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ABSTRACT 

 

A major gene controlling grain cadmium (Cd) concentration, designated as Cdu-

B1, has been mapped to the long arm of chromosome 5B, but the genetic factor(s) 

conferring the low Cd phenotype are currently unknown.  Genetic mapping of markers 

linked to Cdu-B1 in a population of recombinant inbred substitution lines (RSLs) 

revealed that the gene(s) associated with variation in Cd concentration reside(s) in wheat 

deletion bin 5BL9 between fraction breakpoints 0.76 and 0.79, and linked to two 

candidate genes; PCS2 (phytochelatin synthetase) and Xwg644, which codes for a 

known ABC (ATP-binding cassette) protein. Genetic mapping and quantitative trait 

locus (QTL) analysis of grain Cd concentration was performed in a doubled haploid 

(DH) population and revealed that these genes were not associated with Cdu-B1.  Two 

expressed sequence markers (ESMs), and five sequence tagged site (STS) markers were 

identified that co-segregated with Cdu-B1, and explained >80% of the phenotypic 

variation in grain Cd concentration. A gene coding for a P1B-ATPase, designated as 

OsHMA3 (heavy metal associated), has recently been associated with phenotypic 

variation in grain Cd concentration in rice.  Mapping of the orthologous gene to 

OsHMA3 in the DH population revealed complete linkage with Cdu-B1 and was 

designated as HMA3-B1. Fine mapping of Cdu-B1 in >4000 F2 plants localized Cdu-B1 

to a 0.14 cM interval containing HMA3-B1.  Two bacterial artificial chromosomes 

(BACs) containing full-length coding sequence for HMA3-B1 and HMA3-A1 

(homoeologous copy from the A genome) were identified and sequenced.  Sequencing 

of HMA3-B1 from high and low Cd accumulators of durum wheat revealed a 17 bp 

duplication in high accumulators that results in predicted pre-mature stop codon and 

thus, a severely truncated protein.  Several DNA markers linked to Cdu-B1, including 

HMA3-B1, were successfully converted to high throughput markers and were evaluated 

for practical use in breeding programs.  These markers were successful at classifying a 

collection of 96 genetically diverse cultivars and breeding lines into high and low Cd 

accumulators and will have broad application in breeding programs targeting selection 

for low grain Cd concentrations.  Current results support HMA3-B1 as a candidate gene 

responsible for phenotypic differences in grain Cd concentrations in durum wheat.    
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1.0 INTRODUCTION 

 

 

1.1 Background 

Canadian durum wheat (Triticum turgidum L. var durum) production accounts 

for approximately two-thirds of the world exports of durum wheat and 18% of all wheat 

hectares planted in Canada (Stats Canada 2009).  In Canada, the majority of the durum 

wheat is produced in the semi-arid regions of the western provinces of Saskatchewan, 

Manitoba, and Alberta with most production (84%) concentrated in Saskatchewan 

(Canadian Food Inspection Agency (CFIA) 2006).  Given the importance of durum 

exports to Canadian durum wheat producers, it is necessary that durum wheat cultivars 

meet international trade regulations. 

In durum, a single major gene for grain cadmium (Cd) concentration has been 

reported on chromosome 5B (Knox et al. 2009) and has been designated Cdu-B1.  The 

closest DNA marker is a SCAR (sequence characterized amplified region) marker 

ScOPC20 (Knox et al. 2009) that maps 4.6 cM from Cdu-B1 (Penner et al. 1995).  

Physiologically, Cd enters the plant from the soil through the roots, and is then 

translocated to above ground tissue via the xylem, where it is then available for 

remobilization to the developing grain presumably via the phloem.  Harris and Taylor 

(2004) identified restricted root-to-shoot translocation as the mechanism responsible for 

reduced grain Cd concentration in durum wheat.  Therefore Cdu-B1 may be associated 

with one or more processes that influence Cd sequestering in the roots, or that prevent 

xylem loading of Cd.  

Several health concerns have been associated with exposure to Cd and since 

cereal grain is a large source of dietary intake, maximum allowable tolerances for grain 

Cd have been imposed on cereal grains marketed internationally.  Currently, the Codex 

Alimentarius of the Food and Agriculture Organization (FAO) has set a maximum level 

of 200 ng g
-1

 for grain Cd concentration (CODEX STAN 193-1995 2009) and is 

proposing a maximum level of 150 ng g
-1

.  In response, the western Canadian variety 

registration system now imposes a limit of 100 ng g
-1

 for all newly registered western 

Canadian durum wheat cultivars. Many durum wheat cultivars accumulate Cd in grain 

to levels higher than 200 ng g
-1

, but genetic variation for grain Cd accumulation exists in 
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durum (Clarke et al. 1997b), and breeding for low grain Cd concentration is a priority in 

Canadian programs and globally.  Because of the new proposed limits, there is a 

continued need for research and breeding to further lower grain Cd concentrations in 

durum wheat.   In order to develop effective breeding strategies, a better understanding 

of the gene(s) involved in determining grain Cd concentration and better DNA markers 

to aid in selection are first required. 

 

1.2 Research Hypothesis and Objectives 

The objective of this research is to utilize reverse genetic approaches to associate 

gene(s) with variation in grain Cd concentration of durum wheat.  Based on current 

information, the hypothesis of this research is that the Cdu-B1 locus contains a gene(s) 

of several genes already identified in plants that can sequester Cd in roots, and therefore 

limit Cd availability for subsequent transport to vegetative tissues and the grain.  

Specifically, one of three gene families are hypothesized to be associated with Cdu-B1: 

a) a gene coding for a heavy metal associated (HMA) transporter, b) an ATP-binding 

cassette (ABC)-like transporter or c) a phytochelatin synthetase (PCS), as these have 

been associated with Cd uptake and sequestration in other plants. In addition, a 

secondary objective was to utilize a forward genetics approach to identify putative genes 

that maybe associated with variation in grain Cd concentration in durum. The last 

objective was to develop and validate breeder friendly markers that could be used 

globally in durum wheat breeding programs targeting the low grain Cd phenotype.   
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2.0 LITERATURE REVIEW 

 

2.1 Durum Wheat  

 Globally, durum wheat (Triticum turgidum L. var durum) is an economically 

important crop with 41.1 million tonnes produced worldwide in 2010 (Agriculture and 

Agri-Food Canada (AAFC) 2010).  Durum wheat is used primarily for production of 

pasta products (pasta, spaghetti, and macaroni), but its use in non-pasta products 

(leavened and unleavened bread, and bulgur) is increasing, particularly in Mediterranean 

regions (Elias and Manthey 2005).  Historically, durum wheat has been grown in the 

regions around the Mediterranean Sea, including North Africa, southern Europe, Syria, 

and Turkey as durum wheat is better suited to areas where annual precipitation is low 

(semi-arid climates) (Elias and Manthey 2005).  In North America, good quality durum 

is also produced in the dry growing regions of western North Dakota and Montana in the 

US, and southern Saskatchewan, Manitoba, and Alberta in Canada (AAFC 2005).  Over 

80% of Canadian production occurs in Saskatchewan. 

Canada is the second largest durum wheat producer with 5.4 million tonnes 

produced in 2010 (Stats Canada 2011) and is also a major exporter.  Nearly 80% of 

Canadian produced durum is exported into high quality markets and comprises more 

than 60% of world durum wheat trade (Clarke 2005).  Thus, breeding for pasta quality is 

a primary objective in Canadian durum breeding programs. 

Genetically, durum wheat is an allotetraploid derived from the hybridization and 

polyploidization of two ancestral grass diploid species: Triticum monococcum carrying 

the A genome and most likely Aegilops speltoides (Kilian et al. 2007) carrying the B 

genome.  Durum wheat is closely related to bread wheat (Triticum aestivum L.) which is 

an allohexaploid having three genomes, two of which are similar to durum wheat (A and 

B genomes), as well as a third ―D‖ genome, derived from Aegilops tauschii.  The 

hexaploid wheat genome is large, spanning approximately 17 Gb in comparison to rice 

(~465 Mb) and Arabidopsis (~100 Mb).  It is estimated that approximately 80% of the 

wheat genome is comprised of repetitive DNA, with only 20% of the genome containing 

coding sequence (Li et al. 2004).  It was initially hypothesized that genes in wheat reside 

in ―gene rich regions/islands‖ interspersed between large repetitive regions (Erayman et 
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al. 2004).  Recently, Rustenholz et al. (2010) showed a slightly increased gene 

frequency from centromeric to telomeric regions of the chromosome.  In this study, 40% 

of genes were considered to be in gene islands while 60% were isolated genes but no 

large gene free or gene poor regions were identified. Distribution of isolated genes was 

uniform while a higher frequency of gene islands existed in telomeric regions  

(Rustenholz et al. 2010). 

 

2.2 Cadmium Related Health Concerns and Trade Restrictions 

The primary mechanism of human exposure to Cd is through the consumption of 

contaminated foods and water as well as the inhalation of polluted air and tobacco 

smoke. Contaminated foods have been shown to be a great risk for Cd exposure with an 

estimated daily intake of 800 – 25 000 ng day
-1

 for foods grown in non-contaminated 

environments.  Cigarette smoking (one pack a day) can further increase exposure by up 

to 100 ng day
-1

 (Gallagher et al. 2010).   

Cadmium (Cd) is a nephrotoxic pollutant (Suwazono et al. 2006) as the kidney is 

the main target for Cd introduced into the human body (U.S. Department of Health and 

Human Service 1999). The skeletal system can also sequester Cd, which can cause 

calcium loss leading to osteoporosis and osteomalacia (Kazantzis 2004).  Changes to 

bone cells and their associated function have not been identified (Bodo et al. 2010).  In 

addition, Cd has been classified as a human carcinogen by the International Agency on 

Cancer Research (IARC 1993) as Cd can bind to DNA causing strand breaks and 

chromosome aberrations (Beyersmann and Hechtenberg 1997), which could lead to 

cancer causing mutations.  As well, Cd has also been found to inactivate the DNA 

mismatch repair (MMR) system in cells, which leads to genome instability and 

increased risk of several types of cancer (Jin et al. 2003). An association between Cd 

concentrations in the urine and breast cancer has also been established (Gallagher et al. 

2010). Cadmium (Cd) has also been found to modify gene expression at a cellular level, 

including genes involved in stress response, apoptosis, and intracellular metabolic 

pathways (Luparello et al. 2011). 

With the risk of Cd entering the food chain, there is a need to decrease the 

amount of Cd in food products.  The Codex Alimentarius Commission (CODEX STAN 
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193-1995 2009) allows a max level of Cd at 200 ng g
-1

 and currently a guideline level of 

150 ng g
-1

 is being proposed.  Even crops grown in non-polluted soils can have grain Cd 

levels which can easily exceed these maximum allowable levels (Morghan 1993). 

 

2.3 Cadmium Uptake in Plants 

Cadmium (Cd) accumulation in crops is influenced by several factors, including 

soil Cd content, soil type, concentrations of other micronutrients, climate, agronomic 

management, and physiological mechanisms that are defined by the genotype of the 

plant (Grant et al. 1998). 

 

2.3.1 Cadmium and Soil Properties 

Cadmium (Cd) is a naturally occurring heavy metal that is found in most 

agricultural soils. Typically, Cd levels in most agricultural soils do not exceed 400 - 500 

ng g
-1

 (Fleischer et al. 1974) and are therefore considered non-polluted (Health 

Protection Agency (HPA) 2009 quoting Reimann and Caritat 1998).  However, higher 

levels of Cd content have been observed, particularly near mining activity (Fleischer et 

al. 1974).  Cadmium (Cd) contents of agricultural soil in the UK can range from 100 -

1800 ng g
-1

 with a mean of 400 ng g
-1

 (Environmental Agency (EA) 2007) while Cd 

concentration in Canadian soils have been shown to range from 100 - 8100 ng g
-1

 (Frank 

et al. 1976). Cadmium (Cd) and other heavy metals are added to soils through industrial 

and agricultural activity such as the application of phosphate fertilizers. Worldwide 

approximately 15,000 tons of Cd is mined for products such as nickel-cadmium batteries 

each year (McMurray and Tainer 2003).  

Cadmium (Cd) is water soluble, and enters the plant partially through passive 

(Kudo et al. 2011) but mostly through active transport systems (Grant et al. 1998) in the 

plasma membrane of root cells, similar to Zinc (Zn) (Hart et al. 1998).  Soil properties 

can influence the availability of Cd for plant uptake.  Lower soil pH results in an 

increase in available Cd (Del Castilho and Chardon 1995) as higher concentrations of 

H
+
 compete with Cd at cation exchange sites in the soil.  This results in more Cd being 

in solution and available for plant uptake (Reichman 2002).  In addition to contributing 
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Cd to the soil, phosphate fertilizers can have an acidifying effect on soil pH (Lambert et 

al. 2007).   

Cadmium (Cd) availability is also influenced by the relative concentrations of 

other cations in the soil.  Zinc (Zn) is an essential micronutrient for plants and is thought 

to share common uptake, translocation and remobilization pathways with Cd (Hart et al. 

1998).  The presence of Cd in Zn-deficient soil has been found to reduce plant Zn 

uptake (Shute and Macfie 2006).  In contrast, when Zn content is sufficient, Cd has no 

effect or increases Zn accumulation (Shute and Macfie 2006).  Varying levels of soil-

applied Zn can also show effects on Cd plant accumulation.  When Zn was added to 

optimal levels for bread wheat production, grain Cd concentration decreased (Oliver et 

al. 1994) suggesting Zn may compete with Cd for uptake by the plant.  In contrast, Hart 

et al. (2002) found wheat has a higher affinity for Cd than Zn.  When soils with high 

concentrations of Cd and Zn were evaluated, Shute and Macfie (2006) observed 

decreased Zn and increased Cd in soybean. Though the interactions between Cd and Zn 

have been reported at an uptake level, Clarke et al. (2002) observed that Cdu-B1 only 

influenced grain Cd concentration in durum wheat and did not influence concentrations 

of Zn or other micronutrients concentration in the grain.  These results suggest that 

although Zn and Cd may compete for uptake, Cdu-B1 is involved in Cd specific 

assimilation in the plant.    

 

2.3.2 Physiological Bases for Grain Cadmium Accumulation in Field Crops 

Once Cd has entered the plant, it can either be sequestered in root tissue, and/or 

be translocated to the above ground vegetative tissues via the xylem (Salt et al. 1995; 

Hart et al. 1998) and to the seed, most likely via the phloem (Popelka et al. 1996; Hart et 

al. 1998; Harris and Taylor 2001).  Transpiration promotes Cd translocation in plants 

supporting the role of xylem-mediated transport of Cd from the roots to the leaves 

(Haag-Kerwer et al. 1999).  However, several studies have shown that phenotypic 

differences in grain Cd concentrations are poorly related to whole-plant Cd 

accumulation (Farrell et al. 2005). Using near isogenic lines (NILs) of durum wheat, 

Harris and Taylor (2004) found that whole plant Cd concentrations were similar 

between high and low grain Cd lines (Fig. 2.1a). However, the concentration of Cd in 



 
7 

roots was higher in low Cd accumulating lines coupled with lower shoot Cd 

concentrations. The opposite was true in high accumulators (Fig. 2.1a).   Similar results 

were found in Cd partitioning studies in rice, where in low grain accumulators of Cd, the 

majority of whole plant Cd was present in the roots (Fig. 2.1b; Ueno et al. 2009).  These 

results suggest that Cd translocation from the roots to the shoots is the major 

physiological process associated with variation in Cd concentration of shoots and grain 

(Ueno et al. 2009; Uraguchi et al. 2009). In durum wheat lines with high grain Cd 

concentration, 40 to 50% of whole-plant Cd is translocated to the shoots after 14 d 

growth (Harris and Taylor 2004; Hart et al. 2006).  Similarly, in rice, 49% of whole 

plant cadmium is translocated to shoots in high grain accumulators of rice (Ueno et al. 

2011).  Taken together, genotypic differences in grain Cd concentration in both rice and 

durum wheat is most associated with restricted root-to-shoot translocation.  This would 

limit the pool of available Cd in vegetative tissues for subsequent remobilization during 

grain filling (Harris and Taylor 2004; Uraguchi et al. 2009).  Given the physiological 

similarities in restricted root to shoot translocation of Cd between rice and durum wheat, 

it is plausible that a similar genetic mechanism is operating. 

 

Fig. 2.1 Cd content or concentration over time in A) Durum wheat in the whole plant, 

grain, shoot and root tissue (Modified from Harris and Taylor 2004) and in B) Rice 

shoot and root tissue (Modified from Ueno et al. 2009). 
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The mechanism that limits Cd translocation to the shoots has not been identified 

in durum wheat. Cd translocation is likely to be complex and could include 

sequestration of Cd inside root cells, or reduced capacity for xylem loading or transport.  

Studies on the genetic inheritance of the low Cd trait have shown that the low Cd 

phenotype in most plants is controlled by few genes, and in durum is controlled by a 

single gene (Clarke et al. 1997b). It is doubtful that one or a few genes could account for 

genotypic differences in loading or transport of Cd.  Rather, restricted Cd translocation 

to the shoots may be attributable to greater sequestration of Cd in the roots symplasm.  

In rice, a P1B-ATPase transporter gene (OsHMA3) has been associated with limiting root 

to shoot translocation of Cd (Ueno et al. 2010).  Miyadate et al. (2011) determined that 

the OsHMA3 coded protein localized to the tonoplast and functions to transport Cd into 

the vacuole.  In hypersensitive yeast expressing a functional OsHMA3 protein, Cd 

tolerance was restored in the presence of Cd (Miyadate et al. 2011).  These data support 

the hypothesis that rice plants with a functional allele of OsHMA3 sequester Cd by 

transporting Cd into the vacuole, and thereby limiting the amount of Cd available for 

subsequent translocation to the shoots and grain (Fig 2.2).  In contrast, rice plants with a 

 

 

Fig. 2.2. Proposed model for Cd translocation in rice (modified from Miyadate et al. 

2011).  OsHMA3 is a functional HMA transporter while OsHMA3mc is a mutated non-

functional HMA transporter. 



 
9 

non-functional OsHMA3 transporter protein cannot sequester Cd in the root cell 

vacuoles, and Cd is freely available for translocation to the shoots and grain (Fig. 2.2).  

To date, HMA3-related gene(s) have not been characterized in wheat, so it is not known 

if their coded protein(s) also function to restrict Cd to roots.    

 

2.3.3  Genetic and Molecular Basis of Grain Cadmium Accumulation  

Genetic variation for grain Cd concentration exists in many crop species 

including durum wheat (Penner et al. 1995), rice (Oryza sativa L.; Ishikawa et al. 2005), 

oat (Avena sativa L.; Tanhuanpää et al. 2007), sunflower (Helianthus annuus; Anderson 

and Hansen 1984), flax (Linum usitatissimum; Morghan 1993; Cieslinski et al. 1996), 

and soybean (Glycine max L. Merr; Kobori et al. 2010).  In rice, Liu et al. (2006) found 

a range of 280 – 1840 ng g
-1

 in six rice cultivars. Tanhuanpää et al. (2007) found a range 

of 650 - 3490 ng g
-1

 in a mapping population of oat.  Li et al. (1997) determined an 

average grain Cd concentration for nine hybrid sunflower cultivars to be 1510 ng g
-1

, a 

range from 800 – 1550 ng g
-1

 in 14 flax cultivars, and a range of 110 – 340 ng g
-1

 for 30 

durum wheat lines.  Kobori et al. (2010) determined a range of 210 – 420 ng g
-1

 in three 

soybean cultivars.  Li et al. (1997, quoting Hinesly et al. (1978)) determined a range of 

50 - 1810 ng g
-1

 Cd in the grain of 20 corn inbred lines.  Hexaploid wheat cultivars show 

little variation in grain Cd concentration (Zook et al. 1970) and are considered to be low 

in grain Cd concentration in comparison to high grain Cd accumulating durum wheat 

lines. 

Given the complexity of Cd uptake, sequestration, and translocation, grain Cd 

accumulation can be regulated by multiple genes with combined effects (Tanhuanpää et 

al. 2007).  However, in most cereals, Cd content is controlled by only one to three 

genes.  In rice, three quantitative trait loci (QTL) on chromosomes 3, 6 and 8 have been 

identified (Ishikawa et al. 2005).  Kashiwagi et al. (2009) also identified three QTL for 

Cd concentration in vegetative tissues of rice, two on chromosome 4 and on 

chromosome 11 (Table 2.1).  More recently a single QTL on rice chromosome 7 was 

identified to control translocation of Cd from root to shoot (Ueno et al. 2009).  Tezuka 

et al. (2009) and Ishikawa et al. (2010) also identified QTLs for grain Cd concentration 

in rice and in both studies chromosome 7 was identified.  In maize (Zea mays L.), a  
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Table 2.1 QTLs identified for Cd accumulation in plants 

Species QTL Chromosome Author 

Oryza sativa L. 3, 6, 8 Ishikawa et al. 2005 

 

4, 11 Kashiwagi et al. 2009 

 7 Ueno et al. 2009 

 7 Tezuka et al. 2009 

 7  Ishikawa et al. 2010 

Thlaspi caerulescens 3 Deniau et al. 2006 

Arabidopsis 3 Courbot et al. 2007 

Zea mays L. 2 Soric et al. 2009 

Avena sativa L. unknown Tanhuanpää et al. 2007 

Triticum turgidum L. 5B Knox et al. 2009 

Glycine max L. 9 Jegadeesan et al. 2010 

 

9 Benitez et al. 2010 

 

QTL for leaf Cd accumulation has recently been identified on chromosome 2 (Soric et 

al. 2009). In oat (Avena sativa L), a single QTL has been reported (Tanhuanpää et al. 

2007).  In soybean a major QTL has been identified on chromosome 9 in two 

independent studies (Jegadeesan et al. 2010; Benitez et al. 2010).  In durum wheat, grain 

Cd concentration is controlled by a major gene designated as Cdu-B1 and other minor 

genes (Knox et al. 2009).  Recently, a major QTL associated with grain Cd 

concentration was reported on chromosome 5B of durum wheat  (Fig. 2.3; Knox et al. 

