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Abstract  

The Highway Safety Manual (HSM)’s road safety management process (RSMP) represents the 

state-of-the-practice procedure that transportation professionals employ to monitor and improve 

safety on existing roadway sites. RSMP requires the development of safety performance functions 

(SPFs), which are the key regression tools in the Highway Safety Manual’s RSMP used to predict 

crash frequency given a set of roadway and traffic factors. Although developing SPFs using 

traditional regression modeling have been proven to be reliable tools for road safety predictive 

analytics, some limitations and constraints have been highlighted in the literature, such as the 

assumption of a probability distribution, selection of a pre-defined functional form, a possible 

correlation between independent variables, and possible transferability issues. An alternative to 

traditional regression models as predictive tools is the use of Machine Learning (ML) algorithms. 

Although ML provides a new modeling technique, it still has made-in assumptions and their 

performance in collision frequency modeling needs to be studied. This research 1) compares the 

prediction performance of three well-known ML algorithms, i.e., Support Vector Machine (SVM), 

Decision Tree (DT), and Random Forest (RF), to traditional SPFs, 2) conducts sensitivity analysis 

and compare ML with the functional form of the negative binomial (NB) model as default 

traditional regression modeling technique, and 3) applies and validates ML algorithms in network 

screening (hotspot identification), which is the first step in the RSMP. To achieve these objectives, 

a dataset of urban signalized and unsignalized intersections from two major municipalities in 

Saskatchewan (Canada) were considered as a case study.    

The results showed that the ML prediction accuracies are comparable with that of the NB model. 

Moreover, the sensitivity analysis proved that ML algorithms predictions are mostly affected by 

changes in traffic volume, rather than other roadway factors. Lastly, the ML-based measure 

consistency in identifying hotspots appeared to be comparable to SPF-based measures, e.g., the 

excess (predicted and expected) average crash frequency. Overall, the results of this research 

support the use of ML as a predictive tool in network screening, which provides transportation 

practitioners with an alternative modeling approach to identify collision-prone locations where 

countermeasures aimed at reducing collision frequency at urban intersections can be installed.  
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Chapter 1  

Introduction  

Motor vehicle collisions are among the leading causes of death in the world, with a mortality rate 

of approximately 1.35 million people per year (WHO, 2018). This figure on mortality, along with 

injury and property damage events, indicate the enormous costs to society, both in terms of human 

lives and future production losses. According to WHO, the cost of motor vehicle collisions in most 

countries is equivalent to 1 to 3 percent of their gross domestic production (GDP).  

Generally, collision events can be either due to roadway factors, vehicle factors, or human factors 

(or a combination of them). While all these factors can significantly contribute to the number of 

collisions, road safety research in civil engineering has been focused on studying the roadway and 

traffic factors that contribute most to collision occurrence on the roadway network.  

Collisions can be reduced by implementing educational or enforcement programs or by 

implementing road safety engineering countermeasures (the focus of transportation engineering). 

Road safety analysts use manuals and guidelines such as the AASHTO’s Highway Safety Manual 

(HSM) to systematically evaluate the current roadway systems and efficiently offer 

countermeasures for improvement. Amongst the most common countermeasures are installing 

rumble strips, improving lighting at an intersection, and adding an acceleration lane for merging 

major traffic streams. 

As suggested by HSM, Road Safety Management (RSM) is a process of deciding on whether a 

facility (i.e., roadway segment, or intersection) has safety issues, and whether to implement a road 

safety countermeasure. Overall, RSM assists with making decisions related to the design, 

operation, and maintenance of roadway networks. As illustrated on figure 1-1, this process starts 

with network screening for hazardous locations (hotspots), which is to rank and identify the 

hotspots in the road network. Then, in the diagnosis step, the top hotspots are being assessed for 

potential safety problems. In this assessment, the collision data at hotspots is to be reviewed and 

specific patterns for collision types and/or severity are identified. Afterward, road safety 

engineering countermeasures are selected depending on the type of collisions to be targeted 



2 
 

(identified in diagnosis) and moving on to the next step, the most economically viable 

countermeasures are prioritized. Finally, road safety countermeasures are implemented, and their 

actual safety effectiveness is evaluated in the post-treatment period. 

 

 

Figure 1-1 Overview of The Road Safety Management (RSM) Process (HSM, 2010) 

 

1.1 Network Screening 

According to the HSM, network screening is the process of reviewing the transportation network 

to identify and rank sites from most likely to least likely to experience a reduction in collision 

frequency after implementing a countermeasure.  Network screening is a crucial step to initiate the 

RSM process. The HSM suggests a 5-step framework to carry out network screening (HSM, 2010):  

1. “Establish Focus: to identify the purpose or intended outcome of the network screening analysis. 

This decision will influence data needs, the selection of performance measures, and the screening 

methods which can be applied.  

2. Identify Network and Establish Reference Populations: Specify the type of sites or facilities being 

screened (i.e., road segments, intersections, at-grade rail crossings) and identify groupings of 

similar sites or facilities.  

Network 
Screening

Diagnosis

Select 
Countermeasures 

Economic 
Appraisal

Prioritize 
Projects

Safety 
Effectiveness 

Evaluation
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3. Select Performance Measures: There are a variety of performance measures available to evaluate 

the potential to reduce collision frequency at a site. In this step, the performance measure is selected 

as a function of the screening focus and the data and analytical tools available.  

