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ABSTRACT

The introduction of deregulation and subsequent open access policy in electricity sector
has brought competition in energy market. Allocation of transmission loss has become
a contentious issue among the electricity producers and consumers. A closed form
solution for transmission loss allocation does not exist due to the fact that transmission
loss is a highly non-linear function of system states and it is a non-separable quantity. In
absence of a closed form solution different utilities use different methods for
transmission loss allocation. Most of these techniques involve complex mathematical
operations and time consuming computations. A new transmission loss allocation tool
based on artificial neural network has been developed and presented in this thesis. The
proposed artificial neural network computes loss allocation much faster than other
methods. A relatively short execution time of the proposed method makes it a suitable
candidate for being a part of a real time decision making process. Most independent
system variables can be used as inputs to this neural network which in turn makes the
loss allocation procedure responsive to practical situations. Moreover, transmission line
status (available or failed) was included in neural network inputs to make the proposed
network capable of allocating loss even during the failure of a transmission line. The
proposed neural networks were utilized to allocate losses in two types of energy
transactions: bilateral contracts and power pool operation. Two loss allocation methods
were utilized to develop training and testing patterns; the Incremental Load Flow
Approach was utilized for loss allocation in the context of bilateral transaction and the
Z-bus allocation was utilized in the context of pool operation. The IEEE 24-bus
reliability network was utilized to conduct studies and illustrate numerical examples for
bilateral transactions and the IEEE 14-bus network was utilized for pool operation.
Techniques were developed to expedite the training of the neural networks and to

improve the accuracy of results.
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CHAPTER 1: INTRODUCTION

1.1 Emergence of Electric Power Systems

Electricity, one of the most widely used form of energy, has been discovered little more
than a century ago. After the discovery of Edison’s electric bulb, electricity has been
commercially produced and marketed in USA. Thomas Alva Edison, regarded as the
pioneer of electric power system, first established “The Pearl Street Power Station” in
New York, USA in 1882 [1]. Later more companies were established. In early days
there was no regulation in electric power industries. Small companies operated small
generators in municipal areas and sold power to industries and other users in that area.
These companies were somewhat inefficient and redundant in the services they
provided. Separate companies provided electricity for different needs such as street
illumination, industrial power, residential lighting and street car service. They
frequently operated under nonexclusive franchises, often in competition with one
another. In 1896, Westinghouse pioneered the use of alternating current to deliver
electricity over a long distance from its hydroelectric plant at Niagara Falls. This
generating and delivery system was far more efficient and quickly became the national
standard. This development quickly led to the formation of large "public utility"
companies. Today, electric power systems have become common entities all over the
world. Thousands of electric utility and companies are supplying power to billions of
consumers. People cannot imagine living without electricity. It has become an essential
commodity in our every day life and billions of equipment and accessories are being

used in the world today that are solely dependent on electric power.

1.2 The Evolution of The Natural Monopoly

Early leaders recognized that electric companies suffered from high fixed costs as a
result of heavy investment needed to finance central generating plants and transmitting
system. Utilities frequently found that it was difficult to maintain investor confidence
and attract adequate capital. This was attributable to both the dubious franchise process,

which made operation of the utility over the long term an uncertain prospect, and the



low returns investors received. Early industry leaders began to think that if the franchise
granting process and the rates charged by utilities were overseen by a nonpartisan state

agency instead of a city council, financing might be easier and cheaper to obtain.

In 1898, in an address before the National Electric Light Association (the forerunner of
Edison Electric Institute), Samuel Insull proposed that electric companies be regulated
by state agencies which would establish rates and set service standards [1]. The idea
became increasingly appealing to investor-owned companies in the face of public
enthusiasm for the growth of municipal electric systems. Privately-owned companies
surmised that the public might be more supportive if their companies were regulated so
that customer interest would be protected. By 1916, 33 states had regulatory agencies.
Early regulation of the industry proved beneficial to both the electric companies and
their customers, who got reliable, reasonably priced service without the uncertainties
caused by duplicate services and inefficient operations. Later electric industry was

developed as regulated industry all over the world.

1.3 Traditional Electric Power

Starting from very small utility networks, electric utilities have grown billion times
larger. Now, electric power systems became widespread and complex in nature. From
its birth to present, power system networks and utilities have gone through various
stages of evolution. For the last one hundred years electric power systems operated as
regulated monopolies. In a regulated monopoly, an electric power system can be
divided into four main functional zones; generation, transmission, distribution and retail

service.

» Generation — generation is the conversion of electric energy from other forms of
energy like chemical (gas, coal, hydrogen), nuclear, solar, hydro energy,

geothermal energy, wind and wave energy.

» Transmission — transmission is the transfer of bulk electric energy from one place
to another through some transmission network. It connects the generator network

and distribution network.



» Distribution — distribution is the process of delivering electric power from the

local network to the consumers.

» Retail Service — retail service can broadly called retail customer service. Its main

function is measuring and billing customers for the power delivered.

In a regulated monopoly, these four functional blocks are controlled by one single
entity. As today’s power system networks are very large in production volume and
geographical area, their operation became a complex phenomenon which does not only
depend on the state of technology but also on complex issues like economy, social
advancement, environmental impact and political decisions. In traditional monopoly,
one company is allowed to generate, transmits and distribute electrical power to the
consumers in one jurisdiction. The service area is primarily determined by political map
and jurisdiction. In some cases, distribution is divided among two or more electric
utilities, e.g. city corporation or other private distribution companies. Price of electricity
is determined by the same utility which is justified by cost of generation, transmission
and distribution. The schematic diagram of a traditional power industry is shown in

Figure 1.1.

Generators Transmission & Distribution Consumers

Fig. 1.1: Schematic diagram of traditional power industry

1.3.1  The traditional regulated power industry structure — Traditional power
industry may be categorized by the functions they perform. Many utilities performed all
four functions of power industry described above, others perform one or two.

Depending upon the functions they perform, they can be categorized as:

a) Vertically integrated electric utilities: They own facilities and manage all the
functions of producing, transmitting, delivering and selling of electric power.
Vertically integrated means that all the functions needed were intertwined into
one system and company. Almost all electric utilities prior to 1990s fall into
these category. They were granted a monopoly franchise by the state or

government, which granted them exclusive rights to produce and sell electric



b)

d)

power. In return they were obliged to provide power to all customers who

wanted it.

Generation and transmission (G &T) utilities: These utilities produce
electricity and move energy in bulk to various locations, where they sell in bulk
quantities to other utilities. For example, Tri-State G&T Association Inc,
Denver, CO, serve G&T functions for 34 rural electric and public power districts

in Colorado, Nebraska and Wyoming.

Local distribution companies: These are local electric utilities that own and
operate only a distribution system. They also provide retail sales and services.

Many municipal organizations have local distribution companies.

Independent power producer (IPP) and non-utility generators (NUG):
Independent power producers are companies that owns and operate generators
outside the control of traditional power utility. IIPs sell power to other utilities.
Non-utility generators are owned by manufacturers or processes who use their
generators to produce power for their own use and sell any surplus energy to

utilities.

1.3.2 Functional divisions of traditional vertically integrated utility: The

a)

b)

following functional divisions exist in a vertically integrated power system:

Generation division: Generation division is responsible for building, operation

and maintenance of power plants.

T&D division: The Transmission and Distribution division designs, installs and

maintains transmission lines, substations and other equipment.

Operation division: This division operates the entire power system. It
coordinates the functions of all units of power system starting from generation to
bulk distribution. It performs system operation that includes monitoring and
control of generation and dispatch. It is responsible for voltage stability and

system security.



d) Marketing and customer service division: The function of marketing and
customer service encompasses marketing, sales, billing, customer service and

public relation.

1.4 Deregulation

Electric power systems in the early days were developed on the concept of natural
monopoly. Natural monopoly occurs if the production costs decrease as the output
grows larger. Before 1990s, all power systems in the world were running as vertically
integrated monopoly system. Later it was realized that the electric power industry was
not necessarily a natural monopoly at least when it came to generating electricity. It was
proven that open access and competition in business lowers the unit price. The same is
believed to happen in electric power industry. Therefore, bringing competition in power
sector in generation and retail consumer level became essential. The regulatory process
and lack of competition gave electric utility no incentive to improve on yesterday’s
performance or to take risk on new ideas that might increase customer value. The main
argument used to support deregulation is that a free market promotes efficiency. In a
regulated environment, for example, wholesale and retail electricity power prices are
calculated based on a utility's costs. If a utility invests in what turns out to be an
uneconomical project, it can still add the costs of the investment to the price it charges
for electricity. Thus, the risks and economic consequences of a poor investment are
passed to the electricity customer. Competition will encourage new technologies for
generating electricity with better efficiency and inefficient generating plants will die

out.

In many of the countries where electric utility deregulation first occurred e.g. Argentina,
England, the government was privatizing the industry. By deregulating i.e. by
privatizing the power sector, government can withdraw huge amount of money. It has
also been proved in many cases that a private organization can serve better than a
government organization. Competitions also increase customer focus. Another reason
for deregulation is to give customer a meaningful choice to select their supplier,

although the term ‘customer’ is confined only to bulk or retail buyer.



Deregulation and re-structuring of electric power industry is occurring in most part of
the world. Some are rapidly progressing towards full deregulation while others are re-
structuring their power industry to allow some types of deregulation. Although the

reasons for these changes are not always the same, their expected impacts are the same.

1.5 Deregulated Electric Utility Structure

Contrary to traditional vertically integrated power system, monopoly is fully removed
from generation and distribution (including retail service) sectors in a deregulated
power system. As a result, generation and distribution are competitive, with many
different companies vying for those businesses. On the other hand, most governments
and regulators realized that it is best to have only one transmission system. Therefore, in
most cases transmission sector remained regulated. Brazil is trying to deregulate
transmission sector, not by creating many transmission lines, but by leasing sections of
the transmission lines to different companies. Basic features of a deregulated power

system are discussed below.

a) Independent system operator - An independent system operator (ISO) plays the
role of a supervisor for system operation, planning and security. It has operational
control authority over the whole power system and normally operates and
maintains the transmission lines. An ISO normally performs the following

functions:

e provides open and comparable access to similarly situated customers to the

transmission facilities

e operates exclusively the ISO Controlled Grid in an efficient and reliable

manner

e adopts, safeguards and monitors compliance with inspection, maintenance,
repair and replacement standards for the ISO Controlled Grid so as to provide
high quality, safe and reliable electric service including during periods of

emergency and disaster;

e provides or obtains adequate ancillary services for the ISO Controlled Grid

and to dispatch such services as necessary;



e schedules transmission service for all transactions on the ISO Controlled Grid;
e redispatches available resources to relieve transmission congestion;

e develops and submits (i) transmission service rate methodologies and (ii) rates
for such transmission services and ancillary services and to recover

administrative costs;

e cstablishes operating rules and protocols for the reliable operation and for

participation in the ancillary services market;
e maintains the reliability of operations of the ISO Controlled Grid

e provides open market pricing information for the transmission services and

ancillary services markets;

e secures generating and transmission resources as necessary for achievement of

planning and operating reserve criteria

e promotes the development of, and enter into, agreements for power buying and

selling including bilateral contracts
e allocates and manages transmission losses to participating parties

e keeps track of all transactions and calculate the transmission usage for each

generator and PP

e also works as a spot market for buying and selling power (in absence of

“power exchange”)

In some states or countries where there is no “power exchange” for trading energy, ISO

does the job of energy trading as well.

b) Power exchange — An organization, some what like a stock exchange, that

permits buyers and sellers of wholesale electricity to buy and sell electric power as

a commodity. It trades electricity between buyers and sellers electronically.

Competitive power generations — An open access in generation sector, in which
any entity that is qualified, competent, solvent, able to meet standards can get

licensed and can produce and sell power. Usually many independent power



producers (IPP) and non-utility generators (NUG) compete with each others to

produce and sell electric power on a wholesale market.

IPP-1

Consumer-1
IPP-2
PP-n Transmission network Consumer-2

ISO

NUG-1

Consumer-3
NUG-n

d)

Fig. 1.2: Schematic diagram of a deregulated power network with ISO

Competitive distributors — Competitive distributors buy power in bulk at the
wholesale level and sell it to the consumers. They bid for buying power at “power
exchange” or ISO (in absence of power exchange”) similarly as IPPs or NUGs bid
for selling power. Distributors supply power to individual home, business or other
entity. They charge individuals for the energy they consumed at a rate fixed by
state or governments or at a rate set by “act of electricity deregulation” in that
jurisdiction. Distributors can choose their suppliers. Any distributor or bulk
power consumer may buy power from a generator through a bilateral contract as

well.

Bilateral contracts- Many bulk power consumers enter into bilateral contracts
with power producers or suppliers to avoid price fluctuations of energy market in
a deregulated environment. The seller arranges the transportation of the contracted
power over a third party’s transmission network. These are individual contracts
and would not affect any other contracts which are already in place. The concept
of bilateral contracts allows the customers and generating plants to work
according to their policy and does not make them dependent on everyday bid like

in a power pool system. The price fixation and other services and particulars of the



contract would be determined by the two parties involved in the contract. This
would give them more freedom and flexibility of choice. Bilateral contracts enable
customers to make their best price deals for power supply with whoever in the
competitive market is most effective to meet their demands. Allowing power
producers to contract directly with customers, marketers, or retailers creates
competition on both sides of the transaction. Generators compete among
themselves to supply this demand. This gives customers and their representatives
a full range of choices among suppliers. Suppliers may charge any price the
market will bear and may choose to compete not only by price but by duration of
contract, payments options, type of generation, and quality of electric service.
Thus, bilateral contracts provide a wide range of choices to meet various customer
needs. Many electric utilities which are not deregulated yet, allows bilateral
contracts as a first step towards deregulation. Customers in bilateral contracts, on
the other hand, have broad choices of various types of suppliers. Large customers
can deal with a power producer directly or purchase energy through the marketers,
power brokers or energy service company. Smaller customers can form load

aggregators and purchase energy in a similar manner

Power pool- A deregulated power pool is the most common form of market at
present due to its simple structure. Generating utilities or IPPs and customers both
bid for selling and buying power at the power pool. A power pool conducts
different types of auctions like day ahead market, hour ahead market, real time
market etc. to buy power necessary for its customers. In a pool system, generating
utilities do not have any target for any specific customer rather than they bid for
getting access to the grid. A generating utility would be out of the competitive
market if its price is too high. Similarly, a customer would not get any power if its
offer is too low. Thus pool fixes a single price for every hour which is determined
by basic supply-demand relationship of economics. All parties involved in the
market have equal right to access the information regarding price and demand. A

power pool system uses the existing economic dispatch procedures.

In addition to the day-ahead market and hour-ahead market, a power pool also

operates its spot market. A spot market of electricity is somewhat different from



g

other commodity. Electric power is generally a non-elastic item and must be
consumed when it is generated. For this reason, a spot market operates ahead of
real time. A spot market can update its bids every 10 minutes or 30 minutes or at

any convenient time

Market clearing price — An independent system operator is responsible to
maintain a balance between the supply and demand of power. An ideal electric
power system must have sufficient power in order to meet the customer’s
demands. Market clearing price is the price at which suppliers and buyers agree to
sell and buy power to a specified amount that is set by this price. A system
operator determines the market clearing price from the supply and demand
relation in such a way that all power demand would be satisfied. The companies
who bid higher than the market clearing price will not be able to sell any power.
All companies who bid less than the market clearing price are considered as
successful bidders and will be supplying the demand. All successful bidders will

get paid at the market clearing price irrespective of their bidding prices.

The competition among the suppliers of electric power is at the core of
deregulation. If a supplier’s bid is higher than the market clearing price, then its
energy will not be included in the load dispatch schedule. This fact will force the
supplier out of business. The fear of getting out of business encourages the

supplier to bid the most competitive price to stay in wholesale market place.

In many power pool e.g. in Alberta power pool, electricity is purchased on a
centralized basis. Generators bid on an hourly basis to supply energy. Power pool
determines the market clearing price from the supply curve of power and from the
total load demand. Demand side bidding is not considered. Figure 1.3 shows how

the power pool determines market clearing price for a particular hour [2].
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Demand Power in 1\7[W

Fig. 1.3: Determination of market clearing price (In Alberta Power Pool)

In Ontario and New England, the system operators set the limits of upper and
lower boundaries of energy price [3]. Generating utilities offer their selling price
in between them and market clearing price is set in the same way as Alberta power

pool.

In some jurisdictions, market clearing price is set in different ways. For example,
in Norway, Nordic energy sellers as well as energy buyers submit their bids for
selling and buying power respectively. Participants offer their bids for next-day
power delivery. Nordic Power Exchange collects bids and prepares two curves: an
aggregate demand curve and an aggregate supply curve. Demand decreases as the
price goes up, on the other hand, supply increase with increase in price. The
market clearing price is set by the intersection of these two curves. Figure 1.4
shows the supply and demand curves and market clearing price of Nordic power

market [4].
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Fig. 1.4: Market clearing price in Nordic Power Pool

1.6 Effect of Deregulation on Operation And Planning

In a traditional power industry, control is much simpler -a system is run in a way that
minimizes the overall cost. Daily, weekly and monthly load forecasts are done by the
utility. Load flow study, cost analysis and economic scheduling of generation are done
accordingly well ahead of time. Since all generations and distributions are under one
umbrella, planners are not accountable to individual generators or distributors. They are
accountable to owners or governments only. In real time operation, generator
scheduling and load dispatch are done in an almost pre-planned way. Very seldom they
have to use spinning reserve to meet actual demand or to meet emergency situation.
System operators take all decisions to keep the system secure and reliable according to
some set criteria. Transmission congestion can be easily avoided by proper generation

scheduling.

The operation and planning activities in a deregulated power system is much more
complex than that of a traditional one. One of the complexities arises due to the fact that
electric energy has to be generated and consumed at the same moment. When there is an
increased load demand, either generation has to be increased to fulfill the load or load
has to be curtailed. Loads in a network vary every hour, to be more specific vary every

moment. Since loads are controlled by distributors, load forecast becomes very difficult.
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Buying of power from the grid depends on the retailers not on the system operator. In
most cases, long time planning like weekly or monthly planning becomes very difficult
or inaccurate. Many decisions are to be taken on real time basis or just few minutes
ahead of the situation. Transmission planning becomes difficult due to spot selling of
power. Most distributors want to buy power from the cheapest supplier which
sometimes causes transmission congestion. Congestion management becomes a big
contentious issue in a deregulated system. Transmission loss allocation is another
contentious issue. Estimation of total transmission loss is not enough; it has to be

allocated to individual generations.

1.7 Transmission Loss

Transmission loss in electric power system is a natural phenomenon. Electric power has
to be moved from generation place to the consumer’s place through some wires for
consumption. All wires have some resistance, which consume some power. The power
consumed in this way is referred to as "loss". Most of this loss is attributable to the
heating of the power lines by the electrical current flowing through them. The loss (i°R)
is then lost to the surrounding of the power lines. Transmission loss represents about
5% to 10% of total generation, a quantity worth millions of dollar per year. In Alberta

alone, total transmission loss costs about 200 million dollars per year.

Power loss in a Transmission and Distribution network is influenced by a number of

factors such as:

e the location of generating plant and load connection points and the energy
associated with each;

e types of connected loads;

e network configuration;

e voltage levels and voltage unbalance;

e dynamic factors associated with the operation of large alternating current
networks (e.g. power factor, harmonics and the control of active and reactive

power);
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o the length of the lines - this is an almost linear relationship (e.g. doubling the
line length would double the line loss);

o the current in the line - this is a square law relationship where doubling the line
current would quadruple the line loss;

o the design of lines, particularly the size, material and type of cables; and

o the types of transformers and their loadings.

In a traditional power system, total transmission loss is optimized while keeping the
running cost at the minimum. In a deregulated power system, due to the competition in

the generation sector, transmission loss has to be allocated to individual generators.

1.8 Transmission Loss Allocation in A Deregulated Power System

In a deregulated power system transmission loss has to be allocated to individual
suppliers, generators and contracts. Loss allocation does not affect generation levels or
power flows, however it does modify the distribution of revenues and payments at the
network buses among suppliers and consumers. In a deregulated power system, every
supplier has to supply the power they want to sell plus the transmission loss
corresponding to that transaction. Therefore, system operator has to allocate losses to
every individual generation and load. Depending on the contract, a supplier may supply
the contracted load and the corresponding loss or supply the load and pay for the loss.
In later case, the loss may be supplied by a contracted generator or ISO may buy the
power to meet the loss from a spot market. Depending upon who will supply the loss,

the allocation will vary to some extent.

1.9 Present Problems in Transmission Loss Allocation

Transmission loss allocation became a contentious issue as it corresponds to a huge
amount of money. It is mentioned earlier that transmission loss depends on a number of
factors of the power system. Transmission loss is a highly non-linear function of these
factors. The main problem associated with loss allocation is the fact that transmission
loss is a non-separable entity. Any attempt to separate it is further complicated by its

non-linear nature. The challenge facing by a typical power pool and an ISO is how to
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allocate the transmission loss and what should be the criterion for charging other
utilities. Utilities in general, look for locational signal, consistency, simplicity, accuracy
and predictability in a loss allocation method. It is an extremely hard task to
accommodate all these considerations in a complex phenomenon like transmission loss
allocation. In a deregulated environment, the economic and market related factors are as
important as technical factors. Not only accurate calculations are necessary, but fair and
equitable allocation of the losses to all the stakeholders is also important. Although no
ideal or standard loss allocation method exists, some methods have been reported in
literature [2, 5-14]. But all these methods require time consuming and complex

mathematical computations and, therefore found limited acceptance by the industry.

