
DEVELOPMENT OF DYNAMIC NEURAL
STRUCTURES WITH CONTROL APPLICATIONS

A Thesis

Submitted to the College of Graduate Studies and Research

in Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY

in the

Department of Electrical Engineering

and

Intelligent Systems Research Laboratory

University of Saskatchewan

by

Hulikunta Rao Dandina

(D.H. Rao)

Saskatoon, Saskatchewan, Canada

March, 1994

7_ct —
tyre 13/i9i:_s-

The author claims copyrights. Use shall not be made of the material contained herein without

proper acknowledgment as indicated on the copyright page.

1

Copyright

The author has agreed that the Library, University of Saskatchewan, may make this

thesis freely available for inspection. Moreover, the author has agreed that permission for

extensive copying of this thesis for scholarly purposes may be granted by the professor or

professors who supervised the thesis work recorded herein or, in their absence, by the Head of

the Department or the Dean of the College in which the thesis work was done. It is understood

that due recognition will be given to the author of this thesis and to the University of

Saskatchewan in any use of the material in this thesis. Copying or publication or any other use

of the thesis for financial gain without approval by the University of Saskatchewan and the

author's written permission is prohibited.

Requests for permission to copy or to make any other use of material in this thesis in

whole or in part should be addressed to:

Head of the Department of Electrical Engineering

University of Saskatchewan

Saskatoon, Saskatchewan

Canada, S7N OWO

ACKNOWLEDGMENTS

I wish to express my sincere gratitude to Dr. M.M. Gupta for his valuable guidance

throughout the course of this work. His encouragement and positive criticism have been

mainly responsible for the success of this project. He has spent an enormous amount of time

having many enlightening discussions with me on the project as well as guiding me in the

preparation of this thesis and other materials for publication. His advice and help are very

much appreciated.

I would like to extend my sincere appreciation and thanks to Dr. P.N. Nikiforuk and

Dr. H.C. Wood for their advice and assistance in the preparation of this thesis.

Financial assistance provided by Natural Sciences and Engineering Research Council

(NSERC) and a doctoral scholarship from the University of Saskatchewan is gratefully

acknowledged. I would like to express my appreciation to Mr. D. Bitner, Mr. I.J.

MacPhedran, Mr. K.D. Jeffery and Mr. J. E. Moore for their help throughout my work. I

would also like to express my sincere thanks to the advisory committee members and the

library staff for their assistance.

I would like to take this opportunity to express my thanks to my wife Alaka Rao for her

patience, encouragement and moral support throughout this endeavor. Thanks are also due to

the Principal and the executive members of Gogte Institute of Technology, Belgaum, India for

granting me the study leave to pursue my higher studies at University of Saskatchewan.

Hulikunta Rao Dandina

11.1

UNIVERSITY OF SASKATCHEWAN

Electrical Engineering Abstract 93A388

Development of Dynamic Neural Structures with
Control Applications

Student: Hulikunta Rao Dandina Supervisors: Dr. M.M. Gupta

Dr. H.C. Wood

Dr. P.N. Nikiforuk

Ph.D. Thesis Submitted to the

College of Graduate Studies and Research

March, 1994

ABSTRACT

Dynamic neural networks, because they offer computational advantages over purely

static neural networks, have many potential applications in a number of fields. The objective of

the research described in this thesis was to develop dynamic neural structures for control

applications. A dynamic model of the biological neuron called the dynamic neural unit (DNU)

was developed for this purpose. The structure of the DNU is inspired by the topology of a

reverberating circuit in a neuronal pool of the central nervous system. The DNU consists of

internal feedforward and feedback synaptic weights followed by a nonlinear activation

operator. It is thus different from the conventionally assumed structure of an artificial neuron.

It is demonstrated in this thesis that a DNU can control unknown linear and simple nonlinear

systems to track adaptively desired trajectories.

The efficacy of artificial neural networks comes more from the number of neurons

connected in the network and from the topology rather than from the computational ability of an

isolated neuron. Considering the DNU as the basic functional element, a multi-stage dynamic

neural network has been developed. One of the most important characteristics of neural

networks is their ability to approximate arbitrary nonlinear functions. While most of the

iv

research work in this area has concentrated on static neural networks, a theoretical foundation

of functional approximation using a dynamic neural network has been developed. Computer

simulation studies are provided to substantiate the theoretical developments. Following this

development, the dynamic neural network has been used in a direct adaptive control mode to

cause unknown nonlinear systems to follow desired reference signals. In conventional static

neural structures, the optimum slope of a nonlinear activation function is usually determined by

trial and error. An improper selection of the slope may lead to instability. The importance of

using an adaptive activation operator in neural networks has been demonstrated through

computer simulations. In this context, the concept of somatic adaptation for dynamic neural

structures has been introduced. The significance of this concept as applied to the control of

unknown nonlinear dynamic systems has been extensively studied through computer

simulations.

A new dynamic neural structure called the dynamic neural processor (DNP) that

emphasizes the aggregate dynamic properties of a neural population has also been proposed

and reported in this thesis. This structure is based upon the hypothesis that the neuro-

physiological activities of any complexity are dependent upon the interaction of antagonistic

(excitatory and inhibitory) neural subpopulations. The DNP consists of two DNUs which are

configured to function as excitatory and inhibitory neurons. A mathematical model and an

algorithm to modify the parameters of the DNP have been developed. Four applications of the

DNP, the functional approximation of nonlinear functions, computation of inverse kinematic

transformations of a two-link robot, control of unknown single-input-single-output nonlinear

systems, and coordination and control of multiple-input-multiple-output systems, are

presented. A brief comparative study of the performance of this neural model with that of

conventionally used recurrent neural networks has also been presented. A generalized dynamic

neural model based on the concept of neural subpopulations has been proposed in this thesis.

It is shown that many existing neural structures can be derived from this generalized neural

model.

V

TABLE OF CONTENTS

Contents Page

Copyright

Acknowledgments ii

Abstract iii

Table of Contents

List of Figures viii

List of Tables xiv

List of Symbols xv

Chapter 1: Introduction 1

1.1 Neuro-Biological Control: A Motivation 1

1.2 Neural Networks in Control Systems 2

1.3 Thesis Objectives 9

1.4 Organization of the Thesis 11

Chapter 2: Dynamic Neural Unit 13

2.1 Introduction 13

2.2 Architectural Details of Dynamic Neural Unit 13

2.3 Learning and Adaptive Algorithm 20

2.4 Summary 28

Chapter 3: Inverse Dynamic Adaptive Control of Linear Systems

Using Dynamic Neural Unit 29

3.1 Introduction 29

3.2 Inverse Dynamic Adaptive Control 30

3.2.1 The Principle 32

3.2.2 Rephrasing the Global Performance 34

3.3 Computer Simulation Studies for Linear Systems 38

3.4 Feedback-Error Learning Scheme 44

3.4.1 The Principle 44

3.4.2 Computer Simulation Studies 45

3.5 Summary 52

vi

Chapter 4: Dynamic Neural Structure for Nonlinear Systems 54

4.1 Introduction 54

4.2 Multi-Stage Dynamic Neural Structure 55

4.2.1 Mathematical Development 55

4.2.2 Implementation 60

4.3 Neural Functional Approximation 61

4.3.1 Theoretical Development 62

4.3.2 Computer Simulation Studies 67

4.4 Control of Unknown Nonlinear Systems 69

4.4.1 Nonlinear Model Description 70

4.4.2 Computer Simulation Studies 73

4.5 Summary 87

Chapter 5: Dynamic Neural Unit with Somatic Adaptation 88

5.1 Introduction 88

5.2 Biological Basis for Somatic Adaptation 89

5.3 Modified Structure of Dynamic Neural Unit 90

5.3.1 Architectural Details 90

5.3.2 The Modified Learning and Adaptive Algorithm 92

5.4 Multi-Stage Dynamic Neural Network With Somatic

Adaptation 95

5.5 Control of Unknown Nonlinear Systems: Simulation Studies 97

5.6 Summary 108

Chapter 6: Dynamic Neural Processor Based on Excitatory and

Inhibitory Neural Subpopulations 110

6.1 Introduction 110

6.2 Architectural Details of the Proposed Neural Structure 111

6.2.1 The Biological Basis 111

6.2.2 The Mathematical Model of Dynamic Neural Processor 114

6.2.3 Learning and Adaptive Algorithm 119

6.3 Applications of Dynamic Neural Processor 122

6.3.1 Functional Approximation 122

6.3.2 Neural Learning of Robot Inverse Kinematic

Transformations 129

6.3.2.1 Neural Networks in Robotics 129

6.3.2.2 Computer Simulation Studies 132

vii

6.3.3 Control of Unknown Nonlinear Systems 140

6.3.4 Coordination and Control of Multiple Sub-Systems 146

6.3.4.1 The Problem of Multiple System Coordination 147

6.3.4.2 Computer Simulation Studies 148

6.4 Generalized Dynamic Neural Model 160

6.5 Summary 164

Chapter 7: Conclusions 165

7.1 Concluding Remarks 165

7.2 Contributions of the Thesis 168

7.3 Directions for Future Research 169

References 170

Appendices 180

Appendix I: Parameter-State Signals for the Feedforward and Feedback

Weights of the Modified DNU Structure 180

Appendix II: Generalized Learning Algorithm 182

viii

LIST OF FIGURES

(Abbreviated captions)

Figure

Chapter 1

1.1: A static neural model of a biological neuron 6

1.2: A three layered static neural network 7

1.3: A generalized topology of a dynamic neural network 8

1.4: The state-space model of the Hopfield neural structure 9

1.5: A time-delay neural unit based on a static neural architecture 10

Page

Chapter 2

2.1: A reverberating circuit in a neuronal pool of the CNS 14

2.2: The basic structure of Dynamic Neural Unit (DNU) 15

2.3: Unimodal threshold distribution and the corresponding sigmoidal function

(a) An unimodal probability distribution function 17

(b) The nonlinear sigmoidal function 17

2.4: Multimodal threshold distribution and the corresponding sigmoidal function

(a) Multimodal distribution of neural thresholds for m = 3 18

(b) Nonlinear mapping operator with multiple inflection points 18

2.5: Sigmoid function for excitatory and inhibitory signals 19

2.6: Neural mathematical operations of the DNU in a generalized form 20

2.7: Obtaining the parameter-state signals for the DNU 25

2.8: The implementation scheme of the learning and adaptive algorithm 26

2.9: Symbolic representation of the DNU 27

Chapter 3

3.1: Adaptive inverse control scheme

(a) Obtaining the inverse model (inverse-identification) of a plant 30

(b) The control strategy following inverse-identification

3.2: The inverse dynamic adaptive control (IDAC) scheme 33

3.3 : The error and output responses, Example 1 39

3.4: The error and output responses, Example 2 41

3.5: The error and output responses, Example 3 42

3.6 : The error, control and output responses, Example 4 43

ix

3.7: The feedback-error learning scheme 45

3.8: Simulation results, Example 1

(a) The error and output responses 46

(b) The control signals generated by the feedback and the feedforward

controllers 46

3.9: The error and output responses, Example 2 47

3.10: Block diagram of a simplified space vehicle with rigid dynamics 48

3.11: Simulation results, Example 3

(a) The error and output responses 49

(b) New command input and the error and output responses 49

3.12: The feedback-error learning scheme for a plant with deadzone 50

3.13: Simulation results for a plant with deadzone, Example 4, Case (i)

(a) The output responses of the plant with and without DNU 51

(b) The control signals from the PD and the DNU controllers 51

3.14: Simulation results for a plant with deadzone, Example 4, Case (ii)

(a) The input and output signals of the nonlinear plant 52

(b) The control signals from the PD and the DNU controllers 52

Chapter 4

4.1: Dynamic neural structure with a DNU as the basic computing node

(a) The sigma connection of 'p' DNUs 56

(b) The equivalent representation 56

4.2: The structure of a three-stage dynamic neural network 58

4.3: A modular representation of the dynamic neural network 59

4.4: The implementation of a three-stage dynamic neural network 60

4.5: The learning scheme for a functional approximation task 67

4.6: Arbitrary nonlinear functions and their approximations

(a) and (b) 68

(c) and (d) 69

4.7: Representation of SISO nonlinear plants

(a) Model I 71

(b) Model II 72

(c) Model In 72

(d) Model IV 73

4.8: The control scheme for nonlinear dynamic systems 74

4.9: Simulation results, Example 1

x

(a) The error and output responses 75

(b) The error and output responses to a change in input signal 76

4.10: Simulation results, Example 2

(a) The error and output responses 77

(b) The error and output responses to a change in nonlinear function 77

4.11: Simulation results, Example 3 78

4.12: The error and output responses under input and parameter variations 79

4.13: Simulation results, Example 4 80

4.14: Block diagram of a model-reference adaptive controller (MRAC) 81

4.15: The error and output responses using MRAC 81

4.16: The error and output responses, fault-tolerance feature 82

4.17: Simulation results, Example 5 84

4.18: The output responses for different sigmoidal slopes, Example 6

(a) and (b) 85

(c), (d) and (e) 86

Chapter 5

5.1: Sigmoid function and its derivative
(a) Sigmoid function for different values of slope gs 90

(b) The derivative of sigmoidal function 90

5.2: The modified DNU structure 91

5.3: Generation of parameter-state signals from the modified DNU 93

5.4: (a) Symbolic representation of the modified DNU 93

(b) The implementation scheme of the modified algorithm 94

5.5: Dynamic neural structure with DNU as the basic computing node

(a) The sigma connection of 'p' DNUs 95

(b) The equivalent representation 96

5.6: Simulation results with somatic adaptation, Example 1

(a) The error and output responses 98

(b) The adaptation in somatic gain gs 99

(c) Performance index variation with respect to somatic gain 99

5.7: Simulation results with somatic adaptation , Case (i), Example 2

(a) The error and output responses 101

(b) The adaptation in somatic gain 101

(c) Performance index variation with respect to somatic gain 101

5.8: Simulation results with somatic adaptation , Case (ii), Example 2

xi

(a) The error response 102

(b) The output response 102

(c) The adaptation in somatic gain 103

5.9: Simulation results for input signal variations, Example 3

(a) The error response 104

(b) The output response 104

(c) The adaptation in somatic gain 104

5.10: Simulation results for dynamic perturbations, Example 4

(a) The error response 106

(b) The output response 106

(c) The adaptation in somatic gain 106

5.11: Simulation results for model variations, Example 5

(a) The error response 107

(b) The output response 107

(c) The adaptation in somatic gain 108

Chapter 6

6.1: Schematic diagram of a neural activity field 112

6.2: Coupled interactions between antagonistic neural subpopulations 113

6.3: The dynamic neural processor (DNP) 115

6.4: The isocline curves 117

6.5: The response of a neural population

(a) Temporal response of excitatory neural unit 118

(b) The dynamic behavior of the DNP 118

(c) The dynamic behavior of the DNP 119

6.6: A general learning scheme for functional approximation 122

6.7: Single-layer recurrent neural network 123

6.8: A two-layer recurrent neural network 125

6.9: Nonlinear functions and their approximations

(a) Arbitrary nonlinear functions 126

(b) Functional approximation using a single-layer recurrent neural network 126

(c) Functional approximation using a two-layer recurrent neural network 127

(d) Functional approximation using dynamic neural processor 127

6.10: Arbitrary nonlinear functions and their approximations using the DNP 128

6.11: Performance of dynamic neural networks under noisy conditions 129

6.12: A two-link robot as a model of the human leg

xii

(a) An illustration of the two-linked model leg 131

(b) Constraints on the two-dimensional task space of the model leg 131

6.1 3 : The learning scheme, with two levels, for on-line learning of inverse

kinematic transformations 133

6.1 4 : Simulation results, Example 1

(a) Illustration of the actual and the learned positions 134

(b) Trajectories of the end-effector's X and Y coordinates and the

corresponding joint angle trajectories 134

6.1 5 : Representation of the actual and the learned positions 139

6.1 6 : Convergence results using recurrent neural network, Example 2 136

6.1 7 : Error trajectories of robot links, Example 4 139

6.18: Simulation results, Example 5

(a) Adaptation in joint angle trajectories 140

(b) Variations in x-y coordinates of the end-effector 140

6.19: Control scheme for unknown nonlinear systems using DNP 142

6.20: The error and output responses, Example 1 143

6.2 1 : The error and output responses, Example 2 144

6.22: Simulation results, Example 3

(a) The plant output under dynamic variations 145

(b) The corresponding error response 145

6.2 3 : Interaction of two subsystems 147

6.2 4 : The configuration of two interacting systems 148

6.25: The direct adaptive control scheme for coordination and control of

two sub-systems 149

6.26: Simulation results, Example 1

(a) The error and output responses of system 1 150

(b) The error and output responses of system 2 150

6.2 7 : Simulation results with input signal and parameter variations, Example 1

(a) The error and output responses of system 1 150

(b) The error and output responses of system 2 150

6.28: Simulation results for systems with nonlinear coupling, Example 1

(a) The error and output responses of system 1 151

(b) The error and output responses of system 2 151

(c) Adaptation in somatic gain 152

6.29: Simulation results for two nonlinear systems, Case (i), Example 2

(a) The error and output responses of system 1 154

(b) The error and output responses of system 2 154

(c) Adaptation in somatic gain 154

6.30: Simulation results for two nonlinear systems, Case (ii), Example 2

(a) The error and output responses of system 1 155

(b) The error and output responses of system 2 155

6.31: Simulation results for two nonlinear systems with dynamic perturbations

(a) The error and output responses of system 1 155

(b) The error and output responses of system 2 155

6.32: Diagram of the simulated truck and loading zone 157

6.33: Truck trajectories from an initial position (xi, = (5, 220) 157

6.34: Truck trajectories from an initial position (xi, 0i) = (0, -90)

(a) Using the DNP 158

(b) Using the recurrent neural network 158

6.35: Truck trajectories from an initial position (xi, 0i) = (3, -30) 158

6.36: A generalized dynamic neural model 161

6.37: The structure of a static neuron derived from the generalized model 162

6.38: A feedback neural network derived from the generalized model 162

6.39: A time-delay neural network derived from the generalized model 163

6.40: The structure of DNU as a special case of the generalized model 163

xiv

LIST OF TABLES

Chapter 6

Table 6.1: Performance comparison of recurrent neural network and DNP 137

Table 6.2: 20% Noise 138

Table 6.3: 50% Noise 138

Table 6.4: Performance comparison 159

Symbol

xv

LIST OF SYMBOLS

Meaning

Chapter 1

k Discrete time index

e(k) Error signal

W(k) Vector of synaptic weights

X(k) Vector of input signals
xo Initial state

Y(k) Vector of output signals

Yd(k) Desired output signal

Unit delay operator

[.] Nonlinear activation function

0 Neural threshold

Set of real numbers

Chapter 2
aff Vector of feedforward weights of the DNU
affo Initial values of aff

bfb Vector of feedback weights of the DNU
b

fbo
Initial values of bfb

E Expectation operator

exp Exponential
gs Gain of the nonlinear (sigmoidal) function

J(.) Performance index

m Number of inflection points

s(k) Input signal

u(k) Output signal of the DNU
cri(afrbfb) Vector of adaptable weights of the DNU

Po(k) Parameter-state signals of 0

Pff(k) Parameter-state signals of the feedforward weights

P fb(k) Parameter-state signals of the feedback weights

r'(k, v, s) Vector of feedforward and feedback signals of the DNU

a[.l Distribution of neural thresholds

V J(.) Gradient of the performance index with respect to 4:130

xvi

Derivative of the function W[.]

Adaptive gain (learning factor)

Diagonal matrix of adaptive gains

Chapter 3

C[e(k), Ae(k)] Linear function of the error and the change of error

f[.] Nonlinear function

f 1 Ll Inverse of the function f[.]
G [.] Plant dynamics

G,-1[.1 Inverse dynamics of G [.]
I-

G (.) Estimated plant transfer function

kp Proportional gain

kd Differential gain

q(k) Vector of state variables
tic(k) Output of the PD controller

unn(k) Output of the DNU controller

y(k) Plant output

Pff Feedforward parameters of the plant

a m Feedback parameters of the plant

E , Tolerance limit to,

Chapter 4

D Compact set

d(tP, f) Distance between the functions tP[.] and f[.]

Approximation of the function f[.]
A

g[.] Approximation of the function g[.]

H Number of stages in the dynamic neural network

sup Supremum

Chapter 5

gso

Ns

Initial value of the gain of the sigmoidal function

Adaptive gain of the gain of the sigmoidal function

Chapter 6

C2 cos (02)

I Vector of interconnecting strengths between systems

xvii

12
Interconnecting strength from system 1 to system 2

21 Interconnecting strength from system 2 to system 1

L Length of the truck

1
Length of link 1

L
2

Length of link 2

nE Number of excitatory neurons

n1 Number of inhibitory neurons

s
E
(k) Input to an excitatory unit

s (k) Input to an inhibitory unit

S2 sin (0
2
)

uE(k) Output of an excitatory unit

u1(k) Output of an inhibitory unit

Desired x coordinate of the end-effector

yd
Desired y coordinate of the end-effector

Excitatory E, or inhibitory I, state of the DNP
sX(k) Input to a neural subpopulation

stX(k) Total inputs to the neural units

uX(k) Output of a neural subpopulation

w Strength of self-synaptic connections

w Self-feedback weight of the excitatory neuron

W

EE

El
Feedback weight from the excitatory to the inhibitory neuron

w2L1'
Strength of the cross synaptic or inter-subpopulations

WI!
Self-feedback weight of the inhibitory neuron

IE
Feedback weight from the inhibitory to the excitatory neuron

[.] Nonlinear function of the excitatory neuron

O
E

Threshold of the excitatory neuron

8 Steering angle

Angle of the truck with the ground

T1[.1 Nonlinear function of the inhibitory neuron

0 Threshold of the inhibitory neuron

(xi, 0i) Initial position of the truck

(x f, Of) Final position of the truck

A, B Matrices of feedback weights in the generalized model

C Matrix of self- and inter- neuron feedback weights

F, D Scaling matrices in the generalized model

xviii

G, H, P Matrices of feedforward weights in the generalized model

Appendix II

A B
w , w Weights of the elements of the matrices A and B

11A' I-113

w
C

G H P
w , w , w

1-tG'

Adaptive gains of the elements of the matrices A and B

Weights of the elements of the matrix C

Adaptive gain of the elements of the matrix C

Weights of the elements of the matrices G, H and P

Adaptive gains of the elements of the matrices G, H and P

1. Introduction

1.1 Neuro-Biological Control: A Motivation

Biological control mechanisms are quite successful in dealing with uncertainty and

complexity. They can smoothly coordinate many degrees of freedom during the execution of

manipulative tasks within unstructured environments. Biological systems are usually very

complex and defy exact mathematical formulations of their operation [1]. They carry out

complex tasks without having to develop conventional mathematical models of the task or

the environment. In executing a particular control task, for example 'pick up a glass of

water, the plan to execute the task is carried out at the conscious level. To pick up a glass of

water, it is necessary to determine the position of the hand relative to the glass and to find a

way to move the hand toward the glass. The biological system executes this high level task

at the conscious level. Most of the low level actions, such as determination of joint angles

and muscle coordination, are performed at the subconscious level. The biological control

system can learn to perform a new task, and can adapt to the changing environment with

ease.

On the other hand, to make a robot arm perform the same task, 'pick up a glass of

water, requires a large number of computations and a priori knowledge of the environment

and the system. These computations, required to coordinate different robot joints to produce

a desired trajectory, are performed by solving kinematic and dynamic relationships between

the different structural members of the robot itself. The control methodology developed for

this task may fail should the desired task or the environment change.

If the fundamental principles of neuro-biological control systems are understood, it

may be possible to develop an entirely new generation of control methodologies. These

control systems would be more robust and intelligent, far beyond the capabilities of the

traditional control techniques based upon mathematical modeling. If system engineers could

learn the structural, functional and behavioral aspects of biological control mechanisms, it

might be possible to design an intelligent controller which can emulate at least some of the

biological control capabilities. Although many biologists and psychologists share the view

that the brain has a modular architecture, there is no general agreement on the number of

modules, or the manner in which the modules develop or are interconnected [2]. One reason

for this diversity of opinion is that the modular nature of the brain involves the difficulty of

reasoning about a system with a large number of interacting components. Even systems of

interacting components with a small fraction of the brain's complexity present formidable

1

2

computational and analytical difficulties. It is scientifically challenging to understand the

control functions of biological neural systems and to use this knowledge to emulate some of

these functions for the purpose of solving scientific and engineering problems. Based on the

understanding of neuro-biological control aspects and the desire to develop simple models of

neuronal structures for engineering applications, the field of artificial neural networks has

evolved into a very promising area of research [3 - 6]. Artificial neural networks have been

used in a variety of applications such as pattern recognition, system identification and

control.

1.2 Neural Networks in Control Systems

The conventional design of an automatic control system often involves the

construction of a mathematical model describing the dynamic behavior of the system to be

controlled and the application of analytical techniques to this model to derive a control law.

Usually, such a mathematical model consists of a set of linear or nonlinear differential or

difference equations most of which are derived using some form of approximation and

simplification. The traditional model-based control techniques break down, however, when a

representative model is difficult to obtain due to uncertainty or sheer complexity, or when the

model produced violates the underlying assumptions of the control law synthesis techniques

[1, 7]. Modeling of a physical system for feedback control also involves a trade-off between

the simplicity of the model and its accuracy in matching the behavior of the physical system.

On the other hand, human operators do not always handle control problems with detailed

mathematical models. Instead, they use imprecise and qualitative understanding of the

controlled processes.

In conventional methods, two approaches are usually described in the literature [8] to

achieve satisfactory performance from a dynamic plant that is only partially known. One

approach uses robust stabilizers, or robust controllers [9, 10] and the other approach uses

adaptive controllers. Using the first approach, if the actual physical system is contained in a

class of systems which are close to the nominal plant, a robust controller by definition is

guaranteed to stabilize it. Since one fixed controller is expected to stabilize a large class of

control systems, the controller thus designed is highly complex compared to the complexity

required to stabilize any single plant. Using the second approach, the parameters of the

adaptive controller are made to adapt in accordance with some algorithm in order to keep the

system performance at a desired level. In general, the adaptive approach is applicable to a

wider range of uncertainties, but robust controllers are simpler to implement, and it may not

3

be necessary to tune the controller parameters of robust controllers to match the plant

variations [11]. Detailed descriptions of robust and adaptive control techniques may be

found in [10 - 13] and [14 - 16] respectively.

While adaptive control has shown potential for controlling complex systems and

offers good disturbance rejection, the region of operation of such a control system is

restricted. This is because the adjustable parameters of the adaptive controller are modified

based on the convergence and stability conditions, and this may place severe limitations on

the performance of the compensated system. These limitations can be seen as restrictions on

the acceptable operating region of the controller [17, 18]. Perhaps the most unrealistic

among the conditions are the assumptions that there are no disturbances and that the order of

the plant is not higher than that of the model. Violation of even a few of these assumptions

can cause the adaptive control algorithms to become unstable [8]. In many situations, it may

be desirable to design control schemes that can exhibit both learning and adaptive

capabilities.

To cope with uncertainties regarding plant dynamics, a controller needs to estimate

unknown information during operation. If this estimated information gradually approaches

the true information as time proceeds, then the controller can approach an optimal controller,

and the controller may be viewed as a learning controller [19]. The controller learns the

unknown information during operation, and this information is used as experience for future

decisions and control, thereby possibly improving the system performance. The use of neural

networks in control systems can be viewed as a natural step in the evolution of control

methodologies. Neural networks with their massive parallelism and their ability to learn

offer good possibilities for improved techniques in control systems.

Computational Neural Networks (CNNs), Artificial Neural. Networks (ANNs) or

simply neural networks, are described as connectionist models, parallel distributed processing

units, or neuromorphic systems [20]. All of these representations are constructed with many

nonlinear computational elements operating in parallel and arranged in patterns reminiscent

of biological neural nets. They have been shown to perform, on a small scale, such higher

cognitive functions as learning, memory and recall, and pattern recognition. Indeed, several

working examples in the fields of speech recognition [21] and visual pattern recognition have

been described [22].

Although the field of artificial neural networks is not new, it has only recently

become an active area of research. Some of the pioneering work in this field is due to

4

McCulloch and Pitts [23] who in 1943 published a simple abstract model of a neuron. This

neuron had a finite number of inputs and a single output. The inputs were characterized by

excitatory (+1) and inhibitory (-1) states, the neuron had an internal threshold and the

nonlinear function was binary. It was thought that by connecting many of these simple

devices it would be possible to model the human brain. Although this model proved

inadequate to achieve human-like abilities, it did influence others to pursue research in the

field of neural networks.

The next major development occurred in 1949 when Hebb [24] conjectured a learning

mechanism in the brain. He postulated that as the brain learns, it changes its connectivity

patterns. This idea of a learning mechanism was first incorporated in an artificial neural

network by Rosenblatt [25] in 1959. He combined the simple McCulloch and Pitts neuron,

with the adjustable synaptic weights based on the Hebbian learning scheme, to form the first

artificial neural network with the capability to learn.

By introducing the least mean squares (LMS) learning algorithm, Widrow and Hoff

[26] developed in 1960 a model of a neuron that learned quickly and accurately. This model

was called ADALINE for ADAptive LInear NEuron. This learning algorithm first

introduced the concept of supervised learning using a 'teacher' which guides the learning

process. It is the recent generalization of this learning rule into the back propagation

algorithm that has led to the resurgence in biologically-based neural network research today.

In 1969 research in the field of neural networks suffered a serious setback. Minsky

and Papert [27] published a book entitled Perceptrons, in which they proved that single layer

neural networks were limited in their abilities to process data and argued that the study of

multi layer neural networks would be unproductive. As a result of this influential book, little

progress was made in this area until the early 1980s.

Many of the early applications of neural networks have been in computationally

intensive areas of signal processing, adaptive pattern recognition, real-time speech

recognition, and image interpretation. There are also computationally intensive applications

in control systems, such as real-time system identification and control of nonlinear systems.

With specific reference to control system design, neural networks have shown great potential

in the realm of nonlinear control problems. A neuro-controller (neural network-based control

system), in general, performs a specific form of adaptive control, with the controller taking

the form of a multi layered network and the adaptable parameters being defined as the

adjustable weights. In general, neural networks represent parallel distributed processing

5

structures, which make them prime candidates for use in multi-variable control systems. The

neural network approach defines the problem of control as the mapping of measured signals

for 'change' into calculated control signals for 'actions'. The most significant characteristic of

neural networks is their ability to approximate arbitrary nonlinear functions to any degree of

accuracy [28]. This ability of neural networks has made them useful in the modeling of

nonlinear systems which is of primary importance in the synthesis of nonlinear controllers.

Furthermore, because neural networks exhibit learning features, it is not necessary to know a

priori the dynamics of the plant under control. The general features of neural networks can

be summarized as follows [28, 29]:

(i) Neural network models have many neurons (the computational units) linked via

adaptive weights arranged in massive parallel structures;

(ii) Because of high parallelism, the failure of a few neurons does not necessarily

significantly affect the overall system performance. This characteristic is also called

fault-tolerance;

(iii) The main strength of the neural network structures lies in their learning and adaptive

abilities. The ability to adapt and learn from the environment means that neural

network models can deal with imprecise data and ill-defined situations; and

(iv) Neural network models can be used for the identification and control of non-linear

dynamic systems.

The computational process that implements neural networks starts with the

development of an 'artificial' neuron based on an understanding of biological neuronal

structures, followed by the definition of structures and learning mechanisms for a given set of

applications. This leads to the following three steps in a neural computational process:

(i) Development of neural models based on the understanding of biological neurons,

(ii) Development of models of synaptic connections and structures (that is, network

topology), and

(iii) Specification of learning rules (that is, the method of adjusting the weights or inter-

nodal connection strengths).

In this context, a simple model of a biological neuron has been proposed in the

literature [25, 26]. This structure of an artificial (computational) neuron receives its inputs

6

either from other neurons or from sensors. A weighted sum of these inputs constitutes the

argument of a 'fixed' nonlinear activation function as shown in Fig. 1.1. The weights

correspond to the strength of the synapses while the activation function is associated with the

electrical conduction mechanism in a biological neuron. The resulting value of the activation

function is the axonal or neural output [20]. This neural output is transmitted to several other

neurons.

Soma
Dendrites

Synapse

—xi(k)- 1-0-

Neural
inputs < 2(k)-rte'

—
X

n(k)--►
—

Synaptic
confluence
operation

Threshold, 9
Nonlinear

activation function

Somatic operation
(aggregation,

thresholding, and
nonlinear activation)

Figure 1.1: A static neural model of a biological neuron.

y(k)
To other
neurons

Axonal (neural)
output

In Fig. 1.1, the vector [xi (k),..., xn(k)] represents the neural inputs, [wi,..., wn]

represents the synaptic weights, k denotes the discrete time index, 9 represents the threshold

and y(k) the axonal (neural) output. The detailed descriptions of synaptic confluence and

somatic operations may be found in [6]. Using the static neural model shown in Fig. 1.1, a

number of neural structures, usually referred to as feedforward neural networks, have been

reported in the literature [20, 28 - 32]. These feedforward networks respond instantaneously

to inputs because they possess no dynamic elements in their structure. Therefore,

feedforward neural network structures are also called static neural networks. A static neural

network, in general, consists of a number of neural layers (stages) where the output of one

neuron forms an input to other neurons in the next layer. This neural structure is often

referred to as a multi layered neural network (MNN). A typical MNN consists of an input

layer, hidden layers and an output layer. A three layered static neural network is shown in

Fig. 1.2. In this figure, each shaded circle represents the static neuron shown in Fig. 1.1.

7

Input
layer

Hidden
layer

Figure 1.2: A three layered static neural network.

Output
layer

As an extension of static neural networks, dynamic (feedback) neural networks using

static neurons with feedback have been proposed in the literature [22, 33, 34]. A general

topology of a dynamic neural structure, commonly employed for system identification and

control applications, with a static neuron as the basic functional unit is shown in Fig. 1.3.

The feedforward inputs may arise from a source outside the neural layer or from other

neurons, whereas the feedback signals are a result of dense lateral, self-excitatory (+) and

self-inhibitory (-) connections in the layer as shown arbitrarily in Fig. 1.3.

Recurrent [33] and time-delay neural networks [34] fall in the category of dynamic

neural architectures. The recurrent, or feedback, neural networks were first introduced by

Hopfield [33] as a dynamic model of the biological neural structure. The recurrent structure

consists of a single layer static network in a feedback configuration with a time delay as

shown in Fig. 1.4.

8

X(k) E 9t n

•
•
•

Static neuron

Feedforward Feedback
inputs inputs

•
•
•

Y(k) E 91m

yl

Figure 1.3: A generalized topology of a dynamic neural network with extensive feedforward

and feedback inputs.

y(k)

P

Static neural network

W(k)
u(k)

 W[.]

Figure 1.4: The state-space model of the Hopfield neural structure, also known as a recurrent

neural network.

In Fig. 1.4, y(k) and y(k+1) represent the states of the neural network at instants k and

k+1, x0 represents the initial value, W(k) denotes the vector of the neural weights, 111[.] is the

nonlinear activation function, and z-1 represents the unit delay operator. Given an initial

value x0, the dynamic system evolves to an equilibrium state if 'P[.] is suitably chosen. The

set of initial conditions in the neighborhood of xo which converge to the same equilibrium

9

state are then identified with that state. The term "associative memory" is often used to

describe such systems. These feedback networks with or without constant inputs are merely

nonlinear dynamic systems and the asymptotic behavior of such systems depends upon the

initial conditions, the specific inputs and the particular nonlinear function [34]. A detailed

explanation of recurrent neural networks is given in Chapter 6.

Another dynamic structure, called the time-delay (tapped-delay) neural network

(TDNN), is basically a feedforward network with delay elements. This is equivalent to a

finite impulse response (FIR) filter whose output forms an argument to a nonlinear activation

function as shown in Fig. 1.5. The TDNN can function as an adaptive filter by computing

the scalar product of the input vector X (k) and the synaptic weight vector W(k), and

modifying the elements of the synaptic weight vector W(k) with a technique such as least-

mean square (LMS) learning algorithm [26, 20, 28, 31]. This neural unit is adapted (trained)
using noise-contaminated samples for which the correct uncontaminated signal values, yd(k),

are known. In other words, the desired neural output is known for each input sample

(supervised learning).

Although the recurrent neural network incorporates feedback with delay elements,

and the time-delay neural network (TDNN) employs dynamic elements in the forward path,

the basic architecture of the computing neuron is a static model. These neural structures have

been used in many applications, such as system identification and the control of nonlinear

dynamic systems [34], and for text-to-speech conversion [35] respectively.

1.3 Thesis Objectives

The static neural model of the neuron described in the preceding sections is a very

simplified, but useful first approximation, of the biological neuron [30]. This model ignores

many of the characteristics of its biological counterpart. For example, it does not take into

account time delays that affect the system dynamics; that is, the inputs produce an

instantaneous output with no memory involved [31]. Biological neurons continually

integrate, on the average, up to 10,000 synaptic inputs, which do not add up in a simple linear

manner. Each neuron is a sophisticated computing element, and it performs much more

complex operations than simple summation [36]. The conventional neural network models

have abstracted a few properties of biological neurons, such as weighted aggregation,

nonlinear activation and parallelism [37]. However, it is essential to gain more insight into

how a single biological neuron functions, how masses of neurons are structured, and how

10

they coordinate themselves to perform complex tasks. It is then necessary to incorporate the

essential functions and features of biological neurons into neural models.

