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ABSTRACT 

The increase in atmospheric concentration of carbon dioxide (CO2) is contributing to 

global climate change. Agroforestry systems, such as shelterbelts, can contribute to the 

mitigation of increasing CO2 levels, through carbon (C) sequestration in plant biomass and soils. 

However, little information is available on the storage and dynamics of soil organic carbon 

(SOC) for shelterbelt systems. The objective of this research was to examine the effect of 

shelterbelt plantings on the storage, physical stabilization and chemical composition of SOC for 

major shelterbelt species across Saskatchewan compared to adjacent agricultural fields. Soil and 

litter samples were collected for six major shelterbelt species including green ash (Fraxinus 

pennsylvanica), hybrid poplar (Populus spp.), Manitoba maple (Acer negundo), white spruce 

(Picea glauca), Scots pine (Pinus sylvestris) and caragana (Caragana arborescens) and the 

adjacent agricultural fields at 59 sampling sites across the agricultural region of Saskatchewan. 

Measurement of SOC concentration for soil samples was preceded by fumigation with 

concentrated HCl (12N), which was determined to be the efficient method for SOC 

determination in carbonate-rich soils. Physical stabilization of SOC was characterized by using 

the density fraction technique to separate SOC into uncomplexed, plant-derived debris (i.e. light 

fraction) and mineral-associated organic matter (i.e. heavy fraction). Changes in SOC 

composition due to shelterbelt plantation were studied using attenuated total reflectance Fourier 

transform infrared (ATR-FTIR) spectroscopy and synchrotron based carbon K-edge X-ray 

absorption near edge structure (XANES) spectroscopy. Concentration of SOC for shelterbelts 

was significantly higher compared to agricultural fields throughout the soil profile (0-50 cm). 

Sequestration of SOC for shelterbelts varied from 6-38 Mg C ha-1 under different shelterbelt 

species, along with 3-8 Mg C ha-1 stored in the litter layer. Shelterbelts led to an increase in SOC 
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content for both the labile light fraction and the mineral-associated heavy fraction. The increase 

in the heavy fraction was higher in coniferous shelterbelt species including white spruce and 

Scots pine, while the increase in the light fraction C was higher in hybrid poplar, Manitoba 

maple, green ash and caragana. These trends were attributed to differences in quality and 

decomposition rate of litter among shelterbelt species. Maximum amount of SOC was 

sequestered at the 10-30 cm soil depth, and the majority (70%) of it was in the stable mineral-

associated form. Light fraction C was predominant in the surface layer (0-10 cm), where it 

accounted for 92% of the total sequestered C. Younger shelterbelts tended to lose SOC in the 

early years of shelterbelt establishment, but eventually resulted in net addition of C after about 

20 years of age. SOC sequestration potential of shelterbelts was positively related to shelterbelt 

characteristics including stand age, tree height, diameter and crown width and density of litter 

layer. These variables together explained 56-67% of the inter-site variability in the amount of 

SOC sequestered. Analysis of molecular composition of SOC revealed shelterbelts had higher 

abundance of processed forms of C such as aromatic and conjugated carboxyl groups for hybrid 

poplar and white spruce shelterbelts and aromatic and aliphatic C moieties for Manitoba maple 

shelterbelts. In contrast, agricultural field soils were enriched in easily degradable C forms such 

as polysaccharides. These results revealed a strong effect of initial litter quality and extent of 

decomposition on SOC composition. Together, these findings indicate that shelterbelt planting 

leads to sequestration of SOC, resulting in the decrease of atmospheric CO2 concentration. 

Additionally, shelterbelts also influence organo-mineral association and molecular composition 

of SOC, which may affect stabilization and dynamics of sequestered SOC. 
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1. INTRODUCTION 

Elevated atmospheric concentration of greenhouse gases (GHG) such as carbon dioxide 

(CO2; 31% increase since 1750) has increased concerns about climate change and identification 

of strategies for its mitigation (Lal, 2004a). Soils are the largest terrestrial reservoir of actively 

cycling carbon (C), containing approx. 1500 Pg in the top 1 m of the profile (Batjes, 1996). As 

such, changes in soil organic carbon (SOC) levels may result in great variations in C balance at 

regional and global scales (Schlesinger and Andrews, 2000; Smith, 2004). Global soil C 

sequestration potential through sustainable management practices is estimated to range from 0.3 

to 0.8 Mg ha-1 yr-1 (Follett and Kimble, 2000; Smith et al., 2000; Lal, 2004a; Smith, 2004). 

However, cultivation of soils has historically led to the loss of soil C stocks (Dumanski et al., 

1998), thus making the agricultural sector a major source of GHG emissions (Lokupitiya and 

Paustian, 2006). Agroforestry practices, which involve deliberate integration of trees with 

agricultural crops for sustainable land use, can serve as an option for increasing the C storage 

potential of conventional cropping systems (Schoeneberger, 2009). Shelterbelts are one of the 

widely practiced agroforestry systems in the Canadian Prairies, covering more than 60,000 km in 

agricultural region of Saskatchewan (Amichev et al., 2015). Besides numerous agronomic, 

environmental and social benefits associated with shelterbelts, they also have the capacity to 

enhance terrestrial C storage in tree biomass as well as in soils (Nair et al., 2010; Lorenz and Lal, 

2014).  
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Shelterbelt planting is associated with higher biomass production and litter input to soil 

compared to agricultural crops (Brandle et al., 1992; Kort and Turnock, 1998). There are also 

modifications to root depth (Jackson et al., 1996; Lorenz and Lal, 2005), fine root productivity 

(Schroth, 1998), and differences in aboveground and belowground biomass allocation (Bolinder 

et al., 1997; Mokany et al., 2006) compared to agricultural crops. All of these factors may 

influence the storage of SOC in surface and deeper soil horizons under the shelterbelts. While a 

number of studies acknowledge the potential of agroforestry systems for soil C sequestration 

(Nair et al., 2009a), field studies on mechanisms and processes associated with soil C storage for 

such systems are scanty. Moreover, the available studies on the effects of other tree-based 

systems (such as afforestation and tree plantations) on soil C pools are also not consistent, and 

have reported accumulation (Garten, 2002; Niu and Duiker, 2006; Grünzweig et al., 2007), 

losses (López-Ulloa et al., 2005; Richards et al., 2007) and no net change (Richter et al., 1999; 

Coleman et al., 2004; Sartori et al., 2007) in SOC pools associated with the establishment of 

trees. Clearly, there is a need for better understanding and estimation of C storage in soils for the 

agroforestry systems such as shelterbelts. 

Soil C sequestration efforts involve not only the enhancement of the C pool but also its 

persistence and residence time in soil (Lorenz and Lal, 2014). Persistence of SOC is influenced 

by its chemical composition and interactions with the soil matrix (Six et al., 2002; Sollins et al., 

1996). Organo-mineral complexes involving interaction of SOC with mineral surfaces and metal 

ions are one of the major factors controlling the stabilization of C in soils (Mikutta et al., 2006). 

Similarly, stabilization and functioning of SOC is also regulated by the inherent structural 

stability of organic molecules to microbial degradation (Krull et al., 2003). Shelterbelts may 

influence the dynamics and stabilization of SOC, through changes in quality (‘quality’ refers to 
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structural and chemical properties, that determine decomposition rate) of litter (Lorenz and Lal, 

2005). Shelterbelts may also influence the activity and abundance of microorganisms (McCulley 

et al., 2004; Mitchell et al., 2010), and modify the microclimatic conditions including soil 

temperature and moisture regimes (McNaughton, 1988 Brandle et al., 2004), which may affect 

the stabilization mechanisms and decomposition rates of SOC. Determination of the changes in 

the short- and long-term stabilization processes of SOC under shelterbelts is critical for the 

comprehensive determination of soil C sequestration and dynamics. 

The overall goal of this Ph.D. dissertation project was to study the sequestration and 

dynamics of SOC for major shelterbelt species, including green ash (Fraxinus pennsylvanica), 

hybrid poplar (Populus spp.), Manitoba maple (Acer negundo), white spruce (Picea glauca), 

Scots pine (Pinus sylvestris) and caragana (Caragana arborescens) and the adjacent agricultural 

fields across Saskatchewan. Sequestration potential of SOC for the shelterbelts was determined 

by measuring SOC pools for shelterbelts and comparing them to adjacent agricultural fields, 

using the paired-site design. Further, organo-mineral stabilization of SOC of shelterbelts and 

agricultural fields was compared using the density fractionation technique. Molecular chemistry 

of SOC under shelterbelts and agricultural fields was determined using attenuated total 

reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and synchrotron-based C K-

edge X-ray absorption near edge structure (XANES) spectroscopy.  

This dissertation is structured in seven chapters. Following an introduction (Chapter 1) 

and review of literature (Chapter 2), there are four chapters written as stand-alone research 

studies, with a preface linking the objectives of each study to the overarching goal of this 

dissertation. Chapter 3 compares the accuracy of three major SOC measurement methods in 

order to determine the most appropriate method for measurement of SOC in carbonate-rich soils 
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of Saskatchewan. Chapter 4 determines the soil carbon sequestration potential of major 

shelterbelt species in Saskatchewan and relates the differences in SOC sequestration potential to 

shelterbelt characteristics including tree species, and stand design and structure. Chapter 5 

compares the organo-mineral stabilization of the SOC between shelterbelts and agricultural 

fields, by measuring the SOC pools associated with uncomplexed, partly-decomposed organic 

matter and mineral-associated organic matter. Chapter 6 determines the changes in molecular 

composition of SOC under shelterbelts compared to adjacent fields by the application of 

spectroscopic techniques including ATR-FTIR and C K-edge XANES. Chapter 7 synthesizes the 

key findings from individual research studies (Chapters 3-6) and concludes with 

recommendations for future research work, and is followed by a list of references. 
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2. LITERATURE REVIEW

2.1 Soil carbon sequestration for mitigation of greenhouse gases 

Global warming refers to the increase in the overall temperature of the earth’s 

atmosphere, generally attributed to the increase in concentration of greenhouse gases (GHG), 

mainly carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Global mean 

temperatures have increased by about 0.5oC in the last century (Folland et al., 1990) and are 

expected to increase by 1-3.5oC by the next century (IPCC, 1995). Carbon sequestration is one of 

the major strategies recommended by Intergovernmental Panel on Climate Change (IPCC) to 

offset GHG emissions in the atmosphere (IPCC, 2001). Carbon sequestration has been defined as 

the process of transfer and long-term storage of atmospheric CO2 in the terrestrial biosphere, 

underground, or oceans, so that the buildup of CO2 concentration in the atmosphere is reduced 

(Lal, 2008). 

Soils are significant reservoirs of carbon (C) within the global carbon cycle, containing 

about 2370-2450 Pg of C up to a depth of 2 m (Baldock, 2007). Some agricultural soils have lost 

one-third to three-fourths of their original organic C content (approx. 30-40 Mg C ha-1) due to 

cultivation and other disturbances, with a cumulative estimated loss of around 40-90 Pg C 

globally (Lal, 2004a; Smith, 2004). Carbon sequestration in soils can be achieved by increasing 

soil C stocks, especially, of agricultural and degraded soils that have been depleted in C (Smith, 

2004). Lal (2004a) estimated the global soil C sequestration potential of 0.9±0.3 Pg yr-1 by 

following sustainable soil management practices, which may offset one-fourth to one-third of the 
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annual increase in atmospheric CO2 (3.3±0.2 Pg C yr-1). Consequently, substantial attention is 

being paid to the adoption of sustainable agroecosystem management practices that encourage 

long-term sequestration of C in soils. 

Agroforestry practices are considered one of the major climate-change mitigation tools 

capable of enhancing C sequestration on agricultural landscapes (Udawatta and Jose, 2011).  

Agroforestry practices consist of deliberate association of trees or perennial shrubs with 

agricultural crops on the same land unit to create integrated and sustainable land use systems 

(Schoeneberger, 2009). Agroforestry practices can sequester large amounts of C in the above- 

and below-ground biomass (Nair et al., 2010), and in soils (Lorenz and Lal, 2014), while 

providing numerous other benefits to the landowner and society (Brandle et al., 1992; Schroeder, 

1994; Montagnini and Nair, 2004; Mize et al., 2008). Agroforestry practices in North America 

are generally divided into five broad categories – including riparian buffers, shelterbelts, alley 

cropping, silvopasture and forest farming, while other special applications, such as home gardens 

or horticultural trees on farms and rangelands, also exist (Schoeneberger, 2009; Nair et al., 

2010). The focus of this dissertation is on shelterbelt agroforestry systems, which have been 

described in detail in the next section. 

2.2 Shelterbelts in Canadian prairies 

Canadian prairies are located in the semi-arid climate zone, with a frequent occurrence of 

droughts and dust storms (Wheaton, 1992; Bonsal et al., 2011). Study by Prairie Farm 

Rehabilitation Administration (PFRA) in 1983 estimated average annual soil loss of about 160 

million tonnes in the Prairies due to wind erosion (PFRA, 1983). Shelterbelts have been widely 

adopted in the Canadian Prairies as an agroforestry practice in order to protect the crops, 

livestock and farmyard infrastructure from wind erosion (Kulshreshtha and Rempel, 2014). 
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Shelterbelts, also known as windbreaks, consist of one or more rows of linear plantations of trees 

around crop fields or homesteads in order to reduce wind speed and enhance the microclimate of 

the region (Schoeneberger, 2009). Establishment of shelterbelts in the Prairie Provinces has been 

actively encouraged through legislations such as the Prairie Farm Rehabilitation Act, which was 

enacted in 1930, and encouraged the establishment of field shelterbelts, including high-density 

field shelterbelt networks (Thevathasan et al., 2012). Tree and shrub seedlings for planting of 

shelterbelts have been provided through the federal tree nursery at Indian head, Saskatchewan, 

and through farm assistance programs such as Prairie Shelterbelt Program (PSP) of Agriculture 

and Agri-Food Canada, that has distributed over 600 million shelterbelt tree and shrub seedlings 

across the Prairies since 1903 (Wiseman et al., 2009). Dunlop (2000) reported more than 59 

million trees distributed through PFRA to producers in the province of Saskatchewan from 1949-

98, composed primarily of species such as caragana (Caragana arborescens), green ash 

(Fraxinus pennsylvanica), Siberian elm (Ulmus pumila), willow (Salix spp.), Manitoba maple 

(Acer negundo), American elm (Ulmus americana), chokecherry (Prunus virginiana), poplar 

(Populus spp.), lilac (Syringa spp.) and coniferous species including white spruce (Picea 

glauca), Colorado spruce (Picea pungens), Scots pine (Pinus sylvestris). Caragana, green ash and 

Siberian elm were predominant fields shelterbelt species in Saskatchewan, accounting for 42, 25 

and 11% of total planted miles and 78, 8 and 5% of all trees distributed within 1949-98, 

respectively (Dunlop, 2000). Amichev et al. (2015) estimated 60,633 km of planted shelterbelts 

across five soil zones in agricultural Saskatchewan, with the majority of shelterbelts planted in 

the Dark Brown (75%) and Brown soil zones (17%). 
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2.2.1 Ecological benefits of shelterbelts 

Shelterbelts provide a multitude of agronomic, environmental and economic benefits to 

the producer as well as the society as a whole. Properly spaced shelterbelts reduce wind speed 

below the soil entrainment threshold, thereby preventing soil erosion (Brandle et al., 2004; Mize 

et al., 2008). Reduction of weed speed by 30-40% is considered adequate on the Canadian 

Prairies (Ferguson et al., 1977). Reduction of wind speed leads to preservation of soil nutrients 

due to reduced soil erosion, and lessens wind-induced crop damage due to phenomena such as 

sandblasting, which is abrasion of plant tissue caused by sand particles suspended in the air, and 

lodging, which is flattening of crops from their upright positions (Brandle et al., 2004). In 

addition, shelterbelts help in the uniform distribution of snow in the crop fields through 

management of snowdrift, and conservation of soil moisture due to snow entrapment and 

retention (Scholten, 1988). Kort and Cherneski (1989) reported a 30% increase in snow retention 

of sheltered fields compared to the unsheltered ones. This process is especially important in the 

Canadian Prairies, where snow may account for 25-40% of the annual precipitation 

(Nicholaichuk and Norum, 1975; Kort et al., 2012). Shelterbelts alter the field microclimate by 

increasing the average daily temperature and humidity due to reduced wind speed, thus limiting 

atmospheric circulation in the vicinity of shelterbelts (McNaughton, 1988; Brandle et al., 2000, 

2004). These microclimate modifications lead to reduced plant transpiration and soil evaporation 

(McNaughton, 1988), thereby increasing plant moisture availability and crop yield, especially in 

the rain-limited years (Frank and Willis, 1978; Davis and Norman, 1988). Increase in 

temperature helps in the rapid emergence, growth, development and maturity of sheltered crops 

(Drew, 1982; Ogbuehi and Brandle, 1982). All of these factors lead to higher vegetative growth 

and agronomic production of field and forage crops including winter wheat, barley, rye, millet, 
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alfalfa and hay in the sheltered areas (Kort, 1988). Brandle et al. (1984) reported a 15% increase 

in yield of winter wheat, while Pelton (1967) reported 24-43% increase in yield of spring wheat 

as influenced by field shelterbelts. Shelterbelts are also associated with a variety of other benefits 

including improvement of livestock health and productivity (Dronen, 1988; Quam et al., 1994), 

increase in biodiversity and wildlife habitat (Johnson and Beck, 1988), entrapment of snow to 

protect adjacent roads and highways (Shaw, 1988), barriers to dust, odors and pesticide drift 

(Schoeneberger et al., 2001; Balazy, 2002), improved water quality and soil conservation 

(Correll, 1997; Young, 1997), and enhancement of agricultural landscapes (Cook and Cable, 

1995; Cable, 1999). 

2.2.2 Carbon sequestration potential of shelterbelts 

In addition to the abovementioned ecological benefits associated with shelterbelts, they 

also have high potential for sequestration of atmospheric CO2 in the tree biomass 

(Schoeneberger, 2009). The carbon sequestration potential of tree-based agroforestry systems, 

including shelterbelts, in the above-ground biomass has been estimated by a number of studies 

(Brandle et al., 1992; Kort and Turnock, 1998; Thevathasan and Gordon, 2004; Peichl et al., 

2006; Wotherspoon et al., 2014). Schroeder (1994) estimated the aboveground C sequestration 

potential of agroforestry systems in the semi-arid, sub-humid, humid and temperate ecozones to 

be 9, 21, 50 and 63 Mg C ha-1 respectively. More specifically, shelterbelts were estimated to have 

an overall C sequestration potential of 4-8.79 Tg C yr-1 in the USA (Nair et al., 2010; Udawatta 

and Jose, 2011). Similarly, Kort and Turnock (1998) estimated the mean aboveground C 

sequestration for shelterbelts in Saskatchewan to be 104 Mg C km-1 for hybrid poplar, 31-40 Mg 

C km-1 for other deciduous species, 24-41 Mg C km-1 for coniferous shelterbelts, and 11-26 Mg 

C km-1 for shrub shelterbelts. Biomass and C accumulation varied with the shelterbelt species, 
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with the fast-growing hybrid poplar trees sequestering the maximum amount of C. Similarly, 

Brandle et al. (1992) estimated aboveground C sequestration in the 20-year-old single-row 

conifer, hardwood and shrub shelterbelts in Nebraska to be 9.14, 5.41 and 0.68 Mg C km-1 

respectively. 

Carbon is sequestered in agroforestry systems not only in the above and below ground 

biomass of trees but also by the increase in C content of soils through the decomposition of tree 

litter inputs (Nair et al., 2009a). Tree-based agroforestry systems are associated with higher 

biomass production and increased litter inputs compared to the tree-less systems such as 

croplands and pastures, thus leading to an increase in SOC storage (Lorenz and Lal, 2014). There 

are also modifications in root depth and distribution, which may affect SOC stocks in deeper 

horizons (Kell, 2012). Incorporation of trees may also enhance nutrient cycling and soil fertility 

(Nair et al., 1999; Oelbermann et al., 2006), improve field microclimate (McNaughton, 1988; 

Rao et al., 1998), soil microbial activity (McCulley et al., 2004; Mitchell et al., 2010) and reduce 

pests and weeds (Sileshi et al., 2007), thus increasing primary productivity and litter input to 

soils. However, there may also be negative interactions of trees with crops such as competition 

for resources (water, nutrients and light; Rao et al., 1998; Zhang et al., 2013), and secretion of 

harmful allelochemicals (Rizvi et al., 1999), which may reduce yield and biomass.  

Despite the perceived benefits of tree-based systems on soil properties and C storage 

(Young, 1997; Nair et al., 2009a), only a few studies have monitored the change in SOC under 

such systems, especially shelterbelts (Sauer et al., 2007; Baah-Acheamfour et al., 2014). Sauer et 

al. (2007) estimated SOC sequestration under a 2-row shelterbelt composed of Juniperus 

virginiana and Pinus sylvestris trees and found that there was an overall increase of 371 g m-2 of 

SOC under the shelterbelt compared to the adjacent cultivated field during the 35 year period, 
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representing an annual SOC sequestration rate of 10.6 g m-2 due to the shelterbelts. However, 

Baah-Acheamfour et al. (2014) found less SOC under the shelterbelts (47.7 g kg-1) compared to 

other agroforestry practices, including hedgerow (65.2 g kg-1) and silvopasture (81.3 g kg-1), as 

well as agricultural fields (53.1 g kg-1). They attributed this decrease to a lack of understory 

vegetation under the shelterbelts, as well as slow decomposition of coniferous litter of 

shelterbelts compared to the broad-leaved litter of hedgerow and silvopasture systems (Baah-

Acheamfour et al., 2014). Similar disparities are found in the estimates of C sequestration 

potential of other tree-based systems, where some studies indicate high soil C sequestration 

(Jenkinson, 1970; Garten, 2002), while other studies report no increase in C storage (Richter 

1999; Coleman et al., 2004; Sartori et al., 2007). These disparities may be attributed to 

differences in the net primary productivity of agroforestry systems, which may vary with tree 

species, age, growing conditions including soil and climatic conditions and management 

practices (Albrecht and Kandji, 2003). These observations indicate that there are knowledge gaps 

in our understanding of  C sequestration and dynamics under agroforestry systems including 

shelterbelts, and more research needs to be done in this regard. 

2.3 Nature and dynamics of soil organic carbon 

Soil organic matter (SOM; including SOC) is a heterogeneous mixture of naturally 

occurring organic molecules ranging in size and complexity from simple monomers to mixtures 

of biopolymers, as well as with different inherent composition and stabilities (Sutton and 

Sposito, 2005; Kelleher and Simpson, 2006). Compartment-based models of SOM cycling, such 

as Rothamsted model (Jenkinson, 1991) and Century model (Parton et al., 1987), divide SOM 

into pools with different intrinsic decomposition rates including an active, labile pool with a 

mean residence time (MRT) of the order of a few years to decades and a passive, recalcitrant 
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pool with MRT in the order of decades to centuries (Schimel et al., 1994; Torn et al., 2009). 

Major processes of organic matter (OM) stabilization include inherent biochemical resistance of 

OM to decomposition and physico-chemical protection of OM through association with the soil 

matrix (Six et al., 2002; Sollins et al., 1996). Biochemical resistance of OM to decomposition is 

attained through inherent chemical and structural stability of organic biomolecules to enzymatic 

degradation by soil microorganisms (Gleixner et al., 2001; Krull et al., 2003). Particulate OM 

debris incorporated initially into the soil is enriched in fresh plant tissues. With continued 

decomposition, easily decomposable plant tissues such as cellulose and hemicellulose are 

decomposed, while stable components, such as lignin and lipids, are enriched due to selective 

preservation (Kögel-Knabner et al., 1988). Beside the primary inherently stable components, 

chemical recalcitrance may also be attained through microbially synthesized cross-linked 

aliphatic polymers (Kögel-Knabner et al., 1992) and polyphenols (Hättenschwiler and Vitousek, 

2000; Huang, 1990). At later stages of decomposition, stable primary sources and secondary 

chemical derivatives may also be degraded in the availability of suitable decomposer organisms 

(e.g. lignin-degrading fungi; Berg and McClaugherty, 2008; Grandy and Neff, 2008).  

In the absence of soil minerals, such as in forest litter layers, biological stability and 

turnover rate of OM is entirely controlled by chemical recalcitrance of OM due to its molecular 

structure. However, in the presence of the soil matrix, turnover times of OM components may be 

partially regulated by physical and chemical protection mechanisms associated with the mineral 

soil (Baldock and Skjemstad, 2000). Physical stabilization mechanisms include encapsulation of 

OM within the soil micro and macro-aggregates, which serves to protect the OM from 

degradation by placing a spatial barrier between the OM and decomposer microorganisms as 

well as their extracellular enzymes (Amelung and Zech, 1996; Sollins et al., 1996). Studies such 
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as Bartlett and Doner (1988) and Priesack and Kisser-Priesack (1993) observed higher microbial 

activity and utilization of substrates including amino acid and glucose at the aggregate surface, 

which decreased with distance into the aggregate interior. Pore-size distribution of soils also 

affects the decomposition rate of SOM by regulating its accessibility to decomposer organisms 

(Ladd et al., 1993). Besides limited accessibility, the amount of available oxygen is restricted in 

the water-filled micro pores (Thomsen et al., 1999) as well as in the interior sections of micro-

aggregates (Sexstone et al., 1985), which may limit biological oxidation of organic cores within 

aggregates. SOM may also be stabilized through adsorption and complexation of OM with clay 

particles and metal oxides (Kögel-Knabner et al., 2008). Relationships between SOM 

preservation and type of clay minerals (e.g. kaolinite, smectite; Feller and Beare, 1997), content 

of clay minerals (Ladd et al., 1985; Feller et al., 1991) and mineral oxides (Oades, 1988), and 

specific surface area of minerals (Saggar et al., 1996; Kaiser and Guggenberger, 2003) has 

already been established. The chemical nature of surface functional groups of SOM also 

influences the organomineral interactions. Jones and Singh (2014) observed discrete OM 

composition of different mineralogical groups, with Fe oxides and phyllosilicate minerals 

enriched in oxidized C species (C-O, C=O, O=C-O) and quartz and feldspar enriched in aliphatic 

C and protonated amide groups. While the organo-mineral associations are considered to be of 

major significance in regulating SOM stabilization (Mikutta et al., 2006; von Lützow et al., 

2006), the relative importance of the physical and chemical stabilization mechanisms may 

depend on the type of soil (Spielvogel et al., 2008). Proper understanding of these short- and 

long-term stabilization processes (including compound chemistry, reactive mineral surfaces and 

inaccessibility to potential degraders) as well as the conceptual OM pools associated with them is 

critical for the comprehensive determination of soil C storage and dynamics. 
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2.3.1 Effect of shelterbelts on SOC dynamics 

Plant litter represents the primary source for SOM formation (Kögel-Knabner, 2002) and 

the amount and composition of plant litter are major factors in controlling the formation and 

humification of SOM (Swift et al., 1979; Kögel-Knabner, 2002). Litter inputs derived from trees 

and arable crops are chemically distinct (Fründ and Lüdemann, 1989; Lorenz and Lal, 2005). 

Woody tree litter is high in lignin, while herbaceous crop litter is high in polysaccharides derived 

from cellulose and hemicellulose (Lorenz and Lal, 2005). Initial differences in litter may also 

persist into the later stages of decomposition, when plant litter is converted into SOM (Fierer et 

al., 2009). For example, Filley et al. (2008) observed an increased in cutin and suberin-derived 

aliphatic functional forms in particulate OM, accompanied with woody plant encroachment in 

grasslands. Litter chemistry may also influence microbial biomass (Ladd et al., 1994) and 

decomposer community structure (Aneja et al., 2006; Baumann et al., 2009). Yannikos et al. 

(2014) found higher fungal biomass under Populus trees compared to alfalfa (medicago sativa), 

leading to changes in SOM composition. Similarly, Mungai and Motavalli (2006) observed 

differences in microbial diversity and functionality under trees and intercropped components in 

the temperate alley cropping systems. Changes in SOM molecular composition and microbial 

activity, due to differences in litter chemistry, are expected to influence SOM function and 

inherent recalcitrance, since these are intrinsically linked to each other (Krull et al., 2003). 

Additionally, stereo-chemical arrangement of functional groups of SOM and their properties 

(e.g. affinity to water) also control their interaction with mineral surfaces (Gu et al., 1995; Kleber 

et al., 2007) and hence, may influence its physical stabilization processes.  