1.10 Review of Current Methods

In recent years, some methods of transmission loss allocation have been reported in
literature. In absence of an ideal or unanimous transmission loss allocation method,
utilities around the world are using some of these methods. Prior to deregulation,
wheeling of power through transmission line was allowed in many jurisdictions. H. H.
Happ introduced some methods for calculating cost of power wheeling [5]. Conejo et al
[6] have discussed the Pro Rata (PR) procedure, a technique used in Mainland Spain for
allocation of transmission loss, where losses are globally assigned to generators and
consumers, and then a proportional allocation rule is used. The loss allocated to a
generator or consumer is proportional to its level of energy generation. PR procedure
ignores the network and, therefore, is not consistent with solved power flow. Conejo et
al [6] have also discussed two other methods called ‘Marginal Procedure’ and
‘Proportional Sharing’. In ‘Marginal Procedure’, losses are assigned to generators and
consumers through so-called incremental transmission loss co-efficient (ITL).
Normalization has to be performed after allocation, since this method results in over
recovery. The standard marginal procedure based on ITL coefficients depends on the
selection of the slack bus because ITL coefficients do depend on the slack bus. The ITL
coefficient of the slack bus is zero by definition, thus the slack bus is allocated no
losses. This is a drastic limitation for this method that requires that pool agents agree
beforehand on the selection of the slack bus. ‘Proportional sharing” procedure requires

the assumption of proportional sharing principle. According to this law “in flows to a
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bus are proportional to outflows from that bus” which could neither be proved nor
disproved.

Conejo et al [7] proposed a loss allocation method called “Z-bus allocation”. It is based
on the exact network equations as defined by the complex impedance matrix and the
complex nodal injections. All calculations are based on the sparse admittance matrix. It
uses complex current flows instead of power flow. Power flow solution required to get
injected bus current and power has to be converted to current.

Strbac et al [8] have proposed a transmission loss allocation method by tracing the
generator and load contributions to line flows. This method traces the contributions of
each generator and of each load to the line flows instead of marginal contributions.
Since the allocation method had been proposed on the basis of maximum flows in the
lines, it does not reflect the actual load condition. Bialek et al [9] had proposed another
method of loss allocation in which power flows in the lines are traced and a

proportional sharing principle is used.

Cheng et al [10] addressed different challenges associated with bilateral contracts in a
deregulated power system network. The authors described modeling of bilateral
contracts using a transaction matrix. A two-dimensional matrix that includes power

generators and load demands is termed as a transaction matrix.

Anderson and Yang [11] proposed a structure to determine the use of transmission
system. Instead of proportional sharing, a power flow comparison is used to determine
the use of transmission line. Power flow comparison method uses load flow study to
find a generator’s contribution by superimposing the generator on the base load. The
difference obtained from the two load flows are attributed to generator’s account. This
method goes in sequence for each generator to calculate its effect on load flow studies.
Loss allocation depends on the sequence of generator used. Results vary widely for
different sequences.

Fand and David [12] discussed power dispatch issue in a power network structure
dominated by bilateral and multilateral transmission contracts. A framework of price-
based operation under deregulated structure was developed and a solution to optimal
transmission dispatch is proposed. This paper particularly concentrates on dispatch

curtail challenges with bilateral and multilateral contracts in a power system.
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Exposito et al [13] have proposed a method based on unbundling of branch flows. The
method presented in this paper is modified incremental loss factor method and is
applicable on a nodal basis. The authors proposed four methods for splitting branch
flows; proportional allocation, quadratic allocation, geometric allocation and fast

geometric allocation.

Bhuiya and Chowdhury [14] have proposed two methods of loss allocation namely,
Incremental Load Flow Approach (ILFA) and Marginal Transmission Loss Approach
(MTLA). The former uses a modified load flow technique to assess transmission loss. In
this method, at each load bus, load is increased in a discrete step while the loads at the
other buses are kept constant. The resulting differential transmission loss is attributed to
the corresponding generator. The loads are incremented in an alternate sequence, in
discrete steps, from zero to their respective levels. This method is consistent with solved
load flow and rewards counter flow in the system but it requires a high computation
time. The later method is based on Kron’s transmission loss expression and results in an
iterative process. To reflect the effect of bilateral contracts, Kron’s loss expression is
modified and expressed in terms of loads instead of generations. In MTLA, a
generator’s share of transmission loss can be found by making an incremental change in
the generator’s active power demand, while keeping all other loads fixed. This method

requires many complex mathematical analyses and operations.

1.11 Objective And Scope of This Research

The main objective of this research work is to develop an artificial neural network that

can be utilized to assess transmission loss allocation in a deregulated system.

Power flow in a transmission network varies from one moment to another depending
upon the changes in load and generation schedule. A fast loss allocation tool / technique
is required to account for the variation in power flows. Moreover, a transmission
network is subjected to line failures for various reasons. Sometimes transmission lines
are taken out for preventive maintenance as well. The loss allocation, therefore, will
change with a change in the line configuration in the system. Also, loss allocation
depends on the underlying allocation principle that the stakeholders would agree. Based

on these practical considerations the intended ANN should meet the following criteria.
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1) Provide loss allocation results in a relatively fast manner.
2) Be flexible enough to accommodate line failures.

3) Be retrained and adapted to implement different loss allocation principles with

relative ease.

1.12 Outline of The Thesis

This thesis is organized in seven chapters. Chapter 1 and 2 deal with the basic concepts
of power system and transmission loss. Power systems around the world are going
through great changes in recent years. From vertically integrated monopoly business, it
is moving towards fully deregulated competitive business. Chapter 1 describes in brief
about the components of power systems and their operation. It also describes the
evolution of power systems, recent changes in deregulated power industry structure and
the effect of deregulation on operation and planning. It explains transmission loss and
the issues associated with loss allocation in a deregulated system. A literature review on

loss allocation also is presented in this chapter.

Transmission loss, its assessment and the principles of traditional system operation are
discussed in Chapter 2. The basic configuration and features of an artificial neural
network are described in Chapter 3. The working principles including learning and

testing of an ANN are also discussed in this chapter.

An artificial neural network needs some known input-output patterns for training.
Incremental Load Flow Approach (ILFA) was used to derive these patterns. Chapter 4
explains in detail the ILFA method of loss allocation with examples. Selection of
inputs, proposed architecture of neural network, and its training is described in detail in
this chapter. Loss allocation in the IEEE 24 bus system utilizing the proposed ANN is
presented in this chapter. Allocation results obtained from the ANN are compared with

those obtained from the ILFA.

Transmission line failures and their effects on loss allocation are discussed in Chapter 5.
The change in architecture to include line failures and the corresponding training and

testing details are also discussed in this chapter.
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Loss allocation in a deregulated power pool is different than loss allocation for bilateral
contracts. Loss allocation in a deregulated power pool utilizing the proposed ANN is
discussed in Chapter 6. Z-bus allocation has been utilized to derive the input-output
vector to train the proposed neural network. The effects of transmission line failures on
loss allocation is discussed in details in this chapter. Development of the proposed
ANN, its architecture, selection of inputs and training issues are discussed as well.

Allocation results obtained from the ANN are compared with that of Z-bus allocation.

The concluding remarks and the scope of future work are presented in Chapter 7.
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CHAPTER 2: TRANSMISSION LOSS & ECONOMIC POWER
SYSTEM OPERATION

2.1 Transmission Loss in Power System Operation

A power system consists of three essential functional areas, namely generation,
transmission and distribution. The combination of these three entities and their
optimized utilization is the goal of power system operation. The generation may consist
of different types of power plants e.g. thermal, hydro, nuclear, wind, solar, geothermal.
Start up time of these plants varies from few minutes to few days. Some responds to
load variation quickly while others takes a lot of time to respond. Fuel cost of these
plants also varies greatly. System operators usually want to use the available generating
units in an optimized and efficient way. Loads in a network vary throughout the day
and also during various seasons. Power system operators take all these factors in

consideration and operate their systems at lowest possible cost.

Loads in a network follow some patterns and go high and low at different times of the
day. Load forecast predicts the nature of the load from patterns and events from
previous records with good accuracy. From these predictions, system operator
determines the required number of generating unit to meet the demand; an essential
activity of power system operation, generally known as unit commitment. Unit
commitment dictates the number of generating units to be in spinning condition to meet
the demand for 24 hours. It also states the order of the units to be engaged in production
according to the production cost of the units and starting time of the units. Production
costs of these units depend on working principle and fuel used. For example, production

cost of hydro units is far less than those of gas and steam turbines.

Whatever fact lies with the production cost and working principles of the generating
units, transmission loss plays a vital role in the decision making of how the units are
committed and loaded. Transmission loss cannot be avoided due to fact that all

transmission and distribution lines offer resistance to flow of current through them.
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Some power loss occurs (i’R) during transmission of power which depends on distance,
size of line, voltage level and flow of current (power) i.e. total system load. Sometimes
a distant hydro power plant becomes costlier than a gas turbine near load center.
Therefore, after predicting load for an hour, a tentative generating schedule is prepared.
Optimum schedule is done after assessing transmission loss and considering other
factors like voltage level, water level in hydro plants and some other factors like starting
time and response time of the generating units. However, assessing transmission loss is

essential to the efficient operation of a power system.

Transmission loss consists of two components: real and reactive. Real part cost money,
millions of dollars per year and reactive part costs voltage stability. Both of them need
to be assessed properly for power system security and stability. AC load flow technique,
transmission loss expressions, Kron’s formula etc are used to assess transmission loss.
Out of these techniques, AC load flow technique is the most popular and powerful,

since it gives all power flows, line losses and voltage level of all buses in a system.

2.2 Transmission Loss Calculation from Load Flow Analysis

Load flow analysis forms the heart of power system analysis. In general, load flow
analysis solves for any unknown bus voltage and unspecified generation and finally for
complex power flow in the network components for a given power system network,
with known loads and some set of specifications or restrictions on power generation and
voltages. A load flow analysis can be utilized to determine total transmission loss in a
system as well as losses in individual components e.g. in transformers or in lines. A
load flow analysis provides real and reactive powers at different buses. Total
transmission loss can be calculated from the algebraic sum of powers injected at all

buses.

2.2.1 AC load flow technique- Two methods of load flow analysis are mostly used in
power system operation. They are Gauss-Seidal and Newton-Raphson methods [15].
Both need some input parameters for performing analysis. Network parameters e.g.
Y-bus or Z-bus is required to be calculated before proceeding a solution. Buses in a

network are divided into three categories: swing bus, generator or PV bus and load or
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PQ bus. Each bus is associated with four parameters: voltage magnitude, phase angle,

real and reactive power.

Swing bus — it is a generator bus whose voltage and angle have been specified for load
flow analysis. The real and reactive powers are calculated to match the generation, load

and losses.

Generator bus — Generators are connected in these buses. The bus voltage and real

power generation are specified and reactive power and phase angle are determined.

Load bus — generally loads are connected in these buses. Real and reactive load of these

buses are known and bus voltage and phase angle are calculated.

The load flow technique actually solves a set of simultaneous non-linear equations in an
iterative process. Gauss-Seidal method is easy to use but takes lot of iterations to give a
solution with a specified accuracy. Newton-Raphson method converges faster than
Gauss-Seidal method but needs matrix calculations. Due to easy calculation of matrices
in computer, Newton-Raphson method is widely used in load flow analysis. Since
Newton-Raphson method has been used in this research work, only this method will be
explained here. The following simultaneous equations are required for a solution of

load flow by Newton-Raphson method.

N

B =YWV, |cos(8,, +5,-5,) 2.1)
n=1
N

O =D ViV ¥ |8iNB, +8, =8) o o (22)
n=l1

where,

Pji=real power at Bus k

O = reactive power at Bus k&
V= voltage magnitude at Bus k
V,= voltage magnitude at Bus n

Y, = element of bus admittance matrix between buses &k and »
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6w = angle associated with Y,
Ox= phase angle of Bus &
0, = phase angle of Bus n

For every bus, there will be two such equations and two unknowns to be solved. The
unknowns are real and reactive generations for swing bus; phase angle and reactive
generation for PV bus and voltage magnitude and phase angle for load bus. The method
starts with some initial values for the specified parameters, P and Q for every bus
except the swing bus. Estimated values of V" and ¢ for each bus except the swing bus are
used to calculate the same parameters. The mismatch in power calculation originating

from specified and calculated values are determined for each bus. For Bus £,
APO=P-P. Y . . . (23)

209=0i-0:.® ... .. ... (24

where the subscript k& is bus number, subscripts s and c represent specified and
calculated values respectively and the superscript represents the iteration number. From

equations of all buses, Jacobian J is determined in following manner;

0P oP 0P oP
_ IR ANC TN
AP R . f AG
oP, , oP, , OP, , oP,, ||
AP | 316, B10, .1 a A | AS" 5)
o o ot s T e | |
316,17 318us] ANl ||
A0, Do : A‘VN—I(O)‘
aQN*] aQN*] aQN*I aQN*] - h
o161 318 ] VI BN s .

Equation (2.5) can be written as

AP* {JIJZ}Aék
= e e (26)
A% | s Ja]art

The diagonal and off-diagonal elements of J; are
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]

The diagonal and off-diagonal elements of J, are

oP,

o= cos@)+ X |Y [eos(@, ~5,+5) .. .. (@29)
v

a . .

a‘:j‘ IVH \cos(ﬁ,,—é,.wj) J#i . (210

The diagonal and off-diagonal elements of J; are

Z|V”VH J|oos(0, =5, +5,) .. .. .. . (21D
J#I
%=—|14|\Vj”xj\cos(ey—5i+5j), JEL . (212)

J

The diagonal and off-diagonal elements of J, are

;Q| |y |sin@,) - X |t |sin@, -5, +8) .. .. (@13
J#

6 1 . .

a\g\__h/” [sin(@, =, +5)  j#i e (218

Equation (2.6) can also be written in the following way

AS* | AP*
{ k}:[J]{ k} e e (205)
AlV" | AQ

Equation (2.15) is solved and errors in voltages and angles are calculated. New values
of V' and ¢ are estimated by subtracting these errors from the respective parameters.
These new voltage and angles are used to calculate new bus powers using Equations
(2.3) and (2.4). This process is repeated until mismatch at each bus goes below the

tolerance limit.
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2.2.2 Example of load flow analysis

A small 3-bus network is shown in Figure 2.1 to illustrate Newton-Raphson load flow
technique. There are two generators in Buses 1 and 2 and two loads in Buses 2 and 3.
Buses 1, 2 and 3 are defined as swing bus, voltage control bus and load bus
respectively. Line parameters and generator data are shown in Tables 2.1 and 2.2
respectively. Real and reactive load at Bus 2 are 120 MW and 50 MVAR and at Bus 3
are 250 MW and 80 MVAR. The base values used for this load flow analysis are 100
MVA and 138 kV.

Generator A Generator B
Load

Bus 1 Line 1 Bus 2

Line 2 Line 3

Bus 3
Load

Fig. 2.1: A 3-bus power system network.

Table 2.1: Line parameters for the system shown in Figure 2.1.

Line No. From Bus To Bus Resistance (p.u.) Reactance (p.u.)
1 1 2 0.0200 0.0400
2 1 3 0.0100 0.0300
3 2 3 0.0125 0.0250

Table 2.2: Generator data

Generating unit Maximum output (MW) Minimum output (MW)
Generator A 450 90
Generator B 250 30
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Before starting a flow analysis, voltage magnitude and phase angle of swing bus and
voltage magnitude of voltage control buses have to be defined. Let us assume voltage
magnitudes of Buses 1 and 2 are 1.05 p.u. and 1.04 p.u respectively and phase angle of
Bus 1 (swing bus) is 0. To check the convergence of iteration, we will use a value for

tolerance of 0.0001

From line parameters, we get the line admittances  y;,=10-/20, y;3=10-30, and

v23=16-732. This results in the following bus admittance matrix,
20-,750 -10+,20 -10+ 730

[v,.1=[-10+ /20  26-j52 —16+ 32
~10+ /30 —16+,32 26— j62

Converting the bus admittance matrix to polar form with angles in radian,

53.8517£—-1.9029 22.3607.£2.0344 31.6228/1.8925
1=122.3607.£2.0344 58.1378£-1.1071 35.7771£2.0344
31.6228/1.8925 35.7771£2.0344 67.2310£-1.1737

Y,

us

From Equations (1) and (2), the expressions for real power at Buses 2 and 3 and the

reactive power at Bus 3 are:
Py = [, [1h[[¥21[cos(Or, - 5, +51)+‘V22“Y22|C05(922) + V23] Y23 | cos(@y3 = 5, + 53)
P3 = |V3 ||I/1 ||Y31 | COS(931 — 53 + 51) + ‘V:S “VZ ||Y32 | COS(932 —524'53 ) + ‘V32“Y33 | COS(633)

O3 = —|V3|1||¥31[sin(63, — 85 + &) — ‘V3 “Vz V35 sin(3; —5+53) — ‘V32“Y33 |sin(6s3)
Initial values of bus voltages for Bus 1,2 and 3 are1.05£0,1.04£0 and 1.0£0. With
these initial values P,, P; and Qs in per unit quantities are:

P =0.5616

P =-1.14

o =278

Loads and generations expressed in per units are

sen  100-120

P —-0.20 pu
2 100 P
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psch_ 0=250

sch _ 0—80
=== 0.80
o5 100

From Equations (2.3) and (2.4) we get

AP® = Pt — P = 0.2-0.5616 =—0.7616
AP3(0) = pych _ p3(0> =-2.5-(-1.14) =-1.3600
AQL = 03" — 00 = 0.8 - (-2.78) = 1.9800

-0.7616
AP
Therefore, matrix [AQ} of Equation (2.15) is | —1.3600 |. Using Equations (2.7)-(2.14)
1.9800

55.1200 —33.2800 -16.6400
we get the Jacobian J= | —-33.2800  64.7800 24.8600
16.6400 —27.1400 59.2200

Using Equation (2.15), we get
-1

AS, 55.1200 -33.2800 -16.6400 —-0.7616 | |-0.0362
Ad5 |= | =33.2800  64.7800 24.8600 —1.3600 [=| -0.0479
AV; 16.6400 —27.1400 59.2200 1.9800 0.0217

The corrected values are

5 =0+(-0.0362) = —0.0362
5 =0+ (-0.0479) = —0.0479
v =140.0217=1.0217

AP, -0.0169
With these values of voltage magnitude and phase angle, | AP; |=| 0.0148
AQ, —-0.0832

55.6277 —-34.1972 -16.2495
Jacobian J= | —33.7994  65.4309 24.1015
17.3970 —29.6530 62.6409
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In the next iteration Equation (2.15) becomes

Ao, 55.6277 —-34.1972 —16.2495 | [-0.0169] [-0.0003
Aoy |= | =33.7994  65.4309 24.1015 0.0148 |=| 0.0004
AV5 17.3970 —29.6530 62.6409 —-0.0832| |[-0.0010

Now the corrected values are

5% =-0.0362 +(~0.0003) = —0.0365
58 =-0.0479+0.0004 = —0.0475
Vi =1.0217 +(-0.0010) =1.0207

and

AP, ] |-03219x107 55.5764 —34.1499 —16.2753

AP, |=| 0.0612x107* |, J= | -33.7787  65.3836  24.0867

AQ, —0.9761x10~% 17.3534 —29.5835 62.4949
After the 3" iteration,

AG, 555764 —34.1499 —162753 ' |—0.3219x107* | |-0.0888x10>
AS; |= |-33.7787 653836  24.0867 0.0612x10~* |=| 0.0102x107°
AV, 173534 —29.5835  62.4949

~0.9761x107% | |=0.1267x107

Now since the maximum error is less than the tolerance, the solution converged in three

iterations. New values are:

58 =-0.0365 + (-0.000000888) = —0.03650089 radian = —2.0913°
58 = -0.0475 +0.000000102 = ~0.0474999 radian = —2.7215°
V) =1.0207 +(~0.000001267) = 1.020698

P;=2.75637 p.u.
0,=0.27866 p.u
0:=0.66681 p.u

The load flow solution is shown in Table 2.3.
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Table 2.3: Load flow solution using Newton-Raphson method

Bus Voltage Phase Generation Load
magnitude Angle
Real Reactive Real Reactive
(p-u.) (degree)

(MW) (MVAR) (MW) (MVAR)
1 1.0500 0.0000 275.637 27.866 0.000 0.000
2 1.0400 -2.0913 100.000 116.681 120.000 50.000
3 1.0207 -2.7215 0.000 0.0000 250.000 80.000
Total 375.637 144.546 370.000 130.000

2.2.3 Calculation of transmission loss from load flow analysis— Transmission loss

can be calculated from the solved load flow analysis mentioned in Section 2.2.1. Solved

load flow analysis gives voltage magnitude and phase angle of all buses. From these

values current though all lines can be calculated. Current from Bus i to Bus j can be

calculated using following equation

(2.16)

where Yj; is the admittance of the transmission line between Bus i and Bus .

