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ABSTRACT 

 

Turbulent flow is a complex fluid phenomenon because of its disordered and chaotic flow 

patterns. Analysis of such flows presents practical significance and is widely performed using 

either experiments or simulations. The numerical simulation, or computational fluid dynamics 

(CFD) is one powerful technique; traditionally, it is based on the Navier-Stokes equations. A novel 

numerical approach called the lattice Boltzmann method (LBM) has developed quickly over the 

past decades, and this method is based on an entirely different mechanism. The current thesis seeks 

to present an investigation of turbulent flows that was performed using the LBM.  

Considered to be a potential alternative to the traditional Navier-Stokes equations, LBM 

essentially demonstrates two unique advantages, namely being simple in algorithm and suitable 

for parallelization. These two features arise from the fact that there is no pressure solver required 

to correct the velocity field, and that LBM follows a streaming-collision procedure. The current 

research used a multiple relaxation time (MRT) collision model to study three-dimensional 

turbulent flows based on a D3Q19 lattice model. Four types of boundary schemes were introduced 

in the current study: halfway bounce-back no-slip boundary condition, periodic boundary 

condition, precursor inflow boundary condition and constant pressure boundary condition. The 

driving mechanism of the fluid flow in the current LBM scheme was realized via a source term in 

the particle distribution functions. A three-dimensional sinusoidal perturbation was used in the 

initial condition to efficiently trigger turbulence in the developing stage of the flow simulation.  

Inherent uniformity of the LBM imposes a constraint over its practical applications to 

complex flows. The current study attempted to solve this issue by studying a volumetrically 

formulated local grid refinement. This scheme was selected since it preserves the laws of 

conservation, and in addition, implementation of the scheme is fairly straightforward. Due to the 

time constraint, this thesis only considered a laminar channel flow for a Reynolds number of 𝑅𝑅𝑅𝑅 ≈

1.08 as a preliminary test case. The regions near the walls were refined locally using this scheme. 

The scheme achieves satisfactory agreement of the velocity profile with the analytical solution.  
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A simulation of turbulent channel flow for a Reynolds number of  𝑅𝑅𝑅𝑅𝜏𝜏 ≈ 230 was 

implemented to validate the performance of the developed code. The mean velocity profiles and 

Reynolds stress profiles were determined based on averaging 174,000 time steps after reaching 

quasi-steady state. These results were compared to those from the literature for a Reynolds number 

of  𝑅𝑅𝑅𝑅𝜏𝜏 ≈ 180. The results are in good agreement, although some small over-predictions are 

observed due to the difference in Reynolds numbers. Instantaneous vorticity visualization in 

transverse cross-sections revealed the dominance of small-scale wall-induced vortices in the near 

wall regions. These structures tend to expand in size with increasing distance away from the wall. 

Instantaneous vortex structures were visualized using the second invariant criterion. Typical 

hairpin structures were not clearly evident, although elongated streaks were clearly captured in the 

near wall regions.  

As an example of a more complex flow, a large eddy simulation (LES) of turbulent flow 

over two cubic prisms was realized for a Reynolds number of 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3350 , based on the bulk 

velocity and prism height,𝐻𝐻. A pre-cursor inflow was used to provide the information for the inlet 

boundary condition and a constant pressure was specified at the outlet of solution domain. The 

LES LBM used the standard Smagorinsky subgrid-scale (SGS) model with wall-damping. 

Analysis of the flow features was implemented from three perspectives: mean flow patterns, 

instantaneous flow features and energetic structures using a Proper Orthogonal Decomposition 

(POD). A symmetric mean flow pattern was evident in a horizontal plane located at the mid-height 

of the cubes. Recirculation regions were well observed, and the locations were found to be 

reasonably consistent with those identified by Meinders and Hanjalić (2002) for 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3900. The 

vertical mid-plane revealed a horseshoe vortex in front of the upstream prism and a recirculation 

region on its top surface. Visualizations of the instantaneous vorticity on two transverse mid-planes 

and in three dimensions indicated that the vortices around the prisms present a high degree of 

complexity and intensity, persisting far downstream while also interacting with one another. Some 

of these vortices resembled prototypical hairpin structures. The flow structures close to the front 

face of the downstream cube demonstrated a relatively high intensity. This observation was also 

confirmed by the energetic structures extracted from a POD analysis based on a total of 200 

snapshots. 
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CHAPTER 1   INTRODUCTION 

 

1.1 Motivation 

Turbulent flow is characterized by its irregular and chaotic instantaneous patterns. The 

research of such flows is inherently complex and challenging, yet also relevant to many industrial 

and environmental applications. Computational fluid dynamics (CFD) is a powerful technique that 

analyzes a fluid flow and the associated phenomena by means of numerical simulation. It finds 

wide applications in industrial research and design, including fluid dynamics of aircraft, 

turbomachinery, chemical processing and meteorology (Versteeg and Malalasekra 2007).  

Experimental approaches and computational simulations are two effective tools for 

studying turbulence. As compared with experimental fluid dynamics, CFD demonstrates several 

unique advantages including a reduction of effort in building the experimental environment, the 

capability to study large-scale systems, and the availability of data and flow information 

everywhere in the computational domain.  

Traditionally, the governing equations in CFD are the Navier-Stokes equations. These 2nd 

order nonlinear equations fundamentally determine macroscopic properties of the velocity and 

pressure fields in a fluid flow. The Navier-Stokes equations are nonlinear in nature and thus 

formidable to solve directly. Therefore, both computational techniques and theoretical models are 

required in solving these equations.  

A novel numerical approach called the lattice Boltzmann method (LBM) has evolved over 

the past decades. Instead of solving the traditional Navier-Stokes equations, LBM seeks to perform 

the simulation through an algorithm that includes a collision model and a streaming process. This 

method demonstrates a relatively simple algorithm and is widely considered to be a potential 

alternative to the traditional methods adopted in CFD. 
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1.2 Literature review 

The Lattice Boltzmann method (LBM) is a comparatively new and numerically efficient 

approach in computational fluid dynamics. It demonstrates the potential to become a promising 

alternative to the traditional Navier-Stokes equations and thus has found multiple applications in 

simulation of fluid flows (Yu 2004, Chikatamarla et al. 2010, Koda 2013, Hossain et al. 2015). 

The LBM is originally derived from the continuous Boltzmann equation through discretization in 

time and space, which describes a fluid system statistically based on the particle density 

distribution functions (He and Luo 1997). In fact, the Navier-Stokes equations for viscous flow 

can be recovered by applying the second-order Chapman-Enskog expansion to the continuous 

Boltzmann equation (Bespalko 2006). The LBM has also been mathematically characterized as a 

finite-difference-based scheme (He and Luo 1997, Yu 2004).  

The flow field of the LBM consists of a number of fictitious particles moving along 

specified lattice directions at fixed velocities (Bespalko 2006). These particles collide and stream 

in a physical space that is discretized by a uniform grid. The macroscopic state at each lattice site 

can then be calculated from the corresponding particle distribution functions. Hence, 

implementation of the LBM involves two steps: collision and streaming. The collision process 

deals with their relaxation process to their local equilibrium, and the streaming process describes 

the movement of the particles along the specified directions to their neighbouring sites after the 

collision step (Premnath et al. 2009b). The LBM therefore demonstrates two key advantages over 

the traditional method: a simple algorithm and parallel scalability (Koda 2013). The former 

originates from the fact that there is no pressure solver involved in the algorithm to correct the 

velocity field; the pressure in the LBM is obtained from the local fluid density and the speed of 

sound.  

Two collision models are widely used in the LBM: the single-relaxation-time (SRT) model 

and multiple-relaxation-time (MRT) model. The SRT is also referred to as the Bhatnager-Gross-

Krook (BGK) model and has gained wide popularity for its simplicity in implementation 

(D'Humieres et al. 2002,  Yu 2004). In the SRT-LBM, a single relaxation parameter essentially 

determines the rate at which the particle distributions relax to their local equilibrium, whereas the 

MRT model computes different relaxation rates in moment space (Premnath et al. 2009b). The 
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MRT LBM, also known as the generalized lattice Boltzmann method (GLBM), is generally 

preferred over the SRT LBM since it provides a higher numerical stability. This is especially the 

case for flows at high Reynolds numbers (Premnath et al. 2009b, Freitas et al. 2011). Additionally, 

optimal stability can be achieved by tuning the different relaxation rates individually (D'Humieres 

et al. 2002). The type of lattice models also has an impact on the capability of LBM. Several lattice 

models are particularly popular and widely employed for three-dimensional fluid flow simulation, 

including the three-dimensional, fifteen-particle velocity (D3Q15) lattice model, and models 

which are similarly described as D3Q19 and D3Q27. The number of velocity sites is one 

influencing factor to the numerical accuracy. However, a higher number of velocity sites typically 

also increases the computational load.  

One major constraint imposed by the LBM in application to complex flows lies in its 

inherent uniformity in the computational domain. In order for the LBM to be effective in the 

exploration of complex fluid flows, this restriction should be circumvented. One effective 

approach to achieve this goal is local grid refinement. Over the past decades, a number of 

pioneering schemes have been proposed for local grid refinement. One early scheme proposed by 

He et al. (1996) is the interpolation-supplemented LBM. A continuously varying grid mesh is 

realized in this scheme where the values on the refined grid are simply obtained by interpolation 

from the coarse grid after each round of streaming and colliding. Filippova and Hanel (1998) 

proposed a popular scheme using the locally embedded grid. The entire computation domain is 

initially covered with the coarse grid. The fine grid is then patched to regions where turbulent eddy 

motions exist at small scales. Spatial and temporal interpolations are both implemented in this 

scheme to realize the communication between the coarse and the fine grids. Dupuis and Chopard 

(2003) developed a similar scheme to the one of Filippova and Hanel (1998), but using a simpler 

algorithm in interpolations with second-order accuracy. One common feature of the 

aforementioned schemes is that they are node-based, or finite-difference formulated, and 

interpolation of the surrounding nodes or rescaling serves as a critical step in implementing such 

local grid refinement. This approach does not inherently conserve mass, momentum and energy 

(Chen et al. 2006). One recent attempt to address this issue is the so-called imbalance correction 

grid refinement method proposed by Kuwata and Suga (2016). This approach is an extension to 

the work of Dupuis and Chopard (2003); a correction step is introduced to remove the unphysical 

discontinuity in the interface region serving to mitigate the non-conservation issue. Freitas et al. 
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(2006) developed a so-called hierarchical grid refinement. This refinement technique is also 

similar to the work of Filippova and Hanel (1998). However, one fundamental difference between 

them is that Freitas et al. (2006) used the cell-centered approach in their study and this makes it as 

a finite-volume-formulated scheme. In realizng  this scheme, a non-linear interpoation is required 

along with a transformation of the non-equilibrium part of the distribution functions. Eitel-Amor 

et al. (2013) worked further on this scheme and developed a dynamic version of such local grid 

refinement called the hierarchical adaptive grid refinement. Instead of locating the refinement 

region manually, hierarchical adaptive grid refinement incorporates monitoring parameters in the 

scheme to determine the need of refinement for a region dynamically. In the study by Eitel-Amor 

et al. (2013), two dynamic parameters are used based on the absolute value of the vorticity vectors 

and the difference of the total pressure at low Mach numbers.  

