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Abstract 

Pyranose-Furanose mutases are enzymes that catalyze the isomerization of six-membered 

pyranose and five-membered furanose forms of a nucleotide-based sugar. In this research, the 

substrate binding site of three different mutases were investigated; UDP-galactopyranose mutase 

(UGM), GDP-altro-heptopyranose mutase (GaHM) and UDP-arabinopyranose mutase (UAM). 

Both UGM and UAM use a UDP-based sugar as the substrate but require different cofactors, flavin 

adenine dinucleotide (FAD) and Mn2+ respectively, to function. UGM and GaHM use the same 

cofactor (FAD), but the latter prefers to work with a GDP-based sugar. In this thesis, studies have 

been conducted on these three mutases using a variety of tools, such as X-ray crystallography, 

protein modeling, site-directed mutagenesis and kinetic assays, to understand how these enzymes 

bind their respective substrates.  

Among these three mutases, UGM is the best-studied enzyme and is a validated drug target 

in Mycobacteria.  Despite this, the structural role of some active site residues in substrate binding 

is not clearly understood. Deinococcus radiodurans UGM (DrUGM) mutants of active site 

residues Trp184, Arg364, His88, and Asn372 were prepared and evaluated using kinetic and 

docking studies. The results suggested that these residues are vital to the positioning of UDP-

galactopyranose under FAD in a productive conformation, for maximum enzyme efficiency. 

Inhibition studies, using the inhibitor MS-208, were performed on Mycobacterium tuberculosis 

UGM (MtUGM). Kinetic assays indicated that MS-208 is a mixed-type inhibitor of MtUGM.  

In this study, the crystal structures of Campylobacter jejuni GaHM (CjGaHM) with a 

substrate mimic GDP-mannose were solved, allowing for a comparison of GaHM and UGM 

substrate binding sites. The results highlighted the alterations undergone by CjGaHM to 

accommodate a GDP-based substrate in the active site.  
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A preliminary model of UAM was built based on the protein sequence of Oryza sativa 

UAM1 (OsUAM1) using the protein structure modeling servers I-TASSER and GalaxyWEB. The 

models suggested that, unlike the catalytic role played by the FAD cofactor in UGM and GaHM, 

the role of the Mn2+ cofactor in UAM could be to aid the stabilization of the negative charge of the 

substrate diphosphate. Furthermore, experiments with mutants of OsUAM1 have helped identify 

residues that may bind the metal cofactor. 
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Chapter 1: Introduction 

1.1 Importance of furanoses in cell walls of organisms 

Bacteria, fungi, protozoa, and plants have an outer cell wall that protects the vulnerable 

contents of the cell. Repeating units of carbohydrates, commonly referred to as polysaccharides, 

form one of the major components of the cell wall. Understanding the various polysaccharides that 

constitute the cell wall of these organisms, explaining the formation and necessity of these complex 

polysaccharides and decoding the function of the enzymes that aid in their biosynthesis represents 

an attractive avenue for research. The monosaccharide sugar units that make up these 

polysaccharides can exist either as six-membered pyranose sugars or five-membered furanose 

sugars. Although the pyranose form is more abundant of the two, the furanose form is no less 

important.  

Furanoses have been identified in the cell wall of bacteria, fungi, protozoa, and plants.1 

Gram-negative bacteria have an outer membrane called the lipopolysaccharide (LPS) layer that 

lies outside the thin peptidoglycan layer. The LPS layer has O-antigens or O-polysaccharides 

consisting of sugars in the furanose ring form. For example, D-galactofuranose (D-Galf), arguably 

the most abundant furanose-sugar, has been identified in O-antigens of bacteria such as 

Escherichia coli (E. coli), Klebsiella pneumonia (K. pneumoniae), Shigella dysenteriae (S. 

dysenteriae) and Salmonella typhimurium (S. typhimurium).2-4 Other furanose sugars are also 

incorporated in bacterial cell walls. D-arabinofuranose (D-Araf), even though not as common as 

D-Galf, is found in the cell wall glycoconjugates of Actinomycetes, Pseudomonas aeruginosa (P. 

aerugiosa), Azorhizobium caulinodans (A. caulinodans) and in the mycolyl-arabinogalactan layer 

of Mycobacterium sp.5-7 Furanose residues have also been identified in plant cell wall 
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glycoconjugates.8 L-arabinofuranose (L-Araf) residues are found in arabinan and arabinogalactan, 

which are the major structural components of Rhamnogalacturonan I (RGI) in plant pectin.  

Furanoses help to maintain cell wall rigidity. The galactan of Mycobacterium tuberculosis 

(M. tuberculosis), believed to contribute to cell wall structure and impermeability, is a good 

example.9 Furanoses are crucial to cell growth and survival of bacterial, fungal and protozoan 

pathogens. Deletion of the glfA gene, corresponding to an enzyme essential for galactofuranose 

biosynthesis in the fungus Aspergillus fumigatus (A. fumigatus), rendered the cells with a thinner 

galactofuran layer, less virulent and more susceptible to antifungal agents.   

These furanoses are not found in mammalian glycoconjugates.1 Therefore, understanding 

the production and cell wall incorporation of furanoses in organisms pathogenic to humans and 

mammals has its merits. Weakening the cell wall of these harmful organisms has long been 

considered important in controlling their growth and the spread of diseases. Drug molecules 

focused on targeting the furanose biosynthetic pathway represents an option for the development 

of potential chemotherapeutics.10 Although a number of different furanoses have been identified 

and studied in the cell walls of these organisms, only those relevant to this thesis work are 

introduced here. 

 

1.2 D-Galactofuranose 

 D-Galf residues are vital components that are essential for growth and virulence of a 

mycobacteria.9 The galactofuran of the Mycobacterial cell wall, which features numerous long 

chains of D-Galf residues, is a case in point (Figure 1-1).9 These residues were identified in the 

LPS O-antigen polysaccharides of bacteria such as E. coli, K. pneumonia, and S. dysenteriae 

species. They have also been identified in the cell wall architecture of fungi, such as the Aspergillus 
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species and protozoa, such as Leishmania major (L. major).11,12 D-Galf residues have been 

identified in unique glycoconjugates found in pathogenic bacteria and other organisms pathogenic 

to humans and mammals.                                                        

 

Figure 1-1: A representation of D-Galactofuranose identified in Mycobacterium species.1   

D-Galf residues are shown in blue. 
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1.3 Biosynthesis of D-Galactofuranose 

The proposed D-Galf biosynthetic pathway is shown in Figure 1-2.13 Galactopyranose 

(Galp) is phosphorylated to galactose-1-phosphate (G1P) by galactokinase, which adds a 

phosphate group to the C1 of galactose. Then, uridine monophosphate (UMP) is added onto G1P 

by G1P uridylyltransferase to form uridine diphosphate (UDP) galactopyranose (UDP-Galp).14 

Additionally, UDP-Galp can also be synthesized from UDP-glucopyranose (UDP-Glup) by UDP-

galactose-4-epimerase.15 

The enzymes mentioned above constitute the Leloir pathway. UDP-Galf, the precursor of 

D-Galf residues, is formed by the mutase enzyme, UDP-galactopyranose mutase (UGM), which 

interconverts between the six-membered Galp and the five-membered Galf, as shown in Figure 1-

2.2 Finally, galactosyltransferases transfer D-Galf to the cell wall. 
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Figure 1-2: Proposed biosynthesis of D-Galactofuranose through the Leloir pathway.2 
UGM and the UDP-Galf are highlighted.  
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1.4 L-Arabinofuranose  

L-arabinofuranose (L-Araf) is an abundant sugar found in arabinogalactan glycoproteins 

and polysaccharides such as arabinoxylan in hemicelluloses and RG I and II in pectin of plant cell 

wall.8 Arabinan domains, one of the structural components of RGI, have linear chains of (1, 5)-

linked α-L-Araf residues that are substituted by L-Araf at O-2 or O-3, as shown in Figure 1-3.  

 
 

Figure 1-3: A representation of L-arabinofuranose residues in Arabinan of plant 

Rhamnogalacturonan I.3 
L-Araf residues have been highlighted in blue. 

 

 

1.4.1 Biosynthesis of L-Arabinofuranose in plants 

  UDP-arabinopyranose (UDP-Arap) can be formed either by the action of UDP-

xylopyranose 4-epimerase, which catalyzes the epimerization of UDP-xylopyranose to UDP-Arap, 

or by the action of UDP-Arap-1-phosphate pyrophosphorylase, which transfers UMP to L-Arap-

1-phosphate from uridine triphosphate (UTP) (Figure 1-4).16,17 UDP-Arap is then converted to 

UDP-arabinofuranose (UDP-Araf) by the enzyme UDP-arabinopyranose mutase (UAM) (as 
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shown in Figure 1-4).18 Arabinosyltransferases then act on UDP-Araf and transfer L-Araf to the 

plant cell wall. 

 
Figure 1-4: Biosynthesis of L-Arabinofuranose in plants.4 
UAM and UDP-Araf have been highlighted.  

 

 

1.5 6d-D-altro-heptofurnaose  

6-deoxy-D-altro-heptofurnose (6d-D-altro-Hepf) is one of three furanose sugars found in 

the capsular polysaccharide (CPS) and is essential for the virulence of Campylobacter jejuni (C. 

jejuni), a bacterium that causes gastroenteritis in humans.19 The trisaccharide repeat unit of a strain 

of C. jejuni, HS:41 serotype, is comprised of 6d-D-altro-Hepf residues, L-Araf residues and one 



8 

 

among either 6-deoxy-L-altrofuranose or D-fucofuranose (D-FucF) occurring as the third furanose 

sugar (shown in Figure 1-5).20 Trisaccharides containing 6d-D-altro-Hepf occur more frequently 

(75%) than those with D-FucF (25%). No information is available with regards to the biosynthetic 

pathway that produces this trisaccharide repeat unit.                                                                         

 
 

 

Figure 1-5: The trisaccharide repeat unit isolated from C. jejuni, HS: 41 serotype.5  
Two different trisaccharide repeat units having both 6-deoxy-D-altro-Hepf (in blue) and 

L-arabinofuranose have been shown. The difference between these trisaccharide repeat units is 

the presence of either D-fucofuranose or 6-deoxy-L-altrofuranose. 

 

1.6 Precursors of furanoses 

 The common theme emerging from the biosynthetic pathways described above is the 

requirement of sugar nucleotides for the formation and incorporation of furanose sugars in the cell 

wall. Nucleoside diphosphate sugars act as precursors of the furanoses. In other words, the 

activated furanose sugar donors are essential for the formation of furanose residues. UDP-D-Galf 

is thus the precursor of Galf residues.21 Similarly, UDP-L-Araf and GDP-6d-D-altro-Hepf are the 

precursors of L-Araf and 6d-D-altro-Hepf, respectively. 
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1.7 Pyranose-furanose mutases 

Another theme observed in these pathways is the presence of a pyranose-furanose mutase 

enzyme which catalyzes the production of the precursors described above. These mutases are 

named based on the nucleotide-sugar they act on. For example, in the illustration shown for the 

biosynthesis of D-Galf (Figure 1-3), the mutase that works on interconverting the six and five-

membered galactose rings using UDP as the nucleotide is named UDP-galactopyranose mutase 

(UGM). Pyranose-furanose mutases which are the focus of this thesis will be introduced in this 

chapter. Apart from UGM, UAM, and GDP-altroheptopyranose mutase (GaHM) will be 

discussed. 

 

1.7.1 UDP-galactopyranose mutase  

The glf gene encoding for UGM was first identified in E.coli.2 Subsequently, the gene has 

been identified in K. pneumoniae, M. tuberculosis, and many other pathogenic bacteria, fungi, and 

protozoan parasites.22 UGM is a flavin adenine dinucleotide (FAD) containing enzyme that 

interconverts between UDP-Galp (six-membered ring) and UDP-Galf (five-membered ring). The 

equilibrium of this ring contraction reaction favors the six-membered pyranose ring formation in 

a ratio of 9:1. The reaction scheme is shown below (Figure 1-6). 

     

  

Figure 1-6: Reaction catalyzed by UGM.6  
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FAD is non-covalently bound to the enzyme.23 The purified UGM fractions were yellow 

in color and peaks corresponding to the presence of flavin were observed in UV-visible spectra at 

A382 and A450. To provide further evidence for the presence of the FAD cofactor, UGM fractions 

were thermally denatured, and the peaks corresponding to FAD were observed when analyzed on 

HPLC.2 Later, crystal structures were solved to study the binding and interaction of the FAD 

cofactor with UGM. In general, the molecular weight of UGM was determined to be in the 43 - 45 

kDa range. The molecular weight of E. coli UGM (EcUGM) determined by mass spectrometric 

analysis was 43 kDa, and that of K. pneumoniae UGM (KpUGM) was ~ 45 kDa. Gel filtration 

techniques revealed that KpUGM exists as a dimer.3 The bacterial UGMs identified thus far exist 

as a homodimer except Deinococcus radiodurans (D. radiodurans) UGM (DrUGM), which is 

believed to exist and function as a decamer.24  

Gene knock-out experiments have demonstrated that the loss of the glf1 gene rendered 

Mycobacterium smegmatis (M. smegmatis) cells incapable of growth.9 Significant interest was 

generated in studying this mutase and its mechanism, due to its important role in bacterial survival. 

Moreover, the absence of both D-Galf residues and UGM in humans and mammals means that 

UGM is a potential drug target.  

 

1.7.2 Mechanism of UDP-galactopyranose mutase 

 Considerable effort has been dedicated to investigating the mechanism of action of UGM. 

This unique ring contraction reaction is proposed to proceed through the formation of an iminium 

ion intermediate formed via an SN2 reaction (Figure 1-7).25 It was already known from positional 

isotope exchange (PIX) experiments that the bond between the C1 anomeric carbon of Galp and 

UDP breaks and reforms during the reaction (Figure 1-7). Additionally, the flavin had to be 
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reduced for the reaction to occur, as the enzyme remained inactive under oxidizing conditions.23 

Evidence for the formation of the iminium intermediate was obtained by trapping the FAD-

galactose adduct using sodium cyanoborohydride and radiolabeled UDP-Galp.25 Once the iminium 

ion intermediate is formed, the reaction proceeds by ring closure to form the five-membered 

furanose and attack of UDP to form UDP-Galf, as shown in Figure 1-7. UGM reconstituted with 

5-deaza-FAD (lacking the flavin N5) was unable to demonstrate any cleavage of the anomeric C1 

- O (UDP) bond, suggesting that the reaction is unable to proceed without the presence of the N5 

of flavin.26,27 In the crystal structures of UGM, solved with the substrate (to be discussed later), 

the N5 of reduced FAD (FADred) is poised for the nucleophilic attack on the C1 anomeric carbon; 

electron density observed between N5 and C1 provides further evidence in favor of the 

nucleophilic attack.24,28 
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Figure 1-7: SN2 mechanism proposed for the reaction catalyzed by UGM.7  
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1.7.3 Structure of prokaryotic UDP-galactopyranose mutases 

            X-ray crystallography was used to gain insights into the structure of UGM. So far, the 

crystal structure of a variety of prokaryotic and eukaryotic UGMs has been determined, and the 

structure has been well examined. The first crystal structure determined was that of EcUGM, 

solved to 2.4 Å, without the substrate (Figure 1-8). Each monomer unit can be divided into three 

domains, with a flexible loop and a bound molecule of the cofactor FAD.23             

 

Figure 1-8: Crystal structure of prokaryotic EcUGM.8  

The three domains and the mobile loop are highlighted for the EcUGM crystal structure (PDB id: 

1I8T); Domain 1 (blue) Domain 2 (green) and Domain 3 (gray). FAD (white stick model) is shown 

in Domain 1.  

 

Domain 1 has the FAD binding Rossmann fold, made up of the unique βαβ motif. This 

domain is common among proteins that bind nucleotides such as nicotinamide adenine 
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dinucleotide (NAD), nicotinamide adenine dinucleotide phosphate (NADP) and FAD.29,30 A 

number of conserved residues serve to bind FAD, mainly by hydrogen bonding interactions. The 

isoalloxazine ring of FAD is located at the top of a large cleft, below Domain 1, and is oriented to 

face domain 2. The α-helical Domain 2 lies below the cleft, opposite to Domain 1. This domain 

has five helices and a long, highly flexible loop. Domain 3 has six β-strands forming an antiparallel 

β-sheet, which connects Domains 1 and 2 and seals one end of the cleft formed in the front. The 

substrate was proposed to bind in the cleft region. Two identical monomer units of the enzyme 

form contact through some non-conserved residues in Domains 2 and the enzyme exists as a 

homodimer.  

The crystal structure of KpUGM and M. tuberculosis (MtUGM) were solved later and 

showed similar overall structures and domain organization, despite their moderate sequence 

identity to EcUGM, as shown in Figure 1-9.31 The structures of KpUGM solved with FAD in the 

oxidized form (FADox) and FAD in the reduced form (FADred) were also similar, except for the 

small yet significant changes in the FAD puckering. In the FADox structures, the isoalloxazine ring 

of FAD was planar compared to the bent conformation (butterfly-shaped) observed in the FADred 

structures; the N5 of FAD is sp2 and sp3 hybridized in the FADox and FADred structures 

respectively.24,31  

 

 

 



15 

 

 

Figure 1-9: Sequence identity of UGM from different bacterial species.9 

The sequence alignment was performed using ESPript (Version 3.0). The conserved residues are 

in red blocks (white letters).  
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  DrUGM, MtUGM, and KpUGM were co-crystallized with the substrate UDP-Galp.24,28,32 

These crystal structures allowed for the determination of the substrate binding mode of prokaryotic 

UGMs and the changes undergone by the enzyme when binding the ligands. The substrate binds 

to the active site, in the cleft below the isoalloxazine ring of FAD. Substrate recognition and 

interaction are conserved among UGMs, and each domain contributes residues that recognize the 

different regions of the substrate. Two residues from the fourth helix of domain 1, a conserved 

phenylalanine and tyrosine (Tyr), serve to stack the uracil. The substrate diphosphate is held by 

hydrogen bonding interactions with two conserved arginines. One arginine is contributed by 

Domain 3 while the other moves in with the mobile loop, which seals the active site completely 

by moving into a closed conformation in the presence of substrate. This is a common feature seen 

in all UGMs studied thus far.33 The substrate sugar (Galp) is held below the FAD through hydrogen 

bonds made with the Galp hydroxyls.  

 

1.7.4 Structure of eukaryotic UDP-galactopyranose mutases  

            The three-dimensional crystal structure of eukaryotic UGMs from A. fumigatus (AfUGM) 

and Trypanosoma cruzi (T. cruzi; TcUGM) were solved recently.34-37 Eukaryotic UGMs have a 

similar overall fold and domain organization to the prokaryotic UGMs, despite low sequence 

identity.37 The three domains described in prokaryotic UGMs also exist in eukaryotic UGMs 

(Figure 1-10). However, the monomer units of eukaryotic UGMs are larger in size and have 

regions of insertions in all domains, owing to their longer amino acid sequence (approximately 

100 residues longer). Unlike prokaryotic UGMs, that exist as homodimers (with the exception 

to DrUGM), the two eukaryotic UGMs display different monomeric states. A helix inserted on the 

C-terminus of domain 1 allows AfUGM to exist as a tetramer; TcUGM, which lacks this helix, 
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exists as a monomer.33 Perhaps one of the more significant insertions in eukaryotic UGMs is that 

of a helix in Domain 2, which introduces a second mobile loop in the monomer unit that leads to 

significant differences between the UGM classes.  

 

Figure 1-10: Crystal structure of eukaryotic AfUGM.10  
Three domains, Domain 1 (blue) Domain 2 and Domain 3 (gray) are highlighted. The substrate 

UDP-Galf (white stick model in Domain 2) and FAD (white stick model in Domain 1) are also 

shown (PDB id: 3UKA). 

 

Most features of substrate binding are common to both classes of UGMs; the substrate 

binds in the cleft created by the domains, and most of the active site residues are conserved across 

both UGM classes. However, more positional changes are required for the substrate binding 

residues of eukaryotic UGMs to accommodate UDP-Galp. The active site of prokaryotic UGMs 

is more or less set before the substrate comes in and minimal changes are required to bind the 

substrate in the productive conformation. There are also some differences in the substrate binding 
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mode. The uridine and the α-phosphate of the substrate UMP, are held at a tilted angle in the active 

site of eukaryotic UGMs.33 Other minor differences can also be pointed out. In the uridine-binding 

region of eukaryotic UGMs, a glutamine residue (Gln107 in AfUGM) that forms hydrogen bonds 

with the uracil ring is located under two tyrosines. In prokaryotic UGMs, the uracil ring is stacked 

in between aromatic residues, and there is no residue performing a role similar to that of glutamine. 

These differences arise due to the structural changes in eukaryotic UGMs, but as observed in 

prokaryotic UGMs, they ultimately aid in the positioning of Galp under the FAD cofactor. 

 

1.7.5 Comparison between prokaryotic and eukaryotic UDP-galactopyranose mutases - 

mobile loop flexibility 

Prokaryotic UGMs have one mobile loop while eukaryotic UGMs have two. The mobile 

loops are solvent exposed and stay in an open conformation until the substrate enters the active 

site. In prokaryotic UGMs, upon arrival of the substrate, the mobile loop moves to donate a crucial 

arginine (~ 7-11 Å shift in Cα positioning) which stabilizes the α-phosphate.24 In some structures, 

this residue also hydrogen bonds with the C3 hydroxyl of the sugar, thus forming the 'closed 

conformation' of the mobile loop. Some residues in the loop, including this arginine, form a short 

helix which allows for further stabilization of the loop.  The helices in the lower region of Domain 

2 move in the direction of the active site (by ~ 3 to 8 Å) (Figure 1-11A). This movement and the 

stabilization of the mobile loop showcase the enzyme’s ability to bind and bury the substrate 

completely in the active site. 
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(A)   
 

(B)  
 

Figure 1-11: A comparison of the loops in both prokaryotic and eukaryotic UGMs.11  
(A) Prokaryotic UGMs have a single flexible loop shown in open conformation (in green) and 

closed conformation (in magenta) in the presence of substrate (PDB id: 1I8T). The blue arrow 

shows how Domain 2 moves to close the active site. (B) Eukaryotic UGMs have two flexible 

loops, shown in closed conformation since the substrate is present in the active site (PDB id: 

3UKA). 



20 

 

Apart from mobile loop 1, eukaryotic UGMs have a second loop (mobile loop 2) located 

on top of the extra helix of Domain 2, which moves towards the active site in the presence of the 

substrate (Figure1-11B). In this case, the movement is restricted to the two mobile loops, while 

only little change occurs in the positioning of the adjacent domain helices. Like the prokaryotic 

UGMs, loop 1 (Cα of Arg182 moves ~ 11 Å in AfUGM) moves to stabilize the substrate α-

phosphate. Significant movement (~ 14 Å shift in Cα positioning of Pro206 of AfUGM) is also 

observed in loop 2, which brings in Asn207 (AfUGM) into the active site.35 This asparagine residue 

hydrogen bonds with the O4 hydroxyl of the Galp sugar. Both loops move to bury the substrate 

completely in the active site of the enzyme.  

