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ABSTRACT 

Dynamic neural networks, because they offer computational advantages over purely 

static neural networks, have many potential applications in a number of fields. The objective of 

the research described in this thesis was to develop dynamic neural structures for control 

applications. A dynamic model of the biological neuron called the dynamic neural unit (DNU) 

was developed for this purpose. The structure of the DNU is inspired by the topology of a 

reverberating circuit in a neuronal pool of the central nervous system. The DNU consists of 

internal feedforward and feedback synaptic weights followed by a nonlinear activation 

operator. It is thus different from the conventionally assumed structure of an artificial neuron. 

It is demonstrated in this thesis that a DNU can control unknown linear and simple nonlinear 

systems to track adaptively desired trajectories. 

The efficacy of artificial neural networks comes more from the number of neurons 

connected in the network and from the topology rather than from the computational ability of an 

isolated neuron. Considering the DNU as the basic functional element, a multi-stage dynamic 

neural network has been developed. One of the most important characteristics of neural 

networks is their ability to approximate arbitrary nonlinear functions. While most of the 
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research work in this area has concentrated on static neural networks, a theoretical foundation 

of functional approximation using a dynamic neural network has been developed. Computer 

simulation studies are provided to substantiate the theoretical developments. Following this 

development, the dynamic neural network has been used in a direct adaptive control mode to 

cause unknown nonlinear systems to follow desired reference signals. In conventional static 

neural structures, the optimum slope of a nonlinear activation function is usually determined by 

trial and error. An improper selection of the slope may lead to instability. The importance of 

using an adaptive activation operator in neural networks has been demonstrated through 

computer simulations. In this context, the concept of somatic adaptation for dynamic neural 

structures has been introduced. The significance of this concept as applied to the control of 

unknown nonlinear dynamic systems has been extensively studied through computer 

simulations. 

A new dynamic neural structure called the dynamic neural processor (DNP) that 

emphasizes the aggregate dynamic properties of a neural population has also been proposed 

and reported in this thesis. This structure is based upon the hypothesis that the neuro-

physiological activities of any complexity are dependent upon the interaction of antagonistic 

(excitatory and inhibitory) neural subpopulations. The DNP consists of two DNUs which are 

configured to function as excitatory and inhibitory neurons. A mathematical model and an 

algorithm to modify the parameters of the DNP have been developed. Four applications of the 

DNP, the functional approximation of nonlinear functions, computation of inverse kinematic 

transformations of a two-link robot, control of unknown single-input-single-output nonlinear 

systems, and coordination and control of multiple-input-multiple-output systems, are 

presented. A brief comparative study of the performance of this neural model with that of 

conventionally used recurrent neural networks has also been presented. A generalized dynamic 

neural model based on the concept of neural subpopulations has been proposed in this thesis. 

It is shown that many existing neural structures can be derived from this generalized neural 

model. 
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1. Introduction 

1.1 Neuro-Biological Control: A Motivation 

Biological control mechanisms are quite successful in dealing with uncertainty and 

complexity. They can smoothly coordinate many degrees of freedom during the execution of 

manipulative tasks within unstructured environments. Biological systems are usually very 

complex and defy exact mathematical formulations of their operation [1]. They carry out 

complex tasks without having to develop conventional mathematical models of the task or 

the environment. In executing a particular control task, for example 'pick up a glass of 

water, the plan to execute the task is carried out at the conscious level. To pick up a glass of 

water, it is necessary to determine the position of the hand relative to the glass and to find a 

way to move the hand toward the glass. The biological system executes this high level task 

at the conscious level. Most of the low level actions, such as determination of joint angles 

and muscle coordination, are performed at the subconscious level. The biological control 

system can learn to perform a new task, and can adapt to the changing environment with 

ease. 

On the other hand, to make a robot arm perform the same task, 'pick up a glass of 

water, requires a large number of computations and a priori knowledge of the environment 

and the system. These computations, required to coordinate different robot joints to produce 

a desired trajectory, are performed by solving kinematic and dynamic relationships between 

the different structural members of the robot itself. The control methodology developed for 

this task may fail should the desired task or the environment change. 

If the fundamental principles of neuro-biological control systems are understood, it 

may be possible to develop an entirely new generation of control methodologies. These 

control systems would be more robust and intelligent, far beyond the capabilities of the 

traditional control techniques based upon mathematical modeling. If system engineers could 

learn the structural, functional and behavioral aspects of biological control mechanisms, it 

might be possible to design an intelligent controller which can emulate at least some of the 

biological control capabilities. Although many biologists and psychologists share the view 

that the brain has a modular architecture, there is no general agreement on the number of 

modules, or the manner in which the modules develop or are interconnected [2]. One reason 

for this diversity of opinion is that the modular nature of the brain involves the difficulty of 

reasoning about a system with a large number of interacting components. Even systems of 

interacting components with a small fraction of the brain's complexity present formidable 

1 
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computational and analytical difficulties. It is scientifically challenging to understand the 

control functions of biological neural systems and to use this knowledge to emulate some of 

these functions for the purpose of solving scientific and engineering problems. Based on the 

understanding of neuro-biological control aspects and the desire to develop simple models of 

neuronal structures for engineering applications, the field of artificial neural networks has 

evolved into a very promising area of research [3 - 6]. Artificial neural networks have been 

used in a variety of applications such as pattern recognition, system identification and 

control. 

1.2 Neural Networks in Control Systems 

The conventional design of an automatic control system often involves the 

construction of a mathematical model describing the dynamic behavior of the system to be 

controlled and the application of analytical techniques to this model to derive a control law. 

Usually, such a mathematical model consists of a set of linear or nonlinear differential or 

difference equations most of which are derived using some form of approximation and 

simplification. The traditional model-based control techniques break down, however, when a 

representative model is difficult to obtain due to uncertainty or sheer complexity, or when the 

model produced violates the underlying assumptions of the control law synthesis techniques 

[1, 7]. Modeling of a physical system for feedback control also involves a trade-off between 

the simplicity of the model and its accuracy in matching the behavior of the physical system. 

On the other hand, human operators do not always handle control problems with detailed 

mathematical models. Instead, they use imprecise and qualitative understanding of the 

controlled processes. 

In conventional methods, two approaches are usually described in the literature [8] to 

achieve satisfactory performance from a dynamic plant that is only partially known. One 

approach uses robust stabilizers, or robust controllers [9, 10] and the other approach uses 

adaptive controllers. Using the first approach, if the actual physical system is contained in a 

class of systems which are close to the nominal plant, a robust controller by definition is 

guaranteed to stabilize it. Since one fixed controller is expected to stabilize a large class of 

control systems, the controller thus designed is highly complex compared to the complexity 

required to stabilize any single plant. Using the second approach, the parameters of the 

adaptive controller are made to adapt in accordance with some algorithm in order to keep the 

system performance at a desired level. In general, the adaptive approach is applicable to a 

wider range of uncertainties, but robust controllers are simpler to implement, and it may not 
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be necessary to tune the controller parameters of robust controllers to match the plant 

variations [11]. Detailed descriptions of robust and adaptive control techniques may be 

found in [10 - 13] and [14 - 16] respectively. 

While adaptive control has shown potential for controlling complex systems and 

offers good disturbance rejection, the region of operation of such a control system is 

restricted. This is because the adjustable parameters of the adaptive controller are modified 

based on the convergence and stability conditions, and this may place severe limitations on 

the performance of the compensated system. These limitations can be seen as restrictions on 

the acceptable operating region of the controller [17, 18]. Perhaps the most unrealistic 

among the conditions are the assumptions that there are no disturbances and that the order of 

the plant is not higher than that of the model. Violation of even a few of these assumptions 

can cause the adaptive control algorithms to become unstable [8]. In many situations, it may 

be desirable to design control schemes that can exhibit both learning and adaptive 

capabilities. 

To cope with uncertainties regarding plant dynamics, a controller needs to estimate 

unknown information during operation. If this estimated information gradually approaches 

the true information as time proceeds, then the controller can approach an optimal controller, 

and the controller may be viewed as a learning controller [19]. The controller learns the 

unknown information during operation, and this information is used as experience for future 

decisions and control, thereby possibly improving the system performance. The use of neural 

networks in control systems can be viewed as a natural step in the evolution of control 

methodologies. Neural networks with their massive parallelism and their ability to learn 

offer good possibilities for improved techniques in control systems. 

Computational Neural Networks (CNNs), Artificial Neural. Networks (ANNs) or 

simply neural networks, are described as connectionist models, parallel distributed processing 

units, or neuromorphic systems [20]. All of these representations are constructed with many 

nonlinear computational elements operating in parallel and arranged in patterns reminiscent 

of biological neural nets. They have been shown to perform, on a small scale, such higher 

cognitive functions as learning, memory and recall, and pattern recognition. Indeed, several 

working examples in the fields of speech recognition [21] and visual pattern recognition have 

been described [22]. 

Although the field of artificial neural networks is not new, it has only recently 

become an active area of research. Some of the pioneering work in this field is due to 
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McCulloch and Pitts [23] who in 1943 published a simple abstract model of a neuron. This 

neuron had a finite number of inputs and a single output. The inputs were characterized by 

excitatory (+1) and inhibitory (-1) states, the neuron had an internal threshold and the 

nonlinear function was binary. It was thought that by connecting many of these simple 

devices it would be possible to model the human brain. Although this model proved 

inadequate to achieve human-like abilities, it did influence others to pursue research in the 

field of neural networks. 

The next major development occurred in 1949 when Hebb [24] conjectured a learning 

mechanism in the brain. He postulated that as the brain learns, it changes its connectivity 

patterns. This idea of a learning mechanism was first incorporated in an artificial neural 

network by Rosenblatt [25] in 1959. He combined the simple McCulloch and Pitts neuron, 

with the adjustable synaptic weights based on the Hebbian learning scheme, to form the first 

artificial neural network with the capability to learn. 

By introducing the least mean squares (LMS) learning algorithm, Widrow and Hoff 

[26] developed in 1960 a model of a neuron that learned quickly and accurately. This model 

was called ADALINE for ADAptive LInear NEuron. This learning algorithm first 

introduced the concept of supervised learning using a 'teacher' which guides the learning 

process. It is the recent generalization of this learning rule into the back propagation 

algorithm that has led to the resurgence in biologically-based neural network research today. 

In 1969 research in the field of neural networks suffered a serious setback. Minsky 

and Papert [27] published a book entitled Perceptrons, in which they proved that single layer 

neural networks were limited in their abilities to process data and argued that the study of 

multi layer neural networks would be unproductive. As a result of this influential book, little 

progress was made in this area until the early 1980s. 

Many of the early applications of neural networks have been in computationally 

intensive areas of signal processing, adaptive pattern recognition, real-time speech 

recognition, and image interpretation. There are also computationally intensive applications 

in control systems, such as real-time system identification and control of nonlinear systems. 

With specific reference to control system design, neural networks have shown great potential 

in the realm of nonlinear control problems. A neuro-controller (neural network-based control 

system), in general, performs a specific form of adaptive control, with the controller taking 

the form of a multi layered network and the adaptable parameters being defined as the 

adjustable weights. In general, neural networks represent parallel distributed processing 
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structures, which make them prime candidates for use in multi-variable control systems. The 

neural network approach defines the problem of control as the mapping of measured signals 

for 'change' into calculated control signals for 'actions'. The most significant characteristic of 

neural networks is their ability to approximate arbitrary nonlinear functions to any degree of 

accuracy [28]. This ability of neural networks has made them useful in the modeling of 

nonlinear systems which is of primary importance in the synthesis of nonlinear controllers. 

Furthermore, because neural networks exhibit learning features, it is not necessary to know a 

priori the dynamics of the plant under control. The general features of neural networks can 

be summarized as follows [28, 29]: 

(i) Neural network models have many neurons (the computational units) linked via 

adaptive weights arranged in massive parallel structures; 

(ii) Because of high parallelism, the failure of a few neurons does not necessarily 

significantly affect the overall system performance. This characteristic is also called 

fault-tolerance; 

(iii) The main strength of the neural network structures lies in their learning and adaptive 

abilities. The ability to adapt and learn from the environment means that neural 

network models can deal with imprecise data and ill-defined situations; and 

(iv) Neural network models can be used for the identification and control of non-linear 

dynamic systems. 

The computational process that implements neural networks starts with the 

development of an 'artificial' neuron based on an understanding of biological neuronal 

structures, followed by the definition of structures and learning mechanisms for a given set of 

applications. This leads to the following three steps in a neural computational process: 

(i) Development of neural models based on the understanding of biological neurons, 

(ii) Development of models of synaptic connections and structures (that is, network 

topology), and 

(iii) Specification of learning rules (that is, the method of adjusting the weights or inter-

nodal connection strengths). 

In this context, a simple model of a biological neuron has been proposed in the 

literature [25, 26]. This structure of an artificial (computational) neuron receives its inputs 
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either from other neurons or from sensors. A weighted sum of these inputs constitutes the 

argument of a 'fixed' nonlinear activation function as shown in Fig. 1.1. The weights 

correspond to the strength of the synapses while the activation function is associated with the 

electrical conduction mechanism in a biological neuron. The resulting value of the activation 

function is the axonal or neural output [20]. This neural output is transmitted to several other 

neurons. 

Soma 
Dendrites 

Synapse 

—xi(k)- 1-0-

Neural 
inputs < 2(k)-rte' 

— 
X

n(k)--► 
—

Synaptic 
confluence 
operation 

Threshold, 9 
Nonlinear 

activation function 

Somatic operation 
(aggregation, 

thresholding, and 
nonlinear activation) 

Figure 1.1: A static neural model of a biological neuron. 

y(k) 
To other 
neurons 

Axonal (neural) 
output 

In Fig. 1.1, the vector [xi (k),..., xn(k)] represents the neural inputs, [wi,..., wn] 

represents the synaptic weights, k denotes the discrete time index, 9 represents the threshold 

and y(k) the axonal (neural) output. The detailed descriptions of synaptic confluence and 

somatic operations may be found in [6]. Using the static neural model shown in Fig. 1.1, a 

number of neural structures, usually referred to as feedforward neural networks, have been 

reported in the literature [20, 28 - 32]. These feedforward networks respond instantaneously 

to inputs because they possess no dynamic elements in their structure. Therefore, 

feedforward neural network structures are also called static neural networks. A static neural 

network, in general, consists of a number of neural layers (stages) where the output of one 

neuron forms an input to other neurons in the next layer. This neural structure is often 

referred to as a multi layered neural network (MNN). A typical MNN consists of an input 

layer, hidden layers and an output layer. A three layered static neural network is shown in 

Fig. 1.2. In this figure, each shaded circle represents the static neuron shown in Fig. 1.1. 
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Input 
layer 

Hidden 
layer 

Figure 1.2: A three layered static neural network. 

Output 
layer 

As an extension of static neural networks, dynamic (feedback) neural networks using 

static neurons with feedback have been proposed in the literature [22, 33, 34]. A general 

topology of a dynamic neural structure, commonly employed for system identification and 

control applications, with a static neuron as the basic functional unit is shown in Fig. 1.3. 

The feedforward inputs may arise from a source outside the neural layer or from other 

neurons, whereas the feedback signals are a result of dense lateral, self-excitatory (+) and 

self-inhibitory (-) connections in the layer as shown arbitrarily in Fig. 1.3. 

Recurrent [33] and time-delay neural networks [34] fall in the category of dynamic 

neural architectures. The recurrent, or feedback, neural networks were first introduced by 

Hopfield [33] as a dynamic model of the biological neural structure. The recurrent structure 

consists of a single layer static network in a feedback configuration with a time delay as 

shown in Fig. 1.4. 
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Figure 1.3: A generalized topology of a dynamic neural network with extensive feedforward 

and feedback inputs. 

y(k) 

P 

Static neural network 

W(k) 
u(k)  

  W[.] 

Figure 1.4: The state-space model of the Hopfield neural structure, also known as a recurrent 

neural network. 

In Fig. 1.4, y(k) and y(k+1) represent the states of the neural network at instants k and 

k+1, x0 represents the initial value, W(k) denotes the vector of the neural weights, 111[.] is the 

nonlinear activation function, and z-1 represents the unit delay operator. Given an initial 

value x0, the dynamic system evolves to an equilibrium state if 'P[.] is suitably chosen. The 

set of initial conditions in the neighborhood of xo which converge to the same equilibrium 
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state are then identified with that state. The term "associative memory" is often used to 

describe such systems. These feedback networks with or without constant inputs are merely 

nonlinear dynamic systems and the asymptotic behavior of such systems depends upon the 

initial conditions, the specific inputs and the particular nonlinear function [34]. A detailed 

explanation of recurrent neural networks is given in Chapter 6. 

Another dynamic structure, called the time-delay (tapped-delay) neural network 

(TDNN), is basically a feedforward network with delay elements. This is equivalent to a 

finite impulse response (FIR) filter whose output forms an argument to a nonlinear activation 

function as shown in Fig. 1.5. The TDNN can function as an adaptive filter by computing 

the scalar product of the input vector X (k) and the synaptic weight vector W(k), and 

modifying the elements of the synaptic weight vector W(k) with a technique such as least-

mean square (LMS) learning algorithm [26, 20, 28, 31]. This neural unit is adapted (trained) 
using noise-contaminated samples for which the correct uncontaminated signal values, yd(k), 

are known. In other words, the desired neural output is known for each input sample 

(supervised learning). 

Although the recurrent neural network incorporates feedback with delay elements, 

and the time-delay neural network (TDNN) employs dynamic elements in the forward path, 

the basic architecture of the computing neuron is a static model. These neural structures have 

been used in many applications, such as system identification and the control of nonlinear 

dynamic systems [34], and for text-to-speech conversion [35] respectively. 

1.3 Thesis Objectives 

The static neural model of the neuron described in the preceding sections is a very 

simplified, but useful first approximation, of the biological neuron [30]. This model ignores 

many of the characteristics of its biological counterpart. For example, it does not take into 

account time delays that affect the system dynamics; that is, the inputs produce an 

instantaneous output with no memory involved [31]. Biological neurons continually 

integrate, on the average, up to 10,000 synaptic inputs, which do not add up in a simple linear 

manner. Each neuron is a sophisticated computing element, and it performs much more 

complex operations than simple summation [36]. The conventional neural network models 

have abstracted a few properties of biological neurons, such as weighted aggregation, 

nonlinear activation and parallelism [37]. However, it is essential to gain more insight into 

how a single biological neuron functions, how masses of neurons are structured, and how 
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they coordinate themselves to perform complex tasks. It is then necessary to incorporate the 

essential functions and features of biological neurons into neural models. 

Synaptic weights 
W(k) 

Discretely sampled 
continuous time signal 

Time-delay unit 

Least-Mean Square 
(LMS) learning 

algorithm 

Error, e(k) 

Figure 1.5: A time-delay neural unit based on a static neural architecture. 

y 
d
(k) 

Desired output 

y(k) 

In this thesis, some of the concerns mentioned above have been addressed. At least a 

few limitations of the traditional neural networks based on the static neural model may be 

alleviated by restructuring the architecture of an artificial neuron, and deducing the necessary 

learning algorithms. As a first step towards this goal, the general objective of the work 

reported in this thesis has been to develop a model of a neuron which can more faithfully 

reflect the dynamics of a biological neuron, and to develop neural network structures and 

learning schemes for robotics and control applications. 
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Specifically, the objectives of the research that is described in this thesis were: 

(i) To develop a dynamic model of a neuron, and dynamic neural network structures 

using this neural model. This development will follow the observed features of a 

biological neural structure. 

(ii) To develop a dynamic artificial neural network structure based on suggested dynamic 

properties of a neural population or neural mass. 

(iii) To study the effectiveness of the proposed dynamic neural structures, through 

computer simulation studies, for functional approximation, for control of linear and 

nonlinear dynamic systems, and for computation of inverse kinematic transformations 

of a two-link robot. A brief comparison of dynamic neural network-based control 

schemes with proportional and derivative (PD) controller and model-reference 

adaptive controller (MRAC) will be studied. The performance of dynamic neural 

structures developed in this thesis will also be compared with recurrent neural 

networks. 

1.4 Organization of the Thesis 

In the following chapters, both the mathematical foundation of the proposed neural 

structures and their potential for learning and control applications are presented. The 

structure of the proposed neuron, called the dynamic neural unit (DNU), is developed in 

Chapter 2. The mathematical modeling and the implementation scheme of the DNU are also 

detailed in this chapter. 

The effectiveness of the DNU, as applied to the control of unknown linear systems, is 

demonstrated through computer simulation studies in Chapter 3. In this chapter, a control 

technique called the inverse dynamic adaptive control (IDAC) using the DNU is described. 

The IDAC technique is based on the concept of adaptive inverse control in which the 

controller structure is made to be an approximate inverse-model of the plant under control. 

A multi-stage dynamic neural network is developed in Chapter 4 considering the 

DNU as the basic computing element, and the network is implemented to control nonlinear 

dynamic systems. The theoretical development and computer simulation studies of the 

functional approximation of the proposed dynamic neural network are also presented in this 

chapter. 
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The modified structure of the DNU, which accounts for both synaptic and somatic 

adaptations, is developed in Chapter 5. Accordingly, the modifications in the learning 

algorithm and its implementation are also discussed in this chapter. Using the modified 

DNU, a three-stage dynamic neural network is developed and used to make unknown 

nonlinear dynamic systems adaptively track desired trajectories. A comparative study of 

neural networks with and without somatic adaptation is also briefly discussed. 

Based on the physiological evidence that neural activities of any complexity are 

dependent upon the interactions of antagonistic neural subpopulations, namely excitatory and 

inhibitory neurons, another neural structure proposed in this thesis, called the dynamic neural 

processor (DNP), is discussed in Chapter 6. The mathematical development and the 

algorithm to modify the self- and inter-subpopulation synaptic connections are discussed. 

Several applications of the DNP, namely the functional approximation, computation of the 

inverse kinematic transformations of a two-link robot, control of unknown single-input-

single-output nonlinear systems, and coordination and control of multiple systems, are 

detailed in this chapter. A brief comparative study of recurrent neural networks and the DNP 

is also discussed. As an extension of the DNP model, a generalized dynamic neural model is 

proposed in this chapter. 

Finally, the concluding remarks, the major contributions of the thesis, and suggested 

directions for future research are presented in Chapter 7. The significant contributions of the 

thesis are as follows: (i) development of a dynamic model called dynamic neural unit (DNU) 

and its associated dynamic neural structures, (ii) development of the theory of functional 

approximation for dynamic neural networks, and (iii) development of a dynamic neural 

processor based on the concept of excitatory and inhibitory neural subpopulations. It is 

demonstrated, through computer simulations, that the neural structures developed in this 

thesis performed better compared to the conventional control techniques and recurrent neural 

networks for several control problems. The parameter-state signals for the feedforward and 

the feedback weights of the modified DNU structure, proposed in Chapter 5, are derived in 

Appendix I. The learning algorithm for the generalized dynamic neural model, proposed in 

Chapter 6, is derived in Appendix II. 



2. Dynamic Neural Unit 

2.1 Introduction 

In its simplest form, a computational neuron can be considered as a processing 

element that sums the weighted inputs and produces an output only if this sum exceeds an 

internal threshold. This neuronal model has no feedback connections; that is, there are no 

connections through the weights extending from the outputs of a layer to the inputs of the 

same or to the previous layers. Furthermore, this model has no memory. The neural output 

is solely determined by the current inputs and values of the synaptic weights. Neural 

network structures based on this model describe the synaptic connections by a single weight 

parameter vector. In a feedforward structure, this results in a static neural network. 

Biological neural systems are, generally, understood to be composed of structures with 

dynamic connections which are manifested in the temporal properties of the synapse along 

with such processes as impulse transmission and membrane excitation [22, 30, 33]. In order 

to emulate some of the dynamic functions, such as learning, adaptation, memory and recall, 

and to better reflect the dynamics of the biological neuron, it is useful to model the biological 

neuron using feedback networks. In this thesis, one such model called the dynamic neural 

unit (DNU) [38, 39] is proposed. The DNU consists of internal feedforward and feedback 

weights and a nonlinear activation function, and is thus different from the conventionally 

assumed structure of an artificial neuron. 

This chapter is organized as follows. The architectural details of the DNU are 

presented in Section 2.2. An algorithm to modify the adjustable parameters of the DNU is 

then derived in Section 2.3. The implementation scheme for the developed algorithm is also 

presented in this section. Finally, the concluding remarks of this chapter are mentioned in the 

last section. 

2.2 Architectural Details of Dynamic Neural Unit 

The central nervous system (CNS) is divided into many different anatomic parts, in 

each of which are located accumulations of neurons called neuronal pools [40]. One of the 

most important circuits in the neuronal pool is the reverberating circuit, which functions as 

follows: an incoming signal stimulates the first neuron, which then stimulates the second, the 

third and so forth. However, branches return to the first neuron providing feedback and re-

stimulate it as depicted in Fig. 2.1. The reverberating circuit is the basis of innumerable CNS 

activities, for it allows a single input signal to elicit a response lasting a few seconds, 

13 
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minutes, or hours. Almost all rhythmic muscular activities, including the rhythmic 

movements of walking, are mainly controlled by the reverberating circuits [40]. 

Transmission 
delay Synaptic weight 

Feedback Feedforward 
paths paths 

Figure 2.1: A reverberating circuit in a neuronal pool of the central nervous system (CNS). 

Based on the topology of the reverberating circuit, a new architecture of the neuron 

called the dynamic neural unit (DNU), shown in Fig. 2.2, is proposed in this thesis. The 

dynamic structure of the DNU is assumed to be of second-order and is analogous to a 

reverberating circuit. The output of this dynamic structure becomes an argument to a 

nonlinear activation function. The DNU does not represent any specific anatomical region 

within the biological system. The delay elements in the DNU account for the synaptic delay 

in a biological neural structure. The occurrence of synaptic delay may be explained as 

follows [40]. In the transmission of an action potential from a neuron, a certain period of 

time is consumed in the processes of (a) discharge of the transmitter substance by the pre-

synaptic neuron, (b) diffusion of the transmitter to the neuronal membrane, (c) action of the 

transmitter on the membrane, and (d) inward diffusion of sodium ions to raise the potential to 

a high enough value to elicit an action potential. The minimum time required for all these 

events to take place is approximately 0.5 millisecond. This important characteristic of the 

biological neuron has been ignored in the conventional structure of an artificial neuron. 

The neural dynamics of the DNU can be expressed in the form of a second-order 

transfer relation 

[a0 + al z-1+ a2 z-2] 
w(k, aff , bfb) = v(k)s(k) [1 + b1 z-1+ b2 Z-2] 

(2.1) 
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[where 1 1 1
n 

n are the inputs from other 
i=i 

neurons or from sensors, wi E 91n are the corresponding input weights, 0 is an internal 

threshold, v(k) E 911 is the output of the dynamic structure (neural dynamics), u(k) E 911 is 

the neural output, aff = [a0, al , a2]
T 

and b fb = [b1, b2]
T 

are the vectors of adaptable 

feedforward and feedback weights respectively, z-1 is the unit delay operator, and k is the 

discrete-time index. 

Alternatively, Eqn. (2.1) may be described by the following difference equation 

v(k) = - b v(k-1) - b2 v(k-2) + ao s(k) + al s(k-1) + a2 s(k-2) . (2.2) 

Dynamic Neural Unit (DNU) 

s1

S
2 

_
s

n 

Neural inputs 

 CD 
Nonlinear activation 

function 416,

11Y+ I v(k) +1 — 

0 
1 

v(k) 

1-44—Neural dynamics 

Figure 2.2: The basic structure of the DNU consisting of second-order dynamics followed 

by a nonlinear activation function. 

The vectors of signals and adaptable weights of the DNU are defined as 

r(c, v, s) = [v(k-1) v(k-2) s(k) s(k-1) s(k-2)]T , and (2.3) 

T 
ert

(afrbfb) = [ -b1 -b2 a0 al a
2] (2.4) 

where the superscript T denotes transpose. Using (2.3) and (2.4), Eqn. (2.2) can be rewritten 

as 

u(k) 
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v(k-1) — 

v(k-2) 

v(k) = 421) - (afrbfb) F(k, v, s) = [-b1 -b2 a0 al a2] s(k) 

s(k-1) 

— s(k-2) — 

(2.5) 

The nonlinear mapping operation on v(k) yields a neural output u(k) given by 

u(k) ='F[ v(k)] (2.6) 

where [1 is a nonlinear activation function. Many different forms of mathematical 

functions can be used as a nonlinear activation function [6]. However, the selection of this 

nonlinear function depends upon the following assumption. 

Assumption : The neural system is comprised of only one 'type' of neuron. 

This assumption enables the probability distribution of the neural thresholds about an 

aggregate value 0 to be defined as a unimodal function, as shown in Fig. 2.3a. It follows then 

that the nonlinear transformation is sigmoidal as shown in Fig. 2.3b. However, if the neural 

unit is assumed to be comprised of 'm' different types of neurons, then the distribution of the 

thresholds can be redefined in m-modal functions that produce a nonlinear input 

transformation with m-inflection points [41, 42]. 

The proportion of neurons in a neural network that receive inputs greater than the 

threshold value can be modeled by a nonlinear transformation function, tls[v(k)], which is 

related to the distribution of neural thresholds, a[v(k)], within the neural unit [41]. If the 

probability distribution of these neural thresholds about an aggregate value 0 is given by an 

unimodal distribution function, then the nonlinear input transformation (activation operator) 

may be represented by a sigmoidal function. Thus, the proportion of neurons in a neural 

network receiving inputs greater than the intrinsic threshold may be modeled by the 

expression 

v(k) 
u(k) = gs, 0] = J a[v(k)] dv(k) (2.7) 

where the pair [gs, 0] determines the transformational properties of the function 'F[.] [41, 42]. 

The parameter gs is defined as the maximum slope of the sigmoidal relationship at the point 

of inflection given by the aggregate value 0. In other words, for a particular distribution of 
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neural thresholds, it is possible to determine the proportion of neurons receiving inputs 

exceeding the threshold by integrating the neural threshold distribution over the total applied 

inputs, Eqn. (2.7). 
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Figure 2.3: Unimodal threshold distribution and the corresponding sigmoidal input 

transformation function. 

(a) An unimodal probability distribution function of neural thresholds 0, 

(b) The nonlinear sigmoidal function, with slope gs, arising from the neural 

threshold distribution given in (a). 

An important assumption in deriving this sigmoidal function is that each neural unit 

in a densely connected neural network is comprised of only one 'type' of neuron. This 

enables the distribution of neural thresholds to be defined as a unimodal function. However, 

if the network is assumed to be comprised of m different types of neurons then the 

distribution of thresholds must be redefined as an m-modal function that produces a nonlinear 

activation function with m inflection points as depicted in Fig. 2.4 for m = 3. 