2009).  In that study grain Cd concentration was also mapped as a Mendelian factor, and 

a single gene, designated as Cdu-B1.  To date, no studies have been conducted to 

determine the number of genes controlling Cd concentration in flax or sunflower.  

Thlaspi caerulescens is a hyperaccumulator of Cd and a single QTL for Cd shoot 

concentration has been reported in that species (Deniau et al. 2006).   

Several genes have been reported to be associated with phenotypic variation for 

Cd uptake, accumulation, and grain concentration (Table 2.2).  In rice, a gene coding for 

a P1B-ATPase was identified (Ueno et al. 2010) which is hypothesized to sequester Cd to 

root vacuoles where it is no longer available for transport to the shoots (see section 

2.3.2). Genes associated with concentration of grain Cd in rice also include a novel gene 

LCD (low cadmium; Shimo et al. 2011) as well as OsNRAMP1 (natural resistance-

associated macrophage proteins) which is an iron transporter (Takahashi et al. 

2011) and OsZIP8 (ZRT-and IRT-like protein), which is a cadmium/zinc transporting  
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Fig. 2.3 Genetic linkage map of a portion of chromosome 5BL and QTL analysis of 

Cdu-B1. QTL analyses of cadmium concentration are presented as LOD scores for Swift 

Current 2000 (· · ·), Swift Current 2001 (—), and the combined analysis (- - -). 

Significance is declared for QTL to the right of the vertical line located at LOD 3.1. 

(modified from Knox et al. 2009). 

 

 

Table 2.2 Genes associated with Cd accumulation in plants 

 

Species Gene Author 

Arabidopsis P1B-ATPase Morel et al. 2009, Courbot et al. 2007 

 

ABC transporter Wojas et al. 2009, Kim et al. 2007 

 

selenium binding protein Dutilleul et al. 2008 

 

phytochelatins Salt and Rauser 1995 

Oryza sativa L. P1B-ATPase Ueno et al. 2010 

 

LCD Shimo et al. 2011 

 OsNRAMP1 Takahashi et al. 2011 

 OsZIP8 Ueno et al 2009, Ishimaru et al. 2005 

Glycine max L. ATPase Jegadeesan et al. 2010 

 P1B-ATPase Benitez et al. 2012 
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ATPase (Ueno et al. 2009; Ishimaru et al. 2005).  Genes coding for ABC transporters 

(Wojas et al. 2009; Kim et al. 2007), P1B-ATPases (Morel et al. 2009), and selenium-

binding proteins (Dutilleul et al. 2008) have been associated with Cd accumulation and 

detoxification in Arabidopsis, as well as phytochelatins (PC) that bind Cd for 

subsequent sequestration in the vacuole (Salt and Rauser 1995). An ATPase was 

identified as a candidate gene for soybean grain Cd accumulation (Jegadeesan et al. 

2010) as well as a P1B-ATPases (Benitez et al. 2012).   

Salt and Rauser (1995) found the vacuole to be an important organelle in the 

sequestration and detoxification of Cd in plants.  The same authors suggested that 

membrane transporters facilitate this process by transporting Cd into vacuoles making 

Cd unavailable for transport/remobilization to the grain.  Different families of 

transporter proteins have been found to be involved in Cd transport.  

The ABC transporter family is a large ubiquitous and diverse superfamily of 

transmembrane bound proteins that facilitate the transportation, including lipids, 

hormones, and secondary metabolites (Verrier et al. 2008). Studies have shown that 

ABC transporters are involved in heavy metal sequestration in plants (Wojas et al. 2009, 

Kim et al. 2007).   Yazaki et al. (2006) found that expression of a human ABC-MRP1 

(multi drug resistance) protein expressed in tobacco can confer heavy metal tolerance 

and was thought to be localized to the vacuolar membrane, which allowed the 

sequestration of Cd. Transcript levels of ABC transporter AtMRP3 showed a strong 

induction after the Cd treatment (Bovet et al. 2003), but currently, there is only 

anecdotal evidence that this transporter is involved in Cd transport.   In durum, 

transcriptome profiling of high and low Cd accumulating NILs revealed higher 

expression of a gene coding for an ABC-MRP like transporter (Harris et al. 2007).  An 

ABC-like transporter (Xwg644) have been identified on the homoeologous group five 

chromosomes in wheat near the vernalization loci (Yan et al. 2003) and has been 

sequenced from several cereals where a duplicate copy was identified in barley 

(Dubcovsky et al. 2001).  

P1B-ATPase proteins function by the binding and hydrolysis of ATP to create the 

energy for transport across a membrane against a concentration gradient (Williams and 

Mills 2005).   In rice, Ueno et al. (2010) discovered a P1B-ATPase (OsHMA3) as the 
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gene functioning to limit Cd translocation from root to shoots.  As well, P1B-ATPases 

have been associated in many species with grain Cd concentration including soybean 

(Benitez et al. 2012) and Arabidopsis (Morel et al. 2009). P1B-ATPase in Arabidopsis 

(AtHMA3) has been shown to participate in vacuolar storage of Cd and other heavy 

metals (Morel et al. 2009).    OsHMA3 has been identified on chromosome 7 in rice, 

which shows colinearity to wheat group two chromosomes in wheat.  To date, no reports 

of genes coding for P1B-ATPases have been mapped in wheat.  

Phytochelatins (PCs) are a class of small thiol (SH)-rich peptides that bind 

metals by thiolate coordination and are important cellular chelating agents. Several 

heavy metals can induce PC expression in planta, but Cd is the most effective metal 

inducer of PCs in Arabidopsis (Grill et al. 1985), Brassica juncea (Haag-Kerwer et al. 

1999) and rice (Yan et al. 2000). PCs are thought to play a role in Cd detoxification by 

binding Cd to produce PC-Cd complexes, which can then be translocated into vacuoles 

(Salt and Rauser 1995; Vogeli-Large and Wagner 1996).  In Arapidopsis the 

sequestration of PC-Cd complexes to the vacuole most likely occurs through ABC-MRP 

like transporter (Salt and Rauser 1995).  In Arabidopsis and Brassica juncea, over-

expression of PCS genes has been shown to increase Cd translocation from roots to the 

vegetative tissue (Heiss et al. 2003) contrary to the hypothesis of sequestration of Cd in 

the roots.  Therefore, increased PC binding may allow increased efficiency of Cd 

translocation.  PCS2 has been identified on the group 5 chromosomes in wheat (Yan et 

al. 2003), and is tightly linked to Xwg644.  Though some evidence may suggest PCs are 

not involved in Cd sequestration to the root, PCS is still a logical candidate gene due to 

its involvement in Cd binding and movement into the vacuole and due to the PCS2 gene 

being mapped close to Cdu-B1 in wheat. 

 

2.4 Breeding for Low Grain Cadmium Concentration 

Limiting the amount of Cd in durum grain to reduce potential risk to human 

health has been a priority of durum wheat breeders.  For selection, a cost efficient and 

reliable method for assessing or predicting Cd concentrations in grain is required.  

Phenotypic selection for grain Cd concentration involves digestion of samples with 

nitric acid and assessing Cd using graphite furnace spectroscopy (Clarke et al. 2002).  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B7GJ7-4MRFC2S-2&_user=1069128&_coverDate=11%2F09%2F2007&_rdoc=1&_fmt=full&_orig=search&_cdi=20199&_sort=d&_docanchor=&view=c&_acct=C000051260&_version=1&_urlVersion=0&_userid=1069128&md5=42c83c4972dfc68ec4622f6398feedf5#bib12
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Penner et al. (1995) determined the cost of commercial fees for phenotypically 

determining Cd content per sample to range from $15 to $23.  Today, the cost of Cd 

analysis has increased to as high as $100/sample at commercial labs (i.e. Saskatchewan 

Research Council (SRC)).  Due to high costs and low sample throughput, phenotypic 

selections were generally delayed to later generations on only the best breeding lines.  

More recently, selection for grain Cd concentrations has been performed using 

marker assisted selection (MAS) with a SCAR marker (ScOPC20; Knox et al. 2009) 

developed from the sequence of a random amplified polymorphic DNA (RAPD) marker 

OPC-20 (Penner et al. 1995).  With this marker, breeders can eliminate high grain Cd 

accumulating lines early in the breeding program at a reduced cost relative to 

phenotypic selection. ScOPC20 has been mapped approximately 5 cM away from the 

Cdu-B1 (Penner et al, 1995) meaning molecular selection can still result in high Cd 

progeny as a result of recombination between Cdu-B1 and ScOPC20. In addition, 

ScOPC20 is a dominant marker (Fig. 2.4a), and is linked in repulsion with Cdu-B1 

(Knox et al. 2009). Thus, ScOPC20 would not be an option for marker assisted 

backcrossing programs designed to introgress Cdu-B1 into locally adapted material.  

However, this marker has been used effectively for gametic selection in the F1 progeny 

resulting from three way crosses where one otherwise desirable parent is high in grain 

Cd.  For example, breeders can make crosses where at least two of the parents are low 

Cd (i.e. High Cd/Low Cd//Low Cd) (Fig. 2.4b).  As the third parent used is a low Cd 

type, Mendelian segregation would result in 50% of the F1 progeny being homozygous 

for low grain Cd concentration and those individuals can be easily identified using 

ScOPC20 by the absence of a polymerase chain reaction (PCR) generated amplicon.  

However, because the marker is dominant, absence of an amplicon (homozygous low 

Cd line) could possibly be due to a failed PCR.   

Indeed ScOPC20 is a better alternative to phenotypically testing grain samples 

for Cd concentration.  However, a more closely linked, co-dominant marker for 

identification of Cdu-B1 itself would improve selection efficiency and more accurately 

classify germplasm and breeding lines into high and low Cd accumulators. A more 

closely linked or perfect marker for Cdu-B1 would reduce or eliminate selection error 

due to recombination.  The development of a co-dominant marker will also reduce PCR 
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errors in that both the high and low grain Cd concentration molecular variants will be 

represented and the absence of a band would only mean that the PCR reaction failed.  

 

 

Fig. 2.4  Example of a three parent cross designed to fix the low grain Cd phenotype in 

the F1 generation. A) Gel image of ScOPC20. B) Three parent cross used to identify 

plants homozygous for low grain Cd. 

 

2.5 Fine Mapping and Positional Cloning; A Forward Genetic Approach 

 Positional or map-based cloning is a forward genetic approach to identify 

gene(s) controlling traits based on their precise genomic location, which is determined 

by phenotyping in well-defined large population.  This is in contrast to a reverse 

genetics approach where a set of putative genes are identified (usually from related 

species) based on function and then tested for association with the phenotype in 

appropriate genetic populations. In a reverse genetics approach, if the hypothesized 

mechanism for the phenotype is incorrect, the gene will likely not be identified.  A 

reverse genetic approach is generally used when there is strong evidence for a gene 

influencing a phenotype based on studies in model systems or other crop plants. For 

example, genes reported for variation in Cd accumulation in other species (Table 2.2) 

are reasonable candidate genes to test for association with Cdu-B1.  In practice, reverse 

genetic approaches are generally used to determine the effect of a series of mutations of 

a phenotype and are used extensively for functional genomics studies in plants (Slade et 

al. 2005).  In practice, both approaches are used in a combined effort to clone genes 

responsible for the phenotype. 
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Positional cloning involves five main steps: saturation mapping, fine mapping, 

chromosome walking, and identification and validation of candidate genes (Fig. 2.5).  In 

the first step, a genomic location associated with phenotypic variation is saturated with 

molecular markers in a population segregating for that trait.  This is generally achieved 

through classical genetic mapping experiments, usually in bi-parental mapping 

populations. In most cases, a small population (100-200 individuals) is used to estimate 

the general genomic location of the gene controlling the trait.  To achieve map 

saturation, molecular markers co-segregating and closely flanking are required.  

Markers can include AFLP (amplified fragment length polymorphism), RFLP (restricted 

fragment length polymorphism), COS (conserved ortholog set), RAPD, CAPS (cleavage 

amplified polymorphic sequence), and SSR (simple sequence repeat).  Additional 

markers can also be developed based on single nucleotide polymorphsims (SNPs) from 

within genes or ESTs (expressed sequence tag) known to be genetically linked to the 

 

 

 

Fig. 2.5   Process of positional cloning. 
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trait or in colinear regions of a related species. For example, saturation of the Tsn1 

(toxin sensitivity gene) locus in wheat involved mapping of 28 EST-derived markers 

(ESMs) known to be physically linked to that locus to localize Tsn1 to a 2.1 cM interval 

(Lu and Faris 2006).  Ideally, to proceed with fine mapping, several co-segregating 

markers are required with closely linked (≤1 cM), flanking markers.    

Once co-segregating markers are identified, the trait is first mendelized and 

mapped in a large F2 population (2000-4000 individuals) to better delineate the genomic 

region (Fig. 2.5).  For example, a total of 2707 F2 plants were used to fine map the 

powdery mildew (Pm6) locus in hexaploid wheat (Qin et al. 2011).  Large populations 

are favored to improve sampling of genetic recombination events, which in turn results 

in improved estimation of genetic distance and marker order (Ferreira et al 2006, 

Semagn et al. 2006).  

The purpose of fine mapping is to identify the smallest possible genomic region 

associated with a trait.  The physical size of the wheat genome is large, with the largest 

chromosome (3B) being over twice the size of the entire 370 Mb rice genome (Itoh et al. 

2007). Furthermore, physical mapping of wheat chromosomes has revealed some 

chromosome segments which are high in gene density (Faris et al. 2000) and 

recombination frequencies are not consistent along chromosomes, with most cross-overs 

occurring in sub-telomeric regions of wheat chromosomes (Saintenac et al. 2009; 

Erayman et al. 2004).  A major factor that would influence the success of fine mapping 

and ultimate gene identification is recombination frequency as higher recombination 

frequency results in a smaller genotypic to phenotypic distance ratio.  With a high 

recombination frequency it is possible to detect a smaller physical region as mapping 

relies on recombinations between markers.  Gene density can also affect fine mapping 

as high recombination frequencies are often associated with higher gene density (Faris 

et al. 2000).  Therefore regions of high gene density should be regions of high 

recombination frequency and therefore ideal for fine mapping.  Though some studies 

report higher recombination frequency in gene poor regions (Wei et al. 2002) therefore, 

gene density in not always a great predictor of recombination frequency (Mezard 2006).  

The particular combination of high gene density and low recombination frequency can 

make positional cloning of genes a daunting task due to the presence of many genes 
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over a large physical distance which cannot be resolved genetically through mapping.  

Recently, the Tsn1 locus, located around 17 cM proximal to Cdu-B1 (Knox et al. 2009) 

was cloned (Faris et al. 2010).  Comparison with other high-density maps of 5B 

suggests that Cdu-B1 resides in a gene-rich, recombination hot spot. Saturation mapping 

of Tsn1 estimated the recombination frequency to be 400 kb/cM, an 11-fold increase in 

recombination compared to the genomic average (Faris et al. 2000), though further 

analysis of the locus determined a 3.18 Mb/cM physical to genomic distance (Faris et al. 

2010). 

Several loci may influence a phenotype (either through additive or epistatic 

effects), therefore it is generally accepted that lines near isogenic for the gene of interest 

are used as parents of the fine mapping population (Kim et al. 2010).   This is to ensure 

only segregation occurs at the locus of interest and closely linked markers. In this large 

population, phenotyping of recombinants between flanking markers will position the 

phenotype in the fine map and better delineate the genetic distance between co-

segregating markers and the trait.   The markers closest genetically to the phenotype can 

now be used to screen a genomic, YAC (yeast artificial chromosome) or BAC (bacterial 

artificial chromosome) library.  Several BAC libraries are available for hexaploid wheat 

(http://cnrgv.toulouse.inra.fr/Library), but only a single BAC library is available for 

durum wheat (Cenci et al. 2003).  The library was generated from the cultivar Langdon, 

which carries a 30 cM insertion from Triticum turgidum ssp. dicoccoides on 

chromosome 6BS, and a gene for high grain protein content.  The BAC library contains 

516096 clones with an average insert size of 130kb (Cenci et al. 2003).  The cultivar 

Langdon was chosen for the BAC library as disomic D genome substitution lines have 

been developed for this cultivar (Joppa and Williams, 1988) therefore allowing ease of 

genome assignment for BACs (Cenci et al. 2004). 

For positional cloning experiments, BACs carrying co-segregating or flanking 

markers are first identified (Fig. 2.5).  Often the 5‘ and 3‘ ends of these BACs are 

sequenced to allow development of additional markers to rescreen the BAC library to 

identify additional, overlapping BACs.  In wheat it has been observed that BAC end 

sequence is often not sufficient for identifying unique sequence for developing 

additional marker (Stein et al. 2000).  Generally, in wheat the whole BAC is sequenced 
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to identify unique sequence for additional markers, which would be useful in identifying 

overlapping BACs.  This process of chromosome walking is repeated until BACs 

spanning the complete genetic interval are identified.   Sequencing and annotation of the 

BACs in the minimum tiling path is then performed (either using Sanger or next 

generation sequencing).  Software has been developed such as FGENESH 

(http://linux1.softberry.com/berry.phtml?topic=fgenesh&group=programs&subgroup=g

find), which can predict gene sequence from genomic sequences.  These genes 

identified from this sequencing are all candidate genes.  In wheat, several BACs have 

been sequenced and, on average, there is usually only one gene per BAC (Rustenholz et 

al, 2010; Devos et al. 2005).  Some BACs from wheat are completely devoid of 

functional genes (Devos et al. 2008; Choulet et al. 2010) and as many as 10 genes have 

been identified on a single BAC (Choulet et al. 2010). 

Validation of a candidate gene can be performed by RNAi (RNA interference), 

transgenics, VIGS (virus induced gene silencing), or TILLING (target induced local 

lesions in genomes).  Huang et al. (2003) demonstrated the use of transgenics for 

candidate gene validation.  Wheat lines susceptible to leaf rust were transformed with 

the candidate gene.  These transformed susceptible lines then displayed a resistant 

reaction validating the candidate gene as causing resistance to leaf rust. Faris et al. 

(2010) employed TILLING for validating the Tsn1 gene in wheat, by chemically 

mutagenizing a resistant line and screening for susceptibility. The candidate gene was 

then sequenced from multiple mutant lines and non-functional mutants were analyzed 

for phenotypic expression of resistance to Stagonospora nodorum blotch.  Care must be 

taken when developing a TILLING population, as the line chosen for mutation must 

carry the functional gene.  Mutations to genes are more likely to cause a functional 

protein to become non-functional, than a non-functional protein to become functional. 

Wang et al. (2011) employed RNAi to verify the Opaque7 gene as the gene affecting 

storage protein synthesis in maize endosperm.  RNAi employs dsRNA to target 

complementary mRNA for degradation and therefore gene silencing.  Wang et al. 

(2011) targeted the candidate gene, Opaque7, through RNAi and saw a change in seed 

protein content compared to non-RNAi targeted lines, indicating that the Opaque7 gene 

controls storage protein synthesis.  Candidate genes can also be validated using allele 
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diversity studies, and expression analysis (Krattinger et al. 2009).  In most cases a 

combination of above methods are used to validate candidate genes. 

Major breakthroughs in sequencing and polymorphism detection technologies 

along with existing databases of developed markers and sequenced genomes has made 

positional cloning routine in some species including Arabidopsis, rice, Brachypodium, 

corn, and sorghum where the time and effort for positional cloning has decreased 

dramatically (Jander et al. 2002).  However, positional cloning in plants with complex 

genomes with little sequence information such as hexaploid and durum wheat is more 

challenging.  In wheat the greatest complexities are a) the polyploid nature of the wheat 

genome, b) the large size of the wheat genome (17 Mb in hexaploid wheat), and c) the 

repetitive nature of the wheat genome, where approximately 80 percent of DNA 

sequences in the wheat genome are repetitive partially from transposons (Li et al. 2004).   

The polyploid nature of wheat can cause a challenge when positional cloning.  

This is because of similarity between homoeologous genes on homoeologous genomes 

and potential inability to easily determine one genome from another when identifying 

BACs.  The size of the wheat genome is a detriment for positional cloning, as a larger 

library of BAC clones has to be developed and screened to sufficiently cover the whole 

genome.  For example an Arabidopsis Ath-B-ITA library 

(http://cnrgv.toulouse.inra.fr/library/genomic_resource/Ath-B-ITA) required only 15360 

BAC clones for 13X coverage of the genome while the durum wheat BAC library Ttu-

B-LDN65 (http://cnrgv.toulouse.inra.fr/library/genomic_resource/Ttu-B-LDN65) is 

composed of 516096 BAC clones, representing only 5X coverage.  A 9X coverage of 

the hexaploid wheat cultivar ―Chinese Spring‖  

(http://cnrgv.toulouse.inra.fr/library/genomic_resource/Tae-B-Chinese%20spring) 

contains 1147776 BAC clones.  These large libraries increase the time and effort 

required to identify BACs carrying desirable genes.  Also the repetitive nature of the 

wheat genome can further complicate BAC identification, as unique sequence is 

necessary for BAC identification.  Entire BACs could be made up of repetitive DNA 

making it difficult for chromosome walking especially if the region to be spanned 

contains a large stretch of repetitive DNA. 

http://cnrgv.toulouse.inra.fr/library/genomic_resource/Ath-B-ITA
http://cnrgv.toulouse.inra.fr/library/genomic_resource/Tae-B-Chinese%20spring
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Despite these complexities at least 11 wheat genes have been discovered through 

positional cloning in wheat (Table 2.3).   These include genes for leaf rust resistance  

 

 Table 2.3 Postionally cloned wheat genes (Modified from Krattinger et al. 2009) 

 

NBS - nucleotide-binding site, LRR - leucine-rich repeat, CC-coiled-coil, S/TPK- 

serine/threonine protein kinase 
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(Qiu et al. 2007; Cloutier et al. 2007, Stein et al. 2000; Wicker et al. 2001; Feuillet et al. 

2003; Huang et al. 2003; Dakouri et al. 2010), stripe rust resistance (Fu et al. 2009), 

resistance to tan spot (Faris et al. 2010), domestication (Q) (Faris et al. 2003), grain 

protein content (Uauy et al. 2006) and vernalization (Yan et al. 2003; Yan et al. 2004; 

Yan et al. 2006).  Several of these genes are the targets of MAS in wheat breeding 

programs (Feuillet et al. 2003; Huang et al. 2003), and identification of allelic variation 

in these genes has allowed the development of useful DNA markers.  Recent efforts to 

sequence the wheat genome (Feuillet and Eversole 2007) will increase the ability to 

identify wheat genes through positional cloning efforts.   

