
Kinetics and Effects of H2 Partial Pressure on Hydrotreating of Heavy 
Gas Oil 

 

 

A Thesis Submitted to the College of Graduate Studies and Research 

in Partial Fulfillment of the Requirements for the 

Degree of Master of Science 

in the Department of Chemical Engineering 

University of Saskatchewan 

Saskatoon 

By 

Majak Mapiour 

Oct2009 

 

 

 

 

 

© Copyright Majak Mapiour, Oct 2009. All rights reserved 

 



  i

 
COPYRIGHT 

 
It is my consent that the libraries of the University of Saskatchewan may make this 

thesis freely available for inspection. Besides, I agree that permission for copying of this 

thesis in any manner, either in whole or in part, for scholarly purposes be granted 

primarily by the professor(s) who supervised this thesis work or in their absence by the 

Head of the Department of Chemical Engineering or the Dean of the College of 

Graduate Studies. Duplication or publication or any use of this thesis, in part or in 

whole, for financial gain without prior written approval by the University of 

Saskatchewan is prohibited. It is also understood that due recognition shall be given the 

author of this thesis and to the University of Saskatchewan in any use of the material 

therein.  

 

Request for permission to copy or to make any other use of the material in this thesis in 

whole or in part should be addressed to: 

 

The Head 

Department of Chemical Engineering 

University of Saskatchewan 

105 Maintenance Road 

Saskatoon, Saskatchewan 

S7N 5C5 Canada 

 
 
 



  ii

 
ABSTRACT 

 
 
 
 The impact of H2 partial pressure (H2 pp) during the hydrotreating of heavy gas 

oil, derived from Athabasca bitumen, over commercial NiMo/γ-Al2O3 catalyst was 

studied in a micro-trickle bed reactor. The experimental conditions were varied as 

follows: temperature: 360 to 400ºC, pressure: 7 to 11 MPa, gas/oil ratio: 400 to 1270 

mL/mL, H2 purity range of 0 to 100 vol. % (with the rest either CH4 or He), and LHSV 

range of 0.65 to 2 h-1. The two main objectives of the project were to study the nature of 

the dependence of H2 pp on temperature, pressure, gas/oil ratio, LHSV (Liquid Hourly 

Space Velocity), and H2 purity.   The project was divided into three phases: in phase one 

the effect of H2 purity on hydrotreating of heavy gas oil (HGO) was studied, in phase 

two the nature of H2 pp dependency and the effect of H2 pp on hydrotreating of HGO 

was investigated, and in phase three kinetic studies were carried out using different 

kinetic models. 

 

 The objective of phase one was to study the effect of hydrogen purity on 

hydrotreating of HGO was studied in a trickle bed reactor over a commercial Ni−Mo/γ-

alumina catalyst. Methane was used as a diluent for the hydrogen stream, and its effect 

on the catalyst performance was compared to that of helium, which is inert toward the 

catalyst. Furthermore, a deactivation study was conducted over a period of 66 days, 

during which the catalyst was subjected to H2 purities ranging from 75 to 95% (with the 

rest methane); no significant deterioration in the hydroprocessing activities of the 

catalyst was observed. Therefore, it was concluded that methane was inert toward a 
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commercial Ni−Mo/γ-alumina catalyst. However, its presence resulted in hydrogen 

partial pressure reduction, which in turn led to a decrease in hydrodesulphurization 

(HDS), hydrodenitrogenation (HDN), hydrodearomatization (HDA) conversions. This 

reduction can be offset by increasing the total pressure of the system. HDS, HDN, HDA, 

and mild hydrocracking (MHC) conversions were studied. Also determined were cetane 

index, density, aniline point, diesel index, and fractional distribution of the products. 

 

 The main objective of phase two was to study the effects of H2 pp on 

hydrotreating conversions, feed vaporization, H2 dissolution, and H2 consumption were 

studied. The results show that HDN and HDA are significantly more affected by H2 

partial pressure than HDS; with the HDN being the most affected. For instance as the 

inlet H2 partial pressure was increased from 4.6 to 8.9 MPa HDS, HDN, and HDA 

conversions increased for 94.9%, 55.1%, and 46.0% to 96.7%, 83.9%, and 58.0% , 

respectively. Moreover, it was observed that H2 dissolution and H2 consumption 

increased with increasing H2 pp. No clear trend was observed for the effect of H2 pp on 

feed vaporization.  

In phase three the kinetics of HDS, HDN, and HDA were studied. The  power 

law, multi-parameter, and Langmuir - Hinshelwood type models were used to fit the 

data. The prediction capacities of the resulting models were tested. It was determined 

that, while multi-parameter model yielded better prediction, L-H had an advantage in 

that it took a lesser number of experimental data to determine its parameters. Kinetic 

fitting of the data to a pseudo-first-order power law model suggested that conclusions on 

the effect of H2 pp on hydrotreating activities could be equally drawn from either inlet or 
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outlet hydrogen partial pressure. However, from the catalyst deactivation standpoint, it is 

recommended that such conclusions are drawn from the outlet H2 partial pressure, since 

it is the reactor point with the lowest hydrogen partial pressure.  
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1.0   INTRODUCTION  

 The global oil demand is on a constant climb. According to World Energy 

Outlook (WEO), the demand for oil is expected to increase from 85 million bbl/day in 

2008 to 106 million bbl/day by 2030. With the expected decline in conventional oil 

production, unconventional oil such as oil sands will be major players on meeting this 

future global oil demand.  

 Canada’s oil sands deposits are second only to Saudi Arabia reserves. The output 

of marketable oil sands production was 1.126 million bbl/day in 2006, and was expected 

to rise to 3 million bbl/day by 2020 and 5 million bbl/day by 2030 (Government of 

Alberta). The expected increase in oil sands production will bring forth an increase in 

hydrogen demand; hydrogen is used to refine crude oil.  

 

1.1  Research background  

Conventional and non-conventional crude oil must be refined before they are 

made available for public consumption. The refining processes involve consumption of 

hydrogen (H2) which is a valuable commodity. It is predicted that refining H2 

consumption will be increasing for two main reasons. First, the quality of the crude oil is 

on a steady decline; meaning that higher levels of contaminants such as sulfur and 

nitrogen are becoming present in the crude. A major reason for this is that 

unconventional oil is increasingly relied upon as a fuel source, and it is 
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relatively lower in quality than conventional oil. This trend is expected to continue as the 

deposit of unconventional oil far surpasses that of conventional oil. There has been a 

significant progress in unconventional oil extraction and refining technology. Second, 

the environmental regulations against the levels of contaminants in the fuel are 

becoming increasingly stringent by the day (Peramanu et al., 1999).  For these two 

reasons, careful study of H2 management options is important. 

To get an appreciation for the importance of H2 to refiners a brief historical 

background must be reviewed. In 1897, hydrotreating (one of the refinery’s processes 

which use H2 to upgrade petroleum stocks) had its origin when Sabatier and Senderens 

reported that hydrogenation of unsaturated hydrocarbons could be carried out in the 

vapor phase over nickel catalyst (Gruia, 2006). The first industrial plant however was 

not built until 1927 in Leuna, Germany. In 1944, during the WWΙΙ, Germany used 

hydrogenation to produce 3.5 million tons of gasoline, which by today’s standards is just 

a minute production. Though hydrotreating and hydrogenation were of particular interest 

to the petroleum industry, very little commercialization had taken place prior to the 

1950s due to the lack of low cost H2. However, in the early 1950s, the advent of the 

catalytic reforming process made by-product H2 readily available. Therefore, an 

enormous growth in hydrotreating and other H2-consuming processes occurred. By 

2001, there were more than 1,600 hydrotreaters operating worldwide with total capacity 

exceeding 39 million B/D (4.8 million MT/D) (Gruia, 2006).The increasing utilization 

of H2 in  petroleum calls for better H2 utilization for optimal economics. One approach 

to better H2 management is to fully understand the H2 cycle in each of the H2-consuming 

processes such as hydrotreating, hydrocracking, and hydrorefining. A H2-consuming 

process of particular interest is hydrotreating. A popular example demonstrating the 
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importance of hydrotreating was a set of data cited by Radler (Speight and Ozum, 2002). 

The data showed that of the total worldwide refinery capacity of approximately 81.5 

million bbl/d of oil, approximately 4 million bbl/d was dedicated to catalytic 

hydrocracking, 8.5 million bbl/d was dedicated to catalytic hydrorefining, and 

approximately 28.1 million bbl/d was dedicated to catalytic hydrotreating. For this 

reason, this research work focuses on understanding the H2 cycle in a hydrotreater unit. 

 

 

1.2  Knowledge gaps  

After careful review of the literature (Chapter 2) regarding the effect of H2 partial 

pressure on the hydrotreating activities, the following knowledge gaps were arrived at:  

• Even though H2 purity is an important hydrotreating variable, its effect has 

not been examined in a vast majority of the studies available in the open 

literature. 

• The fact that H2 partial pressure a dependent variable is not adequately 

studied. As a result there is limited information in the open literature on the 

effects of the independent variables (temperature, pressure, gas/oil ratio, H2 

purity, and LHSV (Liquid Hourly Space Velocity)) on H2 partial pressure. 

• There are limited studies on the effects of the independent variables on 

important factors such as feed vaporization, H2 dissolution, and H2 

consumption, which greatly influence H2 partial pressure.  
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1.3  Hypothesis  

The following hypothesis has been outlined for this research work: 

• Within the hydrotreatment conditions, methane will not inhibit the catalyst; 

however, its presence may result in minor decreases in HDS, HDN, and HDA 

activities as it reduces the H2 partial pressure.  

• Increasing reactor pressure, H2 purity, and gas/oil ratio will enhance both the 

inlet and the outlet H2 partial pressure. 

• Langmuir-Hinshelwood model, in comparison to power law model or multi-

parameter model, will better represent the kinetic data since it accounts for 

the inhibition of HDS, HDN, and HDA reactions caused by H2S. 

 

 

1.4  Research objectives  

 The main objectives of this work were 1): to study the effects of independent 

variables (temperature, pressure, gas/oil ratio, H2 purity, and LHSV) on inlet and outlet 

H2 partial pressure. 2): to correlate H2 partial pressure and hydrotreating activities, and 

H2 consumption. 

Scope: 

Phase Ι: The focus was on the effect of H2 purity on hydrotreating activities and product 

quality. Hydrotreating experiments were performed in which methane was used to adjust 

H2 purity, and the effects of H2 purity on HDS, HDN, HDA, and MHC, and on cetane 

index, density, viscosity, aniline point, diesel index and fractional distribution of the 

products were determined. 
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Phase ΙΙ: The activities that were carried out in this section include the following:  

• To determine the impact of the interaction of pressure, H2 purity, and gas/oil 

ratio on inlet and outlet H2 partial pressure, feed vaporization, H2 dissolution, H2 

consumption. CCD (Composite Central Design) statistical experimental design 

approach was followed, hydrotreating experiments were carried out, and samples 

were collected and analyzed. Inlet and outlet H2 partial pressure, feed 

vaporization, H2 dissolution, and H2 consumption were determined using 

HYSYS, and Expert-Design 6.0.1 was used for the regression analysis of the 

data. 

• Inlet and outlet H2 partial pressure were correlated to hydrotreating activities and 

to feed vaporization, H2 dissolution, and H2 consumption. 

• Effects of Temperature and LHSV on hydrotreating activities, inlet and outlet H2 

partial pressure, feed vaporization, H2 dissolution, and H2 consumption were 

determined following a simple factorial experimental design. 

Phase ΙΙΙ: Kinetics of HDS, HDN, and HDA using different models were developed and 

compared.
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2.0  LITERATURE REVIEW  

This chapter presents a review on hydrotreating of heavy gas oil. Emphasis is placed 

on the introduction and explanation of concepts which aid the understanding of H2 

partial pressure dependency. Concepts pertaining to the kinetic modeling of 

hydrotreating reactions are also discussed.  

 

2.1 Hydrotreating  

Hydrotreating is a catalytic process in which petroleum products are stabilized by 

hydrogenation of unsaturated hydrocarbons and/or removal of contaminants such as 

sulfur, nitrogen, oxygen, and metals (Ni, V) from feedstocks by reacting them with 

hydrogen under relatively high temperatures and pressures (Gary et al. 2007). The sulfur 

and nitrogen are converted into H2S and NH3, respectively. Hydrotreating is especially 

essential in meeting the progressing stringent emissions and environmental regulations, 

and also for pre-treating petroleum stocks for downstream processes such as catalytic 

cracking and reforming whose catalysts are poisoned by the aforementioned 

contaminants if not removed (Leffler, 2000). The important factors that constitute and 

determine the nature of a hydrotreating process are highlighted in Figure 2.1. In brief 

these factors include: feed properties, catalyst, and process. 
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Hydrotreating

Process

• Sulfur Content
• Nitrogen Content
• Aromatics content
• Density
• Boiling Range
• etc.

• Reactor/Catalyst bed Configuration
• Process Conditions
• Pressure Drop
• Single Stage or Dual Stage
• etc.

• Supports
• Active metals
• Promoters
• Preparation methods
• etc.

 

 

Figure 2.1: Key factors affecting hydrotreating activities. 

There are approximately 30 hydrotreating processes available for licensing (Gary 

et al. 2007). However, most of these have basically the same process flow (see Figure 

2.2). A mixture of hydrocarbon feedstock and H2 is heated to a desired inlet temperature 

and then introduced into a fixed bed reactor loaded with the catalyst. In the presence of 

the catalyst, H2 reacts with the oil to produce mainly saturated hydrocarbons, hydrogen 

sulfide (H2S), and ammonia (NH3). The reactor effluent enters high and low pressure 

separators where the liquid and gaseous products are separated. The liquid product is 

sent to the fractionation unit for further separation. Un-reacted H2 is recovered from the 

gaseous product and recycled to the reactor (Leffler, 2000; Gary et al. 2007). 
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LP

Liquid/Gas 
separator Fractionation

Feed

Heavy naphtha

Light gas oil

Purge
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Make-up H2
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Reactor
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H2S Removal

Heat Exchanger
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Gas fuel

Light gasoline

Hydrotreated
Heavy gas oil
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Figure 2.2: A simplified schematic of a typical trickle-bed hydrotreating process. (HP= high pressure; LP = low pressure). 
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2.1.1  Hydrotreating reactions   

 Even though the main hydrotreating reaction is hydrodesulphurization (HDS), 

other reactions simultaneously occur to a degree proportional to the severity of the 

operation conditions (Mochida, 2004). These reactions include: hydrodenitrogenation 

(HDN), hydrodearomatization (HDA), hydrodemetallization (HDM), 

hydrodeoxygenation (HDO), and olefin saturation. It must be noted that most crudes 

contain low levels of oxygen; therefore HDO is of a lesser concern. As an example, for 

hydrodesulphurization, the prefix “hydro-de” the “hydro” refers to the use of hydrogen 

and the “de” means “removal of”, and suffix sulphurization refers to sulfur. HDS is the 

main reaction because the sulfur content along with the API gravity are the two greatest 

properties that influence the value of a heavy oil and residuum (Speight, 1981). HDS, 

HDN, and HDA are discussed in greater details in section 2.2, 2.3, and 2.3, respectively.   

 

2.1.2  Hydrotreating operating variables 

Hydrotreating operating variables include: temperature, pressure, H2 partial 

pressure, gas/oil ratio, and LHSV (Liquid Hourly Space Velocity). The values of these 

operating variables depend on the quality of the feedstock and the desired product 

specifications. For example, for low-boiling petroleum feedstock such as naphtha, 

reactor’s pressure and temperature in the ranges of 1.4-3.4 MPa, and 260-343ºC, 

respectively, are sufficient for hydrotreating. However, for high-boiling petroleum 

feedstock such as residua more severe conditions are required. Pressure and temperature 

ranges for hydrotreating of such feedstock can be as high as 6.9-13.8 MPa and 343-

427ºC, respectively (McKetta, 1992; Botchwey, 2003). 
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In the research works that dealt with hydrotreating of heavy gas oil (HGO), these 

operating variables had the following ranges: temperature: 340-450ºC, pressure: 4.5-12.5 

MPa, gas/oil ratio: 400-1200 mL/mL, and LHSV: 0.5-4 h-1(Mann et al., 1987 and 1988; 

Ferdous et al., 2006; Botchwey et al., 2003; Bej et al., 2001). The trends of the effects of 

these operating variables on hydrotreating of HGO are summarized in Table 2.1. 

Moreover a more elaborate summary of the effects of these operating variables is present 

in Table 2.2.  Other operating variables not yet mentioned that are rarely discussed in the 

open literature include H2 purity and H2 partial pressure, with H2 purity being the least 

examined. 

 

 

 Table 2.1: The Effects of increasing operating variables on hydrotreating activities. 

Variables Temperature Pressure Gas/oil ratio LHSV   
 

Ranges 300-450°C 4.5-12.5 MPa 400-1200 
mL/mL 

0.5-4 h-1

 
HDS Increase Increase Plateaus at 

higher 
Gas/oil ratio 

Decrease 
 
 

HDN Increase Increase Plateaus at 
higher 

Gas/oil ratio 

Decrease 
 
 

HDA Maximum 
(375-385°C) 

Increase Plateaus at 
higher 

Gas/oil ratio 

Decrease 
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Table 2.2: Summary of the effect of the operating variables on the hydrotreating activities 

Process 
variables 

Feed, catalysts, 
reactor type 

Operating 
Conditions 

Significant results Comments References 

Temperature 

Pressure 

LHSV 

 Heavy gas oil 
(Athabasca 
bitumen) 

-Co-Mo/γAl2O3 

Trickle bed  

300-450°C 

4.25-12.51 MPa 

0.67-3.8 hr-1 

-Both HDS and HDN improved 
with increasing temperature and 
pressure, and decreasing LHSV. 

-HDA did not improve 
substantially with increasing 
temperature. However, 
increasing pressure and 
decreasing LHSV had a positive 
effect on HDA  

This is the general trend 
that is seen in the literature 
for HDS and HDN. For 
HDA, it is often reported 
(Girgis and Gates, 1991) 
that it passes through a 
maximum (between 375 
and 385°C) with increasing 
temperature 

Sambi Inderjit 
S., et. al. 
(1982) 

Temperature 

Pressure 

LHSV 

Heavy gas oil 
(Athabasca 
bitumen) 

Co-Mo/γAl2O3 

Ni-Mo/γAl2O3 

Ni-W/γAl2O3 

300-450°C 

4.25-12.51 MPa 

0.5-4 hr-1 

-Both HDS and HDN improved 
with increasing pressure, 
however, HDN improvement 
was more significant than HDS, 
The latter being more sensitive 
to temperature 

-While Ni-W/γAl2O3 was best 
for cracking, hydrogenation, 

Even though, Ni-W/γAl2O3 
is better than Ni-
Mo/γAl2O3 in many ways, 
Ni-Mo/γAl2O3 is more 
economical; thus, usually 
is industrially used  

( Gary, H., et. al. 2007) 

Ranveer S. 
Mann, et. al.  
(1987) 
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Trickle bed Hydrodesulfurization, Ni-
Mo/γAl2O3 was best for HDN 

 

 

 

Temperature 

Pressure 

LHSV  

Gas/oil 

 

 

Gas oil 
fractions 

Pt-Pd/USY 

Trickle bed 
reactor 

 

260-360 °C 

3.5-6.0 MPa 

1.0-4.0 hr-1 

600 ml/ml 

HDA increased with temperature 
at lower temperature range until 
the optimum point (320 °C). At 
this point the thermodynamic 
equilibrium of aromatics 
hydrogenation is established. 
Further temperature increase 
retarded the equilibrated 
hydrogenation 

Here the HDS and HDN 
was carried out first on a 
different catalysts (Co-
Mo/γAl2O3 or Ni-
Mo/γAl2O3) and then Pt-
Pd/USY was used for 
HDA; Pt-Pd/USY is 
poisoned by sulfur and/or 
nitrogen compounds 

Gabor Nagy 
et. al. (2007) 

 

Temperature 

Pressure 

LHSV  

Gas/oil 

 

 

 

Heavy gas oil 

Ni-Mo/γAl2O3 

Trickle bed 
reactor 

 

 

 

 

365-415 °C 

6.5-8.8 MPa 

0.5-2 hr-1 

400-1000 ml/ml 

-The rate of removal of non-
basic nitrogen compounds is 
much lower than that of basic 
nitrogen 

-HDN increased with increase in 
gas/oil from 400-800 ml/ml 
beyond which there was no 
beneficial effect of increasing 
the gas oil on conversion 

Non basic nitrogen 
compounds have to 
undergo hydrogenation to 
become basic before the C-
N Bond scission  

 

Shyamal et. 
al. (2000) 
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Hydrogen 
partial pressure 

Temperature 

Space time 

(LHSV) 

Pyridine, 
aniline, and 
quinoline 

Ni-Mo-
P/γAl2O3 

Trickle bed 
reactor 

300°C 

2.3-9.4 MPa 

470-2500 g-cat 
h/gmol 

-The greater the adsorption 
strength of the nitrogen 
compounds on the catalyst 
surface, the lesser the effect of 
partial pressure of hydrogen. 
Aniline had lower adsorption 
strength than pyridine; thus, was 
affected more by the partial 
pressure of hydrogen 

 

Aniline is non-basic (pka = 
4.87) whereas pyridine is 
basic (pka = 5.21). Non-
basic compounds undergo 
hydrogenation to become 
basic, and possibly, this is 
the reason why they are 
affected more by the 
hydrogen partial pressure 
in comparison to basic 
compounds 

M. Machida 
et. al. (1999) 

Hydrogen 
partial pressure 

Temperature 

 

Quinoline 

Ni-Mo/γAl2O3 

Stirred tank 
reactor 

350 °C  

1.05-15.16 MPa 

 

-hydrogen partial pressure 
affected the reaction path and 
kinetics 

-At larger hydrogen partial 
pressures the HDN was faster 
than at lower hydrogen partial 
pressures, but the reaction 
proceeded via a “high hydrogen 
consumption” path way. 

Hydrogen consumption 
increased with increasing 
hydrogen partial pressure 
because of  the increase in 
the  degree of 
hydrogenation of the ring 
(s) before the nitrogen 
removal 

F.Gioia and 
V. Lee, 
(1986) 
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2.1.2.1 Temperature 

 Generally, increasing temperature leads to increase in HDS and HDN activities. 

However, HDA activity passes through a maximum. This maximum HDA activity is 

achieved between 375 and 385ºC (Gray et al. 2007). Hydrotreating operating 

temperature must be minimized while desired product quality is maintained (i.e. 

temperature must be high enough so that the desired hydrotreating conversion is 

achieved but not excessively high). Higher temperature operations results in accelerated 

catalyst deactivation; and therefore shortened operating cycle (Gruia, 2006). 

Nonetheless, operating temperature is gradually increased if the desired product quality 

is to be maintained. This is because as the hydrotreating operation proceeds the catalyst 

gradually loses some of its activity.  

 

 

2.1.2.2 Liquid Hourly Space velocity (LHSV) 

 The Liquid Hourly Space velocity (LHSV) is defined as the ratio of the 

volumetric flow rate (hourly) of the liquid feedstock to the volume of the catalyst. LHSV 

is the inverse of the residence time. Decreasing LHSV usually results in an improvement 

of hydrotreating activities. However, an extreme reduction of LHSV may cause the unit 

operation to become difficult due to hydraulic considerations (Gruia, 2006). Severe 

reduction of LHSV may cause channeling which leads to poor liquid distribution and 

under-utilization of the catalyst. Operation at too high of LHSV does not only reduce the 

feedstock-catalyst contact time but it also increase the reactor pressure drop and may 

present some hydraulic challenges. 
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2.1.2.3 Gas/oil ratio 

 Gas/oil ratio is the ratio of total gas fed into the reactor to the amount of 

feedstock. This variable is of great importance and if kept too low, will result in rapid 

catalyst deactivation. In general, the minimum gas/oil ratio should be at least 4 times the 

amount of hydrogen consumption (Gruia, 2006). Bej et al. 2001 reported that for HDS 

and HDN there is an optimal value for gas/oil ratio which depends on the nature of the 

feedstock and the values of other operating variables. 