From known values of bus voltage and current injected in each line, power injection can

be calculated. Line loss is the sum of power injection in a line from both sides of it.

Power injection in a line can be determined from the following equations.

Sy=Vily*
Si=Vili*
SLi=Si+Sji

where,

(2.17)
(2.18)

(2.19)

S;;= power injection from Bus i to the line between Bus i & Bus j

S;i= power injection from Bus j to the line between Bus i & Bus j

Sz =power loss in the line between Bus i & Bus j

I;;* =complex conjugate of current /;;
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Thus power loss in all lines can be calculated. Total transmission loss is the sum of

losses in all lines.

Using Equation (2.16) all line currents can be obtained. Utilizing Equations (2.17)-

(2.19), line losses can be calculated. Table 2.4 shows the line loss for the system shown

in Figure 2.1

Table 2.4: Line flows and losses in the network shown in Figure 2.1

Line | From | To Real power | Reactive Line loss
Bus Bus MW) power Real Reactive
(MAVR) (MW) (MVAR)
1 1 2 91.023 -17.439 1.559 3.116
2 1 -89.464 20.555
2 1 3 184.617 45.307 3.278 9.832
3 1 -181.339 -35.475
3 2 3 69.464 46.133 0.803 1.607
3 2 -68.661 -44.525
Total transmission loss 5.640 14.555

Transmission loss calculated from a load flow analysis is more accurate than any other
method. Electrical utilities have been calculating transmission loss using load flow
analyses for more than hundred years. Before the deregulation of electric sector, load
flow analyses were sufficient for estimating transmission loss. After the introduction of
deregulation, it became necessary to compute transmission loss due to individual power
transaction i.e. from a particular generator to a particular load. Load flow analyses in

their current forms cannot be utilized to compute this type of loss.
2.3 Transmission Loss Expressions

A transmission loss expression is often used to compute total transmission loss in a
system. A transmission loss expression can be derived from the relation of bus voltage,

power and line current. Complex power S; in any Bus i is

S;= Vil (2.20)
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where,
V:=voltage at Bus i
1;* = complex conjugate of injected current at Bus i

Transmission loss is the sum of injected power at all buses. So,
Sy =P +jO; :ZSZ'

i
where,

S = total complex power loss

P, = total real power loss

Q; = total reactive power loss

S.=injected complex power at Bus i
Equation (2.21) can be written as

S, =wsl'liz] .. .. . . . (222
where,

[Vs] = [Z5][45]

[Z5] = [RI+[/X]

IARIIARTIA

[Z5] = bus impedance matrix

[R] = real part of bus impedance matrix element

[X] = imaginary part of bus impedance matrix element

[1,] = real component of injected bus current

[/,] = reactive component of injected bus current

(2.21)

Replacing Vpand I by their real and imaginary parts in equation (2.22),

S1.= 51" Zs][15]*

= (U1, 1+ L1, 1" (AR1+ X DU 1+ LT, D *

31



Separating real and imaginary parts,

P =,V IR +UTRIE,T o e e (223)

o, =, X+, IX,T . (229

Injected power at any Bus i is given by,

V.=V, |(cosd, + jsind,)

I,=1,+jl,, I, isthereal partand [, is the imaginary part of the injected

pi

bus current

Therefore,
P+ O, =V, [(cosd, + jsind ), + jl,,) ... (2.25)
Equating the real and imaginary parts,

P =V, |1,c080,+ |V, |1,sind, (2.26)
O, =V, |1,smo,—|V,|1,coso, (2.27)
Solving Equations (2.26) & (2.27) for [ ,and [,

_ Pcosd; +Q;sino,
" Vil

;- P:sin g, — Q, cos o,
! 14

The above two equations can be written in vector form as below,

[1,]1=[CIP]+[DIQO] O L.

[1,1=[DI[P]-[CIIO] e e e (29
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where,
[C] = diagonal matrix with elements (cos & /] Vi)
[D] = diagonal matrix with elements (sin &; /|Vi|)
Now puiting the values of 7, and , in Equation (2.23), it becomes,
P, =[1, Y[R, 1+[1,1[RI,]
= ([CI[P1+[DI[OD" [RI[CIIPI+[DIOD +([PI[PI-[CILOD [RI([DI[PI-[CIIOD
Or,

P, =[P (ICT'[RI[CI+[D] [RILDDIP1-[PT ([DT [RIICI+[CT [RIIDDIO]
+[O1" ([DT'[RI[CI-[CT [RIIDDIPI+[Q]" (ICT [RIIC]+[D] [RIIDDIQ]

which can be written in the following matrix form,

[4,] -[B,]1[[P]
P, =[P" e P { } 2.30
=[P 10 ]LBP] [Ap]} o) (2:30)

where,

[4,1=[CT"[RI[C]+[D] [RI[D]

[B,1=[D]'[RI[[C]-[C] [RI[D]

Again,
0 00..0ny rp-'ny |70 00...0
(17 [RI[C] = 0 ¢y, 00...0 :1/21 Yy ** Fap O ¢y, 00...0
0000O0...c,||[ryFp2Ty ||O00O0O...c,
L L S U L A U PR
_ .02”2101 CalppCy = ColppCy
Caln1€1 CaTn2€2  ** CplunCn

The elements of [4, ]are
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a,; =cryc; +drd,

C085; C0s I sing; sing;
= Ty + Tij
Vil V] VillV; |

U cos(8,—))
= —"—cos(5, -5,
VAV, !

The elements of [B, Jare

[B,1=[DI"[RI[C]-[CT'[RI[D]

by =diryc; —ciryd,;
(-5
= sin(6, — 5,
VAV | ’

Equation (2.30) can be written as

P, =[P [4,1[P)-[P1 [B,1[01+[01 [B,1[P]+[01"[4,][0]

Real and reactive power injection at any Bus i can be written as

E =P, Gi T~ P, Di
Qi = QGi - QDi
where,

P, = real power injection at Bus i

Q.= reactive power injection at Bus i
P,,= power generation at Bus i

P, = power demand at Bus i

Q. = reactive power generation at Bus i

O, =reactive power demand at Bus i
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From Equations (2.33), (2.34) & (2.35)

P =(P" _PDT)Ap(PG —Pp)—(Pg" _PDT)Bp(QT _QDT)Ap(PG - Pp)
T T
+(Qc —9p )4,(Q6 -09p)
_pT T T T T T
=P;' AP — Py A,P; —Ps" A,Pp+ Pyl 4,Pp — Py’ B,0g + Py B,0¢
+PGTBpQD - PpB,0p +QGTBpPG _QDTBpPG -06B,Pp +QDTBpPD
+06" 4,06 -0p' 4,06 -06' 4,0p+0p' 4,0p -+ = (236)
This is a standard transmission loss expression in terms of generation and demand.

Similarly, expression for reactive power can also be obtained. In Equation (2.36) P,

Pp, Oc, Op, A, B, are expressed in matrix form.

2.4 Approximate Loss Formula

In many applications approximate loss expressions are used instead of Equation (2.36).
A widely known approximate loss expression, known as Kron’s loss formula is derived

with the help of the following assumptions.

a. linear relationship between reactive and real power of all generators, which

can be defined by
Qe = Qaio + JiFei
b. constant generator angular position o;
c. voltage magnitude of generator-bus is constant &
d. a fixed demand pattern defined by the following matrices,
[QGol=col[Ogio]
[£] = daig(f;)

where, f, is a constant.

Using these assumptions, Equation (2.36) can be written as,
P, =[PI 1B, 1P 1+[B o1+ K OO (2 )

where,
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[B.1=[4,]1-[B,1[F1+[F1"[B,1+[F1"[4,][F]

[Bo1" =[E,1+[E, IF1+2[0g,1" {[4,1[F1+[B,1}

[4,] _[Bp]:l |:[PD]

K.o=lP T T
w0 ]{[Bp] (4,1 |[10p]

}+[QG0]T[AP][QG0]+[Eq][QGO]

(£,1=2(-1P, 1 14,1-10,1"18,))

(£,1=2,1718,1-12,1714,))
Equation (2.37) is known as Kron’s transmission loss equation. Derivation of Equation
(2.37) from Equation (2.36) is shown in Appendix B. B,,B,, & K,, are taken as

constants. These values, however, do not remain constant for the entire production
range of the generators. In spite of this, Kron’s formula can assess transmission loss
with a fair accuracy. This formula has been used in finding the economic load dispatch

for 24 hour generations for weekdays and weekends later in this chapter.

An even simpler form of transmission loss expression, known as George’s loss formula
is often used where only an approximate estimate of the transmission loss is required.

George’s loss formula is expressed as

Pp =) > FB;P e (238
i

where Bij's are known as loss coefficients. Use of this formula is limited due to its

inaccuracy. Since this formula is not used in this research, it will not be discussed in

detail.

2.5 Economic Power Flow Solution

A modern power system is a very complex entity. Power system engineers face the
challenging task of planning and operating the system in an efficient way. Economic
dispatch ranks high among the major functions in a power industry. Economic dispatch
is the distribution of total required power generation among the available sources for
optimal system economy with due consideration of generation cost, transmission loss,

and several recognized constraints imposed by the requirements of reliable service and
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equipment limitations. Conventional economic dispatch is a static optimization
procedure to dispatch pre-selected generating units. When excess generation capacity is
available in a system such that an economic choice of units can be made, the set of units
to be dispatched is normally determined by a unit commitment program. The hydro-
thermal generation economic schedule is different from the all-thermal one. The former
involves the planning of the usage of a limited resource over a period of time. The
resource is the water available for hydro generation. However, in this research we have
assumed that the power system is deregulated and power pool buys power at a fixed
cost in every hour. It eliminates the problem of hydro-thermal case. In this case, a
power pool does not base its decision on the source of power rather concentrates on the

cost of power.

Economic power flow solution is an optimization problem. The target is to operate the
system at the minimum cost. Most thermal generation cost can be described by the

following equation [16],
F; =a;Pg" +b;Pg; +c;
where,
F =running cost of unit
Pg;=power generation in MW

a;,b;,c;are constant for generator /, generally known as cost parameters.

In a deregulated power system, power producers do not supply the cost parameter
information to the system operator. In most cases, price of power is determined by
market clearing price which remain fixed for a specified period of time usually an hour.

So, cost function becomes,

F, = AP (239

where,
F;= cost of energy for unit i

S = market clearing price, $/MW-hr
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Pgi= energy in MW-hr (produced by unit 7)

Let transmission loss is defined by Pj,. Then penalty factor PF, for unit i can be

expressed as:

1
PF, = ——— 2.40
! - oP; ( )

OPg;

Differentiating Equation (2.39) with respect to power Pg;, we get

oF,
= 241
il (2.41)

For economic load scheduling,

oF; PF, = ),
aPG.

1

(2.42)

sys
where, A is the incremental running cost of the system.

2.6 Example of Economic Power Flow Solution

For economic power flow solution for an n-bus system, Kron’s transmission loss
formula and penalty factor Equation (2.40) have to be generalized. Let us consider a
4-bus system as shown in Figure 2.2. To calculate [ Y5, | and [Zp,s], let us consider Bus

4 as reference. Therefore, [ Yp] 15,

Yu Vi —Mis
Yo 1=| =V Yo T Vn
— Vi T JVxn Y33

and [Zbus] = [Ybus ]_1

Therefore, 4, & B, become 3x3 matrices which can be determined using Equations

(2.31) & (2.32).
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BUS 1 _JL BUS 2 JL_

-1 BUS3 1 |

BUS 4

Fig. 2.2: 4-bus test network

Now we can rewrite the equation (2.37) for 4-bus network as

kiy ki ki3 | Pgl Pgi
PL:[pgl Pg2 Pg3lka kyp k| pgo +luwy uy us Pgr |+ Ko (2.43)
k31 ks ka3 | pgs Pg3

where k. and u, are elements of matrices [Biland [B;o] respectively and pg are

generations at different buses.
Expanding the matrices in Equation (2.43) we get

2 2 2
Pp=kipg1” thppgr +k3spgs +kinPgiPgr T ki3Pg1Pg3 + ko1 Pg1Pga +hp3PgoDg3 +

k33PgaPg3 T hk31Pg1Pg3 U1 Pg1 TUsPgr tU3pe3 + Ko

3 3 3 3
2
i=1 i=1 j=1 i=1
i#j

For an n-bus system Equation (2.44) can be written as
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n—1 n—1 n—1

n—1
PL = kaxpéx +szxjpgxpgj +Zuxpgx +KLO

x=1 x=1j=1 x=1
X#]

Differentiating Equation (2.45) with respect to pg,,

8P n—1 .
L - 2k D gy + Zkajpgj +u, [Since k;,=k,; and so] ...
pgx Jj=1
J#X

Putting these values in Equation (2.42),

OF, 1 _
g 1_ P >
P g
1
Or, 'BTPL = j'sys
P g
P _
OI', a L = u
Pg A
n—1
A—
Or’ 2kxxpgx + Zkajpg] +ux = T’B
i=1
o
n—1
A- u
Or, kxxpgx + kajpgj =_ﬂ__x ......
= 24 2
J*Xx
Equation (2.47) can be written as,
A= u
kllpgl + klngz + k13pg3... + kln—lpgn—l = 7 _7
A-p u
ko1Pg1 +knPgr +ka3Pgst katp1Pgn1 = =7 —72
A-p u
k31pg1 + k32[7g2 + k33pg3... + k3l’l—1pgn—1 A s &
24 2
A-p
kn11Pg1 thy12Pgr +ky13Pg3Fky 1y 1Dgnat = EYH
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The sets of Equation (2.48) can be expressed in matrix form as:

_ - - _l—ﬂ I/ll
ki ki kiyeeky Pgl Y
kyr kay  kozeerky Pg2 A= u,

k3y kzy kszeecky e Pg3 |=| 24 2 (2.49)

— u
_kn—l,l ky_12 kn—1,3--kn—1,m—1__Pgn—1_ A=B _Up

or, [8,][Fs]=U]
or, [P;]=[B,]'[U] O 6 11)

A particular value of 4 will satisfy the condition of power balance i.e. total generation
will be equal to total load plus losses. These values of generation will be the optimum

for the least cost operation of a power system.

2.7 Test System

In this research the IEEE 24-bus system [17] shown in Figure 2.3 was used as an
example system for study. It is assumed that the system is run as a pool operation. Its
economic power flow solution was obtained using the method mentioned in Section 2.6.

An example of economic load flow solution for the peak hour is illustrated here.

There are 10 generator buses and 15 load buses in this system. Line, generator & load
parameters are shown in Tables 2.5 & 2.6. Matrices [Qgy] and [F] have been determined
using the load flow data of two consecutive hours. Transmission losses obtained from
Kron’s formula and load flow analysis are very close, which proves the accuracy of the

formulation of Kron’s formula. Matrices [F] and [Qgy ]are given in appendix A.
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Table 2.5: Line parameters of the test system

Line no. From Bus To Bus Resistance (R) Reactance (X)
(p-u.) (p-u.)
1 1 2 0.0026 0.0139
2 1 3 0.0546 0.2112
3 1 5 0.0218 0.0845
4 2 4 0.0328 0.1267
5 2 6 0.0497 0.1920
6 3 9 0.0308 0.1190
7 3 24 0.0023 0.0839
8 4 9 0.0268 0.1037
9 5 10 0.0228 0.0883
10 6 10 0.0139 0.0605
11 7 8 0.0159 0.0614
12 8 9 0.0427 0.1651
13 8 10 0.0427 0.1651
14 9 11 0.0023 0.0839
15 9 12 0.0023 0.0839
16 10 11 0.0023 0.0839
17 10 12 0.0023 0.0839
18 11 13 0.0061 0.0476
19 11 14 0.0054 0.0418
20 12 13 0.0061 0.0476
21 12 23 0.0124 0.0966
22 13 23 0.0111 0.0865
23 14 16 0.0050 0.0389
24 15 16 0.0022 0.0173
25 15 21 0.0063 0.0490
26 15 21 0.0063 0.0490
27 15 24 0.0067 0.0519
28 16 17 0.0033 0.0259
29 16 19 0.0030 0.0231
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Table 2.5 (continued)

30 17 18 0.0018 0.0144
31 17 22 0.0135 0.1053
32 18 21 0.0033 0.0259
33 18 21 0.0033 0.0259
34 19 20 0.0051 0.0396
35 19 20 0.0051 0.0396
36 20 23 0.0028 0.0216
37 20 23 0.0028 0.0216
38 21 22 0.0087 0.0678
Table 2.6: Bus data for the test system
Bus no. Bus Type | Bus Voltage | Bus Angle | Real load (P) | Reactive load
Q)
1 0 1.03 0.00 1.08 0.22
2 2 1.03 0.00 0.97 0.20
3 1 0.00 0.00 1.80 0.37
4 1 0.00 0.00 0.74 0.15
5 1 0.00 0.00 0.71 0.14
6 1 0.00 0.00 1.36 0.28
7 2 1.02 0.00 1.25 0.25
1 1 0.00 0.00 1.71 0.35
9 1 0.00 0.00 1.75 0.36
10 1 0.00 0.00 1.5 0.40
11 1 0.00 0.00 0.00 0.00
12 1 0.00 0.00 0.00 0.00
13 2 1.03 0.00 2.65 0.54
14 1 0.00 0.00 1.94 0.39
15 2 1.03 0.00 3.17 0.64
16 2 1.03 0.00 1.00 0.2
17 1 0.00 0.00 0.00 0.00
18 2 1.02 0.00 3.33 0.68
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Table 2.6 (continued)

Bus no. Bus Type | Bus Voltage | Bus Angle | Real load (P) | Reactive load
Q)
19 1 0.00 0.00 1.81 0.37
20 1 0.00 0.00 1.28 0.26
21 2 1.03 0.00 0.00 0.00
22 2 1.03 0.00 0.00 0.00
23 2 1002 0.00 0.00 0.00
24 1 0.00 0.00 0.00 0.00
Table 2.7: Generation data for the test system

Bus no. PGmax OGmin OGmin Vinax Vmin

1 1.92 1.20 -0.75 1.05 0.95

2 1.92 1.20 -0.75 1.05 0.95

7 3.00 2.70 0.00 1.05 0.95

13 591 3.60 0.00 1.05 0.95

15 2.15 1.65 -0.75 1.05 0.95

16 1.55 1.20 -0.75 1.05 0.95

18 4.00 3.00 -0.75 1.05 0.95

21 4.00 3.00 -0.75 1.05 0.95

22 3.00 1.45 -0.90 1.05 0.95

23 6.60 4.50 -0.75 1.05 0.95

With the bus data shown in Table 2.6, load flow studies have been performed using
Newton-Raphson method. Detailed results of the load flow study are shown in Table A9
in Appendix A. From the load flow study, the total transmission loss is calculated as
51.3 MW and 422.3 KVAR. Using Equation (2.50) economic loading of generators is
obtained which is shown in Table 2.8. With the optimum loading of generators as
shown in Table 2.8, a load flow study shows that the total transmission loss is reduced
to 36.4 MW and 271.7 MVAR. Details of this load flow study is shown in Table A10 in
Appendix A.
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Table 2.8: Economic loading of generators

Generator at Real power
Bus no. generation (p.u.)

1 4.018

2 0.483

7 1.007

13 5.327

15 1.439

16 2.797

18 3.904
21 3.813
22 0.451
23 4.006

Typical 24-hour load variation in the test system were considered which is shown in
Tables A1-A8 in Appendix A. An extensive load flow studies have been performed and
economical load dispatch were obtained using Equation (2.50). Market clearing price
was used to find the cost of generation for every hour. Transmission loss was calculated
using both Kron’s loss formula and load flow studies for 24 hour load conditions and
economical load dispatches were obtained. Figure 2.4 shows reduction in transmission
loss due to economical load dispatches for 24 hour load conditions as obtained by
Kron’s loss formula and the load flow studies. It was assumed that the operator of the

test system always use economical load dispatch for pool operation.
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Fig. 2.4: Transmission loss for initial and economical load dispatch.

2.8 Summary

Transmission loss in electric power system has been discussed in this chapter. Load
flow study and transmission loss calculations were illustrated with examples.
Transmission loss expressions were derived. Economic power flow solutions were
discussed. The IEEE 24-bus RTS network was utilized to illustrate economic power

flow solution with various loading conditions.
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CHAPTER 3: ARTIFICIAL NEURAL NETWORK

3.1 Introduction

Artificial neural networks, commonly referred to as “Neural Networks™ are a different
paradigm for computing. The motivation behind the development of neural network was
right from the recognition that brain works in an entirely different way from the
conventional digital computer. Although today’s computers are very fast and gained
tremendous speed in information processing, still they are well behind the capability of
a biological brain. For example, the sonar echo location system, of a bat. In addition to
providing information about how far a target (i.e. a flying insect) is, a bat’s sonar
system conveys information about the relative velocity of the target, the size and
various features, the azimuth and elevation of the target. These complex neural
computations needed to extract all these information from the target echo occur within a
brain of the size of a palm. Indeed, an echo-locating bat can pursue and capture its
target with a success rate that would be the envy of a radar or sonar engineer. To
understand the functions of an artificial neural network, we need to know how human

brain works.