 

2.6 Wheat, Rice, and Brachypodium Colinearity 

 Macro-colinearity has been described as conserved marker and/or gene order 

between species (Gale and Devos 1998). Extensive macro-colinearity has been observed 

throughout the grass (Poaceae) family. Conservation of gene sequence (micro-

colinearity) has also been observed in the grass family.  Colinearity is evident 

throughout the grass family but the extent of colinearity is based on evolution of the 

grass species.  Species that diverged from each other later in evolution are expected to 

share greater colinearity than those that diverged earlier.  Rice (Oryza sativa) and 

Brachypodium (Fig. 2.6) are the closest related species to wheat that have sequenced 

genomes and therefore are a good reference for studying the evolution of the wheat 

genome.  Sorghum (Sorghum bicolor) (http://mips.helmholtz-

muenchen.de/plant/sorghum/) and maize (Zea mays) (http://www.maizegdb.org/) also 

have sequenced genomes and although not closely related to wheat can still provide 

information about the wheat genome (Fig. 2.6). 

The rice genome was sequenced because of its smaller size and agronomical 

importance and is considered one of the model species for the grass family 

(International Rice Genome Sequencing Project 2005).  Several studies have examined 

the colinearity between the wheat and rice genomes using mapped ESTs and RFLPs (La 

Rota and Sorrells 2004, Salse et al. 2008) as genetic anchors and large portions of these 

genomes are colinear but large segments have been rearranged (Fig. 2.7).  The long arm 

of the 5B chromosome of wheat shows colinearity to portions of rice chromosomes 6, 
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12, 9, and 3. This is in contrast to the wheat to group 3 chromosomes, which shows 

good macro-colinearity to rice chromosome 1 (LaRota and Sorrells 2004; Fig. 2.7). 

 

Fig. 2.6 Phylogeny of grass species (modified from Buell 2009).  Genome designations 

are in brackets. 

 

The Brachypodium genome has also been sequenced and it is phylogenetically 

closer to wheat than rice (International Brachypodium Initiative 2010) and colinearity 

relationships with rice and wheat have been assessed (Fig. 2.8).  Current sequence 

information supports that Brachypodium is more closely related to wheat than rice 

(Bossolini et al. 2007; Huo et al. 2008; Kumar et al. 2009; Buell 2009; Fig. 2.8).  

Though the complete wheat genome has not been sequenced to make a complete  
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Fig. 2.7  Wheat genome and its colinearity to rice (modified from La Rota and Sorrells 

2004)  
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Fig. 2.8 Brachypodium genome colinearity with rice and wheat (modified from the 

International Brachypodium Initiative 2010) 

 

comparison multiple loci have been compared between the three species as well as EST 

sequence.  Both rice and Brachypodium genomes can provide gene information and 

putative locations for wheat scientists.  Frequent interruptions in micro-colinearity are 

often observed at the level of individual genes in the form of deletions, translocations, 

and duplications (Bennetzen and Ma 2003; Feuillet and Keller 2002).  Variability in the 

size of colinear regions between species is also not uncommon but this does not 

necessarily indicate a difference in gene content.  The difference is usually due to 

differences in intragenic regions due to transposable elements (Bennetzen and Ma 

2003).  Wheat group 5 chromosomes show colinearity to Brachypodium chromosomes 1 

and 4, which show colinearity to rice chromosomes 3, 7, 6, 9, 11 and 12 (Fig. 2.8) all of 

which, except chromosomes 7 and 11, show colinearity to the long arm of chromosome 

5B (Fig 2.7). 

Colinearity between species has been considered a useful tool in comparative 

genomics (Higgins et al. 2010), studying evolutionary relationship, and in gene 

discovery (Faris et al. 2008) including marker development (Qin et al. 2011).  Positional  

cloning in wheat relies heavily on wheat/rice/Brachypodium colinearity.  Many of the 

wheat genes cloned have benefited from sequenced colinear regions in rice and 
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Brachypodium. In most cases, high density genetic maps for wheat are achieved by 

developing markers from genes identified in colinear regions of these model plants (Yan 

et al. 2003; Fu et al. 2009).  Also putative functions of sequenced wheat genes are 

identified through BLASTx (basic local alignment search tool) searches to identify 

orthologues in the rice and Brachypodium genomes (Faris et al. 2010).  

Breakdowns in macro-colinearity and micro-colinearity are evident in all wheat 

positional cloning studies.  For example, the Tsn1 locus in wheat showed no colinearity 

(macro-colinearity) to Brachypodium but colinearity to rice aided in the identification of 

Tsn1, indicating that this region may not be conserved in Brachypodium as it is in wheat 

and rice (Lu and Faris 2006).  At the wheat Q locus, wheat/rice micro-colinearity was 

more conserved than wheat/Brachypodium due to the presence of two non colinear 

genes identified in Brachypodium (Faris et al. 2008).  However, when the sequences of 

the genes at the Q locus between the three species were analyzed, the wheat gene 

sequences were more closely related to Brachypodium than rice (Faris et al. 2008).  For 

this particular locus, having more similar gene sequences agrees with the placement of 

Brachypodium closer to rice on the evolution scale.  Also at this locus, the presence of 

two non-colinear Brachypodium genes identifies that micro-colinearity is no closer 

between wheat and Brachypodium than wheat and rice. Wicker et al. (2010), studying 

the ―rate of gene movement‖ (the rate at which colinearity breaks down), observed that 

20% of genes between species would be rearranged and no longer colinearity in 40 

million years of evolution.  With wheat and rice diverging 50 Mya (million years ago) 

and wheat and Brachypodium diverging around 35 – 40 Mya perfect colinearity cannot 

be expected and caution should be used when utilizing wheat/rice/Brachypodium 

colinearity in positional cloning. Regardless, rice and Brachypodium genomes are still 

valuable resources for marker development and positional cloning in wheat.   

 

 

 
 
 
 
 
  



 
27 

3.0 Materials and Methods 

 

3.1 Verification of LDN5D(5A) and LDN5D(5B) Substitution Lines 

 As Cdu-B1 has been localized to chromosome 5B, Langdon disomic substitution 

lines (Joppa and Williams 1988) LDN5D(5A) and LDN5D(5B) were used to validate 

5B specific markers.  In the Langdon disomic substitution lines, the Langdon 5A or 5B 

chromosome, respectively, have been substituted with the 5D chromosome from 

hexaploid wheat cultivar ―Chinese Spring‖ (CS).  These aneuploid lines were obtained 

from National Small Grains Collection 

(http://www.ars.usda.gov/main/docs.htm?docid=2884) and have limited quantities of 

seed.  Because these are aneuploid lines, they were first verified to be missing the 

appropriate chromosome using simple sequence repeat (SSR) markers. SSR markers 

Xgwm291 and Xgwm293 were used to validate lines lacking the durum wheat 5A 

chromosome are 5A specific and SSR markers Xgwm371 and Xgwm408 were selected 

to verify the 5B substitution as these markers are known to be chromosome 5B specific 

(Somers et al. 2004).  Primer sequences are available on the graingenes website 

(http://wheat.pw.usda.gov/GG2/index.shtml).  The PCR reactions consisted of 50 mM 

KCl, 10 mM Tris-HCl, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.4 μM of forward and 

reverse SSR primers, 1.75 U of Taq DNA polymerase and 100 ng of genomic DNA. 

The total PCR volume was 25 μL. Temperature cycling was 94°C for 5 min followed by 

32 cycles of 94°C for 30 s, 59°C for 30 s, 72°C for 1 min, then a final extension at 72°C 

for 10 min before cooling to 4°C.  PCR samples were resolved by electrophoresis on 

2.0-2.5% agarose gels at 140V for 1.5 hours in 1X TBE buffer and stained with 

ethidium bromide (0.5 μg/ml).  The DNA banding patterns were visualized with UV 

light and recorded by a Canon Power Shot 7 digital camera and UVP imaging system. 

The presence/absence of these markers will determine whether the substitution has 

occurred.   

 

3.2 Genetic Mapping Population 

Genetic mapping was performed using 155 double haploid (DH) lines from the 

cross W9262-260D3/Kofa as this population was used previously to localize Cdu-B1 

http://www.ars.usda.gov/main/docs.htm?docid=2884
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(Knox et al. 2009). Grain Cd concentration data was available from two environments 

for the DH population (Knox et al. 2009), and these data were used in the present study. 

A hexaploid wheat (Triticum aestivum L.) population consisting of 115 recombinant 

inbred substitution lines (RSLs) derived from a cross between Chinese Spring (CS) and 

a CS Triticum dicoccoides 5B substitution (CS-DIC 5B) described in Gill et al. (1996) 

was also used for genetic mapping.  TA106, the T. dicoccoides source of 5B, was 

included in the molecular studies. Grain Cd from CS and CS-DIC 5B was performed by 

Dr. Neil Harris and has been published previously (Wiebe et al. 2010). 

 

3.3 Determination of Grain Cd Concentration Source in Hexaploid Wheat 

Durum wheat cultivars Langdon (high Cd), CDC Verona (low Cd), Kofa (high 

Cd), W9262-260D3 (low Cd), Commander (high Cd), and Strongfield (low Cd) as well 

a Langdon (LDN) disomic substitution lines LDN5A(5D) and LND5B(5D) (Joppa and 

Williams 1988)  were used to determine if chromosome 5D contains genes that confer 

low grain Cd concentration in hexaploid wheat.  These lines were planted and grown in 

soil collected from the Kernen Crop Research Farm near Saskatoon, Saskatchewan, 

which is known to contain sufficient Cd to differentiate high and low Cd accumulating 

durum wheat lines.  Soils were air dried, mix thoroughly and distributed into 15 cm pots 

and placed into a growth chamber.  Seeds of each line were pregerminated on Petri 

plates at 14°C for five days then one germinated seed was transplanted to each pot.  

Langdon substitution lines seed was of limited quantity and had to be verified as 

described in section 3.1.  Therefore, only two replicates of each cultivar or line were 

planted.  Growth conditions in the growth chamber were 16 h day, and 23/17°C 

day/night temperature.  Plants were grown to maturity and grain from the entire plant 

was harvested for grain Cd concentration analysis.  All grain Cd analysis was performed 

by Saskatoon Research Council (SRC) (Saskatoon, SK).   The samples were digested 

with nitric acid and hydrogen peroxide using a Milestone ETHOS EZ microwave 

digester. The digest was analyzed on a Thermo X Series ll ICP-MS (Inductively 

Coupled Plasma-Mass Spectroscopy).  Certified reference material, aquatic plant 

(Lagarosiphon major) from the European Joint Research Center, and matrix matched 

method blanks were carried through from the initial digest to the final analysis.  The 
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phenotypic data was analyzed using Microsoft Excel (version 14.2.3).  The mean and 

standard deviation of each mean is presented.   

 

3.4 ESM and Gene Specific Marker Development 

Markers were developed for ESTs previously localized to bin 5BL9 0.76-0.79. 

EST sequences were blasted against Michigan State University (MSU) rice genome 

annotation release 6.1 (Ouyang et al. 2007) using BLASTn 

(http://rice.plantbiology.msu.edu/blast.shtml). Rice genes with the best hit (e-values 

<10
-7

 and ≥80% nucleotide identity for at least 60 bases) were then used as queries in 

BLASTn searches of Triticum sequences (National Center for Biotechnology 

Information (NCBI) BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)). The Triticum spp. 

coding DNA sequence (CDS) and EST sequences were aligned with rice CDS and 

genomic sequences to determine putative intron/exon sites using AlignX (Vector NTI 

Advance 10.3; Invitrogen, Carlsbad, CA). If no significant hits were identified for 

Triticum spp. the rice genes were then BLASTn searched against the Chinese Spring 

454 shotgun sequence (http://www.cerealsdb.uk.net/search_reads.htm) and these hits 

were used in the alignments.  Primer pairs were designed from the wheat CDS or 

genomic sequences, and the target products included at least one intronic region. 

Overlapping primers were designed to ensure coverage of the majority of the CDS of 

each gene.  A total of 120 ESM primer pairs were designed from 54 ESTs. 

In addition, an earlier study (Knox et al. 2009) suggested that Cdu-B1 resides in 

an area close to the major vernalization locus vrn-B1. The homoeologous locus Vrn-A
m
1 

has been sequenced, so a total of 56 primer pairs were designed for seven genes 

physically linked to that locus, including markers for genes Xwg644 and PCS2 using the 

same procedures as described above. All polymorphic ESM and gene-specific primer 

pairs are listed in Appendix 1. 

 

3.5 Saturation Mapping Marker Analysis 

A saturated map of 5BL has been reported previously for the CS/CS-DIC 5B 

population (Lu et al. 2006). As such, a dominant marker most closely associated with 

Cdu-B1, previously designated as ScOPC20 (Knox et al. 2009), was amplified in this 

http://www.cerealsdb.uk.net/search_reads.htm
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population using primers and PCR reaction conditions reported previously (Knox et al. 

2009).  

All ESM primers, and primers for the seven Vrn-B1 associated genes were 

evaluated for polymorphisms first on genomic DNA from Kofa and W9262-260D3, and 

only those primers that produced polymorphic amplicons were assessed on the W9262-

260D3/Kofa DH population and are reported here (Appendix 1). The PCR reactions 

consisted of 50 mM KCl, 10 mM Tris-HCl, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.1 

μM of M13 sequence-modified forward ESM primer (M13 tag, 

CACGACGTTGTAAAACGAC, attached to 5' end of forward primer), 0.4 μM of 

reverse ESM primer, 0.152 μM of Universal dye-labeled M13 primer (Schuelke 2000), 

1.75 U of Taq DNA polymerase and 100 ng of genomic DNA. The universal primer was 

labeled with either HEX, FAM, or NED fluorescent dyes. The total PCR volume was 25 

μL. Temperature cycling was 94°C for 5 min followed by 3 cycles of 94°C for 30 s, 

56°C for 45 s, 72°C for 45 s, 94°C for 30 s, 54°C for 45 s, 72°C for 45 s, 94°C for 30 s, 

52°C for 45 s, 72°C for 45 s, 94°C for 30 s, 50°C for 45 s, 72°C for 45 s, then 32 cycles 

of 94°C for 30 s, 51°C for 45 s, 72°C for 45 s, then a final extension at 72°C for 10 min 

before cooling to 10°C. Primers were first assessed for polymorphisms using capillary 

electrophoresis (CE) (ABI3100xl; Applied Biosystems). For CE, 1 μL of diluted PCR 

product (diluted 1/20 or 1/10 in deionized water) was combined with 9.0 μL HiDi 

formamide (ABI, Foster City, CA), and 0.08 μL of 500(-250) ROX size standard. The 

samples were run on a 36 cm array, processed with Applied Biosystem Data Collection 

Software version 2.0, and genotyped using GeneMapper version 3.0. Monomorphic 

ESMs were further analyzed using single strand conformational polymorphism (SSCP). 

For SSCP analysis, 4 μL of the PCR product were mixed with 20 μL of loading buffer 

containing 95% formamide, 0.05% bromophenol blue, and 0.05% xylene cyanol. The 

samples were heated at 94°C for 5 min and then immediately placed on ice to allow 

single strand folding. The fragments were resolved on a 0.6X MDE gel (Lonza, 

Rockland, ME, USA) run at room temperature for 17 h (6 W) using 0.6X TBE buffer. 

The Bio-Rad Sequi-Gen GT System (38 cm X 50 cm) was used for electrophoresis. Gels 

were visualized by silver staining as described previously (Bassam and Gresshoff. 

2007). 



 
31 

3.6 Saturation Genetic Mapping and QTL Analysis 

Revised genetic linkage maps of the CS/CS-DIC 5B (Lu et al. 2006) and 

W9262-260D3/Kofa (Knox et al. 2009) populations were constructed using the Haldane 

mapping function of JoinMap 4.0 (van Ooijen and Voorrips 2004) at a minimum log of 

odds (LOD) score of 3.0. Only the W9262-260D3/Kofa population was used for QTL 

analysis using grain Cd concentration collected previously (Knox et al. 2009). QTL 

analysis was performed using a multiple locus model (MLM) in MapQTL Version 5.0 

(van Ooijen 2004) and the significance threshold (P<0.01) of the LOD score was 

determined as described previously (van Ooijen 1999). For QTL analysis, the least 

square (LMS) means for each DH line was used and were estimated from data collected 

from two environments (Knox et al. 2009). The average QTL effects (one half the 

difference between parental marker class means) were estimated by MapQTL Version 

5.0.   All genetically mapped markers were designated with an X as per the 

recommended rules for gene symbolization in wheat. 

 

3.7 Colinearity With the Rice and Brachypodium Genomes 

For comparative analysis with the rice and Brachypodium genomes, the reported 

sequences of the ESMs linked to Cdu-B1 were subjected to BLASTn searches of the 

rice and Brachypodium (http://www.brachybase.org/blast) genomes and parsed for 

sequences with e-values <10
-7

 and ≥80% nucleotide identity for at least 60 bases. When 

several significant hits were found, only the best hit (lowest e-value) was reported.  

MapChart 2.1 (Voorips 2002) was used to view colinearity of the wheat genetic map, 

and the rice and Brachypodium physical maps.  Colinear genes and functions are listed 

in Appendix 2. 

 

3.8 STS Marker Development and Analysis 

 Once the Cdu-B1 colinear regions were identified, markers were developed for 

rice and Brachypodium genes within the Cdu-B1 colinear region in wheat using the 

same procedures described above (section 3.4). A total of 120 sequence tagged site 

(STS) primer pairs were designed based on 25 colinear genes. These markers were 

designed and analyzed as per the ESMs using rice and Brachypodium colinear gene 
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sequences (section 3.4). STS markers were analyzed as per ESMs (section 3.5).  These 

markers were also assessed for polymorphism in the parents of our mapping population 

using high resolution melt (HRM) technology.  For HRM analysis, all PCR reactions 

were performed using a BioRad CFX384 real time (RT) PCR machine.  The PCR 

reactions included 1X Eva Green Supermix (BioRad), 1 μM forward and reverse 

primers, and 100 ng DNA.  PCR temperature cycling was the same for all primers (98°C 

for 3 min followed by 40 cycles of 98°C for 10 s and 59°C for 10 s).  Following PCR, 

amplicons were melted by ramping the temperature from 59°C to 98°C in 0.2°C 

increments which were held for 10 s after which fluorescence was measured.  The 

resulting melting temperature curves were compared to determine polymorphisms. STS 

primer pairs polymorphic between W9262-260D3 and Kofa are listed in Appendix 1.  

Polymorphic markers were mapped in the W9262-260D3/Kofa population as described 

in section 3.6. 

 

3.9 OsHMA3 Gene Specific Marker Development 

A P1B-ATPase gene in rice (OsHMA3, Os07g12900) has been identified as 

controlling grain Cd concentration in rice (section 2.3.2), and seven primer pairs were 

designed from the closest orthologous wheat sequences (DQ490135 and AY829002) as 

well as the Chinese Spring shot gun 454 sequences 

(http://www.cerealsdb.uk.net/search_reads.htm).  These primers were designed as 

described in section 3.4 and 5B and polymorphic primer pairs are listed in Appendix 1.  

 

3.10 Development of Markers for Fine Mapping 

Most Cdu-B1 markers were mapped by using SSCP, which is not conducive to 

screening large numbers of F2 individuals typical of fine mapping populations.  Thus 

three co-segregating CAPS markers (Xusw14, Xusw47, Xusw17) and STS marker 

Xusw15b were converted to CAPS markers for the fine mapping experiments. For this, 

PCR amplicons of the appropriate size were cloned using the TOPO TA Cloning Kit 

(Invitrogen, Burlington, Ontario, Canada) following the manufacturer‘s instructions.  

Fragments from both high grain Cd concentration cultivars (Kofa and Commander) and 

low grain Cd concentration cultivars (W9262-260D3 and Strongfield) were cloned.  
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Recombinant plasmid DNA from clones carrying the inserted PCR product (as verified 

by PCR) were sequenced at McGill University (Genome Quebec Innovation Center in 

Montreal, Quebec, Canada).  Sequences were aligned using AlignX (Vector NTI 

Advance 10.3; Invitrogen, Carlsbad, CA) and were analyzed for SNPs between high and 

low grain Cd accumulating cultivars (Appendix 3).  Primers were redesigned to amplify 

B genome specific amplicons by placing a B genome specific SNP at the 3‘ end of the 

primer.  Forward and reverse primers were selected to flank restriction sites 

differentiating alleles of high and low accumulators. Because ScOPC20 is a dominant 

(presence/absence) marker it could not be converted to a CAPS marker.   

The resulting DNA fragment for each CAPS marker (Appendix 4) was PCR 

amplified using the following conditions.  The PCR reaction consisted of 50 mM KCl, 

10 mM Tris-HCl, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.25 pmol of forward CAPS 

primer, 0.25 pmol or reverse CAPS primer, 1.75 U of Taq DNA polymerase and 100 ng 

of genomic DNA.  Temperature cycling was 94°C for 3 min followed by 35 cycles of 

94°C for 30 sec, 57°C for 30 sec, 72°C for 1min, then a final extension at 72°C for 10 

min before cooling to 10°C. PCR amplicons were resolved by electrophoresis on 2.0% 

(w/v) agarose gels at 140V for 1.5 hours in 1X TBE buffer and stained with ethidium 

bromide (0.5 μg/ml).  The DNA banding patterns were visualized with UV light and 

recorded by a Canon Power Shot 7 digital camera and UVP imaging system.  

All of the CAPS markers developed were first validated for their ability to 

amplify amplicons located on chromosome 5B by using the Langdon disomic D genome 

substitution lines (Joppa and Williams 1988).  Markers were then scored on the W9262-

260D3/Kofa mapping population to ensure the CAPS markers co-segregated with the 

ESM and STS markers from which they were developed. 