In general, a m-modal probability distribution for the neural thresholds is expressed as 

m 
vol(v(k)] = 2m gs. sech2 [g,. (k) - 0i)] 

i=i 
(2.8) 

and the corresponding monotonically increasing input transformation function is given by 

W[(v(k)] = [1 +m  tanh [8s (v(k) - 0i)] (2.9) 
i=1 1 
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where for each mode there is a slope parameter gs and a corresponding inflection point 0i. 
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Figure 2.4: Multimodal threshold distribution and the corresponding sigmoidal input 

transformation function. 

(a) Multimodal distribution of neural thresholds for m = 3, 

(b) Nonlinear mapping operator with multiple inflection points that 

correspond to (a). 

Physiologically, a multimodal distribution would be expected to correspond to the 

presence of a number of distinct cell types within the population of neurons [41, 43, 44, 45]. 

In further discussions, it is assumed that an artificial neural network is comprised of one type 

of neuron, and the corresponding distribution of thresholds is defined to be a unimodal 

function. Any function In] is said to belong to the class of sigmoidal functions, if 

(a) 'F [v(k)] is a monotonically increasing function of v(k) in the interval (- o, 00). It 

follows that 'P[v(k)] is strictly increasing; that is if v1 < v2 for each v1 and v2 E 91, 

then it is true that 

< ‘P[v2] and (2.10a) 

FP[vi] - ‘P[v2]1 Ivi v21 , d  v1' v2 E 
(2.10b) 

where C is a constant. Then W[v(k)] is said to satisfy a Lipschitz condition, 

(b) 'F[v(k)] approaches or attains asymptotic values, say -1 and 1, as v(k) approaches 

- .0 and 0. respectively, and 
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(c) 'P[v(k)] has one and only one inflection point [41]. 

To extend the neural activity for both the excitatory (positive) and inhibitory 

(negative) inputs, the sigmoidal function can be redefined as a bipolar hyperbolic tangent 

function; that is, 

exp v(k)) - exp ( -gs v(k))  Ili[v(k)] = exp v(k)) exp (-gs v(k)) 
— tanh [gs v(k)] (2.11) 

where gs is the gain which controls the slope of the activation function and is assumed to be 

constant in the following discussions. The effect of varying this parameter on the system 

performance is discussed in Chapter 5. In the limit, as gs the sigmoidal function tends 

to become the sign (binary) function with an infinite slope at v(k) = 0, and a zero slope for 

v(k) # 0 as shown in Fig. 2.5. 

g s-4 

Increasing values 
of g s

Inhibitory Excitatory v(k) 

Figure 2.5: Sigmoid function 'V [v(k)] = tanh [gs v(k)] for excitatory and inhibitory signals. 

In summary, the neural mathematical mapping of the DNU can be defined in a 

generalized form as depicted in Fig. 2.6. As shown in this figure, the first computation 

provides a dynamic linear mapping from s(k) e 911 to v(k) E 911 through the weighting 

vector 413(a b [-b1 -b2 a0 al ] T. The second operation provides a nonlinear 
fr fbi 

= 

mapping from v(k) e 911 to u(k) E 911 through a nonlinear function TR which in this case 

is a hyperbolic tangent function. 
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Figure 2.6: Neural mathematical operations of the DNU in a generalized form. 

2.3 Learning and Adaptive Algorithm 

Learning and adaptation are the terms used to describe the behavior modification in 

natural organisms as well as in machines. Biologists and mathematical psychologists have 

been primarily concerned with the modeling questions associated with these phenomena 

while the system theorists have addressed the problem of synthesizing machines which 

exhibit these properties [46, 47]. 

The function of the learning and adaptive algorithm involves the determination of 

feedforward and feedback synaptic weights which minimize the error function in some 

optimal fashion. The equivalency of the input and output is a convenient condition to test for 

the learning process [19, 47]. In an iterative learning scheme, the control sequence is 

modified in each learning iteration to cause the neural output u(k) to approach the desired 
state yd(k). If the error, e(k), can be reduced to an infinitesimally small value as the number 

of learning iterations increases, the learning scheme is said to be convergent [47]; that is, 

u(k) --> yd(k) as k --> co or, 

lira [yd(k) - u(k) = e(k)1 0 

k-00 

(2.12) 

for arbitrary initial conditions of the components of the weighting vector 0/ b(aff, tb) 

If neural networks are used in both pattern recognition (static identification) and 

system identification and control, the objective of the algorithm is to adjust the parameters of 

the network based on a given set of input-output pairs. If the parameters of the DNU, namely 



21 

the feedforward and feedback synaptic weights, are considered as the elements of a parameter 

vector 4:13
(affbfb

), the learning process involves the determination of optimal parameter vector 

represented as a that minimizes a performance index J(0) based on the output error. aff,bfw 

The components of the weighting vector 0, , and error e(k) vary with every learning kaff,D fb) 

trial k. To obtain clo
(aff'bfb

)(k+1) requires only the information set e(k-m), e(k), 

4:1:0(a b )(k) ' where m = 1,2, ... which determines the size of the window. As the number of 
ff' fb 

learning trials increases, the information set reduces to only { e* (k), Co(afrbfb)(k)} which 

indicates that the error and neural weights have converged to the optimal values which satisfy 

the input-output equivalency condition. However, this may not guarantee the global 

optimization [34]. 

In this iterative process, the control sequence is modified in each learning iteration to 

cause the neural output u(k) to approach the desired state yd(k). To achieve this, a 

performance index which has to be optimized with respect to the weighting vector is defined 

as 
J(0) = E F [e(k; (13(afrbfb))] (2.13) 

where E is the expectation operator. A commonly used form of F[e(k; c13(afrbd)] in Eqn. 

(2.13) is a squared function of the error; that is, 

J(j) = E e2(k; Co(afrbfl))) 1. (2.14) 

Each component of the weighting vector  is adapted in such a way so as to minimize 
(awbfb) 

J(1) based on the steepest-descent algorithm based on the following equation: 

(1) - dia[g] Vcr, J(4 ) (2.15) 
(affbfb)(k+1) = 43(afrbfb)(k)

where dia[g] is a diagonal matrix of the adaptive gains, (Di. b 1(k+1) and c13(. b (k) are 
k- ff tip/ `- ff' fb)

the values of the parameter vector at the (k+1)-th and k-th instants respectively, and V J(413) 

is the gradient of the performance function J evaluated at 40(afrbfb)(k) and is written as 

mo) 
. In Eqn. (2.15), dia[µ], the matrix of adaptive gains, is given by 

DO(afrbfb) 
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Ila• 0 
dia[µ] =[ 1 (2.16) 

0 1.tb

iwhere  = 0,1,2, and pb j = 1,2, are the individual gains of the adaptable parameters of 
1 J 

the DNU. The values of µa and 1.tb. are the measures of the strength of the adaptation of the 

DNU parameters which determine the stability and the speed of convergence. These issues 

are discussed more in detail in the next chapter. 

From the definitions of the performance index, J(0), and error signal e(k), the 

gradient of the performance index with respect to the weighting vector is obtained as follows: 

aj(0) 1 [a[yd (k) - u(k)f 

ao — 2 E ao 

(afflbfb)

au(k)
E e(k) - 

atli[v] 
= E e(k)- 

ao(afrbfd ao(affbfb) 

= E {-e(k)[aliqvi av 1} = E {-e(k) [Iist[v]  av 1} 
av aci(affbfb) ao(afrbfb) 

= E 
4  av 

-e(k) [ 
[exp (v(k)) + exp (-v(k))]2 aci)(afrbd

= E -e(k) [sech2[v(k)] Pe.(k)1 (2.17) 

where P 
v(k) 

(k) — is defined as a vector of parameter-state (or sensitivity) signals. 
acto(a b ) fb 

These signals represent the direct impact of the parameter vector through the system equation 

on the DNU response. From Eqn. (2.2), the parameter-state vector is written as 

a [- b1 v(k-1) - b2 v(k-2) + a0 s(k) + al s(k-1) + a2 s(k-2)]. (2.18) 
P43(k) — aci)(afrbfb) 

Equation (2.18) can be rewritten for feedforward and feedback weights of the DNU as 
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P„ (k) — b, v(k-1) - b2 v(k-2) + s(k) + al s(k-1) + a2 s(k-2)], (2.19a) as a(k) r 

i = 0, 1, 2, and 

r 
bP (k) — L- , v(k-1) - b2 v(k-2) + ao s(k) + al s(k-1) + a2 s(k-2)], (2.19b) 

fbj 
a abfbi(k) I 

j = 1, 2. 

The partial derivatives on the right-hand side of Eqns. (2.19a) and (2.19b) arise because the 

DNU structure has feedback connections, whereby previous output samples depend on 

previous parameter values which, in turn, are related to the present parameter values via 
successive updates of the algorithm in Eqn. (2.15). However, if the values of µai and gb are 

chosen sufficiently small, then the approximation in Eqn. (2.3), that is F'(k, v, s) = F((k-1), 

(v-1), (s-1)) = F'((k-2), (v-2), (s-2)), is valid [48]. This is a reasonable assumption for many 

applications, and the performance degradation due to this assumption is insignificant in 

practice. Based on this assumption, the parameter-state signals for the components of the 

weighting vector, namely the feedforward and the feedback weights, are obtained as follows: 

(i) For feedforward weights, aff., i = 0, 1, 2: 

From Eqn. (2.19a) the parameter-state (or sensitivity) signals can be written as 

, 
P„ a (k) = L ao s(k) + al s(k-1) + a2 s(k-2)], i = 0, 1, 2. (2.20a) 

aaffi(k) 

The individual parameter-state signals for the feedforward weights may be written as 

For i = 0, Pao (k) = [s (k)] , 

For i = 1, Pa1(k) = [s (k - 1)] , and 

For i = 2, Pa2 (k) = [s (k - 2)]. 

Therefore, the parameter-state signals for the feedforward weights are 

Pff (k) = [s (k - i)], i = 0, 1, 2. (2.20b) 
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(ii) For feedback weights, bfbi, j = 1, 2: 

Similarly, from Eqn. (2.19b) the parameter-state signals for feedback weights can be written 

as 

r 
P (k) —  - b, v(k-1) - b2 v(k-2)], j = 1, 2. 

fbj ab a(k) L

The individual parameter-state signals for the feedback weights are 

For j = 1, Pb 1(k) = - [v(k - 1)], and 

For j = 2, Pb 2(k) = - [v(k - 2)]. 

Therefore, the parameter state signals for the feedback weights are 

Pfb• (k) = - [v(k - j)], j = 1,2. 

(2.21a) 

(2.21b) 

As seen from Eqns. (2.20) and (2.21), the parameter-state signals for the feedforward weights 

may be obtained by tapping the node signals from the controller structure, while the 

generation of the parameter-state signals for the feedback weights manifests itself as an 

additional structure with only the feedback weights as shown in Fig. 2.7. 

From Eqns. (2.15) and (2.17) the parameter vector (13(afrbfd is updated based on the 

following algorithm: 

icto(afrbfb) (k+1) = 4:13(afrbd (k) + dia[g] E e(k) sech2[v(k)] Po(k) . (2.22) 

From Eqns. (2.20) , (2.21) and (2.22) the following equations to modify the feedforward 

and feedback weights may be written as 

affi (k+1) = affi (k) + Rai Et e(k) sech2[v(k)] Pffi (k)} , i = 0,1,2, (2.23a) 

and 

bfbi (k+1) = bfbi (k) + 1.tbi E e(k) sech2[v(k)] Pt,  (k) , j = 1,2. (2.23b) 

The implementation scheme of Eqns. (2.23a) and (2.23b) is shown in Fig. 2.8, and the 

symbolic representation of the DNU in Fig. 2.9. In Fig. 2.8, the terms gaffi and Sbfbi are 

respectively the adaptive components of the feedforward and feedback weights of the DNU. 

Neural dynamics represent the second-order structure represented by Eqn. (2.1). An 
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additional structure with only feedback weights is necessary to compute the parameter-state 

signals for the weights bfb. 

Neural dynamics 

s(k) 

 cp 
 OP Pao Parameter 

state signals 
) for 

go. Pal feedforward 
  Pa2 weights 

Structure  0" 
with feedback 
weights 

v(k) 

Parameter 
 IP' Pb1 state signals 
-1 p ' for feedback 

b2 weights 

Figure 2.7: Obtaining the parameter-state signals for the dynamic neural unit. 

In Fig. 2.9, w(k, aff , bfb) represents neural dynamics of the DNU, aff and bfb are the 

adaptable feedforward and feedback weights with the corresponding parameter-state signals 

P,.(k) and Pt  (k) respectively, aff and bc,., represent the initial values of the adjustable 
0 

weights, and tp [1 represents the nonlinear activation function. 

The following observations are made with reference to the algorithm derived above 

for the parameters of the DNU: 

(i) The desired model MD, in Fig. 2.8, is an entity representing a physical reality (in 

the case of system identification, for example), or model, in the designer's mind (in the case 

of pattern classification problems, for example). 
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Desired 
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1_. s(k) • Neural 
dynamics 

Nonlinear function 

v(k) 

+1 
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u(k) 

1 v(k) 
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Vea/
\ 
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Pfb (k) • 

E [.] 

[vi 

e(k)qj[v]  

Weighted error  

a 
ffi

(k+1) 

E [.] 

b fb (k) 

Learning and adaptive block 

Figure 2.8: The implementation scheme of the learning and adaptive algorithm. 
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Neural 
dynamics 

Nonlinear 
operation 

Figure 2.9: Symbolic representation of the dynamic neural unit (DNU). 

(ii) The expectation of a random process x with the probability density function p(x) 
00 

is defined as E[x] = f x p(x) dx. Thus, E[x] is an averaging process and can be approximated 
-00 

, T 

by the temporal (time) average E[x(t)] = Lim 
1 f x(t) dt. For a discrete case, E[x(k)] = 1

-T 
T 

x(i). Due to the computational difficulty of an ensemble average, the gradient of a single 
i = 0 

time sample of the squared error e2(k) can be used to obtain an estimate of the gradient of the 

error function J(1) in Eqn. (2.14) [48]. The expectation operator in Eqns. (2.23a) and 

(2.23b) is then replaced by instantaneous values of the partial derivatives. 

(iii) Equations (2.20) and (2.21) ignore interdependence of the parameter set; as such, 

they represent a greatly simplified version of the true gradients that would result in the 

presence of parameter dependence. 

(iv) Equations (2.23a, and 2.23b) make use of the inner product of the error signal, 

e(k), and the derivative of the nonlinear function, Ti[v]. This term is significant in the sense 

that during the learning process, if Iv' is small in the neighborhood of zero, then it provides a 

large weight to the error, thus making a large change in the weighting vector 0, b On kaft., tb) 

the other hand, if Iv' is large, Ti[v] is small, thus providing very little weight to the error. 
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2.4 Summary 

A new architecture of a computational neuron called the dynamic neural unit (DNU) 

has been presented. The DNU is comprised of feedforward and feedback internal weights, 

delay and a nonlinear activation operator. The dynamic structure of the DNU was only 

analogous to that of a reverberating circuit in a neuronal pool of the central nervous system. 

The output of this neural dynamics formed an argument to a nonlinear activation function. 

An algorithm for updating the feedforward and feedback synaptic weights of the DNU and an 

implementation scheme for the proposed algorithm have also been presented. Due to its 

dynamic nature, the DNU can be trained to learn and control unknown dynamic systems. 

The application of DNU to linear control problems is discussed in the next chapter. 



3. Inverse Dynamic Adaptive Control of Linear Systems 
Using Dynamic Neural Unit 

3.1 Introduction 

It has been demonstrated by many researchers [49 - 58] that an unknown plant 

(system) will track, within physical limitations, an input command signal if the plant is 

preceded by a controller which approximates the inverse of the plant's transfer function. 

Precascading a plant with its inverse model provides an unity mapping between the input and 

output signal space within the limitations of gain, power, etc. This concept of inverse 

modeling has been referred to as adaptive inverse control [51]. Adaptive inverse control 

using a finite impulse response (FIR) structure has been used to control a non-minimum 

phase system [51]. The concept of inverse-modeling has been utilized in reducing the 

intersymbol interference in digital communication systems [53]. In this application, the 

inverse-modeling of channel dynamics makes the received signal match the transmitted 

signal. Filtering the received signal through an approximation of the inverse of the channel 

model has been suggested as the principal remedy [53, 59]. Practical problems that may 

cause time-varying channel dynamics dictate the use of adaptive algorithms for tuning the 

channel equalizers. Equalization in data modems combats this distortion by filtering 

incoming signals. A modem's adaptive filter, by adjusting itself to become a channel inverse, 

can compensate for the irregularities in the channel magnitude and phase response [49]. 

In this chapter, a control technique called the Inverse Dynamic Adaptive Control 

(IDAC) using the DNU is described. The IDAC technique is based on the concept of 

adaptive inverse control in which the controller structure is made to be an approximate 

inverse-model of the plant under control. A brief introduction to IDAC scheme is given in 

the next section. The principle of IDAC and the rephrasing of the global performance are 

also described in this section. Computer simulation studies of the IDAC scheme are 

presented in Section 3.3. A feedback-error learning scheme using the DNU is discussed in 

Section 3.4, followed by a summary in the last section. 

29 
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3.2 Inverse Dynamic Adaptive Control 

Adaptive inverse control is based on the idea of inverse modeling. In this scheme, 

the inverse model of a plant is estimated and cascaded with the plant, making the overall 

transfer function of the plant and the inverse model unity. The adaptive inverse modeling 

and inverse control scheme are shown in Figs. 3.1a and 3.1b respectively. 

If the inverse estimation is good, the error between the targeted and the observed 

outputs will be very small since the overall transfer function is almost unity. The major 

concern in the adaptive inverse control technique is to accurately obtain the inverse model of 

an unknown plant. The inverse model is, therefore, not expected to be the exact inverse of 

the plant but is intended to be a best fit of the reciprocal of the plant transfer function. 

Desired i    Actual 
  Plant inverse Plant  

output     output 

(a) (b) 

Figure 3.1: Adaptive inverse control scheme. 

(a) Obtaining the inverse model (inverse-identification) of a plant, s(k), y(k) 'and 
e(k) represent input, output and error signals respectively, silk) represents 

output of the inverse model, and 

(b) The control strategy following inverse-identification. 

Traditionally, adaptive or self-tuning filters have been developed based on the FIR 

structures. The FIR filters have the advantage of a very well developed theory with regard to 

stability and convergence analysis. They have been generally used as they are 

unconditionally stable and because of the well understood adaptive FIR algorithms. 

However, the FIR realizations suffer from the problem of indeterminate order when it is 

necessary to model transfer function poles [28]. In particular, when the poles of the transfer 
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function are close to the unit circle in the z-plane, a high-order FIR filter may be required to 

meet a particular performance objective [59]. The adaptive inverse control technique 

proposed by Widrow [51, 52] provides only zeros to the controller. He suggested that for 

proper application, the plant must be stable and the plant zeros should not be extremely close 

to the j co—axis in the s-plane or the unit circle in the z-plane. Information about the upper 

bounds and the transport delay of the unknown plant is also required for the implementation 

of the adaptive inverse control. Furthermore, Widrow did not discuss the performance of the 

inverse-dynamic controller under structural perturbations. The adaptive inverse control 

scheme proposed by Widrow involves two modes of operation: (i) the learning phase that 

estimates an inverse model of the unknown plant, and (ii) the control phase that involves 

implementation of the inverse model to make the plant follow the desired trajectory. In other 

words, this scheme employs a 'learn-then-control' strategy. This strategy was also employed 

by Hunt and Sbarbaro in their internal model control scheme [54] . 

The primary advantage of using an infinite impulse response (IIR) filter is that it can 

perform significantly better than an adaptive FIR filter for the same number of coefficients 

[48]. This is a consequence of the output feedback which generates an infinite impulse 

response with only a finite number of parameters. A desired response can be better 

approximated by a filter that has both poles and zeros (IIR filter) compared to one that has 

only zeros (FIR filter) [48]. Filters with feedback are particularly appropriate for system 

modeling (identification), control, and filtering applications. 

Despite these advantages, the major obstacle to the use of IIR filters is the lack of 

well established and well understood adaptive algorithms. This is mainly due to the 

multimodal nature of their performance. The other major concern is to maintain stability 

during adaptation so that the poles of the filter do not accidentally move outside the unit 

circle causing instability. In general, the properties of an adaptive IIR filter are considerably 

more complex than those of an FIR filter, and it is more difficult to predict the behavior of 

the adaptive IIR algorithms [59, 60]. 

Most of the adaptive algorithms for the FIR and IIR filters reported in the literature 

are dominated by linear systems theory. There are many problems [29] which require 

nonlinear dynamics. Computational neural networks, which are inherently nonlinear, may be 

considered as a plausible alternative to the existing linear filters to overcome some of the 

limitations of the latter. The flexibility and learning capabilities of neural networks have 

made them applicable to a diverse set of nonlinear problems. The most significant 

characteristic of these networks, which is of primary importance from the view point of 
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control and communication systems, is their ability to approximate arbitrary nonlinear 

continuous functions. The application of inverse-modeling to robotic trajectory control using 

a feedforward neural network is discussed in [58]. 

In this thesis, a control scheme named the inverse dynamic adaptive control (IDAC) 

using the DNU is developed. The DNU, as described in the preceding section, is basically an 

IIR filter followed by a nonlinear activation function. The principle of the IDAC scheme and 

computer simulation studies are discussed in the following paragraphs. 

3.2.1 The Principle 

Consider a single-input-single-output (SISO) dynamic plant that has the following 

input-output relation 

y(k+1) = f(y(k),...., y(k-n), u(k),...., u(k-m)) 

= f(q(k), u(k)) (3.1) 

where q(k) = [y(k),...., y(k-n), u(k-1),...., u(k-m)]T is a state vector, and f(.) is an unknown 

nonlinear function and satisfies af(q,u)/au # 0. In the IDAC scheme, shown in Fig. 3.2, the 

input-output equation of the DNU that produces the control signal to the plant is expressed as 

u(k) = q(k), s(k)) (3.2) 

where s(k) is the reference (desired) signal, and w(.) represents the dynamics of the DNU. 

Using the learning and adaptive algorithm derived in Section 2.3, the nonlinear mapping PH 

can be adapted to approximate the inverse function of the nonlinear system, that is 

'V(w, q, s) —> f -ul (q, s) (3.3) 

where f -ul (q, s) satisfies 

y(k+1) = f(q(k), u(k)) = f(q(k), f -ul (q(k), s(k)) = s(k). (3.4) 

From Eqn. (3.4) it can be observed that an unknown dynamic plant can be made to 

track the desired trajectory by making the DNU mapping an inverse of that of the plant. This 

is the intended behavior of the scheme illustrated in Fig. 3.2, that is, the output y(k) follows 

the reference input s(k). Equation (3.3) places a constraint on the nonlinear function 'I'[.] in 

that it's inverse should exist. Thus, the IDAC scheme uses an iterative constrained inverse 

technique to find the control inputs to the plant. That is, rather than training a controller 
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network and placing this network directly in the feedback or feedforward paths, the forward 

(inverse) model of the plant is learned, and iterative inversion is performed on line to 

generate control commands. This approach allows the controller to respond on line to 

changes in the plant dynamics, and avoids placing the highly nonlinear networks directly in 

the feedback control path [55]. 

( 
. 

Learning and adaptive 
algorithm / 

DNU  

s(k) 

a ffo, bth / 

/ 2
/ 

w(k, a
ff fb

) [.] 

P 
(k 

ffi 
Perturbations 

Controlled object 
(Dynamic plant) 

G [k, a fb,
p  Rff]

Figure 3.2: The inverse dynamic adaptive control (IDAC) scheme. 

y(k) 

In this chapter, the dynamic plant represented by Eqn. (3.1) is assumed to have a 

linear relation between the input and output signal space. It then follows that an exact 

inverse model of the plant may be obtained by placing the controller poles on the plant zeros 

and the controller zeros on the plant poles. However, in practice it may be sufficient to 

match the numerator and denominator polynomials of the controller to those of the plant [51]. 

Let the plant dynamics and the controller (DNU) be described by transfer functions 

Gp[k, afb,13ff] and w(k, aff, bth) respectively. The controller parameters are represented by 

aff, bth and the plant parameters by vectors a th, Pff. These may be written as: 

aff = [ as:), al, a2]T , bth = [bo, b1, b2]
T 

: for the controller, with bo = 1 

and 

Rif = [p o, pi, 132]
T 

a fb = [ ao, a l, a 2]T : for the plant. 
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The error signal is defined as the difference between the desired response s(k) and the 

actual response y(k). Mathematically, the error signal can be represented as 

e(k) = s(k) - y(k) = s(k) - s(k) w(k, aff , bfb) Gp[k, a fb, 

= s(k) [(1- w(k, aff , bfb) Gp[k, a fb, riff]] . (3.5) 

If, by using the learning and adaptive algorithm derived in the preceding chapter, the transfer 

relation of the controller is adapted to be an inverse of the plant under study so that 

w(k, aff , bfb) = Gp[k, a fb, 13f0 (3.6) 

where aff is made equal to a fb and bfb equal to 13ff  , Eqn. (3.5) then becomes 

e(k) = s(k) [1 - Gp [k, a t ,, Gp[k, a fb, 13fi] = 0 . (3.7) 

Equation (3.7) is valid for the linear operating region of the DNU. However, the DNU is a 

nonlinear computing element due to the presence of the nonlinear activation function 111[1. 

The DNU can be operated in the linear region by changing the slope of the sigmoidal 

activation function. In other words, the saturated region of the sigmoidal function is 

controlled by its slope [61]. The sigmoidal function with a small slope makes the DNU 

operate with a linear mapping where Eqn. (3.7) is valid. 

The IDAC scheme keeps track of the varying dynamics of the plant and adjusts the 

feedforward and feedback weights of the DNU in order to reduce errors between the input 

and output signals. The equivalency of input and output is a convenient condition to test to 

assure that the controller is the inverse model of the plant [53, 57]. The approximate 

dynamics of the plant under control may be obtained from the optimal feedforward and 

feedback weights. As the convergence of DNU weights depends on their initial settings and 

adaptive gains used in the algorithm, the optimal weights may not exactly represent the plant 

parameters even though the input-output equivalency condition is satisfied. This problem is 

discussed briefly in the next subsection. 

3.2.2 Rephrasing the Global Performance 

The control scheme shown in Fig. 3.2 monitors the error signal e(k) and adapts the 

weights of the controller in such a way that the performance index J(1) is kept minimum. At 

each trial, the changes in DNU weights are proportional to the error. This leads to a system 
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that settles to a stable weight configuration as the error becomes minimum. However, the 

changes become zero only for the zero gradient of the error in the weight space. This zero 

can represent either a true global minimum or only a local one, but from the practical point of 

view, this gradient descent algorithm generally results in useful, if not optimal, solutions [48, 

59, 60]. The reason for the possible occurrence of local minima is explained below. 

The error at the (k+1 )th time moment, e(k+1), in terms of the error at the kth time 

moment, e(k), can be expressed as follows: 

2 2 
e(k+1) = e(k) + 

ae(k)  
Aaff. + ae(k)  Abfb. (3.8) 

i=o aaffi (k) 1 j=1 abfbi (k) 

where Aaffi and Abfbi are the gradient terms of the weighting vector cro(afrbfb) with respect to 

feedforward and feedback weights respectively. These gradient terms of the DNU are given 

by (derived in Chapter 2) 

Aaffi = affi (k+1) - affi (k) , i = 0,1,2, 

= µa1 E - e(k) sech2[v(k)] Pff. (k) , i = 0,1,2, and (3.9a) 

Abfbj = bfbi (k+1) - bfbi (k), j = 1,2. 

= b. E e(k) sech2[v(k)] Pfb. (k) , j = 1,2. (3.9b) 

Substituting Eqns. (3.9a) and (3.9b) into Eqn. (3.8), neglecting the activation function 

components, the expectation operator, and squaring the result gives 

-2  a  
2 } 2

e2(k+1) = e2(k) 1- y P (k) - P (k) 
i=o 

ff 
ae(k) 

i aaffi (k)._ j=1 uj fbj abe(k)fbj
(3.10) 

The learning and adaptive algorithm, derived in the previous chapter, searches for the 

minimum value of e2(k+1). This may be satisfied for more than one value of the adaptive 

gains p,„ (k), i = 0, 1,2 and µb (k), j = 1,2. This can be shown by taking partial derivatives of 
di 

e2(k+1) with respect to Ra and pb and setting them to zero 
1 
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ae2(k+1) 
— 0, and 

ae2(k+1) 
— . am, (k) agb.(k)ai 

Substituting Eqn. (3.10) into (3.11) gives 

(3.11) 

-2 -2 
ae(k) 

-2 2 2 de(k) . , _ ,, ,  ae(k) ae(k) 
2e2(k) 1- 2 I p.„ (k) P„. (k) - 2 1 pb.(k) r fb. (k) [ ab, (k) aaffi (k) 

{ 
i=o 'Li ui aaff. (k) j=1 j J 1 luJ - 

  — 0, 

and 

2e2(k) 

(3.12a) 

2 ae(k) 2  -2
1- 2 

Pffi (k) aaffi (k) 
ae(k) ae(k) 

- 2 j I, gb.(k) Pfb. (k) 
J 

[ abfb. (k)-  [ abfbi (k)_ 
0, 

-2 

=1 i=0 1

(3.12b) 

Assuming e2(k+1), 
ae(k)  

and 
ae(k)

# 0 (otherwise, there is no necessity for a affi (k) abfb. J (k) 

adaptation!); then both expressions in Eqn. (3.12) yield 

2 ae(k) -2  ae(k)
(k) P„ (k) + i_th.(k) (k) 

i=0 "i aaffi (k) j=1 "J abffi. (k)_ 

-2 

= 0.5. (3.13) 

Equation k (3.13) represents a constraint on the optimum values of the adaptive gains µ( ) 
a l 

and µb (k). This constraint can be satisfied by several possible (may be infinite) sets of 

1.1a 00 and µb (k). However, the occurrence of multiple solutions can be avoided by 
.

imposing stability triangle criterion [48] on the feedback weights of the DNU, namely b1 and 

b2. This still may lead to several possible convergence values for the controller parameters 

while minimizing e2(k+1). One is free to choose any values of 11 (k) and µb (k) as long as 

Eqn. (3.13) is satisfied. The partial derivatives of e2(k+1) with respect to adaptive gains, 
ae2(k+1)   i = 0,1,2 and

ae2(k+1) 
, j = 1,2, may serve as a measure of the expected reduction 

al.tb (k) alla.(k)

of e2(k+1). Further, the values of a(k) and gb (k) are the measures of the strength of the 
i 

adaptation: larger values of j.k (k) and µb (k) imply stronger adaptation, and vice versa. 
a i .