 

1.7.6 Mutation and modeling studies on UDP-galactopyranose mutases 

  Before crystal structures with ligands were obtained, modeling, molecular dynamics, and 

docking studies were able to predict the mobile loop movement to form the open and closed 

conformations and the significance of the arginines that stabilizes the phosphate.38-40 Over the 

years, a number of mutants were created using site-directed mutagenesis (SDM); crystal structures 

of some of these mutants were solved with ligands and kinetic assays were conducted to describe 

the importance of these critical residues in the active site of UGMs from both classes. The two 

arginines that stabilize the di-phosphate of the substrate were mutated in both prokaryotic UGMs 

and eukaryotic UGMs. KpUGM R174A mutant (arginine from mobile loop 1) inactivated the 

enzyme completely, while AfUGM R182A mutant displayed significantly reduced efficiency.35,40 

This shows that the arginine residue is more important in prokaryotic UGMs while eukaryotic 

UGMs have other residues that help in stabilizing this phosphate. Both KpUGM R280A and 

AfUGM R327A (arginine that stabilizes the ß-phosphate) mutations resulted in no detectable 
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activity. AfUGM R182K and AfUGM R327K mutants displayed 10 to 70 fold less efficiency 

compared to the wild-type enzyme. The crystal structure of AfUGM R327K shows that the 

substrate is still able to bind in the productive conformation.35 However, the crystal structure of 

AfUGM R327A displays the substrate bound in a non-productive conformation, with the anomeric 

carbon of the sugar further away from the N5 of the isoalloxazine ring of FAD. Other active site 

residue mutants of EcUGM and KpUGM were studied to understand the importance of these 

residues to the active site. In KpUGM, the tyrosines which help in the stabilization of the substrate 

diphosphate were mutated to phenylalanines. It was observed that the mutation only decreased 

substrate binding considerably, but did not inactivate the enzyme.40 

 

1.7.7 Inhibitors of UDP-galactopyranose mutase 

 Since UGM is a potential drug target, a significant amount of work has been dedicated to 

identifying and validating inhibitors for the enzyme. Generally, the approach for developing 

inhibitors involves synthesizing substrate analogs or identifying lead compounds through virtual 

screening of compound libraries. A number of groups have designed and synthesized substrate-

like inhibitors of UGM. A variety of sugar-based inhibitors, uridine-based derivatives, fluorinated 

exo-glycal compounds and fluorine substituted sugar-based compounds, and substrate analogs 

have been studied.41-50 The fluorine substituted compounds mostly served the purpose of gaining 

insight into the mechanism of UGM function and were poor substrates. Most of the inhibitors 

mentioned above did not show satisfactory inhibition against bacterial UGMs. The few that 

displayed inhibition against bacterial UGMs (EcUGM, KpUGM, and MtUGM) were in the 

millimolar to micromolar range.50 Due to their polarity, low cell permeability, and cytotoxicity, 

further improvement of these compounds is required. Compounds obtained from screening 
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libraries, containing the 5-arylidene-2-thioxo-4-thiazolidinone core (Figure 1-12), aminothiazole 

core and the more recently discovered triazolothiadiazine series have shown moderate inhibition 

of UGM.51-53 Although these compounds were found to thwart bacterial growth, some compounds 

such as the aminothiazole core compounds were found to be toxic to human cells.54  

                                                  
                                              

Figure 1-12: 5-arylidene-2-thioxo-4-thiazolidinone core based UGM inhibitor.12 

 

1.8 Active sites of prokaryotic and eukaryotic UDP-galactopyranose mutase 

Since understanding the substrate binding of pyranose-furanose mutases is the theme of 

this thesis work, it is important to discuss what is previously known about substrate binding in 

these mutases. The majority of our knowledge arises from UGM, this part of the introductory 

chapter will strive to provide a comparison of substrate binding modes of UGM, based on crystal 

structures solved from prokaryotic and eukaryotic organisms. A comparison of the conserved 

active site residues of prokaryotic UGMs, such as EcUGM, KpUGM, and MtUGM, and eukaryotic 

Af UGM are shown in Table 1-1. 
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Table 1-1: Comparison of active site residues of various UGMs.1 

EcUGM KpUGM MtUGM AfUGM 

H56 H60 H65 H63 

H59 H63 H68 F66 

N80 N84 H89 R91 

L147 F151 F157 F158 

I148 F152 V158 M159 

Y151 Y155 Y161 Y162 

T152 T156 T162 N163 

W156 W160 W166 W167 

R170 R174 R180 R182 

Y181 Y185 Y191 P206 

F182 F186 F192 N207 

N268 N270 N282 Y317 

R278 R280 R292 R327 

E298 E301 E315 E373 

Y311 Y314 Y328 Y419 

R340 R343 R360 R447 

Y346 Y349 Y366 Y453 

D348 D351 D368 N457 

M349 M352 M369 Q458 

 

KpUGM and MtUGM have both unliganded crystal structures and those that were 

complexed with UDP-Galp, for prokaryotes UGMs.28,31,32 A comparison of these structures has 

indicated the changes in the α-helical domain (Domain 2) and those undergone by some of the 

active site residues in order to bind and bury the substrate within the active site. Likewise, in the 

case of eukaryotic UGMs, crystal structures of AfUGM have been solved with and without the 

substrate in the active site.35 
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A comparison of the liganded and unliganded crystal structures can help understand the 

changes that happen to the active site, when the substrate approaches the active site of UGM. 

Domain 2 re-orients to accommodate the uridine portion of the substrate and this triggers the 

mobile loop to form the closed conformation and bury the substrate within the active site. The five 

helices of this helical domain, α4, α5, and α6 and a small loop connecting helices α4 and α5 

function as a flexible hinge. The crystal structure of MtUGM with UDP-Galp is a good example.32 

The Domain 2 helices have moved towards the UDP of the substrate while this movement is not 

observed in the unliganded structure, as shown in Figure 1-13. Additionally, a new helix (helix 

α8) is formed by residues of the mobile loop.32  

 

Figure 1-13: An overlay of liganded and unliganded crystal structures of MtUGM.13  

MtUGM with UDP-Galp (green) and without UDP-Galp (purple) are shown, highlighting the 

important changes occurring in the α-helical domain, on the arrival of the substrate (PDB id: 1VOJ 

& 4RPG).  
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The movement of the mobile loop towards the substrate is expected to close the otherwise 

open substrate binding site (~ 67 % closure as estimated from MtUGM structure). Apart from 

bringing in Arginine, which stabilizes the α-phosphate, the mobile loop also brings in hydrophobic 

residues, which form a hydrophobic pocket that helps in positioning the substrate uridine, as shown 

in Figure 1-14A.32  

(A)               (B) 

 

Figure 1-14: Movement of the mobile loop in the presence and absence of UDP-Galp.14   
(A) The changes in position of active site residues Leu181, Arg180, Ile178 and Leu173, when the 

mobile loop moves towards active site in the presence (green) and absence of substrate (purple)   

(B) The changes in positioning and interactions of residues hypothesized to trigger closure of the 

loop in the presence (green) and absence (purple) of UDP-Galp (PDB id: 1VOJ & 4RPG). 

 

Apart from the domain movement, the presence of the substrate in the UGM active site 

also induces local changes in the orientation of residues close by. A tryptophan residue in helix α6 

Trp166 
Arg261 

 

Gln167 

Arg180 

Leu181 

Leu181 

Leu173 
Leu173 

Ile178 

Ile178 

Trp166 

Arg261 

 

Gln167 

UDP-Galp 
UDP-Galp 



26 

 

rotates and forms hydrogen bonds with the substrate ribose. This movement breaks its cation-π 

interaction with an adjacent arginine causing it to rotate back by 180° and form hydrogen bonds 

with residues nearby. The break in cation-π interaction between Trp166 and Arg261 that occurs 

during MtUGM substrate binding is shown in Figure 1-14B. The conserved nature of these residues 

and their positioning in semi-closed and unliganded structures in prokaryotic UGMs lends support 

to the hypothesis that the movement of these residues could potentially trigger the closure of the 

active site. 

The movement of the α-helices towards the substrate also means the residues have moved 

further closer to the uridine moiety. Additional changes in the orientation of residues aid in 

positioning and binding of the uridine moiety. Among these residues, only a tyrosine and 

asparagine are highly conserved in all prokaryotic UGMs. As shown in Figure 1-15, in MtUGM, 

Tyr161 rotates ~ 45º and forms cation-π interactions with the uracil and the side chain of Asn282 

flips ~ 180º to form hydrogen bonds with the O4 of the uracil ring. A number of different 

nonconserved residues such as phenylalanine, valine, isoleucine and leucine also aid to position 

the uracil ring in a hydrophobic pocket in prokaryotic UGMs. 

The mobile loop brings an arginine that stabilizes the α-phosphate. In most cases the 

guanidium moiety of this residue can enable the stabilization of the β-phosphate. Additionally, 

there are three tyrosines residues which are in position to interact with the substrate diphosphate. 

Earlier these tyrosines were hypothesized to interact with the sugar hydroxyls, but these evidences 

show their role in stabilizing the phosphates. These residues are highly conserved in all the 

prokaryotic UGMs. In Figure 1-16, Tyr366 which moves ~ 5-6 Å and rotates ~ 90º to stabilize the 

β-phosphate, while also forming a cation-π interaction with Arg180, to maintain the closed 

conformation of the mobile loop in MtUGM, is shown. 
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Among the prokaryotic UGMs, there are small differences in the active site residues and 

their interactions with the sugar portion of the substrate.  In MtUGM and DrUGM, the mobile loop 

arginine forms hydrogen bonds with the 2-OH group of the substrate sugar (Galp), while this 

interaction is not observed in KpUGM.24,28,32 The Galp 3-OH is often stabilized by interactions 

with a conserved histidine residue in bacterial UGMs, such as MtUGM His68. Another histidine 

residue that interacts with Galp 6-OH in MtUGM is replaced by an asparagine in KpUGM. The 

incoming substrate triggers the movement of a nearby six-residue loop, towards the adenine moiety 

of FAD. This loop movement causes another conserved arginine, to re-orient towards the active 

site and form water-mediated hydrogen bonds with Galp 2-OH (Figure 1-17). 

 
Figure 1-15: The uridine-binding region of MtUGM.15 

The changes in positions of residues in the absence (purple) and the presence of UDP-Galp (green) 

are highlighted (PDB id: 4RPG). 
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Additionally, the O4 of FAD hydrogen bonds with the C4 hydroxyl of Galp. This 

interaction aids in substrate selectivity by UGM; the enzyme does not recognize UDP-Glup with 

the C4 hydroxyl in an equatorial position.28 The substrate bound structures have also generated 

vital information about the non-productive and productive modes of substrate binding when the 

FAD is in the oxidized and reduced forms, respectively. In the productive binding mode, the N5 

of the isoalloxazine ring of FAD is located within a range of 2.9 to 4.0 Å, from the anomeric carbon 

of the sugar (Galp), as shown in Table 1-2. The productive mode is observed in the substrate bound 

FADred structures.24 In the non-productive mode, seen in FADox structures of various UGMs, this 

distance is greater than that noted in the substrate bound FADred structures. 

 
 

Figure 1-16: The phosphate-binding region of MtUGM.16  

The changes in the positioning of residues in the absence (purple) and the presence of UDP-Galp 

(green) are highlighted (PDB id: 4RPG). 
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.  

Figure 1-17: The sugar-binding region of MtUGM.17  

The changes in the positioning of residues in the absence (purple) and the presence of UDP-Galp 

(green) are highlighted (PDB id: 4RPG). 

 

 

Table 1-2: A comparison of distances between the N5 of the isoalloxazine ring of FAD and 

the C1 of Galp from oxidized and reduced crystal structure of various UGMs.2 

 FADox N5 - C1 Galp distance (Å) FADred N5 - C1 Galp distance (Å) 

Prokaryotic UGMs   

MtUGM 4.2* 3.9 - 4.0 

KpUGM 7.8 - 8.0 3.6* 

DrUGM 3.4 - 3.7 2.9 -3.2 

Eukaryotic UGMs   

AfUGM 5.2* 3.6* 

* Values are taken from a single monomer unit of the enzyme. 
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Figure 1-18: The active site residues of KpUGM.18  

The active site residues (cyan) in the presence of substrate UDP-Galp and FAD are shown as white 

sticks (PDB id: 3INR). 

 

The substrate binding site of KpUGM, in the presence of UDP-Galp, resembles that of the 

MtUGM: UDP-Galp active site, shown in Figure 1-18. Although minor differences exist in terms 
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of the residues that make up this site, it is noted that its overall structure and the substrate binding 

mode are largely conserved. Furthermore, the changes that occur in the enzyme, to accommodate 

the substrate in the active site is also very similar across bacterial UGMs as evidenced by crystal 

structures.33 Also, the active site of prokaryotic UGMs is comparable to that of eukaryotic UGMs. 

From Table 1-1, the active site residues are similar if not entirely conserved. However, since 

eukaryotic UGMs have two mobile loops change to a closed conformation, to bury the substrate 

in the active site, the functioning of Domain 2 is expected to be different in this case.  

Among the eukaryotic UGMs, although crystal structures are available for AfUGM and 

TcUGM, both unliganded and UDP-Galp bound structures are available for only AfUGM. The 

TcUGM crystal structures were solved with UDP in the active site.36 Although there is not as much 

re-orientation of the helices in Domain 2, significant changes occur in the conformation of the two 

flexible loops and the helix that connects them, as shown in Figure 1-19. An analysis of the 

structures suggest that the movement two flexible loops, brings the residues in place to interact 

with the uridine moiety of the substrate.35  
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Figure 1-19: Domain 2 of AfUGM in open and closed configuration.19  
The open loop configuration, without the substrate in the active site, and closed loop configuration 

with the substrate in the active site are shown in purple and burgundy respectively (PDB id: 3UKA 

& 3UKH). 

 

 In the eukaryotic UGM active site, two tyrosine residues stack the uracil, while 

hydrophobic residues such as proline and phenylalanine aid in positioning it. An additional 

glutamine residue which moves further into the active site and forms hydrogen bonds with the 

uracil, is not observed in any prokaryotic UGMs. The closed loop conformation of Loop 2 is 

stabilized by a highly conserved arginine, which rotates towards Loop 2 and forms hydrogen bonds 

with the side chains of residues such as tyrosine and some adjacent residues which ends Loop 2, 

as shown in Figure 1-20.  
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As already seen with prokaryotic UGMs, Loop 1 in eukaryotic UGMs also contributes 

hydrophobic residues that aid in positioning the substrate uridine and a negatively charged arginine 

residue that stabilizes the α-phosphate. This residue also makes additional interactions to stabilize 

the closed loop conformation, as seen in prokaryotic UGMs. Arg182 of AfUGM forms cation-π 

interaction with Tyr453. In the phosphate binding region, another highly conserved arginine, 

moves into position to stabilize the β-phosphate. 

 

Figure 1-20: The movement of AfUGM residues that bind the substrate uracil.20  

Tyr104, Pro105, and Gln107 that bind the substrate uracil are shown in burgundy, in the presence 

of substrate. The movement of Arg91 to aid stabilization of Loop 2 is shown in the absence and 

presence of the substrate in purple and burgundy respectively (PDB id: 3UKA & 3UKH). 

 

The sugar binding region of eukaryotic UGMs are also comparable to prokaryotic UGMs. 

The sugar is held in the same orientation as seen with the prokaryotic UGMs. In AfUGM, residues 
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such as Asn207, Asn447, and Arg327 hydrogen bond with C3, C4 and C6 hydroxyls of Galp, 

while Arg447 interacts with the C2 hydroxyl by a water-mediated hydrogen bond. The overall 

substrate binding site of AfUGM is similar to prokaryotic UGMs, as shown in Figure 1-21. It is 

also noted that the N5 of FADred is ~3.7 Å away from the Galp C1 carbon while the N5 of FADox 

is ~5.2 Å away from the Galp C1 carbon (Table 1-2). 

 
Figure 1-21: A close-up of the active site residues of eukaryotic AfUGM.21  

The active site residues (burgundy) in the presence of substrate UDP-Galp and FAD are shown as 

white sticks (PDB id: 3UKH). 
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1.9 Other pyranose-furanose mutases 

 Until now, only a handful of enzymes has been identified and characterized to perform the 

pyranose-furanose interconversion reaction. Perhaps the best studied among these enzymes after 

UGM is UDP-N-acetyl galactopyranose mutase (UNGM), which functions to interconvert 

between UDP-N-acetyl galactopyranose (UDP-D-GalpNAc) and UDP-N-acetyl galactofuranose 

(UDP-D-GalfNAc).55 The enzyme was identified as a gene product of cj1439c (a homolog of the 

glf gene), identified in C. jejuni strain 11168.56 Initial characterization of UNGM was performed 

by Dr. Todd Lowary's group (University of Alberta) and crystallization and structural studies were 

completed by Dr. Sean Dalrymple and Carla Protsko, previous members of the Sanders group. 

UNGM is also a flavoenzyme and has a high sequence identity with bacterial UGMs (EcUGM, 

KpUGM, DrUGM, and MtUGM). Unlike UGM, UNGM is a bifunctional enzyme and can 

recognize both UDP-D-Galp and UDP-D-GalpNAc as substrates. The crystal structure of UNGM 

with UDP-D-Galp shows that most of the UNGM active site residues are similar to those from 

bacterial UGMs, except an arginine residue (Arg59) which interacts with the acetamido group of 

UDP-D-GalpNAc.57 GaHM is another flavin-containing pyranose-furanose mutase that has been 

identified in C. jejuni. This enzyme is different from the mutases described so far, as it is 

hypothesized to require a GDP based substrate, and interconverts between a heptopyranose (7-

carbon chain) and a heptofuranose.58 Though they catalyze similar pyranose-furanose 

interconversions, these mutases have low sequence identity, as shown in Figure 1-22. 
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Figure 1-22: Low sequence similarity among the pyranose-furanose mutases.22   
EcUGM and C. jejuni UNGM (CjUNGM) have a higher identity with each other than C. jejuni 

GaHM (CjGAHM) or OsUAM. Among all the four sequences OsUAM has the least sequence 

similarity with any of the other enzymes. The sequence alignment was performed using ESPript 

(Version 3.0). The conserved residues are in red blocks (white letters).  
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Reports describing the identification and characterization of pyranose-furanose mutases 

from other organisms have emerged recently. The gene Fcf2 from E. coli O52 encodes for a 

pyranose-furanose mutase that works in the pathway that synthesizes deoxy thymidine-di 

phosphate–D-fucofuranose (dTDP-D-Fucf).59 This enzyme interconverts between thymidine-di 

phosphate–D-fucopyranose (dTDP-D-Fucp) and dTDP-D-Fucf. Its 40-60% DNA sequence 

identity with UGMs and the protein sequence alignment has identified the presence of an ADP-

binding fold that can bind FAD. Thus, the gene product of Fcf2 was proposed to be an FAD-

requiring mutase that belongs to the UGM family.59 However, more research has to be conducted 

to understand substrate binding and how the active site is modified, as compared to other UGMs. 

An enzyme that is perhaps the most different to any of these mutases is UAM, a metalloenzyme 

that does not require FAD for performing its function.18 The next part of this chapter will introduce 

UAM and GaHM since apart from UGM, this thesis will discuss results pertaining to both these 

enzymes. 

 

1.9.1 UDP-arabinopyranose mutase  

 UAM is a pyranose-furanose mutase that functions in the plant cell wall. UAM works in a 

pathway that leads to the deposition of L-Araf residues in the cell wall. Even though the importance 

and abundance of L-Araf residues in the plant cell wall is well documented, complete details about 

the biosynthetic pathway that leads to the deposition of L-Araf residues in the cell wall have only 

emerged recently.8,18,60,61  

Among the common nucleotide sugars identified in a plant cell, the biosynthesis of UDP-

Arap is well understood. Since only UDP-Arap was previously detected in a plant cell wall, it was 

considered to be the potential precursor for L-Araf residues.62 However, experiments conducted to 
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investigate the theory failed to lend support to this argument. When UDP-Arap was used as the 

substrate donor for arabinosyltransferases, Arap was transferred onto arabino-oligosaccharides.61 

This meant that plants might require UDP-Araf for biosynthesis of arabinofuranosides. (1, 5) α-L-

arabino-oligosaccharides were successfully synthesized in vitro by mung bean arabinofuranosyl 

transferase extracts using UDP-Araf as the substrate.63 Though this study provided evidence for 

the production and requirement of UDP-Araf in the plant cell wall, the point of isomerization of 

Arap to Araf in the biosynthesis pathway was still unknown. 

  It was demonstrated that plants employ UAM for the conversion of UDP-Arap to UDP-

Araf (Figure 1-23). UAM activity was first identified in rice seed extracts, based on their ability to 

synthesize UDP-Araf from UDP-Arap. The reaction catalyzed by UAM is reversible with the 

equilibrium favoring the formation of UDP-Arap in a 9: 1 ratio.18 

 
Figure 1-23: A schematic of the reaction catalyzed by UAM.23 

 

Although the reaction catalyzed by UAM is similar to the one catalyzed by UGM, these 

plant mutases neither bind FAD nor is it required for activity.18 The purified Oryza sativa (O. 

sativa, rice) UAM (OsUAM) did not have the characteristic flavin UV-absorption peak at 450 nm. 

Furthermore, it was observed that OsUAM required divalent metal ions for activity. Although 

UAM was active on UDP-Galp, the substrate of UGM, it was only a fraction of the activity 

compared to the activity obtained with UDP-Arap. UAM was also identified in mung bean 
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extracts. The presence of UAM encoding genes in a variety of plant species ranging from green 

algae such as Chlamydomonas reinhardtii, mosses such as Physcomitrella patens to various dicots 

and monocots, indicates that UAM is widespread among plants and has a vital role in cell wall 

biosynthesis.18 

Plant mutases belong to a small gene family called Reversibly Glycosylated Polypeptides 

(RGPs), meaning they can be reversibly auto glycosylated by UDP-sugars such as UDP-galactose, 

UDP-xylose, and UDP-glucose.64,65 RGPs are highly conserved proteins, implicated in 

polysaccharide biosynthesis and defense responses and have been identified in the membrane and 

soluble fractions of plant species such as arabidopsis, pea, cotton, maize, potato, wheat, rice, and 

tomato.66 Their identification in only plants (monocots and dicots) thus far shows that RGPs maybe 

plant-specific proteins.  The three UAM genes that were identified from O. sativa are also RGPs; 

out of the three genes only two, OsUAM1 and OsUAM3, have the arabinofuranose-pyranose 

interconversion function while the third enzyme, OsUAM2 does not display this ability.18 More 

recently, five RGP genes have been discovered in Arabidopsis thaliana (A. thaliana); three of 

these proteins, RGP1, RGP2 and RGP3 (AtRGP1, AtRGP2, AtRGP3) have UAM function, i.e. 

catalyze the interconversion between UDP-Araf and UDP-Arap, while the other two, RGP4 and 

RGP5 (AtRGP4 and AtRGP5) do not.66  

UAM activity is critical for the production and cell wall deposition of L-Araf in plants. 

Gene knockout studies were used to demonstrate the importance of UAM activity in plant cells.66 

An analysis of cell wall monosaccharides of cell lines that had AtRGP1 and AtRGP2 genes 

knocked out, led to the observation of a 30 % reduction in total leaf cell wall arabinose content.66 

Moreover, in cell lines where the expression of these genes was suppressed, there was a massive 

reduction (~ 80 %) in the cell wall arabinose content and the UAM activity was reduced to ~ 1 % 
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of the wild-type.66 A similar trend was also observed in cells involved in pollen development and 

seed coat secretion, thus proving the importance of UAM activity to the plant cell wall. 

All three rice UAMs (OsUAMs) identified are ~ 39 - 41 kDa proteins. OsUAM1 and 

OsUAM3 share 88% sequence identity, while OsUAM2 shares only ~ 46% identity with OsUAM1 

and OsUAM3.18 Moreover, when treated with radiolabeled UDP-[14C]-glucose, OsUAM1 and 

OsUAM3 were both auto glycosylated, but OsUAM2 lacked this ability. Also, the auto 

glycosylation is deemed reversible, since the [14C]-glucose could be replaced with any among 

xylose, galactose or arabinose depending on which UDP-sugars reacted with UAM. If OsUAM 

was incubated with any among UDP-Glc, UDP-Xyl, or UDP-Gal for up to 6 hours, before the 

addition of UDP-Araf, up to 50% reduction in mutase activity was observed.18 

The molecular weight of UAM, prepared from rice seedling extracts, estimated by Konishi 

et al., (2007) using size-exclusion chromatography was ~ 460 kDa, indicating that its oligomeric 

state had to be at least a decamer. Rice UAM achieved optimal activity at a temperature of 55 ºC; 

maximum UDP-Araf formation was observed between pH 7.0 and 7.5 while maximum UDP-Arap 

formation was seen between pH 5.5 and 6.0. The enzyme had a higher affinity for UDP-Araf (Km 

= 55 µM) than EcUGM (Km = 600 µM).  

The AtRGPs had molecular weights in the range of 38 - 41 kDa.66 AtRGPs 1 and 2 

overexpressed in growth tissues where cell wall components needed to be synthesized. Their 

importance in cell wall development was demonstrated when double knock-out mutants failed to 

develop cell wall polysaccharides and had severe growth retardation. Since AtRGP1 and AtRGP2 

have the highest sequence identity, it was considered that their function was redundant. In their 

study, Rautengarten et al., (2011) discovered that knocking out either one of these two genes (rgp1 

or rgp2), led to significantly less arabinose synthesis. In plant cells, AtRGP1 and AtRGP2 are 
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localized in the cytoplasm and in Golgi compartments where they are required for cell wall 

polysaccharide biosynthesis. AtRGP3 was found in cytosolic fractions. The ability to auto 

glycosylate was also observed in AtRGPs that possess the mutase interconversion function. 

