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Abstract 

Corrosion is a serious industrial concern.  According to a cost of corrosion study 

released in 2002, the direct cost of corrosion is approximately $276 billion dollars in the 

United States – approximately 3.1% of their Gross Domestic Product*.  Key influences 

on the severity of corrosion include: metal and electrolyte composition, temperature, 

turbulent flow, and location of attack.  In this work, mechanistic models of localized 

and flow influenced corrosion were constructed and these influences on corrosion were 

simulated. 

 A rigourous description of mass transport is paramount for accurate corrosion 

modelling.  A new moderately dilute mass transport model was developed.  A 

customized hybrid differencing scheme was used to discretize the model.  The scheme 

calculated an appropriate upwind parameter based upon the Peclet number.  Charge 

density effects were modelled using an algebraic charge density correction.  Activity 

coefficients were calculated using Pitzer’s equations.  This transport model was 

computationally efficient and yielded accurate simulation results relative to 

experimental data.  Use of the hybrid differencing scheme with the mass transport 

equation resulted in simulation results which were up to 87% more accurate (relative to 

experimental data) than other conventional differencing schemes.  In addition, when the 

charge density correction was used during the solution of the electromigration-diffusion 

equation, rather than solving the charge density term separately, a sixfold increase in the 

simulation time to real time was seen (for equal time steps in both simulation 

strategies).  Furthermore, the charge density correction is algebraic, and thus, can be 

                                                 
* Reference: http://www.nace.org/nace/content/publicaffairs/cocorrindex.asp 
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applied at larger time steps that would cause the solution of the charge density term to 

not converge. 

 The validated mass transport model was then applied to simulate crevice 

corrosion initiation of passive alloys.  The cathodic reactions assumed to occur were 

crevice-external oxygen reduction and crevice-internal hydrogen ion reduction.  

Dissolution of each metal in the alloy occurred at anodic sites.  The predicted transient 

and spatial pH profile for type 304 stainless steel was in good agreement with the 

independent experimental data of others.  Furthermore, the pH predictions of the new 

model for 304 stainless steel more closely matched experimental results than previous 

models. 

 The mass transport model was also applied to model flow influenced CO2 

corrosion.  The CO2 corrosion model accounted for iron dissolution, H
+, H2CO3, and 

water reduction, and FeCO3 film formation.  The model accurately predicted 

experimental transient corrosion rate data. 

 Finally, a comprehensive model of crevice corrosion under the influence of flow 

was developed.  The mass transport model was modified to account for convection.  

Electrode potential and current density in solution was calculated using a rigourous 

electrode-coupling algorithm.  It was predicted that as the crevice gap to depth ratio 

increased, the extent of fluid penetration also increased, thereby causing crevice 

washout.  However, for crevices with small crevice gaps, external flow increased the 

cathodic limiting current while fluid penetration did not occur, thereby increasing the 

propensity for crevice corrosion. 
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Chapter 1. Introduction  

1.1 General Summary 

Estimated to cost the United States economy nearly $276 Billion (approximately 

3.1% of their GNP), metallic corrosion is a serious concern.  Of particular importance is 

localized corrosion, due to its ability to dramatically reduce service life of infrastructure 

and equipment.  A key danger of localized corrosion is that a microscopic crevice or pit 

may corrode to the extent of catastrophic failure without being detected.  To mitigate 

localized corrosion, a fundamental understanding of the processes that lead to material 

failure is required.  In this work, new mathematical models of crevice corrosion have 

been developed to aid in the characterization of alloys for their use in corrosive 

environments. 

 In addition to studying localized corrosion, this project also includes research into 

flow influenced corrosion.  While general corrosion is relatively well understood and 

engineers can incorporate corrosion allowances into designs, turbulent flow can 

dramatically increase the rate of general corrosion.  One particularly important case of 

flow accelerated corrosion is CO2 corrosion of pipeline and downhole oil well 

infrastructure.  This form of corrosion is frequently encountered in the oil and gas 

industry and is also often associated with H2S (acid gas) corrosion and microbially 

induced corrosion.  Dissolved CO2 in water forms carbonic acid which corrodes the steel.  
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This type of corrosion is very devastating near obstructions to flow where turbulence 

intensity is greatest (i.e. near flanges, threadings, etc.). 

 A third thrust of this research project is the development of a model of crevice 

corrosion that accounts for the effect of external flow.  The effect of external flow on 

crevice corrosion may be beneficial or detrimental depending upon the aspect ratio of the 

crevice.  For a deep crevice with a sufficiently small gap, bulk solution fluid will not 

significantly penetrate the crevice.  However, turbulent flow will increase the rate of 

transport of cathodic reagents to the surface, giving the bold surface cathode increased 

throwing power, thus accelerating the rate of crevice corrosion.  For a shallow crevice 

with a larger gap, bulk fluid will penetrate the crevice causing crevice washout.  In this 

case, the replacement of the acid-chloride solution that develops in a crevice with the 

more neutral bulk solution will slow down the rate of crevice corrosion.  However, this 

may cause mesa corrosion which is a natural extension of the present work.  Flow 

influenced crevice corrosion is prevalent, and an example of this is when pitting occurs in 

processing equipment.  During a shutdown, stagnant fluid may cause pitting.  Upon 

restart of the process, turbulent flow now influences the crevices formed on the surface 

due to pitting.  There are many other situations where this phenomenon would occur. 

 This thesis is arranged in the following order: 

1. A description of mass transport modelling is given and two new methods for 

solving the electromigration-diffusion equation accurately and efficiently are 

shown.  This is the first part of the thesis because mass transport modelling is 

fundamental to the prediction of all forms of corrosion. 
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2. The mass transport model is applied to crevice corrosion initiation of passive 

metals.  The transport model is applied to predict crevice corrosion initiation at 

varying temperature, solution composition, and size of crevice gap.  After 

thorough validation of the crevice corrosion initiation models, it is used to rank 

passive alloys for their propensity for crevice corrosion in potash brine. 

3. The mass transport model is then applied to predict carbon dioxide corrosion in a 

pipeline.  The Navier-Stokes equations, along with an eddy viscosity turbulence 

model, are used to calculate the turbulent velocity profile in a pipeline.  The eddy 

viscosity is then incorporated into the mass transport equation to predict the 

effects of turbulent mixing on the rate of carbon dioxide corrosion.  The CO2 

corrosion model incorporates the effect of FeCO3 film formation. 

4. The studies in both crevice corrosion and flow influenced corrosion are brought 

together with a study of flow influenced crevice corrosion.  In this model, the 

passivation state of the crevice metal is not assumed.  Thus, the model is 

applicable to either passive or non-passive metals.  A turbulent flowfield is 

simulated.  However, due to the scale of a crevice, only the viscous sublayer is 

modelled to keep the scale of the problem computationally feasible. 

1.2 Significance of Contributions 

This work breaks new ground in several areas.  The crevice corrosion initiation 

model, discussed in Chapter 4, presents a new crevice corrosion model utilizing a 

sophisticated representation of non-ideal solution effects due to electrolyte interactions.  

The use of Pitzer’s model has not been incorporated into a crevice corrosion initiation 
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model previously, and this study shows that its use dramatically improves the model’s 

accuracy relative to experimental data (see Sections 4.2 and 4.3). 

In addition, the carbon dioxide corrosion model is unique because it uses a novel 

method to determine the limiting current.  Rather than relying upon correlations based 

upon experimental observations, this method to determine the current allows the model to 

be applicable to situations where the correlations do not apply.  The limiting current is 

determined using the mass transport equation itself.  When a cathodic reaction is 

controlled by charge transfer processes, a corrosion flux boundary condition is used.  The 

rate of the cathodic reaction is determined using the Butler-Volmer equation.  However, 

once a reagent involved in the cathodic reaction becomes limiting, the boundary condition 

for that reagent becomes a zero concentration boundary condition, and the cathodic 

current is calculated using the diffusion limited current.  The use of this algorithm to 

dynamically change the species boundary condition allows the diffusion limiting current 

to be calculated without the use of correlations. 

The flow influenced localized corrosion brought the localized corrosion and flow 

influenced corrosion models together.  This model is capable of predicting crevice 

washout.  The flow model is coupled with an electrolyte mass transport model and an 

electrode kinetics model.  Electrode potential and current density is calculated using a 

novel electrode coupling algorithm.  Based upon the net potential difference between cells 

(i.e. the difference in electrode potential less the ohmic potential drop between the 

electrodes), coupling between electrode sites is rigorously determined.  This electrode 

coupling algorithm supplies the boundary conditions for mass transport and is capable of 

modelling both passive and active crevice corrosion. 
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Throughout the development of corrosion models, studies into theoretical mass 

transport were also conducted.  From this work, a new method for incorporating charge 

density into the calculation of mass transport rates was developed.  This method improves 

upon previously available charge density correction schemes because it is algebraic in 

nature, rather than other methods that require the solution of a stiff ordinary differential 

equation.  Thus, this method dramatically increases the computational efficiency and 

stability of solving equations for electrolyte mass transport, while incorporating the 

important effect of charge density.  In addition, a new differencing scheme customized for 

the electromigration-diffusion equation was developed.  When using this scheme, rather 

than using a pure upwind differencing scheme, predicted mass transport rates are up to 

87% closer to experimentally determined transport rates. 

1.3 Research Objective 

 The objective of this research is to improve upon previous localized corrosion 

models through the development of more sophisticated mass transport models and 

algorithms.  The applicability of the mass transport models to other problems will be 

shown through use in flow influenced CO2 corrosion simulations.  The goals of this 

research will be accomplished through the following tasks: 

1. Development of a rigourous description of mass transport which improves upon 

previous models in both accuracy and computational efficiency.  The model 

should incorporate charge density effects in a mechanistic fashion.  Effects of 

diffusion on electromigration should be accounted for through diffusion potential. 

2. Development and validation of a crevice corrosion initiation model for passive 

metals.  A key difference between this model and previous models will be the 
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rigorous treatment of the charge density term.  Even slight charge density invokes 

a large parabolic contortion of the electrical field, which then alters the current 

density field to neutralize the charge.  It has been thought that because charge 

density is small, its net effect upon mass transport in a crevice is small.  However, 

it will be shown that charge density is a key driving force for the mass transport 

process in a crevice. 

3. Development of a flow influenced CO2 corrosion model.  The mass transport 

model described above will be applied to model CO2 corrosion influenced by 

turbulent flow.  The effect of iron carbonate film formation on the CO2 corrosion 

process will be demonstrated. 

4. Development of a comprehensive model of crevice corrosion under the influence 

of turbulent flow.  A two-dimensional computational fluid dynamics model will 

be developed to simulate flow patterns in and around a crevice.  The flowfield will 

be incorporated into the mass transport model.  This model will be able to predict 

crevice washout for crevices with large gap to depth ratios and accelerated crevice 

corrosion due to increased mass transport at the external cathode for crevices with 

large gap to depth ratios. 
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Chapter 2. Introduction to Crevice Corrosion Modelling 

 Crevice corrosion occurs in passive metals, which form a protective tenacious 

oxide film.  This film is of the order of angstroms to nanometers thick and has a very low 

electronic and/or ionic conductivity.  Therefore, the film acts as an electrical resistance, 

rather than a diffusion barrier.  The low conductivity of this film acts to limit the 

corrosion current to a small leakage current, of the order of 0.1 – 10 µA/cm2.  However, 

in sufficiently strong acid-chloride solutions, this film may be destroyed.  The pH of this 

critical crevice solution is dependent upon the metal or alloy. 

 Strong acid-chloride solutions may develop inside a crevice undergoing crevice 

corrosion initiation.  There are four stages of crevice corrosion – Crevice dexoxygenation, 

crevice acidification, development of an critical crevice solution, and active crevice 

corrosion.  The first three stages are considered the initiation period.  Figure 2.1 illustrates 

the processes occurring during crevice corrosion initiation. 

2.1 The Stages of Crevice Corrosion 

2.1.1 Crevice deoxygenation 

 Initially, oxygen reduction both occurs inside and outside of the crevice.  The 

crevice is filled with a solution that has identical composition to the bulk or external 

solution.  Oxygen reduction occurs according to the following reaction: 

 −− →++ OHeOH 442O 22       (2.1) 
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This cathodic reaction is balanced by an anodic reaction.  The anodic reaction is the 

dissolution of metal: 

 −+ +→ zeMM z        (2.2) 

Metal cations in solution undergo hydrolysis to produce H+: 

 Mz+ + zH2O  M(OH)z + zH
+     (2.3) 

Prior to deoxygenation, the passive current essentially maintains the structure of the 

passive film on both the crevice-interior surface and on the surface surrounding the 

crevice, which is called the bold surface.  If the crevice gap is small enough such that the 

solution is stagnant, then oxygen can be transported into the crevice only by diffusion.  If 

the rate of diffusion of oxygen is less than that of oxygen reduction in the crevice, the 

crevice will deoxygenate.  This will have two important consequences:  

• Anode and cathode will be physically separated.  Anodic dissolution will occur 

inside the crevice and oxygen reduction will occur on the bold surface.  This will 

cause a potential gradient between the crevice interior and the bold surface. 

Hydrolysis of metal cations produced by metal dissolution will cause acidification of the 

crevice.  This will cause the rate of dissolution to increase, which will then increase the 

potential gradient.  Thus, the process is autocatalytic. 

 

2.1.2 Crevice acidification 

 Before the crevice was deoxygenated, both oxygen reduction (which produces 

OH-, see equation (2.1)) and metal dissolution (which produces H+ via hydrolysis, see 

equation (2.3)) occurred in the crevice.  Now that the crevice is deoxygenated, OH- is no 

longer produced at the same rate as H+ and, consequently, the pH drops.  
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Figure 2.1. Processes occurring during crevice corrosion initiation.  Grey double-sided 

arrows indicate transport mechanisms while dark arrows indicate electrochemical and 

chemical reactions. 
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The pH affects the rate of anodic dissolution.  As the pH drops, the dissolution rate will 

increase according to the following relationship [1]: 

 n
pH

ip −=
∂

∂ log
        (2.4) 

Here, n  increases with increasing charge number of the metal cation [1].  From equation 

(2.4), as the pH drops, the passive current increases.  The rate of anodic dissolution is 

proportional to the passive current as described by Faraday’s Law [1].  As the rate of 

anodic dissolution increases, so does the rate of hydrolysis, which causes the pH to drop 

more rapidly.  The drop in pH, in turn, then causes the passive current to increase.  Thus, 

an autocatalytic coupling is formed.  Because of the autocatalytic nature of the crevice 

corrosion initiation process, the crevice solution can have a very low pH.  In addition, 

because anodic reactions occur only inside the crevice while cathodic reactions occur 

only at the bold surface, there is an electrical potential difference between the inside and 

outside of the crevice.  The bold surface supplies cathodic charge to the anodic processes 

inside the crevice.  This potential gradient, which is proportional to the size of the passive 

current, causes electromigration of anions, such as chloride, into the crevice while cations 

electromigrate out of the crevice.  The autocatalytic coupling between passive current and 

pH causes an increase in the potential gradient which increases the rate of chloride 

transport into the crevice.  Therefore, crevice solutions can have much lower pH and 

much higher chloride concentrations than the bulk solution. 

2.1.3 Development of a critical crevice solution 

If the pH drops below the critical pH, the passive film will be destroyed and 

crevice corrosion will ensue.  The critical pH is an experimentally determined parameter 

that is metal specific.  There are critical pH values available in the literature for 
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commonly used passive metals [2, and references therein].  Two methods used to 

calculate the critical pH are described in the literature [3, 4].   

Figure 2.2 shows the kinetic corrosion diagram of a metal crevice in the passive 

state and in the active state.  In the passive state, the cathodic line intersects only the 

vertical part of the anodic line.  When the crevice becomes active, the cathodic line 

intersects the “nose” of the anodic line, causing a large increase in the current.  This 

intersection is usually due to the movement of the anodic line to the right because of 

increased temperature and decreased pH. 

2.1.4 Active crevice corrosion 

 Crevice corrosion now occurs inside the crevice.  The rate of dissolution is 

balanced by the rate of oxygen reduction at the cathode.  Electromigration causes anions, 

such as chloride ions, to move into the crevice while cations move out of the crevice.  

Because the anode and cathode are physically separated, there is a potential gradient 

along the crevice length which is opposed by the iR drop in solution.  The iR drop is 

inversely proportional to the solution conductivity.  The conductivity of the crevice 

solution is significantly higher than the conductivity of the bulk solution due to metal ion 

hydrolysis, which produces hydrogen ions, and transport of chloride ions into the crevice. 

2.2 Numerical Modelling of Crevice Corrosion 

The rate of crevice acidification is largely controlled by the rate of metal dissolution.  The 

rate at which the pH inside the crevice builds is influenced by the rate of mass transport of 

hydrogen ions out of the crevice.  In addition, the chloride ion concentration in the crevice 

is a direct function of the rate of mass transport.   
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Figure 2.2. Typical kinetic corrosion diagram of crevice corrosion: (a) crevice in 

passivated state; (b) crevice in active state. 
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Thus, modeling electrolyte mass transport is a key part of modeling crevice corrosion.  A 

crevice corrosion model is comprised of the following models: 

• An electrolyte mass transport model. 

• An electrode kinetics model 

• A chemical equilibrium model 

When the solution in the crevice is stagnant throughout, transport occurs via 

electromigration of charge species and diffusion of charged and neutral species.  The 

electrode kinetics model calculates the boundary conditions necessary for the mass 

transport model.  The crevice solution chemistry predicted by the mass transport model is 

also affected by chemical equilibrium.  A chemical equilibrium model is a set of non-

linear algebraic equations which is solved via a non-linear equation solver, e.g.,  the 

Newton-Raphson solver. 

Mass transport in electrochemical systems is described by an incredibly stiff 

partial differential equation.  Compared to electromigration and diffusion, the effect of 

charge density on mass transport is nearly instantaneous.  The result of this physical 

phenomenon is that electromigration and diffusion transport occurs on time scales that are 

many orders of magnitude larger than time scales associated with charge density mass 

transport.  To deal with this difficulty, the mass transport model is further subdivided into 

two models which are solved sequentially: 

• Electromigration and diffusion terms 

• Charge density correction 

The development and implementation of the charge density correction, as well as charge 

density models of previous authors, is described in Chapter 3. 
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2.2.1 Modelling of electromigration and diffusion mass transport 

Electromigration and diffusion occur at similar time scales, and thus, they can be 

solved simultaneously in a finite volume numerical integration scheme.  Discrete 

transport coefficients for the mass transport equation are: 
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where Ea , Wa , 0

Pa , and Pa  are the transport coefficients of the east, west, old, and point 

node respectively, as illustrated in Figure 2.3(b).  These coefficients appear in the discrete 

transport equation: 

 00

iPPiWWiEEiPP CaCaCaCa ++=      (2.9) 

Equation (2.9) is written for each computational node in the system.  The resulting 

equation set is solved iteratively as it is nonlinear.  Figure 2.3(a) shows a diagram of the 

computational grid over which these discrete equations are solved.  All variables used in 

the above equations are defined in the nomenclature and will not be described in detail 

here.  However, it is important to note that α , the upwind parameter, is a function of the 

Peclet number, 'P .  The model for the upwind parameter is described in Chapter 3.  

Furthermore, the activity coefficient, iγ , is calculated using Pitzer’s equations.  The 
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implementation of Pitzer’s equations in the crevice corrosion model is described in 

Chapter 4. 

2.2.2 Modelling of charge density effects on mass transport 

 Charge density effects are modeling using the solution of Poisson’s equation for 

charge density.  This is solved separately from electromigration and diffusion because it 

operates on a much smaller time scale than electromigration and diffusion.  The Poisson 

term appearing in the mass transport equation is: 

 
ε
δ

iii
i FCuz

dt

dC
−=        (2.10) 

This equation is solved using an Euler numerical integration scheme with an optimized 

time step that enables the solution to be found in a single time step.  The derivation of this 

method is discussed in detail in Chapter 3. 

2.2.3 Modelling of electrode kinetics 

 Boundary conditions for the mass transport model are the rate of consumption or 

generation of chemical species due to electrode reactions at a reactive wall.  The rate of 

reaction is proportional to the passive current: 

 
Fz

i

dx

dC
D

i

pi
i =−        (2.11) 

Equation (2.11) is a mass balance at a reactive wall.  The rate of metal dissolution is equal 

to the rate of diffusion of metal ions away from the wall. 

2.2.4 Modelling of chemical equilibrium 

 Chemical equilibrium is described mathematically by the following equation: 

 KC
j

j
j =∏ ν

        (2.12) 
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Figure 2.3. (a) Computational grid which is used to discretize the crevice solution;  (b) 

Computational node which is labelled to illustrate the point (P), east (E), and west (W) 

indices.  Boundaries are spaced halfway between nodes and represent control volume 

interfaces. 
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Here, K  is an equilibrium constant and jν  is the stoichiometric coefficient.  This 

equation is written for each reaction occurring in solution and the resulting set of 

equations is solved using the Newton-Raphson method. 

2.2.5 Solution methodology 

 Modelling crevice corrosion requires calculating mass transfer rates due to 

electromigration and diffusion.  An electrode kinetics model that calculates the passive 

current supplies the boundary conditions for the mass transport model.  The predictions of 

the mass transport model are then adjusted so that the solution is electrically neutral and 

chemical equilibrium constraints are met.  The flowsheet of the crevice corrosion 

initiation model is shown in Figure 2.4. 

The model requires the following types of data: 

• Mass diffusivities of each species in solution. 

• Chemical equilibrium data for each reaction occurring.  For each reaction, the 

required data consists of the stoichiometric coefficient of each species involved in 

the chemical reaction and its equilibrium constant.  If the crevice solution 

temperature is different from the temperature at which the equilibrium constant is 

reported, the heat of reaction is also required. 

• A reference passive current and the conditions at which it is measured (i.e. 

temperature and pH).  The activation energy is also required to adjust the passive 

current for temperature.  This parameter is experimentally determined and 

depends upon the electronic/ionic conductivity and structure of the passive film. 

• Pitzer interaction parameters for calculation of activity coefficients via Pitzer’s 

equations [5]. 
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Figure 2.4. Flowsheet of solution algorithm used to solve passive crevice corrosion 

problem 
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• Geometric properties (crevice depth and gap) 

• Bulk solution composition and temperature 

• The composition of the alloy from which the crevice is formed 

• The space and time step size, x∆  and t∆ . 

The computer program gathers the required data through reading text files and 

through user input.  Then, the time required to deoxygenate the crevice is calculated.  

This is done using a simple mass balance.  Once the deoxygenation time is calculated, the 

mass transport calculations proceed.  Starting with an initial passive current that is 

calculated from the reference passive current, the current density in solution is calculated.  

The mass transport equation is then solved using the calculated current density as input 

and determining the concentration field of each species in solution as output.  The 

concentration field is then adjusted by solving Poisson’s equation until the solution is 

electrically neutral.  With knowledge of the concentration field, activity coefficients are 

calculated using Pitzer’s equations.  The activity coefficients are used in the chemical 

equilibrium model and in the next iteration when the mass transport equation is solved 

once again.  This process is repeated for a set number of time steps until the maximum 

time is reached. 
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Chapter 3. Mass Transport Modelling 

3.1 Introduction 

Mass transport in electrochemical systems is widely applicable to many industrial 

problems.  It is used in the fundamental modelling of macroscopic and microscopic 

corrosion processes, fuel cells, ion exchange technology, and industrial electrochemical 

processes. In an electrochemical system, mass transport is driven by gradients of 

electrochemical potential and fluid velocity.  This chapter is focused upon mass transport 

in stagnant electrochemical systems.  Two computational methods are herein described 

that were derived to more accurately and efficiently solve the electromigration-diffusion 

equation.   

3.2 The Charge Density Correction Scheme*  

In the development of rigorous models for electrochemical systems, such as 

localized corrosion cells, an accurate description of mass transport is of paramount 

importance.  In a stagnant system, the effect of charge density upon mass transport may 

be significant [1, 2].  Because localized corrosion often occurs in stagnant zones, 

modelling mass transport in stagnant electrochemical systems is very important for 

predicting localized corrosion damage.   

                                                 
* Reference: K.L. Heppner and R.W. Evitts (2005), A New Method for Calculating 
Charge Density in Electrochemical Systems, Corrosion Engineering, Science, and 
Technology, In Press. 
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It has been shown previously that charge density significantly influences mass 

transport processes in a localized corrosion cell [1, 2].  Charge density provides a very 

strong coupling effect between mass transport of different ions.  Thus, accurately 

modelling the effect of charge density on mass transport is one of the keys to 

characterizing the whole mass transport process. 

 However, charge density appears in a very stiff term of the electromigration-

diffusion equation.  While a significant body of research in electrolyte mass transport 

modelling has come from crevice corrosion studies, few works incorporated the charge 

density term of the mass transport equation.  Previous authors working in crevice 

corrosion modelling have developed strategies for calculating the effect of charge density 

on mass transport.  One approach was to “absorb” the solution charge onto a reference ion 

thereby forcing electroneutrality [3 – 9].  However, this method allowed for multiple 

solutions to the mass transport equation (i.e., a different solution resulted from each 

reference ion selection).  Later, Evitts [10] and Watson [11] both independently proposed 

an operator splitting method whereby the charge density term was solved separately from 

the remainder of the mass transport equation.  Heppner et al. subsequently used this 

method for their crevice corrosion models [1, 2, 12, 13].  In the current work, a new 

technique is presented that improves upon the accuracy of the operator splitting 

technique.  In addition, use of this new model increases the computational efficiency by 4 

– 6 times over the operator splitting method. 

 In this new charge density correction algorithm, the electromigration and diffusion 

terms of the mass transport equation are solved while neglecting the charge density term.  

Then, the charge density effect is simulated using a simple algebraic correction to the 
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concentration field.  The correction is designed such that the charge density is 

immediately neutralized.  The derivation and application of this algebraic correction is the 

focus of this paper. 

3.2.1 Model development 

3.2.1.1 Mass transport 

The mass flux through an electrolytic medium under the influence of an electrical 

field is [3]: 

 iiiii CDFCuz ∇−Φ∇−=iN      (3.2.1) 

The use of equation (3.2.1) implies that infinitely dilute solution theory is assumed to 

adequately model the solution chemistry of the system.  A mass conservation statement 

may be written: 

 iN⋅−∇=
∂
∂
t

Ci         (3.2.2) 

Substitution of (3.2.1) into (3.2.2) yields: 

 iiiiiiii
i CDFCuzCFuz
t

C 22 ∇+Φ∇+Φ∇∇=
∂

∂
    (3.2.3) 

Poisson’s equation for charge density relates the second order gradient of the electrical 

field to the charge density: 

 
ε
δ
−=Φ∇ 2         (3.2.4) 

where ε  is the dielectric constant of the electrolyte solution and δ  is the charge density 

which is calculated via the following equation: 

 ∑=
j

jjCzFδ         (3.2.5) 
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Furthermore, the potential gradient may be expressed as a function of regular and 

diffusion-potential current density via Ohm’s Law for a non-uniform concentration field: 

 
κ

dpii +
−=Φ∇        (3.2.6) 

where dpi  is the diffusion-potential current density: 

 ∑ ∇=
j

jjj CDzFdpi        (3.2.7) 

and κ  is the conductivity of the solution: 

 ∑=
j

jjj CuzF 22κ        (3.2.8) 

The diffusion-potential current density represents an additional current that opposes the 

current induced by multicomponent diffusion.  As an ion diffuses through an electrolytic 

solution, it drags along with it ions of opposite charge to maintain electroneutrality.  The 

diffusion-potential current density is representative of this effect.  It can be easily shown 

that the diffusion-potential current density is equal and opposite to the current induced by 

multicomponent diffusion, i.e.: 

 dpii −=∇−== ∑∑
j

jjj

j

jj CDzFNzFdiffusion.    (3.2.9) 

Substitution of (3.2.4) and (3.2.6) into (3.2.3) gives the final form of the mass transport 

equation: 

 iiiiiiii
i CDFCuzCFuz
t

C 2∇+−
+

∇−=
∂
∂

ε
δ

κ
dpii

   (3.2.10) 

Obtaining a numerical solution to equation (3.2.10) is very costly from a computational 

standpoint.  The second term on the right hand side of equation (3.2.10) is the charge 

density term.  This term is incredibly stiff, and thus, extremely small time steps (of the 
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order of 10-12 seconds) are required to solve it directly when implementing a finite 

volume solution.  Physically, this means that the time constant associated with charge 

density is much smaller than those of electromigration or diffusion.  This feature of 

electrolyte mass transport makes obtaining a solution for equation (3.2.10), from a 

practical standpoint, impossible.  The algebraic charge density correction method is a 

remedy for this problem. 

3.2.1.2 Charge density correction 

This scheme is based upon a segregated solution strategy.  The electromigration 

and diffusion terms of the mass transport equation are solved separately from the charge 

density term.  To clearly explain this scheme, terms in equation (3.2.10) due to 

electromigration, diffusion, and charge density are written as follows: 

 
poisson

i

diffusion

i

rationelectromig

ii

t

C

t

C

t

C

t

C








∂

∂
+








∂

∂
+








∂

∂
=

∂

∂
   (3.2.11) 

At very small time scales, the combined effect of electromigration and diffusion is small 

compared to charge density.  At larger time scales, the effect of charge density is small 

compared to electromigration and diffusion and, thus, equation (3.2.10) can be solved 

without the charge density term for large finite volume time steps.  Thus, equation 

(3.2.10) can be solved as two equations.  Each equation is solved sequentially rather than 

simultaneously such that the Poisson term provides a charge density correction to the 

solution of the electromigration and diffusion terms.  The two equations are: 

 iiiii

diffusion

i

rationelectromig

ii CDCFuz
t

C

t

C

t

C 2∇+
+

∇−=







∂
∂

+







∂
∂

=
∂
∂

κ
dpii

 (3.2.12a) 

 
ε
δ

iii

poisson

ii FCuz
t

C

dt

dC
−=








∂

∂
=      (3.2.12b) 
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The operator splitting method of Evitts [10] and Watson [11] used a finite volume 

solution of equation (3.2.12a) to determine the charge density correction required to 

neutralize the charge of the electrolyte solution.  The algebraic correction to be developed 

is based upon the form of equation (3.2.12b), the charge density ODE used in the operator 

splitting algorithm described above.  This new charge density correction method has the 

distinct advantage that the numerical solution of equation (3.2.12b) is not required.  Thus, 

the new method avoids the solution of a series of coupled, non-linear, stiff ordinary 

differential equations.   Its use improves on the performance and accuracy of a mass 

transport model compared to the use of the operator splitting scheme and its derivation 

follows. 

Discretization of equation (3.2.12b) using Euler’s method yields the following 

equation: 

 tFCuzCC iii

old

ii ∆−=
ε
δ

      (3.2.13) 

Thus, the change in concentration over a time step is: 

 t
F

CuzC iiii ∆−=∆
ε
δ

       (3.2.14) 

In equation (3.2.14), the quotient, εF , has a magnitude of the order of 1016 V m / mol.  

Thus, the concentration change predicted using (3.2.14) would be extremely large over 

even a very small time step.  It would therefore be advantageous to determine a value of 

iC∆  for each species in solution that would force electroneutrality on the system.  If the 

value of charge density does not change significantly as any particular ionic concentration 

changes (i.e. iC∆  is very small), charge density can be assumed constant in equation 

(3.2.14).  This assumption reduces equation (3.2.12b) to a linear ODE.  Furthermore, with 
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this assumption in place, it can be seen from equation (3.2.14) that the change in 

concentration is proportional to the product of the charge number, mobility, and 

concentration of the species of interest.  All variables in equation (3.2.14) that are not 

species specific ( F , δ , ε , and t∆ ) can be combined into one proportionality constant.  

Equation (3.2.14) can then be written as: 

 iiii CuzC ψ=∆        (3.2.15) 

By this formulation, ψ  is a function of t∆ , which is yet unknown.  Thus, ψ  itself is also 

an unknown quantity.  Thus, a value of ψ  can be selected such that the change in 

concentration neutralizes the charge density.  To determine this value, equation (3.2.15) is 

substituted into the definition of electroneutrality: 

 ( ) ( ) 0=+=∆+ ∑∑
j

jjjjj

j

jjj CuzCzFCCzF ψ    (3.2.16) 

Isolation of the proportionality constant ψ  in equation (3.2.16) followed by appropriate 

substitutions yields the value of ψ  which satisfies the electroneutrality condition: 

 
κ
δ

ψ
F

−=         (3.2.17) 

Substitution of (3.2.17) into (3.2.15) yields the final form of the charge density correction: 

 
κ
δF

CuzCC iii

old

ii −=       (3.2.18) 

Equation (3.2.18) may be used to modify the last obtained solution of equation (3.2.10), 

thereby producing a concentration field that is free of net electrical charge.   

Examination of equation (3.2.17), the proportionality constant formula, will 

confirm the physical significance of this correction method.  For a dilute solution (κ  is 

small), charge density has a large effect on the concentration of ionic species in solution.  
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However, for a more concentrated solution (κ  is large), the effect of charge density on 

the concentration of any individual species is relatively small.  Thus, the effect of charge 

density upon species concentration profiles is damped in concentrated solutions (i.e. there 

are more ions available to dissipate the electrical charge).  This is a physically realistic 

phenomenon which is emulated in this model. 