 

3.11 Development of F2 Fine Mapping Populations 

Two F2 populations were utilized for fine mapping. A smaller population 

consisting of 521 individuals was developed from the cross Svevo (high grain Cd) x 

Brigade (low Cd; Clarke et al. 2009).  A larger F2 population consisted of 3558 F2 

individuals derived from a cross between two near isogenic lines 8982-TL-L (low grain 

Cd concentration) and 8982-TL-H (high grain Cd concentration; Appendix 5; Clarke et 
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al. 1997a).  The resulting F1s from the latter cross were increased and were sampled and 

analyzed for markers linked to Cdu-B1 for heterozygosity at the two leaf stage to ensure 

no F1 plants were the result of self pollination. Only F1s heterozygous at markers linked 

to Cdu-B1 were grown to maturity and F2 seeds harvested (Fig. 3.1).  

For fine mapping, the F2 plants were first germinated at 14°C in the dark until 

roots and shoots were visible.  Germinated seedlings were then planted in sunshine mix 

(L22 germinating) in 8 by 16, 2.5 cm cell trays (96 individual seedlings per tray).  

Appropriate parents of each F2 population were included in each tray as controls.  

Seedlings were allowed to grow for 7-10 days, until the seedling shoots were about 10 

cm tall.  DNA was extracted from seedlings as described previously (Eckstein et al 

2004).   

 

 

 

Fig. 3.1 Outline of F2 fine mapping population development, screening, and 

phenotyping of F2 individuals.  Red alleles indicate flanking markers.  
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In total eleven markers were used for fine mapping (ScOPC20, Xusw49, HMA3-

B1, Xusw50, Xusw51, Xusw52, Xusw15b, Xusw17, Xusw47, Xusw53, and Xusw14).  The 

populations were first screened with three markers:  ScOPC20 (section 3.5) and Xusw14 

(section 3.10) which flank Cdu-B1, and Xusw47 (section 3.10), which co-segregates 

with Cdu-B1. The remaining eight markers that co-segregated with Cdu-B1 in the 

W9262-260D3/Kofa population were scored only on F2 plants showing recombination 

between at least two of the three original markers. Chi-square (χ
2
) analysis of observed 

molecular variant frequencies was estimated using expected values for co-dominant 

(1:2:1) or dominant (3:1) segregation in an F2 population.   

F2:3 progeny derived from only the recombinant F2 individuals were grown as 

described for the F2 plants, and all ten markers scored on 10-20 individual F2:3 plants.  

Plants homozygous for recombinations were selected, and grown in Cd contaminated 

soil (section 3.3) and scored using all markers to identify F2:3 families for phenotyping 

(Fig. 3.1).   Parental material was grown and transplanted as checks.  At maturity, grain 

was harvested from each selected F2:3 plant individually, and analyzed for grain Cd 

content as described previously (section 3.3).  

 Genetic maps were constructed individually for each F2 mapping population 

using the Haldane mapping function of JoinMap 4.0 (van Ooijen and Voorrips 2004) at 

a minimum LOD score of 3.0. ScOPC20 and several of the STS-HRM scored markers 

are dominant markers and therefore it was not possible to differentiate heterozygous and 

homozygous high grain Cd molecular variants.  Therefore, the genotypes of individual 

recombinant F2:3 families were used to determine the genetic state at the F2 generation.   

 

3.12 HMA-B1 BAC Identification 

The Triticum turgidum Ttu-B-LDN65 (Langdon) BAC library (Cenci et al 2003; 

5X coverage) 2D pools, super pools and plate pools (2D pooling described at 

http://cnrgv.toulouse.inra.fr/en/services/dna_pool_production) were purchased from the 

French Plant Genomic Resource Centre (INRA-CNRGV).  Positive plates were 

identified from super pools using primer pair TtHMA-n454-F3/R3 (F-5‘ 

ATGTCGTCGTTGATGAGCATG 3‘, and R-5‘ CCATTGTCCTCACGGCGATGT 3‘) 

and validated with plate pools.  At the plate pool level, BAC plate pools were screened 



 
36 

to identify only 5B BACs.  Langdon disomic subseries lines LDN5D(5A) and 

LDN5D(5B) were run as checks with the plate pools on SSCP (as described in Wiebe et 

al. 2010) using the TtHMA-n454-F3/R3 primer pair. One 5A and all 5B plates identified 

were also ordered from INRA-CNRGV and individual BACs were identified from 

plates using the same primer pair.  Identified BACs were verified to localize to 

chromosome 5B or 5A using SSCP.  The PCR reactions consisted of 50 mM KCl, 10 

mM Tris-HCl, 1.5 mM MgCl2, 0.2 mM of each dNTP, 0.4 μM of forward and reverse 

primers, 1.75 U of Taq DNA polymerase and 100 ng of genomic DNA.  PCR 

temperature cycling involves 95°C for 5 min followed by 35 cycles of 95°C for 30 s and 

59°C for 30 s and 72°C followed by a final extension of 72°C for 10 min. 

 

3.13 HMA Sequencing 

For 454 BAC sequencing, BAC DNA was prepared by the method described by 

Poulsen (2004).  Shotgun 454 sequence was obtained for BAC 532J14 using GS FLX 

Titanium chemistry with sequencing being performed at The Genome Quebec 

Innovation Center (Montreal, Quebec, Canada).  298B8 BAC 454 shotgun sequencing 

was performed using Roche 454 GS FLX Plus chemistry by Funomics (Saskatoon, 

Saskatchewan, Canada).  Illumina GA paired-end sequence was also obtained for both 

BACs using a sequencing library size of 300 bp. BAC DNA for Illumina sequencing 

was prepared with the QIAGEN Large-construct kit according to the manufacturer‘s 

instructions 

(http://www.qiagen.com/products/plasmid/qiagenplasmidpurificationsystem/qiagenlarge

constructkit.aspx#Tabs=t2).  Library preparation and sequencing was done at the 

National Research Council of Canada, Saskatoon, Sk. BAC end sequencing was 

performed using Sanger sequencing, with M13(-20) forward 

(GTAAAACGACGGCCAG) and M13 reverse (CAGGAAACAGCTATGAC) primers. 

Hybrid assemblies incorporating both 454 and Illumina pair-end data were 

performed using Newbler version 2.6 (Roche).  Illumina data was preprocessed as 

follows: reads matching the BAC cloning host sequence (Escherichia coli DH10B, 

NC_010473) or vector sequence (pIndigoBAC-5) were moved by bowtie (Langmead et 

al. 2009) and duplicate reads were removed using a Perl script obtained from Kevin Koh 

http://www.qiagen.com/products/plasmid/qiagenplasmidpurificationsystem/qiagenlargeconstructkit.aspx#Tabs=t2
http://www.qiagen.com/products/plasmid/qiagenplasmidpurificationsystem/qiagenlargeconstructkit.aspx#Tabs=t2
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(NRC, pers. comm.).  Subsampling was done because of the high read depth obtained 

from the Illumina sequencing platform and increasing numbers of read pairs were 

sampled in increments of 10,000. A single 166,999 bp scaffold was obtained with 

10,000 read pairs sampled for the 298B8 assembly (Appendix 6).  BAC end sequencing 

confirmed the presence of both BAC ends. Similarly for 532J14, a single 124,137 bp 

scaffold was obtained with 20,000 read pairs sampled (Appendix 6); both the BAC-F 

and BAC-R ends were also found in the 532J14 scaffold, suggesting the assembly was 

complete.   

Plant repeats were masked using RepeatMasker (Smit, AFA, Hubley, R & 

Green, P. RepeatMasker Open-3.0, 1996-2010; http://www.repeatmasker.org) and the 

repeat masker specific libraries (RepBase Update 20110920) from the Genetic 

Information Research Institute (www.giri.org). The search program used by 

RepeatMasker was rmblastn version  2.2.23+ 

(http://www.repeatmasker.org/RMBlast.html). Coding regions were identified on repeat 

masked sequence by ab initio gene prediction using FGENESH (Softberry Inc.); cDNA 

sequence was used to guide the ab initio prediction when necessary. The predicted CDS 

of the HMA3-B1 and HMA3-A1 genes were aligned with similar genes from Arabidopsis 

(Baxter et al. 2003), Brachypodium (http://www.brachypodium.org/) and rice (Baxter et 

al. 2003) using ClustalX version 2.0.12 (Thompson et al. 1997).  A bootstrap neighbor-

join phylogenetic tree was generated using ClustalX.  1000 replicates were used for 

bootstrapping.  The phylogenetic tree was viewed using Dendroscope (Huson et al, 

2007).  

The HMA3 genes from durum cultivars Kofa (high grain Cd) and W9262-260D3 

(low grain Cd) and Langdon BACs 298B8 (5B genome) and 532J14 (5A genome) were 

then sequenced from PCR amplicons. PCR amplicons of the approximate size were 

cloned using the TOPO TA Cloning Kit (Invitrogen, Burlington, Ontario, Canada) 

following the manufacturer‘s instructions and the plasmid DNA from clones carrying 

the inserted PCR product were sequenced at the National Research Council (NRC), 

Saskatoon, SK.  Sequences were aligned using AlignX (Vector NTI Advance 10.3; 

Invitrogen, Carlsbad, CA).  Primers for HMA-B1 sequencing are listed in Appendix 3.  

The PCR reactions consisted of 50 mM KCl, 10 mM Tris-HCl, 1.5 mM MgCl2, 0.2 mM 
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of each dNTP, 0.4 μM of forward and reverse primers, 1.75 U of Taq DNA polymerase 

and 100 ng of genomic DNA.  PCR temperature cycling involves 95°C for 5 min 

followed by 35 cycles of 95°C for 30 s and 63°C for 30 s and 72°C followed by a final 

extension of 72°C for 10 min.  Protein sequences were predicted for these genes using 

the ExPSAy translate tool (http://web.expasy.org/translate/) on the predicted CDS 

(Appendix 7) and functional domains were identified using the MyHits motif scan tool 

(http://myhits.isb-sib.ch/cgi-bin/motif_scan). 

 

3.14 Marker Validation 

A global collection of 96 durum wheat cultivars and breeding lines (Appendix 8) 

was used to validate five markers (ScOPC20, Xusw47, Xusw17, Xusw15b, and HMA-B1) 

for their potential for marker assisted selection (MAS) for the low grain Cd phenotype.  

This collection included breeding lines and cultivars from countries including Canada 

(25), Italy (17), USA (12), Australia (9), Spain (9), Argentina (5), Iran (4), France (3), 

Mexico (3), Morocco (3), Germany (2), New Zealand (2) and Russia (1), and has been 

described previously (Somers et al. 2007; Reimer et al. 2008).  

Phenotypic data for grain Cd was collected from field trials conducted 

previously at Saskatoon, Saskatchewan over two years (2000 and 2001; Reimer et al. 

2008).  A single replicate of each line was grown in an alpha lattice design in both years 

(Reimer et al. 2008).   Grain Cd concentration was determined using procedures 

described previously (Wiebe et al. 2010).  Data analysis was performed using PROC 

MIXED of SAS (SAS Institute, Toronto, Canada) using each of the 2000 and 2001 

environments as replications (random factor) and cultivars and breeding lines as a fixed 

factor.  The least significant difference (LSD) was estimated using a significance level 

of p=0.05, and was used to classify the lines and cultivars discretely into high grain or 

low grain Cd accumulators.    
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4.0 RESULTS 

 

4.1 Saturation Mapping of Cdu-B1 in Durum Wheat 

Cdu-B1 (Penner et al. 1995) was previously localized on chromosome 5BL 

(Knox et al. 2009).  Using a DH population derived from the cross W9262-260D3 (low 

grain Cd)/Kofa (high grain Cd), Knox et al. (2009) localized Cdu-B1 as a Mendelian 

factor approximately 3 cM distal to ScOPC20 (Knox et al. 2009; section 2.3.3, Fig. 2.3) 

and 12 cM distal to the Tsn1 locus (markers Xfcp1 and Xfcp2; Knox et al. 2009; section 

2.3.3, Fig. 2.3). A 5BL map derived from the CS/CS-DIC 5B RSL hexaploid wheat 

population is available, and is saturated in the Tsn1 region (Lu et al. 2006).  Therefore, 

Cdu-B1 was first localized in that population using Tsn1 associated markers. ScOPC20 

primers amplified the expected 394 bp fragment from CS-DIC 5B, but no fragment was 

amplified from CS (Fig. 4.1). XBG608197 and Xrz575 were mapped previously in the 

CS/CS-DIC 5B population (Lu et al. 2006), and ScOPC20 was found to co-segregate 

with these markers at a position 4.3 cM proximal to Xwg644 (Fig. 4.2). In a previous 

study, grain Cd concentrations for CS and CS-DIC 5B was similar despite segregation at 

ScOPC20 (Wiebe et al. 2010), therefore it was not possible to localize Cdu-B1 in this 

population.  Regardless, the linkage of ScOPC20 with Xwg644, XBG608197 and 

Xrz575, which were previously localized to deletion bin 5BL9 0.76-0.79 (Lu et al. 2006; 

Fig. 4.2), suggests Cdu-B1 is also located within the same deletion bin. 

 

Fig. 4.1 Polymorphism detected at ScOPC20 in CS and CS-DIC 5B and a subsample of 

RSLs from the CS/CS-DIC 5B RSL.  

 

It was not clear why no phenotypic variation in grain Cd concentration was 

observed in the CS/CS-DIC 5B RSL population, despite segregation at ScOPC20.  

There are at least two possibilities:  a) there has been a recombination between  

RSL Population 
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Fig. 4.2  Physical map of a portion of chromosome 5BL showing the deletion bins of 

that chromosome and corresponding genetic map of CS/CS-DIC 5B.  

 

ScOPC20 and Cdu-B1 in this population, or b) a gene homoeologous to Cdu-B1 resides 

on chromosome 5D of hexaploid wheat.  To test the latter hypothesis, grain Cd 

concentration of the Langdon-Chinese spring 5D disomic substitution lines LDN5D(5A) 

and LDN5D(5B) revealed that a substitution of chromosome 5D into Langdon resulted 

in a significant lowering of grain Cd concentration compared to Langdon (Fig. 4.3). 

These results confirm that a gene for reducing grain Cd is also present on chromosome 

5D of hexaploid wheat. 

 Having established the likely physical location of Cdu-B1, 120 primer pairs were 

designed from the sequences of 54 wheat ESTs previously localized to bin 5BL9 0.76-

0.79 (grain genes website http://wheat.pw.usda.gov/cgi-

bin/westsql/bin_candidates.cgi?bin=5BL9-0.76-0.79). Twenty-five of these primers 

produced amplicons that were polymorphic between Kofa (high grain Cd) and W9262-

260D3 (low grain Cd) and 13 of these (Appendix 1) were mapped to group five 
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chromosomes in the DH population. Marker XBF474090.1 was polymorphic (Fig. 4.4) 

and co-segregated with Cdu-B1 in the W9262-260D3/Kofa DH population (Fig. 4.5). 

 

Fig. 4.3 Effects of substituting chromosome 5D into Langdon. Grain Cd concentration 

(ng g
-1

) of known high grain Cd accumulators (Kofa, Commander, and Langdon) and 

known low grain Cd accumulators (W9262-260D3, Strongfield, and CDC Verona) and 

Langdon disomic substitution lines (LDN5D(5B), and LDN5D(5A)). 

 

 

Fig. 4.4  Polymorphic ESMs associated with Cdu-B1 in the W9262-260D3/Kofa 

population.   For each marker, Kofa is lane 1 and W9262-260D3 is lane 2.  All 

polymorphisms were detected with SSCP except XBG313229 was detected with CE.  

Arrows indicate those polymorphic fragments that localized to 5B. 

XBF474164.2   XBF293297.1    XBF474090.1     XBG313229 
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Primers designed from the wheat sequences of XBF293297 and XBF474164 each 

produced two polymorphic fragments (Fig. 4.4). XBF293297.1 co-segregated with Cdu-

B1 and XBF474164.2 mapped 0.2 cM distal to Cdu-B1 (Fig. 4.5). XBG313229 mapped 

7 cM proximal to Cdu-B1.  Primers for the ESMs XBE604920, XBE426348, 

XBF474090.2, XBF145263, XBE494515, XBG262450, XBG274700, XBF474164.1, and 

XBF293297.2 were all polymorphic between Kofa and W9262-260D3, but all clustered 

on the distal region of chromosome 5AL when mapped in the DH population (Fig. 4.6). 

 

 

Fig. 4.5  Genetic map of a portion of chromosome 5BL in the W9262-260D3/Kofa 

population and Cdu-B1 QTL analysis.  Markers associated with QCdu.spa-B1 are 

indicated by blue text.  Marker in green text is associated with QCdu.usw-B2. 
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 The sequences of XBG608197, XBF293297.1, XBF474090.1, and XBF474164.2 

were used to search against the available rice and Brachypodium genomes using 

BLASTx to identify the colinear regions (Fig. 4.7). All four ESM sequences showed 

similarity to genes localized to rice chromosome 3 and Brachypodium chromosome 1 

except XBF474090.1, which localizes to Brachypodium chromosome 4.  The durum 

wheat Cdu-B1 region was colinear with a 286 Kbp region in rice, similar in size to the 

282 Kbp region identified in Brachypodium. Eight Brachypodium genes were not 

present in the rice colinear region and 20 rice genes were absent in Brachypodium. 

Tandem repeats of the rice gene Os03g53590 were identified in Brachypodium. The 

remaining twenty-nine genes showed near perfect gene order between rice and 

Brachypodium (Fig. 4.7).  All genes from the Cdu-B1 colinear regions in rice and 

Brachypodium and their predicted function are listed in Appendix 2.  None of the genes 

have been associated with Cd uptake or sequestration in plants previously.  

 

 
 

Fig. 4.6 Genetic map of a portion of chromosome 5AL in the W9262-260D3/Kofa 

population 
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Fig. 4.7  Genetic map of the Cdu-B1 region from W9262-260D3/Kofa (Tt5B_Cdu-B1) 

and its colinear physical region on rice chromosome three (R3), and Brachypodium 

chromosome 1 (Bd1).  The positions of Xrz575 and XBG608197 (blue) relative to Cdu-

B1 were inferred from the CS/CS-DIC 5B genetic map (see Fig. 4.2).  Red indicates 

ESMs that were used along with XBG608197 to determine colinear regions in rice and 

Brachypodium.  Green indicates those genes in which polymorphisms in W9262-

260D3/Kofa were identified and mapped (STS markers). Bold indicates colinear genes, 

which were evaluated for polymorphisms in W9262-260D3/Kofa, but unable to map 

due to lack of polymorphisms. 
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To further saturate Cdu-B1, primers for 25 genes from the colinear region of rice 

were developed, and seven of these (Os03g53590, Os03g53250, Os03g53490, 

Os03g53500, Os03g53530, Os03g53700, and Os03g53350; Fig. 4.7) produced 

detectable polymorphisms between Kofa and W9262-260D3 (Fig. 4.8).  These markers 

were designated as Xusw15, Xusw49, Xusw50, Xusw51, Xusw52, Xusw53, and Xusw61.  

These were added to the existing genetic map (Fig. 4.5). In the revised map, Xusw15, 

Xusw49, Xusw50, Xusw51, and Xusw52 co-segregated with Cdu-B1 and one (Xusw53) 

co-segregated with XBF474164.2 (Fig. 4.5).  One mapped to chromosome 5A (Xusw61) 

(Fig. 4.6). 

 

Fig. 4.8 Polymorphic STS markers associated with Cdu-B1 in the W9262-260D3/Kofa 

population.  Polymorphisms were detected with HRM (W9262-260D3 melt (green) in 

comparison to the Kofa melt (red)), except Xusw15, which was detected with SSCP. 

(Kofa is lane 1 and W9262-260D3 is lane 2).  Arrows indicate those polymorphic 

fragments that localized to 5B. 
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 To add additional markers to the Cdu-B1 region, markers were identified from 

previously reported positional cloning studies in wheat that focused on chromosome 

5BL.  Xwg644 mapped distal to ScOPC20 in the CS/CS-DIC 5B population (Fig. 4.2).  

That marker is linked to the Vrn-A
m
1 locus in T. monococcum, which has been 

sequenced (Yan et al. 2003). Thus, primers were designed for six genes physically 

linked to, and including, Xwg644 in T. monococcum.  The PCR products for two genes, 

PHY-C (phytochrome-C) and PCS2 were polymorphic between W9262-260D3 and 

Kofa (Fig. 4.9), and mapped 1.8 cM distal to Cdu-B1 in the DH mapping population 

(Fig. 4.5). The primers for Xwg644 and CSFs-1 (cleavage stimulation factor subunit 1) 

produced two polymorphic fragments each, and one from each gene (Fig. 4.9) mapped 

1.5 cM distal to Cdu-B1 (Fig. 4.5) while the second fragment mapped to chromosome 

5AL (Fig. 4.6). Primers for MTK4 (putative protein kinase tousled), MC (mitochondrial 

carrier protein) produced polymorphic amplicons, but these mapped to 5AL (Fig. 4.6).   

 

Fig. 4.9  Polymorphic gene specific markers in W9262-260D3/Kofa population 

designed from genes linked to VrnA
m

1 in T. monococcum.  Kofa is lane 1 and W9262-

260D3 is lane 2.  All polymorphism detected with SSCP except PCS2 was detected with 

CE.  Arrows indicate those polymorphic fragments that localized to 5B. 