 

1.9.2 GDP-6d-altro-heptopyrnaose Mutase  

  The gram-negative bacterium, C. jejuni is the leading cause of diarrhea, causes intestinal 

illness, gastroenteritis and is also linked to the neurological disorder Guillian–Barré syndrome and 

its variant, Miller Fisher syndrome, in humans.19,67 Though the LPS layer is associated with the 

many diseases caused by C. jejuni, the more recently identified CPS has been considered important 

for virulence of the bacterium.68,69 The CPS is composed of a variety of sugars in both pyranose 

and furanose forms. C. jejuni HS: 41 serotype, isolated from patients with Guillian–Barré 

syndrome, has a trisaccharide repeat unit in its CPS, composed of four different furanose residues. 

One of the furanoses in this repeating unit is 6d-D-altro-Hepf.70 The CPS gene locus of C. jejuni 

HS: 41 serotype has homologs of the glf gene (the gene that encodes for UGM) which encodes 

other mutase enzymes that may synthesize the precursors required for the production of the 

trisaccharide unit. Three homologs of the glf gene, namely glf1, glf2 and glf3 were identified in 

this gene locus.71  

The gene product of glf1 is proposed to function as a GaHM by Dr. Todd Lowary's group 

(University of Alberta). The results of their experiments conclude that recombinant GaHM is an 

enzyme that synthesizes GDP-6d-D-altro-Hepf, the precursor of 6d-D-altro-Hepf (Figure 1-24). 

Although most mutases studied thus far use a UDP-based substrate for the interconversion 

reaction, it is believed that GaHM uses a GDP-based substrate and does not bind to a UDP-based 

substrate. This hypothesis was based on the identification of the hddC gene (D, D-heptose-1-
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phosphate guanylyltransferase) in the CPS gene locus, known to be responsible for biosynthesis 

of another GDP-heptose sugar, in C. jejuni strain 11168.71 Since GaHM is the gene product of a 

glf - like gene and a flavoenzyme, it is expected to have characteristics more similar to UGMs and 

UNGM, than to plant UAMs.  

 
 

Figure 1-24: A schematic of the reaction catalyzed by GaHM.24 

 

1.10 Objectives of the Research 

The three pyranose-furanose mutases described in the previous section (UGM, UAM, and 

GaHM) is the topic of this investigation. The over-arching theme of the research performed in this 

thesis is to understand the binding of the substrate to the active site of these enzymes and to 

understand how changes in the active site of the enzymes affect substrate binding. Among the three 

enzymes, UGM is the most studied while the other two enzymes are not as well understood, 

perhaps because they have only recently been identified. The structure of UGM (from both 

prokaryotic and eukaryotic organisms) and the structural basis for substrate recognition are known. 

However, apart from some of the active site residues, which have obvious importance in 

recognizing and binding different regions of the substrate, the structural role of other active site 

residues have not been studied in any of the known UGMs. The importance of these residues in 

maintaining the structure of the active site cavity in the correct conformation and the manner in 
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which they ensure the productive binding mode of the substrate are not understood thus far. To 

accomplish this goal, DrUGM was chosen and six active site point mutants were created using 

SDM. Experiments were conducted on these mutants to gain input into how these mutations may 

affect the substrate binding in UGM. 

OsUAM1 was first identified, purified and characterized by Konishi et al. (2007). There is 

minimal structural and mechanistic information available on UAM. It is a non-FAD-binding 

enzyme which uses divalent metal ions for catalysis. It was demonstrated that OsUAM1 and 

AtRGPs were active when assayed in the presence of manganese (Mn2+). UAM's low sequence 

identity with UGM and metal-ion dependency could mean that its catalytic mechanism and 

substrate binding mode may be completely different to the well-studied UGM. The aim of this 

study was to gain an understanding of the active site residues involved in metal co-factor and 

substrate binding. Divalent metal ion dependency of these plant mutases was also investigated to 

make a comparative analysis among the chosen UAMs. In the case of both OsUAM1 and AtRGPs, 

no studies have yet been performed to show if there is a loss of activity in the absence of Mn2+ or 

other divalent ions. No information is available about the binding constants of the metal co-factor 

and how the metal binds and interacts with any of these enzymes. Other divalent metals were tried 

in the case of OsUAM but not AtRGPs. Obtaining such information will help to understand better 

the role the metal plays in enzyme function.  

The next pyranose-furanose mutase studied was CjGaHM, which requires the FAD 

cofactor for activity. A crystal structure of this enzyme, co-crystallized with GDP (solved by 

previous member of the Sanders lab) was already available [unpublished results]. However, GDP 

is the nucleotide base for the substrate; the goal here was to obtain structural information with a 

GDP-sugar and make a comparative analysis with UGM to understand how the active site of 
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GaHM can accommodate a GDP-based substrate rather than a UDP-based substrate (as seen in 

UGM and UAM).   
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Chapter 2: Materials and methods 

2.1 Cloning of RGPs from Arabidopsis Thaliana  

 AtRGP1 (Gene ID: 1523286, Accession no: NP_186872), AtRGP2 (Gene ID: 15242351, 

Accession no: NP_197069) and AtRGP3 (Gene ID: 30680679, Accession no:  NP_187502) were 

identified as UAMs in A. thaliana.66 Over-expression clones of these three proteins were made 

using Gateway cloning technology.72 Genes encoding each of the RGPs were synthesized and 

obtained in a pET29b plasmid. The genes were amplified using the polymerase chain reaction 

(PCR) using gene-specific primers shown in Table 2-1.  

 

Table 2-1: Primers for cloning of AtRGPs.3 

RGP1 Primer N1 5'-GAGAACCTGTACTTCCAGGGTGGTGGTATGGTGGAACCGGC – 3' 

RGP1 Primer C 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTTATTAAGCTTTCGTCGGCGG - 3' 

RGP2 Primer N1 5'- GAGAACCTGTACTTCCAGGGTGGTGGTATGGTGGAACCGGCG - 3' 

RGP2 Primer C 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTTATTAGGCTTTACCGCTGGC-3' 

RGP3 Primer N1 5'- GAGAACCTGTACTTCCAGGGTGGTGGTATGGCTCAACTGTAC - 3' 

RGP3 Primer C 5'- GGGGACCACTTTGTACAAGAAAGCTGGGTTATTAATTTTTACCCTTCGG -3' 

Primer N2 5'- GGGGACAAGTTTGTACAAAAAAGCAGGCTCGGAGAACCTGTACTTCCAG-3' 

.  

Primer N1 has a tobacco etch virus protease (TEV protease) recognition site on the 5' end, 

and Primer C has an attB2 recombination site on the 5'-end. PCR reactions were set up using the 

procedure, shown in the Table 2-2. PCR products obtained with the TEV-protease recognition site 

and the attB2 recombination site on the N and C-termini of the RGP gene, respectively, were gel-

purified (Gel extraction kit, Qiagen). A second PCR amplification was performed using this gel-

purified product as the template and the generic primer N2, which has a TEV-protease recognition 
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site at the 3'-end and primer C, specific for each RGP. At the end of this PCR, the AtRGP genes 

obtained contained an attB1 recombination site and a TEV-protease recognition site at the 5'-end 

and an attB2 recombination site at the 3'-end, as shown in Figure 2-1. 

 

Table 2-2: PCR reaction conditions for cloning of AtRGPs.4 

Process Temperature (°C) Time Cycles 

Denaturation 95 5 min 1 

Annealing 55 30 sec 1 

Denaturation 95 45 sec  

Annealing 55 30 sec 40 

Elongation 72 2 min  

Elongation 72 10 min 1 

Cooling 4 1 hour  
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Figure 2-1: A scheme for obtaining PCR amplified RGP gene products.25 

The RGP gene with Primer N1, Primer N2 and Primer C is shown. The Primer N1 has nucleotide 

sequence corresponding to TEV protease recognition site on its 5'-end. The Primer N2 has 

nucleotide sequence corresponding to TEV protease recognition site on its 3'-end. The Primer C 

has a stop codon on its 3'-end. The RGP gene with the primers are PCR amplified to obtain a 

product with attB1 and attB2 (attachment) sites on either ends of the RGP gene. 
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BP and LR reactions were performed sequentially, with this final PCR-product, to clone 

the AtRGPs into the destination vector. The PCR-product was initially cloned into an entry clone 

vector, pDONR-221. Both were added to a 10 µl BP reaction mixture, in the presence of the 

enzyme BP Clonase-11 (Invitrogen) and the reaction was allowed to proceed for 3-4 hours. The 

reaction products were transformed into E. coli DH5α cells (Invitrogen) and plated onto LB agar 

plates with kanamycin and grown overnight at 37 °C. A few colonies were picked and grown 

overnight, and plasmids were isolated (Qiagen mini-prep kit). Plasmids which contained the 

desired RGP genes, as verified by sequencing, were used for the LR reaction, which transfers the 

RGP genes from the entry clones to a destination vector. A LR reaction (10 µl) was set up by 

adding the pDONR-221 containing the RGP genes into the destination vector, pDEST-HisMBP, 

in the presence of LR Clonase-11 (Invitrogen). After 3 - 4 hours, the reaction product obtained 

was transformed into E. coli DH5α cells (Invitrogen), plated onto LB agar plates with ampicillin 

and grown overnight at 37 °C. A few of the grown colonies were picked, their plasmids isolated 

(Qiagen mini-prep kit) and sequenced (Applied Genomics Center, National Research Council, 

Saskatoon, Canada). Plasmids with the desired genes were then transformed into E. coli BL21 

Gold over-expression cells (Stratagene). 

 

2.2 Cloning of OsUAM1 

 The OsUAM1 gene (Gene ID: 75153246, Accession no: Q8H8T0) was cloned into a 

pHISTEV vector that encodes for proteins with a 6xHistidine tag on its N-terminal. Additionally, 

a TEV-protease recognition site is present in between the His-tag and the protein sequence for 

efficient cleaving of the His-tag. After confirmation of the required sequence, the pHISTEV 

plasmid with the OsUAM1 gene was transformed into E. coli BL21 Gold cells for over-expression. 
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2.2.1 Site-directed mutagenesis of OsUAM1 mutants 

The primers used to create OsUAM1 mutants D110A, D111A, D112A and H273A were 

designed using PrimerX and synthesized by AlphaDNA (AlphaDNA Inc.). PCR was set up using 

~50 ng of wild-type OsUAM1-plasmid DNA as template, ~ 125 ng of corresponding forward and 

reverse primers (shown in Table 2-3), dNTPs, KAPA HiFi DNA polymerase (KAPA Biosystems) 

and the reaction buffer, using the PCR reaction condition shown in Table 2-4.  

 

Table 2-3: Primers for cloning of OsUAM1 mutants.5  

Mutants Primers 

H273A Forward 5'-CGTACATCTGGGCCAGCAAGGCTAG -3' 

H273A Reverse 5'-CTAGCCTTGCTGGCCCAGATGTACG-3' 

D110A Forward 5'-GTACGTCTTCACCATCGCCGACGACTGCTTCGTTG -3' 

D110A Reverse 5'-CAACGAAGCAGTCGTCGGCGATGGTGAAGACGTAC -3' 

D111A Forward 5'-CTTCACCATCGACGCCGACTGCTTCGTTGCC -3' 

D110A Reverse 5'-GCAACGAAGCAGTCGGCGTCGATGGTGAAGG -3' 

D112A Forward 5'-CACCATCGACGACGCCTGCTTCGTTGCC-3' 

D110A Reverse 5'-GGCAACGAAGCAGGCGTCGTCGATGGTG-3' 

 

The reaction product was digested with Dpn1 at 37 °C for one hour, transformed into E. 

coli DH5α cells and plated on LB-agar plates with kanamycin and incubated at 37 °C overnight. 

A few colonies were selected and inoculated into 5 ml Luria-Bertani (LB) broth with kanamycin 

and grown overnight. The plasmid DNA was isolated (Qiagen mini-prep kit) and sent for 

sequencing, to confirm the desired mutations. The plasmid DNA was then transformed into E. coli 

BL21 over-expression cells. 
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Table 2-4: PCR reaction condition for OsUAM1 mutants.6 

Process Temperature (°C) Time Cycles 

Denaturation 95 5 min 1 

Annealing 55 30 sec 1 

Denaturation 95 45 sec  

Annealing 55 30 sec 18 

Elongation 72 2 min  

Elongation 72 10 min 1 

Cooling 4 1 hour  

 

2.3 Over-expression and purification of mutases 

2.3.1 Over-expression and purification of OsUAM1 

 BL21 Gold cells containing the plasmids encoding for the desired OsUAM1 was grown 

overnight at 37 °C in 100 ml LB media with 100 µg/ml kanamycin. 10 ml of this culture was 

subcultured into 1L cell culture flasks and left to grow at 37 °C to an OD600 of 0.6. 500 µM 

isopropyl-ß-thiogalactoside (IPTG) was added for protein over-expression, and the cells were 

allowed to grow overnight at 15 °C. The next day, cells were harvested by centrifugation at 4 °C, 

3600 rpm and stored in -80 °C. Frozen cell pellets were re-suspended in lysis buffer, containing 

50 mM sodium phosphate pH 8.0, 50 mM NaCl, 10 µg/ml DNase, 20 µg/ml lysozyme, 0.1 % 

Triton-X and 0.1 % ß-mercaptoethanol, and stirred at 4 °C for 30 minutes. This was followed by 

sonication for 3 minutes, (15 sec pulse on/off), to break open the cell wall, and centrifugation at 

15000 rpm for 30 minutes at 4 °C, to obtain soluble protein in the supernatant and to remove 

unwanted cell debris. 
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Purification was performed using nickel affinity chromatography followed by size 

exclusion chromatography. The supernatant was loaded onto a Protino Ni-IDA column 

(Macherey-Nagel), previously charged with Ni2+ and equilibrated with 50 mM sodium phosphate 

pH 8.0 and 50 mM NaCl. The column was washed with 50 mM sodium phosphate pH 8.0, 50 mM 

NaCl containing 30 mM imidazole to remove protein impurities. OsUAM1 was then eluted with 

50 mM sodium phosphate pH 8.0, 50 mM NaCl and 250 mM imidazole. OsUAM1 fractions were 

dialyzed against 25 mM Bicine pH 8.5 and concentrated to ~ 5 mg/ml before being loaded onto a 

Gel-filtration column (GE Healthcare), equilibrated with 25 mM Bicine pH 8.5. The enzyme eluted 

as a big first peak followed by other contaminating proteins. Purified UAM fractions were pooled 

and dialyzed against 25 mM Bicine pH 8.5 with 1 mM Manganese chloride and concentrated to ~ 

6.5 mg/ml, for crystal trials.  

A stock UAM concentrated to ~ 1 mg/ml was preferred for kinetic and metal binding 

assays. For kinetics, the purified protein was treated with a metal chelating agent, 200 mM 

ethylenediaminetetraacetic acid (EDTA), for 3 hours and dialyzed against 25 mM Bicine pH 8.5 

(four exchanges) prior to flash freezing with liquid nitrogen. This was done to remove any metal 

that might affect the UDP-Araf to UDP-Arap conversion during metal binding assay experiments. 

 

2.3.2 Overexpression and purification of OsUAM1 mutants 

 Four different mutants of OsUAM1; D110A, D111A, D112A, and H273A, were all over-

expressed and purified as described above and a final stock concentration of ~ 1 mg/ml was 

prepared for each, to use for kinetic assays. 
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2.3.3 Over-expression and purification of AtRGPs 

 All three AtRGPs (RGP1, RGP2, and RGP3) were over-expressed and purified following 

a similar procedure. RGP genes cloned into pDESTHis-MBP over-expression vector, expressed 

with a 6x Histidine-tagged Maltose binding protein (MBP) at the N-terminal. Cells expressing 

these proteins were grown overnight in 100 ml LB media with 100 µg/ml ampicillin at 37 °C. The 

next day, 10 ml of the overnight culture was subcultured into 1L of autoclaved LB media 

containing 100 µg/ml ampicillin. The cells were allowed to grow at 37 °C until an OD600 of 0.5 

was achieved and then protein over-expression was induced by the addition of 500 µM (final 

concentration) of IPTG and set to grow overnight at 15 °C. The cells were harvested the next day 

by centrifugation at 4 °C and 3500 rpm for 20 minutes and stored at -80 °C until further use. Cell 

lysis was done by resuspending the cells in 50 mM potassium phosphate pH 8, 50 mM NaCl, with 

20 µg/ml lysozyme and 10 µg/ml DNase for 30 minutes followed by sonication for 3 minutes, (15 

sec pulse on/off). The solution was then clarified of cell debris by centrifugation at 15000 rpm for 

30 minutes at 4 °C.  

The supernatant was loaded onto a Ni-sepharose column (GE-Healthcare), pre-equilibrated 

with buffer containing 50 mM potassium phosphate pH 8 and 50 mM NaCl. Bound His6-MBP-

RGPs were eluted out of the column with Elution buffer (50 mM potassium phosphate pH 8, 50 

mM NaCl and 250 mM Imidazole), after the impurities were removed by washing the column with 

50 mM potassium phosphate pH 8, 50 mM NaCl and 30 mM Imidazole. The His6-MBP-RGP 

fractions were pooled together, dialyzed against 50 mM potassium phosphate pH 8, 50 mM NaCl, 

to remove imidazole, and concentrated to ~ 30 mg/ml, for setting up a tag-cleavage reaction with 

TEV protease. To cleave the His6-MBP-tag, 2 mg TEV protease was added to 10 mg purified RGPs 

(a 1:5 ratio), and the reaction was left to shake at 4 °C overnight. The TEV protease digested 
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sample was then loaded onto a Ni-sepharose column (GE-Healthcare) pre-equilibrated with 25 

mM Bicine pH 8.5. The required RGP proteins (MBP-tag less) were eluted in the wash with the 

same buffer and the 6xHis-MBP-tag (which is still bound to the column due to the 6xHis tag), was 

eluted with 25 mM Bicine pH 8.5, 250 mM imidazole. The RGP fractions were pooled and 

concentrated to ~ 10 mg/ml for crystal trials. For metal-binding assays, a procedure similar to that 

performed on OsUAM1 was adopted; all AtRGPs were treated with EDTA to remove bound metal, 

and the enzymes were concentrated to ~ 1 mg/ml in 25 mM Bicine pH 8.5. 

 

2.3.4 Over-expression and purification of DrUGM wild-type and mutants 

The gene encoding wild-type DrUGM was cloned into a pHISTEV vector and was 

transformed into E.coli Tuner cells (Novagen, USA).24 The cells were grown overnight at 37 °C 

in a 100 ml LB culture with 100 µg/ml kanamycin. 10 ml of this overnight culture was subcultured 

into 1L culture flasks and grown until an OD600 of 0.6 was reached. Protein over-expression was 

induced with 0.4 mM IPTG, and the cells were cultured at 30 °C for 4-5 hours. The cells were 

stored in -80 °C after harvesting by centrifugation at 4000 rpm and 4 ºC. The frozen cell pellets 

were re-suspended in lysis buffer; 100 mM potassium phosphate pH 8.0, DNase and lysozyme at 

20 µg/ml, 1 mM 4-(2-Aminoethyl) benzene sulfonyl fluoride hydrochloride (AEBSF), 0.1 % 

Triton-X and stirred at 4 °C for 30 minutes. The lysed cells were sonicated for 2 min (10 sec on/off 

pulse) and centrifuged at 15000 rpm for 30 minutes at 4 °C. The supernatant was heat treated for 

10 min at 55 °C, to precipitate contaminating proteins. The suspension was then centrifuged again 

at 15000 rpm for 30 minutes at 4 °C. The sample was dialyzed against 25 mM potassium phosphate 

pH 8.0. After four buffer exchanges, the dialysate was loaded onto an HQ20 anion exchange 

column (Applied Biosystems, USA) pre-equilibrated with 25 mM potassium phosphate pH 8.0. 
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The protein was eluted with 25 mM potassium phosphate pH 8.0 buffer, with a gradient from 0 M 

and 1 M NaCl. Fractions containing the enzymes were pooled together and dialyzed against 50 

mM potassium phosphate pH 8.0. Required amount of solid ammonium sulphate was added to the 

dialyzed protein to make it up to 30 % (w/v) ammonium sulphate. The sample was loaded onto an 

HP-20 hydrophobic interaction column (Applied Biosystems, USA) pre-equilibrated with 50 mM 

potassium phosphate pH 8.0, 30% (w/v) ammonium sulphate. The protein was eluted with 50 mM 

potassium phosphate pH 8.0 using a gradient of 30 - 0% (w/v) ammonium sulphate. The eluted 

protein fractions were dialyzed against 50 mM Bis-tris propane pH 8.0 and concentrated to ~5 

mg/ml, for the next stage. A third purification step was employed, using a gel-filtration column 

(GE Healthcare), pre-equilibrated with 50 mM Bis-tris propane pH 8.0. The protein was loaded 

onto the column, and the enzyme fractions were collected and concentrated to ~ 7.5 mg/ml for use 

in crystal trials. Gel electrophoresis was used to analyze the purity of the sample. The protein was 

flash-frozen in liquid nitrogen and stored as 50 µl aliquots at -80 °C. Stocks were also made to ~ 

1 mg/ml, for use in kinetic assays. All the DrUGM point mutants were also prepared by following 

the same procedure. 

 

2.3.5 Over-expression and purification of MtUGM  

  The gene encoding for MtUGM was cloned into pDEST-HisMBP vector, using Gateway 

cloning technique that was described earlier.72 The plasmid was transformed into BL21 Gold over-

expression cells and confirmed by sequencing (Applied Genomics Center, National Research 

Council, Saskatoon, Canada). A single colony of cells was grown overnight in LB media at 37 °C 

with 100 µg/ml ampicillin. The cells were subcultured into 2 ×1 L LB media cultures, 

supplemented with 100 µg/ml ampicillin and grown until an OD600 of 0.4 - 0.5 was reached. The 



55 

 

cells were, induced with 1 mM IPTG (final concentration) and grown overnight at 15 °C. The cells 

were harvested by centrifugation at 3500 rpm and 4 °C for 20 minutes. The cell pellets were re-

suspended in lysis buffer (25 mM Tris pH 7.5, 150 mM sodium chloride and 20 µg/ml of DNase) 

for 30 minutes. Sonication (3 min, 15 sec on/off pulse), and centrifugation (15000 rpm, 30 min at 

4 °C) were performed on the re-suspended cells.  

The supernatant, which was filtered using a 0.2 µM filter, was loaded onto a GE healthcare 

Dextrin Sepharose column, pre-equilibrated with 25 mM Tris pH 7.5, 150 mM NaCl. The column 

was washed with the same buffer, to remove all unbound proteins, and the MtUGM with MBP-tag 

was eluted from the column using 25 mM Tris pH 7.5, 150 mM NaCl and 50 mM maltose. The 

eluted protein was dialyzed against 25 mM Tris pH 7.5, 150 mM NaCl to remove maltose and 

concentrated to ~ 5.5 mg/ml. To cleave the MBP-tag, the concentrated sample was then treated 

with TEV protease in a 1:10 ratio and the reaction was left overnight at 4 °C. The reaction mixture 

was further diluted 10 times, using 25 mM Tris pH 7.5, 150 mM NaCl and loaded onto a Ni2+ 

Sepharose affinity column (GE-Healthcare), pre-equilibrated with the same buffer. The cleaved 

MtUGM was collected in the flow through. The MBP and TEV-protease bound to the column were 

then eluted with 25 mM Tris pH 7.5, 150 mM NaCl and 250 mM imidazole. The purified MtUGM 

was dialyzed against 25 mM Tris pH 7.5, 150 mM NaCl and concentrated to ~ 1 mg/ml and use in 

kinetic assays and inhibition studies.  
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2.4 HPLC-based assay for mutases 

2.4.1 Kinetic assays for DrUGM mutants 

  The kinetic assay for the DrUGM mutants was performed using the following procedure.51 

A known concentration of the protein, obtained from purification experiments, was used to react 

with a known concentration of substrate in a reaction buffer and the product was analyzed using a 

High-performance liquid chromatography (HPLC) ( Waters HPLC system, with a Waters 510 

pump connected to Waters 717 plus Autosampler and Waters 2487 Dual λ Absorbance Detector). 