By comparison of equation (3.2.18) with equation (3.2.12b), the time required to 

eradicate charge density can be determined: 

 
κ
ε

=∆ Poissont         (3.2.19) 

Equation (3.2.19) is the time step that, when applied to equation (3.2.12b), will neutralize 

the electrolyte solution in a single time step.  This time step is extremely small.  For 

example, in a 0.1 M KNO3 solution, ε  has a magnitude of the order of 10-12 C/(V m) 

while κ  has a magnitude of the order of 10-4 C/(V m s).  In this typical situation, the time 

required to annihilate the solution charge density is approximately 810−=∆ Poissont  

seconds.  In a physical sense, this time is the quotient of the net solution charge to the rate 

at which the charge can be neutralized.  This can be shown mathematically through a 

combination of Ohm’s Law with Poisson’s equation for charge density.  Ohm’s Law 

reads: 

 
κ
i

−=Φ∇         (3.2.20) 

To simplify the mathematics, it will be assumed that concentration, and thus conductivity, 

is constant.  Taking the gradient of equation (3.2.20) yields: 

 i⋅∇−=Φ∇
κ
12        (3.2.21) 
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Substitution of Poisson’s equation for charge density (equation (3.2.4)) into equation 

(3.2.21) yields: 

 i⋅∇=
κε

δ 1
        (3.2.22) 

Rearrangement yields the following expression for κε : 

 
i⋅∇

=
δ

κ
ε

        (3.2.23) 

For a uniform concentration field, the charge continuity equation reads: 

 i⋅−∇=
∂
∂
t

δ
        (3.2.24) 

Substitution of equation (3.2.24) into (3.2.23) yields the following relationship: 

 

t

tPoisson

∂
∂

−=∆=
δ
δ

κ
ε

       (3.2.25) 

Thus, the quantity κε  is the ratio of the total charge density in solution to its rate of 

change.  The quotient κε  will always be a positive quantity because the sign of δ  and its 

rate of change will always be opposite.  This is because when a net charge density exists, 

the electrical field will spontaneously contort to reduce the Gibb’s Free Energy and, thus 

reduce the net charge density of the system [2]. 

3.2.2 Model validation 

To show the utility of the charge density correction method, the moving boundary 

experiment of Fu and Chan [14] was simulated.  The moving boundary experiment was 

chosen because of its simplicity and because of the availability of experimental results.  

Fu and Chan’s experimental apparatus consisted of a long glass tube that opened to a 

large glass beaker.  The end of the glass tube was plugged with a silver anode while a 
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silver cathode was immersed in the beaker.  The entire apparatus was filled with a 0.1 M 

KNO3 solution at 25ºC.  A DC power source was connected in series between the anode 

and cathode with silver wires.  When the power source was switched on, a current density 

of approximately 318 A/m2 was conducted through the KNO3 electrolyte solution in the 

glass tube.  The applied current caused silver dissolution at the anode.  Figure 3.2.1 shows 

a diagram of the Fu and Chan apparatus. 

Throughout the experiment, Ag-+ ions entered the solution from the anode.  The 

applied current in solution drove the Ag+ and K+ cations away from the anode while 

inducing the movement of NO3
- anions towards the anode.  The point of intersection of 

the Ag+ and K+ profiles was made visible by introducing a small amount of ascorbic acid 

into the solution.  This visible intersection was referred to as the moving boundary and its 

rate of movement was indicative of mass flux.  Thus, Fu and Chan tracked and recorded 

the moving boundary position as a function of time.  An implicit finite volume method 

coupled with the algebraic charge density model was used to solve the system of 

equations. Figure 3.2.2 compares the position of the moving boundary predicted using the 

present model with the experimental observations of Fu and Chan.  The similarity 

between the predicted and experimental moving boundary position shown in Figure 3.2.2 

validates this model and the charge density correction method. 

 

3.2.3 Numerical experiment 

With the present model validated, its limits of applicability were then tested.  It had been 

shown previously that the operator splitting method proposed by Evitts and Watson 

worked well for modelling the Fu and Chan experiment [14].  
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Figure 3.2.1.  Diagram of the experimental apparatus used by Fu and Chan in the moving 

boundary experiment  
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Figure 3.2.2.  Comparison of the predicted transient position of the Ag+/K+ moving 

boundary with the experimental observations of Fu and Chan. 
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Thus, the utility of the algebraic charge density correction method was determined based 

upon its ability to match and/or outperform the operator splitting method for a variety of 

conditions.  For each of the forthcoming simulations, the basic elements of the Fu and 

Chan system were retained.  However, the performance of the new charge density model 

was tested as simulation conditions changed.  Thus, the KNO3 solution concentration, the 

magnitude of the applied current density, the space step, and the time step were each 

varied individually.  It can be shown that using this new charge density model improves 

the accuracy of the simulation and significantly reduces computation time as compared to 

the operator splitting method. 

In each of the simulations, only the Ag+ and K+ concentration profiles are 

reported.  This has been done to more clearly illustrate the important features of the 

moving boundary region.  However, the NO3
- concentration profile can be determined by 

the sum of the Ag+ and K+ concentration profiles (due to charge conservation). 

3.2.3.1 Effect of concentration 

As ionic concentration increases, the effect of charge density is dampened.  This is 

because there are more ions available to absorb a net charge.  As a result, the change in 

concentration of any individual species due to charge density is reduced as concentration 

increases.  Figures 3.2.3 and 3.2.4 display the predicted Ag+/K+ concentration profiles 

after 40 minutes of simulation time using both the operator splitting algorithm and the 

algebraic charge density correction.  These results are displayed alongside the differences 

between the predicted profiles when using the two charge density calculation methods.  

The difference is presented as both a spatial profile after 40 minutes of simulation time 

and as a space-averaged transient profile.   
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Comparison of Figures 3.2.3 and 3.2.4 illustrate the effect of increasing 

concentration upon the performance of the charge density correction.  As concentration 

increases, the conductivity of the solution also increases.   When the current density is 

held constant (as is the case here) and the conductivity increases, the potential gradient 

along the glass tube drop will decrease.  Because potential difference is the driving force 

for ionic electromigration, the rate of mass transport drops as concentration increases.  

This is evidenced by the reduction of the rate of movement of the Ag+/K+ boundary in 

Figure 3.2.4 (a) compared to Figure 3.2.3 (a). 

Increased conductivity also reduces the effect of charge density upon mass 

transport.  This is shown mathematically by the previously derived charge density 

correction formula (see equation (3.2.18)).  The amount that the concentration of each ion 

in solution is corrected to restore electroneutrality is inversely proportional to 

conductivity.  Thus, for a highly conductive solution, the amount of charge counteracted 

by any particular ion is reduced.  In other words, the effect of charge density is dampened 

in more concentrated solutions.  This effect can be seen by comparing Figures 3.2.3 and 

3.2.4.  As the concentration increases, there is greater similarity between profiles 

predicted using both the operator splitting method and the charge density correction 

method.  The predictions of both methods converge as the effect of charge density 

decreases. 

For the spatial and transient difference profiles shown in Figures 3.2.3 and 3.2.4, 

there is greater deviation between the K+ concentration profiles predicted using both 

charge density calculation methods than the Ag+ concentration profiles. 
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Figure 3.2.3.  Comparison of the spatial and transient Ag+ and K+ concentration profiles 

predicted by the operator splitting scheme and the algebraic charge density correction for 

a 0.1 M KNO3 solution (318 µA/cm
2 current density, cm 0.05 x =∆ , s 0.1 t =∆ ): a) 

moving boundary region after 40 minutes simulation time; b) spatial profile of error 

between predictions of operator splitting scheme and algebraic charge density correction 

after 40 minutes simulation time; c) transient profile of space-averaged error between 

predictions of operator splitting scheme and algebraic charge density correction 
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Figure 3.2.4.  Comparison of the spatial and transient Ag+ and K+ concentration profiles 

predicted by the operator splitting scheme and the algebraic charge density correction for 

a 1 M KNO3 solution (318 µA/cm
2 current density, cm 0.05 x =∆ , s 0.1 t =∆ ): a) moving 

boundary region after 40 minutes simulation time; b) spatial profile of error between 

predictions of operator splitting scheme and algebraic charge density correction after 40 

minutes simulation time; c) transient profile of space-averaged error between predictions 

of operator splitting scheme and algebraic charge density correction. 
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The cause of this phenomenon can be explained through inspection of the governing mass 

transport equation: 

4342144444 344444 21
21

2

ε
δ

κ iiiiiiii

i FCuzCDCFuz
t

C
−∇+

+
∇−=

∂

∂ dpii
   (3.2.26) 

For clarity, the two terms to be examined have been numbered.  Term 1 in equation 

(3.2.26) will not contribute to mass transport unless a concentration gradient exists.  Term 

2 in equation (3.2.26) does not depend on a gradient but rather induces a concentration 

gradient.    The accuracy of this mass transport model depends upon how accurately Term 

2  (the charge density term) can be modelled.  Recall from earlier in the paper that Term 2 

cannot be directly solved with Term 1 because of the resulting stiffness of the transport 

equation.  In the Fu and Chan experiment, a silver anode is being dissolved at one end of 

the tube.  This introduces a Robin type boundary condition for Ag+: 

 
Fz

i
CD

ii
FCuz

i

ii

dp

iii =∇−
+

κ
     (3.2.27) 

This boundary condition induces an Ag+ concentration gradient at the anode-solution 

interface that propagates throughout the entire solution domain.  No such boundary 

condition exists for K+.  Thus, the sole gradient inducer for the K+ concentration profile is 

the charge density term (Term 2 in equation (3.2.26)).  Therefore, the K+ concentration 

profile is more dependent upon charge density effects than Ag+ and, thus, the K+ 

concentration profile is more sensitive to the choice of the charge neutralization 

algorithm.  Thus, for any electrochemical process model, charge density will have the 

greatest effect upon chemical species that are not produced or consumed in electrode 

reactions. 
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3.2.3.2 Effect of current density 

Current density is the driving force for electromigration of Ag+, K+, and NO3
- in 

solution.  It is also proportional to the rate at which silver is dissolved at the anode.  It 

therefore controls the rate at which the whole process operates and dramatically 

influences the velocity of the Ag+/K+ moving boundary.   

In this set of numerical experiments, the current density flowing through the 0.1 M KNO3 

solution that filled the glass tube was increased from 10 µA/cm2 to 100 µA/cm2 and then 

to 500 µA/cm2.  At each current density level, the concentration profiles of Ag+, K+, and 

NO3
- were numerically simulated using both the operator splitting scheme and the new 

charge density correction algorithm. 

Figure 3.2.5 shows simulation results when the current density is 10 µA/cm2.  

Figure 3.2.5 (a) shows the Ag+/K+ moving boundary after 40 minutes of simulation time.  

Figure 3.2.5 (b) and 3.2.5 (c) shows the difference in predicted concentration profiles as a 

function of space and time respectively when either operator splitting or algebraic charge 

density correction methods are used.  Figure 3.2.5 (a) shows that the moving boundary 

has a very low velocity at this low current density.  Because the driving force for mass 

transport is reduced, the effect of charge density is also reduced.  This is seen in Figures 

3.2.5 (b) and 3.2.5 (c) – the difference in predictions of the two charge density calculation 

methods being compared is small.  In fact, the concentration profiles shown in Figure 

3.2.5 (a) predicted using both charge density calculation methods are indistinguishable. 
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Figure 3.2.5.  Comparison of the spatial and transient Ag+ and K+ concentration profiles 

predicted by the operator splitting scheme and the algebraic charge density correction for 

a current density of 10 µA/cm2 (0.1 M KNO3 solution, cm 0.05 x =∆ , s 0.1 t =∆ ): a) 

moving boundary region after 40 minutes simulation time; b) spatial profile of error 

between predictions of operator splitting scheme and algebraic charge density correction 

after 40 minutes simulation time; c) transient profile of space-averaged error between 

predictions of operator splitting scheme and algebraic charge density correction 
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Figure 3.2.6 displays similar simulation results to Figure 3.2.5 when the current 

density is increased by an order of magnitude from the previous simulation to 100 

µA/cm2.  Again in Figure 3.2.6 (a), the concentration profiles predicted using both charge 

density calculation methods for both Ag+ and K+ are very similar.  Furthermore, by 

comparing Figure 3.2.6 (a) with Figure 3.2.5 (a), it can be seen that increasing the current 

density has a direct and significant effect upon the velocity of the moving boundary.  The 

velocity of the moving boundary has increased from approximately 3.75x10-5 m/min (at 

current density of 10 µA/cm2) to approximately 3.25x10-4 m/min (at current density of 

100 µA/cm2), an increase in velocity of nearly one order of magnitude. 

Figure 3.2.6 (b) and 3.2.6 (c) show the difference in predictions between the 

operator splitting method and the charge density correction method for the case where 

current density is 100 µA/cm2.  By comparing these Figures with Figures 3.2.5 (b) and 

3.2.5 (c), it is seen that increasing the current density from 10 µA/cm2 to 100 µA/cm2 

increases the difference between predictions of the two charge density calculation 

schemes.  This indicates that the effect of charge density upon the mass transport process 

has increased.  This result was expected as increased electromigration and Ag+ dissolution 

rates caused steeper concentration gradients, and thus, diffusion rates increased.  The 

steepness of the concentration gradient is indicative of the amount of coupling between 

electromigration and diffusion.  Electromigration and diffusion are coupled because, as 

electromigration becomes stronger, concentration gradients increase, thus increasing the 

strength of diffusion.  Increased diffusion rates cause an increased diffusion-potential 

current, which is additive to the primary electromigration current.  Thus, electromigration 

and diffusion are coupled.  This coupling has been shown to promote charge density in 
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solution.  Therefore, when modelling problems with strongly coupled electromigration 

and diffusion, the simulation results will be more affected by the choice of the charge 

neutralization algorithm. 

Figure 3.2.7 again displays similar simulation results to Figures 3.2.5 and 3.2.6 

when the current density is increased to 500 µA/cm2.  In this figure, the spatial Ag+/K+ 

concentration profiles after 20 minutes are reported.  The charge density algorithm is 

beginning to play a more important role in the mass transport model predictions.  In 

Figure 3.2.7 (a), slight differences are distinguishable between the profiles predicted 

using the operator splitting scheme and the new charge density correction algorithm.  

Figure 3.2.7 (b) shows the difference in spatial profile predictions for both Ag+ and K+ 

when either the operator splitting method or the charge density correction is used.  By 

comparison of Figure 3.2.7 (a) and 3.2.7 (b), it can be seen that the greatest difference in 

prediction is seen near the point of intersection of the Ag+ and K+ concentration profiles.  

It is at this point that concentration gradients are the most steep and, thus, diffusion offers 

the most resistance to electromigration.  Thus, here the electromigration-diffusion 

coupling is the strongest and, as a result, the effect of charge density is greatest.  This 

same phenomenon is also clearly observable in Figures 3.2.3 and 3.2.6. 

From Figure 3.2.7 (a), it can be calculated that the velocity of the moving 

boundary has increased from 3.25x10-4 m/min (at current density of 100 µA/cm2) to 

1.6x10-3 m/min (at current density of 500 µA/cm2).  In Figure 3.2.8, the moving boundary 

velocity was plotted against current density and a linear relationship was found.  The rate 

of mass transport is, in theory, not directly proportional to current density. 
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Figure 3.2.6.  Comparison of the spatial and transient Ag+ and K+ concentration profiles 

predicted by the operator splitting scheme and the algebraic charge density correction for 

a current density of 100 µA/cm2 (0.1 M KNO3 solution, cm 0.05 x =∆ , s 0.1 t =∆ ): a) 

moving boundary region after 40 minutes simulation time; b) spatial profile of error 

between predictions of operator splitting scheme and algebraic charge density correction 

after 40 minutes simulation time; c) transient profile of space-averaged error between 

predictions of operator splitting scheme and algebraic charge density correction 
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Figure 3.2.7.  Comparison of the spatial and transient Ag+ and K+ concentration profiles 

predicted by the operator splitting scheme and the algebraic charge density correction for 

a current density of 500 µA/cm2 (0.1 M KNO3 solution, cm 0.05 x =∆ , s 0.1 t =∆ ): a) 

moving boundary region after 20 minutes simulation time; b) spatial profile of error 

between predictions of operator splitting scheme and algebraic charge density correction 

after 20 minutes simulation time; c) transient profile of space-averaged error between 

predictions of operator splitting scheme and algebraic charge density correction 
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 Rather, it is proportional to the potential gradient, which is a function of both current 

density and conductivity.   Therefore, because Figure 3.2.8 shows that current density and 

the rate of mass transport are proportional, it can be inferred that conductivity is not a 

strong function of the current density flowing through solution when the current density is 

less than 500 µA/cm2.  It would be logical for the conductivity to be a stronger function of 

current density as current density increases but this is not seen in the range of current 

densities covered in the scope of this work. 

3.2.3.3 Effect of spatial step size 

The choice of step size influences the performance of the finite volume mass 

transport solver and this will impact the performance of each of the charge density 

calculation schemes.  Figures 3.2.9 and 3.2.10 show the Ag+ and K+ concentration 

profiles and the difference between predicted Ag+ and K+ profiles when using the 

operator splitting scheme versus the charge density correction.   

Examination of Figures 3.2.9 and 3.2.10 shows that the predictions of the two methods 

deviate from one another as the size of the spatial step decreases (i.e., more nodes are 

used in the solution of the mass transport equation).  This can be theoretically justified by 

examining the effect of the spatial step size upon the diagonal dominance of the transport 

coefficient matrix. 

As the diagonal dominance of the mass transport coefficient matrix increases, the 

change in concentration predicted by the mass transport equation over the time step will 

decrease.  The diagonal dominance for the Fu and Chan simulation has been derived 

previously and is [2]: 

 ( )PiWE

P

PtD

x

aa

a

+∆
∆

+=
+ 2

1
2

     (3.2.28)
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Figure 3.2.8.  Relationship between the velocity of the moving boundary and the applied 

current density (0.1 M KNO3 solution, cm 0.05 x =∆ , s 0.1 t =∆ ).  Discrete data points 

were obtained from numerical simulation results presented in Figs. 5 – 7.  A least squares 

linear fit is shown (R2 = 1). 
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Here, Pa , Ea , and Wa  are discrete transport coefficients used in the finite volume 

solution of the mass transport equation.  The diagonal dominance is the ratio of the point 

coefficient to the sum of its neighbours.  In equation (3.2.28), the Peclet number is 

defined as: 

 ( )dpPPi

P

P iiz
RT

xF
P +

∆
=
κ

      (3.2.29) 

If the time step, t∆ , is held constant, the functionality of the diagonal dominance upon 

x∆  is of the form: 

 ( )xf
aa

a

WE

P ∆=
+

       (3.2.30) 

Thus, as the value of x∆  in equation (3.2.28) increases, the diagonal dominance 

increases.  This is evidenced in the simulation results presented in Figures 3.2.9 and 

3.2.10.  As x∆  increases, the deviations in the concentration profiles resulting from using 

different charge density calculation schemes decreases.  The concentration change 

predicted by the mass transport equation decreases for increasing x∆ .  Thus, the effect of 

the charge density model on species concentrations is more pronounced when a refined 

grid is employed. 

3.2.3.4 Effect of time step size 

As the time step size in the finite volume method increases, the change in concentration 

between time steps increases.  Thus, as the time step increases, the deviation from charge 

neutrality that occurred during the last solution of the mass transport equation increases, 

as does the influence of the choice of charge density calculation scheme.  This intuitive 

assertion is validated by the results of the present simulation. 
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Figure 3.2.9.  Moving boundary profile after 40 minutes predicted using the operator 

splitting and algebraic correction charge density calculation methods for differing spatial 

step sizes (0.1 M KNO3 solution, 318 µA/cm
2 current density, s 0.1 t =∆ ): (a) 

cm 0.5 x =∆  (10 nodes); (b) cm 0.05 x =∆  (100 nodes); (c) cm 0.005 x =∆  (1000 nodes). 
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Figure 3.2.10.  Difference between moving boundary profiles after 40 minutes predicted 

using the operator splitting and algebraic correction charge density calculation methods 

for differing spatial step sizes (0.1 M KNO3 solution, 318 µA/cm
2 current density, 

s 0.1 t =∆ ): (a) cm 0.5 x =∆  (10 nodes); (b) cm 0.05 x =∆  (100 nodes); (c) cm 0.005 x =∆  

(1000 nodes) 
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Figure 3.2.11 shows the moving boundary region profile predicted using both the 

algebraic correction and the operator splitting scheme.  In this figure, the increased 

accuracy of simulation obtained using the new algebraic correction is apparent.  As the 

time step increases, the amount of numerical charge density that accumulates from  

integrating the mass transport equation over the time step increases.  For sec1>∆t , the 

magnitude of the numerical charge density accumulated causes the operator splitting 

scheme to fail to accurately predict the effect of charge density.  This is manifested as the 

significant change in the moving boundary structure as the time step increases that is 

predicted using the operator splitting scheme (Figure 3.2.11).  This numerical error is not 

seen in the results obtained using the algebraic charge density correction scheme.  This 

implies that the solution of the ODE, equation (3.2.12b), fails as the time step increases 

while the algebraic correction continues to provide an accurate calculation for the charge 

density effect.  From this observation, it is proven that the new algebraic correction gives 

a more accurate model of the effect of charge density on mass transport than the direct 

solution of the charge density term of the mass transport equation.  Thus, each difference 

profile presented up to now is actually an error profile, where the error arises from using 

the operator splitting scheme rather than the charge density correction scheme. 

Figure 3.2.12 shows the error of the predicted Ag+ and K+ concentration profiles 

obtained when using the operator splitting scheme compared to using the algebraic charge 

density correction.  Figure 3.2.12 shows that the error increases as the time step increases.  

This can be predicted theoretically by again examining the diagonal dominance of the 

transport coefficient matrix as a function of time step. 
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Figure 3.2.11.  Moving boundary profile after 40 minutes predicted using the operator 

splitting and algebraic correction charge density calculation methods for differing time 

step sizes (0.1 M KNO3 solution, 318 µA/cm
2 current density, cm 0.05 x =∆ ): (a) 

s 0.01 t =∆ ; (b) s 0.1 t =∆ ; (c) s 1 t =∆ ; (d) s 10 t =∆  
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If the spatial step size is held constant, equation (3.2.28) implies the following 

functionality of the diagonal dominance upon t∆ : 









∆

=
+ t

f
aa

a

WE

P 1
       (3.2.31) 

From equation (3.2.31), the diagonal dominance of the transport coefficient matrix will 

decrease as the time step increases.  As the diagonal dominance of the transport 

coefficient matrix decreases, the change in concentration predicted by the solution of the 

mass transport equation over the time step will increase.  A greater concentration change 

will, in turn, increase the numerical charge density that accumulated over the time step.  

Thus, the charge density algorithm will have to neutralize a greater net charge in solution 

after each time step as the size of the time step increases.  When the time step reached one 

second and beyond, the numerical charge density accumulated over the time step 

overwhelmed the operator splitting scheme and the scheme failed. 

 

3.2.3.5 Computational efficiency 

The computational efficiency of the algebraic charge density correction method was 

determined by running a series of identical simulations while varying the space step size.  

The computer used to run the simulations was a 3.06 GHz Pentium© 4 computer with 1 

GB of RAM.  Table 3.2.1 shows the results of these simulations. 
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Figure 3.2.12.  Difference between moving boundary profiles after 40 minutes predicted 

using the operator splitting and algebraic correction charge density calculation methods 

for differing time step sizes (0.1 M KNO3 solution, 318 µA/cm
2 current density, 

cm 0.05 x =∆ ): (a) s 0.01 t =∆ ; (b) s 0.1 t =∆ ; (c) s 1 t =∆ ; (d) s 10 t =∆ . 
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Number of Nodes Simulation Time : Real Time 

 Algebraic Correction Operator Splitting 

10 156:1 33:1 

100 34:1 7.0:1 

1000 6.4:1 1.0:1 

5000 1.1:1 0.17:1 

 

Table 3.2.1.  Comparison of the ratio of simulation time to real time when using the 

algebraic charge density correction and the operator splitting method for a variety of grid 

spacings for simulating the Fu and Chan experiment.  Simulations were performed using 

a 3.06 GHz Intel Pentium 4 computer with 1 GB of RAM. 

 

In each of the simulations above, the Fu and Chan system was modelled with a 

318 µA/cm2 current density, a 0.1 M KNO3 solution filling the beaker, and a time step of 

0.1 seconds.  From the results above, it can be seen that the use of the algebraic charge 

density correction dramatically reduces the computational time.  This improvement in 

performance increases as the number of nodes increases.  This is expected because, as the 

number of nodes increase ( x∆  decreases), the diagonal dominance of the transport 

coefficient matrix decreases.  This results in increased numerical charge density after each 

time step.  This was shown previously by examination of the diagonal dominance as a 

function of x∆ .  From the results presented in Table 3.2.1, it can be calculated that for 10 

nodes, the algebraic correction was 4.7 times faster than the operator splitting scheme 

while for 1000 nodes, the algebraic correction was 6.2 times faster. 
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3.2.4 Conclusions 

Throughout this section, it has been shown that the new charge density model 

provides a stable and accurate method for calculating charge density effects.  It also 

significantly improves the computational efficiency of an electrolyte mass transport 

model.  From the results presented in this section, the following conclusions can be made: 

1. A new algebraic charge density correction method has been derived.  It provides a 

more accurate and efficient method for computation of the charge density term of 

the mass transport equation than the operator splitting method of Evitts [10] and 

Watson [11]. 

 

2. The theoretical time required to neutralize an electrolyte solution has been 

theoretically derived.  It is calculated to be the ratio of the electrical permittivity to 

the conductivity of the solution, i.e., 

  
κ
ε

=∆ Poissont  

Physically, this time is the ratio of the net charge of the solution to the rate at 

which the charge may be dissipated.  Based on Ohm’s Law and Poisson’s 

equation, it can also be shown that: 

   

t

tPoisson

∂
∂

−=∆
δ
δ
 

 

3. For accurate calculation of the concentration profile of species not involved in 

electrode reactions, using an accurate model of charge density is of paramount 

importance.  In the simulations presented, the concentration profile of K+ was 
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more sensitive to the choice of the charge density calculation method than the 

concentration profile of Ag+.  This is because, while an Ag+ concentration gradient 

is formed primarily due to dissolution at the anode-solution interface, the K+ 

concentration gradient is formed solely by its coupling to Ag+ and NO3
- through 

the charge density term.  Thus, predicted concentrations of ionic species not 

involved in electrode reactions are more dependent upon the charge density 

model. 

 

4. Increased concentration damps the effect of charge density upon mass transport.  

This was shown in the simulations presented herein: the predicted Ag+ and K+ 

profiles using the two different charge density correction methods became more 

similar as solution concentration, and thus solution conductivity, increased.  This 

observation is physically realistic because, as the conductivity increases, more 

ions are available to counteract a net charge.  Thus, each ionic species undergoes a 

smaller concentration change to neutralize charge in a more concentrated solution. 

 

5. As the potential gradient in solution increases, the effect of charge density upon 

ionic concentration also increases.  This conclusion is evidenced in the present 

work by the following observation: the predicted Ag+ and K+ profiles using the 

two different charge density correction methods deviated further from one another 

as the applied current density was increased.  This is because the coupling 

between electromigration and diffusion became stronger as the current density 

increased.  This interaction caused an increase in charge density.  Thus, as the 
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potential gradient became increasingly steep, the effect of charge density on ionic 

concentration profiles increased. 

 

6. The conductivity in solution is a weak function of the applied current density.  It 

was shown that the velocity of the moving boundary, which should theoretically 

be proportional to the potential gradient (the ratio of current density to 

conductivity), was in fact directly proportional to the current density. 

 

7. The effect of the charge density model is greater for a more refined spatial grid.  

For example, in the present work, the predicted Ag+ and K+ profiles using the two 

different charge density correction methods deviated further from one another as 

the spatial step size decreased.  This occurred because the diagonal dominance of 

the transport coefficient matrix reduces with decreasing x∆ .  As the diagonal 

dominance decreases, a greater change in concentration is predicted through the 

solution of the mass transport equation.  Increased concentration changes caused 

greater numerical charge density to accumulate over a time step.  Thus, ionic 

concentration profiles become more sensitive to the choice of charge density 

model as the spatial grid is refined. 

 

8. As the time step increased, the calculated profiles became more sensitive to the 

choice of charge density calculation method.  In fact, for s 1≥∆t , the operator 

splitting method failed to accurately characterize the effect of charge density while 
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the algebraic charge density correction method continued to provide a realistic 

prediction of charge density effects. 

 

9. Using the algebraic charge density correction method rather than the operator 

splitting method results in between 4.75 and 6.2 times more simulation time for a 

given amount of real time for the same time step.  In addition, the algebraic 

method can be applied when larger time steps are used in the solution of the mass 

transport equation, thus further increasing the simulation time.  This dramatic 

increase in computational efficiency makes the new correction a valuable tool for 

mass transport modelling. 
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3.3 The Hybrid Differencing Scheme* 

 The previous section outlined a method by which to dramatically improve the 

computational efficiency of solving the electromigration-diffusion equation.  In this 

section, another numerical scheme is developed which provides a more accurate method 

to numerically simulate electrolyte mass transport using a finite volume method. 

 Considerable research effort has been focused upon technological areas in which 

the understanding of electrochemical kinetics coupled with electrolytic mass transport is 

of paramount importance.  Such areas include corrosion control, energy generation via 

fuel cells, electrochemical separation techniques including ion exchange and 

electrophoresis, and electrochemical reactors.  This particular research is focused upon 

the accurate modeling of electrolyte mass transport under the influence of an 

encompassing electrical field.  A new differencing scheme for mass transport was 

developed and then validated against the moving boundary experiment [1]. 

 Several differencing schemes have been developed for solving the convection-

diffusion equation.  The idea of an upwind differencing scheme (UDS) was first 

introduced by Courant et al. [2] and subsequent work by Barakat and Clark [3], Gentry et 

al. [4], and Runchal and Wolfshtein [5] followed.  UDS replaces first order derivative 

expressions with forward finite difference analogs.  This scheme is appropriate for highly 

convective problems; only the upwind node influences the control volume.  The central 

differencing scheme (CDS), appropriate for diffusive problems, employs central finite 

difference discretization thus equally dispersing influence to all physical control volume 

                                                 
* Reference: K.L. Heppner and R.W. Evitts (2005), A Hybrid Differencing Scheme for 
Mass Transport in Electrochemical Systems, International Journal of Numerical Methods 
for Heat and Fluid Flow 15, pp. 842 – 862. 
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boundaries.  Other schemes have since been developed which are appropriate where 

neither convection nor diffusion dominate.  These schemes compromise between UDS 

and CDS based upon local physics [6, 7, 8]. 

 The electrolyte mass transport equation is unique from the convection-diffusion 

equation because an additional condition is added.  Around each ion is a cloud of ions of 

opposing charge which, at equilibrium, exactly balance the space-averaged charge.  

However, when an electrolyte is a transport medium between two electrodes of differing 

electrical potential, a small portion of the Gibb’s Free Energy gradient that drives the 

coupled electrode charge transfer, mass transport, and chemical equilibrium process is 

stored in the electrolytic solution as charge density.  Although small, the charge density 

has a large impact on the second order gradient of the electrical potential field; this 

feature induces significant instability in mass transport calculations.  Therefore, ensuring 

a very small charge density in the solution is of paramount importance when simulating 

electrolytic mass transfer.  In this work, mass transport is assumed to occur in a solution 

of moderate dilution [9].  The mass transport equation for such a solution is written as: 
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Equation (3.3.1) is the electromigration-diffusion transport equation and its solution is the 

focus of this work.   

 Accurately modeling electrolytic mass transport is essential when developing 

predictive models for localized corrosion.  Previous authors have prescribed upwind 

parameters based upon the local Peclet number or have simply assumed electromigrative 

domination.  Walton et al. [10] modeled the crevice corrosion of type 304 stainless steel 
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using UDS when the absolute value of the Peclet number was greater than two and CDS 

otherwise.  Evitts [11], Watson [12], Watson and Postlethwaite [13 – 15], and Heppner et 

al. [16, 17] modelled the initiation of crevice corrosion in passive metals using UDS.  To 

this point, no differencing scheme has been developed which uses an electromigration-

diffusion balance equation to prescribe appropriate upwind parameters for mass transport 

under the influence of a potential gradient.  For this reason, a HDS has been developed 

which varies the upwind parameter according to the solution of the pseudo steady state 

electromigration-diffusion equation.  This new differencing scheme enables more 

accurate prescription of the upwind parameter where neither electromigration nor 

diffusion dominates the mass transport process.   

3.3.1 Development of the electrolyte mass transport hybrid differencing scheme 

3.3.1.1 Background 

 The electrochemical potential gradient, which is composed of activity gradient and 

potential gradient contributions, is the sole driving force for mass transport of ions in a 

stagnant electrochemical system.  In a moderately dilute solution, the transport of ions can 

be decomposed into two inter-coupled mechanisms: 

• Electromigration – the transport of ionic species via an electrical potential 

gradient.  Its mathematical form is similar to convection. 

• Diffusion – the transport of ionic and neutral species along an activity gradient. 

The upwind and downwind positions, referred to frequently in the forthcoming 

discussion, represent the origin and destination respectively of ions driven by 

electromigration.  Consider electromigration and diffusion balancing a chemical reaction 

source term at steady state in an infinitely dilute medium: 
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As the potential gradient, dxdΦ , increases, the strength of electromigration relative to 

diffusion increases and the contribution of diffusion becomes insignificant: 
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The solution of this first order differential equation requires knowledge of only the 

upwind boundary.  Thus, in regions of strong electromigration, the space-averaged 

concentration of ionic species in the control volume is highly dependent upon the 

concentration at the upwind boundary.  In the absence of electromigration, both control 

volume boundaries have equal influence on the control volume.  When the potential 

gradient is negligible, no electromigration occurs and (3.3.2) becomes: 
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Equation (3.3.4) is a form of the diffusion equation and conditions at both surrounding 

boundaries are required for its solution.   