On the other hand, Chen et al. (2006) and Rohde et al. (2006) proposed a novel 

volumetrically formulated scheme. No interpolation is required to realize this local grid refinement 

while the laws of conservation are precisely satisfied in the grid transition. This scheme removes 

the extra steps in the algorithm associated with interpolation or rescaling. In addition, it removes  

the fact  that the computational accuracy is directly related to the accuracy of the interpolation. 

The reduction in overall computational cost in this scheme is achieved by a factor of 16 for a coarse 

cubic grid (Premnath et al. 2013a). Fundamental explorations using classical turbulent channel 

flow based on this technique have demonstrated satisfactory results (Premnath et al. 2009(a, b)). 

Applications in complex flows using this technique (Premnath et al. 2013 (a, b) , Staubach 2013) 

have also yielded promising results. However, unphysical discontinuities are reported in some 

high-order statistics profiles (Rohde et al. 2006, Premnath et al. 2013a, Kuwata and Suga 2016). 

Athough the current limitation of the use of a uniform grid in the LBM has begun to be addressed 

over the previous decade, local grid refinement has not yet become a mature methodology. 

Therefore, additional studies are required to test and improve their predictive performance while 

ensuring the conservation laws are satisfied. 

Large eddy simulation (LES) is a prevailing turbulence model that identifies two different 

eddy scales of turbulent flows through filtering: resolved-scale eddies with a length scale larger 

than the grid size and unresolved-scale eddies that are smaller than the grid size. LES computes 

the larger resolved-scale eddy motions by directly solving the governing equations without any ad 
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hoc assumption, and models the physical effects of the smaller unresolved-scale motions by using 

a subgrid-scale (SGS) model (Hou et al. 1996, Yu 2004). One such model is the standard 

Smagorinsky SGS model. This model has gained wide popularity over the past decades due to the 

fact that the turbulent eddy viscosity is based on a simple formulation using a strain-rate tensor. 

Incorporation of this traditional SGS model into the LBM was proposed early and demonstrated 

to be straightforward in implementation by Hou et al. (1996). It should be noted that significant 

differences exist in implementing LES based on the different governing equations. For the Navier-

Stokes equations, the estimated eddy viscosity contributes to the evolution of the flow fields 

directly during the next time step, whereas for the LBM the eddy viscosity only alters the 

corresponding relaxation rates for the particle distribution functions which serve to specify the 

flow states (Yu 2004). Applications of LBM LES have been successfully implemented in many 

realistic flows (Yu 2004, Premnath et al. 2009a, Koda 2013, Hossain et al. 2015). However, such 

LBM LES has not yet been widely applied to the flow in wake regions where complex flow 

structures are expected. 

 

1.3 Objectives 

The present thesis will investigate the performance of LBM LES for studying turbulent 

near-wall flows. The research will begin with an in-house LBM code initially developed for micro-

fluidic flows and later applied to simulation of a turbulent lid-driven cavity flow by Dr. Md. 

Shakhawath Hossain (Hossain et al. 2015). Three objectives are identified for the current research: 

1. The first objective is to modify the in-house code to be able to predict turbulent wall-bounded 

channel flow. More specifically, it will be used to perform a Direct Numerical Simulation 

(DNS) of a turbulent channel flow for a low Reynolds number. The numerical results will be 

analyzed and compared to those of a well-documented study from the literature. Typical flow 

structures will also be studied.  

2. A major limitation in applying the LBM to complex flows originates from the inherent 

uniformity of the grid over the computational domain. Therefore, the second objective of the 

current study is to improve the effectiveness of the LBM by implementing local grid 
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refinement. A laminar channel flow will be used for this  investigation where the regions near 

the walls will be refined. The preliminary performance will be assessed by comparing the 

velocity profile to that of an analytical solution. 

3. The third objective of the current research is to explore the capability of LBM LES in 

predicting the flow structures in a more complex flow than a typical channel flow. Geometric 

complexity will be increased by adding two cubic prisms on the bottom wall of the channel. A 

standard Smagorinsky SGS model will be incorporated in the framework of the LBM to realize 

an LES for this study. A pre-cursor inflow and a constant pressure are both required for the 

inlet and outlet boundary conditions, respectively. The three-dimensional coherent structures 

will also be analyzed using both of the second invariant criterion (Hunt et al. 1988) and a 

Proper Orthogonal Decomposition (Kim et al. 2005). 

The scope of the current thesis will largely focus on the numerical methodology and its 

application to the turbulent channel flow and flow over wall-mounted cubes. A local grid 

refinement method will be introduced as an attempt to improve the potential application of the 

LBM to wall-bounded flows. However, due to the time constraint, the application will only be 

limited to a laminar channel flow. An LES based on a standard SGS model will be considered in 

this study. It will significantly enhance an in-house LBM code for performing LES of near-wall 

turbulent flows; however, it cannot address every feature of the LBM that could be potentially 

improved.   

 

1.4 Thesis structure 

The present thesis is organized as follows. The lattice Boltzmann method is introduced in 

Chapter 2 where the collision operator and lattice model employed in the current study are both 

described in detail. Chapter 2 also documents the boundary conditions, initial conditions, and the 

iterative algorithm for implementing the LBM code. A demonstration of volumetric grid 

refinement and its performance in a laminar channel flow is included in Chapter 2 as well.  
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Chapter 3 presents the LBM DNS of a turbulent channel flow where the performance of 

the developed code is validated by comparison to other results. The second invariant criterion is 

introduced in the same chapter to visualize the vortex structures.  

The thesis then proceeds to demonstrate a LBM LES of the complex wake flow over two 

cubic prisms in Chapter 4. A standard Smagorinsky model is introduced as the SGS model. Both 

mean flow patterns and instantaneous flow structures are analyzed. A snapshot version of the POD 

(Kim et al. 2005) is also included to analyze the flow structures from a different perspective. 

Finally, Chapter 5 identifies the conclusions drawn from the current research and provides 

views into the future work. 

 

 

 

 

 

 

 

 

 

 

 

 

 



8 
 

CHAPTER 2   LATTICE BOLTZMANN METHOD 

 

2.1 Background 

The current research essentially employs a MRT collision model to study three-

dimensional turbulent flows based on a D3Q19 lattice model. This chapter aims to provide a 

detailed description of the numerical methodology and thereby is organized as follows. The MRT 

LBM and D3Q19 lattice model are presented in Section 2.2 and Section 2.3. The chapter then 

proceeds by describing the different boundary conditions, initial conditions and external forcing 

terms employed in the current study, in Sections 2.4 and 2.5. The implementation algorithm for 

the newly developed LBM code is discussed in Section 2.6. Finally, a detailed description of the 

selected local grid refinement method is given in Section 2.7, along with a preliminary 

performance test using a laminar channel flow. 

 

2.2 Multiple Relaxation Time LBM 

The evolution equation for the MRT LBM is given by (Yu 2004): 

𝑓𝑓(𝑥⃗𝑥 + 𝑒𝑒𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) − 𝑓𝑓(𝑥⃗𝑥, 𝑡𝑡) = −𝑀𝑀−1 × 𝑆̂𝑆 × [𝑚𝑚 −𝑚𝑚𝑒𝑒𝑒𝑒],                            (2.1) 

where 𝑓𝑓(𝑥⃗𝑥, 𝑡𝑡) represents the particle distribution function, and 𝑓𝑓(𝑥⃗𝑥 + 𝑒𝑒𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) is a particle 

distribution function that describes the corresponding particle movement for the next time step, 𝛿𝛿𝛿𝛿, 

to the neighbouring lattice node, 𝛿𝛿𝛿𝛿, along a specified direction, 𝑒𝑒. Equation (2.1) is written using 

the convention that the LHS of the equation denotes the streaming process whereas the RHS 

signifies the cumulative effect of the collision process. 𝑆̂𝑆 stands for the diagonal collision matrix 

that determines the relaxation rates and is given by: 

𝑆̂𝑆 = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4, 𝑆𝑆5, 𝑆𝑆6, 𝑆𝑆7, 𝑆𝑆8, 𝑆𝑆9, 𝑆𝑆10, 𝑆𝑆11, 𝑆𝑆12, 𝑆𝑆13, 𝑆𝑆14, 𝑆𝑆15, 𝑆𝑆16, 𝑆𝑆17, 𝑆𝑆18, 𝑆𝑆19).   (2.2) 

The detailed values of the above diagonal matrix are provided in Appendix .  
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In equation (2.1), 𝑀𝑀 is a 19 × 19 matrix that linearly transforms the distribution functions 

into velocity moments (Yu 2004): 

𝑚𝑚(𝑥𝑥, 𝑡𝑡) = 𝑀𝑀 × 𝑓𝑓(𝑥𝑥, 𝑡𝑡), and 𝑓𝑓(𝑥𝑥, 𝑡𝑡) = 𝑀𝑀−1 × 𝑚𝑚(𝑥𝑥, 𝑡𝑡),                             (2.3) 

where the elements of 𝑀𝑀 and 𝑀𝑀−1 are given in Appendix . The equilibrium moments in equation 

(2.1), 𝑚𝑚𝑒𝑒𝑒𝑒, are functions of density and local velocities, details of which are specified in Appendix  

as well. 

The fluid density and momentum in LBM are given by 

𝜌𝜌 = �𝑓𝑓𝑖𝑖

18

𝑖𝑖=0

, and 𝜌𝜌𝑈𝑈��⃗ = �𝑒𝑒𝚤𝚤��⃗ 𝑓𝑓𝑖𝑖

18

𝑖𝑖=0

.                                                (2.4𝑎𝑎, 𝑏𝑏) 

The sound speed is 𝑐𝑐𝑠𝑠 = 𝑐𝑐/√3, and 𝑐𝑐 = 𝛿𝛿𝛿𝛿/𝛿𝛿𝛿𝛿 = 1 in lattice units. Physically, 𝛿𝛿𝛿𝛿 =

0.001 m 𝑎𝑎𝑎𝑎𝑎𝑎 𝛿𝛿𝛿𝛿 = 0.001 s, respectively. The molecular viscosity is given by 

𝜈𝜈0 =
𝑐𝑐
3 �

1
𝑠𝑠𝑣𝑣
−

1
2�
𝛿𝛿𝛿𝛿,                                                               (2.5) 

where 𝑠𝑠𝑣𝑣 =   𝑠𝑠10 =  𝑠𝑠12 =  𝑠𝑠14 =  𝑠𝑠15 =  𝑠𝑠16 . In the current study,  𝑠𝑠𝑣𝑣 = 1.98570 such that 𝜈𝜈0 =

1.20 × 10−6 m2/s.   