4. Select Screening Method: There are a variety of methods (i.e., ranking, sliding window, and peak 

searching) that can be used after obtaining the results of the performance measures for the 

identification of the hotspots.  

5. Screen and Evaluate Results: The final step in the process is to conduct the screening analysis and 

evaluate results”. 

 

Many specific safety improvement programs can be considered while conducting network 

screening. For example, an agency desires to perform network screening for selecting roadway 

projects based on the available budget as part of a capital improvement program. Another example, 

a specific collision type is concerning an agency and it is desired to implement a system-wide 

improvement program to reduce that specific collision type. Although the HSM has introduced 

network screening as the initial task for RSM, when it comes to implementing this process, some 

requirements have made this task expensive and time-consuming. For instance, network screening 

requires collision counts as well as the traffic volume records for a period of time, usually more 

than a year, which is not always available, especially in small jurisdictions.  

 

1.2 Performance Measures  

As mentioned before, network screening is a process of identifying those sites where the potential 

for reducing collisions is maximized. To be able to carry out this task, performance measures are 

usually estimated for each site in the network to quantitatively measure its safety level. This 

measure can be the average collision frequency, expected average collision frequency, a critical 

collision rate, etc. The key criteria to select the performance measures are data availability, 

regression-to-the-mean bias, and performance threshold, which are reviewed below (HSM, 2010). 
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1.2.1 Data Availability  

Typical data required for network screening consist of collision records, traffic volumes, and 

roadway information, such as the number of lanes, control type at intersections, etc. While the 

process of gathering the data needs time and resources, the size of data and inputs limits the 

selection of performance measures. Small jurisdictions usually struggle to have reliable data 

available for network screening and, therefore, may be forced to select from limited performance 

measures due to a lack of sufficient data.  

 

1.2.2 Regression-to-the-Mean Bias  

According to Hauer (1997), safety is a property of an entity (i.e., road intersection, etc.) and if the 

entity remains unchanged, or in other words, if the users, the level of use, the geometrical features, 

and the environment do not change, then it is expected for the safety to remain unchanged. With 

this understanding that the number of collisions at a specific site has natural fluctuations over time, 

the safety of an entity is defined as some “average in the long run”. To be more specific, the long-

term average number of collisions, also known as collision frequency, represents the safety of an 

entity.  However, long-term collision frequency may be different from what is seen in the shorter 

term. The randomness of collision occurrence indicates that long-term collision frequency cannot 

be obtained by looking at its short-term amount. Statistically, when in the short-term, a period of 

high collision frequency is observed in a site, there is a tendency to experience a period of low 

collision frequency in the subsequent period. This tendency is known as the regression -to-the-

mean (RTM) bias. Failure to account for RTM bias may introduce short-term flaws that will lead 

to a selection bias. In other words, sites may be wrongly prioritized based on their short-term 

records for safety improvement, and sites, where improvements could be most cost-effective, can 

be neglected from the analysis. A list of performance measures and whether they account for RTM 

bias or not is provided in table A-1 of Appendix A.  

 

1.2.3 Performance Threshold  

To better identify hotspots, a performance threshold can be calculated to act as the reference point.  

After a threshold is identified, all sites with a value greater than the threshold will be identified as 
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collision-prone locations and will be further analyzed. Selection of the performance measure 

affects the choice of performance threshold and therefore, performance measures are to be selected 

based on the requirements of the projects and the performance threshold that is going to be used.  

For example, performance measures could be the average of the observed collision frequencies in 

the reference population, predicted collision frequency from the safety performance functions 

(SPFs), and the expected collision frequency using the empirical Bayes (EB) method . However, 

not all the performance measures calculate a performance threshold for identifying collision-prone 

locations. A list of performance measures and whether they calculate a performance threshold is 

provided in table A-2 of Appendix A.  

 

1.2.3.1 Safety Performance Function (SPF)  

As mentioned in the previous section, an SPF is among the options for determining the 

performance threshold in network screening. SPF is a statistical regression model that reflects the 

predicted long-term collision frequency at a facility type with specific characteristics. The use of 

an SPF as a performance threshold has the advantages of accounting for the RTM bias and the 

non-linearity that exists between the collision frequency and the traffic volume. An example of 

SPF for a typical urban intersection is shown in equation 1.1(HSM, 2010):   

𝑁𝑆𝑝𝑓 =  𝑎0 × 𝑉1
𝑎1 ×  𝑉2

𝑎2 × exp (∑ 𝑏𝑗𝑥𝑗

𝑛

𝑗=1

)                                                                                        1.1 

Where, 𝑁𝑆𝑝𝑓 is the predicted average collision frequency, 𝑉1  is the average annual daily traffic on 

the major approach of the intersection, 𝑉2 is the average-annual-daily traffic on the minor approach 

of the intersection, and 𝑥𝑗 is any of the other variables that are not the traffic volume, such as 

number of legs, control type at the intersection, etc., and 𝑎𝑖 and 𝑏𝑗 are the regression parameters. 