This phenomenon can be explained through a physical analogy.  Consider that you 

are standing halfway between a pig barn (to the east) and a chocolate factory (to the 

west).  If the wind is coming from the east, you’ll smell the pig barn.  However, if the is 

from the west, you’ll smell the chocolate factory.  If the air is calm, you’ll smell a mix of 

both.  In the same way, if electromigration is moving the ionic species from the east node 

towards the west node, the interfacial concentration will be more influenced by EC  

( 0<α ).  However, if the ionic species is electromigrating from the west to the east, the 

interfacial concentration will be more influenced by WC  ( 0>α ).  If no potential gradient 
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exists, and thus electromigration is not occurring, the interfacial concentration will be 

influenced equally by both surrounding nodes ( 0=α ). 

Mathematically accounting for the dynamic boundary influence encountered in 

electrolytic mass transport problems requires the calculation of an upwind factor, a 

weighting parameter that adjusts the relative influence of the upwind node proportionate 

to the relative strength of electromigration versus diffusion.  The upwind factor, α , 

modifies the interpolated value at an interface between two control volumes: 
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Here, i is a spatial node index.  The mathematical description of α  is based upon the 

solution of an electromigration-diffusion balance and its derivation follows. 

3.3.1.2 Model derivation 

 The velocity of an ion migrating through an electrical field is [9]: 
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The velocity of an ion under the influence of pure diffusion is: 
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The ratio of the two velocities gives a Peclet number for the electrolyte mass transport 

problem: 
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The net mass flux across an arbitrary interface driven by an electrochemical potential 

gradient is described as: 
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Assuming that moderately dilute solution theory is applicable, the electrochemical 

potential gradient can be segregated into an activity gradient (diffusion) and potential 

gradient (electromigration) contribution: 

 Φ∇−∇−∇−= iiiiiiii FCuzCDCD γlniN     (3.3.10) 

A pseudo-steady state mass balance on an infinitesimal one-dimensional control volume 

may be written: 

 0=⋅∇ iN         (3.3.11) 

The pseudo-steady state assumption is valid provided that relatively small time steps are 

used.  Equation (3.3.11) also assumes that chemical reactions occur much faster than 

mass transport, and thus, are at equilibrium.  Substitution of (3.3.10) into (3.3.11) and 

subsequent application of the chain rule and rearrangement yields the following equation 

(in one dimension): 
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Poisson’s equation for charge density describes the electrical potential distribution for a 

given electroneutrality condition: 
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where δ is the charge density: 
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j
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Equation (3.3.13a) can be substituted into equation (3.3.12) to yield: 
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By substitution of equation (3.3.8) into (3.3.14), this second order homogenous ordinary 

differential equation can be written in terms of the Peclet number: 
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Equation (3.3.15) can then be expressed as:
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The gradient of the logarithm of the activity coefficient is a weak function of the 

concentration and is therefore assumed constant.  Also, the charge density is very small 

and its variation with concentration is also neglected.  With these two assumptions, 

equation (3.3.16) is a linear ordinary differential equation.  The over-damped solution of 

equation (3.3.16) is the desired physically realistic non-oscillatory solution.  This occurs 

when ξζψ 42 > .  To ensure that the problem is always over-damped, two additional 

assumptions are made to eradicate the coefficient,ζ : 

1. Any charge separation in an electrolytic solution invokes powerful forces
 
that 

quickly reinstate electroneutrality.  Outside of the electrical double layer region 
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which is located very near an electrochemically reactive wall (such as a corroding 

metal surface), it is reasonable to assume an electrically neutral system (δ = 0). 

2. Where activity coefficient gradients do not vary significantly, it can be assumed 

that the second order derivative of the activity coefficient is zero 

( )0ln 22 =dxd iγ . 

With these two assumptions, the coefficient, ζ , can be neglected:   
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A non-oscillatory solution is then guaranteed across each computational node.   

 Now consider one computational control volume across which the particular 

solution to the ordinary differential equation can be obtained.  At the western interface 

( )0=x , the concentration is equal to iwC  while at the eastern interface ( )xx ∆= , the 

concentration is ieC .  Through application of these boundary conditions, the particular 

solution of the second order problem is obtained:    
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Substituting the definition of ξ and ψ gives the final form of the solution: 
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where: 
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Equation (3.3.19b) shows that the magnitude of the activity coefficient gradient has a 

direct effect on the dominance of electromigration in electrolyte mass transport problems.  

The activity coefficient gradient accounts for the influence of other ions in solution on the 

i
th ion.  It is the force that propels the ion towards regions of lower ionic strength.  From 

equation (3.3.19a), the concentration at the center of the control volume is then: 
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By assuming an upwinding function of the form: 
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Equations (3.3.20) and (3.3.21) can be solved simultaneously to yield a formula for α : 
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When the charge density and second order derivative of the activity coefficient is 

assumed negligible, the resulting upwind parameter formula is similar to the exponential 

differencing scheme [7, 8].  However, unlike convective problems where the Reynolds 

number is dependent upon the velocity and viscosity of the fluid, the electrolyte mass 

transport Peclet number is dependent upon the electrical field, the diffusivity, and the 

magnitude of the activity coefficient gradient.  This is a one-dimensional scheme which 

can be applied to multidimensional problems.  However, application of a 1-D scheme to 

2-D and 3-D problems will introduce artificial viscosity effects [18].  This phenomenon 

may be controlled through grid refinement.  The spatial upwind parameter profile is 

shown for a range of Peclet numbers in Figure 3.3.1. 
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Figure 3.3.1.  The spatial upwind parameter profile across a computational control 

volume over a range of Peclet numbers. 
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 There are cases where the assumptions used to obtain equation (3.3.22) are not 

valid.  Two examples are the modelling of transport in regions of strong coupled 

electromigration and diffusion, where charge density cannot be neglected, and in 

electromigration-dominated problems where the activity coefficient gradient may vary 

significantly in space.  In these cases, equation (3.3.22) should not be used.  Instead, the 

value of ( ξζψ 42 − ) should be determined and, based upon its sign, the appropriate 

solution to the ordinary differential equation (under-damped, over-damped, or critically 

damped) should be selected.  Then, iPC , ieC , and iwC  may be calculated.  The appropriate 

value for α  can be obtained through rearrangement of equation (3.3.21): 
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Depending upon the size of the second order derivative of the activity coefficient, and in 

particular, the charge density, the predicted upwind parameter may not be physically 

realistic (the solution may be under-damped).  The following section demonstrates the 

effect of charge density on the stability of the mass transport problem. 

3.3.1.3 Stability of the electrolyte mass transport hybrid differencing scheme 

 Unlike the convection-diffusion equation, the electromigration-diffusion mass 

transport problem is influenced by an electrical field.  The mass transport problem is 

therefore governed by the following condition: unless a very large amount of work is 

done on the system, the solution must possess negligible charge density.  To obtain the 

exponential formula for the upwinding parameter previously presented, the solution 

charge density was assumed to be negligible.  For this assumption to be valid, care must 

be taken to ensure that the numerical solution algorithm respects the electroneutrality 
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condition inherent to the mass transport mechanism.  If the charge density tolerance 

during the numerical solution of the mass transport equation is too high, the steady state 

balance between electromigration and diffusion will become under-damped.  The 

particular solution of the under-damped electromigration-diffusion balance equation 

( ξζψ 42 < ) is:  
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where the real and imaginary components, respectively, of the complex conjugate roots of 

the characteristic equation are: 
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This solution predicts a sinusoidal concentration profile across the computational control 

volume and is clearly physically unrealistic.  Figure 3.3.2 displays the predicted control 

volume concentration profile for a range of very small charge densities.  As the charge 

density increases, the solution becomes under-damped; the increasingly sinusoidal 

concentration profile causes physically unrealistic predictions of the upwind parameter.   

When numerically based or artificial charge density is present, equation (3.3.14) shows 

that the concentration profile is now dependent upon not only the gradient of the 

concentration field but also on the value of the concentration.  This introduces new 

instability problems – as the concentration profile rises or falls, the profile will mutate to 

an extent proportionate to the level of charge density in solution.  Figure 3.3.3 

demonstrates this effect. 
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Figure 3.3.2.  Solution of the electromigration-diffusion balance equation across a 

computational control volume as solution charge density increases.  Critical damping 

occurs when δ ≈ 7.7 x 10-9 C/m3. 
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Figure 3.3.3 (a) shows that the shape of the concentration profile is invariant with the 

value of concentration for an electrically neutral system.  However, even before the 

critical damping charge density (approximately 7.7 x 10-9 C/m3 for this example) is 

surpassed, the concentration profile begins to bulge beyond the electrically neutral profile, 

a feature that is exaggerated as the concentration profile boundary conditions are 

increased.  Where the concentration profile extends beyond the range 

[ )(),0( xxCxC ∆== ], the predicted upwind parameter will lie outside of [-1, 1].  An 

acceptable value of the upwind parameter lies in the range [-1, 1].  Figure 3.3.3 (c) is a 

slightly under-damped system.  Examination of equation (3.3.24a) shows that the real 

component of the complex conjugate roots of the characteristic equation, τ , determines 

the amplitude while β , the imaginary component of the roots, controls the frequency.  

Because β  is small relative to τ , the period of the oscillation is greater than x∆  and the 

sinusoidal influence is not observable.  As the value of the boundary conditions are 

increased, the concentration profile extends well beyond [ )(),0( xxCxC ∆== ] and 

unrealistic values of the upwind parameter will be predicted.  In Figure 3.3.3 (d), the 

frequency of the oscillations has increased due to the increased imaginary component of 

the complex conjugate roots.  The sinusoidal component of the mass balance equation 

solution dominates and an unrealistic sinusoidal concentration profile is observed.  The 

amplitude of the oscillations increases as the concentration profile is raised. 

 Results presented in the preceding discussion show that even slight charge density 

arising in the numerical solution algorithm is detrimental to the fidelity of the predicted 

upwind parameter.  This feature makes electrolyte mass transport unique from other 

forms of transport and adds an additional concern when developing codes for its 
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prediction.  A method has been developed by Heppner et al. [16, 17] to eradicate charge 

density in an electrolyte solution. 

3.3.2 Discrete transport model development 

Transport of ions and neutral species in a moderately dilute electrolyte solution 

under the influence of an electrochemical potential gradient can be described by: 
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Where the current density induced by diffusion potential is: 
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and the local net charge of the solution is given by equation (3.3.13b).  Discretization 

using central finite difference approximations to first and second order derivatives 

respectively transforms (3.3.25) and (3.3.26) to a second order accurate analog form: 
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where the diffusion potential current density at the point node is: 
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The P, E, and W nodes in this fully implicit discrete transport equation are the point, east 

and west nodes respectively.  Subscripts e and w denote the east and west control volume 

interfaces, respectively, located halfway between the surrounding nodes for a uniform grid. 
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Figure 3.3.3.  Solution of the electromigration-diffusion balance equation across a 

computational control volume as the concentration profile is shifted upwards: a) δ = 0 

C/m3; b) δ = 5 x 10-9; c) δ = 1 x 10-8 C/m3 ; c) δ = 1 x 10-7 C/m3.  Critical damping occurs 

when δ ≈ 7.7 x 10-9 C/m3. 
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The expression of interfacial properties - ieC , iwC , ieγln , and iwγln  - as functions of nodal 

values is accomplished using the upwind parameter formulation, i.e.: 

 iEiPie CCC
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1

2

1 αα −
+

+
=       (3.3.29) 

Substitutions analogous to equation (3.3.29) are made for each interfacial property 

appearing in equation (3.3.27) to yield the following discrete mass transport equation: 
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(3.3.30) 

By sequestering time-step lagged non-linear terms into transport coefficients, equation 

(3.3.30) can be rearranged into a linear algebraic discrete transport equation which is 

solved iteratively: 

 xGCaCaCaCa iiPPiWWiEEiPP ∆+++= 00     (3.3.31) 

Using the proposed hybrid differencing scheme to express the interfacial concentrations, 

ieC  and iwC , as nodal values, the discrete transport coefficients are: 
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Where the local Peclet number, '

PP , is defined in equation (3.3.19b).  The diffusion 

potential current density, equation (3.3.28), is also recast in terms of nodal values using 

the upwind formulation.  After rearrangement, the following expression results: 
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(3.3.36) 

Patankar [19] stated that to ensure a physically realistic solution, the point coefficient 

should be the sum of the east, west, and previous iteration point coefficient and each 

coefficient should be positive.  This mass transport model follows Patankar’s suggestion 

but also contains non-linear influence from a net solution charge imbalance, Pδ , and the 

second order derivative of the activity coefficient.  The point coefficient is extremely 

sensitive to this charge imbalance which can possess a positive or negative value.  A 

negative Pδ  will reduce the diagonal dominance of the solution matrix.  Furthermore, it is 

shown in Figure 3.3.2 that a charge imbalance will cause the hybrid differencing scheme 

to give unrealistic upwind parameters.  The second order activity coefficient gradient will 

also have an effect on the convergence of the mass transport problem.  If the second order 

gradient of the activity coefficient is positive in sign, it will increase the diagonal 

dominance and the speed of convergence of the system.  Conversely, a positive second 

order gradient of the activity coefficient will decrease the diagonal dominance.  A 

diagonally dominant linear system satisfies the Scarborough Criterion and is guaranteed 

to converge by the Gauss – Seidel method.  The Scarborough Criterion is [20]: 
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The diagonal dominance of the coefficient matrix is largely controlled by 0

Pa  - decreasing 

the time step increases 0

Pa  and the point coefficient, Pa .  However, if the charge density 

and/or the second order activity gradient are significant, extremely small time steps may 

be required to negate these influences and ensure satisfaction of (3.3.37) [16, 17].  The 

charge density term in the Pa  coefficient formulation is extremely sensitive to charge 

density.  Therefore, to ensure the diagonal dominance of the matrix, Heppner et al. 

recommended the removal of the electroneutrality deviation term from the Pa  coefficient 

through an operator splitting strategy [16, 17].  After removal of the charge density term, 

the Scarborough Criterion for the variable upwind differencing scheme can be shown to 

be: 
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Equation (3.3.38) is bounded between 0 and 1 when:  
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or when: 
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Therefore, the Scarborough criterion is not bounded between 0 and 1 when: 
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Condition (3.3.39a) would be guaranteed if ( )iEEx γln, , ( )iWWx γln, , and ( )iPPx γln,  

were points on a linear function.  However, if iγln  possesses a non-zero second order 

gradient over the range [ EW xx , ],condition (3.3.39a) may not be satisfied.  The second 

order gradient of the activity coefficient is capable of inducing instability through 

reduction of diagonal dominance in the mass transport calculation procedure.  To ensure 

that the Scarborough Criterion is satisfied, the time step should be lowered where the 

second order gradient of the activity coefficient is significant and positive in sign.  If 

condition (3.3.39a) or (3.3.39b) is met, and if Dirichlet conditions exist at any physical 

domain boundary, the discrete mass transport problem satisfies the Scarborough 

Criterion.  Figure 3.3.4 plots the east transport coefficient divided by xDi ∆  against the 

Peclet number.  The west coefficient is the mirror image of the east coefficient reflected 

across the y-axis.  By Figure 3.3.4, it is shown that the east and west transport coefficients 

will never acquire a negative value. 

3.3.3 Modelling of the Fu and Chan moving boundary experiment 

Fu and Chan placed a silver anode plug at one end of a long glass tube.  The tube 

opened into a large beaker in which a silver cathode was immersed.  Initially, the entire 

apparatus was filled with a 0.1 M KNO3 solution.  A current density of 318 µA/cm
2 was 

applied across the tube length inducing silver dissolution at the anode plug and silver 

plating at the cathode.  The electrical current forced Ag+ and K+ ions out of the tube 

towards the cathode while NO3
- ions were driven towards the silver anode plug.  A visible 

moving boundary was formed where the aqueous solution transitioned from being 

predominantly KNO3 to being predominantly AgNO3.  The rate of movement of this 

boundary indicated the rate of mass transport in the tube.  
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Figure 3.3.4.  The variation of iE Dxa ∆  with the Peclet number. 
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Fu and Chan accurately recorded the position of the moving boundary.  Using data 

obtained from the moving boundary experiment performed by Fu and Chan [1], the 

ability of this hybrid differencing scheme to improve the physical realism of solutions of 

the electrolyte mass transport equation is showcased.   

Using the present transport model, the boundary region predicted using UDS and 

HDS is compared.  For both differencing schemes, the solution domain was discretized 

into 1000 nodes ( cmxx 3105 −=∆ ) and a time step of 0.1 seconds was used.  The solution 

algorithm is illustrated as a flow chart in Figure 3.3.5.   

Figure 3.3.6 displays the predicted moving boundary region after 5, 20, 30, and 40 

minutes using both UDS and HDS.  The vertical line in each figure represents the position 

of the boundary at the respective time (interpolated from raw data) observed 

experimentally by Fu and Chan.  At each time, discretizing the mass transport model 

using HDS, rather than UDS, results in the formation of steeper concentration gradients, 

and thus faster mass transport rates, throughout the moving boundary region.  The fact 

that using HDS predicts increased mass transfer rates is evidenced by both the faster 

movement of the predicted Ag+/K+ concentration profile intersection, and by a lower 

AgNO3 concentration at the anode-solution interface (not seen in figure).  Comparison of 

Figures 3.3.6 (a) and 3.3.6 (b) shows that sometime between 5 and 20 minutes after the 

start of the simulation, the moving boundary predicted using HDS passes the moving 

boundary predicted using UDS.  In each case, the mass transport model discretized using 

HDS either matches or improves on the accuracy of the same transport model discretized 

using UDS.  The average error between the predicted boundary position and that 

measured experimentally has decreased by 61% by using HDS rather than UDS. 
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Figure 3.3.5.  The mass transport model solution algorithm presented as a flow sheet. 
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Figure 3.3.6.  The calculated moving boundary region of the Fu and Chan experimental 

apparatus: a) after 5 minutes; b) after 20 minutes; c) after 30 minutes; d) after 40 minutes.  

In each sub-figure, the vertical line represents the experimentally observed position of the 

boundary (boundary position was linearly interpolated from raw data). 
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The greatest increase in accuracy is seen in Figure 3.3.6(d) where the error decreased by 

87%.   Using the new differencing scheme enables the discrete mass transport model to 

more accurately predict the experimental observations of Fu and Chan. 

3.3.3.1 Effect of charge density 

 The previous section showed the ability of the discrete mass transport model 

coupled with the HDS upwind parameter solver to accurately predict mass transport in an 

electrolytic system.  Inherent to HDS is the assumption of electroneutrality throughout the 

system.  Although a physical system will not possess an appreciable charge density unless 

a substantial amount of work is done on the system, numerical charge density arising 

through solution of the constitutive mass conservation equations can cause oscillations in 

the solution of the electromigration-diffusion balance equation.  Obviously, predicted 

concentration profiles that are sinusoidal and feature negative values are not physically 

realistic.  Therefore, one cannot expect to obtain a physically meaningful value of the 

upwind parameter from such a profile.  The sensitivity of the numerical solution to 

accumulated charge density in the solution is now tested.  Figure 3.3.7 shows the 

predicted moving boundary region as the amount of charge density in the solution is 

increased.  Increased charge density had a large effect on the stability of the numerical 

algorithm.  As the charge density was increased, the mass transport equation became 

more difficult to solve.  When the charge density was set to 10-9 C/m3 or greater, the 

solution to the migration-diffusion equation became under-damped and the simulation 

ultimately failed to converged.  When the charge density reached a value such that it 

caused under-damping of the predicted concentration profile, the simulation immediately 



 85

failed.  However, until the profile became critically damped, the simulation was able to 

proceed but provided results with significant amounts of error. 

3.3.3.2 Effect of spatial step size 

 As the spatial step size is decreased, the predicted concentration profiles approach 

the exact solution to the constitutive equations.  However, decreasing the step size also 

affects the predicted Peclet number and, thus, the upwind parameter.  Figure 3.3.8 

illustrates the effect of increasing the spatial step size.  As x∆  was increased, the 

predicted upwind profile approached unity (UDS) while at very small values of x∆ , the 

upwind parameter approached zero (CDS).  As x∆  decreases, the profile in the control 

volume approaches the linear profile predicted by differential calculus (the tangent line) 

and a central differencing scheme becomes appropriate.  Figure 3.3.8 was generated using 

the mathematical model describing Fu and Chan’s moving boundary experiment. 

Besides having a direct impact on the value of the upwind parameter, the step size 

showed significant influence on the predicted concentration profile in the moving 

boundary region.  Figure 3.3.9 illustrates the variation of the predicted moving boundary 

Ag+/K+ concentration profile after 10 minutes as the number of computational nodes used 

in the numerical solution is increased.  The predicted concentration gradients of both K+ 

and Ag+ were predicted steeper as the number of computational nodes increased.  

However, the velocity of the moving boundary also decreased with increasing 

computational nodes.  Where an inadequate number of nodes were used, a less steep 

concentration gradient and an increased rate of mass transport was predicted – a 

phenomenon that defies physical transport laws. 
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Figure 3.3.7.  The effect of charge density on the predicted moving boundary region of 

the Fu and Chan experiment. 
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Figure 3.3.8.  The calculated unit charge upwind parameter as a function of space step 

size, ∆x, for the model of the Fu and Chan experiment. 
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Figure 3.3.9.  The effect of step size on the predicted boundary region of the Fu and Chan 

experiment after 10 minutes. 
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By inspection of the electromigration term of equation (3.3.25), the rate of mass transport 

due to electromigration is proportional to the concentration gradient.  Therefore, the 

predicted profile becomes physically unrealistic as the number of nodes decrease.  

Furthermore, the predicted boundary position moves further away from the 

experimentally observed boundary position (1 cm after 10 minutes) [1]. 

3.3.3.3 Computational efficiency 

 The additional computational effort or simulation time required when using HDS 

rather than UDS was investigated.  At each iteration, the use of HDS requires the 

computation of the Peclet number and the evaluation of the upwind parameter.  The 

upwind parameter calculation is particularly expensive as it requires the computation of 

numerous exponential functions, each of which are computed as truncated Maclaurin 

series expansions.  Because the additional time required to obtain a converged solution 

when using HDS is dependent upon both the specific mass transport problem being 

solved and the specifications of the computer, the computational efficiency of using HDS 

was investigated using the percentage increase in time, rather than the actual increase in 

time.  The following results are therefore specific to modelling the Fu and Chan 

experiment but are independent of the processor speed of the computer being used.  The 

ratio of the total number of operations that the computer is required to perform when 

solving the transient mass transport problem using HDS, rather than UDS, can be 

calculated from the following expression: 

 
( )( )
( )( )Iterations UDSiteration per Operations UDS

Iterations HDSiteration per Operations HDS
  Ratio Operations = (3.3.40) 

The operations ratio is a measure of the increased computational effort required to use 

HDS rather than UDS. 
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Figure 3.3.10.  The percentage increase in simulation time required when using the hybrid 

differencing scheme rather than the upwind differencing scheme as a function of the 

number of nodes used in the numerical solution. 
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Because the operations required per iteration are fixed for a particular grid, variation in 

the value of the operations ratio is due solely to changes in the ratio of the number of 

iterations required to use HDS to the number of iterations required to use UDS.  Figure 

3.3.10 shows the percentage change in simulation time resulting when HDS, rather than 

UDS, is used in the mass transport solver as the number of nodes is increased.   

The ease of convergence of the model can be estimated by the diagonal 

dominance of the transport coefficient matrix.  Examining the relevant terms from 

equation (3.3.38), the following relationship may be written: 
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PWE

P

P

x

aa

a ∆
∝

+
       (3.3.41) 

Equation (3.3.41) seems to imply that the diagonal dominance will increase for a coarser 

solution grid ( x∆  becomes larger).  However, both α  and '

PP  are proportional to x∆  

creating a competing effect of x∆  upon the diagonal dominance.  This competition is 

manifested as the peculiar functionality of the computational efficiency upon the number 

of nodes seen in Figure 3.3.10.  In general, the results of Figure 3.3.10 demonstrate that, 

as the number of nodes increase, the transport coefficient matrix becomes less diagonally 

dominant and the additional effort required using HDS rather than UDS increases (i.e. the 

computational efficiency of the model decreases). 

3.3.4 Conclusions 

 Based upon a pseudo-steady state balance between electromigration and diffusion, 

a novel method to interpolate interfacial properties from nodal values for electrolyte mass 

transport under the influence of an electrical potential field has been developed.  

Simulation of the moving boundary experiment of Fu and Chan [1] provided a means of 
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quantifying the influence of the upwind parameter on the predictions of the electrolyte 

mass transport model.  The following conclusions can be made from this research: 

1. Use of HDS rather than UDS results in predictions that more closely match the 

experimental observations of Fu and Chan.  The error between model predictions 

and experimental data is reduced by an average of 61% when HDS rather than 

UDS is used.  Therefore, using the one-dimensional solution of the 

electromigration-diffusion balance equation as a means to prescribe appropriate 

weighting for approximation of interfacial properties is valid for electrolyte mass 

transport modelling. 

2. Adjustment of the time step in regions where the second order gradient of the 

activity coefficient is significant and positive in sign will ensure that the mass 

transport problem coupled with HDS satisfies the Scarborough criterion, a 

condition that checks diagonal dominance.  Thus, convergence of the matrix of 

transport coefficients, assembled at each iteration, by the Gauss-Seidel method is 

guaranteed.  Transport coefficients are guaranteed to be positive thus ensuring a 

physically realistic solution [19]. 

3. The presence of electrical charge density has a detrimental effect on the stability 

of the mass transport solution algorithm.  As charge density increases, the solution 

to the steady state electromigration-diffusion equation approaches critical 

damping.  Physically unrealistic oscillations develop in the predicted 

concentration profile thus altering the predicted upwind parameter.  Charge 

density may also reduce the diagonal dominance of the coefficient matrix during 

the solution of the mass transport model and reduce the speed of convergence.  
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Thus, charge density must be annihilated through direct solution of the Poisson 

equation for charge density or through the method proposed by Heppner et al. [16, 

17]. 

4. When the charge density and the second order gradient of the activity coefficient 

is negligible, the hybrid differencing scheme for electrolyte mass transport 

possesses the form similar to the exponential differencing formula used in 

computational fluid dynamics [7, 8].  Therefore, electromigration in a stagnant, 

electrically neutral, infinitely dilute electrolyte under the influence of a potential 

gradient is analogous to convection under the influence of a pressure gradient and 

the use of a Peclet number based method to estimate interfacial properties is 

appropriate for electrolyte mass transport. 

5. The Peclet number for mass transport in a non-ideal solution is affected not only 

by the potential gradient but also by the activity coefficient gradient.  The effect of 

the activity coefficient gradient is a manifestation of the force exerted upon an ion 

to move towards regions of decreasing ionic strength.  The additional term in the 

Peclet number formulation accounts for interactions between the ion of interest 

and other ions in solution. 

6. The computational efficiency of the mass transport model coupled with HDS is 

highly dependent upon the spatial step size.  Thus, the percentage increase in 

simulation time varied between 6% and 43% (based on step size).  However, the 

error between the simulation results and the observations of the Fu and Chan 

experiment increased by as much as 87% by using HDS rather than UDS. 
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7. This differencing scheme represents the first scheme developed specifically for 

the solution of the electromigration-diffusion equation.  Previous schemes, such as 

the exponential scheme, power law scheme, and other schemes, have been 

developed for the convection-diffusion equation (refer to Patankar [19] for a 

concise summary of these differencing schemes).  The electromigration-diffusion 

equation is unique and different from the convection-diffusion equation in that its 

solution, if physically realistic, must satisfy the condition of charge neutrality (or 

very low charge density).  Thus, mass transport of each ion in solution is 

mathematically very strongly inter-coupled with mass transport of all other ions.  

This unique feature is represented in the differencing scheme by the activity 

coefficient term in the modified Peclet number formula (equation 19b) and by the 

effect of charge density upon the upwind parameter. 
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Chapter 4. Crevice Corrosion Initiation of Passive Metals 

The previous chapter discussed two methods designed to improve the accuracy 

and computational efficiency of the numerical integration of the electromigration-

diffusion equation.  An accurate and computationally efficient model of electrolytic mass 

transport is important in the simulation of crevice corrosion initiation of passive metals.  

In this section, the numerical methodologies previously discussed are applied to a 

prevalent and destructive form of corrosion – crevice corrosion. 

Crevice corrosion is a localized acid-chloride attack.  It occurs in occluded regions 

of the metal surface such as under deposits, at the meeting of metal surfaces, in imperfect 

welds, beneath gaskets and washers, and in corrosion and/or stress induced pits and 

cracks.  This feature of crevice corrosion makes it particularly dangerous as it can go 

undetected until failure.  This form of corrosion affects passive metals, which are 

generally corrosion resistant and form a thin tenacious oxide film of low electrical or 

ionic conductivity.  This film is referred to as the passive film.  Due to the low 

conductivity, only a small leakage current, which is called the passive current, can pass 

through the film.  Thus, when the film is present, the metal dissolves at an extremely slow 

rate.  However, in a sufficiently strong acid-chloride solution, which is often called a 

critical crevice solution, this protective film may be damaged.  Due to differential 



 99

aeration, such acid-chloride solutions may develop autocatalytically inside a crevice, 

which may then initiate active crevice corrosion.  

In this work, moderately dilute and infinitely dilute mass transport models were 

applied to electrolyte solution at temperatures of 25ºC and 70ºC inside a passive metal 

crevice.  The model was used to predict how the crevice gap, solution composition, and 

internal hydrogen ion reduction affected conditions inside the crevice.  Finally, the 

moderately dilute model was applied to rank alloys for corrosive duty.  Each of these 

studies will now be explained in detail. 
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4.1 Effect of the Crevice Gap on Crevice Corrosion Initiation* 

Crevice corrosion occurs when the protective, tenacious oxide film known as the 

passive film is destroyed by acid chloride attack.  As the crevice gap decreases in size, a 

smaller cross sectional area causes increased current density flowing in the crevice 

solution; the rate of transport via electromigration of anions, such as the chloride ion, into 

the anodic crevice increases.  The length of the incubation period, the time required to 

develop a critical crevice solution, is strongly dependent upon the crevice gap.   

This work focuses upon modeling crevice corrosion initiation of two different 

metals, type 304 stainless steel (UNS S30400) and pure titanium, immersed in aqueous 

NaCl solution.  The effect of the crevice gap on the solution conductivity, iR drop, and 

charge density in the titanium crevice solution is investigated in detail.  Models of similar 

purpose have been constructed by several authors – Oldfield and Sutton [1], Bernhardsson 

et al. [2, 3], Fu and Chan [4], Alkire and Siitari [5], Hebert and Alkire [6], Turnbull and 

Ferris [7], Sharland [8, 9], Watson [10], Watson and Postlethwaite [11, 12], Evitts et al. 

[13 – 16], Evitts [17], Postlethwaite et al. [18], Walton et al. [19], Oldfield et al. [20], 

Heppner et al. [21, 22], and others.  The present work uses the mass transport model of 

Watson and Postlethwaite [11, 12] but improves the solution through adjustment of 

chemical equilibrium for non-ideality and through incorporating the effect of solution 

charge density on ionic migration.  This work assumes that two cathodic reactions, 

oxygen reduction outside the crevice and hydrogen reduction inside the crevice, support 

                                                 
* Reference: K.L. Heppner, R.W. Evitts, and J. Postlethwaite (2004) The Effect of the 
Crevice Gap on the Initiation of Crevice Corrosion in Passive Metals.  Corrosion 80. pp. 
718 – 728. 
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anodic metal dissolution. It is known that titanium dissolution is substantially supported 

by hydrogen evolution while type 304 stainless steel dissolution is largely supported by 

external oxygen reduction [23 – 25].  An empirically based fraction, based upon the work 

of He et al. [25], distributes the total cathodic load between the two electrode reactions for 

the titanium crevice model. 

4.1.1 Mathematical model 

4.1.1.1 Mass transport 

Electrolyte transport in a geometrically restrictive, non-convective crevice 

solution is represented by the following conservation statement proposed by Watson and 

Postlethwaite [11, 12]: 
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While all charged and neutral species are transported by diffusion, cations are transported 

towards the external cathode as anions move towards the anode by an electrical potential 

gradient formed by anode-cathode separation.  Poisson’s equation for charge density 

represents the effect of charge distribution on electrolyte transport and appears as the first 

term on the right hand side of equation (4.1.1).  A chemical reaction mass source or sink, 

represented as iR , is obtained through solution of a set of chemical equilibrium relations 

at each time step: 

 ( ) 0=−∏ i

j

ν

jj KγC ij        (4.1.2) 
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jC  and jγ  are the concentration and activity coefficient respectively of the j
th species at 

equilibrium.  The activity coefficient represents deviation from non-ideal solution theory 

due to short and long range inter-ionic forces, the net effect of which is quantified by the 

model of Pitzer [26].  The activity coefficient of each cation is: 
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The activity coefficient of each anion is: 
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The activity coefficient of each neutral species is: 
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These equations are based upon a virial expansion of excess Gibbs energy and are derived 

by Pitzer [27]. 