The equilibrium distribution function for the LBM is given by 

𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜔𝜔𝑖𝑖 �1 + 3�𝑒𝑒𝚤𝚤��⃗ ∙ 𝑈𝑈��⃗ � +

9
2
�𝑒𝑒𝚤𝚤��⃗ ∙ 𝑈𝑈��⃗ �

2
−

3
2
𝑢𝑢2� , 𝑖𝑖 = 0, 1,2, … ,18,             (2.6) 

where ρ is the fluid density, 𝜔𝜔𝑖𝑖 and 𝑒𝑒𝚤𝚤��⃗  are the weighting factors associated with the lattice model, 

and discrete velocity vectors, respectively. Both of them are specified in Section 2.3 below. In 

equation 2.6, 𝑈𝑈��⃗ = 𝑈𝑈��⃗ (𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑧𝑧), 𝑣𝑣(𝑥𝑥,𝑦𝑦, 𝑧𝑧),𝑤𝑤(𝑥𝑥, 𝑦𝑦, 𝑧𝑧)) is the initial three-dimensional velocity field 

where u, v and w are velocity components at different locations in the domain.  
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2.3 D3Q19 lattice model 

The D3Q19 lattice model has a total of nineteen discrete velocities. The corresponding 

discrete vectors are given by 

𝑒𝑒𝚤𝚤��⃗ =

⎩
⎪
⎨

⎪
⎧

(0, 0, 0),                                              𝑖𝑖 = 0;

(±1, 0, 0), (0, ±1, 0), (0, 0, ±1)                          𝑖𝑖 = 1, 2, … ,6;

 (±1, ±1, 0), (±1, 0, ±1), (0, ±1, ±1)                 𝑖𝑖 = 7, 8, … ,18.

 

The values of the weighting factors, 𝜔𝜔𝑖𝑖 , are dependent on the lattice model. For the D3Q19 

lattice model, they are specified as  

𝜔𝜔𝑖𝑖 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

1
3

,                      𝑖𝑖 = 0;

1
18

,                 𝑖𝑖 = 1, 2, … ,6;

 
1

36
,               𝑖𝑖 = 7, 8, … ,18.

 

Graphically, the D3Q19 model is depicted in Figure 2.1 
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Figure 2.1. D3Q19 lattice model 

 

2.4 Boundary conditions 

When the particles reach the boundaries of the computational domain after streaming and 

collision, information on the particle density distribution functions is not provided for the next 

time step. Boundary conditions, therefore, serve to provide the unknown information for the 

distribution functions, thus meeting the constraints imposed along the boundaries. Four types of 

LBM schemes are introduced in the current study to realize different boundary conditions. They 

are presented in detail in the following subsections. 

 

2.4.1 Halfway bounce-back boundary condition 

The halfway bounce-back scheme realizes the no-slip boundaries at solid walls. It 

represents second-order accuracy for plane walls and first-order accuracy for curved boundaries 

(He et al. 1997, Freitas et al. 2011). This scheme is named “halfway bounce-back” since the exact 
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no-slip location is implemented halfway between the fictitious boundary node and the first inner 

node by simply “bouncing back” the incoming particles to their opposite directions, i.e. 

𝑓𝑓0′ = 𝑓𝑓0 , 𝑓𝑓1′ = 𝑓𝑓2, 𝑓𝑓2′ = 𝑓𝑓1, 𝑓𝑓3′ = 𝑓𝑓4, 𝑓𝑓4′ = 𝑓𝑓3, 

𝑓𝑓7′ = 𝑓𝑓10, 𝑓𝑓8′ = 𝑓𝑓9, 𝑓𝑓9′ = 𝑓𝑓8, 𝑓𝑓10′ = 𝑓𝑓7, 

𝑓𝑓5′ = 𝑓𝑓6, 𝑓𝑓11′ = 𝑓𝑓14, 𝑓𝑓12′ = 𝑓𝑓13, 𝑓𝑓15′ = 𝑓𝑓18, 𝑓𝑓16′ = 𝑓𝑓17, 

𝑓𝑓6′ = 𝑓𝑓5, 𝑓𝑓13′ = 𝑓𝑓12, 𝑓𝑓14′ = 𝑓𝑓11, 𝑓𝑓17′ = 𝑓𝑓16, 𝑓𝑓18′ = 𝑓𝑓15, 

where 𝑓𝑓𝑛𝑛′ and 𝑓𝑓𝑛𝑛 denote the post-collision particle distribution functions and distribution functions 

of the previous time step after the streaming process, respectively. Note that the boundary nodes 

on the solid walls do not participate in the collision process. Graphically, this scheme is presented 

in Figure 2.2. Note that the lattice model in this study employs D3Q19, but D2Q9 is the one 

demonstrated in Figure 2.2 for simplicity while not losing generality. 

 

 

Figure 2.2. Half-way bounce-back boundary condition 
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2.4.2 Periodic boundary condition 

A periodic boundary condition essentially connects the inlet and outlet in the specified 

direction such that the fluid flow in the domain follows a periodic pattern. This condition is simply 

realized by connecting the lattice nodes at the outlet to the corresponding lattice nodes at the inlet. 

Consequently, no single particle leaves the computational domain and the laws of conservation are 

well preserved. When a periodic boundary condition is applied, a sufficiently large domain should 

be used such that there is negligible statistical correlation between any two points separated by a 

distance equal to half of the computational domain (Rohde et al. 2006). 

 

2.4.3 Precursor inlet boundary condition 

A precursor inlet boundary condition provides an instantaneous inlet velocity profile for 

the downstream domain by extracting the velocity profile at each time step from an upstream 

periodic quasi-steady-state flow. This boundary condition is implemented by providing the 

distribution functions at the downstream inlet plane with velocity information at the upstream 

outlet, and density of the first inner nodes in the downstream domain, i.e. (Koda 2013)  

𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑖𝑖
eq �𝜌𝜌(𝑥𝑥 + 1,𝑦𝑦, 𝑧𝑧),𝑈𝑈��⃗ (𝑖𝑖, 𝑗𝑗,𝑘𝑘)� ,                                              (2.7) 

where  𝑓𝑓𝑖𝑖 and 𝑓𝑓𝑖𝑖
eq represent the particle distribution functions and equilibrium distribution 

functions at the inlet plane of the downstream domain, respectively.  Here 𝜌𝜌(𝑥𝑥 + 1,𝑦𝑦, 𝑧𝑧) denotes 

the density of the first inner nodes in the downstream domain, and 𝑈𝑈��⃗ (𝑖𝑖, 𝑗𝑗,𝑘𝑘) stands for the 

instantaneous velocities at the upstream outlet. A schematic diagram and details of the application 

are included in Section 4.3. 
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2.4.4 Constant pressure outlet boundary condition 

The pressure at the outlet, 𝑃𝑃out, is maintained as constant via setting the density as 

constant, 𝜌𝜌out = constant, since in the LBM  𝜌𝜌out = 𝑃𝑃out/𝑐𝑐𝑠𝑠2. Therefore, the particle distribution 

functions at the outlet need to be modified as follows (Mussa et al. 2009): 

𝑓𝑓𝑖𝑖 = 𝑓𝑓𝑖𝑖
𝑒𝑒𝑒𝑒 �𝜌𝜌out(𝑥𝑥, 𝑦𝑦, 𝑧𝑧),𝑈𝑈��⃗ (𝑥𝑥 − 1,𝑦𝑦, 𝑧𝑧)� ,                                            (2.8) 

where 𝑈𝑈��⃗ (𝑥𝑥 − 1,𝑦𝑦, 𝑧𝑧) denotes the velocity field of the last inner nodes prior to the outlet plane of 

the target domain. 

 

2.5 External force 

The current LBM scheme incorporates a source term in the equations for the particle 

distribution functions to simulate the effect of a pressure gradient to drive the fluid flow. With the 

source term added, the evolution equation takes the form of (Premnath et al. 2009a) 

𝑓𝑓(𝑥⃗𝑥 + 𝑒𝑒𝛿𝛿𝛿𝛿, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) − 𝑓𝑓(𝑥⃗𝑥, 𝑡𝑡) = −𝑀𝑀−1 × 𝑆̂𝑆 × [𝑚𝑚−𝑚𝑚𝑒𝑒𝑒𝑒] + 𝑀𝑀−1 × �𝐼𝐼 −
1
2
𝑆̂𝑆� × 𝑆𝑆𝑠𝑠,   (2.9) 

where the second term on the RHS of the above equation (2.9) introduces the effects of the pressure 

gradient. I is a 19×19 identity matrix and 𝑆𝑆𝑠𝑠 denotes the source term in moment space, the 

components of which are specified in Appendix.  

A corresponding forcing term is also introduced in the relation for the local momentum 

field, i.e. 

𝚥𝚥 = 𝜌𝜌𝑈𝑈��⃗ = �𝑓𝑓𝑖𝑖𝑒𝑒𝚤𝚤��⃗ +
18

𝑖𝑖=0

1
2
𝐹⃗𝐹𝛿𝛿𝑡𝑡 ,                                                        (2.10)  

where 𝚥𝚥 = 𝚥𝚥�𝑗𝑗𝑥𝑥, 𝑗𝑗𝑦𝑦, 𝑗𝑗𝑧𝑧� is the momentum field,  𝑈𝑈��⃗  denotes the local velocity field and 𝐹⃗𝐹 =

𝐹⃗𝐹�𝐹𝐹𝑥𝑥,𝐹𝐹𝑦𝑦,𝐹𝐹𝑧𝑧� represents the external force field. Note that the source term involved in the evolution 
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equation (2.9) is essentially a function of the external force, 𝐹𝐹���⃗ , and local velocity,  𝑈𝑈���⃗ . For the 

turbulent channel flow, the external force field is determined by (Jafari et al. 2014) 

𝐹𝐹𝑥𝑥 = −
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
8𝜏𝜏𝑤𝑤
𝐿𝐿𝑧𝑧

=
8𝜌𝜌𝑢𝑢𝜏𝜏2

𝐿𝐿𝑧𝑧
,𝐹𝐹𝑦𝑦 = 0,𝐹𝐹𝑧𝑧 = 0,                                  (2.11) 

In equation 2.11, 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 is the pressure gradient,  𝜏𝜏𝑤𝑤 is the wall shear stress, 𝐿𝐿𝑧𝑧 denotes the channel 

height, and 𝑢𝑢𝜏𝜏 is the friction velocity.  

 

2.6 Initial condition 

 A sinusoidal perturbation, superimposed on a one-seventh power law for the mean velocity 

profile in all three dimensions, serves as the initial condition for the fluid flow in the current study. 

These perturbations attempt to trigger turbulence in the early stage of development. Note that the 

initial condition does not affect the quasi-steady state; the initial state only serves to reduce the 

computational effort it takes to reach the fully developed state. Mathematically, the perturbations 

are expressed as (Lam 1989) 

𝑢𝑢′ = 𝜖𝜖𝐿𝐿𝑥𝑥 sin �
𝜋𝜋𝜋𝜋
𝐿𝐿𝑧𝑧
� �cos

2𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

+
1
2

cos
4𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

+ cos
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

sin
4𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

� ,      (2.12) 

𝑣𝑣′ = −𝜖𝜖𝐿𝐿𝑦𝑦 sin �
𝜋𝜋𝜋𝜋
𝐿𝐿𝑧𝑧
� �

1
2

sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

cos
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

+
1
2

sin
4𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

cos
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

+
1
4

sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

cos
4𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

� ,     (2.13) 

𝑤𝑤′ = −𝜖𝜖 �1 + cos
𝜋𝜋𝜋𝜋
𝐿𝐿𝑧𝑧
� �sin

2𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

+ sin
4𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

+ sin
2𝜋𝜋𝜋𝜋
𝐿𝐿𝑥𝑥

sin
4𝜋𝜋𝜋𝜋
𝐿𝐿𝑦𝑦

� ,     (2.14) 

where 𝑢𝑢′, 𝑣𝑣′and 𝑤𝑤′ represent the sinusoidal fluctuations in the streamwise (X), spanwise (Y) and 

wall-normal (Z) directions, respectively. Note that x, y, and z signify the corresponding locations 

in the X, Y, and Z directions. 𝐿𝐿𝑥𝑥, 𝐿𝐿𝑦𝑦 and 𝐿𝐿𝑧𝑧 denote the total length of the computational domain in 

the X, Y and Z directions. 𝜖𝜖 is an empirical constant determining the magnitude of the perturbations 
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and, in the current study, is set to 𝜖𝜖 = 3.65 × 10-5. Note that an inappropriate 𝜖𝜖 value may result in 

divergence or delaying triggering of turbulence. 

