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ABSTRACT

Quadrature digital modulation techniques are widely used in modern commu-

nication systems because of their high performance and flexibility. However, these

advantages come at the cost of high power consumption. As a result, power con-

sumption has to be taken into account as a main design factor of the modulator.

In this thesis, a low-power quadrature digital modulator in 0.18µm CMOS is

presented with the target system clock speed of 150 MHz. The quadrature digi-

tal modulator consists of several key blocks: quadrature direct digital synthesizer

(QDDS), pulse shaping filter, interpolation filter and inverse sinc filter. The design

strategy is to investigate different implementations for each block and compare the

power consumption of these implementations. Based on the comparison results,

the implementation that consumes the lowest power will be chosen for each block.

First of all, a novel low-power QDDS is proposed in the thesis. Power consumption

estimation shows that it can save up to 60% of the power consumption at 150 MHz

system clock frequency compared with one conventional design. Power consump-

tion estimation results also show that using two pulse shaping blocks to process

I/Q data, cascaded integrator comb (CIC) interpolation structure, and inverse sinc

filter with modified canonic signed digit (MCSD) multiplication consume less power

than alternative design choices. These low-power blocks are integrated together to

achieve a low-power modulator. The power consumption estimation after layout

shows that it only consumes about 95 mW at 150 MHz system clock rate, which is

much lower than similar commercial products.

The designed modulator can provide a low-power solution for various quadrature

modulators. It also has an output bandwidth from 0 to 75 MHz, configurable pulse

shaping filters and interpolation filters, and an internal sin(x)/x correction filter.
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Chapter 1

Introduction

Transmitter and receiver are two major components for all the communication

systems. The basic function of the transmitter is to take the information bearing

signal produced by the source of information and modify it into a form suitable

for transmission over a channel. The receiver operates on the received signal to

produce an estimate of the original information bearing signal.

Traditional designs of analog transmitter employ the use of the phase locked

loop, mixers, analog filters and amplifiers. Figure 1.1 shows an example of tradi-

tional analog transmitter. Digital baseband in-phase (I) and quadrature (Q) signals

are converted to analog signals by digital to analog converters (DAC) and then fed

into low-pass filters (LPF). Analog I/Q signals are upconverted to an intermediate

frequency (IF) by mixing with the first local oscillator which goes through a phase

splitter to provide in-phase and quadrature local oscillation (LO) signals. The out-

puts of the mixers are then summed. This IF signal is amplified, filtered and then

mixed to the radio frequency (RF) by the IF variable gain amplifier (VGA), IF

band-pass filter (BPF) and second local oscillator, respectively. The RF signal that

has been processed by RF amplifier and RF band-pass filter is then ready to be

fed to an antenna. As one can see from this figure, all the components are analog

circuits. There are several disadvantages for this analog architecture. First, analog

electronic circuits consume more space and power. Second, they are more subject

to performance variations as a result of environmental factors such as temperature

changes. Third, it is difficult to integrate these functions into one chip according

to the current technology [1].
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I
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Figure 1.1 Analog transmitter.

In recent years, there is an increasing trend to replace most of these analog

circuits with digital circuits and integrate them into one chip [1]. The advantage

of this approach is that full digital control of the function is maintained as far

as possible, and the limitations of analog design are minimized. Another trend

in transceiver design is trying to reduce the cost and power consumption. It is

becoming more and more important because it makes them feasible to be embedded

into more types of electronic devices.

1.1 Research motivation

The ideal radio architecture brings the digital signal processing techniques as

close as possible to the antenna. In this ideal architecture, the analog circuits are

restricted to those which can not be performed digitally, i.e., antenna, RF filter and

power amplifier. According to the newest technology, the closest towards this ideal

architecture is the hybrid implementation, as shown in Figure 1.2, which consists

of a digital subsystem and a analog subsystem. Compared with analog transceiver,

Digital

Up Conversion

Digital

Down  Conversion

Base

Band

DAC

ADC BPF

BPF

BPF

BPF

To 
antenna

From
 antenna

I

I

Q

Q

LOsf

IF Filter RF Filter

Figure 1.2 Hybrid implementation.
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this architecture offers more flexibility, longer product life and lower cost; it is also

more suitable for mass production. Devices such as digital signal processors (DSPs),

field programmable gate arrays (FPGAs) and application specific integrated circuits

(ASICs) can be used to realize the required digital functionality.

Although there are many advantages to using digital modulator in communica-

tion systems, power consumption is still a problem for high-performance quadrature

digital modulator. For example, one commercially used quadrature digital modu-

lator, AD9856 [2], consumes about 1100 mW at 150 MHz. The power consumption

is unacceptable for most of the portable applications due to the limited battery

capacity. Also, according to international technology roadmap for semiconductors

(ITRS) 2005 report,“Power consumption is an urgent, short-term challenge. How

to quickly shift from a performance-driven design procedure to a performance and

power driven design procedure has to be solved. Design issues include high level

power estimation, dynamic and leakage power reduction at different design stages

and power optimization, etc [3].” As a result, power consumption has to be taken

into account as a main design factor. Generally speaking, to achieve a low-power

integrated circuit, many low-power design techniques can be used. These techniques

can be applied at system level, algorithm level, circuit level and transistor level.

In this thesis, a fully digital modulator with low-power consumption is imple-

mented, which is intended to function as a quadrature modulator and can be used

in various portable devices where power and performance are critical. The designed

modulator consists of pulse shaping filters, interpolation filters, a quadrature direct

digital frequency synthesizer (QDDS) and an inverse sinc filter. Several low-power

techniques are used to reduce the power consumption while maintaining high per-

formance.

1.2 Research objectives

The objectives of the research work in this thesis are:

• To develop a quadrature digital modulator with less power dissipation

• To develop a novel low-power consumption QDDS that can be used in various

3



quadrature modulators and demodulators

• To investigate low-power design techniques and their application to quadrature

digital modulator

• To develop a configurable digital quadrature digital modulator with high perfor-

mance

1.3 Thesis outline

Chapter 2 reviews the principles of the digital modulator, including the prin-

ciples of QDDS, pulse shaping filter, interpolation filter, digital modulation, DAC

and inverse sinc filter.

Chapter 3 discusses integrated circuit (IC) design challenges and digital IC de-

sign flow that is used in this thesis. The main design flow described in this chapter

follows CMC Microsystems’ design flow. However, some changes have been made

to make the whole design process more flexible and efficient.

Chapter 4 covers the circuit implementation details of the modulator. For the

QDDS circuit, a novel architecture with low-power consumption is proposed. For

the other blocks, several hardware efficient design approaches are considered as the

possible choices.

Chapter 5 introduces high-level power estimation techniques and also presents

the performance comparisons for each key block with different design options. The

proposed QDDS is compared with conventional QDDS circuits. Pulse shaping filter,

interpolation filter, inverse sinc filter are also compared with different design choices.

Chapter 6 concentrates on the functional verification of the final modulator

which is implemented with the proposed QDDS and the other relatively low-power

blocks. It also covers the power consumption estimation of the whole modulator.

Chapter 7 gives conclusions and several suggestions for future work.
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Chapter 2

Background

As shown in Figure 2.1, a quadrature digital modulator consists of several key

blocks: QDDS, pulse shaping filters, interpolation filters and inverse sinc filter.

QDDS is used to generate sine/cosine reference carrier signals. Pulse shaping filters

are used to limit the transmitting bandwidth and reduce intersymbol interference

(ISI). Interpolation filters are used to increase sampling rate and inverse sinc filter is

used to precompensate sinc distortion coming from the following DAC. This chapter

provides the background related to these key blocks.

Symbol

Gener-

ator

I

Q

QDDS 
Inverse

Sinc Filter
DAC

Inter-

polation

Filter

Inter-

polation

Filter

Pulse

Shaping

Filter

Pulse

Shaping

Filter

Baseband IF

Figure 2.1 Digital quadrature modulator.

2.1 Quadrature direct digital synthesizer

Direct digital synthesizer (DDS) is a circuit which uses digital signal processing

technique to generate a frequency-tunable output signal referred to a fixed frequency

and high precision clock source [4]. As shown in Figure 2.2, a basic form DDS is

composed of a precise reference clock, a phase accumulator, a sine look-up table

and a DAC.

The phase accumulator can be an N bit counter that increments the stored

5
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Figure 2.2 Block diagram of a basic DDS.

N2

2
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Figure 2.3 Digital phase wheel. As the vector rotates around
the wheel, a corresponding sine wave is being gen-
erated.

number each time it receives a clock pulse. Figure 2.3 shows the diagram of digital

phase wheel. The magnitude of the increment is determined by a digital word M ,

which sets how many points to skip around the phase wheel. The larger the M ,

the faster the phase accumulator overflows and completes the equivalence of a sine

wave cycle.

The output from the phase accumulator addresses a sine look-up table which

stores sine samples to generate a digital sine wave. The following DAC generates

an analog sine wave in response to the digital input words from the sine look-up

table. Low-pass filter is used to further smooth the sine wave output from the DAC

so that a higher purity spectrum can be obtained.
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For any tuning word M, the output frequency of the DDS is

fout = M · frefclk

2N
, (2.1)

where fout is the output frequency of DDS, M is the binary tuning word, frefclk is

the reference clock frequency and N is the length in bits of the phase accumulator.

It is clear that the frequency resolution is fres =
frefclk

2N .

Phase truncation is an important aspect of DDS. For example, to directly con-

vert 32 bits of phase to corresponding 8 bit amplitude would require a 4 gigabytes

ROM. It is impractical to implement such a huge ROM in a design. In real design,

the solution is to use a fraction of the most significant bits of the phase accumulator

output to provide phase information. This means that the N bits output from the

phase accumulator is usually truncated to Na bits. This truncation results in errors

in the output signal. The worse case signal to noise ratio (SNR) for the basic DDS

structure can be expressed by following equation [5]:

SNR (dB) = 10 · log10(
1

π2

3
2−2Na + 2

3
2−2Nd

), (2.2)

where Na is the phase length after truncation and Nd is the amplitude word length

stored in ROM.

Assume the maximum reference clock is 150 MHz and the phase accumulator

is 32 bits. If the phase after truncation is 12 bits and the sine amplitude is stored

with 12 bit accuracy, the frequency resolution, fres, is 150×106

232 = 0.034Hz. If there

is no compression applied to the sine ROM, the worse case SNR of the design is

approximately 10 · log10(
1

π2

3
·2−2Na+ 2

3
·2−2Nd

) = 66.3 dB.

The DDS structure shown in Figure 2.2 can only generate one sine signal. Since

the targeted application in this thesis is a quadrature digital modulator, quadrature

digital reference carrier signals are desired. In other words, another ROM which

stores cosine values has to be added to the basic DDS architecture to form a QDDS

circuit.
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2.2 Pulse shaping filter

As one can see from the system block diagram shown in Figure 2.1, I and Q

data are processed by two kinds of digital filters. One is pulse shaping filter and

the other is interpolation filter.

Rectangular pulses lead to a relatively large transmitting bandwidth because

the frequency contents of a rectangular pulse have a sin(x)/x shape and the tails

of the this sinc function decay slowly. This large signal bandwidth is not desirable

for most of the bandwidth constrained communication systems. In order to reduce

the bandwidth and mitigate ISI with adjacent pulses, these rectangular pulses must

be filtered properly. Raised cosine filter is one of the pulse shaping filters that can

limit the transmitting bandwidth of signals and avoiding ISI.

The frequency characteristic of the raised cosine filter can be described as [6]:

Hrc(f) =



















T if 0 ≤ |f | < 1−β
2T

,

T
2
{1 + cos[πT

β
(|f | − 1−β

2T
)]} if 1−β

2T
≤ |f | < 1+β

2T
,

0 if |f | ≥ 1+β
2T

.

(2.3)

where T is the symbol duration, and β is a roll-off factor which takes a value between

0 to 1. The corresponding impulse response of a raised cosine filter has the form

[6]:

hrc(t) =
sin(πt/T )

πt/T
· cos(πβt/T )

1 − 4β2t2/T 2
. (2.4)

The raised cosine impulse response and spectral characteristics for β = 0, 0.5 and

1 are illustrated in Figure 2.4. As one can see from this figure, larger β leads to

smaller pulse tails and larger bandwidth.

In practical communication systems, the raised cosine filter is split evenly be-

tween transmitter and receiver, with each implementing a squared root raised cosine

(SQRC) filter. The cascaded response of these two filters is equivalent to the re-

sponse of the raised cosine filter. The frequency response of the square root raised

8
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Figure 2.4 Raised cosine pulse and spectrum.

cosine filter is given as [7]:

Hsqrc(f) =



















√
T if 0 ≤ |f | < 1−β

2T
,

√

T
2
{1 + cos[πT

β
(|f | − 1−β

2T
)]} if 1−β

2T
≤ |f | < 1+β

2T
,

0 if |f | ≥ 1+β
2T

.