 

2.1.2.4 H2 purity 

 Un-reacted H2 are recovered from the reactor effluent, mixed with make-up H2 to 

increase the purity, and then recycled into the hydrotreater. If the H2 is not recovered 

from the reactor gaseous effluent and recycled, the hydrotreating process economics are 

unfavorable (Gray et al., 2007). Minimum H2 purity is usually in the range of 70 to 80 

mol% (Gruia, 2006). To achieve the desired product quality lower, H2 purity must be 

offset with a higher operating temperature which results in faster catalyst deactivation 

rates. “H2 purity” is discussed in greater details in future sections (section 2.7) 

 

2.1.3  Hydrotreating catalysts 

 Hydrotreating catalysts are solid with three main constituents: an active 

component, a promoter, and a support. The support constituent is usually, gamma 

alumina (γ-Al2O3). The acidity of the support is enhanced by the addition of a small 

amount of phosphorus or silica (Gruia, 2006). The active component is normally 

molybdenum, however, tungsten is occasionally used. Molybdenum catalysts are 

promoted with cobalt or nickel; a promoter is a second metal, aside from the active 
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metal, which role is to stabilize the catalyst and as a result enhances the overall catalytic 

activity. CoMo is the most economic catalyst for sulfur removal. However, if 

considerable nitrogen removal and/or aromatic content reduction are desired, then NiMo 

is more efficient (Girgis and Gates, 1991; Gray et al., 2007). In fact, NiW is the most 

efficient catalyst for nitrogen removal and/or aromatic content reduction (Gray et al., 

2007). However, it is much more expensive than NiMo thus is seldom used.  

 

2.1.3.1 Hydrotreating catalyst structure 

Hydrotreating catalysts are synthesized in oxide form and must be activated by 

turning them into sulfide form through a sulfidation process (discussed in detail in 

Chapter 3) (Gruia, 2006). The active phase for the hydrotreating catalyst is believed to 

be CoMoS (or NiMoS for Nickel promoted catalyst) (Topsøe et al. 1981). Other species 

such as Co9S8 (NixSY) and Co/Al2O3 (Ni/Al2O3) also exist but are much less active than 

CoMoS (NiMoS).  

The MoS2 phase consists of layers of Mo alternating with layers of S, where the 

overall structure is a hexagonal close packed (HCP) (Sun, 2005). Mo exists as MoS2 in 

the sulfides Mo catalyst In a promoted MoS2 catalyst, the promoters replace some of the 

Mo atoms either on the S-edge or the Mo-edge of the MoS2 HCP layers (Topsøe, 2007). 

Nickel tends to prefer the Mo-edge while cobalt prefers the S-edge (Sun, 2005). The Co-

Mo-S structure is shown schematically in Figure 2.3. 
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S
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Mo

Co
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Figure 2.3: A representation of Co-Mo-S structure (Adopted from, Leliveld et al., 
1997 

 

Regarding to how the catalyst works, the key element for the catalyst’s 

hydrotreating activity is the concept of vacancies (Mochida and Choi, 2004). After 

sulfidation of the catalyst, it is speculated that these vacancies form as hydrogen reacts 

with a surface sulfide group resulting in the release of H2S and the creation of an S- 

vacancy. Since, the original site (non-vacant site) was thermodynamically favorable 

there would be a tendency for its re-creation. This tendency acts as a driving force for 

organosulfur and organonitrogen compounds to occupy the site and undergo HT. This 

process is known as sulfur breathing, and is shown schematically in Figure 2.4. In 

CoMoS species, a strong Co-Mo interaction results in a weaker metal-sulfur bond than 

in MoS2, thus leading to an enhanced sulfur breathing and ultimately improved HT 

activity (Topsøe, 1996). This explains the promoting effects of the promoters (Co and 

Ni). 
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Figure 2.4: An illustration of the sulfur breathing mechanism (adopted from 
Mochida and Choi, 2004). 
 

 

2.1.3.2 Hydrotreating catalyst deactivation 

Over time the activity of the catalyst decreases mainly for reasons such as coke 

deposition, metal deposition, and support sintering. Coke is formed as hydrocarbons 

undergo dehydrogenation followed by thermal condensation or polymerization. Coke is 

a hydrogen-deficient carbonaceous material which when deposited on the catalyst 

surface blocks the pore openings and consequently reduces the accessibility of the active 

sites inside the pores (Gruia, 2006). At higher H2 partial pressure, hydrogenation of the 
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coke precursors reduces coke formation. Catalyst deactivation due to coke formation is 

reversible in that the catalyst can be regenerated by burning off the coke. 

Petroleum feedstocks contain metals such as Nickel and Vanadium. These metals 

can cause catalyst deactivation by blocking the pore entrances, resulting in a reduction in 

the accessibility of the active sites inside the pores (Speight, 1981; Gruia, 2006). 

Excessively high temperatures along with high water partial pressures can result in 

catalyst deactivation due to sintering. The collapse of the pores leads to a decrease in 

surface area and thus activity (Gruia, 2006). Catalyst deactivation due to metal 

deposition and support sintering are irreversible. 

 

2.1.4  Corrosion concerns 

 Organosulfur components present in the crude oil are generally not acidic, except 

for mercaptans, and thus are not directly a major corrosion threats (Abdel-Aal et al., 

1992). However, these compounds are thermally unstable and produce H2S which is 

responsible for sulfide corrosion (see Equation 2.2) in the crude processing. Therefore, 

hydrotreating of petroleum fractions is necessary to reduce the risk of corrosion in other 

refining units. 

 The main corrosion problem in the petroleum industry is naphthenic acids (NA) 

corrosion (Zeinalov et al., 2009). NAs are present in petroleum fractions and 

hydrotreating can help reduce their contents. A noteworthy point that is found in the 

literature is that corrosive effect of NAs decrease with increasing sulfur-content of the 

crude. Yepez (2005) showed that H2S presence leads to formation of FeS protective 
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layer, thus further naphthenic acids corrosion is stopped. The reactions of the formation 

of the protective layer are as follows (Slavcheva et al., 1999;  Zeinalov et al, 2009): 

Fe +RCOOH             Fe (RCOO) 2 + H2                     (2.1) 
 

Fe+H2S         FeS + H2                                                (2.2) 
 

Fe (RCOO) 2+H2S           FeS + 2RCOOH                 (2.3) 
 

 
2.1.5 Environmental concerns 

Hydrotreating is absolutely necessary to remove or reduce the contaminants 

concentrations present in the petroleum feedstock such as sulfur, nitrogen, and 

aromatics. If these contaminants are not removed prior to the releasing of the petroleum 

products for public use, they may eventually form pollutants such as SOx, NOx, and 

particulate matter. These pollutants have severely detrimental environmental and health 

effects (Environment Canada, 2004a & 2004b). The harmful environmental effects 

include: acid rain, smog, vegetation damage, lack of biodiversity, water and soil 

contamination, acidification of aquatic and terrestrial ecosystems, and even ozone layer 

depletion. The damaging health effects include cancer and respiratory system problems 

which may lead to premature death.  

 Due to the aforementioned potentially detrimental effects of the 

contaminants present in petroleum crude, countries have stringent regulations for fuel 

specifications, and these regulations are growing even more stringent. For instance, 

Environment Canada regulations for the sulfur content of on road diesel fuel vehicles 

became increasing stricter. The limit was 500 ppm sulfur prior to 2006, and was 15 ppm 

by October 2006 (Environment Canada, 2005). Such a trend is expected to continue as 

more nations are pushing towards zero-sulfur content fuels. 
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2.2  Hydrodesulphurization reactivity and mechanism 

Hydrodesulphurization of organosulfur compounds is exothermic and 

irreversible under typical industrial conditions (Temperature: 340-425°C and Pressure: 

55-170 atm) (Girgis and Gates, 1991). The organosulfur compounds in the petroleum 

crude range from thiols to thiophene and its derivatives (see Figure 2.5). Organosulfur 

compounds such as thiols, disulfide, and six- membered ring structures are highly active 

in comparison to compounds where sulfur is present in a five membered ring structure 

(thiophenes). For thiophenes, the reactivity increases with the increase in the number of 

rings (one rings <two rings > three rings) (Whitehurst et al. 1998). However, this trend 

reverses for thiophenes with four or more rings (i.e. thiophenes with four rings are less 

active than those with five rings etc.). This change in the trend is due to the fact that 

HDS has two possible reaction pathways (see Figure, 2.6), and the preferred pathway 

depends on the structure of the organosulfur compound (Mochdia and Choi, 2004, 

Girgis and Gates, 1991). The first is direction hydrogenolysis or direct removal of sulfur. 

In this pathway the sulfur is replaced by hydrogen in the organosulfur compound 

without hydrogenation of any of C=C bonds. In the second pathway, ring hydrogenation 

is carried out prior to sulfur removal, thus, leading to higher hydrogen consumption than 

the first pathway. The presence of two possible reaction pathways makes HDS less 

dependent on hydrogen partial pressure in comparison to HDN and HDA. 
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Thiols

Thiophene Dibenzothiophene

Benzothiophene

  

Figure 2.5: Examples of organosulfur compounds in petroleum (Girgis and Gates, 
1991). 

 

 

+  H2S

Hydrogenolysis

Hydrogenation

 

Figure 2.6: HDS reaction pathways (Girgis and Gates, 1991). 

 

2.3  Hydrodenitrogenation reactivity and mechanism 

 Organonitrogen compounds in the petroleum crude are mainly in heterocyclic 

aromatic compounds form (see Figure 2.7). Amines and nitriles are also present in the 
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petroleum crude, but are of less concern because they are easily processed (Girgis and 

Gates, 1991). Heterocyclic  organonitrogen compounds can be divided into basic (e.g. 

quinoline, acridine) and non-basic (e.g. carbazole, indole) compounds. In the basic 

nitrogen compounds the lone pair of electrons on the nitrogen atom is not part of the 

aromatic system, whereas in the non-basic compounds, this lone pair of electrons is 

delocalized over the aromatic ring and is unavailable for donation to a Lewis acid, see 

Figure 2.8. This makes the non-basic compounds less reactive than the basic compounds 

(Girgis and Gates, 1991; Bej et al., 2001).  In the non-basic compounds, the nitrogen is 

part of a five membered ring, however, in the basic compounds it is part of a six 

membered ring. 

 

 Basic N-compounds Non-basic N-compounds

Pyridine

Quinoline

Indole

Carbazole  

Figure 2.7: Examples of organonitrogen compounds in petroleum (Girgis and 
Gates, 1991) 
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Basic Non-Basic  

Figure 2.8: Illustration of electronic structure differences between basic and non-
basic nitrogen compounds 

 

  Unlike HDS, HDN has only one reaction pathway (see Figure 2.9), and that is 

hydrogenation of organonitrogen compound prior to hydrogenolysis or removal of 

nitrogen. Hydrogenation of the nitrogen-containing ring is required to reduce the 

relatively high bond energy of C=N bond (615 kJ/mole) prior to C-N bond (389 

kJ/mole) scission (Landau, 1997). For comparison purposes C=S and C-S bond energies 

are equal at 536 kJ/mol therefore hydrogenation of the sulfur containing ring is not 

thermodynamically advantageous. On a percent weight basis nitrogen removal consumes 

more hydrogen than sulfur removal. Hydrogen consumption is about 300-350 scf/bbl per 

percentage nitrogen, and 70-100 scf/bbl per percentage sulfur (Gray et al., 2007; 

Ancheyta and Speight, 2007). 

 

Figure 2.9: HDN reaction pathways (Girgis and Gates, 1991). 
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2.4 Hydrodearomatization reactivity and mechanism 

Like HDS and HDN, HDA of aromatics in the petroleum crude is an exothermic 

reaction, however it is reversible under industrial conditions (Girgis and Gates, 1991, 

Gray et al. 2007), and maximum aromatics reduction is realized between 370ºC and 

385ºC (Gray et al. 2007). As a result, higher hydrogen partial pressures are necessary to 

force the equilibrium to the product side and achieve the desired products. Reactivity of 

aromatic compounds increases with increasing ring numbers (poly- > di- > mono-); 

hydrogenation of a mono-aromatic ring is difficult because of its resonance stability 

(Girgis and Gates, 1991). The pathway for HDA is hydrogenation; and the hydrogen 

consumption for HDA is ~27 scf/bbl per one vol. % of aromatic content (Ancheyta and 

Speight, 2007). Examples of aromatic compound are presented in Figure 2.10.   

 

 

 

 

Figure 2.10: Examples of aromatic compounds in petroleum (Girgis and Gates, 
1991). 
 

2.5 Hydrotreating reactor 

  The most widely used hydrotreating reactor is the trickle-bed reactor (TBR) (Al-

Dahhan et al., 1997). In TBR, the fixed catalyst bed is contacted by a downward 

concurrent flow of gas and liquid. When the gas-liquid flow is upward then the reactor is 

termed flooded bed reactor (FBR). TBR is superior to other three-phase reactors such as 

AnthraceneAlkylbenzene Naphthalene  
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slurried or fluidized bed reactors in that, due to the motionless of the catalyst bed which 

results in lower Reynolds number, the system can be operated near the plug flow pattern. 

The industrial TBR operation can be either single-stage or two-stage. In the two-stage 

approach, H2S (and some cases NH3) is removed from the effluent from the first stage 

prior to the effluent introduction to the next stage (Owusu-Boakye et al., 2006). 

  

2.6  H2 cycle in hydrotreating 

 A typical gaseous effluent of a hydrotreating operation is made up of unreacted 

hydrogen, H2S, light hydrocarbons (C1-C3) and other impurities (Turner and Reisdorf, 

2004). The hydrogen content in this stream is 70 – 85% (Peramanu et al., 1999). After 

reduction of the concentration of the non-hydrogen species, this stream is combined with 

make-up hydrogen, which is ultra-pure, to bring the purity up to 94 – 96%, and then it is 

recycled to the hydrotreater. Most of the H2S is removed in the amine unit, and the light 

hydrocarbons are separated from the hydrogen in the Hydrogen Recovery Unit (HRU). 

The H2 recovery process is shown schematically in Figure 2.11. 
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Figure 2.11: H2 recovery schematic (Peramanu et al., 1999) 
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2.7 H2 purity in hydrotreating 

2.7.1  Importance of H2 purity 

One way of increasing H2 partial pressure in a hydrotreater is by increasing the 

amount of hydrogen in the vapor phase. However, this increase must be relative to the 

other non-hydrogen species present in the hydrotreater. Therefore, it is necessary to 

remove the non-hydrogen species from the recycle hydrogen stream, and consequently 

increase the hydrogen purity. If these non-hydrogen species are not removed and only 

the recycle hydrogen rate is increased, then the amount of hydrogen in the reactor will 

increase. However, this will not translate into higher hydrogen partial pressure since the 

hydrogen mole fraction in the vapor phase remains almost the same (Turner and 

Reisdorf, 2004). Lower hydrogen purities are unfavorable since a higher temperature is 

required to maintain the product quality (Gruia, 2006); higher temperature accelerates 

the catalyst deactivation. 

 

2.7.2 Major impurity in the recycle H2 stream 

Methane is the most abundant impurity in the influent of a HRU. It often builds 

up to high concentrations in the recycle gas because it is difficult to remove (Turner and 

Reisdorf, 2004). The effect of methane on the catalyst’s performance in the 

hydrotreating area has not been reported. However, in the area of steam reforming, 

which uses nickel-based catalysts, it has been reported that methane dissociatively 

chemisorbs on the nickel surface (Jiang and Goodman, 1990). This may lead to catalyst 

deactivation via carbon deposition (Yongloi and Hengyong, 2002). Thus, its presence at 

high concentration in the inlet hydrogen stream into a hydrotreater may interfere with 

the function of a nickel-molybdenum catalyst. Traditionally, the concentrations of 
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methane and other light ends are reduced in the recycle stream to boost the hydrogen 

purity. Consequently, the hydrogen partial pressure is increased inside the hydrotreater, 

resulting in higher hydrotreating activities (Speight, 1981). 

 

2.7.3 H2 recovery process  

As mentioned in section 2.6.2, the gaseous effluent of a hydrotreater is made up 

mainly of unreacted hydrogen, H2S, and light hydrocarbons (C1-C3). Also, NH3 is 

present in the gaseous effluent, however, at a minute concentration as compared to H2S 

and light hydrocarbons (Ferdous et al., 2006). Most of the NH3 is removed in the water 

scrubber (refer to section 3.3). H2S is generated during hydrotreating as a product of 

HDS reactions. Most studies reported that H2S inhibits hydrotreating activities (Herbert 

et al., 2005; Girgis and Gates, 1991; Hanlon, 1987; Sie, 1999; Ancheyta et al., 1999, Bej 

et al., 2001), yet it is required to maintain the active chemical state of the catalyst (Bej et 

al., 2001) because the catalyst must be maintained in the sulfided form. H2S inhibition 

results when it competes against organosulfur and organonitrogen for the same active 

sites on the catalyst. H2S generated inside a hydrotreater can have an equilibrium value 

as high as 5 mol.% in the recycle gas (Gruia, 2006). This concentration of H2S not only 

inhibits hydrotreating activities, it also reduces H2 partial pressure in the hydrotreater. 

Therefore, H2S must be removed from the effluent gaseous stream prior to its recycling. 

The H2S is removed in a scrubber by contacting the gas with an amine solution 

(generally MEA or DEA) (Gruia, 2006). Subsequently, the effluent of the amine unit 

(see Figure 2.10) is sent to the HRU for the removal of methane and other light ends. 
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In the industry, reduction in methane and other light ends concentration is 

achieved using three major processes: cryogenic phase separation, pressure swing 

adsorption (PSA), and diffusion (Gray et al., 2007). PSA is a mature separation tool 

widely employed in the industry to purify hydrogen in different process streams 

(Ruthven et al., 1994). PSA is capable of producing high purity hydrogen; as high as, 99 

%+ (Peramanu et al., 1999), however, this is achieved at the expense of recovery. In a 

study by Huang et al. (2008), a mixture of 50 % methane and 50 % hydrogen was 

separated using a Laboratory-scale PSA unit. They reported that, in order to increase the 

product hydrogen purity from 88.7 % to 99.8 %, the operating pressure was to be 

increased from 4.5 to 5.8 bar. Hydrogen recovery, however, dropped from 47.7 to 39.6 

% as a result. If the hydrotreating process can tolerate lower inlet hydrogen purity 

without affecting the catalyst performance, then higher recovery advantage can be 

exploited. 

 

2.8  H2 partial pressure 

2.8.1 Importance of H2 partial pressure 

In gas-liquid-solid reactors such as trickle bed reactor, the gaseous reactant 

dissolves into the liquid prior to its diffusion into the solid (catalyst). The overall 

reaction rate with respect to the gaseous reactant is a direct function of the efficiency of 

the gaseous reactant transfer into the catalyst pellet through the liquid phase (Fogler, 

1999). Henry’s Law states that a gas dissolution is proportional to its partial pressure 

above the liquid. Thus, increasing H2 partial pressure will increase the concentration of 

H2 in the liquid phase and thereby enhance hydrotreating activities. A reduction in H2 

partial pressure below the design level results in catalyst deactivation due to coke 
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formation (Gruia, 2006). H2 partial pressure design level is an economic optimum that 

balances capital cost and operating costs against catalyst life. Excessively high H2 partial 

pressure may merely saturate the catalyst’s surface, which is a plus from a catalyst 

deactivation standpoint, without significantly improving hydrotreating activity (Speight, 

1981). 

  

2.8.2 Dependent nature of H2 partial pressure 

Unlike temperature, pressure, LHSV, and gas/oil ratio, H2 partial pressure is not 

an independent variable. H2 partial pressure is a direct function of reactor pressure and 

vapor phase composition. The vapor phase composition is a function of temperature, 

pressure, LHSV, and gas/oil ratio because these variables affect hydrogen consumption 

and vapor-liquid equilibrium. Limited studies have been carried out on the dependent 

nature of H2 partial pressure. The most detailed study found was by McCulloch and 

Roeder (1976).  

McCulloch and Roeder (1976) examined the effects of pressure, temperature, 

and gas/oil ratio on inlet and outlet H2 partial pressure. The pressure, temperature, and 

gas/oil ratio ranges were 500-545 psi, 343-380ºC, and 600-1200 scf/bbl. The feed used 

in the study had a density of 0.87 g/cm3, a molecular weight of 224 g/mole, and a 

volumetric average boiling point of 296ºC. The authors made two important 

conclusions: 1) higher temperature drastically decreased inlet and outlet H2 partial 

pressure due to an increase in feed vaporization, and 2) increasing gas/oil ratio did not 

affect inlet H2 partial pressure but resulted in an increase in outlet H2 partial pressure. 

Perhaps, the purpose of the authors’ study was merely to illustrate a method for 

calculating inlet and outlet H2 partial pressure,  thus they did not provide scientific 
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explanations for the observed results.  Avenues to be explored as an extension of this 

study are: 1) observation of the effects of the change of feedstock and experimental 

conditions on feed vaporization, H2 consumption, H2 dissolution, and H2 pp; 2) an 

attempt to provide scientific explanations for the results observed by the authors. 

 

2.9 Inlet versus outlet H2 partial pressure 

H2 partial pressure at the hydrotreater’s outlet can vary greatly than at its inlet if 

the hydrogen consumption is significant (McCulloch and Roeder, 1976). H2 partial 

pressure at the hydrotreater’s outlet condition is more important than its inlet because: 1) 

Outlet conditions are the catalyst’s last chance to cause change in the feedstock, 2) 

Outlet conditions approximate average conditions throughout the catalyst bed. 

Moreover, from the catalyst standpoint, the knowledge of H2 partial pressure at the 

hydrotreater outlet is essential since it is the point with the lowest H2 partial pressure. 

 

2.9.1 H2 consumption 

Information about H2 consumption is important for the determination of the 

amount of the required make-up H2 and also for outlet H2 partial pressure calculation 

(Ancheyta and Speight, 2007; McCulloch and Roeder, 1976). In the industrial 

hydrotreater, H2 consumption is summation of (Gruia, 2006; Hisamitsu et al., 1976): 

(a) Chemical hydrogen consumption; The H2 consumed during the hydrotreating 

   reactions such as HDS, HDN, and HDA 

(b) Solution losses; H2 dissolved in the liquid product 

(c) Mechanical losses; H2 lost in the compressors  

 (d) Venting losses; H2 lost in the purge stream  



32 
 

For a laboratory-scale hydrotreater, only chemical H2 consumption and dissolved H2 

losses are of concern. Dissolved H2 losses are determined from vapor-liquid equilibrium 

(VLE) calculations (McCulloch and Roeder, 1976), and for this HYSYS may be used 

(Mun˜oz et al., 2007).  

 

2.9.1.1 Chemical H2 consumption 

Chemical H2 consumption is the amount of hydrogen used to carry out 

hydrotreating activities. There are four procedures generally found in literature for 

determining the amount of chemical H2 consumption (Ancheyta and Speight, 2007): 

Procedure 1: This is an experimental approach. Here, H2 consumption is determined by 

means of H2 balance in the gas streams (i.e. based on the difference between the amount 

of H2 in the inlet gaseous stream and that in the outlet gaseous stream). 

Procedure 2: This is an experimental approach. Here H2 consumption is determined by 

means of H2 balance in the liquid feed and liquid product (i.e. based on the difference 

between the amount of H2 in the liquid feed and that in the liquid products). 