Consequently, the three components of the velocity field in the equilibrium distribution 

functions (Eqn. 2.6) become 

𝑢𝑢 = 〈𝑢𝑢〉 + 𝑢𝑢′, 𝑣𝑣 = 〈𝑣𝑣〉 + 𝑣𝑣′,𝑤𝑤 = 〈𝑤𝑤〉 + 𝑤𝑤′, 

where, for turbulent channel flow, 〈𝑢𝑢〉 is the streamwise velocity determined using the one-seventh 

power law, and  〈𝑣𝑣〉 = 〈𝑤𝑤〉 = 0.  

 

2.7 Implementation of the LBM code 

The iterative steps for implementing the basic LBM algorithm are as follows: 

1) Initial conditions  

This step defines the relevant parameters and variables, specifies the computational 

domain, and determines the macroscopic properties, etc. 

2) Equilibrium distribution functions  

This step specifies the initial state of the fluid flow. The initial conditions of the fluid 

velocity field and the perturbations are implemented in this step. 

3) Collision process  

The external force that simulates the pressure gradient driving the flow is implemented 

in this step. Note that the wall nodes where no-slip boundary conditions are applied do 

not participate in this step. 

4) Boundary conditions  

5) Streaming step  

Particles propagate from one node to the neighbouring site in this step. 
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Back to step 3) until quasi-steady state developed. 

6) Post-processing subroutines  

Subroutines in this step process the data sets for analysis and visualization after 

reaching the quasi-steady state. 

 

2.8 Local grid refinement 

This subsection studies the volumetric local grid refinement proposed by Chen et al. (2006) 

and Rohde et al. (2006). This approach is preferred over other schemes because it is a finite-

volume-based scheme and presents promising results while involving a comparatively simple 

algorithm. A locally refined laminar channel flow is simulated in this subsection to test the basic 

performance of this refinement scheme. The results will be compared to the analytical solution.  

 

2.8.1 Volumetric grid refinement 

Implementation of volumetrically formulated grid refinement relies on the volumetric 

description of the LBM. This concept is illustrated in Figure 2.3. Rather than the original particle 

distribution function on each lattice node, it is the mass distribution function on each cell that is 

now under consideration. Within each single cell volume, particle densities are assumed to be 

uniform everywhere. This re-interpretation of LBM results in a staggered grid arrangement 

schematically shown in Figure 2.4. One character of volumetric grid refinement that distinguishes 

itself from the other schemes is that the fine grid cell (Cell B in Figure 2.3) and the coarse grid cell 

(Cell A in Figure 2.3) do not share the identical spatial or temporal scales. These scales are 

proportionally associated with the grid refinement factor, n, such that spatially ∆𝑥𝑥𝑐𝑐 =

𝑛𝑛∆𝑥𝑥𝑓𝑓 and temporally ∆𝑡𝑡𝑐𝑐 = 𝑛𝑛∆𝑡𝑡𝑓𝑓 where f and c denote the fine grid and coarse grid, respectively 

(Rohde et al. 2006).  

 



18 
 

 

Figure 2.3 Finite-volume grid refinement based on volumetric LBM (Rohde et al. 2006) 

 

 

Figure 2.4. Staggered grid arrangement for local grid refinement (Premnath et al. 2013a) 

 

Interface 
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During the computation, the fine grid covers the regions where turbulent structures at small 

scales exist, i.e. near-wall regions and regions in proximity to surface geometry. The rest of the 

domain is taken care of by the coarse grid where fairly large structures are expected. There exists 

a single interface layer shown in Figure 2.4 where both grids overlap, serving the role of 

communication between the two grids. Two critical steps are implemented for this interconnection: 

explode and coalesce. The former deals with the transition from the coarse grid to the fine grid, 

and the latter works the other way around. In the explode step, the information on the post-collision 

state for the coarse grid in the interface is uniformly redistributed to the fine grid. Conversely, in 

the coalesce step, the pre-collision state fine grid in the interface layer provides the input for the 

corresponding coarse grid (Chen et al. 2006). Note that these two steps, explode and coalesce, are 

implemented only on the directions pointing into the fine grid and the coarse grid, respectively 

(Rohde et al. 2006).  

 

2.8.2 Algorithmic steps 

The detailed algorithmic steps implemented for local grid refinement are specified below 

following Chen et al. (2006) and Rohde et al. (2006): 

1) Explode 

Over the interface, mass distribution in a coarse grid cell is uniformly redistributed into a 

number of  𝑛𝑛𝐷𝐷 fine grid cells, with 𝑛𝑛 denoting the refinement factor and 𝐷𝐷 the spatial 

dimension. Normally 𝑛𝑛 is an even number and in this case, 𝑛𝑛 = 2 and 𝐷𝐷 = 3. This process 

is graphically illustrated in Figure 2.5. Note that the densities do not change and are 

assumed to be uniform anywhere. No interpolation or rescaling is required here.  
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Figure 2.5. Graphical illustration of explode 

 

2) Standard streaming step on the fine nodes 

3) Standard collision step on the fine nodes  

The collision step is performed on the fine nodes for this step along with the external force, 

if there is any. Note that this step is not performed on the fine nodes located in the overlap 

region. 

4) Application of wall boundary conditions on the current grid level 

5) Repeat steps 2) to 4) n-1 times 

It should be reiterated that the fine grid and the coarse grid do not share the identical 

spatial or temporal scales; these scales are related to n such that ∆𝑥𝑥𝑐𝑐 = 𝑛𝑛∆𝑥𝑥𝑓𝑓 and ∆𝑡𝑡𝑐𝑐 =

𝑛𝑛∆𝑡𝑡𝑓𝑓. Therefore, in this case, the fine grid takes two time steps for each time step taken 

by the coarse grid in each iteration. 

6) Standard streaming step on the coarse nodes 

7) Coalesce 

This step is the converse of the explode step; summation of the mass distribution on the 

fine cells to provide information for the corresponding coarse cell over the interface region. 
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Again, note that neither interpolation nor rescaling is performed in this step. Graphically, 

this step is shown in Figure 2.6 below 

 

 

Figure 2.6. Graphical illustration of coalesce 

 

8) Standard collision step on the coarse nodes 

9) Back to step 1)  

 

2.8.3 Performance of local grid refinement 

Exploration of the volumetric local grid refinement started with a numerical validation 

using a fully developed laminar channel flow. A creeping laminar flow in the wall-bounded 

channel with a Reynolds number of 𝑅𝑅𝑅𝑅 = 𝑈𝑈𝑐𝑐𝑐𝑐(𝐿𝐿𝑧𝑧/2)/𝜈𝜈0  ≈ 1.08  was considered; 𝑈𝑈𝑐𝑐𝑐𝑐 , 𝐿𝐿𝑧𝑧 and 𝜐𝜐0 

here denote the centerline velocity, channel height and molecular viscosity, respectively. No-slip 

boundary conditions were applied to the top and bottom walls using the halfway bounce-back 

scheme. Periodic boundary condition was realized in the streamwise and spanwise directions, 

respectively. An external force simulating the effect of pressure gradient was used to drive the 

flow. Details are provided in Section 2.5 in terms of modifying the particle distribution functions 

to incorporate the external force field.  
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Two grid resolutions, i.e. 𝑛𝑛 = 2, were implemented in the computational domain where the 

coarse grid was applied in the center, and regions near the walls were refined using the fine grid. 

The height of each of the fine grid layers is 14 fine unit cells, which is 7 coarse unit cells. 

Meanwhile, since 𝜈𝜈0 = (1/3)((1/𝑠𝑠𝑣𝑣) − (1/2))𝑐𝑐𝑐𝑐𝑐𝑐 for the coarse grid, the corresponding 

relaxation parameters related to the molecular viscosity on the fine grid were adjusted such that 

the viscosities match on both grids, i.e. 𝜈𝜈𝑐𝑐 = (1/𝑛𝑛)𝜈𝜈𝑓𝑓. The corresponding numerical specifications 

are summarized in Table 2.1 and the computational domain is illustrated in Figure 2.7.  

A plot of the predicted velocity profile is presented in Figure 2.8. The laminar velocity 

profile agrees very well with its analytical solution. Slight discrepancies are observed at two 

locations: under-estimation in proximity to the wall and over-estimation in the overlap region. The 

former originates from the halfway bounce-back scheme, and the latter could be due to the transfer 

of the numerical information. This over-estimation is quantified as 2.89% in this case by 

comparison with the analytical solution. A non-physical discontinuity is not observed here. 

The current simulation of laminar channel flow only serves as a preliminary test of the 

performance of the local grid refinement method. Further testing is required and could be 

performed using turbulent channel flow. Note that in turbulent channel flow, the grid resolution 

used here is not sufficiently fine to capture the turbulence perfectly well. But lower-order 

turbulence statistics profiles are expected to match well with the documented results. 

 

Table 2.1. Specifications of computational domain  

 Coarse grid  Fine grid  

Computational domain 𝑳𝑳𝒙𝒙 × 𝑳𝑳𝒚𝒚 × 𝑳𝑳𝒛𝒛: 128 × 64 × 64 256 × 128 × 128 

Coarse grid size 128 × 64 × 50 -  

Fine grid size (top and bottom walls) -  256 × 128 × 14 

Molecular viscosity (m2/s) 1.2 × 10-6 2.4 × 10-6 

Density (kg/m3) 1.0 1.0 

External force factor 3.726 × 10-7 1.863 × 10-7 
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Figure 2.7. Wall-bounded channel (X: streamwise direction; Y: spanwise direction; Z: wall-normal direction) 

 

 

Figure 2.8. Velocity profile for laminar channel flow 
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CHAPTER 3   LBM DNS OF TURBULENT CHANNEL FLOW 

 

3.1 Background 

Turbulent channel flow is a typical benchmark case in fluid mechanics that has been 

studied extensively, partly because it provides understanding of the basic physics of wall-bounded 

turbulence and due to its geometric simplicity. The code developed in the current study will be 

validated by comparing the mean flow variables and lower-order statistics with those of a turbulent 

channel flow investigated by Kim et al. (1987) via DNS based on the Navier-Stokes equations.  

Kim et al. (1987) studied this flow using a mesh size of 192 × 160 × 129 in the streamwise 

(X), spanwise (Y) and wall-normal (Z) directions, respectively. A Reynolds number of 𝑅𝑅𝑅𝑅𝜏𝜏 =

𝑢𝑢𝜏𝜏(𝐿𝐿𝑧𝑧/2)/𝜈𝜈0 ≈ 180 was realized in their simulation, where 𝑢𝑢𝜏𝜏 is the friction velocity and 𝐿𝐿𝑧𝑧 is the 

channel height. They applied periodic boundary conditions to the streamwise and spanwise 

directions, and the no-slip boundary conditions to the top and bottom walls, respectively. The grid 

spacing in the streamwise and spanwise directions was 𝛥𝛥𝑥𝑥+ ≈ 12, and 𝛥𝛥𝑦𝑦+ ≈ 7, respectively. A 

non-uniform mesh was employed in the wall-normal direction with the first inner node located at 

𝑧𝑧+ ≈ 0.05. In the center of the channel, 𝛥𝛥𝑧𝑧+ ≈ 4.4. The numerical study of Kim et al. (1987) has 

been validated by comparison with experiments and has served as a benchmark for evaluating the 

quality of other numerical simulations of turbulent channel flow, though slight discrepancies were 

recognized in the comparisons of higher-order statistics profiles. 