 

The revised genetic map of chromosome 5B from the W9262-260D3/Kofa DH 

population was used for QTL analysis of grain Cd concentration (Fig. 4.5) using data 

reported previously (Knox et al. 2009).  A major QTL (LOD = 58) for grain Cd 

concentration centered at XBF293297.1, XBF474090.1, Xusw15, Xusw49, Xusw50, 

Xusw51, and Xusw52 was identified and was flanked by ScOPC20 proximally and 

XBF474164.2 and Xusw53 distally (Fig. 4.5). This QTL, previously designated as 

QCdu.spa-B1 (Knox et al. 2009), was reduced to a 0.7 cM interval (Fig. 4.5) and 

CSF               Xwg644              Phy-C               PCS2 
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explained 82% of the phenotypic variation in grain Cd concentration. W9262-260D3, 

the low Cd parent contributed the allele for low Cd with an additive effect of 47 ng g
-1

 

(Table 4.1). Using MLM, a second minor QTL (LOD = 4.1) not previously reported by 

Knox et al. (2009) was also detected on 5BL around XCbf32 (Fig. 4.5) and was 

designated as QCdu.usw-B2. The QTL effect was small relative to QCdu.spa-B1, and 

the low grain Cd parent W9262-260D3 contributed the allele for low grain Cd (Table 

 

Table 4.1  Least square means (LSM) of grain Cd concentrations (ng g
-1

) from two 

environments (Knox et al. 2009) for three markers associated with Cdu-B1 and XCbf32 

 

Molecular variants ScOPC20 HMA3-B1 XBF474164.2 XCbf32 

Least square means of genotypic groups 

Kofa (high) 160 157 160 121 

W9262-260D3 (low) 71 67 72 101 

Difference
a
 89** 90** 88** 20** 

Effect of XCbf32 in lines homozygous for low Cd uptake at Cdu-B1 

Kofa (high) 75 74 80  

W9262-260D3 (low) 63 58 63  

Difference
a
 12* 16** 17**  

Effect of XCbf32 in lines homozygous for high Cd uptake at Cdu-B1 

Kofa (high) 166 165 165  

W9262-260D3 (low) 149 148 149  

Difference
a
 17** 17** 16*  

 

a
Differences between genotypic classes were significant at * P < 0.05; ** significant at 

P < 0.01 
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4.1).  The interactions between XCbf32 and the three markers linked to Cdu-B1 were not 

statistically significant, but compared to only QCdu.spa-B1, the combined effects of the 

W9262-260D3 molecular variants at XCbf32 and QCdu.spa-B1 reduced grain Cd by 17 

ng g
-1

 (Table 4.1).  

 

4.2  Fine Mapping of Cdu-B1 in Durum Wheat 

For ease of use in fine mapping, those markers that were mapped using SSCP 

(Fig. 4.4; Fig. 4.5; Fig. 4.8) were first converted to CAPS markers (Appendix 3 and 4), 

as SSCP is not conducive to high through-put genotyping of large populations typical of 

fine mapping populations. The PCR amplicons from XBF474164.2, XBF474090.1, 

XBF293297.1, and Xusw15 were PCR cloned and sequenced from Kofa and W9262-

260D3 to identify single nucleotide polymorphisms (SNPs) (Appendix 3).  Appropriate 

restriction enzymes were identified to selectively cut either the Kofa or W9262-260D3 

allele.  Four new CAPS markers were developed (Fig. 4.10), and based on the 

recommended rules for gene symbolization in wheat, were designated as Xusw14 

(XBF474164.2), Xusw47 (XBF474090.1), Xusw17 (XBF273297.1), and Xusw15b 

(Xusw15) (Table 4.2).  The new CAPS markers genotyped the W9262-260D3/Kofa 

population the same as the SSCP markers from which they were developed (Fig. 4.11).  

For fine mapping experiments, the flanking markers (ScOPC20, and Xusw14) 

were used first to identify recombinants within the Cdu-B1 containing interval.  Xusw47 

was also included because ScOPC20 is a dominant marker, which makes detection of 

recombination difficult, as it is impossible to identify heterozygotes with a dominant 

marker.  Then, additional co-segregating markers were only scored on the recombinants. 

In the Svevo/Brigade F2 population, three recombinations were identified in the 

521 individuals that were assayed (Table 4.3) and a genetic map was constructed (Fig. 

4.11).   Flanking markers (ScOPC20 and Xusw14) spanned an interval of 0.29 cM.  

Eight of the markers co-segregated and mapped 0.10 cM (one recombinant) distal to 

ScOPC20 (Fig. 4.11).  Two recombinants (0.19 cM) separated the co-segregating 

markers from Xusw14. 

The three recombinant plants identified were self-pollinated to generate F2:3 

families.  A minimum of 16 individual plants were screened from each of the three 
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Fig. 4.10  CAPS markers developed from ESMs and STS marker.  Validation of CAPS 

markers in Langdon group 5 disomic substitution lines and known high (Kofa, 

Commander) and low (W9262-260D3, Strongfield) grain Cd concentration cultivar. 

 

Table 4.2 Marker designations for converted CAPS markers 

ESM or STS marker Converted CAPS marker 

XBF474164.2 Xusw14 

XBF474090.1 Xusw47 

XBF293297.1 Xusw17 

Xusw15 Xusw15b 

 

 
families, and eight lines that were homozygous for the identified recombinations were 

identified and grouped into one of three haplotypes (Table 4.4).  All eight lines, along 

with parents, were phenotyped for grain Cd concentration (Table 4.4).  Brigade showed 

48% less grain Cd than Svevo (Table 4.4) and would thus be classified as low grain Cd 

concentration because the high grain Cd concentration durum phenotype contains 45-

60% more grain Cd when compared to low grain Cd concentration durum phenotype 

(Harris and Taylor 2004; Hart et al. 2006). Three lines with haplotype 3 carried the  
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Fig. 4.11 Comparison of W9262-260D3/Kofa genetic saturation map, Svevo/Brigade 

genetic fine map, and 8982-TL genetic fine map. 

  

 

Table 4.3 Haplotype of three recombinant F2 plants from the Svevo/Brigade population 

(a = high Cd molecular variant, b = low Cd molecular variant, h = heterozygous).  
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Table 4.4 Haplotype groupings of homozygous F2:3 lines derived from recombinant F2 lines from the Svevo/Brigade population. The 

mean grain Cd concentration (ng g
-1

), standard error of the means (SEM), and classification of each haplotype into high or low grain 

Cd concentration.  The number of F2:3 lines classified into each haplotype group are presented.  a = high Cd molecular variant, b = low 

Cd molecular variant. 
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Svevo a a a a a a a a a a a 500  21 High 

 

Brigade b b b b b b b b b b b 260 30 Low 
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Svevo (high) molecular variant at Xusw14 and all three expressed low grain Cd like 

Brigade (Table 4.4). Haplotype 2 showed the Brigade (low) molecular variant at 

ScOPC20, but expressed high grain Cd (Table 4.4).  Taken together, it was concluded 

that the Cdu-B1 locus was flanked by ScOPC20 and Xusw14, and was associated with 

the eight co-segregating markers.   

 The results from the Svevo/Brigade F2 population did not improve the genetic 

resolution at Cdu-B1, so a second, larger F2 population was developed.  For the second 

population (herein designated as 8982-TL population), two near isogenic lines (8982-

TL-Low/8982-TL-High (Clarke et al. 1997a) for Cdu-B1 were crossed to produce and 

an F2 population of 3558 F2 plants, which was used for mapping. Cdu-B1 and Vrn-B1 

markers were screened on parents of the 8982-TL F2 population.  Results showed that 

the 8982-TL population is not segregating for Vrn-B1 and therefore confirmed Cdu-B1 

is not associated with genes PCS2 and Xwg644 (Appendix 5).  In total, 20 F2 plants 

were identified with recombinations between ScOPC20 and Xusw14 (Table 4.5).  The 

remaining eight co-segregating markers were scored on the population, and the resulting 

data generated a final map which spanned 0.28 cM (Fig. 4.11).  No recombination was 

detected between Xusw50, Xusw51, Xusw52, Xusw15b, Xusw17, and Xusw47, but a 

single recombination was detected between this cluster of markers and Xusw49 (Table 

4.5).  Two recombinants were identified with between Xusw53 and Xusw14 (Table 4.5).  

 The 20 recombinant F2 plants were self-pollinated, and individuals from the 

resulting F2:3 families were screened to identify 20 lines homozygous for recombination 

and these were classified into one of seven haplotypes (Table 4.6). Four F2:3 individuals 

homozygous for the low grain Cd concentration molecular variant  (haplotype 2) at 

Xusw53 and Xusw14 expressed high grain Cd concentration like 8982-TL-H, the high 

Cd parent (Table 4.6).  Lines with haplotype 1 expressed high grain Cd, but the low 

molecular variant at Xusw14 (Table 4.6).  Taken together, these data show that Xusw53 

flanks Cdu-B1 distally.   Two F2:3 lines homozygous for the high molecular variant at 

ScOPC20 and Xusw49 expressed grain Cd concentration similar to 8982-TL-L, the low 

Cd parent.  Of all 20 F2:3 individuals screened, only Haplotypes 3-6 expressed low grain 

Cd (Table 4.6). Taken together, Cdu-B1 maps 0.02 cM distal to Xusw49, and 0.12 cM 

proximal to Xusw53 in the 8982-TL population (Fig. 4.11).   
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Table 4.5 Haplotype of 20 recombinant F2 plants from the 8982-TL fine mapping 

population (a = high Cd molecular variant, b = low Cd molecular variant, h = 

heterozygous).  

 

 

 

Observed molecular variant frequencies in both F2 fine populations differed from 

expected frequencies based on Chi squared (χ
2
) tests (Table 4.7), indicating segregation 

distortion was present in both populations.  Expected ratios for co-dominant markers in 

an F2 population would be 1a:2h:1b (where ―a‖ was the high Cd parent molecular 

variant; ―b‖ was the low Cd parent molecular variant) and 3a:1b for dominant markers.  

In the Svevo/Brigade population a greater number of ―b‖ molecular variants (molecular 

variant of the low Cd parent) were observed for all markers screened (Chi squared P 

value <0.0001) (Table 4.7). In contrast, segregation distortion was less pronounced but 

favored the ―a‖ molecular variant (Chi square P value <0.05) in the 8982-TL population 

(Table 4.7).   
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8982-TL-L/H-F2-0874 a a a a a a a a a h

8982-TL-L/H-F2-1421 a a a a a a a a b b

8982-TL-L/H-F2-1153 a a a a a a a a h h

8982-TL-L/H-F2-2306 a a a a a a a a h h

8982-TL-L/H-F2-3006 a a a a a a a a h h

8982-TL-L/H-F2-1451 b b b b b b b b h h

8982-TL-L/H-F2-2332 h b b b b b b b b b

8982-TL-L/H-F2-3365 h b b b b b b b b b

8982-TL-L/H-F2-3397 h b b b b b b b b b

8982-TL-L/H-F2-3860 h b b b b b b b b b

8982-TL-L/H-F2-3823 h h b b b b b b b b

8982-TL-L/H-F2-2124 h h h h h h h h h a

8982-TL-L/H-F2-0565 h h h h h h h h a a

8982-TL-L/H-F2-0774 h h h h h h h h a a

8982-TL-L/H-F2-2063 h h h h h h h h a a

8982-TL-L/H-F2-1912 h h h h h h h h b b

8982-TL-L/H-F2-2619 h h h h h h h h b b

8982-TL-L/H-F2-0633 b h h h h h h h h h

8982-TL-L/H-F2-2394 b h h h h h h h h h

8982-TL-L/H-F2-2466 b h h h h h h h h h

8982-TL-L/H-F2-3975 b h h h h h h h h h

8982-TL-L b b b b b b b b b b

8982-TL-H a a a a a a a a a a
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8982-TL-L/H-F2-1153 a a a a a a a a h h

8982-TL-L/H-F2-2306 a a a a a a a a h h

8982-TL-L/H-F2-3006 a a a a a a a a h h

8982-TL-L/H-F2-1451 b b b b b b b b h h

8982-TL-L/H-F2-2332 h b b b b b b b b b

8982-TL-L/H-F2-3365 h b b b b b b b b b

8982-TL-L/H-F2-3397 h b b b b b b b b b

8982-TL-L/H-F2-3860 h b b b b b b b b b

8982-TL-L/H-F2-3823 h h b b b b b b b b

8982-TL-L/H-F2-2124 h h h h h h h h h a

8982-TL-L/H-F2-0565 h h h h h h h h a a

8982-TL-L/H-F2-0774 h h h h h h h h a a

8982-TL-L/H-F2-2063 h h h h h h h h a a

8982-TL-L/H-F2-1912 h h h h h h h h b b

8982-TL-L/H-F2-2619 h h h h h h h h b b

8982-TL-L/H-F2-0633 b h h h h h h h h h

8982-TL-L/H-F2-2394 b h h h h h h h h h

8982-TL-L/H-F2-2466 b h h h h h h h h h

8982-TL-L/H-F2-3975 b h h h h h h h h h

8982-TL-L b b b b b b b b b b

8982-TL-H a a a a a a a a a a



Table 4.6  Haplotype groupings of homozygous F2:3 lines derived from recombinant F2 lines from the 8982-TL mapping population. 

The mean grain Cd concentration (ng g
-1

), standard error of the means (SEM), and classification of each haplotype into high or low 

grain Cd concentration.  The number of F2:3 lines classified into each haplotype group are presented.  a = high Cd molecular variant, b 

= low Cd molecular variant.  
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8982-TL-L  b b b b b b b b b b b 198 23 Low 
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Table 4.7 Molecular variant frequencies and chi sq (χ
2
) tests for expected segregation 

ratios for two F2 populations.  For each marker ―a‖ represents the molecular variant for 

from the high Cd parent, and ―b‖ represents for the low Cd parent.  Heterozygous F2 

plants were scored as ―h‖.    

  
Svevo x Brigade  

 
8982-TL  

Locus 
Ratio 

Tested
a
 

a h b χ
2
 

χ
2
 P-

value
b
  

    a h b χ
2
 

χ
2
 P-

value
b
 

ScOPC20 3:-:1 259 - 262 175 0.0001 
 

2734 - 830 5.57 0.05 

Xusw49 1:2:1 83 177 261 175.16 0.0001 
 

954 1778 826 9.21 0.01 

Xusw50 1:2:1 83 177 261 175.16 0.0001 
 

954 1777 827 9.07 0.05 

Xusw51 1:2:1 83 177 261 175.16 0.0001 
 

954 1777 827 9.07 0.05 

Xusw52 1:2:1 83 177 261 175.16 0.0001 
 

954 1777 827 9.07 0.05 

Xusw15b 1:2:1 83 177 261 175.16 0.0001 
 

955 1777 827 9.21 0.01 

Xusw17 1:2:1 83 177 261 175.16 0.0001 
 

955 1777 827 9.21 0.01 

Xusw47 1:2:1 83 177 261 175.16 0.0001 
 

955 1780 828 9.06 0.05 

Xusw53 1:2:1 83 177 261 175.16 0.0001 
 

955 1779 829 8.92 0.05 

Xusw14 1:2:1 83 177 261 175.16 0.0001 
 

955 1779 830 8.78 0.05 
 

a
Expected ratios tested were a:h (heterozygous):b.  For ScOPC20, it was not possible to 

identify heterozygotes as this marker is dominant in nature.  Thus the expected ratio is 

a:-:b. 
b
Probability that deviations from expected ratio are due to chance alone.   

 

4.3  Sequencing and Mapping of HMA3 Orthologues in Durum Wheat 

 A recent report has implicated OsHMA3 as a gene that is responsible for limiting 

root to shoot translocation of Cd, and reduced grain Cd concentration in rice grain 

(section 2.3.2). Several primers were designed from the sequence of OsHMA3 to 

amplify the orthologous sequence in durum wheat, and one pair (TtHMA3-B2-F/R) 

produced polymorphic fragments between Kofa and W9262-260D3.   The polymorphic 

fragment mapped to chromosomes 2B and was designated as HMA3-B2 (Fig. 4.12).  

HMA3-B2 was not significantly associated with grain Cd concentration in the W9262-

260D3/Kofa mapping population. 

Given that large HMA-protein families exist in most plants (Baxter et al. 2003), 

the OsHMA3 CDS sequence were used to search against the current 5X shotgun 

sequence assembly of the cultivar ―Chinese Spring‖ using BLASTn. In total 23 contigs 

were identified (e value < e
-5

) and from these, 13 new primers were designed.  Primer 
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amplicons for these were first screened in the LDN5D(5B) disomic substitution line to 

determine if any of the amplicons localized to chromosome 5B. Three amplicons were 

identified on chromosome 5B. (Fig. 4.13).  However, none of these primers produced 

polymorphic fragments between Kofa and W9262-260D3 when assayed using SSCP 

(Fig. 4.13). 

 

Fig. 4.12   Genetic position of HMA3-B2 on a portion of chromosome 2B in the W9262-

260D3/Kofa mapping population.  

 

 

Fig. 4.13  HMA3 primers localized to chromosome 5B in wheat.  For all primers lane 1 

is Kofa, lane 2 is W9262-260D3, and lane 3 is LDN5D(5B).  Arrows indicate those 

amplicons that localize to 5B as they are absent in the substitution line. The additional 

amplicons present in the substitution line not present in Kofa or W9262-260D3 localize 

to chromosome 5D.   

  

  

  

    

TtHMA-454-F2/R2          TtHMA-n454-F2/R2           TtHMA-n454-F3/R3 

HMA3-B2 
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 Given the association of OsHMA3 in rice with variation in grain Cd 

concentration and the physical mapping of an orthologous gene to chromosome 5B of 

wheat, mapping of this gene in durum became a high priority.   To obtain full length 

genomic DNA of HMA3 from durum wheat, a BAC library derived from the cultivar 

Langdon (Cenci et al. 2003) was screened with primers TtHMA-n454-F3/R3.  In total, 

six BACs were identified, five of which were mapped to chromosome 5B by comparing 

single strand conformational polymorphisms between individual BACs and 

LDN5D(5B) and LDN5D(5A) (Fig. 4.14).  A single BAC localized to chromosome 5A 

(Fig. 4.14). One BAC was selected from chromosome 5A (532J14) and one from 5B 

(298B8) for sequencing using a combination of Roche 454 Titanium and Illumina 

platforms.  Hybrid assemblies were generated for both BACs and both were assembled 

in their entirety into single scaffolds.  298B8 and 532J14 assembled into 166,999 bp and 

124,137 bp respectively.  Sequences of these BACs have been submitted to NCBI under 

the accession numbers JX454959 (298B8) and JX454960 (532J14). 

 

  

Fig. 4.14   Localization of HMA3 BACs to chromosome 5A and 5B using SSCP. 
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FGENESH predicted full-length genomic sequences of HMA3 from both 5A and 

5B-derived BACs (Appendix 6), and these were designated as HMA3-A1 and HMA3-B1, 

respectively.  The genomic sequence of HMA3-A1 was 2905 bp in length, coding for six 

predicted exons and was smaller than the 2978 bp sequence of HMA3-B1. The genomic 

sequences were 92% similar, but the Langdon HMA-B1 could be easily differentiated by 

a 17 bp duplication in the first exon (Fig. 4.15a) and a 33 bp insertion/deletion (INDEL) 

in the last predicted exon (Fig. 4.15b).  Predicted HMA3-A1 and HMA3-B1 coding 

sequencing showed 80% and 79% identity respectively with rice OsHMA3 and 85% and 

84% identity with Brachypodium orthologue BdHMA3.  

 

 

Fig. 4.15 HMA3 sequencing a) Nucleotide sequence from the first 70 bp of wheat HMA-

A1 and HMA3-B1 including 17 bp duplication b) nucleotide sequence of 70 bp from 3‘ 

end including 33bp INDEL c) conserved protein domains/motifs identified for HMA3-

B1 from W9262-260D3 and HMA3-A1 from Langdon aligned against amino acid 

sequences (green – heavy metal associated domain; blue – ATPase domain; red – 

hydrolase domain; orange – P-ATPase; black – COF 2).   d) Protein sequence from the 

first 90 amino acids of wheat HMA3-A1 and HMA3-B1 proteins including premature 

stop codon due to 17bp duplication.  e) Protein sequence from the last 28 amino acids of 

wheat HMA3-A1 and HMA3-B1 including 11 amino acid deletion. 

Langdon HMA3-A1 
W9262-260D3 HMA3-B1 

Kofa HMA3-B1 
Langdon HMA3-B1 
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Partial sequence of HMA3-D1, the D genome homoeologue was obtained by 

using BLASTx against the chromosome 5DL survey sequence 

(http://urgi.versailles.inra.fr/Species/Wheat/Sequence-Repository) derived from the 

cultivar Chinese Spring.  Two contigs were identified that, together, represent nearly a 

full-length sequence (Appendix 6).  A small portion of the 3‘ sequence is missing 

(around 38 bp) as well as 224 bp after the 2463 bp.  At the 5‘ end of the sequence, 

HMA3-D1 lacked the 17bp duplication present in HMA3-B1 present in Langdon, similar 

to HMA3-A1.  In contrast, at the 3‘ end of the HMA3-D1 sequence contained the 33 bp 

sequence absent in HMA3-A1, but present in the Langdon sequence of HMA3-B1 (Fig. 

4.15b).    

To identify allelic variation at HMA3-B1, six primer sets were designed from the 

full length Langdon sequence of HMA3-B1 to amplify overlapping, contiguous 

fragments to generate full length genomic sequence from Kofa and W9262-260D3 (Fig. 

4.16).  Alignment of HMA3-B1 sequences revealed that the W9262-260D3 sequence 

was 98% similar to the HMA3-B1 from BAC 298B8 (Appendix 6).  In contrast, the 

sequence from Kofa was identical to the 298B8 sequence, and when compared to 

W9262-260D3, both Kofa and Langdon alleles contained a 17 bp duplication 27 bp 

from the start codon (Fig. 4.15a).  Predicted protein sequence (Appendix 7) from the 

Kofa and Langdon HMA3-B1 sequence revealed the 17 bp duplication results in a 

premature stop codon, and thus a severely truncated, non-functional protein. 

 

 

Fig. 4.16 Primer sets for sequencing HMA3-B1 from Kofa (lane 1) and W9262-260D3 

(lane 2).  Primer sets from left to right HMA3-F1/R1, HMA3-F2/R2, HMA3-F3/R3, 

HMA3-F4/R4, HMA3-F5/R5, and HMA3-F6/R6.  1kb+ ladder to the left of each primer 

sets. 

 

http://urgi.versailles.inra.fr/Species/Wheat/Sequence-Repository
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Predicted protein sequences for HMA3-A1 and HMA3-B1 genes were scanned 

for conserved protein domains and motifs (http://myhits.isb-sib.ch/cgi-bin/motif_scan).  