The regression parameters of the SPF are calculated based on the assumption that the collision 

count follows a negative binomial distribution. The negative binomial is an extension of the 

Poisson distribution. It has been observed that collision data are usually over dispersed, meaning 

that the variance typically exceeds the mean. Therefore, over dispersed data cannot be modeled 

using the Poisson distribution, where the mean and variance of the data are made equal, and this 
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sets the need for using the negative binomial distribution. The degree of overdispersion in a 

negative binomial model is represented by a statistical parameter, known as the overdispersion 

parameter that is estimated along with the coefficients of the regression equation. The larger the 

value of the overdispersion parameter, the harder it is to fit a proper function and as a result, the 

less reliable is the SPF predictions for reflecting the long-term collision frequency. Therefore, the 

empirical Bayes method has been introduced to account for possible issues associated with the 

interpretations made by using SPFs. 

 

1.2.3.2 Empirical Bayes (EB) Method  

The expected collision frequency of a road site (i.e., its true level of safety as long-term average 

collision frequency) can be estimated by combining the observations and the predictions. The EB 

method combines the two estimates into a weighted average using a weight factor, which is a 

function of the SPF overdispersion parameter. Therefore, the estimated collision frequency using 

the EB method – also known as the expected average collision frequency at a site - is not only 

dependent on the validity of the observed data but also dependent on the variance of the SPF 

reflected in the overdispersion parameter. The expected average collision frequency using the EB 

method is shown in equation 1.2 (HSM, 2010):   

𝑁𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 =  𝑤 × 𝑁𝑠𝑝𝑓 + (1 − 𝑤) × 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑                                                                                     1.2 

Where,  𝑤 is the weighted adjustment to be placed on the SPF and is calculated as (HSM, 2010):  

𝑤 =
1

1 + 𝑘 × ( ∑ 𝑁𝑠𝑝𝑓𝑎𝑙𝑙 𝑦𝑒𝑎𝑟𝑠 𝑜𝑓 𝑠𝑡𝑢𝑑𝑦 ) 
                                                                                                1.3 

Where,  𝑘 is the overdispersion parameter of the associated SPF. 

 

HSM suggests a number of performance measures based on the availability of data and the method 

used to calculate the performance threshold. Amongst the performance measures offered by the 

HSM, three of them were selected in this study. These methods are called excess predicted average 

collision frequency using SPFs, expected average collision frequency with EB Adjustment, and 
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Excess expected average collision frequency with EB Adjustment. Summary of the performance 

measures and their data needs are provided in table A-2 of Appendix A.  

The process of network screening is finalized using the screening method (i.e., ranking, sliding 

window, and peak searching). These methods are dependent on the reference population and its 

characteristics. For instance, the sliding window is a method applied for screening the roadway 

segments. In this method, a short length (e.g., 0.1 to 0.5km) of a road segment is established and 

referred to as a window. The window is conceptually moved each time by a specific distance (0.05 

to 0.25km) along the entire stretch of the road segment. The performance measure will be 

calculated for each position of the window and will be compared/ranked.  For screening the 

intersections, however, ranking the sites based on their performance measure  is the common 

approach. In the final step of the network screening, the results of previous steps are further 

analyzed for initiating the next steps of the RSM process.  

1.3 Machine Learning  

An alternative modeling technique to traditional regression models (e.g., SPFs in road safety) are 

machine learning (ML) models, which can be used to estimate the predicted (long-term) collision 

frequency. Due to the extensive progress that has been made in the computation technology in the 

recent decades, the use of ML in place of traditional regression models has become more common 

than before. In the road safety analysis, scientists have explored and compared the ML models’ 

performance with the intention to increase the prediction accuracy and the generalization abilities 

of the road safety predictive models. ML is a technique in artificial intelligence that allows 

automating the analytical model building based on the idea that models can be trained through 

learning from the data and identifying the patterns. ML has a variety of subsets, such as supervised 

learning, unsupervised learning, semi-supervised learning, reinforcement learning, etc. Each of 

these subsets is introduced below:  

• Supervised Learning – both outputs and inputs are available in this type of learning. The 

supervised learning algorithms generate functions that map the inputs to desired outputs 

by looking at several input-output examples in the data. The data used in this supervised 

learning is called labeled data, where each observation has a label or a value for the output 

variable.  
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• Unsupervised Learning – learning the patterns within a set of inputs that lacks the output 

labels or values. 

• Semi-supervised Learning – learning the patterns within a set of inputs that are a 

combination of both labeled and non-labeled observations. 

• Reinforcement Learning – instead of learning to map the inputs to their desired outputs, 

in this type of ML, the algorithm learns a policy of how to act given the observations. Each 

action has some impacts, and the algorithm learns by the feedback provided after 

observing the impact.  

In the context of road safety, the task to develop a model for predicting the long-term collision 

frequency is categorized under supervised learning. A schematic overview of supervised learning 

is provided in the flowchart shown in figure 1-2.  
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Figure 1-2 Flowchart of the supervised learning process (adopted from Ayodele, 2010) 

Supervised learning is used both for classification and regression problems in road safety analysis. 