Synaptic weights
W(k)

Discretely sampled
continuous time signal

Time-delay unit

Least-Mean Square
(LMS) learning

algorithm

Error, e(k)

Figure 1.5: A time-delay neural unit based on a static neural architecture.

y
d
(k)

Desired output

y(k)

In this thesis, some of the concerns mentioned above have been addressed. At least a

few limitations of the traditional neural networks based on the static neural model may be

alleviated by restructuring the architecture of an artificial neuron, and deducing the necessary

learning algorithms. As a first step towards this goal, the general objective of the work

reported in this thesis has been to develop a model of a neuron which can more faithfully

reflect the dynamics of a biological neuron, and to develop neural network structures and

learning schemes for robotics and control applications.

11

Specifically, the objectives of the research that is described in this thesis were:

(i) To develop a dynamic model of a neuron, and dynamic neural network structures

using this neural model. This development will follow the observed features of a

biological neural structure.

(ii) To develop a dynamic artificial neural network structure based on suggested dynamic

properties of a neural population or neural mass.

(iii) To study the effectiveness of the proposed dynamic neural structures, through

computer simulation studies, for functional approximation, for control of linear and

nonlinear dynamic systems, and for computation of inverse kinematic transformations

of a two-link robot. A brief comparison of dynamic neural network-based control

schemes with proportional and derivative (PD) controller and model-reference

adaptive controller (MRAC) will be studied. The performance of dynamic neural

structures developed in this thesis will also be compared with recurrent neural

networks.

1.4 Organization of the Thesis

In the following chapters, both the mathematical foundation of the proposed neural

structures and their potential for learning and control applications are presented. The

structure of the proposed neuron, called the dynamic neural unit (DNU), is developed in

Chapter 2. The mathematical modeling and the implementation scheme of the DNU are also

detailed in this chapter.

The effectiveness of the DNU, as applied to the control of unknown linear systems, is

demonstrated through computer simulation studies in Chapter 3. In this chapter, a control

technique called the inverse dynamic adaptive control (IDAC) using the DNU is described.

The IDAC technique is based on the concept of adaptive inverse control in which the

controller structure is made to be an approximate inverse-model of the plant under control.

A multi-stage dynamic neural network is developed in Chapter 4 considering the

DNU as the basic computing element, and the network is implemented to control nonlinear

dynamic systems. The theoretical development and computer simulation studies of the

functional approximation of the proposed dynamic neural network are also presented in this

chapter.

12

The modified structure of the DNU, which accounts for both synaptic and somatic

adaptations, is developed in Chapter 5. Accordingly, the modifications in the learning

algorithm and its implementation are also discussed in this chapter. Using the modified

DNU, a three-stage dynamic neural network is developed and used to make unknown

nonlinear dynamic systems adaptively track desired trajectories. A comparative study of

neural networks with and without somatic adaptation is also briefly discussed.

Based on the physiological evidence that neural activities of any complexity are

dependent upon the interactions of antagonistic neural subpopulations, namely excitatory and

inhibitory neurons, another neural structure proposed in this thesis, called the dynamic neural

processor (DNP), is discussed in Chapter 6. The mathematical development and the

algorithm to modify the self- and inter-subpopulation synaptic connections are discussed.

Several applications of the DNP, namely the functional approximation, computation of the

inverse kinematic transformations of a two-link robot, control of unknown single-input-

single-output nonlinear systems, and coordination and control of multiple systems, are

detailed in this chapter. A brief comparative study of recurrent neural networks and the DNP

is also discussed. As an extension of the DNP model, a generalized dynamic neural model is

proposed in this chapter.

Finally, the concluding remarks, the major contributions of the thesis, and suggested

directions for future research are presented in Chapter 7. The significant contributions of the

thesis are as follows: (i) development of a dynamic model called dynamic neural unit (DNU)

and its associated dynamic neural structures, (ii) development of the theory of functional

approximation for dynamic neural networks, and (iii) development of a dynamic neural

processor based on the concept of excitatory and inhibitory neural subpopulations. It is

demonstrated, through computer simulations, that the neural structures developed in this

thesis performed better compared to the conventional control techniques and recurrent neural

networks for several control problems. The parameter-state signals for the feedforward and

the feedback weights of the modified DNU structure, proposed in Chapter 5, are derived in

Appendix I. The learning algorithm for the generalized dynamic neural model, proposed in

Chapter 6, is derived in Appendix II.

2. Dynamic Neural Unit

2.1 Introduction

In its simplest form, a computational neuron can be considered as a processing

element that sums the weighted inputs and produces an output only if this sum exceeds an

internal threshold. This neuronal model has no feedback connections; that is, there are no

connections through the weights extending from the outputs of a layer to the inputs of the

same or to the previous layers. Furthermore, this model has no memory. The neural output

is solely determined by the current inputs and values of the synaptic weights. Neural

network structures based on this model describe the synaptic connections by a single weight

parameter vector. In a feedforward structure, this results in a static neural network.

Biological neural systems are, generally, understood to be composed of structures with

dynamic connections which are manifested in the temporal properties of the synapse along

with such processes as impulse transmission and membrane excitation [22, 30, 33]. In order

to emulate some of the dynamic functions, such as learning, adaptation, memory and recall,

and to better reflect the dynamics of the biological neuron, it is useful to model the biological

neuron using feedback networks. In this thesis, one such model called the dynamic neural

unit (DNU) [38, 39] is proposed. The DNU consists of internal feedforward and feedback

weights and a nonlinear activation function, and is thus different from the conventionally

assumed structure of an artificial neuron.

This chapter is organized as follows. The architectural details of the DNU are

presented in Section 2.2. An algorithm to modify the adjustable parameters of the DNU is

then derived in Section 2.3. The implementation scheme for the developed algorithm is also

presented in this section. Finally, the concluding remarks of this chapter are mentioned in the

last section.

2.2 Architectural Details of Dynamic Neural Unit

The central nervous system (CNS) is divided into many different anatomic parts, in

each of which are located accumulations of neurons called neuronal pools [40]. One of the

most important circuits in the neuronal pool is the reverberating circuit, which functions as

follows: an incoming signal stimulates the first neuron, which then stimulates the second, the

third and so forth. However, branches return to the first neuron providing feedback and re-

stimulate it as depicted in Fig. 2.1. The reverberating circuit is the basis of innumerable CNS

activities, for it allows a single input signal to elicit a response lasting a few seconds,

13

14

minutes, or hours. Almost all rhythmic muscular activities, including the rhythmic

movements of walking, are mainly controlled by the reverberating circuits [40].

Transmission
delay Synaptic weight

Feedback Feedforward
paths paths

Figure 2.1: A reverberating circuit in a neuronal pool of the central nervous system (CNS).

Based on the topology of the reverberating circuit, a new architecture of the neuron

called the dynamic neural unit (DNU), shown in Fig. 2.2, is proposed in this thesis. The

dynamic structure of the DNU is assumed to be of second-order and is analogous to a

reverberating circuit. The output of this dynamic structure becomes an argument to a

nonlinear activation function. The DNU does not represent any specific anatomical region

within the biological system. The delay elements in the DNU account for the synaptic delay

in a biological neural structure. The occurrence of synaptic delay may be explained as

follows [40]. In the transmission of an action potential from a neuron, a certain period of

time is consumed in the processes of (a) discharge of the transmitter substance by the pre-

synaptic neuron, (b) diffusion of the transmitter to the neuronal membrane, (c) action of the

transmitter on the membrane, and (d) inward diffusion of sodium ions to raise the potential to

a high enough value to elicit an action potential. The minimum time required for all these

events to take place is approximately 0.5 millisecond. This important characteristic of the

biological neuron has been ignored in the conventional structure of an artificial neuron.

The neural dynamics of the DNU can be expressed in the form of a second-order

transfer relation

[a0 + al z-1+ a2 z-2]
w(k, aff , bfb) = v(k)s(k) [1 + b1 z-1+ b2 Z-2]

(2.1)

15

[where 1 1 1
n

n are the inputs from other
i=i

neurons or from sensors, wi E 91n are the corresponding input weights, 0 is an internal

threshold, v(k) E 911 is the output of the dynamic structure (neural dynamics), u(k) E 911 is

the neural output, aff = [a0, al , a2]
T

and b fb = [b1, b2]
T

are the vectors of adaptable

feedforward and feedback weights respectively, z-1 is the unit delay operator, and k is the

discrete-time index.

Alternatively, Eqn. (2.1) may be described by the following difference equation

v(k) = - b v(k-1) - b2 v(k-2) + ao s(k) + al s(k-1) + a2 s(k-2) . (2.2)

Dynamic Neural Unit (DNU)

s1

S
2

_
s

n

Neural inputs

 CD
Nonlinear activation

function 416,

11Y+ I v(k) +1 —

0
1

v(k)

1-44—Neural dynamics

Figure 2.2: The basic structure of the DNU consisting of second-order dynamics followed

by a nonlinear activation function.

The vectors of signals and adaptable weights of the DNU are defined as

r(c, v, s) = [v(k-1) v(k-2) s(k) s(k-1) s(k-2)]T , and (2.3)

T
ert

(afrbfb) = [-b1 -b2 a0 al a
2] (2.4)

where the superscript T denotes transpose. Using (2.3) and (2.4), Eqn. (2.2) can be rewritten

as

u(k)

16

v(k-1) —

v(k-2)

v(k) = 421) - (afrbfb) F(k, v, s) = [-b1 -b2 a0 al a2] s(k)

s(k-1)

— s(k-2) —

(2.5)

The nonlinear mapping operation on v(k) yields a neural output u(k) given by

u(k) ='F[v(k)] (2.6)

where [1 is a nonlinear activation function. Many different forms of mathematical

functions can be used as a nonlinear activation function [6]. However, the selection of this

nonlinear function depends upon the following assumption.

Assumption : The neural system is comprised of only one 'type' of neuron.

This assumption enables the probability distribution of the neural thresholds about an

aggregate value 0 to be defined as a unimodal function, as shown in Fig. 2.3a. It follows then

that the nonlinear transformation is sigmoidal as shown in Fig. 2.3b. However, if the neural

unit is assumed to be comprised of 'm' different types of neurons, then the distribution of the

thresholds can be redefined in m-modal functions that produce a nonlinear input

transformation with m-inflection points [41, 42].

The proportion of neurons in a neural network that receive inputs greater than the

threshold value can be modeled by a nonlinear transformation function, tls[v(k)], which is

related to the distribution of neural thresholds, a[v(k)], within the neural unit [41]. If the

probability distribution of these neural thresholds about an aggregate value 0 is given by an

unimodal distribution function, then the nonlinear input transformation (activation operator)

may be represented by a sigmoidal function. Thus, the proportion of neurons in a neural

network receiving inputs greater than the intrinsic threshold may be modeled by the

expression

v(k)
u(k) = gs, 0] = J a[v(k)] dv(k) (2.7)

where the pair [gs, 0] determines the transformational properties of the function 'F[.] [41, 42].

The parameter gs is defined as the maximum slope of the sigmoidal relationship at the point

of inflection given by the aggregate value 0. In other words, for a particular distribution of

17

neural thresholds, it is possible to determine the proportion of neurons receiving inputs

exceeding the threshold by integrating the neural threshold distribution over the total applied

inputs, Eqn. (2.7).

N
on

li
ne

ar
 a

ct
iv

at
io

n

0
Applied inputs, v(k)

(a)

fu
n
ct

io
n
,''

 [.
1

Applied inputs, v(k)

(b)

Figure 2.3: Unimodal threshold distribution and the corresponding sigmoidal input

transformation function.

(a) An unimodal probability distribution function of neural thresholds 0,

(b) The nonlinear sigmoidal function, with slope gs, arising from the neural

threshold distribution given in (a).

An important assumption in deriving this sigmoidal function is that each neural unit

in a densely connected neural network is comprised of only one 'type' of neuron. This

enables the distribution of neural thresholds to be defined as a unimodal function. However,

if the network is assumed to be comprised of m different types of neurons then the

distribution of thresholds must be redefined as an m-modal function that produces a nonlinear

activation function with m inflection points as depicted in Fig. 2.4 for m = 3.

In general, a m-modal probability distribution for the neural thresholds is expressed as

m
vol(v(k)] = 2m gs. sech2 [g,. (k) - 0i)]

i=i
(2.8)

and the corresponding monotonically increasing input transformation function is given by

W[(v(k)] = [1 +m tanh [8s (v(k) - 0i)] (2.9)
i=1 1

18

where for each mode there is a slope parameter gs and a corresponding inflection point 0i.

• P,

as

Applied inputs, v(k)

(a)

N
on

li
ne

ar
 a

ct
iv

at
io

n

1

fu
nc

ti
on

, t
l'

[.
]

0

0 3

1 02 I
I

°1

Applied inputs, v(k)

(b)

Figure 2.4: Multimodal threshold distribution and the corresponding sigmoidal input

transformation function.

(a) Multimodal distribution of neural thresholds for m = 3,

(b) Nonlinear mapping operator with multiple inflection points that

correspond to (a).

Physiologically, a multimodal distribution would be expected to correspond to the

presence of a number of distinct cell types within the population of neurons [41, 43, 44, 45].

In further discussions, it is assumed that an artificial neural network is comprised of one type

of neuron, and the corresponding distribution of thresholds is defined to be a unimodal

function. Any function In] is said to belong to the class of sigmoidal functions, if

(a) 'F [v(k)] is a monotonically increasing function of v(k) in the interval (- o, 00). It

follows that 'P[v(k)] is strictly increasing; that is if v1 < v2 for each v1 and v2 E 91,

then it is true that

< ‘P[v2] and (2.10a)

FP[vi] - ‘P[v2]1 Ivi v21 , d v1' v2 E
(2.10b)

where C is a constant. Then W[v(k)] is said to satisfy a Lipschitz condition,

(b) 'F[v(k)] approaches or attains asymptotic values, say -1 and 1, as v(k) approaches

- .0 and 0. respectively, and

19

(c) 'P[v(k)] has one and only one inflection point [41].

To extend the neural activity for both the excitatory (positive) and inhibitory

(negative) inputs, the sigmoidal function can be redefined as a bipolar hyperbolic tangent

function; that is,

exp v(k)) - exp (-gs v(k)) Ili[v(k)] = exp v(k)) exp (-gs v(k))
— tanh [gs v(k)] (2.11)

where gs is the gain which controls the slope of the activation function and is assumed to be

constant in the following discussions. The effect of varying this parameter on the system

performance is discussed in Chapter 5. In the limit, as gs the sigmoidal function tends

to become the sign (binary) function with an infinite slope at v(k) = 0, and a zero slope for

v(k) # 0 as shown in Fig. 2.5.

g s-4

Increasing values
of g s

Inhibitory Excitatory v(k)

Figure 2.5: Sigmoid function 'V [v(k)] = tanh [gs v(k)] for excitatory and inhibitory signals.

In summary, the neural mathematical mapping of the DNU can be defined in a

generalized form as depicted in Fig. 2.6. As shown in this figure, the first computation

provides a dynamic linear mapping from s(k) e 911 to v(k) E 911 through the weighting

vector 413(a b [-b1 -b2 a0 al] T. The second operation provides a nonlinear
fr fbi

=

mapping from v(k) e 911 to u(k) E 911 through a nonlinear function TR which in this case

is a hyperbolic tangent function.

20

s(k) Dynamic
Neural

Structure

v(k) Nonlinear
Function

u(k)

Linear mapping
from input state s(k)
to dynamic state v(k)

Nonlinear mapping
from dynamic state v(k)
to control state u(k)

Figure 2.6: Neural mathematical operations of the DNU in a generalized form.

2.3 Learning and Adaptive Algorithm

Learning and adaptation are the terms used to describe the behavior modification in

natural organisms as well as in machines. Biologists and mathematical psychologists have

been primarily concerned with the modeling questions associated with these phenomena

while the system theorists have addressed the problem of synthesizing machines which

exhibit these properties [46, 47].

The function of the learning and adaptive algorithm involves the determination of

feedforward and feedback synaptic weights which minimize the error function in some

optimal fashion. The equivalency of the input and output is a convenient condition to test for

the learning process [19, 47]. In an iterative learning scheme, the control sequence is

modified in each learning iteration to cause the neural output u(k) to approach the desired
state yd(k). If the error, e(k), can be reduced to an infinitesimally small value as the number

of learning iterations increases, the learning scheme is said to be convergent [47]; that is,

u(k) --> yd(k) as k --> co or,

lira [yd(k) - u(k) = e(k)1 0

k-00

(2.12)

for arbitrary initial conditions of the components of the weighting vector 0/ b(aff, tb)

If neural networks are used in both pattern recognition (static identification) and

system identification and control, the objective of the algorithm is to adjust the parameters of

the network based on a given set of input-output pairs. If the parameters of the DNU, namely

21

the feedforward and feedback synaptic weights, are considered as the elements of a parameter

vector 4:13
(affbfb

), the learning process involves the determination of optimal parameter vector

represented as a that minimizes a performance index J(0) based on the output error. aff,bfw

The components of the weighting vector 0, , and error e(k) vary with every learning kaff,D fb)

trial k. To obtain clo
(aff'bfb

)(k+1) requires only the information set e(k-m), e(k),

4:1:0(a b)(k) ' where m = 1,2, ... which determines the size of the window. As the number of
ff' fb

learning trials increases, the information set reduces to only { e* (k), Co(afrbfb)(k)} which

indicates that the error and neural weights have converged to the optimal values which satisfy

the input-output equivalency condition. However, this may not guarantee the global

optimization [34].

In this iterative process, the control sequence is modified in each learning iteration to

cause the neural output u(k) to approach the desired state yd(k). To achieve this, a

performance index which has to be optimized with respect to the weighting vector is defined

as
J(0) = E F [e(k; (13(afrbfb))] (2.13)

where E is the expectation operator. A commonly used form of F[e(k; c13(afrbd)] in Eqn.

(2.13) is a squared function of the error; that is,

J(j) = E e2(k; Co(afrbfl))) 1. (2.14)

Each component of the weighting vector is adapted in such a way so as to minimize
(awbfb)

J(1) based on the steepest-descent algorithm based on the following equation:

(1) - dia[g] Vcr, J(4) (2.15)
(affbfb)(k+1) = 43(afrbfb)(k)

where dia[g] is a diagonal matrix of the adaptive gains, (Di. b 1(k+1) and c13(. b (k) are
k- ff tip/ `- ff' fb)

the values of the parameter vector at the (k+1)-th and k-th instants respectively, and V J(413)

is the gradient of the performance function J evaluated at 40(afrbfb)(k) and is written as

mo)
. In Eqn. (2.15), dia[µ], the matrix of adaptive gains, is given by

DO(afrbfb)

22

Ila• 0
dia[µ] =[1 (2.16)

0 1.tb

iwhere = 0,1,2, and pb j = 1,2, are the individual gains of the adaptable parameters of
1 J

the DNU. The values of µa and 1.tb. are the measures of the strength of the adaptation of the

DNU parameters which determine the stability and the speed of convergence. These issues

are discussed more in detail in the next chapter.

From the definitions of the performance index, J(0), and error signal e(k), the

gradient of the performance index with respect to the weighting vector is obtained as follows:

aj(0) 1 [a[yd (k) - u(k)f

ao — 2 E ao

(afflbfb)

au(k)
E e(k) -

atli[v]
= E e(k)-

ao(afrbfd ao(affbfb)

= E {-e(k)[aliqvi av 1} = E {-e(k) [Iist[v] av 1}
av aci(affbfb) ao(afrbfb)

= E
4 av

-e(k) [
[exp (v(k)) + exp (-v(k))]2 aci)(afrbd

= E -e(k) [sech2[v(k)] Pe.(k)1 (2.17)

where P
v(k)

(k) — is defined as a vector of parameter-state (or sensitivity) signals.
acto(a b) fb

These signals represent the direct impact of the parameter vector through the system equation

on the DNU response. From Eqn. (2.2), the parameter-state vector is written as

a [- b1 v(k-1) - b2 v(k-2) + a0 s(k) + al s(k-1) + a2 s(k-2)]. (2.18)
P43(k) — aci)(afrbfb)

Equation (2.18) can be rewritten for feedforward and feedback weights of the DNU as

23

P„ (k) — b, v(k-1) - b2 v(k-2) + s(k) + al s(k-1) + a2 s(k-2)], (2.19a) as a(k) r

i = 0, 1, 2, and

r
bP (k) — L- , v(k-1) - b2 v(k-2) + ao s(k) + al s(k-1) + a2 s(k-2)], (2.19b)

fbj
a abfbi(k) I

j = 1, 2.

The partial derivatives on the right-hand side of Eqns. (2.19a) and (2.19b) arise because the

DNU structure has feedback connections, whereby previous output samples depend on

previous parameter values which, in turn, are related to the present parameter values via
successive updates of the algorithm in Eqn. (2.15). However, if the values of µai and gb are

chosen sufficiently small, then the approximation in Eqn. (2.3), that is F'(k, v, s) = F((k-1),

(v-1), (s-1)) = F'((k-2), (v-2), (s-2)), is valid [48]. This is a reasonable assumption for many

applications, and the performance degradation due to this assumption is insignificant in

practice. Based on this assumption, the parameter-state signals for the components of the

weighting vector, namely the feedforward and the feedback weights, are obtained as follows:

(i) For feedforward weights, aff., i = 0, 1, 2:

From Eqn. (2.19a) the parameter-state (or sensitivity) signals can be written as

,
P„ a (k) = L ao s(k) + al s(k-1) + a2 s(k-2)], i = 0, 1, 2. (2.20a)

aaffi(k)

The individual parameter-state signals for the feedforward weights may be written as

For i = 0, Pao (k) = [s (k)] ,

For i = 1, Pa1(k) = [s (k - 1)] , and

For i = 2, Pa2 (k) = [s (k - 2)].

Therefore, the parameter-state signals for the feedforward weights are

Pff (k) = [s (k - i)], i = 0, 1, 2. (2.20b)

24

(ii) For feedback weights, bfbi, j = 1, 2:

Similarly, from Eqn. (2.19b) the parameter-state signals for feedback weights can be written

as

r
P (k) — - b, v(k-1) - b2 v(k-2)], j = 1, 2.

fbj ab a(k) L

The individual parameter-state signals for the feedback weights are

For j = 1, Pb 1(k) = - [v(k - 1)], and

For j = 2, Pb 2(k) = - [v(k - 2)].

Therefore, the parameter state signals for the feedback weights are

Pfb• (k) = - [v(k - j)], j = 1,2.

(2.21a)

(2.21b)

As seen from Eqns. (2.20) and (2.21), the parameter-state signals for the feedforward weights

may be obtained by tapping the node signals from the controller structure, while the

generation of the parameter-state signals for the feedback weights manifests itself as an

additional structure with only the feedback weights as shown in Fig. 2.7.

From Eqns. (2.15) and (2.17) the parameter vector (13(afrbfd is updated based on the

following algorithm:

icto(afrbfb) (k+1) = 4:13(afrbd (k) + dia[g] E e(k) sech2[v(k)] Po(k) . (2.22)

From Eqns. (2.20) , (2.21) and (2.22) the following equations to modify the feedforward

and feedback weights may be written as

affi (k+1) = affi (k) + Rai Et e(k) sech2[v(k)] Pffi (k)} , i = 0,1,2, (2.23a)

and

bfbi (k+1) = bfbi (k) + 1.tbi E e(k) sech2[v(k)] Pt, (k) , j = 1,2. (2.23b)

The implementation scheme of Eqns. (2.23a) and (2.23b) is shown in Fig. 2.8, and the

symbolic representation of the DNU in Fig. 2.9. In Fig. 2.8, the terms gaffi and Sbfbi are

respectively the adaptive components of the feedforward and feedback weights of the DNU.

Neural dynamics represent the second-order structure represented by Eqn. (2.1). An

25

additional structure with only feedback weights is necessary to compute the parameter-state

signals for the weights bfb.

Neural dynamics

s(k)

 cp
 OP Pao Parameter

state signals
) for

go. Pal feedforward
 Pa2 weights

Structure 0"
with feedback
weights

v(k)

Parameter
 IP' Pb1 state signals
-1 p ' for feedback

b2 weights

Figure 2.7: Obtaining the parameter-state signals for the dynamic neural unit.

In Fig. 2.9, w(k, aff , bfb) represents neural dynamics of the DNU, aff and bfb are the

adaptable feedforward and feedback weights with the corresponding parameter-state signals

P,.(k) and Pt (k) respectively, aff and bc,., represent the initial values of the adjustable
0

weights, and tp [1 represents the nonlinear activation function.

The following observations are made with reference to the algorithm derived above

for the parameters of the DNU:

(i) The desired model MD, in Fig. 2.8, is an entity representing a physical reality (in

the case of system identification, for example), or model, in the designer's mind (in the case

of pattern classification problems, for example).

26

D N U
Desired
model, MD

ffo , bfbo--r
)1(

1_. s(k) • Neural
dynamics

Nonlinear function

v(k)

+1
[1

u(k)

1 v(k)

y (k)

e(k)

Pffi()

Vea/
\

1 Neural structure
with feedback

weights

Pfb (k) •

E [.]

[vi

e(k)qj[v]

Weighted error

a
ffi

(k+1)

E [.]

b fb (k)

Learning and adaptive block

Figure 2.8: The implementation scheme of the learning and adaptive algorithm.

27

Neural
dynamics

Nonlinear
operation

Figure 2.9: Symbolic representation of the dynamic neural unit (DNU).

(ii) The expectation of a random process x with the probability density function p(x)
00

is defined as E[x] = f x p(x) dx. Thus, E[x] is an averaging process and can be approximated
-00

, T

by the temporal (time) average E[x(t)] = Lim
1 f x(t) dt. For a discrete case, E[x(k)] = 1

-T
T

x(i). Due to the computational difficulty of an ensemble average, the gradient of a single
i = 0

time sample of the squared error e2(k) can be used to obtain an estimate of the gradient of the

error function J(1) in Eqn. (2.14) [48]. The expectation operator in Eqns. (2.23a) and

(2.23b) is then replaced by instantaneous values of the partial derivatives.

(iii) Equations (2.20) and (2.21) ignore interdependence of the parameter set; as such,

they represent a greatly simplified version of the true gradients that would result in the

presence of parameter dependence.

(iv) Equations (2.23a, and 2.23b) make use of the inner product of the error signal,

e(k), and the derivative of the nonlinear function, Ti[v]. This term is significant in the sense

that during the learning process, if Iv' is small in the neighborhood of zero, then it provides a

large weight to the error, thus making a large change in the weighting vector 0, b On kaft., tb)

the other hand, if Iv' is large, Ti[v] is small, thus providing very little weight to the error.

28

2.4 Summary

A new architecture of a computational neuron called the dynamic neural unit (DNU)

has been presented. The DNU is comprised of feedforward and feedback internal weights,

delay and a nonlinear activation operator. The dynamic structure of the DNU was only

analogous to that of a reverberating circuit in a neuronal pool of the central nervous system.

The output of this neural dynamics formed an argument to a nonlinear activation function.

An algorithm for updating the feedforward and feedback synaptic weights of the DNU and an

implementation scheme for the proposed algorithm have also been presented. Due to its

dynamic nature, the DNU can be trained to learn and control unknown dynamic systems.

The application of DNU to linear control problems is discussed in the next chapter.

3. Inverse Dynamic Adaptive Control of Linear Systems
Using Dynamic Neural Unit

3.1 Introduction

It has been demonstrated by many researchers [49 - 58] that an unknown plant

(system) will track, within physical limitations, an input command signal if the plant is

preceded by a controller which approximates the inverse of the plant's transfer function.

Precascading a plant with its inverse model provides an unity mapping between the input and

output signal space within the limitations of gain, power, etc. This concept of inverse

modeling has been referred to as adaptive inverse control [51]. Adaptive inverse control

using a finite impulse response (FIR) structure has been used to control a non-minimum

phase system [51]. The concept of inverse-modeling has been utilized in reducing the

intersymbol interference in digital communication systems [53]. In this application, the

inverse-modeling of channel dynamics makes the received signal match the transmitted

signal. Filtering the received signal through an approximation of the inverse of the channel

model has been suggested as the principal remedy [53, 59]. Practical problems that may

cause time-varying channel dynamics dictate the use of adaptive algorithms for tuning the

channel equalizers. Equalization in data modems combats this distortion by filtering

incoming signals. A modem's adaptive filter, by adjusting itself to become a channel inverse,

can compensate for the irregularities in the channel magnitude and phase response [49].

In this chapter, a control technique called the Inverse Dynamic Adaptive Control

(IDAC) using the DNU is described. The IDAC technique is based on the concept of

adaptive inverse control in which the controller structure is made to be an approximate

inverse-model of the plant under control. A brief introduction to IDAC scheme is given in

the next section. The principle of IDAC and the rephrasing of the global performance are

also described in this section. Computer simulation studies of the IDAC scheme are

presented in Section 3.3. A feedback-error learning scheme using the DNU is discussed in

Section 3.4, followed by a summary in the last section.

29

30

3.2 Inverse Dynamic Adaptive Control

Adaptive inverse control is based on the idea of inverse modeling. In this scheme,

the inverse model of a plant is estimated and cascaded with the plant, making the overall

transfer function of the plant and the inverse model unity. The adaptive inverse modeling

and inverse control scheme are shown in Figs. 3.1a and 3.1b respectively.

If the inverse estimation is good, the error between the targeted and the observed

outputs will be very small since the overall transfer function is almost unity. The major

concern in the adaptive inverse control technique is to accurately obtain the inverse model of

an unknown plant. The inverse model is, therefore, not expected to be the exact inverse of

the plant but is intended to be a best fit of the reciprocal of the plant transfer function.

Desired i Actual
 Plant inverse Plant

output output

(a) (b)

Figure 3.1: Adaptive inverse control scheme.

(a) Obtaining the inverse model (inverse-identification) of a plant, s(k), y(k) 'and
e(k) represent input, output and error signals respectively, silk) represents

output of the inverse model, and

(b) The control strategy following inverse-identification.

Traditionally, adaptive or self-tuning filters have been developed based on the FIR

structures. The FIR filters have the advantage of a very well developed theory with regard to

stability and convergence analysis. They have been generally used as they are

unconditionally stable and because of the well understood adaptive FIR algorithms.

However, the FIR realizations suffer from the problem of indeterminate order when it is

necessary to model transfer function poles [28]. In particular, when the poles of the transfer

31

function are close to the unit circle in the z-plane, a high-order FIR filter may be required to

meet a particular performance objective [59]. The adaptive inverse control technique

proposed by Widrow [51, 52] provides only zeros to the controller. He suggested that for

proper application, the plant must be stable and the plant zeros should not be extremely close

to the j co—axis in the s-plane or the unit circle in the z-plane. Information about the upper

bounds and the transport delay of the unknown plant is also required for the implementation

of the adaptive inverse control. Furthermore, Widrow did not discuss the performance of the

inverse-dynamic controller under structural perturbations. The adaptive inverse control

scheme proposed by Widrow involves two modes of operation: (i) the learning phase that

estimates an inverse model of the unknown plant, and (ii) the control phase that involves

implementation of the inverse model to make the plant follow the desired trajectory. In other

words, this scheme employs a 'learn-then-control' strategy. This strategy was also employed

by Hunt and Sbarbaro in their internal model control scheme [54] .

The primary advantage of using an infinite impulse response (IIR) filter is that it can

perform significantly better than an adaptive FIR filter for the same number of coefficients

[48]. This is a consequence of the output feedback which generates an infinite impulse

response with only a finite number of parameters. A desired response can be better

approximated by a filter that has both poles and zeros (IIR filter) compared to one that has

only zeros (FIR filter) [48]. Filters with feedback are particularly appropriate for system

modeling (identification), control, and filtering applications.

Despite these advantages, the major obstacle to the use of IIR filters is the lack of

well established and well understood adaptive algorithms. This is mainly due to the

multimodal nature of their performance. The other major concern is to maintain stability

during adaptation so that the poles of the filter do not accidentally move outside the unit

circle causing instability. In general, the properties of an adaptive IIR filter are considerably

more complex than those of an FIR filter, and it is more difficult to predict the behavior of

the adaptive IIR algorithms [59, 60].

Most of the adaptive algorithms for the FIR and IIR filters reported in the literature

are dominated by linear systems theory. There are many problems [29] which require

nonlinear dynamics. Computational neural networks, which are inherently nonlinear, may be

considered as a plausible alternative to the existing linear filters to overcome some of the

limitations of the latter. The flexibility and learning capabilities of neural networks have

made them applicable to a diverse set of nonlinear problems. The most significant

characteristic of these networks, which is of primary importance from the view point of

32

control and communication systems, is their ability to approximate arbitrary nonlinear

continuous functions. The application of inverse-modeling to robotic trajectory control using

a feedforward neural network is discussed in [58].

In this thesis, a control scheme named the inverse dynamic adaptive control (IDAC)

using the DNU is developed. The DNU, as described in the preceding section, is basically an

IIR filter followed by a nonlinear activation function. The principle of the IDAC scheme and

computer simulation studies are discussed in the following paragraphs.

3.2.1 The Principle

Consider a single-input-single-output (SISO) dynamic plant that has the following

input-output relation

y(k+1) = f(y(k),...., y(k-n), u(k),...., u(k-m))

= f(q(k), u(k)) (3.1)

where q(k) = [y(k),...., y(k-n), u(k-1),...., u(k-m)]T is a state vector, and f(.) is an unknown

nonlinear function and satisfies af(q,u)/au # 0. In the IDAC scheme, shown in Fig. 3.2, the

input-output equation of the DNU that produces the control signal to the plant is expressed as

u(k) = q(k), s(k)) (3.2)

where s(k) is the reference (desired) signal, and w(.) represents the dynamics of the DNU.

Using the learning and adaptive algorithm derived in Section 2.3, the nonlinear mapping PH

can be adapted to approximate the inverse function of the nonlinear system, that is

'V(w, q, s) —> f -ul (q, s) (3.3)

where f -ul (q, s) satisfies

y(k+1) = f(q(k), u(k)) = f(q(k), f -ul (q(k), s(k)) = s(k). (3.4)

From Eqn. (3.4) it can be observed that an unknown dynamic plant can be made to

track the desired trajectory by making the DNU mapping an inverse of that of the plant. This

is the intended behavior of the scheme illustrated in Fig. 3.2, that is, the output y(k) follows

the reference input s(k). Equation (3.3) places a constraint on the nonlinear function 'I'[.] in

that it's inverse should exist. Thus, the IDAC scheme uses an iterative constrained inverse

technique to find the control inputs to the plant. That is, rather than training a controller

33

network and placing this network directly in the feedback or feedforward paths, the forward

(inverse) model of the plant is learned, and iterative inversion is performed on line to

generate control commands. This approach allows the controller to respond on line to

changes in the plant dynamics, and avoids placing the highly nonlinear networks directly in

the feedback control path [55].

(
.

Learning and adaptive
algorithm /

DNU

s(k)

a ffo, bth /

/ 2
/

w(k, a
ff fb

) [.]

P
(k

ffi
Perturbations

Controlled object
(Dynamic plant)

G [k, a fb,
p Rff]

Figure 3.2: The inverse dynamic adaptive control (IDAC) scheme.

y(k)

In this chapter, the dynamic plant represented by Eqn. (3.1) is assumed to have a

linear relation between the input and output signal space. It then follows that an exact

inverse model of the plant may be obtained by placing the controller poles on the plant zeros

and the controller zeros on the plant poles. However, in practice it may be sufficient to

match the numerator and denominator polynomials of the controller to those of the plant [51].

Let the plant dynamics and the controller (DNU) be described by transfer functions

Gp[k, afb,13ff] and w(k, aff, bth) respectively. The controller parameters are represented by

aff, bth and the plant parameters by vectors a th, Pff. These may be written as:

aff = [as:), al, a2]T , bth = [bo, b1, b2]
T

: for the controller, with bo = 1

and

Rif = [p o, pi, 132]
T

a fb = [ao, a l, a 2]T : for the plant.

34

The error signal is defined as the difference between the desired response s(k) and the

actual response y(k). Mathematically, the error signal can be represented as

e(k) = s(k) - y(k) = s(k) - s(k) w(k, aff , bfb) Gp[k, a fb,

= s(k) [(1- w(k, aff , bfb) Gp[k, a fb, riff]] . (3.5)

If, by using the learning and adaptive algorithm derived in the preceding chapter, the transfer

relation of the controller is adapted to be an inverse of the plant under study so that

w(k, aff , bfb) = Gp[k, a fb, 13f0 (3.6)

where aff is made equal to a fb and bfb equal to 13ff , Eqn. (3.5) then becomes

e(k) = s(k) [1 - Gp [k, a t ,, Gp[k, a fb, 13fi] = 0 . (3.7)

Equation (3.7) is valid for the linear operating region of the DNU. However, the DNU is a

nonlinear computing element due to the presence of the nonlinear activation function 111[1.

The DNU can be operated in the linear region by changing the slope of the sigmoidal

activation function. In other words, the saturated region of the sigmoidal function is

controlled by its slope [61]. The sigmoidal function with a small slope makes the DNU

operate with a linear mapping where Eqn. (3.7) is valid.

The IDAC scheme keeps track of the varying dynamics of the plant and adjusts the

feedforward and feedback weights of the DNU in order to reduce errors between the input

and output signals. The equivalency of input and output is a convenient condition to test to

assure that the controller is the inverse model of the plant [53, 57]. The approximate

dynamics of the plant under control may be obtained from the optimal feedforward and

feedback weights. As the convergence of DNU weights depends on their initial settings and

adaptive gains used in the algorithm, the optimal weights may not exactly represent the plant

parameters even though the input-output equivalency condition is satisfied. This problem is

discussed briefly in the next subsection.

