a parallel filter

in the downstream direction is 3588
400
' 9 in order to achieve the required sampling rate.

Similarly, there must be at least 1616
400
' 4 paths in the parallel filter implemented in the

upstream direction, since the sampling rate of the filters in the upstream direction needs to

be above 1616 MHz. For a 9-parallel FIR filter, there are 92 = 81 subfiltering operations

in total, each of which requires M
9

multiply-add operations. Hence, a 9-parallel FIR filter

requires a total number of 81 · M
9

= 9M multipliers and 9(M −1) adders. The hardware cost

36

Figure 3.3: Reduced-complexity 2-parallel FIR filter implementation

of a 4-parallel FIR filter can be determined in the same manner. It requires 4M multipliers

and 4(M − 1) adders in total. Note that M still represents the length of filter coefficients.

The introduction of fast FIR algorithms (FFAs) allows the complexity of a parallel filter

to be reduced by decreasing the number of multipliers required for implementation. This

reduction in the number of multipliers comes at the cost of increasing the number of adders

being used [31]. The equations below show the derivation of an FFA-based 2-parallel FIR

filter:

Y0(z
2) = X0(z

2)H0(z
2) + z−2X1(z

2)H1(z
2) (3.8)

Y1(z
2) = [H0(z

2) +H1(z
2)][X0(z

2) +X1(z
2)]−X0(z

2)H0(z
2)−X1(z

2)H1(z
2) (3.9)

Note that Equation 3.9 is basically Equation 3.7 written in another way. The two terms

X0(z
2)H0(z

2) and X1(z
2)H1(z

2) exist in both Equations 3.8 and 3.9, which means that

they are common terms and can be shared for the computation of Y0(z
2) and Y1(z

2). This

hardware-efficient 2-parallel FIR filter is illustrated in Figure 3.3, which produces two output

samples using three individual subfilters of length M
2

and 4 pre/post-processing adders in

one iteration [31]. It demands 3(M
2

) = 3M
2

= 1.5M multiplications and 3(M
2
− 1) + 4 =

1.5M + 1 additions, in contrast to 2M multiplications and 2(M − 1) additions required for

the traditional 2-parallel FIR filter.

Parallel FIR filters that have large block sizes can be built by cascading smaller-sized

fast parallel FIR filters. According to the definition of FFA, by cascading an m-parallel FFA

37

and an n-parallel FFA, an (m · n)-parallel filter can be produced [31]. The group of FIR

filters that are generated by applying the m-parallel FFA are further decomposed by the

application of the n-parallel FFA in a predetermined order. As a result, the group of FIR

filters will be of length M
m·n . One of the most important things to do while cascading the

FFAs is to record both the number of multipliers and the number of adders used by the filter.

The number of multipliers being used by a K-parallel FIR filter with K = K1K2 · · ·Kr is

given by:

U =
M∏r
i=1Ki

r∏
i=1

Ui (3.10)

where r is the number of required FFAs, Ki represents the block size of the FFA at iteration

i, Ui is the number of filters that result from the implementation of the i-th FFA and M is

the length of the filter. The computation of the number of required adders is as follows:

A = A1

r∏
i=2

Ki +
r∑
i=2

[
Ai

(
r∏

j=i+1

Kj

)(
i−1∏
k=1

Uk

)]
+

(
r∏
i=1

Ui

)(
M∏r
i=1Ki

− 1

)
(3.11)

where Ai represents the number of pre/post-processing adders used by the i-th FFA. In the

previous discussion, it was revealed that the downstream path of a DOCSIS network requires

9-parallel filtering structure, which can be designed by cascading two 3-parallel FFAs. The

resulting 9-parallel FIR filter would require a total of 4M multipliers and 4M + 54 adders

for implementation. Comparing the hardware cost of the traditional and hardware-efficient

9-parallel FIR filters, it is obvious that the hardware-efficient filtering structure offers a

savings of approximately 55.56% over the traditional filtering structure. Cascading two 2-

parallel FFAs would result in a hardware-efficient 4-parallel FIR filter, which is demanded

by the upstream path of a DOCSIS network. A total of 9M
4

multipliers and 9M
4

+ 11 adders

are required for the implementation of the hardware-efficient 4-parallel FIR filter, which

represents a hardware savings of approximately 43.75% when compared to the 4M multipliers

and 4(M − 1) adders demanded by the traditional 4-parallel FIR filter.

3.2.2 Frequency Domain Filtering

In a frequency domain analysis, mathematical functions or signals are evaluated with

respect to frequency instead of time. In other words, while a time domain graph plots the

38

changes of a signal over time, a frequency domain graph shows how much of the signal falls

in a given range of frequencies. Frequency domain filtering is based on the Fourier transform,

which is a mathematical operation that transforms a function of time, x(t), to a function

of frequency, X(ω). The discrete Fourier transform below transforms a series of N complex

numbers into another series of complex numbers:

X(ω) =
N−1∑
n=0

x[n] · e−j
2π
N
ωn

=
N−1∑
n=0

x[n] · [cos(2π

N
ωn)− j · sin(

2π

N
ωn)] (3.12)

whereas the inverse discrete Fourier transform is given by:

x[n] =
1

N

N−1∑
ω=0

X(ω) · ej
2π
N
ωn (3.13)

The Fourier transform allows a digital filter to be implemented on the frequency domain

despite the fact that both filter input and output are time domain signals.

The discrete Fourier transform of a finite-duration sequence can be efficiently computed

by utilizing some special algorithms that are collectively known as fast Fourier transform

(FFT) algorithms. Using the DFT (or FFT), the convolution of a sequence x[n] with an

FIR filter h[n] by the following procedure [22]:

1. Measure the lengths of the sequence x[n] (L) and the filter h[n] (M), then compute

the length of the convolution (N = L+M − 1).

2. Pad x[n] and h[n] with zeros to length at least N .

3. Compute the N-point DFTs X(ω) and H(ω) of x[n] and h[n], respectively.

4. Compute the product Y (ω) = X(ω) ·H(ω) for 0 ≤ k ≤ N − 1.

5. Compute the inverse DFT of Y (ω), which results in the sequence y[n]. y[n] is equivalent

to the N-point circular convolution of x[n] with h[n] (y[n] = x[n]⊗ h[n]).

In summary, the circular convolution is equal to the inverse discrete Fourier transform of

the product of the input sequences’ DFTs. Since frequency domain filtering requires linear

39

convolution instead of circular convolution, it is important to ensure that circular convolution

has the effect of linear convolution. For a finite-duration sequence x[n], linear and circular

convolution are equivalent. However, when x[n] becomes a very long sequence, certain

methods are required to establish the equivalence between linear and circular convolution.

The overlap-add method is an efficient way to calculate the linear convolution using the

DFT-based method. The concept is to compute multiple convolutions of h[n] with non-

overlapping segments of x[n] [32]:

xi[n] =

x[n+ iL], 1 ≤ n ≤ L

0, otherwise

(3.14)

where L represents the length of an individual segment xi[n]. Then compute the short

convolution of each segment of x[n] with an FIR filter h[n] using the DFT-based method:

yi[n] = IDFTN(DFTN(xi[n]) ·DFTN(h[n])) (3.15)

where DFTN and IDFTN refer to the N-point discrete Fourier transform and its inverse.

