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Abstract

Background Genotype imputation infers missing genotypic data computationally, and has been reported

to be highly useful in various genetic studies; e.g., genome-wide association studies and genomic selection.

Motivation While various genotype imputation programs have been evaluated via different measurements,

some, such as Pearson correlation, may not be appropriate for a given context and may result in misleading

results. Further, most evaluations of genotype imputation programs are focused on human data. Finally, the

most commonly used measurement, concordance, is unable to determine a difference in performance in some

cases.

Research Questions (1) How do popular genotype imputation programs (i.e., Minimac and Beagle) per-

form on plant data as compared to human data? (2) Can we find measures that better discriminate imputation

performance when concordance does not? and (3) What do alternate measures indicate for the performance

of these imputation programs?

Methods Since Kullback-Leibler divergence (K-L divergence) and Hellinger distance can aid in ranking

statistical inference methods, they can be highly useful in our study. To amplify signals from K-L divergence

and Hellinger distance, we obtain their negative logarithmic values (i.e., negative logarithmic K-L divergence

(NLKLD) and negative logarithmic Hellinger distance (NLHD)) so that larger values indicate better imputa-

tion results. With NLKLD and NLHD, we investigate the performance of two existing genotype imputation

programs (i.e., Beagle and Minimac) on data from plants, specifically Arabidopsis thaliana and rice, as well

as human. For each pair of organisms to be compared, we select data from one chromosome of each organism

such that approximately the same number of samples/participants and SNPs are present for each organism.

Finally, we apply different missing rates for target datasets and different sample size ratios between reference

and target datasets for sensitivity analysis of the imputation programs.

Results We demonstrate that in a general case where single nucleotide polymorphisms (SNPs) with different

minor allele frequencies (MAFs) are imputed at the same concordance, both NLKLD and NLHD capture a

difference in the imputation performance. Such a difference reflects not only the difference of correspondence

between the known and imputed MAFs, but also the difference of chance agreement between the known

and imputed genotypes. Additionaly, neither Minimac nor Beagle performs better on either A. thaliana or

human data. However, Beagle performs better on human data than on rice data. Finally, the majority of

both NLKLD and NLHD results from all experimental data indicate that Minimac outperforms Beagle.

Conclusions (1) Although neither Minimac nor Beagle consistently performs better on either plant or

human data, Beagle evidently performs better on human data than on rice data; (2) NLKLD and NLHD

can be more discriminating than concordance and should be considered in comparing different genotype

imputation programs to determine superior imputation methods; and (3) the NLKLD and NLHD results

suggest that Minimac’s imputation method is superior to Beagle’s. Further study can involve confirming

these trends with runs on more experimental data.

ii



Acknowledgements

I would first like to thank my thesis advisor Prof. Tony Kusalik of the Department of Computer Science

at the University of Saskatchewan. The door to Tony’s office was always open whenever I ran into a trouble

spot or had a question about my research or writing. He consistently allowed this paper to be my own work

and steered me in the right direction whenever he thought I needed it.

I would also like to thank the statistics experts who offered me helpful advice on how to present my

results informatively: Dr. Longhai Li and Dr. Juxin Liu (ordered alphabetically by the last name) of the

Department of Mathematics and Statistics at the University of Saskatchewan. Without their passionate

participation and input, the validation of my research would barely have been successfully conducted.

Moreover, I would like to acknowledge Dr. Matthew Links and Dr. Ian McQuillan (ordered alphabetically

by the last name) of the Department of Computer Science at the University of Saskatchewan as my thesis

advisory committee members, and I am gratefully indebted to their valuable comments on this thesis.

Further, I would like to thank the Department of Computer Science and the Plant Phenotyping and

Imaging Research Centre for funding my thesis project. Without them, I would never have had this great

opportunity to conduct any great project or meet so many great researchers and fellow students from whom

I learned a great deal.

Finally, I must express my very profound gratitude to my family and to my laboratory colleagues, Jason

Bernard, Lingling Jin, Farhad Maleki, Kimberly Mackay, Daniel Hogan and Morgan Kirzinger for providing

me with unfailing support and continuous encouragement throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would not have been possible without

them. Thank you.

iii



Dedication

To my parents and brother

iv



Contents

Permission to Use i

Abstract ii

Acknowledgements iii

Dedication iv

Contents v

List of Tables vii

List of Figures viii

List of Abbreviations ix

Chapter 1 Introduction 1

Chapter 2 Background 3
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Missing genotypic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Genotype imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Concordance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Imputation quality score (IQS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.6 Misuse of Pearson correlation coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Chapter 3 Methods and Materials 12
3.1 Genotype imputation program selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Experiment layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Data preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.4.1 Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Making ground-truth data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4.3 Separating ground-truth data to references and targets . . . . . . . . . . . . . . . . . . 17

3.5 Measures for imputation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5.1 Negative logarithmic Kullback-Leibler divergence . . . . . . . . . . . . . . . . . . . . . 18
3.5.2 Negative logarithmic Hellinger distance . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.6 Analysis of imputation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Chapter 4 Results 26
4.1 Ranking imputation results with NLKLD and NLHD . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Imputation results on all experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Imputation results on A. thaliana . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.2 Imputation results on human . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.3 Imputation results on rice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Comparisons of imputation results between plant and human . . . . . . . . . . . . . . . . . . 30
4.4 Comparisons of imputation results between Minimac and Beagle . . . . . . . . . . . . . . . . 31

Chapter 5 Discussion 56
5.1 Limitation of IQS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



5.2 Performance of non-reference-based imputation program . . . . . . . . . . . . . . . . . . . . . 57
5.3 Limitations of study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Statistical measures for evaluating genotype imputation results . . . . . . . . . . . . . . . . . 58

Chapter 6 Conclusions 59
6.1 Guidance on the use of existing imputation programs . . . . . . . . . . . . . . . . . . . . . . . 60
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References 62

Appendix Results data for drawing figures 65

vi



List of Tables

Table 2.1 Counts of agreement and disagreement between the known (j) and imputed (i) genotypes. 9

Table 3.1 Simulation of NLKLD and NLHD for different imputation results. . . . . . . . . . . . 21

Table 4.1 Ranking imputation results with the same concordance (90%) using IQS, NLKLD, and
NLHD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Table 5.1 Counts of agreement and disagreement between the known and imputed genotypes. . 57

Table 6.1 Results of the comparisons between human and plant for Beagle and Minimac. . . . . 59
Table 6.2 Results of the comparisons between Minimac and Beagle for all experimental data. . . 60

vii



List of Figures

Figure 2.1 Imputation of missing genotypes by inference from common haplotype blocks (from Li
et al. [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 3.1 Workflow of imputation experiments ignoring iteration. . . . . . . . . . . . . . . . . . 15
Figure 3.2 MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the A.

thaliana chromosome 4 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 3.3 MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the hu-

man chromosome 22 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 3.4 MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the hu-

man chromosome 22 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 3.5 MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the rice

chromosome 12 dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 4.1 Concordance results for the Arabidopsis thaliana chromosome 4 experimental data. . 32
Figure 4.2 IQS results for the A. thaliana chromosome 4 experimental data. . . . . . . . . . . . . 33
Figure 4.3 NLKLD results for the A. thaliana chromosome 4 experimental data. . . . . . . . . . 34
Figure 4.4 NLHD results for the A. thaliana chromosome 4 experimental data. . . . . . . . . . . 35
Figure 4.5 Concordance results for the human chromosome 22 experimental data. . . . . . . . . . 36
Figure 4.6 IQS results for the human chromosome 22 experimental data. . . . . . . . . . . . . . . 37
Figure 4.7 NLKLD results for the human chromosome 22 experimental data. . . . . . . . . . . . 38
Figure 4.8 NLHD results for the human chromosome 22 experimental data. . . . . . . . . . . . . 39
Figure 4.9 Concordance results for the human chromosome 13 experimental data. . . . . . . . . . 40
Figure 4.10 IQS results for the human chromosome 13 experimental data. . . . . . . . . . . . . . . 41
Figure 4.11 NLKLD results for the human chromosome 13 experimental data. . . . . . . . . . . . 42
Figure 4.12 NLHD results for the human chromosome 13 experimental data. . . . . . . . . . . . . 43
Figure 4.13 Concordance results for the rice chromosome 12 experimental data. . . . . . . . . . . 44
Figure 4.14 IQS results for the rice chromosome 12 experimental data. . . . . . . . . . . . . . . . 45
Figure 4.15 NLKLD results for the rice chromosome 12 experimental data. . . . . . . . . . . . . . 46
Figure 4.16 NLHD results for the rice chromosome 12 experimental data. . . . . . . . . . . . . . . 47
Figure 4.17 Comparisons of concordance between plant and the human with varying missing rates

(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . 48
Figure 4.18 Comparisons of IQS between plant and the human with varying missing rates (mrate)

and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . . . . . . 49
Figure 4.19 Comparisons of NLKLD between plant and the human with varying missing rates

(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . 50
Figure 4.20 Comparisons of NLHD between plant and the human with varying missing rates

(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . 51
Figure 4.21 Comparisons of concordance between Minimac and Beagle with varying missing rates

(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . 52
Figure 4.22 Comparisons of IQS between Minimac and Beagle with varying missing rates (mrate)

and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . . . . . . 53
Figure 4.23 Comparisons of NLKLD between Minimac and Beagle with varying missing rates

(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . 54
Figure 4.24 Comparisons of NLHD between Minimac and Beagle with varying missing rates (mrate)

and sample size ratios (ref:tgt) between reference (ref) and target (tgt). . . . . . . . . 55

viii



List of Abbreviations

A. thaliana Arabidopsis thaliana
GS Genomic selection
GWAS Genome-wide association study
HMM Hidden Markov model
indel insertion/deletion
IQS Imputation quality score
K-L distance/divergence Kullback-Leibler distance/divergence
MAF Minor allele frequency
MCMC Markov chain Monte Carlo
mrate missing rate
NGS Next-generation sequencing
NLHD Negative logarithmic Hellinger distance
NLKLD Negative logarithm Kullback-Leibler distance/divergence
ref:tgt sample size ratio between reference (ref) and target (tgt)
SNP Single nucleotide polymorhism
SSE sum of squared estimates of errors
VCF Variant call format

ix



Chapter 1

Introduction

Recently, the food industry has seen increased utilization of plant-based products. Plants such as wheat

and rice are important components in our everyday diets, and their high productivity is partly a result

of plant phenotyping and genotyping studies. One type of plant study investigates the whole genomes

of a set of samples to find genetic variants that have potential associations with a certain phenotypic trait.

However, such association studies rely heavily on the whole genome datasets [11,15], and due to technological

constraints such as genotyping errors and limited sets of genetic markers, missing genotypic records become

commonplace. In light of this, genotype imputation aims to infer the missing portion of genotypes in a group

of study samples via computational tools.

