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Abstract

The genus Chlamydiae encompasses a unique class of obligate intracellular bacteria that can

cause disease in a wide range of animals. In humans, Chlamydia trachomatis infections are com-

mon and are frequently observed in diseases of the eye, genital and respiratory tracts. Prevalent

worldwide, Chlamydia infections can progress to chronic inflammatory sequellae and are the lead-

ing cause of curable sexually transmitted disease and preventable blindness. After falling in the

face of intensified control efforts, case notifications of sexually transmitted Chlamydia in many

countries are rising. In many jurisdictions, this unprecedented rise of Chlamydia case notifications

has occurred after the introduction of wide spread control programs, and has been discussed to

be a result of either increased testing volume, improvements to testing technologies, changes in

sexual behaviour, or increased reinfection rates brought about by deleterious effects of treatment

on acquired immunity. This thesis seeks to answer the question of why are observed Chlamydia

case notifications rebounding? I have attempted to answer this question using simple dynamical

models of Chlamydia transmission framed from immunological and epidemiological perspectives.

Model structures are drawn from frameworks previously used for studying sexually transmitted

infections, and represent a combination of theoretical and data-oriented formulations, as well as

different (hierarchical) ecological scales. The results of this thesis highlight that increased testing

volumes, rather than changes in the sensitivity and specificity of testing technologies, sexual be-

haviour, or truncated immunological responses brought about by treatment can explain the increase

in observed chlamydia case notifications, and that simple explanations for these observed rates ap-

pear to have been dismissed in favor of an increase to the underlying prevalence. In addition to

providing insights into current epidemiological trends, this thesis has also been able to produce

significant insights into the natural history of chlamydial infection. In particular, the phenotype

of an individual’s immunobiology that results from multiple chlamydial infections suggests that

longer periods between initial and repeat infection may increase an individual’s chlamydial load,

their duration of infection, as well as non-intuitively the formation of protective immunity, per-

sistent infection, and the potential for immunopathogenesis. Additional population-scale analyses

suggest the existence of a period of immunity that is, on average, much longer lasting than currently

discussed in contemporary literature. The results of this research outline a potential way forward

through filling several gaps in the immunological and epidemiological understanding of Chlamydia

infections that involves both reviewing existing data as well as continued research using “systems

science” approaches.
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Chapter 1

Introduction: Background and Basic Concepts

It is obvious that the character of a specific disease must be understood thoroughly in order

to model it [89]. Because the subject matter of each of the following sections is vast, I have not

attempted to provide an exhaustive review of the literature. Instead, I have tried to communicate, at

least in my opinion, the most important concepts of chlamydial infections, and how these impact our

understanding of its epidemiology and the study of sexually transmitted infections (STIs) in general.

Chlamydia incidence, prevalence, transmission, host-pathogen interactions, and pathogenesis are

described in sections 1.1 to 1.2. Current control policies, as well as their definitions, are described

in section 1.3. Four types of models for studying infectious disease transmission are presented in

section 1.4; two of the modelling frameworks are more traditional, while two, for the study of STIs,

are relatively novel. Based on my review of previous modelling work, it is evident that different types

of models can yield different levels of information suitable for obtaining a thorough understanding

chlamydia epidemiology. It should be emphasized that the information obtained from one level of

modelling might inform others. Specific remarks are made throughout the chapters of this thesis,

and a unifying statement of its content is outlined in Chapter 6.

1.1 The Magnitude of the Problem

Sexually transmitted infections exhibit a large degree of heterogeneity in their transmission dy-

namics, most of which is likely due to behavioural variability in sexually active populations [120].

In contrast to all other commonly-reported STIs, Chlamydia trachomatis represents a unique and

important public health concern [29], as prevention efforts are hampered by cryptic infections and

delayed diagnosis [146]. This ability to thrive has made it the world’s most common cause of curable

sexually-transmitted diseases [208]. As seen in figure 1.1 genital chlamydia is the most frequently

reported disease in Canada [164]. In 2004, approximately 59,325 cases of genital chlamydia were

reported in Canada [164]. Compared to 1991 and 1996, this represents a 29% and a 71% increase

in reported cases, respectively (see figure 1.2). Sexually-active youth and young adults (aged 15-24

years) disproportionately account for approximately two-thirds of nationally-reported cases, most

of which are amongst females [163]. Risk factors for infection include (unprotected) sexual contact
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Figure 1.1: Incidence rates of the fifteen-most reported infectious diseases in
Canada in 2004. Figure is modified from Notifiable Diseases On-Line [164].

with an infected person, having a new sexual partner or multiple sex partners, previously having an

STI, or being a member of a vulnerable population (e.g., injection-drug users, sex-trade workers,

or street youth) [164].

Sexually transmitted Chlamydia is an important public health concern largely because of its

adverse effects on reproduction [208]. In women, untreated Chlamydia infections can result in Pelvic

Inflammatory Disease (PID) and can have long-term consequences such as scarring of the fallopian

tubes and ovaries, ectopic pregnancy, chronic pelvic pain, and infertility [29]. In addition, infection

with Chlamydia has been demonstrated to facilitate HIV transmission [166] and may likely be an

important correlate in human papilloma virus (HPV)-induced cervical neoplasia [7].

Because of the association with other equally serious STIs, as well as the possibility of undesir-

able sequellae, large-scale chlamydia control programs have been implemented in many developed

countries. Generally these include detecting infected individuals through diagnostic testing, fol-

lowed by antimicrobial treatment and contact-tracing of individuals who might have been exposed

through sexual contact with the infected person [29,163]. Although these control programs might,

in part, be managing chlamydia infection, they may fail to reach large proportions of the popula-

tion [125,138]. They may also be making matters worse.

Since the initiation of chlamydia control programs, a common and distinct epidemiological

pattern in Chlamydia rates has emerged throughout many developed countries: incidence rates are

increasing [31], however the mechanistic details involved in this rise may differ across countries. For
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Figure 1.2: Number of reported cases of genital chlamydia in Canada between 1991
and 2004. Case counts within the figure are at the earliest time point available
(1991), the year chlamydia rates were at their lowest (1996), and the last year
data was available (2004). Figure has been modified from Notifiable Diseases On-
Line [165].

example, in Sweden a novel genetic Chlamydia variant has emerged that, in the previous four years

accounts for over 65% of the reported cases [88]; in Finland, decreasing population seroprevalence of

anti-Chlamydia IgG antibodies is thought to have increased population susceptibility to infection

with Chlamydia [127]; in Canada, increasing reinfection rates [29], improved detection [53], and

dynamic changes in sexual behaviour with sexual networks [48, 220]. In Norway, Sweden, Finland,

and Canada case rates of chlamydia were in decline for nearly a decade following the introduction

of mass control programs [31]. Unfortunately, despite enhanced control efforts, these declining

trends have recently been upturned by increasing chlamydia case counts that exceed those recorded

before large-scale intervention strategies were implemented [31]. In contrast, chlamydial rates in

the U.K., the U.S., and Australia appear to have been steadily increasing since implementing their

respective programs without an initial decrease [40, 94, 196]. The causal mechanism driving these

trends remains to be specifically determined.

To date, the above outlined epidemiological trends have led researchers to advance seven hy-

potheses as to why these increasing incidence rates may be occurring. A connected statement of

these hypotheses can be found in Rekart and Brunham [175], and are reproduced in table 1.1. Of

these seven hypotheses highlighted, the first four focus on direct consequences of switching from

culture-based testing, to immunofluorescence, and more recently to nucleic acid amplification test
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(NAAT) methods. The first hypothesis (H1 in table 1.1) argues that because of the lower speci-

ficity of NAAT methods compared to culture and immunofluorescence methods (94%, 98%, and

100%, respectively), increased rates are due to an increased number of false positives. The second

through fourth (H2-H4 in table 1.1) hypotheses base their argument on improved case detection

techniques, where, because of higher sensitivity, higher patient-acceptance rates (especially among

male patients), and enabled self-collection will lead to higher testing rates and targeted screen-

ing among high risk populations. There is no lack of epidemiological evidence to support H2-H4

(e.g., [35, 40, 66, 80, 136]). Hypothesis 1, however, is likely the least defensible cause of increased

chlamydia rates, as its overall impact is unlikely to carry any significant weight [175]. The fifth and

sixth hypotheses are remarked to have mixed evidence, and may be subject to denial or modification

as central causes of rising chlamydia rates [175]: the fifth (H5), focuses on treatment failures as a

result of decreased susceptibility of chlamydia bacteria to antimicrobials. Though reported to be a

concern for syphilis and gonorrhea infections, treatment failures for chlamydia infections are rarely

reported [31] – in B.C. this is reported to occur on the order of two treatment failures per year;

the sixth (H6), involves population-wide changes in safe sexual practices. The declining chlamydia

rates in the late 1980s and early 1990s are thought to be a subsequent result of a reduction in risky

sexual behaviour in response to safe-sex campaigns against the threat of HIV/AIDS. On this basis,

the recent increase rates of chlamydia are argued to be a result of a decreased risk perception of

HIV infection followed by a decline in safe sex practices [125]. The defensibility of this hypothesis

is bolstered by the decline of chlamydia rates, in the 1980s and 1990s, in countries without mass

chlamydia control programs [125]. The seventh hypothesis (H7), designated the arrested immu-

nity hypothesis, states that treating chlamydia too early in the course of infection disrupts the

formation of protective in-host immune responses. Though only previously demonstrated in animal

models [190], the tenets of the arrested immunity hypothesis have been largely derived through

simulation modelling [29]. Recent research has credited this hypothesis as the source of treatment

failures in Vietnam [12] and declining geographic seroprevalence in Finland [127]. However, the

degree to which it holds in human immunology remains to be determined [29,100,175].

The largest obstacle to determining the merit of each of the above hypotheses lies in the fact that

the prevailing epidemiological trends have, in part or entirely, been based on routine surveillance

data [125, 138]. Overall, routine surveillance data of notifiable infectious diseases is an excellent

source of descriptive information. However, data that are often collected via routine surveillance

usually do not contain detailed epidemiological information and therefore will place important

limits on the insight that can be gained. Some have argued that changes in the number of people

being tested (and re-tested), changes in diagnostic test performance, and the risk profile of the

people being tested could have equally likely produced the observed surveillance trends even if the

underlying burden of chlamydia has not changed [138]. Determining whether, or not, the control of
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H1. More false positive tests because NAAT methods have lower specificity than

culture methods.

H2. NAAT testing results in increased case detection due to better sensitivity than

non-NAAT methods.

H3. NAAT testing of urine is more acceptable, especially among men, leading to higher

testing rates.

H4. NAAT methods allow female self-collected specimens and targeted screening among

persons at high risk.

H5. Decreased chlamydial susceptibility to antimicrobials.

H6. Increased rates of unsafe sexual practices due to reduced threat of HIV infection.

H7. Arrested Immunity because of treatment with antimicrobials.

Table 1.1: Seven Hypotheses of Increased Chlamydia Rates

chlamydia is being fettered by current prevention programs, via the use of surveillance data, will be

challenging given many measurement issues [138]. While perfect quantification of the true burden

of disease will likely never exist, performing research that makes use of contextual information (e.g.,

changes in test volume, diagnostic test used) from multiple data sources will help provide meaning

into observed trends.

1.2 The Infected Person

The genus Chlamydia encompasses a unique class of obligate intracellular bacteria that can cause

disease in a wide-range of animals [17]. In humans, Chlamydia can cause ocular trachoma and

several sexually transmitted diseases [29]. It has 18 main serovars (or strains), as determined

by DNA-sequence analysis and immuno-typing of the major outer-membrane protein (MOMP see

table 1.2) [29,152]. Although inconsistent, some previous studies have found a correlation between

associated human disease, clinical symptoms, and particular serovars [149–152]. With respect to

human diseases, serovars A, B, Ba, and C cause trachoma a leading cause of blindness worldwide

[208] whereas serovars D, Da, E, F, G, H, I, Ia, J, Ja, and K are primarily responsible for sexually

transmitted disease [29]. Serovars L1, L2, L2a, and L3 cause lymphogranuloma venereum [142].

Chlamydia normally infects the single-cell columnar layer of the epithelium in the endocervix

of women (see figure 1.3) and the urethra of men [29]. At the site of infection, inflammation of the

mucosa is characterized by redness, edema and discharge can occur resulting in the clinical syndrome

of mucopurulent cervicitis in women [29, 162, 163]. Clinical symptoms of can include urethral

discharge, burning on urination, irritation in the distal urethra or meatus, while more serious

sequellae (e.g., genital ulcer disease or PID) dysuria, abnormal vaginal discharge or menstrual
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Figure 1.3: Infection of the Female genital tract with Chlamydia trachomatis.
The inflammatory reaction is characterized by an influx of macrophages and neu-
trophils, as well as inductive sites that contain B and T cells, dendritic cells, and
the deployment of secretory and polymeric IgA antibodies (modified from Brunham
and Rey-Ladino [29]).

bleeding, postcoital bleeding and lower abdominal pain are likely to be reported [163]. In 20

to 40% of untreated women, infection ascends the endometrial epithelium to the fallopian tubes,

where Chlamydia can establish persistent infection and cause PID [29]. Overall, approximately 11%

of women with PID develop tubal factor infertility and 9% develop ectopic pregnancies [41]. The

overall rate of these complications has recently been deemed susceptible to measurement biases [61],

and a recent survey of the literature demonstrates that the percentages of infertility and ectopic

pregnancies resulting from Chlamydia infections may, in fact, be lower than previously thought

[202]. Interestingly, this risk seems to be higher for those with PID caused by infection with

Chlamydia compared to PID caused by other factors, such as infection with Neisseria gonorrhea

[28].

Chlamydia spp. undergo a unique development cycle that can infect neighbouring epithelial cells

(see figure 1.4). Chlamydia trachomatis is an obligate intracellular pathogen that resides within a

specialized vacuole and has a biphasic developmental cycle [17]. An infectious, but metabolically

inactive, elementary body (EB) is taken up by mucosal epithelial cells. After internalization, the

EB is surrounded by an endosomal membrane to form an inclusion a vacuole formed from normal

endosomal-trafficking pathways which creates a permissive intracellular niche for the replication of

Chlamydia [50]. Within the inclusion, the EB transforms into a larger metabolically active reticulate

body (RB), which divides by binary fission. Within 40 to 48 hours, the RBs transform back into

infective EBs, which are subsequently released from the inclusion vacuole to infect neighbouring
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Figure 1.4: The developmental cycle of and T cell response against Chlamydia
trachomatis (modified from Brunham and Rey-Ladino [29]).
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cells. In the presence of growth inhibitors, such as interferon (IFN)-γ, intracellular Chlamydia

bacteria acquire a non-replicating, persistent form, and bacteria in this form differentiate back into

infectious forms after removal of the inhibitor [121].

The current understanding of chlamydial immunology has recently been thoroughly reviewed

elsewhere [29, 56, 146]. These more-detailed collections can be readily accessed by the interested

reader. Given recent feedback from my advisory committee, focus on immunological components

has become secondary to larger-scale, more appropriate, epidemiological components. Although a

more implicit consideration of chlamydia immunology will be carried out for my thesis research, I

still, for the purposes of completeness, discuss the current understanding of chlamydial immunology,

at a high level.

Inference by analogy with animal models demonstrates that Chlamydia-specific immune re-

sponses occur not only at mucosal inductive sites, but also at more distant peripheral lymph

nodes [29]. Sampling of microbial antigen (Ag) across epithelia is accomplished by migratory

Dendritic Cells (DCs) that carry Ag to peripheral lymph nodes (LNs) and present it to naive

T cells [29]. Toll-like receptors (TLRs) expressed on the surface of DCs detect microbial infec-

tion and have an essential role in the induction of innate and adaptive immune responses [97].

After infection with Chlamydia spp., epithelial cells of the genital tract produce various pro-

inflammatory mediators (such as CXC-motif chemokine ligands, CXCL, 1, 8, and 16, granulocyte-

monocyte colony-stimulating factor (GMC-SF), interleukin (IL)-1 and -6 and tumor-necrosis factor,

(TNF)) [29,101,173], up-regulate the expression of specific other chemokines (CC-motif chemokine

ligand 5 and CXCL10), as well as secrete cytokines that promote the production of IFN-γ, IFN-α,

IFN-β and IL-12 [101, 132]. Together, these chemokines and cytokines have been demonstrated

to trigger an inflammation cascade that promotes the recruitment of lymphocytes to the site of

infection [139].

Studies from animal models of infection have also clearly established that T cells (CD4+ TH1

cells, in particular) are crucial for resolving chlamydial infections [146,147,189]. IFN-γ produced by

T cells induces the expression of indoleamine-2,3-dioxygenase (IDO) which degrades, and therefore

depletes, cellular tryptophan [121] (see figure 1.4). The reduced cytosolic tryptophan then leads

to the death of chlamydial RBs via starvation. Effector CD8+ T cells (CTLs) have also been

demonstrated to be involved in resolving chlamydial infections (see review in [212]). However, the

specific role of the effector mechanisms of chlamydia-specific CTLs is somewhat unclear [147,189].

Although considered important, the role of antibody (Ab) in protective immunity against

chlamydial infections has been demonstrated to have more of a secondary role to IFN-γ-related

resolution. It has been suggested that B cells and CD4+ T cells may function synergistically in

providing immunity against chlamydia [147]. High titres of IgA and IgG of anti-Chlamydia Ab

do not appear to correlate with resolution of infection [99], and appear to be more likely linked

9



to increased severity of secondary sequellae that result from type II or III hypersensitivities [139].

Rather B cells, and by extension Ab, are thought to be important in controlling reinfection through

Ab-mediated neutralization, instead of resolving primary infection [29].

Despite generating and mobilizing a vast arsenal of immune mechanisms, infections with Chlamy-

dia can be recurrent or prolonged [121]. This may reflect the abundant mechanisms available to

Chlamydia bacteria to evade the immune system [17]. Such intracellular mechanisms include: en-

hanced survival both outside and inside host cells [27, 49, 50], reduced inflammatory and adaptive

immune responses [29], and the ability to persist in alternative intracellular forms [121]. Immune-

avoidance mechanisms might also contribute to pathogenesis and tissue damage, by inducing per-

sistent infection and by enhancing susceptibility to re-infection [29].

Because Chlamydia infections can readily be treated with antibiotics, little is known about the

proportion of infections that resolve without therapy, the time line until resolution, or the factors

that are associated with spontaneous clearance. Only a few prospective and retrospective studies of

Chlamydia infections have been performed – most of them with low sample sizes and short follow-

up [142]. From what little evidence from human populations there is, resolution of Chlamydia

infections appears to be dependent upon the time line for which a population is followed-up. One

smaller study of 74 patients attending an STI clinic in the U.S. demonstrated that 32% had negative

follow-up cultures within 45 days of initial observation [160]. Two earlier European studies have

also demonstrated a clearance rate of 16% in three months [168] up to 44.7% of infected people

per year [152]. More recently, a 5-year follow-up study has been able to reproduce, and elaborate

upon, previous findings [142]. In a cohort of 82 women, an evident inverse time-positivity pattern

can be observed: approximately 53% of patients had resolved infection at 1 year, 81% at 2 years,

90% at 3 years, and 93% at 4 years.

In each of these studies, declining Chlamydia positivity was associated with increasing age of

patients [142, 152, 160], age at first intercourse [142], and previous STI infection [142, 152]. When

compared to patients without persistent infection, patients who were infected with Chlamydia

reported the same number of self-reported complaints (such as abnormal vaginal discharge, inter-

menstral bleeding, postcoital bleeding, frequent urination, dysuria, and lower abdominal pain) [152].

Resolution of Chlamydia infection has not been associated with civil state (i.e., marital status),

use of oral contraceptives [152], the overall and new number of sex partners, and a partner’s STI

infection status [142, 152]. Where available, serovar analyses have demonstrated that serovars D,

E, F, and G are the most abundantly detected among Chlamydia infections [142,152]. Persistence

of infection was most observed with types B, D, and E [142,152].
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Chlamydia Serovar Disease Method of Transmission

A-C Ocular trachoma Hand to eye, fomites, and flies

D-K Oculogenital disease Sexual and perinatal

L1-L3 Lymphogranuloma venereum Sexual

Table 1.2: Human Chlamydia trachomatis (Chlamydia) serovars and their respec-
tive diseases (reproduced from [29]).

1.3 Control Measures

There are numerous activities that can be considered control measures. Throughout this section, I

will largely be referring to primary and secondary prevention efforts such as screening (i.e., detecting

and treating), contact tracing, and partner notification. Primary prevention strategies help ensure

early and efficient detection; it allows treatment to be administered in a timely manner; it shortens

the duration of an individual’s infection; and attempts to prevent reinfection. Secondary prevention

is a direct consequence of primary prevention; it attempts to reduce the risk of transmission to

susceptible sexual contacts in the population through partner notification and treatment of infected

sexual contacts [129].

Historically, detection of chlamydia within infected individuals relied on the presence of symp-

toms, the use of invasive testing methods, and insensitive (though very specific) diagnostic tools

[163]. Recent development of more sensitive (though less specific) testing technologies such as im-

munofluorescence and nucleic acid amplification has produced an appreciation of the asymptomatic

reservoir of many commonly reported STIs. These noninvasive diagnostic tools have also appeared

to have mitigated the general unwillingness of the population, particularly males, and primary care

physicians, to present for and to conduct testing, respectively [19]. As a direct result, this has

allowed a larger proportion of the population to be tested, and thus more infected individuals to

be detected.

Although screening is epidemiologically well defined, screening programmes, as applied to

chlamydia control, has no concise or universal definition [124]. Current designs of screening pro-

grammes against chlamydia can be structured around two main definitions: proactive or oppor-

tunistic [103,124] (see table 1.3). Proactive screening – breast cancer screening in Saskatchewan for

example – contacts people from a defined registry of people at risk. Those who attend are recorded

as uptake and non-attendees are contacted to attend. Opportunistic screening targets those, and

only those, who attend a health care facility. As a result, continual and regular re-screening is

unlikely to occur. Current proactive screening programmes that have been evaluated have focused

their efforts on particular high-risk populations, such as adolescents [20, 51, 118], and have imple-

mented some innovative methods of screening and re-screening to ensure patient acceptance and
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adherence [186].

Currently in Canada, there is no dedicated national proactive screening programme to address

the important reservoir of asymptomatic Chlamydia infections [125]. Rather, a more-opportunistic

set of guidelines have been synthesized as a resource for clinical and public health professionals

[19, 163, 164]. Though not to be construed beyond suggested practices, these guidelines place an

emphasis on both primary and secondary prevention measures, and are applicable for preventing and

managing STIs across diverse patient populations [129]. The remainder of this section is a summary

of the proposed guidelines in how they relate to detection, treatment, prevention, reporting, and

partner notification of chlamydial infections (see [163, 164] for comprehensive compilation of STI

guidelines).

For routine chlamydial infections, laboratory testing is the standard means for detecting Chlamy-

dia infections. Results of laboratory testing are highly dependent upon the type of test avail-

able [164]. Due to its noninvasive nature, urine-based NAAT methods are recommended to be the

primary source for testing asymptomatic individuals when more invasive procedures, such as pelvic

exams, cervical or urethral swabs, are not warranted [164]. Though useful in infants aged less than

3 years, anti-chlamydial serology is not recommended for the diagnosis of acute genital Chlamydia

infections.

When indicated (i.e., a positive chlamydial test, presence of symptoms compatible with chlamy-

dial infections prior to return of test results, diagnosis of chlamydia in a sexual partner, or coinfec-

tion with gonorrhea), treatment for Ct infections successfully cures infection. Preferred treatment

regimens prescribe Doxycycline or Azithromycin [163]. Alternative treatment regimens include

Ofloxacin or Erythromycin [163]. Drug resistance is rare, but remains a concern [31,140,141,185].

Because of the high efficacy of primary treatment regimens, as well as their short duration, test-

of-a-cure is not routinely needed – especially if signs and symptoms disappear and the patient

has adhered to treatment recommendations [164]. However, repeat testing of all individuals with

previous Chlamydia infection within 6 months should occur, as the probability of reinfection is

high.

Chlamydia trachomatis is a notifiable infection in all Canadian provinces and territories [164].

All partners reported to have had sexual contact with an index case within the previous two

months, either prior to onset of symptoms or date of diagnosis (if asymptomatic), should be tested

and treated regardless of clinical findings and test results. Partner notification, when deemed

suitable by public health professionals, includes appropriate referrals for clinical evaluation, testing,

treatment, or health education. In the event of limited public health resources, it is recommended

that the priority for partner notification be directed toward high-risk populations (i.e., adolescents

and young adults younger than 25 years of age) [164].
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Screening Members of a defined population, who may not know they

are at risk of a disease or its complications, are asked a

question or are offered a test to identify those who are

more likely to be helped by further testing or treatment

Screening Programme A continual public health service that ensures screening

is delivered at regular intervals to a high proportion of

the target population to achieve defined levels of benefit

at the population level.

Proactive Screening Population registers are used to invite members of the

population at risk to be screened at appropriate intervals.

Opportunistic Screening A health professional offers a screening test to patients

obtaining health care for unrelated reasons. The onus

is on the health care professional to repeat the test at

appropriate intervals.

Table 1.3: Definitions of Screening and Screening Programmes (Modified from
[124]).

1.4 Modelling Infection Transmission

“All models are wrong, but some are useful.” – George Box and Norman Draper

Planned experiments are an effective means of obtaining information in many sciences. However,

experiments with infectious diseases in human populations are generally not possible for obvious

ethical and practical reasons; repeatable experiments and the data they can generate, are for

the most part, not available in epidemiology [113]. Mathematical models allow one to perform

needed theoretical experiments to better understand the biological and sociological mechanisms

that influence infectious disease transmission [4, 5, 58, 89]. They also furnish a means of assessing

quantitative conjectures and evaluating control procedures [188]. In this respect, the fundamental

role of mathematical models is to develop an understanding of a complex system in a very concise

way [57,113].

A model’s structure demonstrates an idealization of the causal mechanisms of a system. While

mathematical models can provide significant contribution to the understanding of infectious disease

transmission and control, it should be recognized that any given class of models will be unsuitable

for answering many important questions [89]. As discussed below, model structure, stratification,

and resolution, should ideally depend on the particular questions being asked by the researcher and

the function of the proposed model. Often, a law of diminishing returns applies as more detail is

added to a model: simpler measures often correlate well with more-detailed levels of information [4].
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In some cases, simple models will suffice, while in others, very complex models are required [58].

As a result, the most difficult problem faced by a modeller is finding the right combination of an

interesting question, obtaining adequate and relevant sources of available data, and a mathematical

model which can lead to an answer [89].

In STI epidemiology, mathematical models allow for a description of individual risks for ac-

quiring and transmitting infection [21, 57, 63, 112, 116], patterns of sexual behaviour and pathogen

biology to compare with observed patterns in the population (see review in [57]), as well as conse-

quences of health policy [59, 207]. Mathematical models can serve a number of different purposes.

The most important are to: delineate basic principles and processes underlying transmission; to

determine what needs to be measured to both interpret epidemiological patterns and assess the im-

pact of defined interventions; to help define the most important determinants of observed patterns;

to help design and evaluate different interventions; and to test well-defined hypotheses [4].

Given the different epidemiological, behavioural, and proposed immunological characteristics

of chlamydia, there are several convenient ways to model the transmission of chlamydia. Where

possible, I have tried focusing the discussion of each around a useful epidemiological concept: the

basic reproductive number, R0. Each of these is discussed in the following subsections.