Land use changes also affect the placement of litter inputs in soil. In permanently 

vegetated tree systems, plant litter inputs are left on the surface while in the agricultural soils, 



 
 

15 

aboveground inputs and roots are mechanically mixed in the surface soil layers (Guggenberger et 

al., 1994; Post and Kwon, 2000). Gale and Cambardella (2000) suggested that SOC accrual 

benefits in the no-till systems are primarily due to the increased retention of root-derived C in the 

soil. The placement of organic inputs affects SOC stability through changes in exposure to soil 

organisms and degree of contact with mineral soil. Incorporation of trees is also known to affect 

the structure and aggregation of soil (Blanco-Canqui et al., 2007; Udawatta and Jose, 2011), 

which may lead to increased stabilization of SOC. Microclimate differences due to the presence 

of trees may cause variations in soil temperature and moisture content (Brandle et al., 2004; 

Scholten, 1988), which may lead to differences in the decomposition rate of SOC (Davidson and 

Janssens, 2006). 

2.4 Methods to determine SOC quality 

While SOM is composed of a continuum of compounds with varying turnover times, it 

has to be divided into discreet functional pools with specific turnover rates, in order for it to be 

functionally characterized. Numerous fractionation schemes have been developed to separate 

SOM into discreet fractions. These include physical separation techniques based on soil 

aggregation, particle size, and density fractions; and chemical techniques that fractionate SOM 

according to solubility, hydrolysability, and resistance to oxidation or by destruction of the 

mineral phase (von Lutzow et al., 2007). Physical fractionation techniques are based on the 

premise that the spatial arrangement and associations of SOM affect its bioaccessibility and thus, 

play a key role in determining its decomposition rate (Balesdent et al., 1998; Gregorich et al., 

2006). Thus, the physically defined fractions represent a diverse array of organic compounds 

with similar structural and spatial properties (Christensen, 1996).  
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2.4.1 Density fractionation technique  

SOM associations with minerals play a key role in soil dynamics (Mikutta et al., 2006) 

and a better understanding of organo-mineral interactions relies on the identification of SOM 

fractions that show strong interactions with the mineral phase of soil. Density fractionation of 

SOM is based on the role of association of soil minerals with organic matter in SOC turnover, 

and isolates SOM that is not firmly associated with soil minerals (called light fraction) from 

organo-mineral complexes (called heavy fraction; Cambardella and Elliott, 1992; Christensen, 

1992). Mineral-associated heavy fraction is composed of fine organic particles that are rendered 

less bio-accessible due to complex formation with the mineral surfaces (Eusterhues et al., 2005). 

It represents the recalcitrant fraction of SOM and is characterized by a density greater than 1.6 to 

2 g cm-3 (von Lutzow et al., 2007). The light fraction consists of large organic fragments such as 

plant residues that have undergone little chemical transformation (Christensen, 1992). This 

fraction, operationally defined to be of density less than 1.6-2 g cm-3, is highly decomposable 

and responds faster to changes in soil management practices (Boone, 1994; Hassink, 1995). A 

review of SOM fractionation methods by von Lutzow et al. (2007) concluded that the active pool 

of SOM, with turnover periods of less than 10 years, is best represented by the light fraction of 

SOM separated by the density fractionation technique. 

Density fractionation separates light and heavy fractions of SOM based on the difference 

in density between minerals and organic material. This is achieved by using organic liquids such 

as tetrabromoethane (2.96 g cm-3), bromoform (2.88 g cm-3), tetrachlromethane (1.59 g cm-3) and 

inorganic solutions such as sodium iodide (NaI) and sodium polytungstate (SPT) at any desired 

density (1 to 3.1 g cm-3; Six et al., 1999; von Lutzow et al., 2007). Optimum liquid density is a 

critical parameter in the separation of light and heavy fractions in the density fractionation 
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technique (Cerli et al., 2012). However, numerous density cut-off values have been used in the 

application of this technique (Golchin et al., 1994; Sohi et al., 2001; Swanston et al., 2002; Crow 

et al., 2007). A recent study by Cerli et al. (2012) demonstrated that density of 1.6 g cm-3 is the 

most appropriate liquid density for most soils since it resulted in the most accurate separation of 

the pure organic fraction from the organo-mineral fraction. 

2.4.2 Fourier transform infrared (FTIR) spectroscopy 

Physical and chemical fractionation methods, including density fractionation, provide 

only a rough differentiation of active and passive pools of SOM (von Lutzow et al., 2007). While 

the light fraction is a good representative of the active SOM pool, the heavy fraction is too 

heterogeneous and contributes to the intermediate and passive pools (Torn et al., 2009). The light 

fraction may also lead to overestimation of the active pool of SOM if appreciable quantities of 

charcoal are present in the soil (Skjemstad et al., 1990). Due to the heterogeneous nature of 

SOM, combined application of physical fractionation techniques, with spectroscopic techniques 

to determine molecular composition of SOC, may be desired in order to obtain comprehensive 

structural and functional information about SOM. 

Fourier transform infrared (FTIR) spectroscopy is a powerful analytical tool to obtain 

molecular-scale information on mineralogy and organic matter composition of soils and 

sediments (Parikh et al., 2014). It is rapid, non-destructive and capable of simultaneous 

determination of several plant and soil constituents and properties (Janik et al., 1995, 1998). It is 

a vibrational spectroscopic technique that measures the absorption of infrared (IR) energy of 

specific molecular bonds due to stretching (symmetric and asymmetric), bending, rocking, and 

wagging vibrations, in the presence of dipole moments (Griffiths and De Haseth, 2007). Relative 

absorbance of the molecular bands at specific frequencies (i.e. wavenumbers) may be used to 
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determine their abundance. Various methods of spectral collection include transmission, 

attenuated total reflectance (ATR) and diffuse reflectance optical sampling. ATR-FTIR 

technique requires lesser amount and preparation of sample, avoids water interference and has 

strong potential for use in in-situ studies (Aslan-Sungur et al., 2013; Parikh et al., 2014).  

Various organic functionalities, including aromatic (C=C), aliphatic (C-H), phenolic (C-

OH), and polysaccharide (C-O), absorb in the mid-infrared region (4000-400 cm-1) of the 

electromagnetic spectrum, thus making it possible to study the chemistry of OM using FTIR 

spectroscopy (Calderón et al., 2013). Overlap of functional C groups bands due to the 

heterogeneous nature of SOM, and interference due to the soil mineral phase remain as major 

challenges to FTIR spectral interpretation (Stenberg et al., 2010; Calderón et al., 2013). 

However, despite the mineral interference, FTIR spectroscopy has been used to gain valuable 

chemical insights about SOM of whole soils, given similar mineralogy of the soils (Ellerbrock 

and Gerke, 2004; Šimon, 2007; Demyan et al., 2012; Matějková and Šimon, 2012). 

Spectroscopic characterization of SOM extracts such as humic acid has also been performed, in 

order to reduce mineral interference, and gain information about recalcitrant SOM pool. 

Molecular changes in humic acid extracts in response to organic amendments (Brunetti et al., 

2012), manure and fertilizers (Watanabe et al., 2007) have been studied, in order to determine 

their influence on SOM. However, the functional relevance of these alkaline extracts to SOM has 

been questioned in recent studies (Kleber and Johnson, 2010; Schmidt et al., 2011). Other studies 

have used multivariate data analysis techniques such as principal component analysis (PCA; 

Chang et al., 2001) and partial least squares regression (PLSR; McCarty et al., 2002) in order to 

relate spectral information with soil properties of interest (Randhawa, 2008; Guler et al., 2011; 

Yang and Mouazen, 2012; Aslan-Sungur et al., 2013). 
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2.4.3 X-ray absorption near edge structure (XANES) spectroscopy 

The advent of dedicated synchrotron facilities, capable of producing high energy and 

readily tunable synchrotron radiation, has lead to the development of spectromicroscopic 

methods with high spectral and spatial resolution of 30 to 300 nm. Synchrotron-based techniques 

such as X-ray absorption near edge structure (XANES) spectroscopy are powerful and 

noninvasive, and can be used to carry out the in situ analyses of diluted samples at the sub-

micron scale (Lehmann et al., 2009). XANES is a type of X-ray absorption spectroscopy (XAS), 

which uses incoming X-ray energy to assess the bonding environment of a specific element 

(Stöhr, 1992). It involves the excitation of core level electrons of the target atom causing their 

transition to unoccupied or partially occupied molecular orbitals, and the resulting phenomenon 

such as absorption of energy, fluorescence, or emission of photons are studied to gain 

information about the bonding environment of the target atom (Hitchcock et al., 2008; Lehmann 

et al., 2009). XANES absorption spectrum correspond to bound state transitions of the electrons, 

achieved by increasing incident photon energy throughout the absorption K-edge of the element 

of interest and beyond its ionization threshold (Lombi and Susini, 2009; Stöhr, 1992). 

Absorption K-edge is the energy level at which core electrons in the K-shell are promoted to 

higher orbitals or completely removed (above the ionization threshold) by the photons (Jacobsen 

et al., 2000) and it is unique for each element (284 eV for C). The excited phase of the inner-core 

(1s) electrons along the K-edge region is characteristic of the structure of the C functional group 

chemistry, and provides information about specific C forms. (Lehmann and Solomon, 2010). 

XANES is also known as near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 

term generally applied when photon energy of incoming X rays is less than 2000 eV, as in the 

case of C (Lehmann et al., 2009). 
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C K-edge XANES absorption spectra show multiple energy positions of the main 1s-π* 

transitions in the fine structure region (284-290 eV; Solomon et al., 2005). The shape of the 

carbon absorption spectrum is compared to the spectral features of well-characterized reference 

compounds in order to determine the molecular-level speciation of SOC (Stöhr, 1992; Lehmann 

et al., 2009). XANES spectroscopy is described as being element-specific, since the X-ray 

absorption edge energies of different elements are unique (Stöhr, 1992). Thus, there is no 

mineral or water interference in the determination of C, which is a major drawback for other 

spectroscopic techniques such as FTIR and nuclear magnetic resonance (NMR). However, the 

interpretation of soil C XANES spectra may sometimes be challenging due to the complexity of 

SOM and overlapping energy regions of the different C bonds (Cody et al., 1998; Schäfer et al., 

2003).  

Semi-quantitative determination of speciation of SOM has been performed, using 

approaches such as principal component analysis, spectral deconvolution, or least-squares linear 

combination fitting (Hutchison et al., 2001; Scheinost et al., 2001; Beauchemin et al., 2003; 

Jokic et al., 2003; Solomon et al., 2005, 2007).  Spectral deconvolution uses a series of Gaussian 

or Lorentzian functions to describe pre-edge peaks and arctangent function to describe the edge 

(Lehmann and Solomon, 2010). C K-edge XANES spectroscopy has been successfully applied in 

the study of soils (Schumacher et al., 2005; Wan et al., 2007; Gillespie et al., 2011), humic 

extracts (Rothe et al., 2000; Scheinost et al., 2001; Solomon et al., 2005), biopolymers (Kikuma 

and Tonner, 1996), plant fossils (Boyce et al., 2002) and coal (Cody et al., 1996).  The 

knowledge of structural characteristics of C and its speciation can be used to determine the role 

of structural moieties to the inherent recalcitrance of organic matter (Lehmann et al., 2005; 

Solomon et al., 2005; Lombi and Susini, 2009), impact of management on the composition and 
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biogeochemical cycling of organic C at the molecular level in terrestrial ecosystems (Jokic et al., 

2003; Kinyangi et al., 2006; Scheinost et al., 2001; Solomon et al., 2005; Lehmann et al., 2007), 

distribution of carbon within soil microaggregates (Wan et al., 2007) as well as the microbial 

alteration of substrates (Kleber et al., 2010).
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3. ACCURATE AND PRECISE MEASUREMENT OF ORGANIC 

CARBON CONTENT IN CARBONATE-RICH SOILS1  

3.1 Preface 

In order to make accurate measurement of organic carbon in soils, it is essential to 

determine proper methodology to prevent interference of soil carbonates. This chapter compares 

the commonly used methods of SOC measurement, in order to determine their efficiency for 

organic carbon determination of carbonate-rich soils. The appropriate method of SOC 

measurement, as determined in this chapter, will be used for the measurement of OC content of 

whole soils, and density fractions of soil in Chapters 4 and 5, respectively.  

  

                                            
 
1 This chapter was published as Dhillon, G.S., B.Y. Amichev, R. de Freitas and K. Van Rees. 2015. Accurate and 
precise measurement of organic carbon content in carbonate-rich soils. Commun. Soil Sci. Plant Anal.  46: 2707-
2720. Minor modifications have been made in order to maintain consistency in formatting. Dr. de Freitas contributed 
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3.2 Abstract 

Accurate measurement of soil organic carbon (SOC) is dependent on precise and fast 

methods for the separation of organic and inorganic carbon. The widely used methods involving 

thermal decomposition of soil samples at a specific temperature in an automated C analyzer are 

susceptible to interference by carbonates and over-estimation of organic carbon, thus removal of 

carbonates by acid-pretreatment of samples is recommended. Two carbonate-removal 

pretreatments including HCl-addition and HCl-fumigation are compared using CaCO3 standard 

and soil samples of varying SOC contents. Both pretreatment methods provided similar 

measurements of organic C indicating that both methods are efficient in removal of carbonates 

present in the soil. However, the HCl-fumigation method exhibited higher accuracy and 

precision compared to the HCl-addition method. Hence, SOC measurement procedure involving 

HCl-fumigation as a pre-treatment for the removal of carbonates is recommended for carbonate-

rich soils. 

3.3 Introduction 

In a future global carbon (C) market, verifiable C credits (carbon offsets) from 

afforestation and reforestation projects, such as ecosystem C stocks (vegetation biomass and soil 

organic carbon (SOC)), would be the currency (Tietenberg et al., 1999). Carbon credits would be 

traded between firms (e.g. C credits sold by a forest land owner to a coal-burning facility owner) 

within a country, or between countries, with a goal of maintaining overall C emissions below set 

standards (Clarke, 1995; Tietenberg et al., 1999). Therefore, it is critically important that 

inexpensive and accurate methods are available to researchers, policy-makers, and landowners to 

measure and report C credits, particularly the amount of SOC sequestered in forest and 

agricultural soils.  
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Hitherto, a widely accepted wet oxidation procedure (Walkley and Black, 1934) has been 

used for soil organic matter (SOM) and SOC analyses in various soils around the world. One of 

the advantages of this method was that soil carbonates did not interfere with the final SOC 

estimate. However, Nelson and Sommers (1982) reported that the presence of significant 

amounts of Fe2+ or Cl- in the soils leads to overestimation of SOC. Additionally, the presence of 

MnO2 may lead to an underestimation of SOC, in case of rapid dichromate methods such as the 

Walkley and Black procedure (Nelson and Sommers, 1982). Due to the uncertainties associated 

with SOC estimation by the Walkley-Black procedure, this method could only provide a 

qualitative measure of SOC, and is not recommended for quantitative SOC analysis in soils 

(Nelson and Sommers, 1982; Skjemstad and Taylor, 1999).  

A promising new group of C measurement techniques was based on the principle of 

combusting a soil sample in oxygen or air (thermal oxidation) in order to convert all soil C forms 

to carbon dioxide (CO2), which was then trapped and measured by different techniques, 

including the commonly used infrared wavelength absorption. The C measurements from such 

thermal oxidation techniques were fast, reliable, accurate, and repeatable (i.e. precise), all of 

which were desired characteristics of any practical SOC measurement technique in a future 

global C market (Amichev, 2007). Wang and Anderson (1998) proposed a method, based on a 

thermal oxidation technique, in order to directly measure the organic carbon in soils. Their 

method involved the combustion of samples at a temperature of 840oC for 120 seconds, where 

organic C is completely oxidized while the decomposition of carbonates has not started (Wang 

and Anderson, 1998). The major disadvantage associated with this method is the high probability 

of interference from soil carbonates which, similar to SOM, could decompose to CO2 at the 
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oxidation temperature (Froelich, 1980; Weliky et al., 1983), thus invalidating the final SOC 

estimate.  

An alternative method to measure organic C involved the acid-treatment of samples to 

eliminate carbonates followed by total C analysis via automated C analyzers (Nieuwenhuize et 

al., 1994; Yamamuro and Kayanne, 1995; Amichev, 2007). Several acid-pretreatment methods 

have been developed to eliminate excess carbonate in the samples (Hedges and Stern, 1984; 

Verardo et al., 1990; Cutter and Radford-Knoery, 1991). The acid leaching method involves the 

addition of acid to the soil samples, followed by washing with deionized water, in order to 

remove carbonates and the residual sample is analyzed for total C (Gehman, 1962; Byers et al., 

1978). However, this method may lead to an underestimation of SOC due to the leaching of acid-

soluble components of SOM such as carbohydrate and carboxyl groups, and some aliphatic and 

lignin groups (Roberts et al., 1973; Froelich, 1980; Schulten, 1996). Roberts et al. (1973) found 

that the loss of acid-soluble SOC from natural carbonate sediments might be as high as 9 to 44%. 

Treatment of samples with hydrochloric (HCl) acid may also lead to an increase in weight of the 

acidified samples due to water absorption by the chloride salts, which also resulted in 

underestimation of SOC content (Van Iperen and Helder, 1985). The in-situ acidification method 

involves acidification of samples with liquid acid, followed by drying of samples, in order to 

avoid the loss of acid-soluble components (Waples and Sloan, 1980; Verardo et al., 1990). 

Another in-situ acidification method involves fumigation of samples using the HCl-acid vapors 

contained inside a closed vessel (Hedges and Stern, 1984; Harris et al., 2001). The in-situ 

acidification methods not only avoid the loss of acid-soluble SOM but also eliminate the error 

due to hydration of chloride salts since the reweighing of acid-treated samples is not required 

(Verardo et al., 1990). 
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The objective of this study was to determine the most appropriate method for SOC 

measurement in soils of Saskatchewan. For this purpose, this study compared the accuracy and 

precision of the following methods - 1) SOC measurement procedure based on in-situ HCl-acid 

(12 N) fumigation (Harris et al., 2001) as the carbonate-removal pre-treatment; 2) SOC 

measurement procedure based on in-situ HCl-addition, as recommended by LECO Corporation – 

St Joseph, Michigan, USA (LECO representative Liliane Eichenbaum, 2007, personal 

communication); 3) Thermal decomposition-based method by Wang and Anderson (1998), 

which has been frequently used in the carbon determination studies of soils in Saskatchewan 

(Landi et al., 2003; Mensah et al., 2003; Wu et al., 2004; Schnitzer et al., 2006). 

3.4 Material and Methods 

3.4.1 Soil samples 

Five soils with varying SOC and carbonate content, and a CaCO3 (12% C) calibration 

standard recommended for LECO carbon analyzer instruments (LECO Corporation, St. Joseph, 

MI, USA), were used in this study (Table 3.1). Three of the soils, CSSC 7, CSSC 10, and CSSC 

12 were reference soil samples approved by the Canadian Soil Survey Committee (CSSC) for 

use in analytical laboratories across Canada (MacKeague et al., 1979). The remaining soils 

including PA_1 and Est_1 were collected from subsurface horizons in the research areas located 

in central Saskatchewan and in southern Saskatchewan, respectively.  The PA_1 soil was 

collected at 30-60 cm soil depth of an Orthic Eutric Brunisol near Prince Albert, SK 

(53o21ʹ18ʹʹN, 105o46ʹ25ʺW, elevation 469 m) and Est_1 was collected at 10-20 cm soil depth of 

an Orthic Regosol near Estevan, SK (49o4ʹ38ʺN, 102o52ʹ37ʺW, elevation 537 m).  
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Table 3.1 Physical and chemical characteristics of the soil samples and standards used in the 
experiment 

Soil I.D. Location Depth 
(cm) Horizon Clay 

(%) pH 

CSSC 7 
Youngstown AB (51o28ʹN 
110o15ʹW) 

0-10 Ah 14a 4.5a 

CSSC 10 
Saskatchewan (52o10ʹN 
106o27ʹW) 

0-10 Ah 15a 7.3a 

CSSC 12 
Saskatchewan (52o10ʹN 
106o27ʹW) 

33-51 Ck 12a 7.9a 

PA_1 
Prince Albert, SK 
(53o21ʹ18ʺN, 105o46ʹ25ʺW) 

30-60 Cca 1.9b 6.8b 

Est_1 
Estevan, SK (49o4ʹ38ʺN, 
102o52ʹ37ʺW) 

10-20 C 23b 8.2b 

a Data from MacKeague et al. (1979). 

b Data from Hangs et al. (2014)
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3.4.2 SOC analyses methods 

Three procedures were tested for the determination of organic C in the soils. The thermal 

oxidation based method proposed by Wang and Anderson (1998), henceforth referred to as the 

Wang and Anderson method in this paper, was used for the direct measurement of organic C in 

an automated carbon auto-analyzer (LECO C632). This method does not involve a pretreatment 

step for the removal of carbonates. In this method, samples <2 mm in particle size were 

combusted at the furnace combustion temperature of 840oC and 1100oC for 120 seconds to 

estimate organic and total C in the samples, respectively.  

In the other two methods, carbonate-removal HCl-acid pretreatments were done prior to 

C analysis. The procedure of Harris et al. (2001) was followed for the acid-fumigation of the soil 

samples. Briefly, the collected soil samples were ground to <250 µm particle size. About 0.25 g 

of the soil sample was placed in a silver boat liner and the moisture content and dry weight of the 

sample was recorded. The samples were moistened by adding approx. 1 ml of distilled water in 

order to increase the efficiency of carbonate removal by the HCl fumes. These samples were 

placed in a vacuum desiccator along with a 150-ml beaker with 100 ml of concentrated HCl (12 

M) for 24 hours to remove soil carbonates. After this period, the samples were removed from the 

desiccator and heated in a ventilated drying oven at 60oC for 4 hours to remove the residual 

moisture and excess HCl. These carbonate-free samples were analyzed for total C content (i.e., 

only SOC) by using an automated C632 LECO analyzer with a preset combustion temperature of 

950oC and maximum combustion time of 10 minutes. In order to estimate total C (i.e., SOC plus 

carbonates-C), a separate set of samples without the HCl-pretreatment were directly combusted 

at 950oC for a maximum of 10 minutes.  
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For the in-situ addition of HCl, the procedure recommended by LECO Inc. was followed 

(LECO Corporation, St. Joseph, MI, USA). Approximately 0.25 g of soil samples, <250 µm in 

particle size, were placed in nickel boat liners and the weight and moisture content was recorded. 

An HCl:H2O solution (1:1) was added to completely moisten the samples. The samples were 

heated in a drying oven at 60oC for one hour. These steps were repeated until no effervescence 

due to dissolution of carbonates was observed. The carbonate-free samples were analyzed in the 

C632 LECO carbon analyzer at a combustion temperature of 1100oC for a maximum of 10 

minutes. In order to calculate total C, another set of samples was processed without HCl-addition 

and analyzed at the same temperature. 

It is to be noticed that the Wang and Anderson method differed from the other methods 

that included acid-pretreatment, in terms of soil particle size. In order to study the effect of soil 

grinding on the measurement of C by this method, two sample sets were ground to particle sizes 

<2 mm and <250 µm, respectively. Samples were analyzed for organic and total C in the C632 

LECO carbon analyzer using the furnace combustion temperatures of 840oC and 1100oC for 120 

seconds, respectively. Similarly, the HCl-fumigation method and the HCl-addition method 

differed with respect to the combustion temperature (950oC and 1100oC respectively). In order to 

account for the effect of temperature on the measurement of C, two sample sets were combusted 

at 950oC and 1100oC, without any HCl-pretreatment.  

All the results were reported as percent of C by sample weight (wt %). All C values were 

corrected for their moisture content, so that the final C result was based on an oven-dried soil 

weight (105oC for 24 hours). In case of methods involving carbonate-removal pretreatments, the 

original total sample weight was entered into the carbon analyzer rather than the sample weight 

measured after carbonate removal, to get the correct estimate of SOC concentration (wt %) of the 
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sample. The maximum analysis time of 10 min was sufficient to oxidize all organic-C matter (at 

950 and 1100oC) in all samples in this study. Sample weights ranged from 0.2300 to 0.3000 g for 

the soils, and from 0.1400 to 0.2000 g for the CaCO3 calibration standard. 

3.4.3 Data analysis 

One-way analysis of variance followed by Tukey’s HSD were used to test for the 

difference in the concentration of organic C and total C in the samples for different analysis 

methods. 

3.5 Results and Discussion 

Results of SOC and the corresponding total C (SOC plus carbonate-C) concentrations 

measured by Wang and Anderson method (Wang and Anderson, 1998), HCl-fumigation method 

(Harris et al., 2001) and HCl-addition method for all soil samples and CaCO3 standard are 

presented in Table 3.2. The Wang and Anderson method estimated 0.34 % of organic C in the 

CaCO3 standard while the methods involving HCl pretreatment estimated organic C correctly in 

the expected error range of zero (±0.1 %; Fig. 3.1). Additionally, the Wang and Anderson method 

also estimated significantly higher organic C content for the CSSC 12 soil standard, compared to 

the acid-treated samples (Fig. 3.1). This may be due to the relatively higher quantity of 

carbonates present in this soil, which would interfere with the estimation of SOC. The results for 

the CSSC 12 soil indicated that the Wang and Anderson method might be unsuitable for 

carbonaceous soils with low SOC content where separation of the organic and inorganic forms of 

carbon could be hindered. The Wang and Anderson method is based on the assumption that all 

SOC can be completely decomposed at the temperature of 840oC for 120 seconds, while the 

carbonates are not decomposed.  However, the thermal degradation temperatures of organic and 

inorganic components of carbon may overlap resulting in over-estimation of organic C (Froelich, 
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1980). While the thermal decomposition of calcite begins at temperatures above 850oC, various 

other carbonate minerals including dolomite, magnesite and siderite begin decomposing to CO2 

at temperatures well-below 840oC (Dolomite 750-985oC; Magnesite 470-685oC; Siderite 500-

605oC; Beck, 1950). Since Saskatchewan soils are rich in calcite and dolomite in the subsoil 

horizons (Landi et al., 2003), the Wang and Anderson method is not recommended for the 

accurate estimation of SOC in these soils. 

 

Fig. 3.1 Comparison of SOC measurements (N=5) in soil and standard materials of varying SOC 
and carbonate-C concentrations determined by the HCl-fumigation, HCl-addition, and Wang and 
Anderson methods. Height of boxes surrounding each plotted mean indicates the 95% 
confidence interval of the mean SOC (dark gray boxes) and Total C concentrations (gray boxes). 
For each sample, same upper (and lower) case letters indicate no significant difference between 
SOC (and total C) concentrations by the three methods.   
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Fig. 3.2 Relationship between HCl-addition and HCl-fumigation methods for the measurement 
of organic C in the soil samples. The values on X- and Y-axes represent SOC values measured in 
percentage of dry sample weight. 

In order to eliminate the effect of carbonates during sample combustion, pretreatment of 

soil samples to remove all carbonates is recommended (Harris et al., 2001; Kuhlbusch, 1995). 

Fig. 3.2 represents the relationship between the SOC values determined after the samples were 

pretreated with HCl fumigation and HCl addition methods, respectively. The slope of the 

regression line is 1.013±0.055, which is not significantly different from unity. This indicates that 

both acid pretreatment methods provide similar results, and are efficient in the removal of 

carbonates. The SOC content of CSSC 10 and CSSC 12 soil standards as well as PA_1 soil 

sample is lower with HCl addition compared to acid fumigation and Wang and Anderson 
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methods (Fig. 3.1; Table 3.2). This indicates that the addition of HCl, instead of HCl fumigation, 

and subsequent heating may be resulting in the loss of volatile components of organic matter 

(Pocklington and Hagell, 1975). In contrast, acid fumigation with HCl of these soil samples did 

not lower their organic C content compared to the Wang and Anderson method, with the 

exception of CSSC 12 soil standard, which has high inorganic C content compared to SOC and 

thus susceptible to over-estimation by the Wang and Anderson method (Fig. 3.1). The HCl 

fumigation method was also found to be more precise compared to the HCl addition method for 

the majority of the samples, as indicated by the lower standard deviation of the acid-fumigated 

samples (Table 3.2). This is in agreement with Chang et al. (1991) who also found the HCI vapor 

pre-treatment method to be more precise compared to the HCl liquid acid (0.5 N) addition 

method although both methods produced similar SOC measurement values. Hedges and Stern 

(1984) had recommended that the HCl fumigation method should not be used in case of highly 

calcareous soils (>50% wt. CaCO3). However, the addition of a small amount of distilled water 

as recommended by Harris et al. (2001), hastened the decomposition of carbonates and ensured 

complete removal of all carbonates from all our samples (including the pure CaCO3 standard 

material) upon HCl fumigation. Thus the HCl fumigation method, as described by Harris et al. 