Procedure 3: Similar to Procedure 2; however, the increase in liquid product’s H2 

content is determined based on the decrease in the aromatic carbon content instead of the 

elemental analysis as in procedure 2. According to a study by Hisamitsu et al. (1976), 

comparing to procedures 1 & 2, procedure 3 yielded more accurate results and it was the 

most convenient in situations where hydrocracking is small.  Procedure 3 is expressed 

mathematically in Equation 2.4 (adopted from Hisamitsu et. al. (1976) and McCulloch 

and Roeder, 1976). 
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where: 

 CA, S, and N = aromatic carbon, sulfur, and nitrogen contents (wt.%), 

respectively, and subscripts “f” and “P” = feed and products, respectively; SH2
H'  

and
3NHH' =  amount of H2 necessary to form hydrocarbon during HDS and HDN 

(scf/bbl), respectively; SH2
H  and 

3NHH = H2 content of H2S and NH3 in the product gas 

(scf/bbl) , respectively; 379 = number of standard cubic feet in a mole of an ideal gas 

(scf/mole); density feed = 346 lb/bbl. The units for H2 consumption is scf/bbl. 

Procedure 4: Another approach for determining chemical H2 consumption is to use 

typical hydrogen consumption found in the literature (Speight, 1999; Ancheyta and 

Speight, 2007). According to this approach, chemical hydrogen consumptions for HDS, 

HDN, and HDA are 90-100 scf/bbl per wt. % S, 300-350 scf/bbl per wt. % N, and 27 

scf/bbl per vol. % aromatics. H2 consumption is calculated by first determining the 

amount of the reduction in S, N, and aromatics then multiplying these quantities by the 

appropriate unit H2 consumption.  
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2.9.1.2 Dissolved H2 losses 

 Dissolved H2 losses can be determined from VLE calculations using HYSYS. 

For hydrotreating applications, the appropriate thermodynamic models for VLE are 

Peng–Robinson equation (original and modified), the Soave–Redlich–Kwong equation 

and the Grayson–Streed method (Lal et al., 1999). In several studies, H2 solubility in 

various hydrocarbons determined using these thermodynamic models were compared 

against those obtained experimental, and the authors concluded that these 

thermodynamic models yielded accurate predictions (Ramanujam et al. 1985, Wilson et 

al., 1981, Lal et al., 1999). For instance, Lal et al. (1999) measured H2 in Athabasca 

bitumen using a batch autoclave at temperature range of 50 to 300°C and H2 partial 

pressure up to 24.8 MPa. The authors concluded that the aforementioned thermodynamic 

equations yielded accurate results. The most accurate among them were the modified 

Peng–Robinson equation (see Figure 2.12).  

 

Figure 2.12: Experimental and pdicted H2 K-values in Athabasca Bitumen (Lal et 
al. 1999). 
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2.9.2 Determination of inlet and outlet H2 partial pressure 

In situations where there is considerable H2 consumption inlet and outlet 

hydrogen partial pressures may differ considerably. In this section a step by step method 

of determining H2 partial pressure is shown (Adopted from McCulloch and Roeder, 

1976). 

Step 1: Use HYSYS to determine the VLE at the reactor inlet. For this task the following 

input data is needed: temperature, pressure, gas flowrate and composition, feed rate and 

properties. Since feeds such as heavy gas oil may not be available in the HYSYS 

package, boiling range distribution information (obtained from simulated distillation) of 

the feed may be used to simulate the feed in HYSYS. The above information is fed into 

HYSYS and the appropriate thermodynamic model is selected (in this case Peng–

Robinson equation (original and modified), the Soave–Redlich–Kwong equation or the 

Grayson–Streed method can be selected). The software yields the resultant vapor/liquid 

split of all components. 

The inlet H2 partial pressure is then the product of H2 mole fraction in the vapor 

phase and system’s pressure. For heavy feed, inlet H2 partial pressure can simply be 

approximated as the product of inlet H2 purity and the system’s pressure.  

Step 2: Determine the H2 consumption. For this step hydrotreating experiments are 

carried out and the products (gas or/and liquid) are analyzed. The results of the analysis 

are then used to calculate H2 consumption; refer to section 2.8.1 for H2 consumption 

calculation. 
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Step 3:  Use HYSYS to determine the VLE at the reactor outlet. Notice that at the outlet 

condition, the gaseous compositions must account for the produced H2S and NH3, 

present CH4, and the decrease in H2 due to H2 consumption. H2S and NH3 are produced 

as a result of HDS and HDN, respectively. Moreover, liquid product (s) properties are 

used instead of the feed properties. By running the flash calculations in HYSYS the 

resultant vapor/liquid split of all components at the reactor outlet are obtained. The 

outlet H2 partial pressure is then the product of the product of H2 mole fraction in the 

vapor phase and system’s pressure. 

 

2.10  Laws and Principles explaining gas-gas and gas-liquid interactions 

 To observe the interaction between the H2 gas and the liquid hydrocarbon 

feedstock and the liquid and gaseous products, it is important to understand the possible 

liquid-liquid and gas-liquid interactions that may take place among these species. There 

are several principles and Laws that describe gas-gas and gas-liquid interactions. Some 

of these principles and Laws are briefly discussed below (Swarbrick and Boylan, 2002). 

 

2.10.1 Le Chatelier's Principle 

 Le Chatelier's Principle states that when a system at equilibrium is subjected to a 

change the equilibrium shifts to counter-act the change. For instance, in a vapor-liquid 

equilibrium an increase in pressure will cause the equilibrium to shift toward formation 

of more liquid because liquid occupies less space than vapor. 

 

 

2.10.2 Dalton’s Law 
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Dalton’s Law states that the partial pressure of a gas in a mixture of gases is 

equal to the product of the system’s total pressure and the gas’ vapor mole fraction. For 

real gases, especially at high pressure, Dalton’s Law is not an absolute empirical law, 

and deviations may be observed due to the interactions among real gases. Nonetheless, 

these deviations are generally considered small. 

 

2.10.3 Henry’s Law 

 Henry’s law states that at equilibrium and at a given temperature, dissolution of a 

gas in a constant volume of liquid is directly proportional to the gas’ partial pressure. If 

the liquid volume is increased then the amount of the dissolved gas will increase and a 

new equilibrium is formed.   

 

2.10.4 Raoult’s Law 

 Raoult’s Law states that in an ideal solution (no interactions, repulsion nor 

attraction, among the constituents), the partial vapor pressure of each constituent is 

directly proportional to the product of the vapor pressure of the pure component and that 

constituent’s mole fraction in the solution. Real solutions tend to deviate from this law. 

The deviation can be either a positive deviation or a negative deviation based on the 

nature of the interactions among the solution’s constituents. 

 

2.10.4.1   Positive Deviation 

 When the interactions among the constituents in the solution are repulsive due to 

the dissimilarities in the constituents’ polarities (e.g. a mixture of ethanol and diethyl 
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ether) then the constituents can escape the solution more easily. As a result, constituent’s 

vapor pressures observed are greater than those predicted by Raoult’s Law. 

 

2.10.4.2   Negative Deviation 

 It is the opposite of the positive deviation. Here, the interactions are attraction 

due to likeness in the constituents’ polarities (e.g. a mixture of nitric acid and water). As 

a result, constituent’s vapor pressures observed are lower than those predicted by 

Raoult’s Law due to decreases in their escaping tendencies.  

 

2.11 Effects of H2 partial pressure on hydrotreating activities 

H2 partial pressure is a key operating variable. Increasing H2 partial pressure 

increases hydrotreating activities (Matar and Hatch, 2001, Speight, 1981). Many studies 

look at the effects of the H2 partial pressure on hydrotreating activities using model and 

real feeds. In this section, some of these studies are reported and critically examined. 

 

2.11.1 Effect of H2 partial pressure on HDA 

HDA is favored by low temperature and high H2 partial pressure. High 

temperatures favors the dehydrogenation reactions (i.e. the reversed reaction), 

consequently lead to low HDA conversions. On the contrary, high H2 partial pressure 

favors the forward hydrogenation reaction; thus enhance HDA conversions. For 

instance, Girgis and Gates (1991) reported that studies by Frye (1962) and Frye and 

Weitkamp (1969) on hydrogenation of naphthalene had showed that increasing H2 

partial pressure from 9.7 to 37 atm increased naphthalene’s equilibrium conversion from 



39 
 

17 to 84%. The reaction temperature was 396ºC; at such a temperature the 

dehydrogenation reaction is favorable.  

  Recent studies by Sidhpuria et al. (2008) on hydrogenation of toluene over 

Rh/ZSM-5 (2002) and over Rh/Hβ zeolite explained the positive effects of increasing H2 

partial pressure on hydrogenation reaction. The authors reported that increasing H2 

partial pressure increases H2 dissociation on the active sites, meaning higher 

concentration of H2 to hydrogenate toluene. However, at extremely high hydrogen 

partial pressures this enhancing effect becomes insignificant. In Sidhpuria et al. 2008, 

the authors showed that toluene hydrogenation increased linearly as H2 partial pressure 

was increased from 1 to 3 MPa; however, further increase of H2 partial pressure from 3 

to 4 MPa did not significantly improve toluene hydrogenation. 

Research works have also been done on real feedstocks. For example, Nagy et al. 

(2009) have looked at HDA of different light gas oils over PtPd/γ-Al2O3. The boiling 

ranges of the light gas oils ranged from 184-356°C to 212-367°C. The authors concluded 

that the aromatic content of the products decreased with increasing H2 partial pressure.  

 

2.11.2 Effect of H2 partial pressure on HDN and HDS 

In a study by Dufresne et al. (1987) on the hydrotreatment of Arabian light VGO, 

it was observed that the sulfur, nitrogen, and aromatics contents of the liquid product 

dropped as the H2 partial pressure was increased from 70 to 140 bars. The sulfur content 

dropped from 200 to 40 ppm, the nitrogen content dropped from 10 to 1 ppm, and the 

aromatics content dropped from 31 to 9.6 wt.%. The sulfur, nitrogen, and aromatics 

contents in the feedstock were 24300 ppm, 650 ppm, and 47 wt. %, respectively. The 

authors also observed that HDN was more sensitive than HDS and HDA to H2 partial 
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pressure. Similar observation was made by Fang (1999) as he studied the effect of H2 

partial pressure on HDS and HDN of Shengli VGO. The H2 partial pressure range was 4 

to 12 MPa, while the temperature, LHSV, and gas/oil ratio were 380°C, 1.0 h-1, and 

1000 mL/mL, respectively. The author observed that both HDS and HDN activities 

improved as H2 partial pressure was increased. However, HDN was more sensitive than 

HDS to the change in H2 partial pressure. This observation was attributed to the 

differences in the mechanisms of HDS and HDN. HDS reaction may proceed without 

pre-hydrogenation of the heteroring. However, for an HDN reaction to take place, pre-

hydrogenation of the heteroring is necessary. 

 Some of the research works used model feed to study the effects of H2 partial 

pressure on hydrotreating activities. For instance, Yang and Satterfield’s (1984) study on 

the HDN of quinoline found that the activity increased as the H2 partial pressure was 

increased from 3.5-10.5 MPa and leveled-off at 14.0 MPa. A somewhat different finding 

was reached by Hanlon (1987), as he studied the HDN of pyridine. He concluded that 

hydrogenolysis step, and thus the overall HDN, was dependent on the H2S partial 

pressure to H2 partial pressure ratio (PH2S/PH2). As the H2 partial pressure was increased 

(i.e. PH2S/PH2 was decreased) hydrogenolysis decreased and so did the overall HDN in 

the high-pressure regime (5-10 MPa), which is hydrogenolysis-controlled. The contrary 

was observed in the low-pressure regime (<5MPa), which is hydrogenation controlled. 

Similar findings were reported by Paal and Menon (1987); the authors commented that 

hydrogenolysis is either enhanced or retarded depending on the range of the H2 partial 

pressure under consideration. Nonetheless, for real feedstock hydrotreated under 

industrial conditions, the overall effect of increasing H2 partial pressure increases the 
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HDS, HDN, and HDA activities (Speight 1981, 2000). Lower H2 partial pressure 

accelerates catalyst deactivation. 

 All the aforementioned studies looked at the inlet H2 partial pressure. McCulloch 

and Roeder (1976) objected to this approach. They argued that hydrotreating activities 

should be correlated to outlet H2 partial pressure when the effects of H2 partial pressure 

are studied. They insisted that from the catalyst deactivation standpoint outlet H2 partial 

pressure is more important than inlet H2 partial pressure since it approximates the 

average H2 partial pressure over the catalyst bed. When the H2 consumption is 

significant there may be a considerable difference between inlet and outlet H2 partial 

pressure.  As highlighted by Heinemann and Somorja (1985), the outlet H2 partial 

pressure could be as low as 50% that of the inlet due to H2 consumption; when 

hydrotreating heavy feedstocks using gas/oil ratio of 80. This means that a good portion 

of the catalyst bed is at H2 partial pressure considerably lower than that at the inlet. By 

focusing only on the inlet H2 partial pressure this fact can go undetected. 

 

2.12 Kinetics Models for HDS, HDN, and HDA 

For reactive processes kinetics studies are crucial in the design of commercial 

reactors, pilot plant study, process improvements, and optimization of operating 

conditions (Lee, 1999). The effects of operating variables such as temperature, pressure, 

LHSV, and gas/oil ratio on a catalyst’s hydrotreating performance can be predicted by a 

suitable kinetic expression or model (Ferdous et al. 2006, Knudsen et al. 1999). Kinetic 

studies can be approached in two ways: intrinsically or apparently.  Intrinsic kinetic 

study is based on the detailed mechanistic understanding of all the reactions involved 
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(Lee, 1999). Apparent Kinetics is based on the overall representative stoichoimetric 

reaction. Generally, the difference between intrinsic and apparent kinetics is that the 

former is free of diffusion or any other mass transfer limitations. 

 Two of the commonly used models in kinetic studies of hydrotreating of real 

feed are the power law model (P-L) and the Langmuir-Hinshelwood (L-H) type model 

(Girgis and Gates 1991, Ancheyta et al., 2002). P-L is used to describe overall rate law, 

while L-H is used to account for inhibitions that take place during reactions. Another 

effective but seldom used model is the multi-parameter kinetic model (Ai-jun et al., 

2005). These three models are discussed in the following sub-sections. 

 
 

2.12.1 Power Law Model 

Power law model assume the mechanism described by equilibrium reaction in 

equation 2.5. By assuming kf >>kr , then the rate expression can be described by 

equation 2.6. For HDS and HDN of HGO, this assumption is valid at temperature greater 

than 425ºC, however, for HDA the reversible reaction becomes significant at 

temperature greater the 380ºC. 

k f
A + x H2 AH

k r                       (2.5) 

Where: A is the sulfur, nitrogen, or aromatic compounds, AH is the saturated products, 

and kf and kr are the rate constants for the forward and reverse reactions, respectively 

Power law model is often preferred due to its simplicity (Ferdous et al., 2006). 

Compared to the Langmuir-Hinshelwood type model or the multi-parameter type model, 
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the power law model has fewer parameters which must be determined. Kinetic 

parameters that can be determined using this model are apparent rate constant and 

reaction order:  

                         
nkC

dt
dC

−=                                               (2.6) 

where: C = sulfur, nitrogen, or aromatics content; t = residence; k = apparent rate 

constant; n = reaction order;   

And its solutions are: 
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where: n = reaction orders; ki = apparent rate constant for species “i”; Cp = concentration 

of the product, wt. %; Cf = concentration of the reactant, wt%; LHSV = liquid hourly 

space velocity. 

The activation energies can then be determined using the Arrhenius equation, Equation 

2.7. 

               
E/RT

oi ek(T)k −=                                                        (2.7) 
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where: ko = Arrhenius constant; E = activation energy (kJ/mol); R = gas constant; 

kJ/mol.K; T = temperature, K. 

 Based on the power law model, kinetics studies of model feeds generally follow 

first order (Botchwey, 2003; Girgis and Gates, 1991; Speight, 2000; Ancheyta et al., 

2002). For real feeds, the reaction order depends on the type of feed and the catalyst, and 

can range between 1-2.5 for HDS and 1-2 for HDN. Generally, the reaction order for 

HDA is assumed to be pseudo-first order (Owusu-Boakye, 2005). A summary of kinetic 

studies of real feedstocks are presented in Table 2.3.  

2.12.2 Langmuir-Hinshelwood Model 

Generally this model is based on the following mechanistic steps (Owusu-Boakye, 

2005): 

1. The reactants adsorb onto the active sites present on the catalyst’s surface. 

2. Surface reaction takes place among adsorbed reactants or among absorbed 

reactants and those reactants present in the bulk solution to form products. 

3. Products desorption from the active sites into the bulk solution. 

The use of the Langmuir –Hinshelwood type model for kinetic modeling of real 

industrial feed is very complicated due to the many coefficients that must be determined, 
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Table 2.3: Summary of reaction orders and activation energies for NiMo- Al2O3 as found in the literature. 

 

 

 

 

 

 

 

 

 

 

 

         

References 
Boiling range  

feed, °C 
Kinetic 
model Reaction order Activation energy, kJ/mol 

     

HDS HDN 
HDA 

HDS HDN
HDA 

<380°C          <380°C 

Yui and Dodge, 2006 286-541 P-L 1.5 1 1 151 132 72 
Ai-jun et al., 2005 214-559 M-P 1.5 1.6  - 141 94  - 
Owusu-Boakye et al., 
2006 170-439 L-H 

Pseudo 
1st  - 

Pseudo 
1st 55  - 85 

Ferdous et al., 2006  185-576 L-H 1 1.5  - 87 74  - 
Bej et al., 2001a 210-655 P-L 1.5 -  - 28 -  - 
Bej et al., 2001b 210-655 P-L - 2  - - 80  - 
Mann et al., 1987 345-524 P-L 1.5 2  - 87 105  - 
Yui and Sanford, 1989 196-515  P-L 1 1.5  - 138 92  - 

Botchwey et al., 2004 210-600 L-H 
Pseudo 

1st 
Pseudo 

1st  - 114.2 93.5  - 

Marin et al., 2002 LGO/SRGO P-L 
Pseudo 

1.5 
Pseudo 

1st 
Pseudo 

1st 77.8 64.2 51.4 
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as well as the difficulty in their determination (Botchwey et al., 2006). However, it is 

thought to be a better approach than the other two models since it accounts for the 

inhibition caused by H2S and other species under hydrotreatment.  Two simpler versions 

of this model were frequently cited in the literature; they are Equations 2.8 and 2.9. 

Equation 2.8 is used to describe HDS and HDN kinetics (Ferdous et al., 2006, Botchwey 

 et al., 2006), while Equation 2.9 was used to describe HDA kinetics (Owusu-Boakye, 

2005).  Assumptions that were made in the development of Equation 2.8 & 2.9 are 

(Owusu-Boakye, 2005): 

• Surface reactions are the rate limiting 

• All reactions are pseudo-first order  

• The reactions take place in a plug flow regime 

• H2S inhibit HDS, HDN, and HDA reactions 

              
SHSHHHii

iHHii
i

2222
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PKPKCK1
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r
+++

=−                                     (2.8) 

    SHSHii
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i
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=−
                                              (2.9)

 

Equations 2.8 and 2.9 are solved using Maple V software which yields the following 

solutions (Ferdous et al., 2006): 

For Equation 2.8, the solution is: 
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For Equation 2.9, the solution is: 
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Excel solver is then used to solve Equation 2.9.a and 2.9.a. The apparent rate constants 

and adsorption equilibrium constants are obtained by the means of trial- and- error 

method (Ferdous et al. 2006). The partial pressures of H2 and H2S can be obtained from 

the HYSYS analysis.  

2.12.3 Multi-parameter Model 

 The mechanism for this model is that of power law the only difference is on how 

the rate equation is expressed. According to The multi-parameter model, hydrogen 

pressure and gas/oil ratio are taken into account in the rate expression, along with 

temperature and LHSV.  The multi-parameter model is a better model than the overly 

simplified power law model as it includes more process variables, and thus the effects of 

more variables on hydrotreating activities can be observed. The multi-parameter model 

is shown below, Equation 2.10 (Ai-jun et al., 2005).  

qnm
Hi (G/O)CPk

dt
dC

×××=−                 (2.10) 

Equation 2.10 solution is: 
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⎡
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where: Cf and Cp =  the nitrogen, sulfur, or aromatics in feed and product, respectively; 

ko = pre-exponential factor; s = E/R, where E =  activation energy and R  = gas constant; 

n = reaction order; m, q, and c = empirical regression factors. PH = H2pp (in this work 

outlet H2pp); G/O = gas/oil ratio; LHSV = liquid space velocity. 
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2.12.4 Mass transfer limitation 

The basic assumption in the kinetic studies is that the system operates under 

isothermality and plug flow conditions. Laboratory-scale trickle bed reactor can 

significantly deviate due to poor catalyst wetting, higher liquid back-mixing, and wall 

effect (Ferdous et al. 2006; Bej et al. 2001). These effects can greatly be improved upon 

by diluting the catalyst with fine inert particle such as SiC. Table 2.4 shows the 

hydrodynamic evaluation of a diluted versus an undiluted catalyst beds packed following 

the method illustrated in Bej et al. (2000); the evolution is carried out based on criteria 

found in Ramirez et al. (2004). This table shows that dilution the catalyst bed with SiC 

(90 Mesh) helps eliminate wall, wetting, and back-mixing effects, however, deviation 

from plug flow regime cannot be totally neglected. 

 

Table 2.4: Evaluation of hydrodynamic parameters (Ranirez et. al., 2004). 

Phenomena Correlations Cut 
off* 

Results of 
calculation  
under un-
diluted 
conditions 

Results of 
calculation 
under 
diluted 
conditions 

Is this 
phenomena 
negligible 
under 
diluted 
conditions? 

Back-mixing 
100

d
L

p
>  

>100 80 731 yes 

Wetting 6
2 10*5 −>=

gd
uW

pL

LL

ρ
η

 
>5*10-6 4.8*10-6 609 yes 

Wall effect 
25>

p

b

d
D

 
>25 6.7 61 yes 

Plug flow 

1
1ln8

L
Pe

X
nPe L =⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

−
>

 

>27 0.002 0.0007 No 

* This values are results of calculation using the correlations 
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The reactor’s internal mass transfer is greatly affected by the catalysts’ size. Smaller 

catalyst’s sizes are required to minimize pore diffusion effects; however, when it gets 

too small the reactor experiences excessive pressure drops, and consequently liquid 

misdistribution (Gruia, 2006). For instance, Trytten (1989) (Found in Gray R. 1994) 

studied the internal diffusion resistance during hydrotreating of coker gas oil in a 

continuous-flow stirred reactor. The author used two different sizes (0.93 and 0.5 mm 

diameter) of NiMo-γAl2O3 catalyst. H2 partial pressure, temperature, and LHSV were 

13.9 MPa, 400°C, and 12.5 mL/h-g catalyst, respectively. The agitation rate was 

maintained at 1100 rpm to eliminate external mass transfer. The author concluded that to 

eliminate diffusion limitations for both HDS and HDN the catalyst diameter should be 

less than 0.5 mm. Such a small catalyst diameter leads to high pressure drops in the 

reactor (Gruia, 2006). The commercial MiNo/γ-Al2O3 catalyst has a diameter of 1.5 mm 

therefore some internal diffusion limitation is expected when it is used in such a system. 