4.1.1.2 Electrochemical reactions 

Faraday’s Law governs the rate of anodic metal dissolution reactions occurring on 

the interior crevice surface: 

 p
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m
i i
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Mixed potential theory demands the rates of the anodic and cathodic reaction to be equal.  

For alloys, the rate of dissolution of each metal species is assumed proportional to its 

mole fraction in the alloy [1, 3].  An Arrhenius expression adjusts the passive current for 

thermal effects [28]: 
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The activation energy for dissolution has been experimentally determined for several 

industrially relevant metals immersed in sodium chloride solutions by Griess [24], Shrier 

[28], and others.  A reference passive current density is specified based upon the ionic 

conductivity of the passive oxide film.  A typical value used for titanium and type 304 

stainless steel is of the order of 0.1 µA/cm2.  This value has been determined based upon 

interpolation from experimental work of Griess [24].  Adjustment of the passive current 

for pH is given by a Freundlich isotherm [28]: 

 pHnki p ⋅−= )log()log(       (4.1.8) 

The value of k  is determined by the pH and passive current at the start of the simulation 

and n  is a function of the dissolved metal ion valence state [28].  This work assumes that 

the cathodic charge required to support metal dissolution is jointly carried by internal 

hydrogen ion reduction and external oxygen reduction.  While hydrogen reduction is not 

observed on stainless steel crevices [23], it is evident in titanium crevices and amounts to 

60 – 75% of the cathodic current [24, 25].  The portion of the anodic current density 

provided by hydrogen ion reduction is then: 

 predoxH
ii Ψ=+         (4.1.9) 
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where 
redoxH

i +  is the cathodic current density driving hydrogen ion reduction and Ψ  is an 

empirically determined fraction defining the portion of the anodic current supplied by 

hydrogen evolution.  During the initiation period, the effect of hydrogen bubbles on the 

crevice system is assumed negligible, an assumption used by other authors [5].  The net 

current density leaving the crevice wall, which is the passive current density less the 

hydrogen ion reduction current density, when integrated along the length of the crevice 

starting at the tip, gives the electrical current responsible for primary electromigration at 

an arbitrary distance ξ  from the crevice tip: 
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where P  is a function defining the perimeter of the crevice at any position in the crevice. 

4.1.2 Model implementation 

 Prediction of the transient crevice solution composition requires the following 

calculations at each discrete time step: 

 

1. Calculation of the passive current and corrosion rate: The passive current is 

adjusted for temperature and changes in pH according to equations (4.1.7) and 

(4.1.8).  The metal dissolution rate is determined by equation (4.1.6).  The 

increase in activity of each metal species in each discrete control volume for the 

current time step is calculated. 

 

2. Solution of the mass transport equation: Solution of the partial differential 

equation (4.1.1) is accomplished using a fully upwinded Crank-Nicolson 
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discretization technique.  Boundary conditions are provided by the bulk solution 

composition at the mouth and a zero-flux requirement at the tip.  Non-linearities 

inherent in the mass transport problem are iterated to convergence. 

 

3. Correction for chemical equilibrium: Equilibrium relationships are written for 

each reaction occurring in the solution; mass balances for each species involved in 

the reaction are written supplementary to the equilibrium set.  A Newton-Raphson 

method is employed to rapidly solve the non-linear equation set to a prescribed 

tolerance. 

 

This sequence of calculations continues until a specified simulation time has been 

reached.  Figure 4.1.1 displays the flowsheet describing the solution algorithm.  Figure 

4.1.2 illustrates the discrete finite volume grid over which the solution is obtained.  The 

crevice is modeled as a three-dimensional rectangular box.  Metal is dissolved into the 

crevice solution from the sides, top, and bottom of the crevice interior.  The model is uni-

dimensional as gradients are assumed to exist only along the crevice length.  Time steps 

must be kept small to ensure that the segregated solution scheme presented will produce 

accurate transient crevice solution behavior. 

4.1.3 Results 

4.1.3.1 Simulation of Alavi and Cottis experiment 

Alavi and Cottis [23] used an engineered type 304 stainless steel crevice formed 

from the space between a plate of steel and an acrylic electrode holder. 
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Figure 4.1.1. Flowsheet of solution algorithm used to solve passive crevice corrosion 

problem 
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Figure 4.1.2. Finite volume grid used to obtain solution to crevice corrosion problem 

 



 108

The rectangular crevice with a 90 µm gap, measuring 2.5 cm wide and 8.0 cm deep was 

immersed in a 0.6 M aqueous NaCl solution at 25°C.   The current model is validated 

against experimental results obtained from this crevice apparatus assuming chemical 

reactions given in Table 4.1.1 occur in the crevice solution [1, 19, 29].   

 

Chemical Reaction ( )
eq10 Klog  

Cr3+ + H2O  Cr(OH)2+ + H+ -3.8 

Cr(OH)2+ + H2O  Cr(OH)2
+ + H+ -6.2 

Cr(OH)2
+ + H2O  Cr(OH)3 + H

+ -6.2 

Cr3+ + Cl-  CrCl2+ -0.149 

Cr3+ + 2Cl-  CrCl2
+ 0.158 

Fe2+ + H2O  Fe(OH)+ + H+ -8.3 

Fe(OH)+ + H2O  Fe(OH)2 + H
+ -11.1 

Fe2+ + Cl-  FeCl+ -0.161 

Fe2+ + 2Cl-  FeCl2 -2.45 

Fe2+ + 4Cl-  FeCl4
2- -1.90 

Ni2+ + H2O  Ni(OH)+ + H+ -9.5 

Ni(OH)+ + H2O  Ni(OH)2 + H
+ -9.1 

Ni2+ + Cl-  NiCl+ -0.996 

Table 4.1.1. Chemical reactions occurring in a type 304 stainless steel crevice solution 

 

Figure 4.1.3, a comparison between predicted and measured transient pH at various 

distances down the type 304 stainless steel crevice from the mouth, shows agreement 
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within experimental uncertainty.  However, Alavi and Cottis measured highest and lowest 

acidity near the mouth and tip respectively of the artificial crevice.  This contradicts 

predictions of all prevalent crevice corrosion models and proposed mechanisms [9, 19].  

The most obvious explanation would be that hydrogen evolution carried a portion of the 

cathodic load.  However, Alavi and Cottis made no mention of hydrogen evolution 

occurring inside the 304 stainless steel crevice [23].  They argued that the observed 

minimum pH, located 2 cm from the mouth, resulted from migration overpowering 

diffusion – while migration moves the hydrogen ion out of the crevice towards the mouth 

region, diffusion moves hydrogen ions out of the mouth region into the bulk solution via 

an activity gradient.  These abnormalities in the spatial pH profile could also be the result 

of slightly misaligned electrodes in the experimental apparatus.  Watson and 

Postlethwaite showed the importance of placing electrodes exactly flush with the wall 

[12].  Even a slight misalignment, in the order of microns, can cause localized spatial 

acidity profile abnormalities.  Regardless of the cause of localized acidity change, the 

model predicts the correct trends observed by Alavi and Cottis at all depths and shows 

reasonable agreement with their observations. 

After validation of the model against the experimental work of Alavi and Cottis, 

the model was compared with the simulation work of others.  Figures 4.1.4 and 4.1.5 

compare the spatial pH profile in a type 304 stainless steel crevice solution predicted by 

the present model with the spatial pH profile predictions of the models of Evitts [17], 

Sharland [8], Walton et al. [19], and the experimental work of Alavi and Cottis [23].  In 

Figure 4.1.4, a reference passive current density of 0.1 µA/cm2 was initially applied while 

in Figure 4.1.5, a reference passive current density of 1 µA/cm2 was used. 
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Figure 4.1.3. Comparison of predicted and experimental pH profile in a type 304 stainless 

steel crevice of 90 µm gap, 2.5 cm width, and 8 cm depth (0.6 M NaCl aqueous solution 

at 25°C): a) 1 cm deep; b) 2 cm deep; c) 4 cm deep; d) 7.5 cm deep. 
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The present model predicts the work of Alavi and Cottis with the greatest accuracy for 

both passive current densities.  The lower pH predicted by the present model is likely the 

result of using a more sophisticated activity coefficient model to determine activity 

coefficients in the electrolyte solution.  Because Pitzer’s activity model accounts for the 

effect of short range interactions of ions of like and unlike charge, these short range 

interactions reduce the efficiency of transport of the hydrogen ion out of the crevice and 

the pH becomes lower. 

 

4.1.3.2 Effect of the crevice gap on the incubation period of titanium 

The previous section demonstrated the validity of the mass transport model 

through simulation of the experimental crevice of Alavi and Cottis [23].  Because the 

influence of mass transport and chemical equilibrium on both a type 304 stainless steel 

crevice and a titanium crevice are similar, the same model is applicable to titanium 

crevice corrosion after incorporation of internal hydrogen evolution as a cathodic 

reaction.  The hydrogen ion reduction model uses an empirically determined fraction, 

based upon the work of He et al., which divides the total cathodic charge between internal 

hydrogen evolution and external oxygen reduction.   

Simulations were performed on a rectangular titanium crevice immersed in 0.5 M 

aqueous NaCl solution at 25°C measuring 1 cm wide and 1 cm deep with varying gap.  

Table 4.1.2 displays the chemical reactions assumed to occur in the titanium crevice 

solution [30].  Comprehensive simulation results are graphically displayed in Figures 

4.1.6 – 4.1.19. 
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Figure 4.1.4. Comparison of predicted spatial pH profile of present model with that of 

previous models.  Type 304 stainless steel crevice of 90 µm gap, 2.5 cm width, and 8 cm 

depth (0.6 M NaCl aqueous solution at 25°C).  Reference passive current density is 0.1 

µA/cm2. 
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Figure 4.1.5. Comparison of predicted spatial pH profile of present model with that of 

previous models.  Type 304 stainless steel crevice of 90 µm gap, 2.5 cm width, and 8 cm 

depth (0.6 M NaCl aqueous solution at 25°C).  Reference passive current density is 1 

µA/cm2. 
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Chemical Reaction ( )
eq10 Klog  

Ti4+ + H2O  Ti(OH)3+ + H+ -2.0 

Ti(OH)3+ + H2O  Ti(OH)2
2+ + H+ -1.8 

Ti(OH)2
2+ + H2O  Ti(OH)3

+ + H+ -2.4 

Ti(OH)3
+ + H2O  Ti(OH)4 + H

+ -4.0 

 

Table 4.1.2. Chemical reactions occurring in a titanium crevice solution 

 

Oxygen diffusing into the crevice is quickly consumed by cathodic reactions 

initially occurring inside a crevice with a 0.1 µm gap; deoxygenation is predicted in 7.7 

seconds.  Once oxygen is depleted, a differential aeration cell is formed forcing separation 

of the half-cells.  Figure 4.1.6, the transient profile of iR drop referenced to the tip, 

displays the electrical potential field that induces electromigration of charged species.  An 

initially high iR drop is seen in the early stages of the simulation when the crevice 

solution conductivity is low.  As anions immigrate into the crevice and cations are 

produced via dissolution, the conductivity of the crevice solution increases and the iR 

drop along the crevice length decreases.  Diffusion, working to minimize activity 

gradients throughout the crevice, is overpowered by electromigration forcing anions into 

the anodic crevice.  Transient electrical conductivity at the tip, center, and mouth of the 

0.1 µm gap crevice is displayed in Figure 4.1.7.   
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Figure 4.1.6. Transient iR drop profile referenced to tip in a titanium crevice of 0.1 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.7. Transient conductivity profile in a titanium crevice of 0.1 µm gap, 1 cm 

width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Electrical conductivity, increasing as ionic strength increases in the crevice, 

decreases the potential gradient required to transport ions thereby increasing the rate of 

electromigration; increased electromigration increases ionic activity forming an 

autocatalytic coupling. 

Crevice solution pH is autocatalytically coupled to the passive current; a 

Freundlich isotherm increases the rate of heterogeneous electrochemical dissolution 

reactions as pH drops causing increased production of hydrogen ions through chemical 

reaction of metal cations.  The passive current, pi , and the pH are indicative of the state of 

the crevice.  Transient pH and passive current profiles in the 0.1 µm gap titanium crevice 

solution are displayed in Figures 4.1.8 and 4.1.9 respectively.  The critical crevice pH of 

titanium is approximately 1.0 in 0.5 M NaCl aqueous solution [31], and thus, the crevice 

will remain passivated as the pH does not drop below this level.  Conductivity, 

proportional to the ionic strength, is a good indicator of steady state onset of the system 

and from Figure 4.1.7, the onset of steady state in the 0.1 µm crevice is predicted after 

approximately 5.5 hours. 

Figure 4.1.10, the transient profile of iR drop referenced to the tip for a 1 µm gap, 

when compared to Figure 4.1.6, the transient iR drop profile for a 0.1 µm gap, shows that 

the increased crevice gap has caused the tip to mouth iR drop at steady state to decrease 

from 110 mV to 18 mV.  Therefore, the domination of electromigration transport 

decreases as the crevice gap becomes larger.  Resultant decrease in mass transport is 

manifested as lower ionic activity and solution conductivity. 
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Figure 4.1.8. Transient pH profile in a titanium crevice of 0.1 µm gap, 1 cm width, and 1 

cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.9. Transient passive current profile in a titanium crevice of 0.1 µm gap, 1 cm 

width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.10. Transient iR drop profile referenced to tip in a titanium crevice of 1 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Comparison of Figure 4.1.11, the transient electrical conductivity at the tip, center, 

and mouth of the 1 µm gap crevice, with Figure 4.1.7, the transient electrical conductivity 

for the 0.1 µm gap crevice, shows that the conductivity at the crevice tip has dropped 

from 0.5 S/cm to 0.11 S/cm as a result of the increasing gap size.  Lower solution 

conductivity requires a greater iR drop along the corrosion cell to maintain a specific 

solution current density.  However, the current density flowing through solution, by 

definition, will decrease by the same proportion that cross sectional area increases.  

Because the cross-sectional area increases by an order of magnitude, the current density is 

reduced by one order of magnitude and a lower iR drop across the crevice length results.   

This shows that the sensitivity of the current density is greater than the sensitivity of the 

conductivity to a change in the crevice gap size and, therefore, the iR drop is lower for a 

larger crevice gap. 

Figures 4.1.12 and 4.1.13, the transient pH and passive current respectively in a 1 

µm gap crevice, show a lower passive current and higher pH than the 0.1 µm gap crevice 

(Figures 4.1.8 and 4.1.9), indicative of a crevice further away from critical conditions.  As 

the size of the crevice gap increases, the crevice solution composition is predicted to be 

more moderate with higher pH, resultant lower passive current density, and reduced 

chloride concentration.  Compared to the smaller crevice, the time to steady state has 

increased; a larger crevice will more slowly approach a steady state condition.  

Mathematically, a larger crevice gap damps the response of the crevice solution to 

dissolution-induced metal ion influx – the problem becomes less stiff and a steady state 

condition takes longer to achieve.  Figure 4.1.11, the transient conductivity profile for the 

1 µm crevice gap, shows that approximately 10 hours is required to reach steady state. 
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Figure 4.1.11. Transient conductivity profile in a titanium crevice of 1 µm gap, 1 cm 

width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.12. Transient pH profile in a titanium crevice of 1 µm gap, 1 cm width, and 1 

cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.13. Transient passive current profile at tip, center, and mouth of a titanium 

crevice of 1 µm gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Similar trends discussed in the previous section are again observed for a titanium 

crevice with a 10 µm gap.  The predicted tip to mouth iR drop decreases further as the 

crevice gap is increased.  The predicted crevice solution is less acidic and less electrically 

conductive while the passive current density decreases as the crevice gap increases in 

size. 

4.1.3.3 Effect of the crevice gap on the steady state iR drop and charge density in a 

titanium crevice solution 

iR drop causes the electrical potential of anodic sites to deviate from corrE  along 

the crevice interior inducing electromigration.  Figures 4.1.14 – 4.1.16 illustrate steady 

state iR drop and corrE  deviation profiles along the crevice length for 0.1, 1, and 10 µm 

crevice gaps respectively.  Figure 4.1.14 shows that as the crevice mouth is approached, 

the iR drop and its gradient increases.  Just as tributaries add to a river, current leaving the 

metal-solution interface adds to the current density flowing through solution towards the 

mouth.  Thus, the magnitude of the current density increases as the mouth is approached.  

The iR drop is proportional to the current density and, therefore, the electrical potential 

gradient and iR drop in the solution will increase towards the mouth.  Similar profiles are 

shown in Figures 4.1.15 and 4.1.16.  The mathematical expression of the potential 

gradient is [17]: 

 ∑ ∇−−=Φ∇
j

jjj CDz
Fi

κκ
      (4.1.11) 

The second order gradient of electrical potential is Poisson’s equation for charge density: 

 
ε
δ
−=Φ∇ 2         (4.1.12) 
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Figure 4.1.14. Spatial iR drop and Ecorr deviation profile in a titanium crevice of 0.1 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.15. Spatial iR drop and Ecorr deviation profile in a titanium crevice of 1 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Figure 4.1.16. Spatial iR drop and Ecorr deviation profile in a titanium crevice of 10 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C)  
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where ∑=
j

jjCzFδ , the electrolytic solution charge density.  From equation (4.1.12), it 

can be concluded that for an electrically neutral system the potential gradient must be 

spatially independent and the iR drop profile must be linear.  The non-linear shapes of the 

iR drop profiles for the 0.1, 1, and 10 µm gap titanium crevices, Figures 4.1.14 – 4.1.16, 

indicate a non-neutral charge distribution throughout the crevice solution for all crevice 

gap sizes.   

However, comparison of these figures also shows that the iR drop profiles become 

increasingly linear as the crevice gap increases.  Poisson’s equation may be applied to 

determine the charge density profile from the iR drop field.  Unidimensional integration 

assuming a constant source term, εδ− ,  gives: 

 21

2

2
)( kxkxx ++−=Φ

ε
δ

      (4.1.13) 

Equation (4.1.13) is written for each computational control volume.  From equation 

(4.1.13), it can be seen that charge density will result in localized parabolic contortion of 

the iR drop profile.  By selecting a central point and two neighbouring points on the iR 

drop profile, δ , 1k , and 2k  can be calculated via a quadratic fit for each control volume.  

The charge density profile ( )xδ , has been calculated based upon iR drop profiles for the 

0.1, 1, and 10 µm gap crevices.    Figure 4.1.17 illustrates the spatial charge density 

profile in a 0.1 µm crevice.  As the crevice mouth is approached, the deviation from 

electroneutrality increases.  This slight net charge density is due to electromigration 

through a spatially dependent potential gradient.  The potential gradient contains two 

contributions, electrical potential and diffusion potential electromigration, which are the 

first and second terms respectively in equation (4.1.11).  
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Figure 4.1.17. Spatial electroneutrality deviation profile in a titanium crevice of 0.1 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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Because the slope of the potential gradient curve is proportional to the charge density, as 

the crevice mouth is approached, increased current density forces charge density to 

increase.   

Figure 4.1.18 displays the spatial charge density profile in a 1 µm crevice.  Near 

the crevice tip, chemical activity gradients are moderate; current density flowing through 

controls the iR drop.  As the mouth is approached, chemical activity gradients become 

steep and the relative strength of electromigration via diffusion potential increases.  Near 

the mouth of the 1 µm crevice, Figure 4.1.18 shows that electromigration via diffusion 

potential increases in strength relative to electromigration due to current density, 

evidenced by the sudden sign change in charge density.  Figure 4.1.19, the spatial charge 

density profile in a 10 µm crevice, shows that the charge density undergoes a sign change 

near the crevice mouth.  Where charge density becomes negative, electromigration via 

diffusion potential becomes significant relative to electromigration via current density.  

Taking the gradient of equation (4.1.11) and comparing with equation (4.1.12) will 

reinforce this statement: 

 







∇∇+







∇==Φ∇− ∑
j

jjj CDz
Fi

κκε
δ2     (4.1.14) 

The gradient of the local potential gradient, Φ∇ 2 , is proportional to the electroneutrality 

deviation δ .  The gradient of Φ∇  due to current density, ( )κi∇ , will always be positive.  

This can be shown through substitution of equation (4.1.10): 
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Figure 4.1.18. Spatial electroneutrality deviation profile in a titanium crevice of 1 µm gap, 

1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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The first term of (4.1.15) must be positive because pi  cannot be negative.   ( )κ1∇  will 

also be positive because the electrical resistance of the solution increases as the mouth is 

approached.  The current density contribution to potential cannot possess a negative 

slope.  Therefore, the diffusion potential contribution to the slope, 







∇∇ ∑

j

jjj CDzF κ , 

must become increasingly negative as the mouth is approached and be greater in 

magnitude than the current density contribution,  ( )κi∇ , near the crevice mouth.  Figures 

4.1.18 and 4.1.19, the spatial charge density profiles for the 1 and 10 µm gap crevices 

respectively, demonstrate that the effect of electromigration via diffusion potential is 

greater in regions of strong diffusion and weak current density driven electromigration.  

As the crevice gap increases in size, the relative strength of electromigration decreases as 

the relative strength of diffusion increases.  This is shown by the increasing influence of 

diffusion potential electromigration, manifested as a sign change in the charge density 

profile observed in the two larger crevices (Figures 4.1.18 and 4.1.19). 

4.1.4 Conclusions 

1. The present crevice corrosion model quantitatively matches experimental crevice 

solution composition observations of Alavi and Cottis [23] within experimental 

uncertainty. 

 

2. Decreasing the crevice gap increases the electrical potential along the crevice, 

increases the electrical conductivity of the solution, and increases the 

corrosiveness of the crevice solution. 
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Figure 4.1.19. Spatial electroneutrality deviation profile in a titanium crevice of 10 µm 

gap, 1 cm width, and 1 cm depth (0.5 M NaCl aqueous solution at 25°C) 
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3. Increasing the crevice gap reduces the relative strength of electromigration, 

thereby increasing the relative strength of diffusion.  This is shown by the spatial 

charge density profile – a negative charge density profile evidences the increasing 

influence of diffusion potential, and therefore diffusion, on the electrical potential 

gradient, the driving force for electromigration. 

 

4. The predicted spatial iR drop profile for each crevice size shows distinct non-

linearity.  Because charge density causes localized parabolic contortion of the iR 

drop profile, the non-linearity is evidence of the influence of solution charge 

density on electromigration.  Charge density throughout the crevice solution 

increases as gap size decreases.  This is evidenced by the increasing linearity of 

the spatial iR drop profiles (Figures 4.1.14 – 4.1.16) as the crevice gap increases. 

 

5. The influence of electromigration via diffusion potential is greatest in regions of 

strong diffusion and weak current density driven electromigration. 
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4.2 Effect of Solution Composition on Crevice Corrosion Initiation * 

 In the previous section, the effect of the crevice gap was illustrated using a 

sophisticated model of chemical equilibrium.  However, it did not include the effects of 

non-ideal solution theory on mass transport.  In this section, the comprehensive effect of 

non-ideal solution theory is accounted for in both chemical equilibrium and mass 

transport.  The model is applied to show the effect of composition on the development of 

the crevice solution during the incubation period of crevice corrosion. 

 The focus of this work is the prediction of the effect of non-ideal solution 

behaviour on crevice corrosion using the ionic interaction model of Pitzer [1] coupled 

with an electrolyte mass transport model.  This mathematical model was used to simulate 

the type 304 stainless steel crevice corrosion experiment of Alavi and Cottis [2].  The 

results are in excellent agreement with experimental observations.  Then, the model was 

applied to simulate the crevice corrosion initiation period of a titanium crevice. 

 Passive metals are generally corrosion resistant due to the formation of a tenacious 

oxide surface film called the passive film.  However, the geometric restrictions of a 

crevice and the passive current, which maintains the passive film, may cause the 

deoxygenation of the crevice which causes the formation of a differential aeration cell.  In 

a differential aeration cell, the anodic and cathodic sites are physically separated, 

resulting in an electrical potential gradient.  This potential gradient drives transport of 

cations out of the crevice and anions, such as the chloride ion, into the crevice.  Chloride 

ions are known to disrupt the passive film. 

                                                 
* Reference: K.L. Heppner, R.W. Evitts, and J. Postlethwaite (2005) Effect of Ionic 
Interactions on the Initiation of Crevice Corrosion in Passive Metals.  Journal of the 
Electrochemical Society 152.  pp. B89-B98. © The Electrochemical Society, Inc. 2005. 
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Metal dissolution inside the crevice produces cations which undergo hydrolysis 

producing metal hydroxides and hydrogen ions.  In a differential aeration cell, oxygen 

reduction, which would normally occur in the crevice, is not available to produce 

hydroxide ions.  Thus, metal dissolution and subsequent cation hydrolysis causes the pH 

to drop.  In turn, the dropping pH causes the metal dissolution rate to increase.  Thus, 

mass transport, chemical equilibrium, and electrode processes are autocatalytically inter-

coupled; the end result of these processes is the formation of concentrated crevice 

solutions.  The crevice solution may reach a critical pH and chloride ion activity whereby 

the protective passive film is destroyed.  The time at which this occurs is called the 

incubation period.   

Short and long range inter-ionic forces bear significant influence on transport and 

equilibrium in the concentrated crevice solution.  However, previous crevice corrosion 

models have assumed the crevice solution to be infinitely dilute [3 – 6] or have relied on 

activity models such as the Davies Correction [7], or the B-dot Debye-Hückel equation 

[8] to calculate chemical equilibrium.  Although useful for solutions of low ionic strength, 

the limits of applicability of these semi-empirical activity models are quickly surpassed in 

typical crevice solutions.  This paper uses the ion interaction model of Pitzer [1], 

applicable for ionic strengths up to about six molar, to calculate crevice solution 

equilibrium and mass transport. 

4.2.1 Mathematical model of crevice corrosion 

4.2.1.1 Mass transport 

In a deoxygenated crevice solution, several physical processes simultaneously 

occur: 
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1. Anodic dissolution at the metal-solution interface causes influx in metal cations 

into the crevice solution.  According to mixed potential theory, this process occurs 

at the same rate as oxygen reduction at the bold surface in the absence of 

hydrogen evolution. 

2. Chemical reaction of metal cations produces metal hydroxides, metal chlorides, 

and hydrogen ions. 

3. A potential difference between anodic sites along the crevice interior and the bold 

surface cathode drives electromigration of anions in and cations out of the crevice.  

Electromigration and diffusion transport are strongest near the crevice mouth. 

 

The flux of an ion through an electrolyte solution under the influence of an electrical field 

is [9]: 
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This equation is applicable to moderately dilute solutions at uniform temperature.  Using 

this flux equation, a material balance combined with Poisson’s equation for charge 

density yields: 
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where: 
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 ∑=
j

jjCzFδ         (4.2.2d) 

Here, iC , iz , iu , iD , and iγ  are the molar concentration, charge number, ionic mobility, 

diffusivity, and activity coefficient respectively of the ith species.  Faraday’s constant and 

the permittivity are represented by F  and ε .  The solution conductivity is represented by 

κ .  The two contributions to the electromigration driving force are i , the 

electromigration current density, and dpi , the current density due to diffusion potential.  

Concentration boundary conditions are provided by the bulk solution concentration at the 

crevice mouth and by the dissolution current at the crevice tip.  Because a reference 

current density is prescribed in the model, a boundary condition for potential is not 

required.  Rather, the potential drop in the solution is calculated by Ohm’s Law modified 

for concentration gradients [9]. 

4.2.1.2 Chemical equilibrium 

Chemical equilibrium is attained when the Gibb’s free energy of a chemical 

solution has reached a minimum.  The chemical equilibrium criterion that must be 

satisfied is: 

 Ka
i

i
i =∏ ν         (4.2.3) 

where iν  is the stoichiometric coefficient of the i
th species and the equilibrium constant is 

K .  Equation (4.2.3) is solved for each reaction occurring in solution.  The equilibrium 

relations are augmented with a set of mass balance relations and the resulting equation set 

is solved simultaneously using a Newton-Raphson non-linear equation solver. 
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4.2.1.3 Electrochemical reactions 

Metal dissolution electrode reactions at the metal-solution interface supply a 

source term for chemical reaction and mass transport calculations.  The dissolution rate, 

according to Faraday’s Law, is proportional to the passive current.  A function of 

temperature and acidity, calculation of the dissolution rate requires specification of a 

reference passive current specific to the metal studied; a reference passive current of the 

order of 0.1 µA/cm2 is typical [6, 10].  A Freundlich adsorption equation governs the 

effect of pH on the passive current [11]: 

 pHnkip ⋅−= )log()log(       (4.2.4) 

The value of k  can be determined at reference conditions.  Values of n  are based upon 

the charge number of the dissolving metal ion [11]. 

Temperature effects on the passive current are accounted for through an Arrhenius 

expression [11]: 
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       (4.2.5) 

Through application of equations (4.2.4) and (4.2.5), passive current is adjusted for 

temperature and pH.  For alloyed metals such as type 304 stainless steel (UNS S30400), 

dissolution of each metal is based upon its molar percentage in the alloy [12, 13].  

However, other observations have shown that dissolution may be selective [14, 15].  This 

model assumes a non-selective dissolution process and the rate of dissolution is: 
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As well as providing the source term, the value of the passive current has a dominant 

effect on electromigration mass transport.  To conserve charge, the primary 

electromigration current density i , presented in equation (4.2.1), is the integral of the 

passive current over the crevice interior metal surface area: 
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In this study, oxygen reduction at the crevice bold surface is assumed not to limit the rate 

of metal dissolution during the incubation period.  The diffusion limited oxygen reduction 

current is typically 50 – 100 µA/cm2  [11, 16].   Values of the limiting current that fall 

within this range have been obtained in cathodic polarization scans for several metals.  

Griess studied the crevice corrosion of titanium and obtained a limiting current of 

approximately 200µA/cm2 in 100ºC one molar sodium chloride solution [10].  This result, 

when adjusted for temperature using the correlation of Wilke and Chang [17], predicts a 

limiting current of approximately 50µA/cm2 in 25ºC NaCl solution.  Sehgal et al. [18], in 

a study of the pitting corrosion of aluminum alloys (AA1100-O and AA2024-T3), found 

that the limiting current density for oxygen reduction in this situation was also 

approximately 50 µA/cm2.  In the present work, a reference passive current of 0.1 µA/cm2 

was prescribed.  As a result, the calculated transient current densities were much smaller 

than the limiting current density and the crevice corrosion process was therefore not under 

mass transfer control.  Thus, the assumption of non-limiting conditions in this work is 

valid providing that the cathodic surface area is at least 0.5% - 5% of the anodic surface 

area. 
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 The time required for crevice deoxygenation to occur is calculated by the 

following equation: 

 
mp

Ocs

deoxy
Ai

LCFA
t 2

4
=        (4.2.8) 

where L  is the crevice depth and 
2O

C  is the dissolved oxygen concentration.  The 

incubation period is calculated by summing the deoxygenation time and the time required 

to reach the critical pH. 

4.2.2 Ionic interaction model 

Pitzer’s model is based upon a virial expansion of the excess Gibb’s Free Energy 

of the solution: 
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Only a function of ionic strength, the first term on the right hand side is the Debye-Hückel 

limiting law, )(If γ .  im  and sm  are the molality of the ith solute and the solvent, usually 

water.  The short-range potential effects are accounted for with the second and third virial 

coefficients, ijλ  and ijkµ  respectively.  The second virial coefficient is a function of ionic 

strength, temperature, and pressure; neutral species have no effect on its value.  Only 

binary and ternary short range interactions are considered; the probability of quaternary 

interactions is very low in the applicability range of the model.  The calculation of ionic 

strength closes the system of equations. 

Particular sums and differences of the second and third virial coefficients are 

experimentally observable, but the actual values of these virial coefficients not [19].  For 

this reason, equation (4.2.9) is arranged into experimentally observable sums and 
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differences of the virial coefficients, yielding the general form of the equations to 

determine the activity coefficients and the osmotic coefficient.  Because a complete 

derivation of this activity model is given in Pitzer [19], it will not be included here.  The 

general form of the osmotic coefficient, φ , is: 
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Similarly, the activity coefficient of each cation, Mγ , is: 

...2

)2()2()ln(

'

'

'

2

++++

+Ω+++=

∑∑∑∑ ∑

∑∑∑

< n

nMn

c a

caacM

a

Maa

a

aa

a

McaaMc

c

c

a

MaMaaMM

mCmmzmm

mmZCBmFz

λψ

ψγ γ

 (4.2.11) 

The activity coefficient of each anion, Xγ , is: 
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The activity coefficient of each neutral species, Nγ , is: 
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Equations (4.2.10) – (4.2.13) are the working equations of the Pitzer activity model.  

Second and third virial coefficients have been recast to the parameters listed and defined 

in Table 4.2.1.   