(2001), is recommended as an efficient technique to completely remove all inorganic C present 

in the carbonaceous Saskatchewan soils, thus yielding accurate and precise SOC measurements. 
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Table 3.2 Carbon contents (wt %) of soil samples and standard materials measured by different C 
analysis methods. 

Method Targeted C 
form 

Soil 
sample N Carbon (wt %) 

    Min Max Mean Std. 
Deviation 

Std. 
Error 

HCl-
fumigation 

method 

Organic C1 

PA_1 5 0.66 0.76 0.70 0.039 0.017 
Est_1 5 1.52 1.67 1.59 0.061 0.027 

CSSC 12 5 0.21 0.29 0.25 0.030 0.014 
CSSC 10 5 2.07 2.19 2.11 0.046 0.021 
CSSC 7 5 3.43 4.01 3.77 0.238 0.107 
CaCO3 4 0.05 0.10 0.07 0.020 0.010 

        

Total C2 

PA_1 5 0.66 0.73 0.70 0.025 0.011 
Est_1 5 3.16 3.28 3.21 0.049 0.022 

CSSC 12 5 2.06 2.14 2.10 0.036 0.016 
CSSC 10 5 2.18 2.26 2.22 0.035 0.016 
CSSC 7 5 3.80 3.94 3.90 0.058 0.026 
CaCO3 5 12.03 12.39 12.19 0.152 0.068 

         

HCl-
addition 
method 

Organic C3 

PA_1 5 0.35 0.60 0.49 0.104 0.047 
Est_1 5 1.45 1.79 1.67 0.151 0.068 

CSSC 12 5 0.14 0.20 0.17 0.023 0.010 
CSSC 10 5 1.59 1.99 1.76 0.187 0.084 
CSSC 7 5 3.72 3.86 3.78 0.062 0.028 
CaCO3 5 0.00 0.03 0.00 0.019 0.009 

        

Total C4 

PA_1 5 0.67 0.74 0.70 0.026 0.011 
Est_1 5 3.13 3.22 3.18 0.033 0.015 

CSSC 12 5 1.95 2.04 2.00 0.038 0.017 
CSSC 10 5 2.33 2.41 2.37 0.031 0.014 
CSSC 7 5 3.79 4.15 3.94 0.138 0.062 
CaCO3 5 11.79 12.00 11.91 0.108 0.048 
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Table 3.2 (continued) C contents (wt %) of all soil and standard materials under different C 
analysis methods 

Method Targeted C 
form 

Soil 
sample N Carbon (wt %) 

    Min Max Mean Std. 
Deviation 

Std. 
Error 

Wang and 
Anderson 
method 

Organic C5 

PA_1 5 0.60 0.95 0.71 0.144 0.064 
Est_1 5 1.66 1.76 1.71 0.040 0.018 

CSSC 12 5 0.34 0.42 0.38 0.035 0.016 
CSSC 10 5 2.03 2.11 2.07 0.035 0.016 
CSSC 7 10 2.41 3.43 3.21 0.293 0.093 
CaCO3 5 0.16 0.52 0.34 0.131 0.059 

        

Total C6 

PA_1 5 0.65 0.80 0.73 0.064 0.028 
Est_1 5 3.05 3.44 3.20 0.177 0.079 

CSSC 12 5 1.99 2.12 2.07 0.056 0.025 
CSSC 10 5 2.33 2.40 2.37 0.028 0.013 
CSSC 7 5 3.69 4.05 3.92 0.138 0.062 
CaCO3 5 11.58 12.28 11.86 0.273 0.122 

Wang and 
Anderson 
method 
(with 

samples 
<250 um) 

Organic C7 

PA_1 5 0.67 0.70 0.69 0.015 0.007 
Est_1 5 1.70 1.75 1.72 0.020 0.009 

CSSC 12 5 0.31 0.34 0.33 0.015 0.007 
CSSC 10 4 2.00 2.03 2.02 0.014 0.007 
CSSC 7 5 2.22 3.29 3.04 0.459 0.205 
CaCO3 5 0.20 0.39 0.27 0.069 0.031 

1 SOC determination method including an HCl-acid (12 N) fumigation sample pre-

treatment to remove soil carbonates; C analysis of ground soil samples (< 250 µm particle size) 

at 950oC without a time constraint (Amichev 2007; Harris et al. 2001) 

2 Total soil C (SOC plus carbonate-C) determination method of ground soil samples 

(<250 µm) at 950oC without a time constraint 

3 SOC determination method including sample pre-treatment of multiple HCl-acid (6N) 

liquid additions (followed by drying) to remove soil carbonates; C analysis of ground soil 

samples (<250 µm) at 1100oC without a time constraint (LECO Inc. representative Liliane 

Eichenbaum, 2007, personal communication) 
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4 Total soil C determination method of ground soil samples (<250 µm) at 1100oC without 

a time constraint 

5 Method to determine SOC; C analysis of the fine soil fraction (no grinding used, < 2mm 

particle size) at 840oC for 2 min (Wang and Anderson 1998) 

6 Method to determine total soil C; C analysis of the fine soil fraction at 1100oC without a 

time constraint 

7 Method to determine SOC; C analysis of ground soil samples (<250 µm) at 840 oC for 2 
min. 

A cautionary note about repeated analysis of HCl acid-pretreated soil samples is the 

potential of corrosion of internal components of the LECO C632 analyzer due to the evaporation 

of acid-derived chlorine compounds from the samples and their subsequent accumulation into the 

combustion tube of the analyzer. Despite using chlorine absorbent in the scrubber tube of the 

LECO C632 analyzer for chlorine removal, we noticed acid corrosion damage to the analyzer 

components. Kristensen and Andersen (1987) also reported corrosion inside the combustion 

system of their CHN analyzer from repeated analyses of acid-treated samples, although Amichev 

(2007) did not experience such corrosion damage to any components of the analyzer. Such 

damage may lead to leakage and malfunctioning of the instrument, which could be costly to 

repair.  

In order to prevent acid corrosion damage to LECO analyzer components, the residual 

HCl concentration in the acid-treated samples has to be minimized. The excess acid may be 

removed by washing the samples after acidification. However, washing of the acid-treated 

samples leads to loss of acid-soluble organic matter resulting in the under-estimation of SOC 

content (Roberts et al., 1973). Increasing the temperature at which HCl-treated samples are dried 

after the pre-treatment, from 60oC to 105oC can decrease the residual HCl in the samples. At 
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105oC the capillary water inside the soil samples is evaporated, which may otherwise contain 

traces of dissolved HCl. While soil sample drying at high temperatures such as 105oC may alter 

some of the SOC fractions, we found no significant C loss from the HCl-fumigated samples (to 

which distilled water was added as part of the procedure). There were no significant differences 

between SOC measurements by the HCl-fumigation method with regular drying temperature (i.e. 

60oC for 4 hours) and with increased temperature (105oC for 16 hours), respectively (Table 3.3). 

Previous studies have also used higher temperature in the estimation of SOC. Nieuwenhuize et 

al. (1994) dried the samples at 120oC for 1 hour to get rid of excess HCl without any loss of 

volatile organic matter. Similarly, Mills and Quinn (1979) did not find any loss of volatile 

organic carbon from drying the samples at 110°C for 4 hours. Hence, drying of acid-pretreated 

samples at 105oC for 16 hours, instead of 60oC for 4 hours is recommended to get rid of excess 

HCl in acid-treated samples. The residual HCl amount in the samples is also expected to be 

lower with HCl-fumigation method, compared to HCl-addition method. 

Table 3.3 Organic C content of acid-treated samples (ranging from high to low organic carbon) 
dried at low and high temperature conditions (n=4) 

Sample no. OC % (60oC for 
4 hours) 

OC % (105oC 
for 16 hours) RMSE % Bias % 

1 5.85a† 5.65a 4.7 3.3 
2 5.13a 4.82a 10.5 5.5 
3 1.95a 1.89a 6.5 3.2 
4 2.51a 2.58a 4.2 -2.9 
5 0.72a 0.68a 8.5 4.7 
6 0.81a 0.79a 18.3 1.7 

†Values followed by same letter in a row are not significantly different at p < 0.05. RMSE is the 
root mean square error. 

The effects of soil grinding (from <2 mm down to <250 µm particle size) and combustion 

temperature on the measurement of SOC were also studied. Soil grinding did not affect the 
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accuracy of measurement of organic C at 840oC and total C at 1100oC (Figs. 3.3 and 3.4). 

However, the measurement precision was higher in case of the ground samples as indicated by 

the lower standard deviation in case of <250 µm ground soils (Figs. 3.3 and 3.4). Similarly, 

different combustion temperatures (950oC vs. 1100oC) performed equally well for total C 

measurements, which were with similar accuracy and precision (Fig. 3.5). While the total C 

measurements for CSSC 10 and CSSC 12 soil standards as well as the CaCO3 standard were 

significantly different at the temperatures of 950 and 1100oC, the lack of a consistent trend 

among these three samples indicates that these differences may be due to an experimental error 

in the subsampling and handling of samples (Fig. 3.5). Since soil grinding and combustion 

temperature have no significant effect on the accuracy of C measurement, it is reasonable to 

attribute any observed SOC differences to the methods used for the separation of organic and 

inorganic carbon in the carbonaceous soils of Saskatchewan. 
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Fig. 3.3 Effect of soil grinding on C measurement variability (N=5) at 840oC for 120 seconds. 
Height of boxes surrounding each plotted mean indicates the 95% confidence interval of the 
mean C concentration value. For each sample, same upper case letters indicate no significant 
difference between C concentrations of non-ground (<2 mm particle size) and ground soil 
samples (<250 µm particle size).   
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Fig. 3.4 Effect of soil grinding on total C measurement variability (N=5) at 1100oC. Height of 
boxes surrounding each plotted total C mean indicates the 95% confidence interval of the mean 
total C concentration value. For each sample, same upper case letters indicate no significant 
difference between total C concentrations of non-ground (<2 mm particle size) and ground soil 
samples (<250 µm particle size). 
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Fig. 3.5 Effect of combustion temperature on total C measurement (N=5) of ground soil and 
standard material samples (<250 µm particle size). Height of boxes surrounding each plotted 
mean indicates the 95% confidence interval of the mean total C concentration value. For each 
sample same upper case letters indicate no significant difference between C concentrations 
measured at 950 and 1100 °C combustion temperature. 

3.6 Conclusions 

Among the methods used to determine the SOC concentration in carbonaceous soils, we 

recommend the SOC measurement procedure based on HCl-acid (12 N) fumigation (Harris et al., 

2001) as carbonate-removal pretreatment followed by elemental C analysis via automated C 

analyzer. With these modifications, the method is less susceptible to over-estimation of organic 

C due to interference by the carbonates compared to the Wang and Anderson method and is more 

precise compared to the method involving HCl acid addition as the pre-treatment. It is 

recommended that all HCl-fumigated samples be dried at higher temperatures (105oC for 16 
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hours) prior to elemental C analysis in order to avoid any potential acid corrosion damage to any 

components of the C analyzer instrument. 
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4. SOIL CARBON SEQUESTRATION FOR SHELTERBELT 

AGROFORESTRY SYSTEMS IN SASKATCHEWAN2 

4.1 Preface 

Shelterbelts have been widely planted around the agricultural fields in Canadian Prairie 

provinces, including Saskatchewan, mainly to prevent damage by wind erosion. In addition to 

their ecological advantages, they may also provide the additional benefit of sequestering C, thus 

helping to offset the atmospheric CO2 levels and combat climate change. However, few studies 

have examined the potential of shelterbelts to sequester CO2, especially in the form of soil 

organic carbon (SOC). This chapter seeks to estimate the SOC sequestration potential of major 

shelterbelt species in Saskatchewan, compared to their adjacent agricultural fields. It also 

examines the influence of shelterbelt characteristics such as tree species, stand age, stand 

structure and design, on their ability to sequester C in soils. 

                                            
 
2 This chapter, co-authored with Dr. Ken Van Rees, has been submitted for publication to Canadian Journal of Soil 
Science. The laboratory and data analyses, and initial writing of the manuscript were completed by the lead author 
(Gurbir Singh Dhillon), and editing and review of manuscript was done by the co-authors. 
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4.2 Abstract 

Carbon (C) sequestration through the implementation of agroforestry practices is 

identified as one of the major strategies in the reduction of greenhouse gas (GHG) emissions 

from the agricultural sector. The objective of this study was to examine the soil C sequestration 

potential of major hardwood and conifer shelterbelts across the five soil zones of Saskatchewan 

compared to agricultural fields. Soil samples were collected for six major shelterbelt species 

including green ash (Fraxinus pennsylvanica), hybrid poplar (Populus spp.), Manitoba maple 

(Acer negundo), white spruce (Picea glauca), Scots pine (Pinus sylvestris) and caragana 

(Caragana arborescens) and the adjacent agricultural fields and measured for soil organic 

carbon (SOC). Shelterbelts had a significantly higher amount of SOC compared to adjacent 

agricultural fields with an average increase of 6-38 Mg C ha-1 depending on shelterbelt species. 

An additional 3-8 Mg C ha-1 was contained in the tree litter layer. Younger shelterbelts tended to 

lose SOC in the early years of shelterbelt establishment; however, the SOC accrual was 

positively related to shelterbelt stand age. Besides stand age, other shelterbelt stand 

characteristics, including tree height and diameter, crown width and density of litter layer were 

also positively correlated with the increase in SOC concentration, and all variables together 

explained 56-67% of the variability in the amount of SOC sequestered within the shelterbelt 

sites. Highest amount of SOC accumulated in the 10-30 cm soil depth and was attributed to root-

C inputs. The findings of this study support the hypothesis that shelterbelts as an agroforestry 

system can lead to a significant amount of soil C sequestration for agroecosystems. 

4.3 Introduction 

The increase in temperature of the earth’s near-surface air and oceans in recent decades, 

known as global warming, is among the most serious of the contemporary environmental issues 
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(Nair et al., 2010). The global mean temperature is further expected to increase by 1.0-3.5oC over 

the next century due to the increase in atmospheric greenhouse gas (GHG) concentrations, 

especially carbon dioxide (CO2) (IPCC, 1995; Wu et al., 2011). Soils are the largest terrestrial 

pool of organic carbon (C) and have a significant potential of storing carbon by acting as carbon 

sinks, thereby removing CO2 from the atmosphere (Canadell et al., 2007; Powlson et al., 2011). 

A 5-15% increase in the amount of soil organic carbon (SOC) stored in the soils up to a 2 m 

depth could decrease atmospheric CO2 concentration by 16–30% (Baldock, 2007; Kell, 2011). 

Currently, agricultural activities are a major source of anthropogenic GHG emissions and 

contribute to about 20% of global GHG emissions (Lokupitiya and Paustian, 2006). Cultivated 

Canadian soils are reported to have lost about 15-35% of the organic carbon compared to the pre-

settlement levels, thus contributing to the build-up of GHG levels (Dumanski et al., 1998). 

However, implementation of proper agricultural management practices has the potential to 

increase C stocks in agricultural soils globally by about 400 to 800 Mt C yr-1 (Cole et al., 1996; 

Paustian et al., 2000). Thus, there is a need to adopt sustainable agroecosystem management 

practices to encourage the long-term sequestration of C in soils in order to reduce the terrestrial 

GHG emissions to the atmosphere. 

Agroforestry systems, consisting of the deliberate association of trees with crops on the 

same land-unit, have been recommended by the Intergovernmental Panel on Climate Change 

(IPCC) as a sustainable alternative to single-crop systems in order to mitigate GHG emissions 

(Schoeneberger, 2009). Such systems have the ability to sustain or enhance agricultural 

productivity (Kang et al., 1985; Kort, 1988; Thevathasan and Gordon, 1995), while also helping 

in soil conservation (Montagnini and Nair, 2004), maintenance of soil fertility (Thevathasan and 

Gordon, 2004), restoration of degraded ecosystems (Montagnini, 2001) and nutrient and organic 
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matter cycling and retention in soils (Fassbender et al., 1987; Beer, 1988). Shelterbelts or 

windbreaks is an agroforestry practice that consists of linear rows of trees around agricultural 

fields, primarily for the purpose of controlling wind speed and erosion in order to protect soils, 

crops and farmyards (Brandle et al., 2004; Mize et al., 2008). Shelterbelts have been historically 

planted extensively on the Canadian prairies and Great Plains of the USA since the early 

nineteenth century (Watters, 2002; Udawatta and Jose, 2011) and are associated with a variety of 

social, monetary and ecological benefits including snow entrapment and moisture retention 

(Scholten, 1988), increase in crop and livestock productivity (Kort, 1988) and enhancement of 

agricultural landscapes (Cook and Cable, 1995; Cable, 1999).  Along with these ecological 

benefits, shelterbelts also offer great potential for C sequestration (Brandle et al., 1992; Kort and 

Turnock, 1998).  Kort and Turnock (1998) estimated the aboveground C sequestration potential 

in the shelterbelts of Canadian prairies to range from 11-105 Mg C km-1 depending upon the tree 

species. However, these C stock estimates did not include belowground biomass and soil C 

stocks. In order to gain complete and accurate assessment of the C sequestration potential of the 

shelterbelts, C stock estimates should also include soil C and tree litter estimates along with the 

biomass (Nair and Nair, 2003).   

There are a number of studies that advocate the strong potential benefits of incorporation 

of trees into the agricultural fields for the sequestration of C in soils (Nair et al., 2009a). Trees 

can be significant sinks of atmospheric C compared to agricultural crops primarily due to high C 

inputs associated with aboveground litter and decomposition of fine roots of trees (Young, 1997; 

Oelbermann et al., 2004). However, only a few studies have determined C storage in the soils 

under agroforestry systems (Peichl et al., 2006; Sauer et al., 2007; Baah-Acheamfour et al., 

2015), and our understanding of C sequestration and dynamics under agroforestry systems is 
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inadequate (Nair et al., 2009b). While the studies on afforestation (Paul et al., 2002; Laganiere et 

al., 2010a; Vesterdal et al., 2013) may provide insight on the effect of agroforestry trees on SOC 

storage, the C sequestration potential of agroforestry systems is expected to be different from 

afforested tree plantations or conventional forests due to differences in tree configurations and 

growth patterns (Udawatta and Jose, 2011). Moreover, the findings about SOC sequestration 

potential of afforested and tree plantation systems are also not consistent. While some studies 

indicate high soil C sequestration potential (Jenkinson, 1970; Garten, 2002), other studies have 

demonstrated limited to no increase in the soil C stocks (Richter et al., 1999). Agroforestry 

systems may also differ amongst themselves in terms of C sequestration potential, since the 

productivity of agroforestry systems varies greatly depending upon biophysical characteristics of 

the systems such as age, stand structure as well as management practices (Albrecht and Kandji, 

2003). Thus, there is a need to determine the soil C storage under different agroforestry systems 

under varying ecological conditions in order to obtain a better understanding of soil carbon 

sequestration potential of these systems. 

The objectives, therefore, of this study, were to (i) determine the role of six shelterbelt 

species in facilitating long-term C storage in the mineral soil (0–50 cm) and litter layer compared 

to adjacent agricultural fields, and (ii) identify the influence of various biophysical 

characteristics associated with the shelterbelts, including stand age and structure, tree species and 

shelterbelt design characteristics, on the SOC sequestration potential of shelterbelts. This study is 

based on the hypothesis that soil C storage under the shelterbelts will be greater compared to 

adjacent agricultural fields. 
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4.4 Materials and Methods 

4.4.1 Selection of study sites 

Six shelterbelt species - green ash (Fraxinus pennsylvanica), hybrid poplar (Populus 

spp.), Manitoba maple (Acer negundo), white spruce (Picea glauca), Scots pine (Pinus 

sylvestris) and caragana (Caragana arborescens) were sampled for this study. The shelterbelt 

sites for sampling were identified by a site-selection approach that has been described in detail 

by Amichev et al. (2016). Briefly, 106 ecodistricts within Saskatchewan, as defined by the 

National Ecological Framework for Canada, were grouped into 31 soil zone clusters based on the 

similarity of 32 climatic, site and soil variables obtained from the national ecological framework 

for Canada dataset and 10 additional variables taken from the data of the Soil Landscapes of 

Canada (SLC v3.2). In this way, the agricultural land area of Saskatchewan within the five soil 

zones was divided into a manageable number of clusters for further analysis. The cluster with the 

highest number of trees shipped for shelterbelt planting of a particular species, according to the 

Prairie Farm Rehabilitation Administration (PFRA) tree orders database, was chosen for 

sampling of that species. Green ash, hybrid poplar, and Scots pine had the highest tree numbers 

in the Black soil zone, caragana in the Brown soil zone, Manitoba maple in the Dark Brown soil 

zone and white spruce in the Dark Gray soil zone. The randomized branch sampling (RBS) 

procedure was applied within each of the chosen soil clusters in order to randomly select the 

specific sampling sites for each of the shelterbelt species. A total of 59 sites were selected on the 

arable portions of Saskatchewan across the Boreal Plain and Prairie ecozones (Fig. 4.1). The 

selected sites consisted of 10 sites each for hybrid poplar, Manitoba maple and caragana, 11 sites 

for Scots pine and nine sites for green ash and white spruce shelterbelts.   
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Fig. 4.1 Distribution of sampling sites for six shelterbelt species (hybrid poplar, white spruce, 
green ash, Manitoba maple, caragana, Scots pine) within Saskatchewan, Canada. 
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4.4.2 Sampling procedure 

At each sampling site, three replicate locations (20 m apart) were chosen for soil 

sampling along a transect in the middle of the shelterbelt row. Similarly, three replicate locations 

were chosen in the adjacent agricultural field at a fixed distance perpendicular to the shelterbelt. 

The distance of the field transect from the shelterbelt was more than twice the height of the 

shelterbelt trees to avoid the influence of the shelterbelts and ranged from 50 to 100 m. At each 

replicate location, soil samples were collected at 0-5, 5-10, 10-30 and 30-50 cm depths using a 

hand auger (6.58 cm dia.).  Prior to soil sampling, aboveground tree litter was also collected at 

each site from a 0.5 m x 0.5 m area centered on sampling points within the shelterbelt row. Soil 

bulk density was measured for both the shelterbelt and field sites at 0-10 cm, 10-30 cm and 30-

50 cm by using a core sampler (5.4 cm dia. x 3 cm length). Soil and litter samples were collected 

in plastic bags and air-dried at room temperature prior to processing and storage for laboratory 

analysis. At each sampling site, tree diameter at breast height (DBH), and tree height 

measurements were taken for hardwood and coniferous trees. For caragana shelterbelts, diameter 

was obtained at 30 cm height from the ground. Additionally, crown width of trees was measured 

by taking the average of four measurements, including two measurements diagonally through the 

tree canopy to make an ‘x’, one measurement straight through the canopy perpendicular to the 

shelterbelt row and one measurement parallel to the shelterbelt row on the outside of the tree 

canopy. Tree age was determined by using an increment borer to obtain tree cores, which were 

later analyzed in the lab. 
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4.4.3 Laboratory analyses 

Soil and litter were samples were ground and sieved to a size of < 250 µm. Soil 

pretreatment consisting of an acid fumigation procedure with concentrated hydrochloric acid 

(12N HCl) to remove soil carbonates was performed on the soil samples for accurate estimation 

of SOC (Dhillon et al., 2015; Harris et al., 2001). Approximately 0.25 g of the powdered soil 

sample was placed in a silver boat liner, weighed, and 1 ml of distilled water was added to the 

soil samples in order to moisten them, which increased the efficiency of carbonate removal by 

the HCl fumes (Harris et al., 2001). The moistened samples were exposed to the HCl-fumes by 

placing them in a vacuum desiccator along with a 150-ml beaker with 100 ml of concentrated 

HCl (12 M) for 24 hours to remove soil carbonates. Finally, the carbonate-free samples were 

heated in a ventilated area with a drying oven at 105oC for 16 hours to remove the residual 

moisture and excess HCl. These samples were analyzed for SOC content by using an automated 

C632 LECO analyzer (LECO Corporation, St. Joseph, MI, USA) at a combustion temperature of 

1100oC and a maximum combustion time of 10 minutes. Soil bulk density was determined by 

oven-drying the soil samples at 105oC for 24 hours and dividing the oven-dried mass of the 

sample with the core volume. Pools of SOC (Mg ha-1) under the shelterbelts and fields were 

determined using the measured bulk density values (g cm-3) and the SOC content (%) of the 

samples. Carbon stocks in the litter were determined using the measured C content of litter 

samples (%), litter mass (g) and sampling area (0.25 m2). A weighted average of SOC 

concentration for the whole soil profile (0-50 cm soil depth) was calculated based on the SOC 

concentration of the individual soil layers (0-5, 5-10, 10-30 and 30-50 cm). 
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4.4.4 Statistical analyses 

Data were analyzed using a two-way mixed analysis of variance (ANOVA) procedure, 

with the land cover (i.e. shelterbelts vs. fields) analyzed as the within-subjects factor. In the 

presence of a significant interaction, simple main effects were considered. Residuals were 

checked for normality using Q-Q plots. Assumption of sphericity and homogeneity of covariance 

were checked using Mauchy’s test of sphericity and Box’s test of equality of co-variance 

matrices, respectively. One-way analysis of variance (ANOVA), followed by post-hoc analysis 

by Fisher’s LSD, was performed to examine the differences among shelterbelt species. In 

addition, hierarchical multiple regression analysis was performed in order to estimate the effect 

of stand characteristics as explanatory variables on the increase in SOC concentration under the 

shelterbelts. Pearson correlation analysis was performed in order to determine the relationship 

between stand characteristics and the increase in SOC concentration. For the statistical analysis, 

a p-value of 0.1 was used to assess the significance. This was done in order to reduce the risk of 

failing to detect the existing differences between land use types (type II error), since a substantial 

variation in the soil properties and vegetation composition was expected due to the geographic 

expansion of the study. Statistical analysis was performed with IBM SPSS Statistics version 23 

(IBM Inc., Armonk, NY, USA). 

4.5 Results 

4.5.1 SOC distribution and pools under shelterbelts and fields 

There was a significant increase in the concentration of SOC for shelterbelts compared to 

agricultural fields at all soil depths (Table 4.1; Fig. 4.2a). Mean SOC concentration across the 

soil profile was greater by 30% for shelterbelts compared to the agricultural fields. Similar to 

SOC concentration, SOC stocks, expressed as the areal mass (Mg ha-1), were also greater for 
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shelterbelts. However, the increase in SOC stocks (19%) was less pronounced compared to the 

increase in SOC concentration (30%), which can be attributed to lower soil bulk density under 

the shelterbelts compared to the agricultural fields (Fig. 4.2b). Soil bulk density of shelterbelts 

was lower by 13% at 0-10 cm depth and 7% at 10-30 cm depth compared to agricultural fields. 

The magnitude of increase in SOC concentration of the shelterbelts was highest at 0-5 cm (11.5 g 

kg-1) and declined with soil depth at 5-10 (6 g kg-1), 10-30 (6.5 g kg-1) and 30-50 cm (0.9 g kg-1; 

Fig. 4.2a). In contrast, the percentage increase in SOC concentration for the shelterbelts was 

highest at 10-30 cm soil depth (43%), compared to 0-5 (37%), 5-10 (23%) and 30-50 cm (8%) 

soil depths. Similarly, maximum amount of SOC was sequestered at 10-30 cm depth, which 

showed a 34% increase in SOC stocks for shelterbelts with an average sequestration of 13 Mg C 

ha-1. The surface layer (0-10 cm soil depth) sequestered around 4 Mg C ha-1 of SOC that was 

equivalent to an increase of about 12% in SOC stocks, while the 30-50 cm soil layer sequestered 

around 1.4 Mg C ha-1, equivalent to an increase of 5% in SOC stocks. 

Table 4.1 Two-way mixed analysis of variance (ANOVA) of the effect of land cover type (i.e. 
shelterbelts and fields) within different soil clusters on the SOC concentration (g kg-1) at 0-5, 5-
10, 10-30 and 30-50 cm soil depths.  

Depth (cm) Land cover type Soil Cluster Interaction 
df F P df F P df F P 

0-5 1 30.32 <0.005 5 9.22 <0.005 5 2.57 0.04 
5-10 1 18.38 <0.005 5 12.32 <0.005 5 1.62 0.17 
10-30 1 49.51 <0.005 5 11.93 <0.005 5 2.16 0.07 
30-50 1 6.48 0.01 5 0.68 0.64 5 0.32 0.12 
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Table 4.2 Mean SOC concentrations (g kg-1) of shelterbelts and fields for different shelterbelt 
species at 0-5, 5-10, 10-30 and 30-50 cm soil depths.  