Thus, the idea of choosing individual values for adaptive gains, µa (k); i = 0,1,2 and µb (k); j 
i 

= 1,2, is to adapt the parameters having larger gradients more than the parameters having 
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smaller gradients. It is very desirable to choose proper values for the adaptive gains µa and 

µb  so that a global optimum performance may be obtained, and this needs further 

investigation. 

Due to the problem of local minima, the individual controller parameters may not 

exactly and inversely match the plant parameters. However, the overall transfer function of 

the controller is the inverse of that of the plant, which therefore makes the transfer function 

from output-to-input unity. Certainly, this would be a useful attribute in the control of 

unknown systems. More often than not, in many control applications, satisfying the input-

output equivalency is more crucial and important than the system identification in an exact 

sense. The convergence of error between the desired and the actual signals is viewed very 

significant. It is, of course, a desirable function of the algorithm to give a global optimal 

solution. Indeed, for a controller scheme that does not display such global performance, the 

controller can be trapped in a false minimum [48]. Therefore, it may be necessary to have a 

scheme-specific warning regarding the appropriate controller parameter initializations or 

avoidance of certain source (input) and controller combinations [53]. Due to these 

constraints, the definition of the global performance has to be rephrased. 

The question of global "performance" convergence is rephrased, therefore, as whether 

or not a particular combination of source (input signal), and initialization of the controller 

parameters will only admit locally attractive adapted controller parameterizations that yield 

the optimum available performance in terms of input-output equivalency [53, 57, 61]. In 

terms of the parameter-space trajectories of the adapted parameters, all of the attractive 

basins have sinks that make the controller an inverse-dynamic model of the plant under 

control. Therefore, an admissible source (input), controller weight initializations and plant 

combination need not always result in an optimum fit of the controller to the plant inverse. 

All that is required for allowable control is that each locally stable stationary point of the 

average behavior of the adaptive controller algorithm results in a controller output that can be 

passed on to the plant which can result in an input-output equivalency. 

With this description in context, computer simulations have been carried out in this 

work to study the IDAC scheme using DNU for linear systems. The details of the simulation 

studies are given in the next section. 
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3.3 Computer Simulation Studies for Linear Systems 

In this thesis, discrete-time systems which can be represented by difference equations 

of the form 

q(k+1) = f [q(k) , u(k)1, 

y(k) = g[q(k)] , k = 0, 1, 2.... (3.14) 

are considered. In the above equation u(.) and y(.) represent the input and output of the plant, 

q(.) denotes the state of the plant, and f and g are static nonlinear mapping functions. If the 

system described by Eqn. (3.14) is linear and time-invariant, the equation governing its 

behavior can be expressed as 

n-1 m-1 
y(k+1) = a i y(k-i) + 13. u(k-j). (3.15) 

i=0 j=0 

In the computer simulation studies, a dynamic plant with unknown parameters was 

cascaded with the dynamic neural unit discussed in the earlier section. If the error is defined 

as e(k) = s(k) - y(k), where s(k) is the reference input and y(k) is the actual output of the plant 

under control, the objective is to determine a bounded control input u(k) which results in 

lim [s(k) - y(k) = e(k)1 = 0 (3.16) 

k —> 

such that the output follows the input as closely as possible. 

The simulation program for the IDAC scheme was developed in the VAX/VMS 

environment. This program allowed the tolerance value of the error, Etoi, to be set at the start 

of the program. In the simulation results presented in this section, etoi was set to 0.05. Four 

simulation examples are discussed in this chapter. In Example 1, a general linear plant 

described by Eqn. (3.15) and excited by a unit step input was considered. Following the error 

convergence to the preset tolerance value, a different input signal was applied to the system 

in order to validate the inverse model that was obtained. The objective of Example 2 was to 

demonstrate the adaptive capability of the control scheme. Here, the control scheme was 

made to respond to the variations in the plant parameters and input signal variations. The 

control of a plant under structural perturbations and an unstable plant were demonstrated in 

Examples 3 and 4 respectively. 
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Example 1: Learning and control of an unknown plant 

Consider a linear plant described by the following difference equation 

2 2 
(y(k+1) = a i y(k-i) + 13. u k-j). 

i=0 i=0 j
(3.17) 

with a fb = [1.0, 0.7, 0.71T and Off = [1.2, 1, 0.81T. This is a second-order plant with two 

poles and two zeros located at (-0.35 ± j 0.76) and (-0.42 ± j 0.7) respectively. The initial 

values of the DNU weights were arbitrarily set to: aff0 = [0.4, 0.2, 0.21T and bfb0 = [1.0, 0.2, 

0.21T. These initial values correspond to zeros and the poles located respectively at (-0.25 ± j 

0.66) and (-0.1 ± j 0.44) The system was excited by a unit step input. The objective of this 

example was to show that the learning and control actions were performed simultaneously. 

In addition, the continuous adaptation capability of the IDAC scheme was demonstrated by 

changing the input signal to a sinusoidal signal, s(k) = sin(2ick/250) in the interval [4,11 after 

obtaining the approximate inverse-model of the plant. The simulation results obtained for 

this example are shown in Fig. 3.3. 
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Figure 3.3: The error and output responses before and after obtaining the inverse-model of 

the plant under control, Example 1. 
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From the optimal (converged) weight values of the DNU, the zeros and the poles of 

the dynamic structure of the DNU were found to be respectively at (-0.342 ± j0.756) and 

(-0.408± j 0.714). The transfer function of the dynamic structure may be written as 

u(k) (z + 0.342 - j 0.756) (z + 0.342 + j 0.756) 
w(k, aff' bfb) - s(k) (z + 0.408 - j 0.714) (z + 0.408 + j 0.714) • (3.18)

Since the DNU represents an approximate inverse-model of the plant, the estimated plant 

transfer function may be written as 

(k, a  ) y(k) (z + 0.408 - j 0.714) (z + 0.408 + j 0.714) (3.19) p ff u(k) (z + 0.342 - j 0.756) (z + 0.342 + j 0.756) 

which makes the transfer relation from the output to the input nearly unity. This implies that 

the plant can follow changes in the command signal with very little error between the desired 

command signal and the actual response. The existence of the error after this initial learning 

phase indicates a mismatch between the ideal and the obtained inverse-model. To 

demonstrate this, the input signal was changed from a step to a sinusoidal signal at k = 800. 

The effect on the error and output responses of changing the command signal is also shown 

in Fig. 3.3. As can be observed from this figure, there is an error in the limits ± 0.2 due to a 

slight mismatch between the plant, Eqn. (3.17), and its inverse model, Eqn. (3.18). However, 

the error that may exist after training between the plant and its inverse model could be 

reduced by using a persistently exciting signal during training. This is because a persistently 

exciting signal can excite all the modes of the plant under control [15, 16] which may result 

in the true inverse model. There are, however, certain problems associated with persistently 

exciting signals being used in adaptive control systems as discussed in [8, 15]. 

Example 2: Plant with varying dynamics and input signal 

The purpose of this example was to show the adaptive capability of the DNU to 

perturbations in the plant parameters, changes in the plant configuration, and variations in the 

input signal. The plant considered in this case was governed by Eqn. (3.17) with pff = 
[1, 1.2, 0]T and a fb = [1.3, 0.8, 0]T. This was a first-order plant with a zero at (-1.2) and a 

pole at (-0.62). As the zero was outside the unit circle, the plant was of non-minimum phase 

type. At time k = 600, the plant configuration was changed to 13ff = [1, 1.2, 0.711' and a ft, = 

[1.3, 0.8, 0.61T. This change in configuration made the plant a second-order one with the 

zeros and poles located respectively at (-0.6 ± j 0.58) and (-0.31 ± j 0.61). At k = 1000, 

another perturbation was injected into the plant by making the parameter oc2 = 0, which 
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changed the location of the plant zeros to (0 ± j 0.68). The input signal was also varied in the 

interval [-1, 1] as follows: 

s(k) = 0.6, for 1300 5. k < 1425, s(k) = 0.2, for 1425 k < 1575 

s(k) = -0.2, for 1575 k < 1650, s(k) = -1.0, for 1650 k < 2000. (3.20) 

The simulation results obtained for this example are shown in Fig. 3.4. As can be observed 

from this figure, the DNU could make the plant follow the desired trajectories inspite of 

perturbations. 
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Figure 3.4: The error and output responses before and after obtaining the inverse-model of 

the plant under control, Example 2. 

Example 3: Plant under structural perturbations 

In this example, a linear plant with the following parameter values 13ff = [1, 1.2, 1.4]T

and ocfb = [1.1, 1, 0.8]T was considered. The poles and zeros of this plant were (-0.45 ± 

j 0.72) and (-0.6 ± j 1.02) respectively. At k = 500, the plant configuration was changed from 

second to first-order resulting in structural perturbations; that is, the parameters P2 and a 2

were set to zero. From the simulation results shown in Fig. 3.5, it can be observed that the 

effect of the change in the dynamics was not significant on the response of the plant. Again, 
the plant dynamics were changed at k = 1200 by making 132 = 0.6 and a l = 0 which located 
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the zeros at (-0.6 ± j 0.49) and the poles at (0 ± j 0.85). The latter change in the plant 

dynamics made the error signal increase rapidly, as can be seen in Fig. 3.6, but the controller 

was able to reduce the error to the tolerance value very quickly. 
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Figure 3.5: The error and output responses of a plant under parameter perturbations, 

Example 3. 

Example 4: Control of an unstable plant 

An unknown plant described by the following relation was considered in this example 

0.8 y(k) = - 0.9 y(k-1) + 1.2 u(k) - 1 u(k-1). (3.21) 

From this difference equation it is observed that the plant was of first-order, with a pole at 

(1.13) and a zero at (0.83) in the z-plane, and was unstable. This plant was precascaded with 

the same controller structure and had the same initial settings as in Example 1. The 

simulation results obtained for this situation are shown in Fig. 3.6. Although this plant was 

unstable, the output error was bounded and remained within the tolerance limits, and the 

feedback control input to the plant was bounded. It was also observed in this simulation 

study that the effect of the initial values of the DNU parameters, in particular the feedback 

weights, on the transient response was significant. The effect of the initial values of the 
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feedback weight b1 is shown in Figs. 3.6a and 3.6b. Some initial settings of the DNU 

parameters led to system instability. 
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Figure 3.6: The error, control and output responses of an unstable plant for different initial 
settings of the feedback weight b1, Example 4. 



44 

3.4 Feedback-Error Learning Scheme 

3.4.1 The Principle 

The IDAC scheme discussed in the preceding section was used as a feedforward 

inverse controller that made unknown linear systems follow desired trajectories. However, 

the IDAC scheme was an open-loop learning system. The stability of the IDAC scheme 

depends on the initial values of the parameters of the DNU. In this section, a feedback-error 

learning scheme [58] that consists of a linear feedback controller and the DNU as a 

feedforward inverse controller, as shown in Fig. 3.7, is discussed. This scheme consists of a 

fixed gain proportional-plus-derivative (PD) linear feedback controller that makes the overall 

system stable, and a feedforward Controller which updates its internal weights to generate the 
control signal unn(k) in the process of becoming an inverse model of the plant. During the 

initial training period, the control signal unn(k) was very insignificant. The control signal 

from the feedback controller, uc(k), was significant because of the large initial error. Hence, 

in the early stage of learning, the component tic(k) was dominant over the unn(k). However, 

as the learning trials increased unn(k) became dominant over tic(k). The feedback controller 

guarantees the stability of the overall system [58, 62, 63]. In general, the feedback-error 

learning scheme has the following advantages [58]: (i) a teaching signal is not required to 

train the neural network, instead, the error signal is used as the training signal, (ii) the 

learning and control are performed simultaneously in sharp contrast to the conventional 

'learn-then-control' approach, and (iii) back-propagation of the error signal through the 

controlled object or through the model of the controlled object is not necessary. 

In Fig. 3.7, Gp[k, a fb, Off] represents a dynamic plant, C[e(k), Ae(k)] is a linear 

function of the error and the change of error representing a PD control law. The dynamics of 

the overall system shown in Fig. 3.7 are described by the following equations: 

e(k) = s(k) - y(k) (3.22a) 

Ae(k) = e(k) - e(k-1) 

C[e(k), Ae(k)] = kp e(k) + kd Ae(k) = tic(k) 

unn(k) = T[(w(k, aff, 
bm))s(k)] 

u(k) = unn(k) + tic(k) 

y(k) = Gp[k, a ft), Off] u(k). 

(3 .22b) 

(3.22c) 

(3.22d) 

(3.22e) 

(3.22f) 
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Figure 3.7: The feedback-error learning scheme consisting of a linear feedback controller 

and a feedforward neuro-controller. 

In Eqn. (3.22c), kp and kd denote the proportional and differential gains respectively. 

The DNU, once trained, will represent the inverse dynamics model of the dynamic plant. 

The fixed gain PD controller ensures adequate performance prior to the convergence of the 

DNU parameters, and reduces the steady-state output errors due to the disturbance inputs 

[62]. In essence, the output of the PD controller is an indication of the mis-match between 

the dynamics of the plant and the inverse dynamics model obtained by the DNU. This is 

because if the true inverse dynamics model has been learned, the DNU alone will provide the 

necessary control signal to achieve the desired trajectory. With zero trajectory error, the PD 

controller produces no output and, hence, indicates that learning has been completed [58, 62]. 

In the computer simulation studies discussed in the following subsection, the DNU 
parameters, aif and bfb, were adjusted based on the algorithm derived in Section 2.3. 

3.4.2 Computer Simulation Studies 

Example 1: Learning and control of an unknown plant 

A plant described by Eqn. (3.15) with the following parameter values a fb = [1.3, 0.9, 

0.7]T and off = [1.2, 1, 0.81T was considered. The input signal to the system was a sinusoidal 

signal s(k) = sin ( 2itk / 250) in the interval [-1,1]. The simulation results obtained for this 

example are shown in the following figures. Figure 3.8a shows the error and plant output 

responses. Figure 3.8b shows the control signal components generated by the feedback and 

the feedforward controllers. As seen from this figure, the control signal from the feedback 
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controller, uc(k), was predominant during the initial period of training, and was reduced as 

the feedforward controller took over which resulted in the dominance of the control signal 
from the later; that is unn(k). 
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Figure 3.8: Simulation results, Example 1. 

(a) The error and output responses, 

(b) The control signals generated by the feedback and the feedforward controllers. 
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Example 2: Plant with varying dynamics 

In this simulation example, the parameter adaptation capability of the feedback 

learning scheme was demonstrated by introducing perturbations in the plant parameters. The 

plant considered here was the same as in Example 1. At k = 500, the following parameter 

changes were made: 

a 2 -- 0 
02 

=0  , for 500 k 1000 

thereby making the plant a first-order system with parameters: ocfb = [1.3, 0.9, 01T and 

Off = [1.2, 1, 01T. The error and plant responses for this case are shown in Fig. 3.9. From this 

simulation example it can be observed that the effect of changing the plant configuration on 

the system response was very insignificant. 
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Example 2. 

200 

Example 3: Space vehicle control problem 

800 1000 

In this example, a model of the simplified space vehicle control system shown in Fig. 

3.10 was considered. The purpose of this control system is to control the attitude of the space 

vehicle in one dimension. Assuming a rigid structure, the vehicle is represented by a pure 
inertia Jv' so that the transfer function between the applied torque and the output position is 
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c(s) 1 
— The position c(t) and velocity v(t), are fed back by the position and rate J(s) j s2 • 

sensors, respectively, to form the closed loop control, where the transfer function is 

C(s) 
p . G(s) = 

R(s) s2 + k s + k 
r p 

r(t) 

Position sensor 
gain 

Vehicle dynamics 
 j(t) 1 

- A 
J  , w,
v
s

  v(t)

Rate sensor gain 

c(t) 

Figure 3.10: Block diagram of a simplified space vehicle with rigid dynamics. 

(3.23) 

The closed loop transfer function of the equivalent discrete system, using z-

transforms, is [64] 
2 

T kpg(z+1) 
2 G(z) — (3.24) 

• 
2J z2 + (2 krgT - 4Jv +T

2
kPg )z+(2.1v - 2 krgT + T kpg) 

The parameters used in the simulation study were: kpg = position sensor gain = 1.65 X 106, 

krg = rate sensor gain = 3.17 X 105, J = moment of inertia of vehicle = 41822. For T = 

0.225 secs, the closed loop poles and zeros were: (-0.352 ± j 0.4114) and -1 respectively. 

The above block diagram, of the space vehicle system was used as the dynamic plant 

to be controlled in Fig. 3.7, and the desired trajectory was a sinusoidal signal in the interval 

[-1,1]. Following the convergence of the error and system responses to the desired values, 

the converged DNU parameter values corresponded to the following pole and zero locations 

respectively: (-1, 0.05) and (- 0.421 ± j 0.387). For practical purposes, this is a close inverse 

approximation of -1 and (-0.352 ± j 0.4114) respectively. The error and system responses 

obtained are shown in Fig. 3.11a. After this initial learning and control, the system was 

excited by an arbitrary signal. Except for small transients at the beginning, the system was 

able to follow the new command input as shown in Fig. 3.11b thereby demonstrating that the 

DNU was an approximate inverse model of the space vehicle system. The output of the PD 

controller was an indication of the mis-match between the obtained inverse model and that of 

the dynamic plant. 
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Figure 3.11: Simulation results of a space vehicle control system, Example 3. 

(a) The error and output responses of a space vehicle during the initial 

learning and control phase, 

(b) New command input and the corresponding error and output responses. 
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Example 4: Control of nonlinear plants 

The purpose of this simulation example was to demonstrate that the feedback error 

learning control scheme shown in Fig. 3.7 could be used to drive simple nonlinear systems to 

follow the desired trajectories. 

Case (i): In this case, a linear plant preceded with an actuator with deadzone, shown in Fig. 

3.12, was considered. In this figure, the characteristics of the actuator with deadzone are 

described by the function 

D[u] = u(k) - d 

=0 

= u(k) + d 

if u(k) > d, 

if -d u(k) d, 

if u(k) < -d (3.26) 

where the parameter 2d represents the width of the deadzone. The control signal to the plant 

is then given by 

v(k) = D[u(k)]. (3.27) 
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Figure 3.12: The feedback-error learning scheme with deadzone. 

In this simulation study, a linear plant with the same parameters as in Example 1 was 

considered. The values of the proportional and derivative gains and the width of the 

deadzone were respectively 0.7, 10, 0.2. The system was excited by an unit step input. The 

simulation results for this case are shown in Fig. 3.13. The output responses of the plant with 

and without DNU are shown in Fig. 3.13a. From this figure it is clear that the PD controller 

could not drive the system to follow the step input. The same behavior was observed for 
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different values of the proportional and derivative gains. With both the feedback (PD) and 

the feedforward (DNU) controllers connected as shown in Fig. 3.12, the control signals 

obtained from these controllers are shown in Fig. 3.13b. From this figure it is observed that 

the control signal from the feedback controller was significant during the initial learning 

period, while the DNU output was more predominant as the learning and control actions 

continued. 
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Figure 3.13: Simulation results of a plant with deadzone, Example 4, Case (i). 

(a) The output responses of the plant with and without DNU, 

(b) The control signals from the feedback (PD) and the feedforward (DNU) 

controllers. 

Case (ii): A nonlinear plant described by the following difference equation 

y(k+1) = u(k) + 0.5 y3(k) (3.28) 

was considered in this simulation example. The system was excited by a square input in the 

interval [-0.8, 08]. The simulation results were observed for 800 iterations. The input and 

output signals of the nonlinear plant are shown in Fig. 3.14a and the control signals of the 

feedforward and the feedback controllers are shown in Fig. 3.14b. From the output response 

it can be seen that the DNU could drive the nonlinear plant to follow the desired signal. 
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Figure 3.14: Simulation results of a plant with deadzone, Example 4, Case (ii). 

(a) The input and output signals of the nonlinear plant, 

(b) The control signals from the feedback (PD) and the feedforward (DNU) 

controllers. 

3.5 Summary 

An inverse dynamic adaptive control (IDAC) technique using the DNU has been 

discussed in this chapter. The effectiveness of the DNU as an inverse dynamic controller has 

been demonstrated through computer simulation studies. In this control scheme, the dynamic 

structure of DNU is made to be an approximate inverse model of the plant under control 

thereby achieving almost unity mapping between the input and output signal space. Extensive 

simulation studies have been conducted using the DNU and reported in [56, 57]. The 

application of DNU to equalization problems in communication channels is discussed in [65]. 

In the simulation examples considered in this chapter, the order of the plant did not exceed 

the order of the DNU structure and, therefore, it may be expected that it could adjust its 

weights to satisfy the input-output equivalency. In a situation where the order of the plant 

exceeds that of the controller, the scheme may not function satisfactorily. To circumvent this 

problem, it was proposed [66] that a single DNU be replaced with a set of DNU modules in 

the controller structure. The learning and adaptive algorithm decides the number of 

controller modules to be activated to match the order of the dynamic system under control. 

This scheme has been tested up to the fourth-order linear plants [66]. 
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A feedback-error learning scheme with DNU as a feedforward controller has been 

presented. As can be seen from the simulation results, this learning scheme was able to 

adaptively control unknown linear and simple nonlinear plants in the presence of parameter 

perturbations and input signal variations. However, the performance of the feedback-error 

learning scheme was poor and sometimes unstable, when complex nonlinear characteristics 

were introduced into the plant under control. This implies that the functional approximation 

capabilities of a single DNU are limited. 

Although a DNU can control linear and simple nonlinear systems, the power of neural 

computation comes from the network of such neural units. Furthermore, as many practical 

control problems are nonlinear in nature, it is desirable to develop a neural network structure 

with the DNU as the basic computing node. This dynamic neural structure can approximate 

nonlinear functions, and can be utilized in developing controllers for nonlinear systems. 

These aspects are discussed in the next chapter. 



4. Dynamic Neural Structure for Nonlinear Systems 

4.1 Introduction 

Although a single neuron can be used to control linear and simple nonlinear systems, 
as was demonstrated in the previous chapter, and can perform certain simple pattern detection 

functions [5], it has been demonstrated in the literature that the real power of neural 

computation comes from the neurons connected in a network structure. Larger networks 

generally offer greater computational capabilities. Arranging neurons in layers or stages is 

believed to mimic the layered structure of a certain portion of the brain. These multi layer 

networks have been proven to have capabilities beyond those of a single layer [28, 29, 67]. 

It is well established that feedforward neural networks with at least one hidden layer 

can approximate nonlinear functions to a desired degree of accuracy [67 - 78]. As a result of 

this attribute of feedforward neural networks, many researchers now use them to model 

dynamic systems. However, dynamic neural networks offer computational advantages over 

purely static neural networks. For example, it is well known that an infinite order FIR filter, 

which is only a feedforward network, is required to emulate a single pole IIR filter [29]. The 

architectures of dynamic neural networks, by and large, are developed based on the 

understanding of the cerebellum and its associated circuitry [22, 36, 37]. 

Unlike a static neural network, a dynamic neural network employs extensive feedback 

connections between the neurons. The node equations in dynamic networks are described by 

differential or difference equations. The response of such networks is dynamic or recursive; 

that is, after applying a new input, the output is calculated and fedback to modify the input. 

The output is then recalculated, and the process is repeated. For a stable network, successive 

iterations produce smaller and smaller output changes until eventually the outputs become 

constant [28, 29]. In some situations, the process may never converge, and such networks are 

said to be unstable. Unstable networks have interesting properties and one example of such 

networks is chaotic systems [30]. 

Neural architectures with feedback are particularly appropriate for system modeling 

(identification), control and filtering applications. These networks are important because 

most physical systems are nonlinear and dynamic. In this chapter, one such dynamic neural 

structure is developed using the DNU as the computing node. The mathematical 

development and the implementation scheme of the proposed neural structure are presented 

in the next section. It is demonstrated in Section 4.3 that a dynamic neural network with 
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DNUs as the functional elements can approximate arbitrary nonlinear functions. Computer 

simulations are provided in this section to illustrate the functional approximation capability 

of this dynamic neural network. This property is used to synthesize a controller for nonlinear 

dynamic systems and is discussed in Section 4.4. It is followed by a summary in the last 

section. 

4.2 Multi-Stage Dynamic Neural Structure 

Multi layer networks may be formed by cascading a group of single layers, where the 

output of one layer provides the input to the subsequent layer. These networks may not 

provide much functional capabilities over a single layer network unless there is a nonlinear 

activation function between the layers [31]. Calculating the output of a layer in a neural 

network consists of multiplying the first weight matrix, (if there is no activation function) by 

the second weight matrix. This can be expressed as S(w1)w2, where S is the input vector, 

and w1, w2 are the weight matrices of the two layers. Since matrix multiplication is 

associative, the terms may be regrouped as S(w1w2). This shows that a two-layer neural 

network without nonlinear activation functions is exactly equivalent to a single layer having a 

weight matrix equal to the product of the two weight matrices. Hence, any multi layer linear 

network can be replaced by an equivalent one-layer network. Linear networks are severely 

limited in their computational capability. Hence, nonlinear activation functions are vital to 

the expansion of the capabilities of neural networks. In general, multi-stage (multi layer) 

neural networks can be considered as versatile nonlinear maps with the elements of the 

weight matrices as parameters [34]. In this section, a multi-stage dynamic neural structure 

with a DNU as the basic computing node is developed. 

4.2.1 Mathematical Development 

Let the output of a DNU be written as 

co(x) = [(w(k, aff, bth))s(k)] 

where T[.] is a sigmoid nonlinear activation function. 

The input-output mapping of a single-stage of DNUs in sigma (parallel) 

configuration, shown in Fig. 4.1a, can be expressed as 

(4.1) 

u(k) = 111(1)[(w(1)(k, aff, bfb) s(1)(k))] + ...+ tlii)[(w(i)(k, aff,bifb) s(il(k))] + 
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+ tp(P)[(w(P)(k, s 13)(k)) bpi)

= 1 ,..,p. (s) +...+ COi(S) +... + (s) = COn(s), n = ,..,i (4.2) 
1 

An equivalent representation of a one-stage dynamic neural network with 'p' DNUs in 

parallel (in sigma mode) is shown in Fig. 4.1b. 

s(k) E 9/ 11

(1) 
w (k, afebfb) 

vl (k) 
(1) 

u(k) E 

  111(k  
 i 

[  01 w (k, of  b
v.(k)   u (k) 

'111.1 
 J 

[ NI ‘7,131c, 
,b

 
ff 

Neural inputs 

v (k) 

(a) 

o l s(k) E 9i n v(k) = w(k, a ff, b fb) 
s( k)

u(k) = qi [v(k)1 

(b) 

Neural outputs 

u(k) E 9113

Figure 4.1: Dynamic neural structure with a DNU as the basic computing node. 

(a) The sigma connection of 'p' DNUs to form a single-stage dynamic neural 

network, and 

(b) The equivalent representation of a single stage dynamic neural network with 

'p' DNUs in parallel (in sigma mode). 

Similarly, the input-output mapping of a single-stage of DNUs in pi (series or 

cascaded) configuration can be expressed as 
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u(k) = '11(" [(w(1)(k, aff, ifd x(1)(k))1 .. kli(i)[(w(i)(k, aff, bfb) x(i)(k))1 ... 

'11(13)[(w )( ) x(13)(k))1 

p 
= (X) ... 0.)i(x) ... CO (x) = H (on(x), n = 1,..,i,..,p. 

n=1 
(4.3) 

The dynamic neural system described by Eqns. (4.2) and (4.3) maps an n-dimensional 

input vector s(k) e 9in into a p-dimensional neural output vector u(k) E 91 where the 

mapping operations of an i-th neuron is given by 

(i) The linear mapping operation: 

vi(k) — w(0 (k, aff, bfb)i s(0 (k), and (4.4a) 

(ii) The nonlinear mapping operation: 

ui(k) = W(i)[(vf(k))1, i = 1, 2,.., p. (4.4b) 

A multi-stage dynamic neural network can be formed by cascading a group of single 

stage DNUs where the output of one stage provides the input to the subsequent stages. A 

three-stage dynamic neural network that is configured to have an input-stage, an 

intermediate-stage and an output-stage is shown in Fig. 4.2. Shaded circles in this figure 
denote a DNU. w1, w2 and w3 are the input scaling factors. All the inter connections of the 

network are not shown. From this figure, the output u(k) of the dynamic neural network can 

be written as 

u(k) = u 31(k) + u 32(k) + u 33(k) (4.5) 

where u3 1(k), u3 2(k) and u3 3(k) are the outputs of the dynamic neural units 
(31) (32) (33) 

w (k, aff , bfb) , w (k, aff , bfb) and w (k, aff , bfb) respectively, and are given by 

u 31(k) = [w
(31)

(k, a„ ) (u (k) + u 22(k) + u 23(k))] , rr fb k 21 

u 32(k) = [w
(32)

(k, a„ b ) k (k) + u (k) + u (k)1] , and fb 22 21 23 

(4.6a) 

(4.6b) 
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u 33(k) = [w(33)(k, af , b fb) 23(k) + u 22(k) + u 21(k))] . (4.6c) 

Silk) 

s2(k) 

s3k) 
I I  

3 
(k) u 

23 
(k) u

3 
(k) 

3 1 Weighted neural 

inputs, sw(k) 
Neural outputs 

Figure 4.2: The structure of a three-stage dynamic neural network. 

In Eqn. (4.6) 

u 21(k) = [w
(21)

(k, a„ b11) k 
) (u 11(k) + u 12(k) + u 13(k))] 

= qi[ w(21)c)Fp[ w(11)0 1 tp[ w (12)
(.)]

+T [ w (13)0 ] swoo

(4.7) 

where sw(k) is the weighted 

(s1) 

input vector and is given by 

sw(k) = [ (s2) ][w 
(s3) 

w2 w31 }= ST w . (4.8) 

In Eqn. (4.8), S and w are the vectors of the input signals and the scaling factors respectively. 

Similarly, the output of each DNU may be calculated going from the output stage to 

the input stage. Combining these equations and substituting into (4.5) yields 
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r 
u(k) = [w(31) (k aff fh) + w

(32)
(k, aff , bfb) + w(33) (k, aff bfb)1 

r (21) (k, a
Lw ff bfb) + w(22)(k, aff bfb) + w(23)(k, aff  ,, bib)] 

[w
(11)

(k, aff fb) + w(12)(k, of  bfb) + w(13)(k, aff , bfb)] sw(k). (4.9) 

In Eqn. (4.9), the first term represents the output stage, the middle term the intermediate stage 

and the last term the input stage. The simplified diagram of the dynamic neural network is 

shown in Fig. 4.3. 
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fb 

Input stage 

(21) 
w (k,a ,b ) 

ff fb 
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w (k,a ff ,b ) 

fb 

(23) 
w (k,a ,b ) 

ff fb 

(31) 
w (k,a ,b ) 

ff fb 

(32) 
w (k,a ,b ) 

ff fb 

(33) 
w (k, ffa ,b ) 

fb 

Intermediate stage Output stage 

Figure 4.3: A modular representation of the dynamic neural network. 

u(k) 

IP [1  

The output of the dynamic neural network with a fully connected neural structure 

with H stages, and Nh DNUs in each layer, where the output of the p DNU in layer h is 

connected to the input of the neuron r in the next layer, is 

h+1 (k) = 
Nh-1 

uhp,r) (k) 

N
h-1 [ h [

U  ( w(p,r) (k, aff bfb) (k)] 

13=1 P=1

where 1 1 , and 1 H. 