(2.5)

The impulse response of the square root raised cosine filter is [7]:

hsqrc(t) = 4β ·
cos((1 + β)πt/T ) + sin((1−β)πt/T )

4βt/T

π
√

T (1 − (4Rt/T )2)
. (2.6)

Equation (2.6) represents a noncausal pulse. To implement this SQRC filter

in a communication system, the pulse is first delayed by an integer number of

symbol periods, say mT , and truncated 2mT . The value of m is a tradeoff between

simplicity and accuracy. The pulse is then sampled by taking k samples per symbol

so that T = kTs, where Ts is the sampling period. It is common to operate the

filter at 4 or 8 samples per symbol. Replacing t by t − mT , letting t = nTs and

T = kTs yields:
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t

T
→ nTs − mkTs

kTs

=
n

k
− m. (2.7)

Substituting Equation (2.7) into Equation (2.6), the sampled version of SQRC filter

can be expressed as:

hsqrc(n) = 4β
cos[(1 + β)π(n

k
− m)] +

sin[(1−β)π(n
k
−m)]

4β(n
k
−m)

π
√

T{1 − [4β(n
k
− m)]2}

. (2.8)

It should be noted that impulse response truncation introduces a rectangu-

lar window. Filters using a rectangular window usually result in poor stopband

response and passband ripples due to time discontinuity introduced by the rectan-

gle window. These disadvantages can be alleviated by choosing a window function

which does not have abrupt discontinuities in its time domain characteristics. Kaiser

window is one of the window functions that can be used [8]. Applying Kaiser win-

dow leads to increased ISI level at the receiver end. The tradeoff between acceptable

ISI and required spectral performance must be considered when choosing a window

function.

Another problem is the implementation of the finite impulse response (FIR) filter

with impulse response shown in Equation (2.8). Figure 2.5 illustrates the signal-flow

of a direct form structure FIR filter. The FIR filter computes the current output

sample as a weighted sum of the current input sample and N-1 past samples.

y(n) =
N−1
∑

i=0

h(i)x(n − i), (2.9)

where y(n) is the output sequence, x(n) is the input sequence, and h(n) is the

corresponding impulse response. In many applications the FIR filter is designed to

have linear phase [6]. Consequently, the impulse response is symmetric and satisfies

the relation

h(i) = h(N − 1 − i) where 0 ≤ i ≤ N − 1. (2.10)

By using this symmetric characteristic, one can simplify the signal flow shown in

10
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Figure 2.5 Signal flow graph of the direct form structure FIR
filter.

Figure 2.5.

The pulse shaping filter in a quadrature digital modulator can also be an FIR

filter with symmetric impulse response. From the theoretical point of view, the in-

put data sequences are upsampled by k before being processed by the pulse shaping

filters. The upsampled time series contains samples of the original inputs separated

by k − 1 zero valued samples. Figure 2.6 shows an example that the input data

sequence is upsampled by 4. This zero packed data sequence is then processed

by the SQRC filter. The SQRC filter actually limits the bandwidth to the band

of interest and computes output samples at an increased rate (k-to-1) relative to

input rate, replacing the zero packed values with the interpolated values. Figure

2.7 shows the output sequence when the upsampled data sequence shown in Figure

2.6 has been processed by a SQRC filter, where the filter length is 8 symbols (4

samples per symbol) and the roll-off factor is 0.22.

2.3 Interpolation filter

Interpolation filters in a modulator are used to raise the sampling rate to allow

the translation of the input signal spectrum to an intermediate frequency in the

digital domain. Two interpolation filter structures are considered here, cascaded

integrator comb (CIC) filter and half-band FIR filter. Both of these two structures

are hardware-efficient.

• Cascaded integrator comb (CIC) filter

A CIC filter consists of an integrator section operating at the high sampling rate

and a comb section operating at the low sampling rate [9]. From the theoretical
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Figure 2.6 An example of 1-to-4 upsampling. “x” shows the
input binary data and “o” shows the output after
1-to-4 upsampling.
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Figure 2.7 Output sequence of a SQRC filter. “x” shows the in-
put binary data and “o” shows the output sequence.
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point of view, the CIC filter can either increase or decrease the sampling rate at

the output relative to the input, depending on the filter architecture.

Figure 2.8 shows the basic structure of the CIC interpolation filter. The comb

section operates at a low sampling rate, fs/R, where R is the integer rate change

factor. This section consists of N comb stages with a differential delay of M samples

per stage. The differential delay factor, which is usually 1 or 2 in a practical system,

is a filter design parameter used to control the filter’s frequency response. The

integrator section of the CIC filters consists of N ideal integrator stages operating

at the high sampling rate, fs. A rate change switch between two sections can cause

a rate increase by a factor of R by inserting R − 1 zero valued samples between

consecutive samples of the comb section output.

The system function for the composite CIC filter referenced to the high sampling

rate, fs, is

HCIC(z) =
(1 − z−RM )N

(1 − z−1)N
=

(

RM−1
∑

k=0

z−k

)N

. (2.11)

The frequency response of CIC filter evaluated at z = e(2πf/R) is:

HCIC(f) =

[

sin(πMf)

sin(πf/R)

]N

, (2.12)

where f is the frequency relative to the low sampling rate fs/R.

CIC filter is chosen as one of the possible interpolation structures because it is

M
z

...

1
z

...

Comb Section Integrator Section

Stage 1 ... Stage N Stage N+1 ... Stage 2N

Rf s / Rf s / sf sf

-1 -1

1
z

M
z

Figure 2.8 Block diagram of the CIC interpolation filter.
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very hardware efficient. The advantages of CIC filter are: (1) no multipliers are

required; (2) no storage is required for filter coefficients; (3) intermediate storage

is reduced compared to the equivalent implementation using cascaded uniform FIR

filters; and (4) the same filter design can be easily extended to a wide range of rate

change factors.

For the CIC interpolation filter design, the minimum register width must be

determined. Rounding can not be used because the small error in the integrator

stages can cause the variance of the error to grow without bound and result in an

unstable filter [9].

The minimum register width for jth filter stage, Wj , is determined by [9].

Wj = ⌈Bin + log2 Gj⌉ for j = 1, 2, ..., 2N, (2.13)

where Bin is the input register width, Gj is the maximum register growth up to

jth stage, and ⌈⌉ represents for ceiling function. Gj can be calculated according to

Equation (2.14).

Gj =







2j if j = 1, 2, ..., N,

22N−j (RM)j−N

R
if j = N + 1, ..., 2N.

(2.14)

There is a special case for Equation (2.13). When M = 1, the equation used to

calculate the minimum register width for Nth stage is expressed as:

WN = Bin + N − 1 if M = 1. (2.15)

• Half-band filter

Half-band filters are widely used in multirate signal processing applications when

interpolating/decimating by a factor of two. A half-band low pass filter has a pass

band bandwidth between ±1
4

sampling rate for a two-sided bandwidth equal to half

the sampling rate [10]. The impulse response of an ideal noncasual discrete filter
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Figure 2.9 Impulse response and frequency response of a half
band FIR filter with the length of 21.

can be shown as:

hhb(n) =
1

2
· sin(nπ/2)

nπ/2
. (2.16)

The impulse response and the corresponding frequency response of a casual half-

band filter with the length of 21 are shown in Figure 2.9.

The impulse response of the half-band filter are all zero at the even index offsets

from the center point of the filter. The coefficients with odd index offsets are

symmetric about the filter center point. These two properties permit a half-band

filter with the length of 2N + 1 to be implemented with only N
2

multiplications per

output sample. This structure is very efficient for upsampling applications. The

limitation for this filter is that the interpolation ratio can only be two. If several

half-band filters are connected serially, the interpolation ratio can be expanded to

the power of two.
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2.4 Modulation

To transmit a signal over the air, a carrier is modulated with the information to

be transmitted. This process usually involves modulating the amplitude, frequency

and/or phase of the carrier. A simple way to view the amplitude and phase is with

polar diagram. The carrier becomes a frequency and phase reference and the signal

is interpreted relative to the carrier. The signal can be expressed in polar form as

a magnitude and a phase.

In digital communication, modulation is often expressed in terms of I and Q

[11]. As shown in Figure 2.10, the I axis lies on the zero degree phase reference and

the Q axis is rotated by 90 degrees. The signal vector’s projection to the I axis is

the I component and projection to the Q axis is the Q component. I/Q diagrams

are particularly useful because they can mirror the way most digital communication

signals are created using an I/Q modulator.

At the transmitter side, I and Q signals are mixed with LO. A 90 degree phase

shifter is placed in one of the LO paths. Signals that are separated by 90 degrees

are also known as being orthogonal to each other or in quadrature. A composite

output signal is generated by combining these two signals. The main advantage

of I/Q modulation is the convenience of combining independent signal components
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into a composite signal and later splitting the signal into its independent component

parts.

At the receiver side, the composite signal with magnitude and phase informa-

tion is mixed with the LO signal at the carrier frequency in two forms. One is at

an arbitrary zero phase and another one has a 90 degree phase shift. The compos-

ite input signal is thus broken into an in-phase component, I, and a quadrature

component Q. These two components are independent and orthogonal.

Quadrature modulation can be accomplished with quadrature modulators. Most

quadrature modulators map the data to a number of discrete points on the I/Q

plane. These are known as constellation points. As the signal moves from one

points to another, simultaneous amplitude and phase modulation results.

• QPSK modulation

Quadrature Phase Shift Keying (QPSK) is a common type of phase modulation,

which is widely used in applications including CDMA cellular systems, wireless local

loop and DVB-S (Digital Video Broadcasting - Satellite). Quadrature means that

the signal shifts between phase states which are separated by 90 degrees. The

equation describing QPSK is:

s(t) = u(t) cos(ωct + θm), (2.17)

where θm ∈ {π
4
,−π

4
, 3π

4
,−3π

4
} and u(t) is a real value pulse. The constellation

diagram for QPSK is shown in Figure 2.11. The signal shifts in increments of 90

degrees from 45 to 135, -45 or -135 degrees. These points are chosen as they can be

easily implemented using I/Q modulator. The symbol rate is half of the bit rate.

• QAM modulation

Another member of quadrature digital modulation family is Quadrature Ampli-

tude Modulation (QAM). QAM is used in applications including microwave digital

radio, DVB-C (Digital Video Broadcasting - Cable) and modems. The equation

describing QAM is:

s(t) = Vmu(t) cos(ωt + θm), (2.18)
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Figure 2.11 QPSK constellation.

where θm represents possible phase values, Vm represents possible amplitude values

and u(t) is a real value pulse.

Here, 16-QAM is used as an example. The constellation diagram for 16-QAM

is shown in Figure 2.12. There are four I values and four Q values resulting in a

total of 16 possible states for the signal. Transit from any state to another state is

allowed at every symbol time. In each symbol period, 4 bits, i.e., two bits I and

two bits Q, can be sent.

For these quadrature modulations described above, I and Q data are mixed

I

Q

Figure 2.12 16-QAM square constellation.
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together in a modulator after the pulse shaping and interpolation stages. The

whole modulation process can be described as:

y(t) = I(t) cos(ωct) − Q(t) sin(ωct). (2.19)

The carrier frequency is decided by programming the QDDS circuit with an appro-

priate tuning word. The digital sine and cosine data is multiplied by the Q and

I data respectively to create the quadrature components of the original data up-

converted to the carrier frequency. The quadrature components are then digitally

summed and passed on to the following stages. The key point is that the modu-

lation is done totally digital, which eliminates the phase and gain imbalance and

crosstalk issues typically associated with analog modulators [2].

2.5 Digital to analog converter (DAC)

At the end of digital modulator, a DAC is needed to convert digital signals into

analog signals. There are several advantages with a DAC circuit on-chip. One

advantage is that the power consumption can be reduced compared with the design

which needs to drive an off-chip DAC. Another advantage is that it can avoid delays

and line loading caused by interchip connections.

Figure 2.13 shows the conceptual block diagram of the DAC. The inputs of the

DAC consists of a digital word of N bits and a reference voltage, Vref . The voltage

output, Vout, can be expressed as:

Vout = KVrefD, (2.20)

where K is a scaling factor and the digital word D is given as:

D = b12
−1 + b22

−2 + b32
−3 + + bN2−N , (2.21)

where bi is the ith bit coefficient. It is preferred that the digital word is syn-

chronously clocked. In this case, latches can be used to hold the word for conversion
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Figure 2.14 Ideal input output characteristics for a 2 bit DAC.

and a sample and hold circuit is provided at the output [12].

