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ABSTRACT 

 
 

The introduction of deregulation and subsequent open access policy in electricity sector 

has brought competition in energy market.  Allocation of transmission loss has become 

a contentious issue among the electricity producers and consumers. A closed form 

solution for transmission loss allocation does not exist due to the fact that transmission 

loss is a highly non-linear function of system states and it is a non-separable quantity. In 

absence of a closed form solution different utilities use different methods for 

transmission loss allocation. Most of these techniques involve complex mathematical 

operations and time consuming computations. A new transmission loss allocation tool 

based on artificial neural network has been developed and presented in this thesis. The 

proposed artificial neural network computes loss allocation much faster than other 

methods. A relatively short execution time of the proposed method makes it a suitable 

candidate for being a part of a real time decision making process. Most independent 

system variables can be used as inputs to this neural network which in turn makes the 

loss allocation procedure responsive to practical situations. Moreover, transmission line 

status (available or failed) was included in neural network inputs to make the proposed 

network capable of allocating loss even during the failure of a transmission line. The 

proposed neural networks were utilized to allocate losses in two types of energy 

transactions: bilateral contracts and power pool operation. Two loss allocation methods 

were utilized to develop training and testing patterns; the Incremental Load Flow 

Approach was utilized for loss allocation in the context of bilateral transaction and the 

Z-bus allocation was utilized in the context of pool operation.   The IEEE 24-bus 

reliability network was utilized to conduct studies and illustrate numerical examples for 

bilateral transactions and the IEEE 14-bus network was utilized for pool operation.  

Techniques were developed to expedite the training of the neural networks and to 

improve the accuracy of results.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Emergence of Electric Power Systems 

Electricity, one of the most widely used form of energy, has been discovered little more 

than a century ago. After the discovery of Edison’s electric bulb, electricity has been 

commercially produced and marketed in USA. Thomas Alva Edison, regarded as the 

pioneer of electric power system, first established “The Pearl Street Power Station” in 

New York, USA in 1882 [1]. Later more companies were established. In early days 

there was no regulation in electric power industries. Small companies operated small 

generators in municipal areas and sold power to industries and other users in that area. 

These companies were somewhat inefficient and redundant in the services they 

provided. Separate companies provided electricity for different needs such as street 

illumination, industrial power, residential lighting and street car service. They 

frequently operated under nonexclusive franchises, often in competition with one 

another. In 1896, Westinghouse pioneered the use of alternating current to deliver 

electricity over a long distance from its hydroelectric plant at Niagara Falls. This 

generating and delivery system was far more efficient and quickly became the national 

standard. This development quickly led to the formation of large "public utility" 

companies.  Today, electric power systems have become common entities all over the 

world. Thousands of electric utility and companies are supplying power to billions of 

consumers.  People cannot imagine living without electricity. It has become an essential 

commodity in our every day life and billions of equipment and accessories are being 

used in the world today that are solely dependent on electric power.  

1.2 The Evolution of The Natural Monopoly 

Early leaders recognized that electric companies suffered from high fixed costs as a 

result of heavy investment needed to finance central generating plants and transmitting 

system. Utilities frequently found that it was difficult to maintain investor confidence 

and attract adequate capital. This was attributable to both the dubious franchise process, 

which made operation of the utility over the long term an uncertain prospect, and the 
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low returns investors received. Early industry leaders began to think that if the franchise 

granting process and the rates charged by utilities were overseen by a nonpartisan state 

agency instead of a city council, financing might be easier and cheaper to obtain.  

In 1898, in an address before the National Electric Light Association (the forerunner of 

Edison Electric Institute), Samuel Insull proposed that electric companies be regulated 

by state agencies which would establish rates and set service standards [1]. The idea 

became increasingly appealing to investor-owned companies in the face of public 

enthusiasm for the growth of municipal electric systems. Privately-owned companies 

surmised that the public might be more supportive if their companies were regulated so 

that customer interest would be protected. By 1916, 33 states had regulatory agencies. 

Early regulation of the industry proved beneficial to both the electric companies and 

their customers, who got reliable, reasonably priced service without the uncertainties 

caused by duplicate services and inefficient operations. Later electric industry was 

developed as regulated industry all over the world.  

1.3 Traditional Electric Power 

Starting from very small utility networks, electric utilities have grown billion times 

larger. Now, electric power systems became widespread and complex in nature. From 

its birth to present, power system networks and utilities have gone through various 

stages of evolution. For the last one hundred years electric power systems operated as 

regulated monopolies. In a regulated monopoly, an electric power system can be 

divided into four main functional zones; generation, transmission, distribution and retail 

service. 

 Generation – generation is the conversion of electric energy from other forms of 

energy like chemical (gas, coal, hydrogen), nuclear, solar, hydro energy, 

geothermal energy, wind and wave energy.  

 Transmission – transmission is the transfer of bulk electric energy from one place 

to another through some transmission network.  It connects the generator network 

and distribution network. 
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 Distribution – distribution is the process of delivering electric power from the 

local network to the consumers. 

 Retail Service – retail service can broadly called retail customer service. Its main 

function is measuring and billing customers for the power delivered. 

In a regulated monopoly, these four functional blocks are controlled by one single 

entity. As today’s power system networks are very large in production volume and 

geographical area, their operation became a complex phenomenon which does not only 

depend on the state of technology but also on complex issues like economy, social 

advancement, environmental impact and political decisions. In traditional monopoly, 

one company is allowed to generate, transmits and distribute electrical power to the 

consumers in one jurisdiction. The service area is primarily determined by political map 

and jurisdiction.  In some cases, distribution is divided among two or more electric 

utilities, e.g. city corporation or other private distribution companies. Price of electricity 

is determined by the same utility which is justified by cost of generation, transmission 

and distribution. The schematic diagram of a traditional power industry is shown in 

Figure 1.1. 

 

Transmission & Distribution Generators Consumers 

Fig. 1.1: Schematic diagram of traditional power industry 

1.3.1 The traditional regulated power industry structure – Traditional power 

industry may be categorized by the functions they perform. Many utilities performed all 

four functions of power industry described above, others perform one or two. 

Depending upon the functions they perform, they can be categorized as: 

a) Vertically integrated electric utilities: They own facilities and manage all the 

functions of producing, transmitting, delivering and selling of electric power. 

Vertically integrated means that all the functions needed were intertwined into 

one system and company.  Almost all electric utilities prior to 1990s fall into 

these category. They were granted a monopoly franchise by the state or 

government, which granted them exclusive rights to produce and sell electric 
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power. In return they were obliged to provide power to all customers who 

wanted it.  

b) Generation and transmission (G &T) utilities: These utilities produce 

electricity and move energy in bulk to various locations, where they sell in bulk 

quantities to other utilities. For example, Tri-State G&T Association Inc, 

Denver, CO, serve G&T functions for 34 rural electric and public power districts 

in Colorado, Nebraska and Wyoming.   

c) Local distribution companies: These are local electric utilities that own and 

operate only a distribution system. They also provide retail sales and services. 

Many municipal organizations have local distribution companies.  

d) Independent power producer (IPP) and non-utility generators (NUG): 

Independent power producers are companies that owns and operate generators 

outside the control of traditional power utility. IIPs sell power to other utilities. 

Non-utility generators are owned by manufacturers or processes who use their 

generators to produce power for their own use and sell any surplus energy to 

utilities.  

1.3.2 Functional divisions of traditional vertically integrated utility: The 

following functional divisions exist in a vertically integrated power system: 

a) Generation division: Generation division is responsible for building, operation 

and maintenance of power plants.  

b) T&D division: The Transmission and Distribution division designs, installs and 

maintains transmission lines, substations and other equipment. 

c) Operation division: This division operates the entire power system. It 

coordinates the functions of all units of power system starting from generation to 

bulk distribution. It performs system operation that includes monitoring and 

control of generation and dispatch. It is responsible for voltage stability and 

system security.  
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d) Marketing and customer service division: The function of marketing and 

customer service encompasses marketing, sales, billing, customer service and 

public relation. 

1.4 Deregulation 

Electric power systems in the early days were developed on the concept of natural 

monopoly. Natural monopoly occurs if the production costs decrease as the output 

grows larger. Before 1990s, all power systems in the world were running as vertically 

integrated monopoly system. Later it was realized that the electric power industry was 

not necessarily a natural monopoly at least when it came to generating electricity. It was 

proven that open access and competition in business lowers the unit price. The same is 

believed to happen in electric power industry. Therefore, bringing competition in power 

sector in generation and retail consumer level became essential. The regulatory process 

and lack of competition gave electric utility no incentive to improve on yesterday’s 

performance or to take risk on new ideas that might increase customer value. The main 

argument used to support deregulation is that a free market promotes efficiency. In a 

regulated environment, for example, wholesale and retail electricity power prices are 

calculated based on a utility's costs. If a utility invests in what turns out to be an 

uneconomical project, it can still add the costs of the investment to the price it charges 

for electricity. Thus, the risks and economic consequences of a poor investment are 

passed to the electricity customer. Competition will encourage new technologies for 

generating electricity with better efficiency and inefficient generating plants will die 

out.  

In many of the countries where electric utility deregulation first occurred e.g. Argentina, 

England, the government was privatizing the industry. By deregulating i.e. by 

privatizing the power sector, government can withdraw huge amount of money. It has 

also been proved in many cases that a private organization can serve better than a 

government organization. Competitions also increase customer focus. Another reason 

for deregulation is to give customer a meaningful choice to select their supplier, 

although the term ‘customer’ is confined only to bulk or retail buyer.  
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Deregulation and re-structuring of electric power industry is occurring in most part of 

the world. Some are rapidly progressing towards full deregulation while others are re-

structuring their power industry to allow some types of deregulation. Although the 

reasons for these changes are not always the same, their expected impacts are the same.  

1.5 Deregulated Electric Utility Structure 

Contrary to traditional vertically integrated power system, monopoly is fully removed 

from generation and distribution (including retail service) sectors in a deregulated 

power system. As a result, generation and distribution are competitive, with many 

different companies vying for those businesses. On the other hand, most governments 

and regulators realized that it is best to have only one transmission system. Therefore, in 

most cases transmission sector remained regulated. Brazil is trying to deregulate 

transmission sector, not by creating many transmission lines, but by leasing sections of 

the transmission lines to different companies. Basic features of a deregulated power 

system are discussed below. 

a) Independent system operator - An independent system operator (ISO) plays the 

role of a supervisor for system operation, planning and security. It has operational 

control authority over the whole power system and normally operates and 

maintains the transmission lines. An ISO normally performs the following 

functions: 

• provides open and comparable access to similarly situated customers to the 

transmission facilities 

• operates exclusively the ISO Controlled Grid in an efficient and reliable 

manner 

• adopts, safeguards and monitors compliance with inspection, maintenance, 

repair and replacement standards for the ISO Controlled Grid so as to provide 

high quality, safe and reliable electric service including during periods of 

emergency and disaster; 

• provides or obtains adequate ancillary services for the ISO Controlled Grid 

and to dispatch such services as necessary; 
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• schedules transmission service for all transactions on the ISO Controlled Grid; 

• redispatches available resources to relieve transmission congestion; 

• develops and submits (i) transmission service rate methodologies and (ii) rates 

for such transmission services and ancillary services and to recover 

administrative costs; 

• establishes operating rules and protocols for the reliable operation and for 

participation in the ancillary services market; 

• maintains the reliability of operations of the ISO Controlled Grid 

• provides open market pricing information for the transmission services and 

ancillary services markets;  

• secures generating and transmission resources as necessary for achievement of 

planning and operating reserve criteria  

• promotes the development of, and enter into, agreements for power buying and 

selling including bilateral contracts 

• allocates and manages transmission losses to participating parties 

• keeps track of all transactions and calculate the transmission usage for each 

generator and IPP 

• also works as a spot market for buying and selling power (in absence of 

“power exchange”) 

In some states or countries where there is no “power exchange” for trading energy, ISO 

does the job of energy trading as well.  

b) Power exchange – An organization, some what like a stock exchange, that 

permits buyers and sellers of wholesale electricity to buy and sell electric power as 

a commodity. It trades electricity between buyers and sellers electronically.  

c) Competitive power generations – An open access in generation sector, in which 

any entity that is qualified, competent, solvent, able to meet standards can get 

licensed and can produce and sell power. Usually many independent power 
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producers (IPP) and non-utility generators (NUG) compete with each others to 

produce and sell electric power on a wholesale market.  

IPP-1 

 

d) Competitive distributors – Competitive distributors buy power in bulk at the 

wholesale level and sell it to the consumers. They bid for buying power at “power 

exchange” or ISO (in absence of power exchange”) similarly as IPPs or NUGs bid 

for selling power. Distributors supply power to individual home, business or other 

entity. They charge individuals for the energy they consumed at a rate fixed by 

state or governments or at a rate set by “act of electricity deregulation” in that 

jurisdiction. Distributors can choose their suppliers.  Any distributor or bulk 

power consumer may buy power from a generator through a bilateral contract as 

well.  

e) Bilateral contracts- Many bulk power consumers enter into bilateral contracts 

with power producers or suppliers to avoid price fluctuations of energy market in 

a deregulated environment. The seller arranges the transportation of the contracted 

power over a third party’s transmission network. These are individual contracts 

and would not affect any other contracts which are already in place. The concept 

of bilateral contracts allows the customers and generating plants to work 

according to their policy and does not make them dependent on everyday bid like 

in a power pool system. The price fixation and other services and particulars of the 

IPP-2 

IPP-n 

NUG-1 

Consumer-1 

. . . 

NUG-n 

Consumer-2 Transmission network

ISO 

. . Consumer-3 

Fig. 1.2: Schematic diagram of a deregulated power network with ISO 
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contract would be determined by the two parties involved in the contract. This 

would give them more freedom and flexibility of choice. Bilateral contracts enable 

customers to make their best price deals for power supply with whoever in the 

competitive market is most effective to meet their demands. Allowing power 

producers to contract directly with customers, marketers, or retailers creates 

competition on both sides of the transaction. Generators compete among 

themselves to supply this demand. This gives customers and their representatives 

a full range of choices among suppliers. Suppliers may charge any price the 

market will bear and may choose to compete not only by price but by duration of 

contract, payments options, type of generation, and quality of electric service. 

Thus, bilateral contracts provide a wide range of choices to meet various customer 

needs. Many electric utilities which are not deregulated yet, allows bilateral 

contracts as a first step towards deregulation. Customers in bilateral contracts, on 

the other hand, have broad choices of various types of suppliers. Large customers 

can deal with a power producer directly or purchase energy through the marketers, 

power brokers or energy service company. Smaller customers can form load 

aggregators and purchase energy in a similar manner 

f) Power pool- A deregulated power pool is the most common form of market at 

present due to its simple structure. Generating utilities or IPPs and customers both 

bid for selling and buying power at the power pool. A power pool conducts 

different types of auctions like day ahead market, hour ahead market, real time 

market etc. to buy power necessary for its customers. In a pool system, generating 

utilities do not have any target for any specific customer rather than they bid for 

getting access to the grid. A generating utility would be out of the competitive 

market if its price is too high. Similarly, a customer would not get any power if its 

offer is too low.  Thus pool fixes a single price for every hour which is determined 

by basic supply-demand relationship of economics. All parties involved in the 

market have equal right to access the information regarding price and demand. A 

power pool system uses the existing economic dispatch procedures.  

In addition to the day-ahead market and hour-ahead market, a power pool also 

operates its spot market. A spot market of electricity is somewhat different from 

 9 
 



 

other commodity. Electric power is generally a non-elastic item and must be 

consumed when it is generated. For this reason, a spot market operates ahead of 

real time. A spot market can update its bids every 10 minutes or 30 minutes or at 

any convenient time 

g) Market clearing price – An independent system operator is responsible to 

maintain a balance between the supply and demand of power.  An ideal electric 

power system must have sufficient power in order to meet the customer’s 

demands. Market clearing price is the price at which suppliers and buyers agree to 

sell and buy power to a specified amount that is set by this price. A system 

operator determines the market clearing price from the supply and demand 

relation in such a way that all power demand would be satisfied. The companies 

who bid higher than the market clearing price will not be able to sell any power. 

All companies who bid less than the market clearing price are considered as 

successful bidders and will be supplying the demand. All successful bidders will 

get paid at the market clearing price irrespective of their bidding prices.  

The competition among the suppliers of electric power is at the core of 

deregulation. If a supplier’s bid is higher than the market clearing price, then its 

energy will not be included in the load dispatch schedule. This fact will force the 

supplier out of business. The fear of getting out of business encourages the 

supplier to bid the most competitive price to stay in wholesale market place.  

In many power pool e.g. in Alberta power pool, electricity is purchased on a 

centralized basis. Generators bid on an hourly basis to supply energy. Power pool 

determines the market clearing price from the supply curve of power and from the 

total load demand. Demand side bidding is not considered. Figure 1.3 shows how 

the power pool determines market clearing price for a particular hour [2]. 
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In Ontario and New England, the system operators set the limits of upper and 

lower boundaries of energy price [3]. Generating utilities offer their selling price 

in between them and market clearing price is set in the same way as Alberta power 

pool.  

In some jurisdictions, market clearing price is set in different ways. For example, 

in Norway, Nordic energy sellers as well as energy buyers submit their bids for 

selling and buying power respectively. Participants offer their bids for next-day 

power delivery. Nordic Power Exchange collects bids and prepares two curves: an 

aggregate demand curve and an aggregate supply curve. Demand decreases as the 

price goes up, on the other hand, supply increase with increase in price. The 

market clearing price is set by the intersection of these two curves. Figure 1.4 

shows the supply and demand curves and market clearing price of Nordic power 

market [4]. 

Market clearing price 

Pr
ic

e 
in

 $
/M

W
H

 

Supply stacked bid curve 

Demand Power in MW 
Fig. 1.3: Determination of market clearing price (In Alberta Power Pool) 
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1.6 Effect of Deregulation on Operation And Planning  

In a traditional power industry, control is much simpler -a system is run in a way that 

minimizes the overall cost. Daily, weekly and monthly load forecasts are done by the 

utility. Load flow study, cost analysis and economic scheduling of generation are done 

accordingly well ahead of time. Since all generations and distributions are under one 

umbrella, planners are not accountable to individual generators or distributors. They are 

accountable to owners or governments only. In real time operation, generator 

scheduling and load dispatch are done in an almost pre-planned way. Very seldom they 

have to use spinning reserve to meet actual demand or to meet emergency situation. 

System operators take all decisions to keep the system secure and reliable according to 

some set criteria. Transmission congestion can be easily avoided by proper generation 

scheduling.  

The operation and planning activities in a deregulated power system is much more 

complex than that of a traditional one. One of the complexities arises due to the fact that 

electric energy has to be generated and consumed at the same moment. When there is an 

increased load demand, either generation has to be increased to fulfill the load or load 

has to be curtailed. Loads in a network vary every hour, to be more specific vary every 

moment. Since loads are controlled by distributors, load forecast becomes very difficult. 

Price 

Demand 
(purchase) 

TurnoverPrice inflexible 
supply 

Max. bid price 
Supply 
(sale) 

  System price 

Price inflexible 
demand 

  MW 

Fig. 1.4: Market clearing price in Nordic Power Pool  

 12 
 



 

Buying of power from the grid depends on the retailers not on the system operator. In 

most cases, long time planning like weekly or monthly planning becomes very difficult 

or inaccurate. Many decisions are to be taken on real time basis or just few minutes 

ahead of the situation. Transmission planning becomes difficult due to spot selling of 

power. Most distributors want to buy power from the cheapest supplier which 

sometimes causes transmission congestion. Congestion management becomes a big 

contentious issue in a deregulated system. Transmission loss allocation is another 

contentious issue. Estimation of total transmission loss is not enough; it has to be 

allocated to individual generations.  

1.7 Transmission Loss 

Transmission loss in electric power system is a natural phenomenon. Electric power has 

to be moved from generation place to the consumer’s place through some wires for 

consumption. All wires have some resistance, which consume some power. The power 

consumed in this way is referred to as "loss". Most of this loss is attributable to the 

heating of the power lines by the electrical current flowing through them. The loss (i2R) 

is then lost to the surrounding of the power lines. Transmission loss represents about 

5% to 10% of total generation, a quantity worth millions of dollar per year. In Alberta 

alone, total transmission loss costs about 200 million dollars per year.  

Power loss in a Transmission and Distribution network is influenced by a number of 

factors such as: 

• the location of generating plant and load connection points and the energy 

associated with each; 

• types of connected loads; 

• network configuration; 

• voltage levels and voltage unbalance; 

• dynamic factors associated with the operation of large alternating current 

networks (e.g. power factor, harmonics and the control of active and reactive 

power); 
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• the length of the lines - this is an almost linear relationship (e.g. doubling the 

line length would double the line loss); 

• the current in the line - this is a square law relationship where doubling the line 

current would quadruple the line loss; 

• the design of lines, particularly the size, material and type of cables; and 

• the types of transformers and their loadings. 

In a traditional power system, total transmission loss is optimized while keeping the 

running cost at the minimum. In a deregulated power system, due to the competition in 

the generation sector, transmission loss has to be allocated to individual generators.   