For example, it could be used for developing models to classify road collisions by severity (Delen 

et al., 2006; Chang and Wang, 2006; Oña et al., 2011; Iranitalab and Khattak, 2017). On the other 

hand, supervised learning can be used to develop regression models for estimating the frequency 

of road collisions (Chang, 2005; Chang and Chen, 2005; Xie et al., 2007; Li et al., 2008; Çodur 
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and Tortum, 2015; Zeng et al., 2016). Study of the literature reveals that, the most common 

algorithms used in road safety are artificial neural network (ANN), decision tree (DT), random 

forest (RF), classification and regression tree (CART), and support vector machine (SVM).  

 

1.4 Problem Statement  

Developing an accurate SPF for a specific road facility can sometimes be a complex task. Common 

issues are associated with collision frequency modeling, such as treating over-dispersion of 

collision data (larger variation than expected), under-dispersion (smaller variation than expected), 

explanatory variables varying over time (i.e., traffic volume), temporal and spatial correlation (i.e., 

sites in a specific area experiencing a high number of collisions), low sample-mean and small 

sample size and injury-severity and collision-type correlation (Lord and Mannering, 2010). 

Although research has demonstrated the reliability of using statistically developed SPFs for 

collision frequency estimation, a number of model limitations have been highlighted. First, 

statistical models need a pre-defined functional form, usually with fixed parameters, meaning that 

one should know a priori whether the collision frequency is related to roadway and traffic factors 

linearly, exponentially, etc. Second, overfitting is likely to happen. In fact, collision data samples 

are small as their occurrences are rare, and the developed model would act poorly when transferred 

to other sites and jurisdictions. Third, tracking the correlation between explanatory variables might 

be time-consuming, and therefore, sometimes, correlation studies are neglected, which can affect 

the adequacy of the results. Last, traditional statistical methods are usually weak in assigning the 

“right” weight to outliers during the fitting process. Alternatively, ML algorithms are used to 

develop collision frequency predictive models. As explained in 1.3, ML is a different modeling 

technique comparing to statistical methods and while it might not have the mentioned limitations 

of the statistical methods, there are other limitations associated with them. It is important to 

understand that ML is an alternative method, not necessarily a superior one comparing to statistical 

methods.  

Several studies have employed ML algorithms to predict the long-term average collision frequency 

and compared their performances with the SPFs (Mussone et al., 1999; Abdelwahab and Abdel-

Aty, 2002; Chang, 2005; Xie et al., 2007; Lie et al., 2008). Although these studies prove the 
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adequacy of using ML algorithms in predicting the long-term collision frequency, the application 

of ML techniques in the practical steps of the RSM process remains unexplored.  

 

1.5 Research Statement  

Overall, this research bridges the gap that exists in the literature by evaluating and validating the 

use of ML algorithms in network screening as part of the RSM process. To achieve the objectives 

of this research, SVM, DT and RF are selected amongst the most common supervised learning 

algorithms that are used in road safety analysis. An SPF using negative-binomial (NB) distribution 

is developed as the default statistical approach to compare the performance of ML with traditional 

regression models used in the network screening.  

The advantage of using ML in place of traditional statistical modeling allows avoiding biases 

arising from the selection of functional forms to relate roadway and traffic characteristics to 

collision frequency and the choice of selecting a probability distribution to model collision data. 

However, ML algorithms are regarded to act as black boxes due to their nature of non-parametric 

models, that is, they cannot explicitly explain the relations between the explanatory variables and 

the outcome. As a response to this criticism, a sensitivity analysis is conducted to quantify the 

effects of each input variable on the output. Overall, the objectives of this research are:  

• To compare the prediction accuracy of ML algorithms with the NB approach in predicting 

the long-term collision frequency 

• To conduct a sensitivity analysis and compare/interpret ML with the functional form of 

NB modeling, and 

• To validate the use of ML as a predictive tool in network screening.  

 

The results of this research will support the work of road safety practitioners who seek to 

implement the RSM process in full, or in part, with ML algorithms.  
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1.6 Thesis Outline  

Chapter 1 introduced the road safety management process. In particular, the network screening 

task was introduced, the models used to complete a network screening were explained, and the 

scope of this thesis work was specified.  

Chapter 2 provides a description of the fundamental characteristics of collision data and 

methodological issues, as well as a literature review of different statistical methods used for crash 

frequency analysis and the use of ML as an alternative to statistical methods.  

Chapter 3 provides information about the collected data and the predictive models used in this 

study. Each predictive method is described and the criteria to compare these methods are identified.  

Chapter 4 develops a crash frequency model using both statistical modeling and ML algorithms. 

the results of the model implementations are provided, sensitivity analysis is conducted and the 

use of ML in network screening is evaluated.  

Finally, Chapter 5 reports the conclusions derived from the study, limitations, and directions for 

future work in this field. 