Parameter Representation 

φ
ijB  Effect of cation-anion interactions on osmotic coefficient 

φ
ijΩ  Effect of interactions of ions of like charge on osmotic coefficient 

caC  Effect of cation-anion interactions on osmotic coefficient and solute 

activity coefficient 

ijkψ  Effect of anion-anion-cation or cation-cation-anion interactions on osmotic 

coefficient and solute activity coefficient 

ijλ  Effect of neutral-anion, neutral-cation, or neutral-neutral interactions on 

osmotic coefficient and solute activity coefficient 

ijB  Effect of cation-anion interactions on solute activity coefficient 

 

Table 4.2.1. Parameters and their representation used in the activity model of Pitzer 

 

Additional terms for ternary interactions involving neutral species are available 

but they have not been included here; a complete description of these terms was provided 

by Pitzer [19].  The quantity γF  used in the preceding equations includes the Debye-

Hückel limiting law and it is written as follows: 
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The coefficients '

ijB  and '

ijΩ  account for effect of opposite and like charge interactions 

respectively.  Accounting for long range interactions, the Debye-Hückel term, γf , is 

dependent upon ionic strength and temperature and is expressed as: 
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The Debye-Hückel parameter, appearing in equation (4.2.15), is: 
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where sρ  is the density of the solvent.  The parameter, Z, in equations (4.2.10) – (4.2.12) 

is: 

 ∑=
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ii zmZ         (4.2.17) 

The universal parameter, φb , is molkg2.1  [19].  The ijB  parameters are functions of 

ionic strength.  For the Pitzer model, the functional forms of these parameters incorporate 

empirical constants, )0(

ijβ  and )1(

ijβ , obtained from a best fit of data: 
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where the functions g  and 'g  , written as dependent upon the arbitrary independent 

variable x, are: 
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The value of α  is 2 (kg/mol)1/2 for 1 – 1 and 1 – 2 electrolyte solutions [1].  Knowing 

φ
ijC , a parameter obtained from tabular data found in Pitzer [19], the parameters Cij are 

calculated by: 
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To account for the effect of mixing of like charged ions, ijΩ , '

ijΩ , and φ
ijΩ  are calculated 

[19]: 
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The long range interaction of ions of differing magnitude of like charge (i.e. a +2 charge 

ion interacting with a +3 charge ion) is highly dependent upon ionic strength.  This 

situation is known as unsymmetrical mixing and the )(Iij

E θ  terms are not negligible in 

this case.  This ionic strength dependence disappears when mixing is symmetric (i.e. 

interacting ions have the same charge) and only the ijθ  terms, taken as constant for any 

cation-cation or anion-anion pair, remain.  This work incorporates the effect of 

unsymmetrical mixing into the predictions of the activity coefficient.  Pitzer [19] details 

the calculation of the unsymmetrical mixing terms. 
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 Six empirical parameters, )0(

ijβ , )1(

ijβ , φ
ijC , ijθ , ijkψ , and ijλ , are required to solve 

Pitzer’s Equations.   

4.2.3 Results and discussion 

The crevice corrosion of type 304 stainless steel (71% iron, 10% nickel, and 19% 

chromium) and pure titanium in aqueous 0.6 M NaCl solution was modelled.  The Pitzer 

model parameters used to calculate the activity coefficient of each species in both crevice 

solutions are listed in Tables 4.2.2 – 4.2.4  [19 (and references therein)]. 

i j )0(

ijβ  )1(

ijβ  φC  

Na+ Cl- 0.0765 0.2664 0.00127 

H+ Cl- 0.1775 0.2945 0.0008 

Fe2+ Cl- 0.335925 1.53225 -0.00860725 

Na+ OH- 0.0864 0.253 0.0044 

Ni2+ Cl- 0.335925* 1.53225* -0.00860725* 

Cr3+ Cl- 0.73640 5.255 -0.04511 

        * assumed value 

Table 4.2.2.  Binary cation-anion interaction parameters for the type 304 stainless steel 

crevice solution 

i j 
ijθ  

H+ Na+ 0.036 

OH- Cl- -0.05 

Table 4.2.3.  Binary anion-anion or cation-cation interaction parameters for the type 304 

stainless steel crevice solution 



 153

 

 

i j k 
ijkψ  

Na+ H+ Cl- -0.004 

Cl- OH- Na+ -0.006 

Table 4.2.4.  Ternary anion-anion-cation or cation-cation-anion interaction parameters for 

the type 304 stainless steel crevice solution 

 

For interactions where no parameter values were available, the default values listed in 

Table 4.2.5 were used.   

 

Parameter Default Value 

)0(

ijβ  0.15 

)1(

ijβ  0.25 

φC  0.01 

ijθ  0.00 

ijλ  0.00 

ijkψ  0.00 

Table 4.2.5.  Default values of Pitzer model parameters used when no experimentally 

determined values are available 
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These values were selected based upon mean parameter values for other ionic 

interactions.  No values were available for neutral-ion interactions.  However, because of 

the very low concentrations of neutral solutes in both crevice solutions, the absence of 

experimentally determined parameters for these interactions was inconsequential on the 

calculated results.  It is proven mathematically in Appendix A that the sensitivity of the 

predicted activity coefficients of dissolved species is dependent upon the molality of the 

interacting ions.  For both systems modelled in this work, most interactions which involve 

ions of higher ionic strength (i.e. chloride) are accounted for using experimentally 

determined parameters.  Interactions with ions of low ionic strength (i.e. Cr(OH)3) have 

little influence on the activity coefficients of species in solution; the dearth of interaction 

data for these ions results in small error in the predicted activity coefficient. 

4.2.3.1 Type 304 stainless steel crevice 

Alavi and Cottis [2] used an engineered 304 stainless steel crevice with the 

following measurements: 90 µm across the gap, 2.5 cm in width and 8.0 cm deep.  The 

crevice, formed between a plate of steel and an acrylic electrode holder, was immersed in 

a 0.6 mol/L sodium chloride solution at 25°C.  Electrodes were placed along the crevice 

length to measure chloride ion activity and pH.  The data that they collected is used to 

validate the pH profile predicted by the present crevice corrosion model. 

 The first 33 hours of the Alavi and Cottis experiment was simulated.  The thirteen 

chemical reactions assumed to occur in the crevice solution are listed in Table 4.1.1 [12],  

[20].  The simulation required approximately 32 hours to run on a 3.06 GHz Pentium© 4 

Processor with 1 GB of RAM, a simulated time to real time ratio of approximately 1.03 to 

1.  Because of the inter-coupling of individual activity profiles, accounting for ionic 
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interactions in a computer code increases the number of iterations required to solve the 

mass transport problem. 

 Figure 4.2.1 compares predicted transient pH in a type 304 stainless steel crevice 

solution with the experimental observations of Alavi and Cottis [2].  The model predicts 

the trends that Alavi and Cottis experimentally observed.  Initially, aqueous sodium 

chloride solution (pH = 7) fills the steel crevice.  Hydrogen ions are produced by 

hydrolysis of iron, chromium, and nickel ions released by metal dissolution within the 

crevice.  The significant pH drop, prominent at the start of the simulation, increases the 

passive current, which increases the rate of metal dissolution.  This shifts the chemical 

hydrolysis equilibrium which causes the pH to drop further, thus forming an autocatalytic 

coupling.  An electrical potential gradient is established along the crevice length causing 

electromigration of anions into and cations out of the crevice.  Although mass transport 

will eventually balance chemical equilibrium, continual crevice expansion as well as 

perturbations to transient and spatial activity profiles introduced by long and short range 

ionic and neutral interactions prevents establishment of a true steady state condition.   

The non-ideal behaviour of the crevice solution couples the transport of each neutral and 

ionic species in the crevice solution.  Figure 4.2.1 shows that, after an initially rapid drop 

in pH, a very slight increase in pH results due to crevice expansion during the first ten 

hours.  If this were an ideal solution, the pH would continue to increase due to crevice 

expansion; this trend is seen in the transient pH profiles predicted by ideal solution theory 

[21].  However, as the hydrogen ion activity depends upon the ionic strength of the 

crevice solution, and because the net rate of ionic species accumulation in the crevice due 

to electromigration is greater than the rate of volume increase, the effect of increasing 
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molality of surrounding ions eventually overpowers the crevice expansion effect and the 

pH experiences a secondary drop. 

 Figure 4.2.2 compares the predicted steady state spatial pH profile of the present 

crevice corrosion model with the model of Evitts [6], Sharland [7], and Walton et al. [8].  

It is clearly seen that this model significantly improves on the predictions of the other 

models.  A lower pH in the crevice is predicted by the current model, predominantly 

because inter-ionic forces that restrict the transport of the hydrogen ion out of the crevice 

are accounted for using a more sophisticated activity coefficient model.  This results in a 

higher steady state hydrogen ion activity in the crevice solution.  This prediction more 

closely corresponds with the experimental observations of Alavi and Cottis [2] than the 

other models. 

Figure 4.2.3 displays the predicted transient activity coefficient profile for a few 

important species in the solution located 7.5 cm from the mouth of the crevice.  At this 

location, the ionic strength of the solution is greatest.  Although activity coefficients were 

calculated along the whole crevice length, only the activity coefficients 7.5 cm from the 

crevice mouth are presented here for brevity.  The predicted transient activity profile of 

Na+ 7.5 cm from the mouth of the steel crevice is also plotted on the secondary axis.  The 

figure shows that activity coefficients for H+, Na+, and Cl- (referred to as +H
γ , +Na

γ , and 

−Cl
γ  respectively from this point on) initially increase as the ionic strength of the crevice 

solution increases.  Although Na+ is driven from the crevice interior, +Na
γ  increases due 

to increased short range interactions with anions electromigrating into the crevice, locally 

produced cations, and neutral species.  Cl- is transported into the crevice at a faster rate 

than it is consumed by chemical reactions. 
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Figure 4.2.1.  Comparison of Predicted Transient pH Profile to Experimentally 

Determined Profile in a Type 304 Stainless Steel Crevice (25°C, 0.6 Molar NaCl Bulk 

Solution, Dimensions 90 µm x 2.5 cm x 8.0 cm): a) 1 cm from mouth; b) 2 cm from 

mouth; c) 4 cm from mouth; d) 7.5 cm from mouth 
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Figure 4.2.2.  Comparison of Predicted pH Profile Against Predictions of Previously 

Published Models and the Experimental Observations of Alavi and Cottis in a Type 304 

Stainless Steel Crevice (25°C, 0.6 Molar NaCl Bulk Solution, Dimensions 90 µm x 2.5 

cm x 8.0 cm) 
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Figure 4.2.3.  Predicted Transient Activity Coefficient Profile of Several Important Ions 

7.5 cm From the Mouth of a Type 304 Stainless Steel Crevice (25°C, 0.6 Molar NaCl 

Bulk Solution, Dimensions 90 µm x 2.5 cm x 8.0 cm) 
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Increased short range ionic interaction combined with long range interactions increases 

−Cl
γ .  H+ is essentially a point charge; its presence near other ions creates a large 

disturbance to the surrounding ionic cloud manifested as an initially large activity 

coefficient.  At the time Na+ is nearly depleted in the crevice solution 7.5 cm from the 

mouth, the rate of increase of −Cl
γ  increases.  This suggests that the presence of Na+ 

inhibits the non-ideal influence of Cl- on the crevice solution.  Even when Na+ is nearly 

depleted in the crevice solution, +Na
γ  continues to rise due to increasing ionic strength.  

Short and long range interactions between H+ and other ions in the crevice solution 

increases +H
γ  thereby dropping the pH.  This in turn causes the passive current, which is 

proportional to the rate of metal dissolution, to exponentially increase.  This secondary 

pH drop is due to ionic interactions.  When inter-ionic forces are not incorporated into the 

model (the activity coefficient solver is turned off), the predicted pH slowly rises as the 

crevice gradually expands and no secondary pH drop is generated [21]. 

The transient passive current and ionic strength 7.5 cm from the crevice mouth is 

shown in Figure 4.2.4.  The transient passive current profile nearly mirrors the shape of 

the transient pH curve while the transient ionic strength profile in the crevice solution is 

approximately linear.  Mass transport and chemical equilibrium processes work to smooth 

out the non-linear increase in time of the rate of metal dissolution (proportional to the 

passive current).  If cations were not being transported out of the region, the ionic strength 

would increase in a trend similar to the metal dissolution rate.  However, as the 

dissolution rate increases, so does the rate of mass transport via electromigration.  This 

plot shows a linear increase of the ionic strength with time.  This implies that, even while 

the rates of transport and dissolution are changing, the ratio of the magnitude of the rates 
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of the two processes remains approximately constant.  This results in a linear increase in 

ionic strength.  This figure also shows that, because Pitzer’s model is applicable only up 

to an ionic strength of about 6 mol/kg [19], the incubation period for this crevice can only 

be accurately simulated for about 40 hours. 

 Figure 4.2.5 shows transient activity profiles of Cl-, Na+, and H+ throughout the 

type 304 stainless steel crevice.  Driven into the crevice by a potential gradient, the 

chloride ion activity approaches the limits of applicability of Pitzer’s model [1]. 

4.2.3.2 Titanium crevice 

The crevice corrosion incubation period of a titanium crevice measuring 1 cm 

deep and 1 cm wide with a 1 µm gap immersed in 0.5 M sodium chloride solution was 

simulated for 45 hours at 25°C to demonstrate the versatility of the model.  The chemical 

reactions assumed to occur in the crevice solution are listed in Table 4.1.2  [22].  The 

ratio of simulated time to real time for this system was approximately 1.9 to 1 when run 

on a 3.06 GHz Pentium© 4 Processor with 1 GB of RAM. 

Griess and He et al. reported that a significant portion of the cathodic charge is supplied 

by internal hydrogen ion reduction in a titanium crevice [10, 23].  In this model, hydrogen 

evolution is assumed to constitute 70% of the cathodic load.  This is based upon the 

recent findings of He et al.  [23] who reported that 60% to 75% of the cathodic charge is 

supported by internal hydrogen ion reduction.  Hydrogen evolution affects both the 

solution pH and the current density flowing through the crevice solution.  There is less 

current flowing through the solution because a portion of the anodic current is consumed 

inside the crevice.   
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Figure 4.2.4.  Predicted Transient Ionic Strength and Transient Passive Corrosion Current 

Profiles 7.5 cm From the Mouth of a Type 304 Stainless Steel Crevice (25°C, 0.6 Molar 

NaCl Bulk Solution, Dimensions 90 µm x 2.5 cm x 8.0 cm) 
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Figure 4.2.5.  Predicted Activity of Several Important Ions in a Type 304 Stainless Steel 

Crevice (25°C, 0.6 Molar NaCl Bulk Solution, Dimensions 90 µm x 2.5 cm x 8.0 cm): a) 

1 cm from Mouth; b) 2 cm from Mouth; c) 4 cm from Mouth; d) 7.5 cm from Mouth  
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Equation (4.2.7) is modified for this special case: 
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Here, Ψ  represents the fraction of the anodic current supplied by hydrogen ion reduction.  

Furthermore, because the solution pH is increased by hydrogen ion reduction, this affects 

the magnitude of the passive current (see equation (4.2.4)). 

 Predicted transient activity coefficient profiles of Na+, Cl-, and H+ at the crevice 

tip are shown in Figure 4.2.6.  It is apparent that interactions involving H+ have 

significant influence on chemical conditions in the crevice solution because +H
γ  deviates 

significantly from unity.  After deoxygenation, activity coefficients remain constant as the 

ionic strength increases.  Hindered by interaction with other ions, H+ is unable to migrate 

out of the crevice as fast as it is produced via hydrolysis.  This increases the metal 

dissolution rate due to increased acidity levels.  The influx of metallic cations into the 

crevice due to metal dissolution, and influx of anions due to electromigration both 

increase autocatalytically.  A solution of high ionic strength results where the effects of 

short range inter-ionic forces are significant.  Because H+ has a very high surface charge 

density, +H
γ  is extremely sensitive to short range interactions and it therefore 

dramatically increases after approximately five hours of immersion.  +Na
γ  increases more 

slowly while −Cl
γ  exhibits a slight inverse response. 

 Figures 4.2.7 and 4.2.8 show the transient pH and Cl- activity at the tip, center, 

and mouth of the crevice.  Hydrogen ions produced through metal ion hydrolysis are 

transported to the crevice mouth at a rate that slower than they are produced.  The initial 
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rate of pH drop is high requiring small time steps to compute its trajectory.  As the 

crevice mouth is approached, the electromigration current density builds in magnitude 

and, therefore, Cl- migrates to the crevice tip with little opposition in the relatively dilute 

solution.  Towards the crevice tip, the solution becomes increasingly concentrated; short 

range coulombic forces between ions become significant and offer increased resistance to 

mass transport.  However, the iR drop decreases as the solution conductivity increases 

thereby lowering the resistance to mass transport.  The pH reaches a minimum value at 

the crevice tip.  Driven into the crevice by electromigration forces that are greater than 

smoothing diffusive forces, the chloride ion activity is also greatest at the crevice tip.  

Although the rate of increase of the chloride ion activity reduces due to slow crevice 

expansion, the pH undergoes a secondary drop.  Therefore, the rate of increase of the 

hydrogen ion activity coefficient is greater than the rate of crevice expansion.   

 Using an infinitely dilute transport model, the transient pH and Cl- concentration 

were simulated and compared with the results shown in Figures 4.2.7 and 4.2.8.  The 

hydrogen ion concentration predicted using this model is higher than that predicted using 

infinitely dilute solution theory suggesting that the transport of H+ is hindered by the 

presence of other cations repelling it and anions attracting it.  However, the chloride ion 

concentration also higher using the non-ideal model suggesting that Cl- is pulled into the 

crevice by electromigration and by attraction to cationic species in the crevice solution. 

4.2.4 Conclusions 

A mass transport model applicable to moderately dilute solutions has been solved 

simultaneously with chemical equilibrium and the ionic interaction model of Pitzer [1] to 

predict the incubation period of a type 304 stainless steel crevice and a titanium crevice.   
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Figure 4.2.6.  Predicted Activity Coefficients of Several Important Ions in a Titanium 

Crevice (25°C, 0.5 Molar NaCl Bulk Solution, Dimensions 1 µm x 1.0 cm x 1.0 cm) 
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Figure 4.2.7. Predicted Transient pH Profile at the Tip, Center, and Mouth of a Titanium 

Crevice (25°C, 0.5 Molar NaCl Bulk Solution, Dimensions 1 µm x 1.0 cm x 1.0 cm) 
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Figure 4.2.8.  Predicted Transient Chloride Ion Activity Profile at the Tip, Center, and 

Mouth of a Titanium Crevice (25°C, 0.5 Molar NaCl Bulk Solution, Dimensions 1 µm x 

1.0 cm x 1.0 cm) 
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The predictions of the model agree quite well with the experimental observations of Alavi 

and Cottis [2].  Based upon this work, the following conclusions can be made: 

 

1. The model predicts that concentrated solutions form in an occluded crevice where 

convective transport is negligible.  A potential difference between anode and 

cathode causes electromigration of anions and cations inside a differential aeration 

cell.  The iR drop is the portion of the potential difference that drives 

electromigration; the electrical potential of the solution is transferred to ionic 

kinetic energy.  Severe acidity develops because H+ is generated by hydrolysis 

faster than it can be transported out. 

 

2. Because the hydrogen ion concentration predicted using the moderately dilute 

model is higher than that predicted by ideal solution theory, inter-ionic short and 

long range forces hinder its rate of mass transport.  However, the predicted 

chloride ion concentration is also higher using the moderately dilute solution 

model.  Therefore, coulombic forces pull the chloride ion into the crevice thus 

increasing its rate of mass transport. 

 

 

3. Binary and ternary interactions between anions, cations, and neutral species 

introduce continual perturbations to transient and spatial activity profiles in the 

crevice solution.  As well as increasing the required iterations to solve the mass 
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transport equation, these interactions prevent attainment of a steady state condition 

in strong electrolytic solutions. 

 

4. The effect of the sodium ion is to counteract the adverse influence of the chloride 

ion on crevice solution ideality.  Model predictions show that upon depletion of 

Na+, −Cl
γ  increases more rapidly. 

 

 

5. Ionic interactions are responsible for a secondary drop in pH.  Immediately after 

deoxygenation, the pH drops rapidly due to chemical hydrolysis of metal ions.  

The pH would normally reach a minimum and begin to increase due to slow 

crevice expansion.  However, competing with this is the increasing ionic strength 

of the solution causing the hydrogen ion activity to increase.  The effect of 

increasing activity eventually supersedes the effect of the expanding crevice 

causing the secondary pH drop. 
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4.3 Effect of Hydrogen Ion Reduction on Crevice Corrosion Initiation * 

In the previous section, a sophisticated model was used to predict the crevice 

solution chemistry using Pitzer’s Equations, and thus, showed the effect of the bulk 

solution composition on the incubation period of type 304 stainless steel and titanium.  Of 

particular interest in the simulation of titanium crevice corrosion is the effect of crevice-

internal hydrogen ion reduction.  It is well known that hydrogen ion reduction plays a 

significant role in the titanium crevice corrosion process.  Furthermore, because it is well 

known that titanium will not undergo active crevice corrosion in 0.5 M NaCl solution at 

25ºC, this section investigates the effect of crevice-internal hydrogen ion reduction in the 

same bulk solution at elevated temperatures. 

In this research, the effect of the level of hydrogen ion reduction on a titanium 

crevice immersed in 0.5 M NaCl solution at 70ºC was investigated.  The fraction of the 

total dissolution current supplied by hydrogen ion reduction, Ψ , was varied from 0 to 0.8 

in increments of 0.2 and the steady state pH, conductivity (κ ), and iR drop (Φ ) profiles 

in the crevice were calculated.  The mass transport model of Watson and Postlethwaite [1] 

was employed and the crevice was assumed to be passivated. 

As Ψ  increased, the solution conductivity and the iR drop along the crevice were 

significantly reduced while the pH showed only a slight increase.  A plot of total iR drop 

along the crevice length, pH at the crevice tip, and solution conductivity at the crevice 

against Ψ  was constructed and the following relationships were obtained (R2 > 0.995): 

27.10091.0 +Ψ=pH       (4.3.1) 

                                                 
* Reference: K.L. Heppner and R.W. Evitts (2005) “Modelling of the Effect of Hydrogen 
Ion Reduction on the Crevice Corrosion of Titanium” in Environment-Induced Cracking.  
Chemistry, Mechanics, and Microstructure.  Eds. Shipilov S.A., Jones, R.H., Ulive, J.-M. 
and Rebak, R.B.  Elsevier, Oxford, UK.  In Press. 
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0.97919.0 +Ψ−=Φ        (4.3.2) 

157399.00044.0 2 +Ψ−Ψ−=κ      (4.3.3) 

Of the three solution properties studied, the pH showed the weakest dependence upon the 

hydrogen ion reduction fraction, varying linearly from 1.27 to 2.01 as Ψ  varied from 0% 

to 80%.  The iR drop along the crevice length showed the greatest sensitivity to the 

hydrogen ion reduction fraction.  

4.3.1 Introduction 

Crevice corrosion is a dangerous form of localized corrosion often initiated by 

environment induced cracking.  Once a crack is initiated, localized attack is at least 

partially sustained by crevice corrosion or similar phenomena.  Titanium is a metal which, 

under normal conditions, will resist corrosive attack quite well.  However, it is susceptible 

to crevice corrosion.  It is known that hydrogen evolution is a significant cathodic charge 

contributor in a titanium crevice system [2, 3].  The extent to which hydrogen evolution 

occurs in a titanium crevice is unique to this metal and can account for up to 80% of the 

total cathodic charge [2].  Heppner et al. [4] recently published a crevice corrosion model 

which accounted for the effect of internal hydrogen evolution on the crevice corrosion 

incubation period but did not investigate the effect of H+ reduction in detail.  The focus of 

the current study is to predict the overall effect of hydrogen ion reduction upon the 

crevice corrosion process.  By varying the percentage of cathodic charge contributed by 

hydrogen evolution, the magnitude of the effect of hydrogen evolution upon mass 

transport through the crevice solution can be determined. 

The rate of anodic metal dissolution is equal to the combined rate of external (to 

the crevice) oxygen reduction and internal hydrogen ion reduction in a differential 
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aeration cell.  In the absence of internal crevice cathodic reactions, the entire current 

leaving the anodic crevice walls and entering solution as an ionic mass flux would induce 

electromigration transport through the crevice solution.  However, hydrogen evolution 

near the anode consumes a portion of the current, thereby reducing electromigration 

transport rates in the solution.  Reduced mass transport decreases the rate of chloride ion 

influx.  However, reduced mass transport rates also hinder the transport of hydrogen ions 

out of the crevice.  Yet, hydrogen evolution consumes hydrogen ions in solution and 

counteracts the effects of chemical hydrolysis of Ti4+ ions which produces H+.  Overall, 

hydrogen ion reduction increases the crevice solution pH and therefore reduces the 

magnitude of the passive current in the crevice.  The coupling between passive current 

and pH is autocatalytic and is a primary cause of the development of aggressive solutions 

in a crevice.  Because hydrogen ion reduction directly affects the system pH, it has a large 

impact upon the entire crevice corrosion process.  In this work, the effect of hydrogen 

evolution on mass transport in the crevice solution will be examined in detail. 

4.3.2 The mathematical model 

Watson and Postlethwaite developed a model of mass transport applicable for 

dilute solutions [1].  This model has been shown previously to adequately represent 

transport in a crevice solution [5, 6] and is therefore used in this study: 
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where the charge density is defined as: 

∑=
j

jjCzFδ         (4.3.5) 

and the diffusion potential current density is: 
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∑ ∇=
j

jjjdp CDzFi        (4.3.6) 

The current density is determined from the passive current integrated along the crevice 

length: 
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xdAxi
xi

cs

x

tip
mp∫

=       (4.3.7) 

The source term in equation (4.3.4), iG , represents the influence of chemical reaction 

kinetics upon the concentration profile in space and time.  In this study, reaction kinetics 

are assumed to occur much faster than mass transport processes.  Therefore, chemical 

equilibrium is assumed at all times, an assumption which mathematically decouples mass 

transport and chemical reaction processes.  With this assumption in place, the effect of 

chemical reaction is represented as a set of chemical equilibrium expressions for the 

hydrolysis of Titanium (IV) [7] (see Table 4.1.2).  Equilibrium constants were adjusted 

for temperature using the method of Criss and Cobble [5, 8]. 

Electrode reactions which are assumed to occur inside the crevice are the 

dissolution of Titanium (IV) (anodic) and the reduction of hydrogen ions (cathodic): 

−+ +→ 4eTiTi 4        (4.3.8) 

2H2e2H →+ −+        (4.3.9) 

At the bold surface surrounding the crevice mouth, oxygen reduction is assumed to occur: 

−− →++ 4OH4eO2HO 22       (4.3.10) 

In this model, only the crevice interior is modelled; the rate of mass transfer of oxygen to 

the bold surface is considered to be non-limiting.  The time required to deoxygenate the 

crevice is calculated via the following equation: 
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=        (4.3.11) 

The incubation period is the sum of the deoxygenation time and the time for the crevice 

solution pH to drop below the critical pH.  The rate of anodic and cathodic processes must 

be equal by mixed potential theory [9] and are proportional to the passive current.  The 

passive current is adjusted for temperature using an Arrhenius type expression and pH 

using a Freundlich Isotherm [10]: 






























−−=

0

,

11
exp

0 TTRT

E
ii a

Tpp      (4.3.12) 

pHnki p ⋅−= )log()log(       (4.3.13) 

The activation energy for Titanium (IV) is 12,700 J/mol [3].  Values of n  are based upon 

the electrical charge of the dissolving metal ion and can be interpolated from values given 

by Shrier [10].  Use of both equations requires the specification of a reference passive 

current density, temperature, and pH.  For titanium, a reference passive current of 0.1 

µA/cm2 is used at 25ºC and a pH of 7.  This value is interpolated from experimental data 

obtained by Griess [3]. 

4.3.3 Numerical solution of the model 

The mass transport model, equation (4.3.4), was solved using a finite volume 

method.  The electromigration term was discretized using an upwind formulation, i.e.: 
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where: 
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Thus, the direction of the one-sided finite difference expression depends upon the 

direction of ionic electromigration.  Use of an upwind formulation avoids the possibility 

of negative transport coefficients and therefore ensures that a more realistic solution of 

the transport equation will be obtained [11]. 

One boundary condition for the mass transport model was provided by the 

magnitude of the passive current at the crevice tip: 
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dx
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dp

iii =−
+

κ
      (4.3.16) 

Equation (4.3.16) is a pseudo steady state mass balance at the metal-solution interface.  

The right hand side of equation (4.3.16) is the corrosion induced ionic flux.  At the 

crevice mouth, the bulk concentration was assumed: 

bulk

ii CC =         (4.3.17) 

The finite volume grid over which the transport equation is solved, as well as the solution 

algorithm, have been shown previously (Figures 4.1.1 and 4.1.2). 

4.3.4 Results and discussion 

He et al. recently performed an experimental study upon a high purity titanium 

crevice immersed in an acid chloride solution at 70ºC [2].  By comparing the weight loss 

measurement with the integrated current-time graph obtained during the course of the 

experiment, the relative influence of hydrogen evolution upon the anodic current was 

determined.  He et al. determined that approximately 70% of the cathodic charge is 

carried by hydrogen ion reduction [2].  This measurement was the basis of selection of the 

value of Ψ , the fraction of cathodic charge carried by hydrogen evolution, for the present 

model.  While the effect of hydrogen ion reduction upon metal dissolution is 



 180

experimentally measurable, its effects upon many properties within the crevice are not 

readily obtained.  For this reason, the current study was undertaken. 

      At the start of the crevice corrosion process, the deoxygenation of the crevice 

solution causes the formation of a differential aeration cell.  Once a differential aeration 

cell exists, a strong acid-chloride solution may develop in the crevice.  The measurement 

of He et al. [2] gave an indication of the time-averaged influence of hydrogen ion 

reduction.  However, at the beginning of the experiment when the solution pH was 

relatively high and oxygen was available, the portion of the cathodic charge carried by 

hydrogen ion reduction was likely quite low.  As the crevice solution became more acidic 

and oxygen was depleted, the dependency of the anodic current upon hydrogen evolution, 

due to the concentration overpotential, would have increased substantially.  Therefore, the 

portion of the anodic current supplied by hydrogen ion reduction likely varied between 

approximately 0% and 80%.  This is the range of values of Ψ  used in this study.      

      For each simulation in this work, a titanium crevice measuring 1 µm across the 

gap, 1 cm wide, and 1 cm deep was used.  It was immersed in 0.5 M NaCl solution at 

70ºC. Figure 4.3.1 illustrates the effect of Ψ  on the pH, iR drop, and conductivity of the 

crevice solution.  From this figure, as the portion of the anodic current supported by 

hydrogen ion reduction was increased from 0 to 0.8, the iR drop in solution along the 

crevice length decreased.  This is because the net current density or net charge flux 

flowing from the anodic crevice wall decreases as Ψ  increases.  The net current density at 

any point in the crevice is the difference between current supplied by metal dissolution 

and current consumed by hydrogen ion reduction, i.e.:  

( )Ψ−= 1p

net

p ii        (4.3.18) 
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The current density leaving the crevice wall adds to the current density flowing through 

solution, and thus, the magnitude of the current density in solution depends on the net 

anodic current.  The addition of current released from the crevice wall to the current 

flowing through solution is analogous to tributaries adding to a river.   

      Further examination of Figure 4.3.1 reveals that as the iR drop decreases, the 

solution conductivity also decreases.  This indicates that the magnitude of the current 

density flowing through solution is more sensitive to Ψ  than conductivity is to Ψ .  This 

can be clarified using Ohm’s Law for a system of uniform composition: 

κ
i

−=Φ∇         (4.3.19) 

Because conductivity is in the denominator of equation (4.3.19), as it decreases it will 

tend to increase the potential gradient.  Therefore, for the potential gradient to decrease, 

the current density must decrease to a greater extent than the conductivity. 

Figure 4.3.1 also shows that as the rate of hydrogen ion reduction increases inside 

the crevice, the hydrogen ion concentration decreases and, thus, the pH increases.  While 

hydrogen evolution consumes H+ thereby increasing the pH, it also reduces the rate of 

electromigration which tends to increase the H+ concentration in the crevice solution. Due 

to this competing effect, the pH is the property (of those studied in this work) which 

shows the least dependency upon the rate of hydrogen ion reduction.  Furthermore, the iR 

drop is the solution property that is most sensitive to changes in Ψ . 

In addition to its direct affect upon solution properties, the value of Ψ  also affects 

the kinetic behaviour of the system.  The conductivity is calculated from the 

concentration of each ionic species in solution and is therefore an indicator of the rate of 

change of the crevice solution composition with time.  Conductivity is therefore used as 
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an indicator of the time to steady state onset.  Examination of the conductivity profiles 

displayed in Figure 4.3.1 reveals that, as Ψ  increases, so does the time required for the 

system to reach steady state.   

As Ψ  increases from 0 to 0.8, the time required for the system to reach a steady state 

condition increases from approximately 5 hours to approximately 18 hours. 

Figure 4.3.2 shows the variation of pH and conductivity at the crevice tip, as well 

as iR drop along the crevice length as the value of Ψ  is increased.  Each solution property 

showed a distinct linear or parabolic variation with Ψ .  The data points were fit to a best 

fit line and each correlation fit the data with excellent accuracy (R2 > 0.995): 

27.10091.0 +Ψ=pH       (4.3.20) 

0.97919.0 +Ψ−=Φ        (4.3.21) 

157399.00044.0 2 +Ψ−Ψ−=κ      (4.3.22) 

While the pH and the iR drop varied linearly with Ψ , conductivity showed a parabolic 

dependence.  For pH to have linear dependence upon Ψ , the ratio of the rate of 

production of H+ via chemical hydrolysis to the rate of transport of H+ out of the crevice 

must remain constant for varying values of Ψ .  However, for the conductivity to show 

concave-down parabolic dependence upon Ψ , the overall rate of transport of ions out of 

the crevice must outpace the rate of internal cationic production as Ψ  increases.  Thus, 

the dependency of these parameters upon Ψ  gives insight into how the overall system 

adjusts to internal hydrogen ion reduction. 
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Figure 4.3.1.  Predicted transient iR drop along the crevice length, pH at the tip, and 

conductivity at the tip in a titanium crevice measuring 1 µm across the gap, 1 cm deep, 

and 1 cm wide and immersed in a 0.5 M NaCl solution at 70ºC: (a) 0% hydrogen 

evolution; (b) 20% hydrogen evolution; (c) 40% hydrogen evolution; (d) 60% hydrogen 

evolution; (e) 80% hydrogen evolution. 
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Figure 4.3.2.  Variation of steady state solution properties with Ψ : (a) pH at the crevice 

tip; (b) iR drop along the crevice length; (c) conductivity at the crevice tip 
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4.3.5 Conclusions 

Based upon the results of the preceding work, the following conclusions can be 

made: 

 

1. Internal hydrogen ion reduction greatly impacts the crevice corrosion process in a 

titanium crevice.  It has a marked effect upon the pH, conductivity, and iR drop in 

the crevice solution. 