This chapter aims to validate the predictions of the LBM code for a turbulent channel flow 

from different perspectives and is organized as follows. The computational specifications of the 

current simulation will be introduced in Section 3.2, followed by the data comparison using the 

mean flow variables, the velocity profiles and Reynolds stress profiles in Section 3.3. Data 

visualizations will then be presented and discussed in Section 3.4.  
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3.2 Computational specifications 

The current simulation was realized using a grid size of 396 × 105 × 198 in the X, Y and Z 

directions, respectively. The grid was uniformly configured in all three directions, and the spacing 

in wall units was 𝛥𝛥+ ≈ 2.38. The first inner node in the wall-normal direction was located at 

𝛥𝛥𝑧𝑧+ ≈ 1.19. Periodic boundary conditions were applied in the streamwise and spanwise 

directions, and no-slip boundary conditions were realized at the top and bottom walls using a 

halfway bounce-back scheme. A Reynolds number of 𝑅𝑅𝑅𝑅𝜏𝜏 = 𝑢𝑢𝜏𝜏(𝐿𝐿𝑧𝑧/2)/𝜈𝜈0 ≈ 230 was achieved in 

the current simulation, slightly higher than that of Kim et al. (1987). Though this difference does 

yield a slightly stronger turbulence field, it is possible to make explicit comparisons using the 

normalized results. The fluid flow initially started with a predetermined mean velocity profile 

based on the one-seventh power law. Sinusoidal perturbations were superimposed in all three 

directions. The relevant details of the initial conditions are specified in Section 2.5. An external 

forcing term was employed to simulate the effects of a pressure gradient to drive the flow. It should 

be reiterated that the initial perturbations do not affect the fully-developed state of the fluid flow; 

they essentially serve to expedite the development of turbulence. The time-averaged quantities in 

the following sections are all based on the mean values calculated over 174,000 time steps after 

the flow had reached a quasi-steady state. 

 

3.3 Mean flow properties 

The mean flow variables of the current simulation are summarized in Table 3.1 along with 

those of the study by Kim et al. (1987). Given that the current DNS of turbulent channel flow 

represents a slightly higher Reynolds number, the mean flow variables of two studies agree well 

with one another. Meanwhile, the ratio of the centerline velocity to bulk velocity, 𝑈𝑈𝑐𝑐𝑐𝑐/𝑈𝑈𝑚𝑚, and the 

skin friction coefficient, 𝐶𝐶𝑓𝑓 , of the current study also match well with the correlations suggested 

by Dean (1978), i.e. 

𝑈𝑈𝑐𝑐𝑐𝑐
𝑈𝑈𝑚𝑚

= 1.28𝑅𝑅𝑅𝑅𝑚𝑚−0.0116,                                                         (3.1) 
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𝐶𝐶𝑓𝑓 = 0.073𝑅𝑅𝑅𝑅𝑚𝑚−0.25,                                                          (3.2) 

where 𝑅𝑅𝑅𝑅𝑚𝑚 is the Reynolds number based on the bulk velocity and the entire channel height, 𝐿𝐿𝑧𝑧. 

The bulk velocity is calculated based on the streamwise mean velocity, 〈𝑢𝑢〉, i.e. 

𝑈𝑈𝑚𝑚 =
1
2
� 〈𝑢𝑢〉
2

0
𝑑𝑑 �

𝑧𝑧
𝐿𝐿𝑧𝑧/2�

.                                                        (3.3) 

 

Table 3.1. Mean flow results for turbulent channel flow 

 Kim et al. (1987) Current study Dean (1978) 

𝑅𝑅𝑅𝑅𝜏𝜏 =
𝑢𝑢𝜏𝜏(𝐿𝐿𝑧𝑧2 )
𝜈𝜈0

 180 230   - 

𝑈𝑈𝑚𝑚
𝑢𝑢𝜏𝜏

 15.63 16.76   - 

𝑈𝑈𝑐𝑐𝑐𝑐
𝑢𝑢𝜏𝜏

 18.20 19.83   - 

𝑈𝑈𝑐𝑐𝑐𝑐
𝑈𝑈𝑚𝑚

 1.16 1.18 1.15 

𝐶𝐶𝑓𝑓 =
𝜏𝜏𝑤𝑤

1
2𝜌𝜌𝜌𝜌𝑚𝑚

2
 8.18×10-3 7.12×10-3 7.76×10-3 

 

Figures 3.1(a) and 3.1(b) present the streamwise mean velocity profiles as a function of 

wall normal distance normalized by the viscous length scale and channel half-height, respectively. 

The mean velocity profile in wall units of the current DNS agrees well with both of the canonical 

logarithmic law and the profile of Kim et al. (1987). The current mean velocity plotted against the 

normalized coordinate (𝑧𝑧/(𝐿𝐿𝑧𝑧/2)) sits higher than the profile of Kim et al. (1987). This difference 

largely originates from the higher Reynolds number in the current study. 
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Figure 3.1. (a) Velocity profiles normalized using viscous length scale; (b) Velocity profiles normalized using 

half-channel height 

 

(a) 

(b) 
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Two normalized Reynolds stress profiles, i.e. 〈𝑢𝑢′𝑢𝑢′〉 +and 〈𝑢𝑢′𝑤𝑤′〉+, are presented in Figures 

3.2(a) and 3.2(b), respectively. These stresses represent the horizontal and vertical flux of 

streamwise turbulent momentum. Mathematically, based on the DNS data sets, these two terms 

are evaluated as follows: 

〈𝑢𝑢′𝑢𝑢′〉+ = 〈𝑢𝑢′𝑢𝑢′〉/𝑢𝑢𝜏𝜏2 = (〈𝑢𝑢𝑢𝑢〉 − 〈𝑢𝑢〉〈𝑢𝑢〉)/𝑢𝑢𝜏𝜏2,                                          (3.4) 

〈𝑢𝑢′𝑤𝑤′〉+ = 〈𝑢𝑢′𝑤𝑤′〉/𝑢𝑢𝜏𝜏2 = (〈𝑢𝑢𝑢𝑢〉 − 〈𝑢𝑢〉〈𝑤𝑤〉)/𝑢𝑢𝜏𝜏2,                                       (3.5) 

where 〈 〉 signifies time-averaging operation, 𝑢𝑢 = 〈𝑢𝑢〉 + 𝑢𝑢′ and 𝑤𝑤 = 〈𝑤𝑤〉 + 𝑤𝑤′. Both stress 

profiles are in reasonably good agreement with the reference values (at a lower Reynolds number). 

The slight over-predictions observed, especially in terms of the peak values, are believed to arise 

from the difference in Reynolds numbers. On the other hand, due to the comparatively coarse grid 

in proximity to the wall, the friction velocity was slightly inaccurate. This also contributes to the 

discrepancy in the Reynolds stress profiles. Based on the comparisons, the grid resolution 

employed was sufficient to predict the 2nd order statistics profiles reasonably well. 

 

 

 

(a) 

+ 



29 
 

 

Figure 3.2. (a) The streamwise normal Reynolds stress; (b) The Reynolds shear stress 

 

3.4 Near-wall structures 

Elongated streaks of fluid with low streamwise velocity are observed in Figure 3.3 at an X-

Y plane located at 𝑧𝑧+ = 8.5. Figure 3.4 shows the instantaneous in-plane vorticity at four 

individual X-Z cross-sections. Strong vortices are identified in the near-wall regions as expected. 

Both the intensity and magnitude of the vorticity increases in the vicinity of the walls. Near the 

centerline, larger vortex structures are clearly identified.  

Figure 3.5 visualizes the instantaneous vortex structures in the turbulent channel flow using 

the second invariant criterion. The second invariant criterion, or Q criterion, is a popular criterion 

for identifying a local fluid region as a vortex, i.e. vorticity is dominant when Q > 0 (Hunt et al. 

1988). This concept could be illustrated using an expression by (Jeong and Hussain 1995):  

𝑄𝑄 ≡
1
2
�𝑢𝑢𝑖𝑖,𝑗𝑗2 − 𝑢𝑢𝑖𝑖,𝑗𝑗𝑢𝑢𝑗𝑗,𝑖𝑖� = −

1
2
𝑢𝑢𝑖𝑖,𝑗𝑗𝑢𝑢𝑗𝑗,𝑖𝑖 =

1
2
��Ω𝑖𝑖,𝑗𝑗�

2 − �𝑆𝑆𝑖𝑖,𝑗𝑗�
2� > 0,                    (3.6) 

(b) 

+ 
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where 𝑢𝑢𝑖𝑖,𝑗𝑗 represents the velocity gradient tensor,  �Ω𝑖𝑖,𝑗𝑗�
2 = 𝑡𝑡𝑡𝑡�Ω𝑖𝑖,𝑗𝑗Ω𝑖𝑖,𝑗𝑗𝑡𝑡� and �𝑆𝑆𝑖𝑖,𝑗𝑗�

2 =

𝑡𝑡𝑡𝑡�𝑆𝑆𝑖𝑖,𝑗𝑗𝑆𝑆𝑖𝑖,𝑗𝑗𝑡𝑡� with 𝑡𝑡𝑡𝑡 signifying the trace of a matrix. Ω𝑖𝑖,𝑗𝑗  and 𝑆𝑆𝑖𝑖,𝑗𝑗 denote the local vorticity tensor 

and strain rate tensor, which mathematically are given by 

Ω𝑖𝑖,𝑗𝑗 =
1
2
�𝑢𝑢𝑖𝑖,𝑗𝑗 − 𝑢𝑢𝑖𝑖,𝑗𝑗� and                                                   (3.7) 

𝑆𝑆𝑖𝑖,𝑗𝑗 =
1
2
�𝑢𝑢𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗�.                                                           (3.8) 

In Figure 3.5, small-scale vortical structures are clearly captured in the near-wall regions. 

Many structures are similar to the classical hairpin structures. Generation of new hairpin structures, 

i.e. hairpin packets, are observed as well. These are expected typical flow features which are 

widely visualized and well documented in the literature pertaining to the turbulent boundary layer. 

However, complete prototypical hairpin structures are not very clear. This may be due to the low 

Reynolds number and comparatively coarse grid spacing in proximity to the wall. 

 

 

Figure 3.3. Streamwise velocity at X-Y plane (z+ = 8.5) 

Elongated streaks 

X 

Y 

(m/s) 
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Figure 3.4. Instantaneous X vorticity in transverse planes 

 

 

Figure 3.5. Isosurface of vortex structures near the walls (Q = 1.5E-6) 

Hairpin structures 
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CHAPTER 4   LBM LES OF WAKE FLOW 

 

4.1 Background 

Although LBM LES is being increasingly used for simulation of fluid flow, it has not yet 

been widely applied to complex wake flows. Therefore, this thesis also intends to explore the 

capability of LBM LES in predicting a complex wake flow. In the current study, two wall-mounted 

cubic prisms were arranged in tandem on the bottom wall of a fully developed turbulent channel 

flow for a Reynolds number of 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3350 (based on the bulk velocity, 𝑈𝑈𝑚𝑚, and the prism height, 

H). This type of flow essentially provides understanding of local heat transfer and demonstrates 

rich flow features. Many of those flow features are sensitive to the gap spacing and the Reynolds 

number, which are comprehensively summarised in Martinuzzi and Havel (2000).  