1.4.1 Population-Level Compartmental Models

The main focus of mathematical models is the incidence of infection at the level of the population

[58]. Traditionally, for the description of the transmission dynamics of an infectious disease, it has

been convenient to divide the population into mutually exclusive classes, or compartments, with

which numbers, or proportions, of the population “flow” through over time [5]. The susceptible

class, S, contains those who have not yet become infected, the exposed class, E, contains those

who are in period of latent infection, but are not yet infectious, the infectious class, I, and the

removed class, R, who have acquired some degree of protective immunity. These compartmental,

or population-level models, are often titled by a sequence of letters that describes the movement

of individuals between classes: to model infections that confer long-term immunity, SIR or SEIR

models have been appropriate, whereas for models for infections that confer short-lived immunity,

SIRS or SEIRS models are appropriate, and diseases that do not confer any protective immunity

are best described by SIS or SEIS models [89]. For almost all STIs, SIS models have formed the

basic and most studied mathematical templates [57]. This is largely because they capture factors

that influence the observed epidemiology that are common to all STIs. Under an SIS model, the

progression of a generic STI is represented by a generic system of differential equations:

Ṡ = δI − λS (1.1)

İ = λS − δI. (1.2)
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The other parameters in equations (1.1) to (1.2) are the rate of recovery from infection, δ,

and the rate at which susceptible individuals become infected, λ (also called the force of infection

or incidence rate) [5, 82]. The force of infection is an aggregate parameter that is determined by

product of the fractional prevalence of infection in the population, I
N (where N is the population

size = S + I), the probability of transmission within a sexual partnership, β, and the number of

new sex partners the infected person has per unit of time, c:

λ =
Iβc

N
. (1.3)

The effects at the population level are controlled by the behaviours of individuals. Important

insights into the transmission of STIs can be gained from an understanding of simple endemic and

epidemic thresholds [5]. This includes the notion of an “infectee” or “reproductive” number as a

measure of transmission success [89]. This number, often designated R0, is defined as the aver-

age number of secondary infections that are produced by one infectious individual in an entirely

susceptible population [5] prior to their recovery. Spread and persistence occurs when the basic

reproductive number is greater than or equal to one. For the simplest model of an STI in a ho-

mogenous population, the symbolic representation of R0 is defined as the product of the probability

of transmission within a sexual partnership, β, the number of new sex partners the infected person

has per unit of time, c, and the average duration of infection, 1
δ :

R0 =
βc

δ
. (1.4)

This yields a critical threshold of the minimum average number of contacts an individual can have

before disease will spread to increasing numbers of people in the population:

cT ≥
δ

β
. (1.5)

Because of societal sensitivity to the study of what are essentially private behaviours, our

knowledge of sexual behaviour has improved during the period after the emergence of AIDS [59].

Not everyone has the same risk of acquiring and passing on STIs to a new partner. Heterogeneity

will manifest in many of the factors that influence the likelihood of transmission, and thus will

have a significant influence on the magnitude of R0. For instance, the interpretation of the average

values of the simplified behavioural parameter, c, and its effect on R0 requires elaboration. For

instance, skewed rates in the acquisition of new sexual partners will alter the effective rate of sexual

partner change, c, such that:

c = µ+
σ2

µ
. (1.6)

This will change the definition of R0, where its value will proportionally rise according to the

coefficient of variation (ratio of the variance and the mean), to:

R0 =
β

δ

(
µ+

σ2

µ

)
. (1.7)
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A further example of the manifestation of heterogeneity is contained in the distribution of the

number of sexual acts per partnership. If we assume that infection either does or does not happen

during sexual contact between a susceptible and infected person, then the likelihood of transmission,

β, will follow a binomial distribution:

β = 1− (1− γ)α , (1.8)

where γ is the probability of infection during a single act and α is the average number of sex acts

per unit time [4]. Alternatively, if there is a low probability of infection during a single sex act and

many sex acts during a given partnership, then (1.8) can be approximated by a Poisson process

and β becomes:

β = 1− e−γα. (1.9)

Accounting for both independent and co-varying degrees of heterogeneity in sexual behaviour can

assume other, more complex, distributions [3]. However, the general point illustrated by this exam-

ple is that heterogeneity in behaviour of individuals will play an important role in the formulation

of R0, and therefore the resulting epidemiological patterns [58].

Studies of random samples of populations [59] and of patients attending STD clinics [60] have

informed us about the distribution of many behaviours. Some behaviours, like the number of sex

partners over a given period in a random sample of the US population and patients with gonorrhea

in Newark, New Jersey [60] are relatively easy to measure. Other relevant behaviours, such as the

frequency of sex within partnerships with different characteristics and the pattern of sex partner

choice according to risk behaviours, are less straightforward. The number of sex partners reported

by the subjects illustrates the existence of great heterogeneity in risk behaviour and shows that

those infected with gonorrhea have, on average, more sex partners.

The SIS model has been the predominant structure used to study STIs where repeat infections

are common [3,21,57,89]. Many biologically motivated modifications have been made to these simple

frameworks to include more heterogeneities to reflect more complex pathogen or host structure

[2,64,76,89,105]. Heterogeneity in sexual activity, for example, increases the likelihood of an STD

persisting in a defined population [58]. However, the magnitude of the epidemic or endemic state

will also be dependent upon the patterns of mixing between individuals who have different activity

levels. For example, if a population is stratified according to gender and sexual behaviour, then

the pattern of partnerships within and between the various sub-groups of the population can be

described by mixing matrices, ρijk [58, 59,78].

ρijk = (1− ε) δjk + ε

(
Ni′kci′k∑n
u=1Ni′uci′u

)
. (1.10)

The elements of the mixing matrix, ρijk, represent the probability that when someone of sex i,

activity groups j form a sex partnership, it is with someone from activity group k of the opposite
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sex i′. In the absence of reliable data that allow for a “real world” representation, an effective

option is to examine the influence of a range of mixing patterns that are likely to pertain to a

particular community [58]. The mixing parameter determines where mixing occurs on a scale from

fully assortative (like with like, ε = 0) and random mixing (ε = 1) according to the rate of sexual-

partner change. Between the two extremes of assortative and random mixing, the probabilities in

the matrix are equal to the proportions of the total supply of sexual partnerships provided by each

class of the available u activity classes, Ni′kci′kPn
u=1Ni′uci′u

[59]. While this framework does not capture

all possible nuances of the level of mixing in a population, it does allow for an understanding of

how different mixing patterns will impact the spread (and thus the epidemiology) of an infectious

disease.

It is clear that the patterns of mixing between different sub-groups of the sexually active pop-

ulation can have a key influence on the rate and patterns of infection in a defined community.

However, there are many other forms of heterogeneity that are known to be important for STI

transmission. These can include heterogeneity in the strain population and infectiousness, immune

responses, concurrent partnerships, and health seeking behaviour of infected individuals. Unfortu-

nately, a common feature of all such models is an increased level of complexity in the definition

(and formulation) of an overall reproductive number, R0. As the number of stratifications for the

host (or pathogen) population grows, the definition becomes R0(i,j). This represents the number

of secondary cases produced in the j th group of susceptibles by an infective in group i [4].

In addition to these general properties of STIs, chlamydia has some very distinct characteristics

that make it a particularly interesting disease to model. The first characteristic is that a large

proportion of those who are infected do not present symptoms [164]. Secondly, the development of

protective immunity is a somewhat contentious issue: though infection is likely to confer protective

immunity, its duration and extent within the general population has yet to be understood. However,

it is likely to be short-lived. Thus, individuals will become susceptible again after recovering from

infection. The third characteristic is the formation of persistent (or chronic) infection, where it

has been suggested that, in some instances, apparent reinfection may rather be a re-emergence of

persistent infection [29].

These three characteristics of chlamydia require an SIS model (or some modification of this

structure such as SIAS, SEIAS, or SEIARS). Numerous models with this preliminary structure

have been formulated and analyzed for chlamydia [4,58,89]. With respect to qualitative behaviour,

these groups of models do not demonstrate periodic solutions (or oscillatory behaviour) arising

from Hopf bifurcations [89,222], but rather have stable asymptotic equilibria. Thus, with constant

parameter values the disease will either die-out or approach an endemic state [89].

Several structural variations of the SIS or SIRS models have been developed for studying the

movement of endemic equilibrium in response to changing social, biological, or medical conditions.
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For example, changes in prevalence as a result of changing parameter values to mimic health

policy changes in the population (e.g., screening, healthcare demand and capacity, or vaccination

[30, 59, 207], respectively), biological variability in the pathogen (e.g., multiple coexisting strains)

[133, 157], cost-effectiveness analyses of intervention programmes [51, 65], as well as emergence of

secondary complications [124].

For most directly transmitted viral or bacterial diseases, such as measles or whooping cough,

population density plays a major role in the rate and success of transmission, and therefore the value

of the reproductive number [5]. However, for STIs, population size or density will not, in general,

influence the number of sex partnerships formed per unit of time in a simple proportional manner.

Because of the limits on the number of potentially infectious contacts placed by the necessity for

sexual intercourse occurring, STIs typically will depend upon high transmission probabilities, long

durations of infection, and the existence of asymptomatic carriers [26]. It is usually the case,

however, that the number of contacts an individual has is considerably smaller than the population

size [106]. Rather, it is more likely that individuals in a population have a set of contacts that are

fixed. Networks capture the presence of these interactions.

1.4.2 Network Models

Networks and the epidemiology of directly transmitted diseases are fundamentally linked [106].

While traditional mathematical models that aggregate the population into different compartments

have allowed for major advances, they may inappropriate for when contact patterns are heteroge-

neous [137]. Network analysis has been used as an individual-level alternative tool to describe the

evolution and spread of infectious diseases [102, 110, 111, 154, 178, 179, 219] (see figure 1.5). The

field of graph theory has provided a wealth of quantitative tools for describing networks, many of

which have epidemiological applications [106]. In particular, epidemiological interest is focused on

the spread of the disease, in which case the network represents a constraint to the transmission

dynamics.

As highlighted by [155, 156], the study of social (and other) networks has three primary areas.

First, empirical studies of networks probe network structure using a variety of techniques. The

goal of such studies is to create a picture of the connections between individuals. Since there are

many different kinds of possible connections between people (i.e., social connections versus sex-

ual connections) studies must be designed appropriately to measure the particular connections of

interest. Numerous techniques for gathering information about network structure exist, includ-

ing participant interviews, questionnaires, direct observation, use of archival records, and specialist

tools like “snowball sampling” and “ego-centered” studies [155]. However, according to Keeling and

Eames [106], three main techniques have been employed to gather network information: infection

tracing (i.e., only sources of infection are traced), contact tracing (i.e., a proportion of all contacts
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Figure 1.5: A comparison of traditional (“compartmental”) and network models.
The figure has been modified from [137].
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Figure 1.6: For the same simple network (thin grey lines), the type of network
information that is gathered using infection tracing (left), contact tracing (middle),
and diary-based (right). For the left and middle networks, circles represent infected
individuals, and squares (top vertex) represent the primary infected case. The figure
has been modified from [106].

from infected individuals are traced), and diary-based studies (i.e., study participants record con-

tacts as they occur, however it is often difficult for the researcher to link the information into a

comprehensive network). A depiction of the same network gathered through the three different

methods is displayed in figure 1.6.

For the study of STIs, contact tracing is often not applied as a network constructing device

[106]. Rather, it has been used as a means of control. However, from the data collected from

contact tracing, a subset of a sexual network can be uncovered, usually from populations where

disease burden is the highest [219]. Thus, the network obtained is of immediate epidemiological

relevance [102].

Second, once empirical data on a network has been collected, one can answer questions about the

community the network represents using mathematical or statistical analyses. This is the domain

of classical social network analysis, which focuses on issues such as: Who are the most central

members of a network and who are the most peripheral? Which people have most influence over

others? Does the community break down into smaller groups (or components)? Which connections

are most crucial to the functioning of a group? Traditionally, attention has been given to the

nature of connections, particularly symmetry (whether a relationship between A and B implies a

relationship between B and A), transitivity or clustering (whether the friend of a friend is a friend).

A network can be represented mathematically, and describing connections between individuals

(or vertices) is primarily done through constructing an adjacency matrix [106, 155] A; Aij = 1 if

there is a connection between individuals i and j such that infection could pass from person i to

person j; otherwise Aij = 0. A number of useful quantities can be derived from the adjacency

matrix. These include the number of connections (i.e., centrality measures like degree, the number

of neighbours, or eigenvector centrality – which identifies the most influential connections) and
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the number of paths between vertices on which an individual lies (i.e., closeness and betweenness

centrality) [155].

Third, building on the insights obtained from observational data and its quantitative analysis,

one can create mathematical or computer models of processes taking place in the observed networked

system. Modelling work of this type allows us to make predictions about the behaviour of a

community as a function of the parameters affecting the system. However, in some instances

the collection of network data is fraught with difficulties and the use of observed networks lack

generalizable epidemiological results [106].

Applied questions for long-term disease spread or the risk of an epidemic over a given mixing

network have been derived from many areas of graph theory (e.g., random graphs and percolation

theory) [106,155]. Several forms of computer-generated (or idealized) networks have been studied in

the context of disease transmission. Briefly, these include Poisson random networks, lattices, small-

world networks, spatial networks, exponential random graphs, and scale-free networks. Research

using the latter network structure has led to an understanding of some general properties of the

distribution of the number of sexual contacts [122], and are thus of great interest to the epidemiology

of STIs.

Among many of the idealized network structures, a common concept that is reminiscent of

simpler network structures (i.e., random networks), and that is readily applied to epidemiology,

involves the number of vertices in a network n, the probability of an edge (or a connection) existing

between pairs of vertices p, and the emergence of connected structures (or components).

Considering the spread of an infectious disease, it is likely that each person who has become

infected communicates it with independent probability Tij to each of his or her friends (also called

the transmissibility). Consider a pair of individuals who are connected, person i (who is infected)

and person j (who is susceptible). Suppose that the average rate of disease-causing contacts between

them is rij , and that the infected individual remains infective for a time τi [154]. Therefore, the

probability that the infection is not transmitted from person i to j is:

1− Tij = e−rijτi . (1.11)

Therefore, the probability of transmission between persons i and j is:

Tij = 1− e−rijτi . (1.12)

The quantity rij summarizes essential aspects of disease transmission including the likelihood

that a given contact will successfully result in transmission [137]. Depending on our assumptions

of rij , such as a higher likelihood of transmission per contact between person i and j, the trans-

missibility between person i and j can also be estimated by:

Tij = 1− (1− rij)τi . (1.13)
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Note the similarity of equations 1.12 and 1.13 with equations 1.9 and 1.8, respectively.

Because rij is a measure of individual susceptibility, it will vary across individuals, and therefore

is assumed to be chosen from a distribution, P (r). Because of this, the transmissibility, too, will

vary across partnerships. As a result, the spread of disease, overall, will depend upon the mean

probability of transmission between individuals:

T = Tij = 1−
∫ ∞

0

Q (r) dr, (1.14)

where Q (r) = 1− P (r) (1− r)τ or Q (r) = 1− P (r) e−rτ .

To predict the fate of an outbreak, it is important to summarize some useful information about

the degree distribution of a network called the average excess degree of a vertex [137]. Essentially,

the average excess degree of a given vertex (in a network of size n) is a ratio of its mean-squared

degree,
〈
k2
〉

=
P

i k
2
i

n , and its mean degree, 〈k〉 =
P

i ki

n [155]:〈
k2
〉

〈k〉
− 1. (1.15)

When a disease is introduced into a network, it will pass through some but not all of the edges

according to the average transmissibility T [137]. Calculating the weighted average of the degree

distribution of the vertices in a network yields an important (and recurrent) quantity: the basic

reproductive number:

R0 = T

∑
i ki (ki − 1)∑

i ki

= T

∑
i k

2
i −

∑
i ki∑

i ki

= T

〈
k2
〉

〈k〉
− 1

(1.16)

where 〈k〉 is as before, the mean degree of each vertex, and
〈
k2
〉

is the mean-squared degree of each

vertex [155]. Notice that R0 depends explicitly on the structure (and degree distribution) of the

network (that is, 〈k〉 and
〈
k2
〉
). As with the aggregated population models of the previous section,

if R0 is greater than 1, then the number of people becoming infected grows. If R0 is less than 1

then the infection will go extinct rather than grow. Recall that the basic reproductive number is

the number of secondary infections caused by a single infected person in a completely susceptible

population [5]. Thus, in the contact network framework, this is simply the weighted average number

of infected neighbours of an initially infected individual multiplied by the average transmissibility

(equation 1.14). From this a critical transmissibility, Tc (where Tc = T ), can be calculated.

Above this threshold, there exists a phase transition, or tipping point, at which a giant com-

ponent will exist (figure 1.7). This is where the spread of infection (and an epidemic) can occur if

and only if:

Tc ≥ R0
〈k〉

〈k2〉 − 〈k〉
. (1.17)
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Figure 1.7: A graph with a giant component. The graph is modified from [77].

If Tc is less than the right-hand side of equation (1.17), most vertices will either exist in isolation

(figure 1.8) or as smaller groups of connected vertices (figure 1.9), respectively.

Conceptualizing a population as a set of connected individuals to form networks provides an

advantage over other population-aggregated methods for understanding the spread of infectious

diseases [110]. However, there are other individual-level representations that can add to our under-

standing to the spread of many infectious diseases.

1.4.3 Within-Host Models and Incorporating Immunological Concepts

into Epidemiology

While the insights gained from more traditional modelling techniques (discussed above) has been

remarkable, there is evidence in many diseases of important interactions between epidemiology and

immunology [47,120]. Both empirical data and mathematical models suggest that epidemiologically-

centric variables like frequency and intensity of exposure, can affect immunological outcomes [120].

These include malarial [9,10], and helminth [183,184] infections. Many of potential interactions (e.g.,

rebounds in the prevalence, antigenic variation and competition, waning immunity, and transient

cross-immunity) may have significant consequences for creating optimum prevention strategies (e.g.,

vaccination or prophylactic chemotherapies) and establishing an adequate level of herd immunity.

Within-host models are similar to conventional epidemiological frameworks, with the individual

person as the host being replaced by target cells within the infected individual [4]. As with the

population-level models described in section 1.4.1, target populations are divided into several mu-

tually exclusive compartments. However, as the name implies, within-host models study the spread
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Figure 1.8: A graph with the majority of vertices isolated. The graph is modified
from [77].

Figure 1.9: A graph with small groups of connected vertices. The graph is modified
from [77].
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Figure 1.10: The reproductive number of a particular intracellular pathogen is the
total number of newly infected cells that arise from any one infected cell when the
abundance of uninfected cells is at the disease-free equilibrium (figure was modified
from [159].

of infection from cell to cell. For these models, cells within a host are divided up into uninfected

cells U , infected cells I, and cells of the pathogen P – in particular intracellular pathogens, and a

system of differential equations are produced (see [159] and [5] for thorough examinations of this

topic):

U̇ = λ− βUP − δU (1.18)

İ = βUP − αI (1.19)

Ṗ = εI − qP. (1.20)

Whether or not a pathogen can grow and establish infection is dependent upon a condition that

is very similar to a condition outlined in the previous modelling sections. This crucial quantity

is the basic reproductive number R0 and is fundamental to any discussion of the demography of

populations of living things, be they humans, frogs, oaks, helminths, or protozoa [159]. Here R0 is

a ratio of the number of individual pathogens (i.e., the burst size)(see figure 1.10) that arise from

one infected cell:

R0 =
βλε

αδq
. (1.21)

As before, if R0 > 1, then spread of infection will take place, and every infected cell will initially

produce more than one newly infected cell on average.

When R0 > 1, the pathogen population will replicate according to equations (1.18)-(1.20), and

an immune response will be activated. In the simplest case, effector cells of the immune system,

E, are then produced at a rate c and die at a rate γE. It is assumed that c is positive if I > 0,

(that is, if an infection is present), otherwise I = 0. This modifies equations (1.18)-(1.20) to form
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a system of equations with four variables:

U̇ = λ− βUP − δU (1.22)

İ = βUP − αI − µIE (1.23)

Ṗ = εI − qP (1.24)

Ė = c− γE. (1.25)

Whether or not a given pathogen will form a persistent infection or not, depends on its basic

reproductive number in the presence of the immune response, RI . For the model above, this

quantity is given by:

RI =
βλε(

α+ cµ
γ

)
δq
. (1.26)

If RI < 1, then the infection will be eliminated. If RI > 1, then the infection will persist at an

endemic equilibrium [159].

The concept of “immunoepidemiology” reveals how immunological differences between individ-

ual hosts affect pathogen population biology rather than disease incidence, as well as how host

variability in immune responses influences the variability in the pathogen population [47, 75, 87].

Progress in immunoepidemiology, and in particular immunoepidemiological modelling, relies on

an understanding of within-host differences between infected, recovered, and immunized individ-

uals [87]. Several versions of unified theoretical templates across these biological domains have

been developed [33, 34, 47, 75, 79, 83, 86, 115, 130, 167, 193, 199, 215–218]. Recently, the integration

of within-host and population-level dynamics has elaborated on the structure of the within-host

models described by equations (1.22)-(1.25) [115, 193, 199]. Each individual is then connected in a

network such that an individual’s pathogen load is linked with the pathogen load of their network

contacts. Mathematically, this adds an additional term specifying the rate at which each kth person

in the population has an incoming pathogen “flow” that is proportional to the pathogen load of

their neighbours:

ωk
∑
l∈N

AklPl. (1.27)

Here, ωk is the coefficient of connectedness that defines the weights on each of the connections

between neighbours and person k; Akl is the adjacency matrix (from section 1.4.2) that describes

“who is connected to whom”; the vector, Pl, is the pathogen load of the lth network contact of

person k, and N is the population. Incorporating these assumptions into equations (1.22)-(1.25)
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produces the following system of ordinary differential equations:

U̇k = λ− βUkPk − δUk (1.28)

İk = βUkPk − αIk − µIkEk (1.29)

Ṗk = εI + ωk
∑
l∈N

AklPl − qPk (1.30)

Ėk = ck − γEk. (1.31)

Whilst there exists explicit combinations of the nonlinear dynamics of both immune reactions

and of the interaction between an infection and a population of hosts, when compared to the

modelling methods discussed in sections 1.4.1 and 1.4.2, within-host, and by extension immunoepi-

demiological, models have remained under-explored. Though modelling infection dynamics from

this perspective is relatively new, within-host and immunoepidemiological modelling opens up a

completely new perspective for understanding infectious diseases, as a whole [159, 199]. In partic-

ular, investigating the reciprocal influences between host-pathogen interactions and the prevailing

epidemiological environment is well-suited for the study of chlamydia [120,194]. Study of this nature

will require framing hypotheses in a comprehensive ecological context, exploring their implications,

and most importantly, identifying strategies to obtain data relevant to test them. However, because

of the known complexity and diversity of the immune system, most experimental immunologists

tend to possess a strong allergy to mathematical models, despite their recent successes in other

areas of infectious diseases, such as HIV-1 pathogenesis [4, 87].

1.5 Rationale for this Thesis

A critical appraisal of the rebound hypotheses outlined in Table 1.1 (above) has not been the focus

of contemporary discussion in the Chlamydia literature. Therefore, this thesis seeks to answer

an over-arching question: why have observed chlamydia rates rebounded? Providing an adequate

explanation is a non-trivial task, and may require integration of several of the hypotheses outline in

Table 1.1. To this end, I propose to employ techniques from systems thinking to help expand the

boundaries of epidemiological and public health knowledge of chlamydia. My aim will be to create

parsimonious models so that I can investigate how the above mentioned rebound hypotheses may

be influencing chlamydia transmission both at the individual and population level. The models

used throughout this thesis will be a combination of theoretical and empirical (i.e., data-oriented)

formulations. Their design will draw on models previously used for studying different STI screening

and treatment strategies [59,89], the effect of treatment strategies on the development of protective

immunity [29], modelling within-host pathogen dynamics [159], as well as immunoepidemiology

[199].
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Chapter 2

Study 1: Insights into Chlamydia Rates from

Simple Population-Scale Dynamical Models

2.1 Background

With millions of new cases occurring annually, Chlamydia trachomatis is the most common cause

of bacterial sexually-transmitted infection (STI) worldwide [29]. Among women, the magnitude

of morbidity associated with sexually transmitted chlamydia can be staggering [29, 146]. Chronic

and progressive disease due to unresolved chlamydia infections include endometritis, salpingitis,

pelvic inflammatory disease, ectopic pregnancy [31, 163, 175], and has also been associated with

an increased risk of human immunodeficiency virus infection and cervical dysplasia [29]. Given

the detrimental impact that chlamydia infections can have on reproduction, currently observed

rates, and how best to reduce them, have been at the forefront of national policy agendas in North

America, Europe, and Australia [124,163,174].

Collectively, two noticeable epidemiological profiles among reported case rates have emerged

throughout many developed countries [31, 175]. The first of these profiles has been observed in

Canada, Finland, Norway, and Sweden where, after initially falling in the face of intensified control

efforts, reported rates of chlamydia infections have rebounded [31,175]. The second profile has been

observed in the U.S., the U.K., and Australia where incidence rates have been steadily increasing

throughout their entire reporting history [31]. Recent hypotheses for these rising trends of chlamydia

have focused on the introduction of improved testing technologies, antimicrobial resistance, wide

spread changes in the riskiness of sexual practices, and arrested immunity [175] (see Table 1.1).

While the evidence supporting these hypotheses has been the subject of recent debate [125,138,175],

their validity remains to be a focal point of current chlamydia research [125].

None of the hypotheses in Table 1.1 are mutually exclusive, and several are likely operating

simultaneously [175]. Therefore, understanding how these hypotheses are contributing to the dy-

namics of chlamydia will benefit from (but not entirely depend upon) techniques for modelling

dynamic complexity. The primary advantage to using dynamical models is that they depict ex-

plicit statements about system structure and how the elements within the system interact [188].
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As a result, they enable valuable insights into how certain behaviour has arisen over time [89,188].

We believe that this methodological strength is particularly well suited for elucidating the main

drivers behind rebounding case counts of chlamydia infections. In this article, we discuss: one, the

methodological approach we used to construct simple mathematical models of chlamydia transmis-

sion; two, how we were able to integrate them with observed data; and three, how we used this

approach to, in the context of recent rebound hypotheses (Table 1.1), parsimoniously explain the

current epidemiological profile of chlamydia infections in the Canadian province of Saskatchewan.

2.2 Models and Methods

2.2.1 Data Sources and Trends

Saskatchewan has a population of approximately 1,014,649 people [84]. Of those who are of sexually-

active age groups, approximately 7.7 per cent of its residents are between the ages of 15 and 19

years, 7.5 per cent are between the ages of 20 and 24 years, and 84.8 per cent are ≥ 25 years of

age. In Saskatchewan, 13 health regions collect surveillance data on reportable diseases, which are

then reported to the Communicable Disease Division of the Saskatchewan Ministry of Health. Of

the three above mentioned age groups, those aged between 15 and 24 years comprise 64 to 76 per

cent of all reported chlamydia cases in Saskatchewan [163].

Since 1984, chlamydia infections have been a reportable infectious disease in Saskatchewan.

During this time, all reported cases of chlamydia have either been diagnosed based on clinical criteria

(i.e., urethral discharge, burning on urination, irritation in the distal urethra, dysuria, abnormal

vaginal discharge or menstrual bleeding, post-coital bleeding, and lower abdominal pain) [163,175],

laboratory methods (i.e., culture, enzyme immunoassay or polymerase chain reaction), or both

depending on the year.

Key, aggregated longitudinal data between 1983 and 2007 were assembled from a combination of

Provincial Health Reports, records of the Provincial Laboratory, as well as the Public Health Agency

of Canada. These data consisted of reported chlamydia case counts, incidence rates (per 100,000

population per year), and testing volume. Case notifications and incidence data is publicly available,

and was obtained through a combination of reviewing Public Health Reports of the Saskatchewan

Ministry of Health, and from the Public Health Agency of Canadas Notifiable Diseases Online

website where data gaps existed for historic years in Provincial records. Data of testing volumes

is also publicly available, and was provided to us by the Saskatchewan Ministry of Health upon

request. No formal permission was required to use these data.

Between 1983 and 1991, chlamydia test volume data was combined with another category of

viral testing. However, we were able to obtain documented viral testing levels for several years

before 1983 (i.e., 1979-1982) from public health reports of the Saskatchewan Ministry of Health.
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Using the earliest data that separated chlamydia testing volumes (1991-1992) in conjunction with

records of “combined” viral testing volumes (1982-1990) we were able to impute testing volumes

for chlamydia, between 1983 and 1990. The combined category imposed an upper bound on the

level of chlamydia testing that could have occurred. Each of the different imputation strategies

was bounded within a narrow defined range of possible values that converged by 1990 (not shown).

Because of this asymptotic consistency, the resultant imputed test volume data series did not affect

the overall interpretation of the results we report below. From reported chlamydia case counts and

testing volume, we were also able to derive a time series for prevalent chlamydia infection among

those tested.

Two characteristics of this data gave us a unique advantage over previous studies on chlamydia

transmission: the first was a 25-year reporting history of chlamydia. To our knowledge, there are

few jurisdictions, worldwide, that have access to similarly broad data; the second was that all testing

in the province has been done by one agency (i.e., the Provincial Disease Control Laboratory). This

provided reliable testing volume (i.e., denominator) data over the entire reporting history.

Some of the salient trends of reported chlamydia cases are displayed in Figure 2.1. This time

series displays rapid growth from 1983 to the late 1980s. A factor that was undoubtedly fueled by

the fact that chlamydia had become a reportable infection in 1984. This was followed by pronounced

downward trend between 1988 and 1996. Since 1991, the province of Saskatchewan has recorded

incidence rates up to two-times higher than national rates, and since 1997, an observable rebound

has occurred.