Species Land cover Soil Depth (cm) 
0-5 5-10 10-30 30-50 

Hybrid Poplar Shelterbelt 52.4 (6.2) a† 42.5 (3.4) a 27.3 (1.9) a 13.1 (1.5) a 
Field 31.8 (2.7) b 29.2 (2.9) b 16.1 (1.9) b 10.3 (1.2) b 

White Spruce Shelterbelt 57.9 (8.8) a 31.0 (4.6) a 19.1 (2.1) a 11.9 (1.8) a 
Field 37.1 (3.9) b 27.4 (3.4) a 11.5 (1.7) b 10.1 (1.8) b 

Green Ash Shelterbelt 46.8 (5.2) a 43.2 (4.6) a 30.4 (3.4) a 11.9 (0.8) a 
Field 46.0 (2.0) a 40.3 (1.7) a 23.5 (2.3) b 11.7 (0.6) a 

Manitoba 
maple 

Shelterbelt 34.8 (3.4) a 25.6 (2.4) a 17.5 (1.6) a 9.8 (0.5) a 
Field 29.6 (2.8) a 23.1 (2.3) a 14.1 (1.1) a 9.7 (0.6) a 

Caragana Shelterbelt 23.4 (4.0) a 17.0 (2.3) a 11.9 (1.1) a 9.8 (1.0) a 
Field 15.8 (1.7) b 12.6 (0.5) b 9.9 (0.6) a 9.7 (0.7) a 

Scots Pine Shelterbelt 44.3 (4.4) a 34.0 (4.6) a 23.5 (3.0) a 10.9 (1.1) a 
Field 30.4 (1.9) b 25.4 (1.9) b 15.8 (1.2) b 10.5 (1.2) a 

†Values with the same letter within a column and shelterbelt species group are not significantly 
different at p < 0.1. 
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Fig. 4.2 Mean SOC concentration (a) and soil bulk density (b) of shelterbelts and fields at 0-5, 5-
10, 10-30, and 30-50 cm soil depths. Bars represent standard error. Bars with the same letter 
within a soil depth are not significantly different at p < 0.1. 
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Fig. 4.3 Difference in SOC concentration (g kg-1) of different shelterbelt species (HP- Hybrid 
poplar; WS – White spruce; GA – Green ash; MM – Manitoba maple; CR- Caragana; SP – Scots 
pine) compared to adjacent fields at the 0-5, 5-10, 10-30, and 30-50 cm soil depths. Species with 
same letter are not significantly different at p < 0.1. 

Differences in SOC concentration for shelterbelts varied with the species of shelterbelt 

plantation (Table 4.2; Fig. 4.3). At 0-5 cm soil depth, the maximum difference in the mean SOC 

concentration under shelterbelts compared to fields was observed for white spruce (+20.8 g C kg-

1) and hybrid poplar shelterbelts (+20.7 g C kg-1), followed by Scots pine (+13.9 g C kg-1), 

caragana (+7.6 g C kg-1), Manitoba maple (+5.1 g C kg-1), and green ash (+0.8 g C kg-1). At 10-

30 cm soil depth, the difference in SOC concentration for hybrid poplar shelterbelts (+11.2 g C 

kg-1) was higher compared to Manitoba maple (+3.4 g C kg-1) and caragana (+2.1 g C kg-1). The 

difference between species was not statistically significant at 5-10 and 30-50 cm soil depths (Fig. 

4.3). Averaged across the entire soil profile (0-50 cm), the maximum difference in mean SOC 

concentration compared to adjacent agricultural fields was observed for hybrid poplar (+54%) 
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shelterbelts, followed by white spruce (+41%), Scots pine (+34%), caragana (+19%), Manitoba 

maple (+15%) and green ash (+14%) shelterbelts. Similarly, the average differences in SOC 

stocks (0-50 cm depth) between shelterbelts and the adjacent agricultural fields were positive for 

all shelterbelt species, and decreased in the order of: hybrid poplar (+ 38 Mg C ha-1), white 

spruce (21 Mg C ha-1), Scots pine (+ 20 Mg C ha-1), green ash (+15 Mg C ha-1), Manitoba maple 

(+ 11 Mg C ha-1) and caragana (+ 6 Mg C ha-1) (Table 4.3).. Besides the SOC stored in the 

mineral soil profile, additional carbon was also stored in the litter layer under the shelterbelts. 

Mean carbon storage in the litter layer varied from 3.1 Mg ha-1 to 8.3 Mg ha-1 with the highest 

litter C found for Scots pine and white spruce shelterbelts (Table 4.3). 
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Table 4.3 Mean SOC stock (Mg ha-1) in the litter layer, 0-10, 10-30 and 30-50 cm soil layers 
under the shelterbelts and fields for different shelterbelt species. 

Species† Litter 
Soil Depth (cm) 

0-10 10-30  30-50  
Shelterbelt Field Shelterbelt Field Shelterbelt Field 

HP 5.0 (0.8) 43.2 (3.5) a‡ 34.4 (2.9) b 64.9 (4.6) a 42.4 (4.7) b 35.3 (3.6) a 28.6 (3.2) b 
WS 5.6 (0.9) 39.2 (4.2) a 34.5 (3.7) a 42.2 (5.3) a 29.0 (4.1) b 30.2 (4.2) a 27.0 (4.9) a 
GA 3.1 (0.7) 43.4 (3.2) a 44.5 (2.1) a 75.3 (8.4) a 58.3 (5.9) a 30.6 (1.9) a 31.2 (1.9) a 
MM 3.6 (0.8) 33.5 (3.0) a 29.8 (2.2) a 45.7 (5.0) a 38.3 (2.6) a 27.3 (1.2) a 26.9 (1.6) a 
CR 3.2 (0.5) 20.4 (2.6) a 17.3 (1.3) a 31.1 (2.5) a 27.4 (1.4) a 28.0 (2.8) a 29.0 (2.4) a 
SP 8.3 (1.3) 37.3 (3.7) a 33.0 (2.3) a 58.0 (6.9) a 42.4 (3.1) b 29.2 (2.8) a 29.2 (3.4) a 

†Abbreviations: HP- Hybrid poplar; WS – White spruce; GA – Green ash; MM – Manitoba 
maple; CR- Caragana; SP – Scots pine 

‡Values with different letters within a row at each soil depth are not significantly different at p < 
0.1. 

 

Soil organic carbon stored in the top 50 cm of soil for shelterbelts and adjacent 

agricultural fields averaged 119.1 Mg ha-1 and 100.5 Mg ha-1, respectively. Thus, there was an 

average increase of 18.6 Mg ha-1 of SOC for shelterbelts in the mineral soil. The estimates of 

SOC sequestered under the shelterbelts varied from a loss of SOC of 49 Mg ha-1 to a gain of 85 

Mg ha-1 of SOC for different shelterbelt sites. The younger shelterbelt plantations tended to show 

a loss in SOC compared to the agricultural fields (Fig. 4.4). Out of the 59 sites studied, 16 sites 

showed a loss of SOC for the shelterbelts. Of these 16 sites, 13 sites had a stand age of 20 years 

or less. While the younger shelterbelts showed negative SOC accrual, SOC accrual rates 

increased with an increase in shelterbelt age and tended to stabilize with shelterbelt maturity. The 

median SOC accrual rate was 0.7 Mg C ha-1 year-1 for shelterbelt plantations, ranging in age 

from 5 to 63 years. 
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Fig. 4.4 Relationship between the difference in SOC stocks (Mg ha-1) of shelterbelts compared to 
adjacent fields and shelterbelt age. 
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Table 4.4 Mean stand characteristics for the six shelterbelt species.  

Stand 
characteristics 

Hybrid 
poplar 

White 
spruce Green ash Manitoba 

maple Caragana Scots pine 

Tree Spacing - 
by length (m) 2.6a 2.7a 2.2a 2.6a 0.9b 2.7a 

Tree Spacing - 
by width (m) 2.5b 2.5b 5.7a 2.5b 0.3c 2.9b 

Shelterbelt 
length (m) 66.9b 82.7b 77.2b 62.9b 301.0a 36.8b 

Shelterbelt area 
(m2) 1021.1a 749.3a 1285.0a 1161.6a 1246.5a 401.5a 

Avg. Crown 
Width (m) 8.7a 4.7b 4.5b 5.0b 4.8b 5.7b 

Avg. Tree 
height (m) 14.6a 7.8b 6.8bc 4.4cd 3.0d 8.8b 

Avg. Tree 
Diameter (cm) 26.1a 17.4bc 12.7cd 11.8d n/a 19.5b 

Stand age (yrs) 30.6a 27.4a 19.6a 21.7a 18.2a 31.3a 
Mortality (%) 17.9a 22.8a 9.6a 17.3a 2.9a 13.1a 
Trees per 
kilometer 396.6b 341.1b 486.9b 368.8b 1301.3a 380.1b 

Amount of litter 
(g m-2) 1170.8bc 1424.4ab 802.6c 1015.1bc 1006.9bc 1767.5a 

† Values with the same letter within a row are not significantly different at p < 0.1. 
*n/a – not available 
 

4.5.2 Shelterbelt characteristics and soil organic carbon 

Stand characteristics are considered to be important in regulating the SOC stocks; thus, 

they were compared as potential determinants of SOC accrual for shelterbelts. The stand 

characteristics that were considered included biotic factors such as tree height, tree diameter, 

crown width and abiotic factors such as shelterbelt design characteristics including tree density 

and spacing etc. While the SOC content is known to be strongly related to climatic factors such 

as precipitation and temperature, as well as soil properties such as texture (Paul et al., 2002), 

these factors were assumed to be uniform within the shelterbelt plantation and the agricultural 

field and hence not considered. This assumption is reasonable given the close proximity of each 
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shelterbelt to its reference field in the paired site design. The stand characteristics of all the 

shelterbelt species are summarized in Table 4.4 while the stand characteristics for the individual 

sites are summarized in Appendices A-F.  

Hybrid poplar shelterbelts had significantly higher average crown width, tree height and 

tree diameter compared to the other shelterbelt species (Table 4.4). The coniferous species, white 

spruce and Scots pine, also had higher average tree height and tree diameter compared to green 

ash, Manitoba maple and caragana. Similarly, the density of the litter layer was also high in 

Scots pine compared to the hardwood species and caragana shelterbelts. Tree density was highest 

for caragana, but did not differ significantly for other shelterbelt species. Pearson correlation 

analysis indicated that the stand characteristics were strongly correlated with each other (Table 

4.5). Stand age was positively correlated with average tree height (Pearson correlation coefficient 

(r) = 0.605, p < 0.001), average tree diameter (r = 0.627, p < 0.001), average crown width (r = 

0.411, p = 0.001), and the amount of litter produced (r = 0.719, p < 0.001). Similarly, there was 

strong relationship between average tree height, average tree diameter, average crown width and 

amount of litter (Table 4.5). However, there was also a strong correlation between the stand 

characteristics and the increase in SOC concentration under the shelterbelts (Table 4.6). Across 

all depths, the increase in SOC content was positively related to the age of shelterbelt, average 

tree diameter and tree height, average crown width of the trees and the amount of litter produced. 

Tree density (trees per kilometer) had a weak negative relationship with the increase in SOC 

content; however, this relationship was not statistically significant.  
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Table 4.5 Pearson correlations between the major shelterbelt characteristics 

 
Stand characteristics 

Avg. tree 
diameter 

Amount 
of litter  

Trees per 
kilometer 

Avg. 
crown 
width 

Age Mortality 

Avg. tree height 0.872* 0.476* -0.284* 0.519* 0.605* 0.042 
Avg. tree diameter  0.536* -0.027 0.688* 0.627* -0.106 
Amount of litter    -0.051 0.169 0.719* 0.003 
Trees per kilometer    -0.259* -0.251 -0.455* 
Avg. crown width     0.411* 0.171 
Age      0.264* 
*Correlations significant at 0.05 level 

Table 4.6 Pearson correlations between the major shelterbelt characteristics and increase in SOC 
concentrations (g kg-1) at 0-5, 5-10, 10-30 and 30-50 cm soil depth. 

Soil 
Depth 
(cm) 

Avg. 
tree 

height 

Avg. tree 
diameter 

Amount 
of litter 
(g m-2) 

Trees per 
kilometer 

Avg. 
crown 
width 

Age Mortality 

0-5 0.611* 0.607* 0.695* -0.157 0.294* 0.745* 0.286* 
5-10 0.499* 0.567* 0.588* -0.104 0.539* 0.684* 0.083 
10-30 0.653* 0.656* 0.597* -0.158 0.463* 0.701* -0.004 
30-50 0.558* 0.572* 0.441* 0.021 0.282* 0.468* -0.075 
*Correlations significant at 0.05 level 

 

While the correlation analysis indicated that the stand characteristics are strongly related 

to increase in SOC, a multiple regression analysis was performed in order to determine their 

relative importance in the determination of SOC sequestration within the shelterbelts. A 

hierarchical multiple regression analysis was performed in order to establish if the addition of 

age of shelterbelts (model 2), amount of litter (model 3), tree characteristics including average 

crown width and average tree height (model 4) and shelterbelt design characteristics including 

tree density, tree spacing and the number of tree rows (model 5) improved the determination of 
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SOC sequestration over and above the species (model 1) of shelterbelt plantation (Table 4.7). 

Stand age was the most important predictor for an increase in SOC and contributed highly to a 

statistically significant increase in the coefficient of determination (R2) at all the soil depths. The 

amount of litter produced also contributed significantly to the model throughout the soil profile, 

although the change in R2 associated with the addition of litter was less compared to age. Tree 

physiological characteristics including average crown width and average tree height contributed 

significantly at only the intermediate soil depths (5-10 and 10-30 cm). Shelterbelt design 

characteristics such as tree spacing, tree density and number of tree rows did not contribute 

significantly to the increase in SOC concentration at any soil depth. This trend implies that 

variability in stand design characteristics did not play a major role in the determination of SOC 

sequestration within the shelterbelts. The maximum adjusted R2 of the models at the 0-30 cm 

depths varied from 0.560 to 0.665 indicating that around 56 to 67 % of the variability in 

determination of SOC sequestration in the top 30 cm could be explained by these models. At the 

30-50 cm soil depth, the model could explain only about 33% of the variability in the increase of 

SOC.  
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Table 4.7 Hierarchical multiple regression analysis predicting the change in SOC concentration 
of the shelterbelts due to shelterbelt species (model 1), shelterbelt age (model 2), Amount of 
litter (model 3), major tree characteristics (model 4), and major shelterbelt design characteristics 
(model 5).  

Model Variables added† 
0-5 cm soil depth 5-10 cm soil depth 

R2 Adj 
R2 ΔR2 p-value R2 Adj R2 ΔR2 p-value 

1 Species 0.195 0.119 0.195 0.038 0.132 0.051 0.132 0.172 
2 Age 0.627 0.584 0.432 <0.001 0.524 0.469 0.392 <0.001 
3 Amount of litter 0.689 0.647 0.063 0.002 0.567 0.507 0.042 0.030 

4 
Avg. crown 
width, Avg. tree 
height 

0.713 0.661 0.024 0.14 0.628 0.560 0.062 0.023 

5 

Tree spacing by 
length, Tree 
spacing by width, 
Number of rows, 
Trees per 
kilometer 

0.74 0.665 0.027 0.343 0.633 0.527 0.005 0.959 

 

Model Variables added† 
10-30 cm soil depth 30-50 cm soil depth 

R2 Adj 
R2 ΔR2 p-value R2 Adj R2 ΔR2 p-value 

1 Species 0.169 0.091 0.169 0.072 0.147 0.066 0.147 0.124 
2 Age 0.556 0.505 0.387 <0.001 0.311 0.232 0.164 0.001 
3 Amount of litter 0.606 0.551 0.049 0.015 0.374 0.288 0.063 0.028 

4 
Avg. crown 
width, Avg. tree 
height 

0.648 0.583 0.042 0.063 0.419 0.313 0.045 0.158 

5 

Tree spacing by 
length, Tree 
spacing by width, 
Number of rows, 
Trees per 
kilometer 

0.671 0.575 0.023 0.544 0.477 0.326 0.058 0.306 

† The new explanatory variables in each model are added to the variables from the previous 
model i.e. model 1 consists of species as the explanatory variable, model 2 consists of species 
and age, model 3 consists of species, age and amount of litter, model 4 consists of species, age, 
amount of litter, avg. crown width and avg. tree height, and model 5 consists of species, age, 
amount of litter, avg. crown width, avg. tree height, tree spacing by length and by width, number 
of rows and trees per kilometer as the explanatory variables, respectively. 
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4.6 Discussion 

4.6.1 SOC sequestration and distribution under the shelterbelts 

Shelterbelts generally had a higher SOC content compared to the agricultural fields 

indicating that the shelterbelts have added significant amounts of C to the soils (Table 4.2). 

Similar trends of higher SOC content have been observed in other agroforestry systems when the 

trees were incorporated into agricultural systems (Sauer et al., 2007; Bambrick et al., 2010; 

Baah-Acheamfour et al., 2015). Greater SOC accumulation under the shelterbelts is attributed to 

higher C inputs from the aboveground leaf litter as well as belowground root litter and 

rhizodeposition (Lorenz and Lal, 2014). Shelterbelts may also increase SOC by intercepting 

blowing wind leading to deposition of wind-blown organic detritus, as well as a reduction of 

surface soil C loss owing to wind erosion (Mize et al., 2008). Lower SOC content in the 

agricultural soils may also be due to higher decomposition rates of SOC due to practices such as 

cultivation and tillage, leading to the breakdown of soil aggregates (Dick et al., 1998; West and 

Post, 2002). In addition, the removal of crop biomass through harvested products such as grains 

or straw can also lead to a reduction in SOC inputs to the soil (Paustian et al., 2000).  

Shelterbelts were observed to have lower soil bulk density compared to agricultural fields 

in our study (Fig. 4.2b), which has also been observed in other studies (Hansen, 1993; Messing et 

al., 1997). This trend is attributed to the increase in organic matter content of soils (Davidson et 

al., 1967), lack of soil compaction due to heavy machinery (Hamza and Anderson, 2005), and 

increased abundance of tree roots (Lorenz and Lal, 2014) and soil invertebrates such as 

earthworms (Price and Gordon, 1998) under the tree component of the agroforestry system. 

While the SOC concentration was higher under the shelterbelts compared to agricultural 

fields throughout the soil profile (Fig. 4.2a), there was greater accumulation of SOC under the 
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trees at the intermediate soil depth of 10-30 cm (Table 4.3). The increase in SOC stocks with 

depth under trees is primarily due to the turnover of the deeper tree roots and rhizodeposition 

(Lorenz and Lal, 2005; 2014). The root-derived C inputs may equal or exceed the aboveground 

C inputs due to leaves from litterfall (Scheu and Schauermann, 1994; Jackson et al., 1997). 

Upson and Burgess (2013) similarly reported a maximum increase in SOC concentration in the 

20-40 cm soil depth, which also had the greatest quantity of coarse roots in a poplar-based 

temperate agroforestry system. Reduced C accumulation in the surface layers could be attributed 

to a greater loss of SOC due to mineralization compared to the subsurface layers, especially in 

the younger shelterbelts (Hansen, 1993). The root-derived C inputs to the subsurface layers are 

considered more stable compared to the shoot-derived C, due to the higher chemical 

recalcitrance of root-derived C (Lorenz and Lal, 2005) and increased the physico-chemical 

protection through the interaction with soil minerals (Rasse et al., 2005). Thus, C in sub-surface 

layers may play a prominent role in increasing the soil C stocks and their residence time and 

must be taken into account in determining the C sequestration potential of agroforestry systems. 

Average SOC stored under the tree species varied from 80-149 Mg ha-1 (Table 4.3), 

which is within the reported range of 30-300 Mg C ha-1 for agroforestry systems (Nair et al., 

2010). The average amount of C sequestered up to the depth of 50 cm under the shelterbelt 

species ranged from 6-38 Mg ha-1, with a median SOC accrual rate of 0.7 Mg ha-1yr-1. These 

SOC sequestration values are comparable to the C sequestration potential of other agroforestry 

systems reported in the literature.  Sauer et al. (2007) reported an average C sequestration of 3.7 

Mg ha-1 (0-15 cm depth) in a 35-year-old shelterbelt composed of Juniperus virginiana and 

Pinus sylvestris trees. Upson and Burgess (2013) reported an increase of 19 Mg C ha-1 up to a 60 

cm depth in a 19-year-old poplar intercropping system, although SOC decreased for lower soil 
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depths (60-150 cm). Similarly, Bambrick et al. (2010) reported an increase of 6.2 and 33.1 Mg C 

ha-1 in 21-year-old and 8-year-old tree-based intercropping systems in Canada, respectively.  

Younger shelterbelts showed a loss in SOC compared to the reference agricultural plots (Fig. 

4.4). Soil carbon loss can accompany tree stand establishment, followed by net gains as the stand 

matures (Grigal and Berguson, 1998; Wang et al., 2013). This temporary loss of soil C is due to 

the rapid mineralisation of SOC during plantation establishment and depends on the site 

preparation methods (Johnson, 1992; Hansen, 1993). 

4.6.2 Effect of shelterbelt characteristics on SOC sequestration 

While all the six studied shelterbelt systems showed higher C sequestration potential 

compared to conventional agricultural systems, hybrid poplar showed the highest sequestration 

of SOC followed by white spruce and Scots pine (Table 4.3; Fig. 4.3). The broadleaved species, 

green ash and Manitoba maple, as well as the shrub, caragana had lower amounts of C 

sequestered in the soil. These trends are similar to the other studies on agroforestry systems, 

which found higher SOC sequestration under hybrid poplar followed by the coniferous species 

(Peichl et al., 2006; Wotherspoon et al., 2014). The variation in SOC sequestration potential of 

the species may be attributed to the differences in overstory stand characteristics among the 

species (Table 4.4). Tree overstory characteristics such as crown width as well as tree height and 

diameter were highest in hybrid poplar followed by white spruce and Scots pine (Table 4.4). 

Similarly, the density of the litter layer was also highest for Scots pine and white spruce. These 

findings indicate that hybrid poplar and coniferous stands were composed of larger trees with a 

closed canopy structure and higher net primary production, while the other broadleaved and 

caragana shelterbelts consisted of smaller trees. The overstory characteristics of tree plantations 



 
 

 
 

68 

can influence SOC accumulation by affecting the litterfall input from overstory and understory 

vegetation, or indirectly by affecting the soil microclimatic conditions (Woldeselassie, 2009). 

The effect of the stand overstory characteristics on SOC storage was further studied by 

using Pearson correlation and hierarchical multiple regression analyses. Soil organic carbon 

storage beneath the shelterbelts was most significantly related to stand age and amount of litter 

accumulated under the trees. Earlier studies on soil C sequestration have also found stand age 

(Hansen, 1993) and carbon inputs to the soil via litter production (Grogan and Matthews, 2002; 

Garten et al., 2011) to be important determinants of soil carbon storage. Higher quantity of 

surface litter not only increases the SOC accumulation in surface layers due to increased C 

inputs, but also leads to increased production of dissolved organic carbon (DOC) that may leach 

to deeper soil horizons and contribute to subsoil C storage (Vesterdal et al., 2013). Besides stand 

age and litterfall, the increase in SOC was significantly correlated to overstory structure 

characteristics including tree height and diameter, and crown width (Table 4.6). Since the 

overstory characteristics are also significantly related to the amount of litterfall (Table 4.5), their 

effect on SOC accumulation may be partially linked to their contribution to an increase in net 

primary production. However, hierarchical multiple regression analysis revealed that the 

overstory structure characteristics contributed to SOC sequestration over and above the addition 

of litterfall amounts at the intermediate depths (5-10 and 10-30 cm) (Table 4.7).  This trend may 

be attributed to the influence of canopy structure on understory vegetation and soil microclimate, 

thus regulating SOC loss through decomposition (Woldeselassie, 2009). Shelterbelt design 

characteristics such as tree density and tree spacing, however, did not affect the amount of SOC 

sequestered. While tree density is generally considered to be an important predictor of SOC 

stocks due to its influence on biomass production and litter input (Saha et al., 2009; Kunhamu et 



 
 

 
 

69 

al., 2011), our results are in agreement with the recent studies that did not observe the effect of 

tree density on SOC stocks (Davis et al., 2007; Laganiere et al., 2010a; Woldeselassie et al., 

2012). The combination of stand age, structural and design characteristics could explain 56-67% 

of variability in SOC increase in the 0-30 cm soil depth. This finding is comparable to other 

studies where the site variables explained about 50-65% of the variability in SOC stock (Grigal 

and Ohmann, 1992; Hontoria et al., 1999). The unexplained variability is attributed to within-site 

SOC variability and measurement errors (Hontoria et al., 1999). In the 30-50 cm layer, only 33 

% of the variability could be explained, perhaps due to the increased variability in SOC content 

of the deeper horizons (Kravchenko and Robertson, 2011). 

4.7 Conclusions 

Shelterbelts, as an agroforestry system, show significant potential for the sequestration of 

soil C compared to agricultural cropping systems. All six shelterbelt species showed net gains in 

SOC compared to agricultural fields; however, hybrid poplar showed the highest SOC 

sequestration potential. The shelterbelt stand characteristics such as tree height, diameter and 

crown width accounted for 56-67% of the within-site variability in SOC sequestration potential; 

however, there is still a need for further research into the effect of soil, climatic and management 

factors on the soil C sequestration potential of agroforestry systems in order to better exploit 

their potential for mitigating GHGs. A major portion of SOC was sequestered in the subsurface 

soil layers (10-30 cm), thus underscoring the importance of including deeper soil horizons in the 

determination of C sequestration potential of agroforestry systems. Younger shelterbelts tended 

to show a loss in soil C, indicating that major benefits of soil C sequestration under the 

shelterbelts may only be achieved at decadal time scales. 
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Quantification of SOC stocks under shelterbelt trees is necessary to complement the 

aboveground and belowground biomass C stock estimates in order to determine the full potential 

of shelterbelts as a strategy for carbon sequestration. This study indicates that soil and litter C 

stocks can significantly contribute to the overall C sequestration potential of shelterbelt systems, 

and can play an important role in offsetting the GHG emissions due to agricultural practices in 

Canada. 
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5. LIGHT AND HEAVY FRACTION DISTRIBUTION OF SOIL 

CARBON IN SASKATCHEWAN SHELTERBELTS3 

5.1 Preface 

In Chapter 4, the ability of shelterbelts to increase soil organic carbon (SOC) 

accumulation compared to adjacent agricultural fields was determined. However, tree-based 

agroforestry systems, such as shelterbelts, may affect not only the accumulation of SOC, but also 

its stabilization and dynamics, which are associated with long-term SOC sequestration potential. 

In this chapter, the effect of shelterbelts on long-term physical stabilization of SOC was studied 

by using the density fraction technique. The SOC pools associated with labile uncomplexed 

organic debris (called light fraction) and mineral-stabilized organic matter (called heavy fraction) 

were determined and compared for shelterbelts and adjacent agricultural fields.  

 

                                            
 
3 This chapter, co-authored with Dr. Ken Van Rees, has been submitted for publication to Soil Science Society of 
America Journal. While the data analysis and manuscript writing were carried out by the lead author (Gurbir Singh 
Dhillon), editing and review of manuscript was completed by the co-authors. 
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5.2 Abstract 

Agroforestry systems play an important role in sequestration of carbon (C), in order to 

reduce atmospheric carbon dioxide (CO2) levels and combat climate change. However, the extent 

of long-term C sequestration will depend on physical stabilization of the sequestered C. The 

objective of this study was to characterize the effect of shelterbelts on soil organic carbon (SOC) 

distribution in the density fractions compared to agricultural fields. Soil samples were collected 

for six major shelterbelt species and adjacent agricultural fields, and separated into light- and 

heavy fractions using sodium iodide solution (NaI, density = 1.6 g cm-3) and were measured for 

organic C concentration. There was an increase in SOC content of the labile light fraction as well 

as the stable heavy fraction for shelterbelts compared to agricultural fields. The SOC 

concentration for shelterbelts increased by 71% for the light fraction and 22% for the heavy 

fraction. The majority of SOC added at the 0-10 cm soil depth was in the form of labile light 

fraction (92%), while the heavy fraction contributed to 70% of the increase in SOC stocks at the 

10-30 cm soil depth. The increase in the light fraction C stocks was higher for coniferous 

species, white spruce and Scots pine, and accounted for about 50% of the increase in SOC stocks 

under these species. In contrast, hardwood species showed a higher increase in the mineral-

associated heavy fraction, and only 28-31% of the total increase in SOC stocks was in the form 

of the light fraction for hardwood species. This trend was attributed to differences in the amount 

and quality of litter between coniferous and hardwood species. This study concluded that the 

presence of shelterbelts enhances SOC stocks of uncomplexed plant-derived debris as well as 

mineral-associated organic matter, thus improving storage and stabilization of soil C. 