One major objective of the present study is to investigate the typical flow patterns around 

the cubic prisms and vortex structures in the wake region. Although the flow geometry is 

symmetric, the wake interaction introduces asymmetric behavior into the instantaneous flow. 

Havel (1999) and Martinuzzi and Havel (2000) investigated a thin boundary layer over two wall-

mounted cubes in tandem experimentally as a function of the inter-obstacle spacing, 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔, at 

 𝑅𝑅𝑅𝑅𝐻𝐻 = 22,000. Three distinct flow regimes were identified based on the vortex shedding behavior 

in the wake of the cubes in their studies. For a small gap, i.e.  𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔/𝐻𝐻 < 1.4, the shear layer 

separates at the front edges of the leading cube and reattaches on the sides of the downstream cube, 

yielding two intermittent oscillations behind the second cube (Havel 1999). A medium 

gap, i. e. 1.4 <  𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔/𝐻𝐻 < 3.5, is characterised by a constant value of the Strouhal number (𝑆𝑆𝑆𝑆 =

𝑓𝑓 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔/𝑈𝑈𝐵𝐵, where 𝑓𝑓 is the shedding frequency and 𝑈𝑈𝐵𝐵 is the bulk velocity) (Martinuzzi and Havel 

2000). For a large gap, i.e.  𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔/𝐻𝐻 > 4, a second horse-shoe vortex is observed in front of the 

downstream cube. The dominant frequency in the wake downstream of the second cube is close to 

that of the single cube case, and thus independent of the gap distance (Havel 1999).  

Meinders and Hanjalić (1999) experimentally explored a similar type of flow over a cube 

within a structured array at a relatively low Reynolds number of 𝑅𝑅𝑅𝑅𝐻𝐻 = 3854 based on the bulk 

velocity. The array of cubes used an in-line matrix with an uniform inter-obstacle spacing of 
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 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 = 3𝐻𝐻. The typical flow features and mean flow patterns around the cube, i.e. vortex structure 

and reattachment of separated shear layer, etc., were reported along with a Strouhal number of St 

= 0.109 in the wake region. Meinders and Hanjalić (2002) reported an experimental investigation 

of two-wall mounted cubes. Both tandem and staggered patterns were considered with various gap 

distances over a wide range of 𝑅𝑅𝑅𝑅𝐻𝐻 values. A proto-typical horseshoe vortex was visualized in 

front of the upstream cube due to the adverse pressure gradient. Shear flow separated from the top 

leading edge of the upstream cube intruded into the gap forming a recirculation vortex.  Flow 

separation at the leading edges also gave rise to the vortices. The local heat transfer and other flow 

features were well documented in their study as well. The current simulation reproduces the 

experiment by Meinders and Hanjalić (2002) for a Reynolds number of 𝑅𝑅𝑅𝑅𝐻𝐻 = 3900 using an 

inter-obstacle spacing of  𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔 = 𝐻𝐻. 

This chapter is organized as follows. The formulation of the standard Smagorinsky SGS 

model will first be reviewed in Section 4.2, followed by the details of the computational 

specification in Section 4.3. This chapter then proceeds with an analysis of the flow in Section 4.4, 

4.5 and 4.6 from three perspectives: mean flow patterns, instantaneous flow features and Proper 

Orthogonal Decomposition (POD), respectively.  

 

4.2 Standard Smagorinsky SGS model  

A standard Smagorinsky SGS model is used for the current LES to capture the subgrid-

scale motions. The eddy viscosity employed in the model is in fact obtained based on the 

assumption that the energy production is balanced by the dissipation (Germano et al. 1991). 

Therefore, the SGS viscosity is given by (Yu 2004) 

𝜈𝜈𝑆𝑆𝑆𝑆𝑆𝑆 = (𝐶𝐶𝑠𝑠𝛥𝛥𝑥𝑥)2𝑆𝑆̅,                                                                          (4.1) 

where Cs = 0.1, 𝛥𝛥𝑥𝑥 is the reference length scale given by 𝛥𝛥𝑥𝑥 = 𝛿𝛿x, and 𝑆𝑆� =  �2𝑆𝑆𝑖𝑖,𝑗𝑗𝑆𝑆𝑖𝑖,𝑗𝑗. The strain 

rate tensor, 𝑆𝑆𝑖𝑖,𝑗𝑗, is calculated using the local velocity field based on the finite difference relations 

(Hossain et al. 2015). The total viscosity is then obtained by the summation of the SGS viscosity 

and molecular viscosity. The corresponding relaxation parameters, 𝑆𝑆9 and 𝑆𝑆13, become 
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𝑆𝑆9 = 𝑆𝑆13 =
1

3(𝜈𝜈𝑆𝑆𝑆𝑆𝑆𝑆 + 𝜈𝜈0) + 0.5
.                                                      (4.2) 

In the regions near the walls and the cubic prisms, the van Driest damping function is used 

to capture reduction in the turbulence length scale (Hossain et al. 2015), i.e. 

𝛥𝛥𝑥𝑥 = 𝛿𝛿𝑥𝑥 �1 − exp�−
𝑧𝑧+

𝐴𝐴
�� ,                                                          (4.3) 

where 𝑧𝑧+ = 𝑧𝑧𝑢𝑢𝜏𝜏/𝜈𝜈0 is the normalized distance measured from the walls in the vertical direction 

and the cubes in directions normal to the surfaces. 𝑢𝑢𝜏𝜏 = �𝜏𝜏𝑤𝑤/𝜌𝜌 is the local friction velocity with 

𝜏𝜏𝑤𝑤 signifying the wall shear stress, and the value of the coefficient is A = 25. The magnitude 

distribution of the SGS viscosity in the domain will be depicted in Section 4.5 below. 

 

4.3 Computational specifications 

The computational domain of the current study was discretized uniformly using a grid of 

325 × 112 × 182 in the streamwise (X), spanwise (Y) and wall-normal (Z) directions, respectively. 

Two cubic prisms were mounted on the bottom wall of the channel with a gap distance 

of 𝑆𝑆𝑔𝑔𝑔𝑔𝑔𝑔/𝐻𝐻 = 1. Each of the prisms was represented by a set of 36 × 36 × 36 gridpoints. The height 

of the prism in wall units was 𝑧𝑧+ = 175, which was located in the overlap region. When 

normalized using the prism height, shown in Figure 4.1, the computational domain extended 9H × 

3.2H × 5H in the X, Y, and Z directions, respectively. The upstream cube was located a distance of 

1.5H away from the inlet plane. Based on the frontal area of the cubic prism and cross-section area 

of the solution domain, the blockage ratio was 6.36%. A spanwise distance of 3.2H only provides 

a minimum width for the wake flow in the current study and would be inappropriate for a flow 

with a wide wake region. 

 



35 
 

 

Figure 4.1. Computational domain 

 

A Reynolds number of 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3350  based on the bulk velocity and prism height was used 

in the current simulation. The inlet boundary condition was implemented via a pre-cursor turbulent 

channel inflow. Its domain was defined by 3.5H × 3.2H × 5H, and can be visualized as being 

upstream of the target domain. Note that the streamwise distance of the upstream domain may not 

be sufficiently long to yield a statistically accurate profile, but it is sufficient to provide an adequate 

inlet condition for the target domain though. An external force representing the effect of a pressure 

gradient served to drive the pre-cursor flow. At each time step, the velocity profile of an upstream 

fully developed turbulent channel flow was extracted and prescribed as an inlet velocity profile for 

the flow over the cubic prisms in the downstream target domain (Koda 2013). The instantaneous 

vortex structure in the upstream domain is presented below in Figure 4.2 where typical hairpin 

structures are observed.  

The configuration used in current study is schematically depicted in Figure 4.3 where the 

instantaneous velocities at the indicated planes are identical for each time step, i.e. 𝑈𝑈𝛼𝛼�����⃗ (𝑢𝑢, 𝑣𝑣,𝑤𝑤) =

𝑈𝑈𝛽𝛽����⃗ (𝑢𝑢, 𝑣𝑣,𝑤𝑤). For the downstream domain, a constant pressure was specified at the outlet. A halfway 
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bounce-back scheme was utilized to achieve the no-slip boundary conditions at the solid walls and 

a periodic boundary condition was applied in the spanwise direction. Details associated with the 

boundary conditions are specified in Section 2.4. 

 

 

Figure 4.2. Isosurface of vortex structures in precursor turbulent inflow (Q = 1.25) 

 

 

Figure 4.3. Schematic of specification of inflow using precursor channel flow. 

 

Hairpin structures 

𝑈𝑈𝛼𝛼�����⃗ (𝑢𝑢, 𝑣𝑣,𝑤𝑤) 

= 

𝑈𝑈𝛽𝛽����⃗ (𝑢𝑢,𝑣𝑣,𝑤𝑤) 

 

Y 
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4.4 Mean flow patterns 

Figure 4.4(a) presents the mean flow pattern in a horizontal plane located at the mid-height 

of the cubes. The mean flow is symmetric. Recirculation regions are observed along the lateral 

sides of the upstream cube, and present both in the gap and behind the downstream cube. The 

corresponding center locations of the recirculation zones, summarized in Table 4.1, reasonably 

match those observed by Meinders and Hanjalić (2002) for 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3900. Note that the 

measurements were performed with the origin located at the intersection point of the leading edge 

of the upstream cube and centerline of the channel in Figure 4.4(a). In the vertical mid-plane (X-

Z) shown in Figure 4.4(b), a horseshoe vortex and a recirculation region are identified in front of 

and on the top surface of the upstream cube, respectively. The flow splits at the leading edge of 

the downstream cube, forming a boundary layer along its top surface and a strong recirculation 

region in the gap. Recirculation is also evident behind the downstream cube. 

 

Table 4.1. Locations of centers of recirculation zones 

 
𝑿𝑿/𝑯𝑯,𝒀𝒀/𝑯𝑯 

Current LES 

𝑿𝑿/𝑯𝑯,𝒀𝒀/𝑯𝑯  

Meinders and Hanjalić (2002) 

Recirculation along sides 0.58, 0.63 0.57, 0.63 

Recirculation in the gap 1.43, 0.42 1.41, 0.43 

Recirculation in the wake 3.61, 0.31 3.55, 0.30 
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Figure 4.4. (a) Streamline and vectors of mean velocity in an enlarged X-Y plane (Z/H = 0.5); (b) Streamline 

and vectors of mean velocity in an enlarged X-Z plane (vectors are plotted at every 2nd node) 

 

(a) 

(b) 
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4.5 Instantaneous flow features 

Figure 4.5 demonstrates the instantaneous Y vorticity in the vertical mid-plane of the 

channel, and Z vorticity in the horizontal mid-plane of the cubes. In the vertical plane, a horseshoe 

vortex is observed in front of the upstream cube. Separated shear flow from the leading edge of 

the upstream cube reattaches back onto the top surface. The impinging flow splits at the leading 

edge of the downstream cube. Part of the flow forms a recirculation region in the gap and the 

remainder develops into a boundary layer on the top surface of the downstream cube. In the wake 

region, the separated shear layers interact with one another intensely, forming complex vortices 

extending far down stream. These instantaneous features are also reflected in the horizontal plane, 

although the vorticity magnitude is different.  