The reaction buffer (500 mM sodium phosphate pH 7.0), double-distilled water (Millipore) and 

the reaction vial were argon-degassed. The reactions were performed by adding the DrUGM 

mutant enzyme (at the desired concentration) into a vial containing 50 mM sodium phosphate pH 

7.0. Final enzyme concentrations in the reaction mixture for each mutant was the minimal 

concentration required to make a complete saturation curve by varying concentrations of the 

substrate. The substrate used was UDP-Galf, and the reaction was monitored for the formation of 

UDP-Galp. The final enzyme concentrations used for the assay are as follows; wild-type - 10 nM, 

N372D - 50 nM, W184A - 50 nM, W184F - 50 nM, H88F - 50 nM, R364A - 50 nM and R364K - 

50 nM. The enzyme added to each reaction mixture was reduced with the addition of 20 mM 

sodium dithionite (final concentration) and left to reduce for 30 sec. The substrate (UDP-Galf) was 

added into the vial next to commence the reaction. Typically the substrate concentration was varied 

between 10 µM to 1.5 mM to obtain a saturation curve. The reaction was quenched by the addition 

of n-butanol at a reaction time that resulted in 30 - 40 % conversion of UDP-Galf to UDP-Galp. 

The aqueous layer was collected and analyzed on a CarboPac PA1 (Dionex Inc) column, 

previously equilibrated with filtered and degassed 200 mM ammonium acetate pH 7.0. The 

formation of product was monitored on a UV-spectrophotometer at 262 nm. A typical HPLC-run 
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shows two prominent peaks, one corresponding to the substrate (UDP-Galf) and the other 

corresponding to the product (UDP-Galp). The area under the peaks was calculated using the 

Millennium software (Version 4.0) and the % conversion of substrate was calculated as follows, 

 

 

Using the % conversion value (calculated by Equation 1) obtained at each substrate concentration; 

the rate of product formation per second was calculated and plotted against substrate concentration, 

to obtain kinetic curves for each of the mutants. As substrate available was limited, reactions at 

each different substrate concentration were performed in duplicates and the data was plotted using 

GraphPad Prism software (GraphPad Software, San Diego, CA).  

 

2.4.2 Kinetic assays for MtUGM  

 Kinetics experiments for MtUGM wild-type enzyme were conducted in a similar manner 

to the method described 2.4.1, with minor changes in the reaction condition. All reactions for the 

assay were performed at 37 °C; a final enzyme concentration of 100 nM and a substrate range 

between 10 - 150 µM were used, to make a saturation curve. 

 

2.4.3 Inhibition assays for MtUGM by MS-208 

 For performing inhibition assays on MtUGM, after the enzyme was reduced with the 

addition of sodium dithionite, the inhibitor MS-208 (stock made at 1mM concentration) was added 

to the reaction mixture at the required concentration and left to incubate at 37 °C for 1 minute. The 

reaction was then carried out with the addition of the substrate, quenched with n-butanol and 

analyzed on HPLC as performed for the other assays (Section 2.4.1). Three different 

% Conversion   = 
Area under UDP-Galp peak 

[Area under UDP-Galf peak + Area under UDP-Galp peak] 
× 100%         (1) 
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concentrations of the inhibitor, 60 µM, 120 µM and 200 µM, were used to obtain kinetic curves. 

The plots of rate vs. substrate concentration were prepared by GraphPad Prism software (GraphPad 

Software, San Diego, CA); SigmaPlot software (SigmaPlot 12.0) was used for global fitting of the 

data obtained for each saturation curve; Dixon and Cornish-Bowden plots were drawn using MS 

Excel, to aid in determining the mode of inhibition.  

 

 2.4.4 Kinetic assays for OsUAM1 and mutants 

The kinetic assays were performed adopting the procedure described earlier for DrUGM 

mutants, with minor changes.18 The OsUAM1 enzymatic assay was carried out by incubating the 

enzyme in 20 mM HEPES buffer pH 6.8, 5 mM MnCl2 at 37 °C for 2 minutes. As with DrUGM, 

the enzyme concentration was chosen so that a complete kinetic curve could be obtained. However, 

no reducing agents were added to the reaction mixture, as UAM does not require to be reduced for 

activity. The reaction was initiated with the addition of the desired concentration of substrate, 

UDP-Araf, and the reaction was left to proceed for the necessary amount of time that gave ~ 30 - 

40 % product conversion. The reaction was quenched with the addition of n-butanol, and the 

aqueous layer was analyzed on a CarboPac PA1 Dionex column, previously equilibrated with 210 

mM ammonium acetate pH 6.0, with the flow rate of 1 ml/min. Formation of the product, UDP-

Arap, was confirmed by monitoring UV vis-spec at 262 nm. The % conversion was calculated 

using equation (1) and the rate vs. UDP-Araf concentration was plotted using GraphPad Prism 

software (GraphPad Software, San Diego, CA). 
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2.4.5 Metal binding assays for OsUAM1 and RGPs       

Samples of OsUAM1 wild-type, H273A and all three AtRGPs, pre-treated with 250 mM 

EDTA, were used for metal binding assays. For all studies performed at varying metal 

concentrations, a final enzyme concentration of 20 nM and final substrate concentration of 10 µM 

were used and the reactions were conducted for 30 seconds. To obtain the Mn2+ metal curve, 

concentrations of MnCl2 were varied between 10 µM to 5 mM. Similarly solutions of ZnCl2, 

CoCl2, CuCl2, MgCl2, and CaCl2 were used to obtain curves for the other divalent metal ions, Zn2+, 

Co2+, Cu2+, Mg2+ and Ca2+ respectively. Each of the reactions was performed in duplicates, and 

the % conversion values were obtained. The maximum value of % conversion obtained at a 

particular concentration of Mn2+ metal was chosen as 100 % relative activity, and all other values 

were calculated relative to this value for metal-binding assay plots. A similar strategy was followed 

for all other divalent metals. 

 

2.5 Crystal trials for mutases       

2.5.1 DrUGM mutants and wild-type enzyme 

 Microbatch under oil method was used to perform crystal trials on DrUGM mutants and 

wild-type enzyme.73,74 Since wild-type DrUGM and DrUGM N372D were previously co-

crystalized with the substrate UDP-Galp, crystal trials were focused on obtaining co-crystals of 

the five other point mutants with the substrate and the holoenzyme for wild-type DrUGM. The 

concentration of the point mutants used for all the trials was kept at ~ 7.5 mg/ml. The enzyme was 

first reduced by the addition of 20 mM sodium dithionite, the reducing agent, and 15 mM final 

concentration of substrate was added to the sample. To set up crystallization drops, the protein was 

pipetted into wells in a micro batch plate, and the crystallization solution was added in a 1:1 ratio. 
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The drops were covered with paraffin oil quickly and set at room temperature. Commercial screen 

kits (Qiagen), each containing 96 different conditions was used for setting up the micro batch 

plates. Initial crystal hits were obtained across conditions in many screens including, Classics II 

suite, PEGs I and II suites and the PACT suite. A similar approach was adopted for trials carried 

out for the wild-type enzyme without the addition of reducing agent or the substrate. The crystal 

hits, in this case, were obtained with conditions from the Classics II suite. For optimization of the 

hits, grid-screens were set-up around these positive conditions. Grid screens were manually 

prepared by varying the final concentrations of the various components in the crystallization 

solution. In the case of the holoenzyme, additive screens (Qiagen) were also used for further 

optimization. 

Rod-shaped bright yellow crystals were obtained in a week and were let to grow for two 

weeks before harvesting and flash-freezing. 20 % PEG 400 with 80 % crystallization solution was 

used as a cryoprotectant solution for flash-freezing DrUGM crystals in liquid nitrogen. 

 

2.5.2 GaHM crystals with substrate mimics 

 The set-up for obtaining GaHM crystals was similar to that described for DrUGM.73,74 

GaHM was co-crystallized with two different substrate mimics, GDP-mannose, and GDP-glucose. 

Microbatch under oil technique was used, and the protein solution was reduced with sodium 

dithionite (turning the protein colorless), prior to the addition of the substrate mimic, GDP-

mannose. The concentrations of GaHM protein, sodium dithionite, and GDP-mannose were ~ 7.5 

mg/ml, 20 mM and 15 mM respectively. The drops were set-up at 4 °C, in a 1:1 ratio of protein to 

crystallization solutions, and covered with paraffin oil. A few conditions in Classics II, PACT and 

PEG1 screens gave initial hits. A condition from Classics II screen containing, 0.2 M Ammonium 
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sulphate, 0.1 M Bis-Tris pH 6.5 and 25% (w/v) PEG 3350, produced a cluster of needle-like yellow 

crystals that appeared within a week. Grid-screens were set around this condition, and further 

optimization was done by using the additive screens. Crystals were obtained with both the substrate 

mimics and were left to grow for two to three weeks before flash freezing using liquid nitrogen.  

 Two different types of cryoprotectant solutions were made for flash freezing GaHM 

crystals.74 For FADox crystals, 20 % (v/v) of ethylene glycol and 80 % crystallization solution was 

used, while FADred, crystals were initially re-reduced with  the addition of sodium dithionite (final 

concentration in 20 mM) along with 15 mM GDP-mannose in a cryoprotectant solution made of 

20 % ethylene glycol and 80 % crystallization solution. The crystal was then looped out of the 

microbatch plate wells and washed thrice in the cryoprotectant solution, to remove mother liquor, 

and flash-frozen rapidly.  

 

2.5.3 Crystal trials on OsUAM1 and AtRGPs 

 Microbatch under oil and vapour diffusion techniques were both used for crystal trials of 

OsUAM1 and AtRGPs. Crystallization experiments were conducted to co-crystallize these 

enzymes with UDP-Galp, since the actual substrate, UDP-Arap, is not commercially available. All 

the enzymes were dialyzed against a buffer containing, 25 mM Bicine pH 8.5, 2 mM manganese 

chloride and therefore, required only the addition of UDP-Galp to a final concentration of 15 mM 

before setting up the protein drops using crystal screens. Microbatch plates were set up in a 1:1 

ratio, of protein solution and crystallization solution, using commercially available screens 

(Qiagen). A number of grid-screens were set up around positive hits, and additive screens were 

also used, to see if any of these conditions could be optimized, to further improve the quality of 

crystals. OsUAM1, without the His-tag, was also prepared and used for setting up trials to see if 
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the absence of the tag would help in obtaining better quality crystals. Trials were performed at 4 

°C, 15 °C and room temperature. 

Crystal trials, in the case of AtRGPs, were carried out in a similar fashion to that described 

for OsUAM1. Conditions giving microcrystalline materials and spherulites of AtRGP1 were 

further optimized. Grid-screens for optimization were set up using vapour diffusion - Hanging 

drop technique, where the crystallization drop is set to hang over a reservoir containing the 

crystallization solution. The drop was prepared by mixing the protein solution and reservoir 

solution in a 1: 1 ratio set on a thin plate, which is then sealed over the reservoir. The crystalline 

material that appeared within two days in some of the conditions was looped out, washed with 

reservoir solution and crushed using a seed bead, to be utilized as macro-seed-stock for further 

experiments. The seed-stock was further diluted down to different ratios 1: 10, 1:100 and 1:1000 

and used to set up more hanging drop plates. The crystallization drop, which now contains protein 

solution, reservoir solution and seed solution in 1.5:1:0.5 ratio was sealed over the reservoir 

solution. Other drop ratios were also tried to see if the quality of the crystals could be improved. 

 

2.6 Data collection, processing, and refinement of GaHM crystal structures 

GaHM crystals, co-crystallized with substrate mimics GaHMox: GDP-mannose, and 

GaHMred: GDP-mannose were diffracted at the Canadian Light Source (CLS), Saskatoon, Canada. 

Datasets were collected on the 08B1-1 beamline, equipped with MD2 micro diffractometer and a 

Rayonix MX300HE X-ray detector. The crystal to diffractometer distance was set at 280 mm and 

600 images were collected for each dataset with an oscillation of 0.25° and exposure time of 1 sec. 

The data processing and scaling were performed using the Autoprocess pipeline.75,76 
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GaHM crystal structures were solved using the Molecular replacement method with 

MOLREP program within the CCP4 package.77-79 GaHM models available from crystal structures 

of GaHM solved with GDP previously solved by Dr. Sean Darlymple [unpublished results], were 

used for finding a structure solution. All the solutions had 2 copies of the GaHM monomer in an 

asymmetric unit (ASU).80 

 PHENIX was used to refine the structures, using the output model PDB from the CCP4 

package and the corresponding .mtz files for each structure.81,82 Initially, Rigid-body refinement 

was performed to refine the position of the monomers. Non-crystallographic symmetry (NCS) 

restraints were turned on for each refinement run. To remove model bias, simulated annealing was 

performed using Cartesian dynamics at 5000 K. The output models, after each refinement run, 

were re-built in COOT.83 The refinement and rebuilding of each model were performed iteratively 

until satisfactory progress was made with R-work/R-free. Another round of simulated annealing 

was done using Cartesian dynamics; this time, at a lower starting temperature of 2500 K. The 

geometry restraints information of oxidized FAD, reduced FADH and the corresponding ligands 

were generated with eLBOW available within the PHENIX software.84 The refinement was re-run 

after including the PDB coordinates and restraint files for the ligands. The electron density maps 

were examined after each run to manually fix residues and regions that were inconsistent. Water 

molecules were added into the refined model using 'Update water' option in PHENIX when the R-

free value was lower than 30%. The waters were verified once again before a final round of 

refinement was completed. All the figures were made using PYMOL (PyMOL version 1.7.4, 

DeLano Scientific LLC)  
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2.7 Modeling studies  

2.7.1 Modeling of DrUGM mutants 

 DrUGM mutants were modeled using an online software Rosetta-Backrub.85,86 For 

modeling experiments, DrUGM wild-type crystal structure, solved with UDP-Galp (PDB id: 

3HDY), with FADred was the input into the software. The residue to be mutated was chosen from 

the sequence (by the residue number), and the desired mutation was submitted to the program. Up 

to twenty different models were made in each run; the model with the best score was chosen and 

used for further docking studies. 

 

2.7.2 OsUAM1 Modeling 

GalaxyWEB and Iterative threading assembly refinement (I-TASSER) were used to 

generate 3D-models of OsUAM1.87,88 Both these programs generate models based on the input 

protein sequence. Five different models obtained, from both GalaxyWEB and I-TASSER, were 

manually compared based on the residues predicted to form secondary structure regions using 

HHpred. This was done to check the consistency of the predicted models. A comparison of all the 

models was performed using PyMOL software (PyMOL version 1.7.4, DeLano Scientific LLC).  

 

2.7.3 Modeling of loop regions of CjGaHM 

 The crystal structure of GaHM solved with GDP-mannose has little or no electron density 

for the flexible loop regions. Since the crystal structures of both AfUGM and TcUGM were overall 

similar to that of CjGaHM, they were used as templates to model the missing GaHM loop regions. 

The missing loop regions were built into the structure using COOT, based on the CjGaHM 

sequence. 
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2.8 Genetic Optimization for Ligand Docking docking for DrUGM mutants 

 Docking of the substrate (UDP-Galp) into the active site of the DrUGM mutants models 

(generated from Rosetta-Backrub program) was performed using Genetic Optimization for Ligand 

Docking (GOLD) software (version 5.2.2).89-92 For performing the docking runs, protein .pdb files 

and substrate .mol2 files were used. A 6 Å binding site was defined using the UDP-Galp binding 

site from the DrUGM: UDP-Galp crystal structure, as the reference ligand. This strategy also 

generated root-mean-square-deviation (RMSD) numbers that helped determine the average 

deviation of all the docked poses generated for a certain .pdb file from the ensemble. Each run was 

allowed to generate 50 docked poses that were scored with ChemPLP fitness function. The output 

was read through the Hermes visualization software (version 1.6.2). The top scoring poses, for all 

the .pdb files in the ensemble, were exported as .pdb files for viewing through PyMOL (PyMOL 

version 1.7.4, DeLano Scientific LLC). 

  

2.9 Circular dichroism on OsUAM1 wild-type and mutants 

  Circular dichroism (CD) spectra were used to determine the approximate secondary 

structure content of OsUAM1 wild-type and all the four mutants (H273A, D110A, D111A, and 

D112A). The experiments were performed using the Chirascan-plus CD spectrometer (Applied 

Photophysics), at the Protein Characterization and Crystallization Facility (PCCF), College of 

Medicine, University of Saskatchewan. At first, the buffer in which the enzymes were present (25 

mM Bicine pH 8.5, 1 mM Mn2+) was scanned to make a baseline measurement in the wavelength 

range that produced CD spectra of high signal to noise ratio (in this case 210 nm - 280 nm). The 

concentrations of each of the samples were adjusted to maintain a total absorbance under 2.0. All 

experiments were performed in a quartz cuvette with a path length of 0.5 mm (Hellma, Germany).  
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All data was collected in triplicate at 20 ºC. The average CD spectrum for each sample was 

obtained after a baseline correction was performed. The secondary structure content was 

determined using the data analyzing software, CDNN 2.1.  
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Chapter 3: UDP-Galactopyranose Mutase  

3.1 UGM from Deinococcus radiodurans  

EcUGM, KpUGM, and MtUGM have been crystallized without the substrate (unliganded), 

to gain insights into the structural architecture and the UGM - FAD interaction.23,31 In the Sanders 

group, UGM from DrUGM and MtUGM were crystallized with the substrate UDP-Galp.24,32 In 

this thesis, the role of some of the active site residues in binding the substrate were studied, using 

DrUGM as a model system. DrUGM has only 37%, 42% and 39% sequence identity with EcUGM, 

KpUGM, and MtUGM, respectively, but the substrate and FAD binding residues are highly 

conserved across the species.24 Crystals of DrUGM, in complex with UDP-Galp, were produced 

by co-crystallization experiments. The structures of the DrUGM: UDP-Galp complex with 

oxidized and reduced FAD were solved to 2.40 Å and 2.50 Å, respectively.24  

The overall structure and active site of UGM was discussed in detail in Chapter 1. The 

overall structure of DrUGM is no different to the other known bacterial UGM structures, having 

three domains and a flexible loop (Figure 3-1). In brief, Domain 1 binds the cofactor FAD, Domain 

2 has five α-helices and a mobile loop while Domain 3 is made of anti-parallel ß-strands. When 

the substrate approaches the active site, the loop and Domain 2 moves towards the active site and 

the loop closes to completely bury the substrate in the active site. Additionally, all three domains 

have significant roles in interacting with the incoming substrate. The FAD-binding Domain 1 aids 

in positioning the galactose sugar under the isoalloxazine ring of FAD for the nucleophilic attack. 

Domain 2 helps to stack the uridine portion of the substrate and ensures that the substrate is in a 

favorable binding mode while Domain 3 and the loop contribute crucial residues towards 

stabilizing the substrate diphosphate.  
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Figure 3-1: The crystal structure of DrUGM.26  

The domains (Domain 1 - blue, Domain 2- green and Domain 3 - grey) and the mobile loop (red) 

are highlighted. Domain 1 binds the FAD (white stick); the mobile loop is in the closed 

conformation, with UDP-Galp (white stick, Domain 2) in the active site. 

 

3.1.1 Active site residues and interactions 

In the bound state, UDP-Galp is folded into a U-shaped conformation and is completely 

buried in the active site. The substrate binding site of DrUGM: UDP-Galp can be divided into 

three regions; the Uridine-binding region, the Diphosphate-binding region, and the Galp-binding 

region. The uridine-binding region in both the liganded and unliganded structures from other 

bacterial species is not much different.33 Tyr179, Phe176, Tyr180, and Phe175 are important 

residues involved in recognizing and stacking the uridine. The uracil ring is stacked in between 

Tyr179, and Phe176; other residues such as Tyr180, Asn296, and Phe175 form a network of 

hydrogen bonds with O2, O4 and N3 of the uracil ring respectively, as shown in Figure 3-2A. 

Loop 

Domain II:  

-helices 

Domain I:  

FAD-binding 

Domain III:  

-strands 
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W184 is involved in hydrogen bonding the C2 and C3 hydroxyl groups of the ribose (Figure 3-

2A). Also, there is little difference in the uridine-binding region when the crystal structures with 

oxidized and reduced FAD were compared. 

(A)  

(B)  

 

Figure 3-2: Uridine and phosphate binding regions of DrUGM.27 
(A) Uridine-binding region, displaying the substrate uridine and active site residues in purple (B) 

Phosphate binding region showing the substrate diphosphates (orange) and active site residues in 

magenta  

 

Two highly conserved arginine residues, Arg198, and Arg305, play critical roles in 

stabilizing the substrate diphosphate in the Diphosphate-binding region. Arg198 is in the center of 
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the mobile loop and is solvent exposed in the absence of the ligand. This residue moves into the 

active site to stabilize the α-phosphate by forming ionic interactions. Similarly, the β-phosphate is 

also stabilized by another arginine, Arg305, contributed by Domain 2 (Figure 3-2B). Further 

stabilization of the diphosphates is achieved by hydrogen bonding interactions of the conserved 

residues, Tyr209, Tyr370, and Tyr335.  

One of the conserved features of the DrUGM structure is the binding of the sugar moiety 

below the isoalloxazine ring of FAD. The sugar (Galp) is stabilized by His88, His109, Arg364, 

and Asn372 residues, as shown in Figure 3-3. C3 and C6 hydroxyls of Galp forms hydrogen bonds 

with His88 and His109 respectively. Arg364 interacts with the C2 hydroxyl through a water-

mediated hydrogen bond. Furthermore, the C4 hydroxyl of Galp hydrogen bonds with the O4 of 

FAD. This interaction also serves as one of the features for substrate recognition; UDP-Glup with 

the C4 hydroxyl in equatorial position is not recognized by the enzyme.93,94 

 

 

Figure 3-3: Galp binding region of DrUGM.28  

The active site residues are in (cyan).  
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Thus, 14 critical active site residues have been identified as interacting with the substrate 

in the DrUGM: UDP-Galp complex. These residues by enabling the positioning of other residues 

that interact with the substrate, work to ensure that substrate binding is in the most productive 

orientation within the active site. Based on the observations from the FADred crystal structures, the 

distance between the C1 of Galp and N5 of FAD is in the range of 2.9 Å to 3.2 Å. In the FADox 

crystal structures, the distance between the C1 anomeric carbon of Galp and N5 of FAD is greater 

than 3.5 Å, thus making the N5 of FAD incapable of carrying out the initial nucleophilic attack on 

the C1 anomeric carbon.24 A table (Table 1-2), for comparison of distances between the N5 of the 

isoalloxazine ring of FAD and the C1 of Galp from oxidized and reduced crystal structure of 

various bacterial UGMs, is shown in Chapter 1. 

 

3.2 Purification of DrUGM wild-type and point mutants 

 The DrUGM point mutants were prepared by Dr. Karunan Partha Sarathy, a previous 

member of the Sanders lab.94 The DrUGM wild-type and its mutants used in this study were 

purified using anion-exchange chromatography, hydrophobic chromatography followed by size 

exclusion chromatography. The sample purity was verified using Sodium dodecyl sulfate – 

polyacrylamide gel electrophoresis (SDS-PAGE) (Figure 3-4). 
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Figure 3-4: SDS-PAGE analysis of concentrated fractions of wild-type DrUGM and point 

mutants.29 

 

3.3 Crystallization of wild-type DrUGM  

The structure of unliganded DrUGM wild-type enzyme has not been reported so far. This 

structure will give insights into the enzyme’s structural similarities or differences with the 

unliganded enzyme from other bacterial species. This will also give us vital information on the 

structural and conformational changes DrUGM has to undergo to bind the substrate. Unliganded 

DrUGM was crystallized in 0.1 M Bis-tris propane pH 6.5, 0.2 M potassium bromide, 20 (w/v) % 

PEG 3350 (Figure 3-5). The crystal condition was further optimized to 0.1 M Bis-tris propane 6.0, 

0.2 M potassium bromide, 20 (w/v) % PEG 3350 using grid-screens. The crystals were further 

improved with an additive, iron (III) hexahydrate, added in a 9:1 ratio to the optimized 

crystallization condition. The crystals, however, did not yield good quality diffraction data, as they 

diffracted to ~ 6 Å at the CLS. 
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Figure 3-5: Optimized crystal condition for wild-type DrUGM (holoenzyme).30 

 

3.4 DrUGM point mutants 

Although the roles of most active site residues in substrate interaction and their importance 

to the DrUGM active site are well understood, the structural roles of a few active site residues, 

such as Trp184, Arg364, Asn372, and His88, in binding the substrate are not clear (Figure 3-6). 