3.2.2 Rephrasing the Global Performance

The control scheme shown in Fig. 3.2 monitors the error signal e(k) and adapts the

weights of the controller in such a way that the performance index J(1) is kept minimum. At

each trial, the changes in DNU weights are proportional to the error. This leads to a system

35

that settles to a stable weight configuration as the error becomes minimum. However, the

changes become zero only for the zero gradient of the error in the weight space. This zero

can represent either a true global minimum or only a local one, but from the practical point of

view, this gradient descent algorithm generally results in useful, if not optimal, solutions [48,

59, 60]. The reason for the possible occurrence of local minima is explained below.

The error at the (k+1)th time moment, e(k+1), in terms of the error at the kth time

moment, e(k), can be expressed as follows:

2 2
e(k+1) = e(k) +

ae(k)
Aaff. + ae(k) Abfb. (3.8)

i=o aaffi (k) 1 j=1 abfbi (k)

where Aaffi and Abfbi are the gradient terms of the weighting vector cro(afrbfb) with respect to

feedforward and feedback weights respectively. These gradient terms of the DNU are given

by (derived in Chapter 2)

Aaffi = affi (k+1) - affi (k) , i = 0,1,2,

= µa1 E - e(k) sech2[v(k)] Pff. (k) , i = 0,1,2, and (3.9a)

Abfbj = bfbi (k+1) - bfbi (k), j = 1,2.

= b. E e(k) sech2[v(k)] Pfb. (k) , j = 1,2. (3.9b)

Substituting Eqns. (3.9a) and (3.9b) into Eqn. (3.8), neglecting the activation function

components, the expectation operator, and squaring the result gives

-2 a
2 } 2

e2(k+1) = e2(k) 1- y P (k) - P (k)
i=o

ff
ae(k)

i aaffi (k)._ j=1 uj fbj abe(k)fbj
(3.10)

The learning and adaptive algorithm, derived in the previous chapter, searches for the

minimum value of e2(k+1). This may be satisfied for more than one value of the adaptive

gains p,„ (k), i = 0, 1,2 and µb (k), j = 1,2. This can be shown by taking partial derivatives of
di

e2(k+1) with respect to Ra and pb and setting them to zero
1

36

ae2(k+1)
— 0, and

ae2(k+1)
— . am, (k) agb.(k)ai

Substituting Eqn. (3.10) into (3.11) gives

(3.11)

-2 -2
ae(k)

-2 2 2 de(k) . , _ ,, , ae(k) ae(k)
2e2(k) 1- 2 I p.„ (k) P„. (k) - 2 1 pb.(k) r fb. (k) [ab, (k) aaffi (k)

{
i=o 'Li ui aaff. (k) j=1 j J 1 luJ -

 — 0,

and

2e2(k)

(3.12a)

2 ae(k) 2 -2
1- 2

Pffi (k) aaffi (k)
ae(k) ae(k)

- 2 j I, gb.(k) Pfb. (k)
J

[abfb. (k)- [abfbi (k)_
0,

-2

=1 i=0 1

(3.12b)

Assuming e2(k+1),
ae(k)

and
ae(k)

0 (otherwise, there is no necessity for a affi (k) abfb. J (k)

adaptation!); then both expressions in Eqn. (3.12) yield

2 ae(k) -2 ae(k)
(k) P„ (k) + i_th.(k) (k)

i=0 "i aaffi (k) j=1 "J abffi. (k)_

-2

= 0.5. (3.13)

Equation k (3.13) represents a constraint on the optimum values of the adaptive gains µ()
a l

and µb (k). This constraint can be satisfied by several possible (may be infinite) sets of

1.1a 00 and µb (k). However, the occurrence of multiple solutions can be avoided by
.

imposing stability triangle criterion [48] on the feedback weights of the DNU, namely b1 and

b2. This still may lead to several possible convergence values for the controller parameters

while minimizing e2(k+1). One is free to choose any values of 11 (k) and µb (k) as long as

Eqn. (3.13) is satisfied. The partial derivatives of e2(k+1) with respect to adaptive gains,
ae2(k+1) i = 0,1,2 and

ae2(k+1)
, j = 1,2, may serve as a measure of the expected reduction

al.tb (k) alla.(k)

of e2(k+1). Further, the values of a(k) and gb (k) are the measures of the strength of the
i

adaptation: larger values of j.k (k) and µb (k) imply stronger adaptation, and vice versa.
a i .

Thus, the idea of choosing individual values for adaptive gains, µa (k); i = 0,1,2 and µb (k); j
i

= 1,2, is to adapt the parameters having larger gradients more than the parameters having

37

smaller gradients. It is very desirable to choose proper values for the adaptive gains µa and

µb so that a global optimum performance may be obtained, and this needs further

investigation.

Due to the problem of local minima, the individual controller parameters may not

exactly and inversely match the plant parameters. However, the overall transfer function of

the controller is the inverse of that of the plant, which therefore makes the transfer function

from output-to-input unity. Certainly, this would be a useful attribute in the control of

unknown systems. More often than not, in many control applications, satisfying the input-

output equivalency is more crucial and important than the system identification in an exact

sense. The convergence of error between the desired and the actual signals is viewed very

significant. It is, of course, a desirable function of the algorithm to give a global optimal

solution. Indeed, for a controller scheme that does not display such global performance, the

controller can be trapped in a false minimum [48]. Therefore, it may be necessary to have a

scheme-specific warning regarding the appropriate controller parameter initializations or

avoidance of certain source (input) and controller combinations [53]. Due to these

constraints, the definition of the global performance has to be rephrased.

The question of global "performance" convergence is rephrased, therefore, as whether

or not a particular combination of source (input signal), and initialization of the controller

parameters will only admit locally attractive adapted controller parameterizations that yield

the optimum available performance in terms of input-output equivalency [53, 57, 61]. In

terms of the parameter-space trajectories of the adapted parameters, all of the attractive

basins have sinks that make the controller an inverse-dynamic model of the plant under

control. Therefore, an admissible source (input), controller weight initializations and plant

combination need not always result in an optimum fit of the controller to the plant inverse.

All that is required for allowable control is that each locally stable stationary point of the

average behavior of the adaptive controller algorithm results in a controller output that can be

passed on to the plant which can result in an input-output equivalency.

With this description in context, computer simulations have been carried out in this

work to study the IDAC scheme using DNU for linear systems. The details of the simulation

studies are given in the next section.

38

3.3 Computer Simulation Studies for Linear Systems

In this thesis, discrete-time systems which can be represented by difference equations

of the form

q(k+1) = f [q(k) , u(k)1,

y(k) = g[q(k)] , k = 0, 1, 2.... (3.14)

are considered. In the above equation u(.) and y(.) represent the input and output of the plant,

q(.) denotes the state of the plant, and f and g are static nonlinear mapping functions. If the

system described by Eqn. (3.14) is linear and time-invariant, the equation governing its

behavior can be expressed as

n-1 m-1
y(k+1) = a i y(k-i) + 13. u(k-j). (3.15)

i=0 j=0

In the computer simulation studies, a dynamic plant with unknown parameters was

cascaded with the dynamic neural unit discussed in the earlier section. If the error is defined

as e(k) = s(k) - y(k), where s(k) is the reference input and y(k) is the actual output of the plant

under control, the objective is to determine a bounded control input u(k) which results in

lim [s(k) - y(k) = e(k)1 = 0 (3.16)

k —>

such that the output follows the input as closely as possible.

The simulation program for the IDAC scheme was developed in the VAX/VMS

environment. This program allowed the tolerance value of the error, Etoi, to be set at the start

of the program. In the simulation results presented in this section, etoi was set to 0.05. Four

simulation examples are discussed in this chapter. In Example 1, a general linear plant

described by Eqn. (3.15) and excited by a unit step input was considered. Following the error

convergence to the preset tolerance value, a different input signal was applied to the system

in order to validate the inverse model that was obtained. The objective of Example 2 was to

demonstrate the adaptive capability of the control scheme. Here, the control scheme was

made to respond to the variations in the plant parameters and input signal variations. The

control of a plant under structural perturbations and an unstable plant were demonstrated in

Examples 3 and 4 respectively.

39

Example 1: Learning and control of an unknown plant

Consider a linear plant described by the following difference equation

2 2
(y(k+1) = a i y(k-i) + 13. u k-j).

i=0 i=0 j
(3.17)

with a fb = [1.0, 0.7, 0.71T and Off = [1.2, 1, 0.81T. This is a second-order plant with two

poles and two zeros located at (-0.35 ± j 0.76) and (-0.42 ± j 0.7) respectively. The initial

values of the DNU weights were arbitrarily set to: aff0 = [0.4, 0.2, 0.21T and bfb0 = [1.0, 0.2,

0.21T. These initial values correspond to zeros and the poles located respectively at (-0.25 ± j

0.66) and (-0.1 ± j 0.44) The system was excited by a unit step input. The objective of this

example was to show that the learning and control actions were performed simultaneously.

In addition, the continuous adaptation capability of the IDAC scheme was demonstrated by

changing the input signal to a sinusoidal signal, s(k) = sin(2ick/250) in the interval [4,11 after

obtaining the approximate inverse-model of the plant. The simulation results obtained for

this example are shown in Fig. 3.3.

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Initial Training

Output signal

Error signal

0 500 1000 1500

Learning iterations, k

2000

Figure 3.3: The error and output responses before and after obtaining the inverse-model of

the plant under control, Example 1.

40

From the optimal (converged) weight values of the DNU, the zeros and the poles of

the dynamic structure of the DNU were found to be respectively at (-0.342 ± j0.756) and

(-0.408± j 0.714). The transfer function of the dynamic structure may be written as

u(k) (z + 0.342 - j 0.756) (z + 0.342 + j 0.756)
w(k, aff' bfb) - s(k) (z + 0.408 - j 0.714) (z + 0.408 + j 0.714) • (3.18)

Since the DNU represents an approximate inverse-model of the plant, the estimated plant

transfer function may be written as

(k, a) y(k) (z + 0.408 - j 0.714) (z + 0.408 + j 0.714) (3.19) p ff u(k) (z + 0.342 - j 0.756) (z + 0.342 + j 0.756)

which makes the transfer relation from the output to the input nearly unity. This implies that

the plant can follow changes in the command signal with very little error between the desired

command signal and the actual response. The existence of the error after this initial learning

phase indicates a mismatch between the ideal and the obtained inverse-model. To

demonstrate this, the input signal was changed from a step to a sinusoidal signal at k = 800.

The effect on the error and output responses of changing the command signal is also shown

in Fig. 3.3. As can be observed from this figure, there is an error in the limits ± 0.2 due to a

slight mismatch between the plant, Eqn. (3.17), and its inverse model, Eqn. (3.18). However,

the error that may exist after training between the plant and its inverse model could be

reduced by using a persistently exciting signal during training. This is because a persistently

exciting signal can excite all the modes of the plant under control [15, 16] which may result

in the true inverse model. There are, however, certain problems associated with persistently

exciting signals being used in adaptive control systems as discussed in [8, 15].

Example 2: Plant with varying dynamics and input signal

The purpose of this example was to show the adaptive capability of the DNU to

perturbations in the plant parameters, changes in the plant configuration, and variations in the

input signal. The plant considered in this case was governed by Eqn. (3.17) with pff =
[1, 1.2, 0]T and a fb = [1.3, 0.8, 0]T. This was a first-order plant with a zero at (-1.2) and a

pole at (-0.62). As the zero was outside the unit circle, the plant was of non-minimum phase

type. At time k = 600, the plant configuration was changed to 13ff = [1, 1.2, 0.711' and a ft, =

[1.3, 0.8, 0.61T. This change in configuration made the plant a second-order one with the

zeros and poles located respectively at (-0.6 ± j 0.58) and (-0.31 ± j 0.61). At k = 1000,

another perturbation was injected into the plant by making the parameter oc2 = 0, which

41

changed the location of the plant zeros to (0 ± j 0.68). The input signal was also varied in the

interval [-1, 1] as follows:

s(k) = 0.6, for 1300 5. k < 1425, s(k) = 0.2, for 1425 k < 1575

s(k) = -0.2, for 1575 k < 1650, s(k) = -1.0, for 1650 k < 2000. (3.20)

The simulation results obtained for this example are shown in Fig. 3.4. As can be observed

from this figure, the DNU could make the plant follow the desired trajectories inspite of

perturbations.

E
rr

or
 a

nd
 O

ut
pu

t
R

es
po

ns
es

1.

1.

0.8

0.

0.

-0.4

-0.8

-1.2

Initial
training

Adaptation
to parameter

variations

Adaptation to
input Signal

Output signal

0
0

Error signal

• • •
0 500 1000

k

1500 2000

Figure 3.4: The error and output responses before and after obtaining the inverse-model of

the plant under control, Example 2.

Example 3: Plant under structural perturbations

In this example, a linear plant with the following parameter values 13ff = [1, 1.2, 1.4]T

and ocfb = [1.1, 1, 0.8]T was considered. The poles and zeros of this plant were (-0.45 ±

j 0.72) and (-0.6 ± j 1.02) respectively. At k = 500, the plant configuration was changed from

second to first-order resulting in structural perturbations; that is, the parameters P2 and a 2

were set to zero. From the simulation results shown in Fig. 3.5, it can be observed that the

effect of the change in the dynamics was not significant on the response of the plant. Again,
the plant dynamics were changed at k = 1200 by making 132 = 0.6 and a l = 0 which located

42

the zeros at (-0.6 ± j 0.49) and the poles at (0 ± j 0.85). The latter change in the plant

dynamics made the error signal increase rapidly, as can be seen in Fig. 3.6, but the controller

was able to reduce the error to the tolerance value very quickly.

First-order Second-order

Second-order nonminimum plant with poles

plant phase plant on imaginary
axis

1.5

1.0

$. -0.5

-1.5

-2.0

0 500 1000 1500

k

1.5

1.0

0.5
0 rI

0.0

-0.5

0 -1.0

-1.5

-2.0

2000 0 500 1000 1500

k

2000

Figure 3.5: The error and output responses of a plant under parameter perturbations,

Example 3.

Example 4: Control of an unstable plant

An unknown plant described by the following relation was considered in this example

0.8 y(k) = - 0.9 y(k-1) + 1.2 u(k) - 1 u(k-1). (3.21)

From this difference equation it is observed that the plant was of first-order, with a pole at

(1.13) and a zero at (0.83) in the z-plane, and was unstable. This plant was precascaded with

the same controller structure and had the same initial settings as in Example 1. The

simulation results obtained for this situation are shown in Fig. 3.6. Although this plant was

unstable, the output error was bounded and remained within the tolerance limits, and the

feedback control input to the plant was bounded. It was also observed in this simulation

study that the effect of the initial values of the DNU parameters, in particular the feedback

weights, on the transient response was significant. The effect of the initial values of the

43

feedback weight b1 is shown in Figs. 3.6a and 3.6b. Some initial settings of the DNU

parameters led to system instability.
b1 = O*6

2.0

• 1.5

O 1.0

0.5

4 0.0

4a' • -0.5
U

-1.0

0

Error Signal

1.2

Control Signal

50 100 150

k

2.0

a.)

1.5

0
1.0

5L)1
cc .)

a.,

0.5

0.0

-0.5

-1.0

VV

200 0 50 100 150 200

711
a 0.8

° 0.4

7:1
pi 0.0

• -0.4
o -
*a., -0.8
U -

-1.2

0 20

Error Signal

fr/
Control Signal

I

(a)

b1= O*8

2.0

O
ut

pu
t R

es
po

ns
e

1.6

1.2

0.8

0.4

0.0

-0.4

k

40 60 80 100 120 0 20 40 60 80 100 120

k

(b)

k

Figure 3.6: The error, control and output responses of an unstable plant for different initial
settings of the feedback weight b1, Example 4.

44

3.4 Feedback-Error Learning Scheme

3.4.1 The Principle

The IDAC scheme discussed in the preceding section was used as a feedforward

inverse controller that made unknown linear systems follow desired trajectories. However,

the IDAC scheme was an open-loop learning system. The stability of the IDAC scheme

depends on the initial values of the parameters of the DNU. In this section, a feedback-error

learning scheme [58] that consists of a linear feedback controller and the DNU as a

feedforward inverse controller, as shown in Fig. 3.7, is discussed. This scheme consists of a

fixed gain proportional-plus-derivative (PD) linear feedback controller that makes the overall

system stable, and a feedforward Controller which updates its internal weights to generate the
control signal unn(k) in the process of becoming an inverse model of the plant. During the

initial training period, the control signal unn(k) was very insignificant. The control signal

from the feedback controller, uc(k), was significant because of the large initial error. Hence,

in the early stage of learning, the component tic(k) was dominant over the unn(k). However,

as the learning trials increased unn(k) became dominant over tic(k). The feedback controller

guarantees the stability of the overall system [58, 62, 63]. In general, the feedback-error

learning scheme has the following advantages [58]: (i) a teaching signal is not required to

train the neural network, instead, the error signal is used as the training signal, (ii) the

learning and control are performed simultaneously in sharp contrast to the conventional

'learn-then-control' approach, and (iii) back-propagation of the error signal through the

controlled object or through the model of the controlled object is not necessary.

In Fig. 3.7, Gp[k, a fb, Off] represents a dynamic plant, C[e(k), Ae(k)] is a linear

function of the error and the change of error representing a PD control law. The dynamics of

the overall system shown in Fig. 3.7 are described by the following equations:

e(k) = s(k) - y(k) (3.22a)

Ae(k) = e(k) - e(k-1)

C[e(k), Ae(k)] = kp e(k) + kd Ae(k) = tic(k)

unn(k) = T[(w(k, aff,
bm))s(k)]

u(k) = unn(k) + tic(k)

y(k) = Gp[k, a ft), Off] u(k).

(3 .22b)

(3.22c)

(3.22d)

(3.22e)

(3.22f)

45

ft
 00- Dynamic Dynamic

Neural Unit (DNU)

Learning and adaptive
algorithm u

nn
(k)

_F Linear
(3

1u(k)

controller -A e(k) u (k) c
C[e(k), Ae(k)]

Dynamic
Plant

G [k, a fb,
p off

y(k)

Figure 3.7: The feedback-error learning scheme consisting of a linear feedback controller

and a feedforward neuro-controller.

In Eqn. (3.22c), kp and kd denote the proportional and differential gains respectively.

The DNU, once trained, will represent the inverse dynamics model of the dynamic plant.

The fixed gain PD controller ensures adequate performance prior to the convergence of the

DNU parameters, and reduces the steady-state output errors due to the disturbance inputs

[62]. In essence, the output of the PD controller is an indication of the mis-match between

the dynamics of the plant and the inverse dynamics model obtained by the DNU. This is

because if the true inverse dynamics model has been learned, the DNU alone will provide the

necessary control signal to achieve the desired trajectory. With zero trajectory error, the PD

controller produces no output and, hence, indicates that learning has been completed [58, 62].

In the computer simulation studies discussed in the following subsection, the DNU
parameters, aif and bfb, were adjusted based on the algorithm derived in Section 2.3.

3.4.2 Computer Simulation Studies

Example 1: Learning and control of an unknown plant

A plant described by Eqn. (3.15) with the following parameter values a fb = [1.3, 0.9,

0.7]T and off = [1.2, 1, 0.81T was considered. The input signal to the system was a sinusoidal

signal s(k) = sin (2itk / 250) in the interval [-1,1]. The simulation results obtained for this

example are shown in the following figures. Figure 3.8a shows the error and plant output

responses. Figure 3.8b shows the control signal components generated by the feedback and

the feedforward controllers. As seen from this figure, the control signal from the feedback

46

controller, uc(k), was predominant during the initial period of training, and was reduced as

the feedforward controller took over which resulted in the dominance of the control signal
from the later; that is unn(k).

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es
 1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

1.2
• 4), as

c..)0 0.8
• -5

7:30 0 0.4

5 5 O • z 0.0

• -0.4

CA o -0.8

*a'
O • `-4 -1.2

0

Error signal Output signal

111111111=111111
115111111111AWAIIIIII

1111111/11111111,111B11111
1111111•11111111111111111

MEE 11111
0 200 400 600

k

(a)

u (k) (Control signal from the
c feedback controller)

800 1000

u (k) (Control signal from the
nn feedforward controller,

DNU)

1111111101ffil
LIIIIIIMEIWA111111
riANIM1111111111111011/1
1111111111111111111111111

E11111111111111
1111111.11111111M

200 400 600

k

(b)

800 1000

Figure 3.8: Simulation results, Example 1.

(a) The error and output responses,

(b) The control signals generated by the feedback and the feedforward controllers.

47

Example 2: Plant with varying dynamics

In this simulation example, the parameter adaptation capability of the feedback

learning scheme was demonstrated by introducing perturbations in the plant parameters. The

plant considered here was the same as in Example 1. At k = 500, the following parameter

changes were made:

a 2 -- 0
02

=0 , for 500 k 1000

thereby making the plant a first-order system with parameters: ocfb = [1.3, 0.9, 01T and

Off = [1.2, 1, 01T. The error and plant responses for this case are shown in Fig. 3.9. From this

simulation example it can be observed that the effect of changing the plant configuration on

the system response was very insignificant.

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Perturbation in p ant parameters

Error signal

Output signal

0 400 600

k

Figure 3.9: Error and output responses of the plant under parameter perturbations,

Example 2.

200

Example 3: Space vehicle control problem

800 1000

In this example, a model of the simplified space vehicle control system shown in Fig.

3.10 was considered. The purpose of this control system is to control the attitude of the space

vehicle in one dimension. Assuming a rigid structure, the vehicle is represented by a pure
inertia Jv' so that the transfer function between the applied torque and the output position is

48

c(s) 1
— The position c(t) and velocity v(t), are fed back by the position and rate J(s) j s2 •

sensors, respectively, to form the closed loop control, where the transfer function is

C(s)
p . G(s) =

R(s) s2 + k s + k
r p

r(t)

Position sensor
gain

Vehicle dynamics
 j(t) 1

- A
J , w,
v
s

 v(t)

Rate sensor gain

c(t)

Figure 3.10: Block diagram of a simplified space vehicle with rigid dynamics.

(3.23)

The closed loop transfer function of the equivalent discrete system, using z-

transforms, is [64]
2

T kpg(z+1)
2 G(z) — (3.24)

•
2J z2 + (2 krgT - 4Jv +T

2
kPg)z+(2.1v - 2 krgT + T kpg)

The parameters used in the simulation study were: kpg = position sensor gain = 1.65 X 106,

krg = rate sensor gain = 3.17 X 105, J = moment of inertia of vehicle = 41822. For T =

0.225 secs, the closed loop poles and zeros were: (-0.352 ± j 0.4114) and -1 respectively.

The above block diagram, of the space vehicle system was used as the dynamic plant

to be controlled in Fig. 3.7, and the desired trajectory was a sinusoidal signal in the interval

[-1,1]. Following the convergence of the error and system responses to the desired values,

the converged DNU parameter values corresponded to the following pole and zero locations

respectively: (-1, 0.05) and (- 0.421 ± j 0.387). For practical purposes, this is a close inverse

approximation of -1 and (-0.352 ± j 0.4114) respectively. The error and system responses

obtained are shown in Fig. 3.11a. After this initial learning and control, the system was

excited by an arbitrary signal. Except for small transients at the beginning, the system was

able to follow the new command input as shown in Fig. 3.11b thereby demonstrating that the

DNU was an approximate inverse model of the space vehicle system. The output of the PD

controller was an indication of the mis-match between the obtained inverse model and that of

the dynamic plant.

49

4

3
—c7:1

0
U 0

-2

1.0
(.1
cu
CD
9. 0.5
cu

0.0

0

CI -0.5

-1.0

0

Error signal

Output signal

I

200

0 40 80 120 160 200

k

400

(b)

600

k

(a)

4

-2

800 1000

1, —

Output signal

Error signal

W.
0 40 80 120 160 200

k

Figure 3.11: Simulation results of a space vehicle control system, Example 3.

(a) The error and output responses of a space vehicle during the initial

learning and control phase,

(b) New command input and the corresponding error and output responses.

50

Example 4: Control of nonlinear plants

The purpose of this simulation example was to demonstrate that the feedback error

learning control scheme shown in Fig. 3.7 could be used to drive simple nonlinear systems to

follow the desired trajectories.

Case (i): In this case, a linear plant preceded with an actuator with deadzone, shown in Fig.

3.12, was considered. In this figure, the characteristics of the actuator with deadzone are

described by the function

D[u] = u(k) - d

=0

= u(k) + d

if u(k) > d,

if -d u(k) d,

if u(k) < -d (3.26)

where the parameter 2d represents the width of the deadzone. The control signal to the plant

is then given by

v(k) = D[u(k)]. (3.27)

I-
Dynamic

Neural Unit (DNU)

Learning and adaptive
algorithm

Linear

e(k) controller u c(k)
C[e(k), Ae(k)]

u (k)
nn

u(k) Actuator
with

deadzone

v(k) Dynamic
Plant

G [k, a fb,
p ff

y(k)

Figure 3.12: The feedback-error learning scheme with deadzone.

In this simulation study, a linear plant with the same parameters as in Example 1 was

considered. The values of the proportional and derivative gains and the width of the

deadzone were respectively 0.7, 10, 0.2. The system was excited by an unit step input. The

simulation results for this case are shown in Fig. 3.13. The output responses of the plant with

and without DNU are shown in Fig. 3.13a. From this figure it is clear that the PD controller

could not drive the system to follow the step input. The same behavior was observed for

51

different values of the proportional and derivative gains. With both the feedback (PD) and

the feedforward (DNU) controllers connected as shown in Fig. 3.12, the control signals

obtained from these controllers are shown in Fig. 3.13b. From this figure it is observed that

the control signal from the feedback controller was significant during the initial learning

period, while the DNU output was more predominant as the learning and control actions

continued.

1.2

0.8-

0.6-

0.4-

0.2

0.0

Input

With DNU and PD Controller

With only PD controller
(Without DNU)

I I

0 50
k

100 150

(a)

-.4
• 1.2

"Cf 0.) tl.) 1.0 a) -5
ra4

°
0.8

U From the DNU, u (k)
5 -,z) 0.6 nn

2 From the PD controller,
c 4 .--- 0.4 u (k) --0 o ;

o -8 0.2
2?-44 0 C/) 0Llo
-e4 1

0.0

+4 cl• -0.2 i 1
0 50 100 150

k

(b)

Figure 3.13: Simulation results of a plant with deadzone, Example 4, Case (i).

(a) The output responses of the plant with and without DNU,

(b) The control signals from the feedback (PD) and the feedforward (DNU)

controllers.

Case (ii): A nonlinear plant described by the following difference equation

y(k+1) = u(k) + 0.5 y3(k) (3.28)

was considered in this simulation example. The system was excited by a square input in the

interval [-0.8, 08]. The simulation results were observed for 800 iterations. The input and

output signals of the nonlinear plant are shown in Fig. 3.14a and the control signals of the

feedforward and the feedback controllers are shown in Fig. 3.14b. From the output response

it can be seen that the DNU could drive the nonlinear plant to follow the desired signal.

52

1.0

Input

Output 1

200 400

k

(a)

600 800

From the DNU, u nn(k)

From the PD controller,
u c(k)

•
200 400 600

k

(b)

800

Figure 3.14: Simulation results of a plant with deadzone, Example 4, Case (ii).

(a) The input and output signals of the nonlinear plant,

(b) The control signals from the feedback (PD) and the feedforward (DNU)

controllers.

3.5 Summary

An inverse dynamic adaptive control (IDAC) technique using the DNU has been

discussed in this chapter. The effectiveness of the DNU as an inverse dynamic controller has

been demonstrated through computer simulation studies. In this control scheme, the dynamic

structure of DNU is made to be an approximate inverse model of the plant under control

thereby achieving almost unity mapping between the input and output signal space. Extensive

simulation studies have been conducted using the DNU and reported in [56, 57]. The

application of DNU to equalization problems in communication channels is discussed in [65].

In the simulation examples considered in this chapter, the order of the plant did not exceed

the order of the DNU structure and, therefore, it may be expected that it could adjust its

weights to satisfy the input-output equivalency. In a situation where the order of the plant

exceeds that of the controller, the scheme may not function satisfactorily. To circumvent this

problem, it was proposed [66] that a single DNU be replaced with a set of DNU modules in

the controller structure. The learning and adaptive algorithm decides the number of

controller modules to be activated to match the order of the dynamic system under control.

This scheme has been tested up to the fourth-order linear plants [66].

53

A feedback-error learning scheme with DNU as a feedforward controller has been

presented. As can be seen from the simulation results, this learning scheme was able to

adaptively control unknown linear and simple nonlinear plants in the presence of parameter

perturbations and input signal variations. However, the performance of the feedback-error

learning scheme was poor and sometimes unstable, when complex nonlinear characteristics

were introduced into the plant under control. This implies that the functional approximation

capabilities of a single DNU are limited.

Although a DNU can control linear and simple nonlinear systems, the power of neural

computation comes from the network of such neural units. Furthermore, as many practical

control problems are nonlinear in nature, it is desirable to develop a neural network structure

with the DNU as the basic computing node. This dynamic neural structure can approximate

nonlinear functions, and can be utilized in developing controllers for nonlinear systems.

These aspects are discussed in the next chapter.

4. Dynamic Neural Structure for Nonlinear Systems

4.1 Introduction

Although a single neuron can be used to control linear and simple nonlinear systems,
as was demonstrated in the previous chapter, and can perform certain simple pattern detection

functions [5], it has been demonstrated in the literature that the real power of neural

computation comes from the neurons connected in a network structure. Larger networks

generally offer greater computational capabilities. Arranging neurons in layers or stages is

believed to mimic the layered structure of a certain portion of the brain. These multi layer

networks have been proven to have capabilities beyond those of a single layer [28, 29, 67].

It is well established that feedforward neural networks with at least one hidden layer

can approximate nonlinear functions to a desired degree of accuracy [67 - 78]. As a result of

this attribute of feedforward neural networks, many researchers now use them to model

dynamic systems. However, dynamic neural networks offer computational advantages over

purely static neural networks. For example, it is well known that an infinite order FIR filter,

which is only a feedforward network, is required to emulate a single pole IIR filter [29]. The

architectures of dynamic neural networks, by and large, are developed based on the

understanding of the cerebellum and its associated circuitry [22, 36, 37].

Unlike a static neural network, a dynamic neural network employs extensive feedback

connections between the neurons. The node equations in dynamic networks are described by

differential or difference equations. The response of such networks is dynamic or recursive;

that is, after applying a new input, the output is calculated and fedback to modify the input.

The output is then recalculated, and the process is repeated. For a stable network, successive

iterations produce smaller and smaller output changes until eventually the outputs become

constant [28, 29]. In some situations, the process may never converge, and such networks are

said to be unstable. Unstable networks have interesting properties and one example of such

networks is chaotic systems [30].

Neural architectures with feedback are particularly appropriate for system modeling

(identification), control and filtering applications. These networks are important because

most physical systems are nonlinear and dynamic. In this chapter, one such dynamic neural

structure is developed using the DNU as the computing node. The mathematical

development and the implementation scheme of the proposed neural structure are presented

in the next section. It is demonstrated in Section 4.3 that a dynamic neural network with

54

55

DNUs as the functional elements can approximate arbitrary nonlinear functions. Computer

simulations are provided in this section to illustrate the functional approximation capability

of this dynamic neural network. This property is used to synthesize a controller for nonlinear

dynamic systems and is discussed in Section 4.4. It is followed by a summary in the last

section.

4.2 Multi-Stage Dynamic Neural Structure

Multi layer networks may be formed by cascading a group of single layers, where the

output of one layer provides the input to the subsequent layer. These networks may not

provide much functional capabilities over a single layer network unless there is a nonlinear

activation function between the layers [31]. Calculating the output of a layer in a neural

network consists of multiplying the first weight matrix, (if there is no activation function) by

the second weight matrix. This can be expressed as S(w1)w2, where S is the input vector,

and w1, w2 are the weight matrices of the two layers. Since matrix multiplication is

associative, the terms may be regrouped as S(w1w2). This shows that a two-layer neural

network without nonlinear activation functions is exactly equivalent to a single layer having a

weight matrix equal to the product of the two weight matrices. Hence, any multi layer linear

network can be replaced by an equivalent one-layer network. Linear networks are severely

limited in their computational capability. Hence, nonlinear activation functions are vital to

the expansion of the capabilities of neural networks. In general, multi-stage (multi layer)

neural networks can be considered as versatile nonlinear maps with the elements of the

weight matrices as parameters [34]. In this section, a multi-stage dynamic neural structure

with a DNU as the basic computing node is developed.

4.2.1 Mathematical Development

Let the output of a DNU be written as

co(x) = [(w(k, aff, bth))s(k)]

where T[.] is a sigmoid nonlinear activation function.

The input-output mapping of a single-stage of DNUs in sigma (parallel)

configuration, shown in Fig. 4.1a, can be expressed as

(4.1)

u(k) = 111(1)[(w(1)(k, aff, bfb) s(1)(k))] + ...+ tlii)[(w(i)(k, aff,bifb) s(il(k))] +

56

+ tp(P)[(w(P)(k, s 13)(k)) bpi)

= 1 ,..,p. (s) +...+ COi(S) +... + (s) = COn(s), n = ,..,i (4.2)
1

An equivalent representation of a one-stage dynamic neural network with 'p' DNUs in

parallel (in sigma mode) is shown in Fig. 4.1b.

s(k) E 9/ 11

(1)
w (k, afebfb)

vl (k)
(1)

u(k) E

 111(k
 i

[01 w (k, of b
v.(k) u (k)

'111.1
 J

[NI ‘7,131c,
,b

ff

Neural inputs

v (k)

(a)

o l s(k) E 9i n v(k) = w(k, a ff, b fb)
s(k)

u(k) = qi [v(k)1

(b)

Neural outputs

u(k) E 9113

Figure 4.1: Dynamic neural structure with a DNU as the basic computing node.

(a) The sigma connection of 'p' DNUs to form a single-stage dynamic neural

network, and

(b) The equivalent representation of a single stage dynamic neural network with

'p' DNUs in parallel (in sigma mode).

Similarly, the input-output mapping of a single-stage of DNUs in pi (series or

cascaded) configuration can be expressed as

57

u(k) = '11(" [(w(1)(k, aff, ifd x(1)(k))1 .. kli(i)[(w(i)(k, aff, bfb) x(i)(k))1 ...

'11(13)[(w)() x(13)(k))1

p
= (X) ... 0.)i(x) ... CO (x) = H (on(x), n = 1,..,i,..,p.

n=1
(4.3)

The dynamic neural system described by Eqns. (4.2) and (4.3) maps an n-dimensional

input vector s(k) e 9in into a p-dimensional neural output vector u(k) E 91 where the

mapping operations of an i-th neuron is given by

(i) The linear mapping operation:

vi(k) — w(0 (k, aff, bfb)i s(0 (k), and (4.4a)

(ii) The nonlinear mapping operation:

ui(k) = W(i)[(vf(k))1, i = 1, 2,.., p. (4.4b)

A multi-stage dynamic neural network can be formed by cascading a group of single

stage DNUs where the output of one stage provides the input to the subsequent stages. A

three-stage dynamic neural network that is configured to have an input-stage, an

intermediate-stage and an output-stage is shown in Fig. 4.2. Shaded circles in this figure
denote a DNU. w1, w2 and w3 are the input scaling factors. All the inter connections of the

network are not shown. From this figure, the output u(k) of the dynamic neural network can

be written as

u(k) = u 31(k) + u 32(k) + u 33(k) (4.5)

where u3 1(k), u3 2(k) and u3 3(k) are the outputs of the dynamic neural units
(31) (32) (33)

w (k, aff , bfb) , w (k, aff , bfb) and w (k, aff , bfb) respectively, and are given by

u 31(k) = [w
(31)

(k, a„) (u (k) + u 22(k) + u 23(k))] , rr fb k 21

u 32(k) = [w
(32)

(k, a„ b) k (k) + u (k) + u (k)1] , and fb 22 21 23

(4.6a)

(4.6b)

58

u 33(k) = [w(33)(k, af , b fb) 23(k) + u 22(k) + u 21(k))] . (4.6c)

Silk)

s2(k)

s3k)
I I

3
(k) u

23
(k) u

3
(k)

3 1 Weighted neural

inputs, sw(k)
Neural outputs

Figure 4.2: The structure of a three-stage dynamic neural network.

In Eqn. (4.6)

u 21(k) = [w
(21)

(k, a„ b11) k
) (u 11(k) + u 12(k) + u 13(k))]

= qi[w(21)c)Fp[w(11)0 1 tp[w (12)
(.)]

+T [w (13)0] swoo

(4.7)

where sw(k) is the weighted

(s1)

input vector and is given by

sw(k) = [(s2)][w
(s3)

w2 w31 }= ST w . (4.8)

In Eqn. (4.8), S and w are the vectors of the input signals and the scaling factors respectively.

Similarly, the output of each DNU may be calculated going from the output stage to

the input stage. Combining these equations and substituting into (4.5) yields

59

r
u(k) = [w(31) (k aff fh) + w

(32)
(k, aff , bfb) + w(33) (k, aff bfb)1

r (21) (k, a
Lw ff bfb) + w(22)(k, aff bfb) + w(23)(k, aff ,, bib)]

[w
(11)

(k, aff fb) + w(12)(k, of bfb) + w(13)(k, aff , bfb)] sw(k). (4.9)

In Eqn. (4.9), the first term represents the output stage, the middle term the intermediate stage

and the last term the input stage. The simplified diagram of the dynamic neural network is

shown in Fig. 4.3.

s(k)
-111 0

(11)
w (k,a ff ,b)

fb

(12)
w (k,a ,b)

ff fb

(13)
w (k,a

ff
,b)

fb

Input stage

(21)
w (k,a ,b)

ff fb

(22)
w (k,a ff ,b)

fb

(23)
w (k,a ,b)

ff fb

(31)
w (k,a ,b)

ff fb

(32)
w (k,a ,b)

ff fb

(33)
w (k, ffa ,b)

fb

Intermediate stage Output stage

Figure 4.3: A modular representation of the dynamic neural network.

u(k)

IP [1

The output of the dynamic neural network with a fully connected neural structure

with H stages, and Nh DNUs in each layer, where the output of the p DNU in layer h is

connected to the input of the neuron r in the next layer, is

h+1 (k) =
Nh-1

uhp,r) (k)

N
h-1 [h [

U (w(p,r) (k, aff bfb) (k)]

13=1 P=1

where 1 1 , and 1 H.