Many genotype imputation studies have been done to compare performance (e.g., running time, memory

usage and imputation accuracy) of different genotype imputation programs in the context of human data [11,

15]. However, acquisition of human data often raises ethical concerns, and the fundamental differences

between human and plant genomes complicate whether the imputation results from human carry over to

plants. This question may be answered by evaluating genotype imputation performance using plant data.

Its result may be highly beneficial for future plant research. Further, statistical measures such as Pearson

correlation that have been used to evaluate imputation results might not be appropriate in a given context

and might lead to misleading results. In addition, the most commonly used measure, concordance, may not

be sufficiently discriminating to rank imputation performance for different imputation methods in some cases.

Hence, it is necessary to seek more discriminating statistical measures to rank imputation methods. With

more discriminating statistical measures, we can compare performance of a genotype imputation program

between plant and human, and rank imputation performance between genotype imputation programs.

Genetic data has been widely utilized in various fields such as human disease susceptibility research,

genomic selection programs and quantitative trait loci detection for cattle and plant breeding programs. Ge-

netic data comes in various forms, including whole genome sequencing data and genotypic data. Genetic data

is typically obtained via next-generation sequencing technologies. However, numerous technical constraints

result in errors and missing values in the data. While addressing the error rate of genetic data is beyond

the scope of this study, reducing the missing rate of genetic data can be achieved by genotype imputation.

Genotype imputation infers missing genotypic data computationally, and has been reported to be highly

useful in various genetic studies; e.g., genome-wide association studies and genomic selection. For example,
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Li et al. [22] and Orho-Melander et al. [34] demonstrated that common missense mutations imputed by

genotype imputation showed strong association with their studied diseases. They concluded that genotype

imputation could accelerate genotype-phenotype studies. Additionally, Willer et al. [39] and Kathiresan et

al. [21] showed that genotype imputation increased the significance of specific genotyped markers in their

respective genome-wide association studies (GWAS). Therefore, genotype imputation can boost the power of

GWAS.

Unfortunately, the performance of genotype imputation programs has been either poorly understood or

subject to misinterpretation because of inappropriate statistical measures. For instance, Pearson correlation

has been applied to ascertain the agreement between the known and imputed genotypes. However, genotypic

data does not necessarily follow a normal distribution, which is a requirement of the measure, and when

the imputed genotypes have zero variance, a divide-by-zero error occurs in the calculation. In addition,

concordance (described in section 2.4) is sometimes insufficient to discriminate imputation results with dif-

ferent MAFs. Finally, evaluations have often been restricted to human data and it is unclear whether these

imputation programs perform well on non-human datasets.

In our study, we evaluate two genotype imputation programs, Beagle [11] and Minimac [15], based on their

performance on human, Arabidopsis thaliana, and rice data. We measure performance using concordance,

IQS, negative logarithmic Kullback-Leibler divergence (NLKLD), and negative logarithmic Hellinger distance

(NLHD). Specifically, our research answers the following research questions:

1. How do popular genotype imputation programs (i.e., Minimac and Beagle) perform on plant data as

compared to human data?

2. Can we find measures that better discriminate imputation performance when concordance does not?

and

3. What do alternate measures indicate for the performance of these imputation programs?

In this thesis we present the results of our study. We also explain why Pearson correlation is a mislead-

ing measurement when used for evaluating imputation programs, and why NLKLD and NLHD are more

appropriate to evaluate performance of genotype imputation programs. Finally, we discuss problems with

existing genotype imputation programs, and provide recommendations on how they might be addressed so

as to facilitate improved genotype imputation.
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Chapter 2

Background

In this chapter, we provide background information of this study. In section 2.1, we explain genomic

related terminology. In section 2.2, we discuss circumstances in which missing genotypic data could occur. In

section 2.3, we explain how various imputation methods work. In sections 2.4 and 2.5, we explain previously-

used measures, i.e., concordance and imputation quality score. In section 2.6, we explain why Pearson

correlation might not be an appropriate measure for genotype imputation programs. Finally, in section 2.7,

we discuss studies that compared genotype imputation programs, and we focus on the measures that were

used in those studies.

2.1 Terminology

In this section, we assume that readers know common terms such as DNA and chromosome.

Diploid Diploid is a cell or an organism that has paired chromosomes and each chromosome is from one

parent. The context of this study revolves around diploid organisms in order to conform with most genotype

imputation studies.

Gene Genes are basic physical units of inheritance that contain the information needed to specify traits.

Genes are linearly organized on structures called chromosomes [5].

Genetic variation Genetic variation is differences of genes between individuals or populations. A genetic

variation can be a mutation of a single base pair in a DNA sequence, but also a large-scale difference involving

thousands of base pairs [6].

Allele Alleles are different versions of a genetic variant such as a SNP or indel. An allele can either refer to

a single DNA position or a portion of a DNA sequence. A base allele is a single version of the genetic variant.

For a SNP, each base allele is a pair of nucleotides. Since most genotype imputation studies are restricted to

bi-allelic sites where only two different alleles, i.e., reference and alternate alleles, are possible, we focus on

the bi-allelic sites of SNP data. The allele with lower frequency is the minor allele and the one with higher
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frequency is the major allele. In other words, the reference allele is not necessarily the major allele and the

alternate allele is not necessarily the minor allele.

Phenotype A phenotype is a set of an individual/sample’s observable traits; e.g., height, eye colour,

biomass, etc [9].

Genotype Genotype is a set of individual/sample’s genes [8]. A genotype is one combination of alleles in a

specific region of a chromosome for one sample/participant. For example, in a diploid organism where sexual

reproduction is involved, suppose that on the reference sequence at location L we have an allele, and that

alleles A (from the paternal chromosome) and a (from the maternal chromosome) are present in the genome

of individual P at L. Then we say that P has a genotype Aa.

Single nucleotide polymorphism A single nucleotide polymorphism (SNP) is a difference between in-

dividuals/samples in a single DNA building block, called a nucleotide; i.e., adenine, thymine, cytosine, or

guanine [10]. SNPs, along with other common genetic variants such as insertion/deletion (indel) and repeti-

tion, may directly associate with a specific phenotypic trait, and hence have become highly useful in genetic

studies.

Minor allele frequency Suppose A represents the major allele and a represents the minor allele. Then,

PAA, PAa, and Paa are calculated probabilities of three genotypes for a specific SNP from a given set of

genotypic data. The minor allele frequency (MAF) of such a SNP is 0× PAA + 0.5× PAa + Paa.

Genome-wide association study Genome-wide association study (GWAS) is an approach to discover

potential genetic variations that contribute to specific genotypic traits [7].

Imputed dosage An imputed dosage is a linear transformation of the highest posterior probability of the

imputed genotype at one specific genetic location for one sample/participant. For a diploid organism, a

genotype can be AA (two major alleles), Aa (one major allele, one minor allele), or aa (two minor alleles).

Typically, we assign 0 to the major allele and 1 to the minor allele so that AA becomes 0, Aa becomes 1

and aa becomes 2. Suppose that AA has a posterior probability 0.1, Aa 0.1 and aa 0.8. Since aa has the

highest posterior probability, the imputed dosage is 2× 0.8 = 1.6. Suppose instead that AA has a posterior

probability 0.1, Aa 0.8 and aa 0.1. Since Aa has the highest posterior probability, the imputed dosage is

1× 0.8 = 0.8.

Genetic marker Genetic markers are short DNA sequences with known physical locations on chromo-

somes. In a genetic marker, DNA segments are close to each other and are likely to be inherited together.

Genetic markers are highly useful in detecting SNPs.
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Variant calling SNP data is a product of variant calling, which detects genetic variants in the population

of a given species by aligning target DNA sequences to a reference DNA sequence.

Genotyping Genotyping (also known as genotype calling) identifies alleles of each individual at specific

genetic locations where SNPs are detected [33]. Genotyping is not necessarily performed by variant calling.

Haplotyping Haplotyping extracts alleles that belong to individual chromosomes.

Haplotype block A haplotype block is a set of genetic variants in close proximity on a chromosome, where

such genetic variants come from a single chromosome without the effect of chromosome recombination.

Phasing For a diploid organism, phasing assigns alleles to the chromosome where genetic variants occur.

In a genotypic data file, a vertical bar between two alleles is used for phased genotypes while a slash is used

for unphased genotypes. Let 0 represent the reference allele and 1 represent the alternate allele. Then, for a

given SNP, four genotype combinations are present in phased genotypic data: 0|0, 0|1, 1|0 and 1|1, whereas
three genotype combinations are present in unphased genotypic data: 0/0, 0/1 and 1/1.

Synthetic data Synthetic data, in the context of our study, are obtained via computational processes

instead of genotyping.

Genotyping platform Genotyping platforms are devices that detect and generate genotypic data.

2.2 Missing genotypic data

Missing genotypic data is common and can happen in one or more of the following occasions [17]:

• Missing genotypic data can occur due to biological reasons; e.g., individuals/samples have different

numbers of copies of genes.

• When a genotype calling process is assigning alleles to all individuals at a given genetic location, the

genotyping platform may encounter low certainty in determining which alleles should be assigned to

some individuals and will mark such alleles as missing.

• When samples/participants come from different study groups and are genotyped on different genotyping

platforms, the varied genetic markers between the platforms may lead to missing genotypic data. For

instance, suppose group A (GA) uses platform PA with genetic markers MA and group B (GB) uses

platform PB with genetic markers MB. Suppose MA and MB have a shared subset of markers MC.

From PA we obtain a set of genotypic data (DA) and from PB we obtain another set of genotypic data

(DB). When we combine DA and DB into one, samples/participants from GA have missing genotypes at
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markers MA−MC (MA excluding markers from MC), and samples/participants from GB have missing

genotypes at markers MB−MC (MB excluding markers from MC).

• Two groups of samples/participants are genotyped on the same platform. However, A uses a platform

with a dense set of genetic markers whereas B uses a sparse set of genetic markers. In this case,

samples/participants from group B have missing genotypes.

Typically, reference genotypic data does not have missing genotypes and missing genotypes occur in target

genotypic data.

The following two paragraphs explain what are entirely and partially missing genotypes.

Entirely missing genotypes When target samples/participants are genotyped on a platform with less

dense genetic markers as compared to the references, certain SNPs that are present in the references do not

appear in the targets. In this case, the target samples/participants have entirely missing genotypes for such

SNPs.

Partially missing genotypes During a genotyping process, some samples/participants have undetected

alleles for a given SNP. In this case, the target SNP has partially missing genotypes.

2.3 Genotype imputation

The basic operation of a reference-based genotype imputation program is as follows. It first reconstructs

haplotype blocks in both reference and target genotypic data, and then infers missing genotypes for the

target genotypic data. Figure 2.1 shows the framework of a generic reference-based genotype imputation

program.

Panel A shows the original genotypic data of both references and targets (where missing alleles are marked

with dots). In common cases, however, only a minority portion of a genotype is missing. Each column

represents a genetic location whereas each row represents a partial haplotype of one sample/participant.