Figure 2.14 shows the transfer characteristic of an ideal 2-bit DAC, where analog

outputs occur at odd multiples of 1
8

of the the full scale (FS) signal.

2.6 Inverse sinc filter

In a digital modulator, input data propagate through the device as digital

stream. At the end of this processing, this digital stream must be converted into

analog signals. The output signal of DAC that shows staircase pattern in Figure

2.14, is known as the zero-order hold function; i.e., the DAC holds its output con-
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stant for the entire sampling period. The spectrum of zero-order hold function is a

sinc envelope. The frequency response of the zero-order hold of the DAC is shown

in Equation (2.22) [13].

Hzo(f) =
sin(πf/fs)

πf
e−jπf/fs, (2.22)

where fs is sampling frequency.

The series of digital words presented at the input of the DAC represent the

desired transmitting signal. Due to the zero-order hold effect of the DAC, the

output spectrum of the output signal is the product of the sinc envelope and Fourier

transform of the desired output signal. Thus, there is an intrinsic sinc distortion in

the output spectrum.

If the desired output signal spectrum has the flat top amplitude, the output

spectrum from a real world DAC is illustrated in Figure 2.15. The amplitude of the

output signal and its images follows a sinc response. The amplitude roll off due to

this envelop in a system is 3.92 dB in the first Nyquist zone. Since the sinc response

is deterministic and predictable, it is possible to predistort the input data stream

in a manner that compensates for the sinc envelop distortion. An inverse sinc filter

(ISF) can be used in front of DAC which will pre-compensate for the roll off and

maintain flat output amplitude over the bandwidth of the first Nyquist zone. The

amplitude response of an ideal inverse sinc filter and its impact on the whole system

is shown in Figure 2.16. The frequency response of this FIR filter is the inverse sinc

function. Thus, the data sent through this filter is altered to correct for the sinc

envelop distortion. This inverse sinc filter can also be bypassed depending upon

applications.

The desired amplitude response of the inverse sinc filter can be described as:

Hd(f) =
πf/fs

sin(πf/fs)
where 0 ≤ f ≤ fs/2. (2.23)

With this desired response, a digital filter can be designed using the minimum mean
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square error method. Given the desired frequency response, the impulse response

of the designed filter is symmetrical and the filter length is odd. The equation used

to get h(0), h(1),..., h(N−1
2

) is shown in Equation (2.24).

h(
N − 1

2
− k) =

2

fs

∫
fs
2

0

Hd(f) cos(
2πkf

fs
)df for k = 0, 1, ...,

N − 1

2
, (2.24)

where N is the filter length. h(N+1
2

), h(N+3
2

),...,h(N −1) are symmetrical about the

midpoint, i.e., h(N−1
2

). The designed filter coefficients can be windowed to reduce

ripples. Normally, the designed filter can compensate for the roll off and maintain

flat output amplitude over the bandwidth of DC to 80% of the first Nyquist zone.

2.7 Summary

QDDS, pulse shaping filter, interpolation filter and inverse sinc filter are key

blocks in a quadrature digital modulator. The background information related to

these blocks are introduced in this chapter, including the basic form of DDS struc-

ture and its performance, principles and implementation of square root raised cosine

filter, CIC filter and half-band filter. Quadrature digital modulation techniques, in-

cluding QPSK and QAM, are also introduced. Since a DAC circuit is necessary

at the end of a digital modulator, DAC and its zero-order hold characteristic are

discussed. In order to precompensate the sinc distortion introduced by DAC, an

inverse sinc filter has to be included. The design technique for this inverse sinc

filter is also covered. These background information are the basis of the circuit

implementation.
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Chapter 3

Integrated Circuit Design Flow

The semiconductor industry has evolved from the first integrated circuit of early

1960s and matured rapidly since then. Early small-scale integrated circuits con-

tained only a few logic gates. It is well known as Moore’s law that the number of

transistors on an integrated circuit for minimum component cost doubles every 18

months [14]. Current very large scale integration (VLSI) ICs can combine millions

of gates on a single device.

Accompanied with the fast advancement of IC fabrication processing technology,

IC designers face many design challenges. ITRS 2005 report listed a number of the

challenges [3] in which two are related to design technology.

1. Design productivity, which is closely linked to system and design process

complexity, and of course affecting design cost, is the most massive and critical

challenge. Issues related to it include high level of abstraction, system integration

and analog circuit synthesis, etc.

2. Manufacturability, that is, the ability to produce a chip in large quantities

at acceptable cost and according to an economically feasible schedule, has been

affecting the industry primarily due to lithography hardware limitations but will

become a major crisis in the long term as variability in its multiple forms invades all

aspects of a design. Design issues include device parameter variability, mixed-signal

test and quality models, etc.

A good design flow can increase both design productivity and manufacturability.

Since the IC design in this thesis is totally digital, the digital IC design flow chosen

is described as follows.
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3.1 Digital IC design flow

The design flow for creating VLSI digital circuits consists of a sequence of steps.

Each step in the design flow either creates a database supporting the design flow,

or verifies that the design meets specific requirements. Generally speaking, these

steps can be separated into front-end design flow and back-end design flow. The

front-end design flow focuses on the steps of preparing a gate-level netlist to be

used in physical design of the chip. The back-end design flow focuses on steps of

the physical design and ends up with a mask layout for fabrication. The main

design flow described in this chapter is similar to the design flow provided by CMC

microsystems [15]. Some modifications are made to make the whole design flow

more flexible and more suitable for large designs.

3.1.1 Front-end design flow

Figure 3.1 shows the front-end design flow which includes the design steps before

the physical layout of an IC design. The first step is register transfer level (RTL)

coding which describes the functionality of a design. The RTL coding can be written

in Verilog or VHDL. Verilog is chosen as the RTL coding language in this thesis.

The second step is to verify the functionality of the RTL code using an hard-

ware descriptive language (HDL) simulator. A corresponding testbench must be

provided for verification. The simulator used in this step is NC-Sim. The design

and the testbench files, both in Verilog, must be compiled first. The command used

to compile Verilog files is ncvlog. It performs syntactic and semantic checking on

the Verilog design units. If no errors are found, compilation produces an internal

representation for each HDL design unit in the source files. Before one can run

simulation, the design must be ‘elaborated’ to construct a design hierarchy based

on the instantiation and configuration information in the design, to establish sig-

nal connectivity, and to compute initial values for all objects in the design. The

command used for elaborating the design is called ncelab. The elaborated design

hierarchy is stored as a simulation ‘snapshot’, which is the representation of the de-

sign that the simulator uses to run simulations. The snapshot is stored in a library
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Figure 3.1 Block diagram of the front-end design flow.
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database file along with the other intermediate objects generated by the compiler

and elaborator. After compilation and elaboration, one can invoke the simulator,

NC-Sim, to verify Verilog design.

The design flow provided by CMC microsystems suggests that users use NC-Sim

in graphical user interface (GUI) mode. However, it is more convenient to verify the

functionality in batch mode for large designs so that designers can observe inputs,

outputs and internal nodes over a long period of time. Appendix A.1 shows one

script example for invoking the simulator in batch mode.

After functional verification, the design is ready for synthesis. The logic syn-

thesizer used is Synopsys Design Compiler. In order to synthesize the design, the

same RTL code has to be analyzed and elaborated again. Similar with NC-Sim, the

analysis step checks the syntax and semantics of Verilog files. The elaborate com-

mand replaces Verilog operators with equivalent combinational logic and determines

correct bus sizes.

The next step is to set constraints for the design. The constraints here refer

to defining the clock, specifying I/O cells, defining output load, etc. With these

pre-set constraints, the design compiler can automatically create a gate-level netlist

for a targeted processing technology. Synopsys Design Compiler can also report the

timing, area and power consumption of the design.

The logic synthesis procedure described in the CMC microsystems’ design flow

are performed in GUI mode. Due to the fact that a design will be synthesized for

several times with different constraints, an efficient way to use the logic synthesizer

is to perform the synthesis in batch mode instead of GUI mode. Appendix A.2

shows one example script for using the logic synthesizer in batch mode. It should

be noted that this example script contains basic synthesis steps only. One needs to

modify it to meet different synthesis requirements.

To ensure the resulted gate-level netlist is correct, one needs to verify the func-

tionality of the gate-level netlist following the same procedure as RTL code veri-

fication. With the verified gate-level netlist, one can insert the scan chain using

Mentor Graphics DFTAdvisor. The purpose of inserting scan chain is to improve
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the testability of the fabricated chip for physical defects. This step involves re-

placing sequential elements with scannable sequential elements and then stitching

the scan cells together into scan registers, or scan chains. Figure 3.2 shows one

example before and after scan chain insertion [16]. Testing engineers can then use

these serially-connected scan cells to shift data in and out when the design is in

scan mode.

The next step after scan chain insertion is automatic test pattern generation

(ATPG). Test patterns generated in this step are sets of 1s and 0s placed on primary

input pins during manufacturing test process to determine if the chip is functioning

properly. When the test pattern is applied, the automatic test equipment (ATE)

determines if the circuit is free from manufacturing defects by comparing the fault-

free output which is also contained in the test pattern with the actual output

measured by the ATE. The tool used in this step is Mentor Graphics Fastscan.

Both the DFTAdvisor and Fastscan are used under batch mode. The generated

test patterns can be verified in NC-Sim.

After scan chain insertion, the gate-level netlist with scan chain is read back to

Synopsys Design Compiler to finalize the design by adding I/O cells and output

corresponding constraint files.

3.1.2 Back-end design

The back-end design flow, which consists of the design steps of physical layout, is

shown in Figure 3.3. The flow begins with virtual design procedure, which involves

I/O cells placement, power planning and trial placement and routing. During the

trial placement and routing of the virtual design procedure, cells are placed and

routed without consideration for timing. The next step is to use Cadence Physically

Knowledgeable Synthesis (PKS) to optimize the design with the consideration of

timing constraints and parasitic values. The design is optimized for three separate

times to account for parasitics that are obtained during place and route to attain

a high performance. It should be noted that all the optimizations in this step are

based on an ‘ideal’ clock.

28



clk

Combinational 

logic

Combinational 

logic

A

B

D Q D Q D Q

OUT1

OUT2

(a) Before scan chain insertion

clk

Combinational 

logic

Combinational 

logic

A

B

D Q D Q D Q

OUT1

OUT2

sc_en

sc_in

sc_out

sen sen sen

sin sin sin

(b) After scan chain insertion
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After the placement and optimization, clock tree synthesis can be performed.

Cadence PKS treats clock tree as an entire sub-circuit and adds buffers into the

tree during the clock tree synthesis process. With the physically inserted clock tree,

optimizations based on the real propagated clock can be performed.

The design is ready for the final route and optimization after the clock tree

insertion. With this step done, one needs to perform static timing analysis to make

sure the routed design meets the timing goal.

The final steps before tape out are mainly to verify the physical layout of the

design. These steps include layout versus schematic (LVS) verification and design

rule check (DRC). LVS is to verify that the physical layout contains the same

instances, nets and connectivity as the verified design netlist and DRC is to verify

that the physical layout meets the foundrys design rule.

It is a good practice to carry out all the steps involved in back-end design in

batch mode in stead of GUI mode. Appendix A.3 shows one script example for

timing optimization after clock tree insertion using Cadence PKS.

It should be noted that the design flows of front-end design and back-end design

shown in Figure 3.1 and Figure 3.3 assume that the design requirements can be

met at every stage. In practical design, there will be several changes in iterations

of the design or constraints at various design points until the design requirements

are met.

3.2 Summary

To tackle the challenges of integrated circuit design productivity and manufac-

turability, it is very important to choose the right design flow. The whole integrated

circuit design flow are generally split into front-end design flow and back-end de-

sign flow. Both of them are discussed step by step in this chapter. Compared with

CMC microsystems’ design flow, the design flow introduced here is more efficient

and flexible as a result of extensive use of scripts for batch mode processing. Some

simple scripts are also provided as examples.
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Chapter 4

Circuit Design and Low Power Considerations

Low-power circuits can be achieved at different levels. At system level, dynamic

power management can be used to dynamically reconfiguring systems to provide the

requested services and performances with a minimum number of active components

or a minimum load on such components. At algorithm level, different algorithms

can be compared for their power consumptions to identify one with the lowest power

consumption. At circuit level, parallelization implementation, multiple supply volt-

ages, dynamic supply voltage scaling, retiming, etc., can be used to reduce power

consumption. At transistor level, variable threshold transistors, dynamic thresh-

old voltage scaling, input vector control, etc., can be used to reduce leakage power

which has become more and more important in nanometric technologies. Most of

the low-power techniques used in this thesis are at algorithm level. Some low-power

techniques at system level and circuit level are also used.