(4.10)

60

4.2.2 Implementation

Figure 4.4 shows the implementation of a three-stage neural network and the

corresponding parameter-state (sensitivity) model for the implementation of the learning and

adaptive algorithm derived in Chapter 2.

s(k)
E n

Three-stage dynamic
neural network

Desired response

q(k): 1 x 1 r(k): m x 1

Q(k) =
q(k) s(k) 4.[.]

u (k) R(k) =
r(k) u, (k) tP[.]

I

u2(k)

• 0.

t(k): p x 1

T(k) =
t(k) u2(k) I 'PH

Parameter-
state model

y (k)

u(k)

e(k)

(Q) r fb
„(Q)

ff

[v]

(R)

(R) fb
P ff

1><

8J
8Q

Input stage

(r)
ff

'P t [v]

TT

(T)
P f b

8J SJ
8R 8T

Intermediate stage Output stage

Figure 4.4: The implementation of a three-stage dynamic neural network and the parameter-

state model.

As shown in Fig. 4.4, the neural network consists of the input (Q)-, intermediate (R)-,
—) and output (T)-stages. i ffR), and ri(Tf represent the feedforward parameter-state signals

of the Q, R, and S dynamic neural stages (layers) respectively. Similarly, PZ Pr, and P(fbil

represent the feedback parameter-state signals of the Q, R, and T dynamic neural stages

61

respectively. This multi-stage dynamic neural network is used to approximate arbitrary

nonlinear functions and to synthesize a controller for nonlinear systems.

4.3 Neural Functional Approximation

One of the most significant characteristics of neural networks is their ability to

approximate arbitrary nonlinear functions. This ability of neural networks has made them

useful for modeling nonlinear systems which is of primary importance in the synthesis of

nonlinear controllers [28]. Neural networks potentially offer a general framework for the

modeling and control of nonlinear systems. The problem of learning a mapping between an

input and an output space using neural networks is equivalent to the problem of estimating

the system that transforms inputs and outputs given a set of examples of input - output pairs

[67]. Training a neural network using the input-output data from a nonlinear dynamic system

can be considered as a nonlinear functional approximation problem [28].

Recently, a number of researchers have shown that multi layer static (feedforward)

neural networks can approximate arbitrary continuous functions to a desired degree of

accuracy. Either Weierstrass's theorem or Kolmogorov's theorem has been employed for the

theoretical development of functional approximation capabilities of neural networks. For

example, it has been shown by Cybenko [68], Funahashi [69], Hornik et al [70], Cotter [71],

and Blum and Li [72], based on Weierstrass's theorem, that a continuous function can be well

approximated by a static neural network with one hidden layer, where each neuron in the

hidden layer has a continuous sigmoidal nonlinearity. Gallant and White [73] showed that a

static neural network with a single hidden layer using the monotone 'cosine squasher' is

capable of embedding a Fourier network which yields a Fourier series approximation to a

given function. Such networks thus possess all the approximation properties of a Fourier

series representation. In particular, these networks are capable of approximation, to any

degree of accuracy, of any square integrable function on a compact set using an infinite

number of hidden units [70]. Cardaliaguet and Euvard [74] developed a noise-resistant

approximation formula for a function and its derivative. They also addressed the limitations

of neural network architecture on the accuracy of function approximation. Hecht-Nielsen

[75], Cotter and Guillerman [76], and Kurkova [77] employed Kolmogorov's theorem to

demonstrate the function approximation capabilities of static networks. However, it has been

recently pointed out by Hornik et al [70], and Girosi and Poggio [78] that Kolmogorov's

theorem requires a different nonlinear processing function for each unit in the network, and

that functions in the second hidden layer depend upon the function being approximated. The

problems associated with function approximation using static neural networks are addressed

62

in [28]. The use of dynamic networks to represent dynamic systems is of more significance

and practical importance than using static neural networks.

The theory of functional approximation using static neural networks has been

extensively studied as was briefly indicated above. As a result, static networks have been

used to represent dynamic systems. A neural functional approximation theory for a dynamic

neural structure described in the preceding section is developed in this thesis. It is shown in

this section, using linear and trigonometric polynomials, that the proposed neural structure of

DNUs can approximate arbitrary nonlinear functions [79]. Computer simulations are

presented to demonstrate the functional approximation capabilities of this dynamic neural

structure.

4.3.1 Theoretical Development

It is known that analytic functions can be approximated by means of a power series

f(x) = ao + ai x + a2 x2 + + an xn (4.11)

which converges uniformly to the function f(x) in some interval [-a, a], a > 0. This means

that if

Sn(x) = ao + ai x + a2 x2 + + an , S(0) -- ao , (4.12)

then there exists a number N(e) for E > 0 such that the inequality n > N(E) would imply the

inequality If(x) - Sn(x)I < e, - a 5 x 5 a; that is, the polynomial Sn(x) differs very little from

the function f(x) if the degree n of the polynomial is sufficiently high. It is also known that

Eqn. (4.12) implies (unlimited) differentiability of the function f(x) in the interval (- a < x <

a), but any continuous function does not normally possess this property [80]. However,

Weierstrass [80, 81, 82] has shown that any continuous function can be approximated by

polynomials. The mathematical development presented in the following paragraphs is based

on the functional analysis described in [80 - 83]. It is shown in this section, using linear and

trigonometric polynomials, that the dynamic neural network with DNUs as the basic

functional elements can approximate arbitrary functions. The neural models, both

conventional (static) [61] and the DNU [79], can be operated in the linear range by

appropriately choosing the sigmoidal slope. Therefore, the theory of linear operators can be

extended to these neural structures.

63

Definition 1: The function T[.] is said to be a linear operator if it is both additive and
homogeneous on D [83]. 'I'[.] is said to be additive if 'P [x1 + x2] ='P [x1] +'P [x2], (x1, x2

E D) , and homogeneous if

'P [Xx] = X T [x] , (x E D, X E C) .

A necessary condition for a linear function T[.] to be continuous on a space D is that

'P be bounded on every bounded set. This condition is also sufficient if D satisfies the first

axiom of countability [82].

Lemma 1: If 'PH[1] —> 1, 'PH[x] —> p, 'PH[x2] —> p2, then TH[g] = 0, where g(x) = (x-p)2

where H is the number of stages (layers) in the dynamic neural structure.

Proof: g(x) =
(x-p)2 = x2 - 2 p x + p2 , it follows that

'PH(g) = T
H

(x2) - 2 p +p2 T (1) —>p2 - 2 pp+p2 =O. H
(X)

H

Theorem 1: If the two conditions: TH[1] —> 1, 'PH[g] —> 0 for H —> .0

where g(x) = (x-p)2, are satisfied for the sequence of linear positive functionals Tn[f], then

Lim T„[f] = f(p)
H -400 II

for any function f(x) continuous at the point x = p and bounded on the real axis.

Proof: In view of the boundedness of the function f(x), - M < f(x) < M, where

M(f) = sup I f(x)I, therefore
x

- 2M < f(x) - f(p) < 2M, V x E on D. (4.13)

In view of the continuity of this function at the point x = p

- < f(x) - f(p) < E for lx-pl < 8. (4.14)

Equations (4.13) and (4.14) imply the inequality

I2M i2M
- E - g(x) < f(X) - f(p) < E

V x • (4.15) S2
8

2 jg(x)

64

In fact, if lx-pl < 5, then (4.14) implies (4.15) since g(x) = (x-p)2 0, and if lx-pl 8, then

r'2M (2,M
82 g(x)j R2 J82 = 2M,

and (4.15) follows from (4.13) since c > 0. Using the inequality (4.15) and the fact that the

linear positive functionals are monotonic gives

M
- T

i28
H[i] -

ZS
TH[f] - f(p)TH[1] £'1`H[1]

(2
+ 82)TH[g] . (4.16)

According to the conditions mentioned in the theorem, the right hand side of Eqn. (4.16)

converges to E, and the left hand side to - E. Thus, there exists a number N(e) such that the

inequality

- 2c < TH[f] - f(p)TH[1] <

will be true V H > N(E). Since E > 0 is arbitrary

TH[f] - f(p)TH[1] =1H -4 0.

Finally, since TH[1] -5 1

`PH[f] = f(p)TH[1] +7/4 —> f(p). Hence, the theorem is proved.

Lemma 2: If TH[1] -4 1, TH(cos x) —> cos p, TH(sin x) -* sin p, then

TH[g] = 0, where g(x) = sine {(1-P1 } 2 '

s (x-p) 1 Proof : g(x) = sin .{ P1 - 1- co
} - -2- [1- cos p cos x - sin p sin x] 2 2

1
TH(g) = -2- { TH(1) - cos p TH(cos x) - sin p TH(sin x)

1 { —> I 1- cos2(p) - sin2(p) } = 0.

(4.17)

(4.18)

65

Theorem 2: If the two conditions TH[1] ---> 1, 'PH(g) 0 for H —>

where g(x) = sine {(-'-P} are satisfied for the sequence of linear positive functionals TH[f],

Lim
then

H
T

H
(0 = f(p) for any function f(x) with period 27c, continuous at the point x = p

and bounded.

Proof: In so far as the function f(x) satisfies the conditions of Theorem 1, the inequalities

- 2M < f(x) - f(p) < 2M, V x E on D, and

- E < f(x) - f(p) < E for lx-pl < 8

are valid. Now consider a subinterval (p - 5) < x (27c + p - 5) of length 2n.

- c - g(x) < f(x) - f(p) < E +
2M \

sin 28
g(x) , V x ,

(4.19)

(4.20)

The inequality

(4.21)

is valid in this subinterval. In fact, if lx-pl < 8, then the inequality (4.21) follows from (4.20),
(x-n)

since g(x) = sin-9 0. 2

-
If 8 < x- p 27c - S, then - 8

(x2 p)
7C - -2 , and thus 2

sin P12 _> sin 8 , g(x) = sin2 {(/ *P1} > 2 8
2 sin 2 , 7 2M \

28sin
—/

g(x) 2M, and

the inequality (4.21) follows from (4.19) since E > 0. In order to prove the validity of

inequality (4.21) V x, the function g(x) = sin2{--P-(" 1 -
1- cos (x-p)

has the period 27c and 2

according to the conditions of the theorem the function f(x) also has this period; that is,

- E -
7 2M \

8sin--2

g(x+ 2Icrc) < f(x 210c) - f(p) < E
7 2M \

2 8sin -2-\

g(x+ 2k7c) , V x. (4.22)

If x varies in the subinterval (p - 8, 2n + p - 8), then (x+ 27t) will vary in the subinterval

(2n + p - 8, 47c + p - 8), (x+ 47c) in the subinterval (4n + p - 8, 6n + p - 8), and in general

(x+ 21m) in the subinterval (2Ia + p - 8, 2k7c+27t + p - 8), k = 0, ± 1, ± 2,... The totality of

66

these subintervals covers without any gap the whole real axis, and thus the inequality (4.21),

whose validity on every subinterval follows from (4.22), is proved for V x.

The inequality (4.21) and the monotonic nature of the functions TH(f) gives

- E T H[] _
2M5

\ T
H

(g) < TH[f] - f(p) TH[1] < TH(1) +
(2M \

TH[g]. (4.23)
•sin 2 sin —2 I

In view of the conditions, the right hand side of Eqn. (4.23) converges to E, and the left hand

side to - E. Thus, there exists a number N(E) such that the inequality

- 2E < TH[fl - f(p) TH[1] < 2E (4.24)

will be true V H > N(E). Since E > 0 is arbitrary

TH[f] - f(p) TH[1] =7H —> 0,

'PH[f] = f(p) TH[1] + yH f(p). Hence, the theorem is proved.

Definition 3: Let f(x) and T[x] be two functions continuous in the interval [a,b] and let

d(f, T) = nal axx < f(x) -'P[x]

The number d(f, T) is called the distance between the functions f(x) and T(x) [66] (deviation

of the function f(x) from T(x)).

Theorem 3: If the function f(x), continuous in the interval [- it, ic], is even, there exists an

even trigonometric polynomial TH(f, x) which deviates the least from the function f(x); that

is, d(T, 0 = II f - TH(f, x) II .

Proof: If TH(f, x) is any polynomial which deviates the least from the function f(x),

d(T, = II f - TH(f, x) II . (4.25)

Then, replacing x by -x and

d(T, f) = max

noting that the function

f(-x) - TH(f, -x)

f(x) is even gives

- 5_ X It

max f(x) - '11H(f, -x) = II f - TH(f' -x) II . (4.26)
- 7C X 5_ It

67

[TH(f, x) " Ha, -x)]
Let Q(x) — 2

degree not greater than n. Thus,

The trigonometric polynomial Q(x) is even and has a

(
['P.a., x) + IPH(f, -x)] 1)

IIf-QII=II f-
['PH

 2 II — (2) II f- TH(f, x) + f - IPH[f, -x] II

(1) II f - 1PH(f, x) II + II f - IPH(f, -x) II

= (1) f) + f) = f). (4.27)

Hence, it follows that d('P, f) = II f - QII, the even polynomial Q(x) deviates the least from the

function f(x).

4.3.2 Computer Simulation Studies

It is demonstrated in this section, through computer simulations, that the dynamic

neural structure comprising of three stages, each stage having two DNUs as the basic

computing nodes, can approximate arbitrary nonlinear functions. The learning scheme

employed for this task is shown in Fig. 4.5.

Figure 4.5: The learning scheme for functional approximation task using dynamic neural

structure.

Four simulation examples are discussed in this section. Examples 1 and 2

demonstrate the neural network's ability to approximate arbitrary nonlinear functions as

68

shown in Figs. 4.6a and 4.6b. The nonlinear functions used in these examples were as
follows:

Example 1: f[s(k)] = s(k), and

Example 2: f[s(k)] = 0.5 s(k) + 0.1 cos ((2/ck/1000).

In Example 3, the desired nonlinear function was changed during the learning process to
study the adaptiveness of the neural network. The nonlinear functions used in this example

were as follows:

f[s(k)] = sin (2nk/250) for 0 k < 500 and

0.5 s(k)

-V If 1 +s2(01 for 500 k < 1000.

The simulation results for this example are shown in Fig. 4.6c. In Example 4, another

arbitrary nonlinear function of the form

f[s(k)] = s3(k) + 0.3 sin(2ns(k)) + 0.1 sin(5rcs(k)), where s(k) = sin (27ck/250)

was considered. As can be observed from Fig. 4.6d, the neural network could not

approximate this function very well compared to the first three examples. The mean-square-

error (MSE) of the function approximations shown in Figs. 4.6a. through 4.6d are

respectively 0.163, 0.302, 0.266 and 1.348.

-0.8 -
0 200

Learning iterations, k

(a)

Figure 4.6: (Continued)

400

k

(b)

600 800

69

1.2

0.8

0.4 -
D-1

0.0 - =

7 ,1 -0.4

-0.8 -

-1.2

Change in
nonlinearity

Learned
-4 Desired

• • •ci. •
200 400 600 800 1000

k

(c)

f[
s(

k)
]

an
d

T
[s

(k
)]

1.2

0.8 -

0.4

0.0-

-0.4 -

-0.8 -

-1.2
0

•
200 400 600 800

k

(d)

Figure 4.6: Arbitrary nonlinear functions and their approximations using dynamic neural

network.

The above results do indicate that the proposed dynamic neural structure with DNU

as the basic computing node can approximate arbitrary nonlinear functions. It was observed

during the simulation studies that the neural network adapted to the changes in nonlinear

functions, should they occur, during the approximation process. This approximation feature

of the neural network is used in the on-line control of unknown nonlinear dynamic systems.

This feature is discussed in the following section.

4.4 Control of Unknown Nonlinear Systems

One of the most significant features of neural networks is their ability to approximate

arbitrary nonlinear functions. This ability of neural networks has made them useful for

modelling nonlinear systems; this is of primary importance in the synthesis of nonlinear

controllers. Static neural networks have been widely used for nonlinear system identification

and control [34, 84 - 87]. It was demonstrated in the preceding section that the dynamic

neural structure with the DNU as the functional element could approximate arbitrary

nonlinear functions. In this section, it is demonstrated that this dynamic neural structure can

be used for the control of unknown nonlinear dynamic systems.

Assume that a single-input-single-output (SISO) nonlinear discrete system is given in

the form:

q(k-1-1) = f[q(k), u(k)1 : State equation

70

y(k) = g[q(k)] : Output equation (4.28)

where q E 9in are the state variables, u(k) E 9Z 1 is the control input, f[.] and g[.] are the

nonlinear maps on 91n, f[.] is bounded away from zero, and y(k) E 9Z1 is the plant output.

The problem to be addressed in control systems is to find a control signal u(k) that
will force the output y(k) to track asymptotically the desired output yd(k); that is,

lim [yd(k) -y(k)] = 0 . (4.29)

k --->oo

In order to achieve the above objective, the following assumptions about the nonlinear plant

are required [34, 85, 88]:

Assumption 1: The plant is of relative degree one (that is, the input at k affects the output at

k+1)

Assumption 2: For any k E [0, 0.] the desired output yd(k) and its n-derivatives yd(1)(k),

((n)
Yd2) yd (k), are uniformly bounded; that is,

Iy(di)(k) I , i = 0, 1, 2, ..., n. (4.30a)

Assumption 3: There exist coefficients a ff and b fb such that I'[.] and g[.] are the

approximations of the nonlinear functions f[.] and g[.] respectively with an accuracy E on D,

a compact subset of 91n; that is,

max If[.] - [.] I 5_ E, (4.30b)

max I g[.] - Ig‘[.]1 e, V q E on D. (4.30c)

4.4.1 Nonlinear Model Description

A nonlinear system may be represented by one of the four discrete-time models as

suggested in [34]. These models can be described by the following difference equations:

Model I:
n-1

y(k+l) = a i y(k-i) + g[u(k), u(k-1),..., u(k-m+1)],
i=o

(4.31a)

71

Model II:
m-i

y(k+1) = f[y(k), y(k-1),..., y(k-n+1)] + 13. u(k-j),
j=0

Model III:

(4.3 lb)

y(k+1) = f[y(k), y(k-1),..., y(k-n+1)] + g[u(k), u(k-1),..., u(k-m+1)], (4.31c)

Model IV:

y(k+1) = f[y(k), y(k-1),..., y(k-n+1); u(k), u(k-1),..., u(k-m+1)] (4.31d)

where [u(k), y(k)] represents the input - output pair of a SISO plant at time k, and m 5_ n. In

all four models, the output of the plant at time (k+1) depends both on its past n values of the

output as well as the past m values of the input (output of the neural network). The functions

f: 91 in models II and III, and f: 91n+m —> 91 in Model IV and g: 91m —> 91 in Models I

and IV are assumed to be differentiable functions of their arguments. In general, f[.] and g[.]

are nonlinear functions which may take different forms. In Model I, the plant output y(k+1)

is a linear function of the past values y(k-i), while in Model II the relation between y(k+1)

and the past values of the control input u(k j) is assumed to be linear. In Model III, the

nonlinear relation of y(k+1) with y(k-i) and u(k j) is assumed to be separable, and Model IV

in which y(k+l) is a nonlinear function of y(k-i) and u(k j) subsumes Models Ito III, and is

analytically the least tractable. The block diagram representations of the four models are

shown in Fig. 4.7.

u(k)

u(k-1)

HI]

u(k-m+1)

Figure 4.7: (Continued)

g(•)

(a): Model I

y(k+1)
-1

z-1
y(k-1)

72

(b): Model II

u(k)

u(k-1)
 10

Lt i
u(k-m+1)

Figure 4.7: (Continued)

g(•)

y(k+1) y(k)

(c): Model III

f(.)

z

73

u(k)

u(k-1)

FT'

-1

u(k-m+l)

f(.)
y(k+1)

(d): Model IV

y(k)

Figure 4.7: Representations of the SISO nonlinear plants: (a) Model I, (b) Model II, (c)

Model III, (d) Model IV.

4.4.2 Computer Simulation Studies

In the computer simulation studies discussed in this section, a nonlinear dynamic

system represented by one of the models shown in Fig. 4.7 was cascaded with the dynamic

neural network presented in the earlier section. This control scheme is shown in Fig. 4.8. As

depicted in this figure, the reference input s(k) is considered to be the target (desired) output
yd(k) for the nonlinear system to track.

If the error is defined as e(k) = yd(k) - y(k), where yd(k) is the desired output and y(k)

is the actual output of the plant under control, the aim of the control is to determine a

bounded control input u(k) which results in the expression

lim [yd(k) - y(k) = e(k)1 = a

k --> 00

(4.32)

74

s(k)

y jk)
♦ e(k)

(Learning and adaptive
algorithm

y(k)

u(k)
0

Perturbations

Nonlinear dynamic
system

y(k+1)

Figure 4.8: The control scheme for nonlinear dynamic systems using a three-stage dynamic

neural structure.

The neural network used for the computer simulation studies consisted of three-stages
with two DNUs in each stage. The input scaling factors w1 and w2 were set to 1 and -1

respectively. Six simulation examples are presented in this section each demonstrating a

particular aspect of the control problem. In Example 1, a nonlinear dynamic plant governed

by the difference equation (4.31a) was considered. The parameters of the plant, 13ff and a fb,

and the nonlinear function f[.] were assumed unknown. As the neural network weights were

adjusted, the plant response followed the desired signal very closely. The adaptive capability

of the control scheme for variations in the targeted output during the learning and control

process was also demonstrated in this example. In Example 2, a study of the performance of

the dynamic neural network was carried out for nonlinear systems represented by Model II.

The ability of the neural network to adapt to the changing nonlinear characteristics in the

system was also discussed in this example. The behavior of the dynamic neural network for

nonlinear systems with the Model III configuration was investigated in Example 3. In this

example it was shown that the neural control scheme would adapt to the changing input

signal patterns and perturbations in the plant parameters. The control of a nonlinear plant

represented by the Model IV configuration was studied in Example 4, including an important

property of the neural network, called fault-tolerance. The performance of this neural

network-based controller was compared with that of a PD controller. In conventional control

75

design based on feedforward neural networks, an optimal control law is often developed

based on the model of the nonlinear plant. It was shown in Example 5 that this assumption

was not necessary if the control scheme was designed based on the dynamic neural network

approach. Finally, the effect of changing the slope of the nonlinear activation function was

studied in Example 6. In these simulation studies, the error tolerance limits were set to ± 0.1.

Example 1: Model I, Equation (4.31a)

The plant to be controlled was governed by the difference equation

2 2
y(k+1) = a i y(k-i) + g

i=0
[p. u(k-j)1

•
J=0

(4.33)

where the unknown function was

g[.] = sin (nu(k)) + 0.3 sin (27cu(k-1)) + 0.1 sin (51tu(k-2)),

and the plant parameters were pff = [1.2, 1, 0.81T and a fb = [1, 0.9, 0.71T. The input to the

system was s(k) = sin (2rck / 250) in the interval [-1, 1]. The error and output responses are

shown in Fig. 4.9a. From the error response it can be seen that the error was initially large,

but decreased very quickly to the tolerance limits. Also, the error was within the tolerance

limits after about 1600 iterations even when the input was changed to be the sum of two

sinusoids s(k) = 0.8 sin (2nk / 250) + 0.2 sin (27rk / 25) at k = 500. The error and plant output

responses to the change in input signal for 1000 learning iterations are shown in Fig. 4.9b.

E
rr

or
 R

es
po

ns
e

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

0 200 400 600 800 1000

k

1.2

0.8

0.4

531'
0.0

C4

-0.4
O

(a)

-0.8

-1.2
0 200 400 600 800 1000

76

E
rr

or
 R

es
po

ns
e

0.5

0.4

0.3

0.2

0.1

0.0

-0.1

-0.2

0

Ch ange in Input

1.2

0.8

0.4

0.0 C4

5 -0.4
0

-0.8

-1.2
200 400 600 800 1000 0 200 400 600 800 1000

k k
(b)

Figure 4.9: Simulation results, Example 1.

(a): The error and output responses of a nonlinear plant configured in Model I.

(b): The error and output responses to a change in input signal at k = 500.

Example 2: Model II, Equation (4.31b)

In this example a nonlinear plant represented by Eqn. (4.31b) was considered where

the relation between y(k+l) and the past values of the control input u(k-j) was assumed to be

linear, while y(k+1) was a nonlinear function of its past values, y(k-i). This plant model can

be described by the following equation

2 2
y(k+1) = f [a i y(k-i) 1+ P. u(k-j) .

i=0 j=0 j

The plant parameters and the input signal were the same as in Example 1. The nonlinear

function used in this simulation example was

— [y2(k-1) + y2(k-2)]
• (1+y2

(k))
(4.34a)

The error and output responses obtained for this simulation are shown in Fig. 4.10a. At k =

500, this nonlinear function, Eqn. 4.34a, was changed to

f[.] —
0.2 sin n "\/ Iy2(k)I

kl+y2(k-1)) •
(4.34b)

77

The corresponding error and output responses are shown in Fig. 4.10b. As can be seen from

the simulation results, the dynamic neural network was able to drive the plant towards the

desired performance under the changed nonlinear characteristics.

1.2

C4

CU 0 8 v) •
o -

0.4

Q., 0.0

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Output signal

Error signal

200 400 600 800 1000

k

(a)

Change in nonlinearity

Output signal

V
-7\

Error signal

0 200 400

k

(b)

600 800 1000

Figure 4.10: Simulation results, Example 2.

(a): The error and output responses of a nonlinear plant in Model II

configuration,

(b): The error and output responses when the nonlinear function f[.] was

changed at k = 500.

78

Example 3: Model III, Equation (4.31c)

In this example,

y(k+1) = f

a nonlinear

2
[oci y(k-i) 1+

i=0

plant

g

represented by the equation

2
[. u(k-j)

=0j
(4.35)

with the following nonlinear functions

[2+cos 77c6/2(k-1) + y2(k-2)) 11 + e-1)f[.]
(4.36a)

—
, and

1 + y2
(k-1) + y2

(k-2)

1,1 I { u2(k) + u2(k-1) + u2(k-2)}I
(4.36b)

g[.] -
[1+ u3(k)]

was considered. The input to the system was s(k) = sin (2nk / 250) in the interval [-1, 1].

The plant parameters were the same as in Example 1. The simulation results, depicted in Fig.

4.11a, show the plant was able to follow the desired response with a MSE of 0.26.

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Output signal

Error signal

0 200 400

k

600 800
• r

1000

Figure 4.11: The error and output responses of a nonlinear plant configured in Model III,

Example 3.

To study the performance of the control scheme under varying input signal and plant

parameter perturbations, the input signal and plant parameters were changed as follows:

79

s(k) = sin (2itk / 250) , for 0 k < 250,

s(k) = 1.0, for 250 k < 500,

s(k) = -1.0, for 500 5 k < 750, and

s(k) = 1.0, for 750<_k<_ 1000.

The plant parameters were

13ff = [1.2, 1, 0.81T , a fb = [1, 0.9, 0.711' , for 0 k < 400,

13ff = [1.2, 1, 0]T , a fb = [1, 0, 0.7]T , for 400 k < 600, and

pff [1.2, 1, 0.41T , a fb = [1, -0.5, 0.7]r , for 600 < k < 1000.

The error and output responses for the above varying conditions are shown in Fig. 4.12.

It can be seen from these results that the effect of the variations of the input signal on

the plant output was significant, while that of the plant parameter perturbations was not.

This, of course, depended on the magnitude of perturbations. A very large magnitude of

perturbation could drive the system unstable.

Input signal variations

2.5

1.5

0 -0.5

-1.5

-2.5

Perturbation
in plant

Ihparameters

110111

621111111 1 11.a maiummi
0 200 400 600 800 1000

k

1.5

1.0

c•
0.5

C.L4

-1.5

r-

0 200 400 600 800 1000

k

Figure 4.12: The error and output responses under different input signal and plant parameter

variations, Example 3.

80

Example 4: Model IV, Equation (431d)

In this simulation example, a nonlinear plant of Model IV with the following

nonlinear function

[e(Y2")+312(1(-2)) + 111 u2(k) + u2(k-1) + u2(k-2)} I
fEl -

[1+ u3(k)]
(4.37)

and with the same plant parameters and input signal as in Examples 1 and 2 was considered.

From the simulation results presented in Fig. 4.13, it is observed that the plant was able to

follow the input signal with a MSE of 0.106 after 2000 iterations.

1.2

0.0

0 —0.4

0 —0.8

—1.2

Output signal

A

Error signal

0 200

I

400

k

aft

600 800 1000

Figure 4.13: The error and output responses of a nonlinear plant configured in Model IV,

Example 4.

The performance of this neural network-based controller was compared with a model-

reference adaptive controller (MRAC) [14 - 16] shown in Fig. 4.14. The MRAC was

originally proposed to solve a control problem in which the specifications are given in terms

of a reference model that tells how the plant output ideally should respond to the command

signal. The error e(k) is the difference between the outputs of the plant and the reference

model. The parameter of the regulator, namely the feedforward gain, was adjusted based on

the MIT rule [15]. The dynamic neural network, developed in this chapter, was used as the

reference model. The plant was assumed to be represented by the Model IV configuration.

The performance of the MRAC in terms of the error and output responses is shown in Fig.

81

4.15. The MSE, after 2000 iterations, was found to be 3.694. From this simulation study it

may be observed that the performance of the dynamic neural network-based controller was

much better than that of the MRAC.

s(k)

Reference
Model

y (k)

Regulator

Adaptation
Algorithm

u(k)
Plant

y(k)
 11

Figure 4.14: Block diagram of a model-reference adaptive controller (MRAC).

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Error signal

A

Output signal

0 200 400 600

k

800 1000

Figure 4.15: The error and output responses of a nonlinear plant configured in Model IV

controlled by the model-reference adaptive controller (MRAC).

82

One of the main advantages of designing a controller based upon a neural network

architecture is that the failures of a few neurons in the network do not cause significant

effects on the overall system performance. This characteristic is called fault-tolerance. To

demonstrate this feature, the intermediate stage of the dynamic neural network shown in Fig.

4.8 was removed, and the simulation was carried out. The corresponding error and output

responses are shown in Fig. 4.16. The system responses were improved as the learning trials

were increased, for example up to 2000. This simulation example shows that the neural

network could control the plant with fewer neurons in the network, demonstrating the fault

tolerance characteristic of the dynamic neural network.

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Error signal Output signal I--

0 200 400 600 800 1000

k

Figure 4.16: The error and output responses of a nonlinear plant with a neural network

consisting of only input and output stages with two DNUs in each stage.

Example 5: Adaptation to system model representations

Although major advances have been made in the design of conventional adaptive

controllers for linear systems with unknown parameters, such controllers can not provide a

solution for a wide range of nonlinear control systems. The great diversity of nonlinear

systems is the primary reason why no systematic and generally applicable theory for

nonlinear control has yet evolved [28]. The existing control techniques for nonlinear

systems, such as the phase plane, feedback linearization, and the describing functions, are

system specific. In other words, a control methodology suitable for one class of nonlinear

systems may be completely unacceptable for some other class of nonlinear systems. Since

neural network-based control schemes exhibit learning and adaptive capabilities, the control

law is independent of the plant configuration. This ability of the dynamic neural structure is

83

demonstrated in this example by changing plant models arbitrarily during the control process.

The changes in plant configurations were made as follows:

2 2
Model III: y(k+1) = f [a. y(k-i) + g [1, 13. u(k-j)1, for 0 5. k < 250:

i=0 j=0

where f[.] —
[2+cos 177c(y2(k-1) + y2(k-2)) }] + eY(k-j)

[1 + y2(k-1) + y2(k-2)]

(4.38)

(4.39a)

111{ u2(k) + u2(k-1) + u2(k-2)}1
g[.] — (4.39b)

[1+ u3(k)]

2 2
Model I: y(k+l) = y, a y(k-i) + g 1 13. u(k-j)] , for 250 5 k < 750: (4.40)

i=0 1 j=0 i

where g[.] = u3(k) + 0.3 sin (2icu(k-1)) + 0.1 sin (5nu(k-2)), (4.41)

[
2 2

Model IV: y(k+1) = f I a y(k-i) + I R. u(k-j) , for 750 5. k < 1050: (4.42)
i=0 1 i=0 j

[2+cos 7it(y2(k-1) + y2(k-2)) }] + e-u(k)
where f[.] — , and (4.43)

[1 + u2(k-1) + u2(k-2)]

2 2
Model II: y(k+1) = f [a : y(k-i) + Q. u(k-j) , for 1050 k 5 1500 (4.44)

i=0 j=0

0.1 sin it ly2(k)1
where f[.] —

[1 + y`„ (k-1) + y2(k-2)]

The plant parameters were

off = [1.2, 1, 0.81T , a fb = [1, 0.9, 0.7]r , for 0 < k < 1500.

(4.45)

The input to the system is the same as in the earlier examples. The error and output

responses obtained for this simulation study are shown in Fig. 4.17. It is observed from this

figure that the neural network was able to adapt very quickly to the changing models of the

nonlinear plant.

84

1.0

0.5

-1.0

-1.5

0 300 600 900 1200 1500

k

2.0

1.5

1.0

0 0.5
FA4
a)

P4 0.0

g .t. -0.5
0

-1.0

-1.5

O 0 0

0 300 600 900 1200 1500

k

Figure 4.17: The error and output responses of a nonlinear plant with varying model

representations of a nonlinear plant, Example 5.

Example 6: Effect of the slope of sigmoidal function on system performance

In the application of neural networks to control systems the slope of the nonlinear

function, usually sigmoid, is determined by trial and error. This heuristic selection of the

slope of the sigmoid function may limit the application of neural networks to complex

systems involving nonlinear dynamics. An improper selection of the slope of the sigmoid

function may lead to either unacceptable approximation of nonlinear functions or to system

instability. There is no report of any systematic study of the effect of the slope of the

nonlinear function on overall system performance. In this section, an attempt is made to

study this effect by considering a general nonlinear dynamic plant for the various sigmoidal

slopes.

The nonlinear plant considered in this example is of the type Model IV, and the

nonlinear function and the plant parameters were respectively as follows:

[2+cos 7n(y2(k-1) + y2(k-2)) }] + e-u(k)
arid

1 + u
2
(k-1) + u

2
(k-2)

I3ff = [1.2, 1, 0.81T , o f = [1, 0.9, 0.71T.

85

In this simulation study, the plant response was observed for different slopes of the

sigmoidal function. As shown in Fig. 4.18, small increases in the slope significantly affected

the plant response. A large increase in the slope resulted in an unstable response. The initial

learning of the neural network was also found to depend on the slope. A small slope of the

sigmoid function made the neural network respond slowly to the command input. Plant

responses for four different values of the slope are shown Fig. 4.18. In the previous example

it was shown that the neural network could adapt to nonlinear system models. However, the

underlying assumption was that the slope of the nonlinear function had been chosen

appropriately. An improper selection of the slope may result in an undesirable system

response. In the examples discussed earlier in this chapter, the slope was kept constant at

0.4. A slight change in the slope value from 0.4 to 0.6 resulted in the output response shown

in Fig. 4.18e. From this simulation example it is evident that the slope of the nonlinear

function, in addition to the synaptic weights, determines the stability and convergence of the

system performance.

1.2

0.8

a)
`) 0.4
0
5'"

C4
a)

0

0.0

-0.4

-0.8

-1.2

Slope = 0.4

 1
0 200 400 600 800 1000

k

(a)

Figure 4.18: (Continued)

1.2

-0.4

-0.8

-1.2

Slope =1.0

.k

0 200 400 600 800 1000

k

(b)

86

1.2

0.8

a) 0.4

5 -0.8
0

-1.2

-1.6

Slope =1.2

0 200 400 600 800 1000

k

(c)

2.0

").

1.5

• 0

1.0
II

1) 0.5
cn

o 0 0.0
fa4 ci)

c' LL 7 8 -0.5

-1.0

0 V) -1.5

-2.0

3

2

C
1

0
0

5 -1
0.
o -2

3

-4

Slope =1.3

0 200 400 600 800 1000

k

(d)

lit0 0

I
IT\

0 300 600 900 1200 1500

k

(e)

Figure 4.18: The output responses for different values of slope of the sigmoidal function,

Example 6.

87

4.5 Summary

A multi-stage dynamic neural network with DNU as the basic computing element has

been developed. An implementation for a three-stage neural network has been presented.

The functional approximation theory for this dynamic neural structure was developed using

the linear and trigonometric polynomials. This was substantiated by computer simulation

studies. However, it is the author's opinion that the neural network with only feedforward

connections may be approximated by the linear systems theory as was discussed in Section

4.2, which, in turn, limits the functional approximation capability. This was evident from

Fig. 4.6d. To obtain better performance, it may be necessary to have feedback connctions

between the neural layers. Four models of a nonlinear dynamic system are also discussed in

this chapter. A three-stage dynamic neural network has been used to control adaptively a set

of nonlinear plants. In Examples 1 to 4, the learning and adaptive capabilities of the dynamic

neural network under varying conditions have been demonstrated. From Example 5 it is

observed that the control technique based on the neural network approach is independent of

the system representation. It was shown in Example 6 that the slope of the nonlinear

activation function has a considerable effect on the performance of the system. An improper

selection of this parameter may lead to instability. It was proposed in [89] that the slope of

the nonlinear activation function could be considered as an adaptive parameter in addition to

the neural weights. This is discussed in more detail in the next chapter.