Six point mutants of DrUGM were prepared to study their importance to substrate binding. The 

roles of the residues mentioned above were studied by performing HPLC-based kinetic assays, 

modeling using Rosetta Backrub and GOLD docking studies. First, results from the efforts to 

crystallize these mutants with the substrate are discussed. 
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Figure 3-6: The active site residues of DrUGM highlighting point mutants prepared for 

study.31  

 

3.4.1 Crystallization and diffraction of DrUGM point mutants 

Crystals of the point mutants co-crystallized with UDP-Galp were obtained in the 

following conditions. H88F was crystallized in, 0.1 M Sodium acetate pH 4.6, 25% (w/v) PEG 

4000; R364A in 0.1 M Sodium acetate, pH 4.6, 15% (w/v) PEG 20000; R364K in 0.1 M sodium 

acetate pH 4.6, 4% (w/v) PEG 4000; W184F in 0.2M Sodium iodide 0.1M Bis-Tris propane pH 

6.5, 20% (w/v) PEG 3350 and W184A 0.1 M MES pH 6.5,30% (w/v) PEG 4000, respectively. 

The crystals are shown in Figure 3-7.              
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In general, the DrUGM mutant crystals diffracted poorly; diffraction experiments were 

conducted on a large number of crystals of each mutant at the CLS. However, the best diffraction 

datasets collected were in the 4 - 6 Å range, which was not good enough to observe the mutations 

or changes in substrate binding. Apart from optimizing the crystals by various grid screens or 

additive screens, a number of post-crystallization treatment techniques were also performed. 

Allowing the crystals to anneal for 5-10 seconds before diffraction (performed at CLS); exposing 

them to air for up to 20 minutes before freezing; transferring hanging drops onto crystallization 

solutions having increasingly higher concentrations of various crystallization ingredients (up to 15 

%) over 8 -12 hours.95-97 However, none of these methods seemed to improve diffraction quality 

since the crystals developed cracks or damaged easily. 

    
Figure 3-7: Crystal hits for DrUGM point mutants.32   
(A) H88F, (B) R364A, (C) R364K, (D) W184F and (E) W184A  

 

(A)         (B)            (C) 

(D)      (E)     
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3.4.2 Kinetic evaluation of mutants 

3.4.2.1 W184A and W184F 

The Michaelis-Menten curves for W184A and W184F mutants are shown in Figure 3-8. 

Mutating Trp184 to alanine has a drastic effect on the Km value of DrUGM. The Km increases ~ 

20-fold compared to the wild-type enzyme, which means that the enzyme now requires more 

substrate to achieve half-maximal activity. kcat, the turnover number of the enzyme decreases ~ 

360 times. The Km and kcat values for the W184F mutant are better compared to the alanine mutant, 

although still not as good as the wild-type enzyme. The Km of W184F is 670 µM, which is a ~ 12 

- fold increase in the substrate required to obtain half-maximal activity but the kcat decreases by ~ 

15 times. In addition, the specificity constant (kcat / Km) value is also better for W184F than the 

W184A. The kinetic constants are shown in Table 3-1. 

 
(A)                   (B) 

 

Figure 3-8: Michaelis-Menten curves for (A) W184A and (B) W184F mutants.33  

 

3.4.2.2 R364A and R364K  

Mutating Arg364 to alanine or lysine decreased the Km value of the enzyme by 6- fold and 

22-fold respectively, as shown in Table 3-1. Both these mutants required lesser amounts of 
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substrate to get to half-maximum activity, compared to the wild-type but their kcat values were 

rather insignificant. R364K had only a slightly better kcat than the alanine mutant, even though 

lysine is a positively charged residue. The Michaelis-Menten curves for R364A and R364K are 

shown in Figure 3-9. 

 
(A)              (B) 

 

Figure 3-9: Michaelis-Menten curves for (A) R364A and (B) R364K mutants.34  

 

 

3.4.2.3 H88F  

In DrUGM, His88 interacts with the C3 hydroxyl of the substrate sugar. However, in 

eukaryotic UGMs, this histidine is replaced by phenylalanine. The H88F mutation was made to 

see if there was any observable effect on the active site of bacterial UGMs since phenylalanine 

cannot contribute to coordinating the hydroxyl of the sugar. The kinetic parameters derived from 

the plot (Figure 3-10) show that there is a decrease in the Km by ~ 11-fold, but the kcat is only 4-

fold less (Table 3-1). The turnover number is only 4-fold less than the wild type enzyme, making 

it more efficient as evidenced by the better specificity constant. 
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3.4.2.4 N372D 

 Apart from stabilizing the α-phosphate of the substrate, Arg198 also binds the substrate in 

the active site by hydrogen bonding with Asn372. The N372D mutant was made on the basis that 

in KpUGM, the residue that interacts with arginine is an aspartic acid. Our kinetic evaluation of 

this mutant shows that the kinetic parameters are more similar to that of wild-type KpUGM than 

to wild-type DrUGM, in terms of kcat (Table 3-1).  

 
(A)                  (B) 

 

Figure 3-10: Michaelis-Menten curves for (A) H88F and (B) N372D mutants.35 

 

Table 3-1: Kinetic evaluation of DrUGM active site point mutants.7 

Enzyme Km (µM) kcat (s-1) kcat / Km   (s-1µM-1) 

DrUGM wild type 55 ± 7 66 ± 2 1.18 

W184A 1007 ± 61 0.18 ± 0.01 1.8 × 10-4 

W184F 670 ± 26 4.26 ± 0.08 6.36 × 10-3 

R364A 9 ± 0.3 2.94 × 10-5 3.26 × 10-6 

R364K 2.5 ± 0.6 0.17 ± 5 × 10-3 7.6 × 10-2 

H88F 5.1 ± 0.3 16.1 ± 0.2 3.36 

N372D 54 ± 7 9 ± 0.4 0.17 

KpUGM wild type 45 ± 6 5 ± 0.6 0.11 
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To understand the structural changes caused by these active site mutants and to observe 

possible changes that may affect the substrate binding mode, DrUGM mutant models were built, 

using the modeling program Rosetta-Backrub, and they were compared with the crystal structure 

of the wild-type enzyme. An outline of the method used by this software to perform modeling has 

been included in Supplementary Section S.1. In general, the overall structures of these mutants 

were similar to the wild-type enzyme except for a few residues in close proximity to the mutation.  

 

3.4.3 Results from modeling studies 

3.4.3.1 W184A and W184F 

The structural overlay of the wild-type enzyme on DrUGM W184A shows that the alanine 

is ~ 6 - 7 Å away from the uridine-ribose of UDP-Galp, and unlike the tryptophan, it is not in a 

position to coordinate the C2' and C3' hydroxyls of the ribose (Figure 3-11A). In DrUGM W184F, 

the phenylalanine is also unable to establish contacts with the ribose (Figure 3-11B). However, 

phenylalanine, being a much more bulky group than alanine, contributes in the π-stacking of the 

uridine-ribose. In both these models, Gln183 rotates to help in coordinating the C2' ribose 

hydroxyl. DrUGM W184A shows more changes in the backbone of residues, around the point 

mutation, compared to the DrUGM W184F enzyme.  
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(A)  

(B)  

 

Figure 3-11: Models of W184A and W184F as generated by Rosetta Backrub.36 

The wild-type residues are in orange, and the mutant residues for (A) W184A and (B) W184F are 

in green. 
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3.4.3.2 R364A and R364K 

 Arg364 is in a position to coordinate the cofactor FAD and also make water-mediated 

contacts with the C2 hydroxyl of the galactose ring of the substrate. Mutating this arginine to 

alanine removes these interactions (Figure 3-12A). Based on the models generated, the mutation 

may also change the positioning of a few residues in the active site, such as Tyr370 and the critical 

phosphate stabilizing Arg198. These small changes in the active site could affect the substrate 

binding mode. The model generated for R364K is also similar to R364A in that the above-

mentioned residues are positioned differently. However, in this case, Lys364 can either interact 

with FAD or form a water-coordinated hydrogen bond with the C2 substrate hydroxyl due to its 

flexible side chain, since unlike Arg364 it cannot simultaneously make both interactions (Figure 

3-12B).   
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(A)  

(B)  

 

Figure 3-12: Models for R364A and R364K as generated by Rosetta Backrub.37  
The wild-type residues are in orange, and the mutant residues for (A) R364A and (B) R364K are 

in green. 
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3.4.3.3 H88F        

His88 makes hydrogen bonds with the isoalloxazine ring of FAD and the C3 hydroxyl of 

the galactose ring, as shown in Figure 3-13. The model generated for the DrUGM H88F indicates 

that even though phenylalanine is incapable of making contacts similar to those made by histidine, 

its aromatic ring is in a relatively similar position to that of the histidine ring (Figure 3-13). This 

may have some stacking effect on the isoalloxazine ring and galactose sugar, thereby aiding in the 

positioning of the sugar for nucleophilic attack by FAD. 

 

Figure 3-13: Model for H88F as generated by Rosetta Backrub.38  
The wild-type residue His88 is in orange, and the mutant residue Phe88 is in green 

 

3.4.4 Docking of DrUGM mutants 

 UDP-Galp was docked into the active site of the wild-type enzyme and the mutant 

structures, using the ensemble docking feature in GOLD. The process of creating an ensemble in 

UDP-Galp 

Phe88 His88 
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GOLD is described in Supplementary Section S.2. The advantage of this technique is the ability 

to produce poses of the docked substrate for direct comparison of the superimposed structures. 

Each run generates numbers that can be analyzed to yield further information about substrate 

binding in the various mutants, thereby providing information about the effect of the mutation. 

The results shown in this section has been tabulated using four different numbers generated from 

the docking runs. Scores under 'ensemble analysis', explain which protein in the ensemble docks 

the substrate better; generally the higher the score for the protein, the better the substrate docks in 

the protein. Each run is asked to generate 100 poses of the substrate for the ensemble. Proteins 

among the ensemble which provide more favorable interactions for docking of the substrate 

generate a higher number of docked poses. So, the number of poses generated for each protein in 

the ensemble is also tabulated for analysis. Average RMSD of the ranked poses gives an idea of 

how much the atoms of the docked poses have moved with respect to the crystallographic substrate 

binding pose. Finally, the average distance (Å) between N5 of FAD and C1 anomeric carbon of 

the Galp (sugar) is also calculated to analyze how the docked poses compare to the distance 

measured in the crystal structure. This number also gives an idea of how the changes due to 

mutations affect the productive mode of substrate binding in the active site. 

 

3.4.4.1 Trp184 

In general, the docked poses of both mutants (W184A & W184F) are not in the correct 

conformation necessary for the catalysis of the reaction. Since there is no Trp184 to coordinate the 

ribose hydroxyls in both the mutants, most docking poses of the mutants are flexible, especially in 

the uridine-ribose region (Figure 3-14).  
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Figure 3-14: The top GOLD docking poses for W184A and W184F.39  
The top-ranked docking poses from wild-type DrUGM (orange), W184A (yellow) and W184F 

mutants are shown superimposed on the UDP-Galp (stick; white) from the crystal structure. 

 

Table 3-2 lists the scores from ensemble analysis, percent of poses for each structure in the 

ensemble and the average RMSD of the docked poses. The wild-type enzyme accounts for 66 % 

of the docked poses and also has the highest score from this ensemble analysis. W184F has a better 

score and more % poses than W184A. Although W184F has a lower average RMSD of the docked 

poses when compared to W184A, the wild-type enzyme still has the lowest value. 

 

3.4.4.2 Arg364 

The docked poses obtained for R364 mutants are shown in Figure 3-15. Due to the changes 

in conformation of residues such as Arg198, Tyr370, and the mutated residues, the Galp portion 
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of the substrate is observed to have moved further away from its position under the FAD, in the 

docked poses.  

 

Figure 3-15: The top GOLD docking poses for R364A and R364K.40  
The top-ranked GOLD docking poses for wild-type DrUGM (orange), R364A (yellow) and 

R364K (green) mutants shown superimposed on the UDP-Galp (stick: white) from the crystal 

structure 

 

Table 3-3 indicates that the ensemble analysis scores of the mutants are lower than the 

wild-type enzyme, and the lysine mutant is better than the alanine mutant. The % of docked poses 

is much lower, and the average RMSD is higher for the mutants than the wild-type, reflecting the 

inability of the substrate to bind in a productive conformation. However, an overall comparison of 

the two mutants shows that R364K scores better than R364A.  

 

 

  

UDP-Galp 
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Table 3-2: GOLD docking results for Trp184.8 

 

Table 3-3: GOLD docking results for Arg364.9 

Enzyme 
Ensemble 

analysis score 
% Poses 

Average 

RMSD 

Average N5 (FAD) 

C1 distance (Å) 

Wild-Type 18.84 50 1.39 3.63 

R364A 13.61 16 2.43 4.76 

R364K 16.98 34 2.16 4.42 

 

Table 3-4: GOLD docking results for His88.10 

Enzyme 
Ensemble 

analysis score 
% Poses 

Average 

RMSD 

Average N5(FAD) C1 

distance (Å) 

Wild-Type 26.22 48 1.90 4.09 

H88F 26.49 52 1.30 3.67 

 

3.4.4.3 His88 

Ensemble docking scores of H88F are better than the wild-type enzyme. The docked poses 

are also similar to the wild-type enzyme, as shown in Figure 3-16. The % docked poses based on 

the number of solutions in each run, and the average RMSD of docked poses of UDP-Galp is 

slightly better for the mutant, as shown in Table 3-4. This could be due to the hydrophobic Phe88 

being capable of keeping the Galp and the isoalloxazine ring in the correct position without 

significant changes to the backbone of residues nearby.  

Enzyme 
Ensemble 

Analysis score 
% Poses 

Average 

RMSD 

Average N5 (FAD) C1 

distance (Å) 

Wild-Type 24.16 66 1.41 3.50 

W184A 22.84 14 2.00 4.28 

W184F 23.04 20 1.81 4.57 
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Figure 3-16: The top GOLD docking poses for H88F mutant.41  
The top-ranked GOLD docking poses for wild-type DrUGM (orange), H88F mutant shown 

superimposed on the UDP-Galp from the crystal structure 

 

3.4.5 Crystal structure of N372D 

The crystal structure of N372D was solved to 2.7 Å by previous members of the Sanders 

lab.94 The overall structures of the substrate bound DrUGM and that of the N372D mutant are 

similar. In this crystal structure, Asp372 occupies a similar position to Asn372 and can make 

hydrogen-bonding interactions with Arg198. Asp372 is able to make two hydrogen bonds whereas 

Asn372 is able to make only one with Arg198 (Figure 3-17). However, this mutation has little 

effect on the binding mode of the substrate, as the conformations of active site residues do not 

change much when compared to the wild-type enzyme. The FADred crystal structure of wild-type 

His88 
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KpUGM shows that KpUGM Asp351 is in position to form two bonds to stabilize Arg174, the 

residue that moves in with the mobile loop.93 

 

 

Figure 3-17: Arg198 and Asn372 of wild-type DrUGM and N372D mutant.42  

The wild-type residues are shown in orange while those of N372D are shown in green. 

 

3.4.6 Discussion 

Results from kinetic assays, modeling, and docking experiments were analyzed to 

understand the role of the chosen DrUGM active site residues in binding UDP-Galp in an active 

conformation. In the wild-type enzyme, Trp184 interacts with the ribose hydroxyls through 

hydrogen bonds. Both Trp184 mutants are unable to coordinate the ribose, but the presence of the 

bulky, aromatic phenylalanine has an influence on substrate binding, as evidenced by the kinetic 

and docking experiments. The results obtained from docking experiments are comparable to those 

obtained from kinetic assays. The wild-type enzyme has much higher efficiency than the two 

mutants. W184A and W184F have displayed a loss of efficiency and a decreased ability to bind 

UDP-Galp 

Arg198 

Asn372 
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the substrate when evaluated by kinetic assays. This is also reflected in the docking studies as the 

wild-type enzyme has the highest score from ensemble analysis and a higher number of docked 

poses with a lower RMSD. Moreover, the higher average RMSD of the poses generated for the 

mutants suggest that the substrate is mostly not held in the productive conformation within the 

active site; a factor that could be leading to the loss in kinetic efficiency of the mutants. The 

aromatic phenylalanine (W184F) may have a positive effect on substrate binding. The W184F 

mutant has a lower average RMSD for the docked poses and a better kinetic efficiency than the 

W184A mutant. Therefore, even though the wild-type Trp184 can coordinate the ribose hydroxyls, 

the aromatic rings and the hydrophobic nature of this residue are responsible for positioning the 

uridine portion of the substrate via hydrophobic interactions thereby making it an essential residue 

for ensuring the best substrate binding mode.  

Arg364 is the third arginine in the active site, apart from the arginines that stabilize the 

substrate diphosphate. This residue interacts with the FAD in the absence of the substrate in the 

active site but moves into the active site to coordinate the incoming substrate. The models predict 

changes in the active site conformation, as this residue not only influences the positioning of Galp 

but also influences the position of residues crucial for stabilizing the substrate diphosphate. The 

possible movement of Tyr370 towards the β-phosphate of the substrate is likely to displace the 

critical residue Arg198 from its position, thereby causing changes to the substrate binding mode. 

The docked poses have the diphosphate moiety of the substrate occupying a different position in 

the active site and Galp is away from the isoalloxazine ring, compared to the wild-type enzyme. 

The average distance between the N5 (FAD) of C1 anomeric carbon (Galp) is close to 4.5 Å (and 

higher than wild-type) for the mutants. This trend is also reflected by the kinetic assays performed 

with the mutants. R364A and R364K were unable to bind enough substrate to achieve the half-
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maximal activity of the wild-type and had very low efficiency. This could be due to the inability 

of both mutants to bind the substrate in a productive conformation within the active site, as 

suggested by the docking studies. Ensemble analysis scores both mutants lower than the wild-type 

enzyme, and R364K better than R364A. Therefore, apart from making contacts with FAD, Arg364 

helps keep critical residues like Arg198 in the correct position, thereby letting the substrate bind 

in the most productive mode.  

The mutation of His88 with Phe88 was done based on eukaryotic UGM sequences. As 

evidenced by the kinetic studies, the mutant enzyme is able to bind the substrate in the productive 

binding mode. The docking experiments are also in favor of this argument. The docked poses of 

the substrate in the mutant are similar to that of the wild-type enzyme. Moreover, ensemble 

docking scores H88F marginally better than the wild-type enzyme and the average RMSD of 

docked poses of UDP-Galp is also better for the mutant. DrUGM H88F thus aids in positioning 

the sugar under FAD, due to the aromatic group of phenylalanine. It is also noted that Phe88 in the 

mutant model occupies a similar position with respect to both the FAD and Galp as that of Phe66 

in the crystal structure of FADred eukaryotic AfUGM.35 AfUGM Phe66 however, is closer to Galp 

(~ 3.8 Å) than DrUGM His88 (~ 4.2 Å), as it cannot form any bonds with either FAD or Galp. 

Thus, the aromatic imidazole ring of His88 also contributes to positioning Galp, serving to orient 

the sugar for catalysis.  

Once the substrate is in the active site, Asn372 hydrogen bonds with Arg198, thereby 

keeping the mobile loop closed and completely burying the substrate in the active site. The 

DrUGM N372D mutant is able to form this interaction like the wild-type enzyme, without changes 

to the orientation of the substrate or other active site residues. However kinetic studies show that 

the mutation alters the efficiency of the enzyme, making N372D more similar to KpUGM. This 
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may be a result of the two hydrogen bonds that Asp372 can make with Arg198, which may slow 

the release of the product formed, ultimately reducing the efficiency of the enzyme. 

 

3.5 Inhibition of MtUGM by MS-208 

Since UGM is a potential drug target, as mentioned in the introductory chapter, a constant 

search for identification of new lead compounds is underway, and a number of studies have been 

conducted for characterization and analysis of these inhibitors. Inhibitors identified through virtual 

screening have had more success; although in general have low potency against bacterial UGMs. 

Among the non-substrate like inhibitors identified from virtual screening, compounds with a 5-

hydroxy-pyrozole core were generally more successful in inhibiting UGMs and more importantly 

were nontoxic to human cells.54 This section of the chapter will discuss the inhibition experiments 

performed on MtUGM with a recently identified fungicidal compound, MS-208, having the 5-

hydroxy-pyrozole core. Studies described here are focused towards inhibiting prokaryotic 

MtUGM, since it is a validated drug target.21 MS-208 demonstrates moderate inhibition against 

MtUGM (IC50 value ~ 64 ± 1 µM). A study conducted by Dr. Pinto's group (Simon Fraser 

University, British Columbia), hypothesized that MS-208 (Figure 3-18A) may inhibit MtUGM by 

binding to a novel allosteric site. Based on their molecular dynamics, docking and Saturation 

transfer difference-nuclear magnetic resonance (STD-NMR) studies, the allosteric site was 

proposed to be located behind the adenine binding region of FAD [unpublished results].98 This 

proposed allosteric site has a small loop with negatively charged residues, called the A-loop and 

another groove, in between which MS-208 binds, as shown in Figure 3-18B.  
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Figure 3-18: MS-208 and its binding to an allosteric site in MtUGM.43  

(A) The structure of MS-208. (B) MS-208 bound to the allosteric site of MtUGM. The active site 

mobile loop is open since there is no substrate in the active site. (C) The allosteric site (cyan) when 

there is substrate in the active site (cyan). (D) Changes in the binding modes of MS-208 (magenta) 

and A-loop (magenta), when the substrate binds in the active site after MS-208 binds in the 

allosteric site; the destabilized A-loop of the allosteric site (yellow) when MS-208 (yellow) binds 

in the allosteric site in the presence of substrate in the active site [unpublished results].98 

 

UDP-Galp 
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Some of the other significant findings from the study were that MS-208 had a higher 

affinity to MtUGM than the MtUGM: UDP-Galp complex. The binding of MS-208 weakens the 

binding of substrate in the active site due to the inability of the active site residues to be in the right 

conformation. Furthermore, the binding of the substrate also weakens the binding of MS-208 in 

the allosteric site, because of the destabilization of the A-loop (Figure 3-18D). To determine the 

mode of inhibition and to generate kinetic numbers, we kinetically evaluated the inhibition of 

MtUGM by MS-208.  

 

3.5.1 Purification of MtUGM 

To overcome the solubility issues, MtUGM was cloned into pDESTHisMBP, using 

Gateway cloning, so that the protein would be expressed with an N-terminal His-MBP-tag.72 The 

HisMBP-tagged MtUGM was purified by affinity chromatography and the tag was cleaved using 

TEV protease. Pure MtUGM was obtained after applying the sample through a Ni-sepharose 

affinity column.32 The purity of the protein was assessed using SDS-PAGE (Figure 3-19).  

 

Figure 3-19: SDS-PAGE analysis of purified fractions of MtUGM, after the HISMBP-tag 

was cleaved using TEV protease.44 
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3.5.2 Kinetic evaluation of MtUGM inhibition by MS-208  

 The kinetic evaluation of MtUGM inhibition by MS-208 was performed using HPLC - 

based kinetic assays, as described in chapter 2. The enzyme taken in buffer (both at constant final 

concentration) was reduced and incubated with MS-208, reacted with the substrate, quenched and 

analyzed by HPLC to observe product conversion. The final % conversion values were obtained, 

and rates were determined. Three different inhibitor concentrations (60 µM, 120 µM, and 200 µM) 

were used for this study. 

 

3.5.2.1 Michaelis-Menten plot  

Non-linear regression analysis was performed to determine the kinetic parameters. The Km 

and kcat values calculated for MtUGM in the absence of inhibitor were 45.4 ± 3.0 µM and 7.8 ± 0.2 

sec-1, respectively. The Michaelis-Menten plot obtained with and without inhibitor is shown in 

Figure 3-20. At increasing inhibitor concentrations, the Km of the enzyme increases while the 

maximum velocity obtained decreases, as shown in Table 3-5.                   

 
 

Figure 3-20: Michaelis-Menten plot for inhibition of MtUGM by MS-208.45  

The plot displays the Rate vs. Substrate (UDP-Galf) concentrations in the absence of MS-208 and 

the presence of inhibitor at three different concentrations, 60 µM (blue), 120 µM and 200 µM 

(black)  
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Table 3-5: Decreasing values of the apparent Km and maximum velocity (Vmax) of MtUGM 

with increasing MS-208 concentrations.11                

I (µM) Km,app (µM) Vmax,app (µM/S) 

0 45.4 ± 3.0 0.78 ± 0.02 

60 51.5 ± 4.0 0.67 ± 0.02 

120 63.3 ± 6.2 0.63 ± 0.03 

200 90.6 ± 12.4 0.57 ± 0.04 

 

3.5.2.2 Lineweaver-Burk plot  

Initial efforts to globally fit the data points to an equation for competitive inhibition, using 

SigmaPlot, failed, as MS-208 did not behave as a competitive inhibitor. Moreover, competitive 

inhibition was ruled out, since lines corresponding to different inhibitor concentrations did not 

intersect on the y-axis of the Lineweaver-Burk plot, as shown in Figure 3-21. 