(4.10) 
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4.2.2 Implementation 

Figure 4.4 shows the implementation of a three-stage neural network and the 

corresponding parameter-state (sensitivity) model for the implementation of the learning and 

adaptive algorithm derived in Chapter 2. 

s(k) 
E n 

Three-stage dynamic 
neural network 

Desired response 

q(k): 1 x 1 r(k): m x 1 

Q(k) = 
q(k) s(k) 4.[.] 

u (k) R(k) = 
r(k) u, (k) tP[.] 

I 

u2(k) 

•  0.

t(k): p x 1 

T(k) = 
t(k) u2(k) I 'PH 

Parameter-
state model 

y (k) 

u(k) 

e(k) 

(Q) r fb 
„(Q) 

ff 

[v] 

(R) 

(R) fb 
P ff 

1>< 

8J 
8Q 

Input stage 

(r) 
ff 

'P t [v] 

TT

(T) 
P f b 

8J SJ
8R 8T 

Intermediate stage Output stage 

Figure 4.4: The implementation of a three-stage dynamic neural network and the parameter-

state model. 

As shown in Fig. 4.4, the neural network consists of the input (Q)-, intermediate (R)-, 
— ) and output (T)-stages. i ffR ), and ri(Tf represent the feedforward parameter-state signals 

of the Q, R, and S dynamic neural stages (layers) respectively. Similarly, PZ Pr, and P(fbil

represent the feedback parameter-state signals of the Q, R, and T dynamic neural stages 
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respectively. This multi-stage dynamic neural network is used to approximate arbitrary 

nonlinear functions and to synthesize a controller for nonlinear systems. 

4.3 Neural Functional Approximation 

One of the most significant characteristics of neural networks is their ability to 

approximate arbitrary nonlinear functions. This ability of neural networks has made them 

useful for modeling nonlinear systems which is of primary importance in the synthesis of 

nonlinear controllers [28]. Neural networks potentially offer a general framework for the 

modeling and control of nonlinear systems. The problem of learning a mapping between an 

input and an output space using neural networks is equivalent to the problem of estimating 

the system that transforms inputs and outputs given a set of examples of input - output pairs 

[67]. Training a neural network using the input-output data from a nonlinear dynamic system 

can be considered as a nonlinear functional approximation problem [28]. 

Recently, a number of researchers have shown that multi layer static (feedforward) 

neural networks can approximate arbitrary continuous functions to a desired degree of 

accuracy. Either Weierstrass's theorem or Kolmogorov's theorem has been employed for the 

theoretical development of functional approximation capabilities of neural networks. For 

example, it has been shown by Cybenko [68], Funahashi [69], Hornik et al [70], Cotter [71], 

and Blum and Li [72], based on Weierstrass's theorem, that a continuous function can be well 

approximated by a static neural network with one hidden layer, where each neuron in the 

hidden layer has a continuous sigmoidal nonlinearity. Gallant and White [73] showed that a 

static neural network with a single hidden layer using the monotone 'cosine squasher' is 

capable of embedding a Fourier network which yields a Fourier series approximation to a 

given function. Such networks thus possess all the approximation properties of a Fourier 

series representation. In particular, these networks are capable of approximation, to any 

degree of accuracy, of any square integrable function on a compact set using an infinite 

number of hidden units [70]. Cardaliaguet and Euvard [74] developed a noise-resistant 

approximation formula for a function and its derivative. They also addressed the limitations 

of neural network architecture on the accuracy of function approximation. Hecht-Nielsen 

[75], Cotter and Guillerman [76], and Kurkova [77] employed Kolmogorov's theorem to 

demonstrate the function approximation capabilities of static networks. However, it has been 

recently pointed out by Hornik et al [70], and Girosi and Poggio [78] that Kolmogorov's 

theorem requires a different nonlinear processing function for each unit in the network, and 

that functions in the second hidden layer depend upon the function being approximated. The 

problems associated with function approximation using static neural networks are addressed 
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in [28]. The use of dynamic networks to represent dynamic systems is of more significance 

and practical importance than using static neural networks. 

The theory of functional approximation using static neural networks has been 

extensively studied as was briefly indicated above. As a result, static networks have been 

used to represent dynamic systems. A neural functional approximation theory for a dynamic 

neural structure described in the preceding section is developed in this thesis. It is shown in 

this section, using linear and trigonometric polynomials, that the proposed neural structure of 

DNUs can approximate arbitrary nonlinear functions [79]. Computer simulations are 

presented to demonstrate the functional approximation capabilities of this dynamic neural 

structure. 

4.3.1 Theoretical Development 

It is known that analytic functions can be approximated by means of a power series 

f(x) = ao + ai x + a2 x2 + + an xn (4.11) 

which converges uniformly to the function f(x) in some interval [-a, a], a > 0. This means 

that if 

Sn(x) = ao + ai x + a2 x2 + + an , S(0) -- ao , (4.12) 

then there exists a number N(e) for E > 0 such that the inequality n > N(E) would imply the 

inequality If(x) - Sn(x)I < e, - a 5 x 5 a; that is, the polynomial Sn(x) differs very little from 

the function f(x) if the degree n of the polynomial is sufficiently high. It is also known that 

Eqn. (4.12) implies (unlimited) differentiability of the function f(x) in the interval (- a < x < 

a), but any continuous function does not normally possess this property [80]. However, 

Weierstrass [80, 81, 82] has shown that any continuous function can be approximated by 

polynomials. The mathematical development presented in the following paragraphs is based 

on the functional analysis described in [80 - 83]. It is shown in this section, using linear and 

trigonometric polynomials, that the dynamic neural network with DNUs as the basic 

functional elements can approximate arbitrary functions. The neural models, both 

conventional (static) [61] and the DNU [79], can be operated in the linear range by 

appropriately choosing the sigmoidal slope. Therefore, the theory of linear operators can be 

extended to these neural structures. 
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Definition 1: The function T[.] is said to be a linear operator if it is both additive and 
homogeneous on D [83]. 'I'[.] is said to be additive if 'P [x1 + x2] ='P [x1] +'P [x2], (x1, x2

E D) , and homogeneous if 

'P [Xx] = X T [x] , (x E D, X E C) . 

A necessary condition for a linear function T[.] to be continuous on a space D is that 

'P be bounded on every bounded set. This condition is also sufficient if D satisfies the first 

axiom of countability [82]. 

Lemma 1: If 'PH[1] —> 1, 'PH[x] —> p, 'PH[x2] —> p2, then TH[g] = 0, where g(x) = (x-p)2

where H is the number of stages (layers) in the dynamic neural structure. 

Proof: g(x) = 
(x-p)2 = x2 - 2 p x + p2 , it follows that 

'PH(g) = T
H

(x2) - 2 p +p2 T (1) —>p2 - 2 pp+p2 =O. H
(X) 

H 

Theorem 1: If the two conditions: TH[1] —> 1, 'PH[g] —> 0 for H —> .0 

where g(x) = (x-p)2, are satisfied for the sequence of linear positive functionals Tn[f], then 

Lim T„[f] = f(p) 
H -400 II 

for any function f(x) continuous at the point x = p and bounded on the real axis. 

Proof: In view of the boundedness of the function f(x), - M < f(x) < M, where 

M(f) = sup I f(x)I, therefore 
x 

- 2M < f(x) - f(p) < 2M, V x E on D. (4.13) 

In view of the continuity of this function at the point x = p 

- < f(x) - f(p) < E for lx-pl < 8. (4.14) 

Equations (4.13) and (4.14) imply the inequality 

I2M i2M 
- E - g(x) < f(X) - f(p) < E

V x • (4.15) S2 
8

2 jg(x)
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In fact, if lx-pl < 5, then (4.14) implies (4.15) since g(x) = (x-p)2 0, and if lx-pl 8, then 

r'2M (2,M 
82 g(x)j R2 J82 = 2M,

and (4.15) follows from (4.13) since c > 0. Using the inequality (4.15) and the fact that the 

linear positive functionals are monotonic gives 

M 
- T 

i28
H[i] - 

ZS
TH[f] - f(p)TH[1] £'1`H[1] 

(2 
+ 82)TH[g] . (4.16) 

According to the conditions mentioned in the theorem, the right hand side of Eqn. (4.16) 

converges to E, and the left hand side to - E. Thus, there exists a number N(e) such that the 

inequality 

- 2c < TH[f] - f(p)TH[1] < 

will be true V H > N(E). Since E > 0 is arbitrary 

TH[f] - f(p)TH[1] =1H -4 0. 

Finally, since TH[1] -5 1 

`PH[f] = f(p)TH[1] +7/4 —> f(p). Hence, the theorem is proved. 

Lemma 2: If TH[1] -4 1, TH(cos x) —> cos p, TH(sin x) -* sin p, then 

TH[g] = 0, where g(x) = sine {(1-P1 } 2 ' 

s (x-p) 1 Proof : g(x) = sin .{ P1  - 1- co
} - -2- [ 1- cos p cos x - sin p sin x] 2 2 

1 
TH(g) = -2- { TH(1) - cos p TH(cos x) - sin p TH(sin x) 

1 { —> I 1- cos2(p) - sin2(p) } = 0. 

(4.17) 

(4.18) 
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Theorem 2: If the two conditions TH[1] ---> 1, 'PH(g) 0 for H —> 

where g(x) = sine {(-'-P} are satisfied for the sequence of linear positive functionals TH[f], 

Lim 
then 

H 
T

H
(0 = f(p) for any function f(x) with period 27c, continuous at the point x = p 

and bounded. 

Proof: In so far as the function f(x) satisfies the conditions of Theorem 1, the inequalities 

- 2M < f(x) - f(p) < 2M, V x E on D, and 

- E < f(x) - f(p) < E for lx-pl < 8 

are valid. Now consider a subinterval (p - 5) < x (27c + p - 5) of length 2n. 

- c - g(x) < f(x) - f(p) < E + 
2M \ 

sin 28
g(x) , V x , 

(4.19) 

(4.20) 

The inequality 

(4.21) 

is valid in this subinterval. In fact, if lx-pl < 8, then the inequality (4.21) follows from (4.20), 
(x-n) 

since g(x) = sin-9 0. 2 

- 
If 8 < x- p 27c - S, then - 8 

(x2 p) 
7C - -2 , and thus 2 

sin P12 _> sin 8 , g(x) = sin2 {(/ *P1} > 2 8
2 sin 2 , 7 2M  \ 

28sin 
—/ 

g(x) 2M, and 

the inequality (4.21) follows from (4.19) since E > 0. In order to prove the validity of 

inequality (4.21) V x, the function g(x) = sin2{--P-(" 1 - 
1- cos (x-p) 

has the period 27c and 2 

according to the conditions of the theorem the function f(x) also has this period; that is, 

- E - 
7 2M  \ 

8sin--2 

g(x+ 2Icrc) < f(x 210c) - f(p) < E 
7 2M  \ 

2 8sin -2-\ 

g(x+ 2k7c) , V x. (4.22) 

If x varies in the subinterval (p - 8, 2n + p - 8), then (x+ 27t) will vary in the subinterval 

(2n + p - 8, 47c + p - 8), (x+ 47c) in the subinterval (4n + p - 8, 6n + p - 8), and in general 

(x+ 21m) in the subinterval (2Ia + p - 8, 2k7c+27t + p - 8), k = 0, ± 1, ± 2,... The totality of 
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these subintervals covers without any gap the whole real axis, and thus the inequality (4.21), 

whose validity on every subinterval follows from (4.22), is proved for V x. 

The inequality (4.21) and the monotonic nature of the functions TH(f) gives 

- E T H[ ] _ 
2M5 

\ T 
H 

(g) < TH[f] - f(p) TH[1] < TH(1) + 
( 2M \ 

TH[g]. (4.23) 
•sin 2 sin —2 I 

In view of the conditions, the right hand side of Eqn. (4.23) converges to E, and the left hand 

side to - E. Thus, there exists a number N(E) such that the inequality 

- 2E < TH[fl - f(p) TH[1] < 2E (4.24) 

will be true V H > N(E). Since E > 0 is arbitrary 

TH[f] - f(p) TH[1] =7H —> 0, 

'PH[f] = f(p) TH[1] + yH f(p). Hence, the theorem is proved. 

Definition 3: Let f(x) and T[x] be two functions continuous in the interval [a,b] and let 

d(f, T) = nal axx < f(x) -'P[x] 

The number d(f, T) is called the distance between the functions f(x) and T(x) [66] (deviation 

of the function f(x) from T(x)). 

Theorem 3: If the function f(x), continuous in the interval [- it, ic], is even, there exists an 

even trigonometric polynomial TH(f, x) which deviates the least from the function f(x); that 

is, d(T, 0 = II f - TH(f, x) II . 

Proof: If TH(f, x) is any polynomial which deviates the least from the function f(x), 

d(T, = II f - TH(f, x) II . (4.25) 

Then, replacing x by -x and 

d(T, f) = max 

noting that the function 

f(-x) - TH(f, -x) 

f(x) is even gives 

- 5_ X It 

max f(x) - '11H(f, -x) = II f - TH(f' -x) II . (4.26) 
- 7C X 5_ It 
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[ TH(f, x) " Ha, -x)] 
Let Q(x) — 2 

degree not greater than n. Thus, 

The trigonometric polynomial Q(x) is even and has a 

( 
[ 'P.a., x) + IPH(f, -x)] 1 ) 

IIf-QII=II f- 
['PH

 2  II — (2) II f- TH(f, x) + f - IPH[f, -x] II 

(1 ) II f - 1PH(f, x) II + II f - IPH(f, -x) II 

= (1) f) + f) = f). (4.27) 

Hence, it follows that d('P, f) = II f - QII, the even polynomial Q(x) deviates the least from the 

function f(x). 

4.3.2 Computer Simulation Studies 

It is demonstrated in this section, through computer simulations, that the dynamic 

neural structure comprising of three stages, each stage having two DNUs as the basic 

computing nodes, can approximate arbitrary nonlinear functions. The learning scheme 

employed for this task is shown in Fig. 4.5. 

Figure 4.5: The learning scheme for functional approximation task using dynamic neural 

structure. 

Four simulation examples are discussed in this section. Examples 1 and 2 

demonstrate the neural network's ability to approximate arbitrary nonlinear functions as 
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shown in Figs. 4.6a and 4.6b. The nonlinear functions used in these examples were as 
follows: 

Example 1: f[s(k)] = s(k), and 

Example 2: f[s(k)] = 0.5 s(k) + 0.1 cos ((2/ck/1000). 

In Example 3, the desired nonlinear function was changed during the learning process to 
study the adaptiveness of the neural network. The nonlinear functions used in this example 

were as follows: 

f[s(k)] = sin (2nk/250) for 0 k < 500 and 

0.5 s(k) 

-V If 1 +s2(01 for 500 k < 1000. 

The simulation results for this example are shown in Fig. 4.6c. In Example 4, another 

arbitrary nonlinear function of the form 

f[s(k)] = s3(k) + 0.3 sin(2ns(k)) + 0.1 sin(5rcs(k)), where s(k) = sin (27ck/250) 

was considered. As can be observed from Fig. 4.6d, the neural network could not 

approximate this function very well compared to the first three examples. The mean-square-

error (MSE) of the function approximations shown in Figs. 4.6a. through 4.6d are 

respectively 0.163, 0.302, 0.266 and 1.348. 
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Figure 4.6: Arbitrary nonlinear functions and their approximations using dynamic neural 

network. 

The above results do indicate that the proposed dynamic neural structure with DNU 

as the basic computing node can approximate arbitrary nonlinear functions. It was observed 

during the simulation studies that the neural network adapted to the changes in nonlinear 

functions, should they occur, during the approximation process. This approximation feature 

of the neural network is used in the on-line control of unknown nonlinear dynamic systems. 

This feature is discussed in the following section. 

4.4 Control of Unknown Nonlinear Systems 

One of the most significant features of neural networks is their ability to approximate 

arbitrary nonlinear functions. This ability of neural networks has made them useful for 

modelling nonlinear systems; this is of primary importance in the synthesis of nonlinear 

controllers. Static neural networks have been widely used for nonlinear system identification 

and control [34, 84 - 87]. It was demonstrated in the preceding section that the dynamic 

neural structure with the DNU as the functional element could approximate arbitrary 

nonlinear functions. In this section, it is demonstrated that this dynamic neural structure can 

be used for the control of unknown nonlinear dynamic systems. 

Assume that a single-input-single-output (SISO) nonlinear discrete system is given in 

the form: 

q(k-1-1) = f[q(k), u(k)1 : State equation 
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y(k) = g[q(k)] : Output equation (4.28) 

where q E 9in are the state variables, u(k) E 9Z 1 is the control input, f[.] and g[.] are the 

nonlinear maps on 91n, f[.] is bounded away from zero, and y(k) E 9Z1 is the plant output. 

The problem to be addressed in control systems is to find a control signal u(k) that 
will force the output y(k) to track asymptotically the desired output yd(k); that is, 

lim [yd(k) -y(k)] = 0 . (4.29) 

k --->oo 

In order to achieve the above objective, the following assumptions about the nonlinear plant 

are required [34, 85, 88]: 

Assumption 1: The plant is of relative degree one (that is, the input at k affects the output at 

k+1) 

Assumption 2: For any k E [0, 0.] the desired output yd(k) and its n-derivatives yd(1)(k), 

( (n) 
Yd2) yd (k), are uniformly bounded; that is, 

Iy(di)(k) I , i = 0, 1, 2, ..., n. (4.30a) 

Assumption 3: There exist coefficients a ff and b fb such that I'[.] and g[.] are the 

approximations of the nonlinear functions f[.] and g[.] respectively with an accuracy E on D, 

a compact subset of 91n; that is, 

max If[.] - [.] I 5_ E, (4.30b) 

max I g[.] - Ig‘[.]1 e, V q E on D. (4.30c) 

4.4.1 Nonlinear Model Description 

A nonlinear system may be represented by one of the four discrete-time models as 

suggested in [34]. These models can be described by the following difference equations: 

Model I: 
n-1 

y(k+l) = a i y(k-i) + g[u(k), u(k-1),..., u(k-m+1)], 
i=o 

(4.31a) 
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Model II: 
m-i 

y(k+1) = f[y(k), y(k-1),..., y(k-n+1)] + 13. u(k-j), 
j=0 

Model III: 

(4.3 lb) 

y(k+1) = f[y(k), y(k-1),..., y(k-n+1)] + g[u(k), u(k-1),..., u(k-m+1)], (4.31c) 

Model IV: 

y(k+1) = f[y(k), y(k-1),..., y(k-n+1); u(k), u(k-1),..., u(k-m+1)] (4.31d) 

where [u(k), y(k)] represents the input - output pair of a SISO plant at time k, and m 5_ n. In 

all four models, the output of the plant at time (k+1) depends both on its past n values of the 

output as well as the past m values of the input (output of the neural network). The functions 

f: 91 in models II and III, and f: 91n+m —> 91 in Model IV and g: 91m —> 91 in Models I 

and IV are assumed to be differentiable functions of their arguments. In general, f[.] and g[.] 

are nonlinear functions which may take different forms. In Model I, the plant output y(k+1) 

is a linear function of the past values y(k-i), while in Model II the relation between y(k+1) 

and the past values of the control input u(k j) is assumed to be linear. In Model III, the 

nonlinear relation of y(k+1) with y(k-i) and u(k j) is assumed to be separable, and Model IV 

in which y(k+l) is a nonlinear function of y(k-i) and u(k j) subsumes Models Ito III, and is 

analytically the least tractable. The block diagram representations of the four models are 

shown in Fig. 4.7. 
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Figure 4.7: (Continued) 
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(b): Model II 
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Figure 4.7: (Continued) 
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(d): Model IV 

y(k) 

Figure 4.7: Representations of the SISO nonlinear plants: (a) Model I, (b) Model II, (c) 

Model III, (d) Model IV. 

4.4.2 Computer Simulation Studies 

In the computer simulation studies discussed in this section, a nonlinear dynamic 

system represented by one of the models shown in Fig. 4.7 was cascaded with the dynamic 

neural network presented in the earlier section. This control scheme is shown in Fig. 4.8. As 

depicted in this figure, the reference input s(k) is considered to be the target (desired) output 
yd(k) for the nonlinear system to track. 

If the error is defined as e(k) = yd(k) - y(k), where yd(k) is the desired output and y(k) 

is the actual output of the plant under control, the aim of the control is to determine a 

bounded control input u(k) which results in the expression 

lim [yd(k) - y(k) = e(k)1 = a 

k --> 00 

(4.32) 
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Figure 4.8: The control scheme for nonlinear dynamic systems using a three-stage dynamic 

neural structure. 

The neural network used for the computer simulation studies consisted of three-stages 
with two DNUs in each stage. The input scaling factors w1 and w2 were set to 1 and -1 

respectively. Six simulation examples are presented in this section each demonstrating a 

particular aspect of the control problem. In Example 1, a nonlinear dynamic plant governed 

by the difference equation (4.31a) was considered. The parameters of the plant, 13ff and a fb, 

and the nonlinear function f[.] were assumed unknown. As the neural network weights were 

adjusted, the plant response followed the desired signal very closely. The adaptive capability 

of the control scheme for variations in the targeted output during the learning and control 

process was also demonstrated in this example. In Example 2, a study of the performance of 

the dynamic neural network was carried out for nonlinear systems represented by Model II. 

The ability of the neural network to adapt to the changing nonlinear characteristics in the 

system was also discussed in this example. The behavior of the dynamic neural network for 

nonlinear systems with the Model III configuration was investigated in Example 3. In this 

example it was shown that the neural control scheme would adapt to the changing input 

signal patterns and perturbations in the plant parameters. The control of a nonlinear plant 

represented by the Model IV configuration was studied in Example 4, including an important 

property of the neural network, called fault-tolerance. The performance of this neural 

network-based controller was compared with that of a PD controller. In conventional control 
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design based on feedforward neural networks, an optimal control law is often developed 

based on the model of the nonlinear plant. It was shown in Example 5 that this assumption 

was not necessary if the control scheme was designed based on the dynamic neural network 

approach. Finally, the effect of changing the slope of the nonlinear activation function was 

studied in Example 6. In these simulation studies, the error tolerance limits were set to ± 0.1. 

Example 1: Model I, Equation (4.31a) 

The plant to be controlled was governed by the difference equation 

2 2 
y(k+1) = a i y(k-i) + g 

i=0 
[ p. u(k-j)1 

•
J=0

(4.33) 

where the unknown function was 

g[.] = sin (nu(k)) + 0.3 sin (27cu(k-1)) + 0.1 sin (51tu(k-2)), 

and the plant parameters were pff = [1.2, 1, 0.81T and a fb = [1, 0.9, 0.71T. The input to the 

system was s(k) = sin (2rck / 250) in the interval [-1, 1]. The error and output responses are 

shown in Fig. 4.9a. From the error response it can be seen that the error was initially large, 

but decreased very quickly to the tolerance limits. Also, the error was within the tolerance 

limits after about 1600 iterations even when the input was changed to be the sum of two 

sinusoids s(k) = 0.8 sin (2nk / 250) + 0.2 sin (27rk / 25) at k = 500. The error and plant output 

responses to the change in input signal for 1000 learning iterations are shown in Fig. 4.9b. 
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Figure 4.9: Simulation results, Example 1. 

(a): The error and output responses of a nonlinear plant configured in Model I. 

(b): The error and output responses to a change in input signal at k = 500. 

Example 2: Model II, Equation (4.31b) 

In this example a nonlinear plant represented by Eqn. (4.31b) was considered where 

the relation between y(k+l) and the past values of the control input u(k-j) was assumed to be 

linear, while y(k+1) was a nonlinear function of its past values, y(k-i). This plant model can 

be described by the following equation 

2 2 
y(k+1) = f [ a i y(k-i) 1+ P. u(k-j) . 

i=0 j=0 j

The plant parameters and the input signal were the same as in Example 1. The nonlinear 

function used in this simulation example was 

— [y2(k-1) + y2(k-2)] 
• (1+y2

(k)) 
(4.34a) 

The error and output responses obtained for this simulation are shown in Fig. 4.10a. At k = 

500, this nonlinear function, Eqn. 4.34a, was changed to 

f[.] — 
0.2 sin n "\/ Iy2(k)I 

kl+y2(k-1)) • 
(4.34b) 
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The corresponding error and output responses are shown in Fig. 4.10b. As can be seen from 

the simulation results, the dynamic neural network was able to drive the plant towards the 

desired performance under the changed nonlinear characteristics. 
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Figure 4.10: Simulation results, Example 2. 

(a): The error and output responses of a nonlinear plant in Model II 

configuration, 

(b): The error and output responses when the nonlinear function f[.] was 

changed at k = 500. 
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Example 3: Model III, Equation (4.31c) 

In this example, 

y(k+1) = f 

a nonlinear 

2 
[ oci y(k-i) 1+ 

i=0 

plant 

g 

represented by the equation 

2 
[ . u(k-j) 

=0j 
(4.35) 

with the following nonlinear functions 

[2+cos 77c6/2(k-1) + y2(k-2)) 11 + e-1)f[.]
(4.36a) 

— 
, and 

1 + y2
(k-1) + y2

(k-2) 

1,1 I { u2(k) + u2(k-1) + u2(k-2)}I 
(4.36b) 

g[.] - 
[ 1+ u3(k)] 

was considered. The input to the system was s(k) = sin (2nk / 250) in the interval [-1, 1]. 

The plant parameters were the same as in Example 1. The simulation results, depicted in Fig. 

4.11a, show the plant was able to follow the desired response with a MSE of 0.26. 
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Figure 4.11: The error and output responses of a nonlinear plant configured in Model III, 

Example 3. 

To study the performance of the control scheme under varying input signal and plant 

parameter perturbations, the input signal and plant parameters were changed as follows: 
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s(k) = sin (2itk / 250) , for 0 k < 250, 

s(k) = 1.0, for 250 k < 500, 

s(k) = -1.0, for 500 5 k < 750, and 

s(k) = 1.0, for 750<_k<_ 1000. 

The plant parameters were 

13ff = [1.2, 1, 0.81T , a fb = [1, 0.9, 0.711' , for 0 k < 400, 

13ff = [1.2, 1, 0]T , a fb = [1, 0, 0.7]T , for 400 k < 600, and 

pff [1.2, 1, 0.41T , a fb = [1, -0.5, 0.7]r , for 600 < k < 1000. 

The error and output responses for the above varying conditions are shown in Fig. 4.12. 

It can be seen from these results that the effect of the variations of the input signal on 

the plant output was significant, while that of the plant parameter perturbations was not. 

This, of course, depended on the magnitude of perturbations. A very large magnitude of 

perturbation could drive the system unstable. 
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Figure 4.12: The error and output responses under different input signal and plant parameter 

variations, Example 3. 
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Example 4: Model IV, Equation (431d) 

In this simulation example, a nonlinear plant of Model IV with the following 

nonlinear function 

[ e(Y2" )+312(1(-2)) + 111 u2(k) + u2(k-1) + u2(k-2)} I 
fEl - 

[ 1+ u3(k)] 
(4.37) 

and with the same plant parameters and input signal as in Examples 1 and 2 was considered. 

From the simulation results presented in Fig. 4.13, it is observed that the plant was able to 

follow the input signal with a MSE of 0.106 after 2000 iterations. 
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Figure 4.13: The error and output responses of a nonlinear plant configured in Model IV, 

Example 4. 

The performance of this neural network-based controller was compared with a model-

reference adaptive controller (MRAC) [14 - 16] shown in Fig. 4.14. The MRAC was 

originally proposed to solve a control problem in which the specifications are given in terms 

of a reference model that tells how the plant output ideally should respond to the command 

signal. The error e(k) is the difference between the outputs of the plant and the reference 

model. The parameter of the regulator, namely the feedforward gain, was adjusted based on 

the MIT rule [15]. The dynamic neural network, developed in this chapter, was used as the 

reference model. The plant was assumed to be represented by the Model IV configuration. 

The performance of the MRAC in terms of the error and output responses is shown in Fig. 
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4.15. The MSE, after 2000 iterations, was found to be 3.694. From this simulation study it 

may be observed that the performance of the dynamic neural network-based controller was 

much better than that of the MRAC. 
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Figure 4.14: Block diagram of a model-reference adaptive controller (MRAC). 
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Figure 4.15: The error and output responses of a nonlinear plant configured in Model IV 

controlled by the model-reference adaptive controller (MRAC). 
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One of the main advantages of designing a controller based upon a neural network 

architecture is that the failures of a few neurons in the network do not cause significant 

effects on the overall system performance. This characteristic is called fault-tolerance. To 

demonstrate this feature, the intermediate stage of the dynamic neural network shown in Fig. 

4.8 was removed, and the simulation was carried out. The corresponding error and output 

responses are shown in Fig. 4.16. The system responses were improved as the learning trials 

were increased, for example up to 2000. This simulation example shows that the neural 

network could control the plant with fewer neurons in the network, demonstrating the fault 

tolerance characteristic of the dynamic neural network. 
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Figure 4.16: The error and output responses of a nonlinear plant with a neural network 

consisting of only input and output stages with two DNUs in each stage. 

Example 5: Adaptation to system model representations 

Although major advances have been made in the design of conventional adaptive 

controllers for linear systems with unknown parameters, such controllers can not provide a 

solution for a wide range of nonlinear control systems. The great diversity of nonlinear 

systems is the primary reason why no systematic and generally applicable theory for 

nonlinear control has yet evolved [28]. The existing control techniques for nonlinear 

systems, such as the phase plane, feedback linearization, and the describing functions, are 

system specific. In other words, a control methodology suitable for one class of nonlinear 

systems may be completely unacceptable for some other class of nonlinear systems. Since 

neural network-based control schemes exhibit learning and adaptive capabilities, the control 

law is independent of the plant configuration. This ability of the dynamic neural structure is 
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demonstrated in this example by changing plant models arbitrarily during the control process. 