5. Dynamic Neural Unit With Somatic Adaptation

5.1 Introduction

The optimum slope of a nonlinear activation operator, usually the sigmoidal function

used to model the current conduction mechanism of the biological neuron, is determined by

trial and error in conventional static neural structures. It was demonstrated in the preceding

chapter that the performance of neural networks degrades considerably if the slope of the

sigmoidal function is not chosen properly. The selection of the parameter that determines the

slope of the nonlinear function needs more attention than what is presently given in the field

of neural networks.

Toward this objective, Yamada and Yabuta [61] recently studied the effect of auto-

tuning the slope of the sigmoid function on the performance of static neural networks with

applications to linear and simple nonlinear systems. Independently, Gupta and Rao proposed

[39, 89] that the parameter which controls the slope of the nonlinear function can be

considered as one of the adjustable parameters of the neural structure in addition to the

synaptic weights. This component contributes to what is generally referred to as somatic

adaptation. The purpose of this chapter is to develop a dynamic neural structure with

somatic adaptation, and to examine briefly how it affects the neural network performance as

applied to the control of unknown nonlinear dynamic systems.

This chapter is organized as follows: The biological basis for somatic adaptation is

briefly described in Section 5.2. The modified DNU architecture and the algorithm to

modify parameters of the DNU are developed in Section 5.3. The implementation scheme of

the modified algorithm is also presented in this section. A three-stage dynamic neural

network, using the DNU as the basic computing element, is developed in Section 5.4.

Computer simulation studies for nonlinear dynamic systems are presented in Section 5.5.

The concluding remarks are given in Section 5.6.

88

89

5.2 Biological Basis for Somatic Adaptation

The biological neuron is currently understood to provide two distinct mathematical

operations distributed over the synapse, the junction point between an axon and the dendrite,

and the soma, the main body of the neuron [20, 31]. These two neuronal mathematical

operations are called respectively the synaptic operation and the somatic operation [39].

From the biological point of view, these two operations are physically separate, but in the

modeling of a biological neuron, these operations have been combined [20] (for example,

thresholding in the soma is transferred to the synaptic operation).

At the macroscopic level, the dendrites of each neuron in the biological neural

network receive pulses at the synapses and convert them to a variable dendritic current. The

flow of the current through the axon membrane subsequently modulates the axonal firing

rate. For each neuron there is a time-varying nonlinear relationship between the pulse rate at

the synapse and the amplitude of the dendritic current [90]. This leads to a plausible

inference that the main body of the neuron, the soma, may also change during neural

activities, such as learning, adaptation, and vision perception. This morphological change of

the neuron during the learning process may be modeled by considering the slope of the

nonlinear function in a neural network as one of the adaptable parameters in addition to the

synaptic weights [39, 61]. This component of neuronal learning and adaptation is called the

somatic adaptation [89].

A sigmoidal function has been used in this thesis as the nonlinear activation function

in the architecture of the DNU. Mathematically, a time-varying sigmoid function can be

expressed as

exp vi(k)) - exp (-gs vi(k))
`PH =

exp vi(k)) exp (-gs vi(k))
— tanh [gs vi(k)] = tanh [v(k)] (5.1)

where v(k) = gs v (k). Figure 5.1 shows 'PH and its derivative '11 [.] which provides the

axonal gain for different values of the slope.

90

Inhibitory Excitatory

(a)

v(k)

(b)

v(k)

Figure 5.1: Sigmoidal activation function and its derivative.
(a) Sigmoid function ‘F[v(k)] = tanh [gs v1(k)], for different values of gs ,

(b) The derivative,111 [v(k)], of the sigmoidal function. This function tends to

become a sign function as gs 00, that is, tanh [gs vi(k)]Ig . The slope

[v](k) tends to become very narrow with an increasing value of gs.

5.3 Modified Structure of Dynamic Neural Unit

5.3.1 Architectural Details

The DNU introduced in Chapter 2 accounts for only the synaptic component of the

neuronal learning process. The modified DNU structure consisting of both the synaptic and

somatic components is shown in Fig. 5.2.

The neural dynamics of the DNU can be expressed in the form of a transfer relation as

v1(k) [a0 + al z-1+ a2 z-2]
w(k, aff , bfb) s(k) — -1 • -2, [1 + b1 z + b2

(5.2a)

[
n

where s(k) = 1 w1 • s 1 1 — 9 is the neural input to the DNU, s• E gin are the inputs from other
i=i

neurons or from sensors, wi E gin are the corresponding input weights, 9 is an internal

threshold, v1(k) E 911 is the output of the dynamic structure, u(k) E 911 is the neural output,

and aff = [a0, a1, a2]T and bfb = [b1, b2]T are the vectors of adaptable feedforward and

91

feedback weights respectively. Alternatively, Eqn. (5.2a) may be described by the following

difference equation

vi(k) = - b1 vi(k-1) - b2 vi(k-2) + al) s(k) + al s(k-1) + a2 s(k-2) . (5.2b)

Dynamic Neural Unit (DNU)

s(k)

Nonlinear activation
function

 v(k)

gs
+1

Neural dynamics

u(k)

Figure 5.2: The modified DNU structure with variable slope of the sigmoid function.

The vectors of the input signals and adaptable weights of the modified DNU are

redefined as

and

1-(k,vi, s) = {vi(k-1) vi(k-2) s(k) s(k-1) s(k-2)1T , (5.3)

T
clo(affbfb) = [-b1 -b2 a0 al ad •

Using (5.3) and (5.4), Eqn. (5.2b) is rewritten as

v (k) = 4:1:0(afr bth) s) = [-b1 -b2 ao ai a2

vi(k-1) —

vi(k-2)

s(k)

s(k-1)

— s(k-2) —

(5.4)

(5.5)

The nonlinear mapping operation on vi(k) yields a neural output u(k) given by

u(k) = [gs vi(k)] . (5.6)

92

5.3.2 The Modified Learning and Adaptive Algorithm

The algorithm to modify the synaptic (feedforward and feedback) weights of the

DNU was derived in Chapter 2. In this section, a brief description of the modified algorithm

that accounts for both the synaptic and somatic adaptations is presented.

The feedforward parameters aff., i = 0, 1, 2, and the feedback parameters bfbj, j = 1, 2,

are modified based on the following set of equations (derived in Chapter 2)

aff. (k+1) = aff. (k) + Rai E[e(k) sech2[v(k)] Pff. (k)] , i = 0,1,2, (5.7a)

and

bfbj (k+1) = bfbj (k) + µbj E[e(k) sech2[v(k)] Pfb. (k)] , j =1,2 (5.7b)

where the modified parameter-state signals for the feedforward and the feedback weights are

given by the relations

Pffi (k) = gs [s (k - 0], i = 0, 1, 2, and (5.8a)

Pfb (k) = - gs [v1 (k - j)], j = 1,2 (See Appendix I for proof). (5.8b)

The modified parameter-state signals may be derived from the DNU structure as shown in

Fig. 5.3.

Similarly, the other adjustable parameter of the DNU, namely the somatic gain gs of

the activation function, may be modified as follows:

gs(k+1) = gs(k) gg
a)

s ags(k) (5.9)

where [Lgs is the adaptive gain. The gradient of the performance index with respect to the

somatic gain gs is given by

aj(0) 1 a[yd(k) - u(k)]2
2 E

ags ags
-e(k)

[alli(v) av

av ags

av
= E {-e(k) [sech2[v(k)]]} = E -e(k) [sech2[v(k)] v1(k)1 . (5.10)

ags

93

Therefore, from Eqn. (5.9), the following equation may be written

gs (k+1) = gs (k) +1.1,gs E[e(k) sech2[v(k)] vi(k)1 . (5.11)

The modified DNU symbol and the implementation scheme of the modified algorithm

are shown in Figs 5.4a and 5.4b respectively.

s(k)

Dynamic structure

 CD
OP- Pao Parameter

) state signals
for

10' Pal feedforward

Structure

vi (k)

 pi,..Pa 2 weights

with feedback
weights

v(k)

Parameter
rbl state signals

for feedback
Pb2 weights

Figure 5.3: Generation of parameter-state signals from the modified structure of DNU,

affo, bfbo, gs
0

Neural Nonlinear operation
dynamics with somatic adaptation

Figure 5.4a: Symbolic representation of the DNU with both synaptic and somatic

components.

94

Synaptic component
DNU

Somatic component

i

I - i
I

affo, bfbo 1

+ 1
s(k) 1 ro Neural

I

dynamics1 (k) Li roil
1

gs0

 fi v(k)

Desired
response

Yd(k)

u(k) +V

e(k)

Pa
f.

(Neural structure
with feedback
weights

P

E

a ff (k+1)

bfb (k)

e(k)qi [NT]

E [.]

8gs

Learning and adaptive block

Figure 5.4b: The implementation scheme of the modified learning and adaptive algorithm.

95

5.4 Multi-Stage Dynamic Neural Network with Somatic Adaptation

Let the output of a DNU with the somatic component be written as

w(s) = T[gs(w(k, aff, bfb))s(k)1 (5.11)

where tlq.] is a sigmoidal function with the varying slope gs.

The input-output mapping of a single-stage dynamic neural network, shown in Fig

5.5a, with the DNUs in sigma configuration can be expressed as

‘110) [(i)((i) bi S(i)(10)]

[(1)(0)
(1),1_, +...+ g s w (Is aff, fly

u(k) = (1) gs w (ls aff., bfb) s V())

+ + IF(P)[4 13) (w(P)(k, a bfb) s(P)(k))1

= w1(s) +...+ wi(s) +... + 0)p(s)

p
= (s), n = 1,..,i,..,p.

n=1 n
(5.12)

The equivalent representation of an one-stage dynamic neural network with 'p' DNUs

in parallel (in sigma mode) is shown in Fig. 5.5b.

s(k) e n c

Neural
inputs

(1)
w (k,aff,bfb) g(1)

JJ

(i)
w (k,a

ff
,b

fb) g(i) (i)
[.]

(p)
w (k,a

ff
,bfb)

vi

m.
L

g(p) (p)
[.]

u(k) E 9i13

ui(k)

u .(k) Neural Ow

(a)
Figure 5.5: (Continued)

up (k)

> outputs

96

s(k) E 91 n v(k) = w(k, a ff, bfb) s(k)

u(k)= T[gsvi]

(b)

u(k) e 9IP

Figure 5.5: Dynamic neural structure with DNU as the basic computing node.

(a): The sigma connection of 'p' DNUs to form a single-stage dynamic neural

network, and

(b): The equivalent representation of a single-stage dynamic neural network

with 'p' DNUs in parallel (in sigma mode).

Similarly, the input-output mapping of a single-stage of DNUs in pi (series or

cascaded) configuration can be expressed as

u(k) = '11(1) [41) (w(1)(k, aiff, bilfb) s(1)(k))] ... 41(i) [g(si) (w(i)(k, aff, (i)(k))1

... T(P)[g(sP) (w(P)(k, aPff, bco s(P)(k)]

= 0.),(s) (0i(s) (op(s)

= co
n(s) , n = 1,..,i,..,p.

n= 1
(5.13)

The dynamic neural system described by Eqns. (5.12) and (5.13) maps an n-

dimensional input vector s(k) E 91n into a p-dimensional neural output vector u(k) E JZP

where the mapping operation of an i-th neuron is given by

(i) The linear mapping operation (synaptic operation):

(i) i i vi(k) = w (k, aff, bfb) s(') (k), and (5.14a)

(ii) The nonlinear mapping operation (somatic operation):

ui(k) = 'VD [g(si)(vi(k))1, i = 1, 2,.., p. (5.14b)

97

The output of the dynamic neural network with a fully connected neural structure,
with H stages and Nh DNUs in each layer where the output of the p DNU in layer h is

connected to the input of the neuron r in the next layer, is

u (k) = Nh-1
r hhh+1 h \

r ue, (k) = IPh { gs m,(13,r) (k, aff ,bflo xp (k)) j (5.15)
p=1

Nh-1 L
p=1

where 1 p Nh , 1 r Nh+1 , and 1 _< h _< H.

The mathematical description of the three-stage dynamic neural network developed in

Chapter 4 is applicable to the modified structure of the DNU as well.

5.5 Control of Unknown Nonlinear Systems: Simulation Studies

In the computer simulation studies discussed in this section, a nonlinear dynamic

system of the form

2 2
y(k+1) = f [y(k-i) + I [3. u(k-j)]

i=o i=0
(5.16)

was cascaded with a multi-stage dynamic neural network presented in Section 5.4. The

neural network used for the computer simulation studies consisted of three-stages with two

DNUs in each stage. Five simulation examples are presented, each one demonstrating a

particular control objective. In Example 1, a nonlinear dynamic plant governed by the

difference Eqn. (5.16) was considered. The parameters of the plant, 13ff and a fb, and the

nonlinear function f[.] were assumed unknown. As the neural network was trained, the plant

response followed the desired command signal very closely. In Example 2, two cases were

considered where a study of the robustness of the dynamic neural network was carried out by

changing the nonlinear functions at different instants of the control process. Input signal

adaptation is one of the important features of a good adaptive system. The effectiveness of

the dynamic neural network to make the plant follow the input signal variations was

demonstrated in Example 3. The adaptive capability of the dynamic neural network-based

control scheme under dynamic perturbations, such as variations in nonlinear function, input

signal and plant parameters, was demonstrated in Example 4. It was discussed in the

previous chapter that a nonlinear plant can be represented by four different models. As the

neuro-control scheme exhibits learning and adaptive capabilities, it was not mandatory to

have an a priori knowledge about the nonlinear system under control. It was demonstrated in

Example 5 that the neural network could adapt to different models of a nonlinear system.

98

Example 1: Control of an unknown nonlinear plant

A general nonlinear plant described by Eqn. (5.16) was considered. The nonlinear

characteristic of this plant was described by the following equation

[2+cos 77c(y2((-1) y2(k-2)) e-u(k)

1 + u2
(k-1) + u2

(k-2)
(5.17)

with parameter values: 13ff = [1.2, 1, 0.8]
T

and a fb = [1, 0.9, 0.7]
T

. The input to the system

was s(k) = sin (2ick / 250) in the interval [-1, 1]. The simulation results obtained for this case

are shown in Fig. 5.6. Figure 5.6a shows the error and output responses. Figures 5.6b and

5.6c show the adaptation in the somatic gain (slope) gs of the activation function with respect

to the learning trials k and the performance index J(.) respectively.

It is observed from Fig. 5.6a that the training of the neural network was slow during

the initial period which resulted in a large initial error. However, this behavior depended

upon the initial settings of adjustable parameters (aff, bfb, gs) of the DNUs. As the learning

continued, the nonlinear plant followed the command input very closely with a small error.

The adaptation in the somatic gain, gs, as observed from Figs. 5.6c and 5.6d, was initially

large and settled down to an average of 0.28 as the error signal converged to the preset

tolerance limits of ± 0.1.

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2

Output signal

Error signal

0 200 400 600 800 1000

k

(a)

Figure 5.6: (Continued)

99

0.4

0.0
0 200 400 600 800 1000

k

(b)

P
er

fo
rm

an
ce

 I
nd

ex
, J

(.
)

0.12

0.10-

0.08-

0.06-

0.04-

0.02-

0.00-

0.24 0.26 0.28 0.30 0.32

Somatic gain, g

(c)

Figure 5.6: Simulation results with somatic adaptation, Example 1.

(a): The error and output responses,
(b): The adaptation in somatic gain gs, and

(c): Performance index variation with respect to somatic gain.

Example 2: Control of a nonlinear plant with variations in nonlinear characteristics

In this example two cases were considered. In the first case, the nonlinear function

f[.] was arbitrarily changed to a new function during the control process. In the second case,

three different nonlinear functions were considered and the simulation was carried out for

these different nonlinear functions to investigate the robustness of the dynamic neural

network.

Case (i): The nonlinear plant to be controlled was the same as in Example 1 with the

following nonlinearity

[sin { Tc(y2(k-2) + 0.5) 1] + 0.3 sin(2nu(k))
f[.] — ,fork < 250.

1 + u2(k-1) + u2
(k-2)

During the control process, the nonlinearity f[.] was changed to

(5.18a)

f[.] = sin { ir(y2(k-1) + y2(k-2)) + V I u2(k) + u2(k-1) + u2(k-2) I , fork 250.

(5.18b)

100

The resulting error and plant output responses are shown in Fig. 5.7a and the

adaptation in the somatic gain in Figs. 5.7b and 5.7c. It is observed from the simulation

results that the neural network was able to drive the plant towards the desired response even

in the presence of changing nonlinear characteristics. The effect of changing the nonlinear

function on the somatic gain is shown in Fig. 5.7c. The average somatic gain in this case was

found to be 0.56.

Case (ii): The nonlinear plant considered in this case was the same as in Case (i). The

objective of this simulation was to demonstrate the robustness of the dynamic neural

network. Initially, the neural network was trained to a particular nonlinear function f[.].

While the control operation was in progress, the functions used to model the nonlinear

system were changed. The neural network was then presented with these different nonlinear

functions in a random sequence.

It was observed that the effect of introducing different nonlinear functions on the

system performance was smaller on the subsequent occurrences of variations in the nonlinear

functions. This illustrates that the neural network adapted to the different nonlinear functions

very quickly. The three nonlinear functions used in this simulation example were as follows:

[] [sin { n(y2(k-2) + 0.5) 1] + 0.3 sin(2nu(k))

1 + u2
(k-1) + u2

(k-2)

for 0 k < 350, and 2000 k < 2500,

f2[-] - [2+cos { 7,x(y2(k-1) y2(2-2)) }] e-u(k)

1 + u2
(k-1) + u2

(k-2)

for 350 k < 800, 1200 k < 1600, and k > 2500,

f3[.] = e(y
2
(k-1)+y

2
(k-2)) +Al I { u2(k) u2(k- 1) 4. u2(c-2)}

for 800 k < 1200, and 1600 k < 2000.

(5.19a)

(5.19b)

(5.19c)

The error and output responses are shown in Figs. 5.8a and 5.8b respectively, and the

corresponding variation in the somatic gain in Fig. 5.8c.

101

1.5

Change in nonlinearity at k = 250

2.0

0.0

E
rr

or
 a

nd
 O

ut
pu

t
R

es
po

ns
es

1.0

0.5

0.0

-0.5

-1.0

-1.5

0 200

Output signal

- -

Change in nonlinearity
,•••••••••

Error signal

400

k

(a)

0 200 400 600 800 1000

k

(b)

P
er

fo
rm

an
ce

 I
nd

ex
, J

(.
)

600

0.50

800 1000

I • I

0.55 0.60 0.65

Somatic Gain, g

(c)

Figure 5.7: Simulation results with somatic adaptation, Example 2, Case (i).

(a): The error and output responses,
(b): The adaptation in somatic gain gs, and

(c): Performance index variation with respect to somatic gain.

0.70

102

O
ut

pu
t R

es
po

ne

0 500 1000 1500

k

(a)

2000 2500 3000

1.2

0.8 "

0.4 -

0.0

-0.4 -

-0.8

-1.2

i
V V

1
0 500

Figure 5.8: (Continued)

1000

I . r
1500 2000

k

(b)

1

2500 3000

103

Figure 5.8: Simulation results with somatic adaptation, Example 2, Case (ii).

(a): Error response to the changes in nonlinearity characteristics. Numbers in

circles, 1, 2 and 3, represent different nonlinearity characteristics as

described in Equations (5.19a), (5.19b) and (5.19c) respectively,

(b): The output response, and

(c): The adaptation in somatic gain.

Example 3: Control of a nonlinear plant with variations in input signal

The objective of this simulation example was to demonstrate the input signal adaptive

capability of the dynamic neural network. The plant and the nonlinear function f[.] in this

example were the same as in Example 1, but in this example the input signal s(k) was varied

in the interval [-1.2, 1.2] as follows:

s(k) = sin (2ick / 250) , 0 k < 350

s(k) = 1.2, for 350 k < 500

s(k) = 0.4, for 500 k < 600

s(k) = -0.2, for 600 k < 800

s(k) = -0.6, for 800 Lc. k < 1000

s(k) = 1.2 cos (2Tck / 150), for k 1000.

(5.20)

104

The corresponding error and output responses are shown in Figs. 5.9a and 5.9b

respectively. The adaptation in the somatic gain for the input signal variations is shown in

Fig. 5.9c.

1.0

0.5
cA

0

-0.5

-1.0

0 350 700

k

(a)

1050

2.0

on

1.5

E
1.0

0

0.5

1400

O
ut

pu
t R

es
po

ns
e

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

-1.5

-2.0

4I\
I

 J,
•

0 350

0.0

0 350 700

k

(c)

1050 1400

700

k

(b)

Figure 5.9: Simulation results for input signal variations, Example 3.

(a): The error response,

(b): The output response, and

(c): The adaptation in somatic gain for variations in input signal.

1050 1400

105

Example 4: Control of a nonlinear plant with variations in nonlinear function, input

signal and plant parameters

In the above examples it was shown that the dynamic neural network was able to

make a nonlinear plant follow the changes in the nonlinear characteristics and the input

signal. The objective of this simulation example was to demonstrate the adaptive control

capability of the neural network under the following situations: (i) time-varying nonlinear

functions, (ii) varying pattern of input signals, and (iii) perturbations in the plant parameters.

The nonlinear function used in this example was

f[
] — sin { n(y2(k-2) + 0.5)} +11 I { u2(k) + u2(k-1) + u2(k-2)}

, 0 5_1« 400
.

1 + y2(k-1) + y2(k-2)

(5.21a)

which was perturbed at k = 400 to

[2i-COS 77t(y2(k-1) y2((-2)) 1] e-u(k)
f[.] — , 400 5_ k < 1400.

1 + u2(k-1) + u2(k-2)
(5.21b)

The input to the system, s(k) = sin (2ick / 250) in the interval [-1, 1], was changed as follows

s(k) = sin (2nk / 250) , for 0 k < 350,

s(k) = 0.8,

s(k) = 0.4,

s(k) = - 0.2,

s(k) = - 0.6,

for 350 k < 500,

for 500 k < 600,

for 600 k < 800,

for 800 k < 1000, and

s(k) = 1.2 cos (2rck / 150) , for 1000 k 1400.

The plant parameters were:

Pff
= [1.4,

Pff
= [1.4,

13ff = [1.4,

Pff = [1.4,

1.2, O] r , a fb = [1' ' 1 0] T'

1.2, 0.31T , a fb = [1 1, 0• 31T ,

1.2, 1.01T , a fb = [1, 1, - 0.11T

1.2, 0]T , = [1'fb 0 ' 0 31T• '

for 0 k < 175,

for 175 k < 650,

, for 650 k < 1200, and

for k>1200.

(5.22)

(5.23)

The simulation results obtained for this example are shown in Fig. 5.10. This

example demonstrates the robustness of the neural network for variations in the nonlinearity

characteristics, input signal, and changes in the dynamic characteristics of the plant.

106

Perturbations in plant parameters

0

1.5

1.0

-1.0

-1.5

1.0

0.5
(,)
0

Eli" 0.0
4:4

0

-0.5

-1.0

k= 175 k = 650
k =1200

1 4
1 i+,-._ h. IA A e dill --..„f

.
0 350

Variation
function

-111

.
700

in nonlinear
at k =

.
k

400
low

1050 141

. . . ,
Adaptation to input signal

variations,
k = 350 to 1000

MOIN.111#

0 350 700

k

(b)

1050

(a)

1400

0.4 E
0.3

0.2

0.1

0.0

0 350 700

k

(c)

1050 1400

Figure 5.10: Simulation results for dynamic perturbations in the plant, Example 4.

(a): The error response to variations in the nonlinearity characteristics, input

signal and plant parameters,

(b): The corresponding output response, and

(c): The adaptation in somatic gain.

107

Example 5: Adaptations to system model representations

In this example the adaptive capability of the neural network with somatic adaptation

was demonstrated by changing the plant models during the control process. The same

changes were made as discussed in Chapter 4. The error and output responses obtained for

this simulation example are shown in Figs. 5.11a and 5.11b respectively. The effect of

changing the nonlinear plant models on the somatic gain is shown in Figure 5.11c. It is

observed from this figure that the neural network was able to adapt very quickly to the

changing models of the nonlinear plant.

1.0

0.5

a)
‘., —0.5

—1.0

—1.5

0 300 600 900 1200 1500

k

(a)

Figure 5.11: (Continued)

2.0

1.5

1.0
(,)

0.0

124
0 —0.5

—1.0

—1.5

III 0

1\, k,
O

0 300 600 900 1200 1500

k

(b)

108

rip
0 0.6

0
0.4

IV

0 300 600 900 1200 1500

k

(c)

Figure 5.11: Simulation results for model variations, Example 5.

(a): The error response. Circles with numbers I, II, III and IV denoted the

different nonlinear models as described by Eqns. (4.14a) through (4.14d)

in Chapter 4,

(b): The corresponding output response, and
(c): The adaptation in somatic gain, gs, for variations in nonlinear plant models.

5.6 Summary

The importance of changing the slope of the nonlinear function in a neural network

has been emphasized in this chapter. A biological basis for such a change in the neural

network structure has been discussed. Through computer simulation studies, it was

demonstrated that the capability of a neural network can be enhanced with somatic adaptation

compared to a neural network with non-adaptable sigmoidal functions. A modified DNU

structure having both the synaptic and somatic components has been proposed. A modified

algorithm to update the adjustable parameters, namely the feedforward and feedback synaptic

weights, and the slope of the sigmoid function, has been presented. An implementation

scheme for this algorithm has also been presented. A few simulation examples have been

presented and discussed demonstrating a particular control objective.

This, and the preceding chapters, have described the dynamic neural unit (DNU) and

the multi-stage dynamic neural structures with the DNU as the basic computing element.

109

However, it is postulated in neuro-physiology that the collective activity generated by large

numbers of locally redundant neurons is more significant in a computational context than the

activity generated by a single neuron [411 The total neural activity results from a collective

assembly of neural cells called neural subpopulations. A subpopulation contains a large

class of similar neurons that lie in close spatial proximity. A simple approach for the study

of subpopulations of neurons would be to consider a neural model consisting of excitatory

and inhibitory neurons. A dynamic neural structure based on the concept of neural

subpopulations is developed in the next chapter.

6. Dynamic Neural Processor with Excitatory and

Inhibitory Neurons

6.1 Introduction

It was demonstrated in the previous chapters, through computer simulation studies,

that a dynamic neural network with a DNU as the basic computing element can control

unknown nonlinear systems. This neural structure is different from the conventionally

assumed structure of both feedforward and feedback networks in the sense that the basic

functional node in a neural network, the DNU, developed in this thesis consists of two delay

operators with feedforward and feedback connections forming a second-order linear

structure. The output of this linear structure constitutes an argument to a time-varying

sigmoid function. A number of such DNUs are connected in a conventional feedforward

network comprising of input, intermediate and output stages without any feedback between

the stages. The implicit assumption in traditional feedforward and feedback neural networks

is that the behavior of each neuron in the networks is deterministic.

Experiments in neuro-physiology have shown that the response of a biological neuron

at the single cell level is unpredictable, and that the total neural activity results from a

collective assembly of cells called neural subpopulations. A subpopulation contains a large

class of similar neurons that lie in close spatial proximity. As mentioned in the previous

chapter, a simple approach for the study of subpopulations of neurons would be to consider a

neural model consisting of excitatory and inhibitory neurons.

In view of the above, a neural structure, called the dynamic neural processor (DNP),

consisting of two DNUs coupled in excitatory and inhibitory modes is proposed in this

chapter. The DNP emphasizes the collective action of the subpopulation of neurons. The

biological basis for the development of DNP is detailed in the next section. A detailed

mathematical model and an algorithm to modify the parameters of the DNP are also

described in this section. Four applications of the DNP are discussed in Section 6.3. The first

application, discussed in Section 6.3.1, involves the use of the DNP for the approximation of

arbitrary nonlinear functions. A comparative study of the DNP with single- and two-layer

recurrent neural networks is also discussed in this section. The next subsection contains a

discussion of the use of the DNP for computing the inverse kinematic transformations of a

two-link robot. This is followed in Section 6.3.3 by the application of the DNP to the control

of unknown nonlinear dynamic systems. In the fourth application, the DNP is employed for

110

111

the coordination and control of multiple systems. A generalized dynamic neural model based

on the concept of neural subpopulations is developed in Section 6.4, followed by the

concluding remarks in the last section.

6.2 Architectural Details of the Proposed Neural Structure

6.2.1 The Biological Basis

The neural network models described in the existing literature often consider the

behavior of a single neuron as the basic computing unit in neural information processing

operations. Each computing unit in the network is based on the concept of an idealized

neuron. An ideal neuron is assumed to respond optimally to the applied inputs. However,

experimental studies in neuro-physiology have shown that the response of a biological

neuron is random [91], and only by averaging many observations is it possible to obtain

predictable results. This observed variability in the response of a neuron is determined by the

uncontrolled or extraneous electrical signals that are received from the activated neurons in

other parts of the nervous system. As well, this variability is enhanced by the intrinsic

fluctuations of the electrical membrane potential within the neuron [41, 90, 91] .

In general, the states of a biological neuron can be considered as a random process.

However, mathematical analysis has shown that these cells can transmit reliable information

if they are sufficiently redundant in number. It is postulated [41], therefore, that the

collective activity generated by large numbers of locally redundant neurons is more

significant in a computational context than the activity generated by a single neuron.

Furthermore, the study of neurons at the individual cell level may be appropriate to emulate

some functions of the biological neural network. However, the study of neurons at the

individual cell level is not necessarily suited for investigations of complex cognitive

functions, such as sensory information processing, learning, memory storage and recall, and

vision. This shift in emphasis from the study of single neurons to the study of neural mass is

warranted since the sensory information is introduced into the nervous system in the form of

large scale spatio-temporal activity in the sheets of cells. The number of cells involved is

simply too large for any approach starting at the single cell to be tractable [41, 90, 92].

The total neural activity generated within a tissue layer is a result of the spatially

localized assemblies of the densely interconnected nerve cells called a neural population, or a

neural mass. The neural population is composed of neurons, and its properties have a generic

resemblance to those of individual neurons, but it is not identical to them and its properties

112

cannot be predicted from measurements on single neurons [41, 90]. This is due to the fact

that the properties of a neural population depend on various parameters of individual neurons

and also on the interconnections between neurons. The conceptual gap between the functions

of single neurons and those of a neural mass is still very wide.

Each neural population may be further divided into several coexisting subpopulations.

A subpopulation contains a large class of similar neurons that lie in close spatial proximity.

The neurons in each subpopulation are assumed to receive a common set of inputs and

provide the corresponding outputs. The individual synaptic connections within any

subpopulation are random, but dense enough to ensure that at least one mutual connection

exists between any two neurons. The most common neural mass is the mixture of excitatory

(positive) and inhibitory (negative) subpopulations of neurons [41, 91 - 93]. The excitatory

neural subpopulation increases the electro-chemical potential of the post-synaptic neuron,

while the inhibitory subpopulation reduces the electro-chemical potential. The individual

neurons within the subpopulations that generate Y(k) receive stimuli from other neurons in

the nervous-tissue layer, self-feedback signals and a common signal space S(k) external to

the tissue layer, as depicted in Fig. 6.1.

Signal space

Feedback
signal

Ata .
Neural

activity field

Y(k)

Figure 6.1: Schematic diagram of a neural activity field Y(k), in response to a signal space

S(k). This structure represents the functional dynamics of a nervous-tissue

layer.

The minimum topology of such a neural mass contains excitatory (positive),

inhibitory (negative), excitatory - inhibitory (synaptic connection from excitatory to

inhibitory), and inhibitory - excitatory (synaptic connection from inhibitory to excitatory)

113

feedback loops. The morphology of a neural mass is shown in Fig. 6.2. One of the important

attributes of a neural mass is that its fundamental characteristics may be described in terms of

linear systems theory [93]. This property implies that the operations in a neural mass, within

the appropriate limits of amplitude, conform to the principle of superposition that make the

responses to two or more inputs additive.

Positive self feedback

External inputs

Neural population

External outputs

Excitatory neural)
subpopulation

Excitatory to Inhibitory to
inhibitory excitatory

< interaction interaction

Negative self feedback

Figure 6.2: A schematic diagram of the coupled interactions between excitatory and

inhibitory neural subpopulations within a neural population.

Strumillo and Durani used a neural model based on neural population to study cardiac

arrhythmia [94]. Gupta and Knopf [42] proposed a neural structure, called the P-N Neural

Processor (PNNP), for machine vision applications. The state-space model of this visual

information processor corresponds to a bi-layered two-dimensional array of densely

interconnected nonlinear first-order dynamic neurons called processing elements (PEs). An

individual PE consists of a multi-modal sigmoidal function followed by a first-order dynamic

structure. The connections between the neural subpopulations are fixed. This neural

structure has been used successfully for many applications such as spatio-temporal filtering,

motion detection, spatio-temporal stabilization, short-term visual memory, content-

addressable memory, and pulse frequency modulation [42]. No control applications of the

P-N neural processor have been reported.

114

6.2.2 Mathematical Model of Dynamic Neural Processor

In view of the above remarks, a neural model called the dynamic neural processor

(DNP), which emphasizes the dynamic properties of a subpopulation, is proposed in this

chapter. The important assumption in this model is that all nervous processes of any

complexity depend upon the interaction of excitatory and inhibitory neurons.

The DNP consists of two DNUs, developed in the preceding chapter, which are

configured to function as antagonistic neural units as depicted in Fig. 6.3. In this structure,

the following notations are used:

- subscript X. indicates either an excitatory, E, or inhibitory, I, state,

- sk(k) and uk(k) represent respectively the neural stimulus (input) and neural output

of the computing unit,

- s (k) denotes the total input to the neural units,

- wu represent the strength of the self-synaptic connections (wEE, wE in Fig. 6.3),

- wkx: represent the strength of the cross synaptic or inter-subpopulation connections

from one neural unit to another (w1E, wEI in Fig. 6.3),

1 - z elements denote communication delays in the self- and inter-subpopulation
paths,

- s (k) and s (k) are the excitatory and inhibitory neural inputs respectively,

- wE and w are the input weights for the excitatory and inhibitory neural inputs

respectively,

- u (k) and u (k) represent the responses of the excitatory and inhibitory neural

subpopulations respectively, and

- O
E

and') represent the thresholds of excitatory and inhibitory neurons respectively.

The functional dynamics exhibited by a neural computing unit, the DNU, is defined

by a second-order difference equation as represented in Chapter 5 by Eqn. (5.2b). The state
variables uE(k+l) and u (k+1) generated at time (k+1) by the excitatory and inhibitory neural

units of the proposed neural processor are modeled by the nonlinear functional relationships

uE(k+l) = E [uE(k) , vE(k)1, and (6.1a)

115

ui(k+1) = I [ui(k) , vi(k)] (6.1b)

where v
E
(k) and v (k) represent the proportion of neurons in the neural unit that receive

inputs greater than an intrinsic threshold, and E and I represent the nonlinear excitatory and

inhibitory actions of the neurons. The neurons that receive inputs greater than a threshold

value are represented by a nonlinear function [vx(k)]. This nonlinear function is related to

the distribution of neural thresholds within the neural unit [41, 42]. Ideally, the neural model

based on the neural population should consist of a number of identical neurons in each neural

subpopulation. However for simplicity, it is assumed that the DNP consists of only one

dynamic neuron (DNU) in each subpopulation.

Excitatory neuron

E(k)
 w

sI (k)

s (k)
tE (

D

E

UE)

WIE H

s (k)

 (DNUI)

I z-i

•

► u E(k+l)

Inhibitory neuron

► u i(k+1)

Figure 6.3: The dynamic neural processor with two dynamic neural units coupled as
excitatory and inhibitory neurons represented as DNUE and DNU

respectively.

116

The inputs incident on the excitatory and inhibitory neural units are respectively

StE(k) = WE sE(k) WEE uE(k) - and (6.2a) wiE eE

s (k) = wI SI(k) - wII I (k) + wEI uE(k) - 0/ (6.2b)

where wE and w are the weights associated with the excitatory and inhibitory neural inputs

respectively, WEE and wll represent the self-synaptic connection strengths, wiE and WEI

represent the inter-neuron synaptic strengths, and 0 E and 01 represent the thresholds of

excitatory and inhibitory neurons respectively. The above equations may be written in

matrix form as follows:

[stE(k)H
StI (k)

wE 0
0 WI

[sE(k)]
SI(k)

WEE WIE [
wEl - WII

UE(k)
UI(k)

° E
0
I_

(6.3)

A general expression for the dynamic neural activity of the DNP may be represented

in a compact form by the following equation:

Std,
=

,
Si + W , UX - 0 ' XX

[
s tE(k)

where, Std, = s (k) : input incident vector , • S x
tl

(6.4)

SE(k)

s (k) : stimulus (input) vector;

WE w WEE - w- WIE W , = 0 w : input scale matrix; W , = : synaptic weight matrix;
20t. EI II

and U = x uE(k) u (k) [
1

: response (output) vector; Ox =
0

E
0

1
: threshold vector;

XX
assuming that W , is a nonsingular matrix. From Eqn. (6.4), the responses of the neural

XX
units, ux(k), in terms of the stimulus (input) sx(k), the input stx(k), and the strength of the

synaptic connections wxx and wxx. may be obtained as

-1 Xi
UX. = W , S

OL.
- W , SX + 0i XX

(6.5)

117

A direct analytical solution for determining the steady-state and temporal behavior

exhibited by the DNP is not possible because of the inherent nonlinearities in Eqns. (6.2a)

and (6.2b). However, these nonlinear equations can be analyzed qualitatively by obtaining
the phase trajectories in the uE - III phase plane [41, 42, 98]. These trajectories enable the

system characteristics to be observed without solving the nonlinear equations. The locus of

points where the phase trajectories have a given slope is called an isocline. The steady-state

activity exhibited by the DNUs of the neural processor can be investigated by determining
the isoclines corresponding to uE(k+1) = uE(k) and ui(k+1) = ul(k). A typical plot of the

isoclines for sE(k) = 0, s (k) = 0 is shown in Fig. 6.4. The weight parameters for these curves

are: WEE = 20, wIE = 5, wE1 = 8, w11= 10, 0E = 0I = 0.5. In this case, there is only one steady-

state solution corresponding to the one intersection of the two curves. However, depending

upon the strength of the synaptic connections, there may be more than one solution, and the

solution may be stable (+) or unstable (-) depending upon where the two isoclines intersect

[41].