3.2 Biological Neural Network

A brain is the central processing unit (CPU) of a biological neural network. The
struggle to understand how a brain works, owes much to the pioneering work of Ramoén
Y Cajal, who first introduced the idea of neurons as structural constituents of a brain
[18]. Human brain consists of 10 billion neurons. Figure 3.1 shows the structure of a
brain neuron [19]. Neurons are wired up in a 3-dimensional pattern. There are about 60
trillion synapses or interconnections between them. Much is still unknown about how
the brain trains itself to process information, so theories abound. In the human brain, a
typical neuron collects signals from others through a host of fine structures called

dendrites. The neuron sends out spikes of electrical activity through a long, thin stand
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known as an axon, which splits into thousands of branches. At the end of each branch, a
structure called a synapse converts the activity from the axon into electrical effects that
inhibit or excite activity from the axon into electrical effects that inhibit or excite
activity in the connected neurons. When a neuron receives excitatory input that is
sufficiently large compared with its inhibitory input, it sends a spike of electrical
activity down its axon. Learning occurs by changing the effectiveness of the synapses
so that the influence of one neuron on another changes. During early stages of

development, about one million synapses are formed per second.
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Fig. 3.1: Biological neuron [19].

A brain is a highly complex, nonlinear, and parallel computer. It has the capability of
organizing neurons so as to perform certain computations (e.g. pattern recognition,
perception, and motor control) many times faster than the fastest digital computer in
existence today. Energetic efficiency of brain is also much better that any efficient
computer. Brain takes only 107'® joules per operation per second whereas the
corresponding value for the best computers in use during 1994 was about 10 joules per
operation [20]. A biological neuron may have as many as 10,000 different inputs, and
may send its output to many other neurons [21]. It can learn from experience, and from
the senses taken by any sensory organs. Real brains, however, many times more

complex than any artificial neural network so far considered.
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3.3 Mathematical Model of A Neuron

A nerve cell, which is the building block of human nervous system including brain, is

called a neuron. In nature, the biological neurons are involved in various complex

sensory, control and cognitive aspects of mathematical processing and in decision

making processes. Similarly an artificial neural network consists of many identical

neurons. Figure 3.2 shows mathematical model of a neuron [22].

Confluence operation

Linear mapping
from many to one

- Ll‘

from one to one

Non-linear mapping

I” Neural
inputs

" Synaptic operation
Fig.3.2: A mathematical model of a neuron

3.4 Evolution of Artificial Neural Networks

Somatic operation

Outfput

Neural network simulations appear to be a recent development. However, this field was

established before the advent of computers. It started with the modeling the functions of

a human brain by McCulloch and Pitts in 1943, who published a paper that describes

the logical calculus of neural networks. The major development of neural networks

came in 1949 with the publication of Hebb’s book The Organization of Behavior, in

which an explicit statement of a physiological learning rule for synaptic modification

was presented for the first time. Hebb’s book has been a source of inspiration for the

development of computational models of learning and adaptive system.

In 1954,

Minsky wrote a thesis on “neural network” in his Ph.D study. In 1961, he wrote a paper

on artificial intelligence entitled Steps Towards Artificial Intelligence. In 1954, Gabor,

50



the early pioneer of communication proposed the idea of nonlinear adaptive filter. He
tried to build a machine, in which learning was accomplished by feeding samples of a
stochastic process into the machine, together with the target function that the machine
was expected to produce. In 1958, Rosenbatt proposed a new approach to pattern
recognition problem. The crowning achievements of Rosenbatt’s work was called
perceptron convergence theorem. In 1960, Widrow and Hoff introduced least mean-
square algorithm (LMS). One of the earliest trainable layered neural networks with
multiple adaptive elements was the Madaline (multiple-adaline) structure proposed by
Widrow (1962). In 1965, Nilsson’s book, Learning Machines, was published, which is
still the source for the best-written exposition of linearly separable patterns in hyper

surfaces.

The major problem in early research on neural network was in part technological and in
part financial. In absence of today’s personal computer or workstations, neural network
design and training had to be done on analog circuits. For example, Gabor developed
his nonlinear filter, which took his research team further six years to build the filter with
analog devices. There was not enough finance in early days to carry out research.
However, in 1980s, with the development of personal computers, there was a

resurgence of interests in neural networks.

In the 1980s, major contributions to the theory and design of neural networks were
made on several fronts. Grossberg (1980) established a new principle of self-
organization that combines bottom-up adaptive filtering and contrast enhancement in
short-term memory with top-down template matching and stabilization of code of
learning. Given such capability, if the input pattern and learned feedback match, a
dynamic state called adaptive resonance takes place. This phenomenon provides the
basis of new class of neural networks known as adaptive resonance theory (ART). In
1982, Hopefield used the idea of energy function to formulate a new way of
understanding the computation performed by recurrent networks with symmetric
synaptic connections. He developed a new class of neural network with feedback, which
is well known as Hopefield Networks. Another important development in 1982 was
made by Kohonen. He developed a self-organizing map using one or two lattice

structure. In 1983, Kirpatrick, Gallat and Vecchi described a new procedure called
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simulated annealing, for solving combinational optimization problem. In 1985, Hinton
and Sejnowski developed a learning algorithm called Boltzmann learning which uses

Boltzmann distribution.

In 1986, Rumelhart, Hinton and Williams developed a learning algorithm called Back
Propagation Algorithm. Their publications “Parallel Distributed Processing” &
“Explorations in the Microstructures of Cognition” had been a major influence in the
use of back-propagation learning, which had emerged as the most popular learning
algorithm for the training of multilayer perceptron. Later, back-propagation algorithm
was modified by many researchers to increase the speed of training. Broomhead and
Lowe, in 1988, described a procedure for the designing of layered feed forward
networks using radial basis functions, which provides an alternative to multilayer

perceptrons.

Neural networks have certainly come a long way from the early days of McCulloch and
Pitts. The 1982 paper by Hopefield and the two volume book by Rumelhart and
McLelland were the most influential publications responsible for the resurgence of
interest in neural network in the 1980s. Today, neural networks have established
themselves as an interdisciplinary subject with deep roots in neuroscience, psychology,
mathematics, physical science and engineering. Today, neural networks have been
successfully used to solve many complicated real world problem. Current resurgence of

interest in neural network will keep them growing in theory and applications.

3.5 Architecture of Neural Networks

There are wide variety of neural networks and their architectures. Types of neural
networks range from simple Boolean networks (perceptions) to complex self-
organizing networks (Kohonen networks). There are also many other types of networks
like Hopefield networks, Pulse networks, Radial-Basis Function networks, Boltzmann
machine. Although architecture of neural networks cannot be bound by definite set

rules, there are some standard network architectures as described below.

3.5.1 Single-Layer feedforward networks: It is the simplest type of network which

consists of an input layer of source nodes that projects directly onto neurons of output
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layer. There is no hidden layer in this architecture. It is strictly of feedforward type, as
there is no feedback from output layer. Figure 3.3 shows a Single-Layer Feedforward

network.

Input layer of
source nodes

Fig.3.3: Single-layer feedforward network

3.5.2 Multilayer feedforward networks: A multilayer feedforward network, often
known as Multilayer Perceptron (MLP) distinguishes itself by the presence of one or
more hidden layers. Hidden neurons in hidden layers intervene between external input
and the network outputs. The addition of hidden layers in MLP increases its capability
of extracting higher-order statistics. This feature of MLP increases its capability to deal
with high degree on non-linearity and complex situations. MLPs can be fully connected
or partially connected. In fully connected multilayer feedforward networks, every
neuron in each layer is connected to every other neuron in the adjacent forward layer.
Figure 3.4 shows a fully connected multilayer feedforward network. If some synaptic
connections between the neurons are missing, the network is termed as partially
connected feedforward network. Figure 3.5 shows a partially connected feedforward

network.
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Fig 3.5: Partially connected feedforward network

3.5.3 Recurrent networks: Unlike a feedforward network, in a recurrent network there
must be at least one feedback loop. One or more outputs of output layer are fed back to
the input or hidden layer. It can be made up of any number of layers. If any output is fed
back to its own input, the network is termed as recurrent network with self-feedback.
The feedback loops involve the use of unit delay elements, which results in non-linear
dynamic behavior. Unit delay elements are denoted by z'. The presence of feed back
loops in recurrent network has profound impact in learning and performance. Figure 3.6

shows a recurrent network.
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Outputs

Fig 3.6: Recurrent network with hidden neurons

3.5.4 Lattice Structures: A lattice structure is different from other types of architecture
of neural networks by its arrangements of neurons and their connections. It consists of a
one-dimensional, two-dimensional or higher-dimensional array of neurons with
corresponding set of source nodes that supply the input signals to the array. Figure 3.7
depicts a two-dimensional lattice of 3-by-3 neurons fed from an input layer of three
source nodes. It is similar to feedforward network with the output neurons arranged in

rows and columns.
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Fig.3.7: Two-dimensional lattice structure of 3-by-3 neurons

3.6 Learning of Artificial Neural Networks

The most significant property of a neural network is that it can learn from environment,
and can improve its performance through learning. Learning is a process by which the
free parameters of a neural network i.e. synaptic weights and thresholds are adapted
through a continuous process of stimulation by the environment in which the network is
embedded. The network becomes more knowledgeable about environment after each
iteration of learning process. There are three types of learning paradigms namely,
supervised learning, reinforced learning and self-organized or unsupervised learning. In
supervised learning, an external teacher, having the knowledge of the environment,
represents a set of input-output examples for the neural network which may not have
any prior knowledge about that environment. When the teacher and the neural network
are both exposed to a training vector drawn from environment, by virtue of built-in
knowledge, the teacher is able to provide the neural network with a desired response for
that training vector. The network adjusts its weights and thresholds until the actual
response of the network is very close to the desired response. Figure 3.8 shows a

diagram of supervised learning.
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Fig.3.8: Block diagram of supervised learning

Reinforcement learning system consists of three elements: learning element, knowledge
base and performance element. A critic is used instead of a teacher, which produces
heuristic reinforce signal for the learning element. State input vector goes to critic,
learning element and performance element at the same time. With the state vector and
primary reinforce signal from the environment as inputs, the critic (predictor) estimates
the evaluation function. By virtue of inputs received from the environment and the
knowledge base, the performance element determines the input-output mapping. Figure

3.9 shows the block diagram of reinforcement learning.
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State input reinforcement
A 4

Critic
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A 4
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Actions
A 4
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A 4

Performance element

Fig.3.9: Block diagram of reinforcement learning system
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In unsupervised or self-organized learning there is no external teacher or critic to
oversee the learning process. The network representation and free parameters are
optimized to become tuned to statistical regularities of the input data to develop the
ability to form internal representation for encoding input data and thereby gather

knowledge about the environment.

There are many different kinds of learning algorithm for example, error correction
learning, Boltzmann learning, Thorndike’s law of effect, Hebbian learning and
competitive learning. In competitive learning the outputs of a neural network compete
among themselves for being the one to be active whereas in Hebbian learning several
output neurons may be active at the same time. Some other learning algorithms are:
back propagation algorithm, conjugate gradient descent, Quasi-Newton, Levenberg-
Marquardt, quick propagation, Delta-bar-Delta, and Kohonen training. Back
propagation algorithm is the mostly used algorithm for feedforward neural network. It is
a supervised learning algorithm which requires a set of training data with known input
and output vector. It uses steepest gradient descent of error which propagates backwards
for updating the synaptic weights and thresholds. The advantage of this algorithm is the
simplicity of calculation during weight updates. Although widely used, the back
propagation algorithm suffers from slow rate of convergence and hence requires long
training time for large network with large number of training patterns. However, some
methods have been developed to overcome the slow rate of learning, for example,
optimization of initial weights [23], adaptation of learning rate using delta-bar-delta
learning rule [24], use of multiple activation functions [25]. Also adding a momentum

factor, it can learn faster and can overcome local minima [26].

Conjugate gradient descent works by constructing a series of line searches across the
error surface. It first works out the direction of steepest descent, just as back
propagation would do. However, instead of taking a step proportional to a learning rate,
conjugate gradient descent projects a straight line in that direction and then locates a
minimum along this line, a process that is quite fast as it only involves searching in one
dimension. Subsequently, further line searches are conducted. The directions of the line

searches (the conjugate directions) are chosen to try to ensure that the directions that
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have already been minimized stay minimized. Quasi-Newton is the most popular
algorithm in nonlinear optimization, with a reputation for fast convergence. It works by
exploiting the observation that, on a quadratic error surface, one can step directly to the
minimum using the Newton step - a calculation involving the Hessian matrix. Main
draw backs of this algorithm is that the Hessian matrix is difficult and expensive to
calculate and Newton step would be wrong if the error surface is non-quadratic. It

requires a huge memory and therefore it is not advised to use it for large networks.

3.7. Working Principles of Artificial Neural Networks

Artificial neural network solutions are very attractive due to their simplicity and relative
speed. Although an ANN can solve highly non-linear complex problem, its working
principle is very simple. Working process of a fully connected multilayer feedforward

network, shown Figure 3.10, is described here.

Inputs (1)

Outputs (K)

Hidden layers (J)

Fig.3.10: A multilayer feedforward neural network

The input layer is connected to an adjacent layer, typically known as a hidden layer, by
some synaptic weights. Input neurons are activated by external input signals and these
signals passes through the synaptic weights to the next layer. While passing through the
synaptic weights, input signals are multiplied by the corresponding weights (/7). All
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signals that reach a neuron of a hidden layer are summed, described by the Equation

(3.1), and converted to the output of that neuron by some activation functions.
vi(n) =Y w,(n)y,(n) .. (3D
i=1

Various transfer functions such as sigmoid, Gaussian, hyperbolic tangent, hyperbolic
secant etc. are used as activation functions in neural networks. Sigmoid functions are
very popular among them. A typical sigmoid function is described by Equation (3.2)

and shown in Figure 3.11.

1

—vj+vj0

= 32
Y 1+e (3.2)

where vjy is a threshold value, which is independent of input signal.

—_—

1/(1+exp(Vi))

Yj=

Vj
Fig.3.11. Sigmoidal transfer function

Another widely used activation function is hyperbolic tangent function which is
described by Equation (3.3) and shown in Figure 3.12. Outputs of a hidden layer pass to
the next hidden layer or output layer in a similar way. The method is very fast in speed
because of the fact that all inputs activate the input neurons at the same time (in
parallel) and signal passes to the output layer with some manipulations by weights and
activation functions, and output is obtained in one pass of the signals. Therefore,
whatever complex relation exist between input and output, however large the network

is, a trained neural network can give output in fractions of a second.

y,;(n) =atanh(b*v,(n)) (3.3)
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Fig.3.12. Hyperbolic tangent function

3.8 Testing of Artificial Neural Networks

After design and training of an artificial neural network to solve a particular problem,
the network should be tested to check its performance. To do this job, test patterns i.e.
an input vector describing all possible situation of the environment is created and the
teacher (conventional method) calculates the corresponding output vector. This input
vector is utilized to obtain corresponding output vector using the trained neural
network, and the output vector is compared with the actual output vector created by the
teacher. For a properly designed and trained neural network the error i.e. the difference
between these two output vectors will be smaller than the tolerance. The smaller the

error, the better the performance.

3.9 Applications

Although research on artificial neural networks had started in early 1900s, the
development and application were very limited before the advent of personal
computers. Remarkable development and application of neural networks were made in
last two decades. Today, artificial neural networks have been used in a wide variety of
real world problems. Many complex problems that require time consuming
computations have been solved by artificial neural networks in a simpler and faster way.
Neural networks proved to have promising application in image processing, for

example, identifying hand-written characters; matching a photograph of a person's face
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with a different photo in a database; performing data compression on an image with
minimal loss of content. Other applications are: voice recognition; language translation,
RADAR signature analysis; stock market prediction, weather forecasting, electrical load
forecasting, process modeling and control, machine diagnostics, portfolio management,
target recognition, medical diagnosis, credit rating, targeted marketing, financial
forecasting, quality control, intelligent searching, fraud detection. All of these problems
involve large amounts of data, and complex relationships between the different
parameters. Now a days, it has been used in control systems, protection systems and in
many military applications. Neuro-fuzzy network proved to be promising in its use in
control systems and robotic applications. People are trying to build artificial intelligence
with the capacity of a human brain using neural networks. Another promising use of
neural networks can be assisting doctors with their diagnosis by analyzing reported
symptoms, test data, image data such as MRI, X-rays. The goal of this research is to
develop a neural network as a tool to allocate transmission loss in a deregulated power

system.
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CHAPTER 4: ARTIFICIAL NEURAL NETWORK BASED
TRANSMISSION LOSS ALLOCATION

4.1 Introduction

After the introduction of deregulation in electric power industry in early 90s, many
power systems in the world started moving from century old vertically integrated
regulated monopoly business to open access competitive market. The present era can be
called a transition period for power system deregulation. In a deregulated power system
it is necessary to assess transmission loss originating from individual transactions.
Many energy users sign bilateral contacts with energy suppliers to avoid price
fluctuations of an open market. In this circumstance, transmission loss has to be
allocated to each bilateral transaction. In many cases power producers form an energy
pool to run their operation as a single entity. In a pool operation, loss is shared by all
participating suppliers according to a previously agreed rule or algorithm. In some pool
systems both suppliers and consumers share loss. In this chapter the loss allocation for
bilateral contract will be discussed. Many techniques have been reported in the
literature and mentioned in Chapter 1 that can assess transmission loss allocation for
bilateral contracts. Most of these loss allocation procedures involves complex
mathematical expressions and requires time consuming computations. Incremental Load
Flow Approach (ILFA) has almost all the desired properties of loss allocation but it
requires time consuming computations which increase with an increase in system size.
Artificial neural networks (ANN) have been developed and utilized in this research to
allocate transmission loss to individual transactions. The ILFA has been used as an
external teacher to create a set of input and output vector for loss allocation. An ANN
has been designed and trained with those input and output vectors, and it was observed

that it can produce results similar to those produced by the ILFA.
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4.2 Incremental Load Flow Approach (ILFA)

Incremental load flow approach (ILFA) uses conventional load flow study repeatedly.
In the ILFA, a load flow program is run from load level zero to their given level for
each load under a bilateral contract in a sequential manner. Loads are incremented by a
small value in each iteration. Each generator is assumed to have a fixed consumer or
load in the system and supposed to produce the power to meet the load demand of its
customer and the associated loss. When a certain load is increased by a pre-specified
increment, the increment in total transmission loss is calculated by load flow study and,
the corresponding increase in transmission loss is assigned to the generator that is in
contract with this particular consumer. When two bilateral contracts are considered, the
load for each contract is incremented in an alternate manner and the corresponding loss
is calculated and assigned to respective generator. For multiple contracts, the load of

each contract is incremented in a sequential manner.

4.2.1 Example System

A small hypothetical system has been considered in this section for the purpose of

numerical examples related to the allocation of transmission loss.

The hypothetical system consists of six buses with three generators, two loads under
normal pool operation and two contracted loads. The load under normal pool operation
will be termed as ‘base load’ hereafter. Figure 4.1 shows the diagram of the example
system. Generators A, B, and C are connected to Bus 1, Bus 4 and Bus 3 respectively.
Base loads are connected to Bus 2 and Bus 5. Two contracted loads, Load A and Load
B are connected to Bus 5 and Bus 6 respectively. Contract A exists between Generator
A and Load A and Contract B exists between Generator B and Load B. The details of
base and contracted loads are shown in Table 4.1 and the generation capacity of each

generator is shown in Table 4.2.

64



Table 4.1: Load for test system

Gen. A

Load

Load

Load B

1 5

Load A

Gen. C

@ Gen. B

Fig.4.1: Six bus test system with two bilateral contracts

Load Type Bus Real Load (MW) Reactive load (MVAR)
System 2 110 70

5 120 60
Contract 5 80 35

6 100 50

Table 4.2: Generation Capacity of the system

Generator Prin(MW) Prax(MW)
A 60 270
B 70 220
C 40 150
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It should be noted that besides the contracted loads, Generator A and Generator B
produce energy for pool operation as well. The assumed share of Generator A & B for

base load is shown in Table 4.3. Line parameters for the example system are shown in

Table 4.4.