The changes in plant configurations were made as follows: 

2 2 
Model III: y(k+1) = f [ a. y(k-i) + g [ 1, 13. u(k-j)1, for 0 5. k < 250: 

i=0 j=0 

where f[.] — 
[2+cos 177c(y2(k-1) + y2(k-2)) }] + eY(k-j) 

[1 + y2(k-1) + y2(k-2)] 

(4.38) 

(4.39a) 

111{ u2(k) + u2(k-1) + u2(k-2)}1 
g[.] — (4.39b) 

[ 1+ u3(k)] 

2 2 
Model I: y(k+l) = y, a y(k-i) + g 1 13. u(k-j)] , for 250 5 k < 750: (4.40) 

i=0 1 j=0 i 

where g[.] = u3(k) + 0.3 sin (2icu(k-1)) + 0.1 sin (5nu(k-2)), (4.41) 

[ 
2 2 

Model IV: y(k+1) = f I a y(k-i) + I R. u(k-j) , for 750 5. k < 1050: (4.42) 
i=0 1 i=0 j

[2+cos 7it(y2(k-1) + y2(k-2)) }] + e-u(k) 
where f[.] — , and (4.43) 

[1 + u2(k-1) + u2(k-2)] 

2 2 
Model II: y(k+1) = f [ a : y(k-i)  + Q. u(k-j) , for 1050 k 5 1500 (4.44) 

i=0 j=0 

0.1 sin it ly2(k)1 
where f[.] —  

[1 + y`„ (k-1) + y2(k-2)] 

The plant parameters were 

off = [1.2, 1, 0.81T , a fb = [1, 0.9, 0.7]r , for 0 < k < 1500. 

(4.45) 

The input to the system is the same as in the earlier examples. The error and output 

responses obtained for this simulation study are shown in Fig. 4.17. It is observed from this 

figure that the neural network was able to adapt very quickly to the changing models of the 

nonlinear plant. 
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Figure 4.17: The error and output responses of a nonlinear plant with varying model 

representations of a nonlinear plant, Example 5. 

Example 6: Effect of the slope of sigmoidal function on system performance 

In the application of neural networks to control systems the slope of the nonlinear 

function, usually sigmoid, is determined by trial and error. This heuristic selection of the 

slope of the sigmoid function may limit the application of neural networks to complex 

systems involving nonlinear dynamics. An improper selection of the slope of the sigmoid 

function may lead to either unacceptable approximation of nonlinear functions or to system 

instability. There is no report of any systematic study of the effect of the slope of the 

nonlinear function on overall system performance. In this section, an attempt is made to 

study this effect by considering a general nonlinear dynamic plant for the various sigmoidal 

slopes. 

The nonlinear plant considered in this example is of the type Model IV, and the 

nonlinear function and the plant parameters were respectively as follows: 

[2+cos 7n(y2(k-1) + y2(k-2)) }] + e-u(k) 
arid 

1 + u
2
(k-1) + u

2
(k-2) 

I3ff = [1.2, 1, 0.81T , o f  = [1, 0.9, 0.71T. 
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In this simulation study, the plant response was observed for different slopes of the 

sigmoidal function. As shown in Fig. 4.18, small increases in the slope significantly affected 

the plant response. A large increase in the slope resulted in an unstable response. The initial 

learning of the neural network was also found to depend on the slope. A small slope of the 

sigmoid function made the neural network respond slowly to the command input. Plant 

responses for four different values of the slope are shown Fig. 4.18. In the previous example 

it was shown that the neural network could adapt to nonlinear system models. However, the 

underlying assumption was that the slope of the nonlinear function had been chosen 

appropriately. An improper selection of the slope may result in an undesirable system 

response. In the examples discussed earlier in this chapter, the slope was kept constant at 

0.4. A slight change in the slope value from 0.4 to 0.6 resulted in the output response shown 

in Fig. 4.18e. From this simulation example it is evident that the slope of the nonlinear 

function, in addition to the synaptic weights, determines the stability and convergence of the 

system performance. 
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Figure 4.18: The output responses for different values of slope of the sigmoidal function, 

Example 6. 
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4.5 Summary 

A multi-stage dynamic neural network with DNU as the basic computing element has 

been developed. An implementation for a three-stage neural network has been presented. 

The functional approximation theory for this dynamic neural structure was developed using 

the linear and trigonometric polynomials. This was substantiated by computer simulation 

studies. However, it is the author's opinion that the neural network with only feedforward 

connections may be approximated by the linear systems theory as was discussed in Section 

4.2, which, in turn, limits the functional approximation capability. This was evident from 

Fig. 4.6d. To obtain better performance, it may be necessary to have feedback connctions 

between the neural layers. Four models of a nonlinear dynamic system are also discussed in 

this chapter. A three-stage dynamic neural network has been used to control adaptively a set 

of nonlinear plants. In Examples 1 to 4, the learning and adaptive capabilities of the dynamic 

neural network under varying conditions have been demonstrated. From Example 5 it is 

observed that the control technique based on the neural network approach is independent of 

the system representation. It was shown in Example 6 that the slope of the nonlinear 

activation function has a considerable effect on the performance of the system. An improper 

selection of this parameter may lead to instability. It was proposed in [89] that the slope of 

the nonlinear activation function could be considered as an adaptive parameter in addition to 

the neural weights. This is discussed in more detail in the next chapter. 



5. Dynamic Neural Unit With Somatic Adaptation 

5.1 Introduction 

The optimum slope of a nonlinear activation operator, usually the sigmoidal function 

used to model the current conduction mechanism of the biological neuron, is determined by 

trial and error in conventional static neural structures. It was demonstrated in the preceding 

chapter that the performance of neural networks degrades considerably if the slope of the 

sigmoidal function is not chosen properly. The selection of the parameter that determines the 

slope of the nonlinear function needs more attention than what is presently given in the field 

of neural networks. 

Toward this objective, Yamada and Yabuta [61] recently studied the effect of auto-

tuning the slope of the sigmoid function on the performance of static neural networks with 

applications to linear and simple nonlinear systems. Independently, Gupta and Rao proposed 

[39, 89] that the parameter which controls the slope of the nonlinear function can be 

considered as one of the adjustable parameters of the neural structure in addition to the 

synaptic weights. This component contributes to what is generally referred to as somatic 

adaptation. The purpose of this chapter is to develop a dynamic neural structure with 

somatic adaptation, and to examine briefly how it affects the neural network performance as 

applied to the control of unknown nonlinear dynamic systems. 

This chapter is organized as follows: The biological basis for somatic adaptation is 

briefly described in Section 5.2. The modified DNU architecture and the algorithm to 

modify parameters of the DNU are developed in Section 5.3. The implementation scheme of 

the modified algorithm is also presented in this section. A three-stage dynamic neural 

network, using the DNU as the basic computing element, is developed in Section 5.4. 

Computer simulation studies for nonlinear dynamic systems are presented in Section 5.5. 

The concluding remarks are given in Section 5.6. 
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5.2 Biological Basis for Somatic Adaptation 

The biological neuron is currently understood to provide two distinct mathematical 

operations distributed over the synapse, the junction point between an axon and the dendrite, 

and the soma, the main body of the neuron [20, 31]. These two neuronal mathematical 

operations are called respectively the synaptic operation and the somatic operation [39]. 

From the biological point of view, these two operations are physically separate, but in the 

modeling of a biological neuron, these operations have been combined [20] (for example, 

thresholding in the soma is transferred to the synaptic operation). 

At the macroscopic level, the dendrites of each neuron in the biological neural 

network receive pulses at the synapses and convert them to a variable dendritic current. The 

flow of the current through the axon membrane subsequently modulates the axonal firing 

rate. For each neuron there is a time-varying nonlinear relationship between the pulse rate at 

the synapse and the amplitude of the dendritic current [90]. This leads to a plausible 

inference that the main body of the neuron, the soma, may also change during neural 

activities, such as learning, adaptation, and vision perception. This morphological change of 

the neuron during the learning process may be modeled by considering the slope of the 

nonlinear function in a neural network as one of the adaptable parameters in addition to the 

synaptic weights [39, 61]. This component of neuronal learning and adaptation is called the 

somatic adaptation [89]. 

A sigmoidal function has been used in this thesis as the nonlinear activation function 

in the architecture of the DNU. Mathematically, a time-varying sigmoid function can be 

expressed as 

exp vi(k)) - exp (-gs vi(k)) 
`PH = 

exp vi(k)) exp (-gs vi(k)) 
— tanh [gs vi(k)] = tanh [v(k)] (5.1) 

where v(k) = gs v (k). Figure 5.1 shows 'PH and its derivative '11 [.] which provides the 

axonal gain for different values of the slope. 
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Inhibitory Excitatory 

(a) 

v(k) 

(b) 

v(k) 

Figure 5.1: Sigmoidal activation function and its derivative. 
(a) Sigmoid function ‘F[v(k)] = tanh [gs v1(k)], for different values of gs , 

(b) The derivative,111 [v(k)], of the sigmoidal function. This function tends to 

become a sign function as gs 00, that is, tanh [gs vi(k)]Ig . The slope 

[v](k) tends to become very narrow with an increasing value of gs. 

5.3 Modified Structure of Dynamic Neural Unit 

5.3.1 Architectural Details 

The DNU introduced in Chapter 2 accounts for only the synaptic component of the 

neuronal learning process. The modified DNU structure consisting of both the synaptic and 

somatic components is shown in Fig. 5.2. 

The neural dynamics of the DNU can be expressed in the form of a transfer relation as 

v1(k) [a0 + al z-1+ a2 z-2] 
w(k, aff , bfb) s(k) —  -1 • -2, [1 + b1 z + b2

(5.2a) 

[ 
n 

where s(k) = 1 w1 • s 1 1 — 9 is the neural input to the DNU, s• E gin are the inputs from other 
i=i 

neurons or from sensors, wi E gin are the corresponding input weights, 9 is an internal 

threshold, v1(k) E 911 is the output of the dynamic structure, u(k) E 911 is the neural output, 

and aff = [a0, a1, a2 ]T and bfb = [b1, b2]T are the vectors of adaptable feedforward and 
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feedback weights respectively. Alternatively, Eqn. (5.2a) may be described by the following 

difference equation 

vi(k) = - b1 vi(k-1) - b2 vi(k-2) + al) s(k) + al s(k-1) + a2 s(k-2) . (5.2b) 

Dynamic Neural Unit (DNU) 

s(k) 

Nonlinear activation 
function 

 v(k) 

gs 
+1 

Neural dynamics 

u(k) 

Figure 5.2: The modified DNU structure with variable slope of the sigmoid function. 

The vectors of the input signals and adaptable weights of the modified DNU are 

redefined as 

and 

1-(k,vi, s) = {vi(k-1) vi(k-2) s(k) s(k-1) s(k-2)1T , (5.3) 

T 
clo(affbfb) = [-b1 -b2 a0 al ad • 

Using (5.3) and (5.4), Eqn. (5.2b) is rewritten as 

v (k) = 4:1:0(afr bth) s) = [-b1 -b2 ao ai a2

vi(k-1) — 

vi(k-2) 

s(k) 

s(k-1) 

— s(k-2) — 

(5.4) 

(5.5) 

The nonlinear mapping operation on vi(k) yields a neural output u(k) given by 

u(k) = [gs vi(k)] . (5.6) 
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5.3.2 The Modified Learning and Adaptive Algorithm 

The algorithm to modify the synaptic (feedforward and feedback) weights of the 

DNU was derived in Chapter 2. In this section, a brief description of the modified algorithm 

that accounts for both the synaptic and somatic adaptations is presented. 

The feedforward parameters aff., i = 0, 1, 2, and the feedback parameters bfbj, j = 1, 2, 

are modified based on the following set of equations (derived in Chapter 2) 

aff. (k+1) = aff. (k) + Rai E[e(k) sech2[v(k)] Pff. (k)] , i = 0,1,2, (5.7a) 

and 

bfbj (k+1) = bfbj (k) + µbj E[e(k) sech2[v(k)] Pfb. (k)] , j =1,2 (5.7b) 

where the modified parameter-state signals for the feedforward and the feedback weights are 

given by the relations 

Pffi (k) = gs [s (k - 0], i = 0, 1, 2, and (5.8a) 

Pfb  (k) = - gs [v1 (k - j)], j = 1,2 (See Appendix I for proof). (5.8b) 

The modified parameter-state signals may be derived from the DNU structure as shown in 

Fig. 5.3. 

Similarly, the other adjustable parameter of the DNU, namely the somatic gain gs of 

the activation function, may be modified as follows: 

gs(k+1) = gs(k) gg 
a )

s ags(k) (5.9) 

where [Lgs is the adaptive gain. The gradient of the performance index with respect to the 

somatic gain gs is given by 

aj(0) 1 a[yd(k) - u(k)]2
2 E 

ags ags 
-e(k) 

[alli(v) av

av ags

av 
= E {-e(k) [sech2[v(k)] ]} = E -e(k) [sech2[v(k)] v1(k)1 . (5.10) 

ags 



93 

Therefore, from Eqn. (5.9), the following equation may be written 

gs (k+1) = gs (k) +1.1,gs E[e(k) sech2[v(k)] vi(k)1 . (5.11) 

The modified DNU symbol and the implementation scheme of the modified algorithm 

are shown in Figs 5.4a and 5.4b respectively. 

s(k) 

Dynamic structure 

 CD 
OP- Pao Parameter 

) state signals 
for 

10' Pal feedforward 

Structure 

vi (k) 

 pi,..Pa 2 weights 

with feedback 
weights 

v(k) 

Parameter 
rbl state signals 

for feedback 
Pb2 weights 

Figure 5.3: Generation of parameter-state signals from the modified structure of DNU, 

affo, bfbo, gs
0 

Neural Nonlinear operation 
dynamics with somatic adaptation 

Figure 5.4a: Symbolic representation of the DNU with both synaptic and somatic 

components. 
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Figure 5.4b: The implementation scheme of the modified learning and adaptive algorithm. 
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5.4 Multi-Stage Dynamic Neural Network with Somatic Adaptation 

Let the output of a DNU with the somatic component be written as 

w(s) = T[gs(w(k, aff, bfb))s(k)1 (5.11) 

where tlq.] is a sigmoidal function with the varying slope gs. 

The input-output mapping of a single-stage dynamic neural network, shown in Fig 

5.5a, with the DNUs in sigma configuration can be expressed as 

‘110) [ (i)( (i) bi S(i)(10)] 

[ (1)(  0) 
(1),1_, +...+ g s  w (Is aff, fly 

u(k) = (1) gs w (ls aff., bfb) s V()) 

+ + IF(P)[4 13) (w(P)(k, a bfb) s(P)(k))1 

= w1(s) +...+ wi(s) +... + 0)p(s) 

p 
= (s), n = 1,..,i,..,p. 

n=1 n
(5.12) 

The equivalent representation of an one-stage dynamic neural network with 'p' DNUs 

in parallel (in sigma mode) is shown in Fig. 5.5b. 

s(k) e n c 
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w (k,aff,bfb ) g(1) 

JJ
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w (k,a

ff
,b
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w (k,a

ff
,bfb ) 

vi

m.
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g(p) (p) 
[.] 

u(k) E 9i13

ui(k) 

u .(k) Neural  Ow 

(a) 
Figure 5.5: (Continued) 
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s(k) E 91 n v(k) = w(k, a ff, bfb) s(k) 

u(k)= T[gsvi] 

(b) 

u(k) e 9IP 

Figure 5.5: Dynamic neural structure with DNU as the basic computing node. 

(a): The sigma connection of 'p' DNUs to form a single-stage dynamic neural 

network, and 

(b): The equivalent representation of a single-stage dynamic neural network 

with 'p' DNUs in parallel (in sigma mode). 

Similarly, the input-output mapping of a single-stage of DNUs in pi (series or 

cascaded) configuration can be expressed as 

u(k) = '11(1) [41) (w(1)(k, aiff, bilfb) s(1)(k))] ... 41(i) [g(si) (w(i)(k, aff, (i)(k))1 

... T(P)[g(sP) (w(P)(k, aPff, bco s(P)(k)] 

= 0.),(s) (0i(s) (op(s)

= co
n( s ) , n = 1,..,i,..,p. 

n= 1 
(5.13) 

The dynamic neural system described by Eqns. (5.12) and (5.13) maps an n-

dimensional input vector s(k) E 91n into a p-dimensional neural output vector u(k) E JZP

where the mapping operation of an i-th neuron is given by 

(i) The linear mapping operation (synaptic operation): 

(i) i i vi(k) = w (k, aff, bfb) s(' ) (k), and (5.14a) 

(ii) The nonlinear mapping operation (somatic operation): 

ui(k) = 'VD [g(si)(vi(k))1, i = 1, 2,.., p. (5.14b) 
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The output of the dynamic neural network with a fully connected neural structure, 
with H stages and Nh DNUs in each layer where the output of the p DNU in layer h is 

connected to the input of the neuron r in the next layer, is 

u (k) = Nh-1 
r hhh+1 h \ 

r ue, (k) = IPh { gs m,(13,r) (k, aff ,bflo xp (k)) j (5.15) 
p=1 

Nh-1 L
p=1 

where 1 p Nh , 1 r Nh+1 , and 1 _< h _< H. 

The mathematical description of the three-stage dynamic neural network developed in 

Chapter 4 is applicable to the modified structure of the DNU as well. 

5.5 Control of Unknown Nonlinear Systems: Simulation Studies 

In the computer simulation studies discussed in this section, a nonlinear dynamic 

system of the form 

2 2 
y(k+1) = f [ y(k-i) + I [3. u(k-j)] 

i=o i=0 
(5.16) 

was cascaded with a multi-stage dynamic neural network presented in Section 5.4. The 

neural network used for the computer simulation studies consisted of three-stages with two 

DNUs in each stage. Five simulation examples are presented, each one demonstrating a 

particular control objective. In Example 1, a nonlinear dynamic plant governed by the 

difference Eqn. (5.16) was considered. The parameters of the plant, 13ff and a fb, and the 

nonlinear function f[.] were assumed unknown. As the neural network was trained, the plant 

response followed the desired command signal very closely. In Example 2, two cases were 

considered where a study of the robustness of the dynamic neural network was carried out by 

changing the nonlinear functions at different instants of the control process. Input signal 

adaptation is one of the important features of a good adaptive system. The effectiveness of 

the dynamic neural network to make the plant follow the input signal variations was 

demonstrated in Example 3. The adaptive capability of the dynamic neural network-based 

control scheme under dynamic perturbations, such as variations in nonlinear function, input 

signal and plant parameters, was demonstrated in Example 4. It was discussed in the 

previous chapter that a nonlinear plant can be represented by four different models. As the 

neuro-control scheme exhibits learning and adaptive capabilities, it was not mandatory to 

have an a priori knowledge about the nonlinear system under control. It was demonstrated in 

Example 5 that the neural network could adapt to different models of a nonlinear system. 
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Example 1: Control of an unknown nonlinear plant 

A general nonlinear plant described by Eqn. (5.16) was considered. The nonlinear 

characteristic of this plant was described by the following equation 

[2+cos 77c(y2((-1) y2(k-2)) e-u(k) 

1 + u2
(k-1) + u2

(k-2) 
(5.17) 

with parameter values: 13ff = [1.2, 1, 0.8]
T

and a fb = [1, 0.9, 0.7]
T

. The input to the system 

was s(k) = sin (2ick / 250) in the interval [-1, 1]. The simulation results obtained for this case 

are shown in Fig. 5.6. Figure 5.6a shows the error and output responses. Figures 5.6b and 

5.6c show the adaptation in the somatic gain (slope) gs of the activation function with respect 

to the learning trials k and the performance index J(.) respectively. 

It is observed from Fig. 5.6a that the training of the neural network was slow during 

the initial period which resulted in a large initial error. However, this behavior depended 

upon the initial settings of adjustable parameters (aff, bfb, gs) of the DNUs. As the learning 

continued, the nonlinear plant followed the command input very closely with a small error. 

The adaptation in the somatic gain, gs, as observed from Figs. 5.6c and 5.6d, was initially 

large and settled down to an average of 0.28 as the error signal converged to the preset 

tolerance limits of ± 0.1. 
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Figure 5.6: (Continued) 
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Figure 5.6: Simulation results with somatic adaptation, Example 1. 

(a): The error and output responses, 
(b): The adaptation in somatic gain gs, and 

(c): Performance index variation with respect to somatic gain. 

Example 2: Control of a nonlinear plant with variations in nonlinear characteristics 

In this example two cases were considered. In the first case, the nonlinear function 

f[.] was arbitrarily changed to a new function during the control process. In the second case, 

three different nonlinear functions were considered and the simulation was carried out for 

these different nonlinear functions to investigate the robustness of the dynamic neural 

network. 

Case (i): The nonlinear plant to be controlled was the same as in Example 1 with the 

following nonlinearity 

[sin { Tc(y2(k-2) + 0.5) 1] + 0.3 sin(2nu(k)) 
f[.] — ,fork < 250. 

1 + u2(k-1) + u2
(k-2) 

During the control process, the nonlinearity f[.] was changed to 

(5.18a) 

f[.] = sin { ir(y2(k-1) + y2(k-2)) + V I u2(k) + u2(k-1) + u2(k-2) I , fork 250. 

(5.18b) 
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The resulting error and plant output responses are shown in Fig. 5.7a and the 

adaptation in the somatic gain in Figs. 5.7b and 5.7c. It is observed from the simulation 

results that the neural network was able to drive the plant towards the desired response even 

in the presence of changing nonlinear characteristics. The effect of changing the nonlinear 

function on the somatic gain is shown in Fig. 5.7c. The average somatic gain in this case was 

found to be 0.56. 

Case (ii): The nonlinear plant considered in this case was the same as in Case (i). The 

objective of this simulation was to demonstrate the robustness of the dynamic neural 

network. Initially, the neural network was trained to a particular nonlinear function f[.]. 

While the control operation was in progress, the functions used to model the nonlinear 

system were changed. The neural network was then presented with these different nonlinear 

functions in a random sequence. 

It was observed that the effect of introducing different nonlinear functions on the 

system performance was smaller on the subsequent occurrences of variations in the nonlinear 

functions. This illustrates that the neural network adapted to the different nonlinear functions 

very quickly. The three nonlinear functions used in this simulation example were as follows: 

[] [sin { n(y2(k-2) + 0.5) 1] + 0.3 sin(2nu(k)) 

1 + u2
(k-1) + u2

(k-2) 

for 0 k < 350, and 2000 k < 2500, 

f2[-] - [2+cos { 7,x(y2(k-1) y2(2-2)) }] e-u(k) 

1 + u2
(k-1) + u2

(k-2) 

for 350 k < 800, 1200 k < 1600, and k > 2500, 

f3[.] = e(y
2
(k-1)+y

2
(k-2)) +Al I { u2(k) u2(k- 1) 4. u2(c-2)} 

for 800 k < 1200, and 1600 k < 2000. 

(5.19a) 

(5.19b) 

(5.19c) 

The error and output responses are shown in Figs. 5.8a and 5.8b respectively, and the 

corresponding variation in the somatic gain in Fig. 5.8c. 
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Figure 5.7: Simulation results with somatic adaptation, Example 2, Case (i). 

(a): The error and output responses, 
(b): The adaptation in somatic gain gs, and 

(c): Performance index variation with respect to somatic gain. 
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Figure 5.8: Simulation results with somatic adaptation, Example 2, Case (ii). 

(a): Error response to the changes in nonlinearity characteristics. Numbers in 

circles, 1, 2 and 3, represent different nonlinearity characteristics as 

described in Equations (5.19a), (5.19b) and (5.19c) respectively, 

(b): The output response, and 

(c): The adaptation in somatic gain. 

Example 3: Control of a nonlinear plant with variations in input signal 

The objective of this simulation example was to demonstrate the input signal adaptive 

capability of the dynamic neural network. The plant and the nonlinear function f[.] in this 

example were the same as in Example 1, but in this example the input signal s(k) was varied 

in the interval [-1.2, 1.2] as follows: 

s(k) = sin (2ick / 250) , 0 k < 350 

s(k) = 1.2, for 350 k < 500 

s(k) = 0.4, for 500 k < 600 

s(k) = -0.2, for 600 k < 800 

s(k) = -0.6, for 800 Lc. k < 1000 

s(k) = 1.2 cos (2Tck / 150), for k 1000. 

(5.20) 
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The corresponding error and output responses are shown in Figs. 5.9a and 5.9b 

respectively. The adaptation in the somatic gain for the input signal variations is shown in 

Fig. 5.9c. 
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Figure 5.9: Simulation results for input signal variations, Example 3. 

(a): The error response, 

(b): The output response, and 

(c): The adaptation in somatic gain for variations in input signal. 
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Example 4: Control of a nonlinear plant with variations in nonlinear function, input 

signal and plant parameters 

In the above examples it was shown that the dynamic neural network was able to 

make a nonlinear plant follow the changes in the nonlinear characteristics and the input 

signal. The objective of this simulation example was to demonstrate the adaptive control 

capability of the neural network under the following situations: (i) time-varying nonlinear 

functions, (ii) varying pattern of input signals, and (iii) perturbations in the plant parameters. 

The nonlinear function used in this example was 

f[ 
] — sin { n(y2(k-2) + 0.5)} +11 I { u2(k) + u2(k-1) + u2(k-2)}

, 0 5_1« 400 
. 

1 + y2(k-1) + y2(k-2) 

(5.21a) 

which was perturbed at k = 400 to 

[2i-COS 77t( y2(k-1) y2((-2)) 1] e-u(k) 
f[.] — , 400 5_ k < 1400. 

1 + u2(k-1) + u2(k-2) 
(5.21b) 

The input to the system, s(k) = sin (2ick / 250) in the interval [-1, 1], was changed as follows 

s(k) = sin (2nk / 250) , for 0 k < 350, 

s(k) = 0.8, 

s(k) = 0.4, 

s(k) = - 0.2, 

s(k) = - 0.6, 

for 350 k < 500, 

for 500 k < 600, 

for 600 k < 800, 

for 800 k < 1000, and 

s(k) = 1.2 cos (2rck / 150) , for 1000 k 1400. 

The plant parameters were: 

Pff 
= [1.4, 

Pff 
= [1.4, 

13ff = [1.4, 

Pff = [1.4, 

1.2, O] r , a fb = [1' ' 1 0] T'

1.2, 0.31T , a fb = [1 1, 0• 31T , 

1.2, 1.01T , a fb = [1, 1, - 0.11T

1.2, 0]T , = [1'fb 0 ' 0 31T• ' 

for 0 k < 175, 

for 175 k < 650, 

, for 650 k < 1200, and 

for k>1200. 

(5.22) 

(5.23) 

The simulation results obtained for this example are shown in Fig. 5.10. This 

example demonstrates the robustness of the neural network for variations in the nonlinearity 

characteristics, input signal, and changes in the dynamic characteristics of the plant. 
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Perturbations in plant parameters 
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Figure 5.10: Simulation results for dynamic perturbations in the plant, Example 4. 

(a): The error response to variations in the nonlinearity characteristics, input 

signal and plant parameters, 

(b): The corresponding output response, and 

(c): The adaptation in somatic gain. 
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Example 5: Adaptations to system model representations 

In this example the adaptive capability of the neural network with somatic adaptation 

was demonstrated by changing the plant models during the control process. The same 

changes were made as discussed in Chapter 4. The error and output responses obtained for 

this simulation example are shown in Figs. 5.11a and 5.11b respectively. The effect of 

changing the nonlinear plant models on the somatic gain is shown in Figure 5.11c. It is 

observed from this figure that the neural network was able to adapt very quickly to the 

changing models of the nonlinear plant. 
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Figure 5.11: (Continued) 
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Figure 5.11: Simulation results for model variations, Example 5. 

(a): The error response. Circles with numbers I, II, III and IV denoted the 

different nonlinear models as described by Eqns. (4.14a) through (4.14d) 

in Chapter 4, 

(b): The corresponding output response, and 
(c): The adaptation in somatic gain, gs, for variations in nonlinear plant models. 

5.6 Summary 

The importance of changing the slope of the nonlinear function in a neural network 

has been emphasized in this chapter. A biological basis for such a change in the neural 

network structure has been discussed. Through computer simulation studies, it was 

demonstrated that the capability of a neural network can be enhanced with somatic adaptation 

compared to a neural network with non-adaptable sigmoidal functions. A modified DNU 

structure having both the synaptic and somatic components has been proposed. A modified 

algorithm to update the adjustable parameters, namely the feedforward and feedback synaptic 

weights, and the slope of the sigmoid function, has been presented. An implementation 

scheme for this algorithm has also been presented. A few simulation examples have been 

presented and discussed demonstrating a particular control objective. 

This, and the preceding chapters, have described the dynamic neural unit (DNU) and 

the multi-stage dynamic neural structures with the DNU as the basic computing element. 
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However, it is postulated in neuro-physiology that the collective activity generated by large 

numbers of locally redundant neurons is more significant in a computational context than the 

activity generated by a single neuron [411 The total neural activity results from a collective 

assembly of neural cells called neural subpopulations. A subpopulation contains a large 

class of similar neurons that lie in close spatial proximity. A simple approach for the study 

of subpopulations of neurons would be to consider a neural model consisting of excitatory 

and inhibitory neurons. A dynamic neural structure based on the concept of neural 

subpopulations is developed in the next chapter. 



6. Dynamic Neural Processor with Excitatory and 

Inhibitory Neurons 

6.1 Introduction 

It was demonstrated in the previous chapters, through computer simulation studies, 

that a dynamic neural network with a DNU as the basic computing element can control 

unknown nonlinear systems. This neural structure is different from the conventionally 

assumed structure of both feedforward and feedback networks in the sense that the basic 

functional node in a neural network, the DNU, developed in this thesis consists of two delay 

operators with feedforward and feedback connections forming a second-order linear 

structure. The output of this linear structure constitutes an argument to a time-varying 

sigmoid function. A number of such DNUs are connected in a conventional feedforward 

network comprising of input, intermediate and output stages without any feedback between 

the stages. The implicit assumption in traditional feedforward and feedback neural networks 

is that the behavior of each neuron in the networks is deterministic. 

Experiments in neuro-physiology have shown that the response of a biological neuron 

at the single cell level is unpredictable, and that the total neural activity results from a 

collective assembly of cells called neural subpopulations. A subpopulation contains a large 

class of similar neurons that lie in close spatial proximity. As mentioned in the previous 

chapter, a simple approach for the study of subpopulations of neurons would be to consider a 

neural model consisting of excitatory and inhibitory neurons. 