 

Figure 3-21: Lineweaver-Burk plot for inhibition of MtUGM by MS-208.46  
This plot shows 1/Rate vs. 1/UDP-Galf, in the absence of MS-208 and the presence of MS-208 at 

three different concentrations, 60 µM (blue), 120 µM and 200 µM (black). 
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The Lineweaver-Burk plot shown in Figure 3-21 was obtained by global fitting of the data 

to the following linear mixed-type inhibitor equation, 

                           
1

V
=

Km

Vmax
 (1 +

[I]

Ki
) (

1

[S]
) +  

1

Vmax
 (1 +  

[I]

α Ki
)                          (2) 

where, Vmax is the maximum velocity obtained for each curve at different inhibitor concentration, 

Km is the Michaelis-Menten constant, S is substrate concentration, I is the inhibitor concentration. 

The values generated for both dissociation constants Ki, Ki', and α, from global fitting of the data 

were 0.13 ± 0.02 mM, 0.4 ± 0.07 mM and 2.99 respectively.  

 

3.5.2.3 Diagnostic Dixon and Cornish-Bowden plots  

Dixon and Cornish-Bowden plots were used to confirm that MS-208 is a mixed-type 

inhibitor of MtUGM. In the Dixon plot, the lines intersected above the x-axis while in the Cornish-

Bowden plot the lines intersected below the x-axis. Hence, the two diagnostic plots taken together 

are indicative of mixed-type inhibition.99 Furthermore, these plots also allow the determination of 

Ki and Ki' values. The Ki value as determined from the Dixon plot shown in Figure 3-22A was ~ 

135 µM. The Ki' value as calculated from the Cornish-Bowden plot shown in Figure 3-22B was ~ 

400 µM. These values are in close agreement with the values calculated from the SigmaPlot global 

fitting.     
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(A)  

(B)  

Figure 3-22: Dixon and Cornish-Bowden plots for inhibition of MtUGM by MS-208.47  

(A) Dixon plot, showing 1/ Rate vs. Inhibitor (MS-208), for various concentrations of UDP-Galf. 

(B) Cornish-Bowden plot, showing UDP-Galf / Rate vs. Inhibitor (MS-208), for different 

concentrations of UDP-Galf.  

 

3.5.3 Discussion 

 The Michaelis-Menten plot displays decreasing Vmax values with increasing inhibitor 

concentrations. In the Lineweaver-Burk plot, the lines drawn at various inhibitor concentrations 

are not intersecting on the y-axis. This suggests that MS-208 is not a competitive inhibitor. The 

best global fit to the experimental data was obtained with an equation for linear mixed-type 
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inhibition, using SigmaPlot. Diagnostic Dixon and Cornish-Bowden plots helped further the 

understanding of the mode of inhibition of MtUGM by MS-208. The lines corresponding to various 

substrate concentrations intersect at a point above the x-axis (second quadrant) in the Dixon plot 

and below the x-axis (third quadrant) in the Cornish-Bowden plot, thus confirming that MS-208 is 

a mixed-type inhibitor.  

                                 

Figure 3-23: General reaction scheme for a mixed-type inhibitor.48 

Furthermore, these complementary plots also helped determine the Ki and Ki' values. The 

Ki and Ki' values obtained from these plots were ~ 135 µM and ~ 400 µM respectively. In this 

case, Ki, the dissociation constant of the EI complex is less than Ki', the dissociation constant of 

the ESI complex, meaning that MS-208 binds more tightly to MtUGM alone than the MtUGM: 

UDP-Galp complex (Figure 3-23). These values are in close agreement with those calculated from 

the global data fit generated using the linear mixed-type inhibitor equation in SigmaPlot. Thus 

based on the observations from the plots it was concluded that MS-208 works as a mixed inhibitor 

of MtUGM. Further experiments will be conducted to prove its binding to the suggested allosteric 

site. Furthermore, improving the inhibition by modifying the structure of MS-208, will also be 

considered. Some of the suggestions will be discussed in Chapter 6.  

  



100 

 

Chapter 4: UDP-arabinopyranose mutase  

Not much information is available about the 3D structure and catalytic mechanism of plant 

UAMs. UAM from rice seed extracts, purified by Konishi et al. (2007), did not have the 

characteristic flavin UV-absorption peak at 450 nm. Furthermore, it was observed that OsUAMs 

were active when tested with divalent metal ions; 5 mM manganese chloride (MnCl2) gave the 

best % activity.18,100 All three AtRGPs were also tested with 5mM MnCl2 for mutase activity, using 

experimental conditions previously developed by Konishi et al.66 

The structural information known about UAM is based on the experimental results and 

hypothesis generated to describe the possible roles of a few residues. Arg158 was believed to be 

the site of glycosylation of OsUAM1. Konishi et al. (2010) explained this based on their 

observations from experiments conducted using 13C-labelled UDP-glucose to glycosylate this 

arginine and then analyzing the trypsin digested glycopeptide fragments by Liquid 

Chromatography-Mass Spectrometry (LC-MS). The alanine mutants of glycosylating arginines 

from OsUAM1 and OsUAM3 (R158A and R156A) exhibited poor or no activity. Moreover, other 

arginines that are in proximity to the site of glycosylation (OsUAM1 Arg165 and OsUAM3 

Arg163) were also proved to be essential for activity. Both, removing only the guanidino nitrogen 

group of OsUAM1 (Arg165 mutating it to a lysine) or removing the side chain completely (Arg165 

mutation to alanine) reduced mutase activity by ~ 12 and ~ 17-fold respectively.101 Similarly, 

mutating OsUAM3 Arg163 to alanine (R163A) had a disastrous effect on activity (~ 50-fold 

reduction in activity). The sequence of rice OsUAMs and AtRGPs have a highly conserved DXD-

motif, characteristic of the glycosyltransferase family. This motif is hypothesized to be involved 

in binding the metal ion, which is necessary for activity. 
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 In the research undertaken on UAM, as a part of this thesis work, the divalent metal ion 

dependency of four chosen UAMs (OsUAM1, AtRGP1, AtRGP2, and AtRGP3) was investigated, 

and a comparative analysis was performed. So far, the role of the metal ion in binding the substrate 

and how the metal ion binds to the active site of the enzyme has not been explored in any of the 

plant UAMs. Hence, experiments were conducted to pick out the enzyme's metal binding region 

and determine the residues that may bind the metal ion in the enzyme's active site through SDM. 

On the basis of these experiments, a possible role for the metal ion in interacting with the substrate 

(UDP-Arap) is also proposed.  

 

4.1 Purification of OsUAM1 and mutants 

 OsUAM1 wild-type and its mutants (H273A, D110A, D111A, and D112A) required for 

this study were cloned into a pEHISTEV vector and transformed into E. coli strain BL-21 gold 

cells. All proteins over-expressed with the N-terminal histidine tag and were purified using nickel 

affinity chromatography. Figure 4-1A shows that the fractions (5-9) contain wild-type OsUAM1 

purified along with other contaminating proteins. The fractions were concentrated and run on a 

Gel-filtration chromatography, to further purify OsUAM1, by removing other contaminating 

bands. The sample purity was analyzed using SDS-PAGE, and it is shown in Figure 4-1B.  
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       (A)                            (B) 

 

 

 

 

 

 

 

 

(A)                  (B) 

 

Figure 4-1: SDS-PAGE analysis after OsUAM1 purification.49  
(A) Gel obtained after Nickel affinity chromatography (B) After further purification using Gel-

filtration chromatography. 

 

4.2 Purification of AtRGPs 

 AtRGPs cloned into pEHISTEV vector and transformed into E.coli BL-21 gold cells were 

unable to successfully over-express a desirable amount of soluble protein. Therefore, AtRGPs were 

cloned into pDESTHisMBP, using Gateway cloning technology. The required protein could be 

expressed with an N-terminal His-MBP-tag, which was cleaved using TEV-protease, due to a 

recognition site inserted after the His-MBP tag. Pure AtRGPs were obtained in the flow-through, 

after applying the TEV-Protease treated sample onto a Ni-sepharose affinity column. The purity 

of the protein was assessed using SDS-PAGE. The gels obtained with AtRGP1 are shown as an 

example in Figure 4-2. 
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(A)              (B) 

 

Figure 4-2: SDSPAGE analysis after AtRGP1 purification.50   
(A) SDS-gel of AtRGP1 purification after Nickel affinity chromatography column (B) After 

cleavage of the His-MBP tag with TEV protease. 

 

4.3 Metal-binding studies on OsUAM1 and AtRGPs  

According to a previous study conducted by Konishi et al. (2007), rice mutase was 

activated in the presence of divalent ions (as shown in Figure 4-3). They observed enzyme activity 

when no divalent metal ions were added to their assay. The value obtained was approximated as 

100% relative activity. Based on this approximation, they discovered that rice mutase activity 

almost doubled in the presence of 5 mM MnCl2, but the same concentration of other divalent 

cations such as MgCl2 and ZnCl2 displayed no significant increase in activity. Other divalent metal 

solutions such as CaCl2, CuSO4, and CoCl2 had an adverse effect on relative activity (decreased % 

relative activity from that obtained with no metal), as shown in Figure 4-3. 
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Figure 4-3: Percent relative activity of UAM with divalent metal ions as studied by Konishi 

et al. (2007).*51 

*Permission to reuse figure attached at the end of this thesis. 

4.3.1 Percent activity of OsUAM1 with varying concentrations of divalent metal ions  

The results obtained here are from reactions performed with constant amounts of substrate 

and enzyme concentrations, and a manganese concentration ranged from 0 to 5 mM. The results 

showed that 5 mM Mn2+ had an inhibitory effect on enzyme activity and the activity increased 

with a decrease in Mn2+ concentration. The % relative activity obtained at 80 µM concentration of 

Mn2+ was much higher, almost double compared to the activity of the enzyme observed at 5 mM 

Mn2+. There was an increase in activity observed from 0 µM (11 %) to 80 µM (100 %) Mn2+ and 

85 - 100 % relative activity was achieved with a Mn2+ concentration between 40 -200 µM (Figure 

4-4A). Excess Mn2+ ion concentration, greater than 320 µM, displayed an inhibitory effect on 

OsUAM1 activity. A second plot obtained with OsUAM1 pre-treated with EDTA to remove 

residual metal, also showed a similar trend (Figure 4-4B). No activity was observed at 0 µM Mn2+, 

which demonstrates that the enzyme is inactive in the absence of any divalent metal ion. Therefore, 

Mn2+ is essential for OsUAM1 activity and is not an activator of the enzyme, as previously stated 

by Konishi et al. (2007). 
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(A)  

(B)  

 

Figure 4-4: Plots showing the change in % Relative activity with Manganese concentration 

of OsUAM1.52  
(A) Percent relative activity vs. Manganese concentration up to 5 mM of OsUAM1 (B) Percent 

relative activity vs. Manganese concentration up to 320 µM of OsUAM1 samples pre-treated with 

EDTA. 
 

4.3.2 Percent activity of OsUAM1 with other divalent metals  

 Other divalent metals such as Mg2+, Zn2+, Co2+, Ca2+, and Cu2+ were used to study the % 

activity of OsUAM1. This was done to understand the effect of these metal ions on mutase activity 

and to make comparisons with the data obtained by Konishi et al. (Figure 4-5).  
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(A)  

(B)  

 

Figure 4-5: Percent activity of OsUAM1, in the presence of other divalent metal ions.53   
(A) The percent relative activity of OsUAM1, in the presence of other divalent metal ions at 80 

µM concentration in the reaction mixture (B) Percent relative activity of OsUAM1with divalent 

metal ions in the range 0 - 320 µM. 

 

It was observed that Zn2+ and Co2+ ions were able to show significantly lower % relative 

activity (close to 70 % for Zn2+ and 60% for Co2+) compared to the % activity obtained with Mn2+ 

at 80 µM concentration (Figure 4-5A). However at 5 mM, they had displayed a very low or no 

effect on activity. Moreover, other divalent metals such as Mg2+, Ca2+ and Cu2+ displayed low 

activity, less than 10% increase in activity at 80 µM.                        
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Another plot was constructed by varying the divalent metal concentrations between 0 µM 

and 320 µM, to see if a trend similar to that of Mn2+ was displayed, using OsUAM1 pre-treated 

with EDTA. It was observed that Zn2+ and Co2+ followed a similar trend with % relative activity 

increasing to a maximum at 80 µM metal concentration and decreasing as metal ion concentration 

was increased to ~ 300 µM or higher (Figure 4-5B). There was no significant rise in activity in the 

case of other divalent metals like Mg2+, Cu2+, and Ca2+. The % relative activity of OsUAM1 

remained less than 10% with all the three divalent metal ions at various concentrations, compared 

to the values obtained with Zn2+ and Co2+.  

4.3.3 Metal binding studies on Reversibly Glycosylated Protein 1  

 A similar trend of lower % activity with higher concentrations of Mn2+ was also noted with 

AtRGP1. However, in this case, maximum % activity was obtained at 40 µM concentration of 

Mn2+ (Figure 4-6A & B). Other trends were more similar to what was already observed with 

OsUAM1. At 40 µM, Zn2+ and Co2+ produced slightly greater than 60% activity (Figure 4-6B). 

The other divalent ions showed lower activity at this concentration and negligible % activity at 

concentrations between 0 and 320 µM. As already described with Mn2+, AtRGP1 displayed a 

decrease in activity at concentrations higher than 40 µM with Zn2+ and Co2+ (Figure 4-6C). 
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(A)  

(B)  

                        (C)    

 

Figure 4-6: Metal binding studies on AtRGP1.54  
(A) Percent relative activity vs. Manganese concentration up to 5 mM (B) Percent relative activity 

of AtRGP1, with other divalent metal ions at 40 µM in the reaction mixture (C) Percent relative 

activity of AtRGP1with divalent metal ions with concentrations ranging from 0 - 320 µM. 
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4.3.4 Reversibly Glycosylated Proteins 2 and 3 (AtRGP2 and AtRGP3) 

AtRGP2 and AtRGP3 both showed similar trends with Mn2+ and other divalent metal ions. 

In the case of AtRGP2, the maximum activity was observed at 40 µM (Figure 4-7A & B); Zn2+ 

and Co2+ were the other two divalent metal ions that displayed 60 % activity at 40 µM (Figure 4-

7B). Though unlike the trend seen thus far, at this concentration, Co2+ had a slightly higher activity 

(3-5 %) than Zn2+. Trends with other divalent ions were similar to AtRGP1 and OsUAM1 from 

concentrations between 0 - 320 µM (Mg2+, Cu2+, and Ca2+ had negligible % activity in this 

concentration range). (Figure 4-7C). 

The graphs for AtRGP3 are shown in Figure 4-8. Here again, Mn2+ displayed the best % 

activity at 40 µM (Figure 4-8A and B), while divalent ions such as Zn2+ and Co2+ displayed the 

next best activity, as seen with AtRGP1 (Figure 4-8B). In the case of AtRGP3, there were no 

aberrations in the trend already established by the other mutases in this study. 
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(A)  

(B)  

                         (C)  

 

Figure 4-7: Metal binding studies on AtRGP2.55   

(A) Percent relative activity of AtRGP2 vs. Manganese concentration up to 5 mM (B) Percent 

relative activity of AtRGP2, with other divalent metal ions at 40 µM in the reaction mixture (C) 

Percent relative activity of AtRGP2 with divalent metal ions in the range, 0 - 320 µM. 
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(A)  

      (B)  

               (C)  

 

Figure 4-8: Metal binding studies on AtRGP3.56 

(A) Percent relative activity of AtRGP3 vs. Manganese concentration up to 5 mM (B) Percent 

relative activity of AtRGP3, with other divalent metal ions at 40 µM in the reaction mixture (C) 

Percent relative activity of AtRGP3 with divalent metal ions in 0 - 320 µM range. 
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4.4 UAM crystal trials 

Crystallization experiments were conducted with OsUAM1 and AtRGP1 to obtain 

structural information. The results from crystal screening of both these enzymes will be discussed 

here. Purified OsUAM1, concentrated to ~ 6.5 mg/ml in 25 mM Bicine pH 8.5 and 1 mM 

Manganese chloride, was used to set up crystal trials with UDP-Galp (due to commercial 

unavailability of the actual substrate UDP-Arap). For the initial trials, commercially available 

crystal screens were used to set up microbatch plates at room temperature and 4 °C. Most of the 

hits obtained were either spherulites or microcrystalline material; none of the conditions produced 

single crystals. The spherulites were obtained overnight in multiple conditions with the 2-methyl 

2-pentanediol (MPD) screen having 30 - 40% (v/v) MPD concentration in two different buffers; 

HEPES buffer pH 7.0 and Tris buffer pH 8.0 (Figure 4-9A and B). However, the best hits were 

observed within three to four days in the PACT screen conditions #2-6, which had thin clusters of 

needles growing from the initially formed spherulites (Figure 4-9C). These conditions had 0.1 M 

SPG buffer (having succinic acid: sodium dihydrogen phosphate: glycine in a 2:7:7 molar ratios), 

pH 5.0, 6.0, 7.0, 8.0 and 9.0, respectively, and 25 (v/v) polyethylene glycol (PEG) 1500.  

The conditions were further optimized with the use of grid screens while varying the pH 

between 4.0 and 9.0 and the PEG 1500 concentration between 5 and 40 % (v/v). The optimization 

grid screens were performed with both microbatch and hanging drop vapour diffusion techniques. 

Also, additive screen, having 96 different ingredients (containing different anions, cations, and 

detergents) was used. For performing the additive screen, the 96 different ingredients were mixed 

with the PACT screen conditions #2-6, in a 9:1 ratio, (to make 96 different crystallization 

conditions), before setting up the microbatch plate. The experiments were also repeated at various 

temperatures, to see if the changes in conditions would increase the likelihood of obtaining 
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crystals. Most of the results observed did not give single crystals nor did they improve the quality 

of crystalline material significantly. A grid screen and additive optimization were also performed 

on the spherulites obtained in the MPD screen. Yet again, only spherulites could be reproduced 

with 15-25% (v/v) MPD, with 50 mM potassium iodide and HEPES buffer pH 7.5, using both 

microbatch and vapor diffusion techniques. 

(A)  (B)  

(C)  (D)  

(E)  (F)  (G)  

 

Figure 4-9: Microcrystalline hits observed for OsUAM1 crystal screens.57   
(A) Microcrystalline material observed in the MPD screen for OsUAM1 (B) Spherulites of 

OsUAM1 which take up the Izit dye (C) OsUAM1 microcrystalline material obtained from 

hanging drops containing 20% (v/v) MPD, potassium iodide and HEPES buffer pH 7.5 (D) Small 

crystals obtained from seeding experiments (E) AtRGP1 needle cluster from PACT screen # 6 (F) 

AtRGP1 crystalline material obtained from microseeding in the same condition (G) AtRGP1, plate-

like clusters from microseeding. 
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Seeding techniques were also used to improve crystal quality. The needle clusters, obtained 

from the PACT screen were used in performing both microseeding (including streaking) and 

macroseeding. The crystallization drops were set up using the hanging drop technique and the 

drops were streaked or macroseeded after sufficient equilibration time (3-4 hours). Small tiny 

crystals could be obtained within a day, but they did not grow any further to form larger single 

crystals (Figure 4-9D). 

AtRGP1 was purified and concentrated to ~ 7.0 mg/ml in 25 mM Bicine pH 8.5 and 1 mM 

manganese chloride. Co-crystallization trials of AtRGP1 conducted with UDP-Galp produced 

initial hits in the same conditions (PACT screen conditions #2 - 6), as that of OsUAM1 (Figure 4-

10E). The needle clusters obtained in this case were slightly longer than those obtained with 

OsUAM1. Grid screens were set up around the condition for optimization. Additive screens and 

detergent screens were also performed. Hanging drops were also set to see if the needle clusters 

were reproducible. Seeding experiments were also carried out with this enzyme, using the 

microseeding technique described in Chapter 2. Generally, the seeding trials yielded slightly better 

crystals. In some cases, clustered plate-like crystals were also identified. The best results were thin 

plates in 0.1 M SPG buffer pH 7.0 and 15% (v/v) PEG 1500 (Figure 4-9F & G). The plates were 

tested for quality; however diffraction results yielded very low resolution. 

 

4.5 Results from modeling studies  

Since diffraction quality single crystals of UAM proved to be a difficult task to accomplish, 

modeling studies were performed to gain some insights into the active site residues involved in 

substrate and metal binding. There were no known 3D structures for any of the plant UAM or any 

other proteins with a modest sequence identity (30 - 40 % sequence identity) to UAM, reported in 
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the literature. Hence, models had to be generated based on the protein sequence of the enzyme. A 

sequence alignment performed on all four sequences (OsUAM1, AtRGP1, AtRGP2 & AtRGP3) 

showed that all the sequences had greater than 85% identity (Figure 4-10B). Therefore, OsUAM1 

was chosen for modeling studies.  

Two different structure prediction (modeling) programs I-TASSER, and GalaxyWEB were 

used to predict a model for OsUAM1.87,88,102,103 A description of the strategy utilized by these 

modeling softwares to predict the model has been included in the Supplementary section S.4. Both 

these programs produced five structural models for the OsUAM1 sequence. Models obtained from 

these online modeling programs, were manually compared against each other (uploading PDB 

coordinates generated in PyMOL) to determine similarities in regions predicted to form secondary 

structures (Figure 4-10A), and also to make an overall comparison of the 3D structure. The 

comparative analysis of each of the five models, predicted by the programs, showed that regions 

of the OsUAM1 sequence picked to form α-helices and ß-strands were consistent overall. The 

regions picked to form loops were often slightly different among the models, but generally 

consistent. The predicted models were also compared to analyze differences in the overall 

structural architecture. The most consistent models generated by both these programs with minimal 

overall differences in secondary structural and 3D architecture were selected and are shown in 

Figure 4-11A & B.  

 

 

 

 

 



116 

 

(A)  

MAGTVTVPSASVPSTPLLKDELDIVIPTIRNLDFLEMWRPFFQPYHLIIVQDGDPTKTIR  60            

VPEGFDYELYNRNDINRILGPKASCISFKDSACRCFGYMVSKKKYVFTIDDDCFVAKDPS   120   

GKDINALEQHIKNLLSPSTPFFFNTLYDPYREGADFVRGYPFSLREGAKTAVSHGLWLNI 180    

PDYDAPTQMVKPRERNSRYVDAVMTVPKGTLFPMCGMNLAFDRDLIGPAMYFGLMGDGQP 240    

IGRYDDMWAGWCMKVICDHLSLGVKTGLPYIWHSKASNPFVNLKKEYKGIFWQKDIIPFFQN 302     

ATIPKECDTVQKCYLSLAEQVREKLGKIDPYFVKLADAMVTWIEAWDELNPSTAAVENGKAK 364 

 

(B) 

 
 

Figure 4-10: High sequence identity between OsUAM1 and AtRGPs.58  
(A) OsUAM1 sequence showing regions predicted to form helices (in red), β-strands (in blue) and 

coils (in black), as predicted by PredictProtien software. (B) Sequence alignment of OsUAM1 

(UAM) & AtRGP sequences (RGP1, RGP2 & RGP3). The sequence alignment was performed 

using ESPript (Version 3.0) 
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Further analysis of the OsUAM1 model revealed information about the Structural 

Classification of Proteins (SCOP) that UAM may fall under. UAM was predicted to belong to the 

class Alpha and beta proteins (a/b). Among the proteins classified under this category, UAM 

comes under the nucleotide-diphospho sugar transferases fold and superfamily of proteins. The 

commonly observed prominent features of the secondary structural elements of a protein structure 

that belong to this fold are, the presence of a β-sheet layer, sandwiched between two layers of α-

helices (Figure 4-11). One other notable feature of the sandwiched seven strand β-sheet layer 

(order of β-strands 3214657), is that strand 6 is antiparallel to the others. UAM falls under the 

glycosyltransferase family of proteins, which bind a metal co-factor through a DXD-motif and 

catalyze reactions on nucleotide-diphospho sugars. 
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(A)  

(B)  

 

Figure 4-11: Models for OsUAM1, predicted by GalaxyWeb and I-TASSER.59   
(A) OsUAM1 model predicted by GalaxyWeb, highlighting the regions different from the I-tasser 

model in a purple box (B) OsUAM1 model as predicted by I-TASSER, highlighting the regions 

distinct from the GalaxyWeb model in a purple box.  
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In addition to generating a model, I-TASSER was also able to predict the functional 

analogs of the model, by using global and local structural similarity search. In the case of the 

OsUAM model, I-TASSER chose Chondroitin polymerase, a bifunctional glycosyltransferase that 

can bind to UDP-Glucuronic acid (UDP-GlcUA) or UDP-GalNAc and alternatively transfer 

GlcUA or GalNAc moiety to catalyze the elongation of the chondroitin chain.104 Like UAM, 

Chondroitin polymerase also uses Mn2+ as a cofactor and UDP-based substrates and has two 

glycosyltransferase domains. The software also predicts the binding site of UAM by docking UDP-

GalNAc (one of the substrates in the crystal structure of Chondroitin polymerase) in the active site 

of the predicted OsUAM model. This process aids in picking out a few active site residues that 

may bind and interact with the substrate of UAM (UDP-Arap), as shown in Figure 4-12A & B. 