The Langdon HMA3-A1 and the W9262-260D3 HMA3-B1 predicted proteins 

contained three predicted conserved domains including a heavy metal associated 

domain, an ATPase domain, and a hydrolase domain, and two motifs including a P-

ATPase motif, and COF 2 predicted hydrolase motif (Fig. 4.15c).  No conserved protein 

domains were predicted from the Langdon and Kofa HMA3-B1 sequence as the 

predicted protein sequence contained a premature stop codon (Fig. 4.15d) and therefore 

a severely truncated protein.  The Langdon HMA3-A1 predicted protein did not show 

any conserved domains or motifs in the C terminus, nor did the W9262-260D3 HMA3-

B1 predicted protein.  However, the Langdon HMA3-A1 predicted protein showed an 

eleven amino acid deletion when compared to HMA3-B1 from W9262-260D3 (Fig 

4.15e).   

Multiple HMA genes have been sequenced and characterized from rice, 

Brachypodium, and Arabidopsis.  To determine the similarity between HMA3-A1 and 

HMA3-B1 and other HMA genes, a sequence similarity dendrogram was constructed 

using only CDS (Fig. 4.17).  The HMA genes grouped into six clades (Fig. 4.17; Baxter 

et al. 2003; Williams and Mills 2005) and HMA3-A1 and HMA3-B1 belong to clade 2 

which is characterized by a HMA domain with CCxx motif (in place of the CxxC motif 

which is thought to be involved in metal binding) in the N terminus and multiple CC 

motifs in the C terminus.  

To determine if the 17 bp duplication identified between Kofa and W9262-

260D3 was associated with variation in grain Cd concentration, primers flanking the 17 

bp duplication were designed and evaluated for polymorphism.  The primer HMA3-B1-

F/R amplified the expected 297 bp fragment from Kofa, and a 280 bp fragment was 

amplified from W9262-260D3 (Fig. 4.18).   The fragment was mapped in the W9262-

260D3/Kofa mapping population (Fig. 4.18) and co-segregated with Cdu-B1 (Fig. 4.5; 

Fig. 4.7; Fig. 4.11).  The effect of the W9262-260D3 HMA3-B1 allele was to reduced 

grain Cd by 90 ng g
-1

 in the DH mapping population (Table 4.1).  The primer was also 

tested in the parents of the two fine mapping populations, and Svevo and 8982-TL-H 

(both high Cd accumulators) produced a banding pattern like Kofa, and the two low  
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Fig. 4.17 HMA dendrogram.  Different color lines represent different HMA groups 

(Baxter et al. 2003) (purple = group 1, blue = group 2, green = group 3, aqua = group 4, 

red = group 5, and orange = group6). Arrows indicate putative function of HMA (blue = 

Zn
2+

/Co
2+

/Cd
2+

/Pb
2+

 metal transporters, and red = Cu
+
/Ag

+
 metal transporters). 1000 

replicates used for bootstrapping. 

 

  
 

Fig. 4.18 HMA3-B1 17 bp duplication in parents of populations as well as a portion of 

the W9262-260D3/Kofa DH population. 
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accumulating parents Brigade and 8982-TL produced amplicons identical in size to 

W9262-260D3 (Fig. 4.18).  HMA3-B1-F/R was scored on the recombinant F2:3 families 

(from the two fine mapping populations (Tables 4.5 and 4.7)), and in both cases, co-

segregated with Cdu-B1 (Fig. 4.11).   

HMA3-B1 co-segregated with several genes that were colinear on rice 

chromosome 3 and Brachypodium chromosome 1 (Fig 4.7).  However, no sequences 

similar to HMA3-B1 were identified in these colinear regions. HMA3-B1 was most 

similar to OsHMA3 and BdHMA3, which localize to chromosomes 7 and 1, respectively.  

These results suggest a break in colinearity between wheat-rice-Brachypodium in the 

Cdu-B1 interval.  

 

4.4.  Validation of Molecular Markers Linked to Cdu-B1 in Durum Wheat 

A diverse set of 96 durum wheat cultivars and breeding lines was used to 

determine if the 17 bp duplication identified from sequencing experiments of HMA3-B1 

was associated with variation in grain Cd.  Grain Cd concentration was collected for all 

96 lines over two years.  Averaged over both years, grain Cd concentrations ranged from 

59 ng g
-1

 to 296 ng g
-1

 (Table 4.8).  The majority of cultivars and breeding lines could be 

classified into either high (>136 ng g
-1

) or low (<121 ng g
-1

) grain Cd accumulators.  

The majority of accessions (66.7%) expressed high grain Cd with an average 

concentration of 203 ng g
-1

.  In contrast, the average concentration of low accumulators 

over two years of testing was 85 ng g
-1

. Consistent with previous results (Knox et al. 

2009), Kofa expressed high grain Cd concentration (276 ng g
-1

) and was similar to 

Kronos (296 ng g
-1

) and Westbred 881 (254 ng g
-1

).  Commander (292 ng g
-1

), and AC 

Navigator (Clarke et al. 2001)  (296 ng g
-1

) are derived from Westbred 881 and both 

expressed high grain Cd.   CDC Verona (90 ng g
-1

), Strongfield (88 ng g
-1

) and 

Napoleon (109 ng g
-1

) are low Cd accumulating varieties, and all three expressed grain 

Cd concentrations 167 ng g
-1

 less than Kofa.  Within each of the high and low 

groupings, variation in grain Cd was still evident.  Borli (61 ng g
-1

), Camacho (63 ng g
-

1
), and Buck Topacio (78 ng g

-1
) expressed significantly lower (P<0.05) grain Cd than 

Strongfield and CDC Verona.  Langdon(DIC-6B) (Joppa and Cantrell 1990) (264 ng g
-

1
), which carries the high protein gene Gpc-B1 (Chee et al. 2001) was 



Table 4.8 Haplotyping of Durum cultivars and breeding lines using CAPS markers, ScOPC20 and HMA3-B1 marker. Cd 

concentration in ng g
-1

.  Molecular variant ―a‖ is ―Kofa-like‖ and ―high Cd‖, ―b‖ is ―W9262-260D3-like‖ and ―low Cd, and ―H‖ is 

heterogenous. 
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classified as high grain Cd; higher than its isogenic parent Langdon (159 ng g
-1

).  

Molecular variation at Cdu-B1 was assessed in the 96 cultivars using five DNA markers 

(Table 4.8).  ScOPC20 correctly classified all high accumulating cultivars.  However, 

the cultivars 950329, Demetra, and Marjak all carried the high Cd molecular variant at 

ScOPC20, but all three expressed low grain Cd concentrations (Table 4.8).  Molecular 

variants at Xusw17, Xusw47 and Xusw15b, which co-segregated with Cdu-B1 in both 

fine mapping populations (Fig. 4.11), agreed with the phenotypic classification into high 

and low Cd accumulators (Table 4.8), except for three (four in Xusw15b) lines.  For all 

five markers, Svevo, DT696 and 950329 were classified as heterogeneous (containing 

both high and low molecular variants).  DT696 and 950329 did express higher grain Cd 

concentrations than the average of the low Cd grouping.  Svevo grain Cd concentration 

was 156 ng g
-1

, and was statistically lower than the majority of high accumulators (Table 

4.8).   The 17 bp duplication in the Kofa and Langdon allele of HMA3-B1 was present in 

all high Cd accumulators and was absent in all low lines (except heterogeneous lines) 

(Table 4.8), confirming the association of this duplication with variation in grain Cd 

concentration. 
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5.0 DISCUSSION 

 

5.1 Precise Genetic Localization of Cdu-B1 in Durum Wheat, a Forward Genetic 

Study 

Large genetic variation for grain Cd concentration exists in durum wheat (Table 

4.8) and breeding for low concentration of grain Cd is a target of breeding programs 

globally.  To date, the genetic factor(s) associated with phenotypic variation in grain Cd 

concentration have not been identified in durum wheat.  Gene discovery in wheat is 

slow because of the large genome size, repetitive nature of the genome, and the 

polyploid nature of the wheat genome (Li et al. 2004).  As well, a reference genome 

sequence for wheat is not available as a source to generate polymorphic DNA markers 

that are required for high density and fine mapping experiments.  Currently, an 

international effort to sequence the wheat genome is ongoing 

(http://www.wheatgenome.org), but it is not likely to be available for several years.   

However, several genes have been cloned in wheat using colinearity between wheat, 

rice and Brachypodium to develop DNA markers for the high density and fine mapping 

experiments required for positional cloning (section 2.5).  A similar approach was used 

in this project to develop a high density map of Cdu-B1 in durum wheat.   

A first step in isolating the genetic factor(s) associated with Cdu-B1 was to 

develop a dense genetic map of Cdu-B1.  Cdu-B1 was mapped previously as a 

Mendelian factor to chromosome 5BL near ScOPC20 (Knox et al. 2009). Here, 

ScOPC20 was localized in the CS/CS-DIC 5B population as dense genetic map exists 

for that population (Lu et al. 2006).  Results from this study showed that ScOPC20 

localizes to deletion bin 5BL9 0.76-0.79, suggesting that Cdu-B1 also resides in the 

same bin.  As such, available ESTs previously mapped to this bin were converted to 

ESMs and mapped relative to Cdu-B1 (Appendix 1).  Two ESMs (XBF293297.1 and 

XBF474090.1) were identified to be associated with Cdu-B1 (Fig. 4.5).  Using these 

mapped ESMs, the region of Cdu-B1 was found to be colinear with a 286 Kbp region of 

rice chromosome 3 and a 282 Kbp region of Brachypodium chromosome 1.  However, 

no obvious genes that code for known metal transporters or plant metal chelators were 

identified in either rice or Brachypodium in these regions (Appendix 2).  There were, 
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however, several breaks in microcolinearity observed between rice and Brachypodium.  

Indeed the Xwg644 locus consists of two tandem genes coding for independent half-

sized ABC transporters (Ramakrishna et al. 2002), but only a single copy exists in rice 

and Brachypodium. Also, the ESM marker derived from XBF474090.1 localized to 

chromosome four in Brachypodium.   Eight genes were identified in the Brachypodium 

colinear region not identified in the rice colinear region and conversely 20 rice genes 

were absent in Brachypodium (Fig. 4.7). However, it is not reasonable to expect perfect 

colinearity between wheat, rice, and Brachypodium because multiple breaks in 

microcolinearity due to inversions, deletions, duplications and other rearrangements 

have been reported (Bennetzen 2000; Feuillet and Keller 2002; Li and Gill 2002; 

Sorrells et al. 2003; Francki et al. 2004; Lagudah et al. 2006; Lu and Faris 2006; Valárik 

et al. 2006; Bossolini et al. 2007; Faris et al. 2008).   

Despite the break in colinearity, the rice/Brachypodium colinear region was used 

to develop an additional five STS markers (Xusw15, Xusw49, Xusw50, Xusw51, and 

Xusw52) that were also associated with Cdu-B1. Quantitative trait locus (QTL) analysis 

using the W9262-260D3/Kofa DH population and data collected previously (Knox et al. 

2009) confirmed that these seven markers were strongly associated with grain Cd 

concentration, explaining greater than 80% of the observed phenotypic variation (Table 

4.1).  The additional markers reduced the Cdu-B1 interval to 0.7 cM (Fig. 4.5) and 

represents a significant step towards positional cloning of Cdu-B1 and the development 

of DNA markers to select for reduced grain Cd concentration (section 5.4 below).   

Two fine mapping populations were developed and were used to localize Cdu-

B1 to an interval with a genetic distance of less than 0.29 cM on chromosome 5BL of 

durum wheat (Fig. 4.11). The high density of markers reported here, coupled with the 

reduced genetic distance could allow for positional cloning of Cdu-B1. However, the 

success of positional cloning is not only a function of marker density, but the physical: 

genetic distance ratio, where a small physical distance per cM is desirable to minimize 

the extent of chromosome walking.  Recombination frequency near Tsn1, which maps 

approximately 7 cM proximal to Cdu-B1 (Knox et al. 2009) was initially estimated at 

400 kb/cM (Faris et al. 2000).   Higher resolution mapping in later studies revealed a 

physical to genomic distance closer to 3.18 Mb/cM (Faris et al. 2010). In the 8982-TL 
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population, Cdu-B1 spanned 0.14 cM (Fig. 4.11) and if the Tsn1 locus physical to 

genomic distance is indicative of the physical to genomic distance at Cdu-B1, the 

physical distance between flanking genetic markers would be estimated at approx. 446 

Kb.  The average size of BACs from the Langdon durum wheat library is 130 Kb (Cenci 

et al. 2003), and thus ten BACs would span that physical distance (depending on the 

extent of BAC overlap).   Although the physical to genomic distance at Tsn1 is a 

reasonable estimate for the Cdu-B1 interval (given its proximity to Cdu-B1), 

recombination frequencies are variable throughout the genome and even genetically 

linked loci can have large physical to genetic distance ratios.  Generally, large physical 

to genetic distances are the result of recombination suppression.   This was observed at 

the powdery mildew resistance locus in barley (Mla).  This study showed Mla to repress 

recombination with a physical to genetic distance of 5.6 Mb/cM while just proximal the 

physical to genetic distance ratio was calculated at 140 kb/cM (Wei et al 2002).  

Physical to genetic distance also vary in wheat:  approximately 1.25 Mb/cM for Gpc-B1 

(Distelfeld et al. 2006), 0.33 Mb/cM for the domestication locus (Q) (Faris et al. 2003), 

1.5 Mb/cM for VRN2 (Yan et al. 2004), and around 2.24 Mb/cM for Yr36 (Fu et al. 

2009), with a genome average calculated at 4.4 Mb/cM (Faris and Gill 2002).  

Despite the large number of F2 lines screened in the 8982-TL population, it was 

not possible to identify recombinations between Cdu-B1 and the six co-segregating 

markers.  Perhaps if additional F2 plants were screened, recombinations could have been 

identified that would have allowed more precise localization of Cdu-B1.  Larger 

populations allow for greater sampling of recombination and are required to precisely 

map DNA markers particularly for those that are very closely linked.  Radiation 

mapping has also been used in mapping studies and is of particular interest, as it does 

not rely on recombination.  Using this approach in wheat, Kalavacharla et al. (2006) 

estimated resolution at about 199 kb/break. 

The population size used in this study is larger than most that have been used in 

fine mapping studies of wheat.  For fine mapping of Gpc-B1 a total of 935 gametes were 

used (Distelfeld et al. 2006), 2719 F2 plants were used to fine map Tsn1 (Lu and Faris 

2006) and 3095 F2 plants VRN1 (Yan et al. 2003).  The lack of recombination between 

markers could indicate that the markers are physically very close on chromosome 5BL 
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or alternatively, supports that recombination around the Cdu-B1 locus is suppressed.  

Recombination suppression is common near centromeres where DNA is tightly packed 

into heterochromatic chromatin, which restricts chismata formation and chromatid 

crossovers (Fan et al. 2011).  However, Cdu-B1 is distal from the centromere, thus it is 

not likely that centromere related suppression is acting in the populations used here.  

Structural rearrangements along the chromosome could also cause recombination 

suppression such as an inversion or an alien introgression, as observed in Neu et al. 

(2002).  An introgression would reduce homologous chromosome pairing during 

meiosis, which would restrict chismata formation and crossing over.  Several 

introgressions have been identified in the wheat genome and have been a useful strategy 

to transfer disease resistance from wild relatives to cultivated wheat.  For example, 

resistance to the stem rust race TTKS (Ug99; Niu et al. 2011) and multiple effective leaf 

and stripe rust resistance genes Yr17, Lr37, and Sr38 (Seah et al. 2001) in wheat are 

derived from alien introgressions.  Perhaps Cdu-B1 also resides on an introgressed 

segment into 5BL. However, this is less likely because nearly all markers developed at 

Cdu-B1 co-segregated in a co-dominant fashion (Fig. 4.4).  Generally, markers derived 

from introgressed segments lack an alternate allele, and thus segregate in a dominant 

fashion.  For example, DNA markers associated with VPM (Yr17, Lr37, and Sr38) are 

dominant markers (Helguera et al. 2003).    

Both fine mapping populations revealed segregation distortion around the Cdu-

B1 locus, which could support reduced recombination within the Cdu-B1 region. In the 

8982-TL population, F1 plants were screened for heterozygosity; therefore, segregation 

distortion was not the result of heterogeneous parents or a selfed female plant (i.e., 

homozygous, F1 plants). However, during the development of the Svevo/Brigade 

population, the F1s were not tested for heterozygosity, and during the population screen, 

it was noted that Svevo occasionally scored as having the Brigade molecular variant. 

Thus for this population, it cannot be ruled out that the segregation distortion observed 

was the result of heterogeneity within the variety Svevo.   Interestingly, segregation 

distortion occurred in the favor of the male parental molecular variant in both 

populations (Table 4.7).  Segregation distortion on wheat chromosome 5B has been 

observed in previous studies (Faris and Friesen 2009; Kumar et al. 2007; Faris et al. 
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1998).  Faris and Friesen (2009) observed segregation distortion to be caused by the 

preferential transmission of male gametes (Faris and Friesen 2009).   Kumar et al. 

(2007) observed three segregation distortion regions (SDR) on chromosome 5B in 

wheat, two regions that showed preferential transmission of male gametes on 5BL 

(SRD1 and SRD3) while the third showed a fertilization preference for male gametes on 

5BS (SRD2).  SRD1 has been mapped to a large portion of 5BL spanning three deletion 

bins including 5BL9 0.76-0.79 (Kumar et al. 2007) where Cdu-B1 is located.  Kumar et 

al. (2007) also found evidence of suppressed recombination at SRD2.   

 

5.2 Localization of Other Genes Influencing Expression of Grain Cadmium 

Concentration in Wheat 

 In a previous study, only a single QTL on 5BL was associated with phenotypic 

variation in grain Cd concentration (Knox et al. 2009). In that study, transgressive 

segregation for grain Cd concentration was observed, suggesting that additional minor 

genes influence grain Cd concentration, supporting an earlier hypothesis that other 

minor genes influence grain Cd concentration in durum wheat (Clarke et al. 1997b). 

With the improved genetic map of 5BL reported in this thesis, a second QTL designated 

as QCdu.usw-B2 was identified at the marker XCbf32 (Fig 4.5). Relative to Cdu-B1, the 

effect of QCdu.usw-B2 was small, but DH lines carrying the W9262-260D3 molecular 

variant at XCbf32 consistently expressed lower Cd content than lines carrying the Kofa 

molecular variant (Table 4.1). The primers for XCbf32 are known to amplify a portion 

of CbfIIId-12 (EU194246; Campoli et al. 2009), a gene coding for a C-repeat binding 

factor (Cbf) (Campoli et al. 2009). The Cbfs are known transcription factors involved in 

activation of abiotic stress responsive genes in plants and have been associated with 

enhanced tolerance to cold (Knox et al. 2008; Campoli et al. 2009) and drought 

responses (Haake et al. 2002). In rye, Cbf expression patterns are dependent on the 

allelic state at Vrn1 (Campoli et al. 2009) and this has also been shown in wheat 

(Badawi et al. 2007), and barley (Stockinger et al. 2007). Recently, RT-PCR analysis of 

several Cbf genes revealed transient expression induced by copper stress in hexaploid 

wheat, suggesting that Cbfs may enhance copper tolerance in wheat (Szira et al. 2008). 

It is possible that the Cbf genes have a pleiotropic effect on Cd concentration, possibly 
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by regulating transpiration rates. Higher transpiration rates have been associated with 

elevated concentrations of several metals and ions in plants, likely the result of 

increased movement to sink tissue. Indeed, overexpression of an Arabidopsis Cbf gene 

has been shown to improve water use efficiency and reduce transpiration in rice (Karaba 

et al. 2007). As well, higher expression of Cbfs has been associated with reduced 

transpiration in wheat. Alternatively, it cannot be ruled out that linked genes near 

XCbf32 are influencing grain Cd concentrations. 

ScOPC20 was mapped in the CS/CS-DIC 5B population, but in a previous study 

(Wiebe et al. 2010), no variation in grain Cd concentration and shoot-to-root 

partitioning was detected between the parents of this mapping population, and both 

parents were classified as low Cd accumulators.  Thus it was not possible to localize 

Cdu-B1 in this population.  The lack of phenotypic segregation between the parents 

could suggest one of at least two possibilities.  First, a genetic recombination between 

ScOPC20 and Cdu-B1 may have occurred, such that Cdu-B1 itself is not segregating in 

this population or secondly, additional genes in the D genome lower grain Cd regardless 

of the allelic state at Cdu-B1. The co-segregating markers associated with Cdu-B1 in the 

W9262-260D3/Kofa and two fine mapping populations were assessed for polymorphism 

in the CS/CS-DIC 5B population, and both CS and CS-DIC-5B showed molecular 

variants identical to Kofa, a high Cd accumulator.  These data would suggest that both 

CS and CS-DIC 5B should express a high Cd phenotype. It is thus more probable that 

additional genes, perhaps from the hexaploid wheat D genome, maybe compensating for 

Cdu-B1 in this population.  This is not an unreasonable hypothesis, as most genes 

contain orthologous copies that are present on each of the homeologous chromosomes 

of wheat (Mochida et al. 2003).  To test this hypothesis, we evaluated Cd in Langdon, a 

high Cd accumulator.  Substitution of Langdon chromosome 5B with chromosome 5D 

of CS resulted in >50% reduction on Cd concentration (Fig. 4.3).  It could be possible 

that the loss of chromosome 5B (and thus Cdu-B1) resulted in the low Cd phenotype.  

However, substitution of chromosome 5A with CS 5D produced a similar effect as grain 

Cd concentrations were also reduced by >50% relative to Langdon (Fig. 4.3).  Since the 

Langdon Cdu-B1 allele is still present in this latter substitution line (as the Langdon 5B 

chromosome is still present), it is clear that chromosome 5D also contains gene(s) that 
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can compensate for the high Cd allele at Cdu-B1 in this population.  This may explain in 

part why hexaploid wheat cultivars show little variation in grain Cd concentration and 

are considered to be low in grain Cd concentration compared to durum wheat (Zook et 

al. 1970).   

 

5.3  Reverse Genetic Studies  

5.3.1.  Phytochelatin Synthase and ABC Transporters 

A hypothesis of this thesis was that low Cd is the result of a functional 

transporter or chelator that transports, or aids in the transport of, Cd to root organelles, 

thus preventing subsequent translocation to shoots for remobilization to the grain 

(section 2.3.2, Fig. 2.2). Sequestration of Cd into chemical complexes or physical 

compartments, such as the vacuole, could occur in root tissues thereby reducing its 

availability for loading into xylem and phloem. Recent studies have shown the potential 

of several ABC transporters to sequester Cd in plants by transporting Cd conjugates 

(glutathione or phytochelatin) into the vacuole (Song et al. 2003; Klein et al. 2006; 

Wojas et al. 2009). Many higher plants synthesize PCs in response to Cd treatment and 

bind Cd to form Cd–PC complexes which can be transported across the tonoplast (Salt 

and Rauser 1995) into the vacuole for sequestration (Vogeli-Lange and Wagner 1990).  