4.1 Quadrature digital modulator

The detailed block diagram of the designed modulator is shown in Figure 4.1.

Most of the interfaces in this modulator are chosen to be 12 bits. This interface

width is chosen to be the same as [2]. The width of the interface between symbol

generator block and pulse shaping block is decided by the modulation technique

used. All the blocks in this modulator which are not working at system clock rate,

i.e., pulse shaping filter and interpolation filter blocks, use clock split from system

clock. This clock splitting technique causes clock skew, but as will be described

in Chapter 5, total power consumption is less than the scheme where the circuits
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Figure 4.2 ROM design using quarter-wave symmetry.

operate at the same high clock speed. The maximum system clock rate is targeted

at 150 MHz in this design, i.e., output bandwidth is from 0 to 75 MHz. This clock

speed is enough for most of the real applications because the highest intermediate

frequency is usually 70 MHz.

4.2 QDDS

4.2.1 ROM compression

In the conventional DDS design [17], a commonly used technique to design the

phase-to-amplitude converting ROM is illustrated in Figure 4.2. The ROM stores

only 0 to π
2

of sine wave instead of 0 to 2π, i.e., it uses quarter-wave symmetry

to generate a full range sine wave. The most significant bit (MSB) determines the

sign of the output and second MSB determines whether the phase between 0 to π
2

should be increasing or decreasing. The rest Na − 2 bits are used to address a sine

ROM.

In this design, a 1
2

least significant bit (LSB) offset must be introduced in all

phase addresses. If the phase address, Na, is assumed to be 3 bits, Figure 4.3

shows the phase wheel comparison between no phase offset and 1
2
-LSB phase offset.

Figure 4.4 shows error comparison between them. As one can see from Figure 4.4,

if quarter-wave ROM stores sin(0) and sin(π
4
), i.e., without phase offset, there are

some errors introduced because one’s complementor can’t map the phase values

without errors. If quarter-wave ROM stores sin(π
8
) and sin(3π

8
), i.e., with 1

2
-LSB
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phase offset, one’s complementor can map the phase values to the first quadrant

without error. This 1
2
-LSB offset is also necessary for all the ROM compression

methods introduced later.
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(a) No phase offset
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Figure 4.3 Phase wheel comparison between no phase offset and
1
2
-LSB phase offset.
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The conventional design only needs to store a quarter of the sine wave values

without introducing any errors. However, the ROM size is still too big considering

ROM is the most power hungry part in a DDS circuit [17]. One way to reduce the

ROM size is Suntherland algorithm [18]. In this algorithm, the phase address of

the quarter-wave, θ, is decomposed to three components; i.e., θ = α + β + γ.

sin(α + β + γ) = sin(α + β) cos(γ) + cos(α + β) sin(γ)

≈ sin(α + β) + cos(α) sin(γ), (4.1)

where α, β and γ are the MSBs, the middle bits, and the LSBs of the phase address,

respectively. The variables α and β form a ‘coarse’ ROM address and the variables

α and γ form a ‘fine’ ROM address. If the word lengths of α, β and γ are assumed to

be A, B and C, computer simulations are usually used to determine the optimum

partitioning of the ROM address. Assume the word length of the input phase

address is 12 bits and output sine samples are also 12 bits, i.e., the phase address

of the quarter-wave sine ROM is 10 bits and the output of quarter-wave sine ROM

is 11 bits, Table 4.1 shows partition simulation results. Given the tradeoff between

mean square error and ROM size, A = 4, B = 3 and C = 3 are optimum choices for

this scenario, where the output of the coarse ROM is 11 bits and the output of the

fine ROM is 5 bits. As one can see from this example, this method can compress

the ROM size. The compression ratio achieved here is 210
×11

27
×11+27

×5
= 5.5.

Based on the Suntherland algorithm, the sine phase difference method was in-

troduced in [19] to reduce the size of coarse ROM. With the sine phase difference

method, the coarse ROM stores the sine phase difference instead of the real sine

values. The equation used to describe sine phase difference method is:

y(θ) = sin(θ) − 2θ

π
. (4.2)

Since the maximum value of sine phase difference, y(θ), is less than 1
4
, this method

can save 2 bits of word length of the data in the coarse ROM.
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Table 4.1 Comparison between different A, B, C partitions.

error2 ROM size (bits)

A = 6, B = 3, C = 1 2.7675 × 10−10 29 × 11 + 27 × 3 = 6016

A = 4, B = 3, C = 3 7.4979 × 10−8 27 × 11 + 27 × 5 = 2048

A = 3, B = 5, C = 2 7.5748 × 10−8 28 × 11 + 25 × 4 = 2944

A = 3, B = 4, C = 3 3.0273 × 10−7 27 × 11 + 26 × 5 = 1728

A = 3, B = 3, C = 4 1.1813 × 10−6 26 × 11 + 27 × 6 = 1472

A = 3, B = 2, C = 5 4.4364 × 10−6 25 × 11 + 28 × 7 = 2144

A = 2, B = 5, C = 3 1.1784 × 10−6 27 × 11 + 25 × 5 = 1568

A = 2, B = 4, C = 4 4.6640 × 10−6 26 × 11 + 26 × 6 = 1088

A = 2, B = 3, C = 5 1.8129 × 10−5 25 × 11 + 27 × 7 = 1248

A = 1, B = 5, C = 4 1.7011 × 10−5 26 × 11 + 25 × 6 = 896

A = 1, B = 3, C = 6 2.5962 × 10−4 24 × 11 + 27 × 8 = 1200

Double trigonometric approximation method is revised to reduce the coarse

ROM size. The coarse ROM stores the errors between the sine phase difference and

a triangle waveform. The double trigonometric line, d(θ), can be expressed as:

d(θ) =







θ
2π

if 0 ≤ θ < π
4
,

1
4
− θ

2π
if π

4
≤ θ ≤ π

2
.

(4.3)

Because the maximum error of the double trigonometric approximation is less than

1
8
, this method can save 3 bits of word length of the data in the coarse ROM. The

data for 0 ≤ θ < π
4

are generated by shifting right the phase, 2θ
π

, by 2 bits. The

data for π
4
≤ θ ≤ π

2
are symmetric and can be accomplished by a complementor.

Quad line approximation (QLA) method [17] can further compress coarse ROM

size. Similar to the double trigonometric approximation, the coarse ROM only

stores the errors between the sine phase difference and the quad line waveform.
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The quad line waveform, q(θ), is expressed as follows:

q(θ) =































θ
π

if 0 ≤ θ < π
8
,

1
16

+ θ
2π

if π
8
≤ θ < π

4
,

1
16

− θ
2π

+ 1
4

if π
4
≤ θ < 3π

8
,

1
2
− θ

π
if 3π

8
≤ θ ≤ π

2
.

(4.4)

The data for 0 ≤ θ < π
8

are generated by shifting right the phase, 2θ
π

, by 1 bits.

The data for π
8
≤ θ < π

4
are generated by shifting right the phase by 2 bits and

by changing the first and second MSBs of the phase to “10”. These data are

implemented with a MUX. The data for π
4
≤ θ ≤ π

2
are symmetric and can be

accomplished by a complementor.

Since the maximum value of QLA errors is less than 1
16

, the QLA method can

save 4 bits of word length of the data in the coarse ROM. The waveforms of sine-

phase difference, double trigonometric approximation, QLA are shown in Figure

4.5. The errors of double trigonometric approximation and QLA methods are also

shown in the same figure.

Table 4.2 compares different implementation choices for the coarse ROM. As the

QLA method can save 4 bits of the word length for the coarse ROM with simple

additional circuits, this method is chosen as the DDS implementation structure in

the modulator. For a DDS ROM with 12 bits phase address and 12 bits output

sine samples, the conventional design needs a 210 × 11 bits ROM. Based on the

Suntherland algorithm and the simulation results shown in Table 4.1, the input

phase address can first be decomposed to α, β and γ with lengths of 4, 3 and 3

respectively. Together with the QLA method, the ROM can be implemented with

a 27 × 7 bits coarse ROM and a 27 × 5 bits fine ROM. The total compression ratio

achieved is 210
×11

27
×7+27

×5
= 7.33. The implementation block diagram of such a sine-to-

amplitude converting ROM using QLA method is shown in Figure 4.6. Similar to

the conventional design shown in Figure 4.2, the second MSB determines whether

the amplitude is increasing or decreasing. {α, β} is used to address the coarse sine
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ROM and recover the compression from the sine phase difference method and QLA

method. {α, γ} is used to address the fine sine ROM. These four outputs are added

together to create a half sine wave. MSB is then used to determine the sign of the

output and create a full sine wave.

Table 4.2 Comparison between various sine approximation
methods to reduce the coarse ROM output bits.

Approximation method Approximation Saved bits Additional circuits
function

Without approximation sin(θ) - -

Sine phase approximation 2θ
π

2 bits 1 adder

2 adders
Double Trigonometric d(θ) 3 bits 1 complementor

2 adders
QLA q(θ) 4 bits 1 complementor

1 MUX
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An example is used here to demonstrate how the sine-to-amplitude converting

ROM shown in Figure 4.6 works. If the 12-bit input is assumed to be 0B000110001101,

the corresponding phase is 2π×397
212 + 1

2
× 2π

212 and the ideal output is 0.572669.

Since the second MSB is zero, {α, β, γ} is the least significant 10 bits of the in-

put and α, β, γ are 0B0110, 0B001, 0B101, respectively. Binary word {α, β} is

used to address the coarse sine ROM and the output is 0B0110010. Binary word
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{α, γ} is used to address the fine sine ROM and the output is 0B01110. Because

α(3) is 0 and α(2) is 1, output of mux is 0B1010001. Thus, output from ad-

dition is {00,1010001,00}+{0110001,0000}+{0000,0110010}+{000000,01110}
=0B10010010100. Since the MSB of the input is 0, the final output remains

0B10010010100, which represents for 1172
211 = 0.572266. The output error for the

input is approximately 0.572669-0.572266=0.000403. Errors for the full sine wave

is shown in Figure 4.7. As one can see from this figure, the maximum error is less

than 1.6 × 10−3. The mean square error for the full sine wave is 3.169 × 10−7.

4.2.2 Quadrature outputs

Since the application is a quadrature modulator, quadrature outputs from DDS

are required to provide sine/cosine carrier references for the modulator. In the

QDDS circuit presented in this thesis, the word lengths of the phase accumulator

and the truncated phase address, N and Na, are 32 bits and 12 bits, respectively.

The output word length, Nd, is 12 bits. For this application, one sine phase-to-

amplitude converting ROM and one cosine phase-to-amplitude converting ROM

are required. If both sine and cosine samples from 0 to π
2

are stored, the size of
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the ROM will be doubled. Since sine samples from 0 to π
4

are the same as cosine

samples from π
2

to π
4

and sine samples from π
4

to π
2

are the same as cosine samples

from π
4

to 0, only the sine and cosine samples from 0 to π
4

need to be stored. The

third MSB and the second MSB are XORed to select the data between 0 to π
4

sine

samples and 0 to π
4

cosine samples. Because only 0 to π
4

sine and cosine samples

are stored, the lowest 9 bits of the 12 bits phase address are actually needed for

the sine and cosine look up tables. This 9-bit phase is decomposed to α + β + γ

according to the Suntherland algorithm. Since the data stored in 0 to π
4

sine ROM

and 0 to π
4

cosine ROM are the same as a 0 to π
2

sine ROM, the simulation data

shown in Table 4.1 is still applicable for determining the wordlength of α, β and

γ. The only difference is that the actual word length of α is A-1 now. Given the

relationship between mean square error and ROM size, the word lengths of α, β

and γ are chosen to be 3, 3 and 3, respectively. The coarse sine ROM and coarse

cosine ROM are then further compressed by the sine phase difference method and

QLA method. Since the phase of stored samples are from 0 to π
4
, only the two

expressions between 0 to π
4

shown in Equation (4.4) are used. The data for the

phase between 0 to π
8

are generated by shifting right the phase by 1 bit and the

data for the phase between π
8

to π
4

are generated by shifting right the phase by 2

bits and changing the highest two bits to “10”.