5.3 Introduction 

Soils are the largest reservoir of organic carbon (C) in terrestrial ecosystems, and contain 
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about twice the amount of C present in the atmosphere (Post et al., 1982). As such, soil organic 

carbon (SOC) plays an important role in the global carbon cycling, representing an important 

strategy in the mitigation of atmospheric greenhouse gas (GHG) emissions (Lal, 2004b; Smith et 

al., 2008). Small fluctuations in the SOC pool can have a dramatic impact on atmospheric carbon 

dioxide (CO2) concentration levels and global climate change (Baldock, 2007; Smith et al., 

2008). Many recent studies have focused on sequestration of C in soils through land-use change 

and management practices (Dumanski et al., 1998; Post and Kwon, 2000; Follett, 2001). 

Improved land management practices are estimated to sequester up to 150 Pg CO2-C over the 

next century (Baldock, 2007). However, there is considerable uncertainty in our understanding of 

key factors that regulate the cycling, dynamics and storage of C in soils, thus limiting our ability 

to predict long-term C sequestration potential of soils. 

Organic C in soils occurs in the form of a diverse range of naturally occurring organic 

molecules, which may vary in size and complexity from simple monomers to mixtures of 

biopolymers (Piccolo, 2002; Sutton and Sposito, 2005). Strong heterogeneity in the physical and 

chemical form and functions of these organic compounds makes it challenging to estimate the 

turnover times and stabilization processes associated with soil organic matter (SOM). In order to 

overcome the problem posed by SOM heterogeneity, SOM is divided into distinct pools, which 

are linked to different structural or functional components of organic matter (OM) within the 

soil, and thereby, to different rates of biological turnover (Wander, 2004; von Lützow et al., 

2007). These pools generally include an active, labile pool with a residence time of a few months 

to years and a passive, recalcitrant pool with a residence time in the order of decades (Schimel et 

al., 1994; Torn et al., 2009). Reliable estimation of C dynamics in soils requires the analytical 

determination of these conceptual OM pools and the stabilization processes associated with them 
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(von Lützow et al., 2007). 

Major processes of OM stabilization include inherent biochemical recalcitrance of OM to 

microbial degradation, and physical stabilization of OM through association with silt and clay 

minerals and through encapsulation within the soil micro aggregates (Sollins et al., 1996; Six et 

al., 2002). Recent studies have indicated that SOM decomposition is primarily controlled by 

spatial disconnection of OM from decomposers and their degradative enzymes, while the 

molecular structure of the OM plays a secondary role in determining its turnover (Mikutta et al., 

2006; von Lützow et al., 2006). Physical fractionation of soil emphasizes the role of spatial 

arrangement of SOM and its association with inorganic mineral particles in regulating the 

decomposition of OM by controlling its accessibility to microorganisms (Elliott and 

Cambardella, 1991; Christensen, 2001). Organo-mineral complexes involving the interaction of 

OM with mineral surfaces and metal ions are considered the most important mechanism for the 

stabilization of OM in soils (Mikutta et al., 2006; Lorenz and Lal, 2014). The density 

fractionation technique involves the physical separation of SOM into a low-density fraction 

composed of partly decomposed plant debris (called light fraction) and a heavy-density fraction 

composed of organic matter adsorbed on the mineral surfaces or entrapped within organo-

mineral microaggregates (called heavy fraction) (Christensen, 1992). The light fraction (LF) 

decomposes rapidly compared to the heavy fraction (HF), primarily due to the lack of protection 

by inorganic colloids (Spycher et al., 1983; Boone, 1994). Dalal and Mayer (1986) observed 2 to 

11 times greater loss of organic C from light- compared to heavy fraction under a continuously 

cultivated cereal cropping system. However, the light fraction plays an important role in the 

cycling of nutrients and maintenance of soil productivity (Janzen et al., 1992; Haynes, 2005). 

The heavy fraction, on the other hand, is stabilized by complexation with mineral-surfaces and 
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forms a major component of the old, recalcitrant OM pool in the soils (Gregorich et al., 1996). 

Isolation and quantification of these C pools and their dynamics can help determine the effects of 

land management practices on soil C sequestration potential as well as its quality and fertility. 

Agroforestry systems are suggested to have a high potential to accumulate C in soils due 

to increased input of litter associated with aboveground foliage and deep root systems (Nair et 

al., 2009b; Lorenz and Lal, 2014). Thus, agroforestry systems are considered as one of the major 

strategies for soil C sequestration and mitigation of greenhouse gases within agroecosystems 

(Nair et al., 2009a, 2010). Nevertheless, in order to determine their long-term soil C 

sequestration potential, the influence of agroforestry systems on the stabilization of SOC, along 

with its storage and accumulation, needs to be studied. Stability of SOC is affected by quantity 

and quality of litter inputs (Prescott et al., 2000; Lorenz and Lal, 2005) as well as diversity and 

abundance of soil microorganisms and macrofauna (González and Seastedt, 2001; 

Hättenschwiler et al., 2005; Hedde et al., 2007), which, in turn, are influenced by the 

incorporation of trees (DeBellis et al., 2006; Lamarche et al., 2007; Laganière et al., 2009). 

Planting trees also improves soil physical properties such as soil aggregation, which may 

enhance stabilization of SOC (Blanco-Canqui et al., 2007; Sarkhot, et al., 2008). Few studies 

have determined the effect of tree establishment on labile and stable C pools, and while some 

studies report a significant increase in only the labile C pools (Leite et al., 2014; Baah-

Acheamfour et al., 2015); other studies have suggested an increase in the stable C pools (Garten, 

2002; Teklay and Chang, 2008; Youkhana and Idol, 2011). Overall, the contribution of different 

physical and chemical processes for stabilization of C in soils under agroforestry systems is not 

well understood (Jastrow et al., 2006; Lorenz and Lal, 2014). The determination of the 

distribution of SOM in soil particle and density fractions can help us to improve our 
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understanding of the influence of agroforestry practices on the stabilization of SOM. 

This study is based on the hypothesis that the plantation of shelterbelts will influence the 

stabilization of SOM through organo-mineral associations, because of the differences in quantity 

and quality of litter inputs for shelterbelts compared to the agricultural fields. The objective, 

therefore, of this study is to determine the effect of hardwood and coniferous shelterbelt species 

on the storage and stabilization of SOC pools through the quantification of C stored in light- and 

heavy density fractions of whole soil. 

5.4 Materials and Methods 

5.4.1 Site selection and sampling procedure 

Soil sampling was performed for six major shelterbelt species - green ash (Fraxinus 

pennsylvanica), hybrid poplar (Populus spp.), Manitoba maple (Acer negundo), white spruce 

(Picea glauca), Scots pine (Pinus sylvestris) and caragana (Caragana arborescens). A total of 59 

sites were sampled for the study including 10 sites for hybrid poplar, Manitoba maple and 

caragana, 11 sites for Scots pine and 9 sites for green ash and white spruce shelterbelts. Selection 

of sampling sites and procedure of soil sampling at each site have been described in Chapter 4. 

5.4.2 Laboratory analyses 

The density fractionation technique was used to separate the light- and heavy fractions 

from the whole soil, using the process described in Janzen et al. (1992). Briefly, 10 g of coarsely 

ground (< 2mm) soil was added to a centrifuge tube along with 40 ml of sodium iodide (NaI) 

solution. The specific density of NaI solution was 1.6 g cm-3, as recommended by Cerli et al. 

(2012). The tubes were shaken on a shaker for 30 minutes and then centrifuged at 3000 rpm for 

10 minutes in order to accelerate the sedimentation of heavy particles. The light fraction, 

suspended on the surface of the solution, was aspirated together with the solution and filtered 
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using a fiberglass filter (Whatman GF/A, 47 mm dia.). This process was repeated until there was 

no more light fraction suspended in the solution, indicating that the light and heavy fractions had 

separated completely. The light and heavy fractions were washed with 50 ml of 0.01 M CaCl2, 

followed by 50 ml of deionized water and dried at 60o C for 48 hours and, the dry weights of 

light and heavy fractions were taken.  Heavy fraction samples were treated with HCl fumes to 

remove soil carbonates, according to the HCl-fumigation procedure (described in Dhillon et al., 

2015). Following the removal of carbonates, heavy fraction samples were analyzed for organic C 

content using an automated C632 LECO analyzer (LECO Corporation, St. Joseph, MI, USA). 

The light fraction samples were also analyzed for organic C content using C632 LECO analyzer; 

however, the HCl-fumigation pretreatment was not applied to the light fraction samples, since 

their carbonate content is assumed to be negligible. Carbon content (g C kg-1 of the fraction) of 

the fractions and their mass percentage (%) in the whole soil was used to determine SOC 

concentration (g C kg-1 of soil) and SOC stocks (Mg C ha-1) within the light- and heavy fractions. 

A weighted average of soil parameters (light and heavy fraction mass and C concentration) for 

the whole soil profile (0-50 cm soil depth) was calculated based on the C (or mass) content of the 

individual soil layers (0-5, 5-10, 10-30 and 30-50 cm). 

5.4.3 Statistical analysis 

Two-way mixed analysis of variance (ANOVA) procedure was used to determine the 

differences between shelterbelts and fields, with the land cover (i.e. shelterbelts vs. agricultural 

fields) analyzed as within-subject factor. In the presence of a significant interaction, simple main 

effects were considered. One-way analysis of covariance (ANCOVA) was used to determine the 

effect of shelterbelt species on increase in light and heavy fraction C stocks, with the increase in 

SOC mass taken as a covariate. Post-hoc analysis was performed by using Fisher’s LSD. A p-
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value of 0.1 was used to signify statistical significance. This was done in order to reduce the risk 

of type II error due to the presence of significant natural within-site variation. Statistical analysis 

was performed using IBM SPSS Statistics version 23 (IBM Inc., Armonk, NY, USA). 

5.5 Results 

5.5.1 General distribution of density fractions in the bulk soil 

Characteristics of density fractions in the bulk soil associated with sampling depths are 

listed in Table 5.1. On average, the masses of light and heavy fractions accounted for 4.4% and 

91.3% of the dry soil mass, respectively throughout the soil profile (0-50 cm). Averaged across 

both land covers (i.e. shelterbelts and agricultural fields), percentage mass of light fraction 

decreased with soil depth from 8.6% at 0-5 cm to 1.9% at 30-50 cm, while the percentage mass 

of heavy fraction increased from 86.9% at 0-5 cm to 93.8% at 30-50 cm. Similarly, the C content 

(g C kg-1 of fraction) of both fractions decreased with soil depth (Table 5.1). However, C content 

of the light fraction was significantly higher than the heavy fraction at all depths (p <0.001; 

Table 5.1). On average, the C content of the light fraction was 60 g C kg-1, while the C content of 

heavy fraction was 16 g C kg-1 across all land covers and soil depths. Average recovery of SOC 

in the density fractions was 94% across all soil depths and shelterbelt species. The majority of 

the OC in the soil was contained in the heavy fraction at all soil depths (Fig. 5.1). Light fraction 

C was higher in the surface soil layers compared to the deeper layers. Across both land covers, 

heavy fraction C accounted for 68% of the total SOC concentration at 0-5 cm depth, 74% at the 

5-10 cm depth, 78% at 10-30 cm depth and 86% at 30-50 cm depth. Light fraction C accounted 

for 27%, 20%, 16% and 8% of the total SOC concentration at the 0-5, 5-10, 10-30 and 30-50 cm 

soil depths, respectively. 
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Table 5.1 Mean C content and % mass of density fractions of soil organic matter by soil depth 
for shelterbelts and adjacent agricultural fields averaged across all species. 

Depth (cm) Land cover Light fraction Heavy fraction 
C content† % Mass C content† % Mass 

0-5 Shelterbelt 130.7 (8.8) a‡  9.5 (0.3) a 31.6 (1.6) a 86.2 (0.4) a 
Field 82.7 (4.6) b 7.7 (0.2) b 26.6 (1.3) b 87.6 (0.2) b 

5-10 Shelterbelt 82.2 (5.2) a 8.5 (0.3) a 26.5 (1.5) a 87.4 (0.3) a 
Field 66.9 (3.5) b 7.1 (0.2) b 22.4 (1.2) b 88.8 (0.3) b 

10-30 Shelterbelt 63.3 (5.9) a 5.8 (0.2) a 18.6 (1.1) a 89.9 (0.3) a 
Field 52.2 (2.7) b 4.3 (0.2) b 13.2 (0.7) b 91.5 (0.2) b 

30-50 Shelterbelt 51.1 (4.2) a 2.0 (0.1) a 10.3 (0.5) a 93.6 (0.2) a 
Field 44.1 (3.2) b 1.8 (0.1) a 9.7 (0.4) b 94.0 (0.2) a 

† C content was measured in g C kg-1 of the density fraction  
‡ Values with same letters within a column at each soil depth are not significantly different at p < 
0.1. 
 

5.5.2 Effect of shelterbelts on density fractions 

Significant differences were observed among shelterbelts and agricultural fields with 

respect to mass distribution as well as C content (g C kg-1 of fraction) of the light- and heavy 

fractions down the soil profile (Table 5.1). In terms of mass percentage of whole soil, shelterbelts 

had a higher amount of light fraction but lower amounts of heavy fraction compared to the 

agricultural fields down to a 30 cm soil depth (Table 5.1). However, there was a significant 

increase in the C content of both fractions (light and heavy) under the shelterbelts compared to 

agricultural fields down the soil profile. Mean C content increased by 26 and 24% for the light 

and heavy fractions, respectively under the shelterbelts compared to the agricultural fields.  

The SOC concentration of both density fractions was higher for shelterbelts compared to 

agricultural fields at all depths (Fig. 5.1). Averaged across the whole profile, shelterbelts had 

71% more C in the light fraction and 22% more C in the heavy fraction compared to the 

agricultural fields. The increase in the light fraction C was higher at the top of the soil profile 

compared to the deeper layers (Fig. 5.1). At 0-5 cm soil depth, SOC in the light fraction was 



 
 

 
 

80 

115% (7.3 g kg-1) higher in the shelterbelts compared to the adjacent agricultural fields across all 

the sites. Moving down the soil profile, the increase in light fraction C was less pronounced at 5-

10 (51%; 2.4 g kg-1), 10-30 (61%; 1.3 g kg-1) and 30-50 cm (30%; 0.2 g kg-1) soil depths. Heavy 

fraction SOC increased under the shelterbelts compared to agricultural fields by 16% at 0-5 and 

5-10 cm soil depths (3.7 and 3.2 g kg-1, respectively), 39% at 10-30 cm depth (4.7 g kg-1) and 7% 

at 30-50 cm soil depth (0.6 g kg-1; Fig. 5.1). 
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Fig. 5.1 Mean SOC concentrations (g kg-1) in the light- and heavy fractions of soil under 
shelterbelts and agricultural fields at the 0-5, 5-10, 10-30, and 30-50 cm soil depths. Bars with 
the same letter within a soil depth are not significantly different at p < 0.1. 
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Fig. 5.2 Distribution of SOC in the light- and heavy fractions (bottom axis) and proportion of 
light fraction C in the total SOC (top axis) under shelterbelt species (HP- Hybrid poplar; WS – 
White spruce; GA – Green ash; MM – Manitoba maple; CR- Caragana; SP – Scots pine). SOC 
concentration (g kg-1) represents the weighted average of SOC concentrations at 0-5, 5-10, 10-30 
and 30-50 cm soil depths. Error bars indicate standard error. Bars with the same letter within a 
fraction are not significantly different at p < 0.1. 
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The amount of SOC stored in density fractions varied with the shelterbelt species (Fig. 

5.2). Green ash and hybrid poplar had significantly higher SOC concentration compared to white 

spruce, Scots pine, Manitoba maple and caragana in the heavy fraction, while hybrid poplar, 

white spruce, green ash and Scots pine had significantly higher SOC concentration in the light 

fraction compared to Manitoba maple and caragana shelterbelts. Relative proportion of SOC 

stored in light fraction was higher for white spruce and Scots pine shelterbelts (22 and 20%, 

respectively), compared to hybrid poplar (19%), Manitoba maple (16%), green ash (16%) and 

caragana (14%) shelterbelts (Fig. 5.2). The increase in light- and heavy fraction C concentrations 

under the shelterbelts compared to agricultural fields also differed with shelterbelt species (Figs. 

5.3 and 5.4; Table 5.2). The increase in light fraction SOC for shelterbelts compared to 

agricultural fields, was significantly higher for hybrid poplar, white spruce and Scots pine 

shelterbelts compared to the other species at the surface layer (0-5 cm; Fig. 5.3). In the 

subsurface layers, differences in increase of light fraction SOC between species were not 

statistically significant. Increase in heavy fraction SOC for shelterbelts, compared to adjacent 

agricultural fields, was significantly higher for hybrid poplar than green ash, Manitoba maple 

and caragana species at 0-5 and 10-30 cm soil depths (Fig. 5.4). 
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Fig. 5.3 Difference in SOC concentration (g kg-1) of the light fraction of different shelterbelt 
species (HP- Hybrid poplar; WS – White spruce; GA – Green ash; MM – Manitoba maple; CR- 
Caragana; SP – Scots pine) compared to adjacent agricultural fields at 0-5, 5-10, 10-30, and 30-
50 cm soil depths. Species with same letter are not significantly different at p < 0.1. 
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Fig. 5.4 Difference in SOC concentration (g kg-1) of the heavy fraction of different shelterbelt 
species (HP- Hybrid poplar; WS – White spruce; GA – Green ash; MM – Manitoba maple; CR- 
Caragana; SP – Scots pine) compared to adjacent agricultural fields at 0-5, 5-10, 10-30, and 30-
50 cm soil depths. Species with same letter are not significantly different at p < 0.1.  
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Table 5.2 SOC concentration (g kg-1) of light and heavy fractions at the 0-5, 5-10, 10-30 and 30-
50 cm soil depths as affected by land cover and species of shelterbelt plantation.  

Species Land cover 
Soil Depth (cm) 

0-5  5-10  10-30  30-50  
–––––––––––––––––––––––––– Light Fraction–––––––––––––––––––––––––– 

Hybrid Poplar Shelterbelt 17.4 (3.1) 
a† 10.2 (1.3) a 4.6 (0.4) a 0.9 (0.1) a 

Field 6.7 (0.7) b 5.5 (0.8) b 2.4 (0.3) b 0.6 (0.1) b 

White Spruce Shelterbelt 23.1 (5.8) a 7.7 (1.3) a 3.4 (0.4) a 1.1 (0.2) a 
Field 7.8 (0.9) b 4.9 (0.6) b 1.7 (0.3) b 0.8 (0.2) b 

Green Ash Shelterbelt 11.1 (2.1) a 8.3 (1.5) a 4.8 (0.6) a 1.1 (0.2) a 
Field 9.0 (0.4) a 7.3 (0.4) a 3.4 (0.4) a 0.8 (0.1) a 

Manitoba 
maple 

Shelterbelt 9.1 (1.7) a 4.7 (0.6) a 2.7 (0.3) a 0.9 (0.1) a 
Field 6.2 (0.9) a 4.1 (0.5) a  2.1 (0.2) a 0.8 (0.1) a 

Caragana Shelterbelt 5.6 (1.2) a 3.7 (0.7) a 1.6 (0.2) a 0.6 (0.1) a 
Field 2.9 (0.3) b 2.2 (0.1) b 1.2 (0.1) b 0.4 (0.04) a 

Scots Pine Shelterbelt 16.3 (2.8) a 8.7 (1.8) a 4.1 (0.6) a 1.0 (0.2) a 
Field 5.9 (0.4) b 4.7 (0.4) b 2.4 (0.2) b 0.7 (0.1) b 

–––––––––––––––––––––––––– Heavy Fraction–––––––––––––––––––––––––– 

Hybrid Poplar Shelterbelt 32.8 (3.3) a 30.2 (2.1) a 21.6 (1.5) a 11.6 (1.3) a 
Field 23.7 (1.9) b 22.1 (2.1) b 12.7 (1.5) b 9.1 (1.0) b 

White Spruce Shelterbelt 32.0 (3.2) a 21.5 (3.1) a 14.5 (1.5) a 10.1 (1.5) a 
Field 26.8 (2.8) b 20.9 (2.7) a 9.1 (1.4) b 8.8 (1.6) a 

Green Ash Shelterbelt 33.7 (3.0) a 32.0 (3.0) a 23.6 (2.6) a 10.2 (0.7) a 
Field 33.8 (1.7) a 30.6 (1.2) a 18.8 (2.0) b 10.3 (0.6) a 

Manitoba 
maple 

Shelterbelt 23.3 (1.7) a 19.4 (2.0) a 13.6 (1.2) a 8.4 (0.5) a 
Field 21.8 (1.6) a 17.6 (1.7) a 11.2 (0.9) a 8.3 (0.6) a 

Caragana Shelterbelt 16.4 (2.5) a 12.4 (1.6) a 9.5 (0.8) a 8.6 (0.9) a 
Field 12.0 (1.3) b 9.5 (0.4) b 8.0 (0.5) a 8.8 (0.7) a 

Scots Pine Shelterbelt 25.1 (1.6) a 23.5 (2.6) a 17.7 (2.1) a 9.2 (0.9) a 
Field 22.8 (1.5) b 19.3 (1.5) a 12.7 (0.9) b 9.2 (1.1) a 

†Values with same letters within a column and shelterbelt species group are not significantly 
different at p < 0.1. 
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Table 5.3 Organic carbon stocks (Mg ha-1) of the light fraction (a) and heavy fraction (b) at 0-10, 
10-30 and 30-50 cm soil depths under the shelterbelts and agricultural fields for different 
shelterbelt species. Numbers in parenthesis represent standard error. 

a) Light fraction 

Species† 
Soil Depth (cm) 

0-10 10-30 30-50 
Shelterbelt Field Shelterbelt Field Shelterbelt Field 

HP 12.3 (1.5) a‡ 6.8 (0.7) b 10.8 (0.9) a 6.4 (0.8) b 6.1 (3.8) a 5.2 (3.5) b 
WS 13.2 (2.2) a 6.8 (0.7) b 7.6 (1.1) a 4.2 (0.7) b 2.9 (0.4) a 2.2 (0.5) b 
GA 9.2 (1.3) a 8.4 (0.5) a 11.9 (1.5) a 8.5 (1.0) a  2.8 (0.4) a 2.2 (0.2) a 
MM 7.6 (1.1) a 5.8 (0.6) a 7.0 (0.9) a 5.7 (0.5) a 2.4 (0.2) a 2.3 (0.2) a 
CR 4.6 (0.8) a 3.2 (0.2) b 4.2 (0.5) a 3.2 (0.3) b 1.6 (0.2) a 1.3 (0.1) a 
SP 11.7 (2.0) a 6.2 (0.4) b 10.1 (1.5) a 6.3 (0.5) b 2.7 (0.4) a 2.0 (0.3) a 

 

b) Heavy fraction 

Species† 
Soil Depth (cm) 

0-10 10-30 30-50 
Shelterbelt Field Shelterbelt Field Shelterbelt Field 

HP 28.8 (2.0) a‡ 25.9 (2.1) a 51.3 (3.6) a 33.5 (3.7) b 31.7 (3.2) a 25.8 (2.9) b 
WS 23.9 (2.6) a 25.5 (2.8) a 31.9 (3.8) a 23.0 (3.2) b 25.7 (3.6) a 23.4 (4.2) a 
GA 31.9 (1.9) a 33.1 (1.4) a 58.5 (6.6) a 46.6 (4.9) a 26.5 (1.7) a 27.5 (1.8) a 
MM 23.7 (2.1) a 22.4 (1.6) a 35.5 (3.7) a 30.6 (2.2) a 23.3 (1.2) a 22.9 (1.4) a 
CR 14.6 (1.7) a 13.1 (1.0) a 24.7 (1.8) a 22.1 (1.1) a 24.7 (2.6) a 26.1 (2.1) a 
SP 23.2 (1.6) a 24.8 (1.7) a 43.8 (4.9) a 34.0 (2.5) b 24.5 (2.2) a 25.4 (3.1) a 

† Abbreviations: HP- Hybrid poplar; WS – White spruce; GA – Green ash; MM – Manitoba 
maple; CR- Caragana; SP – Scots pine 
‡Values with same letters within a row at each soil depth are not significantly different at p < 
0.1. 
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5.5.3 Contribution of density fractions to increase in SOC stocks 

On average, there was an increase of 18.6 Mg ha-1 of SOC for the shelterbelts compared 

to agricultural fields, as described in Chapter 4. Light and heavy fractions accounted for 7 Mg ha-

1 (38%) and 10.4 Mg ha-1 (56%) of the increase in SOC stocks under shelterbelts, respectively 

(Table 5.3). Light fraction C was especially important in the surface layer, where it accounted for 

92% of the total increase in C stocks (Fig. 5.5). At the 10-30 cm soil depth, heavy fraction C 

increased more than the light fraction C, such that only 22% of the increase in C stocks was in 

the form of the light fraction and 70% of the increase in C stocks was in the form of the heavy 

fraction. At 30-50 cm soil depth, there was no significant difference in the increase of light and 

heavy fraction C stocks, and the light and heavy fractions contributed to 37 and 60% of the 

increase in SOC stocks, respectively. 

The effect of shelterbelts species on the change in heavy and light fraction C stocks was 

determined using ANCOVA analysis, after controlling for the difference in SOC stock among 

species (Table 5.4). Results indicated a statistically significant difference between shelterbelt 

species for the change in light (F (5,52)=4.138, p=0.003) and heavy (F (5,52)=5.885, p <0.001) 

fraction C stocks. Estimated marginal means (EMM) suggested a higher increase in the light 

fraction C stocks for white spruce and Scots pine shelterbelts compared to other shelterbelt 

species, for equivalent increase in SOC stocks (Table 5.4). In contrast, the increase in heavy 

fraction C stocks was higher for hybrid poplar, green ash, Manitoba maple and caragana species, 

compared to white spruce and Scots pine, for equivalent increase in SOC stocks. These results 

were also supported by the relative proportion of C sequestered in light and heavy fractions 

under different shelterbelt species (Table 5.4). The light fraction accounted for 50, 49 and 48% 

of the total increase in SOC stocks for Scots pine, white spruce and caragana, respectively; 



 
 

 
 

89 

however, the light fraction to total SOC sequestered was lower for green ash (31%), hybrid 

poplar (29%) and Manitoba maple (29%). 

 

Fig. 5.5 Contribution of the light and heavy fractions to increase in SOC stocks (Mg ha-1) at the 
0-10, 10-30, and 30-50 cm soil depths across all shelterbelt species. Error bars indicate standard 
error. Bars with the same letter for a given soil depth are not significantly different at p < 0.1.  
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Table 5.4 Mean increase in organic carbon (OC) stocks (Mg ha-1) of light and heavy fractions, 
and whole soil and estimated marginal means (EMM) of increase in light and heavy fraction C 
for different shelterbelt species, estimated for an equivalent increase in SOC stocks. Numbers in 
parenthesis represent standard error. 

Species† Light fraction Heavy fraction Whole soil 
Mean EMM Mean EMM Mean % LF 

HP 10.8 (2.1) 5.6 (1.1) a‡ 26.5 (5.7) 13.8 (1.2) a‡ 37.9 (8.1) 28.5 
WS 10.4 (2.8) 9.8 (1.1) b 9.5 (5.1) 7.8 (1.2) b 21.1 (7.6) 49.3 
GA 4.8 (3.6) 5.7 (1.1) a 9.6 (9.2) 11.7 (1.2) a 15.4 (13.3) 31.0 
MM 3.3 (2.3) 5.2 (1.0) a 6.7 (6.2) 11.5 (1.1) a 11.5 (8.5) 28.5 
CR 2.8 (1.2) 6.3 (1.0) a 2.7 (4.0) 11.2 (1.1) a 5.8 (5.5) 48.2 
SP 9.9 (3.5) 9.6 (1.0) b 7.4 (6.6) 6.5 (1.1) b 20.0 (10.9) 49.8 

† Abbreviations: HP- Hybrid poplar; WS – White spruce; GA – Green ash; MM – Manitoba 
maple; CR- Caragana; SP – Scots pine  
‡Values of EMM with same letters within a column for light and heavy fractions are not 
significantly different at p < 0.1. 