2.2.2 Model Structure and Formulation

The models we examined provided robust frameworks for data analysis. In particular, they were

developed to integrate testing volume data, reproduce reported chlamydia case counts, while also

seeking to understand the general epidemiological processes underlying them. Throughout this

investigation, the above data contributed to adding confidence to model assumptions and structure.

Model construction followed an iterative process where various causal hypotheses were translated

into systems of differential equations. These equations were then simulated to determine whether

they were capable of reproducing historical data using plausible parameter values derived from the

chlamydia literature.

Model structures were purposefully kept simple so to focus on broad insights into the processes

that have shaped chlamydial patterns over time [58]. Through an extensive process of testing and

evaluation (see below), several model structures were investigated. The model presented below

emerged from that process as the most parsimonious dynamic hypothesis that adequately captured

the historic patterns. However, we should note that the results we describe below remain consistent

across the model structures we examined. An overview of the model structures are displayed in
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Figure 2.1: Historic trends of Chlamydia trachomatis infections in Saskatchewan
and Canada between 1983 and 2007. Asterisk indicates when chlamydia infec-
tions became reportable in Saskatchewan (1984). Saskatchewan Incidence rates
(per 100,000 population per year) are crude rates and are calculated as the ratio of
number of reported cases and the population of Saskatchewan.

Figures 2.2-2.5.

For the description of the transmission dynamics of an infectious disease, it has been traditionally

convenient to divide the population into mutually exclusive classes, or compartments, with which

numbers, or proportions, of the population “flow” over time [5, 58, 89]. The susceptible class, S,

contains those who can become infected, the infectious class, I, and the removed class,R, who have

acquired some degree of protective immunity. Much of the preliminary structural assumptions

combine aspects of models previously published for studying gonorrhea [59] and chlamydia [26,

30], and were devoted to specifying the interaction of infection spread in the presence of readily-

accessible healthcare provision.

A number of the assumptions in the model we presented in the main text have other plausible

alternatives. We must therefore demonstrate the extent to which our main results and predictions

are robust to different epidemiological assumptions and model structures. To do so, we investigated

three alternative models that are described in more detail below. In every case we observed that:

one, we can explain the observed data with relatively simple models; and two, all four of the models

do not have to appeal to special factors to explain the recent rise in observed cases (i.e., changes

in the sensitivity of diagnostic tests, sexual behaviour, or the arrested development of immunity

because of treatment). We should note that the structure of Model 2 (below) was our initial

dynamic hypothesis (i.e., our true Model 1). However, for the sake of convenience (and hopefully
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not confusion) we refer to the model presented in the BMC Infectious Diseases article as Model 1.

Model 1: A Simple Susceptible-Infected-Removed Model with Treatment of Infectives

We adopted a deterministic, compartmental, susceptible-infected-treated-removed-susceptible (or

SITRS) framework [5,197]. The susceptible class, S, contained those who were sexually active and

could become infected; the infected class, I, contained those who were infectious; the treated class,T ,

contained those who either sought health care or were found by contact tracing. Testing sensitivity

and specificity were assumed to range between those of cell culture, enzyme immunoassays, and

nucleic-acid amplification testing (NAAT). As a result, the treated class T contained both true and

false positives; these people were assumed to have been tested, diagnosed as cases, and treated

appropriately; these individuals were also assumed to abstain from risky sexual contact according

to Public Health Agency of Canada guidelines [163] and remain “quarantined” in the treated class

for the duration of treatment. The flow of people from the treated class to the removed class were

assumed to occur at the rates Tσ′ and σI, respectively; the removed class, R, contained those who

had naturally recovered from infection. This class also contained those who were given a positive

diagnosis and temporarily reduced their sexual risk-taking behaviour after being treated. People

in the removed class were assumed to eventually exit the sexually active population, or return to

the susceptible class as a result of waned immunity or relapse into previous risky sexual behaviour

(Figure 2.2).

The fractions of the population that were susceptible, infected, treated, or were removed at

time t were denoted by S(t), I(t), T (t), and R(t) respectively. We assumed that the sexually-active

population had a constant size N , where N = S + I + T + R. The actual or true prevalence of

infection in the sexually-active population is represented by I(t). People were assumed to enter the

susceptible state at sexual debut at a constant rate, µN , and exited at a rate µS. The probability

of chlamydia transmission per year for a given partnership between a susceptible and infected

individual is given by βc, hereafter denoted β̂. Thus, for a given fraction of infected people in the

population,
I

N
, the number of susceptibles that become infected per year is S

β̂I

N
. The number

of false positives detected for a given test was assumed to occur at a rate nS (1− φ′). Here, the

number of susceptibles tested is the difference between the recorded testing volume, V , and the

number of infectives tested, nS = V − nI . The number of infectives tested was a function of the

fraction of infectives tested, βT
(
1− e−α(V/I)

)
, and the prevalence of infection in the population, I:

βT
(
1− e−α(V/I)

)
I. Our testing assumptions here posit a relation that states if testing increases,

more cases will be found. However, simply doubling the number of tests does not mean that twice

the number of infection will be found. In effect, the model assumes a “law of diminishing returns”

where there is a lower and lower incremental benefit with increased testing. Thus, when testing

volume, V , approaches zero, the fraction of infectives tested approaches zero at a rate α; as testing
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Figure 2.2: Schematic stock and flow diagram of the susceptible-infected-treated-
removed Model 1. We adopted a deterministic, compartmental, susceptible-
infected-treated-removed-susceptible (or SITRS) framework. The susceptible class,
S, contained those who were sexually active and could become infected; the in-
fected class, I, contained those who were infectious; the treated class, T , containing
both true and false positives; these people were assumed to have been tested, di-
agnosed as cases, and treated appropriately; the removed class, R, contained those
who had naturally recovered from infection, and those who were given a positive
diagnosis and temporarily reduced their sexual risk-taking behaviour after being
treated. People in the removed class were assumed to eventually exit the sexually
active population, or return to the susceptible class as a result of waned immunity
or relapse into previous risky sexual behaviour.
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volume increases, the fraction of infectives tested will approach βT , reflecting that even with great

testing effort, it takes a certain amount of time to identify some infectives. The fraction of infected

people detected by testing (per year) were treated at a rate nIφ, recovered naturally at a rate σI,

or exited the infected class at a rate µI.

Those deemed infected (i.e., both true and false positives) were treated and returned to the

susceptible class at a rate Tσ′ or exited the treated class at a rate µT . While both seeking

healthcare services and contact tracing are likely two separate processes responsible for bringing

infected individuals to the treated state, we assumed that there is some net time, nIφ, that will result

(that is mathematically equivalent to representing two separate rates). Keeping these as a single

parameter helped reduce the risk of overfitting. For simplicity we made an assumption that those

being treated follow the recommended clinical guidelines published by the Public Health Agency of

Canada that patients abstain from risky sexual contact for 7-14 days whilst being treated [163]. All

those in the removed state then were assumed to return to the susceptible class as a result of waned

immunity or relapse into previous risky sexual behaviour at a rate δR. Under these assumptions,

the flow of individuals between the S, I, T , and R classes is depicted in Figure 2.2 and described

by the following system of equations:

Ṡ = µN + δR− S β̂I
N
− nSφ′ (2.1)

İ = S
β̂I

N
− I (µ+ σ)− nIφ (2.2)

Ṫ = nSφ
′ + nIφ− T (σ′ + µ) (2.3)

Ṙ = Iσ + Tσ′ −R (δ + µ) . (2.4)

The primary contribution of this approach is that it brings a unique perspective of integrating

data with mathematical models in order to gain a novel understanding of chlamydial patterns that

have been observed between 1983 and 2007. Model structure directly incorporated data for recorded

test volumes as part of the testing assumptions explicitly captured by the model structure. Models

were then calibrated to match case notification data. Integrating testing volume into the models

placed a constraint on the model calibrations in order to match observed case counts. As a result of

these data constraints, we were then able to triangulate an estimate of the prevalence of chlamydia

infections in the population.

Other model structures examined the effect of treatment on the development of acquired im-

munity in combination with changes in sexual risk-taking behaviour (see Models 3 and 4 below).

While acknowledging the importance of intricate biological and epidemiological differences by gen-

der, age, and symptomotology our models followed the assumptions of Hethcote and Yorke [89] and

ignored their effect. Instead, the models assume that chlamydia transmission occurs in one uniform

homogeneous population of sexually active people. The population represented by these models
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therefore consists of those individuals at high risk, those who are efficient transmitters, as well as

their sexual contacts.

Model 2: Chlamydia Transmission using a Susceptible-Infected-Treated Model

For this model, a compartmental SITS (susceptible, infected, treated, susceptible) framework was

adopted. This model provided a starting theoretical framework to use in drawing simple conclusions

about the epidemiology of chlamydia. It made use of the notion that susceptibles become infectious,

and then susceptible again. Because chlamydia is a reportable and curable infection, this model

also assumed that a fraction of infectives were tested, treated, and then, too, become susceptible

again. As with Model 1 (above), Model 2 made the assumptions that chlamydia infection occurs in

one uniform homogeneous population, and that there are negligible periods of latency. In contrast

to the other models examined, Model 2 made the assumption of negligible periods of protective

immunity (i.e., no R state). The population represented by the model consisted of the segment

of the sexually-active population who are at high-risk or are efficient transmitters (following the

assumptions of Hethcote and Yorke [89]). This model also did not account for differences in sexual

activity and it ignored epidemiological differences between men and women.

The movement (or flow) between S, I, and T classes, based on the above assumptions, was

described by the following system of ordinary differential equations (see Figure 2.3 for schematic

diagram):

Ṡ = µN + σI + Tσ′ − S β̂I
N
− nSφ′ (2.5)

İ = S
β̂I

N
− I (µ+ σ)− nIφ (2.6)

Ṫ = nSφ
′ + nIφ− T (σ′ + µ) . (2.7)

Model 3: A Model that Assumes Treatment of Prevalent Infection Truncates Transient

Acquired Immunity

Here, we made an additional assumption adopted from Brunham et al. [30] that being found to have

infection and thus being treated did not impact a person’s sexual risk-taking behaviour. In contrast

to Model 1, our assumptions in Model 3 were motivated by the observation that being treated may

inhibit the development of acquired immunity, and thus returned a person to the susceptible state

at a rate Tσ′. As was mentioned above, this assumption jointly accounted for no change in sexual

risk behaviour, but also assumed that treatment truncated any benefit of transiently acquired

immunity [30, 175]. These additional assumptions produced the following system of equations (see

Figure 2.4 for schematic diagram):
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Figure 2.3: Schematic stock and flow diagram of the susceptible-infected-treated-
removed Model 2.

Ṡ = µN + δR+ Tσ′ − S β̂I
N
− nSφ′ (2.8)

İ = S
β̂I

N
− I (µ+ σ)− nIφ (2.9)

Ṫ = nSφ
′ + nIφ− T (σ′ + µ) (2.10)

Ṙ = Iσ −R (δ + µ) . (2.11)

Model 4: A Model that Combines Models 1 and 3

Here, we combined our assumptions in Models 1 and 3. More specifically, the removed class R(t)

was assumed to contain a combination of those who had not presented for treatment and recovered

naturally from infection, and a fraction, θ, of those who had temporarily changed their sexual risk

taking behaviour after being treated. In addition to this, we also considered a scenario that jointly

accounted for the lack of developing acquired immunity and no changes in sexual risk behaviour

after being treated. This additional assumption returned the remaining fraction of the population,

1 − θ, to the susceptible state at a rate (1− θ)Tσ′. These additional assumptions produced the

following system of equations as well as the schematic diagram in Figure 2.5:
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Figure 2.4: Schematic stock and flow diagram of the susceptible-infected-treated-
removed Model 3.

Ṡ = µN + δR+ (1− θ)Tσ′ − S β̂I
N
− nSφ′ (2.12)

İ = S
β̂I

N
− I (µ+ σ)− nIφ (2.13)

Ṫ = nSφ
′ + nIφ− T (σ′ + µ) (2.14)

Ṙ = Iσ + θTσ′ −R (δ + µ) . (2.15)

2.2.3 Parameter Values and Model Calibration

Initial parameter values were derived from available literature. Their values, ranges, and refer-

ences are summarized in Table 2. Model calibration, cross-checking, and sensitivity analyses were

performed using a four-step process adapted from Van de Velde et al [44]:

1. Setting initial parameter values: Each parameter value associated with the natural history

of infection or with healthcare provision was estimated from key epidemiological or review

articles in the available literature between 1997 and 2007. Where unavailable, estimates of

parameter values (i.e., duration of sexual activity) were derived from modelling literature on

gonorrhea infections [59, 207]. Given that both gonorrhea and chlamydia are transmitted by

similar behaviour, we think using data from other STIs is a reasonable assumption.

2. Sampling parameter ranges and fitting the model : Each parameter value was associated with
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Figure 2.5: Schematic stock and flow diagram of the susceptible-infected-treated-
removed Model 4.

a range of values between the maximum and minimum values found in the literature surveyed.

Parameter settings that minimized the discrepancy between the historic reported case counts

and those output by the model, were determined by a sequence of 50 optimizations using the

Powell global optimization algorithm available in Vensim DSS for Windows (version 5.5d).

Each optimization used a distinct random number seed, and performed approximately 1.0×106

simulations (yielding a total of 5.0× 107 simulations across all optimizations).

3. Cross-checking model fit : To build confidence in the model results, we compared model sim-

ulations to observed data series that were not used in step 2. These included the reported

incidence rate (per 100,000 population per year) and fraction of positive cases among those

tested.

4. Sensitivity Analysis: Each of the optimization scenarios identified a different point in param-

eter space that offered the “best fit” to the historic data. Because of this inherent variability

present in each optimization scenario, we performed a sensitivity analysis based on the dis-

tribution of parameter vectors produced in step 2.
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Parameter Description Value (units) Reference

β̂ The mean number of susceptible 0.8-10 [26]

individuals infected with chlamydia (1/year)

per year by an index case.

1/σ Average duration of natural infection. 1.25 (years) [26]

1/σ′ Average duration of infection when 0.038 (years) [163]

treated.

φ Diagnostic test sensitivity. 0.5-0.92 [174]

φ′ Diagnostic test specificity. 0.98-1.0 [174]

1/µ Average duration of sexual activity. 15 (years) [59,207]

1/δ Average duration removed. 0.5-10 (years) [66,124]

nI Number of infectives tested. Calculated

nS Number of susceptibles tested. Calculated

Table 2.1: Baseline parameter values and ranges used during model calibrations.

2.3 Results and Key Model Insights

2.3.1 Model Fit and Validation

Figure 2.6 compares the observed historic trends in Saskatchewan and calibrated model simula-

tions. In contrast to other seminal work on modelling STI transmission [59, 89, 207], a model that

incorporates a removed state best reproduces observed chlamydia trends (see Figures 2.6 and 2.7).

As shown, the model was able to accurately mirror observed temporal changes in reported case

counts (Figure 2.6A). These trajectories also accurately reproduced the temporal changes in the

observed incidence and the proportion positive among those tested without explicit instruction to

match these data (Figures 2.6B and C, respectively).

One major advantage of this analysis was that it allowed us to produce a triangulated estimate

of the “true” epidemiological state (i.e., the infected class I) that underlies the observed trends.

Hereafter this will be referred to as the “actual” prevalence. As shown in Figure 2.6D, the model

suggests that actual prevalence reached a maximum shortly after 1984, was in decline between

1991 and 1996, and was followed by an upward rebound between 1996 and 2003. It is interesting

to note that while the model suggests that a rebound in the actual prevalence has indeed occurred,

the peak of this upward trend lies below the peak attained in the mid 1980s. This behaviour

suggests that the prevalence is moving towards an endemic steady state by a series of weakly

damped oscillations – a familiar feature of the types of infectious disease models we studied here [5].
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Figure 2.6: Comparison of model calibrations to observed trends. Calibrated
numbers of (A) cases from the models compared to reported numbers of cases in
Saskatchewan. Parts (B) and (C) cross-check the model to the observed proportion
positive among those tested (B), and the reported incidence (per 100,000 popula-
tion) (C). Model-generated curves in parts (A), (B), and (C) were arbitrarily chosen
from 50 million optimization simulations. Part (D) is a visual comparison of testing
volume between 1983 and 2007 to the actual prevalence in Saskatchewan generated
by the model.

When the actual prevalence is superimposed on the observed trends in testing volumes, an obvious

divergence between 2005 and 2007 is demonstrated (Figures 2.6D and 2.8). Specifically, testing

volume appears to be steadily increasing, while the actual prevalence has plateaued.

2.3.2 Parameter Uncertainty

The parameter sets that best fit the observed epidemiological data produced a wide range of com-

binations. When we accounted for variability in the calibrated parameter values, the models tra-

jectories for the actual prevalence of chlamydia exhibited minor change and retained the same basic

behaviour over time (Figure 2.9A). Even though this model did not explicitly simulate the efficiency

of contact tracing, the model results suggest that the level of healthcare coverage (expressed as the

fraction of recovering cases recovering through treatment) rapidly increased in the mid 1980s and

has remained quite consistent over time (Figure 2.9B).
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Figure 2.7: A comparison of the model-predicted case notifications from Models
2-4 to the actual case notifications in Saskatchewan between 1983 and 2007.

Figure 2.8: A comparison of testing volume between 1983 and 2007 to the actual
prevalence in Saskatchewan predicted by Models 2-4.
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Figure 2.9: Uncertainty and sensitivity analysis of model results. Parts (a) and
(b) are the results of a sensitivity analysis on the “actual” prevalence generated by
the model and the fraction of infectives that have recovered via treatment, respec-
tively. In both parts (a) and (b), the black line represents the mean value, and
the coloured bands represent the 50 (red), 75 (yellow), 95 (green), and 99 per cent
(blue) confidence intervals.
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2.4 Discussion

Globally increasing chlamydia rates have been widely discussed to be a result of both changes to

testing technologies and changes in human sexual and social behaviour near the mid- to late-1990s

[125, 138, 175]. Although initially intuitive, the results presented here provide evidence that such

observed rebounding trends in chlamydia infections have resulted from a simpler set of oscillating

epidemiological processes, in particular a significant delay in replenishing the susceptible population,

that have been operating throughout the entire history of this infection. Taken together, our

results demonstrate that currently observed rebounding chlamydia notifications are more likely a

combined artifact of: one, when chlamydia infections became reportable; and two, the state of

the underlying prevalence once surveillance was well-established (shortly after 1987), rather than

because of fundamental changes that have arisen because of some of the hypotheses in Table 1.1.

Several pieces of evidence suggest that adopting NAAT technologies have likely had an impact on

observed chlamydia case counts. First, testing via NAAT methods is done on urine, which is more

acceptable and easier to collect from high-risk youth and male patients [175]; this will, ultimately,

allow more tests to be collected. Second, because of an increased sensitivity and decreased specificity

profiles compared to non-NAAT methods, NAAT technologies allow for improved case detection

[35,53,66]. While the improved sensitivity and decreased specificity profiles of NAAT methods are

likely to impact observed chlamydia case rates [138], our models were able to reproduce observed

trends without having to account for changes in test sensitivity or specificity since their introduction

(which in many parts of Canada was between 2000 and 2001). Overall, our analysis is able to

reinforce previous statements that higher testing frequency, alone, can have a significant influence

on observed rates [66,138].

Additionally, our analysis suggests the existence of a positive feedback from testing volume

that accounts for the recent continued climb in the reported chlamydia case counts between 2002

and 2006: a greater number of positive tests led to more awareness of the infection, which led to

more testing being done, and still a larger number of positive tests (Figure 2.6D). However, higher

rates of testing will also bring higher rates of treatment. Higher rates of treatment appear to have

led to a reduction of the underlying prevalence over time, and thus contributed to the observed

damped oscillations in the actual prevalence. Upon reflecting on the behaviour of the actual (model-

predicted) prevalence, we would also expect that observed rates will eventually begin to plateau as

the prevalence among people tested begins to approach the actual prevalence in the population at

risk.

The arrested immunity hypothesis posits that early treatment interrupts the immune response,

thereby enhancing population susceptibility to infection as people re-enter the same sexual networks

[30,175]. When we accounted for this phenomenon in two of the alternative model structures, nearly
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identical results were observed when compared to a model that did not account for it (i.e., the model

represented in Figure 2.2). The fact that the structures of Models 3 and 4 were able to accurately

reproduce data, after being constrained by testing volume data, suggests that arrested immunity

is very likely an important component of the underlying dynamics of chlamydia transmission.

However, additional sensitivity analyses on Models 3 and 4 (not shown) revealed that the impact

of arrested immunity at the population level may not be as significant as previously discussed [31].

Overall, this too seems to suggest that adverse immunological impacts of current test-and-treat

polices are not required to explain the rebound.

Similarly, previous discussions in the literature have also implicated rebounding chlamydia rates

to be a function of increased high-risk sexual behaviour that has, ultimately, resulted in an increase

in both on-going and new chlamydia infections [124, 125, 175]. The models we presented here

captured two different aspects of behaviour change. These were the mean number of susceptible

individuals infected with chlamydia per year by an index case, β̂, and the average duration a person

stayed in the removed class,
1
δ

. However, as with changes in testing technologies and arrested

immunity, our models were able to reproduce observed trends without having to appeal to changes

in sexual risk-taking behaviour.

2.4.1 Limitations

There are some limitations to our analysis that need to be discussed. As with any model, the given

structure represents a simplification of reality. We chose to develop a population-based model

that is appropriate for exploring transmission dynamics in a large population where the infection

is endemic. Therefore, we did not evaluate the impact of network structure or the duration of

sexual partnership on our results. Although we may have described our results at the level of the

individual, models of this type do not capture events that occur at the individual level. As a result,

the models we present here will offer poor resolution for investigating network-based interventions.

Despite this, these types of models are still capable of providing broad-level insights into historic

and current epidemiology at the level of the population [8,91], and are able to shed light on specific

questions in a way that alternative models, including human intuition and traditional epidemiology,

do not.

Models are only as useful as the data available to inform them. Although our simple models

contain many plausible relations that have some precedent in previous epidemiological observations,

they were developed and calibrated in the absence of some important numerical data (e.g., data

stratified by age and gender). Despite this simplification of reality, we do not think that stratify-

ing the model by age or gender would have benefited the results presented here. This is largely

because of inadequate provincial data to calibrate age and gender specific mixing parameters. In

our opinion, calibrating a stratified model in the absence of such data would have suffered from
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overfitting. Regardless of these simplifying assumptions, one of the strengths of this analysis is

that integrating surveillance data with dynamic models of chlamydia transmission allowed us to

provide some underlying epidemiological context to data that has been largely criticized for lacking

it [125,138]. More notably, these analyses have also highlighted how, once a surveillance system is

well established (which in Saskatchewan was near 1987), and given a concerted effort to identify

as many cases as possible, surveillance data can accurately mimic the underlying prevalence of

infection.

Although extant data limitations ruled out constructing a stratified model, two considerations

give studying demographic heterogeneity priority for future work. First, having been able to explain

the rebound in observed case notifications as a function of testing volume, collection of more detailed

data could highlight contextual epidemiological differences among those being tested for chlamydia.

Second, for these models to offer value in assessing intervention tradeoffs, it will be important to

account for these population heterogeneities in the model structure. We are currently drawing on

more-detailed data from a sub-provincial level (e.g., changes in contact rates, gender distribution

amongst tested cases, the age distributions of contacts, rates of pelvic inflammatory disease, and

changes in the social marketing of healthcare services over time) to expand the insights of the

current analyses.

2.4.2 Conclusions

With 25 years of data corresponding to over 804,000 tests and 69,000 cases this is likely one of the

largest retrospective analyses on genital chlamydia. To help clarify the dynamic mechanisms un-

derlying observed trends, the models presented here draw upon available indicators within existing

data and integrate several cause-and-effect hypotheses. As a result, this has allowed us to critically

examine the appropriateness of several key rebound hypotheses.

The primary aim of this study was to parsimoniously explain the recently observed rebound

epidemiological profile of chlamydia since it became a reportable infection in the Canadian Province

of Saskatchewan. By combining dynamic models with testing volume data to reproduce observed

surveillance data, our results highlight the significant impact testing volume can have on observed

case counts. The results of this study also illustrate the usefulness of our methods for deriving

estimates of infection prevalence from freely available surveillance data. Overall, they provide a

viable explanation for reported trends that appears to have been overlooked or dismissed in favor

of hypotheses involving large-scale, aberrant changes to the underlying prevalence [66].

The calibrated models presented here offer value as tools for improving our understanding of

chlamydia epidemiology. With some structural modification and additional data, they will be useful

for examining how current trends might behave into the future under a variety of control scenarios.

For example, they may be extended to explore the dynamics of introducing various candidate
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control policies, such as a nationally dedicated proactive screening program [124] or expedited

partner therapy [68, 182]. It bears emphasizing that while we have presented results from a single

province with an exceptionally long record of chlamydia data, our methodological approach is both

straightforward and general. Moreover, these methods offer geographic portability that can help

inform the public health efforts in other contexts that collect similar information to that used here.

Most importantly, these results reassure the public health effort towards monitoring and controlling

chlamydia.
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Chapter 3

Study 2: Estimating the Duration of Immunity

using Simple Population Level Models

3.1 Relationship to the previous Study

Nonlinear ordinary differential equations can encompass a wide-range of feedback effects. For

example, the models developed in the previous study uniquely captured, not only, the interaction

between control efforts and Chlamydia prevalence, but they also provided insight into the natural

history of infection. The transitions among the state variables are modelled as expected values in

the population, and therefore can also be effectively used to estimate those expected values. One

observation that consistently emerged from the previous analysis was that the calibrated estimates

of the average duration of immunity were much longer than what was currently discussed in the

literature.

This next study focuses on investigating the sensitivity of the models to assumptions about

the duration of immunity after infection. It uses the same data and methodological approaches

(i.e., calibration techniques) in combination with a subset of the four models used in the previous

study. The result was an analytical methodology to estimate this difficult-to-observe natural history

parameter by calibrating key parameters and exploring the agreement of the models with 25 years

of surveillance data.

3.2 Background

There are clear indications that the normal host immune response against chlamydia bacteria stimu-

lates protective immunity over time [175]. Historically, immunity to chlamydial genital infection has

been studied using animal models that evaluate immune responses that develop in näıve animals,

either after infection, passively transferring immune cells, or by vaccination and assessing resistance

to reinfection [96, 148]. These approaches have confirmed the dominant role of Th1 CD4+ T cells

and antibody in resolving and resisting chlamydial genital infection, respectively [22, 95, 96, 148].

These studies have also confirmed that protective immunity in these animals is temporary and
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wanes within a matter of months [95,190].

Among humans, however, descriptive studies explicitly examining the period of infection-acquired

immunity are not available [16]. Instead, data that do support the concept of protective immunity

against chlamydial reinfection arise from a compilation of indirect evidence from both cross-sectional

and longitudinal study designs (clinical [73, 98, 192] vs. natural ecology [12, 24, 74, 104, 142]), dif-

ferent chlamydial diseases (ocular [12] vs. genital [142]), and the contextual epidemiology across

different countries [30,59,72,117,174]. Despite the lack of direct evidence, protective immunity for

humans – as for animal models – is widely discussed to be short-lived and partial at best [16].

Immunity plays a key role in the both the natural history of infection and transmission of many

infectious diseases [114]. However, because of obvious ethical considerations, defining the natural

course of protective immunity after the resolution of chlamydial infection by traditional immuno-

logical and epidemiological means is unavailable. Therefore, developing new, robust methods of

estimating the natural course of infection and immunity should be the focus of ongoing research.

In this respect, mathematical (or dynamical) transmission models provide an effective methodolog-

ical trajectory. Dynamical models of infectious disease transmission have played important roles in

policy analysis [30,114], and have been deemed appropriate tools for decision making when parame-

terized to observed data [117,126]. As theoretical frameworks, these models can extract information

from data that may not be accessible by more traditional epidemiological means, which can then be

tested by continued study [37, 114]. Their mathematical equations can be solved numerically and

matched to observed sets of data to obtain “best fit” estimates for desired parameters [198, 204].

Dynamical models also provide a means to hypothesize how observed trends emerge from causal

processes of infection spread [200]. While this approach has proven effective when applied to prob-

lems in immunology [37], it has not been their recent function in epidemiology [44,60,114].

Producing an estimate of the duration of immunity that is consistent with epidemiological data

would both improve our understanding of the natural history of infection, as well as inform the

design of control policies such as vaccination. However, the challenges experienced by previous

clinical and epidemiological research at obtaining a consensus about the duration of chlamydial

immunity [28] highlight the need for developing new approaches for estimating this crucial pa-

rameter. Here, we approach this problem by integrating two dynamical models with historic test

volume records, and then calibrate them to match uniquely extensive case notification data from

the Canadian province of Saskatchewan. Calibrated parameter estimates are then compared with

more widely discussed periods of negligible immunity in their ability to match empirical chlamydial

time series.
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3.3 Models and Methods

The original data sources and model structures have been described in detail elsewhere [200].