The output sequence y[n] is formed by overlapping the last M − 1 samples of yi[n] with the

first M − 1 samples of yi+1[n] and adding the result:

y[n] =
∞∑
i

yi[n] (3.16)

Again, M represents the length of the FIR filter h[n]. Note that L is customarily chosen so

that N = L+M−1 is an integer power of 2. The FFT algorithms are used to implement the

Fourier transforms for the purpose of high efficiency. Figure 3.4 shows the overall algorithm

of the overlap-add method graphically, where k is the number of data blocks in x[n] or y[n].

The overlap–save method is another efficient way to evaluate the linear convolution of a

very long sequence with an FIR filter. The concept is to insert M − 1 zeros at the beginning

of the input sequence x[n], then divide the padded input sequence into overlapping blocks

of length N , where the overlapping length is M − 1. In this thesis, the overlap-add method

was chosen over the overlap-save method due to its lower computational complexity and

convenience of FPGA implementation.

40

Figure 3.4: The overlap-add method: overlapping data blocks

As already mentioned above, the discrete Fourier transform of a finite-duration sequence

can be computed by applying fast Fourier transform algorithms. Moreover, an FFT algo-

rithm can be designed to have multiple parallel paths and input/output ports, which allow it

to produce output samples at a rate higher than the clock rate within an FPGA. Therefore,

an FFT processor can easily adapt to the high sampling rate demanded by a diplex filter.

The frequency domain filter that utilizes overlap-add or overlap-save method is generally

called block-based frequency domain filter. Figure 3.5 demonstrates the basic structure of the

block-based frequency domain filter described above. The filter coefficients h[n] are usually

fixed numbers, which means that the N-point DFT H(ω) of h[n] can be predetermined

and stored within the filter, reducing the total number of FFT operations being performed.

Similar to time domain filter, the FPGA hardware cost of a frequency domain filter is

computed in terms of the number of required multipliers and adders. As specified by the

frequency domain filtering procedure above, the product of the N-point DFTs X(ω) and

H(ω) of the input sequence x[n] and the filter h[n] is computed, which means that N is the

41

Figure 3.5: Frequency domain filter implementation

total number of multiplications that occur outside the FFT processors. The implementation

of the overlap-add method requires the use of adders. As shown in Figure 3.4, the last M−1

samples of yi[n] are added to the first M − 1 samples of yi+1[n], which reveals that the

total number of adders being used outside the FFT processors is equal to M − 1. As for the

FFT processors, the amount of computation is measured in terms of the number of multiply-

add operations. Theoretically, the number of multiply-add operations in an FFT processor is

proportional to N log2N if N is an integer power of 2 [22]. Note that the multiply operations

in an FFT processor refer to complex multiplications, each of which is equivalent to four real

multiplications. This means that a total of 4N log2N real multiplications are required by

an FFT processor and 4N real multiplications occur outside the FFT processors. Likewise,

the add operations in an FFT processor are complex additions, each of which corresponds

to two real additions. The total number of adders used by an FFT processor is therefore

2N log2N and 2(M − 1) adders are required outside the FFT processors. Considering that

only two FFT processors are left in the filter after predetermining H(ω), the total number

of multipliers and the total number of adders required for a block-based frequency domain

filter are 4N + 8N log2N and 2M − 2 + 4N log2N , respectively. Note that this is for the

N-parallel FFT case. The hardware cost of a block-based frequency domain filter may vary

depending on the FFT architecture being used.

In summary, there are three filtering structures that fulfill the requirements of a diplex

filter: parallel FIR filtering structure, parallel low-complexity FIR filtering structure and

block-based frequency domain filtering structure. The purpose of this paragraph is to analyze

42

and compare these structures. Table 3.1 lists the hardware cost of each filtering structure in

terms of the number of required multipliers and adders, while Table 3.2 shows the production

rate of each filtering structure in samples per clock cycle. As can be observed in the tables,

a parallel low-complexity FIR filter uses way less multipliers and adders than a parallel FIR

filter, whereas their throughputs are exactly the same. This means that the parallel low-

complexity FIR filtering structure is preferred over the parallel FIR filtering structure in this

thesis. The hardware cost and throughput of a block-based frequency domain filter depends

on the size of the FFT processors used in the filter. Ideally, the size of the FFT processors

is set to N , where N is equal to L + M − 1. Tables 3.1 and 3.2 show that the decrease

in the size of the FFT processors would result in the reduction in the hardware cost of the

filter, which comes at the cost of decreasing the filter’s throughput. Thus, the block-based

frequency domain filtering structure is preferred over the other two filtering structures due

to its flexible hardware cost and throughput.

43

Table 3.1: Hardware costs of various filtering structures

Filtering Structure
Downstream Direction Upstream Direction

Multipliers Adders Multipliers Adders

Parallel FIR 9M 9(M − 1) 4M 4(M − 1)

Parallel

Low-complexity FIR
4M 4M + 54 9M

4
9M
4

+ 11

Block-based

Frequency Domain

(4-parallel FFT

architecture)

4N +

16log2N − 32

2M +

16log2N + 14

4N +

16log2N − 32

2M +

16log2N + 14

Block-based

Frequency Domain

(8-parallel FFT

architecture)

4N +

32log2N − 64

2M − 2 +

64log2N

4N +

32log2N − 64

2M − 2 +

64log2N

Block-based

Frequency Domain

(N-parallel FFT

architecture)

4N +

8N log2N

2M − 2 +

4N log2N

4N +

8N log2N

2M − 2 +

4N log2N

44

Table 3.2: Throughputs of various filtering structures

Filtering Structure
Throughput (samples/clock cycle)

Downstream Direction Upstream Direction

Parallel FIR 9 4

Parallel Low-complexity FIR 9 4

Block-based Frequency Domain

(4-parallel FFT architecture)
4 4

Block-based Frequency Domain

(8-parallel FFT architecture)
8 8

Block-based Frequency Domain

(N-parallel FFT architecture)
N N

45

4. Amplifier Design and Testing

4.1 Introduction

The previous chapter discussed in detail the properties of multiple filter implementation

structures and compared them by reviewing their hardware costs. After careful considera-

tion, the block-based frequency domain filtering structure was selected due to its ability to

adjust hardware cost and throughput. However, as will be demonstrated later, this filter

implementation structure needs to be tested before being applied to the diplex filters. This

chapter discusses the testing of the FPGA-based diplex filters. First, we would discuss the

general testing procedure and the software packages used for the testing. Next, the individual

tests and their results would be discussed in detail.

MATLAB is a programming software designed specifically for engineers and mathemati-

cians. The MATLAB language is considered as the core of MATLAB. It is a multi-paradigm

programming language that enables the most common expression of computational math-

ematics. By using MATLAB, one can analyze data, manipulate matrices, create user in-

terfaces, implement algorithms, and build models. Users may use the built-in language,

applications and mathematical functions to investigate multiple methods to obtain a solu-

tion. Therefore, MATLAB has a wide application in many fields, such as image processing,

engineering calculation, signal processing and communication, and control design [33]. Gen-

erally, MATLAB is used for numerical computing. An additional package named Simulink

allows MATLAB to perform graphical multi-domain simulation and generate model-based

design for dynamic and embedded services.