Panel B shows matched haplotype blocks between reference and target genotypic data. Between a pair of

reference and target, the likely matched haplotype blocks have the same colour. However, as can be seen in

Panel B, haplotype blocks may vary in size and the size of a haplotype block is determined by the closest

match between reference and target data. Panel C shows that the target haplotype blocks are fully imputed

and the imputed alleles are the same as in their reference haplotype blocks.

Over the past decade, numerous genotype imputation programs have either emerged or been upgraded

from their older versions. In 2001, Stephens and colleagues [38] applied a Bayesian statistical method to

develop PHASE for haplotype reconstruction. In 2006, considering that similar haplotype blocks exist over a

short region within a chromosome, Scheet and Stephens [37] utilized a hidden Markov model (HMM) in their

fastPHASE. In 2007, Marchini and colleagues [27] also implemented an HMM in their IMPUTE program,
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Figure 2.1: Imputation of missing genotypes by inference from common haplotype blocks (from Li
et al. [23]. Imputed alleles are designated with lowercase letters.
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and validated their imputed results. However, later in the same year, Browning and Browning [12] argued

that these imputation programs did not scale well for large datasets involving thousands of individuals. In

light of this, they developed a localized haplotype-cluster model and incorporated it in their Beagle program.

In 2009, Howie et al. [20] upgraded IMPUTE to its second version. In 2010, Li et al. [23] developed MaCH

using a Markov chain haplotyping model. Such a model was highly similar to an HMM. A year later,

Howie and colleagues [19] implemented a Markov chain Monte Carlo (MCMC) algorithm in their IMPUTE2,

which was not only capable of identifying which parent chromosomes a set of genotypes came from, but

also capable of inferring genotypes that had not been called. However, all the above-mentioned genotype

imputation programs heavily depend on reference genotypic data that has high fidelity and no missing genetic

information. In other words, these programs cannot run without the presence of reference genotypic data,

and hence become nonapplicable for imputation practices where genotypic reference data is unavailable. To

address this issue, in 2015 Money and colleagues [28] developed LinkImpute utilizing a k-nearest neighbor

genotype imputation method. In 2016, Browning and Browning [11] upgraded Beagle using parallelization to

make it memory efficient for imputation from millions of reference samples. In the same year, Das et al. [15]

incorporated an expectation-maximization algorithm along with MCMC in their Minimac3 program.

2.4 Concordance

Concordance is the percent agreement between the known and imputed genotypes for each SNP, and is the

most intuitive way to measure the accuracy of imputation results. However, we observe that genetic variant

data is highly dense at SNPs with low MAFs (<0.1), and that imputation programs tend to assign the major

alleles to all samples/participants. Such a situation would result in high concordance, yet the imputation

results might not be useful. However, we still report concordance in this paper to be comparable with other

studies.

2.5 Imputation quality score (IQS)

IQS [24], based on Cohen’s kappa (κ), determines agreement between raters for categorical (or qualitative)

variables [3]. In this case, raters are a genotyping platform that generates the ground-truth genotypes and

an imputation program that produces imputed genotypes. Categorical variables are the ground-truth and

imputed genotypes.

The definition of κ is as follows:

κ =
p0 − pe
1− pe

where p0 is the concordance and pe is the hypothetical chance agreement probability. In Table 2.1 are the

counts of the agreement and disagreement between the known and imputed genotypes. We define p0 by the
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following equation:

p0 =

∑
i nii
N

and pe is defined as:

pe =

∑
i ni.n.i
N2

.

Table 2.1: Counts of agreement and disagreement between the known (j) and imputed (i) genotypes.
ni,j corresponds to the count of a particular pair of known and imputed genotypes, ni. corresponds
to the marginal count between the imputed and all known genotypes, n.j corresponds to the marginal
count between the known and all imputed genotypes, and N is the total number of genotypes for the
given SNP.

Known genotypes

AA AB BB Total

Imputed genotypes

AA n11 n12 n13 n1.

AB n21 n22 n23 n2.

BB n31 n32 n33 n3.

Total n.1 n.2 n.3 N

To avoid divided-by-zero situations, we add ε = 0.00001 to both the numerator and denominator in the

calculation of κ. Hence, we formulate IQS as follows:

IQS =
p0 − pe + ε

1− pe + ε

As illustrated by Lin et al. [24], IQS = 1 means complete agreement, IQS = 0 means complete disagreement,

and IQS < 0 means the results are worse than a random guess.

2.6 Misuse of Pearson correlation coefficient

The Pearson correlation coefficient has been extensively used to ascertain the agreement between actual and

imputed genotypes. As exemplified by Howie et al. [19], a Pearson correlation coefficient is calculated based

on the known genotypes and the imputed dosages at each genetic locus. The known genotypes take values

in {0, 1, 2}, and the imputed dosages take values in [0, 2]. However, using dosages and known genotypes to

calculate Pearson correlation might be problematic both theoretically and practically.

First, Pearson correlation coefficient is defined as follows:

ρ =
cov(X,Y )

σxσy
(2.1)

and its estimate is defined as follows:

r =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(2.2)
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where xi’s and yi’s are known genotypes and imputed dosages, respectively, and n is the number of sam-

ples/participants. According to Eq 2.2, when either the imputed dosages or the known genotypes have zero

variance, a divide-by-zero error will occur. During our study, such an error happened numerous times when

imputed dosages from one SNP with low MAF were all zeros, while the references had non-zero alleles. As

a result, the correlation rates were undefined.

Typically, Pearson correlation coefficient is applied to determine the extent of a linear relationship between

two normally distributed continuous variables. In section 2.1, we determined that the known genotype was

categorical and not a normally distributed continuous variable. Hence, using Pearson correlation between

the known and imputed genotypes violates its assumptions.

Therefore, from both practical and theoretical perspectives, Pearson correlation is not appropriate to

evaluate agreement between the known and imputed genotypes and should not be used in genotype imputation

studies.

2.7 Related work

There have been many studies evaluating genotype imputation programs. Although these studies made

numerous contributions to the field of genetic studies, they also had shortcomings.

In 2008, Zhao and colleagues [40] conducted a sensitivity study on the IMPUTE program to investigate

how the program responded to different SNP missing rates (either entirely or partially missing genotypes for

each SNP). However, they used only concordance to measure genotype imputation performance. A single

measure might not thoroughly capture the goodness/badness of the program, especially since concordance

can easily be inflated in low MAF regions [36].

In their study, Lin and colleagues [24] used IQS to evaluate the performance of the IMPUTE program.

Also, they performed downstream genome-wide association studies for further validation. Unfortunately,

they did not perform replicates to rule out the possibility that imputation results from the same input data

with the same program settings might not be identical.

In their study, Hancock and colleagues [16] compared IMPUTE2, BEAGLE, MaCH, and MaCH-Admix.

The authors reported that MaCH and IMPUTE2 had the highest overall concordance, and that IMPUTE2

had the highest IQS and average r2hat, which is an estimated Pearson correlation between known and

imputed genotypes. Interestingly, the authors used data from 2 human chromosomes to test consistency of

the MaCH program, yet used data from only one chromosome to test all the other imputation programs.

Additionally, the authors did not examine their results at different MAFs. It was probable that concordance

was inflated at SNPs with low MAFs, since for SNPs with low MAFs the program tended to assign major

alleles to all participants and reach high percent agreement. Moreover, they applied a 2% missing rate but

did not explain well why they chose such a missing rate. Finally, their use of Pearson correlation to evaluate

genotype imputation programs was problematic.
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Hickey and colleagues [17] used maize data to test the IMPUTE2 program. Their work used proportion

of correctly imputed genotypes, which is similar to concordance, and Pearson correlation. Again the use of

Pearson correlation raises concerns regarding the validity of their results.

Liu et al. [25] used human data to compare IMPUTE2, Minimac, and Beagle. Their study dataset

included 90 participants as targets and 379 participants as references. However, numerous studies [11, 15,

19] have suggested that practical imputation programs should be able to handle data involving thousands

of participants/samples (references and targets combined). Finally and unfortunately, they used Pearson

correlation to evaluate the imputed results.

In their study, Ramnarine and colleagues [36] compared various measurements (i.e., concordance, squared

correlation, IQS and program built-in measurements) to evaluate genotype imputation programs (i.e., Beagle

v3.3.2 and IMPUTE2) using human data. Their study focused on whether results from alternative measure-

ments were consistent with each other. Unfortunately, they did not notice that squared correlation, which is

Pearson correlation, was not appropriate when evaluating imputation results.
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Chapter 3

Methods and Materials

In this section, we present the materials we used, including programs (section 3.1), computing facilities,

and data (section 3.3), as well as the methodologies and experiment designs (section 3.2). Section 3.4

presents detailed steps to make data suitable for a mask-impute scenario. In subsection 3.4.1, we discuss

how we filtered SNP data, why we chose SNP data on specific chromosomes of different organisms, as well

as how we created reference and target data before inputting it to the genotype imputation programs. In

subsection 3.4.2, we present how we made the filtered data ground truth to which we compared the imputed

results. In subsection 3.4.3, we present how we separated datasets into references and targets, as well as

how we made the non-missing target datasets “missing”. Section 3.5 presents the two measures that have not

been considered in previous studies but might be highly useful in measuring the performance of genotype

imputation programs. Section 3.6 presents our approach to analyze the imputation results.

3.1 Genotype imputation program selection

Our preliminary examinations of numerous genotype imputation programs showed that Minimac and Bea-

gle were the most recently upgraded programs among all such software, and that they both had versatile

input data format compatibility. We therefore selected Beagle and Minimac as the target programs in our

study. However, since both Beagle and Minimac are reference-based genotype imputation programs, we also

considered a non-reference-based genotype imputation program (i.e., LinkImpute) in our study to compare

it with reference-based programs. Therefore, we selected the following genotype imputation programs:

1. Minimac3 (https://genome.sph.umich.edu/wiki/Minimac3, accessed on November 15, 2017.).

2. Beagle v.4.1 (https://faculty.washington.edu/browning/beagle/b4_1.html, accessed on Novem-

ber 15, 2017.)

3. LinkImpute (http://www.cultivatingdiversity.org/software.html, accessed on April 15, 2018.)

Additionally, we used the following programs for specific, limited purposes:

1. Eagle2 (https://data.broadinstitute.org/alkesgroup/Eagle/downloads/, accessed on April 19,

2018.) was selected for phasing the A. thaliana and rice datasets.

12

https://genome.sph.umich.edu/wiki/Minimac3
https://faculty.washington.edu/browning/beagle/b4_1.html
http://www.cultivatingdiversity.org/software.html
https://data.broadinstitute.org/alkesgroup/Eagle/downloads/


2. PLINK v.1.9 (http://s3.amazonaws.com/plink1-assets/plink_linux_x86_64_20181202.zip, ac-

cessed on April 19, 2018.) was used to convert data formats between the variant call format (VCF) and

the PLINK ped format due to data format compatibility issues arising from the LinkImpute program.