Therefore, technical and mathematical details of model construction, the models’ integration with

available data, the methods of initializing and calibrating model parameters, assessing goodness-of-

fit, and sensitivity analyses are extensively outlined in the previous chapter. Only a brief summary

of their main characteristics is described below.

3.3.1 Data Sources

The Canadian Province of Saskatchewan has a population of approximately 1 million people. Thir-

teen health regions collect surveillance data on notifiable infections, which are then reported to the

Communicable Disease Division of the Saskatchewan Ministry of Health. Since 1984, Chlamydia

has been a reportable infectious disease, and during this time all reported cases have either been

diagnosed based on clinical criteria (e.g., urethral discharge, burning on urination, irritation in the

distal urethra, dysuria, abnormal vaginal discharge), laboratory methods (i.e., enzyme immunoas-

say or polymerase chain reaction), or both depending on the year. Nearly 15.2% of Saskatchewan’s

residents are between the ages of 15 and 24 years of age, however it is this age range that dispro-

portionately comprises the majority of all reported Chlamydia cases (64-76%) [200].

Two data sources provided constraints on model calibration, which allowed for estimation of

context-specific model parameters. For the first, Chlamydia case notifications were accumulated

over a 25-year reporting history in Saskatchewan (1983-2007). These data were collected from An-

nual Public Health Reports of the Saskatchewan Ministry of Health, and the Public Health Agency

of Canada. For the second, testing volumes were obtained from a combination of Annual Public

Health Reports of the Saskatchewan Ministry of Health (1983-2001), and from the Saskatchewan

Provincial Laboratory (2001-2007). Overall, these data contained over 804,000 tests and 69,000

Chlamydia cases. Figure 3.1 summarizes 25-year trends of Chlamydia in Saskatchewan.

3.3.2 Models of Chlamydia Immunity and Transmission

To study the impact of waning immunity on the epidemiology of Chlamydia, we adopted a Sus-

ceptible, Infected, Treated, Removed, Susceptible (SITRS) modelling paradigm that accounts for

reinfection. In all, two versions of this deterministic, compartmental framework were developed.

Figure 3.2 illustrates how these compartmental models were set up.

People were divided into four mutually exclusive categories: those who are susceptible, those

who are infected (this combines those who are symptomatic and asymptomatic), those who are

tested and treated (this combines those who seek medical care, those contact traced, as well as

those who are both true and false positives), and those who recovered from infection naturally.
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Figure 3.1: Historic time series of case notification and testing volume data in the
Canadian Province of Saskatchewan between 1983 and 2007.

Upon natural recovery from infection, individuals are assumed to remain immune before returning

to the susceptible class. In both models, immunity resulting from natural recovery of infection was

assumed to be truncated by treatment [30,175,190].

Both models differ in their post-treatment progression of individuals. In Model 1 (Figure 3.2A),

treated individuals are assumed to return to the susceptible state (i.e., recover without changing

their sexual behaviour); by contrast, Model 2 (Figure 3.2B) assumes that some treated individuals

are temporarily “behaviorally removed” or temporarily immune before returning to the susceptible

state. Here, we define the duration of immunity in broad terms as the mean length of time between

natural resolution of infection and re-emergence of susceptibility. Each model contains parameters

relating to the key components of infection dynamics: transmissibility, sexual contact rate, and

duration of infectiousness, as well as the capabilities of testing technologies (i.e., sensitivity and

specificity).

These models were developed for the purpose of reproducing reported Chlamydia case notifi-

cations while seeking to provide estimates of several relevant epidemiological parameters. Model

construction was iterative where various causal hypotheses were translated into systems of differ-

ential equations. Data were directly integrated into the models and provided empirical constraints

on model behaviour, which allowed us to estimate several model parameters, including the average

duration of immunity. Model calibration was performed based on a four-step process outlined be-

low. Briefly, using ranges of parameter values derived from the chlamydia literature (see Table 2.1
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in the previous chapter) model equations were then calibrated to determine whether the models

were capable of reproducing historical data. Model fit was first assessed visually (i.e., based on the

ability of the model to qualitatively reproduce observed trends) and secondly by calculating the

coefficient of determination, r2, between observed chlamydia case notifications and model-predicted

cases from least-squares lines.

Model 1: A Model that Assumes Treatment of Infection Truncates Acquired Immunity

The fractions of the population that were susceptible, infected, treated, or were removed at time

t were denoted by S(t), I(t), T (t), and R(t) respectively. We assumed that the sexually-active

population had a constant size N , where N = S + I + T + R. The actual or true prevalence of

infection in the sexually-active population is represented by I(t). People were assumed to enter the

susceptible state at sexual debut at a constant rate, µN , and exited at a rate µS. The probability

of chlamydia transmission per year for a given partnership between a susceptible and infected

individual is given by βc, hereafter denoted β̂. Thus, for a given fraction of infected people in the

population,
I

N
, the number of susceptibles that become infected per year is S

β̂I

N
. The number

of false positives detected for a given test was assumed to occur at a rate nS (1− φ′). Here, the

number of susceptibles tested is the difference between the recorded testing volume, V , and the

number of infectives tested, nS = V − nI . The number of infectives tested was a function of the

fraction of infectives tested, βT
(
1− e−α(V/I)

)
, and the prevalence of infection in the population, I:

βT
(
1− e−α(V/I)

)
I. Our testing assumptions here posit a relation that states if testing increases,

more cases will be found. However, simply doubling the number of tests does not mean that twice

the number of infection will be found. In effect, the model assumes a “law of diminishing returns”

where there is a lower and lower incremental benefit with increased testing. Thus, when testing

volume, V , approaches zero, the fraction of infectives tested approaches zero at a rate α; as testing

volume increases, the fraction of infectives tested will approach βT , reflecting that even with great

testing effort, it takes a certain amount of time to identify some infectives. The fraction of infected

people detected by testing (per year) were treated at a rate nIφ, recovered naturally at a rate σI,

or exited the infected class at a rate µI.

Those deemed infected (i.e., both true and false positives) were treated and returned to the

susceptible class at a rate Tσ′ or exited the treated class at a rate µT . All those in the removed

state then were assumed to return to the susceptible class as a result of waned immunity at a rate

δR. Here, we made an additional assumption adopted from Brunham et al. [30] that being found to

have infection and thus being treated did not impact a person’s sexual risk-taking behaviour. Our

assumptions for this model were motivated by the observation that being treated may inhibit the

development of acquired immunity, and thus returned a person to the susceptible state at a rate Tσ′.

As was mentioned in the main text, this assumption jointly accounted for no change in sexual risk
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Figure 3.2: Schematic stock-and-flow diagrams of the structure of (A) Model 1
and (B) Model 2.

behaviour, but also assumed that treatment truncated any benefit of acquired immunity [30, 175].

These assumptions produced the following system of equations:

Ṡ = µN + δR+ Tσ′ − S β̂I
N
− nSφ′ (3.1)

İ = S
β̂I

N
− I (µ+ σ)− nIφ (3.2)

Ṫ = nSφ
′ + nIφ− T (σ′ + µ) (3.3)

Ṙ = Iσ −R (δ + µ) . (3.4)
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Model 2: A Model that Integrates Behaviour Change into Model 1

Here, the removed class R(t) was assumed to contain a combination of those who had not pre-

sented for treatment and recovered naturally from infection, and a fraction, θ, of those who had

temporarily changed their sexual risk taking behaviour after being treated. In addition to this, we

also considered a scenario that jointly accounted for the lack of developing acquired immunity and

no changes in sexual risk behaviour after being treated. This additional assumption returned the

remaining fraction of the population, 1 − θ, to the susceptible state at a rate (1− θ)Tσ′. These

additional assumptions produced the following system of equations as well as the schematic diagram

in Figure 3.2:

Ṡ = µN + δR+ (1− θ)Tσ′ − S β̂I
N
− nSφ′ (3.5)

İ = S
β̂I

N
− I (µ+ σ)− nIφ (3.6)

Ṫ = nSφ
′ + nIφ− T (σ′ + µ) (3.7)

Ṙ = Iσ + θTσ′ −R (δ + µ) . (3.8)

3.3.3 Setting Initial Parameters, Model Calibration, and Assessing Goodness-

of-fit

Results from simple models (such as the ones described above) can be viewed with suspicion because

of their failure to explicitly represent known complexities. However, the ability of these simple mod-

els to explain observed epidemiological patterns for chlamydia have not, until recently [198,200,204],

been exploited in part because little work has been directed at estimating model parameters [44,60].

Because complete data for all model parameters are often not available, calibration to epidemio-

logical data aids in estimating these lesser-known parameter values. Model calibration, sensitivity

analyses, and assessment of model fit were performed using the following four-step process adopted

from [200]:

1. Setting initial parameter values: Initial parameter estimates were derived from key previously

published vaccine trials [73, 98, 192], epidemiological studies [24, 74, 104], and modelling ex-

periments [72,174]. For the duration of immunity 1/δ, values were assumed to range between

6 months and 10 years (see Table 2.1). We based our longer end-point of 10 years on the

duration of (a hypothetical) vaccine-based immunity [30], despite other assumptions of life-

long immunity in the previous study by Brunham et al. [30]. Though not shown, it should be

noted that assuming life-long immunity in the models presented here does not significantly al-

ter our results or interpretations. Where unavailable, parameters – such as duration of sexual

activity – were adopted from modelling research of gonorrhea infections [24, 59, 207]. Given
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that both gonorrhea and Chlamydia are transmitted by similar behaviour, we believe this is

a reasonable assumption. Because certain epidemiological and demographic characteristics

such as the average duration of infection, and the average lifetime of sexual activity have been

relatively well defined [24,59], we fixed these parameter values throughout our investigations

(see Table 3.1). However, we note that variability in these parameters do not significantly

affect our conclusions.

2. Sampling parameter ranges and fitting the model : Each parameter value was associated with

a range of values found in the literature surveyed. Unique parameter combinations that min-

imized the discrepancy between the reported case notifications and those “predicted” by the

model were determined by a sample of 30 optimizations using the Powell global optimization

algorithm available in Vensim DSS for Windows (version 5.5c). Each optimization used a

distinct random number seed, and performed approximately 5 × 105 simulations (totalling

15× 106 simulations across all optimizations).

3. Goodness-of-fit : model fit was first assessed visually (i.e., based on the ability of the model

to qualitatively reproduce observed trends) and secondly by calculating the coefficient of

determination, r2, between observed chlamydia case notifications and model-predicted cases

from least-squares lines (using SPSS for Windows, version 14, Chicago, IL) for different

assumptions about the average period of immunity.

4. Sensitivity Analysis: Each of the optimization scenarios identified a different point in parame-

ter space that offered the “best fit” to the collected data. Because of the inherent variability in

each optimization scenario, sensitivity analyses of the model-predicted duration of immunity

were performed based on the distribution of parameter vectors produced in step 2.

3.4 Results

We are interested in the sensitivity of model predictions to key parameters that are difficult to

measure empirically. While both models accurately mirrored historic trends (Figure 3.3), this

ability was sensitive to assumptions about the period of naturally acquired immunity, but not to

other calibrated parameters. In particular for both models, an average period of infection-acquired

immunity between 8.4 and 9.0 years (for Model 1, Table 3.1) and 8.6 to 9.3 years (for Model

2, Table 3.1) gives the best fit to the data, both qualitatively (Figure 3.3) and based on least-

squares estimates of the coefficient of determination (r2 = 0.966 and 0.967, respectively, Table 3.2

and Figure 3.4). Interestingly, both models also shared an inability to reproduce observed case

notification data when negligible or short periods of immunity (Figure 3.3) were assumed, despite

yielding statistically significant goodness-of-fit (r2 = 0.827, Table 3.2 and Figure 3.4). While both
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Model Description 1/δ (SD) (yrs) 95 % CI (yrs)

Model 1 For this model, the removed state 8.7 (1.05) 8.4, 9.0

contains only those who recover

naturally from infection.

Model 2 Here, the removed state contains 8.9 (1.28) 8.6, 9.4

a combination of those who recover

naturally from infection, as well as the

subset of those treated individuals who

have temporarily changed their sexual

risk taking behaviour.

Table 3.1: Uncertainty and sensitivity analyses of the calibrated estimates of the
average period of immunity (in years), 1/δ, from two susceptible-infected-treated-
removed dynamic models that were calibrated to reproduce 25-year case data from
the Canadian province of Saskatchewan. In each model, the removed state was
assumed to represent removal due to different biological and behavioral processes.
The “best-fit” values for the mean, standard deviation, and 95% confidence intervals
of 1/δ were derived from a sample of 30 calibration experiments. Each calibration
experiment was based on 5×105 simulations. Therefore, the “best-fit” estimates for
each model are a result of 15× 106 simulations. 95% confidence intervals estimate
variability in optimization results. Abbreviations: SD, Standard Deviation; CI,
Confidence Interval.

models with calibrated values of 1/δ contain one more degree of freedom than the models with

fixed values of 1/δ, it could be argued that comparison of r2 is inappropriate. However, we would

like to note that, although not shown, discrete (fixed) values greater than 4 years also demonstrate

increased “fit” to observed data.

The removed state in Model 2 contains a combination of people “biologically” removed (by

immunity) and those who are “behaviorally” removed (i.e., people who temporarily change their

sexual behaviour after being treated for infection). To try and account for the effect of those indi-

viduals returning to risky sexual behaviour on the estimate of the average duration of immunity,

we compared Model 2’s estimate to the estimate of Model 1. When compared, the calibrated

estimate of Model 2 suggests an epidemiological picture with two noteworthy features: the first,

that the assumption of temporary behaviour change does not significantly change the estimate of

infection-acquired immunity between Models 1 and 2 (see Table 3.1); and second, a small percent-

age of people, approximately 12% (95% confidence interval: 6.8, 18.1), alter their behaviour to

temporarily remove themselves after receiving treatment for infection.

Like many other aggregate STI models, the structures of the models presented here assume that

the duration of immunity is exponentially distributed [204]. Therefore, there can be substantial

variance in this distribution, and many people will lose immunity faster than others [204]. To

examine how fast immunity might, on average, wane yet still produce results consistent with ob-

served data, we manually varied our estimate of the mean duration of immunity over fixed, discrete
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1/δ fixed 1/δ cal

0.5 years 2 years 4 years Model 1 Model 2

Initial Susceptibles S(0) 0.280 0.000 0.100 0.563 0.581

Initial Infected I(0) 0.006 0.025 0.151 0.033 0.016

Initial Removed R(0) 0.714 0.975 0.749 0.404 0.403

Able to reproduce data? No No Yes Yes Yes

Goodness-of-fit r2 0.827 0.870 0.963 0.966 0.967

Table 3.2: Displayed are the fractional densities of model-derived initial suscep-
tible, infected, removed populations, as well as the goodness of model fit, r2, for
(arbitrary) fixed and calibrated periods of immunity (in years). Fixed values of
the average period of immunity, 1/δ, are from calibrations of Model 1. Model 2
produced comparable results. Calibrated values are taken from one of the 15000000
simulations used to derive the parameter estimates in Table 3.1. The coefficient
of determination, r2, measures the goodness of fit between the observed cases and
the model-predicted cases, by least-squares lines, under specific assumptions about
the average period of immunity, 1/δ. Scatter plots and fitted lines are displayed in
Figure 3.4. All goodness-of-fit measures were statistically significant, P < 0.01.

intervals, beginning with the assumption of negligible periods of immunity. Both Models 1 and 2

were then recalibrated according to the four-step process outlined above to best match the available

data for each discrete estimate. The results in Figure 3.3 demonstrate that an average duration of

immunity of at least 4 years is needed to qualitatively mirror observed case notification records.

One striking result was that a fixed estimate of 4 years generated model-predicted behaviour of

Chlamydia case counts that was almost qualitatively indistinguishable from the estimates produced

through calibration (Figure 3.3).

3.5 Discussion

An important prerequisite in ascertaining the feasibility of an anti-chlamydial vaccine is the ability

of naturally occurring infections to provide protection against reinfection [28,190]. However, little is

known about the average duration of immunity to Chlamydia in human populations or its epidemio-

logical implications [16,28]. Here, we have provided a useful, but by no means exclusive, analytical

methodology to estimate this difficult to observe natural history parameter; this approach inte-

grated two dynamical models with historic test volume records, and then calibrated them to match

case notification data from the Canadian province of Saskatchewan. Overall, the results presented

here highlight the importance of considering natural immunity in the representation of Chlamydia

incidence, and suggest that successful development of an effective vaccine is probably feasible. Most

notably, these results suggest that, for the model structures used here, assuming negligible periods

of immunity strongly disagree with empirical observations, and are robust to variability in other

model parameters. The current analyses found that a mean period of infection-acquired immunity
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Figure 3.3: Comparison of model output to observed case notification data for
different assumptions about the duration of infection-acquired immunity. Model
predicted cases for different assumptions about the average duration of immunity
are as follows from Model 1 (A) and Model 2 (B). “Calibrated” refers to values of
1/δ displayed in Table 3.1. Model predicted cases are plotted against reported case
notifications in Saskatchewan.
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Figure 3.4: Scatter plots used to assess goodness-of-fit between observed case
notifications in Saskatchewan and model-predicted case counts for different fixed
assumptions of the average duration of immunity, 1/δ, for Model 1 (A) and Model
2 (B). The coefficient of determination, r2, measured the goodness-of-fit between the
observed cases and the model-predicted cases, by least-squares lines under specific
assumptions for 1/δ. “Calibrated” refers to values of 1/δ displayed in Table 1.
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between 8.4-9.0 years (for Model 1) and 8.6-9.3 years (for Model 2) is most consistent with the

historical records of chlamydia in Saskatchewan.

In these analyses, we attempted to place a lower bound on the mean period of immunity by

fixing it over discrete intervals and examining the models’ ability to reproduce observed data.

This analysis consistently demonstrated that periods of immunity < 4 years could not provide a

reasonable fit to observed case notifications. In addition to being unable to qualitatively reproduce

observed data, both models posited an interpretation of the underlying epidemiology that initially

placed the majority of sexually active people in either the infected or removed state, and few or no

people in the susceptible state (Table 3.2). In our opinion, this scenario seems implausible because

we could expect most people in the sexually active population to be susceptible; combining larger

initial fractions of removed people with shorter periods of immunity will replenish the susceptible

population quickly, enable the feedback loop driving infection to become dominant, cause the

fraction of infected people to increase rapidly, and result in model-predicted case counts that poorly

match observed case counts. Although a lower bound of 4 years allowed for adequate fit to observed

data, it required the assumption that approximately 90% of the initial sexually active population

was in either the infected or removed states (Table 3.2). Interestingly, these skewed distributions

of initial states became less extreme, and more plausible, as the assumed period of immunity

increased. The calibrated estimates of 8-9 years assume that approximately 55% of the sexually

active population was susceptible in 1983.

Evidence from previous clinical and epidemiological research indicates that genital reinfection

with Chlamydia is common and that reinfection occurs soon after eradication of infection by treat-

ment (see [92] for a review). This has led investigators to question whether there is natural pro-

tective immunity to chlamydial genital infection in human populations [181]. Our estimates of

the average duration of immunity are considerably longer than those in other epidemiological re-

search [12,24,30,59,72–74,98,104,117,142,174,192]. The disparity between our estimate and those

of previous work might simply be a result of significant variability in the duration of immunity

in different individuals that was not explicitly captured by the models used here; our estimate of

the period of immunity represents a population average of the time until an individual re-enters

susceptibility. Conversely, it could also reflect the fact that, unlike the total sexually active popu-

lation, previous studies of chlamydial reinfection – such as the ones reviewed in [92] – focus on core

groups of highly sexually active people or those populations reached by STI clinics, both of which

are actively followed-up and have high rates of treatment. For such highly treated populations,

the time until reinfection is likely to bear little relationship to the duration of natural immunity.

Instead, these types of follow-up studies are better suited to measure the time until reinfection

after treatment, where a fundamental entanglement between treatment and impaired development

of immune responses [30,175] are likely to be observed.
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The uncertainty about natural immunity to reinfection has had a significant impact on model-

based analyses of public health strategies to reduce chlamydial prevalence. When immunity to

reinfection has been assumed, previous evaluations of screening and vaccination programmes have

had to infer a period of immunity derived from animal models of genital infection, which wanes

within a matter of months [72, 174, 201]. In light of the results presented here, two important

questions can be raised about the use of data from animal models of genital infection for inference

about human genital infection: firstly, how suitably do animal-derived periods of immunity map

onto the biology of human chlamydia infections? And secondly, will the projected policy outcomes

accurately reflect the behaviour of chlamydial epidemiology in the presence of that intervention

programme? We believe these questions extend equally well to model-based policy evaluations that

have employed a Susceptible-Infected-Susceptible (or SIS) modelling framework where a negligible

period of immunity is assumed [59,117,118].

An ideal estimate of the average period of immunity would be derived from active longitudinal

follow-up of the time to reinfection in the absence of treatment. However, such study protocols in

human populations are neither ethical nor feasible. Yet, if our estimates of the average duration

of immunity are accurate, then upon investigating existing cohort studies in populations where

other Chlamydia infections are endemic and untreated, we would expect to observe epidemiological

signatures of prolonged immune periods such as low rates of reinfections, and slowed decay of

population-level immune correlates in previously infected people over many years. Interestingly, the

results of other investigators have reported strikingly low reinfection rates for both genital infections

in Columbian women [142] and ocular infections in highly endemic regions of Taiwan [11, 74] over

5 and 10-year follow-up periods, respectively. A Finnish maternal cohort has also demonstrated

the maintenance of elevated anti-chlamydia IgG titers over a 7-year segment of a 21-year follow-

up period [127]. Although not specifically designed to measure the duration of anti-chlamydial

immunity, these studies do provide indirect epidemiological, clinical, and serological support for

our conclusions of longer-lasting periods of infection-acquired immunity. Ultimately, additional

empirical research designed to investigate this issue will help further support or weaken our results

here.

There are some important limitations to this analysis that require discussion. As with any

model, its structure represents a simplification of reality [21,57,169]. The models used here reflect

simple dynamic hypotheses of Chlamydia transmission within the sexually active population. While

traditional modelling of sexually transmitted infections (STIs) has made use of simple models that

abstract away from population heterogeneity [21,57], many recent STI transmission models feature

a more-detailed characterization of the population [29,59,60,72,117,126]. Although more complex

models offer advantages for investigating certain types of research or policy questions [169], several

considerations motivated the use of simpler models for this study. Specifically, because the focus was
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on estimating the population-wide average duration of immunity, because of the aggregate nature

of case notification counts and testing volumes (which lack explicit information on behavioral het-

erogeneity or network structure), and to avoid over-fitting that often accompanies high-dimensional

parameter spaces, the models presented here did not explicitly represent heterogeneity in sexual

risk behaviour. Instead, people were assumed to mix randomly at an average population rate.

Our calibration methods also have several limitations. For one thing, with several parameters

being varied simultaneously, parameter space was extensive and it is difficult to know whether it

was searched comprehensively. Although other calibration approaches have been described in the

literature [38,60,108,169,180], there is no universal approach that is sufficient for all models, nor is

there consensus on the “best” approach [108]. The choice of calibration method will largely depend

on model structure and the granularity of available data [169]. For another, the reported variability

in 1/δ (as reported in Table 3.1) is best described as the variability in optimization results, not

variability of this parameter in the “real world”. To obtain the latter, it would be sensible to employ

more robust methods of confidence interval estimation, such as bootstrapping [46]. However with

this in mind, we note that our initial estimates of the confidence intervals using bootstrapping

techniques for dynamic models outlined elsewhere [46], do not yield significantly different results

than those presented here.

Calibrating mathematical models to empirical data helps identify reasonable dynamic hypothe-

ses that parsimoniously explain observed data, as well as aid in identifying inconsistencies between

observations and model assumptions [117]. While no model can account for all of the intricate

complexities of reality, the methods employed here offer significant high-level insights. Using these

simple models, we were able to estimate an epidemiologically relevant parameter from two sets of

routinely collected data. More importantly, given the model structures we assumed, we demon-

strated that to reproduce observed case notifications, the average duration of immunity must be

longer than what is widely assumed in epidemiological literature [59, 72, 117, 124, 174]. We are

hopeful that the acquisition and analysis of long-term longitudinal data – be they from serological

or clinical follow-up studies – combined with detailed model fitting will help elucidate the natural

history of chlamydial immunity and its epidemiological consequences.
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Chapter 4

Study 3: Natural History of Repeated Chlamy-

dia Infections from Two Within-Host Models

4.1 Relationship to the Previous Study

Though the population-level compartmental models in the previous two studies indicate that treat-

ment might be impacting the development of immunity, they suggest that it might not be sig-

nificantly driving the currently observed population trends. However, there are different model

structures that contain different representations of interacting individuals. Models at different

levels of aggregation may lack the structure needed to observe important dynamics, and policy

responses across different model structures can be similar or different [169]. To try and get a more

complete understanding of how arrested immunity might impact the transmission and prevalence

of Chlamydia infection, I want to extend the previous analysis to examine the conditions arrested

immunity might have significant consequences for chlamydial prevalence. This way, I can examine

the proposed impact of a policy at the appropriate level.

One important question is whether the impact of a policy (such as treatment) will vary signif-

icantly in models of different scale. The most obvious difference between the models in the first

two chapters and the ones that follow is the explicit representation of the host-pathogen interac-

tion. Capturing any variability in the spread of infection, either due to immunological differences

or network heterogeneity requires moving from an aggregate representation of transmission to an

individual one. In the remaining set of studies, I chronicle an iterative approach in which I develop

an immunoepidemiological model of chlamydial transmission.

However, developing an individual-level model that not only captures an individual’s immuno-

biology, but also their contacts with others required several iterative steps. In this next chapter I

have constructed two simple models of within-host Chlamydia infection. I chose to first focus on

within-host models for two reasons: firstly, I wanted to build an adequate representation of in-host

infection dynamics. I did this by using known immunobiology of Guinea Pig models as the basis

of the models presented from here on; and secondly, I wanted to get an idea of the natural history

of the immune dynamics within an individual under different exposure histories.
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4.2 Background

The genus Chlamydiae encompasses a unique class of obligate intracellular bacteria that can cause

disease in a wide range of animals [17]. In comparison to all other commonly-reported sexually-

transmitted infections (STIs), Chlamydia trachomatis represents a unique and important pub-

lic health concern, as prevention efforts are hampered by cryptic infections and delayed diagno-

sis [29, 146]. This ability to thrive, despite considerable advances in the understanding of the

immunobiology, pathogenesis, and epidemiology of this parasite [146], has made it the world’s most

common cause of sexually-transmitted disease [29].

Inference by analogy with animal models has produced no lack of evidence to support the exis-

tence of an effective immune response against Chlamydia spp [17,29,95,99,145,146,148,171,189,190].

Notable insights into mechanisms of immunity have been achieved through studying primary and

secondary infections. Rodent models of Chlamydia genital tract infections have demonstrated

that a large proportion of animals resolve primary infection and are temporarily resistant to re-

infection [95, 99, 145, 148, 171, 189, 190]. When reinfection does occur, secondary inflammation and

disease is significantly shorter, and bacterial load is greatly reduced.

Because of obvious ethical and practical concerns, equally-detailed insights into human im-

mune responses, with the exception of one early vaccine trial [98], have not been extended beyond

observational studies. However, elimination of infection is likely immune mediated [28]. Reso-

lution of Chlamydia infections in humans has been documented to occur within months, even

years [142,152,160], and previous estimates of the basic reproductive number, in conjunction with

epidemiological evidence from “core” groups, suggests that frequent exposure to Chlamydia in-

fections confers some degree of strain-specific protective immunity [25]. Although these observed

patterns are consistent with what might produced by heterogeneity in individual immune responses,

it is interesting to note that immune responses have not been directly measured [120]. As a result,

this leaves some elementary questions unresolved.

With human immunobiology and reinfection rates being the focus of recent debate in STI epi-

demiological literature [125,138,175], it is evident that conclusions drawn from either shorter-term

experimental or observation research as they apply to long-term exposure and immunobiological

kinetics should be tentative. With the exception of one study [171], no research, to our knowledge,

has examined susceptibility to multiple chlamydial infections, and the resulting implications for

the spread of sexually-transmitted Chlamydia infections. Due, in part, to the study protocol of

previous analyses of the natural history of Chlamydia infection [142], little research has directly

explored the effect exposure of history on an individual’s immune repertoire, or investigated any

potential consequences for the spread of sexually-transmitted Chlamydia infections [171]. Since

complete immunity (i.e., immunity that does not permit reinfection) has been demonstrated to

63



wane over time [146], it remains unclear, in our opinion, how the severe secondary sequellae re-

lated to Chlamydia positivity are modified by both duration of infection and the number of prior

infections – particularly when many years may separate reinfections.