For system-on-a-programmable-chip (SOPC) or FPGA design, the Intel Quartus Prime

46

software is a complete design environment. Quartus is able to analyze and synthesize HDL

(hardware description language) designs, which allows users to compile their designs, perform

timing analysis, evaluate register-transfer level diagrams, and observe how their designs

react to various stimuli. Users can also configure the target device by using the built-in

programmer. In addition, Quartus offers a broad portfolio of soft and hardened IP cores

optimized for FPGA devices. These FPGA IP cores can be integrated into users’ designs

to reduce design time and maximize performance. The HDLs that are commonly used in

Quartus are VHDL (VHSIC-HDL, Very High Speed Integrated Circuit Hardware Description

Language) and Verilog, which are utilized in the design and verification of digital and mixed-

signal systems such as FPGAs and integrated circuits. In this thesis, Verilog was chosen to

model the electronic systems.

ModelSim is a multi-language software that can be utilized to examine the behavior and

performance of logic circuits. The hardware description languages are VHDL, Verilog and

SystemC. ModelSim has powerful waveform viewing and simulation data exporting features

that are helpful for debugging and validating digital hardware designs [34]. While ModelSim

can be used independently, it is able to work cooperatively with Intel Quartus Prime, Xilinx

ISE or Xilinx Vivado. Simulations in ModelSim require the use of the graphical user interface

(GUI). They can also be run automatically using scripts. During a simulation, users are

allowed to apply inputs to the target logic circuits, and to observe the outputs generated

in response. In this thesis, the functional simulation of logic circuits would be performed

using the graphical waveform editing capability of ModelSim. It allows users to represent

and view the input signals as waveforms.

The general procedure consists of building and simulating the block-based frequency

domain diplex filter. First, the input sequence x[n] and the FIR filter impulse response

h[n] are generated in MATLAB. Then x[n] and h[n] are padded with zeros and fed into

the digital diplex filter developed in MATLAB. Note that the DFT of h[n] is computed

separately so that it can be used in the ModelSim simulation later. The filter outputs that

are generated in response are stored in MATLAB temporarily for the purpose of verification.

Quartus allows the digital diplex filter to be built using the Verilog language. It offers

47

a unique application called the FFT Intel FPGA intellectual property (IP) core, which

enables the FFT processors to be implemented using the GUI. Since ModelSim may work in

conjunction with Quartus, the digital diplex filter can be transferred directly from Quartus

to ModelSim. After receiving x[n] and the DFT of h[n] from MATLAB, the simulation in

ModelSim is executed, after which the simulation results are collected and compared with

the filter outputs stored in MATLAB. Figure 4.1 demonstrates the general testing procedure

graphically.

4.2 Filter Testing Methodology

As stated in the previous section, MATLAB is utilized to generate the input sequence

x[n] and the FIR filter h[n]. The input sequence x[n] can be further divided into real

input sequence x real[n] and imaginary input sequence x imag[n]. For the initial test,

x real[n] and x imag[n] are two groups of uniformly distributed numbers in the interval

(-1,1). After converting the numbers in x real[n] and x imag[n] to 18-bit signed decimal

numbers, x real[n] and x imag[n] are divided into non-overlapping segments of equal length,

each of which is padded with zeros using the zeros() command. Finally, x pad real[n] is

formed by connecting the real zero-padded segments in series and x pad imag[n] is formed

by cascading the imaginary zero-padded segments. Both x pad real[n] and x pad imag[n]

are written to a data file for the purpose of simulation. MATLAB has a built-in application

called the Filter Design & Analysis Tool that allows users to generate filter coefficients by

entering the filter parameters into the tool. The FIR filter h[n] is thus obtained from the

Filter Design & Analysis Tool. After zero-padding h[n], the DFT of h[n] is determined using

the MATLAB command fft() and written to a data file afterwards.

In order to evaluate the results of the results of the FPGA-based fixed-point filter im-

plementation, it is necessary to have an accurate representation of what the filter output

should ideally be. To generate this a reference, the convolution of x[n] with h[n] was com-

puted in MATLAB in two ways. First, a direct convolution was performed in the time

domain. Second a block-based frequency domain implementation was generated, including

all of the zero-padding required in the overlap-add method so that the results could be easily

48

Figure 4.1: The general procedure of building and testing the digital diplex filter

49

compared to the corresponding results from Modelsim. Note that the signals are compared

by computing the average energy of the ideal reference sequence and comparing to the aver-

age energy in the difference between the two sequences. This difference can be represented

in decibels (dB), which is usually referred to as the filter implementation error ratio .

The logic circuit of the digital diplex filter is implemented using the Verilog language

and compiled in Quartus. Most of the electronic components in the logic circuit, including

adders and multipliers, are designed using simple Verilog commands. In contrast, the FFT

and IFFT processors are built using the FFT Intel FPGA IP core. The FFT IP core is a

high-performance, highly parameterizable FFT processor. It takes a complex data sequence

of length N (in two’s complement format) as input and generates the transform-domain

complex data sequence in natural order. Table 4.1 [35] briefly describes each FFT IP core

parameter, which must be determined prior to the simulations. In addition, the FFT IP core

interface is shown in Figure 4.3 [35], where the input and output signals are described by

Tables A.1 and A.2 [35]. The real and imaginary input data vectors of the FFT processor

are x pad real[n] and x pad imag[n], respectively, whereas the real and imaginary output

data vectors are the DFTs of x pad real[n] and x pad imag[n]. After multiplying the DFTs

of x pad real[n] and x pad imag[n] by the DFT of h[n], the inverse DFTs of the products

are computed by the IFFT processor. The inverse DFTs are then collectively stored in the

random-access memory (RAM) within the FPGA. RAM is a type of computer memory that

allows loading and saving in any order. The RAM interface is demonstrated in Figure 4.4.

Since the data vectors stored in RAM can be read in any order, the overlap-add method can

be applied to these data vectors through proper sequencing and addressing.

Table 4.2 shows the resource usage summary of the FFT processor and RAM, which is

included in the compilation report offered by Quartus. Note that ALUT refers to adaptive

look-up table, which is a logical construct that represents the implementation done by the

combinational logic hardware of an adaptive logic module (ALM).

Figure 4.2 shows the values of some FFT IP core parameters that were used in this thesis.

It also shows that the latency through the FFT IP core is 1024 samples. At an FPGA clock

rate of 400 MHz, this corresponds to an absolute latency of 2.5 µs. As noted in Chapter 2,

50

Figure 4.2: Values of some FFT IP core parameters

latency is occasionally a concern when implementing digital filters. However, the latency of

the FFT IP core (2.5 µs) is much less than the target for a low-latency DOCSIS network,

which is 1 ms [36]. Therefore, we can conclude that latency is not a significant issue with

the FFT IP core as designed in Figure 4.2.

As already mentioned above, ModelSim can be used in conjunction with Quartus. To

establish the connection between ModelSim and Quartus, a program must be run in Quartus

to generate the necessary simulation libraries, ensuring an accurate model of the FPGA in

ModelSim. After setting up the simulation environment, the logic circuit that is developed

in Quartus can be compiled and simulated in ModelSim. The waveform viewer is utilized

to observe the behaviors of signals during a simulation. Figure 4.6 shows how signals are

displayed in the waveform viewer. The resulting sequence is named as y modelsim[n] and

compared with y dft[n] in MATLAB. The comparison is also based on the difference in dB.