The block diagram of the proposed QDDS is shown in Figure 4.8. The sizes

for coarse sine ROM, fine sine ROM, coarse cosine ROM and fine cosine ROM

are 26 × 6, 26 × 5, 26 × 7 and 26 × 4 bits, respectively. Instead of designing four

ROMs with different sizes, the word lengths of the coarse sine ROM and fine cosine

ROM are increased by 1 bit. As a result, the two coarse ROMs are 26 × 7 bits

and the two fine ROMs are 26 × 5 bits. Compared with the conventional design

which needs two 210 × 11 bits ROM, the total ROM compression ratio achieved is

2×210
×11

2×26
×7+2×26

×5
= 14.7.

As one can see in Figure 4.8, additional adders and muxes are needed to re-

construct the output sine and cosine waves. These extra hardware are worthwhile

considering the savings from the area and power. It should be noted that these
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ROM compression methods used introduce extra compression noises.

4.3 Pulse shaping filter

4.3.1 Polyphase structure

As described in Section 2.2, input data sequences are upsampled by k before

being processed by the pulse shaping filter. That is, the original data are separated

by k − 1 zero valued samples. The zero packing process shown in Figure 2.6 helps

visualize the process, not to offer implementation instructions. Equation (2.9) in-

dicates that only the non zero samples of the input data contribute to the output

samples. Since these zero packed samples do not contribute to the filter output,

they are usually not inserted in the input data sequences. Tracking the position

of these non zero samples to determine which coefficients interact with the input

data samples is equivalent to the polyphase partition of the filter. The strategy of

polyphase partition is shown in the following equations.

H(z) =

N−1
∑

n=0

h(n)z−n. (4.5)

H(z) =

k−1
∑

r=0

z−r

N/k−1
∑

n=0

h(r + nk)z−nk. (4.6)

H(z) =
k−1
∑

r=0

z−rHr(z
k). (4.7)

Equation (4.5) is the Z-transform of the standard FIR structure corresponding

to Equation (2.9). Equation (4.6) is the polyphase partition of the same filter

representing the filter as a sum of successively delayed subfilters with coefficients

separated by stride of k samples. Finally, Equation (4.7) is a compact representation

of Equation (4.6) where the rth stage Hr(z
k) of the polyphase filter is formed by

the coefficient set that starts at index r and increments in steps of length k.

Figure 4.9 shows the block diagram of a 1-to-k upsampling pulse shaping filter

using polyphase structure based on Equation (4.6), Equation (4.7) and the noble

identity of a upsampler , which indicates that the resampler can be slid through the
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Figure 4.9 An efficient implementation of 1-to-k upsampling
polyphase filter.

filter and replace the k units of delay at the output clock rate with one unit delay at

the input clock rate [10]. An 1-to-k upsampling pulse shaping filter is implemented

by moving to different coefficient sets at each time.

The block diagram shown in Figure 4.9 can be further simplified by utilizing the

symmetric characteristic of the pulse shaping filter’s impulse response; thus, only

half of the coefficients needs to be stored in memory, such as register files. The user

configured coefficients are loaded into these register files during the initialization

phase.

4.3.2 Design considerations of the pulse shaping filter

The pulse shaping filters apply pulse shaping to the incoming digital signals.

An ideal SQRC shaping pulse is given in Section 2.2. Two parameters must be

considered to implement this filter in a digital system. One parameter is the filter

length after the impulse response has been delayed and truncated, and the other is

the length of the digital word to represent a coefficient. The length of the SQRC

filter determines the frequency response of the SQRC filter. If the truncated im-

pulse response is too short, then the resulting filter either can not have enough

stopband rejection, or has big ripples in the passband. Since the stopband rejection

and passband ripple are very important for most of the communication systems,

the truncated impulse response must be long enough to meet the system specifi-
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cation. The truncated impulse response can also be windowed to further reduce

the passband ripple and stopband rejection. However, applying another window in-

creases ISI. For a real design, the trade-off between the desired frequency response,

acceptable ISI and the reasonable hardware costs should be considered.

In this design, the length of the SQRC filter is chosen to be 32 symbols and 4

samples per symbol. Each coefficient is quantized with 14 bits. It should be noted

the SQRC filter designed in Matlab has an odd number of coefficients. It is not easy

to implement an odd number of coefficients in hardware. To simplify the hardware

design, an even number of coefficients is preferred. An even number of coefficients

can be accomplished by doubling the desired sample rate, and then down sampling

the impulse response by a factor of 2 [20]. According to the design of this thesis,

there are 32× 4 = 128 coefficients. Users can configure these coefficients according

to their own applications.

Figure 4.10 is the impulse response of a SQRC filter example and Figure 4.11 is

the corresponding frequency response. The roll-off factor used in Figure 4.10 and

Figure 4.11 is 0.22 and the impulse response is windowed by Kaiser window, where

β for Kaiser window is 2.2.

The detailed implementation block diagram of SQRC filter is shown in Figure

4.12, which utilizes the polyphase structure and the symmetric characteristic of the

impulse response. Because this filter has a built-in four times upsampling function,

all the circuits except the input data registers run at 4×symbol rate.

4.3.3 Quadrature processing

It is clear that the pulse shaping filter in a quadrature modulator must process I

and Q data. There are two general approaches to this filter design for a quadrature

modulator. The first approach uses two pulse shaping blocks to process I and Q

data separately. The second approach uses only one pulse shaping block to process

I and Q data by interleaving them in time. The processing speed of the second

approach must be twice faster than the first one. The power consumptions of these

two implementations will be discussed in the next chapter.
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Figure 4.10 An example of the SQRC impulse response.
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Figure 4.11 The frequency response of the SQRC filter whose
impulse response is shown in Figure 4.10.
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4.4 Interpolation filter

The interpolation filters following the pulse shaping filter are used to increase the

sampling rate. Two hardware efficient interpolation filter structures are considered

here. One is CIC filter and the other is half-band FIR filter.

4.4.1 Design of CIC filter

As described earlier, the targeted system clock frequency is 150 MHz. The CIC

filter block diagram shown in Figure 2.8 can not meet this timing requirement. A

pipelined CIC structure is used in the system. Figure 4.13 is the block diagram of

implemented CIC filter. As shown in Equation (2.12), the frequency response of

the CIC filter depends on three factors: the rate change factor R, the order of the

filter N and the differential delay M . In the design of this thesis, M and N are

fixed at 1 and 4. The rate change factor, R, is the only variable parameter. The

available choices for R are 4, 8, 16 and 32. According to those design parameters,

Equation (2.12) which describes the CIC frequency response can be re-written as:

H(f) =

[

sin(πf)

sin(πf/R)

]4

where R ∈ {4, 8, 16, 32}. (4.8)

Figure 4.14 shows the periodic spectrum of the zero packed time series after the

processing of the pulse shaping filter and the frequency response of the 1-to-4 CIC

filter and Figure 4.15 shows the periodic spectrum of the zero packed time series

after the processing of the pulse shaping filter and the frequency response of the

1-to-8 CIC filter. One can clearly see the effect of the CIC spectral zeros on the

up-sampled input time series from the figures. It is also clear that there is frequency

dependent attenuation that the CIC filter introduces over the frequency range of

the data to be transmitted. The degree of the impact of the attenuation introduced

by CIC filter is application specific. It is shown in the result of [9] that if less

attenuation is desired, the higher rate change factor should be used. Alternatively,

data can be precompensated through a filter which has the inverse CIC frequency

response. Because the coefficients of the shaping filter are configurable, users can

combine the pulse shaping filter and the inverse CIC filter. Then the resulting
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Figure 4.14 Spectral response of 1-to-4 CIC interpolator. Solid
line shows the periodic spectrum of the zero packed
time series and dashed line shows the frequency
response of the CIC filter with rate change factor
of 4.
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Figure 4.15 Spectral response of 1-to-8 CIC interpolator. Solid
line shows the periodic spectrum of the zero packed
time series and dashed line shows the frequency
response of the CIC filter with rate change factor
of 8.
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impulse response of the shaping filter should be the convolution of the two impulse

responses, the impulse response of the pulse shaping filter and the impulse response

of the inverse CIC filter.

As mentioned earlier, the CIC filter is designed to handle rate change factors of

R = 4, 8, 16 and 32. The input and output register widths are all 12 bits. Since

the same filter will be used over a range of rate change factors, maximum register

widths must be chosen over all the rate change factors. These maximum widths

occur at the maximum rate change factor, i.e., R = 32. The register widths are

calculated according to Equation (2.13) and Equation (2.15). The register widths

for each stage are 13, 14, 15, 15, 15, 19, 23 and 27 respectively. The number of

LSB’s discarded going into the output register is 6, 9, 12 and 15 for the rate change

factor of 4, 8, 16 and 32, respectively.

4.4.2 Design of half-band filter

To reach the similar image rejection ratio of the designed 4th order CIC filter,

the length of the half-band FIR filter is at least 13. Since the interpolation ratio

of the designed CIC filter is limited to 4, 8, 16 and 32, two-, three-, four- and five-

half-band FIR filters can be cascaded to achieve the same interpolation ratio as the

CIC filter.

Figure 4.16 shows the periodic spectrum of the zero packed time series after the

processing of the pulse shaping filter and the frequency response of two cascaded

half-band FIR filters. Figure 4.17 shows the periodic spectrum of the zero packed

time series after the processing of the pulse shaping filter and the frequency response

of three cascaded half-band FIR filters.

The half-band FIR filter of the length of 13 is implemented according to the

polyphase half-band FIR filter shown in [10]. The input data sequence is theoret-

ically upsampled by 2 before being processed by a half-band filter, i.e., one zero

valued sample is inserted between two input samples. This is very similar to the

situation described in Section 4.3.1; thus, the half-band filter can also be parti-

tioned into a pair of polyphase filters instead of inserting zero valued samples. The
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Figure 4.16 Spectral response of two cascaded half-band FIR
filters. Solid line shows the periodic spectrum of
the zero packed time series and dashed line shows
the frequency response of the two cascaded half-
band FIR filters.
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Figure 4.17 Spectral response of three cascaded half-band FIR
filters. Solid line shows the periodic spectrum of
the zero packed time series and dashed line shows
the frequency response of the three cascaded half-
band FIR filters.
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strategy of partitioning a polyphase half-band filter with length of 2N +1 is shown

in the following equation.

H(z) =

2N
∑

n=0

h(n)z−n

=
N
∑

n=0

h(2n)z−2n + z−1
N−1
∑

n=0

h(2n + 1)z−2n

= H0(z
2) + z−1H1(z

2). (4.9)

Based on the Equation (4.9) and the noble identity of a upsampler [10], half-band

FIR filter can be implemented with polyphase architecture. Figure 4.18 shows the

block diagram of the polyphase half-band filter for even N in Equation (4.9).

4.5 Inverse sinc filter

An FIR filter with inverse sinc response can be designed using Equation (2.24).

The filter length is chosen to be 9 and the synthesized impulse response is win-

dowed with the Kaiser window, where the parameter β is chosen to be 2.8. The

main purpose of applying this window is to reduce ripples of the combined system

frequency response when this inverse sinc filter is being used. The impulse response

after applying the Kaiser window is shown in Figure 4.19.

The frequency responses of the sinc distortion, the designed inverse sinc filter

and the combined system are shown in Figure 4.20. As shown in this figure, the
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Figure 4.19 Impulse response of the designed inverse sinc filter.
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designed inverse sinc filter can compensate for the sinc distortion and maintain the

flat output amplitude (less than 0.1 dB) over the bandwidth of 0 to 80% of the first

Nyquist zone. Using longer filter to implement this inverse sinc filter can lead to

less ripple and wider working bandwidth. For example, if the filter is implemented

with the length of 19, the ripple is less than 0.04 dB over the bandwidth of 0 to

90% of the first Nyquist zone. However, for high clock speed, longer length will

increase the complexity of the filter and consume more power.

It should also be noted that the inverse sinc filter exhibits an insertion loss of

about 3 dB. Thus, signal levels at the output port with this filter bypassed are 3 dB

higher than with this filter engaged. For relatively wide bandwidth application,

the benefits of the inverse sinc compensation usually outweighs the 3 dB loss in

the output level. The decision of using this filter or not is related to the specific

application.

In order to implement this filter, the coefficients have to be quantized first. The

coefficients that are scaled to represent integers are listed in Table 4.3. Since the

impulse response of this filter is symmetrical about the center, the signal flow for

FIR filter shown in Figure 2.5 can be simplified. As shown in Figure 4.21, in order to

reduce the number of multipliers, the symmetrical taps outputs are added together

before they are multiplied by the coefficients.