Most, if not all, modeling related to chlamydia (and sexually-transmitted infections, in general)

is concerned with the population dynamics of these infections. Although very insightful, traditional

modeling techniques either disregard the effects of immune system dynamics on the spread of

infection, or will abridge chlamydial in-host pathogenesis into a few simple model parameters.

However, we argue that the complexity of chlamydial pathogenesis, and its capacity to persist in the

presence of mass control programmes, suggests a need for developing novel analytic tools to better

understand the within-host behavior of Chlamydia, evaluate interventions, and to identify future

research priorities [120,158,188]. Our present objective is to examine anti-chlamydial immunity and

multiple reinfections in an individual (here a simulated Guinea Pig) as a starting point for studying

the potential impact these factors will have on the spread of Chlamydia infections. To do so, we

consider a simple mathematical framework of the dynamic interaction between Chlamydia bacteria

and in-host immune responses – using known immunobiology of Guinea Pig models. We explore

basic within-host kinetics to help inform our understanding of the potential qualitative impact of

frequent exposure to Chlamydia on in-host humoral or cell-mediated adaptive immune responses.

4.3 Models and Methods

Our aim was to consider a highly parsimonious model and explore its implications in the context

of chlamydia infection dynamics. To do this, we constructed two simple mathematical models with

explicit expressions for chlamydia bacteria, host target cells of the genital tract, and chlamydia-

specific immune responses: the first, a “basic” model; and the second, an “extended” model. These

two structures represented a combination of dynamical hypotheses about chlamydia immunology

that allowed us to iteratively investigate, and build confidence in, the role of both CD4+ T cell,

and anti-chlamydia antibody responses under different exposure histories. Each of the models are

represented schematically in Figure 4.1.

4.3.1 A Basic Model of Within-Host Chlamydia Replication with CD4+

T cells

We elaborated an established within-host model [5, 23, 39, 158] to include uninfected endothelial

cells (ECs) of the genital tract (X), infected ECs (Y ), free, infectious, and metabolically inactive

elementary bodies (EBs) (E), TH1 CD4+ T cells (Z) that produce interferon gamma (IFN-g), and

induce the expression of indoleamine-2,3-dioxygenase which depletes cellular levels of tryptophan

(TRP) [29]. Uninfected ECs were produced at a constant rate, λ, died at a rate δX, and recovered
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Figure 4.1: Stock and flow diagram illustrating the assumptions about chlamydial
dynamics in the models. Displayed is a schematic representation of the models,
equations 1-6. Basic and extended models are labeled by curved braces. Dashed
arrows between state variables indicate interactions between them.

from infection at a rate γZY . We used mass-action kinetics to model the interactions of uninfected

cells with infectious EBs; infected cells were produced at a rate βXE, and died at a rate αY . We

further assumed that activated chlamydia-specific CD4+ T cells proliferate and differentiate at a

rate cY . In reality, the activation and proliferation of CD4+ T cells is induced by antigen-presenting

dendritic cells; however here, we followed Nowak and May [159] in assuming that activation and

proliferation is roughly proportional to the number of infected cells. Activated CD4+ cells died at

a rate σZ. The main effector mechanism of CD4+ T cells in this model was IFN-g-mediated TRP

starvation of chlamydial reticulate bodies (RBs) (i.e., the metabolically active intracellular stage

of the chlamydia life cycle). Here, the concentration of cytosolic TRP was modeled implicitly and

was assumed to be inversely proportional to the number of CD4+ cells. Because low levels of TRP

have been demonstrated to have minimal effect on the viability of host cells [159], infected cells

were therefore assumed to “recover” from infection as a result of RB starvation. These assumptions

produced the set of ordinary differential equations:
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Ẋ = λ−X (δ + βE) (4.1)

Ẏ = βXE − Y (α+ γZ) (4.2)

Ė = εY − qE (4.3)

Ż = cY Z − σZ. (4.4)

4.3.2 An Extended Model of Within-Host Chlamydia Replication with

CD4+ T cell and Antibody Responses

We extended the basic model to include chlamydia-specific antibody (U) that inhibit infection

of genital tract ECs. Although antibody-mediated cellular cytotoxicity is also likely to aid the

resolution of primary infection, for this study, we ignored it as its significance during chlamydia

infection has yet to be determined [121, 148, 221]. We followed Yao et al [221] in assuming the

production of antibody, ξ, is proportional to the number of CD4+ cells. In reality, the level of

antibody is dependent upon the proportion of plasma cells [139]. Given that antigen-specific B

and T cells are activated and proliferate in local lymphoid aggregate tissue in the genital tract by

similar mechanisms [29,139,221] we assumed that they were roughly proportional to each other. For

chlamydia, this appears to be a safe assumption as it has been demonstrated that anti-chlamydial

antibody does not develop in the absence of CD4+ TH1 cells [148]. Previous studies have also

explored this issue in sufficient detail and found negligible impacts on conclusions [221].

Ė = εY − kUE − qE (4.5)

U̇ = ξZ + φkUE − ηZ. (4.6)

From Yao et al [221], the natural decay rate of the antibody population (in 1/days) was denoted by

η, the efficacy of antibody-induced EB neutralization is denoted by k, and the number of antibody

particles that are consumed in forming an EB-antibody complex is denoted by φ. Because complete

protective immunity is likely to wane over time [146], we included no explicit representation of the

formation of memory T or B cells in either the basic or extended models. Instead, we implicitly

represented immune memory by slow die-off rates of CD4+ and antibody cell populations. These

assumptions modified equation 4.4 of the basic model and produced an additional equation for

antibody kinetics to form the extended model (equations 4.5 and 4.6). For both basic and extended

models, the respective set of ordinary differential equations was solved numerically using the default

Euler integration method in the modeling software Vensim DSS for Windows (version 5.5c).

Because these models are deterministic, and have previously been used to study persistent

and recurrent viral infections, CD4+ and antibody state variables cannot drive Y (t) or E(t) to
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zero. Therefore, following Wodarz et al. [213] we defined a threshold value below which chlamydia

infection was considered extinct. Our extinction threshold was arbitrarily chosen to be marginally

larger than the endemic equilibrium value of a model lacking a threshold, such that a single infection

would eventually be cleared. We included an extinction threshold because we anticipated that this

would better match empirical observations of individual infection and immune kinetics than a model

without an extinction threshold. Initial conditions for the models were X(0) = 100, Y (0) = 0,

Z(0) = 1, E(0) = 0.01, for both basic and extended models, and U(0) = 0.01, for the extended

model.

Clearly, a complete mathematical description of the immune system is neither feasible nor

analytically tractable, due to the vast complexity of the immune system. However, recent theoretical

work has demonstrated the merit of simple mathematical models in reproduction and explanation of

experimental results [5,6,23,39,213]. Our model structures were purposefully kept simple so to focus

on broad immunobiological insights. The philosophy behind starting with a simple representation

of a complex system designed to address certain well-defined questions is similar to that motivating

the methods of experimental scientists [58]. Such simple models can often lead to important insights

of a general nature into the factors or processes that shape epidemiological patterns [58].

4.3.3 Parameterizing and Calibrating the Models to Experimental Data

Often, obtaining experimental estimates for many parameters in a model can be difficult [5, 23].

Where possible, however, the model has been parameterized to chlamydia-specific kinetics based

on previous research [29]. Where no experimental or observational information could be readily

obtained, the remaining parameters of the two within-host models were either taken from similar

models [5, 23], or were calibrated to approximate published experimental data from both mouse

and guinea pig models [95, 99, 146, 148, 171, 189]. Though not an exact mimic of human infection

and disease, animal genital tracts have been frequently-used for studying immunity to Chlamydia.

Although the duration of immunity varies between animal species, there is strong evidence to

suggest that complete chlamydia-specific immunity to homologous strains will wane with time

[28,95,171,190]. Therefore, for the analyses presented below, the duration of immunity is assumed

to be short-lived. Here, we assumed that the rate of T cell die-off (in basic and extended models)

and the rate of antibody die-off (in the extended model) occurred at a sufficient rate so that the

duration of complete immunity remained consistent with empirical studies (i.e., reinfection could

occur between approximately 70-80 days post-initial infection) [189]. See table 4.1 for parameters

used throughout simulation experiments.
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Parameter Description Value (1/day) Reference

λ Rate uninfected cells replenish. 1.54 [39]

β Infection rate. 2.31 [95,99,146,148,171,189]

δ Uninfected cell die-off. 0.01 [95,99,146,148,171,189]

α Infected cell die-off. 0.01 [95,99,146,148,171,189]

γ Rate infected cells are cured by CD4+ cells. 6.58 [95,99,146,148,171,189]

c T cell responsiveness rate. 1.86 [121]

σ T cell die-off. 0.02 [95,99,146,148,171,189]

ε EB production rate from infected cells. 2.02 [29]

q Rate of EB decay. 2.00 [95,99,146,148,171,189]

ξ Antibody production rate. 0.12 [148,171,190]

η Antibody decay rate. 0.05 [148,171,190]

φ Number of antibody consume per disabled EB. 5.41× 10−5 [148,171,190]

k Rate EBs are disabled per Ab-EB complex. 0.001 [39]

Table 4.1: Parameters for basic and extended models.

4.3.4 Re-exposure Scenarios

Because exposure history to, and subsequent reinfection with, chlamydia is of current epidemio-

logical concern, we examined the long-term within-host dynamics under four different re-exposure

scenarios: the first scenario mimicked previous experimental studies with a single re-exposure after

the resolution of a primary infection, but where a second infection would occur (after 70 days); the

second, investigated single re-exposure at either 100, 200, 300, or 600 days after initial infection;

the third scenario studied multiple re-exposures, every 30 days within 300 days of initial infection;

the fourth was a combination of scenarios one and three (i.e., frequent re-exposure, though not

as frequent as scenario three, within 300 days followed by a single re-exposure at 900 days after

initial infection). Re-exposure times, other than in the first scenario, were chosen arbitrarily to

mimic assumed differences in sexual re-exposure to chlamydia. Re-exposure was modeled by an

instantaneous inflow of EBs at each of the above-described times using a multiple of the initial

infectious dose.

4.4 Results and Key Model Insights

4.4.1 Existence and Stability of Fixed Points

This analytic study was performed to support the results of the simulation analyses. For initial

infection (i.e., no re-exposure), the basic model has three equilibrium states. These included an
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unstable disease-free equilibrium:

X̂ = X (0) =
λ

δ
(4.7)

Ŷ = 0 (4.8)

Ê = 0 (4.9)

Ẑ = 0, (4.10)

an unstable defense-free equilibrium:

X̂ =
αq

βε
(4.11)

Ŷ =
αqδ − λβε

βεα
(4.12)

Ê =
αqδ − λβε

βαq
(4.13)

Ẑ = 0, (4.14)

as well as a locally stable endemic equilibrium:

X̂ =
λc− ασ
cδ

(4.15)

Ŷ =
σ

c
(4.16)

Ê =
εσ

cq
(4.17)

Ẑ =
cβελ− cαqβ − σβεα

cδγq
. (4.18)

In the extended model, however, there exist five different fixed points. However, because two

of them are non-physical (i.e., producing negative equilibrium values for state variables), and un-

reachable from initial conditions with non-negative state variables, we will only outline three of

them. These included, as demonstrated in the basic model, disease- and “defense-free” equilibria,

as well as an endemic equilibrium. However in contrast to the basic model, none of these equilibria

are stable and trajectories approach a limit cycle rather than a static equilibrium (see Figure 4.2).

Since the parameter values in each model were calibrated to produce chlamydia-specific results,

they were held constant throughout these analyses. This included the number of chlamydia bacteria

during re-exposure. However, further investigation of our results suggests that a range of differ-

ent values for re-exposure do not affect the stability of the fixed points in the basic model. More

specifically, based on Routh-Hurwitz criteria we found that any non-negative perturbation to free

EBs, e (i.e., chlamydial re-exposure) in the basic model will not change the stability of the endemic

equilibrium. A similar analysis in the extended model revealed that the endemic equilibrium will
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Figure 4.2: Elementary Bodies for the basic and extended models during frequent
re-exposure. For the basic model (A), re-exposure results in damped oscillations
to an endemic equilibrium and high CD4+ T cell concentrations. However, in the
extended model (B) re-exposure will produce a trajectory that approaches a stable
limit cycle.
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likely remain unstable for shorter-term re-exposure doses similar to that of initial infection. How-

ever, an interesting finding was that very large (compared to initial infection), prolonged exposure

can render the endemic equilibrium stable.

4.4.2 Both Models Reproduce Experimentally-observed Kinetics of Pri-

mary and Secondary Chlamydial Infections

Figure 4.3 illustrates that previously observed kinetics of infected cells and CD4+ T cells (Figure

4.3A) can be approximated by the basic model (Figure 4.3B). Although it may be argued that our

parameter values do not exactly reproduce experimental results, we do not feel that our results

stray qualitatively from what would be expected in reality. The presence of qualitative, rather than

quantitative, similarity does not diminish the value of the insights gained through careful analysis of

mathematical models [214]. Because results from rodent models are only approximations of human

results, exactly mimicking data from rodent models may add little benefit to understanding human

immunity to Chlamydia infection.

Figure 4.4 illustrates the behavior of the basic and extended models when exposure to a second

Chlamydia infection occurs. Figure 4.4A demonstrates that the basic model reproduces expected

kinetics of free EBs and CD4+ T cell activity during a second infection [146], and Figure 4.4B

supports the predominant role of antibody in controlling reinfection [148]. This is in contrast to

the basic model where reinfection is not dependent upon the level of antibody, but rather on levels

of CD4+ T cells. However, in both models CD4+ T cells are demonstrated to have a decisive role

in resolving reinfection.

4.4.3 Increasing the Time between Initial and Second Infection increases

Bacterial Load

In Figures 4.5 and 4.6 we examined a single re-exposure at increasingly long intervals from initial

infection. In the case of both models, interesting, yet similar dynamical behavior is observed: as

the time between initial and secondary infection increases, the severity of that second infection also

appears to increase. In the basic model this is associated with an increased magnitude of infected

cells (Figure 4.5A). In the extended model, this was illustrated by an increased duration of elevated

infected cells (Figures 4.6A).

Immune responses were also affected. For the basic model, reinfection at later times from initial

infection appears to produce higher levels of CD4+ cells (Figure 4.5B). In the extended model,

however, negative feedbacks associated with both antibody and CD4+ T cells keep immune levels

within a range similar to that seen for initial infection (Figure 4.6B and 4.6C).
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Figure 4.3: A comparison of experimental and simulated kinetics of primary
Chlamydia infection and CD4+ T cell responses. Experimental kinetics (A) have
been reproduced, from Igietseme and Rank [95]. Simulated behavior (B) was ob-
served when both basic and extended models were calibrated to part (A). Only the
results of the basic model are displayed.
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Figure 4.4: Secondary challenge experiments using the basic and extended models.
Single re-exposure scenarios using the basic model (A), and the extended model (B)
to reproduce expected behavior observed in experimental studies. The magnitude
and time evolution of the system of equations in (B) has been uniformly rescaled
so to allow for a visual comparison. Black arrow indicates time point of secondary
exposure.
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Figure 4.5: Multiple re-exposure experiments using the basic model. Displayed
are the kinetics of infected cells (A), and CD4+ T cells (B) for single reinfection
at either 100, 200, 300, or 600 days after initial infection in the basic model. Also
included is the simulated kinetics of frequent re-exposure every 30 days over a span
of 300 days after initial infection. For frequent re-exposure, it should be noted that
oscillatory behavior continued after the removal of further infection. Single and
multiple re-exposure scenarios are used to represent individuals that have low and
high sexual exposure to Chlamydia, respectively. Black arrow indicates point of
initial infection (common to all scenarios).
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Figure 4.6: Multiple re-exposure experiments using the extended model. Dis-
played are the kinetics of infected cells (A), CD4+ T cells (B), and Chlamydia-
specific antibody (C) for single reinfection at either 100, 200, 300, or 600 days after
initial infection in the extended model. Also included is the simulated kinetics of fre-
quent re-exposure every 30 days over 300 days after initial infection under antibody
deficiency. It should be noted that, for frequent re-exposure scenarios oscillatory
behavior continues once further infection is removed. Black arrow indicates point
of initial infection (common to all scenarios). For parts (B) and (C), initial immune
cell levels are higher (part B) and lower (part C) at initial infection because of
imposed antibody deficiency.
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4.4.4 Repeated Exposure Reinforces the Importance of Antibodies and

Suggests a Role in Preventing Persistent Infections and Immunopathol-

ogy

Figures 4.5, 4.6, and 4.7 also contain the simulated outcomes of frequent re-exposure over time:

Figures 4.5 and 4.6 examine frequent re-exposure, as might occur amongst “core” members of a

sexual network, and Figure 4.7 for someone who is experiencing higher initial exposure, though

not as high core members of a network, followed by a long period of no exposure. For EBs and

infected cells in the basic model (Figure 4.5), frequent re-exposure every 30 days produced damped

oscillations that approach a low endemic equilibrium that persists in the absence of further ex-

posure. Given that high CD4+ T cell responses will be positively correlated with production of

IFN-g, the basic model demonstrates that frequent re-exposure is likely to keep CD4+ cell popu-

lation elevated, and therefore production of IFN-g continual. For baseline values of the extended

model, where an individual’s antibody response is pronounced, this behavior was not demonstrated

(not shown). However, by lowering their antibody response, frequent re-exposure produces similar

elevated, oscillating immune responses and persistent infection that continued in the absence of

further exposure (Figure 4.6). An analytic study of re-exposure corroborates the simulated results

for both basic and extended models (Figure 4.2). Taken together, this suggests that a pronounced

antibody response may have an important role in preventing the formation of persistent infection.

Figure 4.7 demonstrates that removing higher short-term exposure to Chlamydia allows partial

immunity (i.e., immunity that does not prevent infection, but will reduce the duration and severity

of second infection) to wane and return to near baseline levels.

4.5 Discussion

A person’s history of exposure to STI-causing pathogens has been considered central to shaping

their repertoire of effector B and T lymphocytes [30, 120], as well as for driving STI persistence

and evolution [120]. Our primary concern in this paper was to illuminate unique immunobio-

logical characteristics that may result from differences throughout an individual host’s exposure

history. Using two simple models of immune responses to Chlamydia infection has allowed us to

qualitatively explore some elementary questions about anti-chlamydial immunity under repeated,

long-term exposure. Overall, our results suggest several generalised interpretations that agree well

with previously observed experimental studies: one, CD4+ T cell responses impart a marked level

of immunity to primary and secondary infections; two, in the presence of CD4+ T cells, antibody

contributes in an important way to an individual’s immunity against reinfection; and three, when

reinfection does occur after being re-exposed in relatively rapid succession (relative to the immuno-
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Figure 4.7: Higher initial re-exposure followed by a long period of no exposure.
Displayed is the kinetics of infected cells (A), CD4+ T cells (B), and chlamydia-
specific antibody (C) for the extended model with re-exposure every 100 days over
a span of 300 days followed by single re-exposure 900 days after initial infection.
These scenarios were used to represent higher initial rates of exposure, between 100
and 300 days, followed by low exposure between 300 and 900 days. Black arrow
indicates point of initial infection.
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logical decay time) the resulting infection is less severe and produces a decreased bacterial load.

The latter has allowed significant insight to be gained into the timing of reinfection and the severity

and duration of disease: as long as some level of pre-existing immunity remains, repeat infections

are likely to be of decreased severity and duration when compared to initial infection. However,

this does not appear to apply to repeat infections that occur at time points after immunity has

waned further (demonstrated in Figures 4.5, 4.6, and 4.7).

One of the major immune mechanisms for controlling Chlamydia infection occurs through de-

pletion of cellular TRP by IFN-g-inducible indoleamine-2,3-dioxygenase: a TH1-mediated pro-

cess [29, 45, 176]. A failed or weak TH1 response will allow Chlamydiae bacteria to respond to

immune challenge by converting into a nonreplicating but revivable persistent state [45]. In this

persistent state, the bacteria have been demonstrated to remain able to direct their own survival

and still allow for antigen-presentation to occur [176], and consequently a predominant antibody-

or TH2-mediated hypersensitivity [45]. However, an over-stimulated TH1 response will lead to

delayed-type hypersensitivity, and an increased risk of IFN-g-mediated tissue damage; an effective

immune response that successfully clears infection will contain a balance of cell-mediated and hu-

moral immune responses [45]. Our experiments of repeated exposure have highlighted two novel

immunobiological outcomes that appear to connect the formation of antibody to the outcome in-

fection and long-term protective immunity.

The in-host models used here suggest that for frequent exposure to Chlamydia, the formation of

a proportionate antibody response is not only central for preventing reinfection, but for regulating

an individual’s effector T cell populations – therefore lessening the risk of inflammatory damage and

the likelihood of persistent infection – as well. Specifically, antibody will reduce the population of

free EBs, which reduces the levels of infected cells; a lower magnitude of infected cells will regulate

the activation and proliferation of CD4+ T cells, and therefore prevent an over-production of IFN-g.

However, a lack of a proportional antibody response during frequent repeated infection allows

for more infected cells to be produced and thus requires higher levels of effector T cells to eliminate

infection. The higher levels of TH1 CD4+ responses will be associated with continual production

of IFN-g, and possibly an increased likelihood of persistent infection and inflammatory damage.

Because fluctuations between acute replication, IFN-g-mediated immune responses, and persistence

are believed to the norm with Chlamydia infections [45], these results outline, what may be, a

previously unidentified mechanism of chronic infection that is driven by continual disproportionate

TH1 CD4+ cell populations – in conjunction to the known mechanism of persistent infection that is

a result of disproportionately high antibody responses (i.e., where it is likely that TH2 >> TH1) [45].

To our knowledge, research into the link between persistent infection and immune responses has

not assigned an important role of prolonged (or elevated) IFN-g-mediated mechanisms.

The higher levels of TH1 CD4+ responses, the continual production of IFN-g, and the formation

78



of chronic infection also appear to be associated with the development of complete (life-long)

protective immunity. Previous research among humans in developing countries have reported that

while there are high prevalence rates of STIs among commercial sex workers [170], there may well

be some degree of protective immunity in these highly sexually-active populations [25, 120]. At a

general level, the results from both our simple and extended models appear to support these previous

observations: frequent re-exposure can yield stable and persistent elevated immune memory (figures

5 and 6). It also appears that individuals experiencing brief periods of higher-than-usual exposure

(Figure 4.7) result in, to a lesser extent, partial protective immunity (i.e., immunity that does not

prevent infection, but will reduce the duration and severity of secondary infection and disease).

Although the accumulation of immunity through repeated infection has been assumed else-

where [30], our results demonstrate that for those individuals who would not have levels of expo-

sure comparable to those in a core group, removal of the repeated infection pressure allows levels

of immune cells to return to near baseline levels (Figure 4.7). Taken together, our results suggest

that the natural development of life-long immunity to Chlamydia may well be the exception rather

than the rule. This leads us to conclude that, for all but the most heavily exposed, complete

life-long immunity, may simply be an artifact of continued exposure coupled with disproportionate

immune responses. At the very least, it appears that the formation of life-long immune memory to

Chlamydia infection, among the majority of sexually-active people, may not fit the standard pre-

cepts of infection and acquired immunity. This appears to challenge current evidence of chlamydial

immunity and suggests the need for novel empirical data.

Re-exposure to Chlamydia that results from behavioral variability is also thought to alter trans-

mission potential [120]. Clearly, many of the insights presented here may have important implica-

tions for the spread of Chlamydia. As such, within-host models can provide quantitative predictions

of immune status that offer valuable insights into the factors that influence transmission [85]. In-

corporating some simple extensions to these models that will account for network spread [199] will,

at the very least, begin to lay the foundations for assessing the feasibility of any undesirable interac-

tions between current Chlamydia control programs, a host’s immune responses, and any association

they might have on the prevalence of infection [31]. Collection of quantitative immunological and

epidemiological information will be of great value for informing this work.
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Chapter 5

Study 4: The Local Effects of Treatment on

Reinfection in an Immunoepidemiological Model

of Transmission

5.1 Relationship to the Previous Study

The within-host model of the previous chapter was developed to build an adequate representation

of in-host dynamics that would then serve as the foundation of an immunoepidemiology model. The

previous model allowed me to build-up an intuition of how the model would behave under different

exposure histories. However, the re-exposure/re-infection scenarios (and by extension network

structure) were exogenous in this model. Network topologies linking individuals is important in

infection transmission. Therefore, I extended a previous, general immunoepidemiological model

for a chlamydial context that integrated the “reduced” model of the previous chapter that then

connects each individual in small static networks. This not only, allowed reinfection to occur

endogenously, but also was able to examine its occurrence when treatment is also introduced into

the model structure.

5.2 Background

For commonly reported bacterial sexually transmitted infections (STIs), such as Chlamydia tra-

chomatis, effective detection and treatment is vital to reducing the duration of infection and in-

terrupting transmission [163]. For many developed countries with effective mass control programs,

such as Norway, Sweden, Finland, and Canada, Chlamydia incidence rates were in decline for al-

most a decade [31]. However, despite the best efforts of these public health programs, Chlamydia

case notifications have risen and now appear to exceed those recorded before large-scale intervention

strategies were implemented [31,175].

Recently discussed reasons for the rebounding of Chlamydia notifications have focused on several

hypotheses. Of the seven propositions presented by [175], the first four focus on revised testing

technologies, and have been long-supported by epidemiological data [35, 66, 80, 136]. The fifth
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and sixth propositions, which respectively focus on antibiotic resistance and changes in sexual

behaviour, are remarked to have little or mixed supporting evidence, and may be subject to denial

as central causes of rising incidence rates [175]. The seventh proposition, designated the arrested

immunity hypothesis, argues that treating Chlamydia early in the course of infection disrupts the

formation of a protective in-host immune response [31]. Though previously demonstrated in animal

models [190], the tenets of the arrested immunity hypothesis, initially developed through simulation

modelling [30], have been substantiated by geographical and seroprevalence data [127] as well as

randomized clinical approaches [12].

The interaction between antimicrobials, the development of an immune response, and any detri-

mental effects on population susceptibility has potentially weighty consequences for Chlamydia re-

infection rates. Such effects are particularly important for individuals who return to the same or

similar sexual networks with the same or similar sexual behaviour [31]. To our knowledge, the

observed immunological effects of antibiotic treatment have only been observed in non-interacting

individuals. Conversely, the proposed counter-intuitive epidemiological implications of arrested

immunity have been observed in the absence of detailed data on immunobiological characteris-

tics. Therefore, questions remain about whether individual-level effects of treatment on immune

responses propagate across scales to the level of the population, and if the epidemiological dynamics

of infection will simply be the sum of individual immunological effects?

Understanding the impact of public health efforts for infectious disease control is central to

evidence-based public health policy [31]. However, because complexity behind disease dynamics

hinders our ability to discover the delayed and distal impacts of our actions, the outcome of many

public health programs can be poorly understood [188]. Modelling has become a central tool in

understanding the epidemiological processes underlying infectious disease transmission and aids the

design of effective control strategies. For a wide range of infectious diseases, individual heterogeneity

can be modelled effectively. For example, individuals can be represented as vertices in a network,

where the connections between individuals represent potentially infectious contact. Models that

use explicit network structures enable the study of how behavioural variability will impact diffusion

processes, and have proved useful for understanding the spread of SARS, influenza, foot-and-mouth

disease, tuberculosis, and quintessentially, STIs [109]. Network models represent an alternative

approach to modelling infection spread by aggregate, compartmental models distinguished by their

greater ability to capture behavioural heterogeneity and allow for examination of various control

strategies that take advantage of a given network structure [120], rather than assuming that contact

among susceptible and infected individuals is a random process [93]. However, network models

seldom incorporate individual representations of immunological heterogeneity.

Recent developments in immunoepidemiological (IE) modelling frameworks offer a chance to

explore and explain heterogeneity in STI transmission dynamics that is linked not only to be-
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havioural variability (i.e., network structures), but also to variability in an individual’s immuno-

biology. A number of previous methodologies have been developed to examine “between-host”

infectivity and disease suffered by infected hosts as functions of the disease progression at the

within-host level [42,47,85,115,193,199,216,218]. Though guided by different objectives and model

structures, each of these frameworks has yielded important insights. For example, the between-host

models by [85] were used to explore the effects of natural boosting and vaccination on the forma-

tion of immune memory, while [42] examined the selective pressures exerted from both population

and within-host levels on the emergence of mutated pathogen strains. However, these frameworks

do not capture the impact of complex population structures, such as networks. In contrast, the

models used by [193], [115], and [199] have examined spread over random network structures. How-

ever, such studies have been limited to network structures that closely mimic a random mixing

assumption (i.e., Poisson networks).