Therefore, it is possible that transport of Cd–PC complexes via one (or more) ABC 

transporters into the vacuole of root cells might limit Cd translocation to the shoot for 

subsequent remobilization to the grain (Stolt et al. 2003). In this study, it was 

hypothesized that Xwg644 (a known ABC transporter) and/or PCS2 would be associated 

with Cdu-B1, as these genes both map to a similar region of chromosome 5AL (Yan et 

al. 2003). Although logical candidates, both genes were ruled out because they mapped 

distal to the QCdu.spa-B1 QTL and neither was associated with Cdu-B1 (Fig. 4.5).  

Also, NIL parents for the fine mapping population 8982-TL were segregating for Cdu-

B1 markers but fixed for Vrn-B1 markers including PCS2 and Xwg644 (Appendix 5).  

This supports the work of Hart et al. (2006) who reported that PC synthesis was not a 

limiting factor in the differential storage of Cd in roots of high and low Cd accumulating 

NILs. However, the possibility that other ABC-like transporter or metal chelator genes 
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exist in the Cdu-B1 region cannot be ruled out as large ABC transporter families exist in 

most plants.   

 

5.3.2  Association of HMA3-B1 with Cdu-B1 in durum wheat  

5.3.2.1  Genetic Mapping of OsHMA3 orthologues in durum wheat 

 A major QTL associated with grain and shoot Cd concentration on rice 

chromosome 7 has been identified (Tezuka et al. 2009; Ueno et al. 2009) and much like 

Cdu-B1, explained a large proportion of the phenotypic variation and low Cd 

concentration was a dominant trait. In this region of chromosome 7, several putative 

metal transporter-encoding genes, including OsZIP8, cadmium/zinc transporting 

ATPase (OsHMA3) and OsNramp1 exist.  Recently, Takahashi et al. (2009) reported 

that OsNramp1 had the capacity to transport both Cd and Fe (iron).  Some ZIP proteins 

have been implicated in heavy-metal uptake in rice (Ishimaru et al. 2005) and an 

Arabidopsis homologue of OsHMA3 has been shown to transport Cd from the cytosol to 

vacuoles (Morel et al. 2009).  More recently OsHMA3, was identified as the gene 

limiting Cd accumulation in rice grain (Ueno et al. 2010) and in its functional state, was 

responsible for sequestration of Cd to roots and thus, low Cd phenotype (section 2.3.2, 

Fig. 2.2).    The low Cd phenotype is dominant (Clarke et al. 1997b), and thus the 

presence of a functional transporter or chelator that sequesters Cd in roots would result 

in a low Cd phenotype.  Therefore, a similar mechanism may be operating in durum 

wheat as is in rice.   

 Primers designed from OsHMA3 of rice mapped to chromosome 2B in the 

W9262-260D3/Kofa population (Fig. 4.12) and were not associated with phenotypic 

variation for grain Cd concentration.  Wheat chromosome 2B shows colinearity to 

chromosome 7 in rice (La Rota and Sorrells 2004) where OsHMA3 has been localized.  

However, design of additional primers based on the current Chinese Spring 5X sequence 

was an effective strategy to design several additional primers, which allowed mapping 

of HMA3-B1 to the Cdu-B1 interval in durum wheat.  These results may indicate 

duplication of the gene on chromosome 2B and movement of one duplicated copy to 

chromosome 5B during the evolution of durum wheat as a homolog is still evident in the 

donor site (chromosome 2B) (Wicker et al. 2010), which is colinear to rice chromosome 
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7 (section 2.6, Fig. 2.7) where OsHMA3 is located.  Sequencing of the HMA-B2 from 

chromosome 2B would determine whether HMA-B2 is in fact orthologous to OsHMA3.  

Little work to date has been done on identifying and characterizing HMA genes and 

proteins in wheat. Seven, nine, and eight HMA genes have been identified in 

Brachypodium, rice, and Arabidopsis, respectively.  Due to durum wheat containing two 

genomes there is also the potential for 16 to 18 P1B-ATPases assuming that each genome 

would contain at least one of the P1B-ATPases found in rice and Brachypodium.   

Mapping of HMA3-B1, the durum wheat orthologue of OsHMA3, revealed 

complete linkage with Cdu-B1 in all mapping populations reported here as well as the 

96 genetically diverse durum cultivars and breeding lines. Sequence analysis of HMA3-

B1 revealed high grain Cd lines (Langdon and Kofa) to have a 17 bp duplication 

resulting in a premature stop codon and a non-functioning HMA-B1 protein (Fig.4.15a; 

d). Marker analysis also revealed all high Cd lines in the genetically diverse durum 

breeding lines and cultivars are carrying this 17 bp duplication.  The effect of the 

W9262-260D3 allele at HMA3-B1 was to reduce grain Cd by >50% in the W9262-

260D3/Kofa mapping population and the two fine mapping populations.  OsHMA3 is a 

P1B-ATPase (Ueno et al 2010), which is an ancient family of P-ATPases which 

physiologically are involved in maintaining homeostasis and transporting transition 

metals across membranes against their electrochemical gradient (Williams and Mills 

2005).  A functioning OsHMA3 gene confers low Cd accumulation in rice and much like 

HMA3-B1, accounts for >70% of phenotypic variation (Ueno et al. 2010).  This is 

similar to the Cdu-B1 locus in durum wheat, indicating that the same mechanism may be 

functioning in durum wheat.  

 

5.3.2.2  Comparative analysis of HMA3 in durum wheat 

The duplication in the non-functional allele is likely the result of either an 

unequal crossover during meiosis or DNA slippage during DNA replication.  Both of 

these processes have resulted in duplications and novel allelic variation in the high 

molecular weight glutenins (Liu et al. 2007) and disease resistant gene analogues (Luo 

et al. 2011). This would imply that the low Cd allele at HMA3-B1 is the wild type allele 

and the functional allele of HMA3-B1 would be expected to result in grain Cd 
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concentration segregating in a dominant fashion, which is the case in durum wheat 

(Clarke et al. 1997b). 

Because durum wheat is a tetraploid, a functional allele coded by the A genome 

homeologous copy could function to sequester Cd in root vacuole cells, and thus confer 

a low Cd phenotype.   Analysis of HMA3-A1 sequence from the high accumulating 

cultivar Langdon revealed a 33 bp deletion in exon 6 when compared to the putative 

functional allele HMA3-B1 derived from W9262-260D3.  The resulting deletion would 

translate into a deletion of 11 amino acids from the C terminus. (Fig. 4.15e).  These 11 

amino acids were not associated with any functional protein domains, so it is not clear if 

this deletion would impact on Cd transport or impact on protein folding and or 

integration into the vacuole membrane.   Indeed most HMA proteins have eight 

transmembrane domains (Williams and Mills 2005) with the C and N terminus in the 

cytosol of the cell which are thought to be involved in metal binding (Williams and 

Mills 2005) therefore changes to the C and N terminus may influencing binding and 

therefore transportation of metals.  Based on these data, it does appear the HMA3-A1 

allele from Langdon is also non-functional, and would thus not confer the low Cd 

phenotype, even in the presence of a non-functional HMA3-B1 allele. Further functional 

studies would be required to determine if this is a reasonable hypothesis.  In addition, 

sequence analysis of HMA3-A1 in diverse genetic backgrounds (such as the 96 cultivars 

and breeding lines used in this thesis to test for association of HMA3-B1 (section 4.4)) 

may reveal allelic variation in HMA3-A1 that could be used to test for association with 

further reduced grain Cd concentration.  Indeed several durum wheat cultivars (9661-

AF1D, Borli, and Flavio) studied here expressed grain Cd concentrations >25 ng g-1 

less than Strongfield and CDC Verona (Table 4.8), both of which express low grain Cd 

concentration and carry a putative functional allele at HMA3-B1. 

 To determine the relationship of HMA3-A1 and HMA3-B1 to other related HMA 

genes from other plant species, a dendrogram of these sequences was generated (Fig 

4.17).  Durum wheat HMA3 sequences show more similarity to Brachypodium than rice, 

which was also expected due to the close relation of Durum wheat to Brachypodium 

than rice (section 2.6, Fig. 2.6). The dendrogram of HMA CDS shows similar results to 

Baxter et al. (2003) except HMA CDS identified from Brachypodium were included 
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(Fig. 4.17).  HMA proteins were classified into two groups based on the substrate they 

were predicted to transport, either Cu
+
/Ag

+
 or Zn

2+
/Co

2+
/Cd

2+
/Pb

2+
.  OsHMA3 and 

BdHMA3 show the closest sequence similarities to HMA3-A1 and HMA3-B1 and were 

classified as Zn
2+

/Co
2+

/Cd
2+

/Pb
2+ 

transporters.  According to Baxter et al. (2003), at least 

two other HMA sequences in rice (OsHMA2 and OsHMA1) have conserved domains, 

which suggest that they could transport Zn
2+

/Co
2+

/Cd
2+

/Pb
2+

 but neither of these have 

been associated with phenotypic variation in grain Cd concentration in rice.  Potential 

reasons for this could be a cellular location of the translated protein other than the 

tonoplast, a non-Cd substrate specificity, the translated proteins are nonfunctional, or the 

populations used for mapping were not segregating for these genes.  For example, 

diversity of cellular location is identified in the four HMA Arabidopsis proteins that are 

identified to transport Zn
2+

/Co
2+

/Cd
2+

/Pb
2+

 with evidence to support cellular locations of 

the tonoplast, the plasma membrane and the cholorplastic envelope (Williams and Mills 

2005).  

Substitution of chromosome 5D from Chinese Spring for chromosome 5A and 

5B in the cultivar Langdon resulted in a >50% reduction in grain Cd concentration (Fig 

4.3).  This could suggest that a homoeologous copy of HMA3-B1 (designated here as 

HMA3-D1) exists and codes for a functional transporter that could compensate for the 

non-functional HMA3-B1 allele present in Langdon.  This is a reasonable hypothesis 

given that several genes in wheat contain orthologous copies on each of the 

homoeologous chromosomes. Partial genomic sequence of HMA3-D1 from CS was 

obtained from the long arm of chromosome 5D from the current wheat survey sequence 

(Appendix 6). Although the complete coding sequence was not obtained for HMA3-D1, 

two lines of evidence support that it could code for a functional protein.  First, HMA3-

D1 revealed the absence of the 5‘ duplication, similar to the W9262-260D3 HMA3-B1 

(Fig. 4.15a; b).  In addition, the 3‘ 33 bp deletion noted in the Langdon HMA3-A1 

sequence was absent in the CS sequence (Similar to HMA3-B1 from W9262-260D3).   

Taken together, the major sequence difference between the functioning transporters 

HMA3-B1/HMA3-D1 and HMA3-A1 is the presence of a 33 bp deletion in HMA3-A1.  

This could support that HMA3-A1 does not function to transport Cd to the vacuoles in 
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roots due to the 33 bp deletion at the 3‘ end of that sequence, but more work is required 

to clarify if this is the case. 

 

5.4 Marker Validation and Breeding for Low Grain Cd Concentration 

Breeding is the most reliable approach to reduce grain Cd concentrations in 

durum wheat.  The SCAR marker ScOPC20 has been successfully utilized in MAS 

programs to develop durum wheat cultivars with reduced grain Cd concentration (Clarke 

et al. 2006; Pozniak et al. 2009; Grant et al. 2008).  However, this marker is a dominant 

marker that is linked in repulsion to the low Cd phenotype.  The three CAPS markers 

associated with Cdu-B1 reported here were all validated in a large global collection of 

cultivars and breeding lines as well as the candidate gene HMA3-B1.  In the validation 

population HMA3-B1, Xusw47, Xusw17 and Xusw15b were accurate in correctly 

classifying lines into high and low grain Cd concentration with the exception of 

heterogeneous lines.  In comparison to ScOPC20 which misclassified three low Cd lines 

as high as well as classifying three lines as heterogeneous.  This suggests that these 

markers (HMA3-B1, Xusw47, Xusw17 and Xusw15b) would have broad application in a 

range of germplasm and breeding programs globally.  In addition, the co-dominant 

nature of these markers allows for identification of heterozygous individuals, which will 

be useful for backcrossing the low Cd allele into otherwise agronomically acceptable 

cultivars.  Given the large proportion of durum wheat cultivars evaluated in this study 

that are high in grain Cd, utilization of these marker to improve grain Cd levels should 

be a priority.  Given that HMA3-B1 is a candidate gene responsible for phenotypic 

differences in grain Cd concentration in durum wheat, the marker developed for this 

locus should be preferred by durum wheat breeders because if it is the gene, no 

recombination is possible and therefore no error. 

In this study, five accessions in the validation population were heterogeneous at 

at least one marker linked to Cdu-B1 (Table 4.8).  The effect of heterogeneity on grain 

Cd would be a function of the relative proportions of the high and low alleles present in 

the variety. Of the lines classified as high accumulators, Svevo (159 ng g
-1

) was 

heterogeneous at all markers and had 44 ng g
-1 

less Cd than the average of the high 

accumulators (203 ng g
-1

), but still significantly more (73 ng g
-1

) than the average low 
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accumulating varieties (85 ng g
-1

).  Given that the low phenotype is dominant, it is likely 

that Svevo carries a higher frequency of the high accumulating allele.  Breeding lines 

DT696 (121 ng g
-1

) and 950329 (120 ng g
-1

) are classified as low grain Cd concentration 

and are heterogeneous at all or nearly all markers linked to Cdu-B1.  In these two 

breeding lines the high allele may be at a higher frequency than the grain Cd 

concentration indicates due to the dominant nature of the low accumulating allele 

masking the effect of the high allele.  These breeding lines were scored as low 

accumulators but were some of the highest scoring low Cd concentration lines; this may 

be due to their heterogeneous nature.  High grain Cd concentration cultivar Avonlea 

(214 ng g
-1

) carries one heterogeneous marker (ScOPC20) but seems to have no effect 

on the grain Cd concentration classification.  While low grain Cd concentration cultivar 

Marjak (82 ng g
-1

) also carries one heterogeneous marker (Xusw15b) it also seems to 

have no effect of grain Cd concentration classification. 

Interestingly, less than half the Canadian (11 of 25) and Spanish (4 of 9) 

breeding lines and cultivars phenotyped are classified as high grain Cd concentration 

while around three quarters of the Italian (12 of 17) and Australian (7 of 9) breeding 

lines and cultivar tested were classified as high (Fig. 4.8).  All the lines tested from the 

United States (12) were classified as high grain Cd concentration (Fig. 4.8).  However, 

these results could be due to sampling error or the result of breeding activity and may 

not be a true representation of the genetic diversity of these agroecological regions.  To 

accurately depict the variation from these regions more research is necessary. 

 The Gpc-B1 gene derived from T. dicoccoides is a NAC transcription factor 

(NAM-B1)
 
that is known to increase grain protein concentration, by increased nutrient 

remobilization to the grain from the leaves and accelerated senescence, with little effect 

on grain yield (Uauy et al. 2006).  In addition, recombinant substitution lines carrying 

the T. dicoccoides Gpc-B1 allele accumulate more zinc, iron, and manganese (Distelfeld 

et al. 2006).  The chromosome substitution line LDN(DIC-6B) carries Gpc-B1, and in 

this study, expressed 66% more grain Cd than its isogenic parent Langdon (Table 4.8) 

and supports the hypothesis Gpc-B1 is involved in more efficient remobilization of 

metals,  from leaves to the grains (Distelfeld et al. 2006).  However, it cannot be ruled 

out that gene(s) other than Gpc-B1 are involved, as LDN(DIC-6B) carries a complete T. 
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dicoccoides 5B chromosome substitution.  However, if Gpc-B1 does elevate grain Cd, 

even in lines carrying Cdu-B1, this would limit its use in durum wheat breeding 

programs targeting reduced grain Cd concentrations.  Evaluating Gpc-B1 in near 

isogenic lines with and without Cdu-B1 will be required to resolve this hypothesis.  

Fortunately Cdu-B1 has no pleiotropic effects on zinc, iron, or manganese 

concentrations in durum wheat (Clarke et al. 2002). 

  In this study, Cdu-B1 was tightly linked to the Vrn-B1 locus (markers CSFs-1, 

Xwg644, PCS2, PHY-C; Fig. 4.5), which controls vernalization response in wheat 

(Iwaki et al. 2002). A recent study in hexaploid wheat by Ferenc Bálint et al. (2009) also 

reported a QTL for copper tolerance that was associated with vrn-A1 on 5AL. However, 

the reported map was not well saturated, so it is was difficult to ascertain if vrn-A1 per 

se was associated or if linked genes were responsible for the observed variation in 

copper tolerance. The Cdu-B1/Vrn-B1 linkage could have implications for breeding low 

Cd durum wheat cultivars, because the presence of vernalization genes in spring wheat 

lines can influence flowering time, and thus yield (Iqbal et al. 2007). The parents of the 

mapping population used here have not been assayed for vernalization requirement, but 

the markers reported here for Cdu-B1 could be used effectively to break any undesirable 

relationships between the low Cd phenotype and any vernalization response associated 

with Vrn-B1. 

Hexaploid wheat lines and cultivars are known for having low grain Cd 

accumulation with little variation of grain Cd concentrations.  Studying the effects of the 

5D chromosome substituted into the Langdon background for either 5A or 5B 

chromosome shows a significant decrease in grain Cd (Fig. 4.3).  Only when the 5D 

chromosome was present grain Cd concentration was low.  Therefore in Langdon it is 

possible that neither HMA3-A1 nor HMA3-B1 proteins are functioning to sequester Cd 

to the vacuole in root cells.  If HMA3-A1 codes for a non-functional P1B-ATPAse it may 

be of interest to breeders to identify lines containing an allele of HMA3-A1 that codes 

for a functional protein.  This allele could then be combined with the functional allele of 

HMA3-B1 already present in several Canadian durum wheat cultivars to further reduce 

grain Cd in durum wheat.  This should be a high priority for breeders as CODEX is 

proposing to lower the limits of grain Cd in cereal grain products (section 2.2). 
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6.0 CONCLUSIONS 

 

6.1 General Conclusions 

The main objective of this project was to utilize forward (fine mapping) and 

reverse (candidate gene) genetic approaches to better understand the molecular basis of 

Cd accumulation in durum wheat grain.  For the reverse genetic studies, it was 

hypothesized that one of three gene families would be associated with Cdu-B1 that 

could function by restricting Cd to the roots of low Cd lines of durum wheat; a) a gene 

coding for a heavy metal associated (HMA) transporter, b) an ATP-binding cassette 

(ABC)-like transporter or c) a phytochelatin synthetase (PCS), as these have been 

associated with Cd uptake and sequestration in other plants. For the forward genetics 

approach, colinearity was established with rice and Brachypodium to identify putative 

genes that maybe associated with variation in grain Cd concentration in durum. The last 

objective was to develop and validate breeder friendly markers that could be used 

globally in durum wheat breeding programs targeting the low grain Cd phenotype.   

 

From the work reported here, the following major conclusions were made: 

 

1) In durum wheat, the Cdu-B1 locus on chromosome 5B was fine mapped to a 

genetic interval of 0.14 cM.  Fine mapping reduced the genetic interval of Cdu-

B1 from 0.7 cM to 0.14 cM using 3558 F2 individuals.  Seven markers that co-

segregate with Cdu-B1 were identified.   

 

2) The Cdu-B1 locus in durum wheat is colinear with a 286 Kbp region in rice and 

a 282 Kbp region identified in Brachypodium.  No obvious genes associated with 

Cd uptake, sequestration, or translocation were identified in these colinear 

regions that could be the target of study in durum wheat 

 

3) PCS2 and Xwg644 genes were hypothesized to be associated with Cdu-B1 as 

both have been mapped previously to the general vicinity of Cdu-B1, and both 

have been associated with Cd assimilation in other plant species.  However, 
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these two genes could be ruled out as candidates as both genes map distal to 

Cdu-B1 in the W9262-260D3/Kofa population and neither gene was segregating 

in the two near isogenic lines used to develop the 8982-TL population. 

 

4) In rice, OsHMA3 gene has been shown to restrict Cd to the root vacuoles and 

thus limits translocation of Cd to above ground tissues for subsequent 

translocation to the rice grain.  The orthologous gene, HMA3-B1 was 

characterized from durum wheat and current evidence suggests it is a strong 

candidate gene for Cdu-B1.  Several lines of evidence to support this are: 

- HMA3-B1 co-segregated with Cdu-B1 in all durum wheat populations 

studied in this thesis, and was able to discretely classify a set of 96 genetically 

diverse cultivars and breeding lines into high and low Cd accumulators.   

- Sequencing revealed high grain Cd lines possess a 17 bp duplication that 

results in a premature stop codon and a severely truncated protein; 

- A non-functional Cd transporter in high accumulating Cd lines and a 

functional Cd transporter in low grain Cd lines fits the model proposed in rice by 

Myiadate et al. (2011) where a functional transporter would sequester Cd to the 

vacuole in roots and therefore would not be available for transport to the shoots 

and grain. 

5) Grain Cd analysis of Langdon disomic lines revealed that the substitution of the 

hexaploid wheat 5D chromosome into the high grain Cd line, Langdon, for either 

chromosome 5A or 5B results in a low grain Cd phenotype 

 

6) Analysis of HMA3-A1 from chromosome 5AL revealed a 33 bp deletion which 

could result in a non-functional protein.  However, detailed functional analysis 

was not conducted to determine if this hypothesis is correct.   

 

7) Several DNA markers were developed to assist breeding of low grain Cd 

concentration in durum wheat.   In total, seven markers that co-segregated with 

Cdu-B1 were identified.   Four of these (including HMA3-B1) were converted to 

high throughput co-dominant markers for use in breeding programs.  Selection 
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using HMA3-B1 is recommended, because if this is the gene that regulates Cd 

concentration in durum wheat grain, the DNA marker would be considered a 

―perfect‖ marker. 