Table 4.3: Share of generation for base load

Generator Real power Reactive power
generation (MW) generation (MVAR)

A 70 40

B 80 35

C Remaining load plus losses

Table 4.4: Line data

From Bus To Bus R(ohm) X(ohm)
1 2 2.0 10
1 6 3.0 11
2 3 0.5 4
2 5 2.0 8
3 4 0.5 3
4 5 2.0 8
5 6 1.5 6

The contracted generators are bound to supply their contracted loads and the
corresponding share of transmission loss. The unknown at this point is the share of loss
that an individual generator is responsible for. First, the generation and transmission
loss will be determined by load flow analysis for the base case. The bilateral contracts
are then imposed using the ILFA on top of the base load conditions. The contracted

generators will be responsible for the incremental transmission loss.
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4.3 Loss Allocation Using the ILFA

In order to allocate transmission loss to a generator involved in a bilateral contract, total
loss for pool operation with base load has been assessed using conventional load flow
analysis. The base parameters are 200 MV A and 138 KV. Voltage magnitude of voltage
control buses are: 1.02, 1.01 & 1.01 for Bus 1, 3 & 4 respectively. For the data shown

in Tables 4.1 to 4.4, load flow solution for normal pool operation is as follows:

Load Flow solution for system without contract is:

Bus Bus- Voltage  Angle = --—---- Generation ----  ------ Load --------
no. type Mag. degree MW MAVR MW MVAR
1 2 1.0200  -0.1085 70.000  54.619 0.000 0.000
2 0 1.0002  -1.0405 0.000 0.000 110.000  50.000
3 1 1.0100  0.0000 81.486  38.088 0.000 0.000
4 2 1.0100  0.0946 80.000  24.410 0.000 0.000
5 0 0.9922  -1.4202 0.000 0.000 120.000  60.000
6 0 1.0018  -0.9430 0.000 0.000 0.000 0.000

Total MW Generation =231.4858

Total MVAR generation =117.1158

Total real load MW =230.0000

Total reactive load MVAR = 110.0000

Total real loss MW = 1.4858

Total reactive loss MVAR = 7.1158

When the contracted loads are added to the system the corresponding load flow solution
shows that the total real loss is 6.0914 MW and the total reactive loss is 26.1049
MVAR. The additional real loss of 4.6056 MW and reactive loss of 18.9891 MVAR
have to be allotted to the contracted Generators A & B. To do this an incremental
amount of contracted load for Contract A (or B) is first added to the system and
transmission loss is calculated using load flow technique. From the load flow solutions,
incremental loss is calculated and assigned to the corresponding generator. Then the
load for Contract B (or A) is increased by an incremental amount and the incremental

loss is assigned to that generator. In this way the total contracted loads are applied and
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the shares of loss are calculated. A problem appears at this stage is how to select a
swing bus in a load flow study. It was shown in reference [2] that loss allocation varies

depending on the selection of a swing bus.

To resolve the issue of swing bus each contracted generator bus has been utilized as a
swing bus in an alternate manner. When Load A is increased, the bus connecting
Generator A is used as a swing bus. Similarly, the bus connected to Generator B is used
as a swing bus when Load B is increased. Table 4.5 shows loss allocation using the

alternate swing bus concept.

Table 4.5: Loss allocation using alternate swing bus

Contracted Contracted Share of Share of Additional

Load A Load B Generator A | Generator B Loss for

MW MW MW / (MW/MVAR) | contracts

/MVAR) /MVAR) MVAR) MW

/MVAR)
Real 80 100 2.1300 2.4756 4.6056
Reactive 35 50 8.3952 10.5938 18.9890
4.4 Test System

The 24-bus IEEE RTS have been utilized as a test system in this chapter. It has been
assumed that two bilateral transactions take place in the system. The transactions are
governed by two contracts: Contract A and Contract B. Location of contracted loads
and generators are shown in Figure 4.2. Contract A exists between Generator A at Bus 7
and Load A at Bus 9. Contract B exists between Load B at Bus 19 and Generator B at
Bus 23. The line parameters of the test system are shown in Table 2.5 and the bus data

for the peak hour is shown in Table 2.6.
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Fig. 4.2: The IEEE 24-bus RTS with two bilateral contracts.
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In this study, the IEEE 24-bus test system was slightly modified by moving the
synchronous condenser from Bus 14 to Bus 6. This modification was necessary to
increase the voltage stability during bilateral transactions. Load flow study showed that
voltage at Bus 6 goes below tolerance limit (+ 5%) for a small load of Contract A. With
the addition of a synchronous condenser at Bus 6, it was possible to increase the
contracted load up to 185 MW while maintaining the voltage stability. Loss allocation
was studied at various loading conditions. The system has a peak load of 2494 MW.
The load profile of California ISO [10] was utilized to produce 24-hour loads during the
weekdays and weekends. Figure 4.3 and Figure 4.4 show the 24-hour real and reactive
loads at various buses for a weekday. Fig. 4.5 shows the corresponding generation at
various generation buses. 24 hour real and reactive loads of the system for weekdays

and weekends are shown in Table A1 to Table A8 in Appendix A.
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Fig. 4.3: 24 hour real load at various buses on weekdays

70



0.80

0.70

0.60

0.50 ~

0.40 ~

0.30

Reactive loads on buses in p.u.

0.20

0.10

0.00 T T T T T T

Hour

Fig. 4.4: 24 hour reactive load at various buses on weekdays

Real power generation in p.u.
w
il
W oo

2

2t
1 15
\ 7
w b

0 T T T T T T

0 4 8 12 16 20 24

Hour

Fig.4.5: 24 hour real power generation at various buses on weekdays

71



4.5 Proposed Neural Network

Many types of neural networks had been developed so far for various purposes. Some
of these neural networks have been described in Chapter 3. All artificial neural
networks are based on the concept of neurons, connections and transfer functions, and
there is a similarity between the different structures or architectures or neural networks.
There is no limitation for their applications but some of them showed better
performance in specific applications. Basically, most applications of neural networks
fall into five categories: prediction/ estimation, classification, data association, data
conceptualization and data filtering. Feedforward and Self-organizing Back Propagation
networks are suitable for estimation or prediction, Learning Vector Quantization and
Probabilistic Neural networks for classification, Hopfield and Boltzmann Machine for
data association, Self-organizing Map for data conceptualization and Recurring
networks for data filtering [27]. Feed Forward Multilayer Neural networks are the most
popular among all types of networks due to their effectiveness and ease of learning
using back propagation algorithm. One of the significant advantages of a feed forward
multilayer neural network is its ability to provide solutions for highly non-linear
systems and also for systems with ill-defined problems. Transmission loss is a non-
linear function of system parameters and states. Due to this non-linearity a multilayer

feed forward neural network structure has been utilized in this research.

A multilayer feedforward neural network has been developed for loss allocation for the
bilateral contracts. Inputs and outputs of the network were selected carefully so that the
proposed network represents all possible practical situations in a power system network.
Most independent system variables have been used as inputs to this neural network
which in turn makes the loss allocation process responsive to practical situations. There
are four outputs of the network which are real loss and reactive loss for contracts A and

B. The inputs and outputs of the network are described in Table 4.6.
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Table:4.6: Description of inputs and outputs of ANN

Layer Neurons Description

I;-I, Real load for Contracts A & B (p.u.)

-14 Reactive load for contracts A & B (p.u.)

Is-I9 Real loads on buses (p.u.)
Inputs -

Iro-134 Reactive loads on buses (p.u.)

I35-14s Generations on buses (p.u.)

L45-Is4 Bus voltages (p.u.)

0;-0, Real loss for Contracts A & B (p.u.) respectively
Output

03-04 Reactive loss for contracts A & B (p.u.) respectively

To find the most suitable architecture for loss allocation, number of hidden layers and
number of neurons in the hidden layers have to be optimized. For a single hidden layer,
the number of hidden neurons was varied from 10 to 55 and convergence characteristics
and performance for various test patterns were observed. To speed up learning, some
measures were taken which have been described in the following section. After
adapting all speed enhancement techniques, the number of hidden layers and the
number of neurons were selected based on convergence criteria and performance. These

aspects have been described in Section 4.8.

4.6 Learning

The most significant property of an artificial neural network is that it can learn from
experience and becomes knowledgeable about the environment. Among all the learning
algorithms, back propagation learning, more precisely described as the steepest gradient
descent learning using back propagation of error is widely used in the learning of
ANNSs. The advantage of this algorithm is its simplicity of calculation for updating
weights and thresholds. Hence, in this research back propagation algorithm has been

utilized to train the proposed ANN. It is a supervised learning algorithm which requires
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an external teacher which generates the desired output for the ANN. The ILFA has been
used as a teacher to generate an output vector corresponding to an input vector, and
these two vectors together termed as ‘training patterns’ have been used by the back
propagation algorithm to train the proposed ANN. The input vector and the number of
training patterns have been carefully selected so that they represent almost all possible

states of the environment.

In classical pattern recognition, the number of training patterns should be 3-5 times
higher than the number of features (inputs) used [27]. According to Lippmann [28], this
number should be at least several times larger than the ratio of the number of synaptic

weights in the network to the number of outputs.

According to the first suggestion, minimum number of training patterns required for an
effective training of the network is 270 (54 x 5) using the upper bound. Referring to the
second suggestion, this number would be greater than the previous one. With 54 inputs,
29 hidden neurons and 4 outputs, training patterns should be few times larger than 797.5
{(54*55+55*4)/4}. If we consider a multiplication of 3 times, the number becomes
2392. Although the higher the training samples the better knowledge and performance
of the network, the performance of the network will tend to saturate as the number is
increased beyond certain value and at the same time it will take more time to learn.
However, we have selected 2600 training patterns, a number greater than both

suggestions so that the trained ANN can give better performance with the test patterns.

4.6.1 Derivation of weight update formula

During learning (training), the free parameters of an ANN e.g. synaptic weights and
thresholds are adjusted so that actual outputs of the network become closer to the
desired outputs for the given training patterns. In a back propagation algorithm, the
error (difference between actual output of the network and desired output) is propagated
backwards to update the weights. To derive the weight update formula, let us consider

the signal flows in the neural network shown in Figure 4.6.
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Fig. 4.6: Signal flow diagram inside neural network.

Weight update for layer & (wy;)

The error signal at output layer & can be define as
ek:dk_J’k (41)

The instantaneous sum of squared errors of the network can be written as

p
E=lze,§ U UURY 3
2k—l

where, p is the total number of neurons at output layer. According to the signal flow
diagram shown in Figure 4.6, the net internal activity v, at any neuron in level £ can be

defined as
n

Vi =D W XY+ 6y O (X))
j=1

where, 7 is the total number of input to the neuron at level k and 6 is threshold for that
neuron, which is independent of input from previous layer. After somatic operation at

level k, the output of yy is

Vi =¢(v) O X))

where ¢(.) is the activation function of the neuron at level £.
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Back propagation algorithm is implemented using gradient descent algorithm.
Therefore, applied update of weight Awkj is proportional to instantaneous

gradient OE'/ 0dwy; . According to the chain rule this gradient can be written as

oF _ oF 8ek 8yk 6vk

= (4.5)
oWy Oey Oyy Ovy Owy,
Differentiating Equation (4.2) with respect to e;, we get
6ek
Differentiating both sides of Equation (4.1) with respect to yx, we get
G _ SR ¢ o
Wk
Differentiating Equation (4.4) with respect to vy,
0
Dk~ g (v) @
ka
Differentiating Equation (4.3) with respect to wy;,
ov
- L=y, N C X))
ij
Using equations (4.6) to (4.9), Equation (4.5) can be written as
oF ,
— == @' (vi)*y; (4.10)
awkj

Using error-correction learning rule or delta rule (also known as Widrow-Hoff rule)

[24], correction to weight Awy; is

Aw; _ - E . . .. (41D
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where 7 is a constant called learning rate constant. Equation (4.11) can be rewritten as

where 0y is called local gradient which is defined by

_OF Oex i
6€k ayk 8vk

:ek*(o'k*(vk) (413)

A hyperbolic tangent function was used as an activation function. Therefore, the output

at layer £ is defined by

y, =a*tanh(b*v;) U ¢ P

Differentiating Equation (4.14) and utilizing Equation (4.13), the local gradient J; can
be defined by

5, =a*b*e, *sech’(b*v,) (4.15)

Weight correction (dwy; ) = {learning rate(n)}. {local gradient (0y)} . {input signal of the
neuron (y;)}

Weight update for layer j (w;;)

For hidden neurons, there is no specified target output and therefore the weight
correction for layer j (w;;) is different from that of the output layer. Error signal for a
hidden neuron would have to be determined recursively in terms of the error signals of
all the neurons to which that hidden neuron is directly connected. According to

Equation (4.13), we may redefine local gradient for hidden neuron j as

5, = CE
ov;
oy -
_OE Y (4.16)
Now, we define output of neuron j as
yi =) (4.17)
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Differentiating Equation (4.17) we get

oy -
L{zgov(vj) T S 1)

ij

From Equations (4.16) and (4.18), we get

OE
5J:_E¢(VJ) oo oo oo oo (4.19)

Differentiating equation (4.2) with respect to y;, we get
oF oF aek

; - T Oey Oy

=Y,

P
=Zek5ﬁ% L (420
p avkayj

We know that error e is:

ey =di =y
Differentiating Equation (4.21), we get
Oe
—* — o' () TR ¢ )0
aVk

Also, according to signal flow diagram shown in Figure 4.6
q
Ve =2 W Y,
j=1
where g is the number of input applied to neuron k. Differentiating with respect to y;, we

get
—:ij cee cee cee cee (4.23)

Using Equations (4.22) and (4.23) in Equation (4.20), we get

OE
a—:—Zek*go'(vk)*wkj (4.24)
Y

From Equations (4.19) and (4.24), we can define local gradient o; as
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5, =0'(v)D e @' (vi) * wy P C )
k

Using Equation (4.13) in Equation (4.25), we get
5, =9'(v;)D, 6 *wy . (426)
k

Since we have used hyperbolic tangent function as an activation function, we can write
@(v;)=a*tanh(b*v))
Differentiating w.r.t v;,
¢'(v))=a*b*sech’(b*v)) e (427
Therefore, local gradient for hidden layer ; is:

8; =a*b*sech’(b*v;)Y. &, *wy
k

Weight correction for wy; is:

OF
Aw.. =—pnp——
(v

OE Ov;
KT

(4.28)

Now, according to Figure 4.6, v; is:

n

_ X 1,7
vj—Zwﬁ Y,
i=1

Differentiating w.r.t w;;, we get

ov;
Lo =y, el (429)
owji

Using Equations (4.16) and (4.29) in Equation (4.28), we get
Aw;; =n*6;*y; (4.30)
Weight correction (4wj;) ={learning rate(n)}. {local gradient (5;)}. {input signal of the
neuron (y;)}
A problem of back propagation algorithm is that it can trap at a local minima. However,
some methods have been developed to overcome this problem. The algorithm can

overcome a local minimum if a momentum (a factor multiplied by previous change in
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weight) is included in the weight update formula [26]. The weight update formula with
a momentum is shown in Equation (4.31). Figures 4.7 and 4.8 show the effect of adding

a momentum factor.
Aw ;i (n) =nd ;(n) y;(n)+a Aw;(n—1) (4.31)

where a is called momentum factor and » represents iteration number.

With momentum,
weights update

would overcome

this local minimum

Without
momentum,
weights would trap
at this local

Fig. 4.7: Weight update without Fig. 4.8: Weight update with
momentum momentum

4.7 Enhancement of Convergence Speed

Back propagation algorithms are very popular for their simple mathematical
calculations but at the same time well criticized for their slow rate of convergence.
There has been a lot of successful research [23, 30-38] to enhance the convergence
speed of back propagation algorithms. The approaches that have been used in this

research to enhance the convergence speed are described in the following sections.

4.7.1 Initialization of weights

One of the approaches to speed up the training rate of a back propagation algorithm is to
estimate the optimal initial weights. Several approaches to estimate the initial weights
for a neural network have been reported in literature [23, 30, 33, 36, 37]. In Reference
[23] the initial weights have been estimated in the following manner.

The weighted sum of the inputs to the jth hidden neuron can be represented by

N

aj:WJO+Zle.xl e e e e e (4.32)
i=1
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where, wj is the threshold for jth hidden neuron, x; are the inputs and wj; are the initial
weights which are randomly distributed (uniform distribution) between —wy.x t0 Wy
This approach ensures that the outputs of the hidden layers are in the active region
while dynamic range of the activation function is fully utilized. The active region is
assumed to be where the derivative of the activation function is one-twentieth of its
maximum value [23].

The initial weights are optimized by keeping them in the active region. The activation
function used here is

f(x)=a.tanh(b.x),
where a=0.51 and »=0.61. With these values, the maximum value of the derivative is
0.3111 at x=0.0 and its one-twentieth is at x=6.05. Therefore,

la;[<6.05

If |a;|26.05, the neuron enters in the saturation region where the derivative of the

activation function is very small.

In order to ensure the outputs of the hidden neurons are within the active region, the
distance between the hyperplanes P(-6.05) and P(6.05) should be greater than or equal
to the maximum possible distance between two points in the input space. The maximum
possible distance D;, between two points of the input space is given by following

equation [23]

N

i=1
and the distance between hyperplanes P(-6.05) and P(6.05)is given by
d. - 12.1

124 N ,
Z Wi
i=1

If Dy, 1s set equal to d;, then,

%‘Wz 121
i=1 g Din

The length of the weight vector is approximated by
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N
> w2 =N x Er?)
i=1

where, E(W*) is the second moment of the weights between input and hidden layer,
which is given by,

2

w
EW2 — max
=) -

Therefore,
12.1 |3
Whax = D_ F

mn
So, optimum initial weights will be random number between —w,4x t0 Wyay.

Now, center of the input space is given by

seeey

2 ’ 2 2
Therefore, threshold values for active region is given by,

cin _ ( max(x;)+min(x;) max(x,)+min(x,)  max(x,)+min(xy) ]T

N .
i=1
1.00E-05 T T T
5000 10000 15000 ZO(LOO
2
m
)
§ —— Random Wt
5 1.00E-06 -
195 —— Opt_initial wt
5
=
1.00E-07

Iterations

Fig. 4.9: Effect of weight initialization on convergence.
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4.7.2 Adapting different learning rate for each weight direction

One of the main reasons for slow convergence of a back propagation algorithm lies in
the fact that the corrections to synaptic weights becomes very small when error tends to
be very small i.e. error surface becomes almost flat. This slow convergence in the flat
directions and oscillations in the steep directions can be avoided by using a different
learning rate for each direction in weight space [38]. However, attempts to find a proper
learning rate for each weight usually results in a trade-off between the convergence
speed and the stability of the training algorithm. In this research, to enhance
convergence speed, different learning rates were used in different directions of weight
space and they were made adaptive by delta-delta learning rule [24] using the following
recursion formula:

OE(n) OE(n-1)
oW, (n) OW (1 =1)

A (n+)=y (4.34)

where 7 is learning rate, y is a positive constant which determines step size, E is error

and Wj; 1s synaptic weight connecting neuron i to neuron j. Figure 4.10 shows the effect

of adaptive learning rate on the convergence of the training of the ANN.

1.0E-04
3000 6000 9000 12000
2 1.0B-05 -
t —— Non-adaptive
§ learning
S )
z — Adaptive
= )
< 1.0E-06 - learing
1.0E-07

Iterations

Fig.4.10 Effect of adaptive learning rate.
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4.7.3 Adapting threshold values
Although threshold values are normally kept constant (usually -1.0), adapting these
values with respect to error can enhance convergence speed. Threshold values have

been made adaptive with the following formula [39]:

» OE(n)

9n+1:9n+
k K Tk 20, (n)

+a(0"-6"") .. e (43%)

where 6, is the threshold for layer £ and o is the momentum factor and n represents

iteration. Figure 4.11 shows that learning converges faster if thresholds are made

adaptive using Equation (4.35).

1.80E-06

1.50E-06 ~

/ Non-adaptive
1.20E-06 - thresholds

9.00E-07 - N\ Adaptive

" thresholds

Mean Square error

6.00E-07 ~

3.00E-07 ~

0.00E—"_OO T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000

Iterations

Fig.4.11 Effect of adaptive thresholds
4.7.4 Use of dual activation functions

The loss attributed to a transaction can be positive or negative (in case of counter flow).
This aspect can be handled by the use of a hyperbolic tangent function. It was also
observed that the reactive part of transmission loss is 3 to 5 times that of the real part. In
this research two activation functions, therefore, were used in the output layer for two
different types of outputs to keep the output neurons in the active region for both real

and reactive outputs. It was observed that the use of dual activation functions not only
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increases the convergence speed but some times it helps to reach higher level of
convergence accuracy which cannot be obtained by a single activation function. Figure
4.12 shows the range of the outputs and the activation functions used in this research.

Figure 4.13 shows the convergence characteristics for single and dual activation

functions.
Y=a*tanh(X)
: 0.4
a=0.1116
>-‘ I \\ I I %—r
-4 =3 =2 2 3 4
range of real loss
-a a=0.5115 -0.4 -
o range of reactive loss
X

Fig. 4.12: Activation functions and output ranges
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Fig.4.13: Convergence characteristics for single and dual activation function
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4.8 Optimum Hidden Neurons

In the previous section we observed that proper initialization of synaptic weights and
the thresholds, adapting different learning rate for each weight direction, adapting
thresholds and the use of dual activation functions in output layer increased the
convergence speed in the back propagation learning. With all these learning
enhancement techniques, different neural network architectures were studied for the
purpose of transmission loss allocation in the test system. It was found that increasing
the number of neurons beyond 45, neither improves convergence characteristics nor
gives better performance with the test patterns. Similarly, the optimum number of
neurons with two hidden layers was obtained. Figure 4.14 shows the convergence
characteristics with respect to the number of iterations for different number of hidden
neurons in a single layer. Figure 4.15 shows the convergence characteristics of the
neural network with one and two hidden layers. Fig. 4.16 shows the required number of
iterations to attain an MSE of 1.2x107" . Figure 4.17 shows the time required to attain
the same level of accuracy (MSE=1.2x10") for different number of hidden neurons.
Figure 4.18 shows the mean of the square errors (MSE) of the test patterns for different

numbers of hidden layers and neurons.