In this paper, we aim to build an introductory link between Chlamydia infection and host

immune responses, with an emphasis on how treatment impacts the local spread of chlamydia

infection. Here, we explicitly extend our previous analyses [199, 201] to include host heterogeneity

represented by varying network structures. We present a general method for examining multi-

scale feedbacks in a specific IE framework. We do this by “nesting” a model of in-host Chlamydia

dynamics into small, idealized sexual networks. This nesting allows the between-host variability

in their life history of infection and transmission to be functions of both immune dynamics at the

within-host level, as well as their position in a given network structure. Nesting individuals in small

networks also allows us to build up an intuition for the dynamic feedbacks amongst these different

scales and their impact on infection spread.

5.3 Material and Methods

5.3.1 Chlamydia Infection and the Immune Response

The genus Chlamydiae encompasses a unique class of obligate intracellular bacteria that can cause

disease in a wide range of animals [17]. Chlamydia bacteria have a biphasic developmental cycle that

consists of an extra- and intracellular form [17, 29]. The extracellular form, the elementary body

(EB), is infectious and thought to be metabolically static. During infection, the EB is internalized

into host epithelial cells via small vacuoles resembling endosomes, most of which avoid fusion with

host cell lysosomes [29]. The EB differentiates within the entry vacuole into metabolically active

reticulate bodies (RB), which are non-infectious [29]. Infection is propagated further when the RBs

differentiate back into EBs, which are released from the host cell by either exocytosis or lysis.

Inference by analogy with rodent models supports the existence of an effective immune response

against Chlamydia infection [17,29,95,99,146,148,171,190]. These animal models of human genital
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tract infections demonstrate that a large proportion of animals resolve primary infection and are

temporarily resistant to reinfection. When reinfection does occur, secondary inflammation and

disease is significantly shorter or non-existent, and bacterial load is greatly reduced [172].

One of the major immune mechanisms for controlling Chlamydia infection occurs through de-

pletion of cellular tryptophan (TRP) by indoleamine-2,3-dioxygenase (IDO) – a Th1 process that

is mediated by interferon gamma (IFN-g) [29, 45, 176]. A failed or weak Th1 response will allow

Chlamydia RBs to respond to immune challenge by converting into a nonreplicating but revivable

persistent state [45, 121]. In this persistent state, Chlamydia bacteria have been demonstrated to

remain able to direct their own survival and still allow for antigen-presentation [176]. A direct con-

sequence of this prolonged infection is antibody- or Th2-mediated hypersensitivity [45]. However,

an over-stimulated Th1 response will lead to delayed-type hypersensitivity, and an increased risk of

IFN-g-mediated tissue damage, that is likely a consequence of an initially dominant Th2 response.

5.3.2 Basic Model of Chlamydia Replication and Immune Responses

In extending our general IE formulation [199], we specify the following: a within host model, the

initial state of each host, the network topology over which infection spreads, a representation of

control strategies (here, antibiotic treatment), and a formulation of the diffusion of infection from

one individual to another.

Expanding epidemiological and public health knowledge will depend upon pragmatic learning

through simulation and systems thinking [188]. Our aim is to consider the simplest possible model

and explore its implications for Chlamydia infection dynamics. The vehicle for this research is a

simple model that includes Chlamydia bacteria, host cells, and cell-mediated immune responses

(see Figure 5.1).

Because cellular immunity is crucial for resolution of Chlamydia infections [29,56,146], the basic

model combines a representation of host-pathogen interactions [5,158,159] with known Chlamydia

immunology in the reproductive tract [29, 56]. This basic model contains uninfected endothelial

cells (ECs) of the genital tract (X), infected ECs (Y ), free, infectious, and metabolically inactive

EBs (E), and Th1 CD4+ cells (Z). Uninfected ECs are produced at a constant rate, λ, and died

at a rate δX. We used mass-action kinetics to model the interactions of uninfected cells with

infectious EBs; infected cells are produced at a rate βXE, and died at a rate αY . We assumed

that chlamydial peptides presented to the immune system are roughly proportional to the number

of infected cells [159, 211]; therefore, activated chlamydia-specific CD4+ T cells are assumed to

proliferate and differentiate at a rate cY . Activated CD4+ cells died at a rate σZ.

The main effector mechanisms of CD4+ T cells assumed in this model were IFN-g-mediated

TRP starvation of chlamydial bacteria and immune-mediated death of infected cells. Here, the

concentration of IFN-g and cytosolic TRP were modelled implicitly, and the concentration of each
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Figure 5.1: Stock and flow diagram illustrating the assumptions about chlamydial
dynamics for an ith individual in equations 1-4 in the main text. Uninfected ECs
(Xi) are produced at a constant rate, λ, and die at a rate δXi. Infected cells (Yi)
are produced at a rate βXiEi by contact with free EBs (Ei), and die at a rate
αYi. CD4+ T cells (Zi) proliferate and differentiate at a rate ciYi and die at a rate
σZi. Infected cells are killed at a rate γ′ZiYi recover from infection at a rate γZiYi.
Dashed arrows between state variables indicate feedbacks between state variables.
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was assumed to be directly- and inversely proportional to the number of CD4+ cells, respectively.

Because low levels of TRP have been demonstrated to have minimal effect on the viability of host

cells [121], infected cells were therefore assumed to recover from infection at a rate γZY . However,

because other Th1 immune mechanisms are also driven by IFN-g, infected cells were also assumed

to die at a rate γ′ZY . These assumptions produced the set of ordinary differential equations for

an individual i (see also Figure 5.1 for schematic representation):

Ẋi = λ+ γZiYi − δXi − βXiEi (5.1)

Ẏi = βXiEi − αYi − γZiYi − γ′ZiYi (5.2)

Ėi = εYi − qEi (5.3)

Żi = ciYiZi − σZi. (5.4)

Specific immune responses are induced for a majority of infections, and the magnitude and quality

of these responses varies greatly for different infections [139]. The particular structure of equations

5.1-5.4 are not a comprehensive depiction of immunological processes and other innate and specific

immune responses are likely to mediate the spread of a Chlamydia infection in a population. How-

ever, explicitly describing the cooperative interactions between other specific immune responses

(e.g., B- and CD8+ T cells), and their effect on the transmission of Chlamydia is left for future

work.

5.3.3 Initial Infection

Infection begins with the introduction of a small amount of Chlamydia bacteria into a single host

whose state variables represent the uninfected state. In the current model, an individuals initial

state is specified by:

(Xi (0) , Yi (0) , Ei (0) , Zi (0)) = (X0, 0, E0, Z0) (5.5)

representing the initial numbers (or densities) of uninfected target cells, infected target cells, free,

viable Chlamydia bacteria, and Th1 CD4+ cells, respectively. At time t = 0, we assume that there

is a small amount of innoculum of EBs introduced into a host. Based on research for the sexual

transmission of Chlamydia in Guinea Pigs [172], we assume that the initial quantity E0 = 103

inclusion forming units (IFUs) [172].

5.3.4 Network Structures

The epidemiological literature contains many plausible representations for between-host transmis-

sion. These include models based on differential equations [5] and those based on network structure
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Figure 5.2: Exemplar bipartite network structures representing (A) a single iso-
lated host, (B) a pair of connected hosts, or “dyad”, (C) networks of order three:
a “path” and a “tree”, (D) networks of order four: a “path”, a “tree”, a “cycle”,
and a “star”. The vertices that are filled-in (solid black) represent the position of
the initially infected host, and thus determine the network’s descriptor of “path”
or “tree” (for example).

(e.g., see review in [106]). Here, we have chosen to represent between-host transmission via par-

ticular network structures. To help build our intuition about the implications of treatment on

reinfection, we focus our efforts on understanding the resultant infection spread over small, ideal-

ized, static, bipartite network structures with fixed populations of size, |VT |, where 1 ≤ |VT | ≤ 4.

We focus on bipartite graphs because of an implicit similarity with sexual networks in heterosexual

populations. While other network structures (e.g., fully connected graphs or “cliques”), are impor-

tant social network structures and may likely be important to the spread of STIs when considering

same sex partnerships, for simplicity we do not consider them here. Each network is represented by

a graph G = (V1, V2, E), with vertex sets partitioned into V1 and V2 and edges E, where every edge

joins a vertex in V1 with a vertex in V2 and |VT | = |V1| + |V2|. Specific network examples include

a single “isolated” individual, |VT | = 1; a “dyad”, G = (1, 1, 1); a “tree”, G = (1, 2, 2); a “cycle”,

G = (2, 2, 4); and a “star”, G = (1, 2, 2). Please refer to Figure 5.2 for graphical depictions of the

network structures.
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Figure 5.3: A schematic representation of chlamydial transmission between hosts
in the immunoepidemiologcal model discussed in the main text. Here, infection is
represented by an inflow into Chlamydia bacteria, Ej , from the ith individual’s j
neighbours. The stock and flow representation focuses on a segment of the equations
represented in Figure 5.1 and equations 5.1-5.4 in the main text.

5.3.5 Link of Infection spread to Host State Variables

We need to understand how the internal state of an infected host affects the spread of a pathogen

between hosts. Our basic supposition is that the host state variables will govern this process. This

model contains immuno- and contact-dependent parameters governing the transmission between

hosts that have been outlined previously in [199]. In particular, we suppose that the chlamydial

load of the transmitting host affects the rate at which infectious innocula is released (adapted

from [42]). For this, we add to the in-host model an additional term specifying that a single

individual’s incoming flow rate of free chlamydial particles is proportional to the chlamydial load of

their neighbours ωi
∑
i∈|VT |Ai,jEj . Here, ωi is the (typically very small) coefficient of connectedness

that defines the weights on each of the connections between neighbours. We hereafter refer to ωi as

the connectivity coefficient. The expression Ai,j is a predefined, symmetric, binary n×n adjacency

matrix that describes “who is connected to whom”. The vector, Ej , is the chlamydial load of

network member j (Figure 5.3).

We further assume that infection does not affect host activity level (i.e., disease is either minimal
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or nonexistent). Thus, the transmission rate of an infection was assumed to be an increasing

function of the chlamydial load that exceeds an infectious threshold. For an initial innoculum of

103 IFU, it has been experimentally observed that after a mean incubation period of approximately

4 days, active shedding of Chlamydia bacteria can be measured from infected Guinea Pigs [172].

Therefore, we used this information to determine the threshold level of chlamydial EBs at which

an infected host became infectious.

5.3.6 Individual Heterogeneity

Each individual has two relevant characteristics that can affect contact rate, infectivity, and duration

of infection. As mentioned above, these are an individual’s immune responsiveness, ci, and the

connectivity coefficient, ωi. Therefore, we examine the effect of varying the heterogeneity spectrum

in these parameters. In the homogeneous condition (H0) all individuals share identical values for

connectivity and immune responsiveness. In the heterogeneous condition (HE), each individual

i has a distinct immune responsiveness, ci ∼ U (0.007, 0.015), and connectivity coefficient, ωi ∼

U (0, 1)×0.01, where the multiplier term ensured that infection was able to propagate, and U (a, b)

denotes a random variable uniformly distributed between a and b.

Because our basic model is deterministic and was originally used to describe chronic infections

[158], CD4+ T cell responses cannot reduce Ei (t)→ 0. Therefore, following Wodarz and colleagues

[213], we defined a threshold value where Chlamydia bacteria, although likely at low levels, was

considered extinct, EBext. Here, our extinction threshold was chosen to be marginally larger than

the initial innoculum of 103 IFU.

5.3.7 Treatment

Model representation of the removal of infected individuals by contact tracing and subsequent

treatment has two relevant characteristics: the time they begin to receive treatment and their

behaviour during treatment. For the former, we follow the experimental protocol of Su et al.

(1999) [190], and provide treatment to specific individuals at the time of infection (day 0), or at

days 3, 7, and 10 days after infection. Here, treatment was assumed to last for approximately 7

days. Treatment of infected hosts (here, simulated Guinea Pigs) within these small sexual networks

was administered under 3 different scenarios. Each scenario was fashioned after idealized contact-

tracing strategies outlined in [109].

1. Treatment of “trigger” vertices: This involved treating the initially infected individual. Here

we define the “trigger” vertex as the individual who is initially infected.

2. Single-step contact tracing : The neighbours of the trigger vertex are assumed to be contact-

traced, treated, and have their infection levels reduced by treatment at a rate of, ρYi. This
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modifies equations (1) and (2) to be:

Ẋi = λ+ γZiYi + ρYi − δXi − βXiEi (5.6)

Ẏi = βXiEi − αYi − γZiYi − γ′ZiYi − ρYi. (5.7)

Further contact tracing is not initiated for this strategy.

3. Multi-step contact tracing : Because the exposed/infected neighbours of the trigger vertices can

themselves spread infection (once infected), we assumed that a second “round” of individuals

will be traced and treated. Because of the size of the networks studied here, everyone in the

network was treated at this point.

The conditions of heterogeneity were extended to the delivery of treatment as well. For H0, indi-

viduals were assumed to remain in contact for the duration of treatment, while for HE , ∀ ρYi > 0,

ωi = 0 for the duration of treatment of individual i, and retained its original value, otherwise. As

a result of contact tracing, all individuals that were treated were treated at the same time.

5.3.8 Measuring Infection Spread

For each experimental condition, infection spread was gauged through each network structure (out-

lined in Figure 5.2) via the prevalence of infection (i.e., the number of individuals infected at a

particular time point), and the duration of infection. This allowed the overall burden of infection

to be compared across networks of different sizes and configurations, as well as for different immune,

behavioural, and treatment scenarios.

5.3.9 Calibrating the Within-host Model

Sources of empirical data were not available for all input parameters, and calibration to laboratory

data was necessary to estimate unknown parameter values. Where possible, the model was param-

eterized to chlamydia-specific kinetics based on laboratory studies using Guinea Pigs (see below).

Model calibration was performed using a two-step process:

1. Setting initial parameter values: Each parameter value associated with the natural history of

infection or treatment was estimated from key laboratory studies of chlamydial infections in

Guinea Pigs or other modelling articles in the available literature [95, 131, 172, 211]. Where

unavailable, parameter values (e.g., susceptible cell production and death rates, as well as

immune responsiveness) were taken from our experience with other within-host dynamic mod-

els [108,159,177,213]. Given that the model presented here uses similar structure to previous

models, we think this is a reasonable assumption (see Table 5.1). However, we should note

that these parameter assumptions contribute to simulated output that matches chlamydial

infection time series from laboratory research.

89



Parameter Description Value Units Notes

λ Rate uninfected cells 10 cells/day fixed

replenish.

β Infection rate.
`
10−4, 0.01

´
1/(IFU×day) calibrated

δ Uninfected cell die-off. 0.1 1/day fixed

α Infected cell die-off. (0.33, 2.0) 1/day calibrated

γ Rate infected cells are
`
10−6, 0.1

´
1/(T cells×day) calibrated

cured by CD4+ cells.

γ′ Rate infected cells are γ 1/(T cells×day)

killed by CD4+ cells.

ci T cell responsiveness rate. H0 : 0.01 1/day varied

HE : U (0.007, 0.015)

σ T cell die-off. 0.01 1/day fixed

ε EB production rate 1.28 IFU/(cells×day) fixed

from infected cells.

q Rate of EB decay. (0.2, 3.0) 1/day calibrated

Table 5.1: Parameter ranges used for calibrating the within-host model of Chlamy-
dia infection.

2. Sampling parameter ranges and fitting the model : Parameters that were calibrated were first

assigned a range of values found in the literature surveyed. Parameter settings that minimized

the discrepancy between laboratory observations and model outputs were determined by using

the Powell global optimization algorithm available in Vensim DSS for Windows (version 5.5c).

This enabled different combinations of parameter vectors to be explored.

5.4 Results

5.4.1 Clearance of Chlamydial Infection in Antibiotic Treated Individu-

als

We first analyze the impact of treatment on infection and immune response within a single infected

host. The purpose of examining treatment within a single individual is to ensure that our dynamic

hypothesis of within-host processes produces results that are expected and previously observed in

laboratory research. Figure 5.4 illustrates that our within-host model can accurately reproduce the

natural history of infection in a Guinea Pig model of genital infection.

Infected individuals that did not receive treatment exhibited typical infection curves (Figure

5.5), characterized by the shedding of large numbers of organisms during the first two weeks of

infection. Antibiotic treatment had a marked effect on chlamydial shedding and on the duration of

infection (Figure 5.5A). Treatment at the time of infection (day 0) completely inhibited infection

from taking off. Compared to untreated individuals, those treated at 3 and 7 days after infection
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Figure 5.4: A comparison of experimental and simulated kinetics of primary
chlamydia infection and CD4+ T cell responses. Experimental data for free ele-
mentary bodies (inclusion forming units, IFUs) (solid line), model-derived (round
dots) and CD4+ T cells (dash dot) at initial infection. Data are modified from [172].
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exhibited a significantly reduced duration and severity of infection, while those treated at 10 days

also demonstrated a reduced duration of infection.

To determine whether antibiotic treatment affected the development of protective immunity, we

also compared the magnitude of the CD4+ T cells in treated hosts compared to untreated hosts

(Figure 5.5B). Despite effectively extinguishing infection, treatment at the time of infection (day

0) or 3 days after infection significantly removes antigen impingement, which consequently removes

the stimulus for the development of an immune response. Perhaps the most intriguing finding is

that treatment as late as 7 or 10 days after infection reduced the magnitude of the CD4+ response

compared to that in an untreated host. Therefore, it appears that maximal protective immunity

against chlamydial infection requires that acute infection be allowed to proceed into the late stages

of infection [190]. The degree to which these levels of CD4+ cells protect against reinfection, for

different treatment times, are examined below.

5.4.2 Transmission of Chlamydial Infection in Antibiotic Treated Pairs

We build upon the above results by connecting individuals in specific network topologies, beginning

with a network of order 2. Table 5.2 displays to the chains of infection that were generated

for a variety of network structures when one trigger case is introduced into each network. We

define a chain of infection over a network as the enumeration of the number of cases in each

generation [18]. For example, we will write 1→ 2 to denote a chain consisting of the trigger case,

and two first generation cases. In general, the chain of infection i0 → i1 → i2 → . . . → ir has it

infectives in generation t, where t = 0, 1, 2, . . . , r, and no cases thereafter [18]. Dyads that were

not treated exhibited an expected chain of infection, where the trigger case infects their neighbour.

The observed chains of infection hold for both H0 and HE conditions. For the H0 condition, both

infected hosts demonstrated typical baseline infection curves observed to occur in a single infected

individual. However, for the HE condition, at least one of the connected hosts was unable to resolve

infection that ultimately damped to a low endemic equilibrium.

As expected, treatment of the trigger case early in the course of infection has a marked effect

on transmission of infection (Figure 5.6). Delivering treatment at the time of infection (day 0)

and at 3 days after not only shortened the infection, but also prevented the infection from being

transmitted to the neighbour of the trigger case; an effect that obviously due to the fact that the

trigger case was not infectious before receiving treatment. These results are consistent across the

H0 and HE conditions and contact tracing strategy (not shown).

Compared to the treatment of the trigger case at 0 and 3 days, treatment at 7 or 10 days

post-infection exhibit immune dynamics that are vastly different. In the H0 scenario, treatment of

the trigger case at 7 or 10 days after infection leads to reinfection of the trigger case (Figure 5.6).

This behaviour is mirrored in the HE condition, however the occurrence and severity of reinfection
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Figure 5.5: Comparison of infection (A) and immune dynamics (B) for untreated
(solid line) and treated individuals at: time of infection (not visible), 3 days after
infection (short dash dot), 7 days after infection (dash), and 10 days after infection
(dot).
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Network Exemplar Chain of Infection

|VT | = 1 1

G = (1, 1, 1): “dyad” 1→ 1

G = (1, 2, 2): “path” 1→ 1→ 1

G = (1, 2, 2): “tree” 1→ 2

G = (2, 2, 3): “path” 1→ 1→ 1→ 1

G = (2, 2, 3): “tree” 1→ 2→ 1

G = (2, 2, 4): “cycle” 1→ 2→ 1

G = (1, 3, 3): “star” 1→ 3

Table 5.2: Chains of infection by network exemplar. Graphical depictions of
each exemplar are displayed in Figure 5.2. The descriptor of “path” or “tree” (for
example) depicts the location of the trigger vertex and thus the topology of the
graph, itself, not necessarily the flow of infection over the network structure.

is limited to treatment delivered at 7 days after infection, and is completely absent when they

are treated at 10 days after infection. When treatment at 7 or 10 days after infection extends

beyond the trigger case to include contact tracing, both the severity and duration of infection is

greatly reduced for both the trigger case and their contact. No reinfection is observed under the

HE scenario. Here, it appears that although infection spreads between the pair, treatment prevents

reinfection.

5.4.3 Dynamics of Infection as Neighbourhood Size Increases

The results displayed in Figure 5.6 provide an intuitive guide to explain the results observed for

networks 3 ≤ |VT | ≤ 4. For each network structure, we focused our analysis on describing the

spread of infection among the population as a whole, under the different scenarios of treatment and

individual heterogeneity (Figures 5.7-5.12), rather than describing the infection dynamics of each

individual in the network. Despite variation in the particular network structures, and the location

of the trigger vertex observable similarities in the magnitude of the prevalence and the duration

of infection was observed for treatment ≤ 3 days. For both H0 and HE conditions as well as all

three contact-tracing strategies, treatment at the time of infection or 3 days post-infection reduces

the number of infected individuals, as well as the duration of the spread of infection significantly

below baseline values where no treatment was administered. In these specific conditions, infection is

limited to the trigger case and thus effectively prevented from spreading throughout the remainder

of the network.

For treatment at 7 or 10 days after infection, the timing of treatment and the contact tracing
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Figure 5.6: Reinfection graphs for chlamydial load (A) and Th1 CD4+ T cells
(B). Results are derived from analyses of a “dyad” when trigger case (black lines)
is treated at 7 (solid lines) or 10 (dotted lines) days after infection. Grey lines are
representations of untreated neighbour of the trigger case.
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strategy employed can produce diverse epidemiological outcomes across network configurations.

For some of the network-heterogeneity-treatment combinations, chlamydial prevalence is similar

to baseline, while for other combinations the prevalence of infection is noticeably different than

baseline. Despite the variability in outcomes, these specific simulation experiments begin to provide

an outline as to which contact tracing strategy and treatment combinations are most likely to lead

to the reinfection of individuals in the network (Figures 5.7B, 5.8(B, C, D), 5.9(B, C, D), 5.10(B,

C, D), 5.11B, and 5.12(B, C, D, E)), prolong the spread of infection (Figures 5.7A, 5.8(A, C),

5.9(A, C), 5.10(A, B, C, D), 5.11(A, B), and 5.12(A, B, C, D, E)), as well as maintain chlamydial

prevalence at higher endemic levels (Figures 5.7B, 5.8B, and 5.11B). In particular, reinfection

appears most likely to occur as a result of “incomplete” contact tracing – represented here by

treating only trigger vertices or by single-step contact tracing – or when treatment is administered

after an individual has become infectious. That is, trigger vertices infect their neighbours, are

then treated, and consequently cured of infection. However, since treatment also prevents the

sufficient development of an immune response, these individuals then re-enter (or continue) contact

with infected, untreated neighbours, and are promptly re-infected. It is these results that support

the predictions of the arrested immunity hypothesis [31]. Although this applies to local spread

over small networks, application of these insights to real-world, human contexts would need to be

carefully evaluated on a case-by-case basis.

5.5 Discussion

There is evidence among many infectious diseases for important interactions between epidemiology

and immunology [47]. The results of the immunological “battle” between host and parasite will also

determine the ability of the parasite to spread [47,86,199]. Both empirical data and mathematical

models suggest that epidemiological variables like frequency and intensity of exposure can affect

a host’s immunological characteristics [120]. Such effects have been observed in malarial [10],

helminth [183], Measles [85, 86], and chlamydial infections [201]. Here, we have expanded here

upon a simple, but general mathematical framework for Chlamydia replication and in-host immune

responses [199,201]. The techniques demonstrated here provide an intuitive and general framework

in which to study the impact of population-level policies on individual immune responses, and how

these, in turn, impact the local spread of infection. Our investigations have produced the following

four major insights: first, that antibiotic treatment appears to impair the development of an immune

response; second, that as the number of people ultimately treated increases, the timing at which

treatment is delivered, and the behaviour of those being treated during treatment can significantly

alter the burden of infection for an individual as well as among their contacts; third, the effectiveness

of antibiotic treatment for individuals in isolation may differ significantly from those obtaining for
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Figure 5.7: The effects of treatment on the prevalence of infection in a “tree” of
order 3 for H0 (A, C) and HE (B, D) conditions across treatment of the trigger
case (A, B), single-step (C, D). Treatment times after infection were: at the time
of infection (rose), 3 (green), 7 (purple), and 10 (aqua) days post-infection. These
can be compared to no treatment (orange).
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Figure 5.8: The effects of treatment on the prevalence of infection in a “path” of
order 3 for H0 (A, C, E) and HE (B, D, F) conditions across treatment of the trigger
case (A, B), single-step (C, D) and multi-step contact tracing (E, F). Treatment
times after infection were: at the time of infection (rose), 3 (green), 7 (purple), and
10 (aqua) days post-infection. These can be compared to no treatment (orange).
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Figure 5.9: The effects of treatment on the prevalence of infection in a “path” of
order 4 for H0 (A, C, E) and HE (B, D, F) conditions across treatment of the trigger
case (A, B), single-step (C, D) and multi-step contact tracing (E, F). Treatment
times after infection were: at the time of infection (rose), 3 (green), 7 (purple), and
10 (aqua) days post-infection. These can be compared to no treatment (orange).
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Figure 5.10: The effects of treatment on the prevalence of infection in a “tree” of
order 4 for H0 (A, C, E) and HE (B, D, F) conditions across treatment of the trigger
case (A, B), single-step (C, D) and multi-step contact tracing (E, F). Treatment
times after infection were: at the time of infection (rose), 3 (green), 7 (purple), and
10 (aqua) days post-infection. These can be compared to no treatment (orange).
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Figure 5.11: The effects of treatment on the prevalence of infection in a “star”
of order 4 for H0 (A, C) and HE (B, D) conditions across treatment of the trigger
case (A, B), single-step (C, D). Treatment times after infection were: at the time
of infection (rose), 3 (green), 7 (purple), and 10 (aqua) days post-infection. These
can be compared to no treatment (orange).
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Figure 5.12: The effects of treatment on the prevalence of infection in a “cycle” of
order 4 for H0 (A, C, E) and HE (B, D, F) conditions across treatment of the trigger
case (A, B), single-step (C, D) and multi-step contact tracing (E, F). Treatment
times after infection were: at the time of infection (rose), 3 (green), 7 (purple), and
10 (aqua) days post-infection. These can be compared to no treatment (orange).
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connected networks of individuals; and fourthly, that the effects of treatment leading to increased

susceptibility – and as a result, reinfection – are not completely general, and can be prevented by

effective surveillance and timely clinical management of infection. This final result demonstrates

the need for careful investigation when considering both the beneficial and deleterious effects of

treatment on the spread of infection between individuals. Unfortunately, though the analysis here

provides clear results, formulating a general “rule of thumb” that scales-up to larger populations,

may be challenging.

Because the models here are stylized descriptions of Chlamydia infection and host immune

responses, we have erred on the side of starting simple to help gain some initial insights into IE

model dynamics. In particular, we chose to develop the within host model (equations 5.1-5.4)

under simple assumptions about the spread of infection in the genital tract and the development of

immune memory. As a representation of the spread of infection, we assumed a within-host model

that describes populations of cells within the genital tract that interact in random mixing process.

While this is often assumed for most mathematical models of infectious disease spread, it could

be argued that homogeneous mixing is not a realistic assumption for the genital tract, and that

our model does not capture events that occur within the genital tract as well as other geometric

representations, such as a rectangular lattice with wrapped side boundaries [131].

For the development of immune memory, we chose a heuristic approach over a mechanistic

description. Because memory cells are activated at a faster rate than näıve cells, and because they

can proliferate before they acquire effector functions, the inclusion of a state variable for immune

memory would have altered the time course of and likely the magnitude of reinfection observed.

As a result, overall burden of infection may be significantly reduced compared to that shown here.