Beside the possibility of presence of internal diffusion limitation, Treating feeds 

such as coker gas oil (with components ranging for naphtha to heavy gas oil and having 

molecular weights of 84 to 500 g/mol) as a single component when conducting kinetics 

studies involves a lot of approximations (Gray R., 1994), and thus conducting intrinsic 

kinetic studies is difficult. Obtaining true intrinsic kinetics involves accounting for all 

mechanistic steps and rates of chemisorptions and desorption (Lee, 1999), which a very 

difficult thing to do when dealing which real feedstocks. Often apparent kinetics based 

on statistical and experimental analysis are adequate for industrial and chemical 

engineering applications (Lee, 1999). 
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2.12.5 Heat transfer evaluation 

HDS, HDN, and HDA reactions are exothermic and the heat generated may lead 

to formation of hot spots. The use of high gas flowrate quickly dissipates this heat 

(Botchwey et al. 2006). Moreover, diluting the catalyst with SiC greatly improves the 

heat transfer rate in the catalyst bed (Giermen, 1988).  Often in the literature 

isothermality assumption is achieved when carrying out kinetic studies in micro-trickle 

bed reactors. However, a simulation work by Botchwey et al. (2006) has shown that the 

temperature between the reactor wall and centre could be as high as 9 K, and that the 

temperature is higher at the reactor’s outlet than its inlet. 
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3.0  EXPERIMENTAL 

 In this chapter experimental plan and operating procedure of the trickle bed 

reactor are discussed in detail. Also discussed are the analytical techniques used for feed 

and products analysis. 

 

3.1  System description 

The micro-reactor was made of 304 stainless steel tube with internal diameter of 

10 mm and length of 240 mm, which was heated by means of a furnace system (Vinci 

Technologies SA, Nanterre, France) and monitored by a temperature controller 

(Eutherm 2216e, Moyer instruments, Inc., Tamaqua, PA, USA). A positive displacement 

pump (Model: A-10-S, Hurst, Emerson Electric Co., IN, USA) was used to pump the 

liquid feed. The gas flow was regulated with a mass flow controller (Model: 5850 series, 

Brooks Instruments, Hatfield, PA, USA). The schematic diagram of the experimental set 

up is shown in Figure 3.1. 

 

3.2 Catalyst loading 

Before loading the reactor, the commercial Ni-Mo/γ-alumina was dried at 200°C 

for 3 hr in an oven, and cooled in a desiccator. For loading the catalyst, the bottom end 

of the reactor was sealed with a Swagelok 60 micron stainless filter (Solon, OH, USA) 

and then packed from bottom to top in three parts.  The bottom part was loaded with 22 

mm of glass beads of size 3 mm diameter followed by 25 mm, 10 mm, and 10 mm of 16 
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Figure 3.1: Experimental setup (PG= pressure gauge; TC = Temperature 
controller) 

 

mesh, 46 mesh, and 60 mesh SiC, respectively. In the middle part of the reactor, 5 mL of 

catalyst and 12 mL of 90 mesh SiC were loaded alternately; small quantity of each at a 

time, for a total number of 10 - 12 layers. Finally, the top part was loaded with 8 mm of 

SiC of 60 mesh followed 8 mm, 8 mm, and 20 mm of 46 mesh SiC, 16 mesh SiC, and   3 

mm diameter glass beads. The top 20 mm of the reactor was kept empty.  A schematic 

description of the catalyst loading in the reactor is shown in Figure 3.2. Earlier study on 

a similar reactor with such loading technique has shown establishment of trickle flow in 

the catalyst bed (Bej et al. 2001). Subsequently, the reactor was connected to the system 

and was pressurized to 90 bar using helium gas. Pressure was built up by adjusting the 

back pressure regulator to hold the pressure in the system. Swagelok liquid leak detector 

(Snoop Solution) was used to detect any leaks. The reactor was left at this pressure for a 
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period of 24 hr and was re-tested for leaks. After ensuring that no leaks existed, the 

reactor’s temperature was increased to 100°C.  

3 mm diameter
glass beats

16 mesh SiC

40 mesh SiC

90 mesh SiC

60 mesh SiC

Catalyst

Catalyst bed

 

Figure 3.2: Catalyst loading schematic. 

 

3.3  Experimental procedure  

After the reactor was loaded and ensured that no leaks existed, the sulfidation 

process was started. The sulfiding solution was made of 2.9 vol. % butanethiol, a 

commonly used sulfiding agent (Andari et al., 1996), in electrical insulating oil 

(VOLTESSO 35). 100 mL of the sulfiding solution was pumped into the reactor at a 

high flowrate (~ 2.5 mL/min) to wet the catalyst. Subsequently, the flowrate was 

adjusted to 5 mL/h and maintained. Gas/oil ratio was operated at 600 mL/mL. The 
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catalyst bed temperature was gradually increased to 193°C. The reactor temperature was 

then maintained for 24 h. Next, the temperature was further increased to 343°C in steps 

and the reactor was kept at this temperature for another 24 h. 

 The catalyst was precoked for seven days after catalyst sulfidation by flowing 

heavy gas oil (HGO) into the reactor at the rate of 5 mL/h. The temperature of the 

reactor was increased to 375°C. The purpose of catalyst precoking was to stabilize its 

activity to ensure uniform activity across the catalyst surface before the experiments 

were conducted (Speight, 2000). Liquid products were collected every 24 h, stripped 

with nitrogen gas to remove dissolved NH3 and H2S, and analyzed for sulfur and total 

nitrogen contents. After the catalyst stabilization, the experiments were carried out as 

designed. Each run was conducted for three days, and product withdrawn every 24 h. A 

transient period of 24 h was allowed after a change in process conditions and samples 

taken within this period were discarded. Products collected in the second and third days 

were stripped off dissolved H2S using nitrogen gas, and were analyzed for sulfur, 

nitrogen, and aromatics conversions. 

 

 

3.4 Experimental plan 

 The following subsections give some details about each phase of the experiment 

are given. In all phases, commercial catalyst was used to hydrotreat heavy gas oil (HGO) 

(see Table 3.1 for HGO properties). The purity of the hydrogen gas was adjusted using 

methane.  
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Table 3.1: HGO properties  

Boiling range, °C 258 - 592 

Density @ 20°C, g/cm3 0.988 

Sulfur content, wppm 42,310 

Nitrogen content, wppm 3,156 

Aromatics content, wt % 31.4 

 

 

3.4.1  Phase I – Effect of H2 purity on hydrotreating activities 

The effect of the hydrogen purity on the hydrotreating activities (HDS, HDN, 

and HDA), and on properties namely: density, viscosity, fractional distribution, aniline 

point, diesel index, and cetane index of the liquid product were studied in the H2 purity 

range of 0 to 100 vol. % (namely: 0, 50, 80, 90, and 100%). Methane was used to dilute 

the hydrogen stream. The experiments were carried out at constant temperature and 

LHSV of 380°C and 1 h-1, respectively (note: above 380ºC, HDA of HGO is reversible). 

The effect of H2 purity on H2 partial pressure was compared against that of pressure and 

gas/oil ratio. The outline of the phase І experimental plan is presented in Table 3.2. 

 

Table 3.2: Phase Ι experimental plan (T = 380ºC; LHSV = 1h-1) 

H2 purity Pressure Gas/oil ratio 
% MPa mL/mL 

0-100 9 800 
100 9 400 
50 10 800 
50 9 1270 
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3.4.2  Phase II –Effect of H2 partial pressure on hydrotreating activities 

 The H2 partial pressure level in the reactor was adjusted by varying reactor 

pressure, H2 purity, and gas/oil ratio. Reactor pressure, H2 purity, and gas/oil ratio 

ranges were 7-11 MPa, 75-100 vol. %, and 400-1200 mL/mL, respectively, while 

temperature and LHSV were kept constant at 380ºC and 1 h-1, respectively. 

 The experiments were statistically designed using with a standard Response 

Surface Methodology (RSM) design called a Central Composite Design (CCD). RSM is 

a procedure that combines the concept of experimental design and optimization theory.  

Its purpose is to determine optimal operating conditions by modeling the relationship 

between the independent variables and the response (s). CCD is an experimental design 

method for building quadratic model without the need of using the complete factorial 

design. While CCD is ideal for quadratic model, the factorial design is preferred for 

linear model. CCD’s advantage over other approaches such as a factorial design is that it 

provides information on the effect of independent variables with minimum number of 

experimental runs.  There are three types of CCD: Central Composite Circumscribed 

(CCC), Central Composite Inscribed (CCI), and Central Composite Face-centered 

(CCF)). When dealing with variables that have true limits such as purity (e.g. its upper 

limit is 100%), then Central Composite Inscribed method could be selected.  CCD 

overall design is made up of three types of points (selected experimental runs):  2n axial 

points, 2n cube points (factorial), and a single center point repeated six times (to improve 

precision and minimize prediction error); where n is the number of the input variables. 

For example, to study the effect of three input variables, the CCD will specify a total of 

20 runs (i.e. 2 x 3 + 23+ 6 = 20). The cube points is to estimate the linear and interaction 

terms and the axial and center point(s) is to estimate the quadratic terms in the overall 
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model.  The full matrix of the experimental design using pressure, H2 purity, and gas/oil 

ratio as input variables is shown in Table 3.3. 

                               Table 3.3: Phase ΙΙ CCD experimental Design. 

Run Pressure gas/oil purity XN XS XA Inlet H2pp Outlet H2pp 
  psi mL/mL % % % % MPa MPa 
1 1305 800 75           
2 1133 1038 80           
3 1478 562 80           
4 1133 562 80           
5 1478 1038 80           
6 1305 400 88           
7 1305 1200 88           
8 1015 800 88           
9 1305 800 88           
10 1305 800 88           
11 1595 800 88           
12 1305 800 88           
13 1305 800 88           
14 1305 800 88           
15 1305 800 88           
16 1133 1038 95           
17 1133 562 95           
18 1478 562 95           
19 1478 1038 95           
20 1305 800 100           

XN, XS, XA are total conversions of nitrogen, sulfur, and aromatics, respectively; H2pp is 
H2 partial pressure. 
 

 

3.4.3  Phase III –Kinetic modeling 

 In this phase, the effects of temperature and LHSV on H2 partial pressure and 

hydrotreating activities were studied. Data obtained from this part was combined with 

that from phases Ι & ΙΙ, and the combined data was then used in the kinetic modeling of 
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HDS, HDN, and HDA.  For study on the effects of temperature and LHSV, the 

temperature and LHSV ranges were 360 to 400°C and 0.65 to 2 h-1, respectively. H2 

purity, pressure and gas/oil ratio were kept constant at 100%, 9 MPa, and 800 mL/mL, 

respectively. LHSV was kept constant at 1 h-1 when the effect of temperature was 

studied. Temperature was kept constant at 380°C when the effect of LHSV was studied. 

3.5 Analysis of feed and liquid products 

 Several analytical instruments and techniques were to analyze the feed and liquid 

products, and they are discussed in the subsections below. 

 

3.5.1 Nitrogen and sulfur analysis 

Sulfur contents of the feed and the liquid products were determined using a 

combustion/fluorescence technique according to ASTM 5463 procedure. Total nitrogen 

contents of the feed and the liquid products were measured using a 

combustion/chemiluminiscence technique following ASTM D4629 procedure.  

A total nitrogen/sulfur analyzer (Antek 9000, model: 9000NS) was used. The 

principal Chemistry is summarized in equations 3.1, 3.2, & 3.3 (Antek, 1998). The 

process starts with a high temperature oxidation of the sample (temperature in excess of 

1000ºC). This results in conversion of sulfur and nitrogen into sulfur dioxide and nitric 

oxide, respectively. The sulfur dioxide is excited by an ultraviolet radiation of a specific 

wavelength, and as the electrons return to their original level light (fluorescent emission, 

i.e. absorbed originally from a light source) is emitted and detected at a specific 

wavelength by a photomultiplier. The nitric oxide is contacted with ozone, from an 

onboard ozone generator, to produce a metastable nitrogen dioxide species. As the 
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metastable nitrogen dioxide species decays, light (chemiluminescent emission, i.e. from 

a chemical reaction) is emitted and detected at a specific wavelength by a 

photomultiplier. 

R-N + R-S + O2              CO2 + H2O + •NO + SO2     (3.1) 

SO2 + hv’              SO2 + hv’’    (3.2) 

•NO + O3                NO2* + O2                NO2 + hv  (3.3) 

 

The HDS and HDN conversions are calculated as follows:  

100
feedin)i(species

productin)i(speciesfeedin)i(species)i(speciesofconversion% ×
−

=     (3.4) 

where: species (i) is sulfur, nitrogen, or aromatics. 

 

 

3.5.2 13C NMR analysis   

 NMR stands for nuclear magnetic resonance. 13C nucleus has a spin quantum 

number of ½, thus responds to a magnetic field. The process starts with placing the 

liquid sample in a special glass, and the glass is placed in a uniform magnetic field. An 

incremental radio frequency pulse of a known frequency range is sent through shielded 

cable to a coil wound around the test sample. Different chemical species absorb the RF 

at different frequencies (thus absorption information can be used to differentiate among 

the species). RF absorbed by the sample is monitored and measured. Information 

collected about the frequency of the RF and the absorption are used to construct the 
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NMR spectrum (ITM, 2008). Information on the chemical shift of the species in the 

sample can be used to differentiate between saturates (C-C) and aromatics (C=C). The 

chemical shift of C-C is between 0-50 ppm and for C=C it is between 100-150 ppm 

(Owusu-Boakye, 2005). Chemical shift is an absolute quantity defined as the frequency 

of absorption of the sample relative to the frequency of absorption of a reference 

standard (often TMS, Tetramethylsilane), is shown mathematically in the equation 

below (Carey, 2009):  

)5.3(10x
erspectrometFrequency

sampleFrequencyreferenceFrequencyshiftChemical 6 M
−

=
 

Aromaticity, defined as the mole percent of carbon in a sample that is present as 

part of an aromatic ring structure of the feed and the liquid products, is determined by 

13C-NMR spectroscopy. The spectra were obtained in the Fourier Transform mode (i.e. 

the applied RF is not continuous but is an intense and short pulse), operating at a 

frequency of 500 MHz.  

The instrumental conditions were as follows: a pulse delay of 2 sec, a sweep 

width of 27.7 kHz and gated decoupling. Overall time for each sample was 56 minutes 

for 1056 scans. Deuterated chloroform, CDCl3, was used as a solvent. The resultant 

spectrum is composed of two distinct zones separated by the solvent bar. Total saturated 

hydrocarbons were located between 0 – 50 ppm; whereas the total aromatics were 

observed between 100 – 150 ppm (Owusu-Boakye, 2005). Equation 3.5 was then used to 

determine the aromatics content (%) of each sample. The integrals of the saturated 
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hydrocarbons zone, I sat, and the total aromatics zone, I ar, were determined using 

XWIN-NMR 3.5 software. 

            
100

II
IC

satar

ar
ar ×

+
=      (3.6) 

where: Car = aromatics content; Iar = the integral of total aromatics; Isat = the integral of 

total saturates. 

 

3.5.3  Simulated distillation 

The principle behind simulated distillation is separation of components based on 

their boiling point by a column; and can be performed using ASTM D6352 method. A 

Varian model CP3800 gas chromatograph coupled to a Varian CP 8400 auto sampler 

was used in this work. The hydrocarbons in the sample (s) were separated based on their 

boiling range by a capillary column 10 m (length) x 0.53 mm (diameter) x 0.88 mm 

(nominal film thickness). A flame ionization detector (FID) was used to detect the 

components’ boiling ranges using He as a carrier gas at a flow rate of 30 mL/min. The 

air flow and H2 were maintained at 400 mL/min and 35, respectively. The detector 

temperature and oven final temperature were maintained at 375 and 380ºC, respectively. 

The boiling fractions are identified by comparing them against calibration curve. 

3.5.4  Cetane number, aniline point, and diesel index 

Information on liquid products such as density, viscosity, fractional distribution, 

aniline point, diesel index, and cetane index may be very interesting for refiners 

(Wauquier et al., 1995; Botchwey, 2003). Cetane index is substituent for cetane number 
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and is a measurement of the combustion quality of diesel fuel during compression 

ignition. The larger the cetane index the greater the fuel efficiency. Aniline point is the 

temperature at which equal volumes of aniline and diesel oil are completely miscible; 

and is inversely related to the aromatics content of the fuel. Diesel index correlates 

between the aniline point of a diesel fuel and its ignitability. The higher the diesel index 

the better the fuel quality. 

The densities of the feed and the liquid products were measured using a digital 

precision density meter (model: DMA 35, Anton Paar, Austria, Europe). The viscosity 

of the feed and the liquid products were measured using a Brookfield digital viscometer 

(model: LVDV-I+CP, Middleboro, MA, USA). The fractional distributions were 

determined from the results of GC-simulated distillation and the fractional ranges are 

defined as follows: gasoline (G) 1BP-205°C, kerosene (K) 205-260°C, light gas oil 

(LGO) 260-315°C, heavy gas oil (HGO) 315-425°C, and vacuum gas oil (VGO) 425-

600°C (Yang et al., 2002). The cetane indices were calculated according to ASTM D 

4737.  

 CI = 45.2 + (0.0892) (T10N) + [0.131 + 0.901(B)] [T50N] + [0.0523- 

  (0.420) (B)] [T90N] + [0.00049] [(T10N) 2 - (T90N) 2] + 107(B)  

              + 60(B) 2                                                                                  (3.7) 

 where: 

 CI = Cetane Index  

 D = density at 15 °C, kg/L  

 DN = D - 0.85  
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 B = [e (-3.5) (DN)]-1  

 T10N = T10 - 215 (T10N is the temperature at 10 % recovery point) 

 T50N = T50 - 260 (T50N is the temperature at 50 % recovery point) 

 T90N = T90 - 310 (T90N is the temperature at 90 % recovery point) 

Some empirical formulas directly correlate cetane index to aniline point and diesel index 

(Maples, 2000; Wauquier et al., 1995). Two of these correlations are Equation 3.7 and 

3.8 (Maples, 2000). 

          15.5 + AP = CI                             (3.8) 

     10+ D.I. x 0.72 = CI                       (3.9) 

where:  

  AP = aniline point (°C);  D.I. = Diesel index 

 

3.5.5 Mild hydrocracking (MHC) 

Mild hydrocracking (MHC), unlike conventional hydrocracking, occurs at lower 

pressures. MHC has an advantage over the latter in that it results in the production of 

less undesirable light products and also minimizes hydrogen consumption (Yang et al., 

2002; Botchwey et al., 2003). However, it is associated with lower conversions (Yang et 

al., 2004). The MHC regime is usually said to take place at temperatures greater than 

390°C. But, Botchwey et al. (2003) observed that MHC occurred simultaneously with 

hydrotreatment at temperature range of 340°C to 390°C. MHC conversion is defined as 
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the fraction of material with boiling temperatures of 343°C+ in the feed that is converted 

to lighter products (products with boiling temperature less than 343°C) (Yang et al., 

2002). Fractions in the feed and the liquid products were determined using GC – 

simulated distillation (model: CP3800, Varian, Palo Alto, CA, USA), following standard 

procedure ASTM D2887, and the results were used to calculate MHC conversions using 

Equation 3.10: 

%)wt(feedinmaterialC343
%)]wt(productinmaterialC343%)wt(feedinmaterialC343[ConversionMHC

+°
+°−+°

=    

                                                                                                                                    (3.10) 

 The densities of the feed and the liquid products were measured using a digital 

precision density meter (model: DMA 35, Anton Paar, Austria, Europe). The viscosity 

of the feed and the liquid products were measured using a Brookfield digital cone and 

plate viscometer (model: LVDV-I+CP, Middleboro, MA, USA). The fractional 

distributions were determined from the results of GC-simulated distillation (see section 

3.5.3). 
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4.0  RESULTS AND DISCUSSION 

4.1 Phase I: Effect of H2 purity on hydrotreating activities 

4.1.1 Effect of the Hydrogen Purity The effect of the hydrogen purity on the HDS, 

HDN, and HDA of HGO was studied in the purity range of 0-100%. Methane was used 

to dilute the hydrogen stream. The experiments were carried out at constant temperature, 

pressure, gas/oil ratio, and LHSV of 380°C, 9 MPa, 800 mL/mL, and 1 h-1, respectively. 

The results are presented in Figure 4.1. Figure 4.1 shows that increasing H2 purity 

enhances the activities of HDS, HDN, and HDA. However, HDN and HDA are better 

improved by increasing H2 purity than HDS; no further improvement because HDS 

conversion was already very high. One of the principal hydrotreating variables is 

hydrogen partial pressure. In general, increasing hydrogen partial pressure increases 

HDS, HDN, and HDA conversions and vice versa (Gary H. et al., 2007). According to 

Dalton’s law, the partial pressure of any component in a gas mixture is equal to its 

vapor-phase mole fraction multiplied by the system total pressure (Fogler, 1999). As the 

purity decreased, more and more methane was present in the gas phase, which 

consequently led to a decrease in the hydrogen mole fraction and ultimately hydrogen 

partial pressure. The decrease in hydrogen partial pressure resulted in decreases in HDN 

and HDA activities.  

HDS activity did not show a significant decrease under these experimental 

conditions because the conversions was already very high especially when the results are 
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expressed as percentage conversions, such as in Figure 4.1. Often HDS conversion is 

expressed as a percentage (Equation 3.4, see Chapter 3) ( Bej et al. 2001; Botchwey et 

al.,2003) which is not a fair representation, especially when compared to HDN, because 

the sulfur content is more than 10-folds that of the nitrogen content. A better way of 

presenting HDS is simply reporting the sulfur content in the product oil. This allows the 

effect of the variables to be clearly observed (see Table 4.1). Table 4.1 shows that, as the 

H2 purity is lowered, which means a decrease in H2 partial pressure, more sulfur remains 

in the product oil and, thus, HDS conversion decreases. Nonetheless, it is generally 

agreed upon that the effect of the H2 partial pressure on HDN is more significant than 

that on HDS (Botchwey et al. 2003; Knudsen et al. 1999) and this fact is often explained 

in terms of the HDS mechanism versus the HDN mechanism.  

 

 

 

 

 

 

Figure 4.1: Effect of the hydrogen purity on 
HDS, HDN, and HDA of HGO. The experiments 
were carried out at temperature, pressure, gas/oil, and LHSV of 380 °C, 9 
MPa, 800 mL/mL, and 1 h-1, respectively. 
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Table 4.1: Effect of Hydrogen Purity on HDS 

 

 

Hydrogenation of a N-containing ring occurs prior to C-N bond scission over 

conventional catalysts. Thus, the HDN rate can be affected by the equilibrium of N-ring 

hydrogenation because N-ring hydrogenation occurs before nitrogen removal 

(hydrogenolysis). HDS does not always require hydrogenation. HDS can proceed via 

two possible mechanisms, as shown in Figure 4.2 (Botchwey et al. 2003; Knudsen et al. 

1999) (i) ring hydrogenation followed by hydrogenolysis or (ii) direct hydrogenolysis. In 

general, HDN is more difficult to carry out than HDS. Thus, HDN reactions are operated 

under more severe conditions, i.e., higher temperature and hydrogen pressure, than HDS 

(Kabe et al., 1999). To understand the difference between the HDS mechanism and that 

of HDN, the bond energies of C=S, C-S, C=N, and C-N must be compared. The bond 

energies of C=S and C-S are equal to 536 kJ/mol. However, the bond energies of C=N  

H2 purity Inlet H2 pp  

Feed sulphur 

 content 
Product sulfur 

content 

(%) (MPa) (ppm) (ppm) 

100 9.0 42,310 1,353 

90 8.1 42,310 1,691 

80 7.2 42,310 1,785 

50 4.5 42,310 3,474 
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Figure 4.2: Reaction pathways for HDS, HDN, and HDA (Botchwey et al. 2003; 
Knudsen et al. 1999). 