In view of the above, a neural structure, called the dynamic neural processor (DNP), 

consisting of two DNUs coupled in excitatory and inhibitory modes is proposed in this 

chapter. The DNP emphasizes the collective action of the subpopulation of neurons. The 

biological basis for the development of DNP is detailed in the next section. A detailed 

mathematical model and an algorithm to modify the parameters of the DNP are also 

described in this section. Four applications of the DNP are discussed in Section 6.3. The first 

application, discussed in Section 6.3.1, involves the use of the DNP for the approximation of 

arbitrary nonlinear functions. A comparative study of the DNP with single- and two-layer 

recurrent neural networks is also discussed in this section. The next subsection contains a 

discussion of the use of the DNP for computing the inverse kinematic transformations of a 

two-link robot. This is followed in Section 6.3.3 by the application of the DNP to the control 

of unknown nonlinear dynamic systems. In the fourth application, the DNP is employed for 

110 
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the coordination and control of multiple systems. A generalized dynamic neural model based 

on the concept of neural subpopulations is developed in Section 6.4, followed by the 

concluding remarks in the last section. 

6.2 Architectural Details of the Proposed Neural Structure 

6.2.1 The Biological Basis 

The neural network models described in the existing literature often consider the 

behavior of a single neuron as the basic computing unit in neural information processing 

operations. Each computing unit in the network is based on the concept of an idealized 

neuron. An ideal neuron is assumed to respond optimally to the applied inputs. However, 

experimental studies in neuro-physiology have shown that the response of a biological 

neuron is random [91], and only by averaging many observations is it possible to obtain 

predictable results. This observed variability in the response of a neuron is determined by the 

uncontrolled or extraneous electrical signals that are received from the activated neurons in 

other parts of the nervous system. As well, this variability is enhanced by the intrinsic 

fluctuations of the electrical membrane potential within the neuron [41, 90, 91] . 

In general, the states of a biological neuron can be considered as a random process. 

However, mathematical analysis has shown that these cells can transmit reliable information 

if they are sufficiently redundant in number. It is postulated [41], therefore, that the 

collective activity generated by large numbers of locally redundant neurons is more 

significant in a computational context than the activity generated by a single neuron. 

Furthermore, the study of neurons at the individual cell level may be appropriate to emulate 

some functions of the biological neural network. However, the study of neurons at the 

individual cell level is not necessarily suited for investigations of complex cognitive 

functions, such as sensory information processing, learning, memory storage and recall, and 

vision. This shift in emphasis from the study of single neurons to the study of neural mass is 

warranted since the sensory information is introduced into the nervous system in the form of 

large scale spatio-temporal activity in the sheets of cells. The number of cells involved is 

simply too large for any approach starting at the single cell to be tractable [41, 90, 92]. 

The total neural activity generated within a tissue layer is a result of the spatially 

localized assemblies of the densely interconnected nerve cells called a neural population, or a 

neural mass. The neural population is composed of neurons, and its properties have a generic 

resemblance to those of individual neurons, but it is not identical to them and its properties 
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cannot be predicted from measurements on single neurons [41, 90]. This is due to the fact 

that the properties of a neural population depend on various parameters of individual neurons 

and also on the interconnections between neurons. The conceptual gap between the functions 

of single neurons and those of a neural mass is still very wide. 

Each neural population may be further divided into several coexisting subpopulations. 

A subpopulation contains a large class of similar neurons that lie in close spatial proximity. 

The neurons in each subpopulation are assumed to receive a common set of inputs and 

provide the corresponding outputs. The individual synaptic connections within any 

subpopulation are random, but dense enough to ensure that at least one mutual connection 

exists between any two neurons. The most common neural mass is the mixture of excitatory 

(positive) and inhibitory (negative) subpopulations of neurons [41, 91 - 93]. The excitatory 

neural subpopulation increases the electro-chemical potential of the post-synaptic neuron, 

while the inhibitory subpopulation reduces the electro-chemical potential. The individual 

neurons within the subpopulations that generate Y(k) receive stimuli from other neurons in 

the nervous-tissue layer, self-feedback signals and a common signal space S(k) external to 

the tissue layer, as depicted in Fig. 6.1. 

Signal space 

Feedback 
signal 

Ata .
Neural 

activity field 

Y(k) 

Figure 6.1: Schematic diagram of a neural activity field Y(k), in response to a signal space 

S(k). This structure represents the functional dynamics of a nervous-tissue 

layer. 

The minimum topology of such a neural mass contains excitatory (positive), 

inhibitory (negative), excitatory - inhibitory (synaptic connection from excitatory to 

inhibitory), and inhibitory - excitatory (synaptic connection from inhibitory to excitatory) 
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feedback loops. The morphology of a neural mass is shown in Fig. 6.2. One of the important 

attributes of a neural mass is that its fundamental characteristics may be described in terms of 

linear systems theory [93]. This property implies that the operations in a neural mass, within 

the appropriate limits of amplitude, conform to the principle of superposition that make the 

responses to two or more inputs additive. 

Positive self feedback 

External inputs 

Neural population 

External outputs 

Excitatory neural) 
subpopulation 

Excitatory to Inhibitory to 
inhibitory excitatory 

< interaction interaction 

Negative self feedback 

Figure 6.2: A schematic diagram of the coupled interactions between excitatory and 

inhibitory neural subpopulations within a neural population. 

Strumillo and Durani used a neural model based on neural population to study cardiac 

arrhythmia [94]. Gupta and Knopf [42] proposed a neural structure, called the P-N Neural 

Processor (PNNP), for machine vision applications. The state-space model of this visual 

information processor corresponds to a bi-layered two-dimensional array of densely 

interconnected nonlinear first-order dynamic neurons called processing elements (PEs). An 

individual PE consists of a multi-modal sigmoidal function followed by a first-order dynamic 

structure. The connections between the neural subpopulations are fixed. This neural 

structure has been used successfully for many applications such as spatio-temporal filtering, 

motion detection, spatio-temporal stabilization, short-term visual memory, content-

addressable memory, and pulse frequency modulation [42]. No control applications of the 

P-N neural processor have been reported. 
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6.2.2 Mathematical Model of Dynamic Neural Processor 

In view of the above remarks, a neural model called the dynamic neural processor 

(DNP), which emphasizes the dynamic properties of a subpopulation, is proposed in this 

chapter. The important assumption in this model is that all nervous processes of any 

complexity depend upon the interaction of excitatory and inhibitory neurons. 

The DNP consists of two DNUs, developed in the preceding chapter, which are 

configured to function as antagonistic neural units as depicted in Fig. 6.3. In this structure, 

the following notations are used: 

- subscript X. indicates either an excitatory, E, or inhibitory, I, state, 

- sk(k) and uk(k) represent respectively the neural stimulus (input) and neural output 

of the computing unit, 

- s (k) denotes the total input to the neural units, 

- wu  represent the strength of the self-synaptic connections (wEE, wE in Fig. 6.3), 

- wkx: represent the strength of the cross synaptic or inter-subpopulation connections 

from one neural unit to another (w1E, wEI in Fig. 6.3), 

1 - z elements denote communication delays in the self- and inter-subpopulation 
paths, 

- s (k) and s (k) are the excitatory and inhibitory neural inputs respectively, 

- wE and w are the input weights for the excitatory and inhibitory neural inputs 

respectively, 

- u (k) and u (k) represent the responses of the excitatory and inhibitory neural 

subpopulations respectively, and 

- O
E 

and') represent the thresholds of excitatory and inhibitory neurons respectively. 

The functional dynamics exhibited by a neural computing unit, the DNU, is defined 

by a second-order difference equation as represented in Chapter 5 by Eqn. (5.2b). The state 
variables uE(k+l) and u (k+1) generated at time (k+1) by the excitatory and inhibitory neural 

units of the proposed neural processor are modeled by the nonlinear functional relationships 

uE(k+l) = E [uE(k) , vE(k)1, and (6.1a) 
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ui(k+1) = I [ui(k) , vi(k)] (6.1b) 

where v
E
(k) and v (k) represent the proportion of neurons in the neural unit that receive 

inputs greater than an intrinsic threshold, and E and I represent the nonlinear excitatory and 

inhibitory actions of the neurons. The neurons that receive inputs greater than a threshold 

value are represented by a nonlinear function [vx(k)]. This nonlinear function is related to 

the distribution of neural thresholds within the neural unit [41, 42]. Ideally, the neural model 

based on the neural population should consist of a number of identical neurons in each neural 

subpopulation. However for simplicity, it is assumed that the DNP consists of only one 

dynamic neuron (DNU) in each subpopulation. 

Excitatory neuron 

E(k)
 w 

sI (k) 

s (k)  
tE (

D 

E 

UE)

WIE H 

s (k)  

 ( DNUI) 

I z-i 

• 

► u E(k+l) 

Inhibitory neuron 

► u i(k+1) 

Figure 6.3: The dynamic neural processor with two dynamic neural units coupled as 
excitatory and inhibitory neurons represented as DNUE and DNU 

respectively. 
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The inputs incident on the excitatory and inhibitory neural units are respectively 

StE(k) = WE sE(k) WEE uE(k) - and (6.2a) wiE eE 

s (k) = wI SI(k) - wII I (k) + wEI uE(k) - 0/ (6.2b) 

where wE and w are the weights associated with the excitatory and inhibitory neural inputs 

respectively, WEE and wll represent the self-synaptic connection strengths, wiE and WEI

represent the inter-neuron synaptic strengths, and 0 E and 01 represent the thresholds of 

excitatory and inhibitory neurons respectively. The above equations may be written in 

matrix form as follows: 

[stE(k)H
StI (k) 

wE 0 
0 WI 

[sE(k)]
SI(k) 

WEE WIE [ 
wEl - WII 

UE(k)
UI(k) 

° E 
0 
I_ 

(6.3) 

A general expression for the dynamic neural activity of the DNP may be represented 

in a compact form by the following equation: 

Std, 
=

, 
Si + W , UX - 0 ' XX 

[ 
s tE(k) 

where, Std, = s (k) : input incident vector , • S x
tl 

(6.4) 

SE(k) 

s (k) : stimulus (input) vector; 

WE w WEE - w- WIE W , = 0 w : input scale matrix; W , = : synaptic weight matrix; 
20t. EI II 

and U = x uE(k) u (k) [ 
1 

: response (output) vector; Ox = 
0 

E
0 

1 
: threshold vector; 

XX 
assuming that W , is a nonsingular matrix. From Eqn. (6.4), the responses of the neural 

XX 
units, ux(k), in terms of the stimulus (input) sx(k), the input stx(k), and the strength of the 

synaptic connections wxx and wxx. may be obtained as 

-1 Xi 
UX. = W ,  S

OL. 
- W , SX + 0i XX 

(6.5) 
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A direct analytical solution for determining the steady-state and temporal behavior 

exhibited by the DNP is not possible because of the inherent nonlinearities in Eqns. (6.2a) 

and (6.2b). However, these nonlinear equations can be analyzed qualitatively by obtaining 
the phase trajectories in the uE - III phase plane [41, 42, 98]. These trajectories enable the 

system characteristics to be observed without solving the nonlinear equations. The locus of 

points where the phase trajectories have a given slope is called an isocline. The steady-state 

activity exhibited by the DNUs of the neural processor can be investigated by determining 
the isoclines corresponding to uE(k+1) = uE(k) and ui(k+1) = ul(k). A typical plot of the 

isoclines for sE(k) = 0, s (k) = 0 is shown in Fig. 6.4. The weight parameters for these curves 

are: WEE = 20, wIE = 5, wE1 = 8, w11= 10, 0E = 0I = 0.5. In this case, there is only one steady-

state solution corresponding to the one intersection of the two curves. However, depending 

upon the strength of the synaptic connections, there may be more than one solution, and the 

solution may be stable (+) or unstable (-) depending upon where the two isoclines intersect 

[41]. 

I • I • I • I 

-0.6 -0.4 -0.2 0.0 

u (k) 

Figure 6.4: The isoclines for sE(k) = 0, si(k) = 0, and (+) denotes stability and (-) instability 

of steady-state. 

0.2 0.4 

The steady-state behavior of the DNP is the superposition of the individual responses, 

uX ' (k) of the excitatory and inhibitory neural subpopulations and is given by 

u(k) = uE(k) + ui(k) 

n
E

= [g sEi v is (k) - + { 
IJ 

[gsti v11j (k) - (6.6) 
i=i j=1 
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where nE and n represent the population of the antagonistic neural units (number of 

excitatory and inhibitory neurons respectively) in a neural population. The interpretation of 

Eqn. (6.6) is that the total activity of the neural population is the summation of the responses 

of the antagonistic neural subpopulations. This describes the steady-state behavior of the 

DNP. A brief description of its transient behavior is given below. 

The limit cycle phenomenon of the DNP is briefly discussed in this section. The limit 

cycle oscillations are observed in response to a constant stimulation [41, 42]. Figure 6.5(a) 
shows the limit cycle oscillations for a constant excitatory stimulus sE(k) of 5 units, s1(k) set 

equal to zero. This simulation was carried out for various stimulus intensities, and the 

following points were observed: (i) a threshold value exists for the stimulus intensity which 

must be exceeded in order to evoke such oscillatory behavior, (ii) there is a higher value of 

the stimulus above which the system saturates and the limit cycle activity is extinguished, 

and (iii) between these two values, the frequency of oscillations increases monotonically with 

increasing stimulus intensity. 

In general, the dynamic behavior of the neural processor depends upon the strength of 

the synaptic connections and the stimulus intensity as demonstrated in Figs. 6.5b and 6.5c. 
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Figure 6.5: (Continued) 
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Figure 6.5: The response of a neural subpopulation. 

(a) Temporal response of the excitatory neural unit to a stimulus with constant 

intensity. The parameters used in this simulation are shown in Fig. 6.5b, 

(b) and (c): the dynamic behavior of the DNP for the various synaptic strengths 

and stimulus intensities. 

This nonlinear characteristic of the processor can be employed to approximate 

nonlinear functions and to model some aspects of complex systems such as robots. In order 

to achieve the computational power of the DNP, it is necessary to develop a learning and 

adaptive algorithm to update the parameters of the DNP. An algorithm has been derived in 

Chapters 2 and 5 to modify the parameters of the DNU; in the following sub-section, an 

extension of this algorithm to other parameters, namely the self- and inter-subpopulation 

synaptic feedback-weights, of the DNP is derived. 

6.2.3 Learning and Adaptive Algorithm 

It is believed [24] that the connectivity strength, that is the neural weights, between 

the neural subpopulations changes as the brain learns to perform a new task. Due to the 

complexity, and the incomplete knowledge of the biological learning process, many concepts 

and algorithms have been developed in the field of neural networks to mimic the learning 

process of the biological neural networks [22 - 26, 44, 45]. One of the methods involves 

minimizing a performance index with respect to the weights of the neural network. Based on 

this principle, an algorithm to modify the DNU parameters has been developed earlier in this 
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thesis. An extension of this algorithm to other parameters of the DNP is briefly described in 

the following paragraphs. 

Let the vector of the adjustable weights of the DNP be S2(abfb, gs, w ,) (represented 
w xx

here after as 0 0 ). The task of the algorithm is to modify each component of the vector 110

in such a way so as to minimize the performance index J(S2) using the steepest-descent 

technique. This algorithm may be written as 

Slo (k + 1) = 0 0 (k) + 8S20 (k) (6.7) 

where 110 (k + 1) is the new parameter vector, 0 0 (k) is the present parameter vector, and 

800 (k) is an adaptive adjustment in the parameter vector. In the steepest-descent method, 

the adjustment of the parameter vector is made proportional to the negative of the gradient of 

the performance index J; that is, 

8S-2 ( 
() k-) cc (-'7J), where VJ —  au • 

aJ 
Thus, 80

(•)
(k) = - dia[g] a0(.) — - dia[µ] VJ (6.8) 

where dia[p] is the matrix of the individual adaptive gains. In the above equation, the dia[R] 

is defined as 

Rai
0 

0 0 
p.b., 0 

0 
0 

dia[µ] 0 0 µ 0 
8s 

0 0 0 µxx, 

(6.9) 

where µai, i = 0,1,2, µb , j =1,2, 11gs are the individual learning gains of the adaptable 

parameters of the DNU, and 11,2a, denote the learning gains for the self- and inter-

subpopulation synaptic weights. The parameters of the DNU are adjusted based on the 

following equations derived in the preceding chapter: 

aff. (k+1) = aff. (k) +µa1 E [e(k) sech2[v(k)] Pffi(k)1 , i = 0,1,2, (6.10a) 
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bfbi (k+1) = bfbi (k) + µb. E [e(k) sech2[v(k)] Pfb (k)1 , j = 1,2, and (6.10b) 

gs (k+1) = gs (k) + µgs E[e(k) sech2[v(k)] vi(k)1 (6.10c) 

where Pff (k) and P (k) are the parameter-state signals of the DNU. 
i fb. 

Similarly, equations to modify the self- and inter-subpopulation feedback weights can 

be obtained as follows. The gradient of the performance index with respect to these weights 

is given by 

aj 1 [a[y,(k) - 00'2 = 1 
E [-e(k) 

{aT(v) av 

awl — E 
2 aw, av aw 

= E[-e(k) sech2[v(k)] gs ux(k) 1. (6.11) 

From Eqns. (6.7) and (6.11), the following equation may be written 

wxx (k+1) = wxx, (k) + µxx E[e(k) sech2[v(k)] gs ux(k) 1. (6.12) 

For clarity, Eqn. (6.12) is written for the individual synaptic weights as 

wEE(k+l) = wEE(k) + REE E[e(k) sech2[v(k)] gs uE(k) (6.13a) 

wIE(k+l) = wEE(k) + 
IE 

E [e(k) sech2[v(k)] gs ui(k) (6.13b) 

wEi(k+1) = wEE(k) + µE, E [e(k) sech2[v(k)] gs uE(k) (6.13c) 

wii(k+1) = wii(k) + II E[e(k) sech2[v(k)] gs u1(k) (6.13d) 

Equations (6.10a) and (6.10b) provide adaptation in the synaptic weights, while Eqn. 

(6.10c) and Eqn. (6.12) provide adaptation in the sigmoidal gain of the DNU and the external 

synaptic weights respectively. Using these equations, four applications of the DNP are 

discussed in the following section. 
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6.3 Applications of Dynamic Neural Processor 

Although many applications of the DNP, in equalization of communication channels, 

robotics and control, short-term memory, and pattern recognition are possible, only some 

applications to robotics and control were emphasized in this study. In this context, four 

applications of the DNP are discussed. The first application, discussed in Section 6.3.1, 

involves the use of the DNP for the approximation of arbitrary nonlinear functions. A 

comparative study of the DNP with single- and two-layer recurrent neural networks is also 

discussed in this section. The next subsection details the use of the DNP for computing the 

inverse kinematic transformations of a two-link robot. This is followed in Section 6.3.3 by 

the application of the DNP to the control of some unknown nonlinear dynamic systems. 

Finally, the application of DNP to the coordination and control of multiple systems is 

discussed in the last section. 

6.3.1 Functional Approximation 

Although different theoretical bases and approaches are reported in the literature to 

show the functional approximation capabilities of neural networks, one clear feature is that 

neural networks have great promise in nonlinear system modeling and control. In this 

section, the performances of recurrent neural networks and the DNP as applied to the 

approximation of nonlinear functions are compared. The general learning scheme that is 

employed to achieve this objective is shown in Fig. 6.6. In the computer simulation studies 

discussed in this section, both the single- and two-layer recurrent neural networks shown in 

Figs. 6.7 and 6.8 respectively are considered. In many control applications, only single-layer 

recurrent neural networks have been employed. Much less has been reported regarding the 

performance of two-layer recurrent neural networks. 

Figure 6.6: A general learning scheme for functional approximation using neural networks. 
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Figure 6.6: Single-layer recurrent neural network with no self-feedback connections. 

In Fig. 6.6, the feedback input to the i-th neuron is equal to the weighted sum of 

neural outputs where j = 1, 2, ... , n. If wii is the weight value which connects the output 

of the j-th neuron to the input of the i-th neuron, the total input ui of the i-th neuron can be 

expressed as 

U. = W.• y. +X. - W ,i= 1, 2, ... ,n. i  oi 

jai 

In vector form, Eqn. (6.14a) can be rewritten as 

u. = Nv7. y + x. - w . i = 1, 2, ... , n 

(6.14a) 

(6.14b) 
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where w. A = 

- wil 

Wi2 

w. 
— m —

and y A 

[ Y1 

Y2 

yn 

The linear portion of the recurrent neural network can be described in matrix form as 

U=Wy+X-w 0 (6.15a) 

where U A 

ul

u2 
, X A 

X1

X2 

[ 

and w0 A 

WO1 

W02 

— un x — wOn — 

The matrix W in Eqn. (6.15a), called the connectivity matrix, is an (n x n) matrix and 

may be written as 

W = 

W12 W13 W ln 

W21 0  W23 W2n

W
31 

W
32 

0 w3n 

— 
W

n1 
W

n2 
W

n3 
0 

(6.15b) 

This matrix is symmetrical, w..= w.., and with the diagonal entries equal to zero, 

wii = 0, indicating that no connection exists from any neuron back to itself. This condition is 

equivalent to there being no self-feedback in the neural structure shown in Fig. 6.7. As an 

extension of this structure, a two layer recurrent neural network, shown in Fig. 6.8, has been 

developed for bidirectional associative memory and pattern recognition applications [99]. 
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Figure 6.7: A two-layer recurrent neural network. 

• 
• 

For performance comparison, a single-layer recurrent neural network with five 

neurons and a two-layer recurrent neural network, which consisted of two neurons in each 

stage as shown in Fig. 6.7, were considered in the simulation studies. The conventional 

backpropagation learning algorithm [100] was implemented to modify the neural network 

weights. The input used in these simulation studies was s(k) = sin (2itk/250) in the interval 
[-1,1]. The initial values of the synaptic connections of the DNP were arbitrarily set to WEE = 

= 0.5, wll =1, and the components of the scaling vector, w = [wE w/ ]r, to 1, WEI = 0.5, wIE 
1. The parameters of the DNP, namely aff, bfb, gs and w20,,, were adjusted based on the 

learning algorithm derived in the preceding section. 

Different arbitrary nonlinear functions of s(k) were used to evaluate the performance 

of these dynamic neural structures. Some of the functions and their approximations are 

shown in Fig. 6.8. Figure 6.8a shows the desired nonlinear functions presented to the neural 

networks. The functional approximations obtained using the single- and two-layer recurrent 

neural networks are shown in Figs. 6.8b and 6.8c respectively, while Fig. 6.8c illustrates the 

functional approximation obtained using the DNP. The performance of each neural network 
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was observed for 1000 time intervals. The number of iterations required for each neural 

network to approximate the nonlinear functions is indicated in each figure. The functions 

shown in Fig. 6.9a can be mathematically represented as 

(i) f[.] = s(k), (6.16a) 

(ii) f[.] = 0.5 s(k) + 0.1 cos(2nk/250), and (6.16b) 

(iii) f[.] = 0.8 s(k) + 0.2 sin(27ck/25) . (6.16c) 
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Figure 6.9: (Continued) 
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Function approximation using two-layer recurrent neural network 
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Figure 6.9: Nonlinear functions and their approximations using different neural networks. 

(a) Arbitrary nonlinear functions applied to neural networks for performance 

comparison, 

(b) Functional approximation using a single-layer recurrent neural network, 

(c) Functional approximation using a two-layer recurrent neural network, and 

(d) Functional approximation using the DNP. 

Figure 6.10 shows some complex nonlinear functions and their approximations 

achieved by the DNP. The performance of the recurrent neural networks for these functions 

was very poor in terms of both the accuracy of approximation and the speed of convergence. 

The nonlinear functions shown in Figs. 6.10a and 6.10b can be represented mathematically as 
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f[.] = s3(k) + 0.3 sin(2rcs(k)) + 0.1 sin(5ns(k)) 

f[.] = sin br(s2(k) + 0.3)] 
+ 0.3 sin(2ns(k))
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Figure 6.10: Arbitrary nonlinear functions and their approximations using the DNP. 

1000 

Extensive simulation studies were conducted for various nonlinear functions. From 

these studies and from the simulation results presented in this chapter, it was observed that 

the DNP could approximate arbitrary nonlinear functions much more quickly than the 

recurrent neural networks which was evident from the number of iterations required for each 

neural network. The speed of convergence of the recurrent neural networks depended upon 

the functions being approximated. On the other hand, the performance of DNP was found to 

be almost independent of the functions being approximated. A single-layer recurrent neural 

network was found to be faster than its two-layer counterpart. A plausible explanation for the 

slow convergence of the multi-layer recurrent neural network is that the delay operators were 

employed in the forward path of the information flow, and the feedback signals arrived from 

the last layer to the input nodes. A detailed comparative study of the recurrent neural 

networks and the DNP is reported in [101]. These initial findings imply that the greater the 

number of layers, the slower the convergence of the recurrent neural networks to the desired 

function. However, more work needs to be done to generalize this characteristic of recurrent 

neural networks. 
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In order to compare the performance of the recurrent neural networks and the DNP 

under noisy conditions, nonlinear functions represented in Fig. 6.9a were corrupted with 

different levels of noise. Figure 6.11 shows the performance of the recurrent neural networks 

and the DNP in terms of the percentage of the convergence error with respect to the 

percentage of the noise level in the functions. These observations were made for a time 

interval of 1000 iterations. 

0 10 20 30 40 50 0 
% Noise level 

10 20 30 40 

% Noise level 

50 0 10 20 30 40 50 

% Noise level 

Figure 6.11: Performance comparison of dynamic neural networks under noisy conditions. 

Figure 6.11 shows that as the noise level in the functions that were approximated was 

increased gradually the performance of the DNP was degraded compared to the recurrent 

neural networks. The recurrent neural networks were found to be more noise tolerant than 

the DNP. This demonstrates the limitation of the DNP which was developed with only one 

DNU in each neural subpopulation. The performance of the DNP may improve under noisy 

conditions if the neural subpopulations contain more neurons. 

6.3.2 Neural Learning of Robot Inverse Kinematic Transformations 

6.3.2.1 Neural Networks in Robotics 

Advances in the area of neural networks have given a different direction to robotic 

control. By virtue of their functional mapping and iterative capabilities, neural networks can 

be employed for learning coordinate transformations [101 - 1031 The advantage of using the 

neural approach over the conventional inverse kinematics algorithms is that neural networks 

can avoid time consuming calculations. The features of neural networks, such as learning, 

adaptation, fault-tolerance and parallelism, provide strong incentives for choosing them to 

compute inverse kinematic transformations in the field of robotics. 
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Neural networks, because of their parallel and distributed computational abilities, 

have the ability to learn associations between patterns. These patterns could represent, for 

example, the task space coordinates and the corresponding joint angles of the model leg. The 

association between these two sets of patterns basically amounts to inverse kinematics 

computations in robotics [104, 105]. Neural networks have an advantage over the traditional 

inverse kinematics algorithms in that the neural networks can 'learn' the transformation 

through examples. This would avoid time consuming numerical calculations and provide, 

more or less, instant recall. Furthermore, in a manner that is typical of neural networks, it 

would be very easy to modify the learned associations as the structure of the mechanism 

changes. It is advantageous, therefore, to employ neural networks for learning the inverse 

kinematics transformation of robots. In this section, the recurrent neural network and the 

DNP are employed to obtain the inverse kinematics transformation of a two-link robot. 

In the context of the above observations, consider the two-link robot shown in Fig. 

6.12a. The joints at which the rotary motion occurs (within limits) are analogous to the hip 

and the knee joints of the human leg. The point P(x,y), the free tip of the second link, also 

called the 'end point', describes the end-effector trajectories based on a Cartesian coordinate 

system. The origin of the coordinate system is the first (hip) joint, which is assumed to be 

fixed in space, while the end point coordinates (x, y) are located with respect to the two 

perpendicular axes, X, Y. The hip joint is considered as the anchor (fixed) point. The 

position of the leg can also be restricted using the angles formed at the two joints with the 

reference axes as shown. The relationship between these two angles, defined as 01, 02, and 

the end point coordinates, x and y, form the kinematic equations of the two-link leg. 

Specifically, the coordinates x and y are defined as 

x = L1 cos (01) + L2 cos (01+ 02), and 

y = L1 sin (01) L2 sin (01+ 02). (6.17) 

These two equations are the 'forward' kinematic equations of the model leg. For the 
lengths (L1, L2), the point coordinates (x, y) of the end-effector are uniquely determined by 

the two variable joint angles (01, 02). The inverse relationships, namely, the definition of the 

joint angles with respect to the coordinates are 

02 _ t 
an 

_1 r S21 
, where S2 = sin (02) = ± -V-17P 2 and L C2] 
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Figure 6.12: A two-link robot as a model of the human leg. 
(a) An illustration of the two-linked model leg with the joint angles 01 and 02

in a two-dimensional task space. 

(b) Constraints on the two-dimensional task space of the model leg. 

The equations in 01 and 02 are called the 'inverse' kinematic equations and are 

nonlinear because of the trigonometric functions and the squared terms. The periodicity and 

symmetry of the tangent function and the multiple roots of the squared terms result in an 

ambiguous determination of the end point location. The problem becomes more severe as the 

number of links increases. One way of circumventing the problem of multiple solutions is to 

constrain the movement of the two links to certain convenient angular ranges which will 

usually avoid the occurrence of multiple solutions [104]. In this regard, it is to be noted that 

the structure of the human leg, with its hinge-like joint at the knee, permits only a 

constrained motion of the shank. Taking into consideration the above constraints, the two 

joints of the two-link leg model were constrained to move within the specific angular ranges: 
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-30° < 01 < 180°, and 0° < 02 < 180°. The introduction of these constraints results in a two-

dimensional task space as shown in Fig. 6.12b. 

The standard methodology for computing inverse kinematic transformations employs 

training the neural network off-line for possible data patterns within the robot task space to 

obtain solutions to the inverse kinematics problem. Because of the generalization property, 

neural networks can learn the associated patterns and recall the learned patterns. The trained 

network is then used to achieve the desired voluntary movements. This technique, therefore, 

basically involves two modes of operations, namely the training phase and the performing 

phase. However, the major drawback of this technique is a very long training procedure in 

addition to the fact that the static neural networks based on the backpropagation learning 

algorithms require a very large convergence time. 

An on-line learning scheme for computing the inverse kinematic transformations was 

proposed by Gupta and Rao [107]. This learning scheme, shown in Fig. 6.13, uses the neural 

network to determine the joint angles for a given set of desired Cartesian coordinates. These 

estimated joint angles, which act as inputs to the forward kinematics, are checked against the 

pre-defined robot task space. This additional level of control makes the robot operate within 

a specified work-space. Additional rules and inferences may be incorporated into the first-

level thereby making it a knowledge-based robotic control system [1]. Although the 

computation of the inverse kinematics transformations is a static problem, the use of dynamic 

neural networks generally decreases the time required to compute the transformations 

compared to that of the static (feedforward) neural networks. 