 

 

1.7 Publications  

Research conducted for this thesis generated a manuscript entitled “Validation of Machine 

Learning Algorithms as Predictive Tool in the Road Safety Management Process: The Case of 

Network Screening” by Tayebikhorami and Sacchi, submitted to the Journal of Transportation 

Engineering: Part A, Systems – ASCE in September 2021.  
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Chapter 2  

Literature Review  

Road safety issues can be systematically addressed by the means of the RSM process (Nodari and 

Lindau, 2007), which requires the development of SPFs for the facility of interest.  SPFs attempt 

to fit a function to collision data by incorporating the most significant geometric and operational 

characteristics of the road, and in some cases also environmental conditions (Chang, 2005; Hauer, 

2004). To better represent the properties of collision data and the level of severity of  collisions, 

various modeling techniques have been proposed. Traditionally, statistical modeling has been used 

to predict collision frequency and to classify the severity of them (Persaud and Nguyen, 1998; El-

Basyouny and Sayed, 2006; Xie and Zhang, 2008; Malyshkina and Mannering, 2010; Savolainen 

et al., 2011; Kidando et al., 2019). However, this approach has some limitations and machine 

learning (ML) represents an attractive alternative for researchers. Overall, collision modeling can 

provide two types of results. First, an estimate of collision frequency (i.e., the total number of 

collisions, or the number of collisions at some specific injury level), given the specific 

characteristics of the infrastructure, and second, understanding the collision contributing factors 

and how they affect the collision event, and its severity. This study can be categorized as the first 

type of study with the focus on producing an estimate of the total collision frequency given the 

characteristics of the facility (in this study, urban intersections). In this chapter, the fundamental 

characteristics of collision data and modeling issues are presented. Subsequently, a review of the 

most common statistical approaches, used for modeling collision frequency is provided and the 

strengths and weaknesses of each approach are discussed. Last, an overview of ML literature in 

modeling the collision data and the main input variables used by similar studies are provided.   

 

2.1 Fundamental Characteristics of Collision Data and Modeling Issues  

Part of road safety research focuses on developing analytic approaches to study the factors that 

affect the number of collisions occurring at some facilities (i.e., a roadway segment or intersection) 

over a specific time period (week, month, year, number of years). A key concept required for 

modeling is that collision data are non-negative integers and requires the application of count-data 
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regression models or other approaches that can properly account for the integer nature of these 

data. A review of data and methodological issues in modeling road safety is presented below. The 

issues, discussed below, have been identified to be the main sources for potential bias in terms of 

defining statistical models that may lead to erroneous collision-frequency predictions and incorrect 

inferences.  

 

2.1.1 Over-dispersion  

Collision data usually have a variance that exceeds the mean of collision counts, making it 

problematic to use the most common count-data modeling approach (Poisson regression) since the 

Poisson distribution requires the mean and the variance to be equal. As a result, using the common 

Poisson regression approach to describe the collision data can lead to erroneous conclusions 

(Miaou, 1994; Maher and Summersgill, 1996; Cameron and Trivedi, 1998; Park and Lord, 2007).  

 

2.1.2 Under-dispersion 

Although rare, under-dispersion or having a variance lower than the mean of the collision counts 

can exist, especially when we have a large sample mean. Using the common count-data modeling 

approaches can be problematic in the presence of under-dispersed data since it may lead to 

producing incorrect parameter estimates (Oh et al., 2006). 

 

2.1.3 Time effect on explanatory variables  

Collison data modeling is usually done over a period of time and all the variations of the 

explanatory variables over this time are considered to be negligible. While this period could be 

months or even years, lack of detailed data to describe the within time-period variations in the 

explanatory variables may result in the loss of potentially important information. For instance, 

traffic volume is an explanatory variable that has variations in each day and the distribution of 

traffic volume (by day or even by hour) is likely to be highly influential on the collision occurrence. 

However, this information is not provided when modeling the collision data for a yearly period, 

and consequently, important information is lost by using an annual average daily traffic . This can 
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introduce errors in collision modeling estimation as a result of unobserved heterogeneity 

(Washington et al., 2010).  

 

2.1.4 Low sample mean and small sample size  

Gathering the collision data is an expensive and time-consuming task and therefore, collision data 

are usually characterized by a low number of samples. In addition, collision occurrence is a rare 

event and hence the records include a considerable amount of zero counts. Low sample size and 

mean may cause deficiencies in count-frequency statistical modeling. For instance, estimation of 

the model parameters using the common maximum likelihood approach is more reliable using a 

larger number of observations. Also, a low sample mean can cause erroneous interferences due to 

the choice of collision count distribution that is skewed excessively toward zero (Lord and 

Mannering, 2010).    

 

2.1.5 Injury-severity and collision-type correlations  

Collision data is commonly classified based on either the severity of collisions, such as fatal 

collision, severe injury, injury, and no-injury, or the collision type, such as right-angle, rear-end, 

single-vehicle run-off-the-road, etc. It is most common to model the total collision frequency 

(including all severity levels and collision types) and separately deal with collision severity and 

type after determining the total frequency of collisions. However, developing collision frequency 

models in each severity level or for each collision type, which is done by some researchers, may 

result in potentially serious statistical problems. That is because of the correlation that exists 

between the various collision severity levels, and also the collision types.  For example, having 

developed separate models for different levels of severity, one can notice that an increase in the 

collision frequency of a certain severity level could also have some changes in the frequency of 

other severity levels. This requires the use of more complex models known as multivariate models 

(Miaou and Song, 2005; Bijleveld, 2005; Song et al., 2006; Ma and Kockelman, 2006; Park and 

Lord, 2007; Ma et al., 2008; and El-Basyouny and Sayed, 2009a).  
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2.1.6 Under reporting  

Another problem associated with collision data is the fact that less severe collisions are less likely 

to be reported and vice versa (Aptel et al., 1999). It is difficult to determine the level of 

underreporting and, therefore, its rate is usually unknown. Researchers have shown that 

underreporting is usually a function of severity levels as well as the reporting agencies, such as 

cities, regions, etc. (Hauer and Hakkert, 1988; and James, 1991).  