I • I • I • I

-0.6 -0.4 -0.2 0.0

u (k)

Figure 6.4: The isoclines for sE(k) = 0, si(k) = 0, and (+) denotes stability and (-) instability

of steady-state.

0.2 0.4

The steady-state behavior of the DNP is the superposition of the individual responses,

uX ' (k) of the excitatory and inhibitory neural subpopulations and is given by

u(k) = uE(k) + ui(k)

n
E

= [g sEi v is (k) - + {
IJ

[gsti v11j (k) - (6.6)
i=i j=1

118

where nE and n represent the population of the antagonistic neural units (number of

excitatory and inhibitory neurons respectively) in a neural population. The interpretation of

Eqn. (6.6) is that the total activity of the neural population is the summation of the responses

of the antagonistic neural subpopulations. This describes the steady-state behavior of the

DNP. A brief description of its transient behavior is given below.

The limit cycle phenomenon of the DNP is briefly discussed in this section. The limit

cycle oscillations are observed in response to a constant stimulation [41, 42]. Figure 6.5(a)
shows the limit cycle oscillations for a constant excitatory stimulus sE(k) of 5 units, s1(k) set

equal to zero. This simulation was carried out for various stimulus intensities, and the

following points were observed: (i) a threshold value exists for the stimulus intensity which

must be exceeded in order to evoke such oscillatory behavior, (ii) there is a higher value of

the stimulus above which the system saturates and the limit cycle activity is extinguished,

and (iii) between these two values, the frequency of oscillations increases monotonically with

increasing stimulus intensity.

In general, the dynamic behavior of the neural processor depends upon the strength of

the synaptic connections and the stimulus intensity as demonstrated in Figs. 6.5b and 6.5c.

2.0

1.5

1.0

0.5

0.0

• • •

r

•

0 10 20 30 40

Time steps, k

(a)

Figure 6.5: (Continued)

50

1.2

1.0

0.4

0.2

0.0

Stimulus intensity = 10

w = 1.5 w = 0.5
EE IE

w = 0.5 w = 1
EI II

Stimulus intensity = 1

0 10 20 30

k

(b)

40 50

119

1.2 -

1.0

0.8 -

"14 0.6 -
=

0.4 -

0.2 -

0.0 I 1 I

0 20 40 60 80 100

WEE= 20 we 2

w
EI

= 15 w
II

= 10

k Stimulus termination

(c)

Figure 6.5: The response of a neural subpopulation.

(a) Temporal response of the excitatory neural unit to a stimulus with constant

intensity. The parameters used in this simulation are shown in Fig. 6.5b,

(b) and (c): the dynamic behavior of the DNP for the various synaptic strengths

and stimulus intensities.

This nonlinear characteristic of the processor can be employed to approximate

nonlinear functions and to model some aspects of complex systems such as robots. In order

to achieve the computational power of the DNP, it is necessary to develop a learning and

adaptive algorithm to update the parameters of the DNP. An algorithm has been derived in

Chapters 2 and 5 to modify the parameters of the DNU; in the following sub-section, an

extension of this algorithm to other parameters, namely the self- and inter-subpopulation

synaptic feedback-weights, of the DNP is derived.

6.2.3 Learning and Adaptive Algorithm

It is believed [24] that the connectivity strength, that is the neural weights, between

the neural subpopulations changes as the brain learns to perform a new task. Due to the

complexity, and the incomplete knowledge of the biological learning process, many concepts

and algorithms have been developed in the field of neural networks to mimic the learning

process of the biological neural networks [22 - 26, 44, 45]. One of the methods involves

minimizing a performance index with respect to the weights of the neural network. Based on

this principle, an algorithm to modify the DNU parameters has been developed earlier in this

120

thesis. An extension of this algorithm to other parameters of the DNP is briefly described in

the following paragraphs.

Let the vector of the adjustable weights of the DNP be S2(abfb, gs, w ,) (represented
w xx

here after as 0 0). The task of the algorithm is to modify each component of the vector 110

in such a way so as to minimize the performance index J(S2) using the steepest-descent

technique. This algorithm may be written as

Slo (k + 1) = 0 0 (k) + 8S20 (k) (6.7)

where 110 (k + 1) is the new parameter vector, 0 0 (k) is the present parameter vector, and

800 (k) is an adaptive adjustment in the parameter vector. In the steepest-descent method,

the adjustment of the parameter vector is made proportional to the negative of the gradient of

the performance index J; that is,

8S-2 (
() k-) cc (-'7J), where VJ — au •

aJ
Thus, 80

(•)
(k) = - dia[g] a0(.) — - dia[µ] VJ (6.8)

where dia[p] is the matrix of the individual adaptive gains. In the above equation, the dia[R]

is defined as

Rai
0

0 0
p.b., 0

0
0

dia[µ] 0 0 µ 0
8s

0 0 0 µxx,

(6.9)

where µai, i = 0,1,2, µb , j =1,2, 11gs are the individual learning gains of the adaptable

parameters of the DNU, and 11,2a, denote the learning gains for the self- and inter-

subpopulation synaptic weights. The parameters of the DNU are adjusted based on the

following equations derived in the preceding chapter:

aff. (k+1) = aff. (k) +µa1 E [e(k) sech2[v(k)] Pffi(k)1 , i = 0,1,2, (6.10a)

121

bfbi (k+1) = bfbi (k) + µb. E [e(k) sech2[v(k)] Pfb (k)1 , j = 1,2, and (6.10b)

gs (k+1) = gs (k) + µgs E[e(k) sech2[v(k)] vi(k)1 (6.10c)

where Pff (k) and P (k) are the parameter-state signals of the DNU.
i fb.

Similarly, equations to modify the self- and inter-subpopulation feedback weights can

be obtained as follows. The gradient of the performance index with respect to these weights

is given by

aj 1 [a[y,(k) - 00'2 = 1
E [-e(k)

{aT(v) av

awl — E
2 aw, av aw

= E[-e(k) sech2[v(k)] gs ux(k) 1. (6.11)

From Eqns. (6.7) and (6.11), the following equation may be written

wxx (k+1) = wxx, (k) + µxx E[e(k) sech2[v(k)] gs ux(k) 1. (6.12)

For clarity, Eqn. (6.12) is written for the individual synaptic weights as

wEE(k+l) = wEE(k) + REE E[e(k) sech2[v(k)] gs uE(k) (6.13a)

wIE(k+l) = wEE(k) +
IE

E [e(k) sech2[v(k)] gs ui(k) (6.13b)

wEi(k+1) = wEE(k) + µE, E [e(k) sech2[v(k)] gs uE(k) (6.13c)

wii(k+1) = wii(k) + II E[e(k) sech2[v(k)] gs u1(k) (6.13d)

Equations (6.10a) and (6.10b) provide adaptation in the synaptic weights, while Eqn.

(6.10c) and Eqn. (6.12) provide adaptation in the sigmoidal gain of the DNU and the external

synaptic weights respectively. Using these equations, four applications of the DNP are

discussed in the following section.

122

6.3 Applications of Dynamic Neural Processor

Although many applications of the DNP, in equalization of communication channels,

robotics and control, short-term memory, and pattern recognition are possible, only some

applications to robotics and control were emphasized in this study. In this context, four

applications of the DNP are discussed. The first application, discussed in Section 6.3.1,

involves the use of the DNP for the approximation of arbitrary nonlinear functions. A

comparative study of the DNP with single- and two-layer recurrent neural networks is also

discussed in this section. The next subsection details the use of the DNP for computing the

inverse kinematic transformations of a two-link robot. This is followed in Section 6.3.3 by

the application of the DNP to the control of some unknown nonlinear dynamic systems.

Finally, the application of DNP to the coordination and control of multiple systems is

discussed in the last section.

6.3.1 Functional Approximation

Although different theoretical bases and approaches are reported in the literature to

show the functional approximation capabilities of neural networks, one clear feature is that

neural networks have great promise in nonlinear system modeling and control. In this

section, the performances of recurrent neural networks and the DNP as applied to the

approximation of nonlinear functions are compared. The general learning scheme that is

employed to achieve this objective is shown in Fig. 6.6. In the computer simulation studies

discussed in this section, both the single- and two-layer recurrent neural networks shown in

Figs. 6.7 and 6.8 respectively are considered. In many control applications, only single-layer

recurrent neural networks have been employed. Much less has been reported regarding the

performance of two-layer recurrent neural networks.

Figure 6.6: A general learning scheme for functional approximation using neural networks.

123

• yi(k+1)

 y2(k+1)

• •

•
•
•
•

 yn(k+1)

Figure 6.6: Single-layer recurrent neural network with no self-feedback connections.

In Fig. 6.6, the feedback input to the i-th neuron is equal to the weighted sum of

neural outputs where j = 1, 2, ... , n. If wii is the weight value which connects the output

of the j-th neuron to the input of the i-th neuron, the total input ui of the i-th neuron can be

expressed as

U. = W.• y. +X. - W ,i= 1, 2, ... ,n. i oi

jai

In vector form, Eqn. (6.14a) can be rewritten as

u. = Nv7. y + x. - w . i = 1, 2, ... , n

(6.14a)

(6.14b)

124

where w. A =

- wil

Wi2

w.
— m —

and y A

[Y1

Y2

yn

The linear portion of the recurrent neural network can be described in matrix form as

U=Wy+X-w 0 (6.15a)

where U A

ul

u2
, X A

X1

X2

[

and w0 A

WO1

W02

— un x — wOn —

The matrix W in Eqn. (6.15a), called the connectivity matrix, is an (n x n) matrix and

may be written as

W =

W12 W13 W ln

W21 0 W23 W2n

W
31

W
32

0 w3n

—
W

n1
W

n2
W

n3
0

(6.15b)

This matrix is symmetrical, w..= w.., and with the diagonal entries equal to zero,

wii = 0, indicating that no connection exists from any neuron back to itself. This condition is

equivalent to there being no self-feedback in the neural structure shown in Fig. 6.7. As an

extension of this structure, a two layer recurrent neural network, shown in Fig. 6.8, has been

developed for bidirectional associative memory and pattern recognition applications [99].

125

y (k+2)

'l`[•]

 I

-0-11011.

•
•

yn(k+2)

Figure 6.7: A two-layer recurrent neural network.

•
•

For performance comparison, a single-layer recurrent neural network with five

neurons and a two-layer recurrent neural network, which consisted of two neurons in each

stage as shown in Fig. 6.7, were considered in the simulation studies. The conventional

backpropagation learning algorithm [100] was implemented to modify the neural network

weights. The input used in these simulation studies was s(k) = sin (2itk/250) in the interval
[-1,1]. The initial values of the synaptic connections of the DNP were arbitrarily set to WEE =

= 0.5, wll =1, and the components of the scaling vector, w = [wE w/]r, to 1, WEI = 0.5, wIE
1. The parameters of the DNP, namely aff, bfb, gs and w20,,, were adjusted based on the

learning algorithm derived in the preceding section.

Different arbitrary nonlinear functions of s(k) were used to evaluate the performance

of these dynamic neural structures. Some of the functions and their approximations are

shown in Fig. 6.8. Figure 6.8a shows the desired nonlinear functions presented to the neural

networks. The functional approximations obtained using the single- and two-layer recurrent

neural networks are shown in Figs. 6.8b and 6.8c respectively, while Fig. 6.8c illustrates the

functional approximation obtained using the DNP. The performance of each neural network

126

was observed for 1000 time intervals. The number of iterations required for each neural

network to approximate the nonlinear functions is indicated in each figure. The functions

shown in Fig. 6.9a can be mathematically represented as

(i) f[.] = s(k), (6.16a)

(ii) f[.] = 0.5 s(k) + 0.1 cos(2nk/250), and (6.16b)

(iii) f[.] = 0.8 s(k) + 0.2 sin(27ck/25) . (6.16c)

Functions presented to the neural networks
1.2

0.8-

0.4 -

0.0

-0.4 -

-0.8 -

-1.2

1.2

0.8-

0.4 -

0.0

-0.4-

-0.8-

-1.2

0.8

0.4-

0.0-

-0.4-

- -0.8
0 2 4 6 8 10

1.2

0.8-

0.4-

0.0-

-0.4 -

-0.8 -

- - -1.2

2 4 6 8 10 0

Time steps, k (X 100)

6.9(a)

2 4

Function approximation using single-layer recurrent neural network

Iterations = 2216

0 2 4 6

0.8

0.4-

0.0

-0.4 -

-0.8 -

- r -1.2
8 10

Figure 6.9: (Continued)

Iterations = 3162

2 4 6

6.9(b)

1.2

-

8 10

0.8-

0.4-

0.041

-0.4

-0.8 -

-1.2
8 10 0

Iterations = 4903

1 1 • 1 1
2 4 6 8 10

127

Function approximation using two-layer recurrent neural network

1.2 0.8 1.2.

0.8- 0.8-
0.4-

0.4 - 0.4-

0.0 0.0 0.0-w'Nf l Artui rir lij

-0.4- -0.4:
-0.4 -

-0.8- -0.8-

-1.2 , . , , 1 0.8 , • I I 1 • 1 - 1.2 - , , ,

0 2 4 6 8 10 0 2 4 6 8 10 0

6.9(c)

Iterations = 6218

1.2

0.8'

0.0

-0.4

-0.8

-1.2
0

Function approximation using dynamic neural processor

Iterations = 289

' .
2 4 6 8 10 0 2 4 6 8

6.9(d)

1.2

0.8-

0.4-

0.0

-0.4 -

-0.8 -

, . -1.2

10

2 4 6 8 10

Iterations = 295

1 1 1
0 2 4 6 8 10

Figure 6.9: Nonlinear functions and their approximations using different neural networks.

(a) Arbitrary nonlinear functions applied to neural networks for performance

comparison,

(b) Functional approximation using a single-layer recurrent neural network,

(c) Functional approximation using a two-layer recurrent neural network, and

(d) Functional approximation using the DNP.

Figure 6.10 shows some complex nonlinear functions and their approximations

achieved by the DNP. The performance of the recurrent neural networks for these functions

was very poor in terms of both the accuracy of approximation and the speed of convergence.

The nonlinear functions shown in Figs. 6.10a and 6.10b can be represented mathematically as

128

f[.] = s3(k) + 0.3 sin(2rcs(k)) + 0.1 sin(5ns(k))

f[.] = sin br(s2(k) + 0.3)]
+ 0.3 sin(2ns(k))

1.2

0.8-

g 0.4

0.0

-0.4 -
g

.1=I -0.8

44 -1.2
0

Learned
tY4

- 1 -
200 400 600 800

k

(a)

1+s2(k) •

a 0.0

-0.4

Desired Learned

• I • I • I

1000 0 200 400 600

k

(b)

(6.16d)

(6.16e)

800

Figure 6.10: Arbitrary nonlinear functions and their approximations using the DNP.

1000

Extensive simulation studies were conducted for various nonlinear functions. From

these studies and from the simulation results presented in this chapter, it was observed that

the DNP could approximate arbitrary nonlinear functions much more quickly than the

recurrent neural networks which was evident from the number of iterations required for each

neural network. The speed of convergence of the recurrent neural networks depended upon

the functions being approximated. On the other hand, the performance of DNP was found to

be almost independent of the functions being approximated. A single-layer recurrent neural

network was found to be faster than its two-layer counterpart. A plausible explanation for the

slow convergence of the multi-layer recurrent neural network is that the delay operators were

employed in the forward path of the information flow, and the feedback signals arrived from

the last layer to the input nodes. A detailed comparative study of the recurrent neural

networks and the DNP is reported in [101]. These initial findings imply that the greater the

number of layers, the slower the convergence of the recurrent neural networks to the desired

function. However, more work needs to be done to generalize this characteristic of recurrent

neural networks.

129

In order to compare the performance of the recurrent neural networks and the DNP

under noisy conditions, nonlinear functions represented in Fig. 6.9a were corrupted with

different levels of noise. Figure 6.11 shows the performance of the recurrent neural networks

and the DNP in terms of the percentage of the convergence error with respect to the

percentage of the noise level in the functions. These observations were made for a time

interval of 1000 iterations.

0 10 20 30 40 50 0
% Noise level

10 20 30 40

% Noise level

50 0 10 20 30 40 50

% Noise level

Figure 6.11: Performance comparison of dynamic neural networks under noisy conditions.

Figure 6.11 shows that as the noise level in the functions that were approximated was

increased gradually the performance of the DNP was degraded compared to the recurrent

neural networks. The recurrent neural networks were found to be more noise tolerant than

the DNP. This demonstrates the limitation of the DNP which was developed with only one

DNU in each neural subpopulation. The performance of the DNP may improve under noisy

conditions if the neural subpopulations contain more neurons.

6.3.2 Neural Learning of Robot Inverse Kinematic Transformations

6.3.2.1 Neural Networks in Robotics

Advances in the area of neural networks have given a different direction to robotic

control. By virtue of their functional mapping and iterative capabilities, neural networks can

be employed for learning coordinate transformations [101 - 1031 The advantage of using the

neural approach over the conventional inverse kinematics algorithms is that neural networks

can avoid time consuming calculations. The features of neural networks, such as learning,

adaptation, fault-tolerance and parallelism, provide strong incentives for choosing them to

compute inverse kinematic transformations in the field of robotics.

130

Neural networks, because of their parallel and distributed computational abilities,

have the ability to learn associations between patterns. These patterns could represent, for

example, the task space coordinates and the corresponding joint angles of the model leg. The

association between these two sets of patterns basically amounts to inverse kinematics

computations in robotics [104, 105]. Neural networks have an advantage over the traditional

inverse kinematics algorithms in that the neural networks can 'learn' the transformation

through examples. This would avoid time consuming numerical calculations and provide,

more or less, instant recall. Furthermore, in a manner that is typical of neural networks, it

would be very easy to modify the learned associations as the structure of the mechanism

changes. It is advantageous, therefore, to employ neural networks for learning the inverse

kinematics transformation of robots. In this section, the recurrent neural network and the

DNP are employed to obtain the inverse kinematics transformation of a two-link robot.

In the context of the above observations, consider the two-link robot shown in Fig.

6.12a. The joints at which the rotary motion occurs (within limits) are analogous to the hip

and the knee joints of the human leg. The point P(x,y), the free tip of the second link, also

called the 'end point', describes the end-effector trajectories based on a Cartesian coordinate

system. The origin of the coordinate system is the first (hip) joint, which is assumed to be

fixed in space, while the end point coordinates (x, y) are located with respect to the two

perpendicular axes, X, Y. The hip joint is considered as the anchor (fixed) point. The

position of the leg can also be restricted using the angles formed at the two joints with the

reference axes as shown. The relationship between these two angles, defined as 01, 02, and

the end point coordinates, x and y, form the kinematic equations of the two-link leg.

Specifically, the coordinates x and y are defined as

x = L1 cos (01) + L2 cos (01+ 02), and

y = L1 sin (01) L2 sin (01+ 02). (6.17)

These two equations are the 'forward' kinematic equations of the model leg. For the
lengths (L1, L2), the point coordinates (x, y) of the end-effector are uniquely determined by

the two variable joint angles (01, 02). The inverse relationships, namely, the definition of the

joint angles with respect to the coordinates are

02 _ t
an

_1 r S21
, where S2 = sin (02) = ± -V-17P 2 and L C2]

131

[x2 +y2_,.., 2_, 2

C2 = cos(92) —
2L1 L

2

2

01 = tan-1 [Y] - tan-1 [L282
LI + L2 C2]

Hip joint

Lengths of Links
= 0.5 mt

L 2 = 0.5 mt

Constraints on Angles

- 30 < 0 1 < 180°

e<9 2 < 180

P (x, y)

(a)

(6.18)

Figure 6.12: A two-link robot as a model of the human leg.
(a) An illustration of the two-linked model leg with the joint angles 01 and 02

in a two-dimensional task space.

(b) Constraints on the two-dimensional task space of the model leg.

The equations in 01 and 02 are called the 'inverse' kinematic equations and are

nonlinear because of the trigonometric functions and the squared terms. The periodicity and

symmetry of the tangent function and the multiple roots of the squared terms result in an

ambiguous determination of the end point location. The problem becomes more severe as the

number of links increases. One way of circumventing the problem of multiple solutions is to

constrain the movement of the two links to certain convenient angular ranges which will

usually avoid the occurrence of multiple solutions [104]. In this regard, it is to be noted that

the structure of the human leg, with its hinge-like joint at the knee, permits only a

constrained motion of the shank. Taking into consideration the above constraints, the two

joints of the two-link leg model were constrained to move within the specific angular ranges:

132

-30° < 01 < 180°, and 0° < 02 < 180°. The introduction of these constraints results in a two-

dimensional task space as shown in Fig. 6.12b.

The standard methodology for computing inverse kinematic transformations employs

training the neural network off-line for possible data patterns within the robot task space to

obtain solutions to the inverse kinematics problem. Because of the generalization property,

neural networks can learn the associated patterns and recall the learned patterns. The trained

network is then used to achieve the desired voluntary movements. This technique, therefore,

basically involves two modes of operations, namely the training phase and the performing

phase. However, the major drawback of this technique is a very long training procedure in

addition to the fact that the static neural networks based on the backpropagation learning

algorithms require a very large convergence time.

An on-line learning scheme for computing the inverse kinematic transformations was

proposed by Gupta and Rao [107]. This learning scheme, shown in Fig. 6.13, uses the neural

network to determine the joint angles for a given set of desired Cartesian coordinates. These

estimated joint angles, which act as inputs to the forward kinematics, are checked against the

pre-defined robot task space. This additional level of control makes the robot operate within

a specified work-space. Additional rules and inferences may be incorporated into the first-

level thereby making it a knowledge-based robotic control system [1]. Although the

computation of the inverse kinematics transformations is a static problem, the use of dynamic

neural networks generally decreases the time required to compute the transformations

compared to that of the static (feedforward) neural networks.

6.3.2.2 Computer Simulation Studies

The desired x-y positions of the end-effector were applied to the excitatory and

inhibitory neural units of the DNP. The initial values of the synaptic connections were

arbitrarily set to WEE =1,WEI = 0.5, wIE = 0.5, wi/ =1, and the components of the scaling

vector, [WE WI]T, to 1. The initial position of the end-effector was set arbitrarily at x = 0.2

and y = 0.4. In this section, a brief comparative study of the recurrent neural network and the

DNP applied to the inverse kinematic computations of a two-link robot is provided. The

recurrent neural network used in simulation studies consisted of five neurons configured in a

single-layer as depicted in Fig. 6.7. Five simulation examples are discussed in the following

paragraphs.

133

User Robot task
space

specifications
Level 1

Desired endeffector
position

x d •

Yd

01
Neural

Network

Learning
algorithm

ex (k) e (k)
y

 Level 2

 **;

Estimated joint
angles

10-011 0. X

 ►y
Actual
endeffector
position

Figure 6.13: The learning scheme, with two hierarchical levels, for on-line learning of

inverse kinematic transformations.

Example 1: In this example, the x and y coordinates of the end-effector were selected at

random and applied to the processor. The neural weights were adjusted until the output error

decreased to a pre-determined value of 0.05. Figure 6.14a shows the actual and the learned

x-y coordinates of a two-linked robot, while Fig. 6.14b shows the trajectories of the X-Y

coordinates and the corresponding joint angle trajectories for one position of the end-effector.

Different end-effector positions were presented to the neural processor. The results

obtained are shown in Fig. 6.15. In this figure, P1 and P2 are the two out-of-reach positions

of the end-effector. The neural processor could not learn these positions because of the pre-

defined robot task-space, but as can be seen from the results, the leg (link) orientations were

in that direction. One may note that for some of the 'out-of-reach' inputs, the processor's

corresponding outputs were located within the task-space in such a way as to indicate the

leg's intention to reach out to those points.

134

1.0

0.9 -

• 0.8 -

(-94 0.7-
=

›-1 0.6 - 0.6-

0.5-

x+

UX

* Desired
x Learned

I

0

Initial 3p
at position

0.4 •

-0.6 -0.4

▪ 0
X

1.0

-1.0

I I I
-0.2 0.0 0.2 0.4

X Amplitude

(i)

0.6

Y Coordinate

X Coordinate

•
0 20 40 60 80

k

1.0

0.75 -

•,-=4
l=1-, 0.0

›-4 -0.25-

(a)

100

(b)

04.

▪ Desired
▪ Learned

-0.5 • i 9+
-1.0 -0.5 0.0 0.5

X Amplitude

(ii)

0 20 40 60

k
80

1.0

100

Figure 6.14: Simulation results, Example 1.

(a) Illustration of the actual and the learned positions of different trajectories.

(b) Trajectories of the end-effector's X and Y coordinates for a desired position
of x = - 0 4 yd 0.6, = and the corresponding joint angle trajectories. d • '

135

Robot task space

0 Desired

+ Learned -0.5

-1.0

Figure 6.15: Representation of the actual and the learned positions in- and out-side of the

task-space in a sagattial plane.

Example 2:

Case (i): In this example, a single-layer recurrent neural network consisting of five neurons

was used to compute the inverse kinematic transformations. The desired position of the end-

effector x-y coordinates were selected to be the same as in Example 1, and were applied to

the first two neurons of the neural network. The neural weights of the neural networks were

adjusted based on the backpropagation learning algorithm. The trajectories of the x and y

coordinates is shown in Fig. 6.16. From this figure, it is clear that the computing time

required to achieve the desired end-effector position using the recurrent neural network was

very high compared to the DNP.

136

1.2

o 0.8

a.)
'Fe 0.4 —
E:04

ct 0.0 —
Q

16 M.4
0

I -0.8 —

-1.2

0

1
. , . .

500 1000

k
1500

as

as

I

0
O

1.2

0.8 —

0.4 —

0.0 -

-0.4

-0.8 —

-1.2 •
0 500 1000 1500

k

Figure 6.15: Convergence results obtained using recurrent neural network, Example 2.

Case (ii): The purpose of this simulation study was to compare the performance of the

recurrent neural network and that of the DNP. Different end-effector positions were

presented to the two neural structures. The accuracy and the speed of convergence obtained

are tabulated in Table 6.1. These results reinforce the results obtained in Example 1 in that

the DNP provided much faster convergence compared to the recurrent neural network.

Example 3: To study the performance of neural structures under noisy conditions, the robot

dynamics were corrupted with a random signal bounded in the interval [0,1]. Tables 6.2 and

6.3 show the targeted and the observed end-effector positions for 20% and 50% noise

respectively. These results show that both of the neural structures could accurately learn the

desired patterns in the presence of noise. However, it was observed that as the noise level

increased, the accuracy of the end-effector positions from the recurrent neural network was

higher than that obtained from the DNP. This is possibly due to the fact that the noise signal

corrupted the DNU parameters and inter-feedback synaptic weights (wEE' w11
, w

IE'
w

E1
)

•

Since the recurrent neural network has a static feedforward and hard (non-adaptable)

feedback paths, the probability of the noise signal corrupting the weights was less. However,

this statement is only speculative, and needs further investigation.

137

Table 6.1: Performance comparison of recurrent neural network and DNP

Desired
Coordinates

Recurrent Neural
Network

Dynamic Neural Processor

Rd Yd x Y
Learning
Iterations x Y

Learning
Iterations

- 0.6 0.5 - 0.604 0.51 4218 - 0.602 0.51 422

- 0.5 0.75 - 0.5 0.753 991 - 0.504 0.753 104

- 0.38 0.58 - 0.388 0.587 1821 - 0.377 0.579 101

- 0.2 0.53 - 0.196 0.52 1112 - 0.209 0.533 80

0.0 0.5 0.02 0.51 796 0.07 0.499 144

0.5 0. 75 0.503 0.74 1269 0.492 0.744 319

0.3 0.85 0.29 0.86 802 0.302 0.86 199

0.2 0.95 0.21 0.94 539 0.192 0.952 174

0.0 0.99 0.009 0.987 1095 0.09 0.993 164

- 0.25 0.9 - 0.248 0.897 655 - 0.258 0.903 36

- 0.3 0.8 - 0.296 0.79 2033 - 0.309 0.793 31

- 0.6 0.6 - 0.59 0.594 1255 - 0.601 0.59 137

- 0.2 0.8 - 0.21 0.81 843 - 0.207 0.812 36

0.38 0.58 0.38 0.59 290 0.378 0.579 31

- 0.8 - 0.2 - 0.798 - 0.21

_ .

470 - 0.792 - 0.195 69

- 0.3 - 0.45 - 0.304 - 0.44 2130 - 0.312 - 0.45 382

0.5 0.4 0.498 0.41 251 0.492 0.404 53

0.3 0.7 0.306 0.691 166 0.297 0.694 24

0.0 0.96 0.02 0.97 1620 0.08 0.961 60

138

Table 6.2: 20% Noise

Desired
Coordinates

Recurrent Neural
Network

Dynamic Neural Processor

X d Yd x Y
Learning
Iterations

x
Y

Learning
Iterations

- 0.2 0.53 - 0.202 0.534 1236 - 0.205 0.523 169

0.38 0.58 0.375 0.586 352 0.378 0.571 31

0.2 0.95 0.193 0.95 164 0.196 0.954 122

- 0.25 0.9 - 0.243 0.893 1298 - 0.259 0.904 36

- 0.6 0.6 - 0.593 0.604 1375 - 0.609 0.608 335

- 0.2 0.8 - 0.199 0.802 1001 - 0.207 0.802 36

0.5 0.4 0.504 0.404 269 0.492 0.405 53

0.6 0.3 0.602 0.301 377 0.61 0.292 69

0.3 0.7 0.307 0.693 180 0.297 0.695 24

0.0 0.96 0.09 0.97 2512 0.09 0.963 282

Table 6.3: 50% Noise

Desired
Coordinates

Recurrent Neural
Network

Dynamic Neural Processor

Xd Yd x Y
Learning
Iterations

x
Y

Learning
Iterations

- 0.2 0.53 - 0.203 0.537 2919 - 0.21 0.52 866

0.38 0.58 0.381 0.586 651 0.371 0.571 54

0.2 0.95 0.206 0.953 304 0.19 0.96 210

- 0.25 0.9 - 0.241 0.904 1343 - 0.26 0.904 46

- 0.6 0.6 - 0.62 0.605 1736 - 0.5 0.7 335

- 0.2 0.8 - 0.208 0.805 2594 - 0.207 0.802 36

0.5 0.4 0.495 0.405 606 0.482 0.405 98

0.6 0.3 0.604 0.295 606 0.62 0.284 100

0.3 0.7 0.298 0.708 216 0.297 0.695 24

0.0 0.96 0.02 0.966 3382 0.101 0.86 1282

139

Example 4: The successful operation of an intelligent robot depends upon its ability to cope

with perturbations that may cause dynamic changes in its structure. Such a case is considered
in this example where one of the links, L2, of the robot undergoes a stretching effect during

the learning process. Due to these dynamic perturbations, the observed end-effector position

may not match the desired position which necessitates readjustments in the neural weights.

Due to the adaptive capability of the neural network-based learning schemes, the DNP could

modify its weights so that the desired end-effector position was achieved. Computer

simulation studies were carried out for the various dynamic perturbations. The simulation

results for one such perturbation in the form of error trajectories of the robot links are shown

in Figs. 6.17a and 6.76b. From these results it can be seen that the DNP adapted to the

change in robot dynamics, thereby demonstrating the robustness of the learning scheme.

1.0

I-1 0.5
0‘"

0 0.0

 U

CZ

E'Ll -0.5
0

-1.0

Change in link
length at k = 100

0 50 100

k

(a)

150 200

cv
_s4 = Change in link
;:54 length at k = 100 ‘., o i From 1.2 = 0.5 to

I

2 0.5-
L2= 0'7

U U

Et" 0.0 -
00

-0.5
50

(b)

•
100 150 200
k

Figure 6.17: Error trajectories of robot links when the length of link L 2 was changed from

0.5 to 0.7 units at time instant k = 100, Example 4.

Example 5: In this example, the adaptive capability of the DNP was demonstrated by

changing the desired end-effector positions during the learning process. Initially, the desired

end-effector locations presented to the neural processor were: xd = 0.3 and yd = 0.7. At time

instant, k = 75, the values were changed to xd = - 0.8 and yd = - 0.2. The neural processor

learned this new pattern as shown in Fig. 6.18.

140

vi cl.) Change in
‘.. o desired
46 270- positions at
•-,03 0 „ k = 75 •

-
0 i 180-
t45 cj \ = E r

-c '-' 90 -vs„,____, t ef
. -
C

360

0 2

0 50 100 150 200
k

Change in
desired

positions

50 100 150 200
k

(a) (b)

Figure 6.18: Simulation results, Example 5.

(a) Adaptation in joint angle trajectories when the desired end-effector

positions were changed from x = 0.3 and y = 0.7 to x = - 0.8 and y = - 0.2

at time instant k = 75,

(b) The corresponding variations in x-y coordinates of the end-effector.

These simulation results indicate that the DNP, by virtue of its functional mapping

capabilities, can be suitably employed for learning the coordinate transformations.

Compared to the conventional analytical schemes which need intensive computing, the

DNUs in the neural processor provide the required transformation very quickly. In the event

that it is impossible for the model leg or robot to reach points within its task space, due to

some physical limitations, the DNP can be trained to move to the nearest point still within its

domain. Any modifications occurring in the structure of the robot can easily be taken care of

by continuous learning. This reflects the adaptive nature of the neural network-based

learning schemes. On the other hand, the conventional approach would have involved

solving new potentially difficult transformations theoretically, generating new software to

implement the new transformations, and then installing it in the new robot controller.

6.3.3 Control of Unknown Nonlinear Systems: Simulation Studies

A large number of neural network structures have been proposed and used for control

applications. Broadly, these control schemes can be classified into two groups, (i) indirect

adaptive control and (ii) direct adaptive control [34]. In the indirect adaptive control

technique [34, 84 - 86], the neural network is trained first to attain the same dynamic

behavior as the controlled plant, and a controller is then designed using the neural network's

outputs to cancel the nonlinear part of the controlled plant [63]. In the direct adaptive control

141

technique [28, 39, 54, 58, 61, 63, 87, 95, 109], the neural network is cascaded with the

controlled system, and the weights are adjusted based on the system output error. Both

techniques have advantages and disadvantages. The problems associated with these

techniques have been addressed in [28, 63].

In this section, the DNP was used to directly control unknown nonlinear systems. For

this application, the command signal was applied to the excitatory unit, and the delayed plant

output was fed back to the inhibitory unit serving as a feedback signal. This control scheme

is shown in Fig. 6.19. The choice of applying the input and feedback signals to excitatory

and inhibitory neurons was arbitrary however. The DNP settings were arbitrarily set to
wEE = 1.0, WEI = 0.5, wII = 1.0 and wI E = 0.5. The components of the scaling vector, w =

[WE WI]
T
, were set to [1, -1].

Example 1: In this simulation example, the nonlinear plant under control was assumed to be

governed by the difference equation

2 2
y(k+1) = f [a i y(k-i) + 13. u(k-j) , i = j = 0, 1, 2

i=0 j=o

with an arbitrary unknown function of the form

[2+cos 7x(y2((-1) y2((-2)) }] e-u(k)

f[i —
[1 + u2(k-1) + u2(k-2)]

(6.19a)

(6.19b)

and the plant parameters 13ff = [1.2, 1, 0.81
T

and a fb = [1, 0.9, 0.71
T
. The input to the system

(the desired response) used in this simulation was s(k) = sin (2irk / 250) in the interval [-1, 1].

The error and output responses are shown in Fig. 6.20. From the error response it is seen that

the error between the target and the observed trajectories was initially large, but converged

quickly within the pre-set tolerance limits.

142

+ 0 4
yir e(k)

(Learning and Adaptive

Dynamic Neural Processor
Algorithm

(DNP)

s(k)

w

L

I 61

s (k)
tE

DNUE

E

DNU) • •

y(k)

u(k)
110

Nonlinear Dynamic
Plant

y(k+1)

Figure 6.19: The control scheme used for controlling unknown nonlinear dynamic systems

using the DNP where the reference input s(k) is used as the target response for

nonlinear systems to track.

143

1.2

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

0.8

0.4

0.0

-0.4

-0.8

-1.2

Error

•

signal

Output signal

0 400

k

Figure 6.20: The error and output responses of a nonlinear plant represented by Eqn. (6.19),

Example 1.

200 600 800 1000

Example 2: Following the initial training described in Example 1, a nonlinear plant

described by the following equation

2 2 2
y(k+1) = f [oci y(k-i) + y, pj u(k j) g[y(k-i)] u(k)

i=0 j=0 i=0
(6.20)

was considered. The input signal, plant parameters and DNP settings were the same as in

Example 1. The nonlinear functions f[.] and g[.] in Eqn. (6.20) were as follows:

[2+cos * y2(1,-1) y2((-2)) e-u(k)
f[.] —

[1 + u2(k-1) + u2(k-2)]

g[.] = I f y2(k) + y2(k-1) I .