51

Table 4.1: FFT IP core parameters

Parameter Description

Transform Length
The transform length. This value is the maximum

FFT length for variable streaming.

Transform Direction
The transform direction is specifiable on a per-block

basis via an input port.

I/O Data Flow

There are four types of input/output data flow:

streaming, variable streaming, buffered burst and

burst.

I/O Order
The input and output order for data entering and

leaving the FFT.

Data Representation
The internal data representation type, only required

by variable streaming FFT.

Data Width The data precision.

Twiddle Width
The twiddle precision. Twiddle factor precision must

be less than or equal to data precision.

FFT Engine Architecture
Choose between quad-output and single-output. Not

available for variable streaming or streaming FFTs.

Number of Parallel FFT

Engines

Choose between one, two, and four FFT engines

working in parallel. Multiple parallel engines reduce

transform time at the cost of device resources. Not

available for variable streaming or streaming FFTs.

DSP Block Resource

Optimization
Turn on for multiplier structure optimizations.

Enable Hard Floating

Point Blocks

For Arria 10 devices and single-floating-point FFTs

only.

52

Table 4.2: Resource utilization summary

Resource Usage

Combinational ALUT 2578

Dedicated Logic Register 5735

Block Memory Bits 175760

DSP Blocks 6

Figure 4.3: FFT IP core interface

Figure 4.4: RAM interface

53

Figure 4.5: The detailed signal flow graph of the logic circuit built in ModelSim

Figure 4.6: Screenshot of waveform viewer at the end of a simulation

Figure 4.5 shows the detailed signal flow graph of the logic circuit built in ModelSim. As

can be seen from the figure, there are two FFT processors and two IFFT processors being

used, which allows the logic circuit to process two data blocks in each iteration. The overlap-

adder at the end of the circuit is thus able to produce output data blocks consistently, since

it requires at least two input data blocks for each addition. The mathematical expressions

on the arrows represent the formats of the numbers in the transferred signals. For example,

1s17 means that the number format is signed decimal with 1 bit in the integer part and 17

bits in the fraction part.

54

Table 4.3: Frequency specifications of filters being tested

Test Number Filter Type
Frequency Specifications

Passband Frequency Stopband Frequency

1 Highpass 108 MHz 85 MHz

2 Lowpass 85 MHz 108 MHz

3 Highpass 354 MHz 300 MHz

4 Lowpass 300 MHz 354 MHz

5 Highpass 580 MHz 492 MHz

6 Lowpass 492 MHz 580 MHz

7 Highpass 808 MHz 684 MHz

8 Lowpass 684 MHz 808 MHz

4.3 Testing of Individual Filters

Figure 1.2 in the introduction of this thesis demonstrates the frequency band options

available in DOCSIS 4.0. There are four options in total, each of which requires a highpass

filter for the downstream path and a lowpass filter for the upstream path. Therefore, a total of

eight unique filters are required to be tested. Table 4.3 shows the frequency specifications of

these filters. Note that the passband ripple is fixed at 0.001 dB and the stopband attenuation

was set at 80dB for all of the filters. These values were chosen to ensure a significant margin

over the required SNR values specified in DOCSIS 4.0.

At the end of each simulation, two data sequences named y conv[n] and y dft[n] are

obtained from MATLAB and written to separate text files. y conv[n] represents the linear

convolution computed by using the conv() command, while y dft[n] refers to the linear con-

volution computed by using the fft() command. The difference between these two sequences

can be calculated in dB using the formulas below:

error ratio =

∑
n(y conv[n])2∑

n(y dft[n]− y conv[n])2

error ratiodB = 10 · log10(error ratio)

The difference between y conv[n] and y dft[n] in each simulation can be found in Table 4.4.

55

Table 4.4: Analysis and comparison of simulation results

Test Number
Filter Implementation Error Ratio

conv() vs. fft() MATLAB vs. ModelSim

1 109.96 dB 61.63 dB

2 100.62 dB 63.52 dB

3 109.26 dB 63.15 dB

4 106.16 dB 64.49 dB

5 108.40 dB 64.44 dB

6 108.16 dB 62.13 dB

7 107.43 dB 64.32 dB

8 109.96 dB 64.82 dB

The table shows two sets of results. The first set of results, labeled “conv() vs fft()” shows

the energy in the difference between the MATLAB implementations of the time-domain

filtering and the frequency domain filtering. This essentially acts as a quick check on the

implementation of the overlap-add method for block-based filtering. As can be seen from the

table, the difference between y conv[n] and y dft[n] is above 100 dB for every simulation,

which reveals that y conv[n] and y dft[n] are almost identical and builds confidence in the

chosen design based on frequency-domain filtering.

At the conclusion of the Modelsim simulation, a third data sequence that refers to the

linear convolution computed within the FPGA using a fixed-point frequency domain imple-

mentation is exported from ModelSim and stored in a text file. The data sequence is named

as y modelsim[n] and compared with y dft[n] in MATLAB. The second set of results in

Table 4.4 shows the difference between y dft[n] and y modelsim[n] in each simulation. The

average difference between y dft[n] and y modelsim[n] is approximately 63.56 dB. This is

far better than the requirements for DOCSIS 4.0. This further proves that computing linear

convolution in an FPGA using the DFT is a reliable method.

An alternative, but perhaps less scientific, way to verify y conv[n], y dft[n] and y modelsim[n]

56

Figure 4.7: Graphical comparison between y dft[n] and y modelsim[n]

is to compare them graphically. Figure 4.7 shows an example of graphical comparison be-

tween y dft[n] and y modelsim[n]. A small portion of the figure has been zoomed-in ap-

propriately for visual purposes. As demonstrated by Figure 4.7, the plots of y dft[n] and

y modelsim[n] match each other extremely closely (so much so that it may appear there is

only one set of data in the plot), thus proving that y dft[n] and y modelsim[n] are nearly

equivalent, as desired.

The magnitude responses of the input and output signals of filters in the downstream

and upstream paths are evaluated in Figure 4.8. The top figure shows the frequency content

of the input signal. It is nearly constant across frequencies, which is as expected since the

input signal is a random sequence. The second figure shows the magnitude response of the

output signal in the downstream path, whose shape reveals that the output signal has been

highpass filtered. The magnitude response of the output signal in the upstream path is

shown in the bottom figure. It indicates that the output signal has been lowpass filtered.

Figure 4.8 verifies that the filters designed in the previous section are functioning properly.

57

Figure 4.8: Magnitude responses of various signals

4.4 Amplifier Testing with Sinusoidal Signals

Having tested the individual filters, the main objective of this section is to build and

simulate a diplexer as a whole. As indicated by Figure 2.8, a diplexer consists of two

directional couplers, two amplifiers and two diplex filters. Directional couplers are electronic

devices that couple a certain amount of the electric power in a transmission line to a port,

allowing the signal to be utilized in another circuit. Note that directional couplers only couple

the electric power flowing in one direction, which explains why a total of two directional

couplers are used. In ModelSim, a directional coupler can be represented by a simple circuit

that is comprised of two adders and two multipliers, as demonstrated in Figure 4.9. The

amplifiers are implemented using multipliers, while the diplex filters are designed specifically

for the downstream and upstream paths.