 

6.2  Future Work 

 To complete the forward genetics approach, a positional cloning strategy 

(section 2.5) could be pursued.  This would require chromosome walking across the 

Cdu-B1 region, BAC sequencing, and sequence assembly and annotation. However, 

because a strong candidate gene (HMA3-B1) has been identified through the reverse 

genetic studies, positional cloning would be less of a priority in favour of functional 

analysis of HMA3-B1 protein in durum wheat. 

For functional analysis of HMA3-B1, several strategies could be pursued.   These 

could include a combination of Target Induced Local Lesion in Genomes (TILLING) 

studies, transgenic experiments, expression studies, and yeast complementary studies.  

TILLING studies would include generation of a TILLING population using one of 

several chemical mutagens (Pozniak and Hucl 2004) and screening for mutations within 

HMA3-B1 that would result in a non-functional protein.  Choosing an appropriate parent 

to generate the TILLING population is critical, and in this case, would require TILLING 

in a durum wheat cultivar that expresses low grain Cd (and thus a hypothesized, 

functional Cd transporter).  Knock-out mutations in a low grain Cd cultivar should 

confer high grain Cd concentration if HMA3-B1 is indeed the casual gene.  However, 

TILLING can be complicated in a polyploid genome due to homoeologous copies of 

genes, but as seen in this project, Langdon disomic substitution lines are effective in 

assigning gene amplicons to the individual wheat chromosomes.  Another limitation of 

TILLING is a large population is necessary for screening for mutations.  However, 

Uauy et al. (2009) has utilized a four-fold pooling strategy in tetraploid and hexaploid 

wheat mutation populations that reduces reactions required for mutation screening. 

Transgenic studies could also be employed.  In this case, transforming a 

functional HMA3-B1 gene (like that from W9262-260D3) into a high grain Cd 

accumulator should confer the low phenotype.  Because the HMA3-B1 protein is 

hypothesized to transport Cd to root cell vacuoles, selection of an appropriate promoter 
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that results in a high level of HMA3-B1 transcript expression in the roots would be 

required.  Several root specific promoters exist for functional studies, and have been 

used effectively for functional studies of genes related to silicon (Montpetit et al. 2012) 

and boron tolerance in wheat (Sutton 2012).   

 Yeast complementation studies could also be used to determine cellular location 

and affinity of the functional HMA3-B1 protein for Cd.  A similar approach was 

described by Miyadate et al. (2011) and Morel et al. (2009) who identified OsHMA3 

and AtHMA3 proteins respectively to be localized to the tonoplast.  In yeast 

complementary studies, HMA3-B1 could be transformed into Cd sensitive yeast to 

determine if the durum functional allele of HMA3-B1 restores Cd tolerance.  A similar 

approach was described by Miydate et al. (2011) and Gravot et al. (2004) who showed 

Cd tolerance restored by OsHMA3 and AtHMA3 proteins respectively.  To fully verify 

the HMA3-B1 gene a combination of all of the above strategies would likely be useful. 

In allopolyploid genomes, orthologous copies are evident on each of the 

homoeologous chromosomes, and may perform a similar function.  HMA3-A1 and 

HMA3-D1 genes have been identified in durum and hexaploid wheat and further work 

would be required to verify their functionality.  HMA3-A1 from this thesis was 

hypothesized not to function due to a 33 bp deletion in the cultivar Langdon.  An allelic 

survey could be performed on the 96 genetically diverse lines and cultivars from this 

thesis to determine if a functional HMA3-A1 allele is present in any lines.  That work 

would then lay the foundation for functional analysis of the A genome copy, and to 

determine if combining functional alleles at both HMA3-A1 and HMA3-B1 further 

reduces grain Cd concentration in durum wheat.    
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.0 Appendices 

 

Appendix 1  ESM, STS, and gene specific markers polymorphic between W9262-

260D3 and Kofa 
 

Marker name Detection  Map   Primer sequenceb   Rice gene 

  methoda      location  (3‘-5‘)            

ESMs 

XBE425993
 c

 SSCP  5A    AAGACATCCTGAACCTGGTGTA  Os03g55070 

   GTCCCAGTCGAACTTGTTCAT 

 

XBE426348
 c

 SSCP  5A    CTATAAGATGAACCGGGGTTTT  Os03g53800

        TACGCTACCTATGAAGTACTTGGAC 

 

XBE604920
 c

 Agarose  5A    TCCCCTACATGCTGCTCTAC  Os03g52860

        CAACATCGACTTCATTATTGGAC 

 

XBF474090.1 SSCP  5B    GAGGCCATGGACCCCAACTTT  Os03g53670 

        GGACAGGAGAACCTGAAGGAT 

 

XBF474090.2
 c

 SSCP  5A    GTAGATTATTGGCAACAAGACAAGT Os03g53670

        GCGTAAGAAATATATCACGCTAGTT 

 

XBF474164.1/.2
 c

 SSCP  5A/5B    AGACTTTCTCGTCCCGATACTT  Os03g53720

        CAACATATGTCTGGCCTACTACTCT 

 

XBG262450
 c

 SSCP  5A    GATAATTTCAGAACAATGCCATTAC Os03g51020

        AAGAGTAGCCAATCTGTAGTTGATG 

 

XBG274700
 c

 SSCP  5A    CAGAAGACAGTGAAGAACCAAAAC Os03g55950

        AACTCTCAAGTCACTCATCTCAATC 

 

XBG313229
 c

 CE  5B    CTTGCTGTCCTCGAGAAGTTT  Os03g58470

         ATAGTATCCCATCAATTGTAAGCTG 

 

XBG607162 SSCP  5B    ATGCATACAAGGACCGCTAC  Os03g63140

        AATCACACCCTTGCGAATAAT 

 

XBF293297.2/.1 SSCP  5A/5B    TGGCCGCGCCCTTCTTCTCCA         Os03g53600 

        TTGTCCTGCGGCTTCACCATC 

 

XBF145263 SSCP  5A    ACGTGGACGACTACTTGGAGT  Os03g53700

        CAGGTCATAAGCTTGGCGTGC 

 

STS markers 

Xusw15  SSCP  5B    ACCAGCAGGACATTGGGAACA  Os03g53590 

        GAACCTTGGACGATTGCTAAC 

 

Xusw49  HRM  5B    CACCGAGCTGTCCTAATGAAG  Os03g53250 

        CTGCAGAAGTACTCTGGATCC 

 

Xusw50  HRM  5B    TTCAGTGATAACTTACACCAG  Os03g53490 

        AGCTTCTTGCGTTCTTCCATC 
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Appendix 1 (con’t). 

 

Marker name Detection  Map   Primer sequenceb   Rice gene 

  methoda      location  (3‘-5‘)            

STS markers (con’t) 

Xusw51  HRM  5B    ATGGTTGGCTGTAGAACAAGG  Os03g53500 

         CTCACGCCGTGAGAACGTTAC  

 

Xusw52  HRM  5B    TTCATTGTCAGATGATTCTGG  Os03g53530 

        CTTCCAGATCTTCACAAGCTT 

 

Xusw53  HRM  5B    GATGAACCGCATATCCTTCCT  Os03g53700 

        CTCATTGTCACAAGCAATCAT 

 

Xusw61  HRM  5A    TGGAGACGGTGGCCGCCGGTG  Os03g53350 

        GGGCATGAACGCCATCACTA 

 

Genes associated with Vrn-B1  

Xwg644  SSCP  5A    GACTTGTTCAGTCATCTCATA  Os03g54790

        GCAGCTTGTGTCTGATGTGAA 

 

Xwg644  SSCP  5B    GCTCTTAAGCAGGCTTTCTGA  Os03g54790

        CTGTAAGGCTGTATAAGATGA 

 

MC  SSCP  5A    AGTCGGTGTTCAAGCAACAGG  Os03g54760

        GCGATCAATCTTCTAACTACC 

 

CSFs  SSCP  5B    TCGGCACCAATGCCGTGGATT  Os03g54770

        AGAACTTAATGGATGTGTCCC 

 

CSFs  SSCP  5A    CCAGTAGCTCATCTCTATGAT  Os03g54770

        ACTCGTAGCTTCTACAGATCC 

 

PCS2  CE  5B    TCAACTACCAGCAGTTCCGAC  Os03g54750

        GTAGGCCTGCCAACAAGAGCA 

 

PHY-C  SSCP  5B    ACTGGAAGCAGGCTATCCTGG  Os03g54084

        AACATAGTCGCCTTGTATCCG 

 

MTK4  SSCP  5A    CGTGGTGGAACAGGACGAGGG         Os03g53880

        CATCATTCCCAGGTAGAACAC 

 

P1B-ATPases gene (HMA) 

HMA3-B2 SSCP  2B    AGTGATGCTTACTGGCGATAG  Os07g12900 

        ACAAGCATGTGCCAACATCAG 

 

HMA3-B1 CE  5B    TTCTTGCTGTTCATCCGCCTG  Os07g12900 

        AATACGGGACTGCGAGACGGC 

 

 
a
SSCP=single strand conformational polymorphism gel electrophoresis; CE=capillary 

electrophoresis; HRM=high resolution melt 
b
M13 (CACGACGTTGTAAAACGAC) tag attached to 5' end of forward primer (listed 

first for each primer pair). 
c
 – at least one of markers primers was designed by Dr. Justin Faris



Appendix 2 Gene products in colinear region of Cdu1 on rice chromosome 3 and Brachypodium chromosome 1. 

 
gene name gene product name gene name gene product name 

 
BF293297 HTH DNA-binding protein, putative, expressed  Os03g53430 retrotransposon protein, putative, unclassified  

BF474090 YT521-B-like family domain containing protein, expressed Os03g53440 hypothetical protein  

BF474164 SRPK4, putative, expressed Os03g53450 hypothetical protein  

BF483771 
bifunctional 3-phosphoadenosine 5-phosphosulfate synthetase, 
putative, expressed 

Os03g53470 hypothetical protein  

BG608197 OsCML4 - Calmodulin-related calcium sensor protein, expressed Os03g53480 hypothetical protein  

Bradi1g08860.1 
Core histone H2A/H2B/H3/H4 domain containing protein, putative, 
expressed 

Os03g53490 PPR repeat containing protein, expressed  

Bradi1g08940.1 tetratricopeptide repeat domain containing protein, expressed Os03g53500 helicase conserved C-terminal domain containing protein, expressed  

Bradi1g08950.1 ubiquitin carboxyl-terminal hydrolase, family 1, putative Os03g53510 WD domain, G-beta repeat domain containing protein, expressed  

Bradi1g08960.1 acanthoscurrin-1 precursor, putative, expressed Os03g53520 expressed protein 

Bradi1g08970.1 conserved hypothetical protein Os03g53530 WD domain, G-beta repeat domain containing protein, expressed  

Bradi1g09000.1 lectin-like receptor kinase 7, putative, expressed Os03g53540 expressed protein  

Bradi1g09010.1 expressed protein Os03g53550 retrotransposon protein, putative, unclassified, expressed  

Bradi1g09020.1 hypothetical protein Os03g53560 retrotransposon protein, putative, Ty1-copia subclass 

Os03g53210 expressed protein Os03g53570 retrotransposon protein, putative, unclassified  

Os03g53220 U5 small nuclear ribonucleoprotein 200 kDa helicase, putative Os03g53580 expressed protein 

Os03g53240 hypothetical protein Os03g53590 expressed protein 

Os03g53250 expressed protein  Os03g53590 expressed protein 

 
Os03g53260 conserved hypothetical protein  Os03g53610 late embryogenesis abundant protein D-34, putative  

1
0
8

 



 
Appendix 2 (con’t)    

 
gene name gene product name gene name gene product name 

 
Os03g53270 stem-specific protein TSJT1, putative, expressed  Os03g53620 late embryogenesis abundant protein D-34, putative, expressed  

Os03g53280 WD domain containing protein, putative, expressed  Os03g53630 PHD finger family protein, putative, expressed 

Os03g53300 expressed protein  Os03g53640 expressed protein 

Os03g53310 emp24/gp25L/p24 family protein, putative, expressed  Os03g53650 cysteine synthase, putative, expressed  

Os03g53320 hypothetical protein  Os03g53660 Myosin head domain containing protein, expressed  

Os03g53340 HSF-type DNA-binding domain containing protein, expressed Os03g53680 hypothetical protein  

Os03g53350 anthocyanin 3-O-beta-glucosyltransferase, putative  Os03g53690 
oxidoreductase, short chain dehydrogenase/reductase family domain 
containing protein, expressed  

Os03g53360 transferase family protein, putative, expressed  Os03g53700 PHD-finger domain containing protein, putative, expressed  

Os03g53380 hypothetical protein  Os03g53710 aldose 1-epimerase, putative, expressed  

Os03g53390 expressed protein Os03g55350 OsSub31 - Putative Subtilisin homologue, expressed 

Os03g53400 
transmembrane BAX inhibitor motif-containing protein, putative, 
expressed 

Os03g56160 lectin-like receptor kinase 7, putative, expressed 

Os03g53410 protein kinase domain containing protein, expressed    

1
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Appendix 3  SNP identified to design CAPS markers 
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Appendix 4 Additional Cdu-B1 mapping markers and HMA sequencing markers, primer 

sequences, restriction enzymes, detection method, and ESM, STS marker, or Rice gene 

from which the new marker was developed 

 

Additional Cdu-B1 Mapping Markers 

CAPS 
Marker 

Forward Primer sequence Reverse Primer Sequence 
Restriction 

Enzyme 

ESM or STS 
marker 

developed from 

Xusw14 TACAGCCGCTCAGTTGCTC CAACATATGTCTGGCCTACTACTCT BsoB1 XBF474164 
Xusw17 TCCACCCCCTTCCATCCCTAT TTGTCCTGCGGCTTCACCATC Sbf1 XBF293297 
Xusw15b TATGTGTTGTGATTTGCTGAG GAACCTTGGACGATTGCTAAC Taq1 Xusw15 

Xusw16 GCTAGGACTTGATTCATTGAT GGACAGGAGAACCTGAAGGAT 
Hpy188I 
&MboII 

XBF474090 

Xusw47 GCTAGGACTTGATTCATTGAT AGTGATCTAAACGTTCTTATA Hpy188I XBF474090 

Other 
Marker 

Forward Primer sequence Reverse Primer Sequence 
Detection 
Method 

Marker 
developed from 

ScOPC20 ACTTCGCCACTCCAGATGTACT ACTTCGCCACCATGGTCACA Agarose -- 
     
     

Additional Markers for HMA3 Cloning for Sequencing 

HMA Marker Forward Primer sequence Reverse Primer Sequence Rice gene developed from 

HMA3-F1/R1 ATGGGCGGCGGCGAGTCGTAC GTGGTGAAGAGGAAGACGATG Os07g12900 
HMA3-F2/R2 GACATCAACATCCTCATGCTT CCATTGTCCTCACGGCGATGT Os07g12900 
HMA3-F3/R3 ACATCGCCGTGAGGACAATGG TTTGCTCTCGATGCTTGAGAT Os07g12900 
HMA3-F4/R4 ATCTCAAGCATCGAGAGCAAA TGAGGATGTCGCTGGACATGA Os07g12900 
HMA3-F5/R5 TCATGTCCAGCGACATCCTCA GCCGACACGCAGCTCGATGAA Os07g12900 
HMA3-F6/R6 CGTGCTCAACAGCATGCTGCT AAGATCGAACGGCCATTCTTC Os07g12900 

    
    
    

     

 
 
Appendix 5 Graphical genotype of Cdu-B1 and markers associated with Vrn-B1 in near 

isogenic parental lines, Kofa and W9262-260D3 
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Kofa D A A A A A A A A 

W9262-260D3 B B B B B B B B B 

8982-TL-H D A A A A A A A A 

8982-TL-L B B B B B A A A A 
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Appendix 6  Alignment of HMA3 genomic sequence and predicted  CDS sequence and 

reported genomic and CDS sequences from rice and Brachypodium.  Nucleotides color 

coded based on similarity: yellow – identical, blue – conserved, white – non-similar. 
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Appendix 7 Alignment of HMA3-A1 and HMA3-B1 predicted protein sequences from 

durum wheat.  Amin acids color coded based on similarity: yellow – identical, blue – 

conserved, green – similar, white – non-similar 

 

 
 
 
 
 
 
 
 
 
 
 



Appendix 8  Origin and pedigree of global collection of durum wheat breeding lines and cultivars (Modified from Reimer et al. 2008) 

 
 Accession Origin Pedigree 

 Bonaerance Inta Cumenay Argentina Unknown 

Bonaerance Quilaco Argentina MAGH72//GS/AA///RABI//D21563/AA 

Bonaerance Valverde Argentina GIORGIO//CAPELLI/YUMA 

Buck Ambar Argentina Unknown 

Buck Topacio Argentina Unknown 

Ocotillo Arizona Unknown 

920334 Australia 69850/ 86014 

940030 Australia Unknown 

940435 Australia Unknown 
950329 Australia Unknown 
950090 Australia Unknown 

950844 Australia Unknown 

940955 Australia Unknown 
Tamaroi Australia RUFF/FLAMINGO-DW//MEXICALI-75///SHEARWATER/56113/TAM-1-B-

17/KAMILAROI/56112/WELLS/56111//GUILLEMOT 

Wollaroi Australia TAM-1-B-17/(SIB)KAMILAROI//ROKEL(S)/(SIB)KAMILAROI 

AC Morse Canada RL 7196/DT 610 

AC Napoleon Canada VIC/DT384//DT 471 

9661-AF1D Canada W9262-260D3/ARUBA//DT 662 

9661-CA5E Canada W9262-260D3/ARUBA//DT 662 

AC Avonlea Canada 8267-AD2A/DT 61 

AC Melita Canada MEDORA/LLOYD 

AC Navigator Canada KYLE/WESTBRED 881 

AC Pathfinder Canada WESTBRED 881/DT 367 

DT691 Canada DT618/ 8667-D216C//DT 637 

DT695 Canada DT 471/2*KYLE 

DT696 Canada DT618/DT 637//KYLE 

Kyle Canada 6962-92-8-5/ 6965-494- 

Commander Canada W9260-BK03/AC NAVIGATOR//AC PATHFINDER 
 DT704 Canada AC AVONLEA/DT 665 

1
1
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 Accession Origin Pedigree 

 DT705 Canada AC AVONLEA/DT 665 
 DT707 Canada AC AVONLEA/DT 665 

DT709 Canada DT 674/DT 665 

DT710 Canada DT618/GREEN 27 

DT711 Canada WESTBRED 881/W9260-BK03 

Strongfield Canada AC AVONLEA/DT 665 

D24-1773 Canada DT 520/D94078 

DT513 Canada DT 625/DT 612 

DT532 Canada D92269/D92413 

DT536 Canada D94350/D93108 

CDC Verona Canada D95253/D95116 

Carioca France CID  479402 

RABD 93.40 France Unknown 

Tetradur France EDMORE//CAPDUR/REGAL 

Durabon Germany SIGNADUR/EDM//P 4312.86 

Durafit Germany Unknown 

44616 Iran Unknown 

44721 Iran Unknown 

CRDW17 Iran Unknown 

D-73-15 Iran Unknown 

Simeto Italy CAPEITI/VALNOVA 

Colosseo Italy CRESO/MEXA 

Duilio Italy CAPPELLI//ANHINGA/FLAMINGO 

Grazia Italy ISWRN-21/VALSELVA 

Fortore Italy CAPEITI 8/VALFORTE 
Flavio Italy LATINO/CAPPELLI 
Lesina Italy Unknown 

Varano Italy CAPEITI 8/CRESO//CRESO///VALFORTE/TRINAKRIA 

Bronte Italy BERILLO/LATINO 

Ciccio Italy APPULO/VALNOVA//VALFORTE/PATRIZIO 

Demetra Italy MESSAPIA/GIOIA 

Gianna Italy Unknown 

1
2
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 Accession Origin Pedigree 

 Iride Italy ALTAR 84/ARES-SIB 
 Medda Italy TRINAKRIA/VALFORTE 

Mongibello Italy TRINAKRIA/VALFORTE 

Parsifal Italy INRA92-1/D81028 

Svevo Italy SELEZIONE CIMMYT/WB881 

Tresor Italy AMBER-DURUM/S-22-80 
Green27 Mexico STERNA‐ DW 2/GRAVELOTE 
Green34 Mexico STERNA‐ DW 2/GRAVELOTE 
Nacori97a Mexico ALTAR 84/CMH82A.1062//CD58230‐ ? 
Gidara 17a Morocco Unknown 

Marjak Morocco Unknown 
DHTON1 Morocco Unknown 
D940027 ND-USDA D88104/D88207 

D940098 ND-USDA D88450/D87436 

D941038 ND-USDA D86117/D88289 

D95580 ND-USDA BELZER/D88058//D88276 

Plaza ND-USDA PLENTY/D8291 

Arrivato New Zealand Unknown 

CFR5001 New Zealand Unknown 

K-39099 Russia LV-URAZOVSKII R-N,VORONEZHSKAYA OBL 

Agridur Spain EDMORE//CIMMYT 303/CHANDUR 

Altar-Aos Spain Altar/Aos 

Arcobelano Spain CHEN/ALTAR 84 

Ariesol Spain Unknown 

Borli Spain Unknown 

Camacho Spain Unknown 

Gallareta Spain RUFF/FLAMINGO-DW//MEXICALI-75/3/SHEARWATER/4/? 

Mexa Spain GDOVZ469///JO 1//61.130/LDS 

Vitron Spain TURCHIA-77///JORI-SIB/ANHINGA-SIB//FLAMINGO-SIB 

Durex U.S. AZ-MFSRS-86 

Langdon U.S. LDN240/KHAPLI//LANGDON 308///MINDUM*3/VERNAL/4/VERNAL EMMER/3*MINDUM 
Langdon(DIC-6B) U.S. LANGDON/Triticum dicoccoides (disomic chromosome substitution line) 
Westbred881 U.S. WARD/WLS//CNDO/WCA///MEXI/WB1000 
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 Accession  Origin Pedigree 

 Kofa U.S. DICOCCUM ALPHA 
 Kronos U.S. APB MSFRS POP SEL (D03-21) 
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