5.6 Discussion 

5.6.1 General characteristics of light and heavy fractions 

The light fraction accounted for 10-27% of the SOC content for the shelterbelts and 9-

19% of the SOC content for the agricultural fields (Table 5.3). These results are within the range 

of values reported in the literature for soils under permanent vegetation (15-40%; Christensen, 

2001) and for arable soils (9-24%; Bremer et al., 1994), respectively. Carbon content of the light 

fraction was higher compared to heavy fraction across all land use and depths. This observation 

is also consistent with previous studies (Spycher et al., 1983; Teklay and Chang, 2008) and 

reflects the higher proportion of C-depleted metabolic products of microbial decomposition in 

the heavy fraction (Baisden et al., 2002). Average recovery of the soil C during density 

fractionation was 94% across all treatments. Incomplete recovery of soil C during the 

fractionation procedure may be due to the loss of soluble organic compounds in the discarded 

filtrate during repeated washing (Cerli et al. 2012) and complex formation between organic 
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matter and the iodide (I-) anion of the NaI solution, which also may lead to loss of SOM 

(Conceição et al., 2007). 

5.6.2 Effect of shelterbelts on light and heavy fraction C 

Shelterbelts led to a greater accumulation of SOC in the light- as well as heavy fraction 

compared to agricultural fields (Tables 5.2 and 5.3). The increase in the light fraction C is due to 

higher litter input for shelterbelts (Lorenz and Lal, 2014), which is the source of uncomplexed 

plant debris constituting the light fraction. Other studies have reported a similar increase in the 

light fraction C following increased additions of organic material to the soil as a result of 

practices such as no-tillage, residue management and tree mulching (Paulis, 2007; Youkhana and 

Idol, 2011). Accumulation of light fraction C under shelterbelts may also be due to conditions 

favoring reduced decomposition of plant detritus such as lack of soil disturbance due to practices 

such as tillage (Dick et al., 1998; West and Post, 2002) and differences in litter quality and 

microclimate (Mungai and Motavalli, 2006) compared to agricultural fields. An increase in C 

stocks of the heavy fraction represents increased complexation of organic matter with the soil 

minerals under the shelterbelts compared to agricultural fields. These results are in agreement 

with the studies by Youkhana and Idol (2011) and Garten (2002), who reported an increase in 

mineral-associated C pools in response to planting of trees. Increases in mineral-associated 

organic matter can be attributed to diffusion of fine organic particles, formed during the 

enzymatic breakdown of plant material, into soil pores and their adsorption on mineral surfaces 

(Leifeld and Kögel-Knabner, 2005). Additionally, oxidative degradation and solubilization of 

plant litter produces dissolved organic matter (DOM), which passes through the soil profile and 

adsorbs onto the reactive mineral surfaces to form mineral-associated organic matter (Kaiser and 

Guggenberger, 2000).  
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The relative increase of light fraction C for the shelterbelts was greater compared to 

heavy fraction C, both in terms of C concentration (LF 71%, HF 22%; Table 5.2) and C stocks 

(LF 48%, HF 13%; Table 5.3). This is in agreement with other studies, which reported that the 

light fraction C is more responsive to land use and management changes, compared to the stable 

fraction or bulk soil (Janzen et al., 1992; Bremer et al., 1994; Gregorich, et al., 2006). However, 

organic C in the light fraction decomposes quickly and has a relatively short residence time 

compared to mineral-associated organic C in the heavy fraction (Christensen, 1996). The 

importance of reactive soil minerals phases such as aluminum (Al) and iron (Fe) oxyhydroxides 

for the stabilization of organic matter has been demonstrated through incubation experiments 

(Jones and Edwards, 1998; Miltner and Zech, 1998). Whalen et al. (2000) observed negligible 

mineralization of C from the mineral-associated component of cultivated and forest soils, 

indicating that the heavy fraction of soils could be a major sink for C storage in soils. 

Consequently, increases in C stocks of the heavy fraction under shelterbelts represent more 

stable, long-term sequestration of atmospheric C in soils (Table 5.3). In contrast, C sequestered 

in the light fraction C may be lost rapidly in response to future changes in climate (Garten Jr. et 

al., 1999) and land use or management practices (Bremer et al., 1994; Post and Kwon, 2000). 

Nevertheless, despite the dynamic nature and shorter turnover time of the labile C pool (months 

to a few years), it plays an important role in rapid accumulation of soil C especially in low-

quality, coarse textured soils (Garten, 2002; Baah-Acheamfour et al., 2015) as well as in cycling 

of nutrients and as source of energy for soil organisms (Janzen et al., 1992; Haynes, 2005). 

5.6.3 Distribution of light and heavy fraction C with soil depth and shelterbelt species 

The light fraction accounted for a larger proportion of SOC in the surface layers 

compared to deeper layers under both land use systems (Fig. 5.1). Similar observations regarding 
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the distribution of light- and heavy fractions have been made by other studies such as Janzen et 

al. (1992) and Spycher et al. (1983) for agricultural and forest soils, respectively. This trend is 

attributed to the distribution of plant detrital inputs through the soil profile (Spycher et al., 1983). 

Similarly, SOC sequestered under shelterbelts was dominated by the contribution from the light 

fraction C in the surface layers, and the heavy fraction C in the deeper layers (Fig. 5.5), 

indicating different sources and mechanisms of SOC accrual in the surface and deeper layers. 

Tree litter is the primary C input at the surface layers, while the subsurface layers are dominated 

by C inputs through root-derived compounds and rhizodeposition (Rasse et al., 2005; Lorenz and 

Lal, 2014). Close association of root-derived products with the soil mineral matrix tends to 

enhance their physical interaction and stabilization (Oades, 1995). Root-derived organic acids 

are also readily sorbed onto soil mineral phase due to the negative charge associated with their 

functional groups (Jones, 1998). Subsurface horizons, with comparatively low organic matter 

content, have higher available specific surface area (SSA) of the minerals, which enhances 

effective adsorption of organic matter at mineral sites (Kaiser and Guggenberger, 2003). A 

combination of these factors may have resulted in a higher contribution of mineral-associated 

components to soil C accrual in the subsurface layers. Increased stability of SOC due to 

adsorption with mineral surfaces, along with maximum C accumulation (as described in Chapter 

4) at the 10-30 cm soil depth, indicates that the subsurface layers may play an important role in 

long-term storage of C under shelterbelts.  

Results of our study suggest that tree species affect the distribution of SOC into physical 

density fractions (Fig. 5.2). This observation is supported by other studies that observed the 

influence of tree species on physicochemical stabilization of C within the size and density 

fractions of soil (Blanco-Canqui et al., 2007; Woldeselassie et al., 2012). The coniferous species, 
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white spruce and Scots pine, led to a higher increase in SOC stocks of the labile light fraction, in 

contrast to hybrid poplar, Manitoba maple, green ash and caragana that led to a higher increase in 

the stable heavy fraction (Table 5.4). Variance in the relative abundance of light- and heavy 

fractions and their contribution to sequestered C under coniferous and hardwood shelterbelts may 

be explained by the differences in the amounts and quality of litterfall inputs within the 

shelterbelt species. The coniferous shelterbelts had a higher density of litter layer compared to 

the broadleaved species, as described in Chapter 4 (Table 4.4). Moreover, the coniferous litter, 

primarily composed of needles and cones, generally has a lower decomposition rate due to its 

acidic nature, complex molecular structure and higher lignin and polyphenol content compared 

to the broadleaf litter (Prescott et al., 2000). These factors may account for lower mineralization 

rates of the coniferous litter, leading to the accumulation of partially decomposed uncomplexed 

organic matter under shelterbelts. In contrast, broadleaf litter decomposes faster compared to the 

coniferous litter (Perry et al., 1987; Laganière et al., 2010b) and hence may produce greater 

dissolved organic carbon (DOC) flux from the surface to deeper soil layers. Hongve et al. (2000) 

observed that the leachate from deciduous litter contained significantly higher concentrations of 

DOC compared to spruce litter. Increased production of DOC facilitates its adsorption on soil-

mineral surfaces, thus contributing to the higher proportion of mineral-associated fraction under 

these species (Woldeselassie et al., 2012). Besides litter quality, other factors may also affect the 

relative abundance of light and heavy fractions. Bu et al. (2012) observed a higher contribution 

of the light fraction C to SOC under coniferous vegetation and attributed it partially to greater 

amounts of fine root biomass under the conifers. Similarly, Laganière et al. (2011) attributed the 

higher proportion of uncomplexed organic matter under black spruce compared to aspen, to 
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microclimatic conditions, such as low temperature, high soil moisture and lower light 

penetration, which constrain microbial decomposition of litter, besides the litter quality. 

5.7 Conclusions 

Our study demonstrates that shelterbelts can increase the storage of SOC within the labile 

light fraction as well as the stable heavy fraction of soil compared to an agricultural field. A 

major portion of the SOC added was in the form of uncomplexed, plant derived debris (i.e. light 

fraction) but there was also a significant increase in the mineral-associated component of OM 

(i.e. heavy fraction) under the shelterbelts. The relative contribution of the density fractions to 

SOC sequestration varied with the shelterbelt species. Partially decomposed, plant-derived 

organic matter constituted a higher component of the SOC accumulated under white spruce and 

Scots pine, suggesting a lower decomposability of the coniferous litter, compared to the 

broadleaved species.  On the other hand, greater SOC storage under hardwood species was 

associated with mineral soils and protected through adsorption to clay surfaces. Results also 

showed that majority of SOC accumulated at 10-30 cm soil depth was stabilized through 

association with minerals, while most of the soil C added in the surface layer (0-10 cm soil 

depth) was in the form of more labile light fraction. This observation underscores the importance 

of subsurface soil layers in long-term sequestration of C in soil. Overall, this study highlights the 

potential benefits of shelterbelts towards mitigation of greenhouse gases and improvement of soil 

quality through the addition of C to soils.
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6. SPECTROSCOPIC INVESTIGATION OF SOIL ORGANIC CARBON 

COMPOSITION UNDER SHELTERBELT AGROFORESTRY 

SYSTEMS

6.1 Preface 

Previous chapters have shown that shelterbelts affect the SOC storage in whole soils 

(Chapter 4) as well as its physical stabilization in light and heavy fractions (Chapter 5). Long-

term stabilization and dynamics of SOC also depends on its inherent chemical stability to 

microbial degradation, which is a function of its molecular and structural composition. 

Shelterbelts may influence the molecular chemistry and chemical stabilization of SOC due to 

difference in litter quality and amount compared to agricultural crops. In this chapter, molecular 

composition of SOC was determined under shelterbelts and agricultural fields by using advanced 

molecular analytical techniques including attenuated total reflectance Fourier transform infrared 

(ATR-FTIR) spectroscopy and synchrotron-based C K-edge X-ray absorption near edge structure 

(XANES) spectroscopy. 
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6.2 Abstract 

While the role of agroforestry systems in increasing soil organic carbon (SOC) storage 

has been studied, insufficient information is available on their effect on the chemical 

composition of SOC. The objective of this study was to determine the functional group 

chemistry of SOC under shelterbelts and compare it to adjacent agricultural fields by using 

attenuated total reflectance Fourier transform infrared (ATR-FTIR) and Carbon K-edge X-ray 

absorption near edge structure (XANES) spectroscopies. ATR-FTIR spectral analysis indicated 

larger proportions of conjugated carboxylic and aromatic carbon (C) groups for hybrid poplar, 

white spruce and caragana shelterbelts, phenolic C for hybrid poplar and Manitoba maple 

shelterbelts and aliphatic and aromatic C for Manitoba maple shelterbelts compared to the 

adjacent agricultural fields. Polysaccharide, ether and alcoholic C functional groups were 

generally lower in shelterbelts compared to agricultural fields, with the exception of hybrid 

poplar species. Analysis by C K-edge XANES spectroscopy showed the accumulation of 

aromatic C, ketones and carbohydrates in the surface soil layer (0-5 cm) under the shelterbelts 

compared to agricultural fields. Pearson correlation analysis indicated that the majority of SOC 

added under the shelterbelts was in the form of plant-derived aromatic, phenolic and carboxylic 

C groups. Results of this study suggested a strong influence of initial litter composition and 

quality on the composition of SOC under the shelterbelts. The higher proportion of microbially 

derived ketones indicated that SOC under shelterbelts was at an advanced stage of 

decomposition in the surface soil layers; potentially due to the differential placement of litter 

within soil profile under shelterbelts and agricultural fields. Overall, this study suggests that the 

incorporation of shelterbelts in agricultural fields leads to significant molecular-level changes in 

the composition of SOC, which may in turn influence SOC turnover rates. 
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6.3 Introduction 

Soil organic carbon (SOC) is composed of diverse and heterogeneous organic substances 

that vary in structure and chemical complexity (Piccolo, 2002; Sutton and Sposito, 2005).  

Biological stability of SOC is dependent on its physical accessibility to microorganisms and their 

degradative enzymes, as well as on its inherent biochemical recalcitrance (Sollins et al., 1996; 

Six et al., 2002). Biochemical recalcitrance is the capacity of SOC to protect against 

decomposition through its chemical structure and it is dependent upon the abundance of 

recalcitrant structural units and their interstructural bond strength (Gleixner et al., 2001; Krull et 

al., 2003). While the role of the chemical structure of SOC in determining its turnover and 

storage has recently been debated (Krull et al., 2003; Schmidt et al., 2011; Dungait et al., 2012), 

it is nevertheless an important factor in regulating the dynamics of C in soil. Agroforestry 

practices, such as shelterbelts, are expected to influence not only the quantity of SOC (Nair et al., 

2009), but also its quality and composition. Incorporation of shelterbelts into agricultural fields 

changes the quality of litter inputs (Lorenz and Lal, 2014), which may persist through the 

decomposition process leading to the differences in the molecular nature of SOM (Wickings et 

al., 2012). Shelterbelts also modify microclimatic conditions such as soil moisture and 

temperature (Kort, 1988; Scholten, 1988; Brandle et al., 2004), which may influence microbial 

decomposition, thus altering SOM composition (Davidson and Janssens, 2006; Hilli et al., 2008). 

Despite the importance of molecular composition in regulating C dynamics and sequestration 

(Krull et al., 2003), there is a lack of information on the effect of agroforestry practices on the 

composition of SOM. 

Chemical and thermal degradative methods, as well as stable isotope techniques have 

been used to obtain information about the chemical composition and turnover rates of SOC 
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(Bernoux et al., 1998; Kögel-Knabner, 2000). Further progress in characterization of SOC and its 

decomposition pathways can be made through the use of advanced molecular-scale analytical 

techniques such as pyrolysis–gas chromatography /mass spectrometry (Py–GC/MS), nuclear 

magnetic resonance (NMR) spectroscopy and near-infrared (NIR) and mid-infrared (MIR) 

spectroscopy (Kögel-Knabner, 2000, 2002). Fourier transform infrared (FTIR) spectroscopy is a 

form of vibrational spectroscopy that allows for the quick and non-destructive estimation of soil 

properties such as soil fertility (Du and Zhou, 2009), mineral composition (Janik et al., 1995), 

particle size and aggregate distribution (Madari et al., 2006), and soil water content and retention 

(Rossel et al., 2006; Janik et al., 2007). FTIR spectroscopy may also be used for the 

determination of principal chemical forms of organic compounds, through the vibrational 

characteristics of their structural chemical bonds (Artz et al., 2008). Previous studies have used 

this technique for the characterization of organic matter in leaf litter (Haberhauer et al., 1998; 

Haberhauer and Gerzabek, 1999; Mascarenhas et al., 2000), whole soils (Ellerbrock et al., 1999, 

2005; Gerzabek et al., 2006) and humic acid extracts (Solomon et al., 2005). Carbon K-edge X-

ray absorption near edge structure (XANES) spectroscopy is another powerful spectroscopic 

technique, that employs synchrotron-based soft x-rays (photon energy less than 2000 eV) for 

excitation of core level electrons to unoccupied or partially occupied molecular orbitals, thus 

producing unique absorption spectra for the elements (Lehmann et al., 2009). These absorption 

spectra can be used to assess the speciation and functional group chemistry of the specific 

elements such as carbon (C) (Lehmann and Solomon, 2010). The knowledge of the structural 

characteristics of C and its speciation, obtained through techniques such as ATR-FTIR and C K-

edge XANES, can be used to determine the role of structural moieties to the inherent 

recalcitrance of organic matter (Lehmann et al., 2005) as well as to investigate the effect of land 
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use and management practices on the composition and dynamics of organic C at molecular scale 

in the soils (Solomon et al., 2005, 2007). 

This study is based on the hypothesis that the structural composition of SOC may vary 

between the shelterbelts and agricultural fields due to the differences in amount and quality of 

litter inputs. The objective of this study was, therefore, to determine and compare the structural 

composition of SOC of shelterbelts and adjacent agricultural fields at the molecular scale using 

ATR-FTIR and C K-edge XANES techniques. 

6.4 Materials and Methods 

6.4.1 Site selection and soil sampling 

Sampling was performed for six major shelterbelt species - green ash (Fraxinus 

pennsylvanica), hybrid poplar (Populus spp.), Manitoba maple (Acer negundo), white spruce 

(Picea glauca), Scots pine (Pinus sylvestris) and caragana (Caragana arborescens). 

Saskatchewan has 106 ecodistricts, as defined by the National Ecological Framework for 

Canada, and they were grouped into 31 homogeneous clusters, based on the similarity between 

42 climate, site and soil variables obtained from the National Ecological Framework for Canada 

and Soil Landscapes of Canada (SLC v3.2) datasets. Among these clusters, the ones with the 

highest number of trees shipped for shelterbelt planting of a particular species were chosen for 

sampling of that species, based on the Prairie Farm Rehabilitation Administration (PFRA) tree 

orders database. A randomized branch sampling (RBS) procedure was applied within the chosen 

clusters to select sampling sites for each species. In this way, 59 sampling sites were chosen, 

consisting of 10 sites each for hybrid poplar, Manitoba maple and caragana, 11 sites for Scots 

pine and nine sites for green ash and white spruce shelterbelts. The procedure for selection of 

sampling sites has been described in more detail in Amichev et al. (2016).  
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At each site, soil samples were obtained at three replicate locations, 20 m apart, along a 

transect in the shelterbelt and in adjacent agricultural field. Sampling within the agricultural 

fields was performed at more than twice the height of shelterbelt trees, ranging from 50-100 m 

apart from shelterbelt, to avoid the influence of shelterbelts. Soil samples were collected at 0-5, 

5-10, 10-30 and 30-50 cm depths using a hand auger (6.58 cm dia.), air-dried at room 

temperature and ground to less than 250 µm in size prior to laboratory analysis. 

6.4.2 Analysis by attenuated total reflectance Fourier transform infrared (ATR-FTIR) 

spectroscopy 

Chemical composition of SOC for shelterbelts and agricultural fields was investigated by 

using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. A 

Bruker Optics Equinox 55 FTIR spectrometer equipped with a deuterated triglycine sulphate 

(DTGS) detector was used for ATR-FTIR spectra acquisition of the finely ground whole soil 

samples. The spectra were collected by averaging 128 scans at 4 cm-1 resolution over a spectral 

range of 4000-400 cm-1 and were corrected against the spectrum with ambient air as background.  

Baseline correction of the spectra was performed using OPUS (ver. 6.5, Bruker Optik GmbH, 

Ettlingen, Germany) spectral processing software package. 

The ATR-FTIR spectra of the mineral soils under shelterbelts and agricultural fields 

showed a number of characteristic major absorbance bands representing the molecular structure 

of SOC (Fig. 6.1). Absorbance of the broad band at about 3600-3000 cm-1 arises from O-H 

stretching and is strongly influenced by water content (Ellerbrock et al., 2005), which may vary 

between the analyzed soil samples. Hence, the relative intensity of this band was not considered 

in the present study. The spectral region between 2700-1800 cm-1 was excluded from the 

analysis because the information attributable to organic matter is masked by C-O noise from 
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CO2(g) (Dobarco, 2014). Similarly, the bands from 900-400 cm-1 are predominantly attributed to 

soil minerals (Haberhauer et al., 2000). Hence, the wavenumber range of 1800-900 cm-1 was 

considered for the analysis of SOC functional groups in this study. As there is a strong overlap 

among the bands of organic functional groups within this wavenumber range, the individual 

bands were resolved by spectral deconvolution. To resolve the spectra into individual bands, a 

series of Gaussian curves were fit to the infrared spectra using the Fityk software package 

(version 1.2.1; Wojdyr, 2010), following the script provided in Appendix G. Spectral 

deconvolution could be performed for only 54 of the 59 sites, as the ATR-FTIR spectra of the 

other 5 sites were of poor quality. Analyzed sites included 11 sites for Scots pine, 10 sites for 

Manitoba maple, nine sites for hybrid poplar and green ash, eight sites for caragana and seven 

sites for white spruce shelterbelts. The curve parameters were constrained to ensure equal 

FWHM (full width at half maximum) of the curves so that the curves were of equal width. 

Individual spectral band identification was performed by using the second-degree spectral 

derivatives of the ATR-FTIR bands, along with the available knowledge of characteristic 

infrared peak positions of SOC as reported in the literature. The relative absorbance intensity 

(rA) of the deconvoluted bands was calculated by dividing the area of individual bands within 

the 1800-900 cm-1 wavenumber region (i.e. 917, 986, 1037, 1103, 1162, 1250, 1370, 1434, 1509, 

1584, 1644, 1703 cm-1) with the sum of total area of all the bands in this region (e.g., rA1509 = 

A1509/ Σ A(917-1703cm-1)). The intensity of absorption bands depends on the amount of absorbing 

functional groups such that high absorption intensity indicates high content of the corresponding 

functional group and vice versa (Ellerbrock et al., 1999). Thus, the relative intensity of the bands 

was used as a semi-quantitative estimate of the relative proportion of C functional group within 

the total SOC of the soil sample. 
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Fig. 6.1 A representative ATR-FTIR spectra of whole soil showing the fitted Gaussian peaks 
representing major C functional groups within the wavenumber range of 1800-900 cm-1. Peaks 
are identified as follows: 1-917 cm-1; 2-986 cm-1; 3 – 1037 cm-1; 4-1103 cm-1; 5-1162 cm-1; 6-
1370 cm-1; 7-1434 cm-1; 8-1509 cm-1; 9-1584 cm-1; 10-1644 cm-1. 

6.4.3 Analysis by Carbon K-edge X-ray absorption near edge structure (XANES) 

spectroscopy 

Carbon K-edge X-ray absorption near edge structure (XANES) spectroscopy was used to 

investigate the SOC composition of three shelterbelt sites belonging to hybrid poplar, Scots pine 

and caragana shelterbelt species and their adjacent agricultural fields. The sites to be analyzed by 

C K-edge XANES were selected on the basis of maximum amount of SOC sequestered 

(described in Chapter 4) for their respective shelterbelt species. Soil samples from 0-5, 10-30 and 

30-50 cm depths for shelterbelts and adjacent agricultural fields were analyzed for these three 

sites. Prior to the spectral analysis, samples were ground using ball-mill and a subsample of each 

soil was hydrated in deionized water, deposited onto Au-coated Si wafers and air-dried at room 

temperature. Carbon K-edge XANES spectra were measured at the spherical grating 
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monochromator (SGM) beamline 11ID-1 at the Canadian Light Source (CLS, Saskatoon, SK, 

Canada). Data were corrected by a linear regression fit through the pre-edge region followed by 

normalization of the spectra using custom macros in IGOR Pro (ver. 6.2, WaveMetrics Inc., 

Lake Oswego, OR, USA) and Athena (ver. 0.8.56; Ravel and Newville, 2005) software 

packages. 

The C K-edge XANES spectra were deconvoluted by performing curve fitting, following 

the script provided in Appendix H, using Fityk software package. The arctangent function was fit 

for the ionization step at 290 eV. A series of Gaussian curves were fit for the main (1s-π*) 

spectral features in the fine structure region (280-310 eV). The curve parameters were 

constrained to ensure equal FWHM for the main spectral peaks. Additionally, two Gaussian 

curves were fit for σ transitions without any constraint on the curve parameters. The 

deconvoluted C (1s) XANES spectra of a representative sample showing the main (1s-π*) peaks 

at 284.1, 285.1, 286.2, 287.3, 288.4, 289.4 and 290.6 eV, as well as two σ transition peaks and 

the arctangent function is shown in Fig. 6.2. Average peak positions of the deconvoluted spectral 

bands of the analyzed soil samples are listed in Appendix I. 
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Fig. 6.2 A typical deconvoluted C K-edge XANES spectra of whole soil showing the main (1s-
π*) peaks (1-7), transition peaks and the arctangent function. Peaks are identified as the 
following; 1-284.1 eV (unsaturated C); 2- 285.1 eV (Aromatic-C); 3 – 286.2 eV (Ketones); 4 – 
287.3 eV (Aliphatic-C); 5 – 288.4 eV (Carboxylic-C); 6 – 289.4 eV (Polysaccharides); 7 – 290.6 
eV (Carbonates). 

6.4.4 Statistical analysis 

Data were analyzed using a two-way mixed analysis of variance (ANOVA) procedure, 

with the land cover (i.e. shelterbelts vs. fields) analyzed as the within-subjects factor. In the 

presence of a significant interaction, simple main effects were analyzed. In addition, Pearson 

correlation analysis was performed to determine the relationship between the increase in ATR-

FTIR band intensities and the increase in SOC concentration under shelterbelts and fields. For 

the statistical analysis, a p-value of 0.1 was used to assess the significance. This was done to 
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reduce the risk of failing to detect existing differences between land use types (type II error), 

since a significant natural within-site variation is expected. Statistical analysis was performed 

using IBM SPSS Statistics version 23 (IBM Inc., Armonk, NY, USA). 

6.5 Results 

6.5.1 Deconvolution of ATR-FTIR spectra 

ATR-FTIR spectra of the mineral soils showed a number of characteristic absorbance 

peaks for the investigation of structural composition of SOC for shelterbelts and agricultural 

fields (Fig. 6.1). The broad intense band at about 3600-3000 cm-1 represents the stretching 

vibrations of H-bonded hydroxyl (O-H) groups of alcohols, phenols and water molecules 

(Ellerbrock et al., 1999). The weak C-H vibration bands at about 2850 and 2920 cm-1 were 

superimposed as a shoulder on the broad O-H band and are formed due to vibrations of 

asymmetric and symmetric aliphatic (CH3 and CH2) groups (Haberhauer et al., 1998; Calderón et 

al., 2013). However, distinct peaks within this range were not visible for all the soil spectra in the 

current study. The absorbance band near 1703 cm-1 formed a shoulder on the broad band at 1644 

cm-1, and is attributed to carboxylic acids and carbonyls bands in esters (Sarkhot et al., 2007). 

This absorbance band was also not present in all soil spectra, suggesting loss of easily 

decomposable esters from the soil (Calderón et al., 2011). The absorbance band near 1644 cm-1 is 

attributed to C=O stretching of carboxylates, amides and conjugated ketones, as well as to 

aromatic C (C=C) vibrations (Haberhauer et al., 1998; Calderón et al., 2013). Similarly, the band 

around 1584 cm-1 is assigned to aromatic C=C stretching of the phenyl ring as well as C=O 

carboxylate stretching (Baes and Bloom, 1989; Calderón et al., 2013). The absorbance bands at 

1644 and 1584 cm-1 are combination bands representing contributions from lignin, proteins and 

humic acids (Calderón et al., 2011). Calderón et al. (2011) observed that the incubation of soils 
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increases the absorbance of bands at 1570, 1630 and 1650 cm-1, suggesting that these bands 

represent a relatively recalcitrant form of C. Absorbance band at 1509 cm-1 is assigned to 

aromatic C-H and C=C vibrations (Bornemann et al., 2010), while the absorbance band at 1434 

cm-1 is assigned to aliphatic (C-H) bending of CH2 and CH3 groups (Lehmann et al., 2005; 

Calderón et al., 2013). The absorbance band at 1370 cm-1 is a combination band, and is primarily 

attributed to C-H absorption in aliphatics (Janik et al., 2007), as well as to CO-CH3 vibrations in 

lignin-derived phenols (Tatzber et al., 2007b; Bornemann et al., 2010). Calderón et al. (2006) 

observed an increase in the band at 1510 cm-1 during the decomposition of manure, indicating 

that it may represent more processed forms of C. Similarly, alkyl C-H moieties represented by 

bands at 1370 and 1434 cm-1 have been observed to increase during the composting of cattle 

manure (Inbar et al., 1989) and SOM mineralization (Solomon et al., 2005, 2007). These bands, 

thus, may represent the stabilized, recalcitrant aliphatic biopolymers preserved in soil (Lorenz et 

al., 2007). However, the inorganic carbonate band at 1430 cm-1 may lead to interference (Tatzber 

et al., 2007a), and thus, care must be taken in the quantitative interpretation of these bands. The 

bands at 1162, 1103 and 1037 cm-1 are assigned to C-O stretch of polysaccharides, and of other 

groups such as alcohols, ether and esters (Janik et al., 2007; Spaccini and Piccolo, 2007; 

Dobarco, 2014). Calderón et al. (2013) found this region (1030-1160 cm-1) to be sensitive to the 

addition of cellulose. These bands may overlap with Si-O stretching of silicate bands from 

mineral particles at 1050 cm-1 (Haberhauer et al., 2000). The bands below 1000 cm-1 are 

associated with a mixture of organic and inorganic compounds such as clay and quartz minerals 

(Haberhauer et al., 2000; Calderón et al., 2011).  
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Fig. 6.3 Mean relative absorbance intensities of different ATR-FTIR bands at 0-5, 10-30 and 30-
50 cm soil depths for (A) shelterbelts and (B) agricultural fields. 