1.8 Transmission Loss Allocation in A Deregulated Power System 

In a deregulated power system transmission loss has to be allocated to individual 

suppliers, generators and contracts. Loss allocation does not affect generation levels or 

power flows, however it does modify the distribution of revenues and payments at the 

network buses among suppliers and consumers. In a deregulated power system, every 

supplier has to supply the power they want to sell plus the transmission loss 

corresponding to that transaction. Therefore, system operator has to allocate losses to 

every individual generation and load. Depending on the contract, a supplier may supply 

the contracted load and the corresponding loss or supply the load and pay for the loss. 

In later case, the loss may be supplied by a contracted generator or ISO may buy the 

power to meet the loss from a spot market. Depending upon who will supply the loss, 

the allocation will vary to some extent.  

1.9 Present Problems in Transmission Loss Allocation 

Transmission loss allocation became a contentious issue as it corresponds to a huge 

amount of money. It is mentioned earlier that transmission loss depends on a number of 

factors of the power system. Transmission loss is a highly non-linear function of these 

factors. The main problem associated with loss allocation is the fact that transmission 

loss is a non-separable entity. Any attempt to separate it is further complicated by its 

non-linear nature.  The challenge facing by a typical power pool and an ISO is how to 
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allocate the transmission loss and what should be the criterion for charging other 

utilities. Utilities in general, look for locational signal, consistency, simplicity, accuracy 

and predictability in a loss allocation method. It is an extremely hard task to 

accommodate all these considerations in a complex phenomenon like transmission loss 

allocation. In a deregulated environment, the economic and market related factors are as 

important as technical factors. Not only accurate calculations are necessary, but fair and 

equitable allocation of the losses to all the stakeholders is also important. Although no 

ideal or standard loss allocation method exists, some methods have been reported in 

literature [2, 5-14]. But all these methods require time consuming and complex 

mathematical computations and, therefore found limited acceptance by the industry.  

1.10 Review of Current Methods  

In recent years, some methods of transmission loss allocation have been reported in 

literature. In absence of an ideal or unanimous transmission loss allocation method, 

utilities around the world are using some of these methods. Prior to deregulation, 

wheeling of power through transmission line was allowed in many jurisdictions. H. H. 

Happ introduced some methods for calculating cost of power wheeling [5]. Conejo et al 

[6] have discussed the Pro Rata (PR) procedure, a technique used in Mainland Spain for 

allocation of transmission loss, where losses are globally assigned to generators and 

consumers, and then a proportional allocation rule is used. The loss allocated to a 

generator or consumer is proportional to its level of energy generation. PR procedure 

ignores the network and, therefore, is not consistent with solved power flow. Conejo et 

al [6] have also discussed two other methods called ‘Marginal Procedure’ and 

‘Proportional Sharing’. In ‘Marginal Procedure’, losses are assigned to generators and 

consumers through so-called incremental transmission loss co-efficient (ITL). 

Normalization has to be performed after allocation, since this method results in over 

recovery. The standard marginal procedure based on ITL coefficients depends on the 

selection of the slack bus because ITL coefficients do depend on the slack bus. The ITL 

coefficient of the slack bus is zero by definition, thus the slack bus is allocated no 

losses. This is a drastic limitation for this method that requires that pool agents agree 

beforehand on the selection of the slack bus.  ‘Proportional sharing’ procedure requires 

the assumption of proportional sharing principle. According to this law “in flows to a 
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bus are proportional to outflows from that bus” which could neither be proved nor 

disproved.  

Conejo et al [7] proposed a loss allocation method called “Z-bus allocation”. It is based 

on the exact network equations as defined by the complex impedance matrix and the 

complex nodal injections. All calculations are based on the sparse admittance matrix. It 

uses complex current flows instead of power flow. Power flow solution required to get 

injected bus current and power has to be converted to current.  

Strbac et al [8] have proposed a transmission loss allocation method by tracing the 

generator and load contributions to line flows. This method traces the contributions of 

each generator and of each load to the line flows instead of marginal contributions. 

Since the allocation method had been proposed on the basis of maximum flows in the 

lines, it does not reflect the actual load condition. Bialek et al [9] had proposed another 

method of loss allocation in which power flows in the lines are traced and a 

proportional sharing principle is used.  

Cheng et al [10] addressed different challenges associated with bilateral contracts in a 

deregulated power system network. The authors described modeling of bilateral 

contracts using a transaction matrix. A two-dimensional matrix that includes power 

generators and load demands is termed as a transaction matrix.   

Anderson and Yang [11] proposed a structure to determine the use of transmission 

system. Instead of proportional sharing, a power flow comparison is used to determine 

the use of transmission line. Power flow comparison method uses load flow study to 

find a generator’s contribution by superimposing the generator on the base load. The 

difference obtained from the two load flows are attributed to generator’s account. This 

method goes in sequence for each generator to calculate its effect on load flow studies. 

Loss allocation depends on the sequence of generator used. Results vary widely for 

different sequences.  

Fand and David [12] discussed power dispatch issue in a power network structure 

dominated by bilateral and multilateral transmission contracts. A framework of price-

based operation under deregulated structure was developed and a solution to optimal 

transmission dispatch is proposed. This paper particularly concentrates on dispatch 

curtail challenges with bilateral and multilateral contracts in a power system.   
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Expósito et al [13] have proposed a method based on unbundling of branch flows. The 

method presented in this paper is modified incremental loss factor method and is 

applicable on a nodal basis. The authors proposed four methods for splitting branch 

flows; proportional allocation, quadratic allocation, geometric allocation and fast 

geometric allocation.  

Bhuiya and Chowdhury [14] have proposed two methods of loss allocation namely, 

Incremental Load Flow Approach (ILFA) and Marginal Transmission Loss Approach 

(MTLA). The former uses a modified load flow technique to assess transmission loss. In 

this method, at each load bus, load is increased in a discrete step while the loads at the 

other buses are kept constant. The resulting differential transmission loss is attributed to 

the corresponding generator. The loads are incremented in an alternate sequence, in 

discrete steps, from zero to their respective levels. This method is consistent with solved 

load flow and rewards counter flow in the system but it requires a high computation 

time. The later method is based on Kron’s transmission loss expression and results in an 

iterative process. To reflect the effect of bilateral contracts, Kron’s loss expression is 

modified and expressed in terms of loads instead of generations. In MTLA, a 

generator’s share of transmission loss can be found by making an incremental change in 

the generator’s active power demand, while keeping all other loads fixed. This method 

requires many complex mathematical analyses and operations.  

1.11 Objective And Scope of This Research 

The main objective of this research work is to develop an artificial neural network that 

can be utilized to assess transmission loss allocation in a deregulated system. 

Power flow in a transmission network varies from one moment to another depending 

upon the changes in load and generation schedule. A fast loss allocation tool / technique 

is required to account for the variation in power flows. Moreover, a transmission 

network is subjected to line failures for various reasons. Sometimes transmission lines 

are taken out for preventive maintenance as well. The loss allocation, therefore, will 

change with a change in the line configuration in the system. Also, loss allocation 

depends on the underlying allocation principle that the stakeholders would agree. Based 

on these practical considerations the intended ANN should meet the following criteria. 
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1) Provide loss allocation results in a relatively fast manner. 

2) Be flexible enough to accommodate line failures. 

3) Be retrained and adapted to implement different loss allocation principles with 

relative ease. 

1.12 Outline of The Thesis 

This thesis is organized in seven chapters. Chapter 1 and 2 deal with the basic concepts 

of power system and transmission loss. Power systems around the world are going 

through great changes in recent years. From vertically integrated monopoly business, it 

is moving towards fully deregulated competitive business. Chapter 1 describes in brief 

about the components of power systems and their operation. It also describes the 

evolution of power systems, recent changes in deregulated power industry structure and 

the effect of deregulation on operation and planning. It explains transmission loss and 

the issues associated with loss allocation in a deregulated system. A literature review on 

loss allocation also is presented in this chapter. 

Transmission loss, its assessment and the principles of traditional system operation are 

discussed in Chapter 2. The basic configuration and features of an artificial neural 

network are described in Chapter 3. The working principles including learning and 

testing of an ANN are also discussed in this chapter.  

An artificial neural network needs some known input-output patterns for training. 

Incremental Load Flow Approach (ILFA) was used to derive these patterns. Chapter 4 

explains in detail the ILFA method of loss allocation with examples. Selection of 

inputs, proposed architecture of neural network, and its training is described in detail in 

this chapter. Loss allocation in the IEEE 24 bus system utilizing the proposed ANN is 

presented in this chapter. Allocation results obtained from the ANN are compared with 

those obtained from the ILFA. 

Transmission line failures and their effects on loss allocation are discussed in Chapter 5. 

The change in architecture to include line failures and the corresponding training and 

testing details are also discussed in this chapter.  
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Loss allocation in a deregulated power pool is different than loss allocation for bilateral 

contracts. Loss allocation in a deregulated power pool utilizing the proposed ANN is 

discussed in Chapter 6. Z-bus allocation has been utilized to derive the input-output 

vector to train the proposed neural network. The effects of transmission line failures on 

loss allocation is discussed in details in this chapter. Development of the proposed 

ANN, its architecture, selection of inputs and training issues are discussed  as well. 

Allocation results obtained from the ANN are compared with that of Z-bus allocation. 

The concluding remarks and the scope of future work are presented in Chapter 7. 
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CHAPTER 2: TRANSMISSION LOSS & ECONOMIC POWER 
SYSTEM OPERATION 

 
 
2.1 Transmission Loss in Power System Operation 

A power system consists of three essential functional areas, namely generation, 

transmission and distribution. The combination of these three entities and their 

optimized utilization is the goal of power system operation. The generation may consist 

of different types of power plants e.g. thermal, hydro, nuclear, wind, solar, geothermal. 

Start up time of these plants varies from few minutes to few days. Some responds to 

load variation quickly while others takes a lot of time to respond. Fuel cost of these 

plants also varies greatly. System operators usually want to use the available generating 

units in an optimized and efficient way.  Loads in a network vary throughout the day 

and also during various seasons. Power system operators take all these factors in 

consideration and operate their systems at lowest possible cost.  

Loads in a network follow some patterns and go high and low at different times of the 

day. Load forecast predicts the nature of the load from patterns and events from 

previous records with good accuracy. From these predictions, system operator 

determines the required number of generating unit to meet the demand; an essential 

activity of power system operation, generally known as unit commitment.  Unit 

commitment dictates the number of generating units to be in spinning condition to meet 

the demand for 24 hours. It also states the order of the units to be engaged in production 

according to the production cost of the units and starting time of the units. Production 

costs of these units depend on working principle and fuel used. For example, production 

cost of hydro units is far less than those of gas and steam turbines.   

Whatever fact lies with the production cost and working principles of the generating 

units, transmission loss plays a vital role in the decision making of how the units are 

committed and loaded. Transmission loss cannot be avoided due to fact that all 

transmission and distribution lines offer resistance to flow of current through them. 
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Some power loss occurs (i2R) during transmission of power which depends on distance, 

size of line, voltage level and flow of current (power) i.e. total system load. Sometimes 

a distant hydro power plant becomes costlier than a gas turbine near load center. 

Therefore, after predicting load for an hour, a tentative generating schedule is prepared. 

Optimum schedule is done after assessing transmission loss and considering other 

factors like voltage level, water level in hydro plants and some other factors like starting 

time and response time of the generating units. However, assessing transmission loss is 

essential to the efficient operation of a power system. 

Transmission loss consists of two components: real and reactive. Real part cost money, 

millions of dollars per year and reactive part costs voltage stability. Both of them need 

to be assessed properly for power system security and stability. AC load flow technique, 

transmission loss expressions, Kron’s formula etc are used to assess transmission loss. 

Out of these techniques, AC load flow technique is the most popular and powerful, 

since it gives all power flows, line losses and voltage level of all buses in a system. 

2.2 Transmission Loss Calculation from Load Flow Analysis 

Load flow analysis forms the heart of power system analysis. In general, load flow 

analysis solves for any unknown bus voltage and unspecified generation and finally for 

complex power flow in the network components for a given power system network, 

with known loads and some set of specifications or restrictions on power generation and 

voltages. A load flow analysis can be utilized to determine total transmission loss in a 

system as well as losses  in individual components e.g. in transformers or in lines. A 

load flow analysis provides real and reactive powers at different buses. Total 

transmission loss can be calculated from the algebraic sum of powers injected at all 

buses.  

2.2.1 AC load flow technique- Two methods of load flow analysis are mostly used in 

power system operation. They are Gauss-Seidal and Newton-Raphson methods [15]. 

Both need some input parameters for performing  analysis. Network  parameters  e.g. 

Y-bus or Z-bus is required to be calculated before proceeding a solution. Buses in a 

network are divided into three categories: swing bus, generator or PV bus and load or 
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PQ bus. Each bus is associated with four parameters: voltage magnitude, phase angle, 

real and reactive power. 

Swing bus – it is a generator bus whose voltage and angle have been specified for load 

flow analysis. The real and reactive powers are calculated to match the generation, load 

and losses. 

Generator bus – Generators are connected in these buses. The bus voltage and real 

power generation are specified and reactive power and phase angle are determined.  

Load bus – generally loads are connected in these buses. Real and reactive load of these 

buses are known and bus voltage and phase angle are calculated. 

The load flow technique actually solves a set of simultaneous non-linear equations in an 

iterative process. Gauss-Seidal method is easy to use but takes lot of iterations to give a 

solution with a specified accuracy. Newton-Raphson method converges faster than 

Gauss-Seidal method but needs matrix calculations. Due to easy calculation of matrices 

in computer, Newton-Raphson  method is widely used in load flow analysis. Since 

Newton-Raphson method has been used in this research work, only this method will be 

explained here.  The following simultaneous equations are required for a solution of 

load flow by Newton-Raphson method. 

∑
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)sin(|| δδθ  … … … (2.2) 

where, 

 Pk = real power at Bus k 

 Qk = reactive power at Bus k 

 Vk = voltage magnitude at Bus k 

 Vn = voltage magnitude at Bus n 

 Ykn = element of bus admittance matrix between buses k and n 
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 θkn = angle associated with Ykn

 δk = phase angle of Bus k 

 δn = phase angle of Bus n 

For every bus, there will be two such equations and two unknowns to be solved. The 

unknowns are real and reactive generations for swing bus; phase angle and reactive 

generation for PV bus and voltage magnitude and phase angle for load bus. The method 

starts with some initial values for the specified parameters, P and Q for every bus 

except the swing bus. Estimated values of V and δ for each bus except the swing bus are 

used to calculate the same parameters. The mismatch in power calculation originating 

from specified and calculated values are determined for each bus. For Bus k, 

∆Pk
(0) = Pks-Pkc (0)     …    ….   … … (2.3) 

∆Qk
(0) = Qks-Qkc (0) … … … (2.4) 

where the subscript k is bus number, subscripts s and c represent specified and 

calculated values respectively and the superscript represents the iteration number. From 

equations of all buses, Jacobian J is determined in following manner; 
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Equation (2.5) can be written as  
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The diagonal and off-diagonal elements of J1 are 
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)sin( jiijijj
ij

i
i

i YVVP δδθ
δ

+−=
∂
∂ ∑

≠

 … … … … (2.7) 

ijYVVP
jiijijji

j

i ≠+−−=
∂
∂ ),sin( δδθ
δ

 … … … (2.8) 

The diagonal and off-diagonal elements of J2 are 

)cos()cos(2 jiijij
ij

jiiiii
i

i YVYV
V
P δδθθ +−+=

∂
∂ ∑

≠

 … … (2.9) 

ijYV
V
P

jiijiji
j

i ≠+−=
∂
∂ )cos( δδθ  … … … (2.10) 

The diagonal and off-diagonal elements of J3 are 

)cos( jiijijj
ij

i
i

i YVVQ δδθ
δ

+−=
∂
∂ ∑

≠

 … … … … (2.11) 

ijYVVQ
jiijijji

j

i ≠+−−=
∂
∂ ),cos( δδθ
δ

 … … … (2.12) 

The diagonal and off-diagonal elements of J4 are 

)sin()sin(2 jiijij
ij

jiiiii
i

i YVYV
V
Q δδθθ +−−−=
∂
∂ ∑

≠

 … … (2.13) 

ijYV
V
Q

jiijiji
j

i ≠+−−=
∂
∂ )sin( δδθ   … … (2.14) 

Equation (2.6) can also be written in the following way 

[ ]
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆

∆
=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆

∆ −

k

k

k

k

Q
P

J
V

1

||
δ

         …. …. …. …. …. (2.15) 

Equation (2.15) is solved and errors in voltages and angles are calculated. New values 

of V and δ are estimated by subtracting these errors from the respective parameters. 

These new voltage and angles are used to calculate new bus powers using Equations 

(2.3) and (2.4). This process is repeated until mismatch at each bus goes below the 

tolerance limit.  
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2.2.2 Example of load flow analysis 

A small 3-bus network is shown in Figure 2.1 to illustrate Newton-Raphson load flow 

technique. There are two generators in Buses 1 and 2 and two loads in Buses 2 and 3. 

Buses 1, 2 and 3 are defined as swing bus, voltage control bus and load bus 

respectively. Line parameters and generator data are shown in Tables 2.1 and 2.2 

respectively. Real and reactive load at Bus 2 are 120 MW and 50 MVAR and at Bus 3 

are 250 MW and 80 MVAR. The base values used for this load flow analysis are 100 

MVA and 138 kV. 

 
Fig. 2.1: A 3-bus power system network. 

Table 2.1: Line parameters for the system shown in Figure 2.1. 

Generator A Generator B 
  Load  

Line No. From Bus To Bus Resistance (p.u.) Reactance (p.u.) 

1 1 2 0.0200 0.0400 

2 1 3 0.0100 0.0300 

3 2 3 0.0125 0.0250 

Table 2.2: Generator data 

Generating unit Maximum output (MW) Minimum output (MW) 

Generator A 450 90 

Generator B 250 30 

Line 1

Line 2 Line 3 

Bus 3 

Bus 2 Bus 1 

    Load 
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Before starting a flow analysis, voltage magnitude and phase angle of swing bus and 

voltage magnitude of voltage control buses have to be defined. Let us assume voltage 

magnitudes of Buses 1 and 2 are 1.05 p.u. and 1.04 p.u respectively and phase angle of 

Bus 1 (swing bus) is 0. To check the convergence of iteration, we will use a value for 

tolerance of 0.0001 

From line parameters, we get the line admittances    y12=10-j20,    y13=10-j30,     and 

y23=16-j32. This results in the following bus admittance matrix, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−+−+−
+−−+−
+−+−−

=
622632163010
321652262010
301020105020

][
jjj
jjj
jjj

Ybus  

Converting the bus admittance matrix to polar form with angles in radian, 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−∠∠∠
∠−∠∠
∠∠−∠

=
1737.12310.670344.27771.358925.16228.31

0344.27771.351071.11378.580344.23607.22
8925.16228.310344.23607.229029.18517.53

][ busY  

From Equations (1) and (2), the expressions for real power at Buses 2 and 3 and the 

reactive power at Bus 3 are: 

)cos()cos()cos( 322323322222
2

2122121122 δδθθδδθ +−+++−= YVVYVYVVP  

)cos()cos()cos( 3333
2

332323223133131133 θδδθδδθ YVYVVYVVP ++−++−=  

)sin()sin()sin( 3333
2

332323223133131133 θδδθδδθ YVYVVYVVQ −+−−+−−=  

Initial values of bus voltages for Bus 1,2 and 3 are 004.1,005.1 ∠∠  and . With 

these initial values P

00.1 ∠

2, P3 and Q3 in per unit quantities are: 

78.2

14.1

5616.0

)0(
3

)0(
3

)0(
2

−=

−=

=

Q

P

P

 

Loads and generations expressed in per units are 

20.0
100

120100
2 −=

−
=schP  p.u 
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50.2
100

2500
3 −=

−
=schP  

80.0
100

800
3 −=

−
=schQ  

From Equations (2.3) and (2.4) we get 

7616.05616.02.0)0(
22

)0(
2 −=−−=−=∆ PPP sch  

3600.1)14.1(5.2)0(
33

)0(
3 −=−−−=−=∆ PPP sch  

9800.1)78.2(8.0)0(
33

)0(
3 =−−−=−=∆ QQQ sch  

Therefore, matrix  of Equation (2.15) is . Using Equations (2.7)-(2.14) 

we get the Jacobian  J =  

⎥
⎦
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⎡
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∆
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⎥
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⎢
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⎥

⎦

⎤

⎢
⎢
⎢
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−
−

−−
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6400.162800.331200.55

 Using Equation (2.15), we get 

 = =  
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⎥
⎥
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⎡

∆
∆
∆
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⎥
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The corrected values are 

0217.10217.01

0479.0)0479.0(0

0362.0)0362.0(0
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=+=
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With these values of voltage magnitude and phase angle,  =  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∆
∆
∆
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⎥
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Jacobian J=  
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⎥
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⎣

⎡

−
−
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1015.244309.657994.33

2495.161972.346277.55
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In the next iteration Equation (2.15) becomes 
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After the 3rd iteration,  
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Now since the maximum error is less than the tolerance, the solution converged in three 

iterations. New values are: 

020698.1)000001267.0(0207.1

7215.20474999.0000000102.00475.0

0913.203650089.0)000000888.0(0365.0

)3(
3

)3(
3

)3(
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=−+=

−=−=+−=

−=−=−+−=

V

radian

radian
o

o

δ

δ

 

P1=2.75637 p.u. 