 

and C-N are 615 and 389 kJ/mol, respectively. Thus, it is energetically favorable to 

hydrogenate C=N to C-N before C-N bond scission. There is no particular preference for 

C=S and C-S (Kabe et al., 1999).  

The mechanism for HDA is hydrogenation, and a decrease in the hydrogen 

partial pressure results in a reduction of the hydrogenation rate. Consequently, a 

decrease in HDA conversion is observed as H2 partial pressure is reduced (Girgis and 

Gates 1991). The purity range between 0 and 50% was not looked at because at 50% 

purity the HDN had fallen beyond a practically acceptable Hydroprocessing conversion 

range (60-80%) (Speight, 2000). Hydrotreatment is not practical unless the conversions 

of all three processes (HDS, HDN, and HDA) are within the acceptable ranges.  

  



73 
 

The most interesting finding in this section was the level of decrease in the 

conversions as the purity was reduced. It is well known and rather intuitive that, as the 

hydrogen partial pressure or hydrogen purity drops, the conversions drop. However, it 

remains important to know how much and how significant these decreases in the 

hydroprocessing conversions are. Hydroprocessing conversions decreased as follow: 

HDS from 97 to 96%, HDN from 75 to 67%, and HDA from 54 to 48%, as the purity 

dropped from 100 to 80% (see Figure 4.1). These conversions are within reasonable 

ranges. The practical importance of this finding is that the recycle hydrogen stream does 

not need to be ultra-purified to obtain reasonable hydroprocessing conversions. 

Moreover, for hydrogen recovery units, such as PSA, if the hydrogen purity criteria are 

relaxed (i.e., accepting lower product purities), higher hydrogen recoveries can be 

attained (Voss, 2005). This may mean less hydrogen losses and better overall process 

economics.  

The effect of purity on MHC was also examined. The experiments were carried 

out at constant temperature, pressure, gas/oil ratio, and LHSV of 380 °C, 9 MPa, 800, 

and 1 h-1, respectively; H2 purity was varied between 0 and 100% (with the rest 

methane). MHC conversions were determined using Equation 3.10 (see chapter 3), and 

the results are presented in Figure 4.3. This figure shows that MHC conversion 

decreased from 20 to 19% as the purity was decreased from 100 to 80%. However, with 

a further decrease in purity to 50%, the MHC conversion dropped to 17%. Here, it can 

be seen that H2 MHC conversion did not suffer considerably as the H2 purity was 

reduced from 100 to 80%. Information on liquid products, such as density, viscosity, 
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fractional distribution, aniline point, diesel index, and cetane index may be very 

interesting for refiners (Botchwey et al., 2003; Wauquier et al., 1995).  

 

 

 

 

 

 

 

 

 

 

 Figure 4.3: Effect of the hydrogen purity on MHC. 

 

The following highlights the effect of H2 purity on the product quality as it 

undergoes hydrotreating and MHC. The fractional distributions, densities, viscosities, 

and cetane indices of the products are shown in Figures 4.4-7, respectively, and the 

aniline point and diesel index are shown in Figure 4.8. Figure 4.4 shows that, as 

hydrogen purity was dropped from 100 to 80%, there was no significant difference in the 

fractional distributions of the liquid products. Figure 4.5 shows that density is closely 

linearly related to hydrogen purity. Figure 4.6 shows that viscosities of the liquid 

products decreased with an increasing H2 purity. Figure 4.7 shows that cetane indices of 

the liquid products decreased with a decreasing H2 purity. At 100% H2 purity, the 
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product cetane index was 34.2, which dropped slightly to 33.5 as H2 purity was 

decreased to 80% and further to 31.6 as the H2 purity was lowered to 50%. Figure 4.8 

shows that both calculated aniline points and diesel indices of the liquid products 

increased with increasing H2 purity. There is a known correlation between the aniline 

point and the aromatics content of a petroleum product: the higher the aniline point, the 

lower the aromatics (Owusu-Boakye, 2005). As was observed in this work, while the 

aromatics content of the liquid products decreased (increase in HDA) with an increasing 

H2 purity, the aniline point increased. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Effect of the hydrogen purity on the fractional distribution of the 
products. 

 

 



76 
 

0

50

100

150

200

250

25

26

27

28

29

30

31

40 50 60 70 80 90 100 110 120

V
isc

os
ity

 (c
P)

V
isc

os
ity

 (c
P)

 

Hydrogen purity (%)

0.914
0.916
0.918
0.920
0.922
0.924
0.926
0.928

40 60 80 100

De
ns

ity
 (g

/cm
3 )

Hydrogen Purity (%)

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Effect of the hydrogen purity on the density of the products. 
Measurements were taken at 20 °C. 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Effect of the hydrogen purity on the viscosity of the products. 
Measurements were taken at 40 °C. 
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Figure 4.7: Effect of the hydrogen purity on the cetane index of the products. 
 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.8: Effect of the hydrogen purity on the diesel index and aniline point of 
the products. 
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4.1.2  Effect of Methane on catalyst performance 

As mentioned in the introduction, methane is the second most abundant 

constituent of the hydrotreating exit and recycle gas stream after hydrogen. To observe 

the impact of the H2 purity on the catalyst performance, one must study the effect of 

methane content. Consequently, experiments were performed at progressively 

decreasing H2 purity (with the rest methane). All experiments were conducted at 

constant temperature, pressure, gas/oil ratio, and LHSV of 380°C, 9 MPa, 800 mL/ mL, 

and 1 h-1, respectively. To detect if there were any changes in the catalyst activity as the 

purity was progressively decreased, an experiment at 100% H2 purity, named “control”, 

was intermittently repeated before and after each experiment. To clearly illustrate this 

process, as a part of the same run, the H2 purity was first set at 100%, the experiment 

was carried out, and samples were collected. H2 purity was then reduced to 90% (with 

the rest methane); the experiment was carried out; and samples were collected. Next, the 

H2 purity was reset back to 100%; the experiment was carried out; and samples were 

collected. This procedure was repeated for each of the subsequent experiments.  

The results of HDS, HDN, and HDA conversions are shown in Figures 4.9-11, 

respectively. The results show that, as the hydrogen purity was decreased to 80%, the 

catalyst did not suffer considerable HDS, HDN, and HDA activity losses; the 

hydroprocessing conversions at the “control” condition before and after the experiments 

were unchanged. However, as the H2 purity was further dropped to 50%, the HDN and 

HDA conversions at the “control” conditions dropped. The decrease in the HDS, HDN, 

and HDA activities was not directly caused by methane but by the deficiency in the 
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hydrogen partial pressure, which caused catalyst deactivation because of coke formation 

(Antos et al., 2004).  

 

  

 

 

 

 

 

 

 

Figure 4.9: Change in catalytic activities with H2 purity for HDS. The experiments 
were carried out at temperature, pressure, gas/oil ratio, and LHSV of 380 °C, 9 
MPa, 800 mL/mL, and 1 h-1, respectively. H2 purities for experiments 1, 3, 5, and 7 
were 100% and were 90, 80, and 50% for experiments 2, 4, and 6, respectively. 
 

 

 

 

 

 

 

 

 

 

Figure 4.10: Change in catalytic activities with H2 purity for HDN. Experimental 
conditions were the same as shown in Figure 4.9. 
 



80 
 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.11: Change in catalytic activities with H2 purity for HDA. Experimental 
conditions were the same as shown in Figure 4.9. 

 
 

To verify the above claim, the effect of methane on the catalyst performance was 

studied by contrasting methane against helium. Helium is known to be inert toward 

Hydroprocessing catalysts (Bej et al., 2001b). Two experiments were conducted at 50 

and 80% H2 purity (with the rest either methane or helium). The “control” experiment 

was intermittently repeated before and after each of these two experiments. All 

experiments were conducted at constant temperature, pressure, gas/oil ratio, and LHSV 

of 380 °C, 9 MPa, 800 mL/mL, and 1 h-1, respectively. The results are shown in Figure 

4.12. It can be seen in this figure that there were no differences in hydroprocessing 

activities when methane was replaced by helium. Thus, it can be concluded that methane 

is inert toward the Ni-Mo/γ-alumina catalyst under these experimental conditions. 

Therefore, the use of lower purity hydrogen to carry out hydrotreatment will not have 

any adverse effect besides lowering the hydrogen partial pressure in the system.  
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Figure 4.12: Methane versus helium effect on hydroprocessing conversions. 
 

This decrease in hydrogen partial pressure can be countered by increasing the 

system total pressure, as shown in Figure 4.13. The results in this figure were generated 

using two experiments. In one experiment, the system total pressure was set at 7.2 MPa 

and the hydrogen purity was set at 100%. In the other experiment, the hydrogen purity 

was maintained at 80%. However, to keep the inlet hydrogen partial pressure the same, 

the total pressure of the system was increased to 9 MPa. The results show that both 

experiments produced similar hydrotreating conversions. Thus, pressure can be used to 

offset the use of lower hydrogen purity to achieve any desired hydrogen partial pressure 

without affecting HDS, HDN, and HDA conversions. 
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Figure 4.13: Pressure versus purity effect on hydroprocessing conversions. The 
experiments were carried out at temperature, gas/oil ratio, and LHSV of 380 °C, 
800 mL/mL, and 1 h-1, respectively. 
 
 
4.1.3  Long term effect of Methane on catalyst performance 

A catalyst deactivation study was conducted to observe the long-term effect of 

methane on catalyst performance. The catalyst was loaded, and experiments were 

conducted for a period of 66 days at increasing methane concentrations (with the rest 

H2). The methane concentration was increased as follows: 0% for 3 days, 5% for 12 

days, 12% for 30 days, 20% for 12 days, and 25% for 6 days; it was then decreased back 

to 0% for 3 days. Temperature and LHSV were kept constant at 380°C and 1 h-1, 

respectively. The average conversions of HDS, HDN, and HDA at 0% methane at days 2 

and 3 and days 65 and 66 were 96.8, 75.2, and 54.0% and 96.5, 74.5, and 52.4%, 

respectively. Thus, it can be concluded that the catalyst activities of HDS, HDN, and 
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HDA did not suffer significantly after being subjected to methane concentrations as high 

as 25 vol. % for a period of 66 days. 

 

4.1.4 Variables affecting H2 partial pressure  

The increase of hydrogen partial pressure has a positive effect on 

hydroprocessing conversions (Girgis and Gates, 1991; Gary H. et al., 2007). To increase 

hydrogen partial pressure, one must increase total pressure, gas/oil ratio, or purity 

(amount of hydrogen in the gaseous phase) (Turner and Reisdorf, 2004). In this work, the 

effects of these three variables on the Hydroprocessing of HGO were also evaluated. 

Three additional experiments were conducted, and their results were compared to that of 

an experiment (shown as b in Figure 4.14) conducted at H2 purity, pressure, and gas/oil 

ratio of 50% (with the rest methane), 9 MPa, and 800 mL/mL, respectively. All 

experiments were conducted at constant temperature and LHSV of 380°C and 1 h-1, 

respectively. The full results are shown in Figure 4.14, and the four experiments are 

labeled a-d. Also, Table 4.2 contains HDS results expressed in parts per million (ppm) 

rather than percentages, for clarity purposes. In experiment a, H2 purity was increased 

from 50 to 100% and the gas/oil ratio was reduced to 400 mL/mL. In experiment c, the 

pressure was increased from 9 to 10 MPa, and in experiment d, the gas/oil ratio was 

increased from 800 to 1270 mL/mL. Keep in mind that experiment b is used as a 

reference. The results show that increases in purity or pressure have positive effects on 

HDS, HDN, and HDA. At a constant H2 purity of 50%, increasing the gas/oil ratio from 

800 to 1270 mL/mL did not show promoting effects on HDS, HDN, or HDA.  
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Figure 4.14. Comparison of the effects of (a) H2 purity, (c) pressure, and (d) gas/oil 
ratio on hydroprocessing of HGO. The experimental conditions for a-d are stated 
in Table 4.2. 

 
 
 
 

Table 4.2: Effect of the H2 Purity, Gas/Oil Ratio, and Pressure on HDS 
 

Exp. Purity 
Gas/oil 
ratio Pressure 

Feed 
sulfur 

content 

Product 
sulfur 

content 

  (%) (mL/mL) (MPa) (ppm) (ppm) 

a 100 400 9 42,310 1,353 

b 50 800 9 42,310 3,474 

c 50 800 10 42,310 1,338 

d 50 1,270 9 42,310 3,057 
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Similar results to those above were observed by Andari et al. (1996) and Bej et 

al. (2001a, 2001b). They found that the gas/oil ratio had an optimal value, depending 

upon the other process variables, after which a further increase in this ratio did not result 

in hydroprocessing improvement. A notable point is that, by increasing the gas/oil ratio 

from 800 to 1270 mL/mL, there was 60% (by volume) more hydrogen increase in the 

reactor but there were no corresponding increases in HDS, HDN, or HDA conversions. 

However, when the amount of hydrogen delivered into the reactor was kept constant and 

either the purity or the pressure was increased, both of which can increase the hydrogen 

partial pressure, improvement in hydroprocessing conversions were observed. Thus, 

hydrogen partial pressure is rather important than the amount of hydrogen present in a 

reactor, provided that the stoichoimetric amount of hydrogen is met. 

 

4.2 Phase II: Effect of H2 partial pressure on Hydrotreating activities 

In this section the effects of the independent variables (pressure, temperature, 

LHSV, gas/oil, and H2 purity) on feed vaporization, hydrogen dissolution, hydrogen 

consumption, and inlet and outlet H2 partial pressure were studied. Also studied were the 

correlations between inlet and outlet H2 pp and hydrotreating conversions. As mentioned 

in the introduction H2pp is significantly more affected by pressure, gas/oil ratio, and H2 

purity than by temperature and LHSV (Antos et al., 2004). Therefore, these three 

important variables were used in the central composite inscribed method (using Expert 

design 6.0.1, which uses Derringer and Suich optimization method (Myers and 

Montgomery) to design the experiments. Their ranges were as follows: pressure was 7 to 
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11 MPa, H2 purity was 75 to 100 vol. %, and gas/oil ratio was 400-1200 mL/mL (with 

the rest methane). In our previous work it was found that methane was inert towards 

commercial Ni-Mo/γ-alumina under these experimental conditions (Mapiour et al., 

2009). Temperature and LHSV were kept constant at 380°C and 1 h-1, respectively.  

 In a separate set of experiments the effects of temperature and LHSV on feed 

vaporization, hydrogen dissolution, hydrogen consumption, and H2pp were studied. 

Temperature and LHSV ranges were 360 to 400°C and 0.65 to 2 h-1, respectively. H2 

purity, pressure and gas/oil ratio were kept constant at 100 %, 9 MPa, and 800 mL/mL, 

respectively. LHSV was kept constant at 1 h-1 when the effect of temperature was 

studied. Temperature was kept constant at 380°C when the effect of LHSV was studied. 

4.2.1  Effect of pressure, H2 purity, and gas/oil ratio on feed vaporization, H2 
dissolution, H2 consumption, and H2pp 

 

The data on the effect of reactor pressure, H2 purity, and gas/oil ratio on feed 

vaporization, H2 dissolution, H2 consumption, and H2 pp was analyzed using a non-

linear regression.  The regression analysis of experimental data generated the 

generalized equation below (Equation 4.1). The coefficients of this equation are 

summarized in Table 4.3. 

X = i + a * Purity + b* Pressure + c * Gas/oil + d* Gas/oil2 + e * Purity x Pressure + f * 

Purity x Gas/oil + g * Purity
 2 + h *  Pressure

2  (4.1) 

Where : X is inlet H2 pp, outtlet H2 pp, vaporized feed, Dissolved H2, or H2 
consumption; a,b , c, d, e, f, g, h, i are coefficeints, and are summarized in Table 
4.1. Purity, pressure, gas/oil are in vol. %, MPa, and mL/mL, respectively. The 
equations are valid within the operating conditions studied 
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Table 4.3 : The summary of the coefficients of Eqaution 4.1. 

Coefficients 
Inlet H2 pp 

(MPa) 
Outlet H2 pp 

(MPa) 

Vaporized 
Feed 
(g/h) 

Dissolved H2 
(scf/bbl) 

H2 
consumption

(scf/bbl) 
a -2.401 x 10-3 -0.339 -9.531 x 10-3 0.675 5.677 

b 7.289 x 10-3 -4.965 0.150 -3.565 33.997 

c 9.889 x 10-3 -2.561 x 10-3 3.883 x 10-3 2.160 x 10-3 0.085 

d - -4.653 x 10-6 - - - 

e - 0.051 - 0.113 - 

f - 1.326 x 10-3 -3.094 x 10-4 1.697 x 10-4 - 

g - - - -3.948 x 10-3 - 

h - - - 0.233 - 

i 0.149 36.589 -0.517 -23.958 336.133 

 

      Two statistical tests (test of significance of factors and R2 test)  were used to 

evaluate how well the experimantal data was represented by the models. The use of the 

test of significance of factors means that insignificant factors or interactions must be 

excluded from the model (Lazic, 2004). Significance of  the factors or the interactions 

are evaluated using p-value (probability value). When a p-value of a factor or an 

interaction is greater than 0.05, it is certain at a 95% confidence level that that factor or 

interaction is insignificant and can therefore be excluded from the final mathematical 

model. The reduced models are presented in Equation 4.1. 

 R2 , a value that always falls between 0 and 1, is the relative predictive power of 

a model (Lazic, 2004). The closer to 1 the R2 is the better the model represents the 

expreimental observations. However, note that by simply incorporating more factors or 
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interactions R2 could be increased while the predictive power of the model is not 

improved. Due to this shortcoming of R2 , the use of adjusted R2 is adviced. Adjusted R2 

is a modification of R2 , but unlike R2 it only increases when the newly included 

factor(s) or interaction(s) are significant (Montgomery, 1997). Another quantity is 

predicted R2 . While R2 indicates how well the model fits the experimental data at hand, 

predicted R2 indicates how well the model predicts responses for new observations. The 

R2, adjusted R2, and predicted R2 values of the factors and interactions of the developed  

models are summarized in Table 4.4.  

Table 4.4: R-Squared statistics for the models 

  

          To test the predictive ability of the generatered models three experiment, (at 

conditions that were different than those of the expreimental design used to generate the 

data for the models development) were conducted. In these three experiments pressure, 

temperature, LHSV, gas/oil ratio were kept constant at 9 MPa, 380°C, 1 h-1, and 800 

mL/mL, respectively, while H2 purity was varied as follows: 50, 80, and 90 vol. % (with 

the rest methane) . At these conditions quantities such as inlet H2, outlet H2, and 

vaporized feed, dissolved H2, and H2 consumption were experimentally determined and 

Model R2  Adjusted R2  Predicted R2 

Vaporized feed 0.8793  0.8471  0.7311 

Dissolved  H2 0.9995  0.9992  0.9987 

H2 consumption 0.9220  0.9074  0.9074 

Inlet H2 partial pressure 0.9994  0.9993  0.9988 

Outlet H2 partial pressure 0.9513  0.9288  0.8002 
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compared to those predicted by the models, shown in Table 4.5. The maximum 

percentage differences for inlet H2 and outlet H2 partial pressure were 2.2% 15.3%, 

respectively. However, this relatively high percentage difference, 15.3%, was observed 

at the extrapolated experimental condition, i.e. at 50 % H2 purity. When the comparisons 

were done solely within the range of conditions used to develop the models the 

maximum percentage differences for inlet H2 and outlet H2 partial pressure were 0.4 % 

and 0.9 %, respectively. Figure 4.15a and 4.15b are three-dimensional plots of the 

effects of pressure, H2 purity and gas/oil ratio on inlet H2 pp. These figures show that 

inlet H2pp increases with increasing pressure and H2 purity, but is not affected by the 

gas/oil ratio. The effect of pressure and H2 purity are explained by Dalton’s law. Gas/oil 

ratio does not affect inlet H2 pp because as the amount of treat gas increases so does the 

amount of feed vaporization, thus vapor composition stays the same (McCulloch and 

Roeder, 1976). 

 Table 4.5: Comparison between the predicted and observed values 

 

 

 

Model R2  Adjusted R2  Predicted R2 

Vaporized feed 0.8793  0.8471  0.7311 

Dissolved  H2 0.9995  0.9992  0.9987 

H2 consumption 0.9220  0.9074  0.9074 

Inlet H2 partial pressure 0.9994  0.9993  0.9988 

Outlet H2 partial pressure 0.9513  0.9288  0.8002 
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Figure 4.15: Surface response of the effect of pressure, H2 purity, and gas/oil ratio 
on inlet H2 partial pressure. Temperature and LHSV were constant at 380°C and 1 
h-1, respectively 
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           Figure 4.16a and 4.16b show the effect of pressure, H2 purity and gas/oil ratio on 

outlet H2 pp. Outlet H2pp increases with increasing pressure, H2 purity and gas/oil ratio. 

However, the enhancing effect of the gas/oil ratio tends to plateau at higher values 

(approximately 800 mL/mL and above). To fully explain the effects of pressure, H2 

purity, and gas/oil ratio on inlet and outlet H2 partial pressure one must first study their 

effects on the factors that influence inlet and outlet H2 partial pressure, namely: feed 

vaporization, H2 dissolution, and H2 consumption.   

 

 

 (a) 

 

 

 

 

 

 

 

   (b) 

 

 

 

 

Figure 4.16: Surface response of the effect of pressure, H2 purity, and gas/oil ratio 
on outlet H2 partial pressure. Temperature and LHSV were constant at 380°C and 
1 h-1, respectively. 
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           Figures 4.17, 4.18, and 4.19 depict the effects of pressure, H2 purity, and gas/oil 

ratio on feed vaporization, H2 dissolution, and H2 consumption, respectively. In Figure 

4.17 (a and b) and 4.18 (a and b) it can be observed that increasing pressure and H2 

purity and decreasing gas/oil ratio result in increases in H2 dissolution and decreases in 

feed vaporization. The effect of pressure on feed vaporization can be explained by Le-

Chatelier’s principle. As the pressure increases the equilibrium counters this change by 

converting more gas into liquid since liquid takes less space (Tro, 2009). The effect of 

pressure on H2 dissolution can be explained by Henry's Law. This law states that the 

concentration of dissolved gas is directly proportional to its partial pressure at a constant 

temperature. Therefore if the pressure is increased, causing an increase in the gas’ partial 

pressure, the amount of the dissolved gas increases (Tro, 2009). Hence, an increase in H2 

dissolution is observed.     

           The effect of decreasing gas/oil ratio on feed vaporization can be explained in 

terms of mass transfer driving force. At a constant oil flowrate, gas/oil ratio is decreased 

by decreasing gas flowrate. As the gas flowrate is decreased less vaporization takes 

places due to decrease in mass transfer driving force (Wankat, 2007). Observed results 

of the effect gas/oil ratio on H2 dissolution is counter-intuitive, one would expect that as 

gas/oil ratio increase more H2 would be dissolved. Since increasing gas/oil ratio 

increases H2 partial pressure, and according to Henry’s Law, forces additional H2 

dissolution. However, the results suggest that increasing gas/oil ratio leads to decreases 

in H2 dissolution. The reason for this is that both feed vaporization and H2 dissolution 

occur simultaneously, and as the gas/oil ratio is increased more liquid feed is vaporized  
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Figure 4.17: Surface response of the effect of pressure, H2 purity, and gas/oil ratio 
on vaporized feed. Total liquid flow is 5 g/h. 
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(b) 

Figure 4.18: Surface response of the effect of pressure, H2 purity, and gas/oil ratio 
on dissolved H2. 
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leaving a smaller liquid volume for H2 to dissolve in. Consequently the amount of the 

dissolved H2 decreases. Similar results were observed by McCulloch and Roeder 1976.   

    

           Increasing the H2 purity means that methane is replaced with H2. Wilson et al. 