 

2. A linear dependence of pH upon Ψ  is observed.  This implies that, as Ψ  is varied, 

the ratio of the rate of H+ production due to chemical hydrolysis of Ti4+ to the rate 

of H+ transport out of the crevice remains approximately constant. 

 

3. A concave-down parabolic dependence of conductivity upon Ψ  is also observed.  

This result suggests that the sum of ionic transport out of the crevice and H+ 

reduction is more sensitive to changes in Ψ  than the rate of anodic metal 

dissolution is to changes in Ψ .  Because both mass transport out of the crevice 

and H+ reduction decreases the conductivity while metal dissolution increases the 

conductivity, the conductivity decreases significantly with increasing Ψ . 

 

4. Changing the value of Ψ  causes the transient behaviour of the system to change.  

As the value of Ψ  increases from 0 to 0.8, the time to steady state onset of the 

system changes from approximately 5 to approximately 18 hours. 
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5. As Ψ  increases, both the iR drop and the conductivity in the crevice decrease.  

Therefore, the dependence of current density flowing through solution upon Ψ  

must be greater than the dependence of the conductivity uponΨ . 

 

6. Contrary to expectations, of the solution properties studied in this work, pH shows 

the least dependency upon the rate of hydrogen ion reduction.  This is due to a 

competing effect.  As Ψ  increases, the rate of consumption of H+ at crevice-

internal cathodic sites increases while the rate of electromigration mass transport 

decreases.  While H+ consumption obviously increases the pH, decreased mass 

transport rates reduce the rate at which H+, which is produced via Ti4+ hydrolysis, 

electromigrates out of the crevice solution, thereby decreasing the pH.  Overall, as 

Ψ  increases, the crevice solution pH increases. 
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4.4 Application of the Crevice Corrosion Initiation Model to Alloy Ranking* 

 The previous sections have shown the effect of the crevice gap, the solution 

composition and temperature, and the rate of crevice-internal hydrogen ion reduction.  In 

this section, aspects of each of these studies are drawn upon to develop a comprehensive 

model of crevice corrosion initiation and apply it to predict the propensity of a passive 

alloy to crevice corrosion.  It will be shown that the crevice corrosion initiation model 

herein presented – which accounts for non-ideal solution effects in both mass transport 

and chemical equilibrium, and includes the effect of crevice-internal hydrogen ion 

reduction – is capable of ranking alloys in accordance with their pitting resistance 

equivalence number (PREN) ranking. 

 In this work a mathematical model of crevice corrosion initiation is developed.  

The model utilizes a moderately dilute mass transport model that is augmented with 

Pitzer’s ionic interaction equations, and it is therefore suitable for relatively concentrated 

electrolyte environments.  It is applied to model the crevice corrosion initiation of Grade 

2 titanium, along with four stainless steels, Types 304, 308, 314, and 405, in a typical 

Saskatchewan potash processing brine (3.62 M KCl, 3.39 M NaCl, 25ºC, pH = 7).  The 

simulation results are used to rank the alloys for their crevice corrosion resistance.  The 

following ranking is obtained: 

1. Grade 2 Titanium (UNS R50400) 

2. Type 314 stainless steel (UNS S31400) 

3. Type 308 stainless steel (UNS S30800) 

                                                 
* Reference: K.L. Heppner, K. and R.W. Evitts (2005) A Numerical Model to Rank 
Passive Alloys for Crevice Corrosion Susceptibility in Potash Brine.  Canadian 
Metallurgical Quarterly. Submitted September 2005. 
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4. Type 304 stainless steel (UNS S30400) 

5. Type 405 stainless steel (UNS 30500) 

This model not only ranks titanium as the best material in terms of crevice corrosion 

resistance but it also places the stainless steels in order of decreasing PREN.  Hence, the 

model may have important applications in the selection of candidate alloys for corrosive 

duty. 

4.4.1 Introduction 

Crevice corrosion is a localized acid-chloride attack.  It occurs in occluded regions 

of the metal surface such as under deposits, at the meeting of metal surfaces, in imperfect 

welds, beneath gaskets and washers, and in corrosion and/or stress induced pits and 

cracks.  This feature of crevice corrosion makes it particularly dangerous as it can go 

undetected until failure.  This form of corrosion affects passive metals, which are 

generally corrosion resistant and form a thin tenacious oxide film of low electrical or 

ionic conductivity.  This film is referred to as the passive film.  Due to the low 

conductivity, only a small leakage current, which is called the passive current, can pass 

through the film.  Thus, when the film is present, the metal dissolves at an extremely slow 

rate.  However, in a sufficiently strong acid-chloride solution, which is often called a 

critical crevice solution, this protective film may be damaged.  Due to differential 

aeration, such acid-chloride solutions may develop autocatalytically inside a crevice, 

which may then initiate active crevice corrosion. 

Crevice corrosion is a common problem in the potash industry.  Here, 

infrastructure and processing equipment is exposed to concentrated brines.  Such 

environments are also ideal for the development of pitting corrosion, which is another 
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form of localized corrosion that is frequently associated with crevice corrosion.  Once pits 

are formed, strong acid-chloride solutions may develop within them in the same manner 

as the solutions formed in crevices. 

There have been a number of mathematical models proposed in the past to 

simulate crevice corrosion [1 – 15].  However, with the exception of a few, these models 

do not rigorously model the effect of ionic interactions in solution.  Furthermore, these 

models are generally applied to one alloy or class of alloys (i.e., stainless steels).  This 

work features a model of crevice corrosion initiation which incorporates the effect of 

ionic interactions upon mass transport and chemical equilibrium. Due to its generic 

coding structure, it can be applied to many passive metals immersed in many different 

electrolytes.  In the current study, the transient composition of the solutions located within 

crevices formed from Grade 2 titanium and Types 304, 308, 314, and 405 stainless steel 

that are immersed in a potash brine (3.62 M KCl, 3.39 M NaCl, 25ºC, pH = 7) are 

modelled.  These alloys were chosen because they are comprised mainly of titanium, iron, 

chromium, and nickel – metals for which chemical equilibrium data is available in the 

literature. 

4.4.2 Crevice corrosion mechanism 

The mechanistic model used here follows Fontana and Greene [16]. Initially, the 

composition of the solution within the crevice is the same as that outside the crevice.  A 

passive film initially covers the surface of the crevice walls and surrounding metal, which 

is called the bold surface.  Microscopic corrosion cells initially cover the entire inside 

surface of the crevice.  Throughout the crevice and on the bold surface, oxygen is 

consumed via reduction to support metal dissolution:   
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 −− →++ 4OH4eO2HO 22       (4.4.1) 

 −+ +→ zeMM z        (4.4.2) 

These two processes occur simultaneously and at equal rates (to satisfy charge 

conservation).  The metal ions released due to equation (4.4.2) will react with water to 

form metal hydroxides with H+ as the by-product: 
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    (4.4.3) 

Note that while both dissolution and oxygen reduction are occurring in the crevice, the 

production of H+ is balanced by the production of OH- and the pH remains neutral.  

However, due to geometric restrictions, oxygen may not diffuse into the crevice as 

quickly as it is consumed via reduction.  Thus, crevice deoxygenation may occur.  When 

this happens, there are two major consequences: 

1. The cathodic process now occurs at the bold surface surrounding the crevice 

mouth.  Thus, anode and cathode are separated inducing a potential gradient in the 

crevice solution.  Due to the potential gradient, cations electromigrate out of the 

crevice while anions, such as chloride, electromigrate in. 

2. Oxygen reduction now only occurs at the bold surface and not inside the crevice.  

However, H+ is still produced in the crevice via chemical hydrolysis of dissolved 

metal ions.  Thus, the pH of the solution inside the crevice will drop.  This, in 

turn, reduces the electrical potential within the crevice and increases the rate of 

dissolution.   
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As the passive current increases and the crevice potential drops, the rate of 

dissolution and the rate of chloride ion influx will increase.  Increased dissolution then 

exacerbates the crevice solution composition by lowering the pH further via hydrolysis.  

Due to this autocatalytic process, strong acid-chloride solutions form within the crevice.  

If a sufficiently strong acid-chloride solution is formed, the passive film will dissolve and 

crevice corrosion will ensue.  With this mechanism now explained, a mathematical model 

will be developed to represent it. 

4.4.3 Mathematical model 

4.4.3.1 Mass transport 

In a moderately dilute solution [17], a mass balance on a particular species in 

solution yields the following equation: 
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where the diffusion potential current density, the conductivity, and the charge density are, 

respectively: 
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The primary current in solution is determined by integrating the passive current along the 

crevice length: 



 193

 ( )
( )( )

( )xA

dxxPi

xi
cs

x

tip

p∫ Ψ−

=

1

      (4.4.8) 

All symbols used in the above equations are defined in the nomenclature.  This model 

accounts for the effect of charge density, primary and secondary electromigration, and 

solution non-ideality.  Boundary conditions for this equation are provided by assuming 

that the bulk solution concentration at the crevice mouth is constant and the flux or 

dissolution rate at the crevice tip.  Activity coefficients are calculated from Pitzer’s 

Equations [18].  The application of these equations to the crevice corrosion model is 

detailed elsewhere [14].  This model has been previously validated by comparison with 

the experiments of Alavi and Cottis [14, 19].  The model is written in terms of current 

density rather than potential.  Thus, potential boundary conditions are not required.  

Rather, a reference passive current and initial solution composition are prescribed as 

initial conditions for the model. 

4.4.3.2 Electrode reactions 

For an alloy, dissolution of each individual metal species is assumed to occur in 

proportion to its mole fraction in the alloy, i.e.: 
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This assumption has been used previously by other researchers [1, 2, 12].  However, some 

experimental studies have suggested that dissolution may be selective [20, 21].  The 

passive current is adjusted for pH using a Freundlich Isotherm [22]: 

 pHnkip ⋅−= )log()log(       (4.4.10) 
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Here, k  is a proportionality constant that can be determined at a reference condition 

while n  is an experimentally determined parameter which is based upon the valence state 

of the dissolving metal.  The value of n  may be interpolated from data given by Shrier et 

al. [22]. 

4.4.3.3 Chemical equilibrium 

To model chemical equilibrium, an equilibrium relation is written for each 

reaction occurring in solution, i.e.: 

 Ka
j

j
j =∏ ν

        (4.4.11) 

This set of equations is augmented with mass balance equations, one for each species 

involved in the chemical reaction set: 

 ∑+=
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The entire set of equations is solved using the Newton-Raphson method to yield the 

equilibrated concentrations. 

4.4.3.4 The numerical model 

In its current form, equation (4.4.4) cannot be solved within a reasonable time 

frame.  Due to the charge density term, this equation is incredibly stiff.  To remedy this 

problem, the charge density term of this mass transport equation is solved separately from 

the electromigration and diffusion terms.  Thus, the following two equations are solved 

sequentially: 
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 iii
i CFuz

dt

dC

ε
δ

−=        (4.4.14) 

First, equation (4.4.13) is solved using a finite volume method.  Then, equation (4.4.14) is 

solved using the optimized time step derived in Chapter 3. 

 After discretization of (4.4.13) and subsequent rearrangement, the following finite 

volume equation results: 

 00

PPiWWiEEiPP CaCaCaCa ++=      (4.4.15) 

where the mass transport coefficients are: 
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Here, E , W , and P  are indices denoting the east, west, and point node respectively.  The 

upwind parameter, α , increases the influence of the upwind node and is calculated based 

upon the ratio of the strength of electromigration to diffusion [23].   Thus, if the species is 

migrating from east to west, the value of Ea  will be increased while the value of Wa  will 

be decreased.  Figure 4.4.1 (a) shows the computational grid over which the mass 

transport equation is solved.  Figure 4.4.1 (b) shows a control volume that is labelled to 

illustrate the location of the point node (P), and its neighbours, the east (E) and west (W) 

node. 
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(a) 

 

 

(b) 

 

Figure 4.4.1. (a) Computational grid which is used to discretize the crevice solution;  (b) 

Computational node which is labelled to illustrate the point (P), east (E), and west (W) 

indices. 
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Patankar states that the point coefficient must be equal to the sum of its 

neighbouring nodes and the transient coefficient [24], i.e.: 

 0

PWEP aaaa ++=        (4.4.20) 

This is one of four rules set out by Patankar that, if followed, ensure that the solution to 

the transport equation will be physically realistic by guaranteeing an overall balance of 

mass.  However, in this formulation, the point coefficient ( Pa ) is the sum of not only its 

neighbour nodes ( Ea  and Wa ) and the transient coefficient ( 0

Pa ), but also an additional 

term that is proportional to the second order gradient of the activity coefficient.  Thus, the 

non-ideal behaviour of the electrolyte solution may introduce numerical instability when 

solving the mass transport equation.  However, the solution scheme is quite robust; 

numerical instability was not encountered in the current study when this mass transport 

model was applied to a concentrated brine system. 

4.4.4 Simulation of crevice corrosion initiation 

The crevice corrosion initiation of four stainless steels of varying iron, nickel, and 

chromium content were simulated in this study, namely Type 308, Type 314, Type 405, 

and Type 304 stainless steel.  The crevice corrosion initiation of Grade 2 titanium was 

also simulated.  Alloy compositions are listed in Table 4.4.1. 

For each of the simulations, a crevice with the following dimensions was 

modelled: 90 µm gap, 2.5 cm width, and 8 cm depth.  The electrolyte composition 

inputted into the simulation was that of Saskatchewan potash processing brine consisting 

of 3.62 M KCl and 3.39 M NaCl with a pH of 7 at 25ºC.  This composition was obtained 

by sampling the brine in a potash processing circuit in Saskatchewan. 
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Common name UNS No. % Chromium % Nickel % Titanium 

Type 405 SS S30400 13 - - 

Type 304 SS S30400 19 9.25 - 

Type 308 SS S30800 20 11 - 

Type 314 SS S31400 24.5 20.5 - 

Titanium, Gr 2 R50400 - - ~100 

Table 4.4.1. Assumed composition of alloys used in this study [16].  Iron comprises 

balance.  Impurities are neglected. 

 

 To rank the alloys for their susceptibility to crevice corrosion, a common means of 

evaluation was adopted.  In this study, alloys were ranked based upon the difference 

between the pH at the crevice tip and the critical pH approximately 3.5 hours after 

immersion.  This time was chosen because, after 3.5 hours, the pH for each alloy was 

nearing a steady state condition, and thus did not vary significantly.  Furthermore, 

because each simulation was very computationally expensive, a shorter simulation time 

was advantageous. 

4.4.5 Results and discussion 

4.4.5.1 Simulation of Grade 2 titanium crevice corrosion initiation 

Grade 2 titanium alloy is known for its corrosion resistance due to the tenacity of 

its passive film.  It is chosen only for extremely corrosive service due to its high cost.  It 

is comprised of essentially pure titanium, but is doped with iron for increased ductility.  It 
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was assumed that the sole anodic reaction occurring in this system was the dissolution of 

titanium (IV): 

 −+ +→ 4eTiTi 4        (4.4.21) 

In addition to oxygen reduction, hydrogen ion reduction also supplies cathodic charge 

inside the Grade 2 titanium crevice: 

 2H2e2H →+ −+        (4.4.22) 

It was assumed that crevice-internal hydrogen ion reduction supplies approximately 70% 

of the required cathodic current while the remaining 30% is supplied by crevice-external 

oxygen reduction [25].  The crevice-internal hydrogen ion reduction has a two-fold effect 

on the crevice corrosion process: 

1. It consumes hydrogen ions in-situ and which increases the pH of the crevice 

solution. 

2. It reduces the net current leaving electrode sites inside the crevice thus increasing 

the crevice potential and reducing the mass transport driving force.  This lowers 

the rate of chloride ion influx. 

If it were not for the detrimental effects of hydrogen embrittlement, internal proton 

reduction would extend the life of Grade 2 titanium alloy structures.  To account for the 

effect of hydrogen ion reduction on mass transport, the primary current density equation 

is modified as follows: 
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Here, Ψ  is the fraction of the cathodic current that is supplied by crevice-internal 

hydrogen ion reduction.  Chemical equilibrium is modelled using the mononuclear 
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hydrolysis reactions proposed by Liberti et al. [26].  These reactions have been listed in a 

previous section (see Table 4.1.2).   

The transient pH profile in a Grade 2 titanium crevice is displayed in Figure 4.4.2.  

A rapid initial drop in pH is seen just after the crevice becomes deoxygenated.  This is 

due to the autocatalytic coupling that exists between metal dissolution and chemical 

equilibrium processes.  Metal ions enter the crevice solution at a rate which is 

proportional to the passive current. According to equation (4.4.10), the passive current is 

a function of pH.  As metal is dissolved into the crevice solution, metal ions undergo 

hydrolysis reactions, which produce H+ thereby lowering the solution pH.  Due to 

increasing crevice solution acidity, the rate of metal dissolution increases.  This 

autocatalytic coupling causes the initially rapid drop in pH seen in Figure 4.4.2.  

Eventually, the pH stabilizes and a more moderate decrease in pH is seen.  The overall 

shape of the transient pH curve is due to four processes which occur simultaneously: 

metal dissolution, reduction of H+, transport of H+ out of the tip region, and chemical 

reaction of metal ions to form H+.  The first three processes act to increase the pH in the 

crevice solution.  These processes are: 

• Metal dissolution, which causes the crevice to expand slightly.   

• Hydrogen ion reduction, which consumes H+ thereby directly raising the pH.  

• Current density emanating from the crevice wall, which causes H+ 

electromigration out of the crevice towards the mouth. 

However, chemical hydrolysis of Ti4+, which causes a drop in pH, overpowers the 

previous three processes.  As a result, the pH decreases throughout the crevice.   
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 There is another phenomenon that occurs near the crevice mouth.  Here, the pH 

also drops but this is due primarily to the effects of coupled electromigration and 

diffusion.  Near the crevice mouth, the primary electromigration current is very strong 

while the anodic dissolution current is lower than at the crevice tip.  The pH would 

therefore be expected to be much greater than at the crevice tip where dissolution is rapid 

and transport is slow.  However, steep activity gradients also exist here, from which 

diffusion potential current results.  This diffusion potential current opposes the primary 

current causing a localized stagnation of ionic species.  Thus, anions, such as chloride 

ions, which are attempting to migrate further into the crevice and cations, such as 

hydrogen ions, which are attempting to leave the crevice, are trapped near the mouth.  

Due to the resultant high ionic strength near the mouth, the pH near the crevice mouth is 

quite low. 

This simulation shows that Grade 2 titanium alloy is likely not susceptible to 

crevice corrosion in potash brine at 25ºC.  Its pH value after 3.5 hours is approximately 

1.8 while its critical value is –1 [27]. 

 

4.4.5.2 Relationship between critical crevice pH and the PREN 

 The critical pH is the pH at which the passive film breaks down and is determined 

experimentally.  However, the critical pH has been determined for only a few passive 

metals.  Because the critical pH values of some of the alloys studied herein have not been 

experimentally determined, a relationship between the critical pH and the PREN was 

obtained.
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Figure 4.4.2. Transient pH profile in a Grade 2 titanium crevice measuring 90 µm across 

the gap, 2.5 cm wide, and 8 cm deep.  Crevice is immersed in a Saskatchewan potash 

brine (3.39 M NaCl, 3.62 M KCl, 25ºC, pH = 7). 
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This relationship was determined from four metals with known critical pH values [28]: 

Type 304 stainless steel (PREN = 19, Critical pH = 2), Type 316 stainless steel (PREN = 

25.25, Critical pH = 1.7), Hastelloy C-276 (PREN = 68.3, Critical pH = -0.5), and Inconel 

625 (PREN = 51.2, Critical pH = 0).  In this work, the PREN was determined from the 

following equation: 

 ( ) ( )Ni%16Mo%3.3Cr% ++=PREN     (4.4.24) 

This is the most commonly used form of the PREN.  Alloy compositions, which were 

required to calculate PREN values, were taken from Treseder et al. [29].  Figure 4.4.3 

shows that the PREN vs. critical pH data follows a linear trend.  A least squares linear 

regression of the data yielded the following empirical relationship: 

0.3053.0 +×−= PRENpH crit      (4.4.25) 

This relationship was then used to estimate the unknown critical pH values of the alloys 

used in this study with literature values being used when available.  The critical pH values 

for all five alloys simulated in this work are listed in Table 4.4.2. 

 

Common Name Critical pH Reference 

Type 304 stainless steel 2 20 

Type 308 stainless steel 1.9 Estimated 

Type 314 stainless steel 1.7 Estimated 

Type 405 stainless steel 2.3 Estimated 

Grade 2 Titanium -1 15 

 

Table 4.4.2.  Critical crevice pH values used in this study. 
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Figure 4.4.3.  Relationship between the critical crevice pH (CCP) and the pitting 

resistance equivalent number (PREN). 
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4.4.5.3 Type 308 stainless steel 

Type 308 stainless steel is comprised of chromium, nickel, and iron plus 

impurities.  The anodic reactions assumed to occur are: 

 −+ +→ 2eFeFe 2        (4.4.26) 

 −+ +→ 2eNiNi 2        (4.4.27) 

−+ +→ 3eCrCr 3        (4.4.28) 

Fe2+, Cr3+, and Ni2+ then react with water and chloride to form metal hydroxides and 

metal chlorides.  The reactions assumed to occur in solution have been listed previously 

(see Table 4.1.1) [1, 8, 30]. 

 Figure 4.4.4 shows the transient pH profile inside a type 308 stainless steel 

crevice.  For a stainless steel crevice, internal hydrogen ion reduction does not contribute 

significantly to the cathodic charge [19].  Upon deoxygenation, the pH drops off rapidly 

due to autocatalytically coupled dissolution and chemical hydrolysis.  This is followed by 

a moderate pH decrease as the rates of chemical hydrolysis and H+ transport equalize. 

The mechanisms governing the dynamics of the crevice solution pH for type 308 stainless 

steel are similar to the mechanisms previously discussed during the presentation of the 

titanium simulation and, therefore, will not be discussed here.  After 3.5 hours, the crevice 

pH at the tip is approximately 2.47 while its critical pH value is approximately 1.9. 

4.4.5.4 Type 314 stainless steel 

 Type 314 stainless steel contains slightly more chromium than Type 308.  

Therefore, it is expected to be more resistant to localized corrosion than Type 308. 
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Figure 4.4.4. Transient pH profile in a type 308 SS crevice measuring 90 µm across the 

gap, 2.5 cm wide, and 8 cm deep.  Crevice is immersed in a Saskatchewan potash brine 

(3.39 M NaCl, 3.62 M KCl, 25ºC, pH = 7). 
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It is predominantly comprised of iron, nickel, and chromium and therefore the anodic 

reactions occurring inside the Type 314 crevice are the same as those of the type 308 

crevice (equations (4.4.25) – (4.4.27)).  The reactions occurring in solution are listed in 

Table 4.1.1 [1, 8, 30].   

Figure 4.4.5 shows the transient pH profile in the type 314 stainless steel crevice.  

Because of the additional chromium and nickel in the alloy, the pH attained in the crevice 

solution is lower for type 314 than type 308.  This is due to the value of the equilibrium 

constant for the Cr3+ hydrolysis reaction.  By inspection of Table 4.1.1, it can be seen that 

the equilibrium constant for the reaction of Cr3+ to CrOH2+ is 4 to 5 orders of magnitude 

greater than any other hydrolysis reaction.  Thus, the increase in concentration of Cr3+, 

due to increased chromium content in the alloy, shifts equilibrium to the right, thus 

causing increased production of H+.  However, increased chromium content also increases 

the passivity of the alloy.  Based upon equation (4.4.24), the critical pH for type 314 

stainless steel is estimated to be 1.7.  After 3.5 hours, the pH at the crevice tip is 

approximately 2.37.   

Thus, even though the pH in the type 314 stainless steel crevice solution is lower than in 

the type 308 crevice solution, type 314 is predicted to be more resistant to the onset of 

crevice corrosion, as the difference between crevice tip pH and critical pH has increased 

from 0.57, for type 308, to 0.72, for type 314. 

4.4.5.5 Type 304 stainless steel 

 Type 304 stainless steel contains less chromium and nickel than both 308 and 314 

stainless steel.  According to its PREN, it should be less resistant to crevice corrosion than 

308 and 314.   
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Figure 4.4.5. Transient pH profile in a type 314 SS crevice measuring 90 µm across the 

gap, 2.5 cm wide, and 8 cm deep.  Crevice is immersed in a Saskatchewan potash brine 

(3.39 M NaCl, 3.62 M KCl, 25ºC, pH = 7). 
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Type 304 stainless is, like Types 308 and 314, a chromium, nickel, and iron alloy, and 

thus, anodic reactions occurring in the crevice are the same as in Types 308 and 314 

(equations (4.4.25) – (4.4.27)).  Chemical reactions occurring in the Type 304 stainless 

steel crevice are listed in Table 4.1.1.  Comparison of Figure 4.4.6 with Figures 4.4.4 and 

4.4.5 shows that Type 304 stainless steel is less corrosion resistant than Type 308 or Type 

314, which agrees with the PREN based prediction.  The crevice tip pH after 3.5 hours is 

approximately 2.49 while its critical pH is 2 [28], a difference between crevice tip pH and 

critical pH of 0.49.  After 3.5 hours, the difference between crevice tip pH and critical pH 

for both Type 308 and Type 314 is 0.57 and 0.72, respectively. 

4.4.5.6 Type 405 stainless steel 

 Unlike the austenitic stainless steels simulated in this work, Type 405 is a ferritic 

stainless steel.  It contains chromium, which is added for corrosion resistance, but 

contains no nickel, which is usually added for strength.  All chromium and iron reactions 

shown in Table 4.1.1 are assumed to occur in the type 405 crevice solution; no nickel 

reactions occur due to the absence of nickel from the alloy.  Anodic reactions assumed to 

occur in this crevice are shown in equations (4.4.25) and (4.4.27).  Because the chromium 

content in this alloy is the lowest of all the stainless steels, it is expected to be the most 

susceptible to crevice corrosion.Figure 4.4.7 shows this to be the case.  After 3.5 hours of 

exposure, the pH at the tip of the crevice is closely approaching the critical crevice pH.  

The difference between crevice tip pH and critical pH after 3.5 hours is 0.34. 
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Figure 4.4.6. Transient pH profile in a type 304 SS crevice measuring 90 µm across the 

gap, 2.5 cm wide, and 8 cm deep.  Crevice is immersed in a Saskatchewan potash brine 

(3.39 M NaCl, 3.62 M KCl, 25ºC, pH = 7). 
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4.4.5.7 Ranking of the alloys 

 The crevice corrosion resistance of each alloy was measured based upon the 

difference between the pH at the crevice tip and the critical pH after 4.5 hours simulation 

time.  Based upon this criterion, the ranking of the alloys, from most corrosion-resistant to 

most corrosion-susceptible, is as follows: 

1. Grade 2 Titanium (pH – pHcrit = 2.8) 

2. Type 314 stainless steel (pH – pHcrit = 0.72) 

3. Type 308 stainless steel (pH – pHcrit = 0.57) 

4. Type 304 stainless steel (pH – pHcrit = 0.49) 

5. Type 405 stainless steel (pH – pHcrit = 0.34) 

The order in which the stainless steels are ranked is identical to the order that would result 

from ranking according to their respective PRENs.  Furthermore, the Grade 2 titanium 

was ranking higher than any of the stainless steels, a result which was also expected. 

4.4.6 Conclusions 

 From the work presented in this paper, the following conclusions may be made: 

1. A numerical model of crevice corrosion initiation has been developed which is 

capable of accurately ranking candidate alloys for highly corrosive service in 

potash brines.  The simulation results produced by the model were used to rank 

the alloys in the following order (from most resistant to susceptible): Grade 2 

titanium, Type 314 stainless steel, Type 308 stainless steel, Type 304 stainless 

steel, and Type 405 stainless steel.  This is the expected ranking: titanium is a 

superior metal known for its corrosion resistance, and the stainless steels are 

ranked in order of descending PREN. 
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Figure 4.4.7. Transient pH profile in a type 405 SS crevice measuring 90 µm across the 

gap, 2.5 cm wide, and 8 cm deep.  Crevice is immersed in a Saskatchewan potash brine 

(3.39 M NaCl, 3.62 M KCl, 25ºC, pH = 7). 
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2. A plot of the critical pH versus the PREN shows a distinct linear trend.  This trend 

was used to estimate the critical pH for Types 308, 314, and 405 stainless steel. 

 

3. The addition of chromium to steel increases its passivity.  This is shown in the 

model.  As the chromium content increased, the difference between the crevice tip 

pH and the critical pH also increased, thus increasing the steel’s resistance to the 

onset of crevice corrosion. 

 

4. The code structure of this numerical model incorporates significant flexibility.  

Thus, many passive metals may be evaluated for their crevice corrosion resistance 

in many electrolytes with no modifications to the code.  In this case, five differing 

alloys were ranked for their propensity to crevice corrosion in concentrated potash 

brine.  This numerical model could therefore serve as a valuable tool for materials 

selection for highly corrosive service. 
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Chapter 5. Carbon Dioxide Corrosion 

 The mathematical models of electrolyte mass transport, which were developed in 

Chapters 3 and 4, are not only applicable to crevice corrosion.  In this chapter, the models 

developed for crevice corrosion are applied to simulate carbon dioxide corrosion.  This 

type of corrosion is accelerated by turbulent flow.  The mathematical model developed 

for CO2 corrosion will be developed and validated in this chapter. 

5.1 Background on Carbon Dioxide Corrosion 

 Carbon dioxide corrosion occurs when a carbonic acid solution, formed by the 

dissolution of CO2 in water, comes into contact with steel.  This type of corrosion is 

especially problematic for the oil and gas industry where mixtures of crude oil and water 

are transported.  In this situation, a portion of the carbon dioxide in the crude will dissolve 

into water and form a corrosive flowing solution. 

For the purpose of developing a mathematical model of CO2 corrosion, consider 

steady, fully developed turbulent flow of water through a carbon steel pipe.  If this water 

has contacted carbon dioxide gas, a small amount of the gas will dissolve by the reaction: 

 CO2(g) + H2O   H2CO3   HCO3
- + H+   CO3

2- + H+  (5.1) 

Carbon dioxide hydration provides -

3HCO , +H , and -2

3CO , three ions which participate 

significantly in the iron dissolution process.  This hydration is slow and could be the rate-

limiting step of the overall corrosion rate [1, 2].  The flow rate of solution through the 
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pipe determines the size of the mass transfer boundary layer, an important dimension for 

computation of mass transfer rates at the metal surface.  Mass transfer is very important to 

the corrosion process, as it supplies the necessary reagents for the cathodic reactions.  

Very near the pipe wall, there exists a region of laminar flow known as the viscous 

sublayer.  Velocity fluctuations induced by turbulent dissipation of momentum are 

damped by the solid boundary, and thus, turbulence-induced mixing of the solution does 

not occur to a significant extent.  Mass transport occurs solely by diffusion in this region.  

Chemical reactions occurring in the solution are assumed to be the following: 

3222(aq) COHOHCO →+       (5.2) 

H2CO3  H+ + HCO3
-      (5.3) 

HCO3
-  H+ + CO3

2-       (5.4) 

H+ + OH-  H2O       (5.5) 

Fe2+ + H2O  FeOH+ + H+      (5.6) 

FeOH+ + H2O  Fe(OH)2 (aq) + H
+     (5.7) 

Fe2+ + CO3
2-  FeCO3      (5.8) 

Equation (5.2) is not assumed to be at equilibrium and the calculation of the production 

rate of H2CO3 will be discussed later in the section.  Because they occur at a much faster 

rate, reactions (5.3) – (5.7) are assumed to be at equilibrium.  Equilibrium constants for 

reactions (5.3) - (5.5) are available elsewhere [3, 4].  Equilibrium constants for Fe2+ 

hydrolysis, reactions (5.6) and (5.7), is listed in Table 4.1.1.  An iron carbonate (FeCO3) 

film will form if the product of the Fe2+ and CO3
2- activities exceed the solubility product 

for this reaction, 
3,FeCOspK .  The solubility product for this reaction is available in Nesic et 
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al. [5].  Fe2+ required for hydrolysis and for film formation, equation (5.8), is supplied 

through anodic dissolution at the metal surface: 

 -2

(aq)(s) 2e  Fe Fe +→ +        (5.9) 

This is considered to be the only dissolution reaction occurring at the metal surface.  Iron 

carbonate, formed in reaction (5.8), usually exceeds its solubility limit, and thus, it 

precipitates as a protective crystalline film on the pipe surface. This film is very 

protective at high temperature [6, 7].  This film acts as a diffusion barrier, thereby 

inhibiting the rate of transport of cathodic reagents to the surface.  At cathodic sites on the 

pipe surface, these reactions occur: 

 2

- H2e 2H →++        (5.10) 

 -

32

-

32 2HCO  H2e  CO2H +→+      (5.11) 

 -

2

-

2 2OH  H 2e  O2H +→+       (5.12) 

Notice that with this form of corrosion, oxygen reduction may not contribute to the 

cathodic current.  Of course, if a solution is aerated, oxygen reduction will provide 

another cathodic reaction.  Hydrogen ions, 32COH , and water is reduced to supply the 

anodic current and satisfy the mixed potential theory.  The mixed potential theory is an 

electron balance; any electron freed during oxidation must be consumed through 

reduction.  Therefore, the absence of reagents will halt the corrosion process. 