Based on the OsUAM1 model and its comparison with Chondroitin polymerase, the 

following residues predicted by I-TASSER may be able to bind the substrate uridine, sugar, and 

the metal ion cofactor. Residues such as Thr28, Ile29, Asn31, and Asp52 may interact with the 

uridine portion of the substrate (Figure 4-13A) while residues such as Gly242, Arg243, Asp245, 

and Asp246 were predicted to interact with the sugar moiety of the substrate. The most important 

finding regarding this research is the site proposed to bind the metal ion. Residues Asp110, 

Asp111, Asp112, and His273 were predicted to be in the position to bind the metal ion (Figure 4-

12C). The model is in agreement with the hypothesis that, like other members of the 

glycosyltransferase family, UAM uses its metal ion cofactor to bind and stabilize substrate. The 

OsUAM1 model suggests that the above-mentioned residues bind the metal, holding it in place for 

the incoming substrate. As part of this study, SDM was performed on these residues to further our 

understanding of the metal binding site.   
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(A)  
 

(B)  (C)  

 

Figure 4-12: I-TASSER model of OsUAM1 with UDP-GalNAc in its active site and predicted 

uridine, metal and sugar regions of the substrate.60  

(A) I-TASSER model of OsUAM1 with UDP-GalNAc in its active site (B) Predicted regions of I-

TASSER model that can bind uridine (blue), metal (magenta) and sugar (salmon) regions of the 

substrate. (C) Close-up view of predicted metal-binding site of OsUAM1 
 

4.6 Mutation studies on OsUAM1 

 OsUAM1 and OsUAM3 contain a DDD-motif in their sequence (Asp110, Asp111, and 

Asp112 in OsUAM1; Asp108, Asp109, and Asp110 in OsUAM3); in the case of OsUAM2, which 

UDP-

GalNAc 

D110 

D111 

D112 

H273 

Mn
2+
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does not perform the mutase function, the third aspartic acid in the motif is replaced by an 

asparagine (DDN). Mutating Asp112 in OsUAM1 to asparagine (D112N) deleted the mutase 

activity in the enzyme. However, mutating Asn99 in OsUAM2 to an aspartic acid (N99D) alone 

did not succeed in converting OsUAM2 into a mutase.101 As part of this research, four residues 

identified by the OsUAM1 model as having a role in binding the metal cofactor, were mutated to 

alanines so as to analyze their effect on the enzyme activity. From the model, since His273 was in 

close vicinity to the DDD-motif, the possible role of this residue in metal binding was also further 

explored, along with the residues that make up the DDD-motif. 

 

4.6.1 Kinetic study on OsUAM1 wild-type 

The reaction catalyzed by UAM is reversible, with the equilibrium favoring UDP-Arap 

formation. The optimal pH for the formation of UDP-Arap was between 5.5 and 6.0 and that for 

UDP-Araf formation was between pH 7.0 to 7.5.18 The data obtained from our HPLC-based kinetic 

assays were fit to a non-linear regression fit and the kinetic parameters were determined. OsUAM1 

had a Km of 12 ± 1 µΜ for UDP-Araf, and a kcat value of 3.2 ± 0.1 sec-1. The calculated specificity 

constant (kcat/Km) was 0.26 ± 0.1 s-1µM-1 (Figure 4-13A). 
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(A)  

 (B)  

         (C)      

 

Figure 4-13: Kinetic curves for OsUAM1 wild-type and H273A mutant.61 

Michaelis-Menten Kinetic curve for (A) Wild-type OsUAM1 (B) H273A mutant and (C) Plot of 

% Relative activity vs. Manganese concentration for the H273A mutant.  
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4.6.2 Analysis of OsUAM1 mutants - Role of His273 

OsUAM1 H273A mutant was created by SDM; over-expressed and purified using the same 

procedure described for the wild-type enzyme. Kinetic analysis was performed to see if this 

mutation would have any effect on enzyme activity. In general, the mutant displayed lower activity 

than the wild-type OsUAM1. A Michaelis-Menten curve was obtained by plotting rate against 

substrate (UDP-Araf) concentration. The Km and kcat values, calculated from the Michaelis-Menten 

plot (Figure 4-13B) were 0.76 ± 0.05 µM and 0.05 ± 0.001 sec-1, respectively. The specificity 

constant for this mutant was 0.6 ± 2.0 × 10-2 units. A decrease in both Km and kcat was noted when 

compared to the wild-type enzyme (Table 4-1), which meant that the mutant required less substrate 

to achieve half-maximum activity, but its efficiency was also lower. The metal binding assays 

conducted showed that this mutant followed a similar trend as that of the wild-type enzyme when 

treated with various concentrations of Mn2+. Maximum activity was observed at ~ 80 µM Mn2+ 

and about 80 % or higher activity in the 40 - 200 µM range and a decrease in activity at 

concentrations greater than 320 µM (Figure 4-13C). Since this mutation did not inactivate the 

enzyme, it can be argued that His273 may not be directly involved in coordinating the metal ion. 

 

4.6.3 Analysis of OsUAM1 mutants - Role of DDD-motif 

Like the H273A mutant, three alanine mutants of the OsUAM1 DDD-motif were created 

by SDM and purified adopting the same procedure followed for the wild-type enzyme. The 

purified mutants were concentrated to ~ 1 mg/ml and treated with EDTA to remove any bound 

metal. Kinetic assays were performed with these mutants, using the same procedure followed for 

the wild-type enzyme. All three mutants (OsUAM1 D110A, OsUAM1 D111A, and OsUAM1 

D112A) were inactive when tested without the addition of Mn2+. Moreover, increasing the metal 
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ion concentration to 80 µM (concentration of Mn2+, which gave maximum activity in wild-type 

and H273A mutant) in the reaction mixture, did not improve activity. Furthermore, no conversion 

of the substrate to product observed, when the reaction time was increased (up to 10-fold). Also, 

increasing the mutant enzyme concentration in the reaction by 10-fold did not restore activity in 

these mutants. The complete loss of activity suggests the inability of the DDD-motif alanine 

mutants to bind the Mn2+ cofactor as well as the wild-type enzyme unless the mutations led to 

detrimental changes to the secondary structure of OsUAM1. 

 

Table 4-1: Kinetic parameters of wild-type OsUAM1 and its mutants.12 

 

To ensure that these mutations did not alter the secondary structure of the enzyme, CD 

experiments were performed on the wild-type and all of the OsUAM1 mutants created. The results 

tabulated in Table 4-2, show that all the mutants have comparable % secondary structural elements 

with the wild-type enzyme. These results suggest that mutating the DDD-motif does not drastically 

change the secondary structural elements of OsUAM1, but the activity is quenched since the 

enzyme is probably unable to bind the Mn2+ cofactor. 

 

 

Enzyme Km (µΜ) kcat (s-1) kcat / Km  (s-1µM-1
) 

OsUAM1(wild-type) 12 ± 1 3.2 ± 0.1 0.26 ± 0.1 

H273A 0.76 ± 0.05 0.05 ± 0.001 0.6 ± 2.0 × 10-2 

D110A No activity detected 

D111A No activity detected 

D112A No activity detected 
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Table 4-2: Secondary structural elements of wild-type OsUAM1 and its mutants, as 

determined using CD.13 

 

4.7 Discussion  

The metal binding studies performed by Konishi et al. (2007) were limited, as their studies 

gave an incomplete picture of the metal ion dependency of OsUAM. They reported using 5 mM 

final concentration of the metal to perform the reaction. Initial experiments demonstrated that most 

of the enzyme was precipitated (formation of white precipitate in the protein containing tubes) 

with 5 mM of Mn2+. Further, the group also reported that the enzyme was active without the metal, 

as they discovered activity when no metal was added to the reaction mixture.18 Hence, Mn2+ was 

described as an activator of the enzyme. This study claims that Mn2+ is necessary for the activity 

of the enzyme and does not behave as an activator.   

In this thesis, metal binding studies were performed on OsUAM1 and all three AtRGPs. 

All four enzymes, showed maximum activity at lower concentrations, at either 40 µM or 80 µM 

of Mn2+, but their activity decreased when the metal ion concentration was increased higher than 

320 µM. This could be due to the excess metal binding at different sites of the enzyme, interfering 

with bonds between residues and bringing about detrimental changes to the overall structure of the 

Enzyme 
α- helix 

(%) 

Parallel 

β- strands 

(%) 

Antiparallel 

β-strands 

(%) 

β-turns 

(%) 

Random coils 

(%) 

OsUAM1(wild-

type) 
17 13 16 20 48 

H273A 19 14 14 20 45 

D110A 18 15 14 21 46 

D111A 19 14 13 20 45 

D112A 16 16 15 21 48 
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enzyme, thus making it less active. Further, the excess metal could also bind to the charged 

substrate phosphates thereby making them inaccessible to the enzyme.  

The EDTA-treated enzymes were inactive when assayed without metal; however, activity 

was recorded even with metal ion concentration as minimal as 2 µM. This meant that the metal 

ion was necessary for activity rather than it being an activator of the enzyme. Konishi et al. (2007) 

observed only a fractional increase in activity (under 5%) with Zn2+ and Mg2+, compared to the 

activity they obtained with no metal while the others divalent ions did not show appreciable 

activity. Contrary to these observations, our experiments revealed that other divalent metal, such 

as Zn2+ and Co2+, retained at least 60 % of the activity of Mn2+ at the concentration that gave 

maximum activity in all four enzymes. It is also pertinent to note that there was no contaminant 

manganese ions in any of the other divalent metal ion solutions used for the experiment, based on 

the manufacturer’s claim of purity. The high activity of UAM with Mn2+ could be accounted to the 

size of Mn2+, which may be just right to keep UAM’s active site in the right configuration to help 

it coordinate the substrate.  

Despite the importance of the metal cofactor, the information known about the role of the 

metal and its contributions towards the function of the enzyme is minimal, since there is no 

structural information available for this enzyme. Attempts were made to crystallize OsUAM1 and 

AtRGP1, but they were unsuccessful in producing crystals of good quality. Purified OsUAM 

produced a single band at ~ 41 kDa on an SDS-gel, but the molecular weight estimated by size-

exclusion chromatography was ~ 460 kDa.18 OsUAM was likely to exist as a complex made up of 

numerous monomeric units. The oligomeric state of the enzyme could be one of the reasons why 

obtaining diffraction quality single crystals has proven difficult thus far; as larger macromolecules 

generally tend to have more flexible fragments.  
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Nonetheless, an initial sequence-based model was proposed for OsUAM1, which helped 

determine the regions that could form secondary structures and also predicted the possible active 

site residues. The structure models generated from the two different programs, I-TASSER and 

GalaxyWEB, had similar overall architecture and minimal dissimilar regions. I-TASSER predicted 

Chondroitin polymerase as a functional analog of the model of OsUAM1; this enzyme uses Mn2+ 

metal ion cofactor and UDP-based substrates (UDP-GlcUA and UDP-GalNAc). By docking UDP-

GalNAc in the OsUAM1 model, I-TASSER proposed three different loops from the starting model 

that may bind the uridine, diphosphate and sugar regions of the substrate. The model puts the DDD 

motif (the region previously hypothesized to bind the metal cofactor) and His273, in a position to 

bind the metal, which in turn is able to stabilize the substrate.  

To test the role of these residues, alanine mutants of all four residues were prepared and 

tested for activity. All three alanine mutants of the DDD-motif inactivated the enzyme. Histidine 

was not part of the DDD-motif; however, a number of manganese-dependent enzymes have been 

shown to involve their active site histidines for metal coordination. The H273A mutant reduced 

enzyme activity but failed to inactivate the enzyme completely. This could mean that His273 is 

perhaps not directly involved in metal coordination in OsUAM1. Our CD experiments also showed 

that none of the mutants changed the secondary structure of the enzyme, and therefore the loss of 

activity is due to the inability of OsUAM1 to bind the metal cofactor. 

Based on the OsUAM1 model predicted, one of the features of the enzymes that belong to 

the glycosyltransferase family, is the stabilization of the substrate diphosphate by the metal and 

the binding of the metal to the DXD-motif. Like the other proteins in this protein family, in UAM, 

the metal's role could be limited to the phosphate stabilization and may not be involved directly in 

catalysis. In addition, to the work discussed in this chapter, extended X-ray absorption fine 
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structure (EXAFS) was also performed on OsUAM1. The data collection and processing of 

EXAFS data was performed by our collaborators, Dr. Julien Cotelesage, Research Associate with 

Dr. Graham George, Dept. of Geology, University of Saskatchewan. Although the data obtained 

is inconclusive, initial results agree with the above-mentioned role of metal in this enzyme i.e. 

stabilization of substrate diphosphate. Some of the EXAFS results have been included in the 

Supplementary Section S.3. 

 

  



129 

 

Chapter 5: GDP-6d-altro-Heptopyrnaose Mutase  

GaHM is the first example of a pyranose-furanose mutase enzyme that interconverts a 

heptose sugar. The enzyme has low sequence identity (< 21%) to both prokaryotic and eukaryotic 

UGMs. The sequence alignment shown in Figure 5-1, suggests that GaHM could be a 

flavoenzyme, due to the presence of conserved residues that are known to covalently bind FAD. 

In fact, the purified recombinant CjGaHM enzyme was yellow in colour; the protein fractions had 

the characteristic UV-absorbance at 450 nm indicating the presence of FAD.58 

GaHM catalyzes the interconversion between GDP-altro-Hepf and GDP-6d-D-altro-

heptopyranose (GDP-altro-hepp). According to the studies performed by Dr. Todd Lowary's group 

at University of Alberta, when GDP-6d-D-altro-Hepf was incubated with reduced GaHM, the 

product formed, GDP-6d-D-altro-Hepp was in a 1:1 ratio and the equilibrium did not favor the 

formation of the pyranose form as seen with other previously studied mutases.58  
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Figure 5-1: Sequence alignment of CjGaHM with AfUGM and TcUGM.62 
Conserved residues are shown in red boxes. The residues that interact with FAD are highlighted 

with an *. The sequence alignment was performed using ESPript (Version 3.0) 
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5.1 Structural studies on CjGaHM 

 A low sequence identity meant that homology models of CjGaHM could not be created, 

and hence, X-ray crystallography was used to examine the structure. Recombinant CjGaHM 

enzyme required for crystallization experiments were provided by Dr. Todd Lowary's group. The 

crystal structure of GaHM with GDP was solved by Dr. Sean Darlymple, a former post-doctoral 

fellow in the Sanders lab. The crystal structure of CjGaHM, with FAD, both in oxidized and 

reduced states, was solved initially with GDP in the active site. Since no previous models were 

available for this enzyme and due to its low sequence identity with other UGMs, molecular 

replacement could not be used to solve the structure. Crystals were obtained with Se-Met GaHM 

protein, Figure 5-2 and the structure was solved with single anomalous dispersion (SAD) technique 

using Se-Met for phasing.  

 

Figure 5-2: Crystals of CjGaHM with GDP.63  
These co-crystals were obtained by Dr. Sean Darlymple. 

 

5.1.1 Structural features of CjGaHM 

 The structures of CjGaHM: GDP with FADox and FADred were solved to 2.7 Å and 2.4 Å, 

respectively. GaHM monomer consists of three domains. Domain 1 is the αßα Rossmann fold 

which binds the FAD cofactor, Domain 2 is the α-helical domain containing five α-helices, and 
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Domain 3 is the ß-strand domain, consisting of antiparallel ß-strands, which plays a role in 

interconnecting the two domains, as shown in Figure 5-3. As seen with the structure of UGMs, the 

active site of CjGaHM is located in the cleft below FAD. The overall structural features of GaHM 

compares well with the prokaryotic and eukaryotic UGMs. 

A structural comparison of GaHM with DrUGM (prokaryotic) and AfUGM (eukaryotic) 

UGM crystal structures reveals more details about the enzyme. The structure of CjGaHM is 

comparable to DrUGM (surface area ~ 45600 A°^ 2) but more compact than that of AfUGM 

(surface area ~ 59000 A°^ 2). This is understandable given the length of the sequences of these 

enzymes; the GaHM sequence is longer than that of DrUGM but not as long as that of AfUGM. 

The GaHM crystal structure however is more similar to eukaryotic UGMs. DrUGM, mentioned in 

detail in Chapter 3, has only a single flexible loop that moves into the active site when the substrate 

is present. Eukaryotic AfUGM has two mobile loops that move into the active site if the substrate 

is present in the active site, as shown in Figure 5-3. The structure of CjGaHM also has two mobile 

loops; however, they could not be modeled into the structure due to little or no electron density.  
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Figure 5-3: The crystal structure of CjGaHM: GDP.64  

The three domains, Domain 1 in blue, Domain 2 in green and Domain 3 in grey are shown. The 

start and end of mobile loops 1 and 2 are shown in red. 

 

The objectives of this project were, to understand the structural features of CjGaHM that 

were responsible for substrate recognition and specificity to a GDP-based substrate, instead of the 

usually preferred UDP-based substrate, observed with all UGMs studied thus far. In the CjGaHM 

structure with GDP, there is no electron density available to model the loops. This may be due to 

the absence of the sugar moiety, which helps in additional stabilization of the flexible loop. 

Crystallizing CjGaHM with a GDP-sugar will yield information about the binding of the sugar in 

the active site and the residues that contribute to its stabilization. The substrate GDP-6d-D-altro-

Hepp could not be obtained either commercially or by synthesis. Hence, the crystallization of 

CjGaHM was attempted with GDP-mannose, chosen based on its similarities with GDP-6d-D-

altro-Hepp, as shown in Figure 5-4. 

Domain I:  

FAD-binding 

Domain III:  

-strands 

Domain II:  

-helices 
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Figure 5-4: Difference between GDP-mannose and GDP-6d-D-altro-Hepp structures.65  
GDP-mannose differs from GDP-6d-D-altro-Hepp at C3 and also GDP-6d-D-altro-Hepp has 

seven carbons. 

 

5.2 Crystallization of GaHM with GDP-mannose 

GaHM was co-crystallized with GDP-mannose in the condition containing, 0.1 M 

ammonium sulphate, 0.1 M Bis-tris pH 6.5 and 25% PEG 3350 (Figure 5-5). The diffraction data 

obtained for GaHM: GDP-mannose complex crystals in both FADox and FADred forms were solved 

to 2.1 Å and 2.3 Å resolution, respectively. 

 

 
 

Figure 5-5: Crystals of GaHM: GDP-Mannose.66  

These crystals were obtained in 0.1M ammonium sulphate, 0.1M Bis-tris pH 6.5 and 25% PEG 

3350. 
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5.3 GDP-6d-altro-Heptopyrnaose Mutase structures 

5.3.1 GaHMox: GDP-mannose  

In the crystal structure, GaHM exists as a monomer. There are two monomer units in the 

ASU. The active site of GaHM has residues to bind and interact with the guanosine base of GDP. 

Residues such as Phe147, Pro149, and Tyr146 stack the guanine while Glu98 and Tyr146 make 

strong hydrogen bonding contacts, as shown in Figure 5-6. Glu98 hydrogen bonds to N1 (2.8 Å) 

and the amino group at C2 (2.9 Å) of guanosine. Tyr146 hydrogen bonds (2.7 Å) with N7 of 

guanosine. The guanosine ribose is held in position by a hydrogen bond interaction (2.9 Å) 

between its C2 hydroxyl group and the amino group of Asn151.  

In the sugar binding region, mannose was modeled into the electron density that was 

observed below the FAD. The mannose C1 anomeric carbon is at a distance of ~ 4 Å from the N5 

of FAD. Mannose forms hydrogen bonding interactions with Arg386, Asn394 and His54 residues 

in the active site. The guanidino nitrogens of Arg386 form hydrogen bonds with the C2 and C3 

hydroxyls of mannose at 3.4 Å and 3.3 Å respectively. Hydrogen bonds are also formed between 

Asn394 and the C4 hydroxyl of the sugar and also between His54 and the C6 hydroxyl of mannose. 

In the phosphate binding region, Arg307 is in a position to form contacts with the β-phosphate of 

the substrate.  
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Figure 5-6: A close-up of the active site of GaHM.67  
The residues that bind guanosine (in blue) and ribose of GMP (in green) are shown. The residues 

that make contacts with mannose sugar (in green) are shown in cyan. Arg307, which is in position 

to stabilize the β-phosphate of GDP-mannose is also shown, in magenta.   

 

In the GaHMox: GDP-mannose structure, there is no clear electron density for the two 

flexible loops (Loop 1 residues 164-176 and Loop 2 residues 191-197). Density is observed for 

Loop 2 in chain B, but the loop is in an open conformation, stabilized by interactions with the 

adjacent monomer unit. Moreover, there is no density for the mannose sugar in this chain. In chain 

A, both loops are not visible; they are not in a closed conformation, and the substrate mimic is 

exposed to the solvent, as it is not buried completely within the active site. Despite this, density 

for mannose is observed in this chain.  
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The problem here is two-fold. Firstly, loop flexibility leads to a loss of information in 

regards to the residues that may bind and stabilize the phosphate. Arg307 is in a position to form 

contacts with the β-phosphate of substrate. This is also observed in the GaHM: GDP complex 

structures solved. However, information regarding the residues which interact with the α-

phosphate and locks down the substrate in the active site is still unavailable. Secondly, the 

flexibility of the loops leads to discontinuous density for the substrate (Figure 5-7A). The 

guanosine monophosphate (GMP) and mannose portions had to be modeled in separately, and 

there is little or no density observed for the β-phosphate. The sugar-binding also becomes flexible 

leading to the observation of two different conformations for the sugar each at on occupancy of 

0.5 (Figure 5-7B). Good electron density for one of these loops (loop 190-197) was observed in 

Chain B of the structure. This was because the loop was stabilized in an open conformation, due 

to crystal contacts, although this caused the absence of electron density for the mannose sugar in 

the active site of Chain B. 
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(A)  

(B)  

Figure 5-7: Electron density maps for GMP and Mannose in GaHMox: GDP-mannose.68  
(A) GMP and mannose sugar modeled in the electron density (1.5 σ) separately due to 

discontinuous density, β-phosphate has no density. (B) The big blob of density surrounding 

mannose in (A) can accommodate two mannose molecules (shown in white, having two 

conformations), illustrating the flexible nature of the mannose binding, due to it being a substrate 

mimic. 
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5.3.2 GaHMred: GDP-mannose  

The GaHMred: GDP-mannose structure solved to 2.3 Å, shows an overall similar structure 

to the GaHMox: GDP-mannose complex structure as shown in Figure 5-8A. As with the GaHMox 

structure, the electron density for both the loops was missing in monomer A; monomer B had the 

density for Loop 2, but it was in the open conformation. Electron density for GDP-mannose was 

discontinuous in the GaHMred structure, and GMP and mannose were modeled in monomer B 

(Figure 5-8B). Monomer A showed density for GDP but no density under FAD for the sugar. 
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(A)  

(B)  

Figure 5-8: Crystal structure of the overall structures of GaHMred: GDP-mannose.69  
(A) Overall structures of GaHMred: GDP-mannose (in blue) and GaHMox: GDP-mannose (in green) 

(B) The electron density (1.5 σ) and the modeled mannose under the FAD and GMP are shown.  