(1981), in an attempt to examine volatility of coal liquids, determined the interactions of 

CH4 and H2 with coal liquids. The authors found that the binary interaction constants for 

CH4/coal liquids and H2/coal liquids were 0.08 and 0.25, respectively. It is therefore 

reasonable to expect that the interaction between H2 and other heavy hydrocarbons such 

as HGO would be higher than that of CH4. Based on this assumption, H2/HGO binary 

mixing is expected to exhibit more negative deviation from Raoult’s Law, i.e. the 

molecules in the binary mixture have lower escaping tendency. Hence, lower feed 

vaporization was observed as H2 purity was increased. Increasing the H2 purity also led 

to increase in H2 partial pressure. As explained by Henry’s Law, increases in a gas’ 

partial pressure leads to increases in its dissolution. Hence, increases in a H2 partial 

pressure, caused by increasing the H2 purity, led to increases in H2 dissolution. 

 

     Figure 4.19a and 4.19b show that H2 consumption increases with increasing 

pressure, H2 purity and gas/oil ratio. In general, increasing pressure, H2 purity and 

gas/oil ratio enhance hydrotreating conversions leading to higher H2 consumption 
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(b) 

Figure 4.19: Surface response of the effect of pressure, H2 purity, and gas/oil ratio 
on outlet H2 consumption. 
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4.2.2 Effect of temperature and LHSV on feed vaporization H2 dissolution, H2 
consumption, and H2 partial pressure 

The results of the effects of temperature and LHSV on feed vaporization, 

hydrogen dissolution, hydrogen consumption, and inlet and outlet H2 partial pressure are 

given in Table 4.6. The results show that increasing temperature leads to increases in 

feed vaporization and very slight decreases H2 dissolution. Increasing temperature 

causes increases in the species’ kinetic energies leading to increases in feed 

vaporization. Also, the higher the temperature the more a gas expands and the harder it 

is for a gas to dissolve in a liquid. As a result decrease in H2 dissolution was observed 

(Martin; Bustamante, 1993).   

Table 4.6: Results of the effects of temperature and LHSV on feed vaporization, H2 
dissolution, H2 consumption and inlet and outlet H2 pp. 

LHSV 

(h-1) 

Vaporized 
feed @ 
outlet 

Dissolved 
H2 @ 
outlet 

H2 
consumption

Inlet H2 
partial 

pressure 

Outlet H2 
partial 

pressure 

(g/h) (scf/bbl) (scf/bbl) (MPa) (MPa) 

0.65 0.73 48 1358 8.9 8.2 

1 0.84 81 1352 8.9 8.2 

1.5 0.91 129 1249 8.9 8.3 

2 1.00 173 1170 8.9 8.3 

Temperature( °C) 

360 0.52 81 1234 8.9 8.4 

370 0.67 81 1286 8.9 8.3 

380 0.84 81 1352 8.9 8.2 

390 1.15 77 1319 8.8 8.1 

400 1.40 74 1285 8.8 8.1 
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Increasing LHSV leads to increases in feed vaporization and H2 dissolution. An 

increase in LHSV corresponds to an increase in the feed rate (liquid flow rate).  

According to Raoult’s Law, as the mole fraction of a component in a solution increases 

so does its partial pressure, and consequently its escaping tendency increases. Therefore, 

as more liquid feed is introduced into the reactor, more of it evaporates. Also, by 

increasing the liquid flowrate, there is more liquid volume for H2 to dissolve in. Hence, 

increases in H2 dissolution were observed.  

H2 consumption decreases with increasing LHSV. Increasing LHSV results in 

decreases in hydrotreating conversions because the residence time is reduced. A result 

there is a decrease in H2 consumption. H2 consumption passes through a maximum with 

respect to temperature. The reason for this is that, shown in Figure 4.20, HDA passes 

through a maximum as the temperature is gradually increased from 360 to 400°C. Inlet 

and outlet H2 partial pressure do not vary significantly with changes in temperature or 

LHSV (see Table 4.6). 

 

 

 
 

 

 

 

 

Figure 4.20: Effect of temperature on HDA. Pressure, LHSV, gas/oil ratio, and H2 
purity were 9 MPa, 1 h-1, 800 mL/mL, and 100%, respectively. 
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 4.2.3  Effect of H2 pp on H2 consumption dissolved H2, and feed vaporization 

 It is important to look at the above factors because of their influences on H2 pp 

(Speight, 1981 & 2000). Hence, an attempt was made to correlate H2 pp and these 

factors. The results are shown in Figure 4.21.  From Figure 4.21, it is evident that both 

hydrogen consumption and hydrogen dissolution increase with increasing H2 pp. The 

reason for this is that increasing H2 partial pressure generally improves hydrotreating 

activities, thus, increasing H2 consumption. And as explained by Henry’s Law, increases 

in gas’ partial pressure result in increases in its dissolution. Hence, increasing H2 pp 

brings about increases in H2 dissolution. No clear correlation between H2 pp and feed 

vaporization was observed.  

 

Figure 4.21: Correlations between H2pp and H2 consumption and H2pp and 
dissolved H2. 



100 
 

4.2.4  Effect of H2 pp on hydrotreating activities 

Figure 4.22 and 4.23 show that HDN and HDA were significantly more affected 

by H2pp than HDS. This fact is often explained in terms of HDS mechanism versus 

HDN mechanism (Kabe et al., 1999; Fang, 1999). Hydrogenation of a N-containing ring 

occurs prior to C-N bond scission. Thus, the HDN rate can be affected by the 

equilibrium of N-ring hydrogenation because N-ring hydrogenation occurs before 

nitrogen removal (hydrogenolysis).  HDS can proceed via two possible mechanisms: (i) 

ring hydrogenation followed by hydrogenolysis or (ii) direct hydrogenolysis. To 

understand the difference in HDS mechanism versus that of HDN, the bond energies of 

C=S, C-S, C=N, and C-N must be compared. The bond energies of C=S and C-S are the 

same, 536 kJ/mol, and the bond energies of C=N and C-N are 615 and 389 kJ/mol, 

respectively (Kabe et al., 1999). It is therefore energetically favorable to hydrogenate 

C=N to C-N before C-N bond scission, whereas for C=S and C-S there is no particular 

preference (Kabe et al., 1999).  The mechanism for HDA is hydrogenation and an 

increase in the H2pp results in an enhancement of hydrogenation rate. Consequently, an 

increase in HDA conversion is observed as H2 pp is raised. 

 Simple models that relate hydrotreating conversions to inlet and outlet H2 pp 

were developed and the results are given in Table 4.7. It can be seen in this table that the 

R2 for HDS is very small because, within the H2 pp range of study, HDS is not strongly 

affected by H2 pp for reasons discussed in the paragraph above. To test the predictive 

ability of the generated models three experiments were conducted at conditions that 

were not part of the experimental runs used to generate the models, and their 

conversions were compared to those predicted by the models (see Table 4.8). In these 
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three experiments pressure, temperature, LHSV, gas/oil ratio were constant at 9 MPa, 

380 °C, 1 h-1, and 800 mL/mL, respectively, while H2 purity was varied as follows: 50, 

80, and 90 vol. % (with the rest methane). It was determined that the maxmium 

precentage differences for HDN and HDA using inlet H2 pp models were 3% and 4 %, 

respectively. They were 4% and 7%, resepectively, when outlet H2 pp models were used. 

The percentage differences for HDS were not determined because the R2 was too small 

indicating that HDS developed model does not accurately represent the experimental 

data. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.22: Effect of inlet H2 partial pressure on HDS, HDN, and HDA. 
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Figure 4.23: Effect of outlet H2 partial pressure on HDS, HDN, and HDA. 

 

Table 4.7: Correlations between H2 partial pressure and hydrotreating conversions 
y: hydrotreating conversion; x: H2 partial pressure. 

Activity Equations R2 

  For Inlet H2 partial pressure   

HDS y = 0.2932 x + 92.694 0.0773 

HDN y = 0.231x2 + 2.675x + 31.954 0.8018 

HDA y = - 0.2506 x2 + 6.5619 x  +  16.192 0.7727 

   

  For outlet H2 partial pressure   

HDS y = 0.2417 x + 93.374 0.062 

HDN y = 0.5883 x2 - 1.9673 x + 53.48 0.8414 

HDA y = -0.1759 x2 + 4.9757 x + 26.778 0.8935 
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Table 4.8: Comparison between the predicted and observed values for the correlations between H2 partial pressure and 
hydrotreating conversions 

 

 
Purity 

(vol. %) 

Determined 
experimentally (%) 

 Determined from the models (%) 

 
Using inlet 

H2 partial pressure 
 

Using outlet 

H2 partial pressure 

HDS HDN HDA  HDS HDN HDA  HDS HDN HDA

50 92 38 38  94 46 41  94 52 42 

80 95 64 48  95 63 50  95 62 53 

90 96 71 49  95 68 53  95 69 56 
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4.2.5  Effect of H2S on hydrotreating activities 

H2S is generated during hydrotreating as a product of HDS reactions. Most 

studies report that H2S inhibits hydrotreating activities (Herbert et al., 2005; Girgis and 

Gates; 1991 Hanlon, 1987;  Sie, 1999; Ancheyta et al., 1999; Bej et al. 2001), yet it is 

required to maintain the active chemical state of the catalyst (Bej et al., 2001). H2S 

inhibition is caused when H2S competes with organosulfur and organonitrogen for the 

same active sites on the catalyst. H2S generated inside a hydrotreater can have an 

equilibrium value as high as 5 mol.% in the recycle gas (Gruia, 2006). This 

concentration of H2S not only inhibits hydrotreating activities, it also reduces H2 pp. 

Therefore, in practice, H2S is removed in the amine unit. Unfortunately, some of H2S 

remain in the recycle stream and is fed into the hydrotreater (Gruia, 2006) along with 

other difficult to remove impurities such as methane (Turner and Reisdorf, 2004). 

  In phase Ι, it was determined that the only effect induced by methane’s presence 

was the decrease of H2 pp inside the reactor, which in turn led to decreases in 

hydrotreating conversions. In this section an effort was made to determine what takes 

place when both methane and high concentrations of H2S are present in the reactor. Due 

to the serious health hazards associated with direct handling of H2S, high concentrations 

of H2S were generated inside the reactor by adding different concentrations of 

buthanthiol to the HGO feed (Bej et al., 2001b). Buthanthiol decomposes under the 

chosen reaction conditions into 1-butene and H2S (Horie et al., 1978). 

  Two sets of experiments were conducted. One set with no methane in the 

gaseous stream (100% H2 purity) and another with 20 vol. % methane and 80 vol. % H2. 
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In both sets of experiments, tests were carried out at different concentrations of 

butanethiol, 0, 1, and 3 wt. %, in the HGO feed.  Temperature, pressure, gas/oil ratio and 

LHSV were kept constant at 380°C, 9 MPa, 800 mL/mL, and 1 h-1, respectively. The 

results of the effect of H2S on hydrotreating conversions are presented on Table 4.9. The 

results show that all HDS, HDN, and HDA conversions decrease as the concentration of 

H2S is increased by adding butanethiol to the HGO feed. A notable point is that as the 

butanethiol concentration was increased from 0 to 1 wt. % there were considerable 

decreases in HDS, HDN, and HDA conversions. However, as the butanethiol 

concentration was increased from 1 wt. % to 3 wt. %, no major changes in HDS, HDN, 

and HDA conversions were observed. This may be interesting with regards to H2S 

removal from the recycled gas. As this finding suggests there appears to be an optimal 

amount of H2S that has to be removed, beyond which no significant beneficial effects on 

the hydrotreating conversions are realized. 

Table 4.9: Effect of butanethiol added to feed on hydrotreating conversions 

 

Conversion 
(%) 

 

100 vol. % H2 purity  80 vol. % H2 purity 

added butanethiol 

(wt.%)  

added butanethiol 

(wt. %) 

0 1 3  0 1 3 

HDS 96.6 95.4 94.3  95.1 90.6 90.4 

HDN 76.1 69.0 67.2  65.2 52.2 51.3 

HDA 54.3 46.7 45.5  48.2 43.6 44.9 
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4.2.6 Effects of pressure, H2 purity, and gas/oil ratio on hydrotreating activities 

Often H2 purity is not included as an operating variable in hydrotreating studies 

even though, along with pressure and gas/oil ratio, it has a significant effect on H2 partial 

pressure. For this reason, H2 purity, pressure, and gas/oil ratio, were used in an 

experimental design using a central composite design method (available in Expert design 

6.0.1) in an effort to study their effects on HDS, HDN, and HDA activities. H2 purity, 

pressure, and gas/oil ratio were varied within the range of 75-100 vol. % (with the rest 

methane), 7 – 11 MPa, and 400 – 1200 mL/mL, respectively. Temperature and LHSV 

were kept constant at 380°C and 1h-1, respectively. The experimental results obtained at 

conditions specified by the experimental design are summarized in Table 4.10.  Analysis 

of the experimental results was carried out using DESIGN-EXPERT 6.0.1 to optimize 

the considered operating conditions with respect to HDS, HDN, and HDA conversions. 

Regression analysis of experimental data generated the following generalized regression 

equation (Equation 4.2), which coefficients are summarized in Table 4.11.  

Y = e + a * Purity + b * Pressure + c * gas/oil + d * Purity2    (4.2) 

Where: Y  is HDS, HDN, or HDA (%); purity, pressure, gas/oil are in vol.%, MPa, and 

mL/mL, respectively. The equations are valid within the operating conditions studied. 
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Table 4.10: Experimental results at the conditions specified by the CCD 
experimental design. 

Experimental Conditions   Response 

Pressure Gas/oil Purity  HDN HDS HDA 
Inlet H2 

pp 
Outlet H2 

pp 

MPa mL/mL %  % % % MPa MPa 

9.0 800 75  63.2 95.8 48.9 6.7 5.3 

7.8 1038 80  59.1 95.4 48.1 6.2 5.4 

10.2 562 80  67.4 93.6 51.2 8.1 5.8 

7.8 562 80  55.1 94.9 46.0 6.2 4.6 

10.2 1038 80  67.6 93.2 52.6 8.1 7.0 

9.0 400 88  59.9 96.0 47.9 7.8 5.2 

9.0 1200 88  65.0 95.3 53.0 7.8 6.9 

7.0 800 88  54.4 94.5 46.1 6.1 5.6 

9.0 800 88  66.7 95.5 51.8 7.8 6.8 

9.0 800 88  65.7 94.0 52.4 7.8 6.8 

11.0 800 88  72.8 95.0 54.9 9.6 8.3 

9.0 800 88  68.2 95.6 52.4 7.8 6.8 

9.0 800 88  66.6 92.9 53.1 7.8 6.8 

9.0 800 88  69.6 95.8 52.6 7.8 6.8 

9.0 800 88  66.3 95.0 51.8 7.8 6.8 

7.8 1038 95  69.3 93.8 53.9 7.3 6.8 

7.8 562 95  65.7 94.0 52.3 7.3 6.2 

10.2 562 95  78.5 96.0 55.5 9.5 8.1 

10.2 1038 95  83.9 96.7 58.0 9.6 8.9 

9.0 800 100   78.8 96.6 55.4 8.9 8.2 
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Table 4.11: Summary of the coefficients of Equation 4.2. 

 

 

 

 

 

 

 

 

 Table 4.12 and 4.13 contain the test of significance (f-test) and R2 test results, 

respectively, of HDS, HDN and HDA models. Table 4.12 shows that the operating 

variables have no significant effects on HDS, i.e. p-value < 0.05 (Montgomery, 1997). 

Moreover, Table 4.13 shows that R2 value for HDS model is very small, 0.0843, which 

means that HDS developed model poorly represents the experimental data. The f-test of 

HDN and HDA data shows that pressure, H2 purity, and gas/oil ratio have significant 

effects on HDN and HDA activities. Moreover, it shows that these three factors do 

interact as they affect HDN and HDA activities, meaning that the effect of each factor is 

independent of the values of the other two factors. R2 values of HDN and HDA 

developed models were 0.9262 and 0.9125, respectively.  

 

Coefficients
HDS 
(%) 

HDN 
(%) 

HDA 
(%) 

a 0.0467 -5.879 0.322 

b 0.137 4.873 1.958 

c -1.777 x 10-4 6.704 x 10-3 4.980 x 10-3 

d - 0.038 - 

e 89.774 - 2.073 
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Table 4.12: Results of test of the significance of factors and interactions for HDS, 
HDN, and HDA models 

 

 

 

 

 

 

 

 

 

Table 4.13: R-Squared statistics for the developed models of HDS, HDN and HDA. 

Model R2  Adjusted R2  Predicted R2 

HDS 0.0843  -0.0875  -0.4553 

HDN 0.9262  0.9065  0.8570 

HDA 0.9125  0.8961  0.8496 

 

 Equation 4.2 does not show straightway the dependence of HDN and HDA 

conversions on the operating variables. Therefore, to clearly illustrate the dependence, 

surface response plots were developed, and are presented in Figure 4.24 and 4.25 for  

  

Factor or interaction 

p-Value of factor or interaction 

HDS HDN HDA 

Purity 0.2916 < 0.0001 < 0.0001 

Pressure 0.6136 < 0.0001 < 0.0001 

Gas/oil 0.8961 0.0199 0.0005 

(Purity)2  - 0.0030  - 

(Pressure)2  -  -  - 

(Gas/oil)2  -  -  - 

Purity x Pressure  -  -  - 

Purity x Gas/oil  -  -  - 

Pressure x Gas/oil  -  -  - 

Model 0.6937 < 0.0001 < 0.0001 
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(b) 

Figure 4.24: Surface response of the effects of pressure, H2 purity, and gas/oil ratio 
on HDN activity. 
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(b) 

Figure 4.25: Surface response of the effects of pressure, H2 purity, and gas/oil ratio 

on HDA activity. 
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HDN and HDA, respectively. These figures show that increasing pressure, H2 purity, 

and gas oil ratio led to increases in HDN and HDA conversions. As interpreting the 3-D 

surface response can be difficult, the perturbation plots of the effects of the variables on 

HDS (no surface response of HDS is shown), HDN and HDA are provided in Figure 

4.26, 4.27, and 4.28. When interpreting a perturbation plot, one needs to be cautious 

since it looks only at one-dimensional paths through a multifactor surface. Therefore, it 

is recommended that perturbation plots are used in conjunction with the 3-D surface 

responses.  Nonetheless, it is a powerful method of comparing the relative influences of 

factors (Anderson; Patrick, 2005).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.26: HDS perturbation plot. (A) is H2 purity, (B) is pressure, and (C) is 
gas/oil ratio. 
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Figure 4.27: HDN perturbation plot. (A) is H2 purity, (B) is pressure, and (C) is 
gas/oil ratio. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.28: HDA perturbation plot. (A) is H2 purity, (B) is pressure, and (C) is 
gas/oil ratio. 
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 A perturbation plot shows the effect of each individual variable as the others are 

held constant (Anderson; Patrick, 2005). Figure 4.26 shows that effects of pressure, H2 

purity, and gas/oil ratio on HDS are not considerably significant. Nonetheless, Figure 

4.26 does show that the effects of pressure and H2 purity on HDS are slightly greater 

than that of the gas/oil ratio. Figure 4.27 and 4.28 show that the effects of the pressure, 

H2 purity, and gas/oil ratio on HDN and HDA are noticeably significant, and that 

increasing these variables will lead to increases in HDN and HDA conversions.  

Moreover, these figures show that the effects of pressure and H2 purity on HDN and 

HDA are more significant than that of the gas/oil ratio.   

 In Figure 4.27 and 4.28, it can also be observed that effects of the variables are 

greater on HDN than on HDA. This correlatively implies that the effect of H2 pp is far 

greater on HDN than on HDA. However, by considering the mechanisms of HDN and 

HDA, one may expect the contrary. HDA reaction proceeds through hydrogenation, 

whereas HDN reaction proceeds through hydrogenation followed by hydrogenolysis, 

and hydrogenolysis is not affected by H2 pp (Girgis and Gates, 1991). One explanation 

may be that at an operating temperature of 380°C HDA activity is close to optimum due 

to equilibrium thermodynamic limitation (Girgis and Gates, 1991; Gray , 2007). Thus, 

the effects of the other variables are not as significant as they would have been at lower 

operating temperatures. A second explanation may be the fact that the overall rate of 

HDN is frequently determined by the hydrogenation rate rather than by hydrogenolysis 

(Girgis and Gates, 1991), and hydrogenolysis is not affected by H2 pp. Thus, pressure, 

H2 purity, and gas/oil ratio can only affect hydrogenation processes in HDN and HDA 

reactions. Since, hydrogenation of aromatic rings with heteroatoms is easier than of 
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those which lack a heteroatom, HDN is more affected than HDA. A possible third 

explanation is that the initial concentration of aromatics is about 100 fold that of the 

nitrogen concentration in the feed, indicating that no fair comparison can be made by 

looking at HDN and HDA conversions. 

 Differences among the HDS, HDN, and HDA mechanism may offer an 

explanation as to why there are dissimilarities in the effects of the variables on HDN and 

HDA versus those on HDS. As previously mentioned in this section, HDN reaction takes 

place via hydrogenation followed by hydrogenolysis, and HDA reaction occurs via 

hydrogenation. Increasing H2 purity, pressure, and gas/oil ratio result in increases in H2 

pp. This increase in H2 pp directly affects the hydrogenation process. As a result, 

changes in HDA and HDN conversions were observed as H2 purity, pressure, and gas/oil 

ratio were varied. On the other hand, HDS reaction can proceed via two pathways: 1) 

hydrogenation followed by hydrogenolysis or 2) direct hydrogenolysis (Anderson and 

Patrick, 2005; Knudsen et al., 1999). Consequently, HDS conversions were only very 

slightly affected by H2 partial pressure since HDS reaction has the option of taking place 

directly via hydrogenolysis. Consequently, no significant effects of pressure, H2 purity, 

and gas/oil ratio on HDS conversions were observed. 

 The optimal operating conditions were calculated based on constraints in which 

HDS, HDN, and HDA conversions were to be maximized within the ranges of the 

operating variables studied. The collective optimum operating conditions for HDS, 

HDN, and HDA were determined to be: pressure of 10.2 MPa, H2 purity of 95 vol. %, 

and gas/oil ratio of 1037 mL/mL. Experiments were conducted under these conditions, 

and the experimental data was compared to those predicted (see Table 4.12).  As shown  
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in Table 4.14, the percentage differences of HDS, HDN, and HDA for the experimental 

results versus the predicted results were 0.7%, 2.3%, and 0.2%, respectively. It may be 

noted that the results for HDS may not be reliable since the R2 of the developed model 

was only 0.0843.   

Table 4.14: Comparison between the predicted and observed values of 
hydrotreating at optimal conditions: pressure of 10.1 MPa, H2 purity of 95vol. %, 
and gas/oil ratio of 1037 mL/mL. Temperature and LHSV were 380°C and 1h-1, 
respectively. 

 

 

 

 

 

 

 

 

4.2.7 Effects of temperature and LHSV on hydrotreating activities 

 Effects of temperature and LHSV on the hydrotreating activity were also 

studied. Temperature and LHSV ranges were 360 to 400°C and 0.65 to 2 h-1, 

respectively. H2 purity, pressure and gas/oil ratio were kept constant at 100 %, 9 MPa, 

and 800 mL/mL, respectively. LHSV was kept constant at 1 h-1 when the effect of 

temperature was studied. Temperature was kept constant at 380°C when the effect of 

LHSV was studied. 

Reactions 

Predicted by 
models 

(%) 

Observed 
Experimentally

(%) 

Percentage 
differences 

(%) 

HDS 95.4 96.1 0.7 

HDN 80.1 82.0 2.3 

HDA 57.8 57.9 0.2 
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  LHSV, which is the inverse of residence time, is an indication of the time spent in 

the reactor by the reactants (Botchwey et al., 2003). It was observed that decreasing 

LHSV led to increases in HDS, HDN, and HDA conversions (see Figure 4.29). 