3.2 Experiment layout

In this section, we describe experiment settings along with detailed steps to answer the research questions.

Recall that the three research questions are: (1) How do Minimac and Beagle perform on plant data as

compared to human data? (2) Can we find measures that better discriminate imputation performance when

concordance does not? and (3) What do alternate measures indicate for the performance of these imputation

programs? To answer the first question, we compared performance of imputation programs on human and

A. thaliana, and on human and rice. To assess performance, we needed some form of ground truth data

to compare with the imputed data. Therefore, we used synthetic data. The synthetic data in our study

were generated via filtering and phasing, which were common processes in previous genotype imputation

studies [11, 15]. We then needed appropriate measures to compare imputation results between different

organisms. As discussed in section 2.6, Pearson correlation was an inappropriate measure. Also, concordance

was insufficient to measure imputation performance. Hence, we needed to find alternate measures to interpret

imputation results from different organisms. Such effort also corresponded to research questions (2) and (3).

Since this study mainly focuses on comparing human and plant imputation results, we did not design

experiments to compare rice and A. thaliana. Considering the possibility that each imputation process could

take a significant amount of elapsed time, CPU time and memory, as well as the difficulty of scheduling all

individual computational jobs on our server, we chose to run the computational experiments on Compute

Canada with fixed numbers of replicates.

We designed the following experiment steps to answer our research questions.

1: filter data;

2: phase data;

3: select samples/participants to make them references and targets with separation ratios of 5:5, 6:4, 7:3,

8:2, and 9:1;

4: for separation ratio in [5:5, 6:4, 7:3, 8:2, 9:1] do

5: make a copy of the original target dataset for accuracy measurement purposes;

6: for missing rate in [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. 0.9] do

7: generate synthetic data by selecting and masking SNP sites in genomes from the target;

8: for iteration in [1...10] do

9: input the reference and modified target datasets as well as any other required information to

Beagle and Minimac;

10: run Beagle and Minimac;
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11: aggregate the imputed SNP sites by logarithm-base-two of MAFs, filter out SNP sites with MAF

less than 0.5% and then measure imputation performance using concordance, IQS, NLKLD, and

NLHD;

12: end for

13: end for

14: end for

The separation ratio and missing rate numbers were chosen arbitrarily since there was no consensus in the

literature on how to select ratios between reference and target genotypic data, or on typical missing rates

of target genotypic data. Additionally, we visualized the above experiment layout in Figure 3.1. Finally,

we ran all imputation programs with the same parameters settings (same CPU, memory and time limit

configurations) on the Cedar cluster of Compute Canada (cedar.computecanada.ca).

3.3 Data acquisition

Numerous studies have suggested that a well-scaled imputation program should be able to handle data

involving thousands of participants/samples. Therefore, we only selected data containing more than a thou-

sand participants/samples. The following well-curated datasets (based on their frequent mention in numerous

studies) were therefore acquired. The SNPs in the different datasets were determined via different genotyping

processes.

• Human, 1000 Genomes [1], 2504 human participants at time of data acquisition;

• Arabidopsis thaliana (A. thaliana), 1001 Genomes [2], 1135 samples at time data acquisition; and

• Rice, The European Bioinformatics Institute [4], 3000 samples at time of data acquisition.

All of the above datasets were downloaded in our study. In addition, the SNPs in these different datasets

were determined in different ways. Moreover, since whole genome size varied between organisms, to com-

pare performance of genotype imputation programs between plants and humans we randomly selected sam-

ples/participants so as to have the same number of samples/participants within each pair of organisms.

Additionally, we selected data from chromosomes having approximately the same size within each pair of

organisms. Such a data selection strategy was to minimize the possibility that the imputation results might

be affected by the numbers of samples/individuals and SNP sites. Therefore, to compare results from human

and A. thaliana for both target programs, we randomly selected 1,135 human participants from chromosome

22 data with 606,756 SNP sites, and selected all 1,135 A. thaliana samples from chromosome 4 data with

651,406 SNP sites; to compare results from human and rice for both target programs, we selected all 2,504

human participants from chromosome 13 data with 1,536,078 SNP sites, and randomly selected 2,504 rice

samples from chromosome 12 data with 1,592,744 SNP sites. The human dataset had zero missing rate for
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Figure 3.1: Workflow of imputation experiments ignoring iteration. Each rectangle represents data
whereas each diamond represents an action on data. The arrows correspond to the directions in which
data flows. Different colours are used only to label different data operations and data at different
stages.
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all SNP sites and all SNP sites were phased. However, neither of the two plant datasets had non-missing

SNP sites and neither was fully phased.

3.4 Data preparation

In this section, we present detailed steps to prepare data for input to the genotype imputation programs. In

subsections 3.4.1 and 3.4.2, we present how we created ground-truth SNP data to which we compared the

imputed results. During these steps, we used phasing tools to make the plant data consistent with the human

data. In subsection 3.4.3, we present how we separated the ground-truth data into references and targets,

which were required input data of Beagle and Minimac.

3.4.1 Filter

Since numerous studies tested imputation programs with bi-allelic SNP sites, we chose only bi-allelic sites

(step 1 in section 3.2). Additionally, as exemplified in previous studies [11, 15], we did not input SNP data

for all chromosomes from each organism to the imputation programs since different organisms have different

numbers of chromosomes and large differences in data size could potentially lead to misleading results.

Instead, we only selected SNP data from a specific chromosome for testing. As mentioned in section 3.3,

the plant datasets were not fully genotyped (i.e., all individuals were missing allelic information for at least

one SNP position). Therefore, we filtered out SNP sites with high missing rates to make ground-truth data.

(We later used the ground-truth data to validate the imputed results.) Additionally, since the human data

was fully genotyped (i.e., 0% missing rate), we filtered the SNP sites in the A. thaliana and rice datasets to

reduce the missing rate for the remaining SNPs. Ultimately, we only kept sites that had less than 5% missing

rate for the following reasons:

1. We aimed to minimize the missing rate of the original SNP data so that we could maximize the number

of ground-truth SNP sites. Since we set a series of missing rates for generating synthetic data (step 6

in section 3.2) starting at 10%, the missing rate threshold of filtering the original SNP data should be

under 10%.

2. We filtered SNP sites with various, increasing missing rate thresholds starting at 0 in order to obtain

a sufficient amount of data:

• First, we filtered SNP sites by applying a missing rate threshold 0; i.e., only sites with a 0% missing

rate were retained. However, this resulted in an insufficient number of SNP sites (<50 SNP sites

on the A. thaliana chromosome 4 data).

• We then applied a 1% missing rate threshold, yet the number of SNP sites did not increase

significantly.
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• Finally, we applied a 5% missing rate threshold and this time we were able to find chromosome

data that had approximately the same number of SNP sites between organisms. Specifically, with

a 5% missing rate threshold, we obtained 228,168 SNP sites for the A. thaliana chromosome 4 data,

220,336 SNP sites for the human chromosome 22 data, 383,467 SNP sites for the rice chromosome

12 data, and 559,611 SNP sites for the human chromosome 13 data.

Thus, the 5% missing rate threshold was adopted.

3.4.2 Making ground-truth data

Unlike the human SNP data, where all participants were fully genotyped, the A. thaliana and rice data

still had numerous sites with partially missing genotypes after the SNP filtering process. In addition, both

Minimac and Beagle required the reference genotypic data to be fully phased and the A. thaliana and rice

data were not phased. Moreover, both programs required that the reference genotypic data to be non-missing.

However, the plant data could not meet such a requirement so the data in our study needed to be further

refined. Hence, phasing was an inevitable step (step 2 in section 3.2) in this study. Numerous phasing

programs could not only phase SNP data but also impute missing genotypes. To keep datasets from different

organisms as consistent as possible, we chose Eagle2 [26] to phase both the A. thaliana and rice datasets for

the following reasons:

• We tried Shapeit [18], yet it had the following two major issues:

1. it was developed by the authors of one of the selected imputation programs (i.e., Minimac) and

could potentially introduce bias in further imputation results; and

2. Shapeit had a fatal memory leak issue that eventually caused a system crash.

• Beagle could also be used for phasing, yet it was not considered for the following two reasons:

1. similar to Shapeit, it was exactly one of the imputation programs to be tested so it could introduce

bias; and

2. Beagle did not work properly for phasing when individual samples had missing SNP sites in the

reference data.

• Finally, Eagle2 was efficient at phasing huge datasets and easy to use.

The ground-truth genotypic data is also called the known genotypes in this document.

3.4.3 Separating ground-truth data to references and targets

For each comparison pair, we applied the following ratios to create subsets of randomly selected samples to

make references and targets (steps 3 and 4 in section 3.2): 5:5, 6:4, 7:3, 8:2, and 9:1; at each separation ratio,
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we randomly selected SNP sites to make them “missing” with each of nine missing rates [10%, 20%, 30%, 40%,

50%, 60%, 70%, 80%, 90%] (step 6 in section 3.2). Here, making SNP sites missing is identical to masking.

Finally, we verified that the imputation results were identical with ten repetitions (steps 8 through 12 in

section 3.2) at the same separation ratio and at the same masking rate so that we ruled out the possibility

that imputation programs could yield different results each time with the same input.

3.5 Measures for imputation results

Statistical measures (step 11 in section 3.2) interpret imputation results from different perspectives and

form an essential part of genotype imputation studies. In this section, as alternatives to the commonly used

measures such as concordance (section 2.4) and IQS (section 2.5), we define the more discriminating measures

negative logarithmic K-L divergence (NLKLD) and negative logarithmic Hellinger distance (NLHD).

3.5.1 Negative logarithmic Kullback-Leibler divergence

Since it can be disproportionately affected by a low MAF, concordance alone is not sufficient to ascertain the

overall performance of different imputation programs [36]. In addition, Pearson correlation coefficient is prob-

lematic when applied to assess correspondence between imputed and actual genotypes at individual genetic

loci (section 2.6). Therefore, measurements that are more suitable need to be introduced for the analysis.

The relative entropy or Kullback-Leibler divergence (K-L divergence) measures the dissimilarity between two

probability distributions P and Q, and it is commonly used in statistical inference measurements [29]. Here,

P corresponds to the estimated probability distribution of the known genotypes whereas Q corresponds to

the estimated probability distribution of the imputed genotypes. In this study, since the organisms we chose

are diploid, P and Q both consist of three probabilities, each of which corresponds to one genotype, i.e., AA,

Aa, and aa (where A is the major allele and a is the minor allele), and all three probabilitie add up to one.