, and

The error and the output responses obtained for this simulation example are shown in Fig.

6.21. In this case, it required about 2000 iterations before the error settled within the

tolerance limits of ± 0.05. This example reinforces the main features, namely the learning

and adaptive capabilities, of the DNP-based control scheme.

144

E
rr

or
 a

nd
 O

ut
pu

t R
es

po
ns

es

Error signal

Output signal

400

k

Figure 6.21: The error and output responses of a nonlinear plant represented by Eqn. (6.20),

Example 2.

1.2

0.8

0.4

0.0

-0.4

-0.8

-1.2
0 200 600 800 1000

Example 3: The purpose of this simulation was to demonstrate the adaptive capability of the

neuro-controller scheme (Fig. 6.19) for the following situations: (i) time-varying nonlinear

functions, (ii) varying pattern of input signals, and (iii) perturbations in the plant parameters

and changes in the configuration of the plant dynamics. The nonlinear function used in this

example was

f[] = e(y2(k-1)+y2(k-2))
+AI

I
u

2
(k) + u2

(k-1) + u2(k-2)} I ,

05k<400
which was changed at k = 400 to

(6.21)

[2+cos 711(y2(k-1) + y2(k-2)) 1] + e-u(k)
— , 400 5 k < 2500. (6.22) .

1 + u2
(k-1) + u2

(k-2)

The input to the system, s(k) = sin (2nk / 250) in the interval [-1, 1], was changed as

follows: s(k) = sin (2ick / 250), for 0 k < 700, s(k) = 0.6, for 700 5. k < 875, s(k) = 0.4, for

875 k < 1050, s(k) = - 0.2, for 1050 k < 1400, s(k) = - 0.6, for 1400 5_ k < 1800, and s(k)

= 0.6 sin (2ick / 250) for 1800 5_ k 5 2500.

The plant parameters were Pff = [1.2, 1, 0.81T, a th = [1, 0.9, 0.71T, for 0 k < 1400,

13ff = [1.2, 1, 1.4]T, a fb = [1, 0.9, 1.31T, for 1400 5. k < 2000, and 13ff = [1.2, 1, 0]T, a fb =

[1, 0.9, 0]T, for 2000 5 k 5 2500.

145

The simulation results obtained for this example are shown in Fig. 6.22. This

example demonstrates the robustness of the DNP-based control scheme in the presence of

variations in the nonlinearities, input signal, and the dynamic characteristics of the plant.

1.0

-0.5 0

-1.0

non

.... .

0

rariation
inear function

500

in

1000
k

1500 2000 25

Varying pattern of

1.0

0.5

c.)
C 0
0.)

0.0

0
[4 —0.5

-1.0

input signal

IAdaptation to perturbation
in plant parameters and
configuration

(a)

0 500 1000 1500 2000 2500

k

(b)

Figure 6.22: Simulation results, Example 3.

(a) The plant output under variations in nonlinearity characteristics, input

signal variations and plant parameter perturbations.

(b) The corresponding error response.

146

The above simulation studies show that an unknown nonlinear system followed the
desired signals well. The initial settings of the synaptic weights, w2a, , and the initial

values of the somatic gains of the excitatory and inhibitory neurons in the DNP structure

determine the transient behavior of the control system. It was difficult, however, to obtain a

general relationship between the initial values of the adaptable parameters and the behavior

of the DNP system.

6.3.4 Coordination and Control of Multiple Systems

A complex control system, in general, consists of two or more independently

designed and mutually affecting subsystems. Proper coordination and control of the multiple

subsystems is necessary for the overall functioning of the system. This necessitates the

development of control schemes for multivariable systems. The task of controlling

multivariable, also referred to as multi-input-multi-output (MIMO), systems is a complex

problem, and has received much attention. This is due to the fact that a multivariable system

may involve a nonlinear system with unknown dynamics having two or more inputs and

outputs, or may consist of two or more independently designed, separately located, but

mutually affecting subsystems. One may observe such complex systems in multi-robot

operating situations, or in process industries. In addition to the good behavior of each

subsystem, the effective coordination of these subsystems is extremely important to achieve

the overall system performance. The main difficulty in coordinating multiple subsystems

comes from the lack of precise a priori knowledge of the system models and parameters, as

well as the lack of efficient tools for system analysis, design, and real-time computation of

optimal solutions [108]. Much of the earlier work in the area of control systems has

concentrated on linear MIMO systems with unknown parameters [13, 14]. New methods for

analysis and design are thus required for the coordination and control of nonlinear

multivariable systems.

Neural networks provide alternative and efficient control schemes to deal with

uncertainties and nonlinearities in the systems under control. The potential of neural

networks for control applications lies in the fact that (i) neural networks can be used to

approximate any continuous mapping through learning, and (ii) they can realize parallel

processing and fault tolerance. Due to their inherent parallel architecture, neural networks

can be effectively employed to control multivariable systems. One of the most popular

neural network architectures is a multi layer feedforward network with the back propagation

algorithm. For this neural architecture, the weights of the network need to be updated using

the network's output error. For a neural network-based controller, the network's output is the

147

control command to the multiple-systems under control. However, when the neural network

is serially connected to the controlled plant, the network's output error is unknown because

the desired control action is unknown. This implies that the back propagation algorithm for

the neural network can not be applied directly to the control problems [63]. Cui and Shin

[63] have developed a direct adaptive control scheme and algorithm using a feedforward

neural network for multivariable systems. In this section, the DNP is used in a direct

adaptive control scheme for the coordination and control of multivariable systems.

6.3.4.1 The problem of multiple system coordination

Fig. 6.23 describes two interacting systems, and this description can be easily

generalized to the case of more than two systems.

Figure 6.23: Interaction of two subsystems with connection strengths represented as 121

and 112'

In the above figure, the two subsystems under control are represented by
T

P1(u1' 21' y1) and P2(u2' 112' y2), where U = [u
T

u
T]E 90 is the control input vector,

1 2

r T T1 T T ry, 11)Y= L y y 2 E Z/ is the system output vector, and I = [IT I l E 91In is the vector
1 2

of interacting weights between the two subsystems. Usually, the cost function of a multiple

system is the sum of the cost functions of all the component subsystems [63], and is given by

J(u, I, y) = yi) + J2(u2, 112, y2). (6.23)

The problem of coordinating multiple systems can be treated as an optimization

problem; that is , of obtaining min J(u, I, y). This may be achieved by treating the interacting
signal Ik,i , k # 1, as an ordinary input variable to each of the interacting subsystem as

depicted in Fig. 6.24.

148

Figure 6.24: The configuration of two interacting systems.

Obviously, minimizing the cost function J(.), defined in Eqn. (6.23), depends on

knowledge of the structure and/or dynamic parameters of the subsystems. As the neural-

network based control schemes exhibit learning and adaptive capabilities for nonlinear

systems, it is not necessary to know a priori the system configuration, the parameters of the

subsystems or the nature of interaction between them. In this section, the DNP is used to

make the linear and nonlinear subsystems follow the desired command trajectories.

6.3.4.2 Computer Simulation Studies

The DNP is used in the direct adaptive control mode [110] as shown in Fig. 6.25.
The desired command signals s1(k) and s2(k) were respectively sin (2irk / 250) in the interval

[-1, 1] and cos (2irk / 250) in the interval [-0.5, 0.5]. The DNP settings were wEE = 1.0, wEi=

0.5, 1410 = 1.0 and wI E = 0.5. The components of the scaling vector were set to 1.

Example 1: The purpose of this example was to demonstrate that a complex system

consisting of two linear sub-systems can be adaptively controlled in the presence of input

signal variations, parameter perturbations, and with nonlinear coupling. The two interacting

linear systems are governed by the following difference equations

and

2 2
y1(k+1) = a il y(k-i) + 13., u, (k-j) : System 1

i=o .i=0

2 2
y2(k+1) = a i2 y(k-i) + 13

j2 u2(k-j) : System 2.
i=0 j=0

The parameter values in the above equations were as follows:

13ffi = [1.2, 1, 0.81T, a fb1 = [1.3 0.9, 0.71T: System 1

(6.24a)

(6.24b)

149

and

= [1.3, 0.7, 01T , ocfb2 = [1.2 0, 0.81T: System 2.

The components of the interaction vector Ik 1 were set to -0.1. The simulation results

obtained for this case are shown Fig. 6.26.

v ei(k)

D N P

si(k)

s2(k)

Learning and adaptive

algorithm

DNU

Complex system

P
i

u 1
21'

y)

u2' I12' y2)

(Learning and adaptive
algorithm

y1(k)

y2(k)

• 00

Figure 6.25: The direct adaptive control scheme for the coordination and control of two sub-

systems.

It is seen from these results that the two systems followed the command signals very

closely. The system behavior was good even when the input signal of system 1 was changed,
and the parameter perturbations were introduced for system 2. At k = 500, si(k) was changed

to a sum of two sinusoids, sin (27tk / 250) + 0.2 sin (2nk / 25). The dynamics of system 2 at

k = 500 were also changed to Pff2 = [1.3, 0.7, 1.01
T
, a fb2 = [1.2 0.9, 0.81

T
. The error and

output responses of the two systems are shown in Figs. 6.27a and 6.27b respectively.

150

1.2

0.8
0
al4

"."' 0.4 -
C4 E

tA 0.0

0 v_,
-°= ° -0.4 "-

czt

• -0.8 -

-1.2
0 200

I • I

400 600 800 1000

k

(a)

1.2

0.8 -
CA

0

co
,

N
5)," 0.4-

• E
0.0

rA• cf)
O 0 -0.4

o -0.8 -

-1.2 I • I

0 200 400 600 800 1000

k

(b)

Figure 6.26: Simulation results for two interacting linear systems 1 and 2, Example 1.

(a) The error and output responses of system 1, and

(b) The error and output responses of system 2.

1.2
co

o • 0.8-

(9"
2, 0.4

w 0.0

0 • CI)t4--1
7g 0 -0.4 -

-0.8

-1.2

Change in input signal to system 1 Parameter perturbations in system 2

0.6"

OuTut signal
-

0 200 400 600 800 1000

k

(a)

a)
CA
o 0.4-
o

• 0.2-

• cA 0.0

O• w
-0.2

O -0.4

W.1
-0.6

0

Output signal
• • • • I •

200 400 600

k

(b)

800 1000

Figure 6.27: Simulation results with input signal and parameter variations, Example 1.

(a) The error and output responses of system 1, and

(b) The error and output responses of system 2.

151

From the results shown in Fig. 6.27 it can be observed that the effects of changing the

input signal of system 1 on system 2, and introducing the parameter perturbations in system 2

on the performance of system 1 were not very significant. However, this depends on the

strength of the interaction between the systems. This is shown in the following figures where

the components of the interaction strength vector I were changed at k = 500 as follows:

I12 0.3 - 1 = v3
(k) from system 1 to system 2, and

121 = 0.1 e (y200), from system 2 to system 1.

The simulation results obtained for this case are shown in Fig. 6.28. Figures 6.28a

and 6.28b show the error and output responses of systems 1 and 2 respectively. Figure 6.28c

shows the adaptation in the somatic gains of the excitatory and inhibitory neurons. The

optimum somatic gains after 2500 iterations were found be 0.858 and 0.795 for the excitatory

and inhibitory neurons respectively.

1.2

c.)
U 0.8 —
o

4.) ▪ 0.4 —
t:4

49. •EA 0.0

0
• °• —0.4 —

• —0.8 —

Change in interconnection strengths

-1.2

0

Output signal
• • •

200 400 600

k

(a)

Figure 6.28: (Continued)

800 1000

Change in interconnection strengths

0.6

0.4 - a.)

0.2 -
C•1

r:4 5
• 0.0

O
0 • C' i 1 -0.2 -

1:s

o -0.4 -

-0.6

Error signal

Output signal

0

• I • I

200 400 600

k

(b)

800 1000

152

Change in interconnection strengths

• 3.0

o

• Z

2.5- L.)

(.7 2.0
C °

t r

o 1.5- o
C

4
n 7:1 g 1.13-
0 0
;s 0.5
cs

-cs
<W 0.0

0

Excitatory neuron

Inhibitory neuron

200 400 600 800 1000

k

(c)

Figure 6.28: The simulation results for a case when systems 1 and 2 were interconnected

through nonlinear coupling.

Example 2: The purpose of this simulation example was to demonstrate that the direct

adaptive control scheme shown in Fig. 6.25 could be used without any modifications in the

algorithm and the initial values of the weights even for the nonlinear multivariable systems.

Case (i): In this case, the two interacting systems were nonlinear and were governed by the

following difference equations:

and,

2 2
uyi(k+1) = a il y(k-i) + Pj (k-j) + 1 [yi(k), y1(k-1),.., yi(k-n+1); uE(k), j=0 i

uE(k-1),.., uE(k-m+1)[: System 1 (6.25a)

2 2
y2(k+1) = a il y(k-i) -F E 13,1 ui(k-j) + f2[y2(k), y2(k-1),.., y2(k-n+1); ui(k),

1=0 j=0
ui(k-m+1)] : System 2. (6.25b)

The nonlinear functions in the above equations were as follows

153

[2+co 77r(3,210(..1) y210(..2)) I]s Aj I { uE2 uE2 (,1) + u2E(k-2) } I
fi[.] — [1 + u2E(,1) uE2(,2)]

(6.26a)
and

2 2
Y (k-1) + Y (k-2)

f2[.] = e 2
2 • (6.26b)

The plant parameter values and the input signals used in this example were the same as in

Example 1. The error and output responses of systems 1 and 2 are shown in Figs. 6.29a and

6.29b respectively. The adaptation in the somatic gains of the excitatory and inhibitory

neurons of the DNP are shown in Fig. 6.29c. The optimum somatic gains after 2500

iterations were found to be 0.25 and 2.08 for the excitatory and inhibitory neurons

respectively.

Case (ii): In this case, two nonlinear subsystems described by the following equations

y1(k) = 0.2 y1(k-1) + 0.6 y1(k-2) - 0.1 y2(k) - 0.1 y2(k-1) + 0.6 uE(k-1) + uE(k)

: System 1 (6.27a)

0.3 y2(k-1) + 0.5 y2(k-2)
y2(k) = - 0.1 y1(k) +

1+ y 2(k-2)
+ u1(k) :System 2 (6.27b)

were considered. The performance of each system was observed for a time duration of 1000

learning iterations. The behavior of the interconnected nonlinear systems is shown in Fig.

6.30.

The DNP-based control scheme can quickly adapt to the changing system

configuration. To demonstrate this adaptive capability, the configuration of system 1 was

changed at time step k = 500 to

y1(k) = 0.2 y1(k-1) + 0.6 y1(k-2) - 0.1 y2(k) - 0.1 y2(k-1)

+ 0.1 yi(k-1) cos(2nk / 250) + uE(k) . (6.28)

The simulation results are shown in Fig. 6.31, and from these results it is seen that systems 1

and 2 followed the desired trajectories very closely demonstrating the adaptive feature of the

control scheme.

154

1.2

a3
0.8-

0
1:14)

0.4-
r:4 E
• 1-)

0.0

O 4.4
° -0.4 -

`E)

-1.2 • • Output signal • •
0 200 400 600

k

(a)

2.4
o

o
f.,(n

Z
2.0-

—
(.7
• o

0 4
1.2-

cn -o
• 0.8-
o

0
Ì a 0.4-
cz (7)

7:1
W 0.0

800 1000

•

0.6

-0.6

0 200 400 600 800

k

(b)

Inhibitory neuron

Excitatory neuron

0 200 400 600 800 1000

k

(c)

1000

Figure 6.29: The simulation results for a case when the two interconnected systems were

nonlinear, Case (i), Example 2.

155

1.2

c•i--, 1.2 1.0
O Output t4-4

4 o
ctt • 0.8--0- -- 'IL at

ig zio 0 0.5
-i•-• —. 0.4-
o 4,

ri)

0.0 0 ,--,
.1

5 cri 0.0-
7:, o a 0gl, a., - ' 134 g
= ^CI oz. -0.4 - g
tai 45

0..
-0.5-

F\ r- r-
0 -0.8 -

Input
-1.2 . • . • . • . • -1.0 •

0 200 400 600 800 1000 0

' I ' I • I •

200 400 600 800 1000

k k

Figure 6.30: The simulation results for a case when the two interconnected systems were

nonlinear, Case (ii), Example 2.

4-1
0

0.8
C
la9

0.4 ••••
§ 449, 0.01
O
"C3 -0.4 -
c

-0.8 -

-1.2

Input Output tt

7

Change in configuration

0 200 400 600 800 1000

-1.0

0

Input

Output
• . - •

200 400 600 800 1000
k k

Figure 6.31: The simulation results for two nonlinear interconnected systems with dynamic

perturbations, Case (ii), Example 2.

Example 3: In the above examples, multivariable systems consisting of two subsystems

were considered. In this example, the problem of truck "backer-upper" control, which is a

nonlinear MIMO system, proposed originally by Nguyen and Widrow [111] was considered.

Backing a truck to the loading dock is a difficult nonlinear control problem for which no

traditional control system design methods exist [112]. Nguyen and Widrow used two static

neural networks one as an emulator and the second as a controller to guide the truck to the

loading truck. The controller network produced the appropriate steering angle of the truck

156

given any initial position. The emulator network computed the next position of the truck.

The inputs to the emulator network were the previous truck position and the current steering

angle output computed by the controller network. As reported in [11 1], the number of back

ups required to train the controller was about 20,000. Kong and Kosko [113] proposed a

fuzzy control strategy for the same problem. Wang and Mendel [112] developed a

'numerical-fuzzy approach' for this problem. In this approach, they determined the control

angle 0 based on the 'common sense', and after some trials they chose the desired input-

output pairs corresponding to the smoothest successful trajectory.

The simulated truck and loading zone are shown in Fig. 6.32. The truck position is

exactly determined by the variables x, y, and 4), where 4) is the angle of the truck with the

ground. The control signal to the truck is the steering angle 0. Only backing up was

considered in the simulation study. The truck moved backwards by a fixed unit distance at

every stage. For simplicity, enough clearance between the truck and the loading dock was

assumed such that 'y' did not have to be considered as an input. The task was to generate

proper steering angles of the truck for the input variables x E [0, 20] and 4) E [-900, 270]

such that the final truck position was (xf, 4)f) = (10, 90°). The following dynamic equations

of the truck backer-upper control system [112] were used during the simulation studies.

x(k+1) = x(k) + cos[4)(k) + 0(k)] + sin [0(k)] sin[4)(k)] (6.29a)

y(k+1) = y(k) + sin[4)(k) + 0(k)] - sin [0(k)] cos[4)(k)] (6.29b)

- sin 4)(k+1) = 4)(k) L (6.29c) L JJ

where L is the length of the truck which was assumed to be 4 in the simulation studies.

Equations (6.29a - c) were used to obtain the next state when the present state and control are

given. Since y was not considered a state, only Eqns. (6.29a) and (6.29c) were used in the

simulations. Figure 6.33 shows the simulation results for backing up the truck to the loading

dock from a given initial position (xi, 4)i) = (5, 220). The x, 4) and 0 trajectories of the truck

for this starting position are shown in Figs. 6.33a and 6.33b. In order to compare the

performance of the DNP with recurrent neural networks, a two-layer recurrent neural

network was used to steer the truck to the loading zone from the initial position (xi, 4)i) = (5,

220). The docking-error, defined as the Euclidean distance from the actual final position (x,

4)) to the desired final position (xf, 4)f) [112], obtained from the DNP and the recurrent neural

network was compared for 300 iterations as shown in Figs. 6.33c and 6.33d. The latter

successfully steered the truck to the desired position after about 7000 iterations.

157

Loading dock X = 10, 4) = 90°

(x,y)

X = 0 X = 20

•

rear

Figure 6.32: Diagram of the simulated truck and loading zone.

0

(t)
0

10

9-

8-

-
7-

6-

Truck
direction

Initial position
x=5,0=220

5

-270 -180 -90 0

400

90

4)[in degrees]

(a)

180 270

300- DNP

v4 200-
,s4
O

100-

o I
0 100

k
(c)

S
te

er
in

g
A

ng
le

 [
in

 d
eg

re
es

]
0

-20-

-40-

-60-

(111;ruck
direction

0

Initial position
x=5,4)=220

0
0

-80 1

-300 -200 -100 0 100 200 300

4) [in degrees]

(b)

200 300 0 100
k

(d)

Figure 6.33: Truck trajectories from an initial position (xi, 4i) = (5, 220).

200 300

158

Figure 6.34 shows the x and 1 trajectories of the truck obtained from the DNP and the

recurrent neural network from an initial position (xi, 0:1)i) = (0, - 90). About 8000 iterations

were required for the recurrent neural network before the truck reached the target position.

Figure 6.35a shows the x and trajectories from an initial position (xi, = (3, - 30) and Fig.

6.35b compares the docking-error obtained from the DNP and the recurrent neural network.

The latter required about 7500 iterations to steer the truck to the loading dock. Extensive

simulations were carried out for the DNP and for the recurrent neural network from different

initial positions of the truck. Some of the results are shown in Table 6.4.

270

180 -

-270

0

20 100
Initial position
x=0,0=-90 50

(I) -15 0

.2 8 -50

 - 100 -100
1:14

t' -150
49-

5 -200

-250

. r 0 -300
50 100 150 200 250 300 0

k
(a)

Initial position
x=0,0=-90

I I

50 100

25

20

C

15

0
cn

10 ,
04

150 200 250 300

k
(b)

0

Figure 6.34: Truck trajectories from an initial position (xi, = (0, - 90): (a) using the DNP

and (b) using the recurrent neural network.

10

9 -

8 -

7 -

6

5

4

3

Initial position
x=3,0=-30

Truck
direction

• 1 I

-270 -180 -90 0 90 180 270

4) [in degrees]

(a)

400

300

,s41 200-

100'

Recurrent Neural
Network

DNP

0 100 200 300
k

(b)

Figure 6.35: Truck trajectories from an initial position (xi, 0i) = (3, - 30).

159

Table 6.4: Performance comparison

Desired Position: x d = 10 and did = 90
0

Initial
Positions

DNP
Estimations

Recurrent Neural Network
Estimations

x . 1 e li x 0
cp

0
0

Learning
Iterations

x
o 4:1) Learning

Iterations

1.00 0 10.08 90.42 - 18.56 436 * * ----

100 - 30 9.97 88.54 - 11.3 308 9.968 89.03 7756

5.00 - 90 9.97 88.95 - 11.01 383 9.93 88.98 9575

20.00 90 10.06 89.3 - 10.87 421 * ----

10.00 120 9.91 88.66 - 11.41 386 9.947 89.16 9647

0.00 270 9.9 89.06 - 11.86 248 10.02 90.24 6233

10.00 220 9.95 89.01 - 9.0 274 9.856 88.92 6528

13.00 30 10.01 91.45 - 11.28 333 9.93 90.85 8210

20.00 270 9.91 91.63 - 11.12 382 * ----

20.00 - 90 9.92 91.19 - 10.49 381 * * ----

0.00 - 90 9.99 90.71 - 10.55 315 9.99 91.03 7649

10.00 - 90 10.01 89.51 - 10.82 261 10.00 90.02 5705

5.00 90 10.02 90. 18 - 8.45 156 9.97 89.93 4964

9.88 89.44 10.01 90.01 - 2.14 11 10.02 90.01 2664

* indicates the initial positions from which the recurrent neural network could not converge.

From the simulation results shown in Figs. 6.33, 6.34 and 6.35, and Table 6.4 it is

clear that the DNP could steer the truck to the target position very quickly compared to the

recurrent neural network. In some cases, the recurrent neural network could not converge.

On the other hand, the DNP could coerce the truck from different initial positions to the

target position. As the DNP was used in the direct control mode, off-line training was not

necessary in sharp contrast with the methodology involving conventional neural structures.

It was found necessary that the conventional neural networks, with error back-propagation

learning algorithm, be trained off-line for different initial positions and use the trained

network to drive the truck to the target position.

160

6.4 Generalized Dynamic Neural Model

As was mentioned in Chapter 1, there are numerous possible structures of

computational (artificial) neural networks. Currently, there is no single architecture of a

computational neuron from which all of the existing neural structures can be derived. It is

desirable in the field of neural networks to develop a general computational neural

morphology that can represent the characteristics and emulate the functional capabilities

observed in biological neural networks. In this section, a generalized dynamic neural model

based on the concept of neural subpopulations described earlier in this chapter has been

described. This generalized model was proposed in [114]. It is demonstrated in this section

that the existing neural models, such as the feedforward (static) neural network, feedback

(recurrent) neural network, time delay neural network (TDNN) and dynamic neural unit

(DNU) are a subclass of this generic model. The generalized model is shown in Fig. 6.36.

The model is of second-order and its output forms an argument to a time-varying nonlinear

activation function. This part of the generalized model is simply the DNU structure

discussed earlier. The generalized model is an extension of the DNU, and incorporates the

delayed feedback that represents the soft (adaptable) connectivity between the subpopulations

of neurons.

As shown in Fig. 6.36, the feedforward synaptic matricies are denoted as G, H, P,

while the feedback synaptic matricies A, B form the neural dynamics with an internal

threshold O. The matrix C denotes the self- and inter-neuron feedback strength. The

matricies F and D represent the scaling matricies of the input and output signals respectively.

In conventional static neural networks, the matrix F would represent the synaptic weights.

The output of the neural dynamics forms an argument to a nonlinear activation function,

usually sigmoidal, with varying slope. This adaptation in the slope of the sigmoidal function,

called the somatic adaptation, provides a self-tuning feature to the neural model.

161

Neural dynamics

Threshold I

e I q(k)

s(k)
"Th

F Eli ®,o 0

0
x(k)

1
q(k-1)

\

q(k-2)

Self and inter-neuron
feedback

Varying nonlinear
activation function

E v(k) rq •
L

111[.]
u(k)

Synaptic Somatic
component component

y(k)

Figure 6.36: A generalized neural model based on excitatory - inhibitory antagonistic neural

subpopulations.

The functional dynamics of this neural architecture are represented by the following

difference equations:

x(k) = F s(k) - 0 (6.30a)

q(k) = x(k) + A q(k-1) + B q(k-2) + C u(k-1) (6.30b)

v1(k) = G [q(k)] + H [q(k-1)] + P [q(k-2)] (6.30c)

v(k) = gs v1(k) (6.30d)

u(k) = W[v(k)] (6.30e) .

y(k) = D u(k). (6.300

It is demonstrated in the following paragraphs that existing neural structures can be

derived from this generalized neural model.

(i) Feedforward (Static) Neural Network

As was described in Section 1.2, the static structure of an artificial neuron receives its

inputs from a number of other neurons or from sensors. A weighted sum of these inputs

constitutes the argument of an 'activation' function. The resulting value of the activation

function, if it exceeds an internal threshold 0, is the neural output. This output is distributed

along weighted connections to other processing units. The static neural network is a subset

162

of the generalized structure with A — B — C — H — P — C — 0, G = 1, and gs = 1 (nonlinear

function with constant slope), as shown in Fig. 6.37.

Inputs

s(k)

Synaptic
weights

Nonlinear
function

i i[] -0 ' D
 u

Y(k)

(k)

Weighted
outputs to

other neurons

Figure 6.37: The structure of a static neuron as a special case of the dynamic structure

shown in Fig. 6.36.

(ii) Feedback (Recurrent) Neural Network

The conventional dynamic neural structure, shown in Fig. 6.38, can be obtained as a

special case of the generalized structure shown in Fig. 6.36, with A = B = H = P = 0, G = 1,
and gs = 1.

Inputs

s(k)

Figure 6.38: A feedback (recurrent) neural network derived from the generalized model.

(iii) Time-Delay Neural Network (TDNN)

The dynamics of a time-delay neural network can be described as a special case of

the generalized dynamic structure with A = B = C = 0, and gs = 1. These equations lead to a

TDNN structure as shown in Fig. 6.39.

163

Inputs

s(k)

Figure 6.39: A time-delay neural network (TDNN) as a special case of Fig. 6.36.

y(k)

(iv) Dynamic Neural Unit (DNU)

The structure of the DNU is identical to that shown in Fig. 6.36 except that there is no

feedback path from the neural output u(k), to the input, that is, C = 0. The DNU structure

thus obtained is shown in Fig. 6.40.

0

s(k)
F

Neural dynamics

Varying nonlinear
I activation function

I E
v(k)

1

I v (k)

tF[.]

Figure 6.40: The structure of DNU as a special case of the generalized model.

u(k) y(k)

A learning algorithm for the generalized neural model is derived in Appendix II.

Although it is shown in this section that several computational neural networks can be

obtained from the proposed generalized model, more work needs to be done with regard to

the stability and convergence analysis of the model.

164

6.5 Summary

In this chapter a dynamic neural processor (DNP) that implements the dynamic

properties of a subpopulation of neurons has been developed. The basic motivation for this

neuronal model has been the observation in neurophysiology that the neural activity of any

complexity depends upon the interaction between antagonistic (excitatory and inhibitory)

neural subpopulations. Dynamic neural units (DNUs), coupled as excitatory and inhibitory

neurons, have been used as the basic computing elements in the DNP architecture. A

mathematical model and an algorithm to modify the parameters of the DNP have been

discussed. A commonly used dynamic neural structure is the recurrent neural network

consisting of a single layer feedforward network included in a feedback configuration with a

time delay. Except for the delay operator, this neural network does not employ any dynamic

elements in the forward path. The feedback paths are also non-adaptable. On the other hand,

the DNP consists of a dynamic structure in the forward path and adaptable feedback

connections. Thus, the structure of the DNP is different from the conventionally assumed

structures of neural networks in that the former uses two second-order nonlinear dynamic

systems, while the latter are developed based on the concept of an idealized single static

neuron.

Four applications of the DNP have been discussed in this chapter. The first

application involved the functional approximation of arbitrary nonlinear functions. In the

second application, the DNP was employed to compute the inverse kinematic transformations

of a two-link robot that modeled a human leg. A brief comparison of recurrent neural

networks and the DNP, as applied to functional approximation and inverse kinematic

computations of a two-link robot, was also made. The DNP approximated the arbitrary

nonlinear functions much more quickly than the single- and two-layer recurrent neural

networks. The simulation studies demonstrated that the single-layer recurrent neural network

performed better, in terms of speed of convergence, than the two-layer network. In the

presence of noise, however, the performance of the recurrent neural networks was better than

that of the DNP. It was demonstrated in the third application that the DNP could also be used

for the adaptive control of unknown nonlinear dynamic systems. As was demonstrated in the

last application, the DNP could be easily employed for the coordination and control of

multiple systems due to its parallel architecture. A generalized dynamic neural model based

on the concept of neural subpopulations has been developed in this chapter. It was shown

that many existing neural structures can be obtained from this generalized model.

7. Conclusions

7.1 Concluding Remarks

The computational architectures employed in artificial neural networks are generally

based upon mathematical models used to describe the behavior of individual biological

neurons or population of neurons. Although all neural network models claim to share a

theoretical foundation with biology, they often vary greatly in both complexity and scope.

These differences are largely influenced by the goals and academic background of the

individual developer. For example, very elaborate models of neural population dynamics

have been proposed by researchers in the area of theoretical biology. Alternatively, many of

the neural network structures proposed for pattern recognition, system identification and

control purposes are simple nonlinear summation circuits. In conventional neural structures,

the neuron receives its inputs either from other neurons or from sensors. A weighted sum of

these inputs constitutes the argument of a 'fixed' nonlinear activation function producing the

neural output. This output is distributed with weighted connections to other processing units.

The above model is a highly simplified but useful first approximation of the

biological neuron. Neural networks developed based on this static model respond

instantaneously to inputs because these neural networks have no dynamic elements. As has

been pointed by Hopfield [35], present models of neural networks are a feeble imitation of

biological neural structures. These models ignore many of the salient features of biological

neurons, such as time delays and feedback paths, that are very important in the activity of

neural models. An attempt has been made in this thesis to develop neural structures based on

the dynamic neural model. However, it is not claimed that the neural model proposed in this

thesis satisfies all the characteristics of a biological neuron. It is a small but significant step

toward the development of dynamic neural networks.

A dynamic model of the neuron, called the dynamic neural unit (DNU), was proposed

in the second chapter. The topology of DNU was based on the reverberating circuit in the

neuronal pool of the central nervous system. It is only analogous to the reverberating circuit

and does not represent any specific anatomical region within the biological nervous system.

The dynamic structure of the DNU consisted of internal feedforward and feedback synaptic

weights, followed by a nonlinear activation operator. A learning and adaptive algorithm was

developed to modify the DNU parameters for a given task.

165

166

A control technique, called inverse dynamic adaptive control (IDAC) using the DNU

was developed in the third chapter. The IDAC technique was based on the concept of

adaptive inverse control in which an unknown plant can be made to follow a desired

trajectory by precascading the plant with its inverse model. It was demonstrated in this

chapter that the DNU can be used to obtain an approximate inverse model of the plant under

control, thereby achieving almost unity mapping between the input and output signal spaces.

Through computer simulation studies it was shown that the DNU, after the initial learning,

could cause a linear plant to follow a desired command signal. A feedback-error learning

scheme was also described where the control signal to the plant consisted of two components,

one from a linear PD controller in the feedback mode and the second from a DNU in the

feedforward mode. It was demonstrated through simulation studies that the control signal

from the PD controller was more significant than that from the DNU during the initial phases

of learning and control. As learning and control actions continued, the DNU became

functionally more significant compared to the PD controller. This learning scheme was

employed to control linear and simple nonlinear systems.

Although the basic processing element in the human neural system is the neuron, the

power of the human brain comes from the massive parallel structure of neural networks [22,

32]. Inspired by this fact, a dynamic neural structure, with the DNU as the basic processing

element, was developed in the fourth chapter. A mathematical model of a three-stage

dynamic neural network and the implementation of the learning algorithm were discussed.

The theory of functional approximation occupies a significant place in the field of neural

networks. In the existing literature, the emphasis has been on the study of functional

approximation using static neural networks. The approximation theory involving dynamic

neural networks has not been developed before. Toward this goal, both theoretical and

computer simulation studies of functional approximation for a multi-stage dynamic neural

network, using linear and trigonometric polynomials, have been discussed in this chapter.

This feature of dynamic neural networks has been exploited in synthesizing a control scheme

for the direct control of unknown nonlinear systems. It was demonstrated through computer

simulation studies considering different nonlinear system models that a neural network-based

control scheme was system independent. A brief performance comparison of this control

scheme with the conventional model-reference adaptive controller (MRAC) was made. It

was also shown that the slope of the nonlinear function in the DNU structure plays an

important role in overall system performance. An improper selection of the slope may lead

to instability.

167

The focus of the fifth chapter was to develop a dynamic neural network with an

adaptable slope for the nonlinear activation operator. In this context, a modified DNU

architecture was proposed. Thus, the DNU was comprised of two operations: (i) the synaptic

operation and (ii) the somatic operation. The synaptic operation provided adaptation in the

feedforward and feedback weights, while the somatic operation provided an optimal slope of

the sigmoidal function. The latter operation was referred to as somatic adaptation.

Modifications to the learning algorithm and the implementation scheme developed in the

second chapter were also made. A three-stage dynamic neural network, with the modified

DNU as the functioning element, was used in synthesizing a controller for unknown

nonlinear systems.

A new neural network structure called the dynamic neural processor (DNP) was

developed in the sixth chapter. The motivation for the development of this model was on the

fact that neural activities of any complexity in the human brain [41, 91] depend upon the

interaction of antagonistic neural subpopulations, namely excitatory and inhibitory neurons.

The DNP consisted of two DNUs configured to function as excitatory and inhibitory neurons.

An algorithm was developed in this chapter to make the self- and inter-subpopulation

feedback connections adaptable. The transient behavior of DNP was briefly discussed. Four

applications of the DNP were elucidated in this chapter. The functional approximation

capability of the DNP was demonstrated in the first application. In the second application,

the DNP was employed to compute the inverse kinematic transformations of a two-link robot

used as a model of the human leg. A brief performance comparison of recurrent neural

networks and the DNP, as applied to the functional approximation and inverse kinematic

transformations of a two-link robot, was also made. It was demonstrated in the third

application that the DNP could be used for the adaptive control of unknown nonlinear

dynamic systems. Due to the parallel architecture of the DNP, it could be easily employed

for the coordination and control of multiple subsystems as was demonstrated in the last

application. Based on the concept of neural subpopulations, a generalized dynamic neural

model was also proposed in this chapter.

168

7.2 Contributions of the Thesis

1. The development of a dynamic neural unit (DNU) in this thesis is a unique

contribution in modeling biological neurons incorporating synaptic delays with feedforward

and feedback paths. The topology of the DNU was inspired by the structure of reverberating

circuits in the CNS, and the development suggests the biological plausibility toward the

design of artificial neural networks.

2. The development of functional approximation for the dynamic neural networks is also

an original contribution of this work. The utilization of this concept could possibly lead to a

generalized approximation theory for neural networks to facilitate learning of a given

nonlinear function to a desired degree of accuracy.

3. A major contribution of the thesis was the development of the dynamic neural

processor (DNP) based on the concept of antagonistic subpopulations of neurons. This

structure may lead to a different direction of research in the area of neural networks. This is

because the DNP could possibly provide insights into some of the questions clouding the

neural network field, such as the biological basis, and the number of layers required in the

network for a given application. The DNP structure is completely different from the

conventionally used recurrent (Hopfield) dynamic neural network in the following ways:

(i) the Hopfield network involves a static neuron in the feedforward path; (ii) the network

lacks self-feedback for each neuron; and (iii) the feedback paths are non-adaptable.