1.0E-04

1.0E-05 -

Mean Sqaure Error

1.0E-06 -

1.0E-07 -
Iterations

Fig. 4.14: Convergence characteristics for different numbers of hidden neurons in a

single hidden layer feedforward network
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Fig. 4.15: Convergence characteristics of proposed neural networks with one and two

hidden layers
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Fig. 4.16: The required number of iterations to attain a particular accuracy level (for

MSE =1.2x107) .
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Fig.4.18: MSE of test patterns for different ANN architecture
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Among all network architectures considered, it was observed that the network with a
single hidden-layer with 45 hidden neurons provided the best result in terms of speed of

convergence and accuracy.

4.9 Results

The proposed network was trained in 19701 iterations. Amplitudes of activation
functions were 0.1116 and 0.5115 for real and reactive loss allocations respectively. A
value of 0.61 was used for ‘b’ for both the activation functions. Learning rate (n) was
chosen to be 0.85, momentum factor o was 0.48, step size y for adaptive learning was
0.85. Mean square error (MSE) was used to check convergence accuracy. A value of
5.0E-08 was chosen for MSE to determine convergence of training. The trained network
was tested with 838 test patterns. Test patterns were derived by varying all 54 inputs to
simulate 24 hour load patterns on weekdays and weekends. Results obtained from the
ANN and ILFA show that ANN can allocate losses with good accuracy. Only a few of
these results are shown here. Figures 4.19 & 4.20 show the real and reactive loss
allocations respectively for an off-peak hour. Figures 4.21 & 4.22 show the real and
reactive loss allocations respectively for a peak hour. It can be noticed that the results

obtained from the ANN agree very closely with those obtained using the ILFA.
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Fig. 4.19: Real loss allocations for off-peak hour on weekend
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Fig. 4.20: Reactive loss allocations for off-peak hour on weekends
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Fig. 4.21: Real loss allocations for peak hour on weekdays
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Fig. 4.22: Reactive loss allocations for peak hour on weekdays

4.10 Summary

An ANN was developed and utilized to assess transmission loss allocation for bilateral
contracts. The results obtained from the proposed ANN were then compared with those
obtained using the ILFA. The IEEE 24-bus reliability test system with two bilateral
contacts was utilized to generate loss allocations. The test system was considered to
operate in a pool structure that had a typical 24 hour load variations from 1116.6 MW
and 207.1 MVAR to 2494 MW and 505.7 MVAR. Loss allocations for bilateral
contracts were studied with variable load demand from 20 MW to 185 MW. The
proposed network was trained with little difficulty and a method was developed for
faster training of the network. The trained ANN was tested with 838 test patterns where
different input vectors were considered. The results obtained from the ILFA and the
trained ANN were compared graphically. It was observed that the trained ANN can

allocate losses to bilateral contracts with very good accuracy.
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CHAPTER 5: LOSS ALLOCATION WITH A LINE FAILURE

5.1 Limitations of Previously Proposed Network

Although artificial neural network solutions are extremely fast and straightforward even
for complex problems, it has limitations too. For example, the trained neural network
described in previous chapter can allocate losses for bilateral contracts in milliseconds
but cannot work if the configuration of power transmission network changes. For any
change in the transmission network new training patterns have be generated and the
neural network has to be retrained. Although a transmission network does not change
frequently, its configuration changes when a transmission line becomes unavailable. A
transmission line can be unavailable due to maintenance or failure. Bilateral
transactions may continue even after a line failure if the failure doesn’t threaten system
security and does not overload other lines. Therefore, it is desirable that a loss
allocation method should be capable of handling unavailability of transmission lines.
The retraining due to line failures can be bypassed if the status of transmission lines are
used as additional inputs to the ANN. An artificial neural network will be presented in
this chapter that will work without requiring retraining when transmission line becomes

unavailable.

5.2 Transmission Line Outage

Today’s power system networks are more secured than ever before and better protected
against fault. At the same time, to secure the whole power network, more protective
relays are used which in turn increase the tripping of transmission lines for various
faults especially during bad weather or lightning. Moreover, a transmission line can be
unavailable due to the failure of an equipment associated with transmission line e.g.
transformer, breaker, relays. 4049 transmission line trips had happened in Japan from
1990 to 2000 [40]. In Alberta, transmission lines tripped 757 times from 1997 to 2001

[41]. Transmission lines and equipments associated with it are also taken out of service
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for scheduled maintenance. The duration of transmission unavailability could be

significant enough to affect the loss allocation and, therefore, should not be neglected.

5.3 Inclusion of Transmission Line Outages In Loss Allocation

Since unavailability of a transmission line changes transmission loss allocation, status
of transmission lines (available / unavailable) have been used as inputs to the proposed
neural network to make loss allocation responsive to line unavailability. With the
inclusion of line status, the proposed neural network will be able to allocate losses to all
parties accurately even during a transmission line outage. Unlike other inputs e.g. loads,
generations and bus voltages which are directly used in p.u., each line is given a binary
status, ‘0’ if available and ‘1’ if failed. Inclusion of transmission line status increases
the size of the input vector and eventually increases the size of neural network.
Therefore, instead of using the status of all transmission lines, the status of a selected
number of transmission lines have been included in the input vector. A selection criteria
to include transmission line status into the input vector has been developed and

discussed in Section 5.5

5.4 Test System

The IEEE 24-bus reliability test system was utilized to provide numerical examples on
loss allocation with line failures. Two bilateral contracts have been assumed to exist in
the test system. Contract A exists between Generator A at Bus 7 and Load A at Bus 9.
Contract B exists between Generator B at Bus 23 and Load B at Bus 19. Figure 4.2
shows the IEEE 24 bus reliability test system. Line numbers are marked in the figure. A
Synchronous condenser was placed at Bus 6 to increase voltage stability during bilateral
transactions.

The test system has 24 buses, 38 lines, 10 generation stations and 15 load buses. The
system has a peak load of 2494 MW. 24 hour real and reactive loads are shown in
Figure 4.3 & 4.4 and generations are shown in Figure 4.4. Line parameters are

described in Table 2.1 in Chapter 2.
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5.5 Selection And Grouping of Line Status to Be Used As Inputs

The inclusion of line status, however, creates another problem. The number of inputs

related to line status could be very high in a large system. This could increase the

training time of the ANN tremendously. The number of inputs can be kept low by

selecting specific transmission lines in the following manner:

a)

b)

Status of those lines are ignored whose unavailability make the bilateral
transactions impossible. In our test system, Generator A cannot deliver any
power to the contracted Load A if Line 11 is unavailable. Therefore, status of

Line 11 is not taken as an input to the neural network.

Status of those lines are ignored whose failures would prompt ISO to suspend
the bilateral transactions for reason of system security and transmission
congestion. Load flow studies have performed on the test system to ascertain
these transmission lines whose operations are critical for the bilateral
transactions. Load flow studies showed that any one failure of Lines 23, 27 or 24
during bilateral transactions would make system voltage unstable. In such a
case, ISO would have to interrupt the bilateral transactions. Status of these lines,

therefore, were not considered in the proposed ANN.

Loss allocation does not change significantly for failure of every transmission
line. Loss allocation studies have shown that unavailability of certain
transmission lines have significant effect on loss allocation while the failure of
other lines do not change loss allocation a lot. Figure 5.1 & Figure 5.2 show that
in many cases loss allocation curves remain in the vicinity of the no-line-failure-
curve. So the status of these lines can be ignored to reduce the number of
inputs. Figure 5.1 shows that unavailability of any one of the Lines 2, 6, §, 9,
10, 18, 19, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32, 36 or 38 does not change loss
allocation significantly. On the other hand Figure 5.1 shows that unavailability
of any one of the Lines 3,4, 5,6, 8,9, 10, 12, 13, 14, 19, 20, 22, 24, 25, 28, 30,
31, 32 or 38 does have relatively significant effect on loss allocation. Therefore,

the status of Lines 1, 2, 3,4, 5,7, 12, 13, 14, 15, 17,27, 18, 21, 29, and 36 have
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been used as inputs while ignoring the status of the Lines 6, 8, 9, 19, 20, 24, 25,
26, 28, 30, 31, 32 and 38.

d) The number of inputs could be further lowered by ignoring the status of these

lines whose failure rates are significantly less than those of the others lines.

e) Loss allocation studies have shown that unavailability of certain lines has
indistinguishable effect on loss allocation. For example, Figure 5.1 shows that
unavailability of any of Lines 1, 7, 14, 27 has same effect on loss allocation for
Contract A. Similarly Figure 5.2 shows that for unavailability of either Lines 7
or 27 the loss allocation for Contract B is the same. Therefore, combining these

two phenomena, we can group the status of Lines 7 and 27 together as one input.
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Fig. 5.1: Real loss allocations for Contract A for unavailability of different lines
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Fig.5.2: Real loss allocations for Contract B for unavailability of different lines.

Based on above criteria the status of certain transmission lines have been selected as
input to the neural network. Several load flow studies were performed to ascertain
which transmission lines would fall into the selected group. Only single level
contingencies were considered. This was done due to the fact that the probability of
concurrent failure of two or more transmission lines in a system is generally very
insignificant. Load flow studies also showed that bus voltages at some buses would go
very near to unstable region if any one the line of 2, 3 o 7 fails. However, the voltages
would still be in the acceptable region and, therefore, bilateral transactions may
proceed. Based on the load flow studies it was, therefore, concluded that the status of
Lines 1, 2,3,4,5,7, 12, 13, 14, 15, 17, 18, 21, 29 & 36 should be added to the ANN to

represent unavailability of transmission lines.

5.6 Proposed Neural Network Architecture

A multilayer feedforward neural network has been proposed for loss allocation for
bilateral contracts. The proposed network can assess transmission losses even during the

unavailability of some selected transmission lines. The inputs to the network were
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selected carefully so that the proposed network represents all possible practical
situations including unavailability of a transmission line due to line failure or line
maintenance. Most independent system variables e.g. loads, generations, bus voltages
were used as inputs to this neural network which in turn makes the loss allocation
process responsive to practical situations. Desired outputs of the network were real loss
and reactive loss for contracts A & B. The inputs and outputs of the network are

described in Table 5.1

Table:5.1: Description of inputs and outputs of ANN

Layer Neurons Description

Li-L Real load for Contracts A & B (p.u.)

I3-14 Reactive load for contracts A & B (p.u.)

Is-119 Real loads on buses (p.u.)
Inputs

Lo-ls4 Reactive loads on buses (p.u.)

I35-144 Generations on buses (p.u.)

L4s5-Is4 Bus voltages (p.u.)

Is55-1¢o Line status of selected lines

0;-0; Real loss for Contracts A & B (p.u.) respectively
Output

03-04 Reactive loss for contracts A & B (p.u.) respectively

To find the most suitable architecture for loss allocation, the number of hidden layers
and the number of neurons in them had to be optimized. The optimal number of hidden
neurons depends on: (i) the number of input and output variables, (ii) the number of
training records, (iii) the amount of noise in the output variables, (iv) the complexity of
the relationship between input and output variables, and (v) the type of transfer
functions. Since there is no ‘rule of thumb’ to determine the optimal number of hidden
neurons [42], we approached this problem by repeatedly training neural networks with

different numbers of hidden neurons and identifying the optimal number of hidden
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neurons from those that yielded the best convergence characteristics and lowest mean
square error for the test patterns. However, for single hidden layer, the optimum number
of hidden neurons lies between n to 2n, where n is the number of inputs [43]. With
several trials it was found that the network with 89 hidden neurons has the best
performance. Figure 5.3 shows convergence characteristics for different number of

hidden neurons.
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Fig. 5.3: Convergence characteristics for different number of hidden neurons.

Therefore, the proposed artificial neural network is a feed forward neural network
which consists of three layers; an input layer, a hidden layer and an output layer. There
are 69 inputs and 4 outputs as described in Table 5.1 and 89 hidden neurons in a single

hidden layer.

5.7 Training

The proposed network was trained with a supervised learning algorithm. Among all
supervised learning methods, back propagation algorithm is widely used for its

simplicity. Although Quasi-Newton method has fast convergence characteristics, it
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requires calculation of Hessian matrix for each iteration which becomes a complex task
for large neural network. Therefore, back propagation algorithm was utilized to train the
proposed network. Incremental Load Flow Approach (ILFA) had been used as a teacher
to train the proposed network. Using this method, 5187 training patterns and 1840 test
patterns were generated with all possible variation of inputs. 24 hour load patterns for
weekdays and weekends were considered for generation of training and testing patterns.
Bus voltages were varied from 1.01 to 1.05 p.u. and *5% voltage tolerance were
considered for all buses. Contracted loads were varied from 20 MW to 185 MW for
both contracts. Training was conducted on a personal computer (Intel Pentium 4, 3.0
GHz) with Windows XP platform. Visual FORTRAN software was utilized for the

training and testing of the network.

To enhance convergence speed, all the techniques discussed in Section 4.7 had been
utilized in this case as well. However, due to the inclusion of transmission line status,
non-linearity of training patterns increased as can be observed in Figure 5.1 & 5.2. It
can be observed that the unavailability of a transmission line which makes only a small
change in the input pattern, makes a significant change in the output. To make the
network more dependent on transmission status, the number ‘5 was used instead of ‘1’
as input to represent the unavailability of a line. The availability of transmission line
was denoted by ‘0’ as before. This gave a faster convergence which is shown in Figure
5.4. Other values for line status were tried but the use of number ‘5’ to denote failure of

line gave consistently better convergence.
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Fig. 5.4: Convergence characteristics for change in line status inputs.

Since the sum of the square of errors (SSE) changes with a change in the number of
training patterns, the mean square error (MSE) was used to check the convergence of
training. A value of 0.8 x10™® was chosen for MSE. The initial learning rate (1) was
chosen as 0.85, momentum factor a was chosen as 0.48 and the step size y for adaptive
learning was chosen as 0.85. A value of 0.61 was chosen for ‘b’ for the activation
function. Two amplitudes, 0.13 and 0.51 were used for the activation functions. 0.13
was utilized for the real loss allocation and 0.51 was utilized for the corresponding

reactive loss allocation.

5.8 Results

The trained network was tested with 1840 test patterns. Test patterns were generated
with all possible variations in inputs. 24 hour load variation for weekdays and weekends
were considered and the bus voltages were varied from 1.01 p.u. to 1.04 p.u. Contracted
loads were varied from 20 MW to 185 MW for each contract. Unavailability of selected
lines was considered. Loss allocations for all test patterns were obtained by both ILFA
method and the trained neural network. Comparison of some loss allocations are shown

in Figures 5.5 t0 5.16
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Figure 5.5 and 5.6 show real and reactive loss allocations respectively for the peak hour

with no line failure. The system load at the peak hour is 2494 MW. The loads for

Contracts A and B were varied from 20 MW to 185 MW simultaneously.
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Fig. 5.5: Real loss allocation for a peak hour when all lines are available.
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Fig. 5.6: Reactive loss allocation for a peak hour when all lines are available.
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Figures 5.7 and 5.8 show real and reactive loss allocation for an off-peak hour when all

lines are available. The system load at this hour was 1166 MW and 207.1 MVAR.
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Fig. 5.7: Real loss allocation for an off-peak hour when all lines are available.
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Fig. 5.8: Reactive loss allocation for an off-peak hour when all lines are available.

102



Figures 5.9 and 5.10 show real and reactive loss allocations respectively during the

failure of Line# 1 when the system load was 2494 MW and 505.7 MVAR.
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Fig. 5.9: Real loss allocation for a peak hour during failure of Line # 1.

0.25
0.2 1
0.15

0.1

—ILFA Con. A

—NN Con A
ILFA Con. B
NN Con. B

0 I I I I
0.20 0.30 0.40

Loss allocation (p.u.)
g
]
()}

S50 0.6(

-0.15
Loads (p.u.)

Fig. 5.10: Reactive loss allocation for a peak hour during failure of Line # 1.

Figures 5.11 & 5.12 show real and reactive loss allocations during the failure of Line# 4

when the system load was 2494MW and 505.7 MVAR.
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Fig. 5.11: Real loss allocation during failure of Line# 4
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Fig. 5.12: Reactive loss allocation during failure of Line # 4

Figures 5.13 & 5.14 show real and reactive loss allocations respectively for an off-peak

hour when Line# 2 was unavailable. The system load at this hour was 1221 MW and

226.6 MVAR.
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Fig. 5.13: Real loss allocation for off-peak hour during failure of Line # 2
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Fig.5.14: Reactive loss allocation for off peak hour during failure of Line # 2

Figures 5.15 & 5.16 show real and reactive loss allocations respectively during the

failure of Line # 7 when the system load was 2420 MW and 420.9 MVAR.
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Fig.5.15: Real loss allocation during failure of Line # 7
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Fig.5.16: Reactive loss allocation during failure of Line # 7

It was noticed in Figures 5.5 to 5.16 that the results obtained by the trained ANN are in
good agreement with the results obtained using the ILFA even during the failure of a

transmission line.
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5.9 Summary

In the previous chapter it was shown that the proposed ANN can allocate transmission
losses for bilateral contracts in a deregulated power system. The ANN however, does
not work if there is any change in the power system network due to the unavailability of
a transmission line. In this chapter a modified ANN was presented that work even
during the unavailability of a transmission line. To accomplish this, the status of the

transmission lines had been used as inputs to the ANN.

Transmission loss allocations were computed by utilizing the ILFA and the proposed
ANN. Two bilateral contracts were considered for the IEEE 24-bus reliability test
system that consists of 10 generator buses, 15 load buses and 38 transmission lines. The
status of selected transmission lines were utilized as inputs to the proposed ANN. The
system operates as a pool with typical 24 hour load variations from 116.6 MW and
207.1 MVAR to 2494 MW and 505.7 MVAR. Loss allocations for bilateral contracts
were assessed with variable load demand from 20 MW to 185 MW. Transmission losses
were allocated to two bilateral contracts for 1840 test patterns utilizing both the ILFA
and the trained ANN. Results obtained from both methods were compared graphically
in Figures 5.5 to 5.16. It can be easily inferred from those figures that the trained ANN

could allocate losses to bilateral contracts with very good accuracy.
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CHAPTER 6: LOSS ALLOCATION IN A POOL DISPATCH

6.1 Introduction

Deregulation has brought many different market configurations in the electricity
business. Transaction of electric energy may take many forms, like bilateral contracts,
power exchange or power pool. Power pool is the most common form of market due to
its simple structure. Generating utilities or IPPs and customers both bid for selling and
buying power at the power pool. In some power pool, ISO or RMO allocates
transmission loss to both buyer (load) and supplier (generator) in a previously agreed
upon procedure. In other jurisdictions, the system operator allocates the losses to
supplier (generator) only. In both cases, allocation of transmission loss is a complex

task due to the fact that transmission loss is a non-linear and non-separable entity.

However, in the absence of a closed form solution for this problem, different electric
utilities use different methods for loss allocation in a pool dispatch. Alberta Electric
System Operator (AESO) uses marginal loss approach [44], Brazilian System Operator
(ONS) uses linear approximation of line losses [45] and power pool of Mainland Spain
and England use pro rata technique [6]. Some other methods are: (i) proportional
sharing; (ii) incremental loss coefficient; (iii) z-bus allocation; (iv) average loss

calculation method; (v) location-specific pricing; (vi) opportunity cost pricing.

Electrical energy cannot be stored directly and mass storage in other forms like
chemical form (dc battery), potential energy (pump hydro generation) or compressed
gas form involves enormous amount of money and requires huge generation capacity to
reproduce electricity from stored energy. Due to this fact electrical energy has to be
consumed as it is produced and therefore all decisions related to the production of
electricity have to be made instantly. If a generator has to produce contracted load and
corresponding transmission loss, it has to know its share of transmission loss at every

instant. Unfortunately most of the methods of loss allocation mentioned above involve
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complex mathematical operations and require huge computation time. In this chapter,
an Artificial Neural Network (ANN) is proposed that can be used as a tool that can
assess loss allocation in a power pool. The proposed ANN has been illustrated with
numerical example and its results have been compared with parent method of loss
allocation. In this chapter Z-bus allocation method has been selected as a teacher for the
ANN. The ANN was trained and tested with the IEEE 14-bus test system.

6.2 Z-bus allocation

The goal of any loss allocation method is to take a solved power flow and
systematically distribute the system transmission losses to all participating generators
and loads. Z-bus allocation uses bus impedance matrix and injected bus current and
allocate the system losses to all the buses. If a bus contains both generator and load,
then the loss allocated to that bus is divided among the generator and the load using pro
rata technique. Z-bus allocation is concerned with net real power injection at buses and

total real power loss of the system.
Let Pj,5s = total system loss (real)
n = total number of buses

L, =real loss allocated to Bus &

n
Pross = DLy T (B )
k=1

To calculate L; according to Z-bus allocation method, let us consider the network

admittance matrix,

Y=G+ jB e e (62

Inverting Equation (6.2) we get Z-bus matrix as follows:

Z=Y'=R+jX e (63)

Since total system loss is the sum of power injections at all buses, Py, can be found as:

n
PIOSS+jQIOSS:Z Vklk* N cee cee cee (6.4)
k=l

109



where Q),,— reactive component of the system loss

Therefore the real part of the system loss is

aosszaa{zn:r/kl,’:} L (65
Orf}ossiﬂ{iIZ(Zn:Z,qu} ... (66)

Or Py SR{ZIZ(ZR/CJI j}}wﬁ{Zl}{z ijjlj} .. (6.7
k=1 =1 k=1 \j=1

Since matrix X is symmetric, the 2™ term of Equation (6.7) becomes zero. So,

P,OSSm{ZJZ(ZRkJIJ}} ... (68)

k=1 =1

From Equations (6.1) and (6.8), L, can be expressed as

Lk=m{12(ZR,{le} (69
j=1

If both demand, Pg, and generation, Py exist in the same Bus, £, then loss component

Ly 1s further divided among the two using Pro Rata technique.