Although we phased SNP data in our study, for this measurement, whether or not the data was correctly

phased was not highly relevant. The smaller the K-L divergence is, the better the imputation results are. As

given by Cover and Thomas [14],the formula of K-L divergence between two probability mass functions P (x)

and Q(x) is as follows:

DKL(P ||Q) =
∑
x∈X

P (x) log2 (P (x)/Q(x)) (3.1)

Here the x’s are genotypes of SNP X, P (x) is the probability mass function of the known genotypes, and

Q(x) is the probability mass function of the imputed genotypes. The range of DKL(P ||Q) is [0, ∞) where 0

means perfect correspondence.

Preliminary work using the K-L divergence to measure agreement between actual and imputed genotypes

resulted in very small values (less than 1) and a small range of values. To amplify the range we applied

a logarithm function to the raw K-L divergence values. Further, to have the values convey a more intu-

itive meaning (positive values indicating good performance, negative values indicating poor performance), a
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unary negation operation was applied. Ultimately, we used negative logarithmic Kullback-Leibler divergence

(NLKLD) as given in Eq 3.2 to measure the agreement between the estimated probability distributions of

the imputed and known genotypes.

NLDKL(P ||Q) = − log10DKL(P ||Q)

= − log10
∑
x∈X

P (x) log2(P (x)/Q(x))
(3.2)

According to Eq 3.2, the range of NLKLD is (-∞, ∞) and the bigger the NLKLD value is, the better the

imputation results are. Table 3.1 gives some examples of how NLKLD behaves in different situations. As can

be seen, the rows where the NLKLD is∞ show the perfect-correspondence cases whereas the rows where the

NLKLD is −∞ show the zero-correspondence cases. In situations where the NLKLD is a negative value (e.g.,

5th and 6th rows), the imputation results are worse than random guess. The remaining rows show different

situations, and a larger NLKLD value means a better result.

3.5.2 Negative logarithmic Hellinger distance

Although a K-L divergence describes the amount of information loss from letting probability distribution Q

approximate P [13], it is an asymmetric measure as DKL(P ||Q) does not always equal to DKL(Q||P ), and
hence can not be used as a true metric [29]. In light of this issue, we applied Hellinger distance to quantify

the similarity between two probability distributions [30]. By definition, a Hellinger distance between two

discrete probability distributions P and Q is formulated as follows:

H(P,Q) =

√∑
x∈X

(
√
P (x)−

√
Q(x))2/2 (3.3)

(subsection 3.5.1 for the meaning of P and Q). As can be seen from the above equation, the range of H(P,Q)

is [0, 1], where 0 means perfect correspondence and 1 means no correspondence.

Similar to the calculation of K-L divergence, in preliminary work the Hellinger distances calculated from

the above equation were small values (much less than 1). Hence we used the negative logarithmic values

of the Hellinger distances as a similarity measure between the probability distributions of the known and

imputed SNP sites. Thus, we define the negative logarithmic Hellinger distance (NLHD) as follows:

NLHD(P,Q) = − log10H(P,Q)

= − log10

√∑
x∈X

(
√
P (x)−

√
Q(x))2/2

(3.4)

Given Eq 3.4, the range of NLHD is [0, ∞), where 0 means zero correspondence. Table 3.1 gives some

examples of how NLHD behaves in different situations. As can be seen, the rows where NLHD is ∞ show

the perfect-correspondence cases whereas the rows where the NLHD is 0 show the zero-correspondence cases.

The remaining rows show different situations where correspondences are in an ascending order, and a larger

NLHD value means a better result.
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3.6 Analysis of imputation results

Since low-MAF SNP sites are commonplace in genotypic data, high concordance of the imputed SNP sites

with low MAFs may not be appropriate to determine the performance of an imputation program. For

example, if more than 90% of the missing SNP sites in the target data have MAFs less than 1% in the

reference data, an imputation program may assign major alleles to all targets. In this case, the concordance

of the imputed results could easily reach 99% for these low-MAF SNP sites. And since the majority of SNP

sites have low MAFs the overall concordance wouldn’t be low.

During our analysis of the imputation results, we did not consider results from the SNP sites with MAFs

less than 0.5% for the following reasons:

1. numerous studies have already reported that SNP sites below the 0.5% MAF threshold are poorly

imputable;

2. SNP sites with MAFs less than 0.5% do not constitute the majority of the results but could potentially

affect the whole analysis process; and finally,

3. genetic studies (e.g., GWAS and genomic selection) tend to filter out such SNP sites, and these rare

SNP sites tend to be investigated differently.

Further, we binned our results based on the logarithm-base-two of their MAFs. This scale setting was

determined based on our observation that MAF distribution almost followed a negative exponential function

in the range of [0.005, 0.5]. Hence using a logarithm-base-two function to bin results could potentially allow

the results to be evenly distributed. Such a method is effective and can be seen from the actual MAF

frequencies as in Figures 3.2 through 3.5, where the y-axes show the percentage of MAFs falling in particular

bins.
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Table 3.1: Simulation of NLKLD and NLHD for different imputation results.

Gknown Gimputed

NLKLD NLHDAA Aa aa AA Aa aa

Pknown Pimputed

0.0 0.0 1.0 0.0 0.0 1.0 ∞ ∞
0.0 0.0 1.0 0.0 1.0 0.0 −∞ 0

0.0 0.0 1.0 1.0 0.0 0.0 −∞ 0

0.1 0.1 0.8 0.1 0.1 0.8 ∞ ∞
0.1 0.1 0.8 0.1 0.8 0.1 -0.322 0.238

0.1 0.1 0.8 0.8 0.1 0.1 -0.322 0.238

0.15 0.15 0.70 0.15 0.15 0.70 ∞ ∞
0.15 0.15 0.70 0.15 0.70 0.15 -0.087 0.347

0.15 0.15 0.70 0.70 0.15 0.15 -0.087 0.347

0.2 0.2 0.6 0.2 0.2 0.6 ∞ ∞
0.2 0.2 0.6 0.2 0.6 0.2 0.198 0.485

0.2 0.2 0.6 0.6 0.2 0.2 0.198 0.485

0.25 0.25 0.50 0.25 0.25 0.50 ∞ ∞
0.25 0.25 0.50 0.25 0.50 0.25 0.602 0.684

0.25 0.25 0.50 0.50 0.25 0.25 0.602 0.684

0.3 0.3 0.4 0.3 0.3 0.4 ∞ ∞
0.3 0.3 0.4 0.3 0.4 0.3 1.382 1.072

0.3 0.3 0.4 0.4 0.3 0.3 1.382 1.072

0.33 0.33 0.34 0.33 0.33 0.34 ∞ ∞
0.33 0.33 0.34 0.33 0.34 0.33 3.366 2.064

0.33 0.33 0.34 0.34 0.33 0.33 3.366 2.064

A represents the major allele and a represents the minor allele. Gknown and Gimputed: the known
and imputed genotypes; Pknown and Pimputed: probability of the known and imputed genotype. For
both NLKLD and NLHD, since this study focuses on performance of imputation programs instead of
phasing accuracy, whether or not the SNP data is correctly phased is not highly relevant; i.e., Aa and
aA are treated the same.
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Figure 3.2: MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the A.
thaliana chromosome 4 dataset. The y-axes show the percentages of MAFs falling in particular bins.
The upper figure shows the MAF distribution throughout the range [0.005, 0.5] in linear-spaced bins.
Each bin has the same width. The lower figure shows the MAF distribution throughout the same
range in logarithm-base-two-spaced bins.
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Figure 3.3: MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the human
chromosome 22 dataset. The y-axes show the percentages of MAFs falling in particular bins. The upper
figure shows the MAF distribution throughout the range [0.005, 0.5] in linear-spaced bins. Each bin
has the same width. The lower figure shows the MAF distribution throughout the same range in
logarithm-base-two-spaced bins.
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Figure 3.4: MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the human
chromosome 13 dataset. The y-axes show the percentages of MAFs falling in particular bins. The upper
figure shows the MAF distribution throughout the range [0.005, 0.5] in linear-spaced bins. Each bin
has the same width. The lower figure shows the MAF distribution throughout the same range in
logarithm-base-two-spaced bins.
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Figure 3.5: MAF distributions using linear-spaced and logarithm-base-two-spaced bins on the rice
chromosome 12 dataset. The y-axes show the percentages of MAFs falling in particular bins. The
upper figure shows the MAF distribution throughout the range [0.005, 0.5] in linear-spaced bins. Each
bin has the same width. The lower figure shows the MAF distribution throughout the same range in
logarithm-base-two-spaced bins.
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Chapter 4

Results

In this chapter, we present all our results aggregated in two different ways: bar graphs that show the

patterns of each measurement against MAFs and scatter plots that provide closer details of the comparisons

between the imputation programs, and between plants and humans. To be comparable with the previous

imputation studies [11,15] regarding accuracy measurement, we originally determined both concordance and

Pearson correlation coefficient between genotyped and imputed SNP sites. However, these two measure-

ments were insufficient to assess imputation accuracy when the MAFs were low. In light of this, we used

IQS (section 2.5) to investigate the correspondence between the genotyped and imputed SNP sites. Further,

we calculated a negative logarithmic Kullback-Leibler divergence (NLKLD) (subsection 3.5.1) and a negative

logarithmic Hellinger distance (NLHD) (seubsection 3.5.2) to investigate the correspondence between prob-

ability distributions of the known and imputed SNP sites. Again, we generated bar graphs and scatter plots

where each set of measurement results were compared against each other between two imputation programs.

In section 4.2, we present the detailed observations. In sections 4.3 and 4.4, we combine the results from

Figures 4.1 through 4.16 and present the implications of the results in terms of differences in imputation

performance. Data of results used to generate the graphs are in Appendix .

4.1 Ranking imputation results with NLKLD and NLHD

Table 4.1 demonstrates that in a general case where SNP sites with different MAFs are imputed at the

same concordance of 90%, IQS, NLKLD, and NLHD all capture a difference in the imputation performance.

Overall, IQS agrees with NLKLD and NLHD except for the first two imputation cases, where both NLKLD

and NLHD agree that the second one is the superior imputation result whereas IQS ranks the first one as

superior. The second row shows the minimum discrepancy between the known and imputed MAFs and

should be considered the supreme result among all rows. Taking a closer look at the IQS and MAFknown

columns, one may notice that these two are positively correlated. Such a correlation indicates that IQS can

be biased in ranking imputation results as it reflects the correspondence between the known and imputed

genotypes yet does not reflect the correspondence between the MAFs of the known and imputed SNP sites.

In contrast, both NLKLD and NLHD reflect not only this correspondence, but also the chance agreement

between the known and imputed genotypes. Thus, NLKLD and NLHD are more appropriate in ranking
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imputation results.

Table 4.1: Ranking imputation results with the same concordance (90%) using IQS, NLKLD, and
NLHD.