 

5.2 Literature on Carbon Dioxide Corrosion 

Previous studies in CO2 corrosion have included experimental and numerical 

investigations.  A selection of experimental and theoretical studies will now be discussed. 
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5.2.1 Experimental work 

5.2.1.1 De Waard and Milliams (1975) 

De Waard and Milliams [8] conducted a study on X-52 carbon steel immersed in 

0.1% sodium chloride solutions saturated with carbon dioxide.  The corrosion rates 

determined were significantly different than that expected for completely dissociated 

acids at the same pH.  It was concluded that carbonic acid in the solution was not 

completely dissociated.  Furthermore, the remaining carbonic acid participated in the 

following cathodic reaction: 

 −+− +→+ 332 HCOHeCOH       (5.13) 

This work demonstrated that incompletely dissociated carbonic acid solutions were more 

corrosive that those with complete dissociation.  It also showed that equation (5.13) is an 

important step of the CO2 corrosion mechanism. 

5.2.1.2 Schmitt and Rothmann (1977) 

Using a rotating disk apparatus, experiments were conducted by Schmitt and 

Rothmann [2] to study the reduction of carbonic acid.  Using a CO2 in water solution, 

polarization experiments revealed that the cathodic limiting current is the sum of two 

parts: the H+ reduction limiting current, controlled by diffusion, and the H2CO3 reduction 

limiting current, controlled by the heterogeneous CO2 hydration reaction: 

 )(lim,)(lim,lim 32COHreactionHdiffusion
iii += +      (5.14) 
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5.2.1.3 Gray et al. (1989) 

Gray et al. [9] confirmed the composition of the limiting cathodic current as 

reported by Schmitt and Rothmann.  However, they challenged that the CO2 hydration 

reaction was actually homogenous, rather than heterogeneous.  Because similar cathodic 

limiting currents were observed on both platinum and iron (Schwenk, 1974; de Waard 

and Milliams, 1975a), they argue that the hydration reaction must not involve adsorption 

onto metals.  Different metals would have different adsorptive properties and alter the 

limiting cathodic current.  They suggested that between pH of six to ten, bicarbonate ion 

reduction could be the largest contributor to the cathodic current: 

 −−− +→+ 2

3(g)2(aq)3 2COH2e2HCO      (5.15) 

5.2.1.4 Nesic et al. (1995) 

Through rotating cylinder experiments, increased flow rates were shown to 

increase the H2CO3 reduction limiting current at relatively high rotational speeds by Nesic 

et al [10].  A flow factor was introduced and a theoretical expression derived to 

superimpose diffusion and chemical reaction controlled limiting currents.  They suggested 

that significant interaction occurs between mass transfer and chemical reaction at 

temperatures below 40 0C and flow velocities above 1 m/s when the thickness of the mass 

transfer boundary layer and chemical reaction boundary layer are of similar magnitude. 

5.2.1.5 Schmitt and Rothmann (1978) 

Schmitt and Rothmann [11] showed that anodic iron dissolution follows the pH-

dependent reaction mechanism as proposed by Bockris et al. [12]: 

 Fe + OH-  FeOH + e-      (5.16) 
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 −+ +→ eFeOHFeOH        (5.17)   

FeOH+  Fe2+ + OH-       (5.18) 

5.2.2 Modelling work 

5.2.2.1 DeWaard and Milliams (1975) 

DeWaard and Milliams [13] presented  a partially mechanistic model based upon 

experimental observations.  A correlation between the corrosion rate and the CO2 partial 

pressure, this model is really a worst-case scenario; no mass transfer limitations are 

imposed upon the reaction rate.  Acidity increases are due solely to the rate of 

dissociation of carbonic acid.  Therefore, pH is assumed to be only a function of CO2 

partial pressure.  Since its introduction, correction factors have been developed to account 

for corrosion product films, pH, system pressure, etc. 

5.2.2.2 Gray et al. (1989, 1990) 

Gray et al. [9, 14] presented a mechanistic model that limited the rate of 

electrochemical reactions at the metal surface with a mass transport model.  This model 

determined corrosion rates as they were affected by iron dissolution, diffusion controlled 

hydrogen ion reduction, chemical reaction controlled H2CO3 reduction, and charge 

transfer controlled H2O reduction.  Iron dissolution reactions were assumed to follow the 

Bockris mechanism [12].  Using mixed potential theory [15, 16], the corrosion current 

was calculated. 

5.2.2.3 Nesic et al. (1995) 

Nesic et al. [10] presented an electrochemical model as a follow-up to the study by 

Gray et al.  The model closely resembled the work of Gray et al.  However, the Bockris 

mechanism was found not to apply to their system above a pH of 4.  Predictions generated 
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with this model were found to compare favourably with independent experimental results, 

the semi-empirical model of de Waard and Lotz [17], and the semi-empirical model of 

Dugstad et al. [18].  This study produced a correction factor to account for the effect of 

flow on H2CO3 reduction.  The models of both Gray et al. and Nesic et al. used a simple 

treatment of transport in the boundary layer. 

5.2.2.4 Turgoose et al. (1990) 

Turgoose et al. [19] detailed a realistic approach to model the cathodic reactions 

involved in CO2 corrosion.  After the approach by Bard and Faulkner [20], the model 

accounts for the effect of electron transfer reactions, diffusion, convection, slow chemical 

hydration reactions, and rapid solution equilibrium.  The results of this theoretical study 

showed that above a pH of 6, increases in the cathodic current resulted from solution 

chemical equilibrium rather than from reduction of bicarbonate ions as reported by Gray 

et al. [9, 14]. 

5.2.2.5 Wang (1997) 

Wang [3] used a developing pipe flow CFD model to predict steady state CO2 

corrosion rates on bare mild steel. 

5.2.2.6 Nordsveen et al., Nesic et al., Nesic and Lee (2003) 

This recent work [4, 5, 21] used a reasonably detailed description of electrolyte 

mass transport in a fully developed turbulent flow.  The main novelty was the inclusion of 

a film growth model for FeCO3.  The transient CO2 corrosion rate profile predicted using 

this model agreed well with experimental results using a rotating cylinder. 
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5.3 Numerical Model of Carbon Dioxide Corrosion 

 In this work, the Navier-Stokes equations are solved in one dimension to predict 

steady, fully developed turbulent flow field.  The Van Driest turbulence model is applied 

to calculate the eddy viscosity.  This turbulence model gives reasonable predictions of the 

wall shear stress (compared to the Moody diagram) for a fully developed, steady pipe 

flow, and is therefore used in this application.  An infinitely dilute mass transport model 

is applied which assumes that the concentration profile is fully developed and unsteady.  

Thus, the mass transport model corresponds to equation (2.1.16) written for a one-

dimensional grid.  Boundary conditions are obtained from assuming symmetry at the flow 

centreline and from a pseudo steady state mass balance at the metal-solution interface, 

equation (2.1.18).  The corrosion rate is determined using mixed potential theory and the 

Butler-Volmer equation: 
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The kinetic parameters appearing in equation (5.19) are a function of temperature and 

solution composition at the metal-solution interface.  The Tafel slopes for each electrode 

reaction are determined from the following equations: 

 
F

RT
b

a

a α
=         (5.20a) 

 
F

RT
b

c

c α
=         (5.20b) 
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In equation (5.20a) and (5.20b), the α  values are transfer coefficients for the 

electrochemical reaction.  The reversible potential for each reaction is determined using 

the Nernst equation: 

 Q
nF

RT
EE revrev ln0 −=        (5.21) 

Here, the reversible potential is calculated from a standard state potential and depends 

upon the temperature and species composition at the metal-solution interface change.  For 

the electrochemical reactions involved in CO2 corrosion, equations (5.9) – (5.12), the 

required equations to determine the exchange current density and Tafel slopes at a variety 

of temperatures and solution compositions are available elsewhere [3, 4]. 

The form of the Butler-Volmer equation used in this application, equation (5.19) 

does not directly include mass transfer limitations.  However, limiting current conditions 

are accounted for using a sophisticated algorithm that will now be explained. 

 A novel method of estimating the limiting current has been developed.  Rather 

than rely upon correlations to predict mass transfer coefficients, this method determines 

the limiting corrosion current based upon the concentration gradient.  The numerical 

simulation proceeds using the corrosion rate (calculated assuming no mass transfer 

limitations) as a boundary condition until the concentration of a cathodic reagent becomes 

negative at the metal-solution interface.  When this occurs, the boundary condition of that 

species is switched from the flux equation to a zero concentration condition and the 

concentration profile of each species in solution is recalculated.  Chemical equilibrium 

and the charge density term of the mass transport equation cause the concentration of 

each species to be interdependent, and thus, changing the boundary condition of one 
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species in solution will affect the concentration profiles of every other species in solution.  

For the mass transport limited species, its diffusion current at the wall is then calculated: 

 

wall

species

speciesspeciesspecies
x

C
DFzi 









∂

∂
−=      (5.22) 

This species diffusion current is then used in the calculation of the current consumed by 

the cathodic reaction in which it is a reagent.  In this case, the rate of the cathodic reaction 

would be determined by the following expression: 

 
species

species

rxn

i
i

ν
=         (5.23) 

where speciesν  is the stoichiometric coefficient of the species in solution.  Where more than 

one reagent in a particular reaction is predicted to be mass transport limited, the cathodic 

reaction current is calculated via (5.23) for each reagent.  The lowest current is chosen as 

the reaction current and that species which minimized equation (5.23) is then the limiting 

reagent.  Thus, when a reaction is under mass transfer control, its rate is no longer 

predicted using the Butler-Volmer equation, but rather, by the diffusion current of the 

limiting reagent (equations (5.22) and (5.23)).  This is used in the application of mixed 

potential theory so that other reactions occurring in solution feel the effect of the mass 

transfer limited reaction.  Thus, when the rate of consumption of a single species in 

solution switches from charge transfer control to mass transfer control, the effect of this 

change in control is felt throughout the system. 

 The rate of CO2 dissolution is calculated by the following rate expression: 

 
32232 COHrCOfCOH CkCkR −=       (5.24) 
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The rate constants of the forward and reverse reaction are calculated using correlations 

and data provided by Kern [1] and Palmer and Eldik [22].  The rate at which H2CO3 is 

produced is dependent upon the partial pressure of CO2 in the gas phase according to 

Henry’s Law: 

 
222 COCOCO PkC =        (5.25) 

The Henry’s Law constant is calculated using a correlation proposed by Roberts and 

Tremaine [23].  Thus, the CO2 partial pressure has a direct influence on the corrosion rate, 

as one would expect. 

 Film formation kinetics are calculated based upon the FeCO3 super-saturation, S : 

 

3,

2

3

2 ]][[

FeCOspK

COFe
S

−+

=        (5.26) 

The value of S  was used to determine the rate of film precipitation and dissolution [5].  

In this model, film stripping due to mechanical wear was also accounted for [24].  Film 

formation causes damping of turbulent mixing near the wall and also decreases the 

effective molecular diffusivity of species via an increase in tortuosity.  This was 

accounted for in the model by modifying the molecular diffusion coefficient in the 

following manner: 

 2εDDeff =         (5.27) 

where ε  is the porosity.  This relationship comes from research into moisture transport in 

soils [25].  Also, the eddy viscosity was damped by presence of the film.  The eddy 

viscosity was reduced by the porosity according to the following function: 

 ( )[ ]0,9991000max, −= εµµ tefft      (5.28) 
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Thus, the effective eddy viscosity varies linearly with porosity for ]1,999.0[∈ε  and is 

zero for ]999.0,0[∈ε .  Equation (5.28) is used because of the discrete nature of the 

numerical model.  Once the super-saturation of a particular control volume reaches a level 

such that precipitation will occur, the porosity of that control volume would immediately 

become lower than unity.  If the eddy viscosity were immediately set to zero where the 

film was present, this would cause erratic changes in the corrosion rate profile.  The linear 

function used to scale the eddy viscosity (equation 5.28) smoothes the transition from a 

turbulent flow condition to no flow condition within the film, thereby ensuring a smooth, 

physically realistic, transient corrosion current profile. 

 This model of CO2 corrosion is implemented as a computer code.  Figure 5.1 

shows the predicted corrosion rate as a function of time compared with experimental 

observations of Nesic (2003) when the film growth model is included. 

Figure 5.1 shows excellent agreement with the experimental studies of Nesic et al. 

(2003).  In Figure 5.1, the rate of iron dissolution is balanced by the following cathodic 

reactions: H2CO3 reduction, H+ reduction, and water reduction.  With the model 

validated, it was applied to predict the effect of the Reynolds number on the rate of CO2 

corrosion. 

5.3.1 Effect of flow 

Flow accelerates the rate of CO2 corrosion in the following two ways: 

1. Increased turbulence intensity enhances mixing of the solution, thereby shrinking 

the mass transfer boundary layer and increasing the rate of transport of cathodic 

reagents.  This increases the limiting cathodic current which may increase the rate 

of corrosion if the process is mass transfer limited ( limiicorr = ). 
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2. Stripping of the protective FeCO3 film may occur.  This will expose bare metal to 

the corrosive solution and increase the rate of CO2 corrosion. 

In Figure 5.2, the steady state corrosion rate is given as a function of increasing Reynolds 

number at 25ºC.  In this graph, the rate of mass transfer increases with the Reynolds 

number, as does the corrosion rate.  Furthermore, at 25ºC, the FeCO3 film will not 

provide significant protection for the metal [5]. 
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Figure 5.1. Corrosion rate in a mild steel pipe with carbonic acid solution flowing through 

it.  (T = 80 ºC, pH = 6.26, barPCO  54.0
2
= , [Fe2+] = 250 ppm, and smVb / 1= ). 
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Figure 5.2.  Effect of flowrate on steady state CO2 corrosion rate of mild steel.  (T = 25ºC, 

pH = 6.26, barPCO  54.0
2
= , [Fe2+] = 250 ppm) 
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Chapter 6. Flow Influenced Crevice Corrosion 

Previous work shown in this thesis has shown mathematical models for localized 

corrosion and flow influenced corrosion.  In this chapter, the models developed for 

localized and flow influenced corrosion are applied to model the effect of flow on 

localized corrosion.  Flow influenced localized corrosion is a difficult phenomenon to 

predict mathematically as it requires the solution of inter-coupled models of mass and 

momentum transfer in complex geometries.  Furthermore, the influence of recirculation 

flow inside the crevice requires that a 2-D description of the crevice-internal environment 

be adopted. 

The influence of flow may be beneficial or detrimental to a crevice undergoing 

localized attack.  For a very small crevice, the external flowfield will be unable to 

penetrate into the crevice.  Thus, while the internal crevice solution is stagnant, external 

flow will enhance mass transfer to the system cathode (the bold surface).  This will allow 

for a smaller bold surface to sustain internal crevice dissolution processes.  As a result, 

the rate of the electrode reactions may be governed by anodic charge transfer kinetics and, 

thus, not be hindered by mass transfer at the bold surface.  In this case, external flow will 

accelerate crevice corrosion.  However, if the crevice is large enough such that fluid 

penetrates into the crevice, convection into and out of the crevice will displace the acid-

chloride solution in the crevice with less aggressive bulk solution.  This will have two 
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effects.  Firstly, enhanced mixing in the crevice solution will reduce the crevice solution 

conductivity, and thus, increase the resistance between the internal and external surfaces.  

This will result in decreased interaction between anode and cathode, and thus, lower the 

rate of electromigration mass transport.  Secondly, cathodic reagents would be made 

available to anodic sites in the crevice due to flow penetration.  As a result, these sites 

would begin to sustain all or part of their anodic process with localized reduction of 

cathodic reagent and, thus, wholly or partially return to a micro-celled state.  The net 

effect of flow penetration is crevice washout, where the crevice is returned to a state of 

microscopic (uniform) corrosion.  If the crevice is large enough, this will lower the rate of 

crevice corrosion and is thus beneficial.  However, while penetrating flow may hinder 

crevice corrosion, the presence of a turbulent flowfield inside a crevice may cause 

accelerated uniform corrosion in and around the crevice.  This is a form of corrosion 

known as mesa corrosion.  This type of corrosion is not studyed specifically in this work 

but it is a natural extension to the model. 

In this work, a two-dimensional model of crevice corrosion was developed.  

Unlike the previous one-dimensional models shown in chapter 4, this crevice corrosion 

model does not assume that the metal is passivated.  However, it is capable of modelling 

passive metals.  The mass transfer limited form of the Butler-Volmer equation is used in 

this model.  The Butler-Volmer equation is applicable to a passive metal in the following 

way: the slope of the anodic line for a passive metal is set to a very high number (such 

that the anodic line on the kinetic corrosion diagram is vertical).  Because a very 

important aspect of crevice corrosion is the anode-cathode separation that occurs due to 
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differential aeration, this model implements an electrode coupling algorithm which will 

be discussed.  The limiting current is calculated in the following manner: 

1. The concentration boundary conditions of a particular species is set to zero at all 

solid boundaries 

2. The two-dimensional mass transport equation is solved over a single time step 

using current solution conditions as the initial condition 

3. The diffusion limited flux of the species currently being simulated is evaluated.  

This is the limiting species current. 

These steps are repeated for each species in solution.  The limiting current is updated at 

each time step for increased accuracy.  The mathematical model will now be discussed. 

6.1 Computational Fluid Dynamics Model 

The velocity and pressure field must be such that both momentum and mass are 

conserved.  Momentum conservation is described by the Reynolds-Averaged Navier-

Stokes (RANS) equations: 

( )

( )
x

p

y

v
vv

y

x

v
v

xt

v

x
tyx

x
tx

x

∂
∂

−=








∂

∂
+−

∂
∂

+









∂

∂
+−

∂
∂

+
∂

∂

µµρ

µµρρ 2

     (6.1)  

( )

( )
y

p

y

v
v

y

x

v
vv

xt

v

y

ty

y

tyx

y

∂
∂

−=








∂

∂
+−

∂
∂

+










∂

∂
+−

∂
∂

+
∂

∂

µµρ

µµρρ

2

     (6.2) 

Here, tµ  is the eddy viscosity, which is calculated using a suitable turbulence model.  

The velocity field that satisfies equations (6.1) and (6.2) must also satisfy the mass 
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continuity equation.  For an incompressible fluid, mass continuity states that the velocity 

field must be solenoidal, i.e.: 

 0=⋅∇ v         (6.3) 

There is a problem with the direct application of equation (6.3).  Mass conservation is 

enforced in a flow by the pressure field.  However, the pressure field does not appear in 

(6.3) and is a source term in (6.1) and (6.2).  To resolve this problem, pressure correction 

schemes have been developed to calculate the pressure field and the continuity-satisfying 

velocity field in incompressible flows.  The most commonly used types of pressure 

correction schemes fall in the SIMPLE (Semi-Implicit Method for Pressure Linked 

Equations) class of schemes.  Descriptions of a number of SIMPLE schemes are available 

in Patankar [1] and Ferziger and Perić [2].  For the present CFD model, the SIMPLEC 

pressure correction scheme was chosen.  This scheme offers the best convergence 

performance due to the fact that the pressure correction and momentum solvers require 

less underrelaxation. 

 In this model, the flow is modelled in the laminar sublayer due to the scale of the 

crevice.  In this region, the Reynolds number of the flow is expected to be quite low.  

Thus, a turbulence model was not required for this application.  Figure 6.1 illustrates the 

crevice system being modelled in this work.   

6.1.1 Flow boundary conditions 

 The velocity boundary conditions at the flow inlet, flow outlet, and all solid 

boundaries are given below: 

Inlet: 

 bulkx Vv =         (6.4) 
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Figure 6.1. The coupled flow influenced and localized corrosion system.  The size of the 

crevice on the duct wall is exaggerated for clarity. 
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 0=yv          (6.5) 

Outlet: 

 0=
∂

∂
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v yx        (6.6) 

Solid boundary: 

 0== yx vv         (6.7) 

A zero-gradient condition is used for the pressure correction variable at all boundaries [2].  

  

6.1.1.1 Boundary conditions at laminar sublayer thickness 

To determine the boundary condition for the edge of the laminar sublayer, 

consider the universal velocity profile (in the laminar sublayer region) [3]: 
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The shear stress at the edge of the laminar sublayer is therefore: 
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Performing the differentiation yields: 
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Equation (6.11) is the boundary condition for the edge of the viscous sublayer.  Here, λ  

is the thickness of the viscous sublayer, which is determined from the following equation: 
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ν
λ τuy   (at the edge of the laminar sublayer)   (6.12) 

Thus: 
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The friction velocity, τu , is defined as: 

 
ρ
τ

τ
wu =         (6.14) 

Thus, when dealing with a flow with a known Reynolds number, the wall shear stress 

may be calculated.  Thus, the friction velocity and the sublayer thickness may be 

computed.  The bulk velocity in the sublayer is used as an entry boundary layer (plug 

flow is assumed coming in).  This is shown above as bV  and its value can be calculated as 

follows: 
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In the laminar sublayer, the velocity profile is given in equation (6.8).  Substituting 

equation (6.8) into (6.16) and performing the integration yields: 
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This can be simplified by the substitution of  (6.13) to yield: 

 τuVb 5.2=         (6.17) 

Equation (6.17) is substituted in the boundary condition for the flow inlet, equation (6.4). 
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6.1.2 Relationship between sublayer thickness and Reynolds number 

 It is more practical to represent the sublayer thickness as a more physically 

meaningful variable, namely the Reynolds number.  In this section, the relationship 

between the sublayer thickness and the Reynolds Number will be explored.  A method for 

calculating the Reynolds number from the sublayer thickness will be presented.  

Rearrangement of equation (6.13) yields the following relationship between the friction 

velocity and the sublayer thickness: 

 
ρλ
µ

τ 5=u         (6.18) 

From the friction velocity, the shear stress may be determined by rearranging equation 

(6.14): 

 ρτ τ
2uw =         (6.19) 

The Reynolds number is related to the wall shear stress by the following equation [4]: 
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However, the Reynolds number and the Fanning friction factor, f , are also related by 

Churchill’s equations [4]: 
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Equations (6.20) and (6.21) can be applied iteratively.  Once the wall shear stress is 

known, the value of the Fanning friction factor can be guessed and the Reynolds number 

calculated by equation (6.20).  With this value of the Reynolds number, a new estimate of 

the Fanning friction factor may be obtained using equation (6.21).  This process is 

repeated until the Reynolds number stops changing, usually after a few iterations.  For the 

calculation of the Fanning friction factor using Churchill’s equations, equation (6.21), the 

pipe was assumed to be smooth, i.e. 0=k .  Here, k  is the sand grain roughness.  The 

iterative procedure was implemented in a Microsoft Excel© spreadsheet. 

6.2 Simulation of Crevice Washout 

Using the boundary conditions shown above, the two-dimensional CFD model 

was used to calculate the flowfields shown in Figures 6.2 – 6.6.  In each simulation, the 

Reynolds number was 5.4 x 105, the crevice depth was 50 µm, and the pipe diameter was 

20 cm.  To show the effect of the crevice gap on washout, the crevice gap was varied in 

size from 10 µm – 200 µm. 

From Figures 6.2 – 6.7, the effect of the crevice gap upon the crevice corrosion 

incubation period can be seen.  Figures 6.2 – 6.6 show the velocity vector fields in each of 

the crevices.  In each case, the crevice depth is 50 µm.  The crevice gaps analyzed are 10 

µm (Figure 6.2), 20 µm (Figure 6.3), 50 µm (Figure 6.4), 100 µm (Figure 6.5), and 200 

µm (Figure 6.6).  Figure 6.7 shows the magnitude of the velocity in the crevice calculated 

at the crevice centerline as a function of depth inside the crevice.  Using the results in 

these figures, the effect of flow on each crevice will now be explained. 
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Figure 6.2. Predicted velocity field in the flow influenced crevice system.  Crevice is 50 

µm deep and 10 µm across the gap.  Flow is modelled within 20 µm of the pipe wall.  The 

bulk Reynolds number is 5.4 x 105.  The velocity is in units of m/s. 
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Figure 6.3. Predicted velocity field in the flow influenced crevice system.  Crevice is 50 

µm deep and 20 µm across the gap.  Flow is modelled within 20 µm of the pipe wall.  The 

bulk Reynolds number is 5.4 x 105.  The velocity is in units of m/s. 



 246

-20 0 20 40 60 80 100 120 140 160

-10

0

10

20

30

40

50

60

70

80

D
e
p
th
 f
ro
m
 S
u
b
la
y
e
r 
T
h
ic
k
n
e
s
s
 (
µ
m
)

Axial Distance (µm)

0

0.1250

0.2500

0.3750

0.5000

0.6250

0.7500

0.8750

1.000

 
Figure 6.4. Predicted velocity field in the flow influenced crevice system.  Crevice is 50 

µm deep and 50 µm across the gap.  Flow is modelled within 20 µm of the pipe wall.  The 

bulk Reynolds number is 5.4 x 105.  The velocity is in units of m/s. 
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Figure 6.5. Predicted velocity field in the flow influenced crevice system.  Crevice is 50 

µm deep and 100 µm across the gap.  Flow is modelled within 20 µm of the pipe wall.  

The bulk Reynolds number is 5.4 x 105.  The velocity is in units of m/s. 
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Figure 6.6. Predicted velocity field in the flow influenced crevice system.  Crevice is 50 

µm deep and 200 µm across the gap.  Flow is modelled within 20 µm of the pipe wall.  

The bulk Reynolds number is 5.4 x 105.  The velocity is in units of m/s. 
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Figure 6.7.  Velocity magnitude along crevice centreline for varying gap sizes.  The 

magnitude of the velocity is determined from the vector velocity data presented in Figures 

6.2 – 6.6. 
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In Figure 6.2 (10 µm gap), fluid from the bulk solution shears the crevice fluid 

causing a series of vortices inside the crevice.  From Figure 6.7, it can be seen that the 

magnitude of the velocity in the 10 µm crevice is very small.  Thus, there is only limited 

transport of momentum from the bulk solution to the crevice solution.  Furthermore, from 

the flow regime in Figure 6.2, it can be seen that there is little or no penetration of the 

bulk fluid into the crevice, and thus, crevice washout is predicted to not occur.  Because 

washout does not occur, acid-chloride solutions that form inside the crevice will not be 

replaced by more neutral bulk solution fluid.  However, the transfer of momentum from 

the bulk solution to the crevice, which is manifested as vortices in the crevice fluid, will 

cause mixing of the crevice fluid.  It was seen in previously presented studies on crevice 

corrosion initiation that, due to a lower rate of electromigration transport at the crevice 

tip, the most aggressive acid-chloride solutions will develop at the crevice tip.  Mixing 

caused by vortices in the crevice will hinder the onset of crevice corrosion by more 

uniformly distributing H+ and Cl- species throughout the crevice solution.  While the 

flowfield causes mixing of the crevice solution, which is beneficial, it also causes an 

increase in the cathodic limiting current at the bold surface, which is detrimental.  

Increasing the limiting current at the cathode may increase the bold surface potential, 

causing an increased driving force for crevice corrosion.  In essence, increasing the 

cathodic limiting current will increase the throwing power of the bold surface and allow 

anodic reactions within the crevice to proceed at a faster rate.  For the 10 µm crevice, the 

overall effect of crevice-external flow is detrimental to its crevice corrosion resistance. 

In Figure 6.3 (20 µm gap), very slight fluid penetration begins to occur.  However, 

the predominant effect of the external flowing fluid is to shear the crevice-internal fluid 
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and cause recirculation patterns in the crevice.  While recirculation in the crevice is still 

very slow, the strength of the vortices has increased compared to the 10 µm crevice.  Due 

to the aspect ratio of the crevice, the primary vortex nearest the crevice mouth does not 

extend over the crevice length.  Rather, it causes a secondary vortex which spins in the 

opposite direction.  This secondary vortex produces a third vortex at the crevice tip, 

which again rotates in the direction of the primary vortex.  A similar recirculation pattern 

was observed in the 10 µm gap.  Examination of the magnitude of the velocity in the 

centre of the 20 µm crevice shows that the velocity field does not significantly penetrate 

the crevice.  This confirms that washout is not predicted for the 20 µm crevice. 

In Figure 6.4 (50 µm gap), the gap is of sufficient size so that one large vortex 

exists in the crevice.  This represents a significant change in flow pattern from the 20 µm 

crevice where a series of two vortices, each dissipating momentum transferred from the 

previous vortex, developed from a primary vortex at the crevice mouth.  Furthermore, 

from Figure 6.7, it can be seen that the velocity field more significantly penetrates the 

crevice fluid.  The fluid exchange occurs near the crevice mouth.  However, due to 

mixing caused by recirculation flow in the crevice, this may cause crevice washout. 

In Figure 6.5 (100 µm gap), one large vortex again develops inside the crevice.  

Both the strength of the vortex and the penetration of external fluid into the crevice have 

increased compared to the 50 µm gap.  This is confirmed by examination of Figure 6.7.  

Penetration of the external fluid into the crevice is still quite shallow.  However, as in the 

50 µm crevice, mixing of the crevice solution due to recirculation could combine with the 

effect of fluid penetration to cause crevice washout. 



 252

In Figure 6.6 (200 µm gap), it is apparent that crevice washout will occur.  Due to 

the direction of flow, the top right hand corner of the crevice is washed out while a vortex 

develops in the top left hand corner.  Thus, crevice corrosion could still occur in the 

vortex region where fluid velocities are significantly lower.  This phenomenon could 

result in irregular geometries in a crevice.  However, it is likely that mixing caused by the 

vortex in the corner will also wash the corner out.  Thus, total crevice washout is the 

likely outcome of this situation.  However, due to increased mass transfer, the uniform 

corrosion rate inside the crevice will increase, but not to the extent caused by a 

differential aeration cell. 

A theoretical model of mass transport and electrochemistry for a two-dimensional 

crevice has been developed.  It is shown in Appendix B. 

6.3 Conclusions 

In this chapter, a computational fluid dynamics model has been developed and 

implemented to predict crevice washout.  It has been shown that as the ratio of the crevice 

gap to depth increases, the penetration of the bulk fluid into the crevice increases, thereby 

increasing the extent of crevice washout.  This is a beneficial effect as it reduces the 

propensity for aggressive solutions to develop in the crevice.  However, it is also 

predicted that for small crevices, fluid penetration is minimal, thereby showing that flow 

outside of a small crevice is detrimental.  In this case, while the benefits of crevice 

washout are not seen, the throwing power of the cathode is increased due to the increased 

limiting cathodic current density. 
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Chapter 7. Summary and Conclusions 

7.1 Summary 

The goal of this work was to develop improved methods and algorithms for the 

prediction of localized and flow influenced corrosion.  While there are significant 

differences in the mechanisms by which localized vs. flow influenced corrosion occur, 

both types of corrosion are profoundly influenced by mass transport.  In localized 

corrosion, electromigration and diffusion mass transport between the exterior bold surface 

and the crevice interior limits the rate of corrosion and the depth of attack.  If a turbulent 

flowfield is present outside of the crevice, convective mass transport will increase the 

cathodic limiting current at the bold surface, and depending upon the size of the crevice 

gap relative to the depth, may cause crevice washout.  In flow influenced corrosion, the 

presence of turbulent flow enhances mass transport to the surface, thus increasing the 

limiting cathodic current.  Thus, electrolyte mass transport is a common influence on each 

form of corrosion modelled in this work.  Although the mass transport model is only 

applied to corrosion problems in this work, the transport model and the numerical 

algorithms presented for its solution are equally applicable to other electrochemical 

systems. 
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7.2 Conclusions 

7.2.1 Modelling of electrolyte mass transport 

Because mass transport plays such an important role in all forms of corrosion, a 

significant amount of work was also done to develop more sophisticated techniques to 

accurately and efficiently predict electrochemical mass transport.  A key difficulty in 

mass transport modelling has been correctly accounting for the effect of charge density.  

Charge density effects occur at very different time scales from other forms of transport 

(convection, diffusion, and electromigration) and this feature makes solving the complete 

electrolyte mass transport equation impossible.  Two new tools for the accurate 

calculation of electrolyte mass transport have been developed in this work – the hybrid 

differencing scheme for electrolyte mass transport and the algebraic charge density 

correction.  From the work done in electrolyte mass transport modelling, the following 

conclusions can be made: 

1. The hybrid differencing scheme uses a local pseudo-steady state description of 

electrolyte mass transport to calculate the Peclet number, a measure of the strength 

of electromigration to diffusion.  The Peclet number, in turn, is used to calculate 

upwind parameters for use in transport coefficient calculation. 

2. Use of the hybrid differencing scheme results in up to 87% more accurate 

calculation of the velocity of the Ag+/K+ moving boundary relative to the 

experimental observations of Fu and Chan. 

3. The algebraic charge density correction scheme is derived from a linearization of 

the charge density term of the electrolyte mass transport equation.  The fraction of 
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excess charge borne by an ionic species is proportional to the product of its charge 

number, ionic mobility, and concentration in solution. 