However, one needs to bear in mind that for HDA this observation is only true for the 

conditions employed in this work, especially temperature. For example, Mann et al. 

(1987) found that HDA is independent of LHSV (between 0.5-4 h-1) at the temperature 

of 450°C and pressure of 6.99 MPa.  The reason is that HDA maximum conversion is 

achieved between 370°C to 400°C (usually 375-385°C) due to the interrelation between 

thermodynamic equilibrium and reaction rates (Gray et al., 2007). The authors observed 

similar results for HDS and HDN to those found in this work. Increasing the  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29: Effect of LHSV on hydrotreating conversions. Pressure, temperature, 
H2 purity, and gas/oil ratio were 9MPa, 380°C, 100%, and 800 mL/mL, 
respectively. 
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temperature generally leads to increases in hydrotreating conversions. Nevertheless, 

excessive temperature may impose thermodynamic equilibrium limitations leading to 

decreases in hydrotreating conversions. In the cases of HDS and HDN, this hindering 

effect of temperature is observed at temperatures higher than those used in practice (i.e. 

> 425°C) (Girgis and Gates, 1991). In the case of HDA, the hindering effect of 

temperature is observed at lower temperatures than that of HDS and HDN. As 

mentioned earlier in this section, the maximum HDA conversion usually occurs at 

temperature range of 370°C to 385°C (Gray et al., 2007); this range could be little higher 

if the H2 partial pressure is substantially increased.  

  In this work it was found that both HDS and HDN conversions increase with 

increasing temperature, however, HDN shows superior increases than that of HDS (see 

Figure 4.30). This superior effect of temperature on HDN could not be because HDN 

has higher reaction rate than HDS. The bond energy of C=N (147 kcal/mol) is higher 

than that of C=S (114-128 kcal/mol). Moreover, N (0.75Å) has smaller atomic radius 

than S (1.09Å), therefore is more difficult to remove N than S (Landau , 1997). Thus in 

theory, HDS should be more significantly affected by temperature than HDN; however, 

this is not the case. An explanation may be that, at the temperature range under study, 

the effect of temperature on HDS starts to subside, while the effect of temperature on 

HDN starts to become more pronounced. In a study by Mann et al. (1987) using 

NiMo/γ-Al2O3 as a catalyst and HGO as a feed, it was found that in the temperature 

range of 300 to 350°C, HDS and HDN percentage conversions per °C (degree Celsius) 

were 0.25 and 0.10 %/°C, respectively. However, in the temperature range of 350 to 
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400°C HDN has a higher percentage conversion per °C (0.36%/°C) than HDS 

(0.22%/°C).  Figure 4.30 also shows that HDA conversion passes through a maximum 

with respect to the temperature, which is in agreement with the literature. By taking the 

first derivative of the equation of the empirical equation (see Equation 6), maximum 

HDA conversion was determined to have occurred at 385°C. From the foregoing 

discussion it seems that temperature is most critical of all of the variables.  

 HDA conversion = -0.0089 Temperature 2 + 6.8447 Temperature – 1258   (4.9) 

  

 

 

 

 

 

 

 

 

 

Figure 4.30: Effect of temperature on hydrotreating conversions. Pressure, LHSV, 
H2 purity, and gas/oil ratio were 9MPa, 1h-1, 100%, and 800 mL/mL, respectively. 
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(PL), Langmuir Hinshelwood model (L-H), and Multi-parameter model (M-P). The 

results obtained were compared those found in literature. 

4.3.1 Power law analysis of HDS, HDN, and HDA 

The Power law model has been used in many studies of kinetics modeling of 

HDS and HDN. However, open literature information on the kinetic studies of the HDA 

of real feed such as petroleum and synthetic middle distillate are very scarce; possibly 

due to complexity of the reactions (Owusu-Boakye, 2005). In this work, the reaction 

orders for the HDS, HDN, and HDA determined using the power law model and the 

results are summarized in Table 4.15. The values of reaction orders were determined 

from the best fit of experimental data.  Different values of n, thus different forms of 

Equation 2.6 solutions (see chapter 2), were tested and the ones that yielded the highest 

R2’s values were considered the appropriate reaction orders (Bej et al. 2002). 

Table 4.15: Results of Activation energies and reaction orders using power law, 

L-H, and multi-parameter kinetic models 

*The assumption for L-H is that HDS, HDN, and HDA are pseudo-1st 

 

Reactions 

Activation Energy (kJ/mol) Reaction order 

Power 
Law 

Langmuir-
Hinshelwood* 

Multi-
parameter 

Power 
Law 

Multi-
parameter 

HDS 101 99 119 2 2.68 

HDN 79 69 112 1.5 2.02 

HDA 

(360-380 °C) 30 62 34 1.5 Pseudo-1st 

HDA 

(380-400 °C) -18 -9 - 1.5 - 
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 In the experimental conditions chosen LHSV ranged between 0.65 and 2 h-1, 

while temperature, pressure, gas/oil ratio, and H2 purity were constant at 380 °C, 9 MPa, 

800 mL/mL, and 100 %, respectively. The reaction orders of HDS, HDN, and HDA 

were determined to be 2, 1.5, and 1.5 respectively. 

Arrhenius plots for HDS, HDN, and HDA (see Figure 4.31) were generated 

using experimental conditions where temperature ranged between 360 to 400°C, while 

LHSV, pressure, gas/oil ratio, and H2 purity were constant at 1 h-1, 9 MPa, 800 mL/mL, 

and 100 vol. %, respectively. R2 for Arrhenius plots range between 0.97 and 0.99. The 

Arrhenius plots show that HDS and HDN reactions are irreversible under these 

experimental conditions used in this study. It is well known that under industry 

conditions (Temperature: 340-425 °C and Pressure: 55-170 atm [5.6 – 17.2 MPa]) both 

HDS and HDN are irreversible (Girgis and Gates). Also, the Arrhenius plot shows that 

HDA is a reversible process under the considered experimental conditions. HDA 

apparent reaction rate increases with temperature until 380 °C, after which it starts to 

decrease. According to the literature maximum HDA is achieved between 370-385°C 

(Gray  et al., 2007).  

The activation energies for HDS, HDN, and HDA were calculated and the results 

are summarized in Table 4.15. The activation energies for HDS and HDN were 79 and 

101 kJ/mol, respectively. Due to reversibility of HDA two activation energies were 

calculated for the temperature ranges of 360-380°C and 380-400°C. In the 360-380°C 

range the value was 30 kJ/mol, and in the 380-400°C range the value was -18 kJ/mol. 

The explanation for this phenomenon is that increasing temperature has two competing 

effects on HDA: increased reaction rates and lower equilibrium conversions (Girgis and 
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Gates 1991). Thus at lower temperatures HDA is kinetically controlled, while at higher 

temperatures it is equilibrium controlled.  Consequently in practice a balance must be 

struck between using lower temperatures to achieve maximum reduction of aromatic 

content and using higher temperatures to give high reaction rates and a minimum 

amount of catalyst charge per barrel of feed (Gray  et al., 2007). 
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Figure 4.31: Arrhenius plot for: a) HDS, HDN, and b) HDA using power law model. 
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 The effect of H2pp on HDS, HDN, and HDA kinetics were also observed. In the 

experiments H2 purity was varied between 50 and 100 vol. % (with the rest methane), 

while temperature, pressure, gas/oil ratio, and LHSV were kept constant at 380°C, 9 

MPa, 800 mL/mL, and 1 h-1, respectively. The data was analyzed using the power law 

model and the results are presented in Figure 4.32. The results show that HDN is more 

sensitive to H2pp than HDS and HDA. This is explained by the differences in 

mechanisms of the HDS, HDN, and HDA, as discussed in section 4.2.4. Similar results 

were observed by Fang (1999), however, the study did not address HDA.  
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Figure 4.32: Rate constant as a function of: a) inlet H2 partial pressure and b) outlet 
H2 partial pressure 
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4.3.2 Langmuir-Hinshelwood analysis of HDS, HDN, and HDA 

The data for this analysis was generated using experimental conditions where 

temperature ranged from 360 to 400 °C, while LHSV, pressure, gas/oil ratio, and H2 

purity were constant at 1 h-1, 9 MPa, 800 mL/mL, and 100 vol. % , respectively. 

Equations 2.7.a, 2.8.a were used to determine apparent rate constants and adsorption 

equilibrium constants for HDS, HDN, and HDA. The apparent rate constants and 

adsorption equilibrium constants were determined using non-linear least squares 

approach. Apparent activation energies were determined from the slopes of the curve 

fitting by plotting the inverse of temperature against the logarithm of apparent kinetic 

rate constant (Owusu-Boakye, 2005). All the adsorption constants showed a decreasing 

trend with increasing temperature implying that HDS, HDN, and HDA are all 

exothermic reactions (Fogler, 1999). 

The decrease of H2S adsorption constant with temperature means that H2S 

inhibition on hydrotreating decreases with increasing temperature (Ferdous et al., 2006). 

Results of apparent rate constants show that HDA increases with temperature at 

temperatures below 380 °C and decreases at temperatures above 380 °C due to HDA 

reversibility. Activation energies were also calculated from Arrhenius plots (see Figure 

4.33). The activation energies (see Table 4.15) for HDS and HDN were 99 and 69 

kJ/mol, respectively. Due to the reversibility of HDA, two activation energies were 

calculated within the temperature ranges of 360-380°C and 380-400°C. In the 360-

380°C range, the value was 62 kJ/mol and in the 380-400°C range, the value was - 9 

kJ/mol. R2 for the Arrhenius plots ranged between 0.98 and 0.99. 
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Table 4.16: Summary of the rate constants and Adsorption constants determined 
using L-H model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 Temperature, °C 

HDS 360 370 380 390 400 

ks (h-1) 1.73 2.20 2.90 3.86 5.29 

Ks (MPa) 8.93 7.30 5.74 4.26 3.18 

2HK (MPa) 1.81 1.80 1.74 1.61 1.55 

SH2
K (MPa) 125.99 113.99 101.99 91.00 79.90 

      

HDN      

kn (h-1) 2.08 2.64 3.15 3.68 4.66 

Kn(MPa) 2.15 2.09 1.97 1.78 1.67 

2HK (MPa) 1.81 1.80 1.74 1.61 1.55 

SH2
K (MPa) 125.99 113.99 101.99 91.00 79.90 

      

HDA      

ka (h-1) 4.01 4.92 5.74 5.61 5.47 

Ka (MPa) 4.50 3.79 3.16 2.91 2.65 

2HK (MPa) 2.86 2.54 2.45 2.40 2.34 

SH2
K (MPa) 119.00 108.99 101.98 88.49 74.99 
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Figure 4.33: Arrhenius plot for: a) HDS, HDN, and b) HDA using L-H model 
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4.3.3 Multi-parameter Model analysis of HDS, HDN, and HDA 

The data for this analysis was generated under experimental conditions where 

temperature, pressure, gas/oil ratio, LHSV and H2 purity  ranged between 360 to 400 °C, 

7 to 11 MPa, 400 to 1200 mL/mL, 0.65 to 1 h-1, and 75 to 100 vol. % (with the rest 

methane), respectively. The data was analyzed using the non-linear regression model in 

Polymath software. The parameters for HDS, HDN and HDA are shown in Table 4.17. 

The activation energies (Table 4.15) and reaction orders of HDS, HDN, and HDA were 

119 kJ/mol and 2.68, 112 kJ/mol and 2.02, 34 kJ/mol and 1 (pseudo-first order), 

respectively. The parameters for HDA were determined for temperature below 380 °C. 

As the temperature went above 380 °C, the HDA conversion decreased as the 

hydrogenation reversed. R2 for HDS, HDN, and HDA were 0.76, 0.92, and 0.90, 

respectively.  

        Table 4.17: Multi-parameter model parameters for HDS, HDN, and HDA. 

 

 

 

 

 

 

 

 

Parameter HDS HDN HDA 

ko 3.53 x 1010 8.03 x 108 1.63 x 102 

s 1.42 x 104 1.35 x 104 4.08 x 103 

m 0.98 1.82 0.47 

q -0.31 -0.22 -0.01 

c 2.72 2.04 0.24 

n 2.68 2.02 Pseudo-1st 
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4.3.4 Comparison of the prediction power of different kinetics models 

Comparison of activation energies and reaction orders obtained using different 

kinetics model are presented in Table 4.15. Most studies often report how well the 

predicted data agrees with the experimental data, which is used to generate the model(s), 

i.e. they report R2.  A better approach is to test the ability of the developed model (s) to 

predict new observations or data that are not used in generation of the model (s), i.e. to 

test their predicted R2. Hence, three experiments were conducted in which pressure, 

temperature, LHSV, gas/oil ratio were kept constant at 9 MPa, 380 °C, 1 h-1, and 800 

mL/mL, respectively. Only H2 purity was varied as follows: 50, 80, and 90 vol. % (with 

the rest methane). None of these conditions were used in the development of the kinetic 

models. Also, note that experimental condition at 50 % H2 purity is an extrapulated 

condition, i.e. falls outside the range of the conditions  originally used to develop the 

models. The power law model could not be used because of its exclusion of many of the 

process variables.  

The comparison between the multi-parameter model and the L-H model is 

presented in Table 4.15. Muti-parameter model was reasonably accurate at predicting 

values for HDS, HDN and HDA conversions. L-H model was reasonably accurate at 

predicting  values for HDS and HDN conversions , however, it could not predict well the 

extrapulated condition. Moreover, HDA predicted results using Equation 2.9.a, which is 

a version of L-H type model,  were not logical as they suggested that HDA conversion 

increases with decreasing H2 purity. Thus, the assumption that H2 does not inhibit HDA 

was discarded, and Equation 2.8.a was used instead. The results of the predictions are 

shown in Table 4.18. With the assumption that H2 does indeed inhibit HDA, better 
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agreement between the predicted and experimental data was obtained. The results of the 

apparant rate constant and equilibrium adsorption constants of HDA using Equation 

2.8.a are given in Table 4.19. Activation energy was calculated for each of the two 

temperature ranges: 360-380 °C and 380-400 °C. In the 360-380 °C range the value was 

58 kJ/mol, and in the 380-400 °C range the value was - 5 kJ/mol. R2 for Arrhenius plots 

ranged between 0.92 and 0.99. The advantage of the multi-parameter model is that it 

results in better predicted values even for extrapolated conditions, while the advantage 

of the L-H model is that a smaller amount of experimental data is needed to determine 

its parameters. 

 

 A comparison between the activation energies and reaction orders determined in 

this work and range to those found in the literature is summarized in Table 4.20. It can 

be seen in this table that activation energies and reaction orders determined in this are in 

reasonable agreement with those reported in the literature. Discrepancies in the 

activation energy values can be attributed to changes in the (assumed) reaction 

mechanism or interference of physical phenomenon such as diffusion (Ferdous et al., 

2006). 
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Table 4.18: Comparison on the predictive power of multi-parameter versus L-H 

 

 

 

 

 

 

 

  ‡ Using Equation 2.9, *Using Equation 2.8. 

 

 

Purity 
(vol. %) 

Determined 
experimentally (%) 

 Determined from the models (%) 

 Multi-parameter  L-H Model 

HDS HDN HDA  HDS HDN HDA  HDS HDN HDA‡ HDA* 

50 92 38 38  92 45 38  73 30 100 29 

80 95 64 48  95 67 50  93 63 93 46 

90 96 71 49  95 72 53  95 70 83 50 
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Table 4.19: Rate constants and Adsorption constants of HDA using Equation 2.8a 

 

 

 

 

 

 

 

 

 

 

 

 Temperature, °C  

HDA 360 370 380 390 400 

ka (h-1) 3.70 4.45 5.18 5.14 5.05 

Ka (h-1) 0.85 0.76 0.60 0.58 0.55 

2HK (MPa) 2.54 2.37 2.21 2.15 2.09 

SH2
K (MPa) 124.99 113.99 102.06 80.83 76.99 
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Table 4.20: Comparison of reaction orders and activation energies determined in this work and those found in the literature 

 

  

References 

  

Boiling 
range 

feed,°C 

  

Kinetic 
model 

  

Reaction order 

  

  

Activation energy, kJ/mol 

  

HDS HDN 

HDA  

<380°C

HDA  

>380°C HDS HDN 
HDA 

<380°C

HDA  

>380°C

Yui and 
Dodge, 2006 286-541 P-L 1.5 1 1  - 151 132 72  - 

Ai-jun et 
al.,2005 214-559 M-P 1.5 1.6  -  - 141 94  -  - 

Owusu-
Boakye et al. 

170-439 L-H 
Pseudo 

1st  - 
Pseudo 

1st  - 55  - 85  - 
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2006 

Ferdous et 
al. 2006 185-576 L-H 1 1.5  -  - 87 74  -  - 

Bej et al.  
2001a & b 210-655 P-L 1.5 2  -  - 28 80  -  - 

Mann et 
al.1987 HGO P-L 1.5 2  -  - 87 105  -  - 

Yui and 
Sanford,1989 196-515  P-L 1 1.5  -  - 138 92  -  - 

Botchwey et 
al.,2004 210-600 L-H 

Pseudo 
1st 

Pseudo 
1st  -  - 114.2 93.5  -  - 

Present work 258 - 592 P-L 2 1.5 1.5 1.5 101 79 30 -17 

Present work 259 - 592 M-P 2.68 2.02 
Pseudo 

1st  - 119 112 34  - 

Present work 260 - 592 L-H 
Pseudo 

1st 
Pseudo 

1st 
Pseudo 

1st 
Pseudo 

1st 99 69 58 -5 
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4.3.5 Importance of Outlet H2 pp 

 McCulloch and Roeder (1976) suggested that more meaningful results are attained 

when outlet H2 partial pressure is used especially from the catalyst’s deactivation 

standpoint, however, the authors did not support this suggestion with experimental 

evidences. Catalyst deactivation is the most important concern in any catalytic process. 

In hydrotreating it is well known that increasing H2 pp results in decreases in 

deactivation rate. Due to H2 consumption, the reactor’s outlet H2 pp pressure can be 

considerably lower than its inlet H2 pp, especially for heavy feedstock . Therefore the 

portion of the catalyst bed at and near the reactor outlet may experience higher 

deactivation rate as a results of lower H2 pp environment.  

 Botchwey et al. (2006)  and Alvarez and Ancheyta et al.(1999) experimentally 

showed that the largest portion of hydrotreating conversions take place in the first ~30% 

of the catalyst bed’s length. Consequently this is also where most of the hydrogen 

consumption takes place, leaving a large portion of the catalyst’s bed at a H2 pp level 

significanlty lower than that at the inlet. Another noteworthy point that can be deduced 

from Botchwey et al. (2006) and Ancheyta et al. (1999) findings is that for about ~70% 

of the catalyst bed’s length the H2 pp level is closer in value to the outlet H2 partial 

pressure than it is to the inlet H2 pp. In other words, outlet H2 pp level resembles that 

experienced by most parts of the catalyst’s bed. Therefore, it is very critical that the 

outlet H2 partial pressure is determined so more complete and meaningful conclusions 

are drawn. 
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 To show the relationship between the catalyst deactivation and H2 pp levels, a 

commerical NiMo/γ-Al2O3 catalyst bed was subjected to two inlet H2 pps of 4.5 MPa 

and 8.1 MPa for a period of three days while carrying out hydrotreating experiments. 

Before the catalyst bed was subjected to either of the two H2 pp levels a designated 

experiement with inlet H2 pp of 9 MPa , named “control” , was conducted. The same  

“control” experiment was then repeated after the catalyst bed had been subjected to inlet 

H2 pp of 4.5 MPa or 8.1 MPa. The hypothesis was that if the “before” and the “after” 

hydrotreating conversions of  the “control’ experiment were different it can be 

concluded that the catalyst underwent some deactivation. The temperature and LHSV 

were 380°C and 1 h-1 repectively for all experiments. The results are presented in Table 

4.21. 

 Table 4.21 shows that for the experiment at 4.5 MPa inlet H2 pp, the “after” HDN 

and HDA conversions of the “control” are lower than those of the “before” conversions , 

indicating that the catalyst suffered deactivation due to low H2 pp levels. No significant 

differences were observed between the “after” and “before” HDN and HDA conversions 

in the experiment conducted at H2 pp of 8.1 MPa. Thus, it can be seen that lower H2 pp 

may cause severe catalyst deactivation in a very short time. It is therefore important that 

the entire catalyst bed is maintained at a high enough H2 partial pressure (i.e. pressure 

and H2 purity should not drop below the design levels (Gruia, 2006)) to avoid 

deactivation. One way of ensuring that the entire catalyst bed is at sufficient H2 pp level 

is to ensure that the outlet H2 pp, the reactor point with the lowest H2 pp, is high enough 

to avoid untimely catalyst deactivation catalyst.  
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Table 4.21: Results of the catalyst deactivation testing. T = 380˚C and  

LHSV = 1 h-1. 

 

Activity 

 For H2 pp of 8.1 MPa  For H2pp of 4.5 MPa 

 Before After  Before After 

HDN (%)  75 75  74 68 

HDA (%)  53 54  53 50 
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5.      Summary, Conclusions and Recommendations 

5.1  Summary  

(a) Phase Ι 

 (1) Methane is inert toward the hydrotreating activity of Ni-Mo/γ-alumina. Its presence 

in the hydrogen stream only affects the hydroprocessing conversions through the 

reduction of the hydrogen partial pressure of the system.  

(2) Increasing system total pressure can be used to offset the use of lower hydrogen 

purity to attain similar hydrogen partial pressure, such as that of higher purity hydrogen 

at a lower total pressure. This can be performed without negatively affecting the 

hydroprocessing conversions.  

(3) Dilution of hydrogen gas with methane gas up to 25 vol. % did not significantly 

change the HDS, HDN, and HDA activities of Ni-Mo/γ-alumina catalyst. 

 (4) Because methane was proven to be inert toward the catalyst and because reasonable 

conversions can be realized using less pure hydrogen, as low as 80% purity, it is not a 

necessity to produce ultra-pure hydrogen to be used in hydrotreating purposes. Thus, 

cheaper hydrogen recovery units featuring moderate product purities may be used to 

purify hydrotreater effluent gases. For PSA, better recoveries can be attained when 

hydrogen purity criteria are relaxed; thus, lower hydrogen losses and optimal economics 

are attained. 
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(b)  Phase ΙΙ 

(1) Increasing reactor pressure and H2 purity lead to increases in inlet H2 pp, whereas, 

increasing gas/oil ratio does not have significant effect on inlet H2 pp 

(2) Increasing pressure, gas/oil ratio, and H2 purity lead to increases in outlet H2 pp. The 

effects of pressure and H2 purity are more significant than that of gas/oil ratio on outlet 

H2 pp. 

(3) Temperature and LHSV do not have significant effects on inlet or outlet H2 pp. 

(4) HDS, HDN, and HDA increase with increasing H2 pp. Within the range of the 

conditions studied HDN is more affected by H2 pp than HDS and HDA . 

(5) Correlations between outlet H2 pp and hydrotreating conversions had higher R2 than 

those of inlet H2 pp. This may suggest that it is better to use outlet H2 pp for design 

applications. 

(6) Increasing H2 pp results in increases in hydrogen consumption and dissolution, 

however, no clear correlation was obtained with regard to feed vaporization. 

(7) Increasing pressure, H2 purity, and gas/oil ratio led to increases in HDN and HDA 

activities. Effects of these variables on HDS activity are not considerably significant. 

(8) The positive effects of H2 purity on HDN and HDA activities were greater than those 

of gas/oil ratio and comparable to those of reactor pressure.  