Q1=0.27866 p.u 

Q2=0.66681 p.u 

The load flow solution is shown in Table 2.3. 
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Table 2.3: Load flow solution using Newton-Raphson method 

Generation Load Bus Voltage 

magnitude 

(p.u.) 

Phase 

Angle 

(degree) 
Real 

(MW) 

Reactive 

(MVAR) 

Real 

(MW) 

Reactive 

(MVAR) 

1 1.0500 0.0000 275.637 27.866 0.000 0.000

2 1.0400 -2.0913 100.000 116.681 120.000 50.000

3 1.0207 -2.7215 0.000 0.0000 250.000 80.000

Total  375.637 144.546 370.000 130.000

 

2.2.3 Calculation of transmission loss from load flow analysis– Transmission loss 

can be calculated from the solved load flow analysis mentioned in Section 2.2.1. Solved 

load flow analysis gives voltage magnitude and phase angle of all buses. From these 

values current though all lines can be calculated. Current from Bus i to Bus j can be 

calculated using following equation 

Iij=Yij(Vi-Vj)  … … … …. … … (2.16) 

where Yij is the admittance of the transmission line between Bus i and Bus j. 

From known values of bus voltage and current injected in each line, power injection can 

be calculated. Line loss is the sum of power injection in a line from both sides of it. 

Power injection in a line can be determined from the following equations. 

Sij=ViIij*  … … … … … … (2.17) 

Sji=VjIji*  … … … … … … (2.18) 

SLij=Sij+Sji  ... … … … … … (2.19) 

where,  

Sij = power injection from Bus i to the line between Bus i & Bus j  

Sji = power injection from Bus j to the line between Bus i & Bus j 

SLij =power loss in the line between Bus i & Bus j 

Iij* =complex conjugate of current Iij
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Thus power loss in all lines can be calculated. Total transmission loss is the sum of 

losses in all lines.                                 

Using Equation (2.16) all line currents can be obtained. Utilizing Equations (2.17)-

(2.19), line losses can be calculated. Table 2.4 shows the line loss for the system shown 

in Figure 2.1 

Table 2.4: Line flows and losses in the network shown in Figure 2.1 

Line loss Line From 

Bus 

To 

Bus 

Real power 

(MW) 

Reactive 

power 

(MAVR) 

Real 

(MW) 

Reactive 

(MVAR) 

1 2 91.023 -17.4391 

2 1 -89.464 20.555

1.559 3.116

1 3 184.617 45.3072 

3 1 -181.339 -35.475

3.278 9.832

2 3 69.464 46.1333 

3 2 -68.661 -44.525

0.803 1.607

Total transmission loss 5.640 14.555

Transmission loss calculated from a load flow analysis is more accurate than any other 

method. Electrical utilities have been calculating transmission loss using load flow 

analyses for more than hundred years.  Before the deregulation of electric sector, load 

flow analyses were sufficient for estimating transmission loss. After the introduction of 

deregulation, it became necessary to compute transmission loss due to individual power 

transaction i.e. from a particular generator to a particular load. Load flow analyses in 

their current forms cannot be utilized to compute this type of loss. 

2.3 Transmission Loss Expressions 

A transmission loss expression is often used to compute total transmission loss in a 

system. A transmission loss expression can be derived from the relation of bus voltage, 

power and line current. Complex power Si in any Bus i is 

Si = ViIi* … … … … … … (2.20) 
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where, 

Vi = voltage at Bus i 

 Ii* = complex conjugate of injected current at Bus i 

Transmission loss is the sum of injected power at all buses. So, 

∑=+=
i

iLLL SjQPS   … … … … (2.21) 

where, 

 LS = total complex power loss 

 LP = total real power loss 

 LQ = total reactive power loss 

 = injected complex power at Bus i iS

Equation (2.21) can be written as  

[ ] [ ]*B
T

BL IVS =  … … … … … (2.22) 

where, 

 [VB] = [ZB][IB] 

 [ZB] = [R]+[jX] 

 [IB] = [Ip]+[jIq] 

 [ZB] = bus impedance matrix 

 [R] = real part of bus impedance matrix element 

 [X] = imaginary part of bus impedance matrix element 

 [Ip] = real component of injected bus current 

 [Iq] = reactive component of injected bus current 

Replacing VB and IB by their real and imaginary parts in equation (2.22), 

SL = [IB]T[ZB][IB]* 

     =  *])[]])([[]([][]([ qp
T

qp jIIjXRjII +++
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Separating real and imaginary parts, 

]][[][]][[][ q
T

qp
T

pL IRIIRIP +=  … … … … … (2.23) 

]][[][]][[][ q
T

qp
T

pL IXIIXIQ +=  … … … … (2.24) 

Injected power at any Bus i is given by, 

∗=+ ii IVjQP ii  

where, 

 )sin(cos|| iiii jVV δδ +=  

 ,    is the real part and  is the imaginary part of the injected 

        bus current 

qipii jIII += piI qiI

Therefore, 

))(sin(cos|| qipiiiiii jIIjVjQP ++=+ δδ  … … … … (2.25) 

Equating the real and imaginary parts, 

iqiiipiii IVIVP δδ sin||cos|| +=  … … … … … (2.26) 

iqiiipiii IVIVQ δδ cos||sin|| −=  … … … … … (2.27) 

Solving Equations (2.26) & (2.27) for and , piI qiI

||
sincos

i

iiii
pi V

QPI δδ +
=  

||
cossin

i

iiii
qi V

QPI δδ −
=  

The above two equations can be written in vector form as below, 

]][[]][[][ QDPCI p +=  … … … … … (2.28) 

]][[]][[][ QCPDIq −=   … … … … … (2.29) 
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where, 

 [C] = diagonal matrix with elements (cos δi /|Vi|) 

 [D] = diagonal matrix with elements (sin δi /|Vi|) 

Now putting the values of Ip and Iq in Equation (2.23), it becomes, 

]][[][]][[][ q
T

qp
T

pL IRIIRIP +=   

    =  ])][[]][]([[])][[]][([])][[]][]([[])][[]][([ QCPDRQCPDQDPCRQDPC TT −−+++

Or, 

]])[][[][]][[]([][]])[][[][]][[]([][

]])[][[][]][[]([][]])[][[][]][[]([][

QDRDCRCQPDRCCRDQ

QDRCCRDPPDRDCRCPP
TTTTTT

TTTTTT
L

++−+

+−+=
 

which can be written in the following matrix form, 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡

⎥
⎥
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pp
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where,   

  ]][[][]][[][][ DRDCRCA TT
p +=

  ]][[][]][[[][][ DRCCRDB TT
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Again, 
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The elements of are ][ pA
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jijijijipij drdcrca +=  

      = ij
ji

ji
ij

ji

ji r
VV

r
VV ||||

sinsin
||||

coscos δδδδ
+  

     = )cos(
|||| ji

ji

ij

VV
r

δδ −   … … … … … (2.31) 

The elements of are ][ pB

]][[][]][[][][ DRCCRDB TT
p −=  

jijijijipij drccrdb −=  

      = )sin(
|||| ji

ji

ij

VV
r

δδ −   … … … … … (2.32) 

Equation (2.30) can be written as  

]][[][]][[][]][[][]][[][ QAQPBQQBPPAPP p
T

p
T

p
T

p
T

L ++−=  … (2.33) 

Real and reactive power injection at any Bus i can be written as  

DiGii PPP −=   … … … … … … … (2.34) 

DiGii QQQ −=   … … … … … … … (2.35) 

where, 

 = real power injection at Bus i iP

 = reactive power injection at Bus i iQ

 = power generation at Bus i GiP

 = power demand at Bus i DiP

 = reactive power generation at Bus i GiQ

 =reactive power demand at Bus i DiQ
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From Equations (2.33), (2.34) & (2.35) 
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T
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T
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This is a standard transmission loss expression in terms of generation and demand. 

Similarly, expression for reactive power can also be obtained. In Equation (2.36) PG, 

PD, QG, QD, Ap, Bp are expressed in matrix form. 

2.4 Approximate Loss Formula 

In many applications approximate loss expressions are used instead of Equation (2.36). 

A widely known approximate loss expression, known as Kron’s loss formula is derived 

with the help of the following assumptions. 

a. linear relationship between reactive and real power of all generators, which 

can be defined by 

       GiiGiGi PfQQ += 0

b. constant generator angular position δi 

c. voltage magnitude of generator-bus is constant & 

d. a fixed demand pattern defined by the following matrices, 

      ][][ 00 GiG QcolQ =

       )(][ ifdaigF =

where,  is a constant. if

Using these assumptions, Equation (2.36) can be written as, 

00 ][]][][[ L
T
LGL

T
GL KBPBPP ++=     … … … … (2.37) 

where, 
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Equation (2.37) is known as Kron’s transmission loss equation. Derivation of Equation 

(2.37) from Equation (2.36) is shown in Appendix B.  are taken as 

constants. These values, however, do not remain constant for the entire production 

range of the generators. In spite of this, Kron’s formula can assess transmission loss 

with a fair accuracy. This formula has been used in finding the economic load dispatch 

for 24 hour generations for weekdays and weekends later in this chapter. 

00 &, L
T
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An even simpler form of transmission loss expression, known as George’s loss formula 

is often used where only an approximate estimate of the transmission loss is required. 

George’s loss formula is expressed as  

∑∑=
i j

jijiL PBPP    … … … … … (2.38) 

where  are known as loss coefficients. Use of this formula is limited due to its 

inaccuracy. Since this formula is not used in this research, it will not be discussed in 

detail. 

sBij '

2.5 Economic Power Flow Solution 

A modern power system is a very complex entity. Power system engineers face the 

challenging task of planning and operating the system in an efficient way. Economic 

dispatch ranks high among the major functions in a power industry. Economic dispatch 

is the distribution of total required power generation among the available sources for 

optimal system economy with due consideration of generation cost, transmission loss, 

and several recognized constraints imposed by the requirements of reliable service and 
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equipment limitations. Conventional economic dispatch is a static optimization 

procedure to dispatch pre-selected generating units. When excess generation capacity is 

available in a system such that an economic choice of units can be made, the set of units 

to be dispatched is normally determined by a unit commitment program. The hydro-

thermal generation economic schedule is different from the all-thermal one. The former 

involves the planning of the usage of a limited resource over a period of time. The 

resource is the water available for hydro generation. However, in this research we have 

assumed that the power system is deregulated and power pool buys power at a fixed 

cost in every hour. It eliminates the problem of hydro-thermal case. In this case, a 

power pool does not base its decision on the source of power rather concentrates on the 

cost of power.  

Economic power flow solution is an optimization problem. The target is to operate the 

system at the minimum cost. Most thermal generation cost can be described by the 

following equation [16], 

   iGiiGiii cPbPaF ++= 2

where, 

 =running cost of unit i iF

 =power generation in MW iGP

 are constant for generator I, generally known as cost parameters. iii cba ,,

In a deregulated power system, power producers do not supply the cost parameter 

information to the system operator. In most cases, price of power is determined by 

market clearing price which remain fixed for a specified period of time usually an hour. 

So, cost function becomes, 

 Gii PF β=     … … … … (2.39) 

where, 

 Fi = cost of energy for unit i 

 β = market clearing price, $/MW-hr 
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 PGi = energy in MW-hr (produced by unit i) 

Let transmission loss is defined by Ploss. Then penalty factor  for unit i can be 

expressed as:  

iPF

 

Gi

L
i

P
P

PF

∂
∂

−
=

1

1    … … … … (2.40) 

Differentiating Equation (2.39) with respect to power PGi, we get 

 β=
∂
∂

Gi

i
P
F

    … … … … (2.41) 

For economic load scheduling, 

 sysi
iG

i PF
P
F

λ=
∂
∂

   … … … … (2.42) 

where, sysλ is the incremental running cost of the system. 

2.6 Example of Economic Power Flow Solution 

For economic power flow solution for an n-bus system, Kron’s transmission loss 

formula and penalty factor Equation (2.40) have to be generalized.  Let us  consider  a 

4-bus system as shown in Figure 2.2. To calculate [Ybus ] and [Zbus], let us consider Bus 

4 as reference. Therefore, [Ybus] is, 

⎥
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Ybus    

and  [ ] 1][ −= busbus YZ

Therefore,  &  become 3x3 matrices which can be determined using Equations 

(2.31) & (2.32). 
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Now we can rewrite the equation (2.37) for 4-bus network as 
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where kxx and ux are elements of matrices [BL]and [BLO] respectively and pgx are 

generations at different buses.  

Expanding the matrices in Equation (2.43) we get 
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For an n-bus system Equation (2.44) can be written as  

 G  G 
BUS 1 BUS 2

BUS 3
BUS 4 

 G 

Fig. 2.2: 4-bus test network  
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Differentiating Equation (2.45) with respect to pgx, 
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Putting these values in Equation (2.42), 
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Equation (2.47) can be written as, 
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The sets of Equation (2.48) can be expressed in matrix form as: 
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Or,  [ ] [ ] [UPB GL = ]

]Or,   … … … … … … (2.50) [ ] [ ] [UBP LG
1−=

A particular value of λ  will satisfy the condition of power balance i.e. total generation 

will be equal to total load plus losses. These values of generation will be the optimum 

for the least cost operation of a power system.  

 

2.7 Test System 

In this research the IEEE 24-bus system [17] shown in Figure 2.3 was used as an 

example system for study. It is assumed that the system is run as a pool operation. Its 

economic power flow solution was obtained using the method mentioned in Section 2.6. 

An example of economic load flow solution for the peak hour is illustrated here. 

There are 10 generator buses and 15 load buses in this system. Line, generator & load 

parameters are shown in Tables 2.5 & 2.6. Matrices [QG0] and [F] have been determined 

using the load flow data of two consecutive hours. Transmission losses obtained from 

Kron’s formula and load flow analysis are very close, which proves the accuracy of the 

formulation of Kron’s formula. Matrices [F] and [QG0 ]are given in appendix A. 
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Table 2.5: Line parameters of the test system 

Line no. From Bus To Bus Resistance (R) 

(p.u.) 

Reactance (X) 

(p.u.) 

1 1 2 0.0026 0.0139 

2 1 3 0.0546 0.2112 

3 1 5 0.0218 0.0845 

4 2 4 0.0328 0.1267 

5 2 6 0.0497 0.1920 

6 3 9 0.0308 0.1190 

7 3 24 0.0023 0.0839 

8 4 9 0.0268 0.1037 

9 5 10 0.0228 0.0883 

10 6 10 0.0139 0.0605 

11 7 8 0.0159 0.0614 

12 8 9 0.0427 0.1651 

13 8 10 0.0427 0.1651 

14 9 11 0.0023 0.0839 

15 9 12 0.0023 0.0839 

16 10 11 0.0023 0.0839 

17 10 12 0.0023 0.0839 

18 11 13 0.0061 0.0476 

19 11 14 0.0054 0.0418 

20 12 13 0.0061 0.0476 

21 12 23 0.0124 0.0966 

22 13 23 0.0111 0.0865 

23 14 16 0.0050 0.0389 

24 15 16 0.0022 0.0173 

25 15 21 0.0063 0.0490 

26 15 21 0.0063 0.0490 

27 15 24 0.0067 0.0519 

28 16 17 0.0033 0.0259 

29 16 19 0.0030 0.0231 
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Table 2.5 (continued) 

30 17 18 0.0018 0.0144 

31 17 22 0.0135 0.1053 

32 18 21 0.0033 0.0259 

33 18 21 0.0033 0.0259 

34 19 20 0.0051 0.0396 

35 19 20 0.0051 0.0396 

36 20 23 0.0028 0.0216 

37 20 23 0.0028 0.0216 

38 21 22 0.0087 0.0678 

 

Table 2.6: Bus data for the test system 

Bus no. Bus Type Bus Voltage Bus Angle Real load (P) Reactive load 
(Q) 

1 0 1.03 0.00 1.08 0.22 

2 2 1.03 0.00 0.97 0.20 

3 1 0.00 0.00 1.80 0.37 

4 1 0.00 0.00 0.74 0.15 

5 1 0.00 0.00 0.71 0.14 

6 1 0.00 0.00 1.36 0.28 

7 2 1.02 0.00 1.25 0.25 

1 1 0.00 0.00 1.71 0.35 

9 1 0.00 0.00 1.75 0.36 

10 1 0.00 0.00 1.5 0.40 

11 1 0.00 0.00 0.00 0.00 

12 1 0.00 0.00 0.00 0.00 

13 2 1.03 0.00 2.65 0.54 

14 1 0.00 0.00 1.94 0.39 

15 2 1.03 0.00 3.17 0.64 

16 2 1.03 0.00 1.00 0.2 

17 1 0.00 0.00 0.00 0.00 

18 2 1.02 0.00 3.33 0.68 
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Table 2.6 (continued) 

Bus no. Bus Type Bus Voltage Bus Angle Real load (P) Reactive load 
(Q) 

19 1 0.00 0.00 1.81 0.37 

20 1 0.00 0.00 1.28 0.26 

21 2 1.03 0.00 0.00 0.00 

22 2 1.03 0.00 0.00 0.00 

23 2 1002 0.00 0.00 0.00 

24 1 0.00 0.00 0.00 0.00 

 

Table 2.7: Generation data for the test system 

Bus no. PGmax QGmin QGmin Vmax Vmin

1 1.92 1.20 -0.75 1.05 0.95 

2 1.92 1.20 -0.75 1.05 0.95 

7 3.00 2.70 0.00 1.05 0.95 

13 5.91 3.60 0.00 1.05 0.95 

15 2.15 1.65 -0.75 1.05 0.95 

16 1.55 1.20 -0.75 1.05 0.95 

18 4.00 3.00 -0.75 1.05 0.95 

21 4.00 3.00 -0.75 1.05 0.95 

22 3.00 1.45 -0.90 1.05 0.95 

23 6.60 4.50 -0.75 1.05 0.95 

With the bus data shown in Table 2.6, load flow studies have been performed using 

Newton-Raphson method. Detailed results of the load flow study are shown in Table A9  

in Appendix A. From the load flow study, the total transmission loss is calculated as 

51.3 MW and 422.3 KVAR. Using Equation (2.50) economic loading of generators is 

obtained which is shown in Table 2.8. With the optimum loading of generators as 

shown in Table 2.8, a load flow study shows that the total transmission loss is reduced 

to 36.4 MW and 271.7 MVAR. Details of this load flow study is shown in Table A10 in 

Appendix A.  
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  Table 2.8: Economic loading of generators 

Generator at 
Bus no. 

Real power 
generation (p.u.) 

1 4.018 

2 0.483 

7 1.007 

13 5.327 

15 1.439 

16 2.797 

18 3.904 

21 3.813 

22 0.451 

23 4.006 

Typical 24-hour load variation in the test system were considered which is shown in 

Tables A1-A8 in Appendix A. An extensive load flow studies have been performed and 

economical load dispatch were obtained using Equation (2.50). Market clearing price 

was used to find the cost of generation for every hour. Transmission loss was calculated 

using both Kron’s loss formula and load flow studies for 24 hour load conditions and 

economical load dispatches were obtained. Figure 2.4 shows reduction in transmission 

loss due to economical load dispatches for 24 hour load conditions as obtained by 

Kron’s loss formula and the load flow studies. It was assumed that the operator of the 

test system always use economical load dispatch for pool operation. 
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Fig. 2.4: Transmission loss for initial and economical load dispatch.  

 

2.8 Summary 

Transmission loss in electric power system has been discussed in this chapter. Load 

flow study and transmission loss calculations were illustrated with examples. 

Transmission loss expressions were derived. Economic power flow solutions were 

discussed. The IEEE 24-bus RTS network was utilized to illustrate economic power 

flow solution with various loading conditions.   
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CHAPTER 3: ARTIFICIAL NEURAL NETWORK 
 

3.1 Introduction 

Artificial neural networks, commonly referred to as “Neural Networks” are a different 

paradigm for computing. The motivation behind the development of neural network was 

right from the recognition that brain works in an entirely different way from the 

conventional digital computer. Although today’s computers are very fast and gained 

tremendous speed in information processing, still they are well behind the capability of 

a biological brain. For example, the sonar echo location system, of a bat. In addition to 

providing information about how far a target (i.e. a flying insect) is, a bat’s sonar 

system conveys information about the relative velocity of the target, the size and 

various features, the azimuth and elevation of the target. These complex neural 

computations needed to extract all these information from the target echo occur within a 

brain of the size of a palm. Indeed, an echo-locating bat can pursue and capture its 

target with a success rate that would be the envy of a radar or sonar engineer. To 

understand the functions of an artificial neural network, we need to know how human 

brain works. 