4. Use of the algebraic charge density correction scheme improves upon the accuracy 

and numerical stability of previously proposed charge density calculation 

algorithms.  For example, the application of the scheme to the Fu and Chan 

experiment resulted in a sixfold decrease in computation time compared to using 

the charge density correction scheme proposed by Evitts and Watson while 

enhancing the accuracy of the simulation. 

7.2.2 Simulation of crevice corrosion initiation of passive metals 

The crevice corrosion initiation model developed herein predicted that increased 

temperature, decreased crevice gap, decreased pitting resistance equivalent number 

(PREN) and increased electrolyte conductivity were detrimental to the crevice corrosion 

resistance of passive alloys.  This crevice corrosion model improved upon previous 

crevice corrosion models by more accurately calculating non-ideal solution effects 

through the use of Pitzer’s Equations (see Sections 4.1 and 4.2).  The ability of this model 

to accurately rank stainless steels for their crevice corrosion resistance was demonstrated.  

The following conclusions can be made: 

1. The size of the crevice gap has a dramatic influence on the crevice solution and 

the dominance of transport mechanisms in the crevice.  For small gaps, 

electromigration is the dominant transport mechanism.  Furthermore, activity 

gradients, which are steep due to strong electromigration, are smoothed by 

diffusion.  The coupling of electromigration and diffusion induces charge density 

effects.  For large gaps, the current density in solution is smaller, and therefore, 
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the strength of electromigration relative to diffusion is less.  As a result, the charge 

density profile in a larger gap crevice is of smaller magnitude than that in a small 

gap crevice. 

2. Ionic interactions affect the crevice corrosion process.  Ionic interactions influence 

the rate of mass transport.  For example, in a type 304 stainless steel crevice in 0.6 

M NaCl at 25ºC, the rate of H+ transport out of the crevice is hindered while the 

rate of Cl- transport into the crevice is enhanced.  In addition, ionic interactions 

may delay and/or prevent attainment of a steady state condition.  When the ionic 

interaction model is included, a secondary pH drop is seen which is caused solely 

by ionic interaction. 

3. The crevice corrosion initiation model augmented with Pitzer’s equations is 

capable of modelling crevice corrosion initiation of stainless steels and titanium in 

potash brine.  By calculating the predicted crevice pH, the following ranking from 

most resistant to susceptible was predicted: Grade 2 titanium, Type 314 stainless 

steel, Type 308 stainless steel, Type 304 stainless steel, and Type 405 stainless 

steel.  This is the expected order – titanium is known to be highly resistant to 

corrosion and the steels are in order of their pitting resistance equivalent numbers 

(PRENs). 

4. The crevice corrosion model developed in this work improves upon the accuracy 

of previous models.  Figure 7.1 shows that the crevice pH distribution as predicted 

using the present model more closely represents experimentally determined pH 

values in a type 304 stainless steel crevice than previous models. 
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Figure 7.1.  Comparison of Predicted pH Profile Against Predictions of Previously 

Published Models and the Experimental Observations of Alavi and Cottis in a Type 304 

Stainless Steel Crevice (25°C, 0.6 Molar NaCl Bulk Solution, Dimensions 90 µm x 2.5 

cm x 8.0 cm) 
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7.2.3 Simulation of flow influenced CO2 corrosion 

A CO2 corrosion model was developed which accurately predicted experimental 

observations of others.  This rigorous model accounted for FeCO3 film growth.  This 

model used a novel technique to calculate limiting current density.  Rather than relying 

upon empirical correlations applicable to a specific situation, this technique calculated the 

limiting current by varying the boundary condition at the reactive wall from a corrosion 

induced flux (charge transfer control) to a zero concentration condition (mass transfer 

controlled).  When a cathodic reaction is mass transfer controlled, the diffusion-limited 

current is used to calculate the contribution to the overall cathodic current, rather than the 

Butler-Volmer equation.  It was shown that increased Reynolds number causes an 

increase in the corrosion rate, which is the expected result. 

7.2.4 Simulation of flow influenced crevice corrosion 

Using the flow influenced crevice corrosion model developed herein, it was found 

that turbulent flow outside a crevice with a small gap to depth ratio increases mass 

transfer rates to the bold surface, thereby increasing the cathodic limiting current.  

Momentum transferred from the bulk solution fluid to the crevice-internal fluid was 

manifested as a series of vortices in the crevice, which caused mixing of the crevice 

solution.  Turbulent flow outside a crevice with a small gap was detrimental to the crevice 

corrosion resistance of the metal.   

Turbulent flow outside a crevice with a large gap to depth ratio caused crevice 

washout.  Thus, the acid-chloride solution that would normally have developed inside a
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crevice was replenished with more neutral bulk fluid.  Furthermore, because the bulk fluid 

was aerated, a differential aeration cell did not form.  Thus, external flow aided in 

preventing crevice corrosion to occur for a crevice with a larger gap to depth ratio. 

A rigourous description of mass transport was developed, which is shown in 

Appendix B.  This model accounted for transport via convection, diffusion, 

electromigration, and convection diffusion potential electromigration.  Convection 

diffusion potential is a small contribution to the electrical field formed when diffusion and 

convection induce slight charge separation.  This electrical field drives a secondary 

current density which adds to the primary current density.  Unlike the 1-D model used in 

Chapter 4, this model does not assume that anode-cathode couplings are established.  

Rather, a complex electrode coupling algorithm was developed which, based upon the net 

potential difference between electrodes, calculated the current density flowing between 

them.  The net potential difference is the uncoupled electrode potential (i.e. the potential 

calculated via the Butler Volmer equation and mixed potential theory) less the ohmic 

potential drop required for current transfer between the electrodes.  The electrode 

coupling algorithm is applied for each possible intercoupling. 

This two-dimensional flow influenced crevice corrosion model is the first of its 

kind.  While flow influenced crevice corrosion has been studied experimentally, it has not 

been modelled previously.  The electrochemical model used in the flow influenced 

crevice corrosion model makes this code applicable to both crevice corrosion initiation 

and propagation. 
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7.3 Overall Conclusions 

 The objective of this research was to improve upon previous crevice corrosion 

models by using more sophisticated mass transport models and algorithms.  In this work, 

these objectives have been met.  A mass transport model has been developed which 

accurately accounts for charge density effects while ensuring computational efficiency.  

Furthermore, in the finite volume integration of the mass transport equation, a method has 

been developed that utilizes local physics to more accurately estimate the strength of 

interactions between neighbour nodes.  This has resulted in a mass transport model that 

can more accurately predict mass transport in electrochemical systems.   

When applying this improved mass transport model to crevice corrosion, 

improvements in the accuracy of the model compared to past models against experimental 

data were apparent.  An additional improvement to the crevice corrosion initiation model 

came from the incorporation of Pitzer’s equations to calculate non-ideal solution effects 

due to short and long range coulombic interactions between charged species.  Figures 

shown in Chapter 4 demonstrated that the pH predictions of this model were markedly 

closer to independent experimental data than previously developed crevice corrosion 

models.  Results from the model were used to calculate solution properties that are too 

small to measure, such as charge density in solution.  It was shown that there is a distinct 

relationship between charge density and diffusion potential electromigration.  

Furthermore, charge density profiles were analyzed to give insight on the relative 

influence of diffusion potential electromigration and primary electromigration.  It was 

found that the influence of diffusion potential electromigration relative to primary 

electromigration increases as the crevice gap increases.  Finally, the flexibility of the 
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model was showcased by predicting the pH profile during the crevice corrosion 

incubation period for five different alloys.  Using theses simulation results, the five alloys 

(four stainless steels and Grade-2 titanium) were ranked for their crevice corrosion 

resistance in the expected order. 

The same mass transport model was then incorporated into a flow influenced CO2 

corrosion model augmented with a FeCO3 film growth model.  Again, the model 

performed very well, matching independent experimental transient corri  profiles in a fully 

developed turbulent pipe flow. 

Finally, the mass transport model was applied to the two-dimensional simulation 

of crevice corrosion under the influence of a turbulent flow field.  While the original form 

of the electromigration-diffusion equation was retained, a convection term was also added 

to the mass transport equation.  A computational fluid dynamics solver was implemented 

to calculate the flow field inside and around a microscopic crevice.  It was found that as 

the crevice gap to depth ratio increased, the influence of the turbulent flow field changed.  

For a very small crevice gap, the effect of turbulent flow was to increase the cathodic 

limiting current, thereby exacerbating the crevice corrosion problem by allowing for a 

greater rate of anodic dissolution inside the crevice.  However, for a large crevice gap, the 

flow significantly penetrated into the crevice causing a washout of the crevice solution.  

Thus, the acid chloride solution that would normally develop in a flow- restricted crevice 

was not allowed to form and the presence of flow was beneficial.  Details of the 2-D mass 

transport equation are shown in Appendix B. 
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Chapter 8. Recommendations 

Using this work as a starting point, there are several directions that I recommend should 

be followed in future studies: 

1. The flow influenced crevice corrosion model could be easily adapted for the 

prediction of mesa corrosion, and I strongly recommend this for a future study.  

Adaptation of the model would require a scale-up of the computational grid to 

model the entire pipe cross-section and the implementation of a turbulence model. 

2. Pitzer’s Equations were used in the simulation of the crevice corrosion initiation 

of stainless steel.  Although this approach was justified by agreement with 

independently obtained experimental data, the utility of the model would be 

increased with more parameters for Pitzer’s Equations.  Thus, an experimental 

study to determine parameters for Pitzer’s Equations specific to the stainless steel 

crevice solution at a variety of conditions would complement this work. 

3. The carbon dioxide corrosion model is written for a fully developed, steady flow 

regime.  The application of this model could be extended to flow in more complex 

geometry.  This would make the model suitable for the numerical modelling of a 

variety of industrially relevant problems.  The starting point for the development 

of this model could be the CFD model developed for flow influenced crevice 

corrosion. 
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4. The crevice corrosion initiation model could be extended to calculate transition of 

the crevice from a passive to active state.  Currently, the model uses critical pH 

values to determine the incubation period of a particular metal crevice in an 

electrolyte solution.  However, with knowledge of the complete kinetic corrosion 

diagram of a metal, the point at which the cathodic line intersected the nose of the 

anodic line could be determined, and thus, passive-active transition could be 

modelled (see Figure 4.1 for illustration of the crevice corrosion kinetic corrosion 

diagram). 
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Appendix A. Sensitivity of Predicted Activity Coefficients 

on Parameters for Pitzer’s Equations 

Reference:  

A very similar version of this appendix appears in the following publication:  

K.L. Heppner, R.W. Evitts, and J. Postlethwaite (2005) Effect of Ionic Interactions on the 

Initiation of Crevice Corrosion in Passive Metals.  Journal of the Electrochemical Society 

152.  pp. B89-B98. © The Electrochemical Society, Inc. 2005. 

 

A.1 Pitzer’s Equations 

The equations of the activity coefficient of cations, anions, and neutral species are: 

...2

)2(

)2()ln(

'

'

'

2

+++

++Ω+

++=

∑∑∑

∑ ∑∑∑

∑

<

n

nMn

c a

caacM

a

Maa

a

aa

a

McaaMc

c

c

a

MaMaaMM

mCmmz

mmmm

ZCBmFz

λ

ψψ

γ γ

   (A.1a) 

...2

)2()2()ln(

'

'

'

2

++++

+Ω+++=

∑∑∑∑∑

∑∑∑

n

nXn

c a

caacX

c

Xcc

c

cc

c

cXacXa

a

a

c

cXcXcXX

mCmmzmm

mmZCBmFz

λψ

ψγ γ

 (A.1b) 

...2)ln( +







++= ∑∑∑

n

Nnn

a

Naa

c

NccN mmm λλλγ    (A.2) 

where: 



 266

∑ ∑∑ ∑

∑∑
Ω+Ω+

+=

<< a a

aaaa

c c

cccc

c a

caac

mmmm

BmmIfF

'

'

''

'

'

''

')(γγ

    (A.3) 

( )IgB ijijij αββ )1()0( +=       (A.4) 

( )
I

Ig
B ijij

α
β

'
)1(' =        (A.5) 

ji

ij

ij

zz

C
C

2

φ

=         (A.6) 

)(Iij

E

ijij θθ +=Ω        (A.7) 

)('' Iij

E

ij θ=Ω         (A.8) 

The sensitivity of the activity coefficient on the value of each of the six fundamental 

parameters )0(

ijβ , )1(

ijβ , φ
ijC , ijθ , ijλ , and ijkψ  will now be determined. 

A.2 Parameter Sensitivity Analysis 

1.  Determine the variation of the activity coefficient with coefficients appearing directly 

in the equations:  B, C, Ω, ψ, λ, and γF  
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2.  Coefficients B, C, and Ω are functions of base parameters.  Transform derivative 

expressions to functions of base parameters using the chain rule. 
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However, γF  is a function of '

MaB .  Therefore, (A.17) and (A.18) become: 

)0(

'

')0()0(

lnlnln

Ma

Ma

Ma

M

Ma

Ma

Ma

M

Ma

M B

B

F

F

B

B β
γ

β
γ

β
γ γ

γ ∂

∂

∂
∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂
   (A.19) 

)0(

'

')1()1(

lnlnln

Ma

Ma

Ma

M

Ma

Ma

Ma

M

Ma

M B

B

F

F

B

B β
γ

β
γ

β
γ γ

γ ∂

∂

∂
∂

∂

∂
+

∂

∂

∂

∂
=

∂

∂
   (A.20) 



 268

Substitution of equations (A.9) and (A.16) into both gives: 
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Now determine derivatives which appear in equations A.21 and A.22 from expressions 

for B, B’, and γF  (equations A.3 – A.5): 
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Substitute expressions (A.23) – (A.27) into expressions (A.21) and (A.22) to obtain final 

result: 
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Substitution of equation (A.10) yields: 
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For c-a where c is not equal to M substitute equation (A.11) into (A.30) to obtain: 
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A.3 Summary 

For the cationic activity coefficient, the sensitivities are summarized in Table A.1: 

Parameter Sensitivity of Mγln  to Parameter 
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Table A.1.  Sensitivity of the cationic activity coefficient to the fundamental parameters 

of Pitzer’s equations. 

Similarly, for the anionic activity coefficient see Table A.2: 

Parameter Sensitivity of Xγln  to Parameter 
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Table A.2.  Sensitivity of the anionic activity coefficient to the fundamental parameters of 

Pitzer’s equations. 
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The sensitivity of the neutral species coefficient, Nγln , upon Njλ  is jm2 , where the jth 

species is either anionic or cationic. 

The functions, g(x) and g’(x), are bounded between 0 and 1 and are plotted in the 

Figure A.1. 

From the results of this sensitivity study, the predicted anionic and cationic 

activity coefficients are weakly dependent upon the accuracy of ionic interaction 

parameters for interactions with ions of low molality.  The sensitivity increases as the 

molality of the interacting ion increases.  Because most interaction parameters fall within 

a typically small range, the error associated with assuming parameter values which fall 

within the typical range for that parameter type is small. 
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Figure A.1.  Plot of g(x) and g’(x), functions utilized in Pitzer’s equations. 
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Appendix B.  Electrochemical Mass Transport Model in a 

Two-Dimensional Crevice 

B.1 Mass Transport 

In an electrolyte solution, chemical species transport is driven by both electrochemical 

potential differences and overall fluid momentum.  Transport due to fluid momentum is 

due to a mechanical pressure difference.  Thus, fluid travels towards regions of lower 

pressure and, in so doing, drags chemical species along with it.  Similarly, chemical 

species are transported to regions of lower electrochemical potential.  In both cases, 

transport occurs to bring the fluid to a lower energy state.  The flux of a chemical species 

due to convection, electromigration, and diffusion in an infinitely dilute solution is [1]: 

 vN i iiiiii CFCuzCD +Φ∇−∇−=      (B.1) 

In a moderately dilute solution, the mass flux is [1]: 

 ( ) vN i iiiiiiii CCCDFCuz +∇+∇−Φ∇−= γln    (B.2) 

The fundamental mass balance equation is: 
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where iR  is a chemical reaction source term.  Substitution of (B.1) into (B.3) gives the 

mass transport equation applicable for infinitely dilute solutions: 
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Similarly, by substituting (B.2) into (B.3), the mass transport equation applicable to 

moderately dilute solutions is obtained: 
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In the development of equations (B.4) and (B.5), it was assumed that the fluid was 

incompressible, and thus, mass continuity demands that 0=⋅∇ v . 

Poisson’s equation for charge density relates the second order gradient of the 

potential field to the charge density in solution.  It describes how, when a charge density 

exists in solution, it is quickly eradicated through a parabolic contortion of the electrical 

field [2].  Mathematically, it is written as: 
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where the charge density, δ , is: 
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and ε  is the dielectric constant.  Substitution of (B.6) into (B.4) and (B.5) yields: 
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 Moderately dilute solution: 
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Equations (B.8) and (B.9) may be expressed in terms of potential or current density.  In 

this work, the mass transport equations were usually solved in terms of current density 

rather than potential.  Shrier [3] gives a method for calculating current density boundary 

conditions in a crevice during its incubation period.  To determine the relationship 

between current density and potential, consider the definition of current density: 

 ∑=
j

jzF jNi         (B.10) 

For a moderately dilute solution, this becomes: 

 ( )( )∑ +∇+∇−Φ∇−=
j

jjjjjjjjjj CzCCDzFCuzF vi γln2   (B.11) 

After some algebraic manipulation to isolate the potential gradient, the following equation 

is obtained: 
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Equation (B.12) is an expression of Ohm’s Law for a solution with non-uniform 

concentration and a velocity field.  Here, the conductivity is: 

 ∑=
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and the convection diffusion potential current is: 

 ( ) δγ vi cdp −∇+∇= ∑
j

jjjjj CCDzF ln     (B.14) 

Note that the convection diffusion potential for an infinitely dilute solution is obtained 

when 0ln =∇ jγ , i.e.: 

 δvi cdp −∇= ∑
j

jjj CDzF       (B.15) 
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Unlike the previous convection-free models, here a current density forms to oppose the 

current produced by transporting a net charge via convection.  The final form of the mass 

transport equations are: 

 Infinitely dilute solution: 
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 Moderately dilute solution: 
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Again, note that the infinitely dilute solution model is obtained from the moderately dilute 

solution model when 0ln =∇ iγ .  This implies that the infinitely dilute mass transport 

model may be applicable to moderately dilute solutions, providing that the spatial profile 

of the activity coefficient in solution is nearly uniform. 

 Activity coefficients required to solve equation (B.17) may be calculated using 

Pitzer’s Equations (see equations 3.1.3 – 3.1.5)  [4, 5]. 

The boundary condition for calculation of species concentration, equations (2.1.4) 

and (2.1.5), is based upon Faraday’s Law and is: 

 ∑=
∂

∂
−

k k

jkkj

n

i

Fx

C
D

ν1
      (B.18) 

Here, ki  is the current density generated or consumed by the k
th electrode reaction, jkν  is 

the stoichiometric coefficient of the jth species in the kth electrode reaction, and kn  is the 

charge transfer number of the kth electrode reaction.  The summation is taken over all 
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electrode reactions occurring in the system.  Equation (B.18) is a pseudo steady state 

mass balance taken at the metal-solution interface and it balances the rate of corrosion to 

the rate to diffusion. 

Applying a finite volume discretization technique to equation (B.17) results in the 

following set of equations (in two dimensions): 

 yxGCaCaCaCaCaCa iiPPiSSiNNiWWiEEiPP ∆∆+++++= 00  (B.19) 

Using the previously discussed hybrid differencing scheme (section 3.3) to express the 

interfacial concentrations, ieC  and iwC , as nodal values, the discrete transport coefficients 

are: 
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Here, the stencil used to discretize the mass transport equation is illustrated in Figure B.1.  

In equations (B.20) – (B.23), the convective upwind parameter, β , is calculated based 

upon the local Reynolds number.  The electromigration upwind parameter, α , is a 

function of the modified electromigration Peclet number, 'P , and the calculation of both 

of these parameters were discussed in section 3.3. 

B.2 Calculation of the Potential Field in Solution 

 In this two-dimensional model, the use of potential rather than current density in 

solution is more convenient.  This is because current density is now a vector quantity 

while potential is a scalar, the gradient of which is proportional to the current density.  

The potential in solution is correctly described by Poisson’s equation for charge density, 

equation (B.6).  However, this equation is incredibly stiff.  On the right hand side of this 

equation, the charge density is divided by the dielectric constant, ε , the value of which is 

of order of magnitude of 10-11 Farad / m.  Thus, any variation in the charge density field 

causes high variability in the potential field.  From the potential field, the current density 

field is calculated via Ohm’s Law: 

 Φ∇−= κi         (B.26) 

Thus, charge density in solution will cause massive overcompensation of the current 

density field to eradicate the charge.  Although in nature, this phenomenon would work to 

ensure that charge does not accumulate in solution, in a numerical algorithm, this causes 

numerical instability.  This instability could only be avoided if extremely small time steps 

were used in the solution of the mass transport equation coupled with the Poisson 

equation solver.  Such small time steps would allow for only short simulation times, as 

the computational efficiency would be extremely low. 
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Figure B.1.  Control volume stencil used in 2-D discretization.  Dotted lines represent the 

control volume interfaces.  Large black dots represent nodes where property values are 

calculated.  Arrows represent flux through the control volume interface. 
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 An alternate method has been derived to incorporate the effect of charge density 

upon the potential field in solution.  This method is based upon the charge conservation 

equation and its derivation follows. 

 A statement of mass conservation yields the following expression: 
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       (B.27) 

Using the moderately dilute mass flux, equation (B.2), equation (B.27) becomes: 
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This can be reduced to the following: 

 δκκ
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t
    (B.29) 

This was obtained through the substitution of equations (B.13) and (B.14), the definition 

of conductivity and convection diffusion potential current density, respectively.  It is 

desired to use equation (B.29) to determine the potential field.  Thus, the conductivity, 

convection diffusion potential current density, and charge density fields must be known.  

The conductivity and convection diffusion current density field may be readily calculated 

from equations (B.13) and (B.14) with the known concentration and activity coefficient 

field.  However, the charge density field should be prescribed.  It is desired to obtain a 

potential field that will eradicate the charge density.  To find this field, substitute the 

desired values for the rate of change and gradient of the charge density: 



 281
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        (B.30) 

 0=∇δ         (B.31) 

Equation (B.31) sets the rate of change of the charge density such that 0δ , the charge 

density accumulated over the previous time step, is eradicated, i.e.: 
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A zero gradient of charge density will result from uniformly applying this equation 

throughout the solution domain, and hence, the gradient is set to zero (equation (B.31)).  

Substitution of equations (B.30) and (B.31) into (B.29) yields the following: 
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Note that for a uniform concentration field, equation (B.33) becomes a Poisson equation: 
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This formulation is advantageous because the response of the potential field to charge 

density is averaged over an entire time step.  This removes the stiffness that was inherent 

to equation (B.6).  It is interesting to compare the right hand side of equations (B.6) and 

(B.34): 

 
ε
δ

κ
δ 00

−=
∆

−
t

        (B.35) 

This gives insight into the time step required to use Poisson’s equation for charge density.  

Rearrangement of (B.35) yields: 

 sec10 8−≈=∆
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Equation (B.36) shows that the time step required to solve the mass transport equation 

such that it is operating at the same time scale as Poisson’s equation for charge density is 

extremely small.  Use of the modified potential field calculation scheme therefore 

dramatically improves computational efficiency while still incorporating the effects of 

charge density in solution on the potential field. 

 The boundary condition for the potential field equation comes from conditions at 

the electrode.  There are two types of boundary conditions that the electrode site may 

supply – a Neumann type boundary condition that is based upon Ohm’s Law, and a 

Dirichlet type boundary condition that simply sets the solution potential to the metal 

potential, i.e.: 

 i
x
=

∂
Φ∂

−κ         (B.37) 

 E=Φ          (B.38) 

Here, E  is the potential of the metal at the metal-solution interface.  Typically, equation 

(B.37) is applied to all but one electrode site to guarantee that current leaving the metal 

enters the solution.  Equation (B.38) is then applied to one site to tether the potential field 

in solution to the corrosion potential.  One Dirichlet condition is necessary because both 

the equation describing the potential field, equation (B.33), and the Neumann type 

boundary condition, equation (B.37), are only dependent upon the gradient of the 

potential.  Hence, the potential must be specified at one point to avoid singularity of the 

potential field solution. 

B.3 Electrode Reactions 

 Knowledge of the potential and current density emanating from the metal surface 

gives valuable boundary conditions for the calculation of mass transport, as seen in the 
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previous section.  Thus, electrode processes are closely inter-coupled with mass transport.  

Because of this, accurately calculating conditions at the electrode is of primary 

importance. 

 The rate of an electrode reaction is predicted by the Butler Volmer equation 

modified for mass transfer limitation [6]: 
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Equation (B.39) predicts the current density to be bounded between the anodic and 

cathodic limiting currents, lim,ai  and lim,ci , respectively.  Equation (B.39) can be written 

for each electrode reaction occurring in the system.  At mixed potential, the rate at which 

each reaction occurs may be determined: 
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ji         (B.40) 

Equation (B.40) defines mixed potential and is a statement of charge conservation.  

Substitution of (B.39) into (B.40) yields the equation from which the electrode potential is 

calculated: 
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An incremental search algorithm is applied to determine the electrode potential, E .  Once 

known, the potential is used to calculate the rate of each individual reaction using 

equation (B.35).  Thus, both the potential and current density may be obtained. 
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B.3.1 Coupling of anode-cathode pairs 

 If the potential difference between two electrode sites is greater than the iR drop 

between the two, the two will couple to form a separated anode and cathode.  Such is the 

case when a differential aeration cell forms in a crevice; the crevice interior usually 

becomes anodic while the metal surface surrounding the crevice (the bold surface), 

becomes cathodic.  This is a phenomenon that can be predicted mathematically.  

However, it is extremely complex to implement.  In this work, a method has been 

proposed to numerically predict inter-couplings between anodes and cathodes.  First, 

equations are written for each possible inter-coupling: 
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     (B.42) 

In equation (B.42), the space-averaged conductivity, jkκ , is determined by line integral 

averaging over the path between the jth and kth electrode: 
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Here, S  represents the shortest path between the two points.  jkexi ,  is the current density 

flowing between the jth and kth electrodes and jkx∆  is the distance between the two 

electrodes (along the path S).  Whether a coupling is possible depends upon whether or 

not the metal potential difference, jk EE − , is greater than the iR drop, jk Φ−Φ .  

Equation (B.42), in essence, is an expression of Ohm’s Law and calculates the maximum 

current that could flow between two coupled electrode sites.   

Then, an expression is written for the metal potential: 
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The “if statement” notation used in equation (B.44) means the following: 

 [ ]false iscondition  if do  What to true,iscondition  if do  What toCondition,if  

Here, the net Tafel slopes, net

ab  and net

cb , are calculated from all anodic and cathodic 

reactions occurring in the system: 
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Here, only the net

ab  calculation is shown as the net

cb  calculation is analogous.  Equation 

(B.44) adjusts the metal potential for its inter-couplings with other electrode sites 

assuming Tafel behaviour.  In equation (B.40), the old value of the potential, 0

jE , is 

calculated using the Butler-Volmer equation modified for mass transfer limitations and 

mixed potential theory (equation (B.39)).  Thus, couplings arise due to differential 

availability of cathodic reagents as well as concentration overpotential.  The electrode 

potential will drop where mass transfer limits the rate of reaction.  An electrode under 

mass transfer control will couple with another electrode or electrodes (at higher potential) 

to supply its cathodic charge demand.   

Equation (B.42) is written for each jkexi ,  while (B.40) is written for each jE .  

Thus, these two equations define a solvable, closed system.  Note that equation (B.44) is 

linearized.  Because equation (B.42) is also a linear equation, the complete system of 

equations is linear and, thus, solvable by a direct method (i.e. Gaussian elimination, LU 

decomposition, etc.).  While a change in potential is proportional to a change in the 

logarithm of current, according to Tafel behaviour, the logarithms here have been 

replaced with linear functions.  This is appropriate in this case because jkexi ,  is very small, 
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and thus, a Taylor series expansion may be used to linearize it.  The linearization 

technique will be explained in detail shortly.  The complete algorithm for determining 

electrode couplings is: 

1. Calculate all electrode potentials in the system using mixed potential theory 

(equation (B.41)). 

2. Apply equations (B.42) and (B.44) to determine couplings between electrodes of 

differing potential. 

3. Use the solution, the E  and exi  vectors, to update the electrode potential and 

current density. 

This algorithm is applied in synchronization with an electrolyte mass transport solver. 

It is noteworthy that, when the potential does not change significantly due to 

coupling, it can be assumed constant.  This is likely the case for most applications, 

especially when this algorithm is applied successively at each time step.  Assuming the 

potential to be constant decouples equations (B.42) and (B.44), thereby avoiding the 

solution of a very large set of linear equations.  It is therefore advantageous from a 

computational standpoint to assume that the potential does not change during the coupling 

process.  The derivation of this method follows. 

 As seen above, the extent of coupling between two electrodes can be modelled 

using a kinetic corrosion diagram.  An excess current will flow between the two 

electrodes, manifested as transport of cationic species towards the cathode, anionic 

species towards the anode, and a transfer of electrons through the metal.  The definition of 

ionic current used in this derivation is given as equation (B.10).  The excess current that 

flows between anode and cathode will be proportional to the net driving force, that is, the 
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electrode potential difference less the solution resistance.  In this model, the resistance of 

the metal is assumed negligible.  Figure B.2 shows the coupling model in graphical terms. 

A geometric analysis of Figure B.2 (c) may now be performed.  The coupling 

current is that current which makes the difference between the two electrode potentials 

equal to the iR drop between them, i.e.: 

212,1, Φ−Φ=− corrcorr EE       (B.46) 

The coupled potential is related to the uncoupled potential by the net Tafel slope: 
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Substitution of (B.47) and (B.48) into (B.46) yields: 
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Subsequent rearrangement yields the expression for the excess current: 
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Figure B.2.  Graphical representation of the electrode coupling algorithm: (a) Electrode 

which will become cathodic relative to the other; (b) Electrode which will become anodic 

relative to the other; (c) Coupling of the two electrodes to determine the excess current 

flowing between the two. 
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Substitution of (B.51) into (B.50) yields: 
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By definition, the current flowing between the two electrodes is refex ii − .  Therefore, the 

choice of value of refi  is arbitrary.  Equation (B.52) can then be simplified to: 
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This linearization technique is applied to avoid the computationally expensive calculation 

of logarithmic terms.  Equation (B.53) is applicable for 201.0 mAiex <  (approximately 

0.5% maximum error).  Because the coupling current is typically much smaller than 0.01 

A/m2, use of the linearized form of this equation is appropriate.  Because this method is 

applied successively throughout the simulation, avoidance of the repeated calculation of a 

logarithmic term will be beneficial for computational efficiency.  From equation (B.53), it 

can be seen that the excess current is a function of the net potential difference between the 

electrodes (the driving force less the resistance) and the sum of the net Tafel slopes. 

 The previous derivation assumed that the electrode coupling process exhibited 

Tafel behaviour.  For a passive metal, the previous method breaks down because the 

numerical value of ab  would be infinite.  In this case, the current between two electrodes 

may be directly calculated using a rearranged form of equation (B.42): 
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Equation (B.54) is simply an expression of Ohm’s Law.  The net driving potential is the 

difference between the two metal potentials less the iR drop in solution.  If the current 
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predicted via (B.54) is greater than the passive current, pi , then the coupling current is set 

to pi  and the coupling is controlled by electrode charge transfer kinetics.  However, if it 

is less than pi , the coupling is controlled by solution resistance.  The calculation of a 

coupling current for a passive metal is slightly more computationally expensive than for a 

non-passivated metal because equation (B.54) requires line integration to determine the 

spatial average conductivity, jkκ . 

B.4 Overall Algorithm 

 At the start of the simulation, the program will read pertinent physical and 

chemical data from text files.  In this simulation program, the code structure assembles all 

chemical and electrode reactions at run time.  The advantage of this is that any system 

may be modelled without code modifications.  The functionalities of exchange current 

densities upon temperature and composition are also read from these text files.  There are 

six data files that are required for the simulator, and these files are: AnodicReactions.dat, 

CathodicReactions.dat, ChemicalReactions.dat, Charge.dat, Diffusivity.dat, and 

BulkConcentration.dat.  Once data is read in, various initiation tasks are performed.  After 

this, simulation of the crevice corrosion problem proceeds.  To simulate crevice corrosion 

initiation and propagation, the following algorithm is followed: 

1. If the fluid is not stagnant, calculate the velocity profile throughout the system 

using CFD.  It is assumed that the flow is at steady state. 

2. Based upon the most recent estimate of the electrode kinetics and solution 

composition, calculate the potential field in solution. 

3. Using the potential field calculation and the velocity profile, solve the mass 

transport equation. 
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4. Using the solution composition obtained from the mass transport solver, calculate 

the mixed potential of each electrode at the metal-solution interface. 

5. Use differences in the mixed potential to calculate coupling currents between all 

possible anode-cathode pairs. 

6. Output results, increment the time, and go back to step 2. 

Preliminary simulations using the complete crevice corrosion model have shown that in 

occluded regions, the limiting current is lower, and as a result, the corrosion potential will 

drop in these regions.  However, in regions that are more exposed, the limiting current 

will be higher, and in these regions, the corrosion potential will be higher.  For example, 

at the point where the crevice and bold surface meet, and at the corner of the crevice at 

the tip, regions of high and low potential develop, respectively.  This is because the 

meeting of the crevice and bold surface form a corner that juts out, while the corner of the 

crevice tip is an inward corner. 
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