(9) The optimal conditions for HDS, HDN, and HDA are: pressure of 10.1 MPa, H2 

purity of 95vol. %, and gas/oil ratio of 1037 mL/mL. This is achieved at temperature and 

LHSV of 380°C and 1 h-1, respectively. 
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(10) Decreasing LHSV led to increases in HDS, HDN, and HDA activities, while 

increasing temperature led to increases in HDS and HDN. HDA passed through a 

maximum of 380°C as the temperature was varied.  

 

(c) Phase ΙΙΙ 

(1)  Multi-parameter model gave better hydrotreating conversions’ predictions than L-H. 

 (2)  A low H2 pp environment can accelerate the catalyst’s deactivation 

(3)  Information on H2 pp effects on hydrotreating activities can be equally satisfactorily 

obtained using either inlet or outlet H2 partial pressure. However, from the catalyst 

deactivation standpoint it is vital to use outlet H2 pp, since it is the point in the reactor 

point with the lowest H2 pp.  

 

5.2 Hypothesis Evaluation 

 In Chapter 1 three hypotheses were made, and are evaluated below: 

• Within the experimental limits, it was confirmed that methane does not inhibit 

the NiMo/γ-Al2O3 catalyst. However, its presence resulted in decreases in HT 

activities due to reduction in H2 pp. 

• Increasing pressure and H2 purity let to increases in inlet and outlet H2 pp’s; this 

finding was in accordance with the hypothesis. However, increasing gas/oil only 

increased outlet H2 pp, and had no effect on the inlet H2 pp. 

• The Multi-parameter kinetic model yielded better prediction than L-H. Thus, 

hypothesizing that L-H would yield the best predictions amongst the three 

considered models (L-H, P-L, and M-P) was false. 
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5.3  Conclusion and Recommendations 

The main objective of this thesis was to study the effect of hydrogen partial 

pressure on hydrotreating of heavy gas oil over a commercial NiMo/γ-Al2O3 in a micro-

trickle bed reactor. It was concluded that increasing hydrogen partial pressure resulted in 

increases on HDS, HDN, and HDA conversions; HDN and HDA were significantly 

influenced by hydrogen partial pressure in comparison to HDS. From the catalyst 

deactivation standpoint it is a better approach to use the outlet H2 partial pressure, not 

the inlet H2 partial pressure, to correlate the hydrotreating conversions to H2 partial 

pressure, since the reactor’s outlet is the point with the lowest H2 partial pressure in the 

system.  

 

5.4 Future Work 

A single feed, HGO, was used in the current study. The observations and 

conclusions made here can not be generalized for the rest of the petroleum fractions. 

Light feeds such as naphtha may give totally different results, since feed vaporization 

can be as high as 100%. Thus it is recommended that future studies should be carried out 

using different feedstocks. 
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APPENDICE  

Appendix A: Experimental calibration  

A.1 Mass flow meter calibration 

 

Two mass flow meters were calibrated one for hydrogen and another for methane 

using bubble flow meter attached at the exit of the backpressure regulator (see Figure 

3.1, Chapter 3). The calibration was done at experimental conditions and the 

measurements were standardized to atmospheric conditions using Equation A.1. Figures 

A.1, A.2, A.3 show the calibration curves of hydrogen, helium, and methane flow 

controllers, respectivley.   
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PV ⎟
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°
=°  

Where: V°, T°, P° = volume, temperature, and pressure, respectively, at STP; V, 

T, P = volume, temperature, and pressure at normal operating conditions 

 

A.2 Reactor temperature calibration 

 

 The reactor was loaded following the loading method highlighted in Figure 3.2 

(Chapter 3). Two thermocouples were used to calibrate the temperature. One 

thermocouple was attached to centre of the catalyst bed to measure the corresponding 

temperature while the other was moved axially at the centre of the reactor at 1 cm 

intervals and temperature was recorded at each point. The results of the calibration are 

presented in figures A.4 & A.5. Figure A.4 shows the axial temperature profile while 

Figure A.5 shows the temperature controller calibration curve. 
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Figure A.1: Calibration curve for H2 mass flow meter 

 

 

 

 

 

 

 

 

 

 

Figure A.2: Calibration curve for He mass flow meter 
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Figure A.3: Calibration curve for CH4 mass flow meter. 

 

 

 

 

 

 

 

 

 

 

  

Figure A.4: Axial temperature profile. 
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Figure A.5: Temperature calibration curve. 
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Appendix B: Experimental calculations and mass balance closure  

 The H2 mass balance closure was measured using Equation B.1. This steady-state 

equation assumed that the summation amount of H2 in the liquid feed and the inlet gas 

stream is equal to that of amount of H2 in the liquid products and outlet gas stream. The 

H2 contents of the liquid feed and the liquid products were measured using CHNS 

analyzer (model: VARIO ELΙΙΙ, Elementar Americas, USA), while the H2 contents of 

the inlet and outlet gas streams were measured using a GC (model: 6890N, Agilent, 

USA). The overall material balance was 96%. 

 

2222 HHHH OGoductPrIGFeed +=+               (B.1) 

Where: Feed H2, IGH2, Product H2, and OG H2 are the H2 contents of feed, inlet gas, 

liquid product, and outlet gas, respectively. 
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 Appendix C: Experimental data 
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Table C.1: Experimental data for the effect of hydrogen purity study. Temperature and LHSV were kept constant at 380ºC 
and 1 h-1, respectively. 

 

 

 

Pressure Gas/oil H2 purity Gas mixture HDN HDS HDA 
MPa mL/mL vol.%   % % % 

9 800 0 H2 1.0 1.0 1.0 
9 800 50 H2/CH4 38.1 94.1 38.0 
9 800 80 H2/CH4 64.1 95.2 48.0 
9 800 90 H2/CH4 71.0 96.0 49.0 
9 800 100 H2/CH4 75.0 96.0 54.0 

7.2 800 100 H2 61.1 95.0 48.0 
9 800 80 H2/CH4 64.1 95.2 48.0 
9 800 80 H2/He 64.8 95.0 49.0 
9 800 50 H2/CH4 38.1 94.1 37.3 
9 800 50 H2/He 36.6 91.8 35.9 
9 400 100 H2 67.8 95.6 49.2 
9 800 50 H2/CH4 38.0 92.2 37.1 

10.1 800 50 H2/CH4 49.1 93.8 46.3 
9 1,270 50 H2/CH4 38.2 92.8 38.1 
9 800 90 H2/CH4 71.2 96.0 49.1 
9 800 80 H2/CH4 66.8 95.5 46.9 

10.1 800 80 H2/CH4 73.1 96.8 55.0 
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Table C.2: Experimental data for phase ΙΙ; temperature and LHSV were kept constant at 380ºC, and 1 h-1, respectively 

Experimental Conditions       Response     

Pressure Gas/oil Purity   HDN HDS HDA Inlet H2 pp Outlet H2 pp H2 consumption Vaporized feed
H2 

consumption 
(MPa) (mL/mL) (%)   (%) (%) (%) (MPa) (MPa) (scf/bbl) (g/h) (scf/bbl) 

9.0 800 75   63.2 95.8 48.9 6.7 5.3 47.4 1.00 1217.4 
7.8 1038 80   59.1 95.4 48.1 6.2 5.4 69.2 1.37 1193.3 

10.2 562 80   67.4 93.6 51.2 8.1 5.8 64.9 0.59 1268.5 
7.8 562 80   55.1 94.9 46.0 6.2 4.6 46.0 0.77 1160.7 
10.2 1038 80   67.6 93.2 52.6 8.1 7.0 65.5 0.60 1285.4 
9.0 400 88   59.9 96.0 47.9 7.8 5.2 59.5 0.33 1217.6 
9.0 1200 88   65.0 95.3 53.0 7.8 6.9 103.0 1.46 1292.4 
7.0 800 88   54.4 94.5 46.1 6.1 5.6 45.9 0.89 1155.8 
9.0 800 88   66.7 95.5 51.8 7.8 6.8 65.8 0.92 1277.4 
9.0 800 88   65.7 94.0 52.4 7.8 6.8 65.9 0.92 1282.4 
11.0 800 88   72.8 95.0 54.9 9.6 8.3 88.2 0.75 1350.9 
9.0 800 88   68.2 95.6 52.4 7.8 6.8 65.8 0.92 1287.7 
9.0 800 88   66.6 92.9 53.1 7.8 6.8 65.9 0.92 1290.4 
9.0 800 88   69.6 95.8 52.6 7.8 6.8 65.8 0.92 1292.2 
9.0 800 88   66.3 95.0 51.8 7.8 6.8 65.9 0.92 1274.8 
7.8 1038 95   69.3 93.8 53.9 7.3 6.8 56.9 1.25 1297.2 
7.8 562 95   65.7 94.0 52.3 7.3 6.2 64.0 0.67 1304.2 
10.2 562 95   78.5 96.0 55.5 9.5 8.1 92.3 0.51 1339.1 
10.2 1038 95   83.9 96.7 58.0 9.6 8.9 85.1 0.99 1404.2 
9.0 800 100   78.8 96.6 55.4 8.9 8.2 80.9 0.84 1352.5 
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Table C.3: Experimental data for the effects of temperature and LHSV on 
hydrotreating conversions. Pressure, gas/oil ratio, and H2 purity were kept constant 
at 9MPa, 800 mL/mL, and 100%, respectively.  

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

LHSV = 1 h-1 

Temperature, °C 
HDS 
(%) 

HDN  
(%) 

HDA 
 (%) 

360 93.92 62.09 49.1 
370 95.67 70 51.7 
380 96.79 75.17 54 
390 97.14 77.96 53.4 
400 98.09 85.41 51.2 

       

LHSV, h-1 
 

T= 380ºC 
0.65 97.51 85.3 57.7 

1 96.79 75.17 54.0 
1.5 93.22 58.05 52.1 
2 86.73 42.73 48.8 
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D. A Simple Approach for the Determination of Outlet H2 pp 

D.1 Background 

 H2 partial pressure is a principal variable in hydrotreating applications (Gray et 

al., 2007). Due to the considerable hydrogen consumption during the process of 

hydrotreatment, outlet H2 partial pressure varies significantly from that at the inlet. 

Outlet H2 partial pressure is of great importance in that: (i) Outlet conditions reflect the 

catalyst’s last opportunity to hydrotreat the feedstock, and (ii) the outlet conditions, to a 

large extent, more nearly approximates the average conditions throughout the catalyst 

bed” (McCulloch and Reader, 1976). 

 Determination of the outlet H2 partial pressure can be facilitated with the use of 

vapor-liquid equilibrium (VLE) data offered by engineering software such as HYSYS 

(ASPEN). HYSYS presents functionalities like Peng-Robinson equation (P-R), Soave-

Redlich-Kwong equation (SRK), and Grayson-Streed equation (G-S), which are suitable 

models for hydrotreating applications (Lal et al. 1999). These models can also give 

information on the solubility of H2 in petroleum products. Such information can be 

valuable in the design of up-grading processes for such materials (Lal et al. 1999).  

 However, it is worth noting that the use of HYSYS to determine outlet H2 partial 

pressure for hydrotreating application can be quite a lengthy process. Thus, an attempt 

was made to develop a shortcut estimation method which can determine the outlet H2 

partial pressure to a reasonable degree of accuracy. This aim therefore was the objective 

of this work. 
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D.2 Results and Discussion 

 H2 partial pressure is not a dependent variable. It is a function of pressure, H2 

purity, gas/oil ratio, temperature, and LHSV (McCulloch and Reader, 1976). However, 

the effects of pressure, H2 purity, and gas/oil ratio on H2 partial pressure are much more 

significant than that of temperature and LHSV  (Antes and Aitani, 2004). Hence, 

experiments were carried out at constant temperature and LHSV, while pressure, H2 

purity, and gas/oil ratio were varied in the range of 7-11 MPa, 75-100 vol.% (with the 

rest methane), and 400-1200 mL/mL, respectively. In our previous work methane was 

found to be inert toward commercial NiMo/γ-Al2O3 catalyst (Mapiour et al., 2009). 

Expert Design 6.0.1 was used in experimental design.  

 

D.2.1  Determination of Total H2 consumption. Unlike the determination of inlet H2 

partial pressure, the determination of outlet H2 partial pressure requires the knowledge of 

H2 consumption. Total H2 consumption is a summation of the chemical H2 consumption 

and dissolved H2, assuming that any mechanical H2 loss and hydrocracking are 

negligible ((McCulloch and Reader, 1976). An equation that may aid in total H2 

consumption calculation is (McCulloch and Reader, 1976; Hisamitsu et al. 1976): 

Total H2 consumption = chemical H2 consumption + dissolved H2 (scf/bbl)       (D.1) 

where: 

Dissolved H2 can be determined from vapor/liquid equilibrium  
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where: 

 CA, S, and N = aromatic carbon, sulfur, and nitrogen contents (wt.%), 

respectively, and subscripts “f” and “p” = feed and products, respectively; SH2
H'  

and
3NHH' =  amount of H2 necessary to form hydrocarbon during HDS and HDN 

(scf/bbl), respectively; SH2
H  and 

3NHH = H2 content of H2S and NH3 in the product gas 

(scf/bbl) , respectively; 379 = number of standard cubic feet in a mole of an ideal gas 

(scf/mole); density feed = 346 lb/bbl. The units for H2 consumption is scf/bbl. 

D.2.2  Vapor/liquid equlibrium. The Peng-Robinson, Soave-Redlich-Kwong, and 

Grayson-Streed equations available in HYSYS 2006 were used to perform the VLE 

analysis from the following input data: temperature, pressure, treat gas rate and 

composition, and feed rate and properties. Boiling range distributions of the feed and the 

liquid products were determined using GC – simulated distillation (model: CP3800, 

Varian, Palo Alto, CA, USA) following standard procedure ASTM D2887. To determine 

the inlet hydrogen partial pressure, feed’s boiling range data was fed into HYSYS along 

with the gaseous compositions and flowrates information. To determine the outlet 

hydrogen partial pressure the product’s boiling range data was fed into HYSYS along 
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with the gaseous compositions and flowrates information. It is note worthy that at the 

outlet conditions the gaseous compositions account for the produced H2S and NH3, and 

also the decrease in H2 amount due to H2 consumptions. H2S and NH3 are produced as a 

result of HDS and HDN, respectively. HYSYS was set such that it reported vapor/liquid 

equilibrium as mole fractions. Inlet or outlet H2 partial pressure was then calculated by 

multiplying the H2 mole fraction by the system’s pressure. Results of the outlet H2 

partial pressure using the Peng-Robinson’s equation, Soave-Redlich-Kwong equation, 

and Grayson-Streed equation are presented in Table D.1. 

D.2.3  Estimation of outlet H2 partial pressure: It is always desirable in general 

engineering practice to develop approaches that can estimate quantities to a certain 

degree of accuracy. As mentioned in the introduction, the use of tools such as HYSYS 

demands extended time since it requires additional analysis of the liquid products beside 

analysis for sulfur, nitrogen, and aromatics contents. Our approach only requires sulfur, 

nitrogen, and aromatics contents analysis of the liquid products. The derivation of this 

approach is shown below as adopted from (Fogler, 1999). 

Consider the following hydrotreating reaction equation: 

)(4)(2)(3)()()(2)(4 5.2 gggllgg CHSHNHsaturateddunsaturateHCH +++→++  (D.2) 

Assume isothermal and isobaric, then H2 gas phase is: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
x

xCC
oHH ε1

1  (D.3) 

where: 
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 Table D.1: Results of the outlet H2 partial pressure using SRK, G-S, and P-R equation, 
and the estimation method. 

Experimental Conditions 

  

Outlet H2 partial pressure 

(MPa) 

Pressure 

(MPa) 

Gas/oil 

(ml/ml) 

Purity 

(%) 

 

SRK G-S P-R Estimation 

9.0 800.0 75.0  5.32 5.32 5.32 5.44 

7.8 1037.8 80.1  5.41 5.41 5.41 5.43 

10.2 562.2 80.1  5.81 5.79 5.82 5.81 

7.8 562.2 80.1  4.57 4.56 4.58 4.61 

10.2 1037.8 80.1  7.03 7.04 7.03 7.01 

9.0 400.0 87.5  5.16 5.18 5.18 4.93 

9.0 1200.0 87.5  7.19 6.89 7.19 7.06 

7.0 800.0 87.5  5.33 5.60 5.33 5.22 

9.0 800.0 87.5  6.80 6.81 6.81 6.58 

9.0 800.0 87.5  6.80 6.82 6.81 6.57 

11.0 800.0 87.5  8.30 8.31 8.30 7.96 

9.0 800.0 87.5  6.80 6.81 6.81 6.57 

9.0 800.0 87.5  6.80 6.82 6.81 6.98 

9.0 800.0 87.5  6.80 6.81 6.81 6.97 

9.0 800.0 87.5  6.80 6.82 6.81 6.98 

7.8 1037.8 94.9  6.80 6.81 6.80 6.80 

7.8 562.2 94.9  6.20 6.20 6.21 6.21 

10.2 562.2 94.9  8.04 8.08 8.04 8.01 

10.2 1037.8 94.9  8.86 8.88 8.85 8.81 

9.0 800.0 100.0  8.19 8.22 8.19 8.02 
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5.0)15.201101(* −=−−−+++==
oo HH yy δε  (D.4) 
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but: T = To and P = Po  

thus: 
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inout HHH 5.01

1*  (D.7) 
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Hence: 
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 (D.9) 

  where: 

 CHo and CH = initial and final concentration of H2, respectively; x = conversion of 

H2; Po and P = inlet and outlet pressure, respectively; To and T = inlet and outlet 

temperature, respectively; yHo and yH = inlet and outlet H2 mole fractions, respectively; 

PH in and PH out = inlet and outlet H2 partial pressure, respectively; FAo and FA H2 inlet 

and outlet molar flowrate, respectively; ε = the change in the number of moles per mole 

of H2 fed; δ = the change in the number of moles per mole of H2 reacted. 
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 H2 consumption can be determined using Equation D.1. However, there is no 

means of determining the amount of the dissolved H2. Thus the amount of dissolved H2 

is assumed negligible in the approach, and Equation D.1.a can be used instead for 

approximating the amount of H2 consumption. This is a reasonable assumption since 

chemical H2 consumption is a lot larger than the amount of the dissolved H2.  The results 

of the calculation of the outlet H2 partial pressure using this estimation approach are 

presented in Table D.1. Inlet Hydrogen partial pressure can simply be estimated by 

multiplying pressure by H2 purity (or H2 mole fraction in the gaseous phase).  

 

D.2.4  Comparison between the results of the estimation approach and that of HYSYS. 

Figure D.1, D.2, and D.3 show the agreements between outlet H2 partial pressures using 

the estimation approach and those using Soave-Redlich-Kwong equation, Grayson-

Streed equation, and Peng -Robinson equation, respectively. The R2 for these plots were 

found to be 0.9737, 0.9596, and 0.9733, respectively. These high R2 values suggest that 

the estimation approach gives a reasonable means for quick determination of outlet H2 

partial pressure for industrial hydrotreating applications. Moreover, these R2 values 

show that the estimation approach is in sound agreement with SRK and P-R than with 

G-S. This fact adds to the credibility of this estimation approach, since, the SRK and P-

R present a better approach for hydrotreating applications (Lal et al., 1999) (further 

discussion in section D.2.5). Figure D.4 shows that H2 partial pressure determined using 

SRK and P-R are in nearly prefect agreement with R2 of 1. Also shown in the same 

figure, the R2 for the agreement between H2 partial pressure determined using P-R and 

G-S is 0.9933. A source of discrepancy between the outlet H2 partial pressure 
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determined using the estimation approach and those using HYSYS is that in the 

estimation approach, H2 consumed due to the dissolution is not accounted for.  

 

 

 

 

 

 

         
Figure D.1: Correlations of the outlet H2 partial pressure using the estimation 
approach and SRK equation 

 

 

 

 

 

 

 

Figure D.2: Correlations of the outlet H2 partial pressure using the estimation 
approach and G-S equation 
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R2 = 0.9733
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Figure D.3: Correlations of the outlet H2 partial pressure using the estimation 
approach and P-R equation. 

 

 

 

 

 

 

 

 

Figure D.4: Correlations of the outlet H2 partial pressure using P-R, SRK, and G-S 
equations 
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D.2.5  H2 dissolution. The knowledge of the amount of the dissolved H2 is required for 

more accurate determination of H2 consumption and consequently outlet H2 partial 

pressure. The amounts of the dissolved H2 were determined using SRK, P-R, and G-S 

equations. The agreements among these three equations in the determination of the 

amount of H2 dissolved are presented in Figure D.5. The R2 values obtained for the SRK 

versus the P-R method is 0.9984, whereas that for the G-S versus P-R method was 

0.9586. Similar results were observed by Lal et al .(1999). Moreover, the authors 

reported that results of H2 dissolution obtained from SRK and P-R equations were more 

in agreement with the experimental data than were those obtained from the G-S 

equation. For more accurate VLE for hydrotreating applications, the use of either SRK 

or P-R for the determination of dissolved H2 is recommended in comparison to that of 

the G-S approach. 

 

 

 

 

 

 

 

Figure D.5: Correlations of the dissolved H2 using P-R, SRK, and G-S equations 



169 
 

D.3 Application  

 Frequently refiners draw their process conclusions from the reactor inlet H2 partial 

pressure. McCulloch and Roeder argued that from a catalyst deactivation standpoint, it 

more important to look at outlet H2 partial pressure especially in cases where H2 

consumption is high such as in hydrotreating of heavier feedstock with high 

concentrations of sulfur and nitrogen. This equation can be used as a quick way to 

determined outlet H2 partial pressure, which then can be used to draw more appropriate 

conclusions. 

D.4 Limitation  

 For lighter petroleum products such as naphthas, this estimation may yield less 

accurate results as compared to heavier petroleum products. The reason is that this 

estimation assumes that feed vaporization is negligible.  

D.5 Final Comments 

 A simple approach for the determination of the outlet H2 partial pressure was 

developed. The H2 partial pressures determined using this estimation match well those 

determined using Peng-Robinson equation, Soave-Redlich-Kwong equation, and 

Grayson-Streed equation. Hence, it was concluded that this approach may be used for a 

quick and reasonable determination of outlet H2 partial pressure for industrial 

hydrotreating applications. 
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E. Reproducibility study: 

 The reactor was loaded and experiments were conducted as design. Specific 

experimental conditions were repeated several times to observed the reproducibility of 

the results. Subsequently, the reactor was reloaded with a fresh batch of catalyst and the 

experiments and repetition were carried out. This was carried out to observe whether the 

reproducibility was affected by the packing step (see Table E.1). The errors were 

determined using the student’s t-test method. For column 1, in Table E.1, unequal 

sample sizes-equal variance t-test was used, and for columns 2 and 3 independent one 

sample t-test was used. The reason for using two different t-tests is the variation on 

sample sizes 

Table E.1: The results of reproducibility Studies. The experiments below were 
carried out at temperature, pressure, gas/oil, and LHSV of 380 °C, 9 MPa, 800 
ml/ml, and 1 hr-1, respectively. 

Exp # 1 2 3 
Conditions Purity = 100% Purity = 80% Purity = 50%, 
    Trial 1   
# of Repetition 4 1 1 
HDN 75, 75, 74, 73 64 38 
HDS 96, 96, 95, 93 95 94 
HDA 54,53,53,52 48 38 
Fresh catalyst loaded   Trial 2   
# of Repetition 2 1 1 
HDN 75, 74 67 38 
HDS 97,96 95 92 
HDA 53,52 47 37 
    % Error   
HDN 0.3 2.0 0.0 
HDS 1.4 0.0 2.1 
HDA 0.7 2.1 2.6 
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