Gknown Gimputed

MAFknown MAFimputed IQS NLKLD NLHDAA Aa aa AA Aa aa

Pknown Pimputed

0.3 0.5 0.2 0.25 0.45 0.3 0.45 0.475 0.844 1.421 0.931

0.5 0.28 0.22 0.44 0.38 0.18 0.36 0.37 0.842 1.488 0.969

0.6 0.3 0.1 0.7 0.2 0.1 0.25 0.2 0.804 1.376 0.928

0.7 0.2 0.1 0.8 0.1 0.1 0.2 0.15 0.756 1.186 0.844

0.8 0.1 0.1 0.75 0.05 0.20 0.15 0.225 0.733 1.128 0.788

0.88 0.07 0.05 0.98 0.02 0.0 0.085 0.01 0.266 0.219 0.584

A represents the major allele and a represents the minor allele. Gknown and Gimputed: the known and
imputed genotypes; Pknown and Pimputed: probability of the known and imputed genotype;MAFknown

and MAFimputed: minor allele frequency of the known and imputed SNP sites.

4.2 Imputation results on all experimental data

In this section, we use bar graphs to present imputation results on all experimental data, i.e., A. thaliana

chromosome 4, human chromosomes 22 and 13, and rice chromosome 12. Additionally, it is worth noting

that some bars are missing from the graphs especially in the MAF range [0.005, 0.0083]. Such a situation

happened when there were no imputed SNP sites in such a MAF range at a particular missing rate.

4.2.1 Imputation results on A. thaliana

Figures 4.1 through 4.4 show the results from runs on the A. thaliana chromosome 4 experimental data.

Concordance In Figure 4.1, concordance drops as MAF increases for both Minimac and Beagle. This

means that for the A. thaliana data, both programs have difficulty inferring individual genotypes correctly at

SNP sites with high MAFs. The Minimac concordance drops more rapidly than that of Beagle. This means

that Minimac’s percent agreement is more sensitive to MAF than Beagle’s.

IQS According to Figure 4.2, the Minimac imputation results have high chance agreement between the

known and imputed genotypes given the range of Minimac IQS. Also, the Minimac IQS values show an

inconsistent pattern. Some colours (representing different missing rates) are even seemingly missing from the
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stacked barplot. This is because in the same MAF range, IQS results at different missing rates could have

both positive and negative values. Such an inconsistent pattern of IQS values indicates that the program is

inconsistent at chance agreement control in terms of different missing rates of SNPs for the A. thaliana data.

For instance, at separation ratio 8:2, IQS values in MAF ranges other than [0.005, 0.0083] are positive so all

bars are above the y = 0 line. In contrast, at the same separation ratio, all IQS values in the MAF range

[0.005, 0.0083] are negative so that all bars for that range are below the y = 0 line. Meanwhile, at separation

ratio 9:1, in the MAF range [0.039, 0.065], IQS at missing rate 10% is negative and all other IQS values in

the same MAF range are positive. In this case, bars with positive IQS values are stacked on top of the bar

with a negative IQS value so that the red bar looks “missing” from the graph. In addition, the Minimac

IQS does not increase with MAF whereas the Beagle IQS does. Such an observation indicates that Beagle’s

chance agreement between the known and imputed SNPs drops as MAF increases, whereas Minimac is more

likely to infer SNPs by accident.

NLKLD In Figure 4.3, both programs’ NLKLD values generally increase with MAF. This means that the

probability distribution of the imputed SNPs is reflective of the probability distribution of the known SNPs

as MAF increases for the A. thaliana data. Both programs have superior performance on data at sample size

ratios between reference and target 5:5, 6:4, and 7:3.

NLHD Figure 4.4 displays similar patterns as in Figure 4.3. This indicates that as MAF increases, prob-

ability distributions of the known and imputed SNPs become closer for the A. thaliana data. However, the

NLHD results have less variance as compared to the NLKLD ones. Also, that both programs perform better

on data at sample size ratios between reference and target 5:5, 6:4, and 7:3 is less distinguishable.

4.2.2 Imputation results on human

Figures 4.5 through 4.12 show the results from imputation runs on human data.

Imputation results on human chromosome 22

Figures 4.5 through 4.8 show the results from the Minimac and Beagle imputation runs on the human

chromosome 22 experimental data.

Concordance Figure 4.5 manifests almost the identical pattern as in Figure 4.1, where concordance drops

as MAF increases. Again, this means that both programs have difficulty inferring individual genotypes

correctly at SNP sites with high MAFs for the human chromosome 22 data.

IQS In Figure 4.6, Minimac has an erratic IQS pattern similar to the one in Figure 4.2 whereas the

Beagle IQS overall increases with MAF. Likewise, this inconsistent pattern of IQS values indicates that the

program is inconsistent at chance agreement control in terms of different missing rates of SNPs in the human
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chromosome 22 data. Again, some coloured bars seem to be missing because the “missing” bars correspond

to negative values and they are covered by bars that correspond to positive values.

NLKLD In Figure 4.7, both Minimac and Beagle show an erratic pattern in their NLKLD results. This

indicates that the probability distribution of the imputed SNPs is not reflective of the probability distribution

of the known SNPs as MAF increases for the human chromosome 22 data. More interestingly, neither program

shows superior results on SNP sites with high MAFs between 0.18 and 0.5, as compared to the results on A.

thaliana. On the contrary, imputation results within such a range are the poorest.

NLHD In Figure 4.8, similar to the pattern in Figure 4.7, the NLHD results from both programs do not

show strong correlation with MAF. This means that probability distributions of the imputed and known

SNPs do not become closer as MAF increases for the human chromosome 22 data. However, imputation

results with MAF between 0.18 and 0.5 are not evidently the poorest. Moreover, the NLHD results are closer

to each other as opposed to the NLKLD results.

Imputation results on human chromosome 13

Figures 4.9 through 4.12 show the results from imputation results on the human chromosome 13 experimental

data. In Figures 4.9, 4.10, and 4.12, both Minimac and Beagle show almost the identical patterns as in

Figures 4.5, 4.6 and 4.8 respectively, for the concordance, IQS, and NLHD results. However, for the NLKLD

results as in Figure 4.11, both programs show an overall decreasing pattern with MAF. Such an observation

indicates that the probability distribution of the imputed SNPs becomes inconsistent with the probability

distribution of the known SNPs as MAF increases for the human chromosome 13 data.

4.2.3 Imputation results on rice

Figures 4.13 through 4.16 show the results from imputation runs on the rice experimental data. In Fig-

ures 4.13 and 4.14, both programs’ concordance and IQS values show little difference as in results from

other experimental data. This means that both programs have difficulty correctly imputing SNPs with high

MAFs for the rice data. Also, Minimac performs poorly in controlling chance agreement whereas Beagle’s

chance agreement drops as MAF increases. In Figure 4.15, Minimac shows an overall increasing pattern in

its NLKLD results, meaning that Minimac’s probability distribution of the imputed SNPs becomes reflective

of the probability distribution of the known SNPs for the rice data. In addition, Beagle shows an overall

decreasing pattern in NLKLD, meaning that Beagle’s probability distribution of the imputed SNPs becomes

inconsistent with the probability distribution of the known SNPs for the rice data. In Figure 4.16, Minimac

shows an inconsistent pattern in its NLHD results, meaning that the probability distribution of Minimac’s

imputed SNPs do not strongly correlate to the probability distribution of the known SNPs for the rice data.

In addition, Beagle shows an overall decreasing pattern in both NLKLD and NLHD. This means that for
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the rice data, Beagle’s probability distribution of the imputed SNPs becomes dissimilar from the probability

distribution of the known SNPs as MAF increases, and that Beagle’s probability distribution of the imputed

SNPs becomes more distant from the probability distribution of the known SNPs as MAF increases.

4.3 Comparisons of imputation results between plant and human

Figures 4.17 through 4.20 show the comparisons of imputation results between plant and human. Since this

section mainly compares performance of imputation programs between plant and human, how the perfor-

mance of imputation programs interacts with MAF, missing rates, and separation ratios between reference

and target is not addressed. Additionally, in one ideal case where one organism has superior results over the

other, in the scatterplots we should see that all dots are on one side of the diagonal lines. In another ideal

case where both organisms have equivalent results, we should see that all dots are on the diagonal lines.

Concordance Figure 4.17 combines the results shown in Figures 4.1, 4.5, 4.9, and 4.13. In Figure 4.17,

Minimac shows superior performance on plant over human whereas Beagle shows the opposite overall. Inter-

estingly, at separation ratio 9:1 with a 30% missing rate, Beagle shows a superior performance on A. thaliana

over human.

IQS Figure 4.18 combines the results shown in Figures 4.2, 4.6, 4.10, and 4.14. In Figure 4.18, data points

are equally distributed in the Minimac column for both organisms. This indicates that the chance agreement

of the Minimac imputation results is almost insensitive to the imputation results of either data. In contrast,

almost all data points are on the human side of the Beagle column, meaning that Beagle has lower chance

agreement in its human imputation results than in its plant imputation results.

NLKLD Figure 4.19 combines the results shown in Figures 4.3, 4.7, 4.11, and 4.15. In Figure 4.19, the

upper row shows that both Minimac and Beagle have superior results on A. thaliana over human. Meanwhile,

the lower row shows that Minimac performs equally well on rice and human whereas Beagle has superior

performance on human over rice.

NLHD Figure 4.20 combines the results shown in Figures 4.4, 4.8, 4.12, and 4.16. In Figure 4.20, the

upper row shows that Beagle performs slightly better on human over A. thaliana whereas Minimac performs

equally well on both datasets. In contrast, the lower row shows that both Minimac and Beagle have superior

performance on human over rice.
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4.4 Comparisons of imputation results between Minimac and Bea-

gle

Figures 4.21 through 4.24 show the comparisons of imputation results between Minimac and Beagle with

varying missing rates and sample size ratios between reference and target. In one ideal case where one

program has superior performance over the other, in the scatterplots we should see that all dots are on one

side of the diagonal lines and in the bar-plots we should see that all bars are either above or below y = 0. In

another ideal case where both programs have the same performance, in the scatterplots we should see that

all dots are on the diagonal lines and the bar-plots should be empty.

Concordance Figure 4.21 combines the results shown in Figures 4.1, 4.5, 4.9, and 4.13. In Figure 4.21,

Beagle shows superior performance over Minimac in terms of concordance. According to the bar-plots,

Beagle’s superiority over Minimac increases with MAF.

IQS Figure 4.22 combines the results shown in Figures 4.2, 4.6, 4.10, and 4.14. Figure 4.22 shows the

similar pattern as in Figure 4.21. However, the Beagle IQS shows more overwhelming superiority over

Minimac especially on imputation results with lower MAFs (0.005 – 0.11). This means that Beagle has a

much superior control at chance agreement over Minimac.

NLKLD Figure 4.23 combines the results shown in Figures 4.3, 4.7, 4.11, and 4.15. In Figure 4.23,

Minimac shows an overall superior performance over Beagle according to NLKLD. This means that Minimac

has effective probability distributions of the imputed SNPs to represent the probability of the known SNPs.