P
Let y, =— & el (6.10)
ok — Par

Generator’s share of loss component Ly is y; L and load’s share is (1—y,)L,
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6.3 Test system

The IEEE 14-bus network shown in Figure 6.1 was utilized as a test system to illustrate
numerical example on Z-bus allocation. The system has loads on 13 buses, generations
on 2 buses and synchronous condenser on 3 buses. Line data for the system are shown
in Table 6.1. Two cases were considered for the system. First, the system was studied
with load and generation data as shown in Table 6.2 which was taken from Reference
[7] and later the system was studied with typical 24 hour load patterns for weekdays and

weekends.

BUS 1 BUS 2 T BUS 3

BUS 5 BUS 4

4 BUS9

BUS 11

BUS 12 BUS 13

BUSHL;L BUSL;l

Fig. 6.1: The IEEE 14-bus network
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Table 6.1: Line parameter for the 14-bus IEEE network

Line No. From bus | To bus R (p.u) X (p.u.) B (p.u.)
1 1 2 0.0194 0.0592 0.0528
2 1 5 0.0540 0.2230 0.0528
3 2 3 0.0470 0.1980 0.0438
4 2 4 0.0581 0.1763 0.0374
5 2 5 0.0570 0.1739 0.0340
6 3 4 0.0670 0.1710 0.0346
7 5 4 0.0134 0.0421 0.0128
8 4 7 0.0001 0.2091 0
9 4 9 0.0001 0.5562 0
10 5 6 0.0001 0.2520 0
11 6 11 0.0950 0.1989 0
12 6 12 0.1229 0.2558 0
13 6 13 0.0662 0.1303 0
14 7 8 0.0001 0.1762 0
15 7 9 0.0001 0.1100 0
16 9 10 0.0318 0.0845 0
17 9 14 0.1271 0.2704 0
18 10 11 0.0820 0.1921 0
19 12 13 0.2209 0.1999 0

20 13 14 0.1709 0.3480 0
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Table 6.2: Load and generation data for the 14-bus IEEE system [3]

Bus no. Generation Load
Real (p.u.) Real (p.u.) Reactive (p.u.)
1 2.236 0.000 0.000
2 0.040 0.217 0.127
3 0.000 0.942 0.190
4 0.000 0.478 0.039
5 0.000 0.076 0.018
6 0.000 0.112 0.075
7 0.000 0.000 0.000
8 0.000 0.010 0.000
9 0.000 0.295 0.166
10 0.000 0.090 0.058
11 0.000 0.035 0.018
12 0.000 0.061 0.016
13 0.000 0.135 0.058
14 0.000 0.149 0.050

The data for a typical 24-hour load variation were taken from California ISO [10]. The
system load was varied from 149.4 MW and 43.2 MVAR to 303.3 MW and 90.6
MVAR. 24-hour real and reactive loads on different buses of the system for weekdays
are shown in Figures 6.2 and 6.3. Base quantities were 138 KV and 100 MVA. Bus
voltage magnitudes of voltage control buses for the first case were (in p.u.): V;=1.060,
V,=1.045, V;3=1.010, V¢=1.070, Vs=1.090. In the second case, voltage magnitudes

of all voltage control buses were varied from 1.020 p.u. to 1.080 p.u.
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114



6.4 Proposed Artificial Neural Network

A feed forward neural network was developed to allocate transmission losses to
generators and loads for the test system in the context of a deregulated pool dispatch.
The proposed network was trained with training patterns obtained using Z-bus
allocation technique. The architecture of a neural network is partly fixed by its inputs
and outputs and partly by the number of hidden layers and the number of neurons in it.
Since the test system described in Section 6.3 has 14 buses, and we are only concern
with the real parts of losses, the proposed ANN has 14 outputs corresponding to the real
losses for 14 buses. Almost all system variables of the test system were utilized as input
to the neural network to make the ANN responsive to all practical situations. All real
and reactive loads and real generations at all buses and voltage magnitudes of the
voltage control buses were used as inputs to the neural network. Other than the
operational variables of the test system, transmission line status (whether line is
available or failed) was also used as inputs to the ANN. To keep the size of the ANN
manageable, only status of those transmission lines were selected that fall into the
category described in Section 5.5. To do this selection, load flow analyses and loss
allocation using Z-bus method were performed for each transmission line contingency.
Status of some transmission lines were ignored if their unavailability makes the bus
voltage unstable. Transmission Line #1 falls into this category. Status of some
transmission lines were also ignored whose failures have insignificant impact on loss
allocation. Unavailability of transmission Lines 5, 9, 11, 12, 16, 17, 18, 19 were ignored
for this reason. Two more transmission line (Lines14, 20) status were not considered as
inputs due to the fact that some loads could not be supplied without those lines.
Therefore, the status of the remaining transmission Lines 2, 3,4, 6, 7, 8, 10, 13 and 15
were used as inputs to the network. The proposed neural network has 42 inputs and 14

outputs which are described in Table 6.3.
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Table 6.3: Description of inputs and outputs of ANN for loss allocation for pool

dispatch
Layer Neurons Description
Ii-I, Real power generation (p.u.)
I3-1; Bus voltage magnitude (p.u)
Input Ig-Ip0 Real loads (p.u.)
153 Reactive load (p.u.)
Is4-142 Status of transmission lines
Output 0;-0O14 Real loss allocation for buses

A single layer of hidden neuron was considered due to its simplicity of weights and
threshold updates. Since there is no ‘rule of thumb’ to determine the optimal number of
hidden neurons [34], this task was approached by repeatedly training the neural network
with different number of hidden neurons and identifying the optimal number of hidden
neurons from the one that yielded the best convergence characteristics and lowest mean
square error for the test patterns. However, for a single hidden layer, the optimum
number of hidden neurons lies between n to 2n, where n is the number of inputs [43].
With several trials it was found that the network with 67 hidden neurons has the best
performance. Figure 6.4 shows convergence characteristics for different number of
hidden neurons. Hyperbolic tangent functions were used as activation functions for
hidden and output layers. A hyperbolic tangent function can be easily matched the
output by simply changing its amplitudes.
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Fig. 6.4: Convergence characteristics with different number of hidden neurons.

6.5 Learning and Testing of ANN

The proposed ANN was trained with steepest descent supervised learning algorithm
while the Z-bus allocation method was used as a teacher. Because of its simplicity of
weight updates, back propagation was utilized to train the network. 2800 training and
506 testing patterns were generated utilizing Z-bus allocation for the training and testing
of the ANN. In order to generate test patterns, load and generation at all busses were
varied according to the 24 hour load patterns on weekdays and weekend, and the

voltage magnitudes at the voltage control buses were varied from 1.03 to 1.09.

During the training it was observed that with a single activation function, learning does
not converge to a good accuracy level. It was also observed that the loss allocation for
Bus 1 is about 3500 times than that of Bus 7, about 312 times that of Bus &, and about
89 times that of Bus 5 & 11. Therefore, with a single activation function, adjustment of
weights to match target outputs became difficult. Therefore, the outputs were
categorized in 9 different levels according to their maximum values. Accordingly nine
activation functions were used in the output layer. The amplitudes of these 9 activation

functions were 0.25 for Output 1 (for Bus 1), 0.16 for Output 3, 0.06 for Output 6, 0.025
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for Output 4 & 9, 0.012 for Output 13 & 14, 0.006 for Output 2, 10 &12, 0.0028 for
Output 5 & 11, 0.0008 for Output 8 and 0.00007 for Output 7. Although in Reference
[7] the load in Bus 7 was considered zero, a small amount of real load was considered in
some hours in a 24-hour load pattern. Therefore, very small amount of loss was
allocated to this bus. Using nine activation functions in the output layer, the MSE
converged to 3.5 x 10° in 46026 iterations. Figure 6.5 shows convergence

characteristics with single and nine activation functions.
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(l) 2000 4000 6000 8000 10000 12000 14000
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1.00E-07 ~

1.00E-08

Iterations

Fig. 6.5: Convergence with single and nine activation functions

A value of 0.61 was used for ‘b’ in all activation functions used in the hidden and the
output layers. 0.25 was chosen as the amplitudes for the activation function used in the
hidden layer. A value of 3.5x10™® was used as a target for MSE to check for the
convergence. Other selected parameters for the neural network were: initial learning

rate (n) = 0.85, momentum factor (o) = 0.48 and step size (y ) = 0.85.

Outputs of test patterns obtained from the trained ANN and Z-bus allocation method
were compared. Unavailability of lines was simulated to check the performance of the

trained ANN during the failure of a line. Table 6.4 shows loss allocation for the given
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data in Reference [7]. Columns 2 and 3 of Table 6.4 show the loss allocation obtained
from Z-bus allocation and the trained ANN respectively for all 14 buses when all lines

were available.

Table 6.4: Loss allocation for given data in Reference [7]

Bus Z-bus loss Neural network loss
No. allocation allocation
(p.w) (p-u.)

1 0.0771 0.0772
2 0.0014 0.0017
3 0.0284 0.0275
4 0.0087 0.0086
5 0.0007 0.0008
6 0.0041 0.0040
7 0.0000 0.0000
8 -0.0004 -0.0002
9 0.0057 0.0058
10 0.0019 0.0020
11 0.0006 0.0006
12 0.0010 0.0011
13 0.0027 0.0028
14 0.0047 0.0043

From Table 6.4, it can be easily noticed that loss allocation for Buses 1, 3, 4, & 9 are
much greater compared to other buses. Therefore, these buses were chosen to compare
loss allocation between Z-bus and the proposed ANN at different hours of the day with
different configuration of the network due to the unavailability of transmission lines.
Figure 6.6 shows loss allocation by Z-bus and the ANN for selected buses (Buses 1, 3,

4, 9) when all transmission lines were available.
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Fig. 6.6: Loss allocations for Buses 1, 3, 4, 9 when all lines are available

Figures 6.6-6.10 show loss allocations during the unavailability of different

transmission lines.
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Fig. 6.7: Loss allocations for Buses 1, 3, 4 & 9 during the failure of Line 2
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Fig. 6.9: Loss allocations during the failure of Line 7

121

ANN: ——
Z-bus: ——




0.14

0.12 - Bus 1\
) |
2 ol
£ 0.08 -
§ 0.06 - ANN: ——
% : Bus4 &9 Z-bus:
2 0.04 Bus 3
—
0.02
0 T T ,\ T \
0 4 8 12 16 20 24
Hour

Fig. 6.10: Loss allocations during failure of Line 8

From Table 6.4 and Figures 6.6-6.10, it is evident that Bus 1 is responsible for more

than 55% of the transmission loss. Therefore, loss allocation for Bus 1 obtained by both

Z-bus and the proposed ANN were investigated for all possible line failures and the

results are shown in Figure 6.11.
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Fig.6.11: Loss allocation for Bus 1 for different line failures
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Table 6.4 shows that proposed neural network can be utilized to allocate losses in a pool
dispatch as well. Figures 6.6-6.11 show that the proposed ANN is very accurate in loss
allocation under different loading conditions even when a transmission line is

unavailable.

6.6 Summary

In Chapters 4 & 5, it was shown that artificial neural network can be utilized to allocate
transmission losses to bilateral contracts in a deregulated power system. In this chapter
transmission loss allocation in the context of a pool dispatch was presented. An ANN
was developed, trained and tested to allocate losses to generators and loads in a pool
dispatch. The IEEE 14-bus system was considered as test system to provide numerical
examples. First, Z-bus allocation was utilized to allocate real part of the transmission
loss to generators and loads. Using Z-bus allocation as a teacher, an ANN was
developed and trained to do the same job. The ANN was developed in such a way that it
can allocate transmission loss even during the unavailability of a transmission line. The
proposed ANN was tested with 506 test patterns which were developed considering all
possible variation of the independent variables of the test system. Loss allocations for
the test patterns were computed by both Z-bus and the trained ANN and results were
compared. Results obtained from both methods show that proposed ANN can allocate
transmission losses to generators and loads with good accuracy. All selected
transmission lines were made unavailable one at a time to check whether the proposed
ANN can work during the failure or shut down of line. Study showed that the trained
ANN can work without any modification during the failure of transmission line.
Although Z-bus allocation was utilized to generate training and testing patterns and the
loss allocation computed by the trained ANN matched very closely to those obtained by
Z-bus allocation, any other allocation procedure agreed upon by all stack holders can be

utilized for this purpose and the proposed ANN can be trained accordingly.
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CHAPTER 7: CONCLUSIONS

7.1 Conclusions

A new transmission loss allocation tool based on artificial neural networks has been
developed. The proposed artificial neural networks can simulate transmission loss
allocation determined by Incremental Load Flow Approach (ILFA) and Z-bus allocation
techniques. For loss allocations to bilateral contracts, the ILFA was used as a teacher to
train the proposed neural network. The developed ANN was tested with the 24-bus
IEEE reliability test system with two bilateral contracts. Results obtained from the
ILFA and the proposed ANN was compared for various loading conditions. It was
found that the proposed ANN can allocate transmission loss to bilateral contracts with
good accuracy. The ANN was designed to handle loss allocation even under single
transmission contingency provided the contingency does not threaten voltage stability
during the bilateral transaction. The proposed ANN can be trained with little difficulty
for large power system network. The trained ANN can provide solution in a quick
manner. The proposed ANN can yield negative loss allocation to reward generators or
loads that cause counter flow in the network. Although the ILFA was utilized to

generate training data, any other method of loss allocation can be utilized for that
purpose.

A major disadvantage of a neural network is that it is depended on the architecture of a
power system network. Its configuration would change whenever a transmission line
becomes unavailable due to maintenance or line failure. As a consequence, the ANN
has to be retrained. To avoid retraining, an ANN was developed to handle the
unavailability of a transmission line. To accomplish this objective, transmission line
status (available /unavailable) was added to the input vector of the neural network. With
the inclusion of line status, the developed ANN was able to allocate losses to all parties
accurately even during a transmission line outage. Unlike other inputs e.g. loads,
generations, bus voltages which are directly used in p.u., each line was given a binary

status, ‘0’ if available and ‘1’ if failed. Inclusion of line status in the input vector,
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however, created another problem. The number of inputs related to line status could be
very high in a large system. This could increase the training time tremendously.
Extensive loss allocation studies proved that only a few transmission line outages had
significant impact on loss allocation. A selection criterion for line status input was
developed to identify these lines and to keep the size of the neural network manageable.
The status of a line was selected as input if its failure had significant impact on loss
allocation but did not threaten system voltage stability nor made the bilateral transaction
impossible. Only single level contingency was considered as the probability of two line
failures at the same time is negligible. The proposed ANN was developed and tested
with the IEEE 24-bus Reliability Test System. The results showed that the developed
ANN can allocate real and reactive parts of transmission loss with good accuracy. The
training and testing patterns were obtained using the ILFA method. The results obtained
from the developed ANN were in good agreement with those obtained using the ILFA.
Therefore, an ANN can be used to simulate the loss allocations obtained using the
ILFA. The ANN provides results in fast and convenient manner with less mathematical

complexity.

In a pool operation, the principle of transmission loss allocation is different than that of
bilateral contracts. One of the main objectives of a pool operation is to minimize the
operating cost. When the price of energy is set by market clearing price i.e. every
suppliers get same price for per unit of energy they supply, the load scheduling is done
in such a way that transmission loss is minimized. In a pool operation, transmission loss
can be allocated to generators or to both the generators and consumers. In this research,
the later topology was used for loss allocation. An artificial neural network was
developed and trained to assess the share of loss for each generator and consumer. A
feed forward architecture has been chosen for the ANN and the network was trained
using back propagation algorithm with enhanced learning technique. Z-bus allocation
method was used as a teacher. Since only real part of transmission loss is allocated by
the Z-bus allocation method, the output of the developed ANN was designed to provide
only real part of transmission loss as well. To make the ANN capable of handling
transmission line outage, the status of selected transmission lines were included in the

input vector of the ANN. The selection criteria developed in Section 5.5 were used to
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keep the size of the ANN manageable. Enhanced learning techniques proved that the
ANN could be trained with little difficulty. The developed ANN was tested with typical
24 hour load variation for weekdays and weekends considering transmission line outage
on the IEEE 14-bus Reliability Test System. Results obtained from the Z-bus allocation
method and the developed ANN showed that the ANN can allocate losses to generators
and loads with very good accuracy. Although the Z-bus allocation method was used a
teacher to train the neural networks any other allocation method can be used to train the

ANN.

Neural networks are usually trained with a huge number of training patterns. It is,
therefore, important to speed up the learning process of ANNSs. In this research two
techniques were developed to enhance convergence speed. In the first technique,
multiple activation functions were used at the output layer which had increased the
learning speed to a great extent. Multiple activation functions can be used in any ANN
where the magnitudes of the output elements are greatly different from each others. This
technique also eliminates the requirement of normalization and de-normalization of the
outputs. The second technique was used to denote the status of the transmission lines. It
was realized that only a little change in the input vector of the ANN due to a line failure
had great impact on loss allocation. To incorporate this effect in the ANN, the line
failure status was denoted by “5” instead of “1” whereas “no-line-failure” was denoted
by “0”. This had also improved the speed of convergence. This feature can be used in
any ANN where some inputs have stronger co-relation with the outputs compared to
other inputs. In addition to these techniques, some other previously reported enhanced
learning techniques were also used. They are: proper initialization of synaptic weights
and thresholds, adapting learning rate in each weight direction and adapting threshold
values. With these techniques the developed ANNs were trained in few hours in

FORTRAN platform on a personal computer.

The developed ANNs calculated shares of transmission loss in the order of a few
milliseconds. For two bilateral contracts in the IEEE 24-bus systems, the proposed
ANN provided loss allocation results in 543 psec in a 3GHz Pentium IV personal

computer. The ILFA took 2.25 sec for the same loss allocation. For a pool operation in
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the IEEE 14-bus network, the proposed ANN took 7.9 msec whereas Z-bus allocation
took 40 msec to provide the loss allocation results. The proposed ANNs can be trained
with other loss allocation procedures acceptable to the stakeholders. The required inputs
for the ANN are the standard power system data which are readily available in any
power system network. Data can be used directly in p.u. quantity and do not require any
normalization. The outputs i.e. share of losses is expressed in p.u. quantity. The
proposed artificial neural network approach can be used as an effective tool to allocate
transmission loss on a real-time basis. An ANN can be used as a loss meter to calculate
aggregate loss for a generator or a load. This feature can also be utilized to resolve the
discrepancies between actual loss and recovered loss over a period of time. For
example, Average Loss Factor method for loss allocation creates a discrepancy between
actual transmission loss and recovered loss [46]. The short fall or excess recovered loss
then can be distributed to the stakeholders. The discrepancy accumulated over a time

period can be assessed with the help of the loss meter.

In this research the ILFA and Z-bus allocation procedures were used as teachers to train
the neural networks but any other loss allocation method acceptable to the stakeholders
can also be used to train the neural networks. The ANN based loss allocation method

can be implemented in any power system with little difficulty.

7.2 Scope of Future Work

The developed neural networks were designed in such a way that it could handle some
changes in power system structure. Changes in a power system structure may happen in
many ways. In this research, the change in a power system structure was considered
only due to the unavailability of a transmission line. A power system structure may also
be changed when a new generation station is added, a new transmission line is built or a
new bus is added to the existing system. Techniques can be developed to handle future

expansions into an ANN structure to make it a universal structure.