It is mandatory to verify the functionality of the diplexer before using it in practical

applications. The input signals in downstream and upstream paths are first set to complex

sinusoids, whose plots are easy to analyze. The frequencies of the input sinusoids are se-

lected based on the downstream and upstream bandwidths. For the downstream path, the

frequency of the input sinusoid is 800 MHz. The frequency of the input sinusoid in the

58

Figure 4.9: Detailed block diagram of the diplexer built in ModelSim

upstream path is 200 MHz. Note that the transition band of the diplex filters is between

492 MHz and 580 MHz in this case. Figure 4.10 shows the magnitude FFTs of the input

sinusoids. Based on datasheets of comerically available directional couplers, the values of K1,

K2, K3 and K4 are all set to 0.1 in order to model the signal leakage through the couplers.

The diplexer is eventually simulated in ModelSim, and the output signals in downstream

and upstream paths are collected and sent to MATLAB. In MATLAB, the output signals

are filtered again using the predetermined filter coefficients. Then the magnitude FFTs of

the filtered output signals are computed and plotted in Figure 4.11. As can be seen from the

figure, the filtered output signal in downstream path has a frequency of 800 MHz, whereas

the frequency of the filtered output signal in upstream path is 200 MHz. These results are

as expected and lend support and credibility to the diplexer design.

4.5 Amplifier Testing with DOCSIS 4.0 Signals

Having verified the correct operation of the digital diplexer-based amplifier using sinu-

soidal signals, the next step in the testing process is to confirm that the designed amplifier

can successfully handle DOCSIS 4.0 signals. The requirements were described earlier in the

thesis, but they are briefly restated here for clarity:

Requirement 1: The signal quality at the diplexer output (after accounting for fixed-point

implementation effects such as quantization noise and directional coupler leakage)

59

(a) Magnitude FFT of DS input signal

(b) Magnitude FFT of US input signal

Figure 4.10: Graphical demonstration of input signals in DS and US paths

60

(a) Magnitude FFT of DS output signal

(b) Magnitude FFT of US output signal

Figure 4.11: Graphical demonstration of output signals in DS and US paths

61

should be good enough to support the highest modulation order (and therefore highest

data rate) of DOCSIS 4.0, which is 4096-QAM. As per DOCSIS 4.0, this corresponds

to a Modulation Error Ratio (MER) of at least 41dB, as measured in the receiver. The

details of this measurement will be discussed shortly.

Requirement 2: The diplexer’s upstream/downstream transition point should be dynam-

ically programmable to support a time-varying allocation of bandwidth to the two

directions.

Requirement 3: The diplexer’s design should allow for a narrower transition band between

the upstream and downstream bands, as compared to a conventional diplexer built

using analog components.

The following tests aim to verify that the proposed design achieves the above require-

ments. The general operation of each test is similar to the process described earlier in this

chapter, with MATLAB being used to generate the input signals which are then processed

by the designed amplifier in Modelsim. Finally, the amplifier outputs from Modelsim are

analyzed in MATLAB to verify that the requirements were met.

For these tests, the input signal constructed in MATLAB is chosen to be a full spectrum

of OFDM/OFDMA channels according to the DOCSIS 4.0 standard. Table 4.5 summarizes

the key parameters of the DOCSIS channels used to test the amplifier. The overall input

signal is created by generating a series of baseband OFDM channels, then shifting each

baseband channel to a unique center frequency. The center frequencies are chosen to ensure

the channels sit side-by-side and fully occupy the entire frequency spectrum.

In each test, the data from Modelsim representing the outputs from the diplexer is pro-

cessed by a DOCSIS 4.0 receiver that has been constructed in MATLAB. The receiver first

downconverts a selected OFDM channel from its carrier frequency down to baseband, then

implements a baseband DOCSIS 4.0 demodulator. A high-level overview of the OFDM re-

ceiver is shown in Figure 4.12. After extracting an individual channel and performing timing

recovery to identify the start of the OFDM symbol, the receiver performs an FFT to recover

the data on the individual subcarriers. Next, the receiver estimates and compensates for any

62

Table 4.5: Parameters for simulated DOCSIS 4.0 channels

Parameter US Channels DS Channels

Subcarrier Spacing 50kHz 50kHz

FFT Length 2048 4096

Channel Bandwidth 96MHz 192MHz

Cyclic Prefix Length 192 samples 192 samples

Shaping Window Length 64 samples 64 samples

Figure 4.12: Detailed block diagram of the OFDM receiver

gain and phase differences between the received signal and the ideal received constellation.

After compensating for these differences, the receiver compares the received signal samples

to the expected values for an ideal 4096-QAM constellation, as quantified through the MER:

MER = 10 ∗ log10

(∑
n(Ideal constellation point for sample n)2∑
n(Error in received constellation point n)2

)
(4.1)

If the receiver constructed in MATLAB is able to successfully recover the original data

without bit errors and measure the MER above the 41dB threshold, one may conclude

that the signal quality through the amplifier is sufficient for high-performance DOCSIS 4.0

operation.

63

4.5.1 Test 1 - Basic Functionality and Dynamic US/DS Split Tests

A series of tests was conducted to verify the operation of the amplifier for three of the

different upstream-downstream frequency splits outlined in DOCSIS 4.0. In particular, the

following splits were tested:

� 5MHz - 300MHz upstream, 354MHz - 1700MHz downstream

� 5MHz - 492MHz upstream, 580MHz - 1700MHz downstream

� 5MHz - 684MHz upstream, 808MHz - 1700MHz downstream

Figure 4.13 shows an example of the frequency spectra of the upstream and downstream

signals that were generated in MATLAB and passed into the amplifier for the 492MHz up-

stream case. The corresponding upstream and downstream output spectra from the amplifier

device are shown in Figure 4.14. Comparing Figures 4.13 and 4.14, the leakage through the

directional couplers within the amplifier can be observed. Although signals do leak between

the upstream and downstream paths, the diplexer filters act upon and attenuate that leak-

age. Thus, the leakage appearing at the amplifier output is significantly (about 60dB) below

the signals of interest, as seen in Figure 4.14. Similar results were observed for the tests with

300MHz and 684MHz upstream frequency bands. For the sake of brevity, those figures are

included in Appendix B rather than the main body of this document.

As previously described, a MATLAB-based DOCSIS 4.0 receiver was used to demodulate

each OFDM channel in the spectrum and compute the MER of each. The diplexer transition

band (and therefore the US/DS split point) was cycled through the three options listed above

and the MERs were computed in each case. The complete set of MER results is summarized

in Tables 4.6 and 4.7 below. As shown in the tables, all of the MERs exceed 41dB, as desired.