Table 4.3 Coefficients for the designed inverse sinc filter.

h(n) Coefficients Scaled coefficients
(12-bit quantization)

h(0) = h(8) 0.0016 3

h(1) = h(7) -0.0057 -12

h(2) = h(6) 0.0179 37

h(3) = h(5) -0.0693 -142

h(4) 0.8109 1660

56



)(nx

)(ny

1
z

)0(h )1(h )2(h )3(h )4(h

1
z 1

z 1
z

1
z

1
z 1

z
1

z

Figure 4.21 Signal flow graph of symmetrical FIR filter.

4.5.1 Multiplication for inverse sinc filter

Because all the multiplications in this filter deal with constant integer, they can

be implemented using a network of binary shifts, adders and substractors instead

of using real multipliers. In an integrated circuit implementation, binary shifts

(scaling by a power of 2) can be replaced by hardwiring without using logic gates.

Logic gates are only required to implement adders and substractors. The hardware

cost of multiplier is thus approximately proportional to the number of adders and

substractors.

In a binary multiplier, a constant C is represented as:

C =
n
∑

i=0

ci2
i, (4.10)

where the digits ci are taken from the set {0, 1}. If P of the digits ci are nonzero,

to form the product, P shifted values of the multiplicand must be added, requiring

P -1 additions.

In signed digit notation, ci shown in Equation (4.10) are taken from the set {-1,
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Table 4.4 Comparison of binary, CSD and MCSD representa-
tions for the coefficients of the inverse sinc filter.

h(n) |Scaled coefficients| Binary CSD MCSD

h(0) = h(8) 3 11 10-1 11

h(1) = h(7) 12 1100 10-100 1100

h(2) = h(6) 37 100101 100101 100101

h(3) = h(5) 142 10001110 100100-10 100100-10

h(4) 1660 11001111100 10-1010000-100 11010000-100

0, 1} instead of just {0, 1}. Assume hardware cost of implementing the adders and

subtractors are the same and both are referred to as adders. The signed digit repre-

sentation which requires the fewest adders is known as canonic signed digit (CSD)

representation [21]. In fact, the addition and subtraction can not be considered

as the same cost of operations. An improved algorithm, modified canonic signed

digit (MCSD) algorithm, uses -1 only when the total number of operations can be

reduced [22].

Here, the inverse sinc filter coefficients are used as an example to compare dif-

ferent representations. As shown in Table 4.4, the absolute value of scaled h(4), i.e.,

1660, is represented as {11001111100} by binary representation, {10-1010000-100}
by CSD representation, {11010000-100} by MCSD representation. To implement

x × h(4), binary representation requires 6 adders, CSD representation requires 1

adder and 2 substractors, and MCSD representation requires 2 adders and 1 sub-

stractors. These three implementation methods for x × h(4) are shown in Figure

4.22, where “<<” denotes left-shift. It is clear that CDS and MCSD representa-

tions lead to much less hardware than binary representation. Therefore, the inverse

sinc filter is implemented with CSD and MCSD multiplication methods. The power

consumptions of these methods will be compared in following chapter.

4.5.2 Clock gating

Clock gating, which is one of the most well-known low-power techniques, is an

effective way to reduce the power consumption in digital circuits. This technique is
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(a) Binary multiplication
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(b) CSD multiplication

<<2<<7<<9<<10

x

-

(c) MCSD multiplication

Figure 4.22 Comparison of the three different ways to imple-
ment x × h(4).

also implemented in Synopsys Power Compiler [23]. The goal of this technique is

to disable or suppress transitions from propagating to parts of a clock path under

a certain condition. The dynamic power of a digital Complementary Metal Oxide

Silicon (CMOS) circuit is proportional to clock frequency and the square of the

supply voltage [24]. Power can be saved by reducing the clock frequency (in the

limit by stopping), or by reducing the supply voltage (in the limit by powering off

the components). Note that the two limiting cases, clocking freezing and powering

off, are applicable to idle components [25]. When there are idle digital components,

clock gating is a commonly used technique for saving power. Clock gating technique
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Table 4.5 Verilog codes of a flip-flop without clock gating and
one with clock gating.

Without clock gating Clock gating

always @ (posedge clk) always @ (enable or clk)
if (enable) if (!clk)
q <= d; latch output=enable;

assign gated clk = latch output&clk;

always @ (posedge gated clk)
q <= d;

D Q
d

enable

q

clk

(a) Without using clock gating

D Q
d

enable

q

D Q

EN

clk

(b) Using clock gating

Figure 4.23 Implementation comparison between a flip-flop
without clock gating and with clock gating.

can be used at module level or register level in a system. Module level clock gating

involves shutting off an entire block or module in a design if the block or module

is used only for a specific mode. At the register level clock gating, the clock to

a single register or a set of registers is gated. The registers in this application do

not receive the clock signal when no new data are loaded. By using this technique,

the clock of the idle components will be stopped during idle period. Power savings

can be achieved by stopping the clock of registers and propagating signals from

combinational logic circuits due to the freezing of data in registers.

A flip-flop without clock gating and with clock gating are compared here. Ta-
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Figure 4.24 The mechanism of using latch to prevent the glitch
on the gated clock net.

ble 4.5 shows Verilog code comparison and Figure 4.23 shows the corresponding

implementations.

As shown in Figure 4.23, a latch and an AND gate are used in the clock gating

implementation. The main reason for using a latch is to prevent the glitches on

the gated clock since its changes happen during the low phase of the clock. This

mechanism is shown in Figure 4.24. When the clock is low, the latch is enabled.

The enable input is propagated to the latch output. In the mean time, when

the clock arrives, it gets propagated to the gated clock net, without any glitches

because the latch output is stable for sufficient time to meet the flip-flop’s setup

requirements. When the enable input goes low, output from the AND gate and is

also low preventing the clock from being propagated to the gated clock net. This

makes the gated clock net to be low without any switching activity.

Since whether to use the inverse sinc filter block is application dependant, mod-

ule level clock gating technique is used to shut off the clock signal for this block

when users choose not to use it. The block diagram is similar to the one shown in

Figure 4.23(b) except that the register is replaced with the inverse sinc filter block.

4.6 Multipliers

Since the frequency of the output IF signal is tunable, real digital multipliers are

required to multiply the outputs of the QDDS and the outputs of the interpolation
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filters. There are 6 different digital multipliers available in the Synopsys Design-

Ware library, which is a broad portfolio of synthesizable implementation intellectual

properties (IPs) for ASIC, system on chip (SOC) and FPGA design [26], including

DW02 mult, DW02 mult 2 stage, DW02 mult 3 stage, DW02 mult 4 stage, DW02

mult 5 stage and DW02 mult 6 stage. Synopsys Design Compiler maps “∗” in

HDL code to DW02 mult by default. DW02 mult is a totally combinational cir-

cuit, which has the parameterized word length and unsigned or signed (two’s-

complement) data operation selection. During the logic synthesis process, Design

Compiler selects the appropriate combinational circuit architecture according to

the constraints set by users. Other multipliers available in the DesignWare library

are all pipelined multipliers. For example, DW02 mult 3 stage is a three stage

pipelined multiplier, which produces a product with a latency of two clock cycles.

These pipelined multipliers also have the parameterized word length and unsigned

or signed (two’s-complement) data operation selection. It should be noted that for

automatic pipeline retiming the combinational circuits in these pipelined multipliers

are different from the one in DW02 mult.

It is found that the resulting circuit using DW02 mult does not meet the timing

requirements for the design of this thesis. As a result, a pipelined multiplier is

necessary for the design. Also, the automatic pipeline retiming technique has to be

used to optimize the timing. This automatic pipeline retiming can be achieved by

using the special register retiming command in Design Compiler.

The compile command in Design Compiler optimizes combinational logic by

performing Boolean optimization and mapping the design to the target technology

library. The optimization leaves unchanged the location and number of any registers

present in the design. To further improve the circuit timing, register retiming

technique can be used. Register retiming is a sequential optimization technique

that moves registers through the combinational logic gates of a design to optimize

timing and area. Designers can determine the optimal register locations and code

them into the HDL description. However, it is difficult to find the optimal register

locations inside a multiplier in the DesignWare library without total understanding
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Figure 4.25 Block diagram of DW02 mult 2 stage before regis-
ter retiming and after register retiming.

of the implementation methods of the multiplier. In this case, the special register

retiming command, optimize registers −period 0, provided by Design Compiler

can be used to automatically find the optimal locations of the registers in the

design. This register retiming is performed after a design is compiled. Figure 4.25

shows the block diagram of DW02 mult 2 stage before register retiming and after

register retiming. As one can see from the sub-figure (a), registers are placed at

output before register retiming. After register retiming, shown in sub-figure (b),

registers are moved inside the combinational logic gates to optimize timing and

area.
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The multipliers in this design are implemented with DW02 mult 2 stage and

DW02 mult 3 stage. Although the results show that both implementations can

meet the timing requirements after register retiming, the implementation using

DW02 mult 3 stage consuming more power and area. As the result, DW02 mult 2 stage

with register timing is chosen as the multiplier in this modulator.

4.7 Summary

The implementation of all the key blocks in the modulator are elaborated. A

novel QDDS architecture is proposed, which combines Suntherland algorithm, sine

phase difference method and QLA method to compress ROM size. For the im-

plementation of pulse shaping filter, two general design approaches are introduced.

One approach uses two pulse shaping blocks to process I/Q data and the other uses

one pulse shaping block by interleaving I/Q data. The implementation of pipelined

CIC filter and polyphase half-band filter are covered. For the implementation of the

inverse sinc filter, CSD multiplication and MCSD multiplication are used to imple-

ment the multipliers inside. Clock gating technique is also used to save power when

the inverse sinc filter is not being used. The implementation of digital multipliers

in the modulator is also discussed in this chapter.
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Chapter 5

Performance Evaluation

As described in Chapter 4, there are different design options for each block.

The performance of these design choices will be compared in this chapter with

an emphasis on power consumption. To this end, a high-level power estimation

technique is described. The technique can be used as a fast power consumption

comparison for different design choices. The design choice which leads to less power

consumption will be integrated together to achieve a low-power modulator.

5.1 High-level power estimation

5.1.1 Sources of power consumption

Power consumption in an integrated circuit has two components, dynamic power

consumption and static power consumption. Dynamic power is dissipated when a

device is switching. Switched capacitance power comes from charging and discharg-

ing capacitive loads. The calculation of the switched capacitance power is shown

in Equation (5.1), where Cload is the capacitive load, α models the switching prob-

ability during a cycle of the clock toggling at frequency f and Vdd is the supply

voltage. Short-circuit power is the second part of the dynamic power consumption.

It is dissipated due to the current that conducts when both pull-up and pull-down

networks are momentarily conducting at the same time. Equation (5.2) gives a

simple model of the short circuit power, where β models the transistors’ conduc-

tivity per voltage factoring the linear region, T is the inputs’ rise/fall time, and τ

is the gate delay [24]. Leakage power, which is the major source of static power

consumption, is mostly due to leakage currents flowing through the channel even
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when the gate-source voltage is below threshold voltage.

P =
1

2
· Cload · α · V 2

dd · f (5.1)

Psc =
β

12
(Vdd − 2Vth)

3 τ

T
(5.2)

According to the data shown in [24], the power consumption for integrated cir-

cuits at 0.18µm and larger technology is still dominated by the dynamic power

consumption. However, the leakage power has to be considered for a design using

0.13µm or more advanced technology [27]. For the design presented in this thesis,

the modulator is implemented with 0.18µm technology. All the low-power methods

used are trying to save the dynamic power because dynamic power consumption

dominates in this technology. Note that some dynamic power efficient implementa-

tions actually lead to increasing leakage power consumption.

5.1.2 Power estimation and analysis flow

Generally speaking, all the tools for switched capacitance power consumption

estimation need to evaluate Equation (5.1). This can be done at different lev-

els of abstraction, such as algorithm level, RTL level, gate level or circuit level.

Power calculator collects the parameters of Equation (5.1) at the respective level

of abstraction. Floorplan and the architecture determine the physical and struc-

tural architecture and represent the capacitance Cload in Equation (5.1). Activity

calculator produces an activation profile for each of the components modeling the

switching probability, α in Equation (5.1). Finally, the supply voltage Vdd and the

clock frequency f are provided by the designer. For accurate short circuit power

and leakage power estimation, transistor level models are necessary.

For the power consumption estimation in this thesis, a fast comparison of dif-

ferent design options is desired. The primary goal of this thesis is to know which

design option should be chosen to follow. Thus, relative power consumption figures

for each of the design options are needed. Although the predicted power figure of
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the different options may differ to some extent from the final power figure after im-

plementation, it is important that the estimated most power efficient option really

leads to the least power consumption. Based on this consideration, the gate level

power estimation is chosen.