However, NLKLDMinimac−Beagle increases with MAF only on the rice data and does not have the same

consistent pattern on other data. Such a difference means that for the rice data, Minimac’s probability

distribution of the imputed SNPs is increasingly reflective of the probability distribution of the known SNPs

over Beagle’s as MAF increases.

NLHD Figure 4.24 combines the results shown in Figures 4.4, 4.8, 4.12, and 4.16. Figure 4.24 shows that

NLHD overall agrees with NLKLD as in Figure 4.23. However, as can be seen in the bar-plots, Minimac has

more overwhelming superiority over Beagle as the bars are higher above the y=0 line as compared to the

ones in Figure 4.23. This means that Minimac’s probability distribution of the imputed SNPs is closer to the

probability distribution of the known SNPs than Beagle’s.
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Figure 4.1: Concordance results for the Arabidopsis thaliana chromosome 4 experimental data.
Results from Minimac (upper row) and Beagle (lower row) are shown for different MAFs with different
missing rates (mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis
range for both programs: [0, 5]; MAF ranges (x-axis) for both programs: 0.005–0.0083, 0.0083–0.0014,
0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18, 0.18–0.3, 0.3–0.5.
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Figure 4.2: IQS results for the A. thaliana chromosome 4 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [-0.02, 0.06]; y-axis range for Beagle (lower row): [0, 5]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.3: NLKLD results for the A. thaliana chromosome 4 experimental data. Results from
Minimac (upper row) and Beagle (lower row) are shown for different MAFs with different missing
rates (mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range
for Minimac (upper row): [0, 17.5]; y-axis range for Beagle (lower row): [0, 16]; MAF ranges (x-axis)
for both programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11,
0.11–0.18, 0.18–0.3, 0.3–0.5.
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Figure 4.4: NLHD results for the A. thaliana chromosome 4 experimental data. Results from
Minimac (upper row) and Beagle (lower row) are shown for different MAFs with different missing
rates (mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range
for Minimac (upper row): [0, 12]; y-axis range for Beagle (lower row): [0, 10]; MAF ranges (x-axis)
for both programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11,
0.11–0.18, 0.18–0.3, 0.3–0.5.
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Figure 4.5: Concordance results for the human chromosome 22 experimental data. Results from
Minimac (upper row) and Beagle (lower row) are shown for different MAFs with different missing
rates (mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range
for both programs: [0, 5]; MAF ranges (x-axis) for both programs: 0.005–0.0083, 0.0083–0.0014,
0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18, 0.18–0.3, 0.3–0.5.
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Figure 4.6: IQS results for the human chromosome 22 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 0.08]; y-axis range for Beagle (lower row): [0, 5]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.7: NLKLD results for the human chromosome 22 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 12]; y-axis range for Beagle (lower row): [0, 12]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.8: NLHD results for the human chromosome 22 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 12]; y-axis range for Beagle (lower row): [0, 10]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.9: Concordance results for the human chromosome 13 experimental data. Results from
Minimac (upper row) and Beagle (lower row) are shown for different MAFs with different missing
rates (mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range
for both programs: [0, 5]; MAF ranges (x-axis) for both programs: 0.005–0.0083, 0.0083–0.0014,
0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18, 0.18–0.3, 0.3–0.5.

40



0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

MAF ranges

−0.010

−0.005

0.000

0.005

0.010

0.015

0.020

0.025

IQ
S

ref:tgt=5:5
ref:tgt=6:4

ref:tgt=7:3

ref:tgt=8:2

ref:tgt=9:1

Minimac

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

0.
00

5–
0.

00
83

0.
00

83
–0

.0
14

0.
01

4–
0.

02
3

0.
02

3–
0.

03
9

0.
03

9–
0.

06
5

0.
06

5–
0.

11

0.
11

–0
.1

8

0.
18

–0
.3

0.
3–

0.
5

MAF ranges

0

1

2

3

4

5

IQ
S

ref:tgt=5:5 ref:tgt=6:4 ref:tgt=7:3 ref:tgt=8:2 ref:tgt=9:1

Beagle

mrate=0.1 mrate=0.3 mrate=0.5 mrate=0.7 mrate=0.9

Figure 4.10: IQS results for the human chromosome 13 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [-0.010, 0.025]; y-axis range for Beagle (lower row): [0, 5]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.11: NLKLD results for the human chromosome 13 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 14]; y-axis range for Beagle (lower row): [0, 14]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.12: NLHD results for the human chromosome 13 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 12]; y-axis range for Beagle (lower row): [0, 12]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.13: Concordance results for the rice chromosome 12 experimental data. Results from
Minimac (upper row) and Beagle (lower row) are shown for different MAFs with different missing
rates (mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for
Minimac (upper row): [0, 5]; MAF ranges (x-axis) for both programs: 0.005–0.0083, 0.0083–0.0014,
0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18, 0.18–0.3, 0.3–0.5.
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Figure 4.14: IQS results for the rice chromosome 12 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [-0.075, 0.100]; y-axis range for Beagle (lower row): [0, 5]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.15: NLKLD results for the rice chromosome 12 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 12]; y-axis range for Beagle (lower row): [0, 10]; MAF ranges (x-axis) for both
programs: 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18,
0.18–0.3, 0.3–0.5.
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Figure 4.16: NLHD results for the rice chromosome 12 experimental data. Results from Minimac
(upper row) and Beagle (lower row) are shown for different MAFs with different missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). y-axis range for Minimac
(upper row): [0, 10]; y-axis range for Beagle (lower row): [0, 8]; MAF ranges (x-axis) for both programs:
0.005–0.0083, 0.0083–0.0014, 0.0014–0.023, 0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18, 0.18–0.3,
0.3–0.5.
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Figure 4.17: Comparisons of concordance between plant and the human with varying missing rates
(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each column of
scatterplots shows the comparisons for one program. Each row of scatterplots shows the comparisons
between a plant (x-axis) and human (y-axis). The diagonal line in each plot represents the case of
the program performing equally well on both datasets, so the organism with superior results has more
data points on its side.
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Figure 4.18: Comparisons of IQS between plant and the human with varying missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each column of scatterplots
shows the comparisons for one program. Each row of scatterplots shows the comparisons between a
plant (x-axis) and human (y-axis). The diagonal line in each plot represents the case of the program
performing equally well on both datasets, so the organism with superior results has more data points
on its side.
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Figure 4.19: Comparisons of NLKLD between plant and the human with varying missing rates
(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each column of
scatterplots shows the comparisons for one program. Each row of scatterplots shows the comparisons
between a plant (x-axis) and human (y-axis). The diagonal line in each plot represents the case of
the program performing equally well on both datasets, so the organism with superior results has more
data points on its side.
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Figure 4.20: Comparisons of NLHD between plant and the human with varying missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each column of scatterplots
shows the comparisons for one program. Each row of scatterplots shows the comparisons between a
plant (x-axis) and human (y-axis). The diagonal line in each plot represents the case of the program
performing equally well on both datasets, so the organism with superior results has more data points
on its side.
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Figure 4.21: Comparisons of concordance between Minimac and Beagle with varying missing rates
(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each row shows a
comparison between the two programs for one set of experimental data. In each bar-plot, the y-axis
represents the results of Minimac minus that of Beagle so bars being below the y=0 line mean that
Beagle performs superior to Minimac and bars being above the y=0 line mean that Minimac performs
superior to Beagle. In each scatterplot, the x-axis represents the Minimac results whereas the y-axis
represents the Beagle results. The same pair of datasets is considered in each row. The diagonal line
in each scatterplot represents the case where both programs perform equally well on the dataset and
hence the program with superior performance has more data points on its side.
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Figure 4.22: Comparisons of IQS between Minimac and Beagle with varying missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each row shows a comparison
between the two programs for one set of experimental data. In each bar-plot, the y-axis represents the
results of Minimac minus that of Beagle so bars being below the y=0 line mean that Beagle performs
superior to Minimac and bars being above the y=0 line mean that Minimac performs superior to
Beagle. In each scatterplot, the x-axis represents the Minimac results whereas the y-axis represents
the Beagle results. The same pair of datasets is considered in each row. The diagonal line in each
scatterplot represents the case where both programs perform equally well on the dataset and hence
the program with superior performance has more data points on its side.
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Figure 4.23: Comparisons of NLKLD between Minimac and Beagle with varying missing rates
(mrate) and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each row shows a
comparison between the two programs for one set of experimental data. In each bar-plot, the y-axis
represents the results of Minimac minus that of Beagle so bars being below the y=0 line mean that
Beagle performs superior to Minimac and bars being above the y=0 line mean that Minimac performs
superior to Beagle. In each scatterplot, the x-axis represents the Minimac results whereas the y-axis
represents the Beagle results. The same pair of datasets is considered in each row. The diagonal line
in each scatterplot represents the case where both programs perform equally well on the dataset and
hence the program with superior performance has more data points on its side.
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Figure 4.24: Comparisons of NLHD between Minimac and Beagle with varying missing rates (mrate)
and sample size ratios (ref:tgt) between reference (ref) and target (tgt). Each row shows a comparison
between the two programs for one set of experimental data. In each bar-plot, the y-axis represents the
results of Minimac minus that of Beagle so bars being below the y=0 line mean that Beagle performs
superior to Minimac and bars being above the y=0 line mean that Minimac performs superior to
Beagle. In each scatterplot, the x-axis represents the Minimac results whereas the y-axis represents
the Beagle results. The same pair of datasets is considered in each row. The diagonal line in each
scatterplot represents the case where both programs perform equally well on the dataset and hence
the program with superior performance has more data points on its side.
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Chapter 5

Discussion

In this thesis, we present novel evaluations of current genotype imputation programs. In this chapter, we

discuss the limitation of the more standard measure IQS in section 5.1. In section 5.2, we present the results

of testing LinkImpute, an imputation program that does not require a reference genome. In section 5.3, we

address the limitations of our study. Finally, in section 5.4, we discuss other statistical measures that are

potentially useful in evaluating genotype imputation programs.

5.1 Limitation of IQS

Although we utilized IQS in our study, it may have critical issues that make it uninformative and hence

inappropriate for imputation studies. As discussed in section 2.5, IQS is based on a kappa statistic. In

their paper, Pontius and Millones [35] proposed quantity disagreement and allocation disagreement as a

substitute for a kappa statistic. Quantity disagreement is the amount of disagreement between the known

and imputed alleles for a given genotype, regardless of which samples/participants are assigned to specific

alleles. For instance, if a SNP is detected in a population with 100 samples, and genotype AA appears 12

times in imputed results whereas 10 times in the known ones, the quantity disagreement of genotype AA

is 2/100. Allocation disagreement, on the other hand, is the amount of disagreement between the known

and imputed genotypes with an optimal match after excluding the quantity disagreement. Again, we use

the same example as for quantity disagreement to illustrate this term. For the same SNP site as in the

previous example, suppose samples 1 through 5 all have the same genotype AA and their imputed genotypes

are all AA (i.e., the imputed and known genotypes agree on the same SNP site for the same five samples).