6.5.2 Changes in SOC composition with depth and land use 

Relative intensities of ATR-FTIR absorbance bands were generally consistent and 

followed a similar pattern across the shelterbelts and agricultural fields (Fig. 6.3). ATR-FTIR 

bands representing the C-O bond of polysaccharides, polycyclic and ether functional groups 

(1037, 1103, 1162 cm-1) showed decreases with soil depth. Similarly, there was a decrease with 

depth for ATR-FTIR bands attributed to aromatic (C=C) bond of phenyl ring structure as well as 
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conjugated carbonyl (C=O) bonds, that are part of carboxylic acids, ketones, aldehydes and 

esters (1584 and 1644 cm-1). ATR-FTIR bands associated with aromatic vibrations (1509 cm-1) 

as well as aliphatic (C-H) deformation of CH2 and CH3 groups (1434 cm-1) showed an increase 

with depth under both land use types (Fig. 6.3). 

 

Fig. 6.4 Change in the relative absorbance intensities of ATR-FTIR bands at 1034, 1103 and 
1162 cm-1 for shelterbelts compared to agricultural fields at 0-5, 5-10, 10-30 and 30-50 cm soil 
depths. ‘s’ on the top of the bar indicates statistically significant effect of land use and ‘i’ 
indicates significant interaction between land use and species at p < 0.1. 
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Despite these similar trends, there were significant differences in relative intensities of 

ATR-FTIR bands between shelterbelts and agricultural fields (Table 6.1). There was a significant 

decrease in the relative intensity of 1037, 1103 and 1162 cm-1 bands for the shelterbelts 

compared to the agricultural fields at the 0-5 cm soil depth, indicating a decrease in 

polysaccharide and ether functional groups under the shelterbelts (Fig. 6.4). Changes in the 

relative proportion of polysaccharide functional groups (1037 cm-1) was also affected by 

shelterbelt species, as indicated by a significant interaction effect at the 10-30 cm soil depth 

(Table 6.1; Fig. 6.4). Manitoba maple, green ash and white spruce showed a trend of decreasing 

relative intensity of 1037 cm-1 band for shelterbelts compared to agricultural fields at all soil 

depths; however, the difference was statistically significant only at the 0-5 cm depth for 

Manitoba maple, and at the 10-30 cm depth for green ash and white spruce  (Fig. 6.5). 

Conversely, hybrid poplar showed a significant increase in the relative intensity of 1037 cm-1 

band for shelterbelts compared to agricultural fields at the 10-30 cm depth. Similarly, for 1103 

and 1162 cm-1 bands, there was a trend of increasing relative intensity for hybrid poplar 

shelterbelts compared to agricultural fields, with a statistically significant increase for the 1162 

cm-1 band at the 10-30 cm depth (Fig. 6.5). Other shelterbelt species, however, showed a trend of 

decreasing relative intensity of the 1103 and 1162 cm-1 bands compared to agricultural fields, 

with a significant decrease for Scots pine at the 0-5 cm soil depth for both of these bands. These 

data showed a general trend of decreasing polysaccharides and ethers in Manitoba maple, green 

ash, white spruce and Scots pine shelterbelts compared to agricultural fields. Conversely, these C 

functional groups are higher in hybrid poplar shelterbelts compared to adjacent fields, especially 

at the 10-30 cm soil depth. 
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Fig. 6.5 Change in the relative absorbance intensities of the ATR-FTIR bands at 1034, 1103 and 
1162 cm-1 for different shelterbelt species (HP- Hybrid poplar; WS – White spruce; GA – Green 
ash; MM – Manitoba maple; CR- Caragana; SP – Scots pine) compared to agricultural fields at 
0-5, 5-10, 10-30 and 30-50 cm soil depths. ‘s’ on the top of the bar indicates statistical 
significance at p < 0.1. 
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Table 6.1 Two-way mixed analysis of variance (ANOVA) of the effect of land use (i.e. 
shelterbelts and fields) and interaction between land use and species on the relative intensity of 
absorbance of ATR-FTIR bands at 0-5, 5-10, 10-30 and 30-50 cm soil depths. 

 

Changes in aromatic, aliphatic and phenolic C moieties (represented by ATR-FTIR bands 

in the 1370-1510 cm-1 region) under shelterbelts varied with the shelterbelt species, as indicated 

by the significant interactions between land use and shelterbelt species at the 0-5 cm (for 1370, 

1434 and 1509 cm-1 bands) and the 5-10 cm (for 1509 cm-1) soil depth (Fig. 6.6; Table 6.1). The 

band at 1370 cm-1, representing phenolic and aliphatic C groups, showed a significant increase 

for hybrid poplar and Manitoba maple shelterbelts compared to fields at the 0-5 cm depth, while 

the other species did not show significant changes at any soil depth (Fig. 6.7). Similarly, 

Manitoba maple shelterbelts also showed a higher relative intensity for the 1434 and 1509 cm-1 

bands compared to the adjacent field at 0-5 cm depth, with a similar but statistically insignificant 

trend at lower soil depths (Fig. 6.7). Conversely, hybrid poplar and caragana shelterbelts showed 

ATR-FTIR 
bands (cm-1)  

Soil Depth (cm) 
0-5 5-10 10-30 30-50 

F p-value F p-value F p-value F p-value 

1037 Landuse 4.41 0.04 1.88 0.18 1.62 0.21 1.65 0.21 
Interaction 1.67 0.16 1.94 0.11 2.61 0.04 1.36 0.26 

1103 Landuse 3.03 0.09 0.12 0.73 0.24 0.63 0.28 0.60 
Interaction 1.44 0.23 0.93 0.47 1.33 0.27 0.29 0.92 

1162 Landuse 3.01 0.09 0.63 0.43 0.01 0.92 0.01 0.94 
Interaction 1.92 0.11 0.49 0.78 2.10 0.08 0.44 0.82 

1370 Landuse 3.68 0.06 0.32 0.58 2.35 0.13 1.01 0.32 
Interaction 2.09 0.08 1.49 0.21 0.93 0.47 0.71 0.62 

1434 Landuse 0.95 0.33 0.09 0.77 0.17 0.68 1.27 0.27 
Interaction 3.57 0.01 1.97 0.10 1.63 0.17 0.89 0.50 

1509 Landuse 1.87 0.18 0.41 0.53 0.26 0.62 1.35 0.25 
Interaction 2.50 0.04 2.06 0.09 1.69 0.16 1.03 0.41 

1584 Landuse 7.25 0.01 3.75 0.06 0.38 0.54 0.84 0.36 
Interaction 1.80 0.13 1.42 0.23 2.46 0.05 1.74 0.15 

1644 Landuse 7.90 0.01 1.24 0.27 1.14 0.29 0.56 0.46 
Interaction 1.16 0.34 1.12 0.36 0.68 0.64 1.35 0.26 



 
 

 
 

113 

a trend of lower relative intensities of 1434 and 1509 cm-1 bands compared to adjacent fields at 

all depths, with a statistically significant decrease in the 1434 cm-1 band for hybrid poplar at the 

0-5 cm depth. These observations suggest that there was a relative increase in aromatic and 

aliphatic C functional groups, represented by 1434 and 1509 cm-1 bands, under Manitoba maple 

shelterbelts; while these C functional groups decreased compared to adjacent fields under hybrid 

poplar shelterbelts. 

 

Fig. 6.6 Change in the relative absorbance intensities of ATR-FTIR bands at 1370, 1434 and 
1509 cm-1 for shelterbelts compared to agricultural fields at 0-5, 5-10, 10-30 and 30-50 cm soil 
depths. ‘s’ on the top of the bar indicates statistically significant effect of land use and ‘i’ 
indicates significant interaction between land use and species at p < 0.1. 
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Fig. 6.7 Change in the relative absorbance intensities of the ATR-FTIR bands at 1370, 1434 and 
1509 cm-1 for different shelterbelt species (HP- Hybrid poplar; WS – White spruce; GA – Green 
ash; MM – Manitoba maple; CR- Caragana; SP – Scots pine) compared to agricultural fields at 
0-5, 5-10, 10-30 and 30-50 cm soil depths. ‘s’ on the top of the bar indicates statistical 
significance at p < 0.1. 
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The relative intensities of the 1584 and 1644 cm-1 bands were higher for shelterbelts 

compared to agricultural fields at the 0-5 cm soil depth, and at the 0-5 and 5-10 cm soil depths, 

respectively (Fig. 6.8). Moving down the soil profile, the difference in relative intensities of 

these bands between shelterbelts and fields decreased, and was statistically insignificant in the 

deeper layers. In terms of species, the relative intensity of the 1584 cm-1 band was higher for 

hybrid poplar at the 0-5, 5-10 and 10-30 cm soil depths and for white spruce shelterbelts at the 0-

5 and 5-10 cm soil depths compared to agricultural fields (Fig. 6.9). Green ash shelterbelts 

showed a significant decrease in the relative intensity of the 1584 cm-1 band at the 10-30 cm soil 

depth. Similarly, there was a trend of increasing relative intensity of the 1644 cm-1 band for 

hybrid poplar, white spruce and caragana shelterbelts, with a statistically significant increase 

compared to agricultural fields at the 0-5 cm soil depth. These bands are attributed to aromatic 

and conjugated carboxylic groups, indicating the enrichment of these C functional groups in 

surface layers of hybrid poplar and white spruce shelterbelts compared to adjacent fields.  
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Fig. 6.8 Change in the relative absorbance intensities of ATR-FTIR bands at 1584 and 1644 cm-1 
for shelterbelts compared to agricultural fields at 0-5, 5-10, 10-30 and 30-50 cm soil depths. ‘s’ 
on the top of the bar indicates statistically significant effect of land use and ‘i’ indicates 
significant interaction between land use and species at p < 0.1. 
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Fig. 6.9 Change in the relative absorbance intensities of the ATR-FTIR bands at 1584 and 1684 
cm-1 for different shelterbelt species (HP- Hybrid poplar; WS – White spruce; GA – Green ash; 
MM – Manitoba maple; CR- Caragana; SP – Scots pine) compared to agricultural fields at 0-5, 
5-10, 10-30 and 30-50 cm soil depths. ‘s’ on the top of the bar indicates statistical significance at 
p < 0.1. 
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Increases in the relative intensities of phenolic (1370 cm-1), aromatic and conjugated 

carboxylic (1584 and 1644 cm-1) functional groups were significantly correlated to the increase 

in soil organic carbon (SOC) concentration under the shelterbelts compared to the agricultural 

fields (Table 6.2). An increase in relative intensity of the 1370 and 1644 cm-1 bands was 

positively correlated to the increase in SOC concentration at the 0-5 and 5-10 cm soil depths, 

while the increase in relative intensity of 1584 cm-1 bands was positively related to the increase 

in SOC concentration at the 0-5, 5-10 and 10-30 cm soil depths (Table 6.2). The other bands at 

1037, 1103, 1162, 1434 and 1509 cm-1 were not significantly related to an increase in SOC 

concentration at any depth. 

Table 6.2 Pearson correlations between the increase in relative intensity of absorbance of ATR-
FTIR bands and increase in SOC concentrations (g kg-1) at 0-5, 5-10, 10-30 and 30-50 cm soil 
depths. 

Soil 
depth 
(cm) 

Increase in relative intensity of ATR-FTIR bands (cm-1) 

1037 1103 1162 1370 1434 1509 1584 1644 

0-5 -0.216 0.106 0.132 0.402* -0.080 0.049 0.746* 0.654* 
5-10 -0.107 0.061 0.126 0.308* -0.067 0.059 0.401* 0.495* 
10-30 -0.115 -0.089 -0.087 0.265 0.108 0.191 0.677* 0.216 
30-50 -0.146 0.019 0.006 -0.042 0.129 0.184 0.028 0.041 

*Correlations significant at 0.05 level 

6.5.3 SOC composition resolved by C K-edge XANES spectroscopy  

The deconvoluted C (1s) XANES spectra of a representative sample showing the main 

(1s-π*) peaks, transition peaks and the arctangent function is shown in Fig. 6.2. Spectral features 

at the C K-edge were assigned according to the literature (Myneni, 2002; Urquhart and Ade, 

2002; Gillespie et al., 2014a), to determine the molecular composition of SOC under shelterbelts 

and agricultural fields. The C K-edge XANES spectra of mineral soils of shelterbelts and fields 
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showed a strong absorbance at 288.4 eV, attributed to carboxylic-C and at 285.1 eV, attributed to 

aromatic-C (Fig. 6.10). Absorbance bands at 284.1 eV attributed to unsaturated-C, as well as at 

286.2 eV for ketones, 287.3 eV for aliphatic-C and at 289.4 eV for carbohydrate-C were also 

observed in the soil samples across both land use types. A strong inorganic carbonate band at 

290.6 eV was observed for Scots pine shelterbelts at the 30-50 cm soil depth (Fig. 6.10b), and for 

agricultural fields adjacent to hybrid poplar shelterbelts at the 0-5, 10-30 and 30-50 cm soil 

depths (Fig. 6.10a).  
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Fig. 6.10a Carbon K-edge XANES spectra of the whole soil samples of hybrid poplar shelterbelt 
and adjacent agricultural field at 0-5, 10-30 and 30-50 cm soil depths.  
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Fig. 6.10b Carbon K-edge XANES spectra of the whole soil samples of Scots pine shelterbelt 
and adjacent agricultural field at 0-5, 10-30 and 30-50 cm soil depths. 
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Fig. 6.10c Carbon K-edge XANES spectra of the whole soil samples of caragana shelterbelt and 
adjacent agricultural field at 0-5, 10-30 and 30-50 cm soil depths. 
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Table 6.3 C K-edge XANES absorbance intensities (arbitrary units [a.u.]) of the various organic 
C functional groups identified by C K-edge XANES spectroscopy for shelterbelts and 
agricultural fields at 0-5, 10-30 and 30-50 cm soil depths. 

 

 

 

 

Depth/Species Land cover Unsaturate
d 

Aromati
c Ketone Aliphatic Carboxyli

c 
Carbohydrate 

––––––––––––––––––––––––––   0-5 cm   –––––––––––––––––––––––––– 

Hybrid Poplar Shelterbelt 0.14 0.33 0.25 0.36 0.88 0.61 
Field 0.09 0.18 0.13 0.28 0.77 0.47 

Scots Pine Shelterbelt 0.14 0.38 0.25 0.34 0.83 0.59 
Field 0.12 0.20 0.16 0.40 0.86 0.49 

Caragana Shelterbelt 0.05 0.29 0.16 0.29 0.92 0.63 
Field 0.03 0.16 0.08 0.26 0.86 0.58 

––––––––––––––––––––––––––   10-30 cm   –––––––––––––––––––––––––– 

Hybrid Poplar Shelterbelt 0.13 0.29 0.24 0.33 0.87 0.53 
Field 0.11 0.25 0.20 0.38 0.89 0.67 

Scots Pine Shelterbelt 0.07 0.21 0.12 0.25 0.84 0.53 
Field 0.08 0.21 0.15 0.30 0.84 0.51 

Caragana Shelterbelt 0.06 0.19 0.11 0.23 0.83 0.55 
Field 0.08 0.20 0.08 0.29 0.82 0.50 

––––––––––––––––––––––––––   30-50 cm   –––––––––––––––––––––––––– 

Hybrid Poplar Shelterbelt 0.00 0.19 0.10 0.41 0.88 0.57 
Field 0.17 0.29 0.20 0.53 0.91 0.70 

Scots Pine Shelterbelt 0.06 0.15 0.12 0.51 0.96 0.65 
Field 0.08 0.22 0.11 0.28 0.86 0.53 

Caragana Shelterbelt 0.07 0.23 0.10 0.36 0.88 0.62 
Field 0.01 0.11 0.02 0.29 0.83 0.54 
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Fig. 6.11 Mean C K-edge XANES absorbance intensities (arbitrary units [a.u.]) of different C 
functional groups at 0-5, 10-30 and 30-50 cm soil depths for (A) shelterbelts and (B) agricultural 
fields. Different letters above bars for each functional group indicate significant difference at p < 
0.1. 
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The C K-edge XANES spectra were resolved by peak-fitting to obtain the relative 

intensities of spectral bands, as shown in Table 6.3. Across both land use types, carboxylic-C 

(288.4 eV) had the highest absorbance (0.86 ± 0.04 normalized absorbance, arbitrary units 

[a.u.]), thus indicating that it was the most dominant organic C moiety. It was followed by 

carbohydrate-C (289.4 eV; 0.57 ±0.06 a.u.), aliphatic-C (287.3 eV; 0.34 ±0.08 a.u.), aromatic-

C (284.1 and 285.1 eV; 0.31 ±0.1 a.u.), and ketones (286.2 eV; 0.14 ±0.06 a.u.). Absorbance 

of aromatic-C and ketones decreased significantly with soil depth under the shelterbelts; while 

the absorbance of aliphatic-C functional group was significantly higher at the 30-50 cm soil 

depth (Fig. 6.11). There was no significant difference between the absorbance of different C 

functional groups with soil depth in the case of agricultural fields (Fig. 6.11). These trends can 

also be noticed from the C K-edge XANES spectra of shelterbelts and agricultural fields stacked 

by soil depth (Figs. 6.10 a-c).  

Absorbance of C XANES spectral features was compared between shelterbelts and 

agricultural fields to determine the differences in structural composition of SOC between the 

land use types (Table 6.3). There was a significant increase in the relative absorbance of 

aromatic-C, ketones and carbohydrate-C functional groups for shelterbelts compared to 

agricultural fields at 0-5 cm soil depth (Fig. 6.12). At the 10-30 cm soil depth, aliphatic-C was 

higher in the agricultural fields compared to shelterbelts, while there was no significant 

difference between the relative absorbance of C functional groups of shelterbelts and fields at the 

30-50 cm depth (Fig. 6.12). 
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Fig. 6.12 Mean C K-edge XANES absorbance intensities (arbitrary units [a.u.]) of different C 
functional groups under shelterbelts and agricultural fields at 0-5, 10-30 and 30-50 cm soil 
depths, respectively. Different letters above bars for each functional group indicate significant 
difference at p < 0.1. 



 
 

 
 

127 

6.6 Discussion 

6.6.1 SOC composition resolved by ATR-FTIR spectroscopy 

6.6.1.1 General composition and depth distribution 

Major ATR-FTIR absorbance bands across shelterbelts and agricultural fields showed 

identical peak positions and comparable absorbance intensities and trends with soil depth (Fig. 

6.3), indicating similar molecular composition of SOC across shelterbelts and agricultural fields. 

This observation is in agreement with previous studies, which have found similar molecular 

composition of SOC across a wide range of vegetative, soil and environmental conditions 

(Mahieu et al., 1999; Lehmann et al., 2008). There was a trend of decreasing relative intensity of 

carbonyl (C-O) bonds of polysaccharide, alcohol and ether groups (1037, 1103 and 1162 cm-1), 

as well as of conjugated carboxylic and aromatic bonds of lignin and proteins (1584 and 1644 

cm-1) with soil depth for both shelterbelts and agricultural fields (Fig. 6.3). In contrast, relative 

intensities of bands attributed to aromatic C-H and C=C bonds (1509 cm-1) and aliphatic C-H 

deformations of CH2 or CH3 groups (1434 cm-1) increased with soil depth across both land use 

types (Fig. 6.3). These observations are in agreement with previous studies that reported a 

decrease in the amount of polysaccharides and plant-derived lignin, and an increase in the 

amount of alkyl-C forms with soil depth (Baldock et al., 1997; Dai et al., 2001; Rumpel et al., 

2004). 

6.6.1.2 Effect of shelterbelts on SOC composition 

Despite the similarities in broad chemical composition of SOC, there were significant 

differences in the relative abundance of certain C functional groups. Shelterbelts generally 

showed a decrease in the content of C-O groups of polysaccharide, poly-alcoholic and ether 

groups compared to adjacent fields (Fig. 6.5), with the exception of hybrid poplar species. 
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Concomitantly, there was enrichment of lignin-derived phenols (HP, MM; Fig. 6.7a), aliphatic 

and aromatic C (MM; Figs. 6.7 b and c) and conjugated carboxylic and aromatic groups (HP, 

WS, CR; Fig. 6.9) under the shelterbelts compared to the agricultural fields. Composition of 

SOC in upper soil horizons is strongly influenced by the plant litter deposited on the surface soil 

(Lorenz and Lal, 2005, 2014). Previous studies have found that tree litter is enriched in lignin-

derived C moieties such as aromatic and phenolic C, while residues of agricultural crops such as 

wheat (Triticum aestivum), alfalfa (Medicago sativa), soybean (Glycine max) and sorghum 

(Sorghum bicolor) have a lower content of lignin and higher content of polysaccharides such as 

cellulose and hemicellulose (Fründ and Lüdemann, 1989; Lorenz and Lal, 2005). Helfrich et al. 

(2006) observed spruce (Picea abies) litter to be enriched in aromatic, phenolic and alkyl-C 

functional forms compared to maize (Zea mays) litter that was higher in polysaccharides, leading 

to an increase in alkyl-C and decrease of O-alkyl C forms in particulate organic matter under 

spruce stands compared to maize fields. Thus, the differences in SOC composition of shelterbelts 

and agricultural fields may be attributed to the differences in composition of lignin-dominated 

woody litter of shelterbelt trees versus crop residues high in polysaccharides for agricultural 

fields.  

The degree of decomposition of plant litter inputs also influences the chemical 

composition of SOM (Swift et al., 1979). Tree litter under shelterbelts forms a humus layer 

above the soil profile, in contrast to the cultivated fields, where the majority of crop residues are 

incorporated directly into the soil. Labile components of tree litter such as carbohydrates are 

preferentially mineralized in the course of humification in the humus layer (Kögel-Knabner et 

al., 1988). Studies on humification of tree litter have observed a decrease in the relative content 

of O-alkyl C, and an increase in alkyl-C content during the decomposition of humus (Kögel et 
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al., 1988; Kögel-Knabner et al., 1988; Zech et al., 1992). Thus, the organic matter reaching the 

mineral soil horizons under shelterbelts is depleted in labile C moieties such as polysaccharides, 

and enriched in the recalcitrant aliphatic and aromatic C moieties. Studies such as Guggenberger 

et al. (1994), Solomon et al. (2000) and Helfrich et al. (2006) have reported a higher 

concentration of carbohydrates in agricultural soils compared to woodlands despite lower SOC 

content, due to the direct input of crop residues in the soils of agricultural fields.  

The increase in SOC content of shelterbelts compared to agricultural fields was positively 

related to an increase in the content of conjugated groups including aromatics, carboxylic acids 

and ketones (1584 and 1644 cm-1), as well as phenolic C groups (1370 cm-1; Table 6.2). These C 

functional groups are associated with lignocellulosic plant material (Faix, 1992; Sills and 

Gossett, 2012; Xu et al., 2013), indicating that the majority of SOC added under shelterbelts 

represents plant-derived organic matter. These results are in agreement with Martens et al. 

(2004), who identified the soil C sequestered in long-term forest soils to be of plant origin 

through the use of carbohydrate and phenolic acid biomarkers.  

6.6.1.3 Influence of shelterbelt species on SOC composition 

Changes in SOC composition of shelterbelts compared to fields was also influenced by 

shelterbelt species. Hybrid poplar shelterbelts showed an increase in simple carbohydrates and 

poly-alcoholic groups (Fig. 6.5) and conjugated aromatic and carboxylic groups (Fig. 6.9) 

compared to adjacent fields. White spruce and Scots pine showed a decrease in C-O bonds, but 

an increase in conjugated groups compared to the agricultural fields. Recalcitrant aliphatic and 

aromatic C functional groups were higher in Manitoba maple shelterbelts and lower in hybrid 

poplar shelterbelts, in comparison to agricultural fields (Fig. 6.7). This is unsurprising, as the 

type and quality of vegetation inputs are known to influence soil organic matter composition 

(Quideau et al., 2001). High content of cellulose and hemicellulose, represented by C-O stretch 
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of polysaccharides, and of proteins and lignin, represented by conjugated aromatic and 

carboxylic groups, suggests limited alteration of original plant material under hybrid poplar 

shelterbelts. Slower leaf decomposition rate of poplar species such as trembling aspen (Populus 

tremuloides; decay rate (k) < 0.005) has been reported compared to other tree species including 

green ash (Fraxinus americana; k > 0.01; Peterson and Cummins, 1974). These results are also 

in accordance with the study by Dobarco (2014), who found a higher content of polysaccharides 

and C-O groups of ethers, esters under trembling aspen stands compared to coniferous species. 

Hannam et al. (2004) found lower amounts of oxidative degradation products represented by 

carbonyl-C, and higher amount of aromatic-C under trembling aspen stands compared to white 

spruce. In contrast, abundance of microbially derived recalcitrant aliphatic C and loss of 

cellulose and hemicellulose functional groups under Manitoba maple shelterbelts indicates rapid 

degradation of the plant litter material. Manitoba maple has fast-decomposing leaf litter (Swan 

and Palmer, 2006), due to its high nutrient concentration, compared to coniferous needle litter, 

which is high in lignin content, and decomposes slowly (Berg and Staaf, 1980; Perry et al., 

1987). While these observations indicate a strong influence of litter decomposition rate on the 

chemical composition of stored SOC, other characteristics of litter such as C:N ratio, 

concentration of nutrients such as nitrogen, phosphorus, calcium and content of biopolymers 

such as tannin and suberin may also influence SOC composition (Webster and Benfield, 1986; 

Ostrofsky, 1993; Berg, 2000); this merits further investigation.  

6.6.2 SOC composition resolved by C K-edge XANES spectroscopy 

C K-edge XANES spectra indicated that the SOC composition across both land use types 

was dominated by carboxylic-C, followed by carbohydrate-C (Table 6.3). These were followed 

by moderate amounts of aliphatic-C, aromatic-C and ketone functional groups. Identification of 
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these organic carbon forms is in agreement with the molecular characterization of SOC in whole 

soils (Lehmann et al., 2008), soil colloidal particles (Schumacher et al., 2005) and organic matter 

extracts (Solomon et al., 2005, 2007) using C XANES spectroscopy. There was a decrease in the 

content of aromatic C with soil depth (Fig. 6.11a), which may be attributed to the decrease in 

lignin-derived compounds with soil depth (Dai et al., 2001; Rumpel et al., 2004). A decrease in 

ketones with depth indicated that the degree of microbial alteration of SOC decreased with soil 

depth, and is in accordance with the observation by Purton et al. (2015) on SOM chemistry in 

soil profiles. In contrast, recalcitrant aliphatic compounds increased at the 30-50 cm soil depth, 

which is consistent with ATR-FTIR results. For the agricultural fields, SOC composition did not 

change with depth (Fig. 6.11b), which may be due to homogenization of the cultivated soil due 

to tillage (Martens et al., 2004; Purton et al., 2015).  

Aromatic C and ketone content was higher under shelterbelts compared to agricultural 

fields at the 0-5 cm soil depth (Fig. 6.12). Aromatic signals originate from lignin, and represent 

plant-derived organic matter (Baldock et al., 1989). Higher contents of these lignin-derived C 

moieties under shelterbelts are expected, since the woody tree litter is enriched in lignin 

compared to crop litter (Lorenz and Lal, 2005). Ketones are derived from the oxidation of fatty 

acid and aromatic compounds (Dent et al., 2004; Gottschalk, 2012), and have been identified as 

indicators of microbially transformed SOM depleted of labile C forms (Gillespie et al., 2014a, 

2014b). The higher content of ketones in surface soil layers of shelterbelts compared to 

agricultural fields, indicates that SOM in surface layers of shelterbelts is at an advanced stage of 

decomposition compared to agricultural fields, which is in agreement with the findings of ATR-

FTIR spectra. C K-edge XANES spectra also showed an increase in carbohydrate-C forms under 

shelterbelts compared to cropped fields (Fig. 6.12), which is contrary to the results obtained by 
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ATR-FTIR spectra that showed a lower proportion of polysaccharides under shelterbelts 

compared to agricultural fields. This discrepancy may be due to the fact that the shelterbelt sites 

analyzed by C K-edge XANES spectroscopy were selected on the basis of maximum amount of 

SOC sequestration, and hence are expected to have a higher input of fresh plant residues 

(described in chapter 4) compared to other sites. Increased litter input may have led to higher 

amounts of holocellulose-derived carbohydrates for these shelterbelt sites compared to fields. 