Further research can be carried out to design and develop a hardware to implement
ANN based transmission loss allocation. Utilizing this hardware a loss meter similar to
a digital energy meter can be developed which will aggregate losses for generators or

loads over a period of time.
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Table Al: Real load in p.u. for weekdays (from hour 1 to 12)

Bus
\Hr

1

2

3
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6

7

8
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12
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0 2 AN W B W N

10
13
14
15
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20

0.610
0.543
1.007
0.418
0.397
0.761
0.699
0.962
1.091
1.482
1.095
1.754
0.559
1.876
0.716

0.568
0.505
0.937
0.389
0.369
0.708
0.650
0.899
1.015
1.379
1.019
1.632
0.520
1.742
0.666

0.541
0.481
0.892
0.367
0.352
0.674
0.619
0.856
0.966
1.313
0.961
1.554
0.496
1.659
0.634

0.557
0.496
0.920
0.378
0.363
0.695
0.639
0.883
0.996
1.354
0.991
1.602
0.511
1.701
0.654

0.575
0.511
0.948
0.390
0.374
0.716
0.658
0.901
1.027
1.396
1.022
1.652
0.527
1.754
0.674

0.592
0.527
0.977
0.402
0.385
0.738
0.679
0.928
1.059
1.439
1.053
1.703
0.543
1.808
0.695

0.644
0.572
1.062
0.437
0.419
0.803
0.738
1.009
1.151
1.564
1.145
1.851
0.590
1.965
0.755

0.678
0.603
1.118
0.460
0.441
0.845
0.776
1.062
1.211
1.646
1.205
1.969
0.621
2.069
0.795

0.721
0.641
1.190
0.489
0.469
0.899
0.826
1.130
1.289
1.751
1.282
2.095
0.661
2.201
0.846

0.751
0.668
1.239
0.509
0.489
0.936
0.860
1.177
1.342
1.824
1.335
2.182
0.688
2.292
0.881

0.799
0.710
1.318
0.542
0.520
0.996
0.915
1.252
1.428
1.941
1.421
2.321
0.732
2.439
0.937

0.868
0.772
1.433
0.589
0.565
1.083
0.995
1.361
1.552
2.109
1.544
2.523
0.796
2.651
1.019

Table A2: Real load in p.u. for weekdays (from hour 13 to 24)

Bus
\Hr

13

14

15

16

17

18

19

20

21

22

23

24

0 N N kA WD

N = = = = = =
S 0 N nm B~ W O

0.965
0.858
1.592
0.654
0.628
1.203
1.106
1.512
1.725
2.344
1.716
2.804
0.884
2.945
1.132

1.016
0.903
1.676
0.689
0.661
1.266
1.164
1.592
1.815
2.467
1.806
2.951
0.931
3.100
1.192

1.069
0.951
1.764
0.725
0.696
1.333
1.225
1.676
1.911
2.597
1.901
3.107
0.980
3.263
1.254

1.080
0.970
1.800
0.740
0.710
1.360
1.250
1.710
1.950
2.650
1.940
3.170
1.000
3.330
1.280

1.058
0.941
1.746
0.718
0.689
1.319
1.200
1.659
1.892
2.500
1.882
3.075
0.970
3.230
1.242

1.016
0.903
1.676
0.689
0.661
1.266
1.550
1.592
1.816
2.400
1.900
2.952
0.931
3.101
1.192

0.980
0.858
1.592
0.655
0.628
1.203
1.473
1.513
1.775
2.280
1.805
2.850
0.885
2.946
1.132

0.931
0.815
1.513
0.622
0.597
1.143
1.399
1.437
1.686
2.166
1.715
2.708
0.840
2.799
1.076

0.838
0.734
1.361
0.560
0.537
1.029
1.259
1.293
1.518
1.993
1.543
2.437
0.756
2.519
0.968

0.754
0.660
1.225
0.504
0.483
0.926
1.133
1.164
1.366
1.774
1.389
2.193
0.681
2.267
0.871

0.641
0.561
1.042
0.428
0.411
0.787
0.963
0.989
1.161
1.454
1.181
1.864
0.579
1.927
0.741

0.609
0.533
0.989
0.407
0.390
0.748
0.915
0.940
1.103
1.382
1.122
1.771
0.550
1.830
0.704
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Table A3: Reactive load in p.u. for weekdays (from hour 1 to hour 12)

Bus

\Hr 1 2 3 4 5 6 7 8 9 10 11 12
1 0.124 0.116 0.110 0.114 0.117 0.121 0.131 0.138 0.147 0.153 0.163 0.177
2 0112 0.104 0.099 0.102 0.105 0.109 0.118 0.124 0.132 0.138 0.146 0.159
3 0207 0.193 0.183 0.189 0.195 0.201 0.218 0.230 0.245 0.255 0.271 0.295
4 0.085 0.079 0.074 0.077 0.079 0.081 0.089 0.093 0.099 0.103 0.110 0.119
5 0.078 0.073 0.069 0.072 0.074 0.076 0.083 0.087 0.093 0.096 0.103 0.111
6 0.152 0.142 0.135 0.139 0.143 0.148 0.161 0.169 0.180 0.187 0.199 0.217
7 0140 0.130 0.124 0.128 0.132 0.136 0.148 0.155 0.165 0.172 0.183 0.199
8 0.197 0.184 0.175 0.181 0.184 0.190 0.207 0.217 0.231 0.241 0256 0.279
10 0224 0208 0.198 0204 0211 0217 0236 0248 0264 0275 0293 0318
13 0302 0281 0268 0276 0284 0293 0319 0335 0357 0372 0395 0430
14 0220 0205 0.193 0.199 0205 0212 0230 0242 0258 0.268 0.286 0.310
15 0354 0329 0314 0323 0334 0344 0374 0398 0423 0441 0.469 0.509
16 0.112 0.104 0.099 0.102 0.105 0.109 0.118 0.124 0.132 0.138 0.146 0.159
18 0.383 0.356 0.339 0.347 0.358 0.369 0401 0422 0449 0468 0498 0.541
20 0.145 0.135 0.129 0.133 0.137 0.141 0.153 0.162 0.172 0.179 0.190 0.207

Table A4: Reactive load in p.u. for weekdays (from hour 13 to 24)

g{urs 13 14 15 16 17 18 19 20 21 22 23 24
1 0.197 0207 0218 0220 0216 0207 0.197 0.187 0.168 0.151 0.129 0.122
2 0177 0.186 0.196 0.200 0.194 0.186 0.177 0.168 0.151 0.136 0.116 0.110
3 0327 0344 0363 0370 0.359 0.345 0.327 0311 0.280 0.252 0.214 0.203
4 0133 0.140 0.147 0.150 0.146 0.140 0.133 0.126 0.113 0.102 0.087 0.082
5 0.124 0.130 0.137 0.140 0.136 0.130 0.124 0.118 0.106 0.095 0.081 0.077
6 0241 0.253 0.267 0.272 0264 0.253 0.241 0229 0206 0.185 0.157 0.150
7 0221 0.233 0.245 0.250 0.243 0.233 0.221 0.210 0.189 0.170 0.145 0.137
8 0310 0.326 0.343 0.350 0.340 0.326 0.310 0.294 0.265 0.238 0.203 0.192
10 0354 0372 0392 0400 0388 0372 0354 0336 0303 0272 0231 0.220
13 0478 0.503 0.529 0.540 0.524 0.503 0478 0.454 0418 0372 0305 0.289
14 0.345 0.363 0.382 0.390 0.378 0.363 0.345 0.328 0.295 0.265 0226 0.214
15 0566 0.596 0.627 0.640 0.621 0.596 0.566 0.538 0.484 0436 0.370 0.352
16 0.177 0.186 0.196 0.200 0.194 0.186 0.177 0.168 0.151 0.136 0.116 0.110
18 0.601 0.633 0.666 0.680 0.660 0.633 0.602 0.571 0.514 0463 0.393 0.374
20  0.230 0.242 0.255 0.260 0.252 0.242 0.230 0.219 0.197 0.177 0.150 0.143
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Table AS5: Real load in p.u. for weekends (from hour 1 to 12)

Bus

\Hr 1 2 3 4 5 6 7 8 9 10 11 12
1 0.624 0.580 0.552 0.558 0.575 0.581 0.592 0.623 0.663 0.690 0.719 0.782
2 0578 0.538 0.512 0.518 0.523 0.528 0.538 0.566 0.602 0.627 0.654 0.710
30992 0923 0.879 0.888 0.896 0.906 0.922 0971 1.033 1.076 1.120 1.218
4 0436 0405 0382 0386 0390 0394 0401 0423 0449 0468 0.488 0.530
5 0419 0390 0371 0375 0379 0.382 0.389 0410 0436 0454 0473 0.514
6 0.723 0.672 0.640 0.647 0.653 0.660 0.672 0.708 0.753 0.784 0.817 0.888
7 0729 0.678 0.646 0.653 0.659 0.666 0.678 0.714 0.759 0.791 0.824 0.896
8 0.760 0.710 0.676 0.697 0.704 0.711 0.773 0.814 0.866 0.902 0.939 1.021
10 1.007 0937 0.892 0920 0929 0958 1.041 1.096 1.166 1.195 1271 1.381
13 1302 1212 1.154 1.166 1.177 1.189 1293 1361 1.447 1483 1578 1.715
14 1.102 1.025 0967 0997 1.007 1.017 1.106 1.164 1.238 1.269 1.350 1.467
15 1.720 1.600 1.523 1.571 1.586 1.602 1.742 1.853 1971 2.020 2.061 2240
16 0.553 0.514 0490 0.505 0.510 0.526 0.531 0.559 0.595 0.620 0.659 0.716
18 1.542 1431 1.363 1.367 1409 1413 1.536 1.567 1.667 1.737 1.848 2.008
20  0.693 0.645 0.614 0.633 0.653 0.673 0.680 0.716 0.761 0.793 0.844 0917
Table A6: Real load in p.u. for weekends (from hour 13 to 24)

g{urs 13 14 15 16 17 18 19 20 21 22 23 24
1 0.868 0914 0962 0972 0953 0914 0980 0956 0908 0.817 0.694 0.660
2 0789 0.831 0.875 0.892 0.866 0.831 0.789 0.770 0.731 0.658 0.559 0.531
3 1.353 1.424 1499 1530 1484 1425 1353 1320 1254 1.128 0.959 0911
4 0589 0.620 0.653 0.666 0.646 0.620 0.589 0.574 0.546 0.491 0.417 0.397
5 0571 0.602 0.633 0.646 0.627 0.602 0.572 0.557 0.529 0.476 0.405 0.385
6 0986 1.038 1.093 1.115 1.082 1.038 0.987 0.962 0.914 0.822 0.699 0.664
7 0995 1.047 1.103 1.125 1200 1.550 1.527 1.489 1.414 1273 1.082 1.028
8 1.134 1.194 1257 1283 1244 1.194 1.176 1.147 1.090 0.981 0.834 0.792
10 1.535 1.616 1.701 1.736 1.683 1.616 1.592 1.552 1474 1.327 1.128 1.072
13 1906 2.006 2.111 2.154 2.090 2006 1976 1927 1830 1.629 1336 1.269
14 1.630 1.716 1.806 1.843 1.788 1.900 1.872 1.825 1.733 1.560 1.326 1.260
15 2383 2509 2.641 2.695 2.560 2.355 2320 2262 2.149 1.934 1.644 1.561
16 0.796 0.838 0.882 0.900 0.873 0.838 0.826 0.784 0.745 0.671 0.570 0.541
18 2.231 2.349 2473 2498 2423 2326 2291 2.176 1.959 1.841 1.565 1.487
20  1.019 1.073 1.129 1.152 1.117 1.073 1.057 1.004 0.903 0.813 0.691 0.657
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Table A7: Reactive load in p.u. for weekends (from hour 1 to 12)

Bus

\Hr 1 2 3 4 5 6 7 8 9 10 11 12
;1 0118 0.110 0.105 0.108 0.111 0.115 0.125 0.131 0.140 0.145 0.155 0.168
> 0.105 0.098 0.093 0.09 009 0102 0.111 0.117 0.124 0.129 0.138 0.150
3 0.195 0.181 0.172 0.178 0.183 0.189 0.205 0.216 0.230 0.239 0255 0.277
4 0.080 0.074 0.070 0.072 0.074 0.077 0.083 0.088 0.093 0.097 0.103 0.112
5 0.076 0.071 0.067 0.069 0072 0.074 0.080 0.084 0.090 0.093 0.099 0.108
¢ 0.148 0.137 0.131 0.135 0.139 0.143 0.156 0.164 0.174 0.182 0.193 0.210
7 0136 0.126 0.120 0.124 0.128 0.132 0.143 0.151 0.160 0.167 0.178 0.193
g 0.191 0.178 0.170 0.175 0.179 0.184 0200 0211 0.224 0.234 0.249 0.270
10 0217 0202 0.192 0.198 0.204 0.211 0229 0241 0256 0.267 0.284 0.309
13 0293 0273 0260 0268 0.276 0.284 0.309 0325 0346 0361 0384 0417
14 0214 0.199 0.187 0.193 0.199 0.205 0223 0.235 0250 0.260 0277 0.301
15 0347 0323 0308 0317 0.327 0337 0366 0390 0415 0432 0459 0.499
16 0.110 0.102 0.097 0.100 0.103 0.106 0.116 0.122 0.130 0.135 0.144 0.156
18 0364 0338 0322 0330 0340 0.351 0.381 0401 0427 0445 0473 0.514
oo 0.140 0.130 0.124 0.128 0.131 0.136 0.147 0.155 0.165 0.172 0.183 0.199
Table A8: Reactive load in p.u. for weekends (from hour 13 to 24)

g{urs 13 14 15 16 17 18 19 20 21 22 23 24
1 0.177 0.186 0.196 0.198 0.194 0.186 0.298 0.283 0.255 0.229 0.195 0.185
2 0.158 0.166 0.175 0.180 0.175 0.168 0.159 0.151 0.136 0.123 0.104 0.099
30292 0307 0323 0333 0323 0310 0.295 0.280 0.266 0.239 0.203 0.193
4 0118 0.124 0.131 0.135 0.131 0.126 0.119 0.113 0.102 0.100 0.085 0.081
5 0.114 0.120 0.122 0.126 0.122 0.117 0.111 0.106 0.095 0.086 0.073 0.069
6 0221 0.233 0.237 0.245 0.237 0.228 0.217 0.206 0.185 0.167 0.142 0.135
7 0203 0214 0218 0.225 0.218 0.210 0.199 0.189 0.170 0.153 0.130 0.124
8 0284 0.299 0306 0.315 0306 0.299 0.284 0270 0.243 0.231 0.196 0.187
10 0325 0342 0349 0360 0349 0342 0325 0309 0278 0250 0.213 0.202
13 0439 0462 0471 0486 0471 0462 0439 0417 0384 0379 0311 0.296
14 0317 0.334 0.340 0.351 0.340 0.334 0.317 0.301 0.271 0.244 0.207 0.197
15 0.520 0.548 0.559 0.576 0.559 0.548 0.520 0.494 0.445 0400 0.380 0.361
16 0.163 0.171 0.175 0.180 0.175 0.171 0.163 0.154 0.139 0.125 0.106 0.101
18 0.536 0.564 0.594 0.612 0.594 0.582 0.553 0.525 0.520 0468 0.398 0.378
20 0.207 0.218 0.229 0.234 0.227 0.222 0211 0.201 0.181 0.163 0.138 0.131
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Table A9: Initial load flow solution by Newton-Raphson Method

Bus Voltage Angle --- Load ---- ---- Generation--- Injected
No. Mag Degree MW Myvar MW Mvar Mvar
1 1.030  0.000 1.080 0.220 1.593 0.799 0.000
2 1.030  -0.002 0.970 0.200 1.720 0.518 0.000
3 0978  2.845 1.800 0.370 0.000 0.000 0.000
4 0.990 -0.988 0.740 0.150 0.000 0.000 0.000
5 0.994 -2.824 0.710 0.140 0.000 0.000 0.000
6 1.000 -5.699 1.360 0.267 0.000 0.000 0.720
7 1.020 -12.119 1.250 0.250 1.000 1.140 0.000
8 0.971 -10.413 1.710 0.350 0.000 0.000 0.000
9 0.993  2.390 0.000 0.000 0.000 0.000 0.000
10 0.987 -2.426 1.950 0.400 0.000 0.000 0.000
11 0.996 6.884 0.000 0.000 0.000 0.000 0.000
12 1.000 7.047 0.000 0.000 0.000 0.000 0.000
13 1.030 10.028 2.650 0.540 3.940 1.999 0.000
14 0.996 10.436 1.940 0.390 0.000 0.000 0.000
15 1.030 18.477 3.170 0.640 1.550 1.884 0.000
16 1.030 17.759 1.000 0.200 1.550 2.000 0.000
17 1.022 22.303 0.000 0.000 0.000 0.000 0.000
18 1.020 23.740 3.330 0.680 4.000 0.304 0.000
19 1.023 16.570 0.000 0.000 0.000 0.000 0.000
20 1.018 15.538 1.280 0.260 0.000 0.000 0.000
21 1.030 24.461 0.000 0.000 4.000 0.608 0.000
22 1.030 30.375 0.000 0.000 3.000 -0.125 0.000
23 1.020 15.717 0.000 0.000 3.100 0.045 0.000
24 0.995 12.763 0.000 0.000 0.000 0.000 0.000
Total 24940  4.340 25.453 8.563

Line Flow and Losses
Total loss 0.513 4.223
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Table A10: Load flow solution for economical load dispatch

Bus Voltage Angle --- Load ---- ---- Generation--- Injected
No. Mag Degree MW Myvar MW Mvar Mvar
1 1.030  0.000 1.080 0.220 4.018 0.331 0.000
2 1.030 -1.261 0.970 0.200 0.483 0.761 0.000
3 0981 -3.136 1.800 0.370 0.000 0.000 0.000
4 0991 -3.971 0.740 0.150 0.000 0.000 0.000
5 0.993 -4.494 0.710 0.140 0.000 0.000 0.000
6 1.000 -8.640 1.360 0.267 0.000 0.000 0.720
7 1.020 -15.959 1.250 0.250 1.007 1.124 0.000
8 0.972 -14.293 1.710 0.350 0.000 0.000 0.000
9 0.995 -2.050 0.000 0.000 0.000 0.000 0.000
10 0.987 -5.911 1.950 0.400 0.000 0.000 0.000
11 1.000  1.653 0.000 0.000 0.000 0.000 0.000
12 1.001  2.994 0.000 0.000 0.000 0.000 0.000
13 1.030 6.642 2.650 0.540 5.327 1.736 0.000
14 1.001 2.344 1.940 0.390 0.000 0.000 0.000
15 1.030  7.059 3.170 0.640 1.439 1.552 0.000
16 1.030  7.060 1.000 0.200 0.797 1.674 0.000
17 1.024  9.573 0.000 0.000 0.000 0.000 0.000
18 1.020 10.705 3.330 0.680 3.904 -0.417 0.000
19 1.023  8.050 0.000 0.000 0.000 0.000 0.000
20 1.018  8.908 1.280 0.260 0.000 0.000 0.000
21 1.030 11.214 0.000 0.000 3.813 0.423 0.000
22 1.030 11.577 0.000 0.000 0.451 0.011 0.000
23 1.020 10.121 0.000 0.000 4.066 -0.137 0.000
24 1.003  3.340 0.000 0.000 0.000 0.000 0.000
Total 24940  4.340 25.304 7.057
Line Flow and Losses
Total loss 0.364 2.717
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APPENDIX B
All terms except P, and K¢ in this appendix are matrices.
Standard transmission loss formula derived in Chapter 2 is
T T T T T T
P, =P ApPG - Pp ApPG - P ApPD + Pp ApPD - P BpQG + Pp BpQG
T T T T
+P;" B,Op —PpB,0p +0¢ B,P; —0Op B,P; —0QB,Pp+0p B,Pp
T T T T
+QG ApQG _QD ApQG _QG ApQD +QD ApQD

_|pT r||4p —Bp | Fs T rl4p —Bp| Pp
-2 QG]{BP Ap}{QG}+[PD QD]{BP APLJ

T T T
_PgApPG_PgAp +PDTBpQG+Q£Bp _QIT)BpPG_PDTBpTQG_QlT)ApQG_QL];Ap QG

(B1
Since 4, = ApT and B, = —BpT , Equation (B1) can be written as
A, -B,[P 4, —-B, [P
T T|| P r|fe T T|“p p (D
PL:[PG O¢ ]{B y :l[ }F[PD Op ':B 4 }{ }
p p Qg p p Op (B2

Fe
+2[—PDTAP—QDTBP PDTBP—QDTAP{Q}
G

The first term of Equation (B2 is

ol

p

T T T T
=F; A,P; —Fs B,06+0¢ B,F;+0s 4,0;
—p,"4,P.-P; B ( FP;)+( FP;)' B, P FP;) 4 FP
=Pg' A,P; —P;' B,(Qco+ FPs)+(Qgo + FP; ) B,Ps +(Qgo + FPs) A,(Qgo + FPs)

T T T T
=Pg' A,P; —Pg' B,0co —PG' B,FP;+QLoB,Ps+Ps F'B,P;+060A4,060

+ 0604, FP; + Pg  FT 4,060 + P FT 4,FP; e e e (B2)

3" term of Equation (B1) is

PG
:2[—PDTAP—QDTBP PDTBP—QDTAP[Q }
G
e, £, |-E,py+E
L 10, =E,F +E,96

where,
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E,=20-P,"4,-0,7B,) and

T T
£y :2(PD B,-0p Ap)
Therefore, the 3™ term is
=E,P; +E,0; =E,P; +E (Qgo + FP;) ... (B3)

Putting (B2) and (B3) in (B1),

T T T T T =T T
P, =P 4,P; - P5' B,0go —Pc' B,FPg +0LB,Ps +Ps' FTB,Ps +0&04,060
+Q0G0A,FP; + Pg  F' 4,050 + Py' FT 4,FP; + E P + E, Qg0 + E,FP;
A

~B.Tp
p T rl4p P{D}
+[D Op ':Bp Apj|QD

- PGT(Ap ~B,F+F B, +F T 4,F)P; + {Ep +E,F+205(4,F+B, )}PG

A, —-B, [P

T T|“p | o

+[PD Op ':B 4 }{ }ngoApQGo +E,060
P P QD

or,

P, =P; B, P, +Bl,P; +K,, (B4)

where,

B, =A4,-BF+F'B, +F AF
Bj,=E,+EF+205(A,F+B,)

A —-B
K, :[PDT Q[T)]|:Bp 4 pMIQDZ}+Q£0ApQGO +EqQGo

P
The loss formula expressed in Equation (B4) is known as Kron’s transmission loss
formula.
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