3.2 Biological Neural Network 

A brain is the central processing unit (CPU) of a biological neural network. The 

struggle to understand how a brain works, owes much to the pioneering work of Ramón 

Y Cajal, who first introduced the idea of neurons as structural constituents of a brain 

[18]. Human brain consists of 10 billion neurons. Figure 3.1 shows the structure of a 

brain neuron [19]. Neurons are wired up in a 3-dimensional pattern. There are about 60 

trillion synapses or interconnections between them. Much is still unknown about how 

the brain trains itself to process information, so theories abound. In the human brain, a 

typical neuron collects signals from others through a host of fine structures called 

dendrites. The neuron sends out spikes of electrical activity through a long, thin stand 
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known as an axon, which splits into thousands of branches. At the end of each branch, a 

structure called a synapse converts the activity from the axon into electrical effects that 

inhibit or excite activity from the axon into electrical effects that inhibit or excite 

activity in the connected neurons. When a neuron receives excitatory input that is 

sufficiently large compared with its inhibitory input, it sends a spike of electrical 

activity down its axon. Learning occurs by changing the effectiveness of the synapses 

so that the influence of one neuron on another changes. During early stages of 

development, about one million synapses are formed per second.   

 

 Fig. 3.1: Biological neuron [19]. 

A brain is a highly complex, nonlinear, and parallel computer. It has the capability of 

organizing neurons so as to perform certain computations (e.g. pattern recognition, 

perception, and motor control) many times faster than the fastest digital computer in 

existence today. Energetic efficiency of brain is also much better that any efficient 

computer. Brain takes only 10-16 joules per operation per second whereas the 

corresponding value for the best computers in use during 1994 was about 10-6 joules per 

operation [20]. A biological neuron may have as many as 10,000 different inputs, and 

may send its output to many other neurons [21]. It can learn from experience, and from 

the senses taken by any sensory organs. Real brains, however, many times more 

complex than any artificial neural network so far considered.  
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3.3 Mathematical Model of A Neuron 

A nerve cell, which is the building block of human nervous system including brain, is 

called a neuron. In nature, the biological neurons are involved in various complex 

sensory, control and cognitive aspects of mathematical processing and in decision 

making processes. Similarly an artificial neural network consists of many identical 

neurons. Figure 3.2 shows mathematical model of a neuron [22].  

 

3.4 Evolution of Artificial Neural Networks 

Neural network simulations appear to be a recent development. However, this field was 

established before the advent of computers. It started with the modeling the functions of 

a human brain by McCulloch and Pitts in 1943, who published a paper that describes 

the logical calculus of neural networks. The major development of neural networks 

came in 1949 with the publication of Hebb’s book The Organization of Behavior, in 

which an explicit statement of a physiological learning rule for synaptic modification 

was presented for the first time. Hebb’s book has been a source of inspiration for the 

development of computational models of learning and adaptive system.  In 1954, 

Minsky wrote a thesis on  “neural network” in his Ph.D study. In 1961, he wrote a paper 

on artificial intelligence entitled Steps Towards Artificial Intelligence. In 1954, Gabor, 
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Fig.3.2:  A mathematical model of a neuron  
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the early pioneer of communication proposed the idea of nonlinear adaptive filter. He 

tried to build a machine, in which learning was accomplished by feeding samples of a 

stochastic process into the machine, together with the target function that the machine 

was expected to produce. In 1958, Rosenbatt proposed a new approach to pattern 

recognition problem. The crowning achievements of Rosenbatt’s work was called 

perceptron convergence theorem. In 1960, Widrow and Hoff introduced least mean-

square algorithm (LMS). One of the earliest trainable layered neural networks with 

multiple adaptive elements was the Madaline (multiple-adaline) structure proposed by 

Widrow (1962). In 1965, Nilsson’s book, Learning Machines, was published, which is 

still the source for the best-written exposition of linearly separable patterns in hyper 

surfaces.  

The major problem in early research on neural network was in part technological and in 

part financial. In absence of today’s personal computer or workstations, neural network 

design and training had to be done on analog circuits. For example, Gabor developed 

his nonlinear filter, which took his research team further six years to build the filter with 

analog devices. There was not enough finance in early days to carry out research. 

However, in 1980s, with the development of personal computers, there was a 

resurgence of interests in neural networks.  

In the 1980s, major contributions to the theory and design of neural networks were 

made on several fronts. Grossberg (1980) established a new principle of self-

organization that combines bottom-up adaptive filtering and contrast enhancement in 

short-term memory with top-down template matching and stabilization of code of 

learning. Given such capability, if the input pattern and learned feedback match, a 

dynamic state called adaptive resonance takes place. This phenomenon provides the 

basis of new class of neural networks known as adaptive resonance theory (ART). In 

1982, Hopefield used the idea of energy function to formulate a new way of 

understanding the computation performed by recurrent networks with symmetric 

synaptic connections. He developed a new class of neural network with feedback, which 

is well known as Hopefield Networks. Another important development in 1982 was 

made by Kohonen. He developed a self-organizing map using one or two lattice 

structure. In 1983, Kirpatrick, Gallat and Vecchi described a new procedure called 
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simulated annealing, for solving combinational optimization problem. In 1985, Hinton 

and Sejnowski developed a learning algorithm called Boltzmann learning which uses 

Boltzmann distribution.  

In 1986, Rumelhart, Hinton and Williams developed a learning algorithm called Back 

Propagation Algorithm. Their publications “Parallel Distributed Processing” & 

“Explorations in the Microstructures of Cognition” had been a major influence in the 

use of back-propagation learning, which had emerged as the most popular learning 

algorithm for the training of multilayer perceptron. Later, back-propagation algorithm 

was modified by many researchers to increase the speed of training. Broomhead and 

Lowe, in 1988, described a procedure for the designing of layered feed forward 

networks using radial basis functions, which provides an alternative to multilayer 

perceptrons.  

Neural networks have certainly come a long way from the early days of McCulloch and 

Pitts. The 1982 paper by Hopefield and the two volume book by Rumelhart and 

McLelland were the most influential publications responsible for the resurgence of 

interest in neural network in the 1980s. Today, neural networks have established 

themselves as an interdisciplinary subject with deep roots in neuroscience, psychology, 

mathematics, physical science and engineering. Today, neural networks have been 

successfully used to solve many complicated real world problem. Current resurgence of 

interest in neural network will keep them growing in theory and applications.  

3.5 Architecture of Neural Networks 

There are wide variety of neural networks and their architectures. Types of neural 

networks range from simple Boolean networks (perceptions)  to complex self-

organizing networks (Kohonen networks). There are also many other types of networks 

like Hopefield networks, Pulse networks, Radial-Basis Function networks, Boltzmann 

machine. Although architecture of neural networks cannot be bound by definite set 

rules, there are some standard network architectures as described below. 

3.5.1 Single-Layer feedforward networks: It is the simplest type of network which 

consists of an input layer of source nodes that projects directly onto neurons of output 
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layer. There is no hidden layer in this architecture. It is strictly of feedforward type, as 

there is no feedback from output layer. Figure 3.3 shows a Single-Layer Feedforward 

network. 

  

3.5.2 Multilayer feedforward networks: A multilayer feedforward network, often 

known as Multilayer Perceptron (MLP) distinguishes itself by the presence of one or 

more hidden layers. Hidden neurons in hidden layers intervene between external input 

and the network outputs. The addition of hidden layers in MLP increases its capability 

of extracting higher-order statistics. This feature of MLP increases its capability to deal 

with high degree on non-linearity and complex situations. MLPs can be fully connected 

or partially connected. In fully connected multilayer feedforward networks, every 

neuron in each layer is connected to every other neuron in the adjacent forward layer. 

Figure 3.4 shows a fully connected multilayer feedforward network. If some synaptic 

connections between the neurons are missing, the network is termed as partially 

connected feedforward network.  Figure 3.5 shows a partially connected feedforward 

network. 

 

Input layer of 
source nodes 

Fig.3.3: Single-layer feedforward network 
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Hidden layer Output layer Input layer 
(One or more) 

Fig 3.4: Fully connected network 

 

 

3.5.3 Recurrent networks: Unlike a feedforward network, in a recurrent network there 

must be at least one feedback loop. One or more outputs of output layer are fed back to 

the input or hidden layer. It can be made up of any number of layers. If any output is fed 

back to its own input, the network is termed as recurrent network with self-feedback. 

The feedback loops involve the use of unit delay elements, which results in non-linear 

dynamic behavior. Unit delay elements are denoted by z-1. The presence of feed back 

loops in recurrent network has profound impact in learning and performance. Figure 3.6 

shows a recurrent network. 

Hidden layer Output layer Input layer 
(One or more) 

Fig 3.5: Partially connected feedforward network 
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3.5.4 Lattice Structures: A lattice structure is different from other types of architecture 

of neural networks by its arrangements of neurons and their connections. It consists of a 

one-dimensional, two-dimensional or higher-dimensional array of neurons with 

corresponding set of source nodes that supply the input signals to the array. Figure 3.7 

depicts a two-dimensional lattice of 3-by-3 neurons fed from an input layer of three 

source nodes. It is similar to feedforward network with the output neurons arranged in 

rows and columns. 

z-1

z-1

z-1

z-1

Outputs

Inputs 

Fig 3.6: Recurrent network with hidden neurons 
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3.6 Learning of Artificial Neural Networks 

The most significant property of a neural network is that it can learn from environment, 

and can improve its performance through learning. Learning is a process by which the 

free parameters of a neural network i.e. synaptic weights and thresholds are adapted 

through a continuous process of stimulation by the environment in which the network is 

embedded. The network becomes more knowledgeable about environment after each 

iteration of learning process. There are three types of learning paradigms namely, 

supervised learning, reinforced learning and self-organized or unsupervised learning. In 

supervised learning, an external teacher, having the knowledge of the environment, 

represents a set of input-output examples for the neural network which may not have 

any prior knowledge about that environment. When the teacher and the neural network 

are both exposed to a training vector drawn from environment, by virtue of built-in 

knowledge, the teacher is able to provide the neural network with a desired response for 

that training vector. The network adjusts its weights and thresholds until the actual 

response of the network is very close to the desired response. Figure 3.8 shows a 

diagram of supervised learning. 

Inputs 

Fig.3.7: Two-dimensional lattice structure of 3-by-3 neurons 
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Reinforcement learning system consists of three elements: learning element, knowledge 

base and performance element. A critic is used instead of a teacher, which produces 

heuristic reinforce signal for the learning element. State input vector goes to critic, 

learning element and performance element at the same time. With the state vector and 

primary reinforce signal from the environment as inputs, the critic (predictor) estimates 

the evaluation function. By virtue of inputs received from the environment and the 

knowledge base, the performance element determines the input-output mapping. Figure 

3.9 shows the block diagram of reinforcement learning.  

 

 

Vector describing state 
of the environment 

Environment Teacher 

Learning 
System

Error signal 

_ 
+ 

Desired 
response Actual 

response 
∑ 

Fig.3.8: Block diagram of supervised learning 

Environment            Critic 

 Performance element

   Learning element 

    Knowledge base 

State input       
vector

Heuristic 
reinforcement 

 Actions 

Primary 
reinforcement  

Fig.3.9: Block diagram of reinforcement learning system 
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In unsupervised or self-organized learning there is no external teacher or critic to 

oversee the learning process. The network representation and free parameters are 

optimized to become tuned to statistical regularities of the input data to develop the 

ability to form internal representation for encoding input data and thereby gather 

knowledge about the environment.  

There are many different kinds of learning algorithm for example, error correction 

learning, Boltzmann learning, Thorndike’s law of effect, Hebbian learning and 

competitive learning. In competitive learning the outputs of a neural network compete 

among themselves for being the one to be active whereas in Hebbian learning several 

output neurons may be active at the same time. Some other learning algorithms are: 

back propagation algorithm, conjugate gradient descent, Quasi-Newton, Levenberg-

Marquardt, quick propagation, Delta-bar-Delta, and Kohonen training. Back 

propagation algorithm is the mostly used algorithm for feedforward neural network. It is 

a supervised learning algorithm which requires a set of training data with known input 

and output vector. It uses steepest gradient descent of error which propagates backwards 

for updating the synaptic weights and thresholds. The advantage of this algorithm is the 

simplicity of calculation during weight updates. Although widely used, the back 

propagation algorithm suffers from slow rate of convergence and hence requires long 

training time for large network with large number of training patterns. However, some 

methods have been developed to overcome the slow rate of learning, for example, 

optimization of initial weights [23], adaptation of learning rate using delta-bar-delta 

learning rule [24], use of multiple activation functions [25]. Also adding a momentum 

factor, it can learn faster and can overcome local minima [26].  

Conjugate gradient descent works by constructing a series of line searches across the 

error surface. It first works out the direction of steepest descent, just as back 

propagation would do. However, instead of taking a step proportional to a learning rate, 

conjugate gradient descent projects a straight line in that direction and then locates a 

minimum along this line, a process that is quite fast as it only involves searching in one 

dimension. Subsequently, further line searches are conducted. The directions of the line 

searches (the conjugate directions) are chosen to try to ensure that the directions that 
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have already been minimized stay minimized. Quasi-Newton is the most popular 

algorithm in nonlinear optimization, with a reputation for fast convergence. It works by 

exploiting the observation that, on a quadratic error surface, one can step directly to the 

minimum using the Newton step - a calculation involving the Hessian matrix. Main 

draw backs of this algorithm is that the Hessian matrix is difficult and expensive to 

calculate and Newton step would be wrong if the error surface is non-quadratic. It 

requires a huge memory and therefore it is not advised to use it for large networks.  

3.7. Working Principles of Artificial Neural Networks 

Artificial neural network solutions are very attractive due to their simplicity and relative 

speed. Although an ANN can solve highly non-linear complex problem, its working 

principle is very simple. Working process of a fully connected multilayer feedforward 

network, shown Figure 3.10, is described here.   

Figure 

3.10  

Fig.3.10: A multilayer feedforward neural network 

The input layer is connected to an adjacent layer, typically known as a hidden layer, by 

some synaptic weights. Input neurons are activated by external input signals and these 

signals passes through the synaptic weights to the next layer. While passing through the 

synaptic weights, input signals are multiplied by the corresponding weights (Wji). All 

yjVj Wkj yK Wji

Inputs (I) 

Outputs (K) 
Hidden layers (J) 
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signals that reach a neuron of a hidden layer are summed, described by the Equation 

(3.1), and converted to the output of that neuron by some activation functions.  

∑
=

=
n

i
ijij nynwnv

1
)()()(    … … … … (3.1) 

Various transfer functions such as sigmoid, Gaussian, hyperbolic tangent, hyperbolic 

secant etc. are used as activation functions in neural networks. Sigmoid functions are 

very popular among them. A typical sigmoid function is described by Equation (3.2) 

and shown in Figure 3.11. 

01
1

vjvjj e
y +−+

=      … … … … (3.2) 

where vj0 is a threshold value, which is independent of input signal. 
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Fig.3.11. Sigmoidal transfer function  
Another widely used activation function is hyperbolic tangent function which is 

described by Equation (3.3) and shown in Figure 3.12. Outputs of a hidden layer pass to 

the next hidden layer or output layer in a similar way. The method is very fast in speed 

because of the fact that all inputs activate the input neurons at the same time (in 

parallel) and signal passes to the output layer with some manipulations by weights and 

activation functions, and output is obtained in one pass of the signals. Therefore, 

whatever complex relation exist between input and output, however large the network 

is, a trained neural network can give output in fractions of a second.  

))(*tanh()( nvbany jj =    … … … … (3.3) 
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Fig.3.12. Hyperbolic tangent function
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3.8 Testing of Artificial Neural Networks 

After design and training of an artificial neural network to solve a particular problem, 

the network should be tested to check its performance. To do this job, test patterns i.e. 

an input vector describing all possible situation of the environment is created and the 

teacher (conventional method) calculates the corresponding output vector. This input 

vector is utilized to obtain corresponding output vector using the trained neural 

network, and the output vector is compared with the actual output vector created by the 

teacher. For a properly designed and trained neural network the error i.e. the difference 

between these two output vectors will be smaller than the tolerance. The smaller the 

error, the better the performance.  

3.9 Applications 

Although research on artificial neural networks had started in early 1900s, the 

development and application were very limited before the advent of personal 

computers. Remarkable development and application of neural networks were made in 

last two decades. Today, artificial neural networks have been used in a wide variety of 

real world problems. Many complex problems that require time consuming 

computations have been solved by artificial neural networks in a simpler and faster way. 

Neural networks proved to have promising application in image processing, for 

example, identifying hand-written characters; matching a photograph of a person's face 
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with a different photo in a database; performing data compression on an image with 

minimal loss of content. Other applications are: voice recognition; language translation, 

RADAR signature analysis; stock market prediction, weather forecasting, electrical load 

forecasting, process modeling and control, machine diagnostics, portfolio management, 

target recognition, medical diagnosis, credit rating, targeted marketing, financial 

forecasting, quality control, intelligent searching, fraud detection. All of these problems 

involve large amounts of data, and complex relationships between the different 

parameters. Now a days, it has been used in control systems, protection systems and in 

many military applications. Neuro-fuzzy network proved to be promising in its use in 

control systems and robotic applications. People are trying to build artificial intelligence 

with the capacity of a human brain using neural networks. Another promising use of 

neural networks can be assisting doctors with their diagnosis by analyzing reported 

symptoms, test data, image data such as MRI, X-rays. The goal of this research is to 

develop a neural network as a tool to allocate transmission loss in a deregulated power 

system. 
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CHAPTER 4: ARTIFICIAL NEURAL NETWORK BASED 

TRANSMISSION LOSS ALLOCATION 

 

4.1 Introduction 

After the introduction of deregulation in electric power industry in early 90s, many 

power systems in the world started moving from century old vertically integrated 

regulated monopoly business to open access competitive market. The present era can be 

called a transition period for power system deregulation. In a deregulated power system 

it is necessary to assess transmission loss originating from individual transactions. 

Many energy users sign bilateral contacts with energy suppliers to avoid price 

fluctuations of an open market. In this circumstance, transmission loss has to be 

allocated to each bilateral transaction. In many cases power producers form an energy 

pool to run their operation as a single entity. In a pool operation, loss is shared by all 

participating suppliers according to a previously agreed rule or algorithm. In some pool 

systems both suppliers and consumers share loss. In this chapter the loss allocation for 

bilateral contract will be discussed. Many techniques have been reported in the 

literature and mentioned in Chapter 1 that can assess transmission loss allocation for 

bilateral contracts. Most of these loss allocation procedures involves complex 

mathematical expressions and requires time consuming computations. Incremental Load 

Flow Approach (ILFA) has almost all the desired properties of loss allocation but it 

requires time consuming computations which increase with an increase in system size. 

Artificial neural networks (ANN) have been developed and utilized in this research to 

allocate transmission loss to individual transactions. The ILFA has been used as an 

external teacher to create a set of input and output vector for loss allocation. An ANN 

has been designed and trained with those input and output vectors, and it was observed 

that it can produce results similar to those produced by the ILFA. 
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4.2 Incremental Load Flow Approach (ILFA) 

Incremental load flow approach (ILFA) uses conventional load flow study repeatedly. 

In the ILFA, a load flow program is run from load level zero to their given level for 

each load under a bilateral contract in a sequential manner. Loads are incremented by a 

small value in each iteration. Each generator is assumed to have a fixed consumer or 

load in the system and supposed to produce the power to meet the load demand of its 

customer and the associated loss. When a certain load is increased by a pre-specified 

increment, the increment in total transmission loss is calculated by load flow study and, 

the corresponding increase in transmission loss is assigned to the generator that is in 

contract with this particular consumer. When two bilateral contracts are considered, the 

load for each contract is incremented in an alternate manner and the corresponding loss 

is calculated and assigned to respective generator. For multiple contracts, the load of 

each contract is incremented in a sequential manner. 

4.2.1 Example System 

A small hypothetical system has been considered in this section for the purpose of 

numerical examples related to the allocation of transmission loss.  

The hypothetical system consists of six buses with three generators, two loads under 

normal pool operation and two contracted loads. The load under normal pool operation 

will be termed as ‘base load’ hereafter. Figure 4.1 shows the diagram of the example 

system. Generators A, B, and C are connected to Bus 1, Bus 4 and Bus 3 respectively. 

Base loads are connected to Bus 2 and Bus 5. Two contracted loads, Load A and Load 

B are connected to Bus 5 and Bus 6 respectively. Contract A exists between Generator 

A and Load A and Contract B exists between Generator B and Load B. The details of 

base and contracted loads are shown in Table 4.1 and the generation capacity of each 

generator is shown in Table 4.2.  
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Table 4.1: Load for test system 

Load Type Bus Real Load (MW) Reactive load (MVAR) 

2 110 70 System 

5 120 60 

5 80 35 Contract 

6 100 50 

  Table 4.2: Generation Capacity of the system 

Generator Pmin(MW) Pmax(MW) 

A 60 270 

B 70 220 

C 40 150 

 

Gen. A 
  ~ Load  

1  2 

3 

Gen. C
  ~ 

 Load 
  6 

Load B Load A 
  5   4 

  ~  Gen. B 
 Fig.4.1: Six bus test system with two bilateral contracts 
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It should be noted that besides the contracted loads, Generator A and Generator B 

produce energy for pool operation as well. The assumed share of Generator A & B for 

base load is shown in Table 4.3. Line parameters for the example system are shown in 

Table 4.4. 