Figures 4.15 and 4.16 show constellation diagrams as observed in the receiver just prior

to the MER calculations. In the diagrams, the signal points corresponding to an ideal 4096-

QAM constellation are plotted in black alongside the actual signal points seen by the receiver

in red. It is clear from the figures that the received signal points are very close to the ideal

64

Figure 4.13: Test 1 - Upstream and downstream spectra at amplifier input (492/580 split)

Table 4.6: Test 1 - MER measurements for received downstream DOCSIS channels

300/354 Split 492/580 Split 684/808 Split

Center Freq MER Center Freq MER Center Freq MER

450 MHz 47.75 dB 676 MHz 47.73 dB 904 MHz 47.84 dB

642 MHz 47.81 dB 868 MHz 47.83 dB 1096 MHz 47.67 dB

834 MHz 47.75 dB 1060 MHz 47.72 dB 1288 MHz 47.83 dB

1026 MHz 47.80 dB 1252 MHz 47.84 dB 1480 MHz 47.68 dB

1218 MHz 47.74 dB 1444 MHz 47.73 dB 1672 MHz 47.85 dB

1410 MHz 47.81 dB 1636 MHz 47.83 dB N/A N/A

1602 MHz 47.76 dB N/A N/A N/A N/A

65

Figure 4.14: Test 1 - Upstream and downstream spectra at amplifier output (492/580 split)

Table 4.7: Test 1 - MER measurements for received upstream DOCSIS channels

300/354 Split 492/580 Split 684/808 Split

Center Freq MER Center Freq MER Center Freq MER

60 MHz 45.69 dB 60 MHz 45.69 dB 60 MHz 45.69 dB

156 MHz 45.70 dB 156 MHz 45.71 dB 156 MHz 45.71 dB

252 MHz 45.66 dB 252 MHz 45.67 dB 252 MHz 45.67 dB

N/A N/A 348 MHz 45.61 dB 348 MHz 45.60 dB

N/A N/A 444 MHz 45.69 dB 444 MHz 45.69 dB

N/A N/A N/A N/A 540 MHz 45.71 dB

N/A N/A N/A N/A 636 MHz 45.67 dB

66

Figure 4.15: Test 1 - received signal constellation for downstream channels (492/580 split)

points for both the upstream and downstream channels. This is as expected based on the

high MER values, but just provides another way to verify the correct operation of the system.

To summarize the results of these tests, we have seen that the designed amplifier can dy-

namically switch the frequency of the upstream / downstream split. For all of the transition

options tested, the MER exceeds the 41dB target for specified in DOCSIS 4.0 for channels

using 4096-QAM modulation.

4.5.2 Test 2 - Narrow Transition Band Test

A second motivation of using a diplexer based on digital filters to construct an amplifier

for DOCSIS networks is to reduce amount of spectrum which must be left unoccupied to

accommodate the transition bands of the filters. It is clear that digital filter hardware allows

67

Figure 4.16: Test 1 - received signal constellation for upstream channels (492/580 split)

68

the construction of diplex filters with narrower transition bands (for a hardware cost) than

can be achieved with analog components as in current DOCSIS equipment. However, due

to imperfections in the transmitter (such as phase noise and quantization), it is not obvious

whether the signal quality in the “extra” bandwidth obtained in the transition band would

be good enough to support DOCSIS 4.0 transmission.

Therefore, this test aims to verify that a DOCSIS network using diplex filters with nar-

row transition bands will actually yield an increase in the overall network capacity. The

approach taken is to construct a “real-life” model of a DOCSIS transmitter by modeling

the impairments described above. In particular, a transmitter which meets the DOCSIS 4.0

standard may generate in-band noise, distortions, and spurious tones which are up to 45dB

below the main desired signal (but no higher). To model the worst-case situation, which is

a transmitter which just barely meets the specification, the MATLAB signal generator dis-

cussed in the previous section was modified to add distortions to each transmitted channel

at a level 45dB below the main signal.

The diplexer used in this test was designed to have a much sharper transition band than

that required by DOCSIS 4.0. To best demonstrate the effect, the largest possible upstream

band was selected (5-684MHz). For a 684MHz upstream, DOCSIS 4.0 typically would place

the first downstream channel at 808MHz (a 124MHz transition band), but the diplexer in

this test was designed for a 48MHz wide transition band. The lowest downstream channel

was placed at 732MHz, thus gaining 76MHz of usable spectrum as compared to the DOCSIS

specifications. Figures 4.17 and 4.18 show the spectrum at the input and output of the

amplifier.

As in the previous tests, Table 4.8 shows the MER observed in the receiver after each of

the channels was downconverted and demodulated. Of particular interest in this test are the

highest frequency upstream channel (center frequency of 636MHz, upper edge at 684MHz)

and the lowest frequency downstream channel (center frequency of 828MHz, lower edge at

732MHz), as these are the channels most vulnerable to any noise or distortion that is not

fully removed by the filters. Constellation diagrams of the received signals are available

in Appendix B. Table 4.8 indicates that all of the channels exceed the 41dB MER target.

69

Figure 4.17: Test 2 - Upstream and downstream spectra at amplifier input (684/732 split)

70

Figure 4.18: Test 2 - Upstream and downstream spectra at amplifier output (684/732 split)

71

Table 4.8: Test 2 - MER measurements for received channels

Upstream Channels Downstream Channels

Center Freq MER Center Freq MER

60 MHz 42.19 dB 828 MHz 44.31 dB

156 MHz 42.21 dB 1020 MHz 44.25 dB

252 MHz 42.17 dB 1212 MHz 44.31 dB

348 MHz 42.11 dB 1404 MHz 44.26 dB

444 MHz 42.19 dB 1596 MHz 44.31 dB

540 MHz 42.21 dB N/A N/A

636 MHz 42.17 dB N/A N/A

Furthermore, there are no significant variations in performance between channels. These

observations verify the concept that the use of digital diplexers can help to recover spectrum

within the DOCSIS network.

4.5.3 Test 3 - Practical Transmitter Test

This final test expands upon the concept of transmitter impairments from section 4.5.2

by adding not only in-band (within channel) noise and distortions, but also out-of-band

(outside of the each channel) noise and distortions. The same impairment level of 45dB was

used for this test, corresponding to a worst-case DOCSIS transmitter.

For this test, a standard 492/580 upstream/downstream split as described in DOCSIS

4.0 was used. The corresponding upstream and downstream spectra at the input and output

of the amplifier are shown in Figures 4.19 and 4.20. A careful comparison of Figures 4.19

and 4.20 against the corresponding figures from sections 4.5.1 and 4.5.2 illustrates the effect

of the out-of-band distortions. It is clear that the wideband noise level modeled this test is

much increased from that in the previous tests (which was due solely to quantization noise).

As before, the MER of each upstream and downstream channel was measured in the

MATLAB-based receiver. The results are presented in Table 4.9. All of the channels are

72

Figure 4.19: Test 3 - Upstream and downstream spectra at amplifier input (492/580 split)

73

Figure 4.20: Test 3 - Upstream and downstream spectra at amplifier output (492/580 split)

74

Table 4.9: Test 3 - MER measurements for received channels

Upstream Channels Downstream Channels

Center Freq MER Center Freq MER

60 MHz 42.05 dB 676 MHz 42.81 dB

156 MHz 42.05 dB 868 MHz 42.82 dB

252 MHz 42.06 dB 1060 MHz 42.80 dB

348 MHz 42.06 dB 1252 MHz 42.83 dB

444 MHz 42.03 dB 1444 MHz 42.82 dB

N/A N/A 1636 MHz 42.81 dB

again demonstrated to achieve better than 41dB MER, which shows that the proposed sys-

tem is able to successfully support 4096-QAM DOCSIS modulation. Since this is the most

demanding modulation type required by DOCSIS, these results verify that the proposed am-

plifier is a promising alternative to conventional analog diplexer-based amplifiers for DOCSIS

networks.