 

2.1.7 Omitted -variables bias  

Overly simplified models that use only one variable, such as traffic volumes, increases the risks of 

biased estimation for the statistical model parameters, which can lead to incorrect inferences 

(Washington et al., 2003, 2010).  

 

2.1.8 Endogenous variables  

Carson and Mannering (2001) studied the problem of endogeneity associated with explanatory 

variables that are selected to form a collision frequency model. Endogeneity is when the changes 

in the dependent variable force some changes in the explanatory variables as well. For instance, it 

may be seen that signalized intersections are experiencing a higher number of collisions compared 

to unsignalized intersections. However, it should be understood that the potential for a higher 

number of collisions is the reason for placing signals at the intersections. In other words, the 

number of collisions and the presence of signals at intersections are endogenous. If this 

endogeneity is ignored, the parameter estimates might be biased. In the case of signals, it can be 

wrongly concluded that signalizing the intersection increases the frequency of collisions.  

In traditional least-squares regression models, accounting for endogeneity is relatively 

straightforward (Washington et al., 2003, 2010). However, for count-data models, the modeling 

process does not have the flexibility to borrow the traditional endogenous-variable correction 

techniques (such as instrumental variables). Consequently, accounting for endogenous variables 

adds considerable complexity to the count-data modeling process (Kim and Washington, 2006). 
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2.1.9 Functional form  

As a critical step in the modeling process of the count-data, a functional form, such as linear, 

polynomial, exponential, etc. needs to be selected to relate the explanatory variables to the 

dependent variable. Most count-data models assume a linear relation as their functional form, 

however, plenty of studies suggest that collision frequency is non-linearly related to the 

explanatory variables (i.e., traffic volume and road segment length).  These non-linear functions 

can often increase the complexity level and may require involved estimation procedures (Miaou 

and Lord, 2003; Bonneson and Pratt, 2008).  

 

2.1.10 Fixed Parameters  

To avoid further complexity that arises from considering varying parameters over the observations 

to the predictor, model parameters are usually constrained to fix amounts (Anastasopoulos and 

Mannering, 2009; El-Basyouny and Sayed, 2009b; Washington et al., 2010). However, this is not 

the case in collision occurrence and the parameters may vary from one observation to another and, 

neglecting this, would result in biased estimation of the model parameters.  

 

2.2 Collision Frequency Modeling Using Statistical Methods  

A wide variety of modeling techniques have been presented in the literature to efficiently model 

collision frequency.  In the following subsections, a summary of the most common statistical 

approaches along with their strengths and weaknesses is provided.  

 

2.2.1 Poisson Regression  

Collision data are non-negative integers (count data), and they cannot be appropriately modeled 

using the least-squares regression, which assumes a continuous dependent variable. Therefore, 

most of the thinking in the literature have chosen the Poisson regression to be the starting point for 

modeling the collision frequency as it suits the modeling of non-negative integers (Jovanis and 

Chang, 1986; Joshua and Garber, 1990; Jones et al., 1991; Miaou and Lum, 1993; and Miaou, 
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1994).  In Poisson regression, the probability of having 𝑦𝑖  collisions per some time period in the 

roadway entity (road segments, intersections, etc.) 𝑖 is defined as:  

𝑃(𝑦𝑖) =  
𝐸𝑋𝑃 (−𝜆𝑖)𝜆𝑖

𝑦𝑖

𝑦𝑖!
                                                                                                                           2 − 1 

Where, 𝜆𝑖 is the Poisson parameter for roadway entity 𝑖, which equals to the expected number of 

collisions on entity 𝑖, 𝐸(𝑦𝑖). In Poisson regression, it is desired to find the 𝜆𝑖 (expected collisions 

per time) as a function of the explanatory variables. the most common functional form being 𝜆𝑖 =

𝐸𝑋𝑃(𝛽𝑋𝑖), where 𝑋𝑖 is a vector of explanatory variables and 𝛽 is a vector of estimable parameters.  

Poisson regression is a basic model that is easy to estimate, however, scientists have found it 

problematic to apply this method and some of its extensions to model the collision frequency. 

Poisson regression can produce biased results when modeling over- or under-dispersed data. Also, 

small sample size and low sample mean, which is the case in most of the collision data, can  

adversely affect the outcome of this regression technique.   

 

2.2.2 Negative-binomial (Poisson-gamma) regression  

As an extension to the Poisson regression model, the negative-binomial model is used to overcome 

the issue of over-dispersed data. While in the Poisson regression it is assumed that the mean and 

the variance of the sample data are the same, in the negative binomial this assumption is relaxed. 