5.1.3 Power estimation in logic synthesizer

The power estimation flow of Synopsys Design Compiler is shown in Figure 5.1.

After performing synthesis, Synopsys Design Compiler uses the synthesized gate

level netlist to estimate the power consumption. The dynamic power considered by

Synopsys Design Compiler includes net switching power and cell internal power. Net

switching power is computed according to Equation (5.1). Capacitance is computed

based on the capacitance specified in library cells and wire-load model. The cell

internal power includes the power consumed due to switching activities on internal

nodes of cells and the short circuit power consumed by the cells. The leakage power

is estimated according to the leakage power annotation for each cell in the library.

The leakage power annotations may vary with different input states of one cell

because leakage model can be state dependant [24, 27].

The two most significant sources of inaccuracy at the gate level power estimation

are the switching activities and the prelayout wire-load values [28]. There are two

ways to estimate the switching activities, vector analysis and vectorless analysis.

For the vector analysis, the switching activities can be estimated from simulation

data. For the vectorless analysis, power estimator annotates the switching activity

for the ports and propagates this value through the design based on statistical

calculations.

The vector analysis has several limitations. First, for large design, circuit sim-

ulation is very time consuming. Second, it is difficult to determine if the test cases

causing the highest power consumption are covered by simulation data. Since the

goal is to compute the relative power consumption figures for each design option, the

vectorless power analysis is chosen. The Synopsys Design Compiler uses the default

switching activity (0.25 toggle per positive edge) for the ports and the wire-load
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Figure 5.1 Power estimation in logic synthesizer.

values are chosen to be worst case wire-load estimates.

Although the vectorless power consumption estimations in Synopsys Design

Compiler are just rough estimates, these estimations are good indicators of power

consumption trends at the design stage to determine which design option leads to

less power consumption, i.e., such data are more useful in comparing the power

implications of various design strategies than in predicting a chip’s actual power

consumption [28]. The relative low-power design options indicated by Synopsys

Design Compiler are chosen to build final modulator.

5.2 Performance of QDDS

In order to evaluate the performance of the proposed QDDS, the proposed QDDS

is compared with two other QDDS implementation methods. The block diagrams

of these two other implementations are shown in Figure 5.2. The first QDDS

implementation method does not use any phase-to-amplitude ROM compression

method, while the second implementation compress the phase-to-amplitude ROM

using the quarter-wave symmetry method.
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Figure 5.2 Two conventional QDDS implementations.
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5.2.1 Output spectrum

In order to compare the output spectrum of three QDDS architectures, it is

important to identify the sources of noise in QDDS circuit. The first source of noise

is truncation noise due to phase truncation at the input of the phase-to-amplitude

converting ROM. The second is ROM compression noise which is a nonlinear dis-

tortion that usually exists when phase-to-amplitude converting ROM compressing

methods are employed. The third is the quantization noise which is introduced

by the finite precision of the samples stored in the phase-to-amplitude converting

ROM.

As discussed in Section 4.2.1, phase-to-amplitude converting ROM using quarter-

wave symmetry doesn’t introduce any compression noises if a 1
2
-LSB phase offset is

introduced. Therefore, the output spectrum purity of the two conventional struc-

tures are the same.

The spectrum of two frequencies for the conventional QDDS architectures and

the proposed QDDS architecture are shown in Figure 5.3 and Figure 5.4 respec-

tively. Figure 5.3 is the spectrum of the outputs when the 32-bit tuning word is

0X1999999A. With this tuning word, the output frequency is fout = M
232 × frefclk ≈

0.1 × frefclk. Both spectrum shows big spurs in this figure as a result of phase

truncation. As one can see in this figure, the biggest spur of the proposed QDDS is

about 2 dB larger than the conventional architecture’s biggest spur. This is because

that the phase-to-amplitude compression method used in the proposed architecture

introduces compression noises. Figure 5.4 is the spectrum of the outputs when the

32-bit tuning word is 0X1AA00000. With this tuning word, the output frequency

is fout = M
232 × frefclk ≈ 0.104 × frefclk. Since all non-zero bits of the tuning word

are located in the highest 12 bits, there is no phase truncation for this tuning word.

The main noise source for the conventional QDDSs are the quantization noise. For

the proposed QDDS architecture, the phase-to-amplitude compression method still

introduces extra compression noises and lowers down the SNR.
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Figure 5.3 Spectrum of the QDDS output (fout ≈ 0.1×frefclk).
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Figure 5.4 Spectrum of the QDDS output (fout ≈ 0.104 ×
frefclk).
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Figure 5.5 Power consumption comparison for 3 different
QDDS architectures.

5.2.2 Power consumption

Figure 5.5 shows the power consumption of three different QDDS architectures.

As one can see from this figure, the proposed QDDS can save up to 90% power

consumption at 150 MHz compared with the QDDS which uses full size ROM, and

can save up to 60% power consumption at 150 MHz compared with the QDDS

which uses quarter-wave symmetry. Reports from logic synthesizer also show that

the proposed QDDS can save area compared with the conventional ones. The

proposed QDDS can save up to 98% area compared with the design which uses

full size ROM, and can save up to 91% area compared with the design which uses

quarter-wave symmetry.

5.3 Performance of pulse shaping filter

As described in Section 4.3.3, there are two general approaches to design the

pulse shaping filter for a quadrature modulator. One approach requires two pulse

shaping filter blocks to process the I/Q data separately, while the other approach

requires only one pulse shaping filter block by interleaving the data in time. When
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multiple paths use the same filter coefficients to process different data, the second

interleaving technique is more area efficient. Figure 5.6 shows the power consump-

tion comparison of these two methods. The figure shows the interleaving I/Q data

method consumes more power although it is more hardware efficient. Since the

design focus is on low power, two pulse shaping filter blocks is chosen for be the

implementation method of the modulator.

5.4 Performance of interpolation filter

As described in Section 4.4, two interpolation filter structures are considered in

the modulator. One is CIC filter and the other is half-band filter. For the design

of this thesis, the interpolation ratios available are 4, 8, 16 and 32. CIC filter can

support these interpolation ratios with the same structure. In order to compare

frequency response and power consumption, two, three, four and five half-band

filters are cascaded respectively.
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Figure 5.7 Comparison of HBF and CIC frequency response.

5.4.1 Frequency response

Figure 5.7 shows the frequency responses of the CIC filter with the interpolation

ratio of 4 and two cascaded half-band filters with the filter length of 13. Both of

them can suppress extra spectra copies with more than 60 dB image rejection ratio.

The difference is that the CIC filter has an obvious passband attenuation, while the

half-band filter only has a small passband ripple which is less than 0.05 dB.

5.4.2 Power consumption

Figure 5.8 to Figure 5.11 show the power consumption comparison between the

CIC filter and the half-band filter when the interpolation ratio is 4, 8, 16 and 32,

respectively. The CIC filter can save more than 70% of power compared with the

half-band FIR filter for all the possible configurations. A penalty comes from the

frequency dependent attenuation that the CIC filter introduces over the frequency

range of the data to be transmitted. As described in Section 4.4.1, two methods

can be used to alleviate this frequency dependant attenuation, i.e., using higher
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Figure 5.8 Power consumption comparison for two interpola-
tion filters with the interpolation ratio of 4.
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Figure 5.9 Power consumption comparison for two interpola-
tion filters with the interpolation ratio of 8.
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Figure 5.10 Power consumption comparison for two interpola-
tion filters with the interpolation ratio of 16.
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Figure 5.11 Power consumption comparison for two interpola-
tion filters with the interpolation ratio of 32.
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Table 5.1 Power consumption comparison of ISF using CSD
multiplication and MCSD multiplication.

System Power consumption Power consumption
clock of ISF using CSD of ISF using MCSD

frequency multiplications multiplications
(MHz) (mW) (mW)

50 2.795 2.785

60 3.353 3.335

70 3.916 3.894

80 4.479 4.454

90 5.044 5.016

100 5.598 5.567

110 6.103 6.072

120 6.691 6.657

130 7.224 7.188

140 7.867 7.828

150 8.385 8.342

rate change factor or precompensating it by configuring SQRC coefficient memory.

Disadvantage of the precompensating method is that it will affect the frequency

response of the SQRC filter.

5.5 Performance of inverse sinc filter

As described in Section 4.5.1, the inverse sinc filter can be implemented with

two multiplication methods, CSD multiplication and MCSD multiplication. The

power consumption of these two implementations are compared in Table 5.1. The

results show that less power consumption can be achieved when the MCSD mul-

tiplication method is used in the filter. Synthesis results also show that this filter

implemented with the MCSD multiplication results in smaller area compared with

the implementation with CSD multiplication.

5.6 Summary

High level power estimation technique for IC design is introduced in this chap-

ter. Using the high level power estimation technique, different design choices are

compared for power consumption. The performance comparison shows that the pro-
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posed QDDS architecture can save up to 60% of power consumption at 150 MHz

compared with one conventional design which just uses quarter-wave symmetry

characteristic. The power consumption comparisons for other key blocks show that

using two pulse shaping filters for I/Q processing, CIC interpolation structure and

inverse sinc filter with MCSD multiplication consume less power than alternative

design choices. These blocks with less power consumption will be integrated to

achieve a low-power modulator.
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Chapter 6

System Integration

The performance evaluation results show that the proposed QDDS, the two

pulse shaping filters for I/Q processing, the CIC interpolation structure, and the

inverse sinc filter with MCSD multiplication consume less power than alternative

design choices. A low-power consumption modulator is implemented with these

low-power consumption blocks. This chapter describes functional verification and

power estimation of the designed modulator.

6.1 Functional verification

6.1.1 Testing model

In order to perform functional verification for the designed modulator, a testing

model is developed. Referring to Figure 6.1, random binary data are generated in

Matlab and saved in a testing data file. These data are used as the input for the

designed modulator. Final output data of the modulator as well as the intermediate

output data from each block are dumped into individual data files. Matlab is then

used to analyze these data files with fast fourier transform (FFT) to verify the

functionality. The coefficients of the SQRC filter, the interpolation ratio of the CIC

filter and the digital tuning word of the QDDS must be configured before testing.

For testing purpose, the coefficient data for the SQRC filter is configured with

the impulse response shown in Figure 4.10, i.e., the roll-off factor is 0.22. All the

spectrums shown in this chapter are based on this same roll-off factor for SQRC

filter. Since the configuration of the roll-off factor only controls the transmitting

signal’s bandwidth, the output spectrum purity won’t be affected by this configu-
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ration.

6.1.2 QDDS

The outputs of the QDDS are the first intermediate results to be verified. As

described in Equation (2.1), the QDDS output frequency is controlled by the digital

tuning word. Four tuning words are used to test the QDDS. These tuning words

are 0X1999999A, 0X1AA00000, 0X26666666 and 0X66666666. The corresponding

output frequencies for the tuning words are about 0.1 × frefclk, 0.104 × frefclk,

0.15 × frefclk and 0.45 × frefclk, respectively. The spectrums for four tuning words

are shown in Figure 6.2.

As one can see from the output spectrum, the largest spur for sub-figure fout ≈
0.1× frefclk is about 62 dB lower than the expected output signal, the largest spur

for sub-figure fout ≈ 0.104 × frefclk is about 70 dB lower than the expected output

signal, the largest spur for sub-figure fout ≈ 0.15×frefclk is about 64 dB lower than
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the expected output signal and the largest spur for sub-figure fout ≈ 0.45×frefclk is

about 65 dB lower than the expected output signal. It should be noted that there

is no phase truncation for sub-figure fout ≈ 0.104× frefclk, because only the highest

12 bits of the tuning word are not zeros. The main noise sources in this case are

ROM compression and quantization. For other three tuning words, the main noise

sources are ROM compression, quantization and phase truncation.
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Figure 6.3 Signal spectrum after pulse shaping filter.

6.1.3 Pulse shaping filter

The output of the pulse shaping filter is the second intermediate results to be

verified. Referring to the output signal spectrum in Figure 6.3, the minimum out-

of-band rejection ratio is about 55 dB. The spectrum shown in this figure is similar

with the frequency response shown in Figure 4.11, which means that the designed

SQRC filter functions properly.

6.1.4 CIC filter

The output of the CIC filter is the third intermediate results to be verified. The

four possible configurations for the interpolation ratio are 4, 8, 16 and 32. The

results for the interpolation ratio of 4 and 8 are shown here. Figure 6.4 shows the

signal spectrum when the interpolation ratio is 4 and Figure 6.4 shows the signal

spectrum when the interpolation ratio is 8.