The performance of dynamic neural network structures developed in this thesis was

compared, through computer simulation studies, with conventional structures. In particular,

the dynamic neural network-based control scheme was compared with proportional-plus-

derivative (PD) and model-reference adaptive controllers. The performance of the former

was found to be much better compared the traditional control techniques. In some situations,

the latter failed to provide the desired performance. As well, the performance of the DNP

was compared with recurrent neural networks for the following tasks: functional

approximation, computation of inverse kinematic transformations of a two-link robot, and

backing a trailer truck to the loading dock. In all these tasks, the performance of the DNP

was found to be much better compared to recurrent neural networks.

In fulfilling the objectives of the thesis to formulate and develop dynamic neural

structures, and to bring about an interaction of ideas and insights from biology and control

systems, the relevance of the work in the fields of artificial neural networks, adaptive control

169

and robotics was evident. Though researchers are still a long way from making any

significant breakthroughs into an understanding of animal (human and nonhuman) behavior,

the work hints at the possibilities of developing useful biologically motivated dynamic neural

structures for engineering applications.

7.3 Directions for Future Research

The theoretical analysis presented in this dissertation is only introductory. Additional

mathematical studies into the stability of the DNU and dynamic neural networks are required.

A detailed phase-plane analysis of the DNP needs further work. These studies would help to

improve further the selection of suitable initial values of parameters for generating a global

optimal solution. The major drawback of dynamic neural networks is their very limited

explanation capability [115]. The solutions offered by these networks are hard to track back,

unlike in feedforward neural networks. System-type procedures have to be developed to

explain the internal functioning of dynamic networks.

From a technological perspective important questions regarding the overall

performance, speed, stability and flexibility of dynamic neural networks need to be

addressed. The basic premise of the DNU, and its related neural structures, is an eventual

incorporation into hardware circuitry. Recent advances in microelectronics and opto-

electronics could make this objective a reality in the near future.

This thesis has presented the basic concept of a multi-functional dynamic neural unit,

and its associated dynamic neural networks. This is only the initial step because more

extensive theoretical and experimental studies still must be performed on the dynamic neural

networks in order to make them viable for real-time control system applications. Application

of dynamic neural networks to practical problems will be a significant contribution to the

field of neural networks, for it involves the study of stability and convergence in real-time.

Neural network structures can deal with imprecise data and ill-defined activities.

However, the subjective phenomena such as reasoning and perceptions are often regarded

beyond the domain of conventional neural network theory. It is interesting to note that fuzzy

logic is another powerful tool for modeling uncertainties associated with human thinking and

perception. In fact, the neural network approach fuses well with fuzzy logic, and some

research endeavors have given birth to the so called 'fuzzy neural networks' or 'fuzzy neural

systems' [116 - 119]. It would be very interesting and challenging to integrate the principles

of fuzzy logic and dynamic neural networks to develop a completely new area of research.

References

[1] A.D. Handelman, H.L. Stephen and J.J. Gelfand, " Integrating Neural Networks and

Knowledge -Based Systems for Intelligent Robotic Control ", IEEE Control Systems

Magazine, pp. 77-87, April 1990.

[2] R.A. Jacobs, M.A. Jordan and A.G. Barto, "Task Decomposition Through

Competition in a Modular Connectionist Architecture: The What and Where Vision

Tasks", Cognitive Science, Vol. 15, No. 2, pp. 219 - 250, April/June 1991.

[3] A.G. Barto, "Connectionist Learning for Control", in Neural Networks for Control, T.

Miller, R.S. Sutton and P.J. Werbos, Ed., MIT Press, pp. 6 - 58, March/April 1991.

[4] G.E. Hinton, "How Neural Networks Learn From Experience", Scientific American,

pp. 145-151, Sept. 1992.

[5] B. Widrow and M.A. Lehr, "30 Years of Adaptive Neural Networks: Perceptron,

Medaline, and Backpropagation", Proc. of IEEE, Vol. 78, No. 9, pp. 1415-1442,

Sept. 1990.

[6] M.M. Gupta and D.H. Rao, "Neuro-Control Systems: A Tutorial", in Neuro-Control

Systems: Theory and Applications, pp. 1-44, Eds., M.M. Gupta and D.H. Rao, IEEE

Press, March 1994.

[7] K.G. Shin and X. Cui, "Design of a Knowledge-Based Controller for Intelligent

Control Systems", IEEE Trans.Systems, Man and Cybernetics, Vol. 21, No. 2, pp.

368 - 375, March/April 1991.

[8] R. Ortega and Y. Tang, "Robustness of Adaptive Controllers - a Survey", Automatica,

Vol. 25, No. 5, pp. 651-677, 1989.

[9] M. Vidyasagar, Control Systems Synthesis: A Factorization Approach, MIT Press

Cambridge, Massachusetts, 1985.

[10] D.C. McFarlance and K. Glover, "Robust Controller Design Using Normalized

Coprime Factor Plant Descriptions", in Thoma, M. and Wyner, A., Ed., Lecture Notes

in Control and Information Sciences, No. 138, Springer-Verlag, Berlin, 1989.

170

171

[11] C. Abdallah, D. Dawson and M. Jamshidi, "Survey of Robust Control for Rigid

Robots", IEEE Control System Magazine, pp. 24-30, Feb. 1991.

[12] S.P. Bhattacharya, Robust Stabilization Against Structured Perturbations, in M.

Thoma and A. Wyner, Ed., Lecture Notes in Control and Information Sciences, No.

99, Springer-Verlag, Berlin, 1989.

[13] P. Dorato and R.K. Yedavalli, Recent Advances in Robust Control, Ed., IEEE Press,

New York, 1990.

[14] M.M. Gupta, Adaptive Methods for Control System Design, Ed., IEEE Press, New

York, 1986.

[15] K.J. Astrom, "Adaptive Feedback Control", Proc. IEEE, Vol. 75, No. 2, pp. 185 -

217, Feb. 1987.

[16] K.S. Narendra and A.M. Annaswamy, Stable Adaptive Systems, Prentice Hall,

Englewood, Cliffs, New Jersey, 1989.

[17] P.J. Antsaklis and K.M. Passino, "Towards Intelligent Autonomous Control Systems:

Architecture and Fundamental Issues", Int. J. of Intelligent and Robotic Systems, pp.

315 - 342, 1989.

[18] M.D. Peek and P.J. Antsaklis, "Parameter Learning for Performance Adaptation",

IEEE Control Systems Magazine, pp. 3 -11, Dec. 1990.

[19] K.S. Fu, "Learning Control Systems - Review and Outlook", IEEE Trans. on

Automatic Control, pp. 210-221, April 1970.

[20] P.K. Simpson, Artificial Neural Systems: Foundations, Paradigms, Applications, and

Implementations, Pregamon Press, New York, 1990.

[21] D.J. Burr, "Experiments on Neural Net Recognition of Spoken and Written Text",

IEEE Trans. Acoustics, Speech and Signal Processing, Vol. 36, No. 7, pp. 1162 -

1168, July 1988.

[22] K. Fukushima, S. Miyake and T. Ito, "Neocognitron: A Neural Network Model for a

Mechanism of Visual Pattern Recognition", IEEE Trans. Systems, Man and

Cybernetics, Vol. 13, No. 5, pp. 826 - 834, Sept/Oct. 1983.

172

[23] W.S. McCulloch and W. Pitts, "A Logical Calculus of the Ideas Immanent in Nervous

Activity", Bulletin of Mathematical Biophysics, Vol. 5, pp. 115 - 133, 1943.

[24] D.O. Hebb, The Organization of Behavior, John Wiley and Sons, New York, 1949.

[25] F. Rosenblatt, "The Perceptron: A Probabilistic Model for Information Storage and

Organization in the Brain", Psychological Review, Vol. 65, pp. 386 - 408, 1959.

[26] B. Widrow and M.E. Hoff, "Adaptive Switching Circuits", IREWESCON Convention

Record, IRS, New York, 1960.

[27] M.L. Minsky and S.A. Papert, Perceptrons, MIT Press, Cambridge, MA, 1969.

[28] K.J. Hunt, D. Sbarbaro, R. Zbikowski and P.J. Gawthrop, "Neural Networks for

Control Systems- A Survey", Automatica, Vol. 28, No. 6, pp. 1083-1112, 1992.

[29] D.R. Hush and B.G. Home, "Progress in Supervised Neural Networks", IEEE Signal

Processing Magazine, Vol. 10, No. 1, pp. 8-39, Jan. 1993.

[30] J.A. Anderson, "Cognitive and Psychological Computation with Neural Models",

IEEE Trans. Systems, Man, and Cybernetics, Vol. 13, pp. 799-815, 1983.

[31] P.D. Wasserman, Neural Computing: Theory and Practice, Van Nostrand, New York,

1989.

[32] R. Hecht-Nielsen, "Neurocomputing: Picking the Human Brain", IEEE Spectrum, Vol.

25, pp. 36 - 41, 1988.

[33] J.J. Hopfield, "Neurons with Graded Response Have Collective Computational

Properties Like of Those Two-State Neurons", Proc. of the National Academy of

Sciences, Vol. 81, pp. 3088- 3092, 1984.

[34] K.S. Narendra and K. Parthasarthy, "Identification and Control of Dynamical Systems

Using Neural Networks", IEEE Trans. Neural Networks, Vol. 1, No. 1, pp. 4-27,

March 1990.

[35] A. Waibel, T. Hanazawa, G. Hinton, K. Shikano and K.J. Lang, "Phoneme

Recognition Using Time-Delay Neural Networks", IEEE Trans. Acoustics, Speech and

Signal Processing, Vol. 37, No. 3, pp. 328-339, March 1989.

173

[36] G.E. Fischbach, "Mind and Brain", Scientific American, pp. 48-57, Sept. 1992.

[37] J. J. Hopfield, "Artificial Neural Networks are Coming", IEEE Expert, An Interview

by W. Myers, pp. 3-6, April 1990.

[38] M.M. Gupta and D.H. Rao, " Dynamic Neural Units in the Control of Linear and

Nonlinear Systems", Int. Joint Conference on Neural Networks (IJCNN), pp. 100-

105, Baltimore, June 9-12, 1992.

[39] M.M. Gupta and D.H. Rao, "Dynamic Neural Units With Applications to the Control

of Unknown Nonlinear Systems", The Journal of Intelligent and Fuzzy Systems, Vol.

1, No. 1, pp. 73-92, Jan. 1993.

[40] A.C. Guyton, Text Book of Medical Physiology, W.B. Saunders Company,

Philadelphia, 1987.

[41] H.R. Wilson and J.D. Cowan, "Excitatory and Inhibitory Interactions in Localized

Populations of Model Neurons", Biophysical Journal, Vol. 12, pp. 1-24, 1972.

[42] M.M. Gupta and G.K. Knopf, "A Multitask Visual Information Processor with a

Biologically Motivated Design", Journal of Visual Communication and Image

Representation, Vol. 3, No. 3, pp. 230-246, Sept. 1992.

[43] K. Kishimoto and S.-I. Amari, "Existence and Stability of Local Excitations in

Homogeneous Neural Fields", Journal of Mathematical Biology, Vol. 7, pp. 303-318,

1979.

[44] S. Grossberg, "Nonlinear Neural Networks: Principles, Mechanisms and

Architectures", Neural Networks, Vol. 1, pp. 17-61, 1988.

[45] J.J. Hopfield, "Neural Networks and Physical Systems with Emergent Collective

Computational Abilities", Proc. of the National Academy of Sciences, Vol. 79, pp.

2554 - 2558, 1982.

[46] Y.Z. Tsypkin, Adaptation and Learning in Automatic Systems, Academic Press, New

York, 1971.

[47] K.S. Narendra and R.M. Wheeler, Jr., "Recent Advances in Learning Automata",

Adapative and Learning Systems, K.S. Narendra, Ed., Plenum Press, New York,

1985.

174

[48] J.J. Shynk, "Adaptive IIR Filtering", IEEE ASSP Magazine, pp. 4-21, April 1989.

[49] B. Widrow and R. Winter, "Neural Nets for Adaptive Filtering and Adaptive Pattern

Recognition", IEEE Computer, pp. 25-39, March 1988.

[50] C.P. Tou, "Inverse Adaptive Modeling of Satellite Communication Channels", IEEE

Pacific Rim Conf on Communications, Computers and Signal Processing, pp. 471-

474, Victoria, June 1-2, 1989.

[51] B. Widrow, D. Shur and S. Shaffer, "On Adaptive Inverse Control", 15th Asilomar

Conf. on Circuits, Systems and Computers, pp. 185-189, Nov. 9-11, 1981.

[52] B. Widrow, "Adaptive Inverse Control", IFAC Adaptive Systems in Control and

Signal Processing, Sweden, pp. 1-5, 1986.

[53] C.R. Johnson Jr, "Admissibility in Blind Adaptive Channel Equalization", IEEE

Control Systems Magazine, pp. 3-15, Jan. 1991.

[54] K.J. Hunt and D. Sbarbaro, "Neural Networks for Nonlinear Internal Model Control",

IEE Proceedings-D, Vol. 138, No. 5, pp. 431-438, Sept. 1991.

[55] D.A. Hoskins, J.N. Hwang and J. Vagners, "Iterative Inversion of Neural Networks

and Its Application to Adaptive Control", IEEE Trans. on Neural Networks, Vol. 3,

No. 2, pp. 292-301, March 1992.

[56] D.H. Rao and M.M. Gupta, "Dynamic Neural Adaptive Control Schemes", American

Control Conference, San Francisco, pp. 1450-1454, June 2-4, 1993.

[57] M.M. Gupta, D.H. Rao and P.N. Nikiforuk, "Neuro-Controller with Dynamic

Learning and Adaptation", Int. Journal of Intelligent and Robotic Systems, Vol. 7, No.

2, pp. 151-173, April 1993.

[58] H. Miyamoto, M. Kawato, T. Setoyama and R. Suzuki, "Feedback-Error-Learning

Neural Network for Trajectory Control of a Robotic Manipulator", Neural Networks,

Vol. 1, pp. 251-265, 1988.

[59] B. Mulgrew and C.F.N. Cowan, Adaptive Filters and Equalizers, Kluwer Academic

Publishers, Boston, 1988.

175

[60] W.B. Mikhael, F.H. Wu, L.G. Kazovsky, G.S. Kang and L. J. Fransen, "Adaptive

Filters with Individual Adaptation of Parameters", IEEE Trans. on Circuits and

Systems, Vol. 33, No. 7, pp. 677-686, 1986.

[61] T. Yamada and T. Yabuta, "Neural Network Controller Using Autotuning Method for

Nonlinear Functions", IEEE Trans. on Neural Networks , Vol. 3, No. 4, pp. 595-601,

July 1992.

[62] R. E. Nordgren and P.H. Meckl, "An Analytical Comparison of a Neural Network and

a Model-Based Adaptive Controller", IEEE Trans. on Neural Networks , Vol. 4, No.

4, pp. 595-601, July 1993.

[63] X. Cui and K.G. Shin, "Direct Control and Coordination Using Neural Networks",

IEEE Trans. Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 686-698, May/June

1993.

[64] C.L. Philips and R.D. Harbour, Feedback Control Systems, Prentice Hall, New

Jersey, 1988.

[65] D.H. Rao, P.N. Nikiforuk, M.M. Gupta and H.C. Wood, "Neural Equalization of

Communication Channels", IEEE Conf. on Communications, Computers and Power in

the Modern Environment, Saskatoon, pp. 282-290, May 17-18, 1993.

[66] M.M. Gupta, D.H. Rao and J. Gao, "Learning and Adaptation in Neural Control of

Higher-Order Linear Plants", American Control Conference, Chicago, pp. 3044 -

3048, June 24-26, 1992.

[67] T. Poggio and F. Girosi, "Networks for Approximation and Learning", Proc. IEEE,

Vol. 78, No. 9, pp. 1481-1497, Sept. 1990.

[68] G. Cybenko, "Approximation by Superpositions of a Sigmoidal Function",

Mathematics of Control, Signals, and Systems , pp. 303-314, Vol. 2, 1989.

[69] K. Funahashi, "On the Approximate Realization of Continuous Mappings by Neural

Networks", Neural Networks, Vol. 2, pp. 183-192, 1989.

[70] K. Hornik, M. Stinchecombe and H. White, "Multi-Layer Feed forward Networks are

Universal Approximators", Neural Networks, Vol. 2, pp. 359-366, 1989.

176

[71] N.E. Cotter, "The Stone-Weierstrass Theorem and Its Applications to Neural

Networks", IEEE Trans. on Neural Networks, Vol. 1, No. 4, pp. 290-295, 1990.

[72] E.K. Blum and L.K. Li, "Approximation Theory and Feedforward Networks", Neural

Networks, Vol. 4, pp. 511-515, 1991.

[73] A.R. Gallant and H. White, "There Exists a Neural Network That Does Not Make

Avoidable Mistakes", in Proc. IEEE on Neural Networks, Vol. I, pp. 657-664, San

Diego, 1988.

[74] P. Cardaliaguet and G. Euvard, "Approximation of a Function and Its Derivative with a

Neural Network", Neural Networks, Vol. 5, pp. 207-220, 1992.

[75] R. Hecht-Nielsen, "Kolomogorov's Mapping Neural Network Existence Theorem", in

Proc. IEEE on Neural Networks, Vol. II, pp. 11-14, San Diego, 1987.

[76] N.E. Cotter and T.J. Gullerm, "The CMAC and a Theorem of Kolmogorov", Neural

Networks, Vol. 5, pp. 221-228, 1992.

[77] V. Kurkova, "Kolmogorov's Theorem and Multilayer Neural Networks", Neural

Networks, Vol. 5, pp. 501-506, 1992.

[78] F. Girosi and T. Poggio, "Representation of Properties of Networks: Kolomogorov's

Theorem is Irrelevant", Neural Computation, Vol. 63, pp. 169-176, 1990.

[79] D.H. Rao and M.M. Gupta, "Dynamic Neural Units and Function Approximation",

IEEE Conf. on Neural Networks, San Francisco, pp. 743-748, March 28-April 1,

1993.

[80] L.V. Kantorovich and G.P. Akilov, Functional Analysis, Translated by H.L. Silcock,

Pergamon Press, NY, 1982.

[81] P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing

Corp., Delhi, 1960.

[82] G.A. Watson, Approximation Theory and Numerical Methods, John Wiley and Sons,

New York, 1980.

[83] A.N. Kolmogorov and S.V. Fomin, Introductory Real Analysis, Translated by R.A.

Silverman, Prentice-Hall Inc., NJ, 1970.

177

[84] S.R. Chi, R. Shoureshi and M. Tenorio, "Neural Networks for System Identification",

IEEE Control Systems Magazine, Vol. 10, pp. 31-34, 1990.

[85] S. Chen, S.A. Billings and P.M. Grant, "Nonlinear System Identification Using

Neural Networks", Int. Journal of Control, Vol. 51, No. 6, pp. 1191-1214, 1990.

[86] S.A. Billings, H.B. Jamaluddin and S. Chen, "Properties of Neural Networks with

Applications to Modeling Nonlinear Dynamical Systems, Int. Journal of Control, Vol.

55, No. 1, pp. 193-224, 1992.

[87] T. Yabuta and T. Yamada, "Neural Network Controller Characteristics with regard to

Adaptive Control", IEEE Trans. Systems, Man and Cybernetics, Vol. 22, No. 1, pp.

170-176, Jan/Feb. 1991.

[88] M. Vidyasagar, Nonlinear Systems Analysis, Prentice-Hall, New Jersey, 1978.

[89] M.M. Gupta and D.H. Rao, "Synaptic and Somatic Adaptations in Dynamic Neural

Networks", Second Int. Conf. on Fuzzy Logic and Neural Networks, Fukuoka,

Japan, pp. 173-177, July 17-22, 1992.

[90] W.J. Freeman, "Dynamics of Image Formation by Nerve Cell Assemblies", in E.

Basar, H. Flohr, H. Haken and A.J. Mandell, Ed., Synergitcs of the Brain, Berlin,

Springer Verlag, 1983.

[91] W.J. Freeman, Mass Action in the nervous System, Academic Press, NY, 1975.

[92] S.-I. Amari, "Neural Theory of Association and Concept Formation", Biological

Cybernetics, Vol. 26, pp. 175-185, 1977.

[93] W.J. Freeman, "Linear Analysis of the Dynamics of Neural Masses", Biophysical

Journal, Vol. 1, Ann. R. Biophy., pp. 225-256, 1972.

[94] P. Strumillo and T.S. Durani, "Simulations of Cardiac Arrhythmia Based on

Dynamical Interactions Between Neural Models of Cardiac Pacemakers", IEE

Publication No. 349, Second Int. Conf. on Artificial Neural Networks, pp. 195-199,

Nov. 18-20, 1991.

[95] D.H. Rao and M.M. Gupta, "A Multi-Functional Dynamic Neural Processor for

Control Applications", American Control Conference, San Francisco, pp. 2902-2906,

June 2-4, 1993.

178

[96] D.H. Rao, P.N. Nikiforuk and M.M. Gupta, "A Central Pattern Generator Model

Using Dynamic Neural Processor", World Congress on Neural Networks, Portland,

Vol. IV, pp. 533-536, July 11-15, 1993.

[97] D.H. Rao, M.M. Gupta and H.C. Wood, "Adaptive Tracking in Nonlinear Systems

Using Neural Networks", IEEE Conf. on Control Applications, Sept. 13-16, 1993,

Vancouver.

[98] J. Rinzel and G.B. Ermentrout, "Analysis of Neural Excitability And Oscillations", in

Methods in Neuronal Modeling: From Synapses to Networks, Eds., C. Koch and I.

Segev, pp. 135-169, The MIT Press, Cambridge, 1989.

[99] B. Kosko, "Bidirectional Associative Memories", IEEE Trans. on Circuits and

Systems, Vol. 18, No. 1, pp. 49-60, Jan/Feb. 1988.

[100] P.J. Werbos, "Backpropagation Through Time: What It Does and How to Do It",

Proceedings of the IEEE, Vol. 78, No. 10, pp. 1550-1560, Oct. 1990.

[101] D.H. Rao, M.M. Gupta and P.N. Nikiforuk, "Performance Comparison of Dynamic

Neural Processor and Recurrent Neural Networks", Journal of Neural, Parallel and

Scientific Computations, Invited paper, (In Press, 1994)

[102] A. Guez and Z. Ahmad, "Solution to the Inverse Kinematics Problem in Robotics by

Neural Networks", IEEE Int. Conf. on Neural Networks, San Diego, Calif., pp. 617-

624, March 1988.

[103] J. Barhen, S. Gulati and M. Zak, "Neural Learning of Constrained Nonlinear

Transformations", IEEE Computer, pp. 67-76, June 1989.

[104] G.E. Stelmach (Ed.), Motor Control: Issues and Trends, Academic Press, N Y, 1976.

[105] W.T. Powers, "The Nature of Robots", Byte, Vol. 82, pp. 96-111, 1979.

[106] W.A. Wolovich, Robotics: Basic Analysis and Design, Holt, Rinehart and Winston,

New York, 1986.

[107] M.M. Gupta and D.H. Rao, "General Learning Scheme for Robot Coordinate

Transformations Using Dynamic Neural Network", SPIE 's Conference on Intelligent

Robots and Computer Vision XI, Boston, Vol. 2055, pp. 524-535, Sept. 7-10, 1993.

179

[108] X. Cui and K.G. Shin, "Intelligent Coordination of Multiple Systems With Neural

Networks", IEEE Trans. Systems, Man and Cybernetics, Vol. 21, No. 6, 1991.

[109] L. Jin, M.M. Gupta and P.N. Nikiforuk, "Direct Adaptive Tracking Control Using

Multilayered Neural Networks", IEE Proceedings -D, Vol. 140, No. 6, pp. 393-398,

Nov. 1993.

[110] D.H. Rao and M.M. Gupta, "A Neural Processor for Coordinating Multiple Systems

with Dynamic Uncertainties", International Symposium on Uncertainty and

Management (ISUMA), Maryland, pp. 633-640, April 25-28, 1993.

[111] D. Nguyen and B. Widrow, "The Truck Backer-Upper: An Example of Self-Learning

in Neural Network", IEEE Control Systems Magazine, Vol. 10, pp. 18-23, 1990.

[112] L.X. Wang and J.M. Mendel, "Generating Fuzzy Rules by Learning Through

Examples", IEEE Trans.SMC, Vol. 22, No. 6, pp. 1414-1427, Nov/Dec 1992.

[113] S. G. Kong and B. Kosko, "Comparison of Fuzzy and Neural Truck Backer-Upper

Control Systems" in B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall,

Englewood Cliffs, New Jersey, 1992.

[114] D.H. Rao and M.M. Gupta, "A Generic Neural Model Based on Excitatory-Inhibitory

Neural Population", IEEE Joint Conf. on Neural Networks (IJCNN), Nagoya, Japan,

Oct. 25-29, pp. 1393-1396, 1993.

[115] J.M. Zurada, Introduction to Artificial Neural Systems, West Publishing Company, St.

Paul, MN, 1992.

[116] M.E. Cohen and D.L. Hudson, "An Expert System on Neural Network Techniques",

in I.B. Turksen, Ed., The Proceedings of NAFIP, pp. 117-12, Toronto, June 1990.

[117] M.M. Gupta and G.K. Knopf, "Fuzzy Neural Network Approach to Control

Systems", Proc. of First Int. Symposium on Uncertainty Modeling and Analysis,

Maryland, pp. 483-488, Dec. 3-5, 1990.

[118] B. Kosko, Neural Networks and Fuzzy Systems, Prentice Hall, Englewood Cliffs,

New Jersey, 1992.

[119] M.M. Gupta and D.H. Rao, "On the Principles of Fuzzy Neural Networks", Journal of

Fuzzy Sets and Systems , Vol. 61, No. 1, pp. 1-18, Jan. 1994 (Invited Paper).

180

Appendix I: Parameter-State Signals for the Feedforward and Feedback

Weights of the Modified DNU Structure

The modified DNU algorithm that accounts for both the synaptic and somatic
adaptations was presented in Section 5.3.2. The feedforward parameters affi, i = 0, 1, 2, and

=the feedback parameters bfb. j 1, 2, were updated based on the following set of equations
J

affi (k+1) = affi (k) + gai E[e(k) sech2[v(k)] Pff. (k)] , i = 0,1,2, (5.7a)

and

bfbi (k+1) = bfbi (k) µb. E[e(k) sech2[v(k)] Pfb j (k)] , j =1,2 (5.7b)
J

where the modified parameter-state signals for the feedforward and the feedback weights were

given by the relations

Pffi (k) = gs [s (k - i)], i = 0, 1, 2, and (5.8a)

Pfb (k) = - gs [v1 (k - j)], j = 1,2. (5.8b)

In this Appendix, the proof of Eqns. (5.8a) and (5.8b) is given in the following paragraphs.

Proof of Eqns. (5.8a) and (5.8b): From Eqn. (5.5)

a
[a„

aaffi(k)

-b2 a0 a l ad

[(s(k))

a l ad (s(k-1))

(s(k-2))

- (v1(k-1))

(vi(k-2))

(s(k))

(s(k-1))

— (s(k-2)) —

, i = 0, 1, 2.

Thus, the individual parameter-state signals for the feedforward weights are

For i = 0, Pao (k) = gs [s (k)]

For i = 1, Pal(k) gs [s (k - 1)] , and

181

For i = 2, Pa2(k) = gs [s (k - 2)].

Therefore, the parameter-state signals for the feedforward weights are

Pffi (k) = gs [s (k - 0], i = 0, 1, 2.

Similarly, to obtain the parameter-state signals for feedback weights, from Eqn. (5.5)

- (vi(k-1))

(vi(k-2))
 a

Pfbi (k) = gs abfb.,k, -b2 a() a l ad (s(k))
J

(s(k-1))

— (s(k-2)) —

Thus, the individual parameter state signals for the feedback weights are

For j = 1, (k) = - gs [vi(k - 1)], and
'1

For j = 2, Pb (k) = - gs [NT / (k - 2)].
2

Therefore, the parameter state signals for the feedback weights may be written as

Pfb. (k) = - gs [v1(k - j)], j = 1,2.
J

(1.2)

182

Appendix II: Generalized Learning Algorithm

In this Appendix, a learning algorithm for the generalized neural model described in the

preceding subsection is derived. In an iterative learning scheme, the parameters are modified in
each iteration to cause the neural output y(k) to approach the desired state yd(k). If the error

between the targetted and the observed responses can be reduced to an acceptable tolerance

limit, the learning scheme is said to be convergent. Let the parameter vector of the generalized

model be defined as

C2
A
=[wF , wG ,wH ,wP , wA ,wB ,wC gs]

T
.

Each component of the vector SI is adapted in such a way so as to minimize the

performance index J, defined as a square of the error, using the steepest-descent algorithm.

This adaptation algorithm may be written as

SI(k + 1) = S2(k) + 8S2(k) (II.1)

where 11(k + 1) is the new parameter vector, S2(k) is the present parameter vector, and 80(k) is

an adaptive adjustment in the parameter vector. In the steepest-descent method, the adjustment

of the parameter vector is made proportional to the negative of the gradient of the performance

index J; that is,

8S-1(k) «(- VJ), where VJ =
DJ
-a t .

Thus,

8S2(k) = - dia[g] aajn — - dia[g] VJ (II.2)

where dia[g] is the matrix of individual adaptive gains. In the above equation, the diaRt] is

defined as

183

Feedforward
weights

dia[p.] =

11G

0

0
0

Feedback
weights

0

ggs

Somatic gain

The gradient of the performance index with respect to the parameter vector S2 is given by

an 2 E '
al 1 [a[y,(k) - y.(k)12 -

=

where

— E e(k)

_
ay.(k)

(II.3)

ayi(k) [a yi(k) a y i(k) a y i(k) a y i(k) a y i(k) a yi(k) a yi(k) a yi(k)

awF awG awH awP awA awB awC ags

and E[.] is an expectation operator defined as:

k
E[x(k)]= 1 x(k) •

k=t+i-K
(H.4)

Feedforward Weights: The feedforward weights, represented as F in the generalized

dynamic neural model, shown in Fig. 6.36, are normally referred to as the synaptic weights in

a static (feedforward) neural network. However, the generalized neural model consists of three

forward paths with weights G, H and P.

a yi(k) a I- Dn
(i) [I w i 111 vn(k)1] uNVF

F

aw n=1

184

N Dn [alj[vn(k)1 avn(k)] N Dn ,
W. F — I w. [v (k)] S(k)

n=1 1 aVn(k) aw n=1 1
n F

av (k) avin(k)
where SF(k) = n awF — gsn awF represents the sensitivity signals which may be obtained

as follows.

avn(k) a
awF gsn aWF

[N G Fn Hn Fn Pn Fn wn Ew. (k)+ Ew. E w i sn(k- 1) + Ew. w 1E sn(k-2)1 n
n=1 n=1 n=1 n=1 n=1 1 n=1

N

gsn [w
Gn sn(k) + n sn(k- 1) + E 1 n E sn(k-2)1

n=1 n=1 n=1 n=1 n=1 n=1

Therefore, Eqn. (II.5) becomes

a yi(k) N Dn

aw
F — Y' [vn(k)] n=1

N Gn
gsn [w i n=1

wH. n Pn
E sn(k) + sn(k-2)]

n=1 n=1 n=1 n=1 n=1

(II.6)

For a static neural network, Eqn. (11.6) simplifies to

a yi(k)

awF
Dn r

wi lyn(k)] sn(k) .
n=1 n=1

y,(k) a [N Dn
E w ‘11 [vn(k)]] —

awG aw— n= 1 1

n=N D ,
wi n 1vn(k)1 SG(k)
1

where S
G

(k) is obtained as follows:

(II.7)

185

avn(k) avin(k)
S (k) = G g G G aw sn aW

N I = gsn a G [W n w n s

n‘
(k\

L'

aw n=1 n=1

Therefore, Eqn. (II.7) becomes

y(k) I i wD.
n

tpl [vn(k)1
— wFn silo()

awG
n=1

J gsn
n=1

a yj(Hk)

—

a
 H w

[N Dn
(iii) [Vn(k)]]

ow aw n=1 1

= E
wDn

 [vn(k)] SH(k)
n= 1

where SH(k) is obtained as follows:

avn(k) avin(k)
H aw sn awS (k) = H g H

a N n
= gsn H E w •H w .Fn s 11(k- 1) .

aw n=1 1 n=1 1

Therefore, Eqn. (11.9) becomes

(iv)

a yi(k) N Dn

awH n=
— [Vn(k)] gsn

1

a y.(k) a lv I P p [Iw D. n

aw aw n=1 1

Dn = E w.
n=1

Fn
w. sn(k-1)

n=1

[vn(k)1]

(II.9)

(II.10)

[vn(k)] Sp(k) (II. 11)

where S (k) is obtained as follows:

186

(k)
S (k) = avn p

sn
g avalwnp(k)

P aw

a [N I Pn wF II = gsn p S n (k - 2) •

aw n=1 n=1

Therefore, Eqn. (II.11) becomes

yi(k) N Dn

aw F n=1
wi [vn(k)1 gsn Fn w. sn(k-2) .

n=1
(II.12)

Feedback Weights: The weight matrices A and B represent the internal feedback weights,

while the matrix C denotes the self- and inter-subpopulation feedback connections in the

generalized dynamic neural model.

(v) a Yi(k) a [N Dn rvn(k)11
awA —

A w

aw n=1 L

n
[vn (k)] SA(k)

1 1

W. '1/

where SA(k) is obtained as follows:

S (k) =
avn(k) avin(k)
aw A A — gsn aw A

a
= gsn awA [

A n w . V (k-1.)
n=1

] vin (k-1)

Eqn. (11.12) becomes

yi(k) N D
awA Wi nn=1

[vn(k)] gsn v in(k-1) .

(vi) W

a yi(k) a [N Dn
[vn(k)11 awB aw n=1

=

n=N

D
wi n [Vn(k)] SB(k)
1

(II.12)

(II.14)

187

where SB(k) is obtained as follows:

avn(k) avin(k) S (k) — g B B awB sn aw

a [N
w = gsn B

B n • v1n(k-2)] aw
n=1

Therefore, Eqn. (H.14) becomes

a yi(k) N Dn

aw B n 1w. [vn(k)1 gsn vin(k-2) •

(vii)
a y, (k) a [N DnC W• W[vn(k)1]
aw aw n=1

=
n=N

wi n
D

[vn(k)1 SC (k)
1

where S (k) is obtained as follows:

avn
— g

(k) avin(k) S (k) = C awC sn awC

a [N Cn
= 1'°sn awC

n
 w un(k-1 a)

Therefore, Eqn. (11.16) becomes

a yi(k) N Dn ,

aw n= 1 1 C W. [vn(k)] gsn un(k-1) .

(II.16)

(II.17)

Somatic Gain: This parameter that controls the slope of the nonlinear activation function is

normally kept constant in conventional neural networks. It was demonstrated in Chapters 4

and 5 that the somatic gain plays a significant role in the overall performance of the neural

network. Modification of this parameter leads to what is called the somatic adaptation.

(viii) —
a y,(k) a [N D

W i n vn(k)11
agsi agsi n= 1

188

Dn '
=

n
w [vn(k)1 Sgs(k)

1 1

where Sg (k) is obtained as follows:

av (k) a
Sg s(k) = n — —Lgsivin(k)1

agsi agsi

= vin(k)

Therefore, Eqn. (II.18) becomes

yi(k) N D ,
 — 1 w• n 11/ [vn(k)1 in(k) .

agsi n=1
(II.19)

Bias Term: Modification of the bias terms of the neurons provides a shift in the nonlinear

activation functions which may be useful in the approximation of functions.

(ix) 1
a y.(k) a

 w
N Dn

[vn(k)]]
a 0. a 0 n =.1

=
n=

w
Dn
i [vn (k)1 S9.(k)

1

where S0.(k) is obtained as follows:

av n (k) avin(k) SO. (k) = — gsn — g a aei aei sn .

Therefore, Eqn. (11.20) becomes

a y(k) N Dn

ae il n lw. [vn(101 [gsn l•

(II.20)

(II.21)

The learning algorithm to update the adaptable parameters of the generalized neural model may

be summarised from Eqns. (1), (3) and (4) as follows:

1
k N n

wF(k+1) = wF(k) +1.11, [e(k) vv..; n [vn(k)11 sn(k)1 — k=t+1-K n=1 n=1 -I

189

wG(k+1)

wH(k+1)

N 1 v [e(k) n tit= wG(k) +1-IG K k=t+l-K n=1

yk e(k) n= wH(k) + K k= 1-1-K n=1

wP(k+i) = wP(k) + µP K

wA(k+1) =

wB(k+1) =

wC(k+1) =

gs(k+1) =

w (k) +11B K

1
wC(k) + [IC K

1
wA(k) + K

k N
[e(k) wD„

k=t+l-K n=1

[e(k) wDn
tp

k=t+l-K n=1

_1 e(k) wpi n
k=t+1-K n=1

k
N Dn e(k) w

k=t+1-K n=1

1
k

gs(k) + ggs K k= 1-K

1
k

Oi(k+1) = 9i(k) + µei K
k=F1-1(

[e(k)
N

WDn

n=1

[vn(k)1 gsn

I
[vn(k)] gsn f wFi n sn(k-1)1

n=1

[vn(k)1 gsn

wFi n sn(k)]
n=1

I
wFi n sn(k-2)1

n=1

[vn(k)1 gsnvin(k- 1)]

[vn(k)] gsnvin(k-2)]

[vn(k)] gsn un(k-1)]

[vn(k)1 vin(k)]

[e(k) wDn [vn(k)] [- gsn
n=1

	Title Page
	Copyright
	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Symbols
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	References
	Appendix I
	Appendix II