  

FAD 

GMP Mannose 
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Table 5-1: Data collection and refinement statistics.14 

 GaHMox: GDP-mannose GaHMred: GDP-mannose 

Data collection    

Space group P21 21 21 P21 21 21              

Cell dimensions 47.62, 72.50, 272.89 47.48, 71.65, 272.64 

a, b, c ( Å) 90, 90, 90 90, 90, 90 

Resolution range (Å) 46.9-1.57 (2.10) 46.7-1.87 (2.30) 

All reflections 771658 490592 

Unique reflections 129116 77769 

Redundancy   

I / σI                                                       8.88                                    7.52  

Completeness (%) 95.7 (100)       99.3 (100) 

No. molecules in ASU 2 2 

Data refinement   

Resolution range (Å) 46.9-2.10    47-2.30 

R work / R free 0.1564/0.2049  0.1780/0.2287 

No. amino acid residues  3×418  3×418 

No. of Water (molecules) 606 406 

Ligand   

 FAD  2×FAD 2×FAD 

GMP  2×GMP 2×GMP 

Mannose 1× M1P 1× M1P 

r.m.s deviations   

Bond lengths (Å) 0.008 0.009 

Bond angles (°) 1.096 1.234 

Ramachandran favored 95.7 %  95.9% 
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5.4 Loop modeling  

The electron density for Loop 1 (from Asp163 to Pro178), is not clear or is absent in both 

GaHMox and GaHMred structures. Based on the observations made from the sequence alignment 

with eukaryotic UGMs, (AfUGM and TcUGM), the Loop 1 of CjGaHM is longer by three residues, 

as shown in Figure 5-9. The sequence of Loop 1 in AfUGM and TcUGM have a methionine 

(Met173 and Met171, respectively) and tryptophan (Trp177 and Trp175, respectively) residue that 

is also conserved in GaHM. In all the three sequences, the other end of Loop 1 has proline residues 

that act as starting points to their respective loops. In both AfUGM and TcUGM, a positively 

charged arginine residue (Arg182 and Arg176, respectively) stabilizes the α-phosphate and also 

forms a key hydrogen-bond interaction with asparagine (Asn457 and Asn433, respectively) once 

the substrate is in the active site. In GaHM, the role of arginine is expected to be played by two 

residues, based on the sequence alignment. Lys174, a positively charged residue is expected to 

interact and stabilize the negative charge on α-phosphate.  

 In the case of Loop 2, the electron density is absent from Lys190 to Ala199 in monomer 

B. Loop 2 of GaHM is shorter by a residue, compared to AfUGM and TcUGM sequences. Loop 2 

has five conserved residues in both AfUGM and TcUGM sequences, only one of them; alanine 

(Ala207, Ala205, and Ala199 respectively) is conserved in all three sequences. 

The crystal structures of both AfUGM and TcUGM were used as templates to model the 

missing GaHM loop regions, due to the similarities in sequences and the crystal structures 

themselves.34,36 GaHM residues Met162 through Trp166 were modeled, corresponding to the 

position of the above-mentioned conserved methionine and tryptophan residues, in Loop 1 of 

AfUGM and TcUGM. The other end of the loop, from Pro178 to Lys174, was also modeled based 

on the similarities with residues from the eukaryotic UGM sequences, in such a way that Lys174 
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is in a similar position to that of the Arginines in AfUGM and TcUGM.34,36 The eukaryotic UGMs 

have a small helix (α-15) located in front of the cleft and isoalloxazine ring of FAD, as shown in 

Figure 5-9. The helix functions to ensure that the substrate is completely buried in the active site 

of the eukaryotic UGMs. This small helix is completely absent in GaHM. Therefore the remainder 

of Loop 1, between residues Ile167 to Met173, was modeled in a position similar to that occupied 

by this helix.  

 

Figure 5-9: Overlay of crystal structures of AfUGM and CjGaHM.70  
Loop1 and Loop2 of CjGaHM (shown in green), modeled on Loop1 and Loop2 of AfUGM (shown 

in orange). The region of CjGaHM Loop1 (residues Ile167 to Met173) modeled in the region 

occupied by the short helix of AfUGM (magenta) is highlighted in magenta.  

 

 

Loop2 

Helix α-15 

Loop1 
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The role of Loop 2 is to help bury the substrate completely in the active site of the enzyme 

by moving in towards the active site in the presence of substrate, to contribute residues such as 

Asn207 in AfUGM and Asn200 in TcUGM, which can interact with the hydroxyls of the sugar.34,36 

Despite the dissimilarity of the sequences, Loop 2 of GaHM was also modeled similar to the loops 

from AfUGM and TcUGM.  

 

5.5 Discussion 

5.5.1 Specificity for GDP-based substrate 

 To understand the specificity of CjGaHM to a GDP-based substrate, the residues around 

the GDP-binding site were compared to those from eukaryotic UGMs, since the overall crystal 

structures were similar. The sequence alignment showed that the residues corresponding to these 

regions are similar, with a few exceptions. All three sequences have conserved tryptophan, valine, 

tyrosine, proline and isoleucine residues. However, it is the substitution of Phe105 in both 

eukaryotic UGMs with a less bulky non-aromatic Ile97 in GaHM and a further substitution of the 

basic glutamine residue (Gln106) in eukaryotic UGMs by an acidic glutamate (Glu98) in GaHM, 

which helps GaHM recognize and bind a GDP-based substrate. Glu106 is able to make two 

hydrogen bonds with the uracil ring while Gln98 has the ability to make two hydrogen bonds with 

guanosine, as shown in Figure 5-10. Thus, these subtle changes in the active site aid the binding 

of a GDP-based substrate by GaHM. 



145 

 

(A)  

(B)  

Figure 5-10: Overlay of the nucleotide-binding region of AfUGM and CjGaHM.71  
(A) Glutamic acid is in position to interact with the guanosine in CjGaHM (green) (B) Glutamine 

interacts with uridine in AfUGM (orange). 
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5.5.2 Stabilization of the α-phosphate 

In the crystal structures of CjGaHM, solved with GDP-mannose, the flexible mobile loops 

that close to bury the substrate in the active site could not be built-in, due to little or no electron 

density. The overall structural similarity of CjGaHM, with structure of eukaryotic UGMs such as 

AfUGM and TcUGM, enabled the modeling of the flexible loops of CjGaHM,  

To identify other residues of the CjGaHM active site that interact with the substrate, the 

residues contributed by the loop regions of the enzyme were compared to eukaryotic UGMs. The 

mobile loop brings in an arginine residue (Arg180 in AfUGM and Arg176 in TcUGM) which 

stabilizes the α-phosphate. This residue also interacts with an Asn (Asn457 in AfUGM and Asn453 

in TcUGM), to keep the enzyme in a closed conformation. In fact, this is also seen in prokaryotic 

UGMs, as discussed in Chapter 3. Based on the modeled Loop 1, the role of arginine is performed 

by two residues in CjGaHM. Lys174 moves in with the loop to stabilize the α-phosphate. However 

since lysine lacks the guanidino group of arginine, it cannot form hydrogen bond interactions with 

Asn394. The sequence alignment suggests that one of the residues that follows, such as Gln172 

should be able to play such a role. The loop may thus be kept in a closed conformation by Gln172, 

which forms hydrogen bonds with Asn394 of CjGaHM as shown in Figure 5-11. 
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Figure 5-11: Active site residues of CjGaHM predicted to keep Loop 1 in a closed 

configuration.72  

The CjGaHM are shown in green. Lys174 stabilizes the α-phosphate while Gln174 forms hydrogen 

bonds with Asn394 to keep the loop closed and bury the substrate. Arg182 which interacts with 

Asn457 in AfUGM to maintain the loop in a closed configuration is also shown in orange.  
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Chapter 6: Conclusions and future work 

 Furanoses are vital components in the cell wall of bacteria, fungi, plants and protozoa. It is 

important to study the furanose containing glycoconjugates since they are absent in humans and 

mammals. Their identification in disease-causing pathogens means the enzymes aiding in the 

production of furanoses are potential drug targets. In this thesis, three different pyranose-furanose 

mutases (UGM, UAM, and GaHM), employed by their respective pathways leading to the 

deposition of three different furanoses in the cell wall of various organisms, were studied. 

 From literature, the understanding of these mutases is to varying degrees. In this thesis, the 

objectives were outlined so as to focus on the substrate-binding aspects of these mutases. Two of 

these enzymes, UGM and GaHM, require the same cofactor (FAD) for their respective 

interconversion reaction, but bind UDP and GDP based substrates, respectively. Also GaHM, 

unlike any of the mutases described so far, catalyzes the interconversion of a heptose-sugar. Plant-

enzyme UAM is a metalloenzyme that does not require FAD for activity but works on a UDP-

based substrate. Therefore, the requirement for different substrates and different cofactors meant 

that the modes of substrate binding were different among the three enzymes. 

 

6.1 UGM 

DrUGM was chosen as a model system to study how substrate binding is affected by the 

active site residues of the enzyme. The importance of only a few residues in binding the substrate 

in the most productive conformation is known in UGM. Changes were introduced to the active site 

in the form of point mutations, and experiments were designed to understand the role of these 

residues. Kinetic assays, modeling, and docking studies were performed on DrUGM mutants. The 

studies have established the roles of Trp184, Arg364, His88 and Asn372 and residues performing 
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similar roles in the active sites of other UGMs. Trp184, an important residue required to position 

the uridine-portion of the substrate, not only makes contacts with the uridine-ribose but also helps 

stack it in the active site, thereby increasing the efficiency of the enzyme. Arg364 and Asn372 

keep critical residues like Arg198 in the correct position. His88 positions the sugar (Galp) under 

FAD for catalysis. All of these residues contribute to enabling the substrate to bind in the most 

productive mode in the active site. Minor changes in the active site conformation affected the 

substrate binding mode of this enzyme and which tends to place the sugar (Galp) further away 

from the N5 of reduced FAD, thereby causing depletion of activity. 

MtUGM is a validated drug target. The inhibitor MS-208 binds to an allosteric site on the 

enzyme and causes changes to the substrate binding mode, altering the positioning of Arg182 

(residue contributed by the mobile loop). MS-208 was tested against MtUGM and the data obtained 

was globally fit to the equation for mixed-type inhibition. The Ki and Ki' of the inhibitor calculated 

from the fit were ~135 µM and ~400 µM respectively. Though evidence for the exact conformation 

of the binding of MS-208 to the allosteric site is yet to be found, the studies have shown the 

importance of having the active site residues of UGM in the correct conformation so that the 

substrate binds in the productive mode. 

 

6.2 UAM 

Chapter 4 of the thesis discussed the results obtained from the plant metalloenzyme UAM. 

Konishi et al., (2007), who identified this enzyme in O. sativa, described Mn2+ as an activator of 

UAM at 5 mM concentration. Our results from HPLC assays showed that Mn2+ is essential for 

UAM activity, and 5 mM concentration of Mn2+ had an inhibitory effect on UAM activity. This 

was also observed with all three AtRGPs. All four enzymes showed maximum activity at 40-80 
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μM Mn2+ range. Among the other divalent metal ions tested, Zn2+ and Co2+ showed 60-70 % 

activity at this concentration.   

More studies were focused around the metal cofactor and its interaction with the substrate. 

A starting model for UAM was developed based on the OsUAM1 sequence, using I-TASSER and 

GalaxyWEB. On comparison with a functional analog, I-TASSER predicted few possible active 

site residues that can interact with different regions of the substrate. Asp110, Asp111, Asp112 

(DDD-motif) and His273 are in position to bind the metal in OsUAM1. The prediction was tested 

by mutation of the residues mentioned above to alanines. None of the mutations influenced 

changes in the secondary structure, yet the DDD-motif mutants lost activity, indicating the inability 

of the enzyme to bind its metal cofactor. SCOP classification of the OsUAM1 model also suggests 

that role of the metal cofactor is to coordinate and stabilize the substrate diphosphate. EXAFS 

studies were performed on OsUAM1 samples and a preliminary model for the metal binding region 

in OsUAM1 was proposed, by our collaborators. The EXAFS data is in agreement with the 

observations made from the I-TASSER model.  

 

6.3 GaHM 

The thesis also discusses results from work on a third pyranose-furanose mutase, CjGaHM. 

Our crystal structures show that the active site, though similar to UGMs, can adapt to bind and 

interact with the guanosine of GDP-based substrates. The GaHM domains that bind FAD and 

substrate are overall similar to eukaryotic UGMs. Crystal structures of GaHM (FADox and FADred) 

were obtained with the substrate mimic, GDP-mannose. The structures show no electron density 

for two large flexible loops. This is due to the loops being unable to form enough contacts with 

GDP-mannose to exist in a closed conformation so as to bury the substrate completely in the active 
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site. As a result, the sugar and ß-phosphate of GDP-mannose remain flexible in the active site and 

are unable to form stable interactions with active site residues. This limits the information on active 

site residues that can stabilize the phosphate and bind the sugar of substrate mimic, GDP-mannose. 

The loops were modeled into the GaHM crystal structure based on the eukaryotic UGMs, 

and the GaHM residues that may interact with the substrate diphosphate and the sugar were 

identified. The role of the arginine residue that stabilizes the α-phosphate and keeps the loop in a 

closed conformation, in all the known UGM structures thus far, may be accomplished by two 

residues Lys174 and Gln172 in CjGaHM. However this is only a predicted model for the closed 

conformation of the loops and only a crystal structure of the enzyme with its substrate, GDP-6d-

altroHepp, can provide further evidence. 

 

6.4 Future directions 

All three mutases perform similar reactions and yet they are each unique in their own way. 

Once the substrate is recognized, the active sites of these enzymes prepare to bind the substrate in 

a productive binding mode for catalysis to occur. This is best exemplified by UGM. Though the 

sequence identity is very low, these mutases can adapt their active sites to bind their respective 

substrates and cofactors. Some directions for further studying these enzymes are suggested. 

 

6.4.1 Studies on the allosteric site of MtUGM 

The model proposed by the Pinto group (Simon Fraser University, British Columbia) for 

MS-208 binding to the allosteric site suggests that the inhibitor interacts with hydrophobic residues 

such as Pro246, Trp260, Ala320 and Pro326 of the allosteric site (Figure 6-1). The backbone 

carbonyl oxygen of Glu321 forms hydrogen bonds with the hydroxyl group of MS-208. To study 
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how they affect the binding of MS-208 with the enzyme, alanine mutants of these allosteric site 

residues can be created and evaluated kinetically with and without MS-208. This study will help 

gain some insight into the location of the allosteric site, as a complete loss in MS-208 inhibition 

for an alanine mutant of a residue in the allosteric site may provide an indirect evidence for the 

location of this site. 

 

Figure 6-1: The proposed binding site of MS-208 in MtUGM.73  
MS-208 is depicted as a green stick model. The hydrophobic, positively charged and negatively 

charged residues around the site are shown in magenta, yellow and green lines respectively. 

 

Since this is the first instance of identification of an allosteric site on UGM, obtaining a 

crystal structure of MtUGM with the inhibitor MS-208, will not only confirm the presence of the 

allosteric site but will also indicate how the inhibitor interacts with the enzyme and the changes 

undergone by the enzyme’s active site due to binding of the inhibitor. However, MS-208 is poorly 

soluble in water, ruling out preparing solutions of high concentrations, a requisite for performing 
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co-crystallization experiments. More soluble versions of MS-208 can be synthesized and used for 

crystallization trials, to obtain crystals of MtUGM, complexed with substrate in the active site and 

the inhibitor at the allosteric site. This will not only confirm the identification of an allosteric site 

but will also provide indications of whether more than one molecule of MS-208 can bind MtUGM. 

Active site residues have been studied as part of this research to understand their role in 

substrate binding. The active site of UGM is incomplete unless the mobile loop closes around the 

substrate, as evidenced by the UDP-Galp bound structures of this enzyme. This closure helps 

position and orients the substrate in a productive conformation within the active site. In the 

substrate bound crystal structure of MtUGM, Trp166 and Arg261 have been hypothesized as 

residues which control the closure of the mobile loop. In the open loop conformation, Trp166 and 

Arg261 form a cation-π interaction, which is broken due to a 180° rotation of Arg261, to let the 

substrate enter the active site. Hence, to test the hypothesis mutational and kinetic analysis of these 

critical residues need to be performed.  

 

6.4.2 Crystallization and EXAFS on UAM  

 Determining the crystal structures of OsUAM1 and/or AtRGPs will in fact be the first 

reported structures of plant UAM. This will give significant inputs into the mechanism of UAM 

and how its catalytic mechanism compares to that of UGM. If crystallizing these enzymes still 

remains tedious, more EXAFS studies can be performed on all four enzymes, to compare and 

contrast their metal-binding region and ascertain the sugar (Arap) binding residues. 
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6.4.3 GaHM 

 Crystallizing CjGaHM with its substrate GDP-6d-altroHepp may stabilize its flexible 

loops, leading to further understanding of the substrate binding mode of this enzyme and how it 

compares to other known UGMs.   
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Supplementary Notes 

S.1 Modeling of DrUGM mutants using Rosetta-Backrub 

DrUGM mutants were modeled using an online software Rosetta-Backrub.86,88 This 

software calculates the best orientation of the mutant residues by taking into account the flexibility 

of the residues around the point mutation and modeling the backbone chains when the mutant 

models are generated. The backbone chains are modeled by the "Backrub" step, which picks two 

amino acids along a chain length of 2-12 residues apart and rotates it along an axis drawn along 

the Cα of the residues. At the start, the program decides if it can pick only a single residue (residue-

only) or select a backbone (backbone move), based on a probability (Protamer) score. The default 

score for choosing a rotamer-only move is 0.25. If this is chosen, the program just picks up the 

single residue and applies random rotamers to the residue, based on a backbone-dependant rotamer 

library. This library is based on crystallographic structures that have already been solved. If the 

rotamer-only move is not selected, then a segment of the backbone is chosen, and rotation is 

performed. The backbone rotation is performed using the backrub step and is called as the 

backbone only move. Next, the algorithm decides if it can stop based on the second adjustable 

probability, Pbackbone. To make the selection of this move more frequent, the default score for 

Pbackbone is set at 0.75. One or a couple of the residues are selected along the chosen backbone 

segment, and random rotamers are applied. Rosetta full-atom scoring function and Metropolis 

criterion are then used to evaluate the move. Backrub moves are applied to any heavy atoms within 

the range of 6 A° around the desired point mutation. A flowchart describing the procedure adopted 

is shown in Figure S-1. 
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Figure S-1: Flowchart describing the method adopted by Rosetta-Backrub software.74 

 

All the requisite information, such as starting angles and backbone parameters, are obtained 

from the input structure file provided in the Protein Data Bank (PDB) format. Ligands are not 

included for performing these simulations. Rosetta Backrub can be accessed online at: 

https://kortemmelab.ucsf.edu/backrub/cgi-bin/rosettaweb.py?query=index. 

 

S.2 GOLD docking for DrUGM mutants 

Docking of the substrate (UDP-Galp) into the active site of the DrUGM mutants was 

performed using the GOLD software (version 5.2.2).89-92 One of the features of the software, 
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'Ensemble docking' was used to get a direct comparison and analysis of the results from the wild-

type and mutant enzymes. At first, an ensemble of proteins was created by superimposing the 

structures considered for the docking experiment, and the substrate was then docked into the active 

site of the ensemble created. Typically, the crystal structure of the wild-type enzyme was 

superimposed on the modeled structure of mutants considered for the experiment. UDP-Galp was 

then docked back into the active site of the ensemble, so that it can now simultaneously get docked 

in the active site of all the protein structures, in a single run. This method is advantageous as it 

generates numbers that can give a direct comparison of which protein binds the substrate better 

and generates docking poses for each of the protein in the ensemble.  

 

S.3 EXAFS on OsUAM1  

S.3.1 Sample preparation 

 For EXAFS experiments, the histidine tag was removed. TEV protease was added to the 

purified OsUAM1 with the 6xhistidine tag and left to react overnight at 4 °C. The sample was then 

loaded onto a Protino column previously equilibrated with 25 mM Bicine pH 8.5. OsUAM1 

without the His-tag was collected in the flow through. The fractions were concentrated to ~ 25 

mg/ml in 25 mM Bicine pH 8.5. Two samples were prepared for the EXAFS study. To gain insights 

about the residues involved in the binding of the metal cofactor, OsUAM1 samples were prepared 

with 0.5 mM MnCl2. To understand the change in metal coordination after addition of substrate, 

UDP-Arap was added to OsUAM1 samples with Mn2+. 30% glycerol was added to all samples 

before freezing, decreasing the protein concentration to ~ 17 mg/ml.  
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S.3.2 Results 

Since UAM is a metalloenzyme, metal absorption edge EXAFS was used to improve 

accuracy and supplement the metal binding site prediction made by the I-TASSER model. EXAFS 

was used to map the active site residues coordinating the metal and predict how the substrate 

interacts with the metal. A change in spectra in the presence of substrate binding is indicative of 

changes around the metal when the substrate enters the active site. Additionally, EXAFS was used 

to determine the distances between the metal and the neighboring atoms.105 Data obtained for two 

different samples of OsUAM1, UAM-Mn
2+

 and UAM-Mn
2+

-UDP-Arap, were cut off at a k range 

of 12. Some important differences in EXAFS spectra obtained with and without substrate were 

observed at ~2.1 Å, ~2.5 Å and 3.4 - 3.6 Å away from the metal, as shown in Figure S-2A. These 

differences in the EXFAS spectra are due to the metal making new interactions with the incoming 

substrate. Theoretical models were designed and fit to UAM-Mn2+-UDP-Arap EXAFS data that 

was obtained using FEFF, a software used to fit experimental spectra to theoretical calculations. 

A few theoretical models with different combinations of the DDD motif, metal, diphosphate and 

water were made, and EXAFS data for all of them were simulated using FEFF and fit to the original 

EXAFS data obtained. A model that agrees reasonably well with the original EXAFS data is shown 

in Figure S-2B and C. This model, with residues Asp110, Asp112, the di-phosphate of substrate 

and two water molecules, accounts for most of the peaks in the experimental data, as shown in 

Figure S-2B. The metal, Mn2+ makes an octahedral coordination. The peak at ~ 2.2 Å is due to six 

separate contributions; one each from carboxyl oxygens of Asp110 and Asp112 residues, one from 

each phosphate oxygen of the substrate and two adjacent water molecules. The peak at 3.4 - 3.6 Å 

can be explained by the distance between phosphorous atoms of the substrate and Mn2+. Further 

experimental data is required to improve this theoretical model further.            
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(C)  

Figure S-2: EXAFS studies on OsUAM1.75  

(A) EXAFS data for UAM with Mn
2+ (trace in black)

 
and UAM-Mn

2+
-UDP-Arap (trace in red) 

(B) EXAFS data for UAM-Mn
2+

-UDP-Arap (trace in black) overlapped on the FEFF spectra 

produced from the model (trace in red) (C) Model designed with two aminoacid residues (D110 

and D112), both in green; water molecules in red, Mn2+ in purple and the substrate diphosphate in 

orange. 

 

S.4 OsUAM1 Modeling 

GalaxyWEB and I-TASSER were used to generate 3D-models of OsUAM1.87,88 I-

TASSER server predicts the 3D-structure and function of a protein of interest based on multiple 

threading alignments and structural simulations. The threading procedure is performed by the 

locally installed meta-threading-server (LOMETS), having individual alignment and scoring 

programs, which compares regions of the input sequence to structures found in PDB. Regions of 

the input sequence, for which templates are found, are incorporated into different structural 

assemblies and the regions of the sequence that do not have a template, mostly loops, are built in 

by modeling. Restraints from LOMETS, based on the PDB structure-templates chosen to run 

simulations at different temperatures, are incorporated into the structural assemblies. The various 

structural assemblies are clustered, and cluster centroids are picked for the next stage, which 
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focuses on removing steric clashes and refinement of global topology. This is established by 

incorporating only the restraints from LOMETS to the PDB structures closest to the clusters 

chosen. Another simulation is performed for hydrogen-bond optimization so that only the lowest 

energy structures produce the final models. The function of the protein of interest is also 

determined by matching the final predicted models with structures from PDB having known 

functions. I-TASSER can be accessed online at: http://zhanglab.ccmb.med.umich.edu/I-

TASSER/.  

GalaxyWEB predicts the protein structure of a given sequence using multiple template-

based modeling (GalaxyTBM) and refines unreliable loop regions by optimization-based 

refinement (GalaxyREFINE). The software has four different stages such as template selection, 

sequence alignment, model building and refinement. The multiple template selection and scoring 

are performed by HHsearch. The matching regions are chosen as templates and the regions of the 

input sequence that do not have templates are built in. Initial model structures are built using 

restraints obtained based on templates and multiple sequence alignments. The unreliable loop 

regions, defined as URLs are then built using loop-closure algorithms. GalaxyREFINE is used for 

further refinement of the predicted models. GalaxyWEB can be accessed online at: 

http://galaxy.seoklab.org/.   
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