It can be seen that these plots are the normalized amplitudes as a function of

symbol rate. Note that the maximum value for each x-axis is actually the half

system clock frequency. For the CIC filter with the interpolation rates 4 and 8, the
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Figure 6.4 Signal spectrum after CIC filter (R = 4).
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Figure 6.5 Signal spectrum after CIC filter (R=8).
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maximum value is 8×symbol rate and 16×symbol rate respectively. The frequency

is normalized to the symbol rate instead of the system clock frequency for better

demonstration of the position of the residual spectrum. For example, when the CIC

filter is configured with the interpolation ratio of 4, there are 3 unwanted images

located at 4×symbol rate, 8×symbol rate and 12×symbol rate. One can clearly see

the residual spectrum at 4×symbol rate and a small residual spectrum at 8×symbol

rate in Figure 6.4. The other residual spectrum at 12×symbol rate is symmetrical

with the residual spectrum at 4×symbol rate about half system clock frequency.

One can also compare Figure 6.4 with Figure 4.14, and compare Figure 6.5 with

Figure 4.15. The spectrum shown in Figure 6.4 and Figure 6.5 are almost identical

to the periodic spectrum times the corresponding frequency response of the CIC

filter. This means that the designed CIC filter is working properly.

6.1.5 Modulator

Since both the interpolation ratio of the CIC filter and the output frequency of

the QDDS are configurable, there are a number of possible configurations. Only a

selected testing results are shown here. Note that all the results are obtained with

the inverse sinc filter turned on.

Figure 6.6 shows the results with tuning word of 0X1999999A and four possible

interpolation ratios. The corresponding output center frequency is about 0.1 ×
frefclk. There are two images at about 0.3 × frefclk and 0.5 × frefclk in Figure 6.6.

By comparing this figure with the spectrum plot for fout ≈ 0.1 × frefclk in Figure

6.2, one can understand that the images at about 0.3 × frefclk and 0.5 × frefclk are

resulted from the multiplication of the baseband signal with the spurs of the QDDS.

Figure 6.7 shows the results with tuning word of 0X1AA00000 and four possible

interpolation ratios. The corresponding output center frequency is about 0.104 ×
frefclk. There are also two small images at about 0.314 × frefclk and 0.48 × frefclk

shown in Figure 6.7. For the same reason that the baseband signal is multiplied

with the big spurs of the QDDS in Figure 6.2.
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Figure 6.6 Output signal spectrum of the designed modulator
with fout ≈ 0.1 × frefclk.
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Figure 6.7 Output signal spectrum of the designed modulator
with fout ≈ 0.104 × frefclk.
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Figure 6.8 Power consumption estimation of the designed mod-
ulator after logic synthesis.

6.2 Power consumption estimation

6.2.1 Power consumption estimation after logic synthesis

The power consumption of the designed modulator is estimated in logic synthe-

sizer first. The power consumption estimated at this stage is the core power of a

chip [28]. It is estimated under the following conditions: interpolation ratio of the

CIC filter is 4; the inverse sinc filter is turned on; the switching activity for the input

port is set at 0.25; and the wire-load values are chosen to be worst case wire-load

values. As shown in Figure 6.8, the core of the designed modulator consumes about

25 mW at 150 MHz system clock frequency.

6.2.2 Power consumption estimation after layout

Layout of the designed modulator is done in Cadence Encounter and the result is

shown in Figure 6.9. There are a total of 66 input/ouput pads, 5 pairs of core power

pads and 11 pairs of ring power pads. The core area is about 4.3 mm2 and the chip

area is about 7.06 mm2. With the same configuration, i.e., the interpolation ratio

of the CIC filter is 4 and the inverse sinc filter is turned on, the power consumption
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Figure 6.9 Layout of the designed modulator.

of the designed modulator is also estimated. The power consumption at this stage

is called overall power estimation [28]. The power consumption estimation method

is still the same as the estimation method described in Section 5.1.2. However,

power consumption estimation at this stage is more accurate because the wire-load

values are close to real values now and power consumption estimation at this stage

also considers the power consumption from pads. As shown in Figure 6.10, the

overall power consumption of the designed modulator consumes about 95 mW at

150 MHz system clock frequency. The designed modulator is compared with other

designs and the results are shown in Table 6.1. As one can see from this table,

only the design shown in [29] consumes similar power as the design presented in

this thesis. However, the design shown in [29] doesn’t have pulse shaping filters

and interpolation filters. One still has to implement these functions off-chip in a

real application. Therefore, the modulator presented in this thesis has superior

performance in power consumption.
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Figure 6.10 Power consumption estimation of the designed
modulator after layout.

Table 6.1 Comparison of different modulator ICs

Chip Process Power Max. clock On-chip DAC
(mW/MHz) (MHz)

AD9856 [2] - 7.3@3V 200 12-bit

Vankka [30] 0.35µm CMOS 2.04@2.8V 500 12-bit

Lindeberg [31] 0.13µm CMOS 0.69@1.5V 200 1-bit

Wu [29] 0.25µm CMOS 0.6@2.5V 800 -

This Work 0.18µm CMOS 0.63@1.6V 150 -

6.3 Summary

The low-power blocks described in Chapter 5 are integrated together to achieve

a low-power quadrature modulator. Functional verification is performed to verify

the design. Both the intermediate outputs and final output are analyzed in fre-

quency domain. The results show that the designed modulator functions properly.

Power consumption estimation of the modulator is also shown in this chapter. The

core power consumption estimation shows that the core of the modulator consumes
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about 25 mW at 150 MHz system clock frequency and the overall power consump-

tion estimation shows that the modulator consumes about 95 mW at 150 MHz

system clock frequency. The designed modulator is also compared with other de-

signs and the results show that it has superior performance in power consumption.
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Chapter 7

Conclusions

Quadrature digital modulation techniques are widely used in modern wireless

communication systems because of their high performance and flexibility. However,

these advantages come at the cost of high power consumption. For example, one

commercially used modulator [2] consumes about 1100 mW at 150 MHz. This

thesis focuses on the integrated circuit implementation of a low-power quadrature

digital modulator in 0.18µm CMOS technology which is intended to be used in a

variety of portable applications such as cell phones and personal digital assistants.

The designed quadrature digital modulator consists of several key blocks: a

QDDS, pulse shaping filters, interpolation filters and an inverse sinc filter. The

QDDS generates sine/cosine carrier reference signals for the modulator. The pulse

shaping filters are used to limit transmitting bandwidth and reduce intersymbol

interference. The interpolation filters are used to increase sampling rate and enable

the translation from baseband to intermediate frequency within digital domain.

The inverse sinc filter is used to precompensate the sinc distortion coming from the

following DAC.

The design strategy used in this modulator is trying to find low-power im-

plementation for each block inside and then integrate them together to achieve a

low-power quadrature digital modulator. In order to find low-power consumption

implementation for the key blocks, each block is implemented with multiple design

choices and high-level power estimation is used for fast comparison between these

multiple design choices. Lower power consumption blocks are integrated to achieve

a low-power modulator and performance of the designed modulator is evaluated.

91



7.1 Conclusions

Several ROM compression methods are used to reduce the ROM size for the

implementation of the QDDS. By combining Suntherland algorithm, sine-phase dif-

ference method and quad line approximation method, the final ROM compression

ratio achieved is 14.7 compared with one conventional design which simply uses

quarter-wave symmetry characteristic of sine and cosine waves. The power con-

sumption comparison shows that the proposed QDDS circuit can save up to 60%

of the power consumption at 150 MHz system clock frequency compared with the

same conventional design. Extra noises are introduced because of these compression

methods used.

The pulse shaping filter is implemented according to the polyphase structure

and the filter length is 128 with a built-in four times upsampling function. There

are two general approaches to design this filter for a quadrature modulator. The

first approach uses two pulse shaping blocks to process I and Q data separately.

The second approach just uses one pulse shaping block by interleaving I and Q

streams in time. The power consumption comparison shows that the second ap-

proach consumes more power although it is more hardware efficient. So the one

using two pulse shaping blocks is chosen as the implementation method in this

design.

Interpolation ratio of the interpolation filters in the modulator is limited to 4,

8, 16 and 32. Two hardware efficient interpolation architectures are considered in

the modulator. One is CIC filter and the other is half-band FIR filter. The power

consumption comparison shows CIC filter consumes less power than its counter-

part. So CIC interpolation structure is chosen as the interpolation structure in this

modulator. The penalty is the frequency dependant distortion coming from CIC

filter. However, one can alleviate this distortion by using higher interpolation ratio

or by configuring the coefficient RAM of pulse shaping filter with the convolution

of two impulse responses - one is the impulse response of the pulse shaping filter

and the other is the impulse response of an inverse CIC filter.
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The inverse sinc filter is implemented with the length of 9. Since all the multipli-

cations in this filter are constant multiplications, conventional design usually uses

CSD multiplication method to implement all the multipliers. However, the MCSD

multiplication method is more suitable for ASIC design. The power consumption

estimation shows the filter using MCSD multiplication method does lead to less

power consumption and is more hardware efficient compared with the design using

CSD multiplication method.

The final quadrature digital modulator is implemented with the proposed low-

power QDDS architecture and other low-power consumption blocks which are found

by comparing power consumption of different design approaches for each block.

The results show that the modulator designed with this strategy leads to less power

consumption and provides a universal low-power solution for quadrature digital

modulator design. The power consumption estimation shows that the designed

modulator consumes about 95 mW at 150 MHz system clock frequency which is

much lower than the similar product that consumes about 1100 mW at 150 MHz

system clock frequency.

The novel 32-bit low-power QDDS in the modulator can be used in various

quadrature digital modulators and demodulators which have low-power consump-

tion requirement. The designed modulator also has a number of other features:

• 0 to 75 MHz output bandwidth

• Configurable pulse shaping filters and interpolation filters

• Internal sin(x)/x correction filter

7.2 Future work

There are still a number of interesting areas that can be investigated further in

the future.

• Circuit level low-power techniques

Most of the low-power consumption techniques used in this thesis are at system

level and algorithm level. Other low-power techniques at circuit level, such as

multiple supple voltages and dynamic supply voltage scaling can also be applied to

93



study how much power can further be saved.

• On-chip digital to analog converter

There will be several advantages if a low-power on-chip DAC can be included.

One advantage is that it can avoid delays and line loading caused by interchip

connection to an off-chip DAC. Another advantage is that it can save both power

and area.

• Multilevel QAM

The modulator structure described in this thesis can be used for many quadra-

ture digital modulation. It is interesting to apply this structure to a quadrature

modulator with low-power consumption that can support multilevel QAM.
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Appendix A

Scripts for Digital IC Design

A.1 A script for invoking NCsim in batch mode

#!/bin/csh -f

ncvlog ./test.v

ncvlog ./testbench.v

ncelab -access +r worklib.testbench:module

ncsim -tcl worklib.testbench:module <<!

run 10000 us

quit

!

A.2 A script for invoking Synopsys Design Compiler in

batch mode

#!/bin/csh -f

dc shell <<!

analyze -format verilog -lib DEFAULT {“./test.v”}
elaborate test -arch“verilog” -lib DEFAULT -update

current design = “./test.db:test”

check design

set load 10 find(port,“output”)

create clock -name “clk” -period 5 -waveform { “0” “2.5” } {“clk”}
set clock skew -plus uncertainty 0.5 “clk”
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set clock skew -minus uncertainty 0.5 “clk”

set dont touch network find( clock, “clk”)

set fix multiple port nets -all

compile -ungroup all

compile -map effort high -incremental map

report area > ./test.rpt

report power >> ./test.rpt

report timing -path full -delay max -max paths 1 -nworst 1 >> ./test.rpt

write -format verilog -hierarchy -output “./test gate.v” {“./test.db:test”}
quit

!

A.3 A script for invoking Cadence PKS in batch mode

for timing optimization

#!/bin/csh -f

pks shell <<!

read alf /CMC/kits/artisan18/FE/aci/sc/alf/fast.alf

read tlf -force /CMC/kits/artisan18/FE/.../tpz973gbc.tlf

read lef /CMC/kits/artisan18/FE/aci/sc/lef/tsmc18 6lm.lef

read lef update /CMC/kits/artisan18/FE/.../tpz973g 6lm.lef

check library checklib.rpt

read verilog test ctgo.v

do build generic

read def test ctgo.def

set clock clk -period 5

set clock insertion delay 0.1 clk

set clock propagation propagated

set clock uncertainty -early 0.1

set clock root -clock
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do route -timing driven

do fix hold -buffer -critical ratio 0.0

do place -eco

do route -timing driven

report timing > pks postholdfix.rpt

write verilog -hier test postholdfix.v

write def -hier delimiter “/” modulator postholdfix.def

exit

!
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