Table 4.3: Share of generation for base load 

Generator  Real power 

generation (MW) 

Reactive power 

generation (MVAR) 

A 70 40 

B 80 35 

C Remaining load plus losses 

Table 4.4: Line data 

From Bus To Bus R(ohm) X(ohm) 

1 2 2.0 10 

1 6 3.0 11 

2 3 0.5 4 

2 5 2.0 8 

3 4 0.5 3 

4 5 2.0 8 

5 6 1.5 6 

The contracted generators are bound to supply their contracted loads and the 

corresponding share of transmission loss. The unknown at this point is the share of loss 

that an individual generator is responsible for. First, the generation and transmission 

loss will be determined by load flow analysis for the base case. The bilateral contracts 

are then imposed using the ILFA on top of the base load conditions. The contracted 

generators will be responsible for the incremental transmission loss. 
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4.3 Loss Allocation Using the ILFA 

In order to allocate transmission loss to a generator involved in a bilateral contract, total 

loss for pool operation with base load has been assessed using conventional load flow 

analysis. The base parameters are 200 MVA and 138 KV. Voltage magnitude of voltage 

control buses  are: 1.02, 1.01 & 1.01 for Bus 1, 3 & 4 respectively. For the data shown 

in Tables 4.1 to 4.4, load flow solution for normal pool operation is as follows: 

Load Flow solution for system without contract is: 

 Bus   Bus-   Voltage    Angle          ------ Generation ----         ------  Load  -------- 

 no.   type    Mag.      degree       MW         MAVR         MW         MVAR 

 1      2     1.0200    -0.1085      70.000      54.619       0.000     0.000 

 2      0     1.0002    -1.0405       0.000         0.000         110.000       50.000 

 3      1     1.0100     0.0000      81.486       38.088       0.000     0.000 

 4      2     1.0100     0.0946      80.000       24.410       0.000     0.000 

 5      0     0.9922    -1.4202       0.000       0.000           120.000      60.000 

 6     0     1.0018    -0.9430       0.000       0.000       0.000     0.000 

Total MW Generation    = 231.4858 

Total MVAR generation  = 117.1158 

Total real load MW          = 230.0000 

Total reactive load MVAR      = 110.0000 

Total real loss MW        =   1.4858 

Total reactive loss MVAR  =   7.1158 

When the contracted loads are added to the system the corresponding load flow solution 

shows that the total real loss is 6.0914 MW and the total reactive loss is 26.1049 

MVAR. The additional real loss of 4.6056 MW and reactive loss of 18.9891 MVAR 

have to be allotted to the contracted Generators A & B.  To do this an incremental 

amount of contracted load for Contract A (or B) is first added to the system and 

transmission loss is calculated using load flow technique. From the load flow solutions, 

incremental loss is calculated and assigned to the corresponding generator. Then the 

load for Contract B (or A) is increased by an incremental amount and the incremental 

loss is assigned to that generator. In this way the total contracted loads are applied and 
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the shares of loss are calculated. A problem appears at this stage is how to  select a 

swing bus in a load flow study. It was shown in reference [2] that loss allocation varies 

depending on the selection of a swing bus.  

To resolve the issue of swing bus each contracted generator bus has been utilized as a 

swing bus in an alternate manner. When Load A is increased, the bus connecting 

Generator A is used as a swing bus. Similarly, the bus connected to Generator B is used 

as a swing bus when Load B is increased. Table 4.5 shows loss allocation using the 

alternate swing bus concept. 

Table 4.5: Loss allocation using alternate swing bus 

 Contracted  
Load A  
(MW 
/MVAR) 

Contracted  
Load B  
(MW 
/MVAR) 

Share of 
Generator A 
(MW / 
MVAR) 

Share of 
Generator B 
(MW/MVAR) 

Additional  
Loss for 
contracts 
(MW 
/MVAR) 

Real 80 100 2.1300 2.4756 4.6056 

Reactive 35 50 8.3952 10.5938 18.9890 

 

4.4 Test System 

The 24-bus IEEE RTS have been utilized as a test system in this chapter. It has been 

assumed that two bilateral transactions take place in the system. The transactions are 

governed by two contracts: Contract A and Contract B. Location of contracted loads 

and generators are shown in Figure 4.2. Contract A exists between Generator A at Bus 7 

and Load A at Bus 9. Contract B exists between Load B at Bus 19 and Generator B at 

Bus 23. The line parameters of the test system are shown in Table 2.5 and the bus data 

for the peak hour is shown in Table 2.6.  

 68 
 



 

 

BUS 1 

BUS 3 

BUS 8

BUS 5

BUS 4

BUS 7BUS 2

BUS 11

BUS 15 

BUS 24 BUS 12

BUS 10BUS 9

BUS 6

 BUS 14

BUS 19
BUS 20

BUS 13

BUS 23

BUS 22BUS 21BUS 18
BUS 17 

BUS 16 

#1

  #2 

  #7 

#4

#6

#3
#9

#5

#11

#14 #17 

#15

#16

#10 

#13 

#12

#8

 #27 

    #26 
 #25 

 #24 

#18 

#21 

#35

#34 

#31 

#38 

#29 

 #19 

#30 

#37 

#36 

 #20 

 #22 

#33
#32

 #28 

#23 

G 

C 

GG 

G GG 

G 

G

G
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In this study, the IEEE 24-bus test system was slightly modified by moving the 

synchronous condenser from Bus 14 to Bus 6. This modification was necessary to 

increase the voltage stability during bilateral transactions. Load flow study showed that 

voltage at Bus 6 goes below tolerance limit (± 5%) for a small load of Contract A. With 

the addition of a synchronous condenser at Bus 6, it was possible to increase the 

contracted load up to 185 MW while maintaining the voltage stability. Loss allocation 

was studied at various loading conditions. The system has a peak load of 2494 MW.  

The load profile of California ISO [10] was utilized to produce 24-hour loads during the 

weekdays and weekends. Figure 4.3 and Figure 4.4 show the 24-hour real and reactive 

loads at various buses for a weekday.  Fig. 4.5 shows the corresponding generation at 

various generation buses. 24 hour real and reactive loads of the system for weekdays 

and weekends are shown in Table A1 to Table A8 in Appendix A.  
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Fig. 4.3:  24 hour real load at various buses on weekdays 
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Fig. 4.4:  24 hour reactive load at various buses on weekdays 
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Fig.4.5: 24 hour real power generation at various buses on weekdays 
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4.5 Proposed Neural Network 

Many types of neural networks had been developed so far for various purposes. Some 

of these neural networks have been described in Chapter 3. All artificial neural 

networks are based on the concept of neurons, connections and transfer functions, and 

there is a similarity between the different structures or architectures or neural networks. 

There is no limitation for their applications but some of them showed better 

performance in specific applications. Basically, most applications of neural networks 

fall into five categories:  prediction/ estimation, classification, data association, data 

conceptualization and data filtering. Feedforward and Self-organizing Back Propagation 

networks are suitable for estimation or prediction, Learning Vector Quantization and 

Probabilistic Neural networks for classification, Hopfield and Boltzmann Machine for 

data association, Self-organizing Map for data conceptualization and Recurring 

networks for data filtering [27]. Feed Forward Multilayer Neural networks are the most 

popular among all types of networks due to their effectiveness and ease of learning 

using back propagation algorithm. One of the significant advantages of a feed forward 

multilayer neural network is its ability to provide solutions for highly non-linear 

systems and also for systems with ill-defined problems. Transmission loss is a non-

linear function of system parameters and states. Due to this non-linearity a multilayer 

feed forward neural network structure has been utilized in this research. 

A multilayer feedforward neural network has been developed for loss allocation for the 

bilateral contracts. Inputs and outputs of the network were selected carefully so that the 

proposed network represents all possible practical situations in a power system network. 

Most independent system variables have been used as inputs to this neural network 

which in turn makes the loss allocation process responsive to practical situations. There 

are four outputs of the network which are real loss and reactive loss for contracts A and 

B. The inputs and outputs of the network are described in Table 4.6. 
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Table:4.6:  Description of inputs and outputs of ANN 

Layer Neurons Description 

I1-I2 Real load for Contracts A & B (p.u.) 

I3-I4 Reactive load for contracts A & B (p.u.) 

I5-I19 Real loads on buses (p.u.) 

I20-I34 Reactive loads on buses (p.u.) 

I35-I44 Generations on buses (p.u.) 

 

 

 

Inputs 

I45-I54 Bus voltages (p.u.) 

O1-O2 Real loss for Contracts A & B (p.u.) respectively 
Output 

O3-O4 Reactive loss for contracts A & B (p.u.) respectively 

To find the most suitable architecture for loss allocation, number of hidden layers and 

number of neurons in the hidden layers have to be optimized.  For a single hidden layer, 

the number of hidden neurons was varied from 10 to 55 and convergence characteristics 

and performance for various test patterns were observed. To speed up learning, some 

measures were taken which have been described in the following section. After 

adapting all speed enhancement techniques, the number of hidden layers and the 

number of neurons were selected based on convergence criteria and performance. These 

aspects have been described in Section 4.8. 

 4.6 Learning 

The most significant property of an artificial neural network is that it can learn from 

experience and becomes knowledgeable about the environment. Among all the learning 

algorithms, back propagation learning, more precisely described as the steepest gradient 

descent learning using back propagation of error is widely used in the learning of 

ANNs. The advantage of this algorithm is its simplicity of calculation for updating 

weights and thresholds. Hence, in this research back propagation algorithm has been 

utilized to train the proposed ANN. It is a supervised learning algorithm which requires 
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an external teacher which generates the desired output for the ANN. The ILFA has been 

used as a teacher to generate an output vector corresponding to an input vector, and 

these two vectors together termed as ‘training patterns’ have been used by the back 

propagation algorithm to train the proposed ANN.  The input vector and the number of 

training patterns have been carefully selected so that they represent almost all possible 

states of the environment.  

In classical pattern recognition, the number of training patterns should be 3-5 times 

higher than the number of features (inputs) used [27]. According to Lippmann [28], this 

number should be at least several times larger than the ratio of the number of synaptic 

weights in the network to the number of outputs.  

According to the first suggestion, minimum number of training patterns required for an 

effective training of the network is 270 (54 x 5) using the upper bound. Referring to the 

second suggestion, this number would be greater than the previous one. With 54 inputs, 

29 hidden neurons and 4 outputs, training patterns should be few times larger than 797.5 

{(54*55+55*4)/4}. If we consider a multiplication of 3 times, the number becomes 

2392. Although the higher the training samples the better knowledge and performance 

of the network, the performance of the network will tend to saturate as the number is 

increased beyond certain value and at the same time it will take more time to learn. 

However, we have selected 2600 training patterns, a number greater than both 

suggestions so that the trained ANN can give better performance with the test patterns.  

4.6.1 Derivation of weight update formula 

During learning (training), the free parameters of an ANN e.g. synaptic weights and 

thresholds are adjusted so that actual outputs of the network become closer to the 

desired outputs for the given training patterns. In a back propagation algorithm, the 

error (difference between actual output of the network and desired output) is propagated 

backwards to update the weights. To derive the weight update formula, let us consider 

the signal flows in the neural network shown in Figure 4.6. 
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Weight update for layer k (wkj) 

The error signal at output layer k can be define as 

      … … … … (4.1) kkk yde −=

The instantaneous sum of squared errors of the network can be written as  

 ∑
=

=
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k
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2
2
1      … … … … (4.2) 

where, p is the total number of neurons at output layer. According to the signal flow 

diagram shown in Figure 4.6, the net internal activity vk at any neuron in level k can be 

defined as 

    … … … … (4.3) k

n

j
jkjk ywv θ+×= ∑

=1

where, n is the total number of input to the neuron at level k and θk is threshold for that 

neuron, which is independent of input from previous layer. After somatic operation at 

level k, the output of yk is 

 )( kk vy ϕ=     … … … … (4.4) 

where φ(.) is the activation function of the neuron at level k.  

Neuron j Neuron k

dk

φj(vj)
)

yj wkj v k φk(vk) ykvjwji -1 yi ek

Fig. 4.6:  Signal flow diagram inside neural network. 
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Back propagation algorithm is implemented using gradient descent algorithm.  

Therefore, applied update of weight ∆wkj is proportional to instantaneous 

gradient . According to the chain rule this gradient can be written as kjdwE ∂∂ /
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Differentiating Equation (4.2) with respect to ek, we get 
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Differentiating both sides of Equation (4.1) with respect to yk, we get 
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Differentiating Equation (4.4) with respect to vk, 
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Differentiating Equation (4.3) with respect to wkj, 
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Using equations (4.6) to (4.9), Equation (4.5) can be written as  

 jkk
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Using error-correction learning rule or delta rule (also known as Widrow-Hoff rule) 

[24], correction to weight ∆wkj is 
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where η is a constant called learning rate constant. Equation (4.11) can be rewritten as  

 jkkj yw **δη=∆    … … … … (4.12) 

where δk is called local gradient which is defined by 
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A hyperbolic tangent function was used as an activation function. Therefore, the output 

at layer k is defined by  

 )    … … … … (4.14) *tanh(* kk vbay =

Differentiating Equation (4.14) and utilizing Equation (4.13), the local gradient δk can 

be defined by 

 )  … … ... ... (4.15) *(sec*** 2
kkk vbheba=δ

Weight correction (∆wkj ) = {learning rate(η)} . {local gradient (δk)} . {input signal of the 

neuron (yj)} 

Weight update for layer j (wji) 

For hidden neurons, there is no specified target output and therefore the weight 

correction for layer j (wji) is different from that of the output layer. Error signal for a 

hidden neuron would have to be determined recursively in terms of the error signals of 

all the neurons to which that hidden neuron is directly connected.  According to 

Equation (4.13), we may redefine local gradient for hidden neuron j as 
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Now, we define output of neuron j as 

 )( jj vy ϕ=     … … … … (4.17) 
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Differentiating Equation (4.17) we get 
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From Equations (4.16) and (4.18), we get 
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Differentiating equation (4.2) with respect to yj, we get 
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We know that error ek is: 

  kkk yde −=

     )( kk vd ϕ−=    … … … … (4.21) 

Differentiating Equation (4.21), we get 
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Also, according to signal flow diagram shown in Figure 4.6 
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where q is the number of input applied to neuron k. Differentiating with respect to yj, we 

get 
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Using Equations (4.22) and (4.23) in Equation (4.20), we get 
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From Equations (4.19) and (4.24), we can define local gradient δj as 
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Using Equation (4.13) in Equation (4.25), we get 
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Since we have used hyperbolic tangent function as an activation function, we can write 

 )*tanh(*)( jj vbav =ϕ  

Differentiating w.r.t vj, 
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Therefore, local gradient for hidden layer j is: 
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Weight correction for wji is: 
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Now, according to Figure 4.6, vj is: 
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Differentiating w.r.t wji, we get 
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Using Equations (4.16) and (4.29) in Equation (4.28), we get 

 ijji yw **δη=∆    … … … … (4.30) 

Weight correction (∆wji ) = {learning rate(η)} . {local gradient (δj)} . {input signal of the 

                   neuron (yi)} 

A problem of back propagation algorithm is that it can trap at a local minima. However, 

some methods have been developed to overcome this problem. The algorithm can 

overcome a local minimum if a momentum (a factor multiplied by previous change in 
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weight) is included in the weight update formula [26]. The weight update formula with 

a momentum is shown in Equation (4.31). Figures 4.7 and 4.8 show the effect of adding 

a momentum factor. 

 )1()()()( −∆+=∆ nwnynnw jiijji αηδ  … … … (4.31)  

where α is called momentum factor and n represents iteration number. 

 

4.7 Enhancement of Convergence Speed 

Back propagation algorithms are very popular for their simple mathematical 

calculations but at the same time well criticized for their slow rate of convergence. 

There has been a lot of successful research [23, 30-38] to enhance the convergence 

speed of back propagation algorithms. The approaches that have been used in this 

research to enhance the convergence speed are described in the following sections. 

4.7.1 Initialization of weights 

One of the approaches to speed up the training rate of a back propagation algorithm is to 

estimate the optimal initial weights. Several approaches to estimate the initial weights 

for a neural network have been reported in literature [23, 30, 33, 36, 37]. In Reference 

[23] the initial weights have been estimated in the following manner. 

The weighted sum of the inputs to the jth hidden neuron can be represented by 

∑
=
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i
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1
0 .  … … … … …  (4.32) 

Without 
momentum, 
weights would trap 
at this local

With momentum, 
weights update 
would overcome 
this local minimum 

Fig. 4.8: Weight update with  
momentum

Fig. 4.7: Weight update without  
momentum 
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where, wj0 is the threshold for jth hidden neuron, xi are the inputs and wji are the initial 

weights which are randomly distributed (uniform distribution) between –wmax to wmax. 

This approach ensures that the outputs of the hidden layers are in the active region 

while dynamic range of the activation function is fully utilized. The active region is 

assumed to be where the derivative of the activation function is one-twentieth of its 

maximum value [23]. 

The initial weights are optimized by keeping them in the active region. The activation 

function used here is  

 ,  ).tanh(.)( xbaxf =

where a=0.51 and b=0.61. With these values, the maximum value of the derivative is 

0.3111 at x=0.0 and its one-twentieth is at x=6.05. Therefore,  

05.6|| ≤ja  

If , the neuron enters in the saturation region where the derivative of the 

activation function is very small.  

05.6|| ≥ja

In order to ensure the outputs of the hidden neurons are within the active region, the 

distance between the hyperplanes P(-6.05) and P(6.05) should be greater than or equal 

to the maximum possible distance between two points in the input space. The maximum 

possible distance Din between two points of the input space is given by following 

equation [23] 
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The length of the weight vector is approximated by 
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where, E(W2) is the second moment of the weights between input and hidden layer, 

which is given by, 
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So, optimum initial weights will be random number between –wmax to wmax.
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Therefore, threshold values for active region is given by, 

∑
=

−=
N

i
ji

in
j wCw

1
0    … … … … … (4.33) 

1.00E-07

1.00E-06

1.00E-05
0 5000 10000 15000 20000

Iterations

M
ea

n 
Sq

ua
re

 E
rro

r

Random Wt
Opt_initial_wt

 
Fig. 4.9: Effect of weight initialization on convergence. 
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4.7.2 Adapting different learning rate for each weight direction 

One of the main reasons for slow convergence of a back propagation algorithm lies in 

the fact that the corrections to synaptic weights becomes very small when error tends to 

be very small i.e. error surface becomes almost flat. This slow convergence in the flat 

directions and oscillations in the steep directions can be avoided by using a different 

learning rate for each direction in weight space [38]. However, attempts to find a proper 

learning rate for each weight usually results in a trade-off between the convergence 

speed and the stability of the training algorithm. In this research, to enhance 

convergence speed, different learning rates were used in different directions of weight 

space and they were made adaptive by delta-delta learning rule [24] using the following 

recursion formula: 
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where η  is learning rate, γ  is a positive constant which determines step size, E  is error 

and Wji is synaptic weight connecting neuron i to neuron j. Figure 4.10 shows the effect 

of adaptive learning rate on the convergence of the training of the ANN. 
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Fig.4.10 Effect of adaptive learning rate. 
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4.7.3 Adapting threshold values 

Although threshold values are normally kept constant (usually -1.0), adapting these 

values with respect to error can enhance convergence speed. Threshold values have 

been made adaptive with the following formula [39]: 
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where kθ is the threshold for layer k and α  is the momentum factor and n represents 

iteration. Figure 4.11 shows that learning converges faster if thresholds are made 

adaptive using Equation (4.35). 
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Fig.4.11 Effect of adaptive thresholds 

4.7.4 Use of dual activation functions 

The loss attributed to a transaction can be positive or negative (in case of counter flow). 

This aspect can be handled by the use of a hyperbolic tangent function. It was also 

observed that the reactive part of transmission loss is 3 to 5 times that of the real part. In 

this research two activation functions, therefore, were used in the output layer for two 

different types of outputs to keep the output neurons in the active region for both real 

and reactive outputs. It was observed that the use of dual activation functions not only 
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increases the convergence speed but some times it helps to reach higher level of 

convergence accuracy which cannot be obtained by a single activation function. Figure 

4.12 shows the range of the outputs and the activation functions used in this research. 

Figure 4.13 shows the convergence characteristics for single and dual activation 

functions. 
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Fig. 4.12: Activation functions and output ranges 
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Fig.4.13: Convergence characteristics for single and dual activation function 
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4.8 Optimum Hidden Neurons 

In the previous section we observed that proper initialization of synaptic weights and 

the thresholds, adapting different learning rate for each weight direction, adapting 

thresholds and the use of dual activation functions in output layer increased the 

convergence speed in the back propagation learning. With all these learning 

enhancement techniques, different neural network architectures were studied for the 

purpose of transmission loss allocation in the test system. It was found that increasing 

the number of neurons beyond 45, neither improves convergence characteristics nor 

gives better performance with the test patterns. Similarly, the optimum number of 

neurons with two hidden layers was obtained. Figure 4.14 shows the convergence 

characteristics with respect to the number of iterations for different number of hidden 

neurons in a single layer. Figure 4.15 shows the convergence characteristics of the 

neural network with one and two hidden layers. Fig. 4.16 shows the required number of 

iterations to attain an MSE of 1.2x10-7. . Figure 4.17 shows the time required to attain 

the same level of accuracy (MSE=1.2x10-7) for different number of hidden neurons.  

Figure 4.18 shows the mean of the square errors (MSE) of the test patterns for different 

numbers of hidden layers and neurons. 