6.3.2.2 Computer Simulation Studies 

The desired x-y positions of the end-effector were applied to the excitatory and 

inhibitory neural units of the DNP. The initial values of the synaptic connections were 

arbitrarily set to WEE =1,WEI = 0.5, wIE = 0.5, wi/ =1, and the components of the scaling 

vector, [WE WI ]T, to 1. The initial position of the end-effector was set arbitrarily at x = 0.2 

and y = 0.4. In this section, a brief comparative study of the recurrent neural network and the 

DNP applied to the inverse kinematic computations of a two-link robot is provided. The 

recurrent neural network used in simulation studies consisted of five neurons configured in a 

single-layer as depicted in Fig. 6.7. Five simulation examples are discussed in the following 

paragraphs. 
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Figure 6.13: The learning scheme, with two hierarchical levels, for on-line learning of 

inverse kinematic transformations. 

Example 1: In this example, the x and y coordinates of the end-effector were selected at 

random and applied to the processor. The neural weights were adjusted until the output error 

decreased to a pre-determined value of 0.05. Figure 6.14a shows the actual and the learned 

x-y coordinates of a two-linked robot, while Fig. 6.14b shows the trajectories of the X-Y 

coordinates and the corresponding joint angle trajectories for one position of the end-effector. 

Different end-effector positions were presented to the neural processor. The results 

obtained are shown in Fig. 6.15. In this figure, P1 and P2 are the two out-of-reach positions 

of the end-effector. The neural processor could not learn these positions because of the pre-

defined robot task-space, but as can be seen from the results, the leg (link) orientations were 

in that direction. One may note that for some of the 'out-of-reach' inputs, the processor's 

corresponding outputs were located within the task-space in such a way as to indicate the 

leg's intention to reach out to those points. 
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Figure 6.14: Simulation results, Example 1. 

(a) Illustration of the actual and the learned positions of different trajectories. 

(b) Trajectories of the end-effector's X and Y coordinates for a desired position 
of x = - 0 4 yd 0.6, = and the corresponding joint angle trajectories. d • '
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Figure 6.15: Representation of the actual and the learned positions in- and out-side of the 

task-space in a sagattial plane. 

Example 2: 

Case (i): In this example, a single-layer recurrent neural network consisting of five neurons 

was used to compute the inverse kinematic transformations. The desired position of the end-

effector x-y coordinates were selected to be the same as in Example 1, and were applied to 

the first two neurons of the neural network. The neural weights of the neural networks were 

adjusted based on the backpropagation learning algorithm. The trajectories of the x and y 

coordinates is shown in Fig. 6.16. From this figure, it is clear that the computing time 

required to achieve the desired end-effector position using the recurrent neural network was 

very high compared to the DNP. 
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Figure 6.15: Convergence results obtained using recurrent neural network, Example 2. 

Case (ii): The purpose of this simulation study was to compare the performance of the 

recurrent neural network and that of the DNP. Different end-effector positions were 

presented to the two neural structures. The accuracy and the speed of convergence obtained 

are tabulated in Table 6.1. These results reinforce the results obtained in Example 1 in that 

the DNP provided much faster convergence compared to the recurrent neural network. 

Example 3: To study the performance of neural structures under noisy conditions, the robot 

dynamics were corrupted with a random signal bounded in the interval [0,1]. Tables 6.2 and 

6.3 show the targeted and the observed end-effector positions for 20% and 50% noise 

respectively. These results show that both of the neural structures could accurately learn the 

desired patterns in the presence of noise. However, it was observed that as the noise level 

increased, the accuracy of the end-effector positions from the recurrent neural network was 

higher than that obtained from the DNP. This is possibly due to the fact that the noise signal 

corrupted the DNU parameters and inter-feedback synaptic weights (wEE' w11 
, w

IE' 
w

E1 
)

• 

Since the recurrent neural network has a static feedforward and hard (non-adaptable) 

feedback paths, the probability of the noise signal corrupting the weights was less. However, 

this statement is only speculative, and needs further investigation. 
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Table 6.1: Performance comparison of recurrent neural network and DNP 

Desired 
Coordinates 

Recurrent Neural 
Network 

Dynamic Neural Processor 

Rd Yd x Y 
Learning 
Iterations x Y 

Learning 
Iterations 

- 0.6 0.5 - 0.604 0.51 4218 - 0.602 0.51 422 

- 0.5 0.75 - 0.5 0.753 991 - 0.504 0.753 104 

- 0.38 0.58 - 0.388 0.587 1821 - 0.377 0.579 101 

- 0.2 0.53 - 0.196 0.52 1112 - 0.209 0.533 80 

0.0 0.5 0.02 0.51 796 0.07 0.499 144 

0.5 0. 75 0.503 0.74 1269 0.492 0.744 319 

0.3 0.85 0.29 0.86 802 0.302 0.86 199 

0.2 0.95 0.21 0.94 539 0.192 0.952 174 

0.0 0.99 0.009 0.987 1095 0.09 0.993 164 

- 0.25 0.9 - 0.248 0.897 655 - 0.258 0.903 36 

- 0.3 0.8 - 0.296 0.79 2033 - 0.309 0.793 31 

- 0.6 0.6 - 0.59 0.594 1255 - 0.601 0.59 137 

- 0.2 0.8 - 0.21 0.81 843 - 0.207 0.812 36 

0.38 0.58 0.38 0.59 290 0.378 0.579 31 

- 0.8 - 0.2 - 0.798 - 0.21 

_ . 

470 - 0.792 - 0.195 69 

- 0.3 - 0.45 - 0.304 - 0.44 2130 - 0.312 - 0.45 382 

0.5 0.4 0.498 0.41 251 0.492 0.404 53 

0.3 0.7 0.306 0.691 166 0.297 0.694 24 

0.0 0.96 0.02 0.97 1620 0.08 0.961 60 
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Table 6.2: 20% Noise 

Desired 
Coordinates 

Recurrent Neural 
Network 

Dynamic Neural Processor 

X d Yd x Y 
Learning 
Iterations 

x
Y

Learning 
Iterations 

- 0.2 0.53 - 0.202 0.534 1236 - 0.205 0.523 169 

0.38 0.58 0.375 0.586 352 0.378 0.571 31 

0.2 0.95 0.193 0.95 164 0.196 0.954 122 

- 0.25 0.9 - 0.243 0.893 1298 - 0.259 0.904 36 

- 0.6 0.6 - 0.593 0.604 1375 - 0.609 0.608 335 

- 0.2 0.8 - 0.199 0.802 1001 - 0.207 0.802 36 

0.5 0.4 0.504 0.404 269 0.492 0.405 53 

0.6 0.3 0.602 0.301 377 0.61 0.292 69 

0.3 0.7 0.307 0.693 180 0.297 0.695 24 

0.0 0.96 0.09 0.97 2512 0.09 0.963 282 

Table 6.3: 50% Noise 

Desired 
Coordinates 

Recurrent Neural 
Network 

Dynamic Neural Processor 

Xd Yd x Y 
Learning 
Iterations 

x
Y 

Learning 
Iterations 

- 0.2 0.53 - 0.203 0.537 2919 - 0.21 0.52 866 

0.38 0.58 0.381 0.586 651 0.371 0.571 54 

0.2 0.95 0.206 0.953 304 0.19 0.96 210 

- 0.25 0.9 - 0.241 0.904 1343 - 0.26 0.904 46 

- 0.6 0.6 - 0.62 0.605 1736 - 0.5 0.7 335 

- 0.2 0.8 - 0.208 0.805 2594 - 0.207 0.802 36 

0.5 0.4 0.495 0.405 606 0.482 0.405 98 

0.6 0.3 0.604 0.295 606 0.62 0.284 100 

0.3 0.7 0.298 0.708 216 0.297 0.695 24 

0.0 0.96 0.02 0.966 3382 0.101 0.86 1282 



139 

Example 4: The successful operation of an intelligent robot depends upon its ability to cope 

with perturbations that may cause dynamic changes in its structure. Such a case is considered 
in this example where one of the links, L2, of the robot undergoes a stretching effect during 

the learning process. Due to these dynamic perturbations, the observed end-effector position 

may not match the desired position which necessitates readjustments in the neural weights. 

Due to the adaptive capability of the neural network-based learning schemes, the DNP could 

modify its weights so that the desired end-effector position was achieved. Computer 

simulation studies were carried out for the various dynamic perturbations. The simulation 

results for one such perturbation in the form of error trajectories of the robot links are shown 

in Figs. 6.17a and 6.76b. From these results it can be seen that the DNP adapted to the 

change in robot dynamics, thereby demonstrating the robustness of the learning scheme. 
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Figure 6.17: Error trajectories of robot links when the length of link L 2 was changed from 

0.5 to 0.7 units at time instant k = 100, Example 4. 

Example 5: In this example, the adaptive capability of the DNP was demonstrated by 

changing the desired end-effector positions during the learning process. Initially, the desired 

end-effector locations presented to the neural processor were: xd = 0.3 and yd = 0.7. At time 

instant, k = 75, the values were changed to xd = - 0.8 and yd = - 0.2. The neural processor 

learned this new pattern as shown in Fig. 6.18. 
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Figure 6.18: Simulation results, Example 5. 

(a) Adaptation in joint angle trajectories when the desired end-effector 

positions were changed from x = 0.3 and y = 0.7 to x = - 0.8 and y = - 0.2 

at time instant k = 75, 

(b) The corresponding variations in x-y coordinates of the end-effector. 

These simulation results indicate that the DNP, by virtue of its functional mapping 

capabilities, can be suitably employed for learning the coordinate transformations. 

Compared to the conventional analytical schemes which need intensive computing, the 

DNUs in the neural processor provide the required transformation very quickly. In the event 

that it is impossible for the model leg or robot to reach points within its task space, due to 

some physical limitations, the DNP can be trained to move to the nearest point still within its 

domain. Any modifications occurring in the structure of the robot can easily be taken care of 

by continuous learning. This reflects the adaptive nature of the neural network-based 

learning schemes. On the other hand, the conventional approach would have involved 

solving new potentially difficult transformations theoretically, generating new software to 

implement the new transformations, and then installing it in the new robot controller. 

6.3.3 Control of Unknown Nonlinear Systems: Simulation Studies 

A large number of neural network structures have been proposed and used for control 

applications. Broadly, these control schemes can be classified into two groups, (i) indirect 

adaptive control and (ii) direct adaptive control [34]. In the indirect adaptive control 

technique [34, 84 - 86], the neural network is trained first to attain the same dynamic 

behavior as the controlled plant, and a controller is then designed using the neural network's 

outputs to cancel the nonlinear part of the controlled plant [63]. In the direct adaptive control 
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technique [28, 39, 54, 58, 61, 63, 87, 95, 109], the neural network is cascaded with the 

controlled system, and the weights are adjusted based on the system output error. Both 

techniques have advantages and disadvantages. The problems associated with these 

techniques have been addressed in [28, 63]. 

In this section, the DNP was used to directly control unknown nonlinear systems. For 

this application, the command signal was applied to the excitatory unit, and the delayed plant 

output was fed back to the inhibitory unit serving as a feedback signal. This control scheme 

is shown in Fig. 6.19. The choice of applying the input and feedback signals to excitatory 

and inhibitory neurons was arbitrary however. The DNP settings were arbitrarily set to 
wEE = 1.0, WEI = 0.5, wII = 1.0 and wI E = 0.5. The components of the scaling vector, w = 

[WE WI ]
T
, were set to [1, -1]. 

Example 1: In this simulation example, the nonlinear plant under control was assumed to be 

governed by the difference equation 

2 2 
y(k+1) = f [ a i y(k-i) + 13. u(k-j) , i = j = 0, 1, 2 

i=0 j=o 

with an arbitrary unknown function of the form 

[2+cos 7x( y2((-1) y2((-2)) }] e-u(k) 

f[i — 
[1 + u2(k-1) + u2(k-2)] 

(6.19a) 

(6.19b) 

and the plant parameters 13ff = [1.2, 1, 0.81
T 

and a fb = [1, 0.9, 0.71
T
. The input to the system 

(the desired response) used in this simulation was s(k) = sin (2irk / 250) in the interval [-1, 1]. 

The error and output responses are shown in Fig. 6.20. From the error response it is seen that 

the error between the target and the observed trajectories was initially large, but converged 

quickly within the pre-set tolerance limits. 
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Figure 6.20: The error and output responses of a nonlinear plant represented by Eqn. (6.19), 

Example 1. 
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Example 2: Following the initial training described in Example 1, a nonlinear plant 

described by the following equation 

2 2 2 
y(k+1) = f [ oci y(k-i) + y, pj u(k j) g[y(k-i)] u(k) 

i=0 j=0 i=0 
(6.20) 

was considered. The input signal, plant parameters and DNP settings were the same as in 

Example 1. The nonlinear functions f[.] and g[.] in Eqn. (6.20) were as follows: 

[2+cos * y2(1,-1) y2((-2)) e-u(k) 
f[.] — 

[1 + u2(k-1) + u2(k-2)] 

g[.] = I f y2(k) + y2(k-1) I . 

, and 

The error and the output responses obtained for this simulation example are shown in Fig. 

6.21. In this case, it required about 2000 iterations before the error settled within the 

tolerance limits of ± 0.05. This example reinforces the main features, namely the learning 

and adaptive capabilities, of the DNP-based control scheme. 
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Figure 6.21: The error and output responses of a nonlinear plant represented by Eqn. (6.20), 

Example 2. 
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Example 3: The purpose of this simulation was to demonstrate the adaptive capability of the 

neuro-controller scheme (Fig. 6.19) for the following situations: (i) time-varying nonlinear 

functions, (ii) varying pattern of input signals, and (iii) perturbations in the plant parameters 

and changes in the configuration of the plant dynamics. The nonlinear function used in this 

example was 

f[] = e(y2(k-1)+y2(k-2)) 
+AI 

I 
u

2
(k) + u2

(k-1) + u2(k-2)} I , 

05k<400 
which was changed at k = 400 to 

(6.21) 

[2+cos 711(y2(k-1) + y2(k-2)) 1] + e-u(k) 
— , 400 5 k < 2500. (6.22) .

1 + u2
(k-1) + u2

(k-2) 

The input to the system, s(k) = sin (2nk / 250) in the interval [-1, 1], was changed as 

follows: s(k) = sin (2ick / 250), for 0 k < 700, s(k) = 0.6, for 700 5. k < 875, s(k) = 0.4, for 

875 k < 1050, s(k) = - 0.2, for 1050 k < 1400, s(k) = - 0.6, for 1400 5_ k < 1800, and s(k) 

= 0.6 sin (2ick / 250) for 1800 5_ k 5 2500. 

The plant parameters were Pff = [1.2, 1, 0.81T, a th = [1, 0.9, 0.71T, for 0 k < 1400, 

13ff = [1.2, 1, 1.4]T, a fb = [1, 0.9, 1.31T, for 1400 5. k < 2000, and 13ff = [1.2, 1, 0]T, a fb = 

[1, 0.9, 0]T, for 2000 5 k 5 2500. 
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The simulation results obtained for this example are shown in Fig. 6.22. This 

example demonstrates the robustness of the DNP-based control scheme in the presence of 

variations in the nonlinearities, input signal, and the dynamic characteristics of the plant. 
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Figure 6.22: Simulation results, Example 3. 

(a) The plant output under variations in nonlinearity characteristics, input 

signal variations and plant parameter perturbations. 

(b) The corresponding error response. 
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The above simulation studies show that an unknown nonlinear system followed the 
desired signals well. The initial settings of the synaptic weights, w2a, , and the initial 

values of the somatic gains of the excitatory and inhibitory neurons in the DNP structure 

determine the transient behavior of the control system. It was difficult, however, to obtain a 

general relationship between the initial values of the adaptable parameters and the behavior 

of the DNP system. 

6.3.4 Coordination and Control of Multiple Systems 

A complex control system, in general, consists of two or more independently 

designed and mutually affecting subsystems. Proper coordination and control of the multiple 

subsystems is necessary for the overall functioning of the system. This necessitates the 

development of control schemes for multivariable systems. The task of controlling 

multivariable, also referred to as multi-input-multi-output (MIMO), systems is a complex 

problem, and has received much attention. This is due to the fact that a multivariable system 

may involve a nonlinear system with unknown dynamics having two or more inputs and 

outputs, or may consist of two or more independently designed, separately located, but 

mutually affecting subsystems. One may observe such complex systems in multi-robot 

operating situations, or in process industries. In addition to the good behavior of each 

subsystem, the effective coordination of these subsystems is extremely important to achieve 

the overall system performance. The main difficulty in coordinating multiple subsystems 

comes from the lack of precise a priori knowledge of the system models and parameters, as 

well as the lack of efficient tools for system analysis, design, and real-time computation of 

optimal solutions [108]. Much of the earlier work in the area of control systems has 

concentrated on linear MIMO systems with unknown parameters [13, 14]. New methods for 

analysis and design are thus required for the coordination and control of nonlinear 

multivariable systems. 

Neural networks provide alternative and efficient control schemes to deal with 

uncertainties and nonlinearities in the systems under control. The potential of neural 

networks for control applications lies in the fact that (i) neural networks can be used to 

approximate any continuous mapping through learning, and (ii) they can realize parallel 

processing and fault tolerance. Due to their inherent parallel architecture, neural networks 

can be effectively employed to control multivariable systems. One of the most popular 

neural network architectures is a multi layer feedforward network with the back propagation 

algorithm. For this neural architecture, the weights of the network need to be updated using 

the network's output error. For a neural network-based controller, the network's output is the 



147 

control command to the multiple-systems under control. However, when the neural network 

is serially connected to the controlled plant, the network's output error is unknown because 

the desired control action is unknown. This implies that the back propagation algorithm for 

the neural network can not be applied directly to the control problems [63]. Cui and Shin 

[63] have developed a direct adaptive control scheme and algorithm using a feedforward 

neural network for multivariable systems. In this section, the DNP is used in a direct 

adaptive control scheme for the coordination and control of multivariable systems. 

6.3.4.1 The problem of multiple system coordination 

Fig. 6.23 describes two interacting systems, and this description can be easily 

generalized to the case of more than two systems. 

Figure 6.23: Interaction of two subsystems with connection strengths represented as 121

and 112' 

In the above figure, the two subsystems under control are represented by 
T 

P1(u1' 21' y1) and P2(u2' 112' y2), where U = [ u 
T 

u
T]E 90 is the control input vector, 

1 2 

r T T1 T T ry, 11)Y= L y y 2 E Z/ is the system output vector, and I = [IT I l E 91In is the vector 
1 2 

of interacting weights between the two subsystems. Usually, the cost function of a multiple 

system is the sum of the cost functions of all the component subsystems [63], and is given by 

J(u, I, y) = yi) + J2(u2, 112, y2). (6.23) 

The problem of coordinating multiple systems can be treated as an optimization 

problem; that is , of obtaining min J(u, I, y). This may be achieved by treating the interacting 
signal Ik,i , k # 1, as an ordinary input variable to each of the interacting subsystem as 

depicted in Fig. 6.24. 
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Figure 6.24: The configuration of two interacting systems. 

Obviously, minimizing the cost function J(.), defined in Eqn. (6.23), depends on 

knowledge of the structure and/or dynamic parameters of the subsystems. As the neural-

network based control schemes exhibit learning and adaptive capabilities for nonlinear 

systems, it is not necessary to know a priori the system configuration, the parameters of the 

subsystems or the nature of interaction between them. In this section, the DNP is used to 

make the linear and nonlinear subsystems follow the desired command trajectories. 

6.3.4.2 Computer Simulation Studies 

The DNP is used in the direct adaptive control mode [110] as shown in Fig. 6.25. 
The desired command signals s1(k) and s2(k) were respectively sin (2irk / 250) in the interval 

[-1, 1] and cos (2irk / 250) in the interval [-0.5, 0.5]. The DNP settings were wEE = 1.0, wEi= 

0.5, 1410 = 1.0 and wI E = 0.5. The components of the scaling vector were set to 1. 

Example 1: The purpose of this example was to demonstrate that a complex system 

consisting of two linear sub-systems can be adaptively controlled in the presence of input 

signal variations, parameter perturbations, and with nonlinear coupling. The two interacting 

linear systems are governed by the following difference equations 

and 

2 2 
y1(k+1) = a il y(k-i) + 13., u, (k-j) : System 1 

i=o .i=0

2 2 
y2(k+1) = a i2 y(k-i) + 13

j2 u2(k-j) : System 2. 
i=0 j=0 

The parameter values in the above equations were as follows: 

13ffi = [1.2, 1, 0.81T, a fb1 = [1.3 0.9, 0.71T: System 1 

(6.24a) 

(6.24b) 
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and 

= [1.3, 0.7, 01T , ocfb2 = [1.2 0, 0.81T: System 2. 

The components of the interaction vector Ik 1 were set to -0.1. The simulation results 

obtained for this case are shown Fig. 6.26. 
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y1(k) 

y2(k) 

• 00

Figure 6.25: The direct adaptive control scheme for the coordination and control of two sub-

systems. 

It is seen from these results that the two systems followed the command signals very 

closely. The system behavior was good even when the input signal of system 1 was changed, 
and the parameter perturbations were introduced for system 2. At k = 500, si(k) was changed 

to a sum of two sinusoids, sin (27tk / 250) + 0.2 sin (2nk / 25). The dynamics of system 2 at 

k = 500 were also changed to Pff2 = [1.3, 0.7, 1.01
T
, a fb2 = [1.2 0.9, 0.81

T
. The error and 

output responses of the two systems are shown in Figs. 6.27a and 6.27b respectively. 
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Figure 6.26: Simulation results for two interacting linear systems 1 and 2, Example 1. 

(a) The error and output responses of system 1, and 

(b) The error and output responses of system 2. 
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Figure 6.27: Simulation results with input signal and parameter variations, Example 1. 

(a) The error and output responses of system 1, and 

(b) The error and output responses of system 2. 
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From the results shown in Fig. 6.27 it can be observed that the effects of changing the 

input signal of system 1 on system 2, and introducing the parameter perturbations in system 2 

on the performance of system 1 were not very significant. However, this depends on the 

strength of the interaction between the systems. This is shown in the following figures where 

the components of the interaction strength vector I were changed at k = 500 as follows: 

I12 0.3 - 1 =  v3
(k) from system 1 to system 2, and 

121 = 0.1 e (y200), from system 2 to system 1. 

The simulation results obtained for this case are shown in Fig. 6.28. Figures 6.28a 

and 6.28b show the error and output responses of systems 1 and 2 respectively. Figure 6.28c 

shows the adaptation in the somatic gains of the excitatory and inhibitory neurons. The 

optimum somatic gains after 2500 iterations were found be 0.858 and 0.795 for the excitatory 

and inhibitory neurons respectively. 
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Figure 6.28: The simulation results for a case when systems 1 and 2 were interconnected 

through nonlinear coupling. 

Example 2: The purpose of this simulation example was to demonstrate that the direct 

adaptive control scheme shown in Fig. 6.25 could be used without any modifications in the 

algorithm and the initial values of the weights even for the nonlinear multivariable systems. 

Case (i): In this case, the two interacting systems were nonlinear and were governed by the 

following difference equations: 

and, 

2 2 
uyi(k+1) = a il y(k-i) + Pj (k-j) + 1 [yi(k), y1(k-1),.., yi(k-n+1); uE(k), j=0 i 

uE(k-1),.., uE(k-m+1)[ : System 1 (6.25a) 

2 2 
y2(k+1) = a il y(k-i) -F E 13,1 ui(k-j) + f2[y2(k), y2(k-1),.., y2(k-n+1); ui(k), 

1=0 j=0 
ui(k-m+1)] : System 2. (6.25b) 

The nonlinear functions in the above equations were as follows 
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[2+co 77r( 3,210(..1) y210(..2)) I]s Aj I { uE2 uE2 (,1) + u2E(k-2) } I 
fi[.] — [1 + u2E(,1) uE2(,2)] 

(6.26a) 
and 

2 2 
Y (k-1) + Y (k-2) 

f2[.] = e 2 
2 • (6.26b) 

The plant parameter values and the input signals used in this example were the same as in 

Example 1. The error and output responses of systems 1 and 2 are shown in Figs. 6.29a and 

6.29b respectively. The adaptation in the somatic gains of the excitatory and inhibitory 

neurons of the DNP are shown in Fig. 6.29c. The optimum somatic gains after 2500 

iterations were found to be 0.25 and 2.08 for the excitatory and inhibitory neurons 

respectively. 

Case (ii): In this case, two nonlinear subsystems described by the following equations 

y1(k) = 0.2 y1(k-1) + 0.6 y1(k-2) - 0.1 y2(k) - 0.1 y2(k-1) + 0.6 uE(k-1) + uE(k) 

: System 1 (6.27a) 

0.3 y2(k-1) + 0.5 y2(k-2) 
y2(k) = - 0.1 y1(k) +  

1+ y 2(k-2) 
+ u1(k) :System 2 (6.27b) 

were considered. The performance of each system was observed for a time duration of 1000 

learning iterations. The behavior of the interconnected nonlinear systems is shown in Fig. 

6.30. 

The DNP-based control scheme can quickly adapt to the changing system 

configuration. To demonstrate this adaptive capability, the configuration of system 1 was 

changed at time step k = 500 to 

y1(k) = 0.2 y1(k-1) + 0.6 y1(k-2) - 0.1 y2(k) - 0.1 y2(k-1) 

+ 0.1 yi(k-1) cos(2nk / 250) + uE(k) . (6.28) 

The simulation results are shown in Fig. 6.31, and from these results it is seen that systems 1 

and 2 followed the desired trajectories very closely demonstrating the adaptive feature of the 

control scheme. 
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Figure 6.29: The simulation results for a case when the two interconnected systems were 

nonlinear, Case (i), Example 2. 
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Figure 6.30: The simulation results for a case when the two interconnected systems were 

nonlinear, Case (ii), Example 2. 
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Figure 6.31: The simulation results for two nonlinear interconnected systems with dynamic 

perturbations, Case (ii), Example 2. 

Example 3: In the above examples, multivariable systems consisting of two subsystems 

were considered. In this example, the problem of truck "backer-upper" control, which is a 

nonlinear MIMO system, proposed originally by Nguyen and Widrow [111] was considered. 

Backing a truck to the loading dock is a difficult nonlinear control problem for which no 

traditional control system design methods exist [112]. Nguyen and Widrow used two static 

neural networks one as an emulator and the second as a controller to guide the truck to the 

loading truck. The controller network produced the appropriate steering angle of the truck 
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given any initial position. The emulator network computed the next position of the truck. 

The inputs to the emulator network were the previous truck position and the current steering 

angle output computed by the controller network. As reported in [11 1], the number of back 

ups required to train the controller was about 20,000. Kong and Kosko [113] proposed a 

fuzzy control strategy for the same problem. Wang and Mendel [112] developed a 

'numerical-fuzzy approach' for this problem. In this approach, they determined the control 

angle 0 based on the 'common sense', and after some trials they chose the desired input-

output pairs corresponding to the smoothest successful trajectory. 

The simulated truck and loading zone are shown in Fig. 6.32. The truck position is 

exactly determined by the variables x, y, and 4), where 4) is the angle of the truck with the 

ground. The control signal to the truck is the steering angle 0. Only backing up was 

considered in the simulation study. The truck moved backwards by a fixed unit distance at 

every stage. For simplicity, enough clearance between the truck and the loading dock was 

assumed such that 'y' did not have to be considered as an input. The task was to generate 

proper steering angles of the truck for the input variables x E [0, 20] and 4) E [-900, 270] 

such that the final truck position was (xf, 4)f) = (10, 90°). The following dynamic equations 

of the truck backer-upper control system [112] were used during the simulation studies. 

x(k+1) = x(k) + cos[4)(k) + 0(k)] + sin [0(k)] sin[4)(k)] (6.29a) 

y(k+1) = y(k) + sin[4)(k) + 0(k)] - sin [0(k)] cos[4)(k)] (6.29b) 

- sin 4)(k+1) = 4)(k) L (6.29c) L JJ

where L is the length of the truck which was assumed to be 4 in the simulation studies. 

Equations (6.29a - c) were used to obtain the next state when the present state and control are 

given. Since y was not considered a state, only Eqns. (6.29a) and (6.29c) were used in the 

simulations. Figure 6.33 shows the simulation results for backing up the truck to the loading 

dock from a given initial position (xi, 4)i) = (5, 220). The x, 4) and 0 trajectories of the truck 

for this starting position are shown in Figs. 6.33a and 6.33b. In order to compare the 

performance of the DNP with recurrent neural networks, a two-layer recurrent neural 

network was used to steer the truck to the loading zone from the initial position (xi, 4)i) = (5, 

220). The docking-error, defined as the Euclidean distance from the actual final position (x, 

4)) to the desired final position (xf, 4)f) [112], obtained from the DNP and the recurrent neural 

network was compared for 300 iterations as shown in Figs. 6.33c and 6.33d. The latter 

successfully steered the truck to the desired position after about 7000 iterations. 
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Figure 6.32: Diagram of the simulated truck and loading zone. 

0 

(t) 
0 

10 

9-

8-

- 
7-

6-

Truck 
direction 

Initial position 
x=5,0=220 

5 

-270 -180 -90 0 

400 

90 

4)[in degrees] 

(a) 

180 270 

300- DNP 

v4 200-
,s4 
O 

100-

o  I 
0 100 

k 
(c) 

S
te

er
in

g 
A

ng
le

 [
in

 d
eg

re
es

] 
0 

-20-

-40-

-60-

( 111;ruck 
direction 

0 

Initial position 
x=5,4)=220 

0 
0 

-80 . . . . . . . . 1 

-300 -200 -100 0 100 200 300 

4) [in degrees] 

(b) 

200 300 0 100 
k 

(d) 

Figure 6.33: Truck trajectories from an initial position (xi, 4i) = (5, 220). 
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Figure 6.34 shows the x and 1 trajectories of the truck obtained from the DNP and the 

recurrent neural network from an initial position (xi, 0:1)i) = (0, - 90). About 8000 iterations 

were required for the recurrent neural network before the truck reached the target position. 

Figure 6.35a shows the x and trajectories from an initial position (xi, = (3, - 30) and Fig. 

6.35b compares the docking-error obtained from the DNP and the recurrent neural network. 