Figure 4.6 depicts the SGS viscosity normalized by the molecular viscosity. Typical flow 

features observed in Figure 4.5 are also reflected here in this figure where 𝜈𝜈𝑆𝑆𝑆𝑆𝑆𝑆/𝜈𝜈0 = 0.35 is 

plotted. In the regions near the cubic prisms, 𝜈𝜈𝑆𝑆𝑆𝑆𝑆𝑆 is much higher than elsewhere. 

Figure 4.7 presents the instantaneous vortex structures visualized using the Q criterion. The 

vortex structures around the cubes present a high degree of intensity and complexity. The separated 

shear layers from the cubes extend far downstream while interacting with one another and with 

the surrounding shear flow. A closer look at the vortex structures reveals two horseshoe vortices 

in front of the upstream cube; the one closer to the cube is more persistent and intrudes into the 

gap region, thus resulting in instantaneous asymmetric flow patterns. Separated shear layers from 

the leading edges of the upstream cube trigger the development of the vortex field. Some vortex 

structures around the cubes appear to resemble proto-typical hairpin structures.  

Figure 4.8 demonstrates the instantaneous fluid structures in the gap region between the 

two cubic prims. The intrusion of the separated shear flows from the upstream observed in Figure 

4.7 is also evident in Figure 4.8(a) where small streamwise tubes are observed entering the gap 

region from its top and lateral sides. Meanwhile, close to the end of the gap region shown in Figure 

4.8(b), small, but fairly strong, vortices present a higher level of intensity than any other location 

between the cubes. 

 



40 
 

 

Figure 4.5. Instantaneous vorticity in mid-height plane and vertical mid-plane 

 

 

Figure 4.6. Instantaneous normalized SGS viscosity (𝝂𝝂SGS/𝝂𝝂0 = 0.35) 
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Figure 4.7. Visualization of instantaneous vortex structures using Q criterion (Q = 28) 

 

 

Figure 4.8. (a) Instantaneous vortex structures in the gap region; (b) Instantaneous X vorticity in transverse 

plane. 

 

(a) (b) 
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4.6 Proper orthogonal decomposition  

An investigation was performed via a three-dimensional Proper Orthogonal 

Decomposition (POD) in the gap region located between the cubic prisms where the flow 

structures demonstrated a fairly high complexity. POD was initially employed for identifying the 

dynamic coherent structures in turbulent flows (Kim et al. 2005). It is capable of efficiently 

extracting different energetic structures in a flow via a finite number of eigenmodes that capture 

most of the fluctuation energy (Kim et al. 2005, Hossain et al. 2015). The current investigation 

employs the snapshot version of POD to study the flow structures in the gap region. Originally 

developed by Sirovich (1987), this version of POD could be conveniently applied to both of 

experimental and numerical data sets. 

In the current POD analysis, the empirical eigenfunctions were obtained from the LBM 

LES data sets, i.e. (Kim et al. 2005), 

𝜙𝜙𝑘𝑘(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡) = �𝐴𝐴𝑘𝑘𝑘𝑘

𝛭𝛭

𝑖𝑖=1

𝑢𝑢𝑖𝑖′(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡𝑖𝑖),                                             (4.4) 

where 𝜙𝜙𝑘𝑘 denotes the kth eigenfunction, 𝜧𝜧 is the number of snapshots, and 𝑢𝑢𝑖𝑖′(𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡𝑖𝑖) represents 

the fluctuation velocity field at the ith time step. In equation 4.4, 𝐴𝐴𝑘𝑘𝑘𝑘 stands for the kth eigenvector 

that is determined via the algebraic eigenvalue problem given by (Sirovich 1987) 

Ƈ𝐴𝐴 = 𝜆𝜆𝐴𝐴,                                                                              (4.5) 

where Ƈ is a 𝜧𝜧 × 𝜧𝜧 square matrix solved over a target domain, ζ. It is given by 

Ƈ =
1
𝑀𝑀
�𝑢𝑢𝑚𝑚′ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡𝑖𝑖) ∙ 𝑢𝑢𝑛𝑛′ (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡𝑖𝑖)𝑑𝑑ζ,                                     (4.6) 

and 𝑢𝑢𝑚𝑚′ (𝑥𝑥, 𝑦𝑦, 𝑧𝑧, 𝑡𝑡𝑖𝑖) is the conjugate transpose of 𝑢𝑢𝑛𝑛′ (𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑡𝑡𝑖𝑖). Equation 4.5 is solved for the 

eigenvalues, 𝜆𝜆𝑘𝑘, and eigenvectors, 𝐴𝐴𝑘𝑘 . Note that, with respect to the kinetic energy contributed 

by the corresponding eigenfunctions, eigenvalues are referenced in descending order with 

𝜆𝜆1 standing for the largest value and  𝜆𝜆𝑚𝑚 the least (Kim et al. 2005).  
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The current POD analysis considered an interrogation area of H × H × H, covering the 

entire region between the cubes. A total of 𝜧𝜧 = 200 instantaneous snapshots was collected for 

every 360 time steps. Convergence was reached at approximately the 135th eigenfunction of the 

fluctuating velocity field as shown below in Figure 4.9. Note that a total of 90% of the fluctuation 

energy could be captured by only 130 eigenfunctions. 

Figure 4.10 demonstrates the mean flow structures in the gap region based on an average 

of 200 instantaneous data sets with the visualization being realized using Q criterion. Two large 

continuous structures are observed spreading along each of two lateral sides, where the separated 

shear flow intrudes into the gap. Close to the front face of the downstream prism, the two side 

structures tend to merge together at the top. This is probably because the upstream impinging flow 

splits at the top leading edge of the downstream cube and part of it intrudes into the gap region. 

 

 

Figure 4.9. Energy captured with each eigenmode of POD 
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Figure 4.10. Mean flow structures of the gap region (Q = 1.80E-6) 

 

Figure 4.11 presents a visualization of the flow structure based on four different 

eigenfunctions of the fluctuating velocity field. The selected empirical eigenfunctions were 

determined using equation 4.4. As shown in Figure 4.11(a) and (b), large-scale structures were 

captured by both of the 1st and 5th eigenfunctions contributing 11.03% and 2.63% to the total 

energy, respectively. A single large structure is clearly identified in front of the downstream cube 

in Figure 4.11(a), indicating where the intruding flows begin to merge in the gap. It also reflects 

the most energetic eigenmode. Smaller-scale structures are associated with the 5th eigenfunction 

shown in Figure 4.11(b). One fairly large structure is observed close to the upper front surface of 

the downstream cube along with a smaller disconnected rotational structure along the top leeward 

edge of the upstream cube. This may reflect the locations where the shear flow starts to intrude 

from the top. Figure 4.11(c) and (d) represent relatively smaller-scale structures along the sides of 

the gap region; these were captured by the 10th and 50th eigenfunctions, respectively, characterizing 

1.65% and 0.48% of the total kinetic energy. A closer look at all four figures reveals that no 

dominant structures were present in the central region of the gap, and that the structures tend to 
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crowd together closer to the front face of downstream cube. This is also consistent with the 

observation in Figure 4.8. 

 

 

Figure 4.11. Vortex structures visualized using Q criteria: (a) 1st eigenfunction (Q = 4.50E-7); (b) 5th 

eigenfunction (Q = 4.50E-7); (c) 10th eigenfunction (Q = 8.50E-7); (d) 50th eigenfunction (Q = 2.50E-6) 

 

(a) (b) 

(c) (d) 

Disconnected 
rotational 
structure 
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CHAPTER 5   CONCLUSIONS AND FUTURE WORK 

 

5.1 Conclusions  

Disordered and chaotic, turbulent flow is well known for its practical importance and 

formidable complexity. A numerical study of turbulent flows was performed in the current 

research using a novel numerical approach called the lattice Boltzmann method. Widely 

considered to present a potential alternative to solving the Navier-Stokes equations, LBM is indeed 

an efficient approach in computational fluid dynamics and demonstrates two particularly attractive 

advantages over a traditional method: simple algorithm and parallel scalability (Koda 2013). The 

simplicity in algorithm originates from the fact that there is no pressure solver involved to correct 

the velocity field, and the parallel suitability arises from its inherent nature of streaming-collision 

process. The current research employed a newly developed code using the MRT LBM to study the 

three-dimensional turbulent flows based on a D3Q19 lattice model. Four types of boundary 

schemes were developed to realize a no-slip wall, periodic flow, precursor inlet flow and constant 

outlet pressure. The current LBM scheme simulated the effects of a pressure gradient to drive the 

fluid flow via a source term in the particle distribution functions. An initial flow state based on a 

one-seventh power law profile superimposed by three-dimensional sinusoidal perturbations was 

used to reduce the computational effort to trigger turbulence in the developing stage of turbulent 

channel flow.  

One major deficiency of the LBM originates from its inherent uniformity in the 

computational domain. This drawback imposes a constraint over its application to complex flows. 

The current study attempted to solve this issue using local grid refinement. The scheme under 

consideration is volumetrically formulated, and thus it well preserves the laws of conservation. In 

addition, implementation of the current scheme is fairly straightforward because of its simple 

algorithm. Due to the time constraint, only a laminar channel flow of 𝑅𝑅𝑅𝑅 ≈ 1.08 was used for a 

preliminary test where the regions near the walls were refined locally. The velocity profile is in 

excellent agreement with the analytical solution.  
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A validation of the developed LBM DNS was implemented by simulating a turbulent 

channel flow for a Reynolds number of  𝑅𝑅𝑅𝑅𝜏𝜏 ≈ 230. The mean flow variables, velocity profiles 

and Reynolds stress profiles were compared to those from the literature for a Reynolds of  𝑅𝑅𝑅𝑅𝜏𝜏 ≈

180 (Kim et al. 1987). Good agreements are obtained for all comparisons, except for some slight 

over-predictions due to the difference in Reynolds numbers. Instantaneous vorticity visualization 

was realized in four X-Z cross-sections. Small-scale wall-induced coherent structures are clearly 

observed in the near wall regions as expected. The structures expand in size with increasing 

distance away from the wall. A second invariant criterion was employed to visualize the vortex 

structure. Elongated streaks are clearly identified in the near wall regions. Typical hairpin 

structures are not clearly evident. The reasons are believed to be the low Reynolds number and 

relatively coarse grid spacing in the vicinity of the wall. 

The last investigation of the current research was associated with a turbulent flow over two 

cubic prisms placed in a channel.  A Reynolds number of 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3350 , based on the bulk velocity 

and prism height, was realized in the current simulation. The inlet boundary condition was 

implemented via a pre-cursor turbulent channel inflow whereas the outlet plane was maintained at 

a constant pressure. An LES was incorporated in the framework of LBM based on the standard 

Smagorinsky SGS model. For the mean flow features, a symmetric pattern is well identified in a 

horizontal plane located at the mid-height of the cubes. The locations of the recirculation centers 

are found to be reasonably consistent with those identified in literature for 𝑅𝑅𝑅𝑅𝐻𝐻 ≈ 3900 (Meinders 

and Hanjalić 2002). In the vertical mid-plane, a horseshoe vortex is identified in front of the 

upstream prism along with a recirculation region observed on its top surface. The flow splits at the 

leading edge of the downstream cube, forming a boundary layer along its top surface and a strong 

recirculation region in the gap. Recirculation is also clearly evident behind the downstream cube. 