Despite these simplifications, the most striking result observed was that reinfections arise en-

dogenously from the general model structure. We believe that because of the widespread presence

of regulatory feedbacks between hosts and pathogens, treatment for many network-mediated in-

fections will give rise to phenomena similar to that observed here. Upon antigen impingement, a

host’s immune system is stimulated to react against the infectious agent. As the number of infected

cells increase, pathogen production from infected cells will also increase. This increases stimula-

tion to the immune system, which after some delay results in antigen-specific immune responses

accumulating. Increased numbers of antigen-specific immune responses increase the clearance of

pathogen (or infected cells) until the infectious agent is eradicated or effectively controlled. Treat-

ment, however, also removes pathogen from an infected host. Because the removal of an infectious

agent by treatment often occurs at a rate that is faster than the activation of the immune response,

effective treatment will result in lower rates of antigen-mediated activation of immune effector cells.

This causes the accumulation of immune cells to occur less quickly, leading to a smaller population

of immune cells being amassed. Any amount of immune-mediated removal of pathogen that does
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occur also reduces pathogen load, further decreasing antigen-mediated activation.

Determining whether this feedback structure is universally detrimental to an infected host has

yet to be explored. For Chlamydia infections, we have demonstrated that the timing and ex-

tent of treatment can have significant consequences for reinfection. However, when the regulatory

feedbacks between host immune responses, pathogen levels, and treatment (described above) are

considered in the context of an infection like HIV, the arrested immunity hypothesis provides an

interesting perspective as to why effective treatment is able to significantly slow the progression of

disease – in a fashion that extends beyond the direct consequences on the virus itself. Decreased

antigen impingement, via treatment, reduces immune system stimulation, thus slowing the growth

of activated CD4+ T cells for HIV to infect. Fewer infected CD4+ T cells will reduce the loss of

these important immune cells to other effector mechanisms (such as Cytotoxic T-Lymphocytes),

and therefore will slow an individual’s progression to full-blown AIDS.

Our approach has been to consider the impact of treatment on networks with fixed, small

neighbourhood sizes in the absence of other population heterogeneities such as risk structure and

preferential mixing. The dynamic complexity associated with even the simplified model presented

here provides justification for our approach of starting simple. Despite our focus on these simple

networks, it is of significant interest to examine the generalizability of these insights as neighbour-

hood size increases and individual agent behaviour (with respect to contact-tracing and treatment)

become less stylized. We emphasize that the current approach can readily accommodate larger and

more complex networks (e.g., small world and scale-free), dynamically evolving network structures,

as well as other pathogen types and the immune responses against them. However, a comprehensive

investigation of these extensions will take us beyond the aims of the present work.
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Chapter 6

Conclusions

“I have now in my hands. . . all the threads that have formed such a tangle. There are of course,

details to be filled in, but I am certain of all the main facts. . . I will give you proof of my knowledge.”

– Sherlock Holmes, A Study in Scarlet, Chapter 7.

6.1 A Summary of the Thesis Work and its Significance

Genital Chlamydia trachomatis infections are an important public health concern. The most com-

mon bacterial STI in Canada and worldwide, human infection with Chlamydia bacteria can elicit

an extraordinary range of disease states and observed pathologies [29,146]. Acute host reactions to

sexually transmitted Chlamydia infection range from a subclinical state to erythema, edema, and

mucopurulent discharge [163]. Chronic and progressive disease (or sequellae) from human Chlamy-

dia infections includes pelvic inflammatory disease, ectopic pregnancies, and infertility [163].

Since the mid-1990s, many countries with substantial investment in Chlamydia control have ob-

served a rise in case notifications [70]. One important contribution of this thesis was an investigation

of current chlamydial trends in the Province of Saskatchewan in the context of several proposed

rebound hypotheses [175] (see Table 1.1 in Chapter 1). By combining four simple dynamic models

of infection transmission with routinely collected surveillance data, I was able to demonstrate that

expanded testing with diminishing returns could effectively account for the observed rebound in

case notifications in Saskatchewan (please see Chapter 3). Considering the regulatory feedbacks

associated with testing and treatment has also demonstrated that current control policies are, in-

deed, reducing chlamydial prevalence, contrary to what is indicated by case notifications. However,

it is widely discussed that current efforts can be improved [16,36,43,62,69,71,71,81].

A second important contribution of this thesis is demonstrating the value models of complex

systems have to offer our understanding of chlamydial infection dynamics. Using aspects of the

systems modelling methodology of system dynamics, the research presented in this thesis has also

provided broad insights into both the natural history and immunobiology of Chlamydia infection

using models of both the population and individual. Of the six statements given below, the first

three apply specifically to the natural history of infection in such a way that they enable insights
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that may be difficult to observe among human populations. The last three provide a “systems”

account of how wide-scale surveillance of chlamydia infection is affecting chlamydial prevalence.

Each proposition is discussed in more detail, and is to serve as a connecting statement of the

previous thesis chapters.

1. Susceptible-Infected-Removed model structures contain essential “natural history” structure

needed to understand the governing epidemiological dynamics of sexually transmitted chlamy-

dia infections.

This assertion proposes a system structure that is contrary to the traditional Susceptible-

Infected-Susceptible (SIS) models of STI transmission. When used in the context of sexually

transmitted Chlamydia, more traditional SIS models (and the SIS-like models used in Chap-

ters 2) lack a temporary stay in the recovered state during which they are not susceptible to

infection; that is, SIS-like models do not contain the crucial I → R → S flow of people that

is explicitly represented in SIR and SIR-like models.

2. The delay from a removed state is caused by a long and effective period of immunity.

These observations stem directly from statement 1, and their implication contrasts with the

more popular notion of brief and partial immunity currently discussed in the Chlamydia lit-

erature [16]. Two elements of this statement should be emphasized: (i) that because of a

significant delay introduced by the negative feedback loop, via recovery through a “removed”

state, I → R→ S, chlamydial prevalence is oscillating; and (ii), that because of this systemic

behaviour, we can immediately identify which variables are responsible for causing the oscilla-

tions [187]. Here, the delays arise from the time required for an individual to recover naturally

from infection, and then return to the susceptible state through the loss of immunity. Such a

postulate as a prolonged immune period also suggests that immunity plays a significant role

in both the natural history and transmission of Chlamydia infections.

3. Frequent re-exposure to chlamydial genital infection may result in unique immunobiological

profiles within the host.

The unique immunological profiles observed in Chapter 4 support previous observations [30]

that complete protective immunity can be obtained through repeated exposure. These ob-

servations also appear to non-intuitively link the formation of persistent infection and the

potential for immunopathology with the formation of protective immunity. Given that there

are several adequate animal models of chlamydial genital infection, further insights into the

immunobiological profiles may be won by study of the infection with, and frequent re-exposure

to, chlamydial antigens. Of the findings presented here, this statement should be the most

amenable to ongoing experimental research.
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4. Antibiotic treatment appears to arrest the development of natural immunity to infection, thus

putting an individual at risk for reinfection.

The function of a public health policy, such as treatment, is to suppress pathogen repli-

cation and eliminate the infection from infected cells, therefore rendering an infected host

cured. However, since host and pathogen are tightly coupled, policies aimed specifically

at the pathogen will ultimately have an effect on the host as well: “you can’t do just one

thing” [188]. Accordingly, early, effective treatment will not only eliminate the pathogen

impingement, but it will also interrupt the natural immune response and the formation of

immune memory. Some researchers have argued that this phenomenon is likely to enhance

population susceptibility to infection as susceptible patients re-enter the same or similar sexual

networks [31].

5. This deleterious effect of treatment on the development of immunity does not appear to mate-

rially affect population level susceptibility, and yet treatment can effectively reduce chlamydial

prevalence.

Note the implication that treatment is able to both effectively reduce population prevalence

(as was mentioned above) while also truncating the immune response of infected individuals.

Despite evidence that treatment will make individuals susceptible sooner (as compared to

becoming susceptible after a period of immunity), it is evident that there are extremely

specific conditions in which the deleterious effect of treatment will contribute to increased

population prevalence (see Chapter 5). Outside of those conditions, treatment will carry its

intended effects at both a population and individual level. The duality of these insights is

an indication that while the negative feedback loops discussed in statements 1 and 2 are

currently dominant over treatment, treatment is still able to effectively reduce the population

prevalence. This lack of dominance may be because the majority of the “infected” population

is still recovering naturally.

6. Treatment of infection can be at the forefront of Chlamydia control programmes, however their

effectiveness will likely be best realized in combination with adequate prevention and proactive

screening.

While the results of the study in Chapter 5 may produce more questions than answers with

respect to the full population-level impact of “arrested immunity”, it is clear from other

regions of Canada that current efforts behind Chlamydia control are achieving their public

health goal of decreasing the occurrence of Chlamydia-related sequellae [32] (please see Figure

6.1). Therefore, the significant ethical implications notwithstanding, stopping treatment for

Chlamydia infection, despite its demonstrable potential to increase population susceptibil-

ity, would most likely result in an explosion in Chlamydia prevalence (see Figure 6.2), and
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Figure 6.1: Annual reported cases and rates for Chlamydia complications for
British Columbia. PID: pelvic inflammatory disease; ectopic: ectopic pregnancy;
tubal: tubal infertility. Figure modified from Brunham and Rekart (2009) [32].

therefore is an unlikely policy alternative. More importantly, since current levels of treatment

appear insufficient for the deleterious effects of arrested immunity on population prevalence

to manifest, the efficacy of treatment to cure infection and significantly decrease the pop-

ulation prevalence still provide promising foci for anti-Chlamydia public health policy. For

example, it has been discussed that the introduction of a nationally coordinated enhanced

surveillance system among high-risk groups (particularly adolescents and youth) may be an

effective advancement [134]. Given that adolescents appear to be the most at-risk sexually

active subgroup of the population [54,153], the introduction of a proactive Chlamydia preva-

lence monitoring system for Canadian youth could provide effective targeting, prevention, and

control strategies to further reduce the population prevalence of Chlamydia infection [134]

(see also Figure 6.2 for potential impact of increased screening and prevention on Chlamydia

prevalence). Canada does have an extant enhanced surveillance system in place amongst

street youth (e.g., the I-Track network), however extending this to a broader collection and

dissemination of data may provide a mechanism to guide allocation of resources for Chlamydia

prevention and control among the general population [134].
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Figure 6.2: Plausible futures of Chlamydia prevalence under hypothetical policies:
one, if a screening program is implemented to increase the number of people tested
and treated by 35%; two, a safer sex campaign that produces behavioural changes to
reduce transmission (by 10% per year) to susceptible people; three, “ quarantining”
those who test positive, without treatment, for the remainder of their sexual lifetime;
and four, no longer testing or treating for this infection.
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6.2 Reassessing Contemporary Knowledge though a Sys-

tems Lens

Chlamydia is an infection that can cause chronic and progressive disease with serious reproductive

tract sequellae. Because of this, many countries worldwide have initiated chlamydia control pro-

grams. However, the expected, continuous decrease in observed Chlamydia case notifications has

not been witnessed after the introduction of these programs [70]. Contemporary opinion views this

current paradox as the result of unforeseen and unpredictable outside forces [71].

The proposed solution is stated to be obvious: diligent adherence to the scientific method

through ongoing, novel epidemiological and immunological research [70, 71]. Recent discussion

surrounding Chlamydia epidemiology and immunology encourage continued policy-focused research,

and carefully planned prospective studies to better understand the natural history of Chlamydia

trachomatis infections in humans [70]. Innovative translational research is also suggested as essential

to determine the degree to which mechanisms of clearance, pathogenesis, and immunity in humans

parallels those found in animal and in vitro studies; likewise, refinement of animal models are

suggested to more closely parallel human responses [71].

In an ideal world, evidence-based learning should improve our knowledge base and allow for

beneficial decision-making [188]. However, learning often fails even when reliable evidence is avail-

able [52]. Information generated from distinct parts of the system will often adhere to disciplinary

approaches that are static and reductionist. These perspectives lead to reliable and self-confirming

inferences that allow narrow (and possibly inappropriate) beliefs to persist [188]. If the endemicity

of genital Chlamydia infections truly reflects the combined effects of processes across immunological,

behavioural, and sexual network levels, then it would be surprising if infection and disease dynam-

ics across these levels could simply be understood by independently studying a single piece of the

system [55]. Because public health policies are embedded in intricate systems that are governed

by many physical, ecological, social, behavioural, technical, and economic relationships, generating

reliable evidence through the scientific method becomes increasingly difficult, the more complex

the phenomenon [91,187,188].

Complexity can be marked by the existence of feedbacks, delays in cause and effect, hierarchical

organization, nonlinear responses to perturbation, compensatory mechanisms, counterintuitive and

emergent behaviour [52, 55, 188]. Complexity hinders the generation of evidence, learning from

evidence, and the implementation of policies on the basis of evidence [188]. In such situations,

it is difficult to know how, where, and when to intervene [135]. As a result, most well-intended

interventions will have little or no effect, or will have unintended consequences and, thus will

be undermined because of a failure to address the causal mechanisms driving observed trends

[52,91,187].
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Failure to consider the interactions between other pieces of the system – which may or may not

be understood – overlooks the importance of cumulative effects, delays, feedback loops, and nonlin-

earities [52]. Reassessing existing chlamydial research from a systems perspective has highlighted,

what appear to be, misconceptions arising from the application of traditional epidemiological meth-

ods that have lead to incomplete interpretations of available data. The unexpected behaviour of

chlamydia case notifications in the face of intensified control efforts contains two examples.

For the first, it is apparent that – 25 years after the beginning of the “treatment era” – the

currently observed case notifications are not a feature of ineffective control efforts. Rather, they

are an indication that the perceived alarm over increased case notifications (in the presence of

worldwide control programs) have arisen from mental models of that are too narrow, linear, and

based on time horizons that are too short [188]; there is a focus on proximal causes in time and

space. Effect is rarely, proportional to cause [52,188]. Therefore, while testing and treatment levels

may have increased in recent years, one should not expect a proportional decline in the prevalence

of infection. There are other processes – besides treatment – that are simultaneously influencing

the dynamic behaviour of prevalence over time (such as the negative feedback loops and the delay

brought about by a prolonged immune state, see summary statements 1 and 2 from the previous

section).

A second example of where thinking in systems can be informative involves an observed dis-

crepancy between the trends in Chlamydia incidence and prevalence in Finland [128]: prevalence

has been observed to be increasing, while the prevalence is decreasing. Some researchers argue that

this discrepancy is discussed to be the result of the “treatment era” decoupling these two measures

of chlamydial morbidity [32, 70, 128]; in other words, it is thought that these two related measures

are now behaving in a nonintuitive, discordant manner since Chlamydia has become a reportable

(and treatable) infection.

From a system dynamics perspective, this behaviour is far from counterintuitive, and when inter-

preted in the context of stocks and flows the observed discrepancy becomes understandable. Stocks

and flows are familiar to all of us: the product inventories of a manufacturing firm its warehouses,

the balance in your chequing account, and the number of people infected with Chlamydia are all

examples of a stock. Stocks change over time as a net function of their inflows and outflows [187]. A

firm’s inventory is increased by the flow of production and decreased by the flow of shipments. Your

bank account balance increases with deposits and decreases as you spend. Prevalence of infection

increases with incidence and decreases by recovery and treatment (and possibly other outflows due

to death or migration). However, despite everyday experience of stocks and flows, people fail to

distinguish clearly between them [52,187].

This failure to understand the difference of stocks and flows has produced unclear numeric

comparisons between different concepts – such as prevalence and incidence. As a result, this has
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Figure 6.3: A comparison of the different behaviour of model-predicted incidence
and prevalence of Chlamydia in Saskatchewan between 1983 and 2007. The dis-
played trends are from a single calibration of Model 4 in Chapter 2.

led to the generation of perceived (and alarming) discrepancies when, given that Chlamydia is

a treatable infection, such discrepancies are to be expected. From these discussions, it appears

that previous researchers were most likely thinking statically, where the more traditional relation

between prevalence and incidence, p = i× d, holds: given that duration of infection, d, is constant,

an increase in the incidence, i, will also increase the prevalence, p. While this is true in equilibrium,

it is evident from the oscillatory behaviour of the model-predicted prevalence and incidence that

the system is not in equilibrium. The models presented in Chapters 3 and 4 demonstrate that the

incidence rate of Chlamydia in 2007 has surpassed the incidence in 1984 (see Figure 6.3). However,

they also suggest that the prevalence of infection is damping out to an endemic equilibrium. This is

a strong indication that even though the inflow due to incidence might be increasing, the flow out

of prevalence through treatment is greater, and thus is lowering the prevalence in the population.

Currently, systems thinking and traditional epidemiology represent two dissimilar methodologi-

cal paradigms. On the one hand, traditional epidemiology has had a high reliance on methods that

produce data and robust estimates of parameter values. These methods are traditionally married

with biostatistical techniques and are almost entirely used on data that has already been collected

(via an epidemiological study) to document an association present in data [55]. Despite providing
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many useful insights in the previous 2-3 decades, these traditional methods, still, represent a re-

ductionist approach that is fundamentally focused on “controlling away” risk factors and potential

confounders to identify a linear, one-way cause and effect relationship – all of which, from a systems

perspective, might be relevant to understanding the behaviour of that system.

System dynamics modelling, on the other hand, has been – by definition – used for understand-

ing and managing feedback systems. In system dynamics modelling, the emphasis is placed on

connecting system structure and observed data [188]. This is particularly well suited to address

the challenges of dynamic complexity that currently eludes traditional epidemiological methods:

one cannot study the link between X and Y, independently, and predict how the system will be-

have [55, 91, 188]. Inherently interdisciplinary, system dynamics builds atop a solid mathematical

foundation and involves the development of computer simulation models that portray processes of

accumulation and feedback which can be tested in a systematic and rigorous fashion to find effec-

tive policies for achieving the “best” public health outcomes; these models not only help answer

questions of “what if?” but questions of “why?” as well [135]. Only the study of the whole system

as a feedback system will lead to a thorough understanding of a system’s underlying processes [52].

Sometimes, however, the focus is placed on how the model “works” (i.e., does the model behave in

a similar fashion as the system?), and not on whether parameters are tied to observable data [55].

The adoption of systems thinking and modelling in epidemiology will necessitate incorporating

appropriate data into systems models that lead to tangible, evidence-based, parameterization for

both epidemiological and policy-related insights [55]. However, because of the current disparities

related to methodological commitments, two important questions that immediately arise are: is

direct integration of data generated by traditional epidemiological approaches into a systems model

appropriate? And, are significant modifications to current data collection required to make data

compatible for a systems approach? I believe that providing answers to these questions is nontrivial,

but attainable. Recent discussion on this matter cautions that, absent a clear conceptualization

of how to creatively collect data so that it fits with the assumptions of a systems approach, the

ability of these techniques to further our understanding of disease processes will remain a daunting

endeavor [55].

6.3 Strengths and Weaknesses of the Thesis Research

Though mentioned previously throughout each of the studies in Chapters 2-5, there are some

important limitations to this analysis that require discussion. As with any model, the structure

of the models described here represent a simplification of reality [21, 57, 169]. Models at different

levels of aggregation may lack the structure needed to observe important dynamics and adequately

inform policy makers. The particular scale of the model will depend on the questions asked as well
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as the data that is available [169].

The models used throughout this thesis reflect simple dynamic hypotheses of Chlamydia trans-

mission within the sexually active population. While traditional modelling of STIs has made use

of models that abstract away from population heterogeneity [21,57], many recent STI transmission

models feature a more-detailed characterization of the population [30, 59, 60, 72, 117, 126]. Al-

though more complex models offer advantages for investigating certain types of research or policy

questions [169], several considerations motivated the use of simpler models. Because the focus

was on trying to understand the rebound in the population, because of the aggregate nature of

case notification counts and testing volumes in the Province (which lack explicit information on

behavioral heterogeneity or network structure), and to avoid over-fitting that often accompanies

high-dimensional parameter spaces, the models presented in Chapters 2 and 3 did not explicitly

represent heterogeneity in sexual risk behaviour.

The within-host models presented in Chapters 4 and 5 are limited by similar abstractions.

These models are stylized descriptions of Chlamydia infection and host immune responses, and I

have erred on the side of starting simple to help gain some initial insights into model dynamics.

In particular, I chose to develop a model that describes populations of cells within the genital

tract that interact in a mass-action like (or random mixing) process. While this is often assumed

for most mathematical models of infectious disease spread, it could be argued that this is not a

realistic assumption for the genital tract (i.e., it is not a well-mixed system), and that these models

do not capture events that occur within the genital tract. There are likely better representations

of an infection in the genital tract than those of mass-action. For example, I could have considered

density-dependent, saturation-based, or spatial compartments as a model for infection spread.

Another limitation of these analyses is that the model structures were not stratified by dif-

ferent chlamydial serovars (or strains). As was mentioned in the Introduction (Chapter 1), the

genus Chlamydiae has 18 major serovars [29, 152], and although inconsistently demonstrated, pre-

vious research has reported a correlation between clinical symptoms, the resilience of infection,

and particular serovars circulating in a population [149–152]. In addition to this, there is evidence

to suggest that immunity to specific chlamydial strains is produced within a host who naturally

resolves infection [24,28]. Therefore, the introduction of a different strain, or complimentary shift-

ing patterns of strain dominance may likely have a significant impact on reinfection rates in an

immunologically-experienced host population [120]. Changes to strain ecology could facilitate rein-

fection, particularly among groups of highly sexually active individuals – who may already possess

a degree of strain-specific immunity. If larger fractions of people are immune for a prolonged period

of time (as the analysis in Chapter 3 suggests), then we may expect to see cyclical switching be-

tween dominant strains. Obtaining population level data on serotypes in positive cases may reveal

some interesting information into chlamydial serovar population ecology.
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6.4 Conclusions

Generally, the potential of applying systems thinking approaches to epidemiology appears vast,

but the challenges to adopting this way of thinking are commensurably daunting [55]. In particu-

lar, overcoming dogmatic commitments related to discipline-specific theoretical paradigms, study

methodologies, and language will likely be prominent and recurring issues that need to be overcome.

It will require listening with respect to others, then using these systems thinking capabilities to

act in consonance with our long-term goals [188]. The primary goal of this thesis was to approach

Chlamydia epidemiology a little differently, and to ask questions like “how?” and “why?” Systems

thinking is not a better way of seeing the world than traditional scientific methods; it is complemen-

tary, and therefore revealing [135]. A systems thinking lens will allows us to reclaim our intuition

about whole systems, and therefore hone our abilities to understand parts, see interconnections, ask

“what if?” questions about future system behaviour, and ultimately be creative and effective at

addressing system problems [52,135,188]. While I do not think that systems thinking and modelling

will be a panacea that offers a solution to all the challenges remaining in Chlamydia research, I do

think that it offers an effective way forward for both approaching and analyzing research initiatives

aimed at understanding disease processes.

Interventions to decrease adverse outcomes of Chlamydia infections need to target causes at

cellular, individual, network, and regional levels. This final chapter was intended to serve as both

a challenge to contemporary methods as well as to initiate discussion of a way forward. I suggest

that epidemiological thinking needs to broaden its conception of disease processes across multiple

scales, and that systems approaches provide a promising framework to augment and unify aspects

of traditionally columnized disciplines. For the study of genital Chlamydia infections, a systems

approach will enable an evaluation of the contemporary perspectives with which research questions

are being framed, the assumptions driving these perspectives, and whether useful predictions are

likely to result. This will highlight where communication between various clinical, immunological,

and epidemiological communities is inadequate, but also outline creative ways for these disciplines to

combine their knowledge of a problematic situation, and the development of an explicit and visible

dynamic hypothesis. Then, using computer simulation, stakeholders can formulate and compare

various scenarios for how to navigate change [1]. Learning via simulation will ultimately reveal

critical leverage points that take into account a system’s counterintuitive tendencies, opening new

avenues for fundamental improvement for understanding chlamydial disease processes [52].
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Appendix A

Development of a Unified Framework for Incor-

porating Immunology into Epidemiological Spread

A.1 Background

Epidemics consist of dynamic processes at multiple biological scales. From host-pathogen interac-
tions to host-host interactions infectious diseases have had a major influence on the development
of our immune systems and the evolution of human ecology [5, 159]. In recent decades, remark-
able advances in immunology and virology have provided fundamental insights into the detailed
mechanisms of infection pathogenesis and immune recognition [158,213]. Meanwhile epidemiologi-
cal modelling has enriched our understanding of the properties of infectious disease thus enabling
humankind to better control its spread [5].

Within an individual host, a major factor governing infectious disease dynamics is how quickly
and effectively the immune system can respond to infection (hereafter referred to as immune re-
sponsiveness) [159]. For clearing a viral infection, this is defined as the average rate at which naive
CD8+ cells proliferate into cytotoxic T-lymphocytes (CTLs) after encountering a viral antigen for
the first time [5,158,213]. The CTL responsiveness against a specific viral antigen is likely to vary
between individuals, as well as within individuals over time (for example, at successive stages of
HIV infection) [159]. The effectiveness of an anti-viral CD8+ response will depend on molecular
factors such as the affinity of the T-cell receptor for the viral peptide in the context of Major His-
tocompatibility Complex (MHC) molecules, as well as MHC polymorphisms that determine which
particular viral peptides are presented to the immune system [139,158,159].

At epidemiological (or population) levels, the importance of contact structure (or network con-
nectivity) for disease transmission has long been acknowledged [143]. Locally structured networks
can qualitatively alter infection dynamics through clustering behaviour with pairs of connected
individuals sharing many common neighbours. The effects of population heterogeneity on infection
spread are important but complex. Thus, when compared to well-mixed populations, local hetero-
geneous contact patterns can either slow or accelerate the progression of infection - depending on
the structure of the network [8, 15,107,119,123,143,156,161,203].

There are rich traditions of modelling centered specifically on the dynamics of infections at the
cellular level [6,159], or at the population level [5], that have profoundly advanced our understand-
ing of disease dynamics and control. While the insights gained from these modelling techniques is
remarkable, it is becoming evident that there are unique epidemiological processes of infectious dis-
eases that are likely governed by the dynamics of the immune systems of individuals in a population
(e.g., rebounds in the prevalence of some infectious diseases, antigenic variation and competition,
waning immunity, and transient cross-immunity of sexually transmitted infections) [120]. Many of
these may have significant consequences for creating optimum prevention strategies (e.g., vaccina-
tion or prophylactic chemotherapies) and establishing an adequate level of herd immunity.

In spite of the focused nature of current modelling applications, the need for integrating an
immune system mechanism into epidemiological models has been recognized [47, 75, 87], and uni-
fied theoretical templates of these biological domains have been developed [115, 193]. Although
these initial immuno-epidemiological frameworks demonstrate innovation and clarity, they lack the
representation of certain cellular components and immunological processes needed to characterize
the dynamics of some important epidemiological contexts such as antigenic variation, coinfection,
and the immunological impact of prevention efforts. As a result, the link between host-pathogen
interactions and their impact on the spread of infectious diseases across a population remains under-
explored. Here, we present a simple mathematical framework that provides an alternate approach
for unifying infection dynamics at the immune system and epidemiological scales. Although the
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analyses presented in this paper are almost entirely abstract, in the broadest context we advance the
arguments that: one, individual immune response dynamics are important for shaping population-
wide disease dynamics; and two, a modelling framework should not only be focused on a linked
transmission system that can advance overall theoretical understanding, but also inform infection
control decisions.

A.2 Models and Methods

A.2.1 Combined model for infection dynamics

To gain insight into how the basic laws of viral dynamics, within an individual, will eventually affect
the spread of a virus throughout a population of connected individuals, we considered a simple
integrated model of the immune response and population structure. To this end, we elaborated on
a simple, previously described model of the interactions between a replicating virus, host cells, and
cells of the immune system specific for infected host cells (namely CD8+ T-lymphocytes) [159,213].
We have modified this framework by placing each individual in the population within a simple
randomly-distributed (Poisson) network of 1000 people such that the viral load of a given individual
is linked with the viral load of adjacent individuals within the network (described below). This
basic model of anti-viral immune responses and population dynamics for each individual contains
five variables: uninfected cells Xi, infected cells Yi, free virus particles Vi, precursor CTLs (CTLp)
(i.e., CD8+ cells that have recognized a specific antigen but lack specific effector functions) Wi,
and CTLp cells that differentiate and inhibit viral replication through cytotoxic effector activity
(CTLe) Zi.