The latter required about 7500 iterations to steer the truck to the loading dock. Extensive 

simulations were carried out for the DNP and for the recurrent neural network from different 

initial positions of the truck. Some of the results are shown in Table 6.4. 
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Table 6.4: Performance comparison 

Desired Position: x d = 10 and did = 90 
0 

Initial 
Positions 

DNP 
Estimations 

Recurrent Neural Network 
Estimations 

x . 1 e li x 0
cp 

0 
0 

Learning 
Iterations 

x 
o 4:1) Learning 

Iterations 

1.00 0 10.08 90.42 - 18.56 436 * * ----

100 - 30 9.97 88.54 - 11.3 308 9.968 89.03 7756 

5.00 - 90 9.97 88.95 - 11.01 383 9.93 88.98 9575 

20.00 90 10.06 89.3 - 10.87 421 * ----

10.00 120 9.91 88.66 - 11.41 386  9.947 89.16 9647 

0.00 270 9.9 89.06 - 11.86 248 10.02 90.24 6233 

10.00 220 9.95 89.01 - 9.0 274 9.856 88.92 6528 

13.00 30 10.01 91.45 - 11.28 333 9.93 90.85 8210 

20.00 270 9.91 91.63 - 11.12 382 * ----

20.00 - 90 9.92 91.19 - 10.49 381 * * ----

0.00 - 90 9.99 90.71 - 10.55 315 9.99 91.03 7649 

10.00 - 90 10.01 89.51 - 10.82 261 10.00 90.02 5705 

5.00 90 10.02 90. 18 - 8.45 156 9.97 89.93 4964 

9.88 89.44 10.01 90.01 - 2.14 11 10.02 90.01 2664 

* indicates the initial positions from which the recurrent neural network could not converge. 

From the simulation results shown in Figs. 6.33, 6.34 and 6.35, and Table 6.4 it is 

clear that the DNP could steer the truck to the target position very quickly compared to the 

recurrent neural network. In some cases, the recurrent neural network could not converge. 

On the other hand, the DNP could coerce the truck from different initial positions to the 

target position. As the DNP was used in the direct control mode, off-line training was not 

necessary in sharp contrast with the methodology involving conventional neural structures. 

It was found necessary that the conventional neural networks, with error back-propagation 

learning algorithm, be trained off-line for different initial positions and use the trained 

network to drive the truck to the target position. 
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6.4 Generalized Dynamic Neural Model 

As was mentioned in Chapter 1, there are numerous possible structures of 

computational (artificial) neural networks. Currently, there is no single architecture of a 

computational neuron from which all of the existing neural structures can be derived. It is 

desirable in the field of neural networks to develop a general computational neural 

morphology that can represent the characteristics and emulate the functional capabilities 

observed in biological neural networks. In this section, a generalized dynamic neural model 

based on the concept of neural subpopulations described earlier in this chapter has been 

described. This generalized model was proposed in [114]. It is demonstrated in this section 

that the existing neural models, such as the feedforward (static) neural network, feedback 

(recurrent) neural network, time delay neural network (TDNN) and dynamic neural unit 

(DNU) are a subclass of this generic model. The generalized model is shown in Fig. 6.36. 

The model is of second-order and its output forms an argument to a time-varying nonlinear 

activation function. This part of the generalized model is simply the DNU structure 

discussed earlier. The generalized model is an extension of the DNU, and incorporates the 

delayed feedback that represents the soft (adaptable) connectivity between the subpopulations 

of neurons. 

As shown in Fig. 6.36, the feedforward synaptic matricies are denoted as G, H, P, 

while the feedback synaptic matricies A, B form the neural dynamics with an internal 

threshold O. The matrix C denotes the self- and inter-neuron feedback strength. The 

matricies F and D represent the scaling matricies of the input and output signals respectively. 

In conventional static neural networks, the matrix F would represent the synaptic weights. 

The output of the neural dynamics forms an argument to a nonlinear activation function, 

usually sigmoidal, with varying slope. This adaptation in the slope of the sigmoidal function, 

called the somatic adaptation, provides a self-tuning feature to the neural model. 
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Figure 6.36: A generalized neural model based on excitatory - inhibitory antagonistic neural 

subpopulations. 

The functional dynamics of this neural architecture are represented by the following 

difference equations: 

x(k) = F s(k) - 0 (6.30a) 

q(k) = x(k) + A q(k-1) + B q(k-2) + C u(k-1) (6.30b) 

v1(k) = G [q(k)] + H [q(k-1)] + P [q(k-2)] (6.30c) 

v(k) = gs v1(k) (6.30d) 

u(k) = W[v(k)] (6.30e) .

y(k) = D u(k). (6.300 

It is demonstrated in the following paragraphs that existing neural structures can be 

derived from this generalized neural model. 

(i) Feedforward (Static) Neural Network 

As was described in Section 1.2, the static structure of an artificial neuron receives its 

inputs from a number of other neurons or from sensors. A weighted sum of these inputs 

constitutes the argument of an 'activation' function. The resulting value of the activation 

function, if it exceeds an internal threshold 0, is the neural output. This output is distributed 

along weighted connections to other processing units. The static neural network is a subset 
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of the generalized structure with A — B — C — H — P — C — 0, G = 1, and gs = 1 (nonlinear 

function with constant slope), as shown in Fig. 6.37. 
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Figure 6.37: The structure of a static neuron as a special case of the dynamic structure 

shown in Fig. 6.36. 

(ii) Feedback (Recurrent) Neural Network 

The conventional dynamic neural structure, shown in Fig. 6.38, can be obtained as a 

special case of the generalized structure shown in Fig. 6.36, with A = B = H = P = 0, G = 1, 
and gs = 1. 

Inputs 

s(k) 

Figure 6.38: A feedback (recurrent) neural network derived from the generalized model. 

(iii) Time-Delay Neural Network (TDNN) 

The dynamics of a time-delay neural network can be described as a special case of 

the generalized dynamic structure with A = B = C = 0, and gs = 1. These equations lead to a 

TDNN structure as shown in Fig. 6.39. 
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Figure 6.39: A time-delay neural network (TDNN) as a special case of Fig. 6.36. 
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(iv) Dynamic Neural Unit (DNU) 

The structure of the DNU is identical to that shown in Fig. 6.36 except that there is no 

feedback path from the neural output u(k), to the input, that is, C = 0. The DNU structure 

thus obtained is shown in Fig. 6.40. 
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Figure 6.40: The structure of DNU as a special case of the generalized model. 
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A learning algorithm for the generalized neural model is derived in Appendix II. 

Although it is shown in this section that several computational neural networks can be 

obtained from the proposed generalized model, more work needs to be done with regard to 

the stability and convergence analysis of the model. 
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6.5 Summary 

In this chapter a dynamic neural processor (DNP) that implements the dynamic 

properties of a subpopulation of neurons has been developed. The basic motivation for this 

neuronal model has been the observation in neurophysiology that the neural activity of any 

complexity depends upon the interaction between antagonistic (excitatory and inhibitory) 

neural subpopulations. Dynamic neural units (DNUs), coupled as excitatory and inhibitory 

neurons, have been used as the basic computing elements in the DNP architecture. A 

mathematical model and an algorithm to modify the parameters of the DNP have been 

discussed. A commonly used dynamic neural structure is the recurrent neural network 

consisting of a single layer feedforward network included in a feedback configuration with a 

time delay. Except for the delay operator, this neural network does not employ any dynamic 

elements in the forward path. The feedback paths are also non-adaptable. On the other hand, 

the DNP consists of a dynamic structure in the forward path and adaptable feedback 

connections. Thus, the structure of the DNP is different from the conventionally assumed 

structures of neural networks in that the former uses two second-order nonlinear dynamic 

systems, while the latter are developed based on the concept of an idealized single static 

neuron. 

Four applications of the DNP have been discussed in this chapter. The first 

application involved the functional approximation of arbitrary nonlinear functions. In the 

second application, the DNP was employed to compute the inverse kinematic transformations 

of a two-link robot that modeled a human leg. A brief comparison of recurrent neural 

networks and the DNP, as applied to functional approximation and inverse kinematic 

computations of a two-link robot, was also made. The DNP approximated the arbitrary 

nonlinear functions much more quickly than the single- and two-layer recurrent neural 

networks. The simulation studies demonstrated that the single-layer recurrent neural network 

performed better, in terms of speed of convergence, than the two-layer network. In the 

presence of noise, however, the performance of the recurrent neural networks was better than 

that of the DNP. It was demonstrated in the third application that the DNP could also be used 

for the adaptive control of unknown nonlinear dynamic systems. As was demonstrated in the 

last application, the DNP could be easily employed for the coordination and control of 

multiple systems due to its parallel architecture. A generalized dynamic neural model based 

on the concept of neural subpopulations has been developed in this chapter. It was shown 

that many existing neural structures can be obtained from this generalized model. 



7. Conclusions 

7.1 Concluding Remarks 

The computational architectures employed in artificial neural networks are generally 

based upon mathematical models used to describe the behavior of individual biological 

neurons or population of neurons. Although all neural network models claim to share a 

theoretical foundation with biology, they often vary greatly in both complexity and scope. 

These differences are largely influenced by the goals and academic background of the 

individual developer. For example, very elaborate models of neural population dynamics 

have been proposed by researchers in the area of theoretical biology. Alternatively, many of 

the neural network structures proposed for pattern recognition, system identification and 

control purposes are simple nonlinear summation circuits. In conventional neural structures, 

the neuron receives its inputs either from other neurons or from sensors. A weighted sum of 

these inputs constitutes the argument of a 'fixed' nonlinear activation function producing the 

neural output. This output is distributed with weighted connections to other processing units. 

The above model is a highly simplified but useful first approximation of the 

biological neuron. Neural networks developed based on this static model respond 

instantaneously to inputs because these neural networks have no dynamic elements. As has 

been pointed by Hopfield [35], present models of neural networks are a feeble imitation of 

biological neural structures. These models ignore many of the salient features of biological 

neurons, such as time delays and feedback paths, that are very important in the activity of 

neural models. An attempt has been made in this thesis to develop neural structures based on 

the dynamic neural model. However, it is not claimed that the neural model proposed in this 

thesis satisfies all the characteristics of a biological neuron. It is a small but significant step 

toward the development of dynamic neural networks. 

A dynamic model of the neuron, called the dynamic neural unit (DNU), was proposed 

in the second chapter. The topology of DNU was based on the reverberating circuit in the 

neuronal pool of the central nervous system. It is only analogous to the reverberating circuit 

and does not represent any specific anatomical region within the biological nervous system. 

The dynamic structure of the DNU consisted of internal feedforward and feedback synaptic 

weights, followed by a nonlinear activation operator. A learning and adaptive algorithm was 

developed to modify the DNU parameters for a given task. 

165 
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A control technique, called inverse dynamic adaptive control (IDAC) using the DNU 

was developed in the third chapter. The IDAC technique was based on the concept of 

adaptive inverse control in which an unknown plant can be made to follow a desired 

trajectory by precascading the plant with its inverse model. It was demonstrated in this 

chapter that the DNU can be used to obtain an approximate inverse model of the plant under 

control, thereby achieving almost unity mapping between the input and output signal spaces. 

Through computer simulation studies it was shown that the DNU, after the initial learning, 

could cause a linear plant to follow a desired command signal. A feedback-error learning 

scheme was also described where the control signal to the plant consisted of two components, 

one from a linear PD controller in the feedback mode and the second from a DNU in the 

feedforward mode. It was demonstrated through simulation studies that the control signal 

from the PD controller was more significant than that from the DNU during the initial phases 

of learning and control. As learning and control actions continued, the DNU became 

functionally more significant compared to the PD controller. This learning scheme was 

employed to control linear and simple nonlinear systems. 

Although the basic processing element in the human neural system is the neuron, the 

power of the human brain comes from the massive parallel structure of neural networks [22, 

32]. Inspired by this fact, a dynamic neural structure, with the DNU as the basic processing 

element, was developed in the fourth chapter. A mathematical model of a three-stage 

dynamic neural network and the implementation of the learning algorithm were discussed. 

The theory of functional approximation occupies a significant place in the field of neural 

networks. In the existing literature, the emphasis has been on the study of functional 

approximation using static neural networks. The approximation theory involving dynamic 

neural networks has not been developed before. Toward this goal, both theoretical and 

computer simulation studies of functional approximation for a multi-stage dynamic neural 

network, using linear and trigonometric polynomials, have been discussed in this chapter. 

This feature of dynamic neural networks has been exploited in synthesizing a control scheme 

for the direct control of unknown nonlinear systems. It was demonstrated through computer 

simulation studies considering different nonlinear system models that a neural network-based 

control scheme was system independent. A brief performance comparison of this control 

scheme with the conventional model-reference adaptive controller (MRAC) was made. It 

was also shown that the slope of the nonlinear function in the DNU structure plays an 

important role in overall system performance. An improper selection of the slope may lead 

to instability. 
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The focus of the fifth chapter was to develop a dynamic neural network with an 

adaptable slope for the nonlinear activation operator. In this context, a modified DNU 

architecture was proposed. Thus, the DNU was comprised of two operations: (i) the synaptic 

operation and (ii) the somatic operation. The synaptic operation provided adaptation in the 

feedforward and feedback weights, while the somatic operation provided an optimal slope of 

the sigmoidal function. The latter operation was referred to as somatic adaptation. 

Modifications to the learning algorithm and the implementation scheme developed in the 

second chapter were also made. A three-stage dynamic neural network, with the modified 

DNU as the functioning element, was used in synthesizing a controller for unknown 

nonlinear systems. 

A new neural network structure called the dynamic neural processor (DNP) was 

developed in the sixth chapter. The motivation for the development of this model was on the 

fact that neural activities of any complexity in the human brain [41, 91] depend upon the 

interaction of antagonistic neural subpopulations, namely excitatory and inhibitory neurons. 

The DNP consisted of two DNUs configured to function as excitatory and inhibitory neurons. 

An algorithm was developed in this chapter to make the self- and inter-subpopulation 

feedback connections adaptable. The transient behavior of DNP was briefly discussed. Four 

applications of the DNP were elucidated in this chapter. The functional approximation 

capability of the DNP was demonstrated in the first application. In the second application, 

the DNP was employed to compute the inverse kinematic transformations of a two-link robot 

used as a model of the human leg. A brief performance comparison of recurrent neural 

networks and the DNP, as applied to the functional approximation and inverse kinematic 

transformations of a two-link robot, was also made. It was demonstrated in the third 

application that the DNP could be used for the adaptive control of unknown nonlinear 

dynamic systems. Due to the parallel architecture of the DNP, it could be easily employed 

for the coordination and control of multiple subsystems as was demonstrated in the last 

application. Based on the concept of neural subpopulations, a generalized dynamic neural 

model was also proposed in this chapter. 
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7.2 Contributions of the Thesis 

1. The development of a dynamic neural unit (DNU) in this thesis is a unique 

contribution in modeling biological neurons incorporating synaptic delays with feedforward 

and feedback paths. The topology of the DNU was inspired by the structure of reverberating 

circuits in the CNS, and the development suggests the biological plausibility toward the 

design of artificial neural networks. 

2. The development of functional approximation for the dynamic neural networks is also 

an original contribution of this work. The utilization of this concept could possibly lead to a 

generalized approximation theory for neural networks to facilitate learning of a given 

nonlinear function to a desired degree of accuracy. 

3. A major contribution of the thesis was the development of the dynamic neural 

processor (DNP) based on the concept of antagonistic subpopulations of neurons. This 

structure may lead to a different direction of research in the area of neural networks. This is 

because the DNP could possibly provide insights into some of the questions clouding the 

neural network field, such as the biological basis, and the number of layers required in the 

network for a given application. The DNP structure is completely different from the 

conventionally used recurrent (Hopfield) dynamic neural network in the following ways: 

(i) the Hopfield network involves a static neuron in the feedforward path; (ii) the network 

lacks self-feedback for each neuron; and (iii) the feedback paths are non-adaptable. 

The performance of dynamic neural network structures developed in this thesis was 

compared, through computer simulation studies, with conventional structures. In particular, 

the dynamic neural network-based control scheme was compared with proportional-plus-

derivative (PD) and model-reference adaptive controllers. The performance of the former 

was found to be much better compared the traditional control techniques. In some situations, 

the latter failed to provide the desired performance. As well, the performance of the DNP 

was compared with recurrent neural networks for the following tasks: functional 

approximation, computation of inverse kinematic transformations of a two-link robot, and 

backing a trailer truck to the loading dock. In all these tasks, the performance of the DNP 

was found to be much better compared to recurrent neural networks. 

In fulfilling the objectives of the thesis to formulate and develop dynamic neural 

structures, and to bring about an interaction of ideas and insights from biology and control 

systems, the relevance of the work in the fields of artificial neural networks, adaptive control 
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and robotics was evident. Though researchers are still a long way from making any 

significant breakthroughs into an understanding of animal (human and nonhuman) behavior, 

the work hints at the possibilities of developing useful biologically motivated dynamic neural 

structures for engineering applications. 

7.3 Directions for Future Research 

The theoretical analysis presented in this dissertation is only introductory. Additional 

mathematical studies into the stability of the DNU and dynamic neural networks are required. 

A detailed phase-plane analysis of the DNP needs further work. These studies would help to 

improve further the selection of suitable initial values of parameters for generating a global 

optimal solution. The major drawback of dynamic neural networks is their very limited 

explanation capability [115]. The solutions offered by these networks are hard to track back, 

unlike in feedforward neural networks. System-type procedures have to be developed to 

explain the internal functioning of dynamic networks. 

From a technological perspective important questions regarding the overall 

performance, speed, stability and flexibility of dynamic neural networks need to be 

addressed. The basic premise of the DNU, and its related neural structures, is an eventual 

incorporation into hardware circuitry. Recent advances in microelectronics and opto-

electronics could make this objective a reality in the near future. 

This thesis has presented the basic concept of a multi-functional dynamic neural unit, 

and its associated dynamic neural networks. This is only the initial step because more 

extensive theoretical and experimental studies still must be performed on the dynamic neural 

networks in order to make them viable for real-time control system applications. Application 

of dynamic neural networks to practical problems will be a significant contribution to the 

field of neural networks, for it involves the study of stability and convergence in real-time. 

Neural network structures can deal with imprecise data and ill-defined activities. 

However, the subjective phenomena such as reasoning and perceptions are often regarded 

beyond the domain of conventional neural network theory. It is interesting to note that fuzzy 

logic is another powerful tool for modeling uncertainties associated with human thinking and 

perception. In fact, the neural network approach fuses well with fuzzy logic, and some 

research endeavors have given birth to the so called 'fuzzy neural networks' or 'fuzzy neural 

systems' [116 - 119]. It would be very interesting and challenging to integrate the principles 

of fuzzy logic and dynamic neural networks to develop a completely new area of research. 
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Appendix I: Parameter-State Signals for the Feedforward and Feedback 

Weights of the Modified DNU Structure 

The modified DNU algorithm that accounts for both the synaptic and somatic 
adaptations was presented in Section 5.3.2. The feedforward parameters affi, i = 0, 1, 2, and 

=the feedback parameters bfb. j 1, 2, were updated based on the following set of equations 
J 

affi (k+1) = affi (k) + gai E[e(k) sech2[v(k)] Pff. (k)] , i = 0,1,2, (5.7a) 

and 

bfbi (k+1) = bfbi (k) µb. E[e(k) sech2[v(k)] Pfb j (k)] , j =1,2 (5.7b) 
J 

where the modified parameter-state signals for the feedforward and the feedback weights were 

given by the relations 

Pffi (k) = gs [s (k - i)], i = 0, 1, 2, and (5.8a) 

Pfb  (k) = - gs [v1 (k - j)], j = 1,2. (5.8b) 

In this Appendix, the proof of Eqns. (5.8a) and (5.8b) is given in the following paragraphs. 

Proof of Eqns. (5.8a) and (5.8b): From Eqn. (5.5) 

a 
[a„ 

aaffi(k) 

-b2 a0 a l ad 

[ (s(k)) 

a l ad (s(k-1)) 

(s(k-2)) 

- (v1(k-1)) 

(vi(k-2)) 

(s(k)) 

(s(k-1)) 

— (s(k-2)) — 

, i = 0, 1, 2. 

Thus, the individual parameter-state signals for the feedforward weights are 

For i = 0, Pao (k) = gs [s (k)]

For i = 1, Pal(k) gs [s (k - 1)] , and 
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For i = 2, Pa2(k) = gs [s (k - 2)]. 

Therefore, the parameter-state signals for the feedforward weights are 

Pffi (k) = gs [s (k - 0], i = 0, 1, 2. 

Similarly, to obtain the parameter-state signals for feedback weights, from Eqn. (5.5) 

- (vi(k-1))

(vi(k-2)) 
 a

Pfbi (k) = gs abfb.,k, -b2 a() a l ad (s(k)) 
J 

(s(k-1)) 

— (s(k-2)) — 

Thus, the individual parameter state signals for the feedback weights are 

For j = 1, (k) = - gs [vi(k - 1)], and 
'1 

For j = 2, Pb (k) = - gs [NT / (k - 2)]. 
2 

Therefore, the parameter state signals for the feedback weights may be written as 

Pfb. (k) = - gs [v1(k - j)], j = 1,2. 
J 

(1.2) 
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Appendix II: Generalized Learning Algorithm 

In this Appendix, a learning algorithm for the generalized neural model described in the 

preceding subsection is derived. In an iterative learning scheme, the parameters are modified in 
each iteration to cause the neural output y(k) to approach the desired state yd(k). If the error 

between the targetted and the observed responses can be reduced to an acceptable tolerance 

limit, the learning scheme is said to be convergent. Let the parameter vector of the generalized 

model be defined as 

C2 
A 
=[wF , wG ,wH ,wP , wA ,wB ,wC gs] 

T
. 

Each component of the vector SI is adapted in such a way so as to minimize the 

performance index J, defined as a square of the error, using the steepest-descent algorithm. 

This adaptation algorithm may be written as 

SI(k + 1) = S2(k) + 8S2(k) (II.1) 

where 11(k + 1) is the new parameter vector, S2(k) is the present parameter vector, and 80(k) is 

an adaptive adjustment in the parameter vector. In the steepest-descent method, the adjustment 

of the parameter vector is made proportional to the negative of the gradient of the performance 

index J; that is, 

8S-1(k) «(- VJ), where VJ = 
DJ 
-a t . 

Thus, 

8S2(k) = - dia[g] aajn  — - dia[g] VJ (II.2) 

where dia[g] is the matrix of individual adaptive gains. In the above equation, the diaRt] is 

defined as 
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Feedforward 
weights 

dia[p.] = 

11G 

0 

0 
0 

Feedback 
weights 

0 

ggs 

Somatic gain 

The gradient of the performance index with respect to the parameter vector S2 is given by 

an 2 E ' 
al 1 [a[y,(k) - y.(k)12 - 

= 

where 

— E e(k) 

_ 
ay.(k) 

(II.3) 

ayi(k) [a yi(k) a y i(k) a y i(k) a y i(k) a y i(k) a yi(k) a yi(k) a yi(k) 

awF awG awH awP awA awB awC ags

and E[.] is an expectation operator defined as: 

k 
E[x(k)]= 1 x(k) •

k=t+i-K 
(H.4) 

Feedforward Weights: The feedforward weights, represented as F in the generalized 

dynamic neural model, shown in Fig. 6.36, are normally referred to as the synaptic weights in 

a static (feedforward) neural network. However, the generalized neural model consists of three 

forward paths with weights G, H and P. 

a yi(k) a  I- Dn 
(i) [ I w i 111 vn(k)1] uNVF

F 

aw n=1 



184 

N Dn [ alj[ vn(k)1 avn(k)] N Dn , 
W.  F — I w. [v (k)] S(k) 

n=1 1 aVn(k) aw n=1 1 
n F

av (k) avin(k) 
where SF(k) = n awF — gsn awF represents the sensitivity signals which may be obtained 

as follows. 

avn(k) a 
awF gsn aWF 

[ N G Fn Hn Fn Pn Fn wn Ew.  (k)+ Ew. E w i sn(k- 1) + Ew. w 1E sn(k-2)1 n 
n=1 n=1 n=1 n=1 n=1 1 n=1 

N 

gsn [ w
Gn sn(k) + n sn(k- 1) + E 1 n E sn(k-2)1 

n=1  n=1 n=1  n=1 n=1 n=1 

Therefore, Eqn. (II.5) becomes 

a yi(k) N Dn

aw
F  — Y' [vn(k)] n=1 

N Gn 
gsn [ w i n=1 

wH. n Pn 
E sn(k) + sn(k-2)] 

n=1 n=1 n=1 n=1 n=1 

(II.6) 

For a static neural network, Eqn. (11.6) simplifies to 

a yi(k) 

awF 
Dn r

wi lyn(k)] sn(k) . 
n=1 n=1 

y,(k) a [ N Dn
E w ‘11 [vn(k)]]   —  

awG aw— n= 1 1

n=N D , 
wi n 1vn(k)1 SG(k) 
1 

where S
G

(k) is obtained as follows: 

(II.7) 
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avn(k) avin(k) 
S (k) = G g G G aw sn aW

N I = gsn  a G [ W  n w  n s 

n‘ 
(k\ 

L'  

aw n=1 n=1 

Therefore, Eqn. (II.7) becomes 

y(k) I i wD.
n 

tpl [vn(k)1 
— wFn silo()

awG 
n=1 

J gsn 
n=1

a yj( Hk) 

— 

a
 H w 

[ N Dn
(iii) [ Vn(k)]] 

ow aw n=1 1

= E 
wDn 

 [vn(k)] SH(k) 
n= 1 

where SH(k) is obtained as follows: 

avn(k) avin(k) 
H aw sn awS (k) = H g H 

a N n 
= gsn H E w •H w .Fn s 11(k- 1 ) . 

aw n=1 1 n=1 1

Therefore, Eqn. (11.9) becomes 

(iv) 

a yi(k) N Dn

awH n= 
— [Vn(k)] gsn

1 

a y.(k) a lv I P p [  Iw D. n 

aw aw n=1 1

Dn = E w. 
n=1 

Fn 
w. sn(k-1) 

n=1

[ vn(k)1] 

(II.9) 

(II.10) 

[vn(k)] Sp(k) (II. 11) 

where S (k) is obtained as follows: 
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(k) 
S (k) = avn p 

sn 
g avalwnp(k)

P aw 

a  [ N I Pn wF II = gsn p S n (k - 2) • 

aw n=1 n=1 

Therefore, Eqn. (II.11) becomes 

yi(k) N Dn

aw F n=1 
wi [vn(k)1 gsn Fn w. sn(k-2) . 

n=1
(II.12) 

Feedback Weights: The weight matrices A and B represent the internal feedback weights, 

while the matrix C denotes the self- and inter-subpopulation feedback connections in the 

generalized dynamic neural model. 

(v) a Yi(k) a  [ N Dn rvn(k)11 
awA — 

A w 

aw n=1 L

n  
[vn (k)] SA(k) 

1 1 

W. '1/ 

where SA(k) is obtained as follows: 

S (k) = 
avn(k) avin(k)
aw A A — gsn aw A 

a 
= gsn awA [ 

A n w . V (k-1.) 
n=1

] vin (k-1)

Eqn. (11.12) becomes 

yi(k) N D
awA Wi nn=1 

[vn(k)] gsn v in(k-1) . 

(vi) W 

a yi(k) a [ N Dn
[ vn(k)11 awB aw n=1

= 

n=N 

D 
wi n [Vn(k)] SB(k) 
1 

(II.12) 

(II.14) 
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where SB(k) is obtained as follows: 

avn(k) avin(k) S (k) —  g B B awB sn aw

a  [ N 
w = gsn B 

B n • v1n(k-2)] aw 
n=1 

Therefore, Eqn. (H.14) becomes 

a yi(k) N Dn

aw B n 1w. [vn(k)1 gsn vin(k-2) • 

(vii) 
a y, (k) a [ N DnC W• W[ vn(k)1] 
aw aw n=1

= 
n=N 

wi n 
D 

[vn(k)1 SC (k) 
1 

where S (k) is obtained as follows: 

avn 
— g 

(k) avin(k) S (k) = C awC sn awC 

a  [ N Cn 
= 1'°sn awC

n
 w un(k-1 a ) 

Therefore, Eqn. (11.16) becomes 

a yi(k) N Dn , 

aw n= 1 1 C W. [vn(k)] gsn un(k-1) . 

(II.16) 

(II.17) 

Somatic Gain: This parameter that controls the slope of the nonlinear activation function is 

normally kept constant in conventional neural networks. It was demonstrated in Chapters 4 

and 5 that the somatic gain plays a significant role in the overall performance of the neural 

network. Modification of this parameter leads to what is called the somatic adaptation. 

(viii) —   
a y,(k) a [ N D

W i n vn(k)11 
agsi agsi n= 1 
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Dn ' 
= 

n
w [vn(k)1 Sgs(k) 

1 1

where Sg (k) is obtained as follows: 

av (k) a 
Sg s(k) = n — —Lgsivin(k)1 

agsi agsi 

= vin(k)

Therefore, Eqn. (II.18) becomes 

yi(k) N D , 
  — 1 w• n 11/ [vn(k)1 in(k) . 

agsi n=1
(II.19) 

Bias Term: Modification of the bias terms of the neurons provides a shift in the nonlinear 

activation functions which may be useful in the approximation of functions. 

(ix)  1
a y.(k) a 

 w
N Dn

[ vn(k)]] 
a 0. a 0 n =.1 

= 
n=

w
Dn
i [vn (k)1 S9.(k) 

1 

where S0.(k) is obtained as follows: 

av n (k) avin(k) SO. (k) = — gsn — g a aei aei sn . 

Therefore, Eqn. (11.20) becomes 

a y(k) N Dn

ae il  n lw. [ vn(101 [ gsn l• 

(II.20) 

(II.21) 

The learning algorithm to update the adaptable parameters of the generalized neural model may 

be summarised from Eqns. (1), (3) and (4) as follows: 

1
k N n

wF(k+1) = wF(k) +1.11, [ e(k) vv..; n [ vn(k)11 sn( k)1 — k=t+1-K n=1 n=1 -I 
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wG(k+1) 

wH(k+1) 

N 1 v [ e(k) n tit= wG(k) +1-IG K k=t+l-K n=1 

yk  e(k) n= wH(k) + K k= 1-1-K n=1 

wP(k+i) = wP(k) + µP K

wA(k+1) = 

wB(k+1) = 

wC(k+1) = 

gs(k+1) = 

w (k) +11B K

1 
wC(k) + [IC K 

1 
wA(k) + K 

k N 
[ e(k) wD„ 

k=t+l-K n=1 

[ e(k) wDn 
tp

k=t+l-K n=1 

_1  e(k) wpi n 
k=t+1-K n=1 

k 
N Dn e(k) w 

k=t+1-K n=1 

1 
k 

gs(k) + ggs K k= 1-K 

1
k 

Oi(k+1) = 9i(k) + µei K
k=F1-1( 

[ e(k)
N

WDn

n=1 

[vn(k)1 gsn

I 
[vn(k)] gsn f wFi n sn(k-1)1 

n=1 

[vn(k)1 gsn

wFi n sn(k)] 
n=1 

I 
wFi n sn(k-2)1 

n=1 

[ vn(k)1 gsnvin(k- 1 )] 

[ vn(k)] gsnvin(k-2)] 

[vn(k)] gsn un(k-1)] 

[ vn(k)1 vin(k)] 

[ e(k) wDn [vn(k)] [ - gsn
n=1 
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