The model results in a closed-form equation and the mathematics to manipulate the relationship 

between the mean and the variance structures are relatively simple. The difference between the 

two methods is embodied in the definition of the estimation parameter, which in negative binomial 

is defined as 𝑦𝑖 = 𝑥𝑖𝛽 + 𝜀𝑖 for each observation 𝑖. The term 𝜀𝑖  is known as the error term, which 

follows a gamma distribution with mean 1 and variance 𝜑. This variation in the model allows the 

variance to differ from the mean and the most common function for defining the variance that is 

used in the highway safety analysis is defined as:  

𝑉𝐴𝑅(𝑦𝑖) = 𝐸(𝑦𝑖)[ 1 +  𝜑𝐸(𝑦𝑖)] =  𝐸(𝑦𝑖) + 𝜑𝐸(𝑦𝑖) 2                                                                       2.2 

The value of 𝜑, being known as the over-dispersion parameter, is playing an important role in this 

modeling technique. It can be observed that the Poisson model is a special case of the negative 
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binomial distribution when 𝜑 approaches zero, which means that the selection between these two 

models is dependent upon the value of 𝜑. The details of the parameters used in this section are 

explained in section 3.2.  

The negative-binomial regression model appropriately accounts for over-dispersion that exists in 

most of the collision datasets. However, it does not account for under-dispersion and can be 

potentially biased in case of low sample size and low sample mean. While the use of this model is 

usually considered with a fixed value for the over-dispersion or its inverse, studies have shown 

that variance function can also be dependent on the value of the explanatory variables (Miaou and 

Lord, 2003; Cafiso et al., 2010). Although more sophisticated modeling techniques are proposed 

in the literature to develop collision frequency models, negative binomial is the most common 

approach that is being used within the scope of the RSM process to develop SPFs. Since negative-

binomial is going to be the default tool for collision frequency modeling, explaining more 

sophisticated techniques is considered to be out of the scope of this thesis work. Therefore, in 

Table 2-1, a summary of the common approaches for modeling the collision frequency, as well as 

relative studies are provided.  
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Table 2-1 Representative summary of the previous studies for statistical modeling of the 

collision data (obtained from Lord and Mannering, 2010) 

Model Type Related Studies   

Poisson  
Jovanis and Chang (1986), Joshua and Garber (1990), Jones et 

al. (1991), Miaou and Lum (1993), and Miaou (1994) 

Negative binomial/Poisson-gamma 

Hauer et al. (1988), Bonneson and McCoy 

(1993), Miaou (1994), Persaud (1994), Miaou and Lord (2003), 

Amoros et al. (2003), Hirst et al. (2004), Abbas (2004), Lord et 

al. (2005a), El-Basyouny and Sayed (2006), Lord (2006), and 

Kim and Washington (2006) 

Poisson-lognormal  
Lord and Miranda-Moreno (2008), and Aguero-Valverde and 

Jovanis (2008) 

Zero-inflated Poisson and negative 

binomial 

Shankar et al. (1997), Carson and Mannering (2001), Lee and 

Mannering (2002), Qin et al., (2004), Lord et al. (2007), and 

Malyshkina and Mannering (2010) 

Conway–Maxwell–Poisson  Lord et al. (2008), and Lord et al. (2010) 

Gamma  Oh et al. (2006), and Daniels et al. (2010) 

Generalized estimating equation 
Lord and Persaud (2000), Halekoh et al. (2006), Wang and 

Abdel-Aty (2006), and Lord and Mahlawat (2009) 

Generalized additive Xie and Zhang (2008), and Li et al. (2009) 

Random-effects1 

Johansson (1996), Flahaut et al. (2003), MacNab (2004), Noland 

and Quddus (2004), Miaou et al. (2005), Aguero-Valverde and 

Jovanis (2009), Wang et al. (2009) and Guo et al. (2010) 

Negative multinomial Hauer (2004), and Caliendo et al. (2007) 

1includes the spatial statistical models  

 

Despite the progress that has been made in the statistical modeling of collision data, the limitations 

of these models are acknowledged in the literature since each method has its assumptions and pre-

defined functions (Zeng et al., 2016a). Therefore, efforts have been made to explore the use of 

machine learning as an alternative modeling technique in which, instead of assuming a pre-defined 

relation between the risk factors and the collision frequency, the estimates are made after learning 

from the observed data.  
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2.3 Collision Data Modeling Using Machine Learning Algorithms  

Machine learning is a branch of artificial intelligence (AI) concerned with the design and analysis 

of algorithms that enable computers to learn from data, make predictions, or act without direct 

human supervision. In the road safety analysis, whether a classification study (i.e., predicting the 

severity of collisions) or a regression study (i.e., predicting the frequency of collisions) is 

conducted, collision data can be used within various modeling techniques, however, the majority 

of models used in the literature are k-nearest neighbors (KNN), decision trees (DT), support vector 

machines (SVM), and artificial neural networks (ANN).  

KNN is a simple and pioneering technique in ML used mostly for classification problems. It 

identifies the K-points in the training data that come closest to a given observation and tests the 

value of the calculated distance for each category. Therefore, the class of the observation of interest 

should include the majority of k closest observations (Devroye et al., 1994).  The KNN algorithm 

is a non-parametric algorithm which means that it makes no assumptions about the underlying 

data. It is also called a lazy learning algorithm because it does not learn from the training set, stores 

the data set at the time of classification, and does not take any action on the data. In road safety, 

KNN has mostly been used for classifying the severity of collisions.  

DT is very convenient for classification tasks. However, it can model regression problems as well. 