Also, suppose samples 6 through 10 have the known genotype AA whereas their imputed genotypes are

all Aa. Samples 11 through 17 all have the same genotype Aa whereas their imputed genotypes are all

AA. Finally, the remaining 83 samples all have agreed known and imputed genotypes Aa. In this case, we

can tell that genotype AA is incorrectly assigned to 7 samples (samples 11 through 17) and 5 samples are

incorrectly assigned to genotypes other than AA (samples 6 through 10). Hence, the allocation disagreement

of AA is (5 + 7)/100− 2/100 = 10/100, where 2/100 is the quantity disagreement that should be excluded.

In order to compare the two disagreements with IQS, we draw Table 5.1 and calculate the IQS for this

example. Here, the concordance p0 is (5 + 83 + 0)/100 = 0.88, and the hypothetical chance agreement
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probability pe is (12 × 10 + 88 × 90 + 0 × 0)/1002 = 0.804. Hence, the IQS value for this example is

(0.88 − 0.804)/(1 − 0.804) ≈ 0.388. For a given SNP site, while the IQS suggests a poor imputation result,

the two disagreements do not. According to Pontius and Millones [35], 1) the same kappa statistic might

not necessarily reveal the same level of allocation disagreement or quantity disagreement, leading to useless

or confusing information; and 2) a larger kappa statistic might not necessarily correspond to a larger total

of allocation and quantity disagreements, making the kappa statistics even harder to interpret. Therefore,

allocation disagreement and quantity disagreement can be more useful than IQS in evaluating genotype

imputation results and the these two disagreements should be considered in future genotype imputation

studies.

Table 5.1: Counts of agreement and disagreement between the known and imputed genotypes.

Known genotypes

AA Aa aa Total

Imputed genotypes

AA 5 7 0 12

Aa 5 83 0 88

aa 0 0 0 0

Total 10 90 0 100

5.2 Performance of non-reference-based imputation program

Since the majority of existing genotype imputation programs are designed to infer missing genotypes from

reference genotypic data (possibly with the aid of genetic maps), imputation for organisms without reference

genotypic data, e.g., lentil, is impractical. However, in 2015, Money et al. [28] developed LinkImpute that

does not require reference genotypic data. Since little work has been done to show how effective such a non-

reference-based imputation programs is, comparing LinkImpute with reference-based programs under same

experiment settings (e.g., input datasets and default program parameters) can be beneficial. During our

study, we attempted to compare the performance of LinkImpute with reference-based genotype imputation

programs (i.e., Minimac and Beagle). Specifically, we designed similar experiments and used the same data as

in the experiments to test Minimac and Beagle as described in section 3.4. To make the data “reference-free”,

we combined the reference and target data and used the combined data as input.

However, LinkImpute did not work properly on any of the experimental data as used to evaluate Minimac

and Beagle; the program exited quickly without producing useful output. We speculate that LinkImpute is

not yet capable of imputing large datasets with thousands of samples and that the program is not as versatile

as its reference-based peers. Future studies can further evaluate non-reference-based genotype imputation

programs and compare them with reference-based genotype imputation programs to determine which type
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of program is superior to the other.

5.3 Limitations of study

In subsection 3.4.1, we utilized a 5% missing rate threshold to filter the original SNP data for various

organisms. However, this missing rate threshold did not make close the number of filtered SNP sites between

the rice chromosome 12 and human chromosome 13 data. The difference of SNP sites would potentially affect

the performance evaluation of genotype imputation programs. Hence, for filtering SNP data, future study

may consider a missing rate threshold that makes close the number of SNP sites between organisms.

In subsections 3.5.1 and 3.5.2, we used negative-logarithm-base-ten of K-L divergence and Hellinger dis-

tance to magnify the signals. However, negative-logarithm-base-two of K-L divergence and Hellinger distance

could further magnify the signals. This alternative could be explored in future work. In addition, we used

default settings to test Minimac and Beagle. However, Minimac automatically adjusted parameters based on

the input data whereas Beagle did not. This could be important since the default population size for input

data assumed by Beagle is one million, and our datasets had thousands of samples rather than millions. The

effect of this discrepancy is unknown and could be explored as future work. This would involve manually

setting the “ne” parameter to “1e3” (thousands of samples/participants) prior to running Beagle. Further,

the failure of the LinkImpute tests (section 5.2) suggests that effort is warranted on non-reference-based

imputation programs that provide not only enhanced data format compatibility but also improved capabil-

ity of imputing large-scale datasets. Finally, other aspects could have also caused the disagreement among

performance measurements: (1) The A. thaliana and rice data were phased computationally. Unfortunately,

the accuracy of this phasing process is not well understood. (2) Quality of SNP data varies among organisms

and is heavily dependent on the read depth and log-likelihood of SNP calling. The impact of data quality is

not well understood and could potentially result in misleading results. Therefore, future studies may consider

investigating the effect of different phasing programs and the impact of data quality on imputation results.

5.4 Statistical measures for evaluating genotype imputation results

We demonstrated that Pearson correlation is not appropriate to evaluate the performance of genotype impu-

tation programs. Also, we discussed that IQS was not ideal to compare imputation performances. Moreover,

negative logarithmic K-L divergence and negative logarithmic Hellinger distance are appropriate measures of

ranking genotype imputation results along with imputation quality score and concordance. To better inter-

pret correspondence between the known and imputed genotypes, one can consider Kendall’s tau since this

non-parametric test is independent of distributions [31]. One can also find other useful ranking tools in Chap-

ter 9.7 of Murphy’s book [32]. Finally, one can consider quantity and allocation disagreements (described in

section 5.1) to replace IQS and compare results with NLKLD and NLHD.

58



Chapter 6

Conclusions

In this study, we demonstrated that Pearson correlation is inappropriate to evaluate the correspondence

between the known and imputed genotypes. Additionally, we explained in theoretical terms that both NLKLD

and NLHD are more appropriate than IQS and concordance to rank imputation results. However, the four

measures do not appear to agree with each other when used to compare imputation results either between

plant and human, or between Minimac and Beagle.

Table 6.1 shows the results of the comparisons between plant and human for Beagle and Minimac. As

can be seen, Beagle overall performed better on human than plant. In contrast, the Minimac results are less

conclusive than Beagle.

Table 6.1: Results of the comparisons between human and plant for Beagle and Minimac. For a

given comparison pair, each cell gives the organism with the superior results.

Comparison pair

Concordance

Comparison pair

IQS

Program Program

Beagle Minimac Beagle Minimac

human vs. A. thaliana human A. thaliana human vs. A. thaliana human inconclusive

human vs. rice human rice human vs. rice human inconclusive

Comparison pair

NLKLD

Comparison pair

NLHD

Program Program

Beagle Minimac Beagle Minimac

human vs. A. thaliana A. thaliana A. thaliana human vs. A. thaliana human inconclusive

human vs. rice human inconclusive human vs. rice human human

Table 6.2 shows the results of comparison between Beagle and Minimac for all experimental data. In

Table 6.2, Beagle outperforms Minimac according to concordance and IQS. These results mean that Beagle

has a superior percent accuracy over Minimac. However, the probability distribution of the imputed SNPs

from Minimac better reflects the probability distribution of the known SNPs than in the case Beagle according

to NLKLD and NLHD.
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Table 6.2: Results of the comparisons between Minimac and Beagle for all experimental data. For

a given measure and specific set of experimental data, each cell gives the program with superior

performance.

Measure Concordance

Data A. thaliana chr4 human chr22 human chr13 rice chr12

Minimac vs. Beagle Beagle Beagle Beagle Beagle

Measure IQS

Data A. thaliana chr4 human chr22 human chr13 rice chr12

Minimac vs. Beagle Beagle Beagle Beagle Beagle

Measure NLKLD

Data A. thaliana chr4 human chr22 human chr13 rice chr12

Minimac vs. Beagle Minimac Minimac Minimac Minimac

Measure NLHD

Data A. thaliana chr4 human chr22 human chr13 rice chr12

Minimac vs. Beagle Minimac Minimac Minimac Minimac

6.1 Guidance on the use of existing imputation programs

With the experience from our trials of two existing genotype imputation programs using different datasets in

various situations, we have the following suggestions for future study of genotype imputation programs: (1)

Pearson correlation coefficient is not appropriate to evaluate performance of genotype imputation programs,

and hence should not be considered; (2) in addition to concordance and IQS, NLKLD and NLHD are useful

measures to evaluate performance of genotype imputation programs; (3) to impute human missing genotypes,

Beagle should be considered because Beagle favours human over plant data.

6.2 Future work

In our results, Beagle had overall consistently superior results on human over plant data whereas Minimac

did not have consistently superior results on either plant or human data. In addition, both NLKLD and

NLHD suggest that Minimac has a superior imputation method over Beagle’s. However, further studies with

more data of the same and different kinds are in order to confirm these trends. In addition, although we

60



theoretically explained that NLKLD and NLHD were more appropriate to measure imputation performance

than concordance and IQS, future studies may provide more evidence to support this point of view. Further,

we compared imputation performance between plant and human for Minimac and Beagle using data from

different chromosomes. This study was based on the assumption that each imputation program had the

same performance on different chromosomes of the same organism. However, such an assumption might

not be valid. Therefore, future research may consider using data from different chromosomes from one

organism to verify such an assumption. Finally, we drew diagonal lines in scatterplots to not only compare

performance between imputation programs, but also compare imputation results between plants and humans.

Such a visual inspection would suggest that 1) the performance was similar for both cases and 2) there was

some random variation (as one would expect). To make the results quantitative, future study may consider

measures such as sums of squared estimates of errors (SSE) for data points above and below the diagonal

line in each scatterplot and then compare the two SSE values.
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Appendix

Results data for drawing figures

The data for drawing graphs of results is available in this thesis document via the following link: https:
//drive.google.com/open?id=1SGAeRACLq-cv31dSsaCOBvQDFYFvuD1r.

The root directory includes 3 sub-directories of results organized by organism names. For the human
results, there are two subsubdirectories for results of two separate experiments. report_s1135_chr22 con-
tains files of results from the human chromosome 22 data with 1135 participants, and report_s2504_chr13
contains files of results from the human chromosome 13 data with 2504 participants. Each result filename
indicates the corresponding measurement. In each file, the header #ratio separates results by separation
ratios. Under each separation ratio there are 18 rows of results corresponding to results of 9 missing rates for
Minimac and Beagle. The odd rows are Minimac results whereas the even rows are Beagle results. In other
words, the order of results rows is Minimac results with 10% missing rate, Beagle results with 10% missing
rate, Minimac results with 20% missing rate, Beagle results with 20% missing rate, etc. Each row contains
9 values that are separated by minor allele frequency range, i.e., 0.005–0.0083, 0.0083–0.0014, 0.0014–0.023,
0.023–0.039, 0.039–0.065, 0.065-0.11, 0.11–0.18, 0.18–0.3, and 0.3–0.5.
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