On the other hand, instantaneous visualizations using the second invariant criterion reveal that the 

vortices around the prisms shedding far downstream present a high degree of complexity and 

intensity. Some of these vortices resemble proto-typical hairpin structures. In the gap region, the 

flow structures close to the front face of downstream cube indicate a relatively higher intensity. A 

snapshot version of POD analysis was implemented in the gap region. This technique is in effect 

capable of presenting different energetic structures in a flow via a finite number of eigenfunctions. 

Visualized using Q criterion, flow structures come in different sizes and locations with various 

eigenfunctions signifying different energy distributions. It is revealed that the highest energy 
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structures are identified in front of the downstream cube where the intruding flows actually start 

to merge in the gap. Meanwhile, structures also tend to crowd together closer to the front face of 

downstream cube.  

 

5.2 Future work  

A newly developed LBM code in the current study demonstrates a fairly good performance 

in capturing the fluid features both of the wall-bounded turbulent flow and the flow field involving 

some geometric complexity. Further improvements in its predictive capability and computational 

efficiency could include, but not be limited to, the following perspectives: 

• Parallel computing 

Parallel scalability of the LBM is one of its key advantages over the traditional approach. 

With parallelization, computational efficiency will be considerably increased. 

• Lattice model with more velocity sites 

Although more velocity sites in the lattice model will inevitably increase the complexity in 

algorithm, it is necessary for the flow field involving more complex geometries. To 

increase the capability of the current MRT LBM, D3Q27 will be a good option. 

• Boundary conditions 

A halfway bounce-back scheme is sufficient to realize the no-slip boundary condition along 

a plane. However, it only demonstrates first-order accuracy for curved surfaces. A more 

effective boundary condition, such as the immersed boundary scheme, is therefore 

necessary in order to effectively handle the challenges arising from the complex 

geometries.  
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• Dynamic subgrid scale model 

One major drawback of the standard Smagorinsky SGS model lies in its inability to 

accurately predict the flow features in some complex turbulent fields due to the constant 

model coefficient (Germano et al. 1991). This disadvantage could be eliminated by 

implementing a dynamic SGS model. 

• Local grid refinement 

One preliminary test of the local grid refinement using laminar channel flow is far from 

being sufficient for judging its proficiency. A turbulent channel flow would be necessary 

for the next step to further test its capability. Meanwhile, it was reported that unphysical 

discontinuities were observed in the higher-order turbulence statistics profiles (Premnath 

et al. 2009a) using a similar approach. Hence, a further study to improve this deficiency is 

required. 
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APPENDIX 

The transformation matrix and its transpose are given below (Bespalko 2006): 
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The components of equilibrium moments are given as (Premnath et al. 2009a): 

𝑚𝑚0
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝑒𝑒𝑒𝑒 = 𝜌𝜌, 𝑚𝑚1

𝑒𝑒𝑒𝑒 = 𝑒𝑒𝑒𝑒𝑒𝑒 = 𝜌𝜌(−11 + 19(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)), 

𝑚𝑚2
𝑒𝑒𝑒𝑒 = 𝜖𝜖𝑒𝑒𝑒𝑒 = 𝜌𝜌(3 − 11

2
(𝑢𝑢2 + 𝑣𝑣2 + 𝑤𝑤2)), 𝑚𝑚3

𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑥𝑥
𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑥𝑥, 𝑚𝑚4

𝑒𝑒𝑒𝑒 = 𝑞𝑞𝑥𝑥
𝑒𝑒𝑒𝑒 = −2

3
𝑗𝑗𝑥𝑥, 

𝑚𝑚5
𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑦𝑦

𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑦𝑦,  𝑚𝑚6
𝑒𝑒𝑒𝑒 = 𝑞𝑞𝑦𝑦

𝑒𝑒𝑒𝑒 = −2
3
𝑗𝑗𝑦𝑦, 𝑚𝑚7

𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑧𝑧
𝑒𝑒𝑒𝑒 = 𝑗𝑗𝑧𝑧, 𝑚𝑚8

𝑒𝑒𝑒𝑒 = 𝑞𝑞𝑧𝑧
𝑒𝑒𝑒𝑒 = −2

3
𝑗𝑗𝑧𝑧, 

𝑚𝑚9
𝑒𝑒𝑒𝑒 = 3𝑝𝑝𝑥𝑥𝑥𝑥

𝑒𝑒𝑒𝑒 = 3𝑗𝑗𝑥𝑥
2−𝚥𝚥×𝚥𝚥
𝜌𝜌

,  𝑚𝑚10
𝑒𝑒𝑒𝑒 = 3𝜋𝜋𝑥𝑥𝑥𝑥

𝑒𝑒𝑒𝑒 = −3
2
𝑝𝑝𝑥𝑥𝑥𝑥
𝑒𝑒𝑒𝑒, 𝑚𝑚11

𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑤𝑤𝑤𝑤
𝑒𝑒𝑒𝑒 = 𝜌𝜌(𝑣𝑣2 − 𝑤𝑤2), 

𝑚𝑚12
𝑒𝑒𝑒𝑒 = 𝜋𝜋𝑤𝑤𝑤𝑤

𝑒𝑒𝑒𝑒 = −1
2
𝑝𝑝𝑤𝑤𝑤𝑤
𝑒𝑒𝑒𝑒 ,  𝑚𝑚13

𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑥𝑥𝑥𝑥
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜌𝜌𝜌𝜌, 𝑚𝑚14

𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑦𝑦𝑦𝑦
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜌𝜌𝜌𝜌, 𝑚𝑚15

𝑒𝑒𝑒𝑒 = 𝑝𝑝𝑥𝑥𝑥𝑥
𝑒𝑒𝑒𝑒 = 𝜌𝜌𝜌𝜌𝜌𝜌, 

𝑚𝑚16
𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑥𝑥

𝑒𝑒𝑒𝑒 = 0, 𝑚𝑚17
𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑦𝑦

𝑒𝑒𝑒𝑒 = 0, 𝑚𝑚18
𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑧𝑧

𝑒𝑒𝑒𝑒 = 0. 

 

The components of source term in moment space are given as (Premnath et al. 2009a): 

𝑆𝑆𝑆𝑆0 = 0, 𝑆𝑆𝑆𝑆1 = 38�𝐹𝐹𝑥𝑥𝑢𝑢 + 𝐹𝐹𝑦𝑦𝑣𝑣 + 𝐹𝐹𝑧𝑧𝑤𝑤�,  𝑆𝑆𝑆𝑆2 = −11�𝐹𝐹𝑥𝑥𝑢𝑢 + 𝐹𝐹𝑦𝑦𝑣𝑣 + 𝐹𝐹𝑧𝑧𝑤𝑤�, 

𝑆𝑆𝑆𝑆3 = 𝐹𝐹𝑥𝑥, 𝑆𝑆𝑆𝑆4 = −2
3
𝐹𝐹𝑥𝑥, 𝑆𝑆𝑆𝑆5 = 𝐹𝐹𝑦𝑦, 𝑆𝑆𝑆𝑆6 = −2

3
𝐹𝐹𝑦𝑦, 𝑆𝑆𝑆𝑆7 = 𝐹𝐹𝑧𝑧, 𝑆𝑆𝑆𝑆8 = −2

3
𝐹𝐹𝑧𝑧, 

𝑆𝑆𝑆𝑆9 = 2�2𝐹𝐹𝑥𝑥𝑢𝑢 − 𝐹𝐹𝑦𝑦𝑣𝑣 − 𝐹𝐹𝑧𝑧𝑤𝑤�,  𝑆𝑆𝑆𝑆10 = −�2𝐹𝐹𝑥𝑥𝑢𝑢 − 𝐹𝐹𝑦𝑦𝑣𝑣 − 𝐹𝐹𝑧𝑧𝑤𝑤�, 𝑆𝑆𝑆𝑆11 = 2�𝐹𝐹𝑦𝑦𝑣𝑣 − 𝐹𝐹𝑧𝑧𝑤𝑤�, 

𝑆𝑆𝑆𝑆12 = −�𝐹𝐹𝑦𝑦𝑣𝑣 − 𝐹𝐹𝑧𝑧𝑤𝑤�, 𝑆𝑆𝑆𝑆13 = �𝐹𝐹𝑥𝑥𝑣𝑣 + 𝐹𝐹𝑦𝑦𝑢𝑢�, 𝑆𝑆𝑆𝑆14 = �𝐹𝐹𝑦𝑦𝑤𝑤 + 𝐹𝐹𝑧𝑧𝑣𝑣�, 𝑆𝑆𝑆𝑆15 = (𝐹𝐹𝑥𝑥𝑤𝑤 + 𝐹𝐹𝑧𝑧𝑢𝑢), 

𝑆𝑆𝑆𝑆16 = 0, 𝑆𝑆𝑆𝑆17 = 0, 𝑆𝑆𝑆𝑆18 = 0. 

 

The values of the diagonal collision matrix (Hossain et al. 2015): 

𝑠𝑠1 = 𝑠𝑠4 = 𝑠𝑠6 = 𝑠𝑠8 = 1.0,   𝑠𝑠2 = 1.19,  𝑠𝑠3 = 𝑠𝑠11 = 𝑠𝑠13 = 1.40, 

𝑠𝑠5 = 𝑠𝑠7 = 𝑠𝑠9 = 1.20,  𝑠𝑠10 =  𝑠𝑠12 =  𝑠𝑠14 =  𝑠𝑠15 =  𝑠𝑠16 = 1.9857, 𝑆𝑆17 = 𝑆𝑆18 = 𝑆𝑆19 = 1.98. 


	PERMISSION TO USE
	ABSTRACT
	ACKNOWLEDGEMENTS
	DEDICATION
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	NOMENCLATURE
	CHAPTER 1   INTRODUCTION
	1.1 Motivation
	1.2 Literature review
	1.3 Objectives
	1.4 Thesis structure

	CHAPTER 2   LATTICE BOLTZMANN METHOD
	2.1 Background
	2.2 Multiple Relaxation Time LBM
	2.3 D3Q19 lattice model
	2.4 Boundary conditions
	2.4.1 Halfway bounce-back boundary condition
	2.4.2 Periodic boundary condition
	2.4.3 Precursor inlet boundary condition
	2.4.4 Constant pressure outlet boundary condition

	2.5 External force
	2.6 Initial condition
	2.7 Implementation of the LBM code
	2.8 Local grid refinement
	2.8.1 Volumetric grid refinement
	2.8.2 Algorithmic steps
	2.8.3 Performance of local grid refinement


	CHAPTER 3   LBM DNS OF TURBULENT CHANNEL FLOW
	3.1 Background
	3.2 Computational specifications
	3.3 Mean flow properties
	3.4 Near-wall structures

	CHAPTER 4   LBM LES OF WAKE FLOW
	4.1 Background
	4.2 Standard Smagorinsky SGS model
	4.3 Computational specifications
	4.4 Mean flow patterns
	4.5 Instantaneous flow features
	4.6 Proper orthogonal decomposition

	CHAPTER 5   CONCLUSIONS AND FUTURE WORK
	5.1 Conclusions
	5.2 Future work

	REFERENCES
	APPENDIX