75

5. Conclusions

5.1 Summary

The demand for higher data rates from CATV service providers requires more bandwidth

through HFC networks. By replacing the traditional diplex filters with digital diplex filters,

the downstream and upstream signal bandwidths become programmable and adaptive, which

means that more bandwidth can be obtained through digital diplex filters.

Implementing digital filters in a DOCSIS node involves significant challenges that must

be addressed. A primary challenge includes finding the most appropriate sampling rates

for the digital filters in the downstream and upstream paths. While higher sampling rate

allows for larger bandwidth, digital filters require more multipliers and adders to adapt to the

increasing sampling rate, which usually results in higher hardware cost. In this thesis, the

sampling rates of the digital filters in the downstream and upstream paths were determined

based on the bandwidth allocation defined by the DOCSIS standard. The selected sampling

rates were used in Matlab and ModelSim simulations.

Another challenge involves selecting a particular filter implementation structure for the

digital filters. A filter implementation structure shows how a signal propagates from the

input port to the output port of a filter sample by sample. This thesis compared and con-

trasted various filter implementation structures in terms of their hardware costs. Further,

suggestions were given to reduce the hardware costs of some proposed structures while main-

taining a high transmission rate. Performance analysis of the selected structure was done

using Matlab and ModelSim simulations.

76

5.2 Contributions

The primary contribution of this work is the development of the digital diplexer to be

used for data transmission in a DOCSIS node. The digital diplexer is an extension of

the traditional diplexer and it allows many designs that are impractical or impossible as

traditional diplexer to work. The digital diplexer is composed of two digital filters, two

directional couplers and two amplifiers. Each digital filter contains a set of coefficients which

characterize the filter’s response. We have shown how the filter’s response changes as the

filter coefficients change. The application of digital filters offers a powerful and unique benefit

that allows the filter coefficients to be programmable during transmission.

Moreover, implementation guidelines for increasing data rates and reducing hardware

costs were given. The trade-off between diplexer performance and hardware implementation

complexity was evaluated through MATLAB and ModelSim simulations. Recommendations

for the size and structure of the digital diplex filter were offered. Analysis revealed that these

guidelines could help finding the balance between transmission rates and hardware costs of

the digital diplexer.

5.3 Results and Conclusions

The main objective of this thesis is to design a hardware efficient digital diplexer for

use in an HFC network. There are two transmission paths in a digital diplexer. One is

called downstream path, while the other one is named upstream path. Each path contains

a set of electronic devices. The sampling frequencies of the electronic devices in different

paths are different, and can be optimized based on the DOCSIS 4.0 frequency division duplex

spectrum options. The computation results showed that the downstream sampling frequency

is 3588 MHz, and the upstream sampling frequency is 1616 MHz. Further, the frequency

specifications of digital diplex filters were determined based on the frequency allocation

defined by the DOCSIS standard. The starting point of a transition band could range from

85 MHz to 684 MHz, while the ending point is between 108 MHz and 808 MHz. Multiple filter

implementation structures were compared and contrasted to find a structure that supports

high sampling frequencies at the lowest hardware cost. After careful consideration, block-

77

based frequency domain filtering structure was selected and applied to the design.

Based on the filtering structure and parameters, a fixed point model of the digital diplexer

was constructed in Verilog. A simulation was then conducted in ModelSim to verify the per-

formance of the model in the FPGA development environment. Another fixed point model

of the digital diplexer was built and tested in MATLAB. From the results of the simulations,

we conclude that it is possible for a digital diplexer to work in the FPGA development envi-

ronment. Moreover, based on the results of additional ModelSim and MATLAB simulations,

we can conclude that the designed digital diplexer supports highest modulation orders al-

lowed in DOCSIS (4096-QAM) and allows for dynamic switching of upstream/downstream

transition point. We also investigated the possibility for digital diplex filters to achieve

sharper transition bands by testing multiple filters with different sizes of transition band in

MATLAB. The results showed that the size of a transition band can be decreased at the cost

of higher hardware usage, which means that the ’wasted’ bandwidth associated with higher

split points can be reduced.

5.4 Future Work

The most relevant future work includes hardware testing with an actual FPGA in an

actual lab containing DOCSIS equipment. The hardware performance of digital diplexers

should be investigated to verify that the proposed scheme is able to support high speed

transmission. Additional sources of noise in hardware such as phase noise will be taken

into account in the experiments. Spectrum analyzers should be used to visualize the signals

transmitted by the digital diplexers and cable modems can be used to demodulate the actual

DOCSIS signals through the network.

Further research involves performance and resource usage. After testing with an actual

digital diplexer, if the data rates are not high enough, a more powerful digital diplexer could

be adapted to the DOCSIS network. If that turns out to be the case, increasing the size of

the FFT processors in digital diplex filters is a possible solution worth considering, although

it would cause an increase in hardware cost. Using a different filtering architecture such as

FFA is also an alternative worth considering.

78

References

[1] California-Cable and Telecommunications-Association, “History of cable,” 2015.

[2] E. S. Smith, “The emergence of CATV: A look at the evolution of a revolution,” Pro-

ceedings of the IEEE, vol. 58, no. 7, pp. 967–982, 1970.

[3] J. S. Light, “Before the internet, there was cable,” IEEE Annals of the History of

Computing, vol. 25, no. 2, pp. 96–95, 2003.

[4] E. Smith, “Pilot two-way CATV systems,” IEEE Transactions on Communications,

vol. 23, no. 1, pp. 111–120, 1975.

[5] J. M. Cioffi, “Lighting up copper [history of communications],” IEEE Communications

Magazine, vol. 49, no. 5, pp. 30–43, 2011.

[6] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 1.0, radio frequency interface specification ed., November 2001.

[7] P. Tungsakul, K. Songwatana, and P. Moungnuol, “A quality analysis of DOCSIS cable

modem,” in 2016 International Computer Science and Engineering Conference (IC-

SEC), pp. 1–6, 2016.

[8] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 1.1, radio frequency interface specification ed., September 2005.

[9] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 2.0, radio frequency interface specification ed., April 2009.

[10] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 3.0, physical layer specification ed., December 2017.

[11] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 3.1, physical layer specification ed., May 2018.

79

[12] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 4.0, physical layer specification ed., August 2019.

[13] Cable Television Laboratories, Data-Over-Cable Service Interface Specifications DOC-

SIS 3.1, remote phy specification ed., May 2018.

[14] Electronics Notes, “Antenna RF diplexer,” 2020.

[15] MACOM, MAFL-011057 Datasheet, CATV diplex filter: 5-85/102-1218 MHz ed.

[16] D. Large and J. Farmer, Broadband Cable Access Networks: The HFC Plant. Morgan

Kaufmann, sixth ed.

[17] T. Cloonan, A. Al-Banna, F. O’Keeffe, J. Ulm, and R. Cloonan, “Capacity planning,

traffic engineering, and HFC plant evolution for the next 25 years,” in 2019 Fall Techni-

cal Forum for Society of Cable and Telecommunications Engineers-International Society

of Broadband Experts, National Cable and Telecommunications Association and Cable-

Labs, 2019.