Following Nowak and May [159] and Wodarz and colleagues [213], the emergence of uninfected
cells occurs at a constant rate λ. Infected cells arise through contact between uninfected cells and
free viral particles at a rate βXiVi and die at a rate aYi. A person’s free virus load is produced
by infected cells, at a rate kYi, and declines at a rate uVi. The rate of CTLp proliferation for
each person in the population in response to antigen is given by ciYiWi. The parameter ci denotes
the CTLp responsiveness, which is defined as the proliferation of specific precursor CTLs cells
(i.e., CTLp cells) after their first encounter with a foreign antigen at the site of infection. While
antigen is present, CTLp cells differentiate into CTLe cells at a rate ciq. In the absence of antigenic
stimulation, each ith person’s CTLp population decays at a rate bWi. Infected cells are killed by
CTLe cells at a rate of pYiZi. The parameter p specifies the rate at which CTLe cells kill infected
cells. Once the infection is brought under control by the immune system, the CTLe population
decays at a rate hZi.

To this model, we have added an additional term specifying that the rate at which a per-
son’s incoming flow of free viral particles is proportional to the viral load of their neighbours,
ωi
∑
j∈P AijVj . Here, ωi is the (typically very small) coefficient of connectedness that defines the

weights on each of the connections between neighbours. We hereafter refer to ωi as the connec-
tivity coefficient. The expression Aij is a randomly selected, symmetric, binary n × n adjacency
matrix that describes “who is connected to whom”. This matrix describes the structure of the
Poisson-distributed network and is fixed throughout the period of simulation (once it is selected).
The vector, Vj , is the viral load of the jth network contact of person i, and P is the population.
These assumptions lead to the following system of ordinary differential equations:
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Parameter Description Value (units)
λ Production rate of uninfected cells 10 (cells/day)
d Rate of uninfected cell die-off 0.1 (1/day)
β Infection rate 0.01 (virion/day)
a Infected cell death rate (due to virus) 0.5 (1/day)
p Rate that infected cells are killed by 1.0 (cells/day)

CTLe cells
b Rate that CTLp cells die 0.001 (1/day)
q Fraction of CTLp cells that turn 0.1

into CTLe cells
h Rate of CTLp death 0.1 (1/day)
k Rate at which free virions are produced 3.0 (virion/day)

from infected cells
u Viral decay rate 3.0 (1/day)

Table A.1: Simulations were based on values used by Wodarz and colleagues
[213] and Nowak and May [159]. Immune responsiveness ci and the connectivity
coefficient ωi were varied throughout this paper. Their specific values for each
simulation experiment are described in the Methods section.

Ẋi = λ−Xi (d+ βVi) (A.1)

Ẏi = βXiVi − Yi (a+ pZi) (A.2)

V̇i = kYi + ωi
∑
j∈P

AijVj − uVi (A.3)

Ẇi = ciYiWi (1− q)− bWi (A.4)

Żi = ciqYiWi − hZi. (A.5)
(A.6)

We numerically solved the above system of equations for each individual i in the population
(i = 1, . . . , 1000). The initial conditions that accompanied this system of equations for viral intro-
duction were:

(Xi (0) , Yi (0) , Vi (0) ,Wi (0) , Zi (0)) = (X0, 0, E0,W0, 0) (A.7)

In all simulation experiments, parameter values were based on those presented previously by
Wodarz and colleagues [213] (see Table 1). Symbolic equilibrium analyses are presented in the
Results section below.

For describing infection spread among the population, we used the mean and accumulated mean
viral load as our main measure of infection prevalence. The accumulated mean viral load, AV (t),
in the population was the integral of the mean viral load from the beginning of a given simulation
(time 0) until time t, and was used as a proxy for the final size and severity of an outbreak. It was

defined as AV (t) =
∫ t
0
V̄ (τ) dτ , where V̄ (t) =

∑
i Vi (t)
|P |

is the mean viral load in the population

at time t, and where |P | is the number of people in the population.

A.2.2 Individual immune responsiveness

For experiments associated with parameter ci, we examined the effect of assuming specific values
(homogenous across the population) on infection spread. However, because individuals are likely to
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vary in their ability to respond to infection [139,213], we also conducted experiments in which the
population was divided into two halves with different ci, and in which each individual’s immune
responsiveness was drawn from a truncated normal distribution with (µ = 0.063 and σ2 = 0.0005)
and confined to support over the interval [0.01, 0.1]. Variance was estimated from the square of
the interval divided by four:

[
0.1−0.01

4

]2. Our mean and range values were derived from the values
studied by Wodarz and colleagues [213]. In all cases, values of ci were set at the beginning of the
simulation, and remained static for the duration of that simulation.

A.2.3 Weight of network connectivity between people and infection spread

One of the most obvious features of viruses is their capacity for person-to-person transmission [203].
Contact patterns provide important information for understanding the transmission properties of
the pathogens, themselves, as well as where to concentrate prevention efforts [143]. Because exact
values for the connectivity coefficient ωi will often vary over time [203], we assumed that ωi followed
a random uniform distribution with mean, θ1+θ2

2 = 0.5 and variance, (θ2−θ1)2
12 = 0.083. The value

of ωi was dynamically varied for the majority of our analyses. Just as with immune responsiveness,
the circumstances where we focused on the specific effect of a person’s connectivity, ωi was assigned
a constant value for the entire population. High and low values of ωi were arbitrarily assumed to
be 1.0× 10−3, 1.0× 10−6, and 1.0× 10−9, respectively.

A.2.4 Time until re-infection and immunological memory

A direct consequence of an individual’s ability to respond to and eliminate an infection is the
formation of immunological memory. Within the host, memory CD8+ T-cell populations have the
ability to rapidly elaborate effector functions to respond quickly and efficiently when re-exposed
to infection. These properties of memory cells will not only decrease the duration of subsequent
infection within the host, but their presence is considered to increase the level of herd immunity in
a population [14,205]. And yet, the generation of memory T-cells exhibits both antigen-dependent
and antigen-independent characteristics [13, 213]. This appears to rely on the time scale of the
infection being studied: antigen-independent immunological memory has largely been observed in
acute infections, while antigen-dependence has been observed in the context of persistent infections
[206].

To examine the effect of re-infection on the accumulated viral load in the population, we con-
sidered two different scenarios. Scenario one was after an acute infection that was completely
cleared by the immune system and where memory CTLs (here CTLp cells) persist for long peri-
ods of time in an antigen-independent environment. Scenario two was for a low-grade persistent
infection characterized by a high acute-phase viral load followed by a reduction to very low levels
but not complete elimination. Specifically, this involved re-introducing infection at a disease-free
equilibrium (see below), where viral antigen has been eliminated (scenario one), and comparing it
to re-introducing infection near an endemic equilibrium (see below), where viral antigen has per-
sisted at low levels (scenario two). For all re-infection experiments, both the population and an
individual were separately re-infected at time t = 9000 days with a viral load that is equal to the
initial amount of virus, Vi (0). We also investigated periodically re-infecting the population and an
individual at t = 1000, 3000, 6000, and 9000 days. For each scenario, the values of ci (immune
responsiveness) and b (rate of CTLp die off) were varied according to Wodarz and colleagues [213]
for the comparison of antigenic persistence and elimination. Here, individuals were assumed to be
strong responders ci = 0.1, and have a slow rate of CTLp die off b = 0.001.

Because our basic model is deterministic and was originally used to describe persistent viral
infections [158], CTLe responses cannot reduce both Vi (t) and AV (t) → 0. Therefore, following
Wodarz and colleagues [213], for scenario one (above) we defined a threshold value where virus,
although likely at low levels, was considered extinct, vext. For our simulations of long-term dynamics
that assumed that the virus was eliminated, our extinction threshold was chosen (arbitrarily) to be
marginally larger than the endemic equilibrium value V̂i = 0.013. Here Vext = 0.015.
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A.2.5 Varying the infecting dose

The outcome of viral infection, in general, is thought to be related to the size of the infecting dose
a person initially receives [14]. Therefore, we also investigated the impact of varying the infecting
doses a person received from their network contacts. More specifically, we examined the situation
of V̇i = kYi + ωiφ

∑
j∈P AijVj − uVi, where φ is the constant for the infecting dose received by a

person from their network contacts, with φ = 1 being the default value. These experiments allowed
to us to obtain an initial understanding of the dynamical behaviour of the model under different
viral quantities transmitted throughout the population. For these experiments a person’s immune
responsiveness, ci, was a static random variable and the network connectivity coefficient, ωi, was a
stochastically-varied random variable.

A.3 Results

A.3.1 Equilibrium analyses

For a single-person where A1,1 = 0, the equations in the basic model are associated with three
equilibria. The first is a disease-free equilibrium in which free virus, infected cells, CTLp, and CTLe
cells are all absent, and only uninfected cells are present: X̂ = X (0) = λ

d , Ŷ = V̂ = Ŵ = Ẑ = 0.
This equilibrium is unstable for the case in which viral antigen persists, but is locally stable when
viral antigen is eliminated. The second equilibrium is a stable endemic equilibrium, in which free
viral particles and infected cells are in balance with uninfected, CTLp, and CTLe cells:

X̂ =
λuc (1− q)

duc (1− q)− βkb
(A.8)

Ŷ =
b

c (1− q)
(A.9)

V̂ =
kb

uc (1− q)
(A.10)

Ŵ =
h
(

(1− q)2 (βλck − aduc)− aβkb (q − 1)
)

qbp (duc (q − 1) + βkb)
(A.11)

Ẑ = − (aduc− βλck) (q − 1)− aβkb
pduc (q − 1)− pβkb

. (A.12)

The final equilibrium is an unstable “defense-free” equilibrium in which free viral particles, unin-
fected cells, and infected cells are present, but at which CTLp and CTLe cells are absent:

X̂ =
ua

βk
, (A.13)

Ŷ =
uad− λβk

aβk
, (A.14)

V̂ =
uad− λβk

uaβ
, (A.15)

Ŵ = Ẑ = 0. (A.16)

The equilibria described above for the single-person case have a close relationship with the
equilibria for a connected multi-person population. For a multi-person population, the number
of equilibria for our basic model rises geometrically with population size. While the count and
stability of these equilibria differ significantly for the cases of antigenic persistence and elimination,
two equilibria are shared by both scenarios: the first is a unique disease-free equilibrium, in which
the values of the state variables for each individual are identical to those obtaining under the
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single-person disease-free equilibrium. Compared to the corresponding single-person equilibrium,
this multi-person equilibrium is unstable for the case in which viral antigen is assumed to persist,
but is locally stable for the case in which a viral antigen is eliminated; the second is a unique
stable endemic equilibrium, in which the values of the state variables for each individual are very
close to those that would obtain for a single-person endemic equilibrium, but are slightly offset due
to the small rate of virions transmitted by neighbours. For example, given a very high coupling
coefficient (ωi = 0.001), the difference of viral levels between the single-person and multi-person
endemic equilibrium is only 3 per cent for an individual with 5 neighbours (not shown). The exact
formula the equilibria value of each individual will depend on population size and network structure;
because of this dependence, and because the equilibria for each individual within a multi-person
population are so close in values to the corresponding single-person equilibrium, we do not describe
a general formula here.

The number and stability of the remaining equilibria beyond the two just described depend
on whether viral antigen is assumed to be eliminated. If antigen persists, and we ignore all non-
physical equilibria associated with negative values of state variables for a population of size |P |
will be associated with a total of 2|P | + 1 distinct equilibria. In addition, there is a set of unstable
2|P |−1 “combinatorial” equilibria in which some individuals are in a state very close to the defense-
free equilibrium for the single person case, and in which other individuals are in a state very close
to the endemic equilibrium for the single person case. Thus, each such population-wide unstable
equilibrium is very close to being a simple superposition of individual defense-free and endemic
equilibria. Because both the disease-free and each of the combinatorial equilibria are unstable
(given the absence of a non-zero viral extinction threshold), the endemic equilibrium is the sole
stable equilibrium (as it is in the single-person case).

For a model that assumes viral antigen is eliminated, the structure and stability of the equilibria
are significantly different. Recall that for a given non-zero virus extinction threshold, the disease free
equilibria for each individual in isolation and for the population as a whole are locally stable. Given
extinction of a virus within a person, any finite-rate perturbations to the viral load in that individual
disease free equilibrium will be insufficient to elevate the viral load above the set viral extinction
threshold, and will therefore maintain complete extinction of the virus. A given individual who
has undergone viral clearance will therefore remain virus-free even in response to coupling with
nearby neighbours. As a result, a population of size |P | will exhibit 3|P | equilibria. Specifically,
equilibria will be present near any combination of the equilibria for different individuals, including
the homogenous |P |-person endemic and the disease-free Equilibria already discussed above. These
equilibria include both 2|P | stable and 3|P | − 2|P | unstable equilibria. The stable equilibria include
the global endemic and disease-free equilibrium discussed, and include cases in which individuals
are close to either their single-person disease-free or endemic equilibria. The remaining (unstable)
equilibria are those in which at least one person in the population is at a point very close to their
single-person defense-free equilibrium.

A.3.2 Simulation experiments

Immune responsiveness limits viral transmission

The abundance of virus - that is, the viral load - is an important correlate of pathogenicity and
disease progression of many viral infections [158]. Our integrated model both reproduced the well-
known relationships between an individual’s immune responsiveness ci and their viral load (Figs. 1
and 2) [159,213], and demonstrated the implications of this relationship to the short-term dynamics
of an outbreak (Fig. 3). Overall, a population that possesses a high value for ci will reduce the scale
and overall severity of an outbreak when compared to a population of weaker responders (Fig. 3A
and 3B). Interestingly, these results demonstrate a correlation between immune responsiveness and
the natural history of infection in the population. For populations of strong responders, infection
is eliminated (or at least depleted to very low levels), whereas in a population of weak responders
infection is likely to become endemic (Fig. 3A). If we assume that a population is composed of a
combination of strong and weak responders, then starting an infection in either a weak (low ci)
or strong (high ci) responder, interestingly, had no significant impact on the overall severity of
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Figure A.1: Evolution of individual viral load of infected cases and their network
contacts. For illustrative purposes, results displayed here are for three people in
the population. Person 3 (black lines) and Person 1 (blue lines) are connected, and
Person 1 and Person 2 (red lines) are connected. Here, ci = 0.01 (dotted lines),
0.05 (solid lines), and 0.1 (dashed lines) (Here Vext = 0.015 and ωi was assumed to
be a uniformly distributed random variable).

an outbreak (Fig. 3C). More realistic assumptions of heterogeneity, in which a person’s immune
responsiveness is drawn from a random normal distribution, resulted in a lower viral load in the
population. On the whole, these experiments suggest that increasing the disparity between people’s
ability to respond to an infection, while maintaining an average rate may worsen the overall impact
of an outbreak within that population (Fig. 3A and 3B).

Network connectivity affects the time between peaks in the viral load

Varying the magnitude of peoples’ connectivity coefficient ωi in our model re-produced previously
described behaviour of infection spread, and therefore built confidence in our model structure with
respect to previous discussions of contact patterns [123, 143, 156, 203] (Fig. 4). High values for ωi
reduced the time until the peak of an outbreak as well as the timing between peak viral levels in
neighbouring individuals, while infection spread was delayed among the population when values of
ωi were low (Fig. 4A). Given these particular assumptions regarding the strength of connectivity
among individuals, it is also likely that delays in disease progression (demonstrated by an increased
period between oscillatory peaks) will be observed. With larger values of ωi, the numbers of peaks
and troughs in the prevalence are reduced, and begin to merge into a more continuous (and more
familiar) outbreak pattern (Fig. 5). While changing ωi changes the rate with which the population-
wide viral load accumulates, it has little impact on the asymptotic limit of that viral load (Fig.
4B).

Our present methodology also allowed us to investigate, in the context of different combinations
of immune responsiveness, the impact of a person’s connectivity coefficient ωi, on infection spread
in a population. These considerations demonstrate, rather intuitively, that the peak mean viral
load of an outbreak and the subsequent accumulated viral load in the population will decrease
for a combination of low connectivity and high immune responsiveness, while increasing for high
connectivity and low immune responsiveness (Fig. 4C and 4D). Furthermore, performing 100
Monte Carlo iterations across randomly varied parameter values for immune responsiveness, the
connectivity coefficient, and randomly generated network structures highlighted that the above
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Figure A.2: Variations in parameter values and their effect on the population-wide
accumulated viral load. Additional parameter values investigated when studying
the effect of (A) immune responsiveness and the connectivity coefficient (B) on the
population-wide accumulated viral load.
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Figure A.3: The impact of a person’s immune responsiveness for the short-term
dynamics of an outbreak. (A and B) A comparison between the immune respon-
siveness and the overall behaviour of an outbreak (A), as well as the overall severity
an outbreak (B), as measured by the mean and accumulated viral load in the pop-
ulation, respectively. Mean and accumulated viral loads were computed from simu-
lating model 1 for constant values of immune responsiveness: ci = 0.001 (blue line),
0.01 (red line), 0.1 (yellow line), and random uniformly distributed (black line).
(C) Assuming that the population is composed of an equal proportion of stronger
ci = 0.1 and weaker responders ci = 0.016, the model was simulated to study the
effect on the accumulated viral load in the population by starting the infection in
the sub-population of stronger responders (red line) and weaker responders (blue
line). These experiments demonstrate no clear correlation between viral load and
starting an infection in either strong or weak responders. For scenarios (A, B, and
C) the connectivity coefficient, ωi, was a stochastic random variable. All other pa-
rameter values were based on values presented by Wodarz and colleagues [213] and
are displayed in Table 1.
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Figure A.4: The transmission of virus across the population differs for variations
in the connectivity coefficient, ωi. (A) Higher values of the connectivity coefficient
(ωi = 1.0 × 10−3) shortened the time required to spread the disease through the
population, as well as the peak of the outbreak (blue line). Lower values of the con-
nectivity coefficient (ωi = 1.0 × 10−4 and 1.0 × 10−5) had the opposite effect (red
and yellow lines, respectively). (B) Both high and low values of ωi demonstrated
no apparent sizeable relationship with the accumulated viral load in the popula-
tion (colour code the same as 3A). For scenarios (A and B) a person’s immune
responsiveness was randomly determined from a random normal distribution with
µ = 0.063 and σ = 0.0225 (see Methods for further details). For scenarios (C and
D), immune responsiveness for fixed values of ci = 0.1 and 0.016 were combined
in simulations with different fixed values of ωi = 1.0 × 10−3 and 1.0 × 10−5. The
colour code is the same for 3A.

results are likely to be quite robust for many different combinations of parameter values (Fig. 6).

Re-infection, immunological memory, and herd immunity

Figures 7 and 8 present the simulation experiments for re-infection. Under scenario one, our model
indicates that the longer the period until re-infection, the larger the post-exposure mean viral load
in the population will be (Fig. 7A). This reflects that, as the time prior to re-infection increases,
the CTLp populations are likely to decline towards naive levels (0) and approach the disease-free
equilibrium. With increasing time until re-infection, an individual will require a longer time to
mount an effective immune response to reduce the severity of that re-infection (Fig. 8A). For
scenario two (i.e., viral antigen persists after primary exposure), the recovered population does
not experience positive viral growth if the virus is reintroduced after the initial outbreak (Fig.
7B). Therefore, any re-infection that is likely to occur will result in immediate inhibition of viral
particles, and no considerable infection will take hold. What is interesting is that the asymptotic
accumulated viral load from re-infection is essentially the same regardless of antigenic requirements
or whether re-infection occurs repeatedly over time or infrequently later in time (Fig. 7B).

Notably, having key core people’s immune system primed against re-infection causes them to
serve as barriers that prevent that infection from reaching the rest of the population (Fig. 9A).
We expect this to be because by time t = 9000 days, one person possess an elevated level of virus-
specific CTLp cells (Fig. 9B) and will be able to easily increase the abundance of CTLe cells (Fig.
9C). Thus, this person is able to (almost instantaneously) clear the infection when it is reintroduced
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Figure A.5: Prevalence of a disease (per 1000 population) based on different values
of ωi. Here, ωi = 1.0 × 10−1 (red curve), 1.0 × 10−3 (yellow curves), 1.0 × 10−6

(black curves), and 1.0× 10−9 (blue curves).

at t = 9000 days. This interestingly implies that, given the assumptions used in the model here,
re-infecting key core people can be beneficial to the population.

Variations in the infecting dose

As expected, increases to the constant φ resulted in an increase in a person’s viral load. It bears
noting that, increasing the viral load incoming from a person’s neighbour also appeared to have
a similar effect on the timing of a person’s peak viral load (i.e., larger values of φ lead to tighter
spacing in time between the peaks in viral load of connected individuals) (Fig. 10A). However, this
change in behaviour at the individual level did not appear to have quite the same impact at the
population level, as there was no substantial change in the asymptotic behaviour of the accumulated
viral load (Fig. 10B).

A.4 Discussion

Future infectious disease research would benefit by striving to not only understand the properties of
the invading microbe, or the body’s response to infections [139], but also how individual responses
affect the propagation of an infection throughout a population. Whilst this is not the first attempt to
explicitly combine the nonlinear dynamics of immune reactions within individuals and the overall
nonlinear dynamics of the interaction between an infection and a population of hosts, previous
frameworks are better adapted to understanding very specific aspects of viral infections, such as
re-exposure to viral antigen [193] and the role of memory T-cells in clearing reinfection [115]. In our
opinion, our framework complements such previous contributions by incorporating a more detailed
representation of the mechanisms of antiviral immune response, and thus will contribute towards
improved understanding the immuno-epidemiological dynamics of viruses and other intracellular
pathogens.

These initial results reinforce how coupling principles of immunology with epidemiological mix-
ing provide a multi-scaled description of the relational aspects of an ecological system. In the
short-term, the immune responsiveness of the population as a whole produces some very well-
defined emergent properties and thus is likely to determine the natural history of disease in that
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Figure A.6: Mean (A) and Accumulated (B) viral loads in the population after 100
Monte Carlo realizations. Each realization is associated with a randomly selected
Poisson network, as well as a randomly selected value of immune responsiveness
(drawn from a normal distribution) and distinct stochastic trajectories for network
connectivity coefficients (drawn from a uniform distribution).
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Figure A.7: Viral dynamics for re-infection to antigen when it is eliminated com-
pared to when it persists. Antigen was re-introduced to the whole population, at
t = 1000, 3000, 6000, and 9000 days (yellow and blue lines), or at a single time
step (t = 9000 days) (black and red lines) under the assumption of antigenic elim-
ination and antigenic persistence, respectively. Here, ωi = 0.1, and a Vext = 0.015
was used in antigenic elimination simulations. (A) With the exception of antigenic
persistence (red and blue lines), re-infection for the population at different intervals
produces qualitatively different behaviour than antigenic elimination (yellow and
black lines). However, the asymptotic accumulated viral load in the population is
similar, regardless of whether or not antigen persists or is eliminated. (B) These
qualitative differences are also observable for the mean viral load in the population.
Assuming either scenario one or two, a small positive growth in the mean viral load
following re-infection at t = 1000, 3000, 6000 days (yellow line), and at t = 9000
days (black and red lines) occurs.
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Figure A.8: Immune system dynamics for re-infection when viral antigen is elim-
inated compared to when it persists. Here, the same re-introduction protocol as
for Fig. 5 was followed. (A) Antigenic persistence (red and blue lines) keeps CTLp
abundance continually high regardless of when antigen is re-introduced repeatedly
at t = 1000, 3000, 6000, and 9000 days (blue line) or only once at t = 9000 days
(red line). Antigenic elimination (with slow rates of CTLp decline, b = 0.001 1/day,
high immune responsiveness, ci = 0.1, and assumed Vext = 0.015) demonstrates that
re-expansion requires time for individuals to mount an effective immune response
(yellow and black lines). (B and C) There is also a proportional, positive growth in
the abundance of CTLe cells that follows directly from the expansion of CTLp cells
after single instance of re-introducing viral antigen (B) assuming antigen is elimi-
nated (black line) or antigen persists (red line), as well as repeated re-introduction
(C) assuming antigen persistence (blue line) and antigenic elimination (yellow line).
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Figure A.9: Having people’s immune systems primed through re-infection prevents
infection from reaching the rest of the population. Having key core people’s immune
system primed against re-infection (A and B) causes them to serve as barriers that
prevent an outbreak from reaching the rest of the population, as measured by the
accumulated viral load (C).
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Figure A.10: Simulations of increasing the viral load transmitted to a person from
their network contacts. Individual viral loads (A), and accumulated viral load in the
population (B) for a two- (dashed curves) and five-fold (dotted curves) increases in
the quantity of free viral particles transmitted from a person’s neighbour, compared
to the simulations of model 1 used in the main text (solid curves). Again for
illustrative purposes, the results in (A) are displayed for the same three individuals
used in Fig. 1: Person 1 (blue curves), Person 2 (red curves), and Person 3 (black
curves).
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population [115]. That is, there exist levels of immune responsiveness whereby a population of con-
nected individuals will be able to eliminate a viral infection, while at others, it will likely become
endemic. Interestingly, these emergent properties of our model demonstrate consistency with both
traditional susceptible-infectious-removed properties (for populations with higher values of immune
responsiveness) and susceptible-infectious-susceptible properties (for populations of weaker respon-
ders) within the clusters of people in the population even though these compartments were not
explicitly defined (see Figs. 3A and 5). They also reproduce well-known dynamics of re-infection
in a population after long periods of time [5], as well as intuition-based observations of how host-
pathogen interactions influence herd immunity [13,205]. However, because these population-based
results stem from an explicit description of the immune system, hypotheses relating the production
of immunological memory to the long-term effects of re-exposure on the population can now be
mathematically formulated and studied.

Another interesting result from this particular system is that the asymptotic accumulated viral
load after re-infection is essentially conserved regardless of whether the virus is eliminated, if it
persists, or whether re-infection occurs repeatedly over time or infrequently later in time. This
conservation property reflects the fact that given the same starting point in state space, the value
of Z (t) and W (t) depends only on the integral of the count of infected cells Y from 0 to t, and not
on the specific trajectory taken by Y within that interval. However, this conservation of morbidity
within the population raises a potentially important (and possibly controversial) question when
it comes to creating control strategies, particularly for recurrent diseases such as influenza: is
preventing population-wide reinfection until later in time that much more effective than having
continual population-wide reinfection over time when the end results are likely to be similar?

Our methodology has made several simplifying assumptions that should be investigated. We
imposed neither viral load thresholds required for contagion, nor any difference or quantization in
the infecting dose people received. Although the outcome of viral infection, in general, is thought
to be related to the size of the infecting dose a person initially receives [87], we found that our
results were robust against variations in this parameter (see Fig. 10). Investigating the impact
of different network structures (e.g., scale-free and small-world networks) is an important area of
ongoing work.

Following Nowak and May [159], we have also assumed a basic model for virus dynamics. Be-
cause of the known role of CD8+ T-cells in the elimination of virally-infected host cells (e.g.,
influenza A infections [195,209,210], or adenovirus infections [191]), we have focused our discussion
of immune responsiveness on CTLs, and thus ignored other types of innate and specific immunity.
Our focus on CTL-mediated viral elimination was, largely, an attempt to establish plausibility of
the multi-scale methods presented, not necessarily their complete adherence to immunological re-
ality; the cytotoxic properties of activated CD8+ cells for clearing a viral infection are certainly
not the whole story, and other immune responses are likely to affect the production of free virus.
It should be noted, however, that the effect of other immune responses can be described in terms
of this basic model by modifying its existing parameters. For example, production of cytokines
by CD4+ T-helper cells are likely to reduce the infectivity parameter β and/or the rate at which
infected cells are produced, k, while the role of neutralizing antibody- or complement-mediated
responses may also enhance the removal rate of free viral particles, u [159]. Although consider-
ing other immune responses is assumed to have an additional influence on the viral dynamics at
population levels [67,90], previous research at the individual level suggest that they are associated
with qualitatively similar dynamics to those governing CTLs [158, 159, 213]. However, explicitly
describing the cooperative interactions between CTLs and other immune responses, in the form of
additional state equations, and their effect on the transmission of specific microparasite infections
is also an important area of ongoing study.

A.5 Conclusions

Despite the extensive use of mathematics in epidemiology, many theoretical challenges remain
[144]. To improve our understanding of infectious diseases, future research will require theoretical
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tools that incorporate immunological and epidemiological features into a unified template [87,120].
Our goal in this paper was to expand upon the utility of merging aspects of immunology and
epidemiology into a single conceptual framework. This analysis has produced some interesting and
potentially important conclusions. We anticipate this framework to be a step towards articulating
an overall, integrated, and more refined epidemiological theory that simultaneously describes broad
categories of diseases dynamics at both cellular and organismal levels. Under a unified framework,
continued molecular research on disease pathogenesis and host-pathogen interactions will likely
have a reciprocal influence on epidemiological theory. Ideally, improvements to these combined
theoretical templates will prove useful for the prediction of future trends in infectious disease
epidemiology. Such combined methodologies could also lead to novel insights into understanding
microparasite evolution and its role in disease virulence and persistence. Ultimately, these initial
findings suggest that there are important immunological consequences to consider when designing
effective interventions to control new variations of familiar diseases.
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