1.0E-07

1.0E-06

1.0E-05

1.0E-04
0 5000 10000 15000 20000

Iterations

M
ea

n 
Sq

au
re

 E
rro

r

H=18

H=29

H=35
H=45

H=55

 
Fig. 4.14:   Convergence characteristics for different numbers of hidden neurons in a 

single hidden layer feedforward network 
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Fig. 4.15: Convergence characteristics of proposed neural networks with one and two 

hidden layers 
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Fig. 4.16: The required number of iterations to attain a particular accuracy level  (for 

MSE =1.2x10-7) . 
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Fig. 4.17: The time required to attain same accuracy level.  
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Fig.4.18: MSE of test patterns for different ANN architecture 
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Among all network architectures considered, it was observed that the network with a 

single hidden-layer with 45 hidden neurons provided the best result in terms of speed of 

convergence and accuracy.   

 4.9 Results 

The proposed network was trained in 19701 iterations. Amplitudes of activation 

functions were 0.1116 and 0.5115 for real and reactive loss allocations respectively. A 

value of 0.61 was used for ‘b’ for both the activation functions. Learning rate (η) was 

chosen to be 0.85, momentum factor α was 0.48, step size γ for adaptive learning was 

0.85. Mean square error (MSE) was used to check convergence accuracy. A value of 

5.0E-08 was chosen for MSE to determine convergence of training. The trained network 

was tested with 838 test patterns. Test patterns were derived by varying all 54 inputs to 

simulate 24 hour load patterns on weekdays and weekends.  Results obtained from the 

ANN and ILFA show that ANN can allocate losses with good accuracy. Only a few of 

these results are shown here. Figures 4.19 & 4.20 show the real and reactive loss 

allocations respectively for an off-peak hour. Figures 4.21 & 4.22 show the real and 

reactive loss allocations respectively for a peak hour. It can be noticed that the results 

obtained from the ANN agree very closely with those obtained using the ILFA. 
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Fig. 4.19: Real loss allocations for off-peak hour on weekend 
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Fig. 4.20: Reactive loss allocations for off-peak hour on weekends 
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Fig. 4.21: Real loss allocations for peak hour on weekdays 
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Fig. 4.22: Reactive loss allocations for peak hour on weekdays 

4.10 Summary 

An ANN was developed and utilized to assess transmission loss allocation for bilateral 

contracts. The results obtained from the proposed ANN were then compared with those 

obtained using the ILFA. The IEEE 24-bus reliability test system with two bilateral 

contacts was utilized to generate loss allocations. The test system was considered to 

operate in a pool structure that had a typical 24 hour load variations from 1116.6 MW 

and 207.1 MVAR to 2494 MW and 505.7 MVAR. Loss allocations for bilateral 

contracts were studied with variable load demand from 20 MW to 185 MW. The 

proposed network was trained with little difficulty and a method was developed for 

faster training of the network. The trained ANN was tested with 838 test patterns where 

different input vectors were considered. The results obtained from the ILFA and the 

trained ANN were compared graphically. It was observed that the trained ANN can 

allocate losses to bilateral contracts with very good accuracy.   
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CHAPTER 5: LOSS ALLOCATION WITH A LINE FAILURE 

5.1 Limitations of Previously Proposed Network 

Although artificial neural network solutions are extremely fast and straightforward even 

for complex problems, it has limitations too. For example, the trained neural network 

described in previous chapter can allocate losses for bilateral contracts in milliseconds 

but cannot work if the configuration of power transmission network changes. For any 

change in the transmission network new training patterns have be generated and the 

neural network has to be retrained. Although a transmission network does not change 

frequently, its configuration changes when a transmission line becomes unavailable. A 

transmission line can be unavailable due to maintenance or failure. Bilateral 

transactions may continue even after a line failure if the failure doesn’t threaten system 

security and does not overload other lines.  Therefore, it is desirable that a loss 

allocation method should be capable of handling unavailability of transmission lines. 

The retraining due to line failures can be bypassed if the status of transmission lines are 

used as additional inputs to the ANN. An artificial neural network will be presented in 

this chapter that will work without requiring retraining when transmission line becomes 

unavailable. 

5.2 Transmission Line Outage  

Today’s power system networks are more secured than ever before and better protected 

against fault. At the same time, to secure the whole power network, more protective 

relays are used which in turn increase the tripping of transmission lines for various 

faults especially during bad weather or lightning. Moreover, a transmission line can be 

unavailable due to the failure of an equipment associated with transmission line e.g. 

transformer, breaker, relays.  4049 transmission line trips had happened in Japan from 

1990 to 2000 [40]. In Alberta, transmission lines tripped 757 times from 1997 to 2001 

[41]. Transmission lines and equipments associated with it are also taken out of service 
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for scheduled maintenance. The duration of transmission unavailability could be 

significant enough to affect the loss allocation and, therefore, should not be neglected.    

5.3 Inclusion of Transmission Line Outages  In Loss Allocation 

Since unavailability of a transmission line changes transmission loss allocation, status 

of transmission lines (available / unavailable) have been used as inputs to the proposed 

neural network to make loss allocation responsive to line unavailability. With the 

inclusion of line status, the proposed neural network will be able to allocate losses to all 

parties accurately even during a transmission line outage. Unlike other inputs e.g. loads, 

generations and bus voltages which are directly used in p.u., each line is given a binary 

status, ‘0’ if available and ‘1’ if failed.  Inclusion of transmission line status increases 

the size of the input vector and eventually increases the size of neural network. 

Therefore, instead of using the status of all transmission lines, the status of a selected 

number of transmission lines have been included in the input vector. A selection criteria 

to include transmission line status into the input vector has been developed and 

discussed in Section 5.5 

5.4 Test System 

The IEEE 24-bus reliability test system was utilized to provide numerical examples on 

loss allocation with line failures. Two bilateral contracts have been assumed to exist in 

the test system. Contract A exists between Generator A at Bus 7 and Load A at Bus 9. 

Contract B exists between Generator B at Bus 23 and Load B at Bus 19. Figure 4.2 

shows the IEEE 24 bus reliability test system. Line numbers are marked in the figure. A 

Synchronous condenser was placed at Bus 6 to increase voltage stability during bilateral 

transactions. 

The test system has 24 buses, 38 lines, 10 generation stations and 15 load buses. The 

system has a peak load of 2494 MW. 24 hour real and reactive loads are shown in 

Figure 4.3 & 4.4 and generations are shown in Figure 4.4. Line parameters are 

described in Table 2.1 in Chapter 2. 
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5.5 Selection And Grouping of Line Status to Be Used As Inputs 

The inclusion of line status, however, creates another problem. The number of inputs 

related to line status could be very high in a large system. This could increase the 

training time of the ANN tremendously. The number of inputs can be kept low by 

selecting specific transmission lines in the following manner: 

a) Status of those lines are ignored whose unavailability make the bilateral 

transactions impossible. In our test system, Generator A cannot deliver any 

power to the contracted Load A if Line 11 is unavailable. Therefore, status of 

Line 11 is not taken as an input to the neural network. 

b) Status of those lines are ignored whose failures would prompt ISO to suspend 

the bilateral transactions for reason of system security and transmission 

congestion. Load flow studies have performed on the test system to ascertain 

these transmission lines whose operations are critical for the bilateral 

transactions. Load flow studies showed that any one failure of Lines 23, 27 or 24 

during bilateral transactions would make system voltage unstable. In such a 

case, ISO would have to interrupt the bilateral transactions. Status of these lines, 

therefore, were not considered in the proposed ANN. 

c) Loss allocation does not change significantly for failure of every transmission 

line. Loss allocation studies have shown that unavailability of certain 

transmission lines have significant effect on loss allocation while the failure of 

other lines do not change loss allocation a lot. Figure 5.1 & Figure 5.2 show that 

in many cases loss allocation curves remain in the vicinity of the no-line-failure-

curve.  So the status of these lines can be ignored to reduce the number of 

inputs. Figure 5.1 shows that  unavailability of any one of the Lines 2, 6, 8, 9, 

10, 18, 19, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 36 or 38 does not change loss 

allocation significantly. On the other hand Figure 5.1 shows that unavailability 

of any one of the Lines  3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 19, 20, 22, 24, 25, 28, 30, 

31, 32 or  38 does have relatively significant effect on loss allocation. Therefore, 

the status of Lines 1, 2, 3, 4, 5, 7, 12, 13, 14, 15,  17, 27, 18, 21, 29, and 36 have 
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been used as inputs while ignoring the status of the Lines  6, 8, 9, 19, 20, 24, 25, 

26, 28, 30, 31, 32 and 38. 

d) The number of inputs could be further lowered by ignoring the status of these 

lines whose failure rates are significantly less than those of the others lines. 

e) Loss allocation studies have shown that unavailability of certain lines has 

indistinguishable effect on loss allocation.  For example, Figure 5.1 shows that 

unavailability of any of Lines 1, 7, 14, 27 has same effect on loss allocation for 

Contract A. Similarly Figure 5.2 shows that for unavailability of either Lines 7 

or 27 the loss allocation for Contract B is the same. Therefore, combining these 

two phenomena, we can group the status of Lines 7 and 27 together as one input.  
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Fig. 5.1: Real loss allocations for Contract A for unavailability of different lines 
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Fig.5.2: Real loss allocations for Contract B for unavailability of different lines. 

Based on above criteria the status of certain transmission lines have been selected as 

input to the neural network. Several load flow studies were performed to ascertain 

which transmission lines would fall into the selected group. Only single level 

contingencies were considered. This was done due to the fact that the probability of 

concurrent failure of two or more transmission lines in a system is generally very 

insignificant. Load flow studies also showed that bus voltages at some buses would go 

very near to unstable region if any one the line of 2, 3 o 7 fails. However, the voltages 

would still be in the acceptable region and, therefore, bilateral transactions may 

proceed. Based on the load flow studies it was, therefore, concluded that the status of 

Lines 1, 2, 3, 4, 5, 7, 12, 13, 14, 15, 17, 18, 21, 29 & 36 should be added to the ANN to 

represent unavailability of transmission lines. 

5.6 Proposed Neural Network Architecture 

A multilayer feedforward neural network has been proposed for loss allocation for 

bilateral contracts. The proposed network can assess transmission losses even during the 

unavailability of some selected transmission lines. The inputs to the network were 
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selected carefully so that the proposed network represents all possible practical 

situations including unavailability of a transmission line due to line failure or line 

maintenance. Most independent system variables e.g. loads, generations, bus voltages 

were used as inputs to this neural network which in turn makes the loss allocation 

process responsive to practical situations. Desired outputs of the network were real loss 

and reactive loss for contracts A & B. The inputs and outputs of the network are 

described in Table 5.1 

Table:5.1: Description of inputs and outputs of ANN 

Layer Neurons Description 

I1-I2 Real load for Contracts A & B (p.u.) 

I3-I4 Reactive load for contracts A & B (p.u.) 

I5-I19 Real loads on buses (p.u.) 

I20-I34 Reactive loads on buses (p.u.) 

I35-I44 Generations on buses (p.u.) 

I45-I54 Bus voltages (p.u.) 

 

 

 

Inputs 

I55-I69 Line status of selected lines 

O1-O2 Real loss for Contracts A & B (p.u.) respectively 
Output 

O3-O4 Reactive loss for contracts A & B (p.u.) respectively 

 

To find the most suitable architecture for loss allocation, the number of hidden layers 

and the number of neurons in them had to be optimized. The optimal number of hidden 

neurons depends on: (i) the number of input and output variables, (ii) the number of 

training records, (iii) the amount of noise in the output variables, (iv) the complexity of 

the relationship between input and output variables, and (v) the type of transfer 

functions. Since there is no ‘rule of thumb’ to determine the optimal number of hidden 

neurons [42], we approached this problem by repeatedly training neural networks with 

different numbers of hidden neurons and identifying the optimal number of hidden 
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neurons from those that yielded the best convergence characteristics and lowest mean 

square error for the test patterns. However, for single hidden layer, the optimum number 

of hidden neurons lies between n to 2n, where n is the number of inputs [43]. With 

several trials it was found that the network with 89 hidden neurons has the best 

performance. Figure 5.3 shows convergence characteristics for different number of 

hidden neurons. 
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Fig. 5.3: Convergence characteristics for different number of hidden neurons. 
 

Therefore, the proposed artificial neural network is a feed forward neural network 

which consists of three layers; an input layer, a hidden layer and an output layer. There 

are 69 inputs  and 4 outputs as described in Table 5.1 and 89 hidden neurons in a single 

hidden layer.   

5.7 Training  

The proposed network was trained with a supervised learning algorithm. Among all 

supervised learning methods, back propagation algorithm is widely used for its 

simplicity. Although Quasi-Newton method has fast convergence characteristics, it 
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requires calculation of Hessian matrix for each iteration which becomes a complex task 

for large neural network. Therefore, back propagation algorithm was utilized to train the 

proposed network. Incremental Load Flow Approach (ILFA) had been used as a teacher 

to train the proposed network. Using this method, 5187 training patterns and 1840 test 

patterns were generated with all possible variation of inputs. 24 hour load patterns for 

weekdays and weekends were considered for generation of training and testing patterns. 

Bus voltages were varied from 1.01 to 1.05 p.u. and ±5% voltage tolerance were 

considered for all buses. Contracted loads were varied from 20 MW to 185 MW for 

both contracts. Training was conducted on a personal computer (Intel Pentium 4, 3.0 

GHz)  with Windows XP platform. Visual FORTRAN software was utilized for the 

training and testing of the network. 

To enhance convergence speed, all the techniques discussed in Section 4.7 had been 

utilized in this case as well. However, due to the inclusion of transmission line status, 

non-linearity of training patterns increased as can be observed in Figure 5.1 & 5.2. It 

can be observed that the unavailability of a transmission line which makes only a small 

change in the input pattern, makes a significant change in the output. To make the 

network more dependent on transmission status, the number ‘5’ was used instead of ‘1’ 

as input to represent the unavailability of a line. The availability of transmission line 

was denoted by ‘0’ as before. This gave a faster convergence which is shown in Figure 

5.4. Other values for line status were tried but the use of number ‘5’ to denote failure of 

line gave consistently better convergence. 
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Fig. 5.4: Convergence characteristics for change in line status inputs. 

Since the sum of the square of errors (SSE) changes with a change in the number of 

training patterns, the mean square error (MSE) was used to check the convergence of 

training. A value of 0.8 x10-8 was chosen for MSE. The initial learning rate (η) was 

chosen as 0.85, momentum factor α was chosen as 0.48 and the step size γ for adaptive 

learning was chosen as 0.85. A value of 0.61 was chosen for ‘b’ for the activation 

function. Two amplitudes, 0.13 and 0.51 were used for the activation functions. 0.13 

was utilized for the real loss allocation and 0.51 was utilized for the corresponding 

reactive loss allocation.  

5.8 Results 

The trained network was tested with 1840 test patterns. Test patterns were generated 

with all possible variations in inputs. 24 hour load variation for weekdays and weekends 

were considered and the bus voltages were varied from 1.01 p.u. to 1.04 p.u. Contracted 

loads were varied from 20 MW to 185 MW for each contract. Unavailability of selected 

lines was considered. Loss allocations for all test patterns were obtained by both ILFA 

method and the trained neural network. Comparison of some loss allocations are shown 

in Figures 5.5 to 5.16  
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Figure 5.5 and 5.6 show real and reactive loss allocations respectively for the peak hour 

with no line failure. The system load at the peak hour is 2494 MW. The loads for 

Contracts A and B were varied from 20 MW to 185 MW simultaneously.  
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Fig. 5.5: Real loss allocation for a peak hour when all lines are available. 
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Fig. 5.6: Reactive loss allocation for a peak hour when all lines are available. 
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Figures 5.7 and 5.8 show real and reactive loss allocation for an off-peak hour when all 

lines are available. The system load at this hour was 1166 MW and 207.1 MVAR. 
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Fig. 5.7: Real loss allocation for an off-peak hour when all lines are available. 
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Fig. 5.8: Reactive loss allocation for an off-peak hour when all lines are available. 
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Figures 5.9 and 5.10 show real and reactive loss allocations respectively during the 

failure of Line# 1 when the system load was 2494 MW and 505.7 MVAR. 
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Fig. 5.9: Real loss allocation for a peak hour during failure of Line # 1. 
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Fig. 5.10: Reactive loss allocation for a peak hour during failure of Line # 1. 

Figures 5.11 & 5.12 show real and reactive loss allocations during the failure of Line# 4 

when the system load was 2494MW and 505.7 MVAR. 
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Fig. 5.11: Real loss allocation during failure of Line# 4 
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Fig. 5.12: Reactive loss allocation during failure of Line # 4 

Figures 5.13 & 5.14 show real and reactive loss allocations respectively for an off-peak 

hour when Line# 2 was unavailable. The system load at this hour was 1221 MW and 

226.6 MVAR.   
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Fig. 5.13: Real loss allocation for off-peak hour during failure of Line # 2 
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Fig.5.14: Reactive loss allocation for off peak hour during failure of Line # 2 

Figures 5.15 & 5.16 show real and reactive loss allocations respectively during the 

failure of Line # 7 when the system load was 2420 MW and 420.9 MVAR. 
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Fig.5.15: Real loss allocation during failure of Line # 7 
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Fig.5.16: Reactive loss allocation during failure of Line # 7 

It was noticed in Figures 5.5 to 5.16 that the results obtained by the trained ANN are in 

good agreement with the results obtained using the ILFA even during the failure of a 

transmission line. 
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5.9 Summary 
In the previous chapter it was shown that the proposed ANN can allocate transmission 

losses for bilateral contracts in a deregulated power system. The ANN however, does 

not work if there is any change in the power system network due to the unavailability of 

a transmission line. In this chapter a modified ANN was presented that work even 

during the unavailability of a transmission line.  To accomplish this, the status of the 

transmission lines had been used as inputs to the ANN. 

Transmission loss allocations were computed by utilizing the ILFA and the proposed 

ANN. Two bilateral contracts were considered for the IEEE 24-bus reliability test 

system that consists of 10 generator buses, 15 load buses and 38 transmission lines. The 

status of selected transmission lines were utilized as inputs to the proposed ANN. The 

system operates as a pool with typical 24 hour load variations from 116.6 MW and 

207.1 MVAR to 2494 MW and 505.7 MVAR. Loss allocations for bilateral contracts 

were assessed with variable load demand from 20 MW to 185 MW. Transmission losses 

were allocated to two bilateral contracts for 1840 test patterns utilizing both the ILFA 

and the trained ANN. Results obtained from both methods were compared graphically 

in Figures 5.5 to 5.16. It can be easily inferred from those figures that the trained ANN 

could allocate losses to bilateral contracts with very good accuracy.   
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CHAPTER 6: LOSS ALLOCATION IN A POOL DISPATCH 

 

6.1     Introduction 

Deregulation has brought many different market configurations in the electricity 

business.  Transaction of electric energy may take many forms, like bilateral contracts, 

power exchange or power pool. Power pool is the most common form of market due to 

its simple structure. Generating utilities or IPPs and customers both bid for selling and 

buying power at the power pool. In some power pool, ISO or RMO allocates 

transmission loss to both buyer (load) and supplier (generator) in a previously agreed 

upon procedure. In other jurisdictions, the system operator allocates the losses to 

supplier (generator) only.  In both cases, allocation of transmission loss is a complex 

task due to the fact that transmission loss is a non-linear and non-separable entity.  

However, in the absence of a closed form solution for this problem, different electric 

utilities use different methods for loss allocation in a pool dispatch. Alberta Electric 

System Operator (AESO) uses marginal loss approach [44], Brazilian System Operator 

(ONS) uses linear approximation of line losses [45] and power pool of Mainland Spain 

and England use pro rata technique [6]. Some other methods are: (i) proportional 

sharing; (ii) incremental loss coefficient; (iii)  z-bus allocation; (iv) average loss 

calculation method; (v) location-specific pricing; (vi) opportunity cost pricing.  

Electrical energy cannot be stored directly and mass storage in other forms like 

chemical form (dc battery), potential energy (pump hydro generation) or compressed 

gas form involves enormous amount of money and requires huge generation capacity to 

reproduce electricity from stored energy.  Due to this fact electrical energy has to be 

consumed as it is produced and therefore all decisions related to the production of 

electricity have to be made instantly. If a generator has to produce contracted load and 

corresponding transmission loss, it has to know its share of transmission loss at every 

instant. Unfortunately most of the methods of loss allocation mentioned above involve 
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complex mathematical operations and require huge computation time. In this chapter, 

an Artificial Neural Network (ANN) is proposed that can be used as a tool that can 

assess loss allocation in a power pool. The proposed ANN has been illustrated with 

numerical example and its results have been compared with parent method of loss 

allocation. In this chapter Z-bus allocation method has been selected as a teacher for the 

ANN. The ANN was trained and tested with the IEEE 14-bus test system.      

6.2 Z-bus allocation 

The goal of any loss allocation method is to take a solved power flow and 

systematically distribute the system transmission losses to all participating generators 

and loads. Z-bus allocation uses bus impedance matrix and injected bus current and 

allocate the system losses to all the buses. If a bus contains both generator and load, 

then the loss allocated to that bus is divided among the generator and the load using pro 

rata technique. Z-bus allocation is concerned with net real power injection at buses and 

total real power loss of the system.  