[18] J. T. Chapman and H. Jin, “FDX DOCSIS line extender: Deploying FDX DOCSIS

beyond N+0,” in 2018 Fall Technical Forum for SCTE-ISBE, NCTA and CableLabs,

2018.

[19] W. Coomans and R. Coldren, “Full duplex DOCSIS over active (N+X) cable networks,”

in 2019 Fall Technical Forum for SCTE-ISBE, NCTA and CableLabs, 2019.

[20] L. Litwin, “FIR and IIR digital filters,” IEEE Potentials, vol. 19, no. 4, pp. 28–31, 2000.

[21] C. Erdoğan, I. Myderrizi, and S. Minaei, “FPGA implementation of BASK-BFSK-

BPSK digital modulators [testing ourselves],” IEEE Antennas and Propagation Maga-

zine, vol. 54, no. 2, pp. 262–269, 2012.

[22] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing. Pearson Higher

Education Inc., third ed., 2010.

[23] H. H. Nguyen, “Introduction to OFDM,” 2013.

80

[24] H. H. Nguyen and E. Shwedyk, A First Course in Digital Communications, pp. 302–342.

Cambridge University Press, 2009.

[25] A. S. Kashi, J. C. Cartledge, A. Bakhshali, A. Rezania, A. I. A. El-Rahman,

M. O’Sullivan, C. Laperle, A. Borowiec, and K. Roberts, “Information rates for the

SP 128-QAM and DP 16-QAM modulation formats,” in 2015 European Conference on

Optical Communication (ECOC), pp. 1–3, 2015.

[26] J. O. Smith, Introduction to Digital Filters with Audio Applications, ch. Time Domain

Digital Filter Representations. W3K Publishing, September 2007.

[27] M. Bellanger, Digital Processing of Signals. New York: John Wiley and Sons, 1984.

[28] T. Saramaki, T. Neuvo, and S. Mitra, “Design of computationally efficient interpolated

FIR filters,” IEEE Transactions on Circuits and Systems, vol. 35, no. 1, pp. 70–88,

1988.

[29] J. McClellan and T. Parks, “A unified approach to the design of optimum FIR linear-

phase digital filters,” IEEE Transactions on Circuit Theory, vol. 20, no. 6, pp. 697–701,

1973.

[30] D. Parker and K. Parhi, “Area-efficient parallel FIR digital filter implementations,” in

Proceedings of International Conference on Application Specific Systems, Architectures

and Processors: ASAP ’96, pp. 93–111, 1996.

[31] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation,

ch. Algorithmic Strength Reduction in Filters and Transforms, pp. 255–296. Wiley-

Interscience, January 1999.

[32] M. Narasimha, “Modified overlap-add and overlap-save convolution algorithms for real

signals,” IEEE Signal Processing Letters, vol. 13, no. 11, pp. 669–671, 2006.

[33] L. Yu, “Matlab programming environment based on web,” in 2018 IEEE 4th Infor-

mation Technology and Mechatronics Engineering Conference (ITOEC), pp. 509–512,

2018.

81

[34] B. Gestner and D. V. Anderson, “Automatic generation of modelsim-matlab interface

for RTL debugging and verification,” in 2007 50th Midwest Symposium on Circuits and

Systems, pp. 1497–1500, 2007.

[35] Intel, FFT IP Core User Guide, updated for intel quartus prime design suite: 17.1 ed.,

November 2017.

[36] G. White, K. Sundaresan, and B. Briscoe, “Low latency DOCSIS overview and per-

formance characteristics,” in 2019 Fall Technical Forum for SCTE-ISBE, NCTA and

CableLabs, 2019.

82

A. Defining FFT IP Core Signals

FFT IP core interfaces define a standard, pliable, and modular protocol for data trans-

missions from a source interface to a sink interface [35]. The following tables show the

direction of every FFT IP core signal and briefly explain the purpose of each signal.

Table A.1: FFT IP core signals - Part 1

Signal Name Direction Description

clk Input Clock signal that clocks all internal FFT engine components.

reset n Input Active-low asynchronous reset signal.

sink eop Input Indicates the end of the incoming FFT frame.

sink error Input
Indicates an error has occurred in an upstream module due to

an illegal usage of the Avalon-ST protocol.

sink imag Input
Imaginary input data, which represents a signed number of

data precision bits.

sink ready Output Indicates the FFT engine can accept data.

sink real Input
Real input data, which represents a signed number of data

precision bits.

sink sop Input Indicates the start of the incoming FFT frame.

sink valid Input Asserted when data on the data bus is valid.

83

Table A.2: FFT IP core signals - Part 2

Signal Name Direction Description

source eop Output Marks the end of the outgoing FFT frame.

source error Output
Indicates an error has occurred either in an upstream module or

within the FFT module.

source exp Output
This exponent accounts for scaling of internal signal values

during FFT computation.

source imag Output Imaginary output data.

source ready Input Indicates the downstream module can accept data.

source real Output Real output data.

source sop Output Marks the start of the outgoing FFT frame.

source valid Output Asserted by the FFT when there is valid data to output.

inverse Input Asserted when inverse FFT should be computed.

84

B. Complete Amplifier Test Simulation Results

The following figures show the frequency spectra of the upstream and downstream signals

that were generated in MATLAB and passed into the digital diplexer for 300 MHz, 492 MHz

and 684 MHz upstream cases. The constellation diagrams of the received signals in each test

are also available in this appendix.

Figure B.1: Test 1 - received signal constellation for downstream channels (300/354 split)

85

Figure B.2: Test 1 - received signal constellation for upstream channels (300/354 split)

86

Figure B.3: Test 1 - Upstream and downstream spectra at amplifier input (300/354 split)

87

Figure B.4: Test 1 - Upstream and downstream spectra at amplifier output (300/354 split)

88

Figure B.5: Test 1 - received signal constellation for downstream channels (492/580 split)

89

Figure B.6: Test 1 - received signal constellation for upstream channels (492/580 split)

90

Figure B.7: Test 1 - Upstream and downstream spectra at amplifier input (492/580 split)

91

Figure B.8: Test 1 - Upstream and downstream spectra at amplifier output (492/580 split)

92

Figure B.9: Test 1 - received signal constellation for downstream channels (684/808 split)

93

Figure B.10: Test 1 - received signal constellation for upstream channels (684/808 split)

94

Figure B.11: Test 1 - Upstream and downstream spectra at amplifier input (684/808 split)

95

Figure B.12: Test 1 - Upstream and downstream spectra at amplifier output (684/808 split)

96

Figure B.13: Test 2 - received signal constellation for downstream channels

97

Figure B.14: Test 2 - received signal constellation for upstream channels

98

Figure B.15: Test 2 - Upstream and downstream spectra at amplifier input

99

Figure B.16: Test 2 - Upstream and downstream spectra at amplifier output

100

Figure B.17: Test 3 - received signal constellation for downstream channels

101

Figure B.18: Test 3 - received signal constellation for upstream channels

102

Figure B.19: Test 3 - Upstream and downstream spectra at amplifier input

103

Figure B.20: Test 3 - Upstream and downstream spectra at amplifier output

104