6.6.3 Land use effects on SOC composition and dynamics 

ATR-FTIR and C K-edge XANES spectroscopic analyses indicated higher abundance of 

aromatic, conjugated carboxylic and aliphatic C functional groups for different shelterbelt 

species compared to adjacent agricultural fields. Aliphatic and aromatic C functional groups are 

generally considered resistant to microbial degradation, due to their cross linked and polymeric 

structures, respectively (Gleixner et al., 2001; Lorenz et al., 2007). In contrast, polysaccharide C, 

which is rapidly broken down for energy metabolism by microorganisms (Gleixner et al., 2001; 

Krull et al., 2003), was relatively higher for agricultural fields. Thus, SOC stored under 

shelterbelts may have higher chemical resistance to degradation compared to agricultural fields, 

in case of changes in management or climatic conditions. The relative importance of SOC 

composition in determining its long-term stability, however, has recently been questioned 

(Marschner et al., 2008; Dungait et al., 2012), with the studies, instead, indicating the major 

control of microbial ecology (Ekschmitt et al., 2005) or organo-mineral interactions (Mikutta et 

al., 2006; Kögel-Knabner et al., 2008) on SOC decomposition rate. Nevertheless, shifts in 

structural composition of SOC can influence physical stabilization mechanisms through changes 

in stereo-chemical and hydrophobic characteristics (Kleber et al., 2007; Bachmann et al., 2008), 

as well as regulate ecological responses to environmental changes such as in CO2 content and 
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temperature (Feng and Simpson, 2011; Simpson and Simpson, 2012). Thus, changes in 

molecular characteristics and speciation may affect SOC storage and dynamics, and should be 

considered in the determination of SOC sequestration potential. 

6.6.4 Application of ATR-FTIR spectroscopy to determine SOC composition 

Peak heights of unresolved FTIR spectra have generally been used in earlier attempts to 

study SOC composition using FTIR spectroscopy (Haberhauer et al., 1998; Ellerbrock et al., 

1999; Solomon et al., 2005). In this study, we used a spectral deconvolution technique, which 

involved fitting of a series of Gaussian curves to ATR-FTIR spectral features, to separate 

overlapped or hidden peaks and determine their relative intensities. Separation of individual 

absorbance bands, using spectral deconvolution, can be especially useful in FTIR spectroscopic 

analysis of SOC, since a strong overlap in the absorption frequencies of different SOC functional 

groups in the mid-infrared region has been recognized (Janik et al., 2007; Calderón et al., 2013). 

Peak positions of the deconvoluted spectral bands (listed in Appendix J) were in agreement with 

the vibrational frequencies assigned to different soil C functional groups in the literature 

(described in section 6.5.1), demonstrating that the resolved spectral bands represented chemical 

information associated with SOC.  Similarly, variation in chemical composition of SOC between 

land use types, as determined by ATR-FTIR and C K-edge XANES spectroscopy, was generally 

consistent between both techniques, thus indicating that ATR-FTIR spectroscopy, in conjunction 

with Gaussian curve-fitting analysis, can be effectively used to study the chemistry of soil C 

under different land use types. 

6.7 Conclusions 

The SOC composition of shelterbelts and adjacent agricultural fields as measured by 

ATR-FTIR and C K-edge XANES spectroscopic analyses showed that SOC chemistry under 
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shelterbelts was dominated by the more processed forms of C including aromatic and conjugated 

carboxyl groups in the case of hybrid poplar and white spruce, and aromatic and aliphatic C 

moieties for Manitoba maple. In contrast, agricultural field soils were enriched in easily 

decomposable C forms such as polysaccharides, esters and ethers compared to shelterbelts. 

These trends were attributed to differences in initial chemical composition of litter and its degree 

of decomposition affected by litter placement between shelterbelts and agricultural fields. 

Relative enrichment of microbially synthesized secondary SOC sources such as ketones under 

the shelterbelts indicated that SOC under shelterbelts was at an advanced stage of decomposition. 

SOC composition was also affected by the litter quality of fast- and slow-decomposing 

shelterbelt species.  

Our study demonstrates that shelterbelts may change the chemical composition of SOC in 

the mineral soil horizons compared to adjacent agricultural fields, which may further affect 

biochemical recalcitrance of SOC to microbial degradation. Thus, the effect of shelterbelt 

establishment on SOC sequestration should be assessed not only in terms of change in C stocks 

but also with respect to changes in SOC speciation and quality. This study also demonstrated the 

application of ATR-FTIR spectroscopy, in conjunction with Gaussian curve fitting, for the 

effective determination of SOC composition.
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7. SYNTHESIS AND CONCLUSIONS

Agroforestry systems, such as shelterbelts, have a strong potential for soil C 

sequestration; however, major knowledge gaps exist about C storage and dynamics under such 

systems.  The effect of shelterbelts on the magnitude of SOC stocks compared to cultivated fields 

and other agroforestry systems remains unclear (Lorenz and Lal, 2014; Nair et al., 2009a), 

especially in the deeper soil horizons, which are especially relevant under such tree-based 

systems due to their deeper root depth compared to agricultural crops (Lorenz and Lal, 2005). 

Shelterbelt characteristics such as stand species, structure and design may alter biomass and litter 

production, which in turn, influences the SOC sequestration rate (Woldeselassie, 2009). The 

response of SOC sequestration potential to these biophysical shelterbelt characteristics has not 

been investigated. Similarly, the effect of shelterbelt planting on the processes and mechanisms 

affecting the stabilization and dynamics of SOC is not yet clear. Combined application of 

different techniques to simultaneously study physical and chemical processes regulating SOC 

stabilization is desired in order to get a comprehensive understanding of SOC dynamics under 

shelterbelts. 

The research presented in this thesis addresses these knowledge gaps by measuring the 

amount of SOC sequestered in the whole soil, and the heavy and light fractions of soil for six 

major shelterbelt species of Saskatchewan compared to their adjacent agricultural fields. 

Additionally, the influence of shelterbelts on molecular composition of SOC was determined by 

using ATR-FTIR and C K-edge XANES techniques. SOC is a complex and heterogeneous 
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medium, and hence, the application of these advance molecular techniques is useful for its 

characterization. Using a paired site design controlling for differences in climate and soil 

properties allowed us to study changes in SOC storage, physical stabilization and chemical 

composition due to planting of shelterbelts in agricultural fields. 

7.1 Summary of findings 

Reliable estimation of SOC sequestration potential is dependent on the availability of 

accurate methods for separation and measurement of inorganic and organic C constituents of 

soil. In chapter 3, frequently used SOC measurement procedures, including in-situ HCl-

fumigation method (Harris et al., 2001), in-situ HCl-addition method and thermal decomposition 

method (Wang and Anderson, 1998) were compared to determine their suitability for SOC 

measurement in carbonate-rich soils of Saskatchewan. Results indicated that the measurement 

procedure based on HCl-acid fumigation, followed by elemental C analysis via automated C 

analyzer, was the most efficient method for determination of OC in soils. Hence, this method 

was used for the estimation of SOC content in the subsequent studies for whole soil samples 

(Chapter 4), and the light and heavy fractions (Chapter 5) of soil. 

 Our study on soil C sequestration potential (Chapter 4) revealed a significant increase in 

SOC concentration for the shelterbelts compared to agricultural fields throughout the soil profile 

(measured up to 50 cm depth). Consequently, shelterbelts had higher SOC stocks (119.1 Mg C 

ha-1) compared to agricultural fields (100.5 Mg C ha-1) in the mineral soil profile, in addition to 

3-8 Mg C ha-1 stored in the litter layer under shelterbelts. SOC stocks for shelterbelts increased 

in the form of both mineral-free plant debris (called light fraction) and mineral-stabilized organic 

matter (called heavy fraction) (Chapter 5). The increase in SOC is attributed primarily to higher 

litter inputs in trees compared to agricultural crops, as well as to reduced soil erosion and lack of 
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soil disturbance from agronomic practices (Sauer et al., 2007). The increase in SOC stocks was 

higher in the 10-30 cm soil depth (13 Mg C ha-1), compared to the surface soil layer (0-10 cm 

depth; 4 Mg C ha-1) and 30-50 cm soil layer (1.4 Mg C ha-1). Furthermore, results from Chapter 

5 suggested higher contributions of the mineral-associated SOC fraction towards SOC addition 

in the deeper soil layers (10-30 and 30-50 cm soil depths), compared to higher contributions 

from uncomplexed plant debris in the surface soil layer (0-10 cm soil depth). All of these 

findings allude to different sources of plant litter inputs (i.e. plant shoots vs. roots) with soil 

depth, and also support the observation that root-derived C is more likely to be stabilized by 

organo-mineral interactions than shoot-derived C, primarily due to the close association with soil 

matrix, and higher mineral-sorption capacity of root-exudates, such as organic acids (Jones, 

1998; Rasse et al., 2005). Moreover, these results emphasize the importance of subsurface soil 

layers in SOC storage and long-term stabilization through their association with minerals. This 

observation is in line with recent review studies such as Jobbágy and Jackson (2000) and Lorenz 

and Lal (2005) that suggest the higher capacity of deeper soil horizons to sequester SOC with 

increased turnover times. Average yearly accrual of SOC for shelterbelts was estimated to be 

around 0.7 Mg C ha-1 year-1; however, younger shelterbelts (< 20 years of age) generally showed 

a decrease in C stocks due to SOC mineralisation during plantation establishment (Hansen, 

1993). Thus, significant accrual of SOC due to shelterbelt planting may be observed only at 

decadal time-scales. 

 Average SOC sequestered under shelterbelts varied with the tree species – hybrid poplar 

(38 Mg ha-1), white spruce (21 Mg ha-1), Scots pine (20 Mg ha-1), green ash (15 Mg ha-1), 

Manitoba maple (11 Mg ha-1) and caragana (6 Mg ha-1). Differences in C sequestration potential 

were attributed to variations in canopy age and structure among the species, which consisted of 
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larger trees with higher diameter, height and crown width among hybrid poplar and coniferous 

species, and smaller trees and lesser litter production in green ash, Manitoba maple and caragana. 

Canopy structure influences the biomass and litter production and inputs (Woldeselassie, 2009), 

also indicated by a positive relationship between stand characteristics and litterfall density. It 

may also affect SOC storage and loss indirectly by influencing soil microclimate and understory 

vegetation (Moeur, 1997). Shelterbelt species also affected the physical stabilization of SOC 

through organo-mineral associations. After adjusting for variations in SOC stocks, a higher 

increase in uncomplexed plant-derived debris was observed for Scots pine and white spruce 

shelterbelts, while hybrid poplar, green ash, Manitoba maple and caragana showed a higher 

increase in mineral-associated SOC. Differences in organo-mineral stabilization may be 

explained by higher decomposition rates of foliar litter of deciduous species compared to 

coniferous needle litter (Prescott et al., 2000). Decomposition of foliar deciduous litter leads to 

higher production of dissolved organic carbon (DOC), which adsorbs onto the mineral surface of 

deeper soil horizons, while the slow-decomposing coniferous needle litter layer collects on the 

surface as partially decomposed debris. Previous studies have also found higher proportions of 

uncomplexed organic matter under coniferous species such as spruce compared to broadleaf 

species (Bu et al., 2012; Laganière et al., 2011). In summary, biophysical characteristics of 

shelterbelts including biomass and litter production affected the quantity of SOC, while the litter 

quality influenced its partitioning into partially-decomposed and mineral-associated fractions. 

In chapter 6, the changes in molecular composition of SOC due to shelterbelt planting 

were studied through analytical techniques including ATR-FTIR and C K-edge XANES 

spectroscopy. Molecular composition of SOC was strongly influenced by litter chemistry and its 

degree of decomposition. Tree litter, which is rich in lignin and cutin-derived C moieties 
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including aromatic, phenolic and alkyl-C (Helfrich et al., 2006), led to the higher abundance of 

these functional groups under shelterbelts. In comparison, agricultural fields had a higher 

abundance of polysaccharide C functional groups, due to a higher content of cellulose and 

hemicellulose in crop residues (Lorenz and Lal, 2005). Chemical composition of SOC was also 

regulated by the degree of decomposition of input litter. Tree litter under shelterbelts was at a 

higher stage of decomposition due to increased decomposition in the humus layer. Thus, SOC 

under shelterbelts was rich in processed C forms including aliphatic and aromatic C forms. This 

finding was further confirmed by C XANES results indicating higher abundance of ketones, 

which are considered to be microbial biomarkers of decomposition (Gillespie et al., 2014a, 

2014b). 

Observations regarding the processes regulating SOC composition are in agreement with 

the currently accepted paradigms of litter decomposition, including ‘initial litter quality’ and 

‘chemical convergence’ hypotheses. Chemical convergence hypothesis postulates that chemical 

composition of OM is determined by the degree of decomposition of litter, proceeding with 

preferential loss of easily decomposable compounds (e.g. water soluble compounds and 

carbohydrates) and selective preservation of recalcitrant C moieties (e.g. alkyl and aromatic C in 

lignin, tannin and suberins; Fierer et al., 2009; Kögel-Knabner, 2002), thus, converging towards 

a common chemistry. However, it states that the chemistry in early decomposition stages may be 

determined by initial litter quality, which is also strongly emphasized in the ‘initial litter quality’ 

hypothesis. Initial litter quality hypothesis states that differences in initial litter chemistry persist 

throughout the process of decay to SOM, irrespective of the extent of litter processing (Wickings 

et al., 2012). The strong effect of initial litter quality in this study may also have been seen due to 

the continuous supply of fresh litter from the shelterbelts during each growing cycle. Microbial 
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activity or biomass were not examined within this study, however, the differences in SOC 

chemical composition between different shelterbelt species and agricultural fields may also be 

caused through differences in microbial community structure among land use types (Yannikos et 

al., 2014; Strickland et al., 2009). 

7.2 Future research directions   

The research presented in this thesis presented information pertaining to the strong 

potential of shelterbelt agroforestry systems for SOC sequestration. Since SOC sequestration 

potential depends on shelterbelt characteristics such as species, stand overstory characteristics 

and litter quality and quantity, the next step would be to identify the processes and practices that 

can help maximize the SOC potential of shelterbelts. Shelterbelt designs and management 

practices that maximize biomass accumulation and reduce growth constraints such as pest and 

disease should be determined. Similarly, viability of management practices that promote higher 

soil C inputs and reduce its decomposition rate such as reduced thinning and pruning of trees, 

higher stand-density etc. should be investigated. The potential of tree species and cultivars with 

deeper and thicker root systems (Kell, 2011; Lorenz and Lal, 2005) and higher contents of 

resistant aliphatic biopolymers including cutin, cutan and suberin (Lorenz et al., 2007), in 

increasing SOC storage and stabilization in the deeper soil horizons should be determined. 

Simultaneously, further research is also required to study the fate and role of these aliphatic 

precursors in tree litter towards the increase in the recalcitrance of SOC. The capacity of 

promising shelterbelt species to provide ecological, agronomic and C sequestration benefits 

under different future climate change scenarios needs to be assessed. 

While this study determined soil C sequestration potential of shelterbelts at the field 

scale, future research investigation should expand their scope to assess the sequestration 
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potential of shelterbelts at the provincial and national-scale, by estimating the soil C 

sequestration potential and land area occupied under different shelterbelt species, soil types and 

ecoregions. Similarly, soil C sequestration potential of other agroforestry systems – including 

alley cropping, silvopasture, riparian buffers and forest farming – should also be estimated, in 

order to develop national-scale inventories on the full scope of agroforestry practices to sequester 

C and mitigate greenhouse gases.  Social and economic barriers to adoption and retention of 

shelterbelts on farmyards and crop fields should be identified, in order to reverse the recent trend 

of shelterbelt removal from agricultural fields (Rempel, 2015). Such information can help guide 

the policy decisions on increasing shelterbelt establishment and providing incentives to 

producers for adoption of shelterbelts. 

Finally, this study showed the effective application of analytical techniques including 

ATR-FTIR and synchrotron-based C K-edge XANES spectroscopy, combined with curve-fitting, 

for effective determination of changes in SOC composition with land use. However, 

improvement in the identification of spectral bands and their validation is desired in order to 

increase their effectiveness (Calderón et al., 2013). Similarly, additional research is required, 

especially for ATR-FTIR spectroscopy, to remove the interference of minerals and carbonates in 

studying the SOC composition.
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APPENDICES 

 
Appendix A. Major stand characteristics of the sampling sites with hybrid poplar shelterbelt plantation 
 

Site 
ID 

Age of 
Shelterbelt 

(years) 

Shelterbelt 
length (m) 

Shelterbelt 
area (m2) 

Avg. 
crown 
width 
(m) 

Avg. 
tree 

height 
(m) 

Mortality 
rate (%) 

No. 
of 

rows 
Other tree species 

HP1 18 27 601 2.3 12.9 0 5 Silver maple, White spruce, Manitoba 
maple, Lilac 

HP2 20 119 1658 8.6 16.0 9 3 Siberian elm, Willow 
HP3 20 104 1527 4.8 7.6 28 3 Spruce, Acute willow, Lilac 

HP4 29 71 1524 11.9 11.1 37 5 Hybrid poplar, Manitoba maple, White 
spruce 

HP5 31 69 545 7.9 17.9 9 1 None 
HP6 34 80 1104 13.8 9.3 40 1 None 
HP7 35 59 1252 7.4 12.9 28 6 Caragana, Maple, White spruce 
HP8 36 26 385 10.6 16.3 3 4 Caragana, Maple 

HP9 38 73 993 7.5 18.5 12 3 Acute willow, Siberian elm, Green elm, 
Hybrid poplar, White spruce 

HP10 45 41 622 12.7 23.2 13 2 Siberian elm 
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Appendix B. Major stand characteristics of the sampling sites with white spruce shelterbelt plantation 
 

Site ID 
Age of 

Shelterbelt 
(years) 

Shelterbelt 
length (m) 

Shelterbelt area 
(m2) 

Avg. 
crown 
width 
(m) 

Avg. tree 
height 

(m) 

Mortality 
rate (%) 

No. of 
rows 

Other tree 
species 

WS2 12 115 446 1.8 5.0 19 2 None 
WS3 12 86 1849 3.5 4.9 0 3 American Elm 
WS4 20 43 322 4.5 7.3 17 2 None 

WS5 24 52 296 5.7 1.5 73 1 Manitoba 
maple 

WS6 27 32 274 5.5 6.2 14 3 Manitoba 
maple 

WS7 30 131 1040 4.7 9.1 0 2 Colorado 
spruce 

WS8 32 60 354 5.9 8.3 0 1 None 
WS9 32 75 512 6.8 8.4 27 1 None 
WS10 58 149 1651 3.9 19.4 55 3 Hybrid poplar 
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Appendix C. Major stand characteristics of the sampling sites with green ash shelterbelt plantation 
 

Site ID 
Age of 

Shelterbelt 
(years) 

Shelterbelt 
length (m) 

Shelterbelt 
area (m2) 

Avg. 
crown 
width 
(m) 

Avg. 
tree 

height 
(m) 

Mortality 
rate (%) 

No. of 
rows Other tree species 

GA1 5 81 2747 3.0 3.8 0 3 Caragana, Siberian elm, Lilac, 
Manitoba maple 

GA2 7 84 521 1.2 1.8 4 2 Acute willow 

GA3 8 17 904 3.2 4.1 0 11 Scots pine, Dogwood, Buffalo 
berry, Lilac 

GA4 12 69 2522 6.6 9.3 13 4 Manitoba maple, Colorado spruce, 
Lilac 

GA5 13 56 977 5.1 7.4 0 3 Colorado spruce, Lilac 
GA6 24 18 99 5.6 7.6 25 1 None 

GA7 31 52 923 4.3 10.0 0 4 Colorado spruce, Lilac, Manitoba 
maple 

GA8 32 304 2690 4.1 8.2 16 3 Caragana, Colorado spruce 
GA9 44 15 182 7.4 9.3 29 3 Caragana, Colorado spruce, Elm 
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Appendix D. Major stand characteristics of the sampling sites with Manitoba maple shelterbelt plantation 
 

Site 
ID 

Age of 
Shelterbelt 

(years) 

Shelterbelt 
length (m) 

Shelterbelt 
area (m2) 

Avg. 
crown 
width 
(m) 

Avg. 
tree 

height 
(m) 

Mortality 
rate (%) 

No. 
of 

rows 
Other tree species 

MM1 5 55 729 4.0 3.8 8 3 Colorado spruce, Lilac 
MM2 6 55 152 2.8 3.1 5 1 None 

MM3 10 207 6351 2.7 2.3 32 8 Willow, Bur oak, Choke cherry, Scots 
pine, Dog wood, Sea buckthorn 

MM4 11 62 383 3.4 3.8 27 3 Manitoba maple, Lilac 
MM5 19 35 266 7.6 5.9 9 1 None 
MM6 20 89 2426 9.5 8.0 3 4 Colorado spruce 
MM7 24 32 570 5.7 6.0 4 5 Chokecherry, Manitoba maple 
MM8 30 28 255 2.7 2.6 65 4 Siberian elm, Colorado spruce 
MM9 46 25 195 5.4 5.2 0 2 Caragana 
MM10 46 42 290 5.9 3.2 19 2 Caragana 
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Appendix E. Major stand characteristics of the sampling sites with Scots pine shelterbelt plantation 
 

Site 
ID 

Age of 
Shelterbelt 

(years) 

Shelterbelt 
length (m) 

Shelterbelt 
area (m2) 

Avg. 
crown 
width 
(m) 

Avg. 
tree 

height 
(m) 

Mortality 
rate (%) 

No. 
of 

rows 
Other tree species 

SP1 7 26 259 3.3 4.5 0 2 White spruce, Green ash, Colorado spruce 
SP2 19 22 210 6.2 10.0 0 3 Colorado spruce, American elm 
SP3 18 38 546 6.2 5.5 25 2 Green ash, Scots pine 
SP4 20 22 151 6.7 8.1 29 1 Colorado spruce, Tamarack, Maple 
SP5 27 18 335 4.0 10.4 0 5 Spruce, Caragana, Scots pine 
SP6 29 25 365 6.4 5.1 40 3 White spruce, Siberian elm 
SP7 30 62 621 6.0 6.4 22 3 Colorado spruce 
SP8 32 39 288 5.6 8.0 7 2 Colorado Blue Spruce 
SP9 39 53 441 8.4 10.7 0 1 None 
SP10 60 61 859 5.5 15.1 17 4 Siberian elm, Hybrid poplar, Scots pine 
SP11 63 37 342 4.0 13.2 6 5 Caragana, American elm, Manitoba maple 
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Appendix F. Major stand characteristics of the sampling sites with caragana shelterbelt plantation 
 

Site 
ID 

Age of 
Shelterbelt 

(years) 

Shelterbelt 
length (m) 

Shelterbelt 
area (m2) 

Avg. 
crown 
width 
(m) 

Avg. 
tree 

height 
(m) 

Mortality 
rate (%) 

No. 
of 

rows 
Other tree species 

CR1 7 368 948 2.6 2.8 0 1 None 
CR2 10 1600 4280 2.7 2.4 0 1 None 
CR3 10 60 179 2.6 2.0 0 2 Green ash 
CR4 21 32 145 4.6 3.3 0 1 None 
CR5 19 80 320 4.0 3.4 0 1 None 
CR6 10 74 429 5.8 3.2 0 1 None 

CR7 24 123 1383 7.0 3.0 0 4 Caragana, Manchurian elm, Colorado 
spruce 

CR8 28 388 2832 7.3 3.6 29 1 None 
CR9 21 200 1165 5.8 3.2 0 1 None 
CR10 32 85 784 5.5 3.3 0 4 Maple 
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Appendix G. The script used for deconvolution of ATR-FTIR spectra of soil samples in the Fityk software package. Changes 

were made to this script depending upon the unique spectral features of the different soil samples.    

 
=-> define GaussianPositive(sqrt_height=sqrt(height), center, hwhm) = Gaussian(sqrt_height^2, center, hwhm) 

=-> A = a and not (400 < x and x < 900) 

=-> A = a and not (1800 < x and x < 4000) 

=-> F += GaussianPositive(height=~0.002, center=915, hwhm=~20) 

=-> F += GaussianPositive(height=~0.003, center=980, hwhm=~30) 

=-> F += GaussianPositive(height=~0.01, center=~1030, hwhm=~40) 

=-> F += GaussianPositive(height=~0.005, center=~1110, hwhm=~30) 

=-> F += GaussianPositive(height=~0.005, center=1160, hwhm=~30) 

=-> F += GaussianPositive(height=~0.0004, center=1260, hwhm=~30) 

=-> F += GaussianPositive(height=~0.0039, center=1390, hwhm=~30) 

=-> F += GaussianPositive(height=~0.0098, center=1440, hwhm=~33) 

=-> F += GaussianPositive(height=~0.0098, center=1510, hwhm=~45) 

=-> F += GaussianPositive(height=~0.0037, center=~1560, hwhm=~23) 

=-> F += GaussianPositive(height=~0.0065, center=~1630, hwhm=~38) 
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=-> F += GaussianPositive(height=~0.0065, center=~1720, hwhm=~38) 

=-> $_hwhm = ~30 

=-> @0.F[*].hwhm = $_hwhm 

=-> fit 

=-> $_2 = ~{$_2} 

=-> $_5 = ~{$_5} 

=-> $_14 = ~{$_14} 

=-> $_17 = ~{$_17} 

=-> $_20 = ~{$_20} 

=-> $_23 = ~{$_23} 

=-> $_26 = ~{$_26} 

=-> fit 
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Appendix H. The script used for deconvolution of C K-edge XANES spectra of soil samples in the Fityk software package. 

Minor changes were made to the script depending upon the unique spectral features of the different soil samples.    

 
=-> define GaussianPositive(sqrt_height=sqrt(height), center, hwhm) = Gaussian(sqrt_height^2, center, hwhm) 

=-> define Atan(a1=0.3, center=290, a3=1.5, a4=0.5) = a1 * atan((x -center) * a3) + a4 

=-> define GaussianPositive2(sqrt_height=sqrt(height), center, width=hwhm) = Gaussian(sqrt_height^2, center, width) 

=-> guess Atan(center=290) 

=-> F += GaussianPositive(height=~0.301, center=~284.1, hwhm=~0.4) #Unsaturated 

=-> F += GaussianPositive(height=~0.501, center=~285.1, hwhm=~0.4) #aromatic 

=-> F += GaussianPositive(height=~0.375, center=~286.4, hwhm=~0.4) #Ketone 

=-> F +=GaussianPositive(height=~0.45, center=~287.3, hwhm=~0.4) #aliphatic 

=-> F += GaussianPositive(height=~0.513, center=~288.5, hwhm=~0.4) #carboxylic 

=-> F += GaussianPositive(height=~0.488, center=~289.5, hwhm=~0.4) #carbohydrate 

=-> F += GaussianPositive(height=~0.48, center=~290.3, hwhm=~0.4) #carbonate 

=-> F += GaussianPositive2(height=~0.5, center=~292, hwhm=~1) 

=-> F += GaussianPositive2(height=~0.5, center=~296, hwhm=~2) 

=-> $_hwhm = ~0.4 
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=-> @0.F[*].hwhm = $_hwhm 

=-> fit 
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Appendix I. Mean peak positions of the deconvoluted C K-edge XANES bands for shelterbelts and agricultural fields 
 

Shelterbelt Field 
Mean (eV) Std. deviation Mean (eV) Std. deviation 

284.08 0.06 284.13 0.11 
285.09 0.03 285.08 0.04 
286.25 0.08 286.24 0.10 
287.28 0.08 287.34 0.06 
288.39 0.03 288.40 0.05 
289.46 0.08 289.40 0.15 
290.73 0.24 290.51 0.26 
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Appendix J. Mean peak positions of the deconvoluted ATR-FTIR absorbance bands for shelterbelts and agricultural fields 
within the wavenumber range of 1800-900 cm-1 
 

Shelterbelt Field 
Mean (cm-1) Std. deviation Mean (cm-1) Std. deviation 

917.15 3.97 917.16 4.45 
985.99 6.05 986.35 7.20 
1036.85 3.98 1036.47 5.60 
1103.26 6.49 1103.30 7.08 
1162.61 6.97 1162.16 7.47 
1253.36 26.64 1247.28 22.89 
1369.73 14.71 1370.00 15.53 
1434.47 8.43 1434.21 9.01 
1509.47 15.04 1509.11 16.71 
1582.92 13.37 1584.60 14.14 
1643.32 7.36 1644.23 7.98 
1702.20 9.64 1703.54 11.36 

 

 