Let Ploss = total system loss (real) 

      n      = total number of buses 

      Lk   = real loss allocated to Bus k 

       … … … … (6.1) ∑
=

=
n

k
kloss LP

1

To calculate Lk according to Z-bus allocation method, let us consider the network 

admittance matrix,  

jBGY +=      … … … … (6.2) 

Inverting Equation (6.2) we get Z-bus matrix as follows: 

jXRYZ +== −1     … … … … (6.3) 

Since total system loss is the sum of power injections at all buses, Ploss can be found as:  

*
1

kk

n

k
lossloss IVjQP ∑

=
=+        … … … … (6.4) 
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where Qloss= reactive component of the system loss 

Therefore the real part of the system loss is  
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Since matrix X is symmetric, the 2nd term of Equation (6.7) becomes zero. So, 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
ℜ= ∑∑

==

n

j
jkj

n

k
kloss IRIP

11

*     … … … (6.8) 

From Equations (6.1) and (6.8), Lk can be expressed as  
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If both demand, Pdk, and generation, Pgk, exist in the same Bus, k, then loss component 

Lk is further divided among the two using Pro Rata technique.  

Let 
dkgk

gk
k PP

P
−

=γ      … … … (6.10) 

Generator’s share of loss component Lk is kk Lγ  and load’s share is  kk L)1( γ−
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6.3 Test system 

The IEEE 14-bus network shown in Figure 6.1 was utilized as a test system to illustrate 

numerical example on Z-bus allocation. The system has loads on 13 buses, generations 

on 2 buses and synchronous condenser on 3 buses.  Line data for the system are shown 

in Table 6.1. Two cases were considered for the system. First, the system was studied 

with load and generation data as shown  in Table 6.2 which was taken from Reference 

[7] and later the system was studied with typical 24 hour load patterns for weekdays and 

weekends.  

 

 

    

 

 BUS 1 

 BUS 9  BUS 7  BUS 6 

 BUS 4  BUS 5 

 BUS 3   BUS 2
G G SC 

SC 

      BUS 8
SC

 BUS 13 BUS 12 BUS 11

  BUS 10  BUS 14

Fig. 6.1: The IEEE 14-bus network 
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     Table 6.1: Line parameter for the 14-bus IEEE network  

u.) B (p.u.) Line No. From bus To bus R (p.u) X (p.

1 1 2 0.0194 0.0592 0.0528 

2 1 5 0.0540 0.2230 0.0528 

3 2 3 0.0470 0.1980 0.0438 

4 2 4 0.0581 0.1763 0.0374 

5 2 5 0.0570 0.1739 0.0340 

6 3 4 0.0670 0.1710 0.0346 

7 5 4 0.0134 0.0421 0.0128 

8 4 7 0.0001 0.2091 0 

9 4 9 0.0001 0.5562 0 

10 5 6 0.0001 0.2520 0 

11 6 11 0.0950 0.1989 0 

12 6 12 0.1229 0.2558 0 

13 6 13 0.0662 0.1303 0 

14 7 8 0.0001 0.1762 0 

15 7 9 0.0001 0.1100 0 

16 9 10 0.0318 0.0845 0 

17 9 14 0.1271 0.2704 0 

18 10 11 0.0820 0.1921 0 

19 12 13 0.2209 0.1999 0 

20 13 14 0.1709 0.3480 0 
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            Table 6.2: Load and generation data for the 14-bus IEEE system [3] 

Generation Load Bus no. 

Real (p.u.) Real (p.u.) Reactive (p.u.) 

1 2.236 0.000 0.000 

2 0.040 0.217 0.127 

3 0.000 0.942 0.190 

4 0.000 0.478 0.039 

5 0.000 0.076 0.018 

6 0.000 0.112 0.075 

7 0.000 0.000 0.000 

8 0.000 0.010 0.000 

9 0.000 0.295 0.166 

10 0.000 0.090 0.058 

11 0.000 0.035 0.018 

12 0.000 0.061 0.016 

13 0.000 0.135 0.058 

14 0.000 0.149 0.050 

 

The data for a typical 24-hour load variation were taken from California ISO [10]. The 

system load was varied from 149.4 MW and 43.2 MVAR to 303.3 MW and 90.6 

MVAR. 24-hour real and reactive loads on different buses of the system for weekdays 

are shown in Figures 6.2 and 6.3. Base quantities were 138 KV and 100 MVA. Bus 

voltage magnitudes of voltage control buses for the first case were (in p.u.): V1=1.060, 

V2=1.045, V3=1.010, V6=1.070, V8=1.090. In the second case, voltage magnitudes 

of all voltage control buses were varied from 1.020 p.u. to 1.080 p.u. 
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Fig.6.2: 24 hour real loads on different buses for the test system on weekdays 
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Fig.6.3: 24 hour total reactive loads on different buses for the test system on weekdays 
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6.4 Proposed Artificial Neural Network 

A feed forward neural network was developed to allocate transmission losses to 

generators and loads for the test system in the context of a deregulated pool dispatch. 

The proposed network was trained with training patterns obtained using Z-bus 

allocation technique. The architecture of a neural network is partly fixed by its inputs 

and outputs and partly by the number of hidden layers and the number of neurons in it. 

Since the test system described in Section 6.3 has 14 buses, and we are only concern 

with the real parts of losses, the proposed ANN has 14 outputs corresponding to the real 

losses for 14 buses. Almost all system variables of the test system were utilized as input 

to the neural network to make the ANN responsive to all practical situations. All real 

and reactive loads and real generations at all buses and voltage magnitudes of the 

voltage control buses were used as inputs to the neural network. Other than the 

operational variables of the test system, transmission line status (whether line is 

available or failed) was also used as inputs to the ANN. To keep the size of the ANN 

manageable, only status of those transmission lines were selected that fall into the 

category described in Section 5.5. To do this selection, load flow analyses and loss 

allocation using Z-bus method were performed for each transmission line contingency. 

Status of some transmission lines were ignored if their unavailability makes the bus 

voltage unstable. Transmission Line #1 falls into this category. Status of some 

transmission lines were also ignored whose failures have insignificant impact on loss 

allocation. Unavailability of transmission Lines 5, 9, 11, 12, 16, 17, 18, 19 were ignored 

for this reason.  Two more transmission line (Lines14, 20) status were not considered as 

inputs due to the fact that some loads could not be supplied without those lines. 

Therefore, the status of the remaining transmission Lines 2, 3, 4, 6, 7, 8, 10, 13 and  15 

were used as inputs to the network. The proposed neural network has 42 inputs and 14 

outputs which are described in Table 6.3. 
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Table 6.3: Description of inputs and outputs of ANN for loss allocation for pool 

dispatch 

Layer Neurons Description 

I1-I2 Real power generation (p.u.) 

I3-I7 Bus voltage magnitude (p.u) 

I8-I20 Real loads (p.u.) 

I21-I33 Reactive load (p.u.) 

 

 

Input 

I34-I42 Status of transmission lines 

Output O1-O14 Real loss allocation for buses 

 

A single layer of hidden neuron was considered due to its simplicity of weights and 

threshold updates. Since there is no ‘rule of thumb’ to determine the optimal number of 

hidden neurons [34], this task was approached by repeatedly training the neural network 

with different number of hidden neurons and identifying the optimal number of hidden 

neurons from the one that yielded the best convergence characteristics and lowest mean 

square error for the test patterns. However, for a single hidden layer, the optimum 

number of hidden neurons lies between n to 2n, where n is the number of inputs [43]. 

With several trials it was found that the network with 67 hidden neurons has the best 

performance. Figure 6.4 shows convergence characteristics for different number of 

hidden neurons. Hyperbolic tangent functions were used as activation functions for 

hidden and output layers. A hyperbolic tangent function can be easily matched the 

output by simply changing its amplitudes.  
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Fig. 6.4: Convergence characteristics with different number of hidden neurons. 

 

6.5 Learning and Testing of ANN 

The proposed ANN was trained with steepest descent supervised learning algorithm 

while the Z-bus allocation method was used as a teacher. Because of its simplicity of 

weight updates, back propagation was utilized to train the network. 2800 training and 

506 testing patterns were generated utilizing Z-bus allocation for the training and testing 

of the ANN. In order to generate test patterns, load and generation at all busses were 

varied according to the 24 hour load patterns on weekdays and weekend, and the 

voltage magnitudes at the voltage control buses were varied from 1.03 to 1.09.    

During the training it was observed that with a single activation function, learning does 

not converge to a good accuracy level. It was also observed that the loss allocation for 

Bus 1 is about 3500 times than that of Bus 7, about 312 times that of Bus 8, and about 

89 times that of Bus 5 & 11. Therefore, with a single activation function, adjustment of 

weights to match target outputs became difficult. Therefore, the outputs were 

categorized in 9 different levels according to their maximum values. Accordingly nine 

activation functions were used in the output layer. The amplitudes of these 9 activation 

functions were 0.25 for Output 1 (for Bus 1), 0.16 for Output 3, 0.06 for Output 6, 0.025 
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for Output 4 & 9,  0.012 for Output 13 & 14, 0.006 for Output 2, 10 &12, 0.0028 for 

Output 5 & 11, 0.0008 for Output 8 and 0.00007 for Output 7. Although in Reference 

[7] the load in Bus 7 was considered zero, a small amount of real load was considered in 

some hours in a 24-hour load pattern. Therefore, very small amount of loss was 

allocated to this bus. Using nine activation functions in the output layer, the MSE 

converged to 3.5 x 10-8 in 46026 iterations. Figure 6.5 shows convergence 

characteristics with single and nine activation functions. 

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01
0 2000 4000 6000 8000 10000 12000 14000

Iterations

M
ea

n 
sq

au
re

 e
rro

r

Nine AFs
Single AF

 

Fig. 6.5: Convergence with single and nine activation functions 

A value of 0.61 was used for ‘b’ in all activation functions used in the hidden and the 

output layers. 0.25 was chosen as the amplitudes for the activation function used in the 

hidden layer. A value of  3.5x10-8 was used as a target for MSE to check for the 

convergence. Other selected parameters for the neural network were: initial learning 

rate (η) = 0.85, momentum factor (α) = 0.48 and step size (γ )  = 0.85.  

Outputs of test patterns obtained from the trained ANN and Z-bus allocation method 

were compared. Unavailability of lines was simulated to check the performance of the 

trained ANN during the failure of a line. Table 6.4 shows loss allocation for the given 
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data in Reference [7]. Columns 2 and 3 of Table 6.4 show the loss allocation obtained 

from Z-bus allocation and the trained ANN respectively for all 14 buses when all lines 

were available.  

 Table 6.4: Loss allocation for given data in Reference [7] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From Table 6.4, it can be easily noticed that loss allocation for Buses 1, 3, 4, & 9 are 

much greater compared to other buses. Therefore, these buses were chosen to compare 

loss allocation between Z-bus and the proposed ANN at different hours of the day with 

different configuration of the network due to the unavailability of transmission lines. 

Figure 6.6 shows loss allocation by Z-bus and the ANN for selected buses (Buses 1, 3, 

4, 9) when all transmission lines were available. 

 

Bus 
No. 

Z-bus loss 
allocation 

(p.u) 

Neural network loss 
allocation 

(p.u.) 
1 0.0771 0.0772 
2 0.0014 0.0017 
3 0.0284 0.0275 
4 0.0087 0.0086 
5 0.0007 0.0008 
6 0.0041 0.0040 
7 0.0000 0.0000 
8 -0.0004 -0.0002 
9 0.0057 0.0058 
10 0.0019 0.0020 
11 0.0006 0.0006 
12 0.0010 0.0011 
13 0.0027 0.0028 
14 0.0047 0.0043 
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Fig. 6.6: Loss allocations for Buses 1, 3, 4, 9 when all lines are available 

Figures 6.6-6.10 show loss allocations during the unavailability of different 

transmission lines. 
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Fig. 6.7: Loss allocations for Buses 1, 3, 4 & 9 during the failure of Line 2 
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Fig. 6.8: Loss allocations for Buses 1, 3, 4 & 9 during the failure of Line 4 
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Fig. 6.9: Loss allocations during the failure of Line 7 
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Fig. 6.10: Loss allocations during failure of Line 8 

From Table 6.4 and Figures 6.6-6.10, it is evident that Bus 1 is responsible for more 

than 55% of the transmission loss. Therefore, loss allocation for Bus 1 obtained by both 

Z-bus and the proposed ANN were investigated for all possible line failures and the 

results are shown in Figure 6.11. 
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Fig.6.11: Loss allocation for Bus 1 for different line failures 
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Table 6.4 shows that proposed neural network can be utilized to allocate losses in a pool 

dispatch as well. Figures 6.6-6.11 show that the proposed ANN is very accurate in loss 

allocation under different loading conditions even when a transmission line is 

unavailable.   

6.6 Summary  

In Chapters 4 & 5, it was shown that artificial neural network can be utilized to allocate 

transmission losses to bilateral contracts in a deregulated power system. In this chapter  

transmission loss allocation in the context of a pool dispatch was presented. An ANN 

was developed, trained and tested to allocate losses to generators and loads in a pool 

dispatch. The IEEE 14-bus system was considered as test system to provide numerical 

examples. First, Z-bus allocation was utilized to allocate real part of the transmission 

loss to generators and loads. Using Z-bus allocation as a teacher, an ANN was 

developed and trained to do the same job. The ANN was developed in such a way that it 

can allocate transmission loss even during the unavailability of a transmission line. The 

proposed ANN was tested with 506 test patterns which were developed considering all 

possible variation of the independent variables of the test system. Loss allocations for 

the test patterns were computed by both Z-bus and the trained ANN and results were 

compared. Results obtained from both methods show that proposed ANN can allocate 

transmission losses to generators and loads with good accuracy. All selected 

transmission lines were made unavailable one at a time to check whether the proposed 

ANN can work during the failure or shut down of line. Study showed that the trained 

ANN can work without any modification during the failure of transmission line. 

Although Z-bus allocation was utilized to generate training and testing patterns and the 

loss allocation computed by the trained ANN matched very closely to those obtained by 

Z-bus allocation, any other allocation procedure agreed upon by all stack holders can be 

utilized for this purpose and the proposed ANN can be trained accordingly.   
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CHAPTER 7: CONCLUSIONS 
 
 
7.1 Conclusions 

A new transmission loss allocation tool based on artificial neural networks has been 

developed. The proposed artificial neural networks can simulate transmission loss 

allocation determined by Incremental Load Flow Approach (ILFA) and Z-bus allocation 

techniques. For loss allocations to bilateral contracts, the ILFA was used as a teacher to 

train the proposed neural network. The developed ANN was tested with the 24-bus 

IEEE reliability test system with two bilateral contracts. Results obtained from the 

ILFA and the proposed ANN was compared for various loading conditions. It was 

found that the proposed ANN can allocate transmission loss to bilateral contracts with 

good accuracy. The ANN was designed to handle loss allocation even under single 

transmission contingency provided the contingency does not threaten voltage stability 

during the bilateral transaction. The proposed ANN can be trained with little difficulty 

for large power system network. The trained ANN can provide solution in a quick 

manner.  The proposed ANN can yield negative loss allocation to reward generators or 

loads that cause counter flow in the network.  Although the ILFA was utilized to 

generate training data, any other method of loss allocation can be utilized for that 

purpose. 

A major disadvantage of a neural network is that it is depended on the architecture of a 

power system network. Its configuration would change whenever a transmission line 

becomes unavailable due to maintenance or line failure. As a consequence, the ANN 

has to be retrained. To avoid retraining, an ANN was developed to handle the 

unavailability of a transmission line. To accomplish this objective, transmission line 

status (available /unavailable) was added to the input vector of the neural network. With 

the inclusion of line status, the developed ANN was able to allocate losses to all parties 

accurately even during a transmission line outage. Unlike other inputs e.g. loads, 

generations, bus voltages which are directly used in p.u., each line was given a binary 

status, ‘0’ if available and ‘1’ if failed. Inclusion of line status in the input vector, 
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however, created another problem. The number of inputs related to line status could be 

very high in a large system. This could increase the training time tremendously. 

Extensive loss allocation studies proved that only a few transmission line outages had 

significant impact on loss allocation. A selection criterion for line status input was 

developed to identify these lines and to keep the size of the neural network manageable. 

The status of a line was selected as input if its failure had significant impact on loss 

allocation but did not threaten system voltage stability nor made the bilateral transaction 

impossible.  Only single level contingency was considered as the probability of two line 

failures at the same time is negligible. The proposed ANN was developed and tested 

with the IEEE 24-bus Reliability Test System. The results showed that the developed 

ANN can allocate real and reactive parts of transmission loss with good accuracy. The 

training and testing patterns were obtained using the ILFA method. The results obtained 

from the developed ANN were in good agreement with those obtained using the ILFA. 

Therefore, an ANN can be used to simulate the loss allocations obtained using the 

ILFA. The ANN provides results in fast and convenient manner with less mathematical 

complexity.  

In a pool operation, the principle of transmission loss allocation is different than that of 

bilateral contracts. One of the main objectives of a pool operation is to minimize the 

operating cost. When the price of energy is set by market clearing price i.e. every 

suppliers get same price for per unit of energy they supply, the load scheduling is done 

in such a way that transmission loss is minimized. In a pool operation, transmission loss 

can be allocated to generators or to both the generators and consumers. In this research, 

the later topology was used for loss allocation. An artificial neural network was 

developed and trained to assess the share of loss for each generator and consumer. A 

feed forward architecture has been chosen for the ANN and the network was trained 

using back propagation algorithm with enhanced learning technique. Z-bus allocation 

method was used as a teacher. Since only real part of transmission loss is allocated by 

the Z-bus allocation method, the output of the developed ANN was designed to provide 

only real part of transmission loss as well. To make the ANN capable of handling 

transmission line outage, the status of selected transmission lines were included in the 

input vector of the ANN. The selection criteria developed in Section 5.5 were used to 

 125 
 



 

keep the size of the ANN manageable. Enhanced learning techniques proved that the 

ANN could be trained with little difficulty. The developed ANN was tested with typical 

24 hour load variation for weekdays and weekends considering transmission line outage 

on the IEEE 14-bus Reliability Test System. Results obtained from the Z-bus allocation 

method and the developed ANN showed that the ANN can allocate losses to generators 

and loads with very good accuracy. Although the Z-bus allocation method was used a 

teacher to train the neural networks any other allocation method can be used to train the 

ANN.    

Neural networks are usually trained with a huge number of training patterns. It is, 

therefore, important to speed up the learning process of ANNs. In this research two 

techniques were developed to enhance convergence speed. In the first technique, 

multiple activation functions were used at the output layer which had increased the 

learning speed to a great extent. Multiple activation functions can be used in any ANN 

where the magnitudes of the output elements are greatly different from each others. This 

technique also eliminates the requirement of normalization and de-normalization of the 

outputs.  The second technique was used to denote the status of the transmission lines. It 

was realized that only a little change in the input vector of the ANN due to a line failure 

had great impact on loss allocation. To incorporate this effect in the ANN, the line 

failure status was denoted by “5” instead of “1” whereas “no-line-failure” was denoted 

by “0”. This had also improved the speed of convergence. This feature can be used in 

any ANN where some inputs have stronger co-relation with the outputs compared to 

other inputs. In addition to these techniques, some other previously reported enhanced 

learning techniques were also used. They are: proper initialization of synaptic weights 

and thresholds, adapting learning rate in each weight direction and adapting threshold 

values. With these techniques the developed ANNs were trained in few hours in 

FORTRAN platform on a personal computer.   

The developed ANNs calculated shares of transmission loss in the order of a few 

milliseconds. For two bilateral contracts in the IEEE 24-bus systems, the proposed 

ANN provided loss allocation results in 543 µsec in a 3GHz Pentium IV personal 

computer. The ILFA took 2.25 sec for the same loss allocation. For a pool operation in 
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the IEEE 14-bus network, the proposed ANN took 7.9 msec whereas Z-bus allocation 

took 40 msec to provide the loss allocation results.  The proposed ANNs can be trained 

with other loss allocation procedures acceptable to the stakeholders. The required inputs 

for the ANN are the standard power system data which are readily available in any 

power system network. Data can be used directly in p.u. quantity and do not require any 

normalization. The outputs i.e. share of losses is expressed in p.u. quantity. The 

proposed artificial neural network approach can be used as an effective tool to allocate 

transmission loss on a real-time basis. An ANN can be used as a loss meter to calculate 

aggregate loss for a generator or a load. This feature can also be utilized to resolve the 

discrepancies between actual loss and recovered loss over a period of time. For 

example, Average Loss Factor method for loss allocation creates a discrepancy between 

actual transmission loss and recovered loss [46]. The short fall or excess recovered loss 

then can be distributed to the stakeholders. The discrepancy accumulated over a time 

period can be assessed with the help of the loss meter.   

In this research the ILFA and Z-bus allocation procedures were used as teachers to train 

the neural networks but any other loss allocation method acceptable to the stakeholders 

can also be used to train the neural networks.  The ANN based loss allocation method 

can be implemented in any power system with little difficulty.  

 7.2 Scope of Future Work 

The developed neural networks were designed in such a way that it could handle some 

changes in power system structure. Changes in a power system structure may happen in 

many ways. In this research, the change in a power system structure was considered 

only due to the unavailability of a transmission line. A power system structure may also 

be changed when a new generation station is added, a new transmission line is built or a 

new bus is added to the existing system. Techniques can be developed to handle future 

expansions into an ANN structure to make it a universal structure. 

Further research can be carried out to design and develop a hardware to implement 

ANN based transmission loss allocation. Utilizing this hardware a loss meter similar to 

a digital energy meter can be developed which will aggregate losses for generators or 

loads over a period of time.    
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Table A1: Real load in p.u. for weekdays  (from hour 1 to 12) 
Bus 
\Hr 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.610 0.568 0.541 0.557 0.575 0.592 0.644 0.678 0.721 0.751 0.799 0.868 

2 0.543 0.505 0.481 0.496 0.511 0.527 0.572 0.603 0.641 0.668 0.710 0.772 

3 1.007 0.937 0.892 0.920 0.948 0.977 1.062 1.118 1.190 1.239 1.318 1.433 

4 0.418 0.389 0.367 0.378 0.390 0.402 0.437 0.460 0.489 0.509 0.542 0.589 

5 0.397 0.369 0.352 0.363 0.374 0.385 0.419 0.441 0.469 0.489 0.520 0.565 

6 0.761 0.708 0.674 0.695 0.716 0.738 0.803 0.845 0.899 0.936 0.996 1.083 

7 0.699 0.650 0.619 0.639 0.658 0.679 0.738 0.776 0.826 0.860 0.915 0.995 

8 0.962 0.899 0.856 0.883 0.901 0.928 1.009 1.062 1.130 1.177 1.252 1.361 

10 1.091 1.015 0.966 0.996 1.027 1.059 1.151 1.211 1.289 1.342 1.428 1.552 

13 1.482 1.379 1.313 1.354 1.396 1.439 1.564 1.646 1.751 1.824 1.941 2.109 

14 1.095 1.019 0.961 0.991 1.022 1.053 1.145 1.205 1.282 1.335 1.421 1.544 

15 1.754 1.632 1.554 1.602 1.652 1.703 1.851 1.969 2.095 2.182 2.321 2.523 

16 0.559 0.520 0.496 0.511 0.527 0.543 0.590 0.621 0.661 0.688 0.732 0.796 

18 1.876 1.742 1.659 1.701 1.754 1.808 1.965 2.069 2.201 2.292 2.439 2.651 

20 0.716 0.666 0.634 0.654 0.674 0.695 0.755 0.795 0.846 0.881 0.937 1.019 

 

Table A2: Real load in p.u. for weekdays  (from hour 13 to 24) 

Bus 
\Hr 13 14 15 16 17 18 19 20 21 22 23 24 

1 0.965 1.016 1.069 1.080 1.058 1.016 0.980 0.931 0.838 0.754 0.641 0.609 

2 0.858 0.903 0.951 0.970 0.941 0.903 0.858 0.815 0.734 0.660 0.561 0.533 

3 1.592 1.676 1.764 1.800 1.746 1.676 1.592 1.513 1.361 1.225 1.042 0.989 

4 0.654 0.689 0.725 0.740 0.718 0.689 0.655 0.622 0.560 0.504 0.428 0.407 

5 0.628 0.661 0.696 0.710 0.689 0.661 0.628 0.597 0.537 0.483 0.411 0.390 

6 1.203 1.266 1.333 1.360 1.319 1.266 1.203 1.143 1.029 0.926 0.787 0.748 

7 1.106 1.164 1.225 1.250 1.200 1.550 1.473 1.399 1.259 1.133 0.963 0.915 

8 1.512 1.592 1.676 1.710 1.659 1.592 1.513 1.437 1.293 1.164 0.989 0.940 

10 1.725 1.815 1.911 1.950 1.892 1.816 1.775 1.686 1.518 1.366 1.161 1.103 

13 2.344 2.467 2.597 2.650 2.500 2.400 2.280 2.166 1.993 1.774 1.454 1.382 

14 1.716 1.806 1.901 1.940 1.882 1.900 1.805 1.715 1.543 1.389 1.181 1.122 

15 2.804 2.951 3.107 3.170 3.075 2.952 2.850 2.708 2.437 2.193 1.864 1.771 

16 0.884 0.931 0.980 1.000 0.970 0.931 0.885 0.840 0.756 0.681 0.579 0.550 

18 2.945 3.100 3.263 3.330 3.230 3.101 2.946 2.799 2.519 2.267 1.927 1.830 

20 1.132 1.192 1.254 1.280 1.242 1.192 1.132 1.076 0.968 0.871 0.741 0.704 
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Table A3: Reactive load in p.u. for weekdays (from hour 1 to hour 12)  
Bus 
\Hr 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.124 0.116 0.110 0.114 0.117 0.121 0.131 0.138 0.147 0.153 0.163 0.177 

2 0.112 0.104 0.099 0.102 0.105 0.109 0.118 0.124 0.132 0.138 0.146 0.159 

3 0.207 0.193 0.183 0.189 0.195 0.201 0.218 0.230 0.245 0.255 0.271 0.295 

4 0.085 0.079 0.074 0.077 0.079 0.081 0.089 0.093 0.099 0.103 0.110 0.119 

5 0.078 0.073 0.069 0.072 0.074 0.076 0.083 0.087 0.093 0.096 0.103 0.111 

6 0.152 0.142 0.135 0.139 0.143 0.148 0.161 0.169 0.180 0.187 0.199 0.217 

7 0.140 0.130 0.124 0.128 0.132 0.136 0.148 0.155 0.165 0.172 0.183 0.199 

8 0.197 0.184 0.175 0.181 0.184 0.190 0.207 0.217 0.231 0.241 0.256 0.279 

10 0.224 0.208 0.198 0.204 0.211 0.217 0.236 0.248 0.264 0.275 0.293 0.318 

13 0.302 0.281 0.268 0.276 0.284 0.293 0.319 0.335 0.357 0.372 0.395 0.430 

14 0.220 0.205 0.193 0.199 0.205 0.212 0.230 0.242 0.258 0.268 0.286 0.310 

15 0.354 0.329 0.314 0.323 0.334 0.344 0.374 0.398 0.423 0.441 0.469 0.509 

16 0.112 0.104 0.099 0.102 0.105 0.109 0.118 0.124 0.132 0.138 0.146 0.159 

18 0.383 0.356 0.339 0.347 0.358 0.369 0.401 0.422 0.449 0.468 0.498 0.541 

20 0.145 0.135 0.129 0.133 0.137 0.141 0.153 0.162 0.172 0.179 0.190 0.207 
 
Table A4: Reactive load in p.u. for weekdays (from hour 13 to 24) 

Bus 
\Hr 13 14 15 16 17 18 19 20 21 22 23 24 

1 0.197 0.207 0.218 0.220 0.216 0.207 0.197 0.187 0.168 0.151 0.129 0.122 

2 0.177 0.186 0.196 0.200 0.194 0.186 0.177 0.168 0.151 0.136 0.116 0.110 

3 0.327 0.344 0.363 0.370 0.359 0.345 0.327 0.311 0.280 0.252 0.214 0.203 

4 0.133 0.140 0.147 0.150 0.146 0.140 0.133 0.126 0.113 0.102 0.087 0.082 

5 0.124 0.130 0.137 0.140 0.136 0.130 0.124 0.118 0.106 0.095 0.081 0.077 

6 0.241 0.253 0.267 0.272 0.264 0.253 0.241 0.229 0.206 0.185 0.157 0.150 

7 0.221 0.233 0.245 0.250 0.243 0.233 0.221 0.210 0.189 0.170 0.145 0.137 

8 0.310 0.326 0.343 0.350 0.340 0.326 0.310 0.294 0.265 0.238 0.203 0.192 

10 0.354 0.372 0.392 0.400 0.388 0.372 0.354 0.336 0.303 0.272 0.231 0.220 

13 0.478 0.503 0.529 0.540 0.524 0.503 0.478 0.454 0.418 0.372 0.305 0.289 

14 0.345 0.363 0.382 0.390 0.378 0.363 0.345 0.328 0.295 0.265 0.226 0.214 

15 0.566 0.596 0.627 0.640 0.621 0.596 0.566 0.538 0.484 0.436 0.370 0.352 

16 0.177 0.186 0.196 0.200 0.194 0.186 0.177 0.168 0.151 0.136 0.116 0.110 

18 0.601 0.633 0.666 0.680 0.660 0.633 0.602 0.571 0.514 0.463 0.393 0.374 

20 0.230 0.242 0.255 0.260 0.252 0.242 0.230 0.219 0.197 0.177 0.150 0.143 
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Table A5: Real load in p.u. for weekends (from hour 1 to 12) 
Bus 
\Hr 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.624 0.580 0.552 0.558 0.575 0.581 0.592 0.623 0.663 0.690 0.719 0.782 

2 0.578 0.538 0.512 0.518 0.523 0.528 0.538 0.566 0.602 0.627 0.654 0.710 

3 0.992 0.923 0.879 0.888 0.896 0.906 0.922 0.971 1.033 1.076 1.120 1.218 

4 0.436 0.405 0.382 0.386 0.390 0.394 0.401 0.423 0.449 0.468 0.488 0.530 

5 0.419 0.390 0.371 0.375 0.379 0.382 0.389 0.410 0.436 0.454 0.473 0.514 

6 0.723 0.672 0.640 0.647 0.653 0.660 0.672 0.708 0.753 0.784 0.817 0.888 

7 0.729 0.678 0.646 0.653 0.659 0.666 0.678 0.714 0.759 0.791 0.824 0.896 

8 0.760 0.710 0.676 0.697 0.704 0.711 0.773 0.814 0.866 0.902 0.939 1.021 

10 1.007 0.937 0.892 0.920 0.929 0.958 1.041 1.096 1.166 1.195 1.271 1.381 

13 1.302 1.212 1.154 1.166 1.177 1.189 1.293 1.361 1.447 1.483 1.578 1.715 

14 1.102 1.025 0.967 0.997 1.007 1.017 1.106 1.164 1.238 1.269 1.350 1.467 

15 1.720 1.600 1.523 1.571 1.586 1.602 1.742 1.853 1.971 2.020 2.061 2.240 

16 0.553 0.514 0.490 0.505 0.510 0.526 0.531 0.559 0.595 0.620 0.659 0.716 

18 1.542 1.431 1.363 1.367 1.409 1.413 1.536 1.567 1.667 1.737 1.848 2.008 

20 0.693 0.645 0.614 0.633 0.653 0.673 0.680 0.716 0.761 0.793 0.844 0.917 
 
Table A6: Real load in p.u. for weekends (from hour 13 to 24) 

Bus 
\Hr 13 14 15 16 17 18 19 20 21 22 23 24 

1 0.868 0.914 0.962 0.972 0.953 0.914 0.980 0.956 0.908 0.817 0.694 0.660 

2 0.789 0.831 0.875 0.892 0.866 0.831 0.789 0.770 0.731 0.658 0.559 0.531 

3 1.353 1.424 1.499 1.530 1.484 1.425 1.353 1.320 1.254 1.128 0.959 0.911 

4 0.589 0.620 0.653 0.666 0.646 0.620 0.589 0.574 0.546 0.491 0.417 0.397 

5 0.571 0.602 0.633 0.646 0.627 0.602 0.572 0.557 0.529 0.476 0.405 0.385 

6 0.986 1.038 1.093 1.115 1.082 1.038 0.987 0.962 0.914 0.822 0.699 0.664 

7 0.995 1.047 1.103 1.125 1.200 1.550 1.527 1.489 1.414 1.273 1.082 1.028 

8 1.134 1.194 1.257 1.283 1.244 1.194 1.176 1.147 1.090 0.981 0.834 0.792 

10 1.535 1.616 1.701 1.736 1.683 1.616 1.592 1.552 1.474 1.327 1.128 1.072 

13 1.906 2.006 2.111 2.154 2.090 2.006 1.976 1.927 1.830 1.629 1.336 1.269 

14 1.630 1.716 1.806 1.843 1.788 1.900 1.872 1.825 1.733 1.560 1.326 1.260 

15 2.383 2.509 2.641 2.695 2.560 2.355 2.320 2.262 2.149 1.934 1.644 1.561 

16 0.796 0.838 0.882 0.900 0.873 0.838 0.826 0.784 0.745 0.671 0.570 0.541 

18 2.231 2.349 2.473 2.498 2.423 2.326 2.291 2.176 1.959 1.841 1.565 1.487 

20 1.019 1.073 1.129 1.152 1.117 1.073 1.057 1.004 0.903 0.813 0.691 0.657 
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Table A7: Reactive load in p.u. for weekends (from hour 1 to 12) 
Bus 
\Hr 1 2 3 4 5 6 7 8 9 10 11 12 

1 0.118 0.110 0.105 0.108 0.111 0.115 0.125 0.131 0.140 0.145 0.155 0.168 

2 0.105 0.098 0.093 0.096 0.099 0.102 0.111 0.117 0.124 0.129 0.138 0.150 

3 0.195 0.181 0.172 0.178 0.183 0.189 0.205 0.216 0.230 0.239 0.255 0.277 

4 0.080 0.074 0.070 0.072 0.074 0.077 0.083 0.088 0.093 0.097 0.103 0.112 

5 0.076 0.071 0.067 0.069 0.072 0.074 0.080 0.084 0.090 0.093 0.099 0.108 

6 0.148 0.137 0.131 0.135 0.139 0.143 0.156 0.164 0.174 0.182 0.193 0.210 

7 0.136 0.126 0.120 0.124 0.128 0.132 0.143 0.151 0.160 0.167 0.178 0.193 

8 0.191 0.178 0.170 0.175 0.179 0.184 0.200 0.211 0.224 0.234 0.249 0.270 

10 0.217 0.202 0.192 0.198 0.204 0.211 0.229 0.241 0.256 0.267 0.284 0.309 

13 0.293 0.273 0.260 0.268 0.276 0.284 0.309 0.325 0.346 0.361 0.384 0.417 

14 0.214 0.199 0.187 0.193 0.199 0.205 0.223 0.235 0.250 0.260 0.277 0.301 

15 0.347 0.323 0.308 0.317 0.327 0.337 0.366 0.390 0.415 0.432 0.459 0.499 

16 0.110 0.102 0.097 0.100 0.103 0.106 0.116 0.122 0.130 0.135 0.144 0.156 

18 0.364 0.338 0.322 0.330 0.340 0.351 0.381 0.401 0.427 0.445 0.473 0.514 

20 0.140 0.130 0.124 0.128 0.131 0.136 0.147 0.155 0.165 0.172 0.183 0.199 
 
Table A8: Reactive load in p.u. for weekends (from hour 13 to 24) 

Bus 
\Hr 13 14 15 16 17 18 19 20 21 22 23 24 

1 0.177 0.186 0.196 0.198 0.194 0.186 0.298 0.283 0.255 0.229 0.195 0.185 

2 0.158 0.166 0.175 0.180 0.175 0.168 0.159 0.151 0.136 0.123 0.104 0.099 

3 0.292 0.307 0.323 0.333 0.323 0.310 0.295 0.280 0.266 0.239 0.203 0.193 

4 0.118 0.124 0.131 0.135 0.131 0.126 0.119 0.113 0.102 0.100 0.085 0.081 

5 0.114 0.120 0.122 0.126 0.122 0.117 0.111 0.106 0.095 0.086 0.073 0.069 

6 0.221 0.233 0.237 0.245 0.237 0.228 0.217 0.206 0.185 0.167 0.142 0.135 

7 0.203 0.214 0.218 0.225 0.218 0.210 0.199 0.189 0.170 0.153 0.130 0.124 

8 0.284 0.299 0.306 0.315 0.306 0.299 0.284 0.270 0.243 0.231 0.196 0.187 

10 0.325 0.342 0.349 0.360 0.349 0.342 0.325 0.309 0.278 0.250 0.213 0.202 

13 0.439 0.462 0.471 0.486 0.471 0.462 0.439 0.417 0.384 0.379 0.311 0.296 

14 0.317 0.334 0.340 0.351 0.340 0.334 0.317 0.301 0.271 0.244 0.207 0.197 

15 0.520 0.548 0.559 0.576 0.559 0.548 0.520 0.494 0.445 0.400 0.380 0.361 

16 0.163 0.171 0.175 0.180 0.175 0.171 0.163 0.154 0.139 0.125 0.106 0.101 

18 0.536 0.564 0.594 0.612 0.594 0.582 0.553 0.525 0.520 0.468 0.398 0.378 

20 0.207 0.218 0.229 0.234 0.227 0.222 0.211 0.201 0.181 0.163 0.138 0.131 
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Table A9: Initial load flow solution by Newton-Raphson Method                        
 
Bus 
No. 

Voltage 
Mag 

Angle 
Degree 

    ---    Load  ---- 
MW             Mvar 

 ----   Generation--- 
 MW           Mvar 

Injected 
Mvar 

1         1.030     0.000      1.080     0.220      1.593      0.799      0.000 
 2     1.030     -0.002      0.970     0.200      1.720      0.518      0.000 
 3     0.978     2.845      1.800     0.370      0.000      0.000      0.000 
 4     0.990    -0.988      0.740     0.150      0.000      0.000      0.000 
 5     0.994    -2.824      0.710     0.140      0.000      0.000      0.000 
 6     1.000    -5.699      1.360       0.267      0.000      0.000      0.720 
 7     1.020  -12.119      1.250     0.250      1.000      1.140      0.000 
 8     0.971  -10.413      1.710     0.350      0.000      0.000      0.000 
 9     0.993     2.390      0.000     0.000      0.000     0.000      0.000 
10     0.987   -2.426      1.950     0.400      0.000      0.000      0.000 
11     0.996    6.884      0.000     0.000      0.000      0.000      0.000 
12     1.000    7.047      0.000     0.000      0.000      0.000      0.000 
13     1.030   10.028      2.650     0.540      3.940      1.999      0.000 
14     0.996   10.436      1.940     0.390      0.000      0.000      0.000 
15     1.030   18.477      3.170     0.640      1.550      1.884     0.000 
16     1.030   17.759      1.000     0.200      1.550      2.000      0.000 
17     1.022   22.303      0.000     0.000      0.000      0.000      0.000 
18     1.020   23.740      3.330    0.680      4.000            0.304      0.000 
19     1.023   16.570      0.000     0.000      0.000      0.000      0.000 
20     1.018   15.538      1.280     0.260      0.000      0.000      0.000 
21     1.030   24.461      0.000     0.000      4.000      0.608      0.000 
22     1.030   30.375      0.000     0.000      3.000           -0.125      0.000 
23     1.020   15.717      0.000    0.000      3.100      0.045      0.000 
24     0.995   12.763      0.000     0.000      0.000      0.000      0.000 
 
       
 Total                   24.940      4.340     25.453      8.563       
  
                           Line Flow and Losses  
       Total loss                               0.513     4.223 
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Table A10: Load flow solution for economical load dispatch                   
 
Bus 
No. 

Voltage 
Mag 

Angle 
Degree 

    ---    Load  ---- 
MW             Mvar 

 ----   Generation--- 
 MW           Mvar 

Injected 
Mvar 

1    1.030     0.000      1.080      0.220      4.018      0.331      0.000 
 2    1.030     -1.261      0.970      0.200      0.483      0.761      0.000 
 3    0.981     -3.136      1.800      0.370      0.000      0.000      0.000 
 4    0.991     -3.971      0.740      0.150      0.000      0.000      0.000 
 5    0.993     -4.494      0.710      0.140      0.000      0.000      0.000 
 6    1.000     -8.640      1.360      0.267      0.000      0.000      0.720 
 7    1.020   -15.959      1.250      0.250      1.007      1.124      0.000 
 8    0.972   -14.293      1.710      0.350      0.000      0.000      0.000 
 9    0.995     -2.050      0.000      0.000      0.000      0.000      0.000 
10    0.987     -5.911      1.950      0.400      0.000      0.000      0.000 
11    1.000     1.653      0.000      0.000      0.000      0.000      0.000 
12    1.001     2.994      0.000      0.000      0.000      0.000      0.000 
13    1.030     6.642      2.650      0.540      5.327      1.736      0.000 
14    1.001     2.344      1.940      0.390      0.000      0.000      0.000 
15    1.030     7.059      3.170      0.640      1.439      1.552      0.000 
16    1.030     7.060      1.000      0.200      0.797      1.674      0.000 
17    1.024     9.573      0.000      0.000      0.000      0.000      0.000 
18    1.020    10.705      3.330      0.680      3.904          -0.417      0.000 
19    1.023      8.050      0.000      0.000      0.000      0.000      0.000 
20    1.018     8.908      1.280      0.260      0.000      0.000      0.000 
21    1.030    11.214      0.000      0.000      3.813        0.423      0.000 
22    1.030    11.577      0.000      0.000      0.451      0.011      0.000 
23    1.020    10.121      0.000      0.000      4.066          -0.137      0.000 
24    1.003     3.340      0.000      0.000      0.000      0.000      0.000 
       
Total                    24.940      4.340     25.304      7.057       

 
Line Flow and Losses 

    Total loss                               0.364     2.717 
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APPENDIX B 
 
All terms except PL and KLO in this appendix are matrices. 
 
Standard transmission loss formula derived in Chapter 2 is 
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The first term of Equation (B2 is 
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3rd term of Equation (B1) is 
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Therefore, the 3rd term is 
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Putting (B2) and (B3) in (B1),  
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The loss formula expressed in Equation (B4) is known as Kron’s transmission loss 
formula. 
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