To build the tree, input data (i.e., road and environmental features) and the output data (i.e., 

collision frequency) are fed to the model in a training set. The decision tree begins by creating the 

root node and continues with decision nodes that divide an input feature and form ramifications, 

and “leaves” that contain the classification or regression information. Each node represents the test 

of a feature and the criterion for ramification is the feature’s utility for classification. Thus, the 

selected feature, one of the tree nodes, generates the greatest information gain (entropy); i.e., it 

provides the best quality for classification. In decision trees, the induction algorithms seek the 

features that better generate the examples, generating sub-trees.  

SVM model is built using statistical learning theory (Scholkopf and Smola, 2002). The model 

attempts to learn a hyper plane, known as a decision surface, which is used to maximize the margin 

of separation between observations. The learned hyperplane is used to discriminate the test set into 

two groups, namely, positive samples and negative samples. Although it was originally developed 
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for classification tasks, it has been extended to solve regression problems and problems with non-

linearly separable data (Burges, 1998; Smola and Scholkopf, 2004; Trafalis and Gilbert, 2006; 

Üstün et al., 2005).  

ANN is a highly complex, non-linear1, parallel2 processor with a natural propensity for storing 

experimental knowledge and making it available afterward (Haykin, 2009). A multi-layer 

perceptron ANN is typically made up of three types of layers: an input layer, an output layer, and 

one or more hidden layers.  A perceptron is a neural network unit that does certain computations 

to detect features or intelligence in the input layer. The input layer obtains the values of the input 

features, i.e., the road features. The hidden layer, made up of m neurons, adds up the weights of 

the input values of the various input features and calculates the complex association patterns. A 

single hidden layer is usually enough for road safety analysis applications, but the number of 

neurons in it is generally the object of experimentation (Chang, 2005; Villiers and Barnard, 1993). 

For the output layer, the values of the various hidden neurons are summed and the network’s output 

values are presented. Feedforward is the most common type of network architecture, in which the 

propagation of signals is always from the previous layers to the posterior ones. In terms of training, 

the back propagation algorithm is the most used to minimize errors by adjusting the weights of the 

network (Haykin, 2009). In this case, the cost function is in the direction in which the function’s 

variation rate is minimal and it guarantees that the network surface trends in the direction that leads 

to the greatest error reduction. Lastly, the main activation function used is related to the 

representational capacity of the neural network and it introduces a non-linear component.  

Table 2-2 provides a summary of the most prominent studies in road safety that have employed 

the ML algorithms. In this table, facility type, percentage of data used for training and test set, and 

types of tasks (classification or regression) are identified and studies are sorted in chronological 

order. 

  

 
1 Non-linear processor is a processor whose output is not a linear function of the inputs  
2 Parallel processors can run two or more processing units for handling separate parts of the overall task, 

simultaneously.   
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Table 2-2 Representative summary of the previous studies that used ML to model the 

collision data (obtained from Silva et al., 2020) 

ML 

Algorithm 

Facility 

Type 

Dependent 

Variable 

Training/test 

percentage 
Task Reference 

ANN, DT 
urban 
streets 

Injury; property 
damage only 

60/40 Classification 
Sohn and Lee 
(2003) 

ANN 

urban 

streets and 
highway 

No injury; possible 

injury; evident injury; 
incapacitating/fatal 
injury 

51.9/48.1 Classification 

Abdel-Aty 

and 
Abdelwahab 
(2004) 

ANN 
multi-lane 
highway 
segments 

Number of collisions 
per segment per year 

75/25 Regression Chang (2005) 

ANN 
urban 
streets and 
highway 

No injury; possible 

injury; 
non-incapacitating 
injury; incapacitating 

injury; fatal injury 

N/M1 Classification 
Delen et al. 
(2006) 

ANN, BNN2 

Two-way 

two-lane 
highway 

segments 

Number of collisions 
per segment 

60/40, 70/30, 80/20 Regression 
Xie et al. 
(2007) 

SVM 

Two-way 
two-lane 
highway 

segments 

Number of collisions 
per segment 

60/40, 70/30, 80/20 Regression 
Li et al. 
(2008) 

ANN highway 
Injury; property 
damage only 

80/20 Classification 
Alikhani et 
al. 

(2013) 

ANN highway 

No injury/property 

damage only; possible 
injury; non-
incapacitating injury; 

incapacitating/fatal 
injury 

80/20 Classification 
Zeng and 
Huang 

(2014) 
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ANN 
multi-lane 
highway 

Number of collisions 
per segment 

70/30 Regression 
Çodur and 
Tortum 

(2015) 

ANN highway 
Number of collisions 
per segment per year 

N/M Regression 
Zeng et al. 
(2016a) 

ANN highway 

Number of collisions 
with slight injuries 

per segment per year; 
Number of 
collisions with severe 

or fatal injuries per 
segment per year 

N/M 
Regression by 
class3 

Zeng et al. 
(2016b) 

KNN, SVM, 

RF4 

local, 
interstate, 

and 
highway 

Property damage only; 
possible injury; severe 

injury; disabling/fatal 
injury 

70/30 Classification 

Iranitalab and 

Khattak 
(2017) 

KNN, DT, 
RF, SVM 

freeway 

No injury; possible 
injury; 

non-capacitating 
injury; incapacitating 

injury; fatal injury 

75/25 Classification 
Zhang et al. 
(2018) 

DT, RF, KNN 
urban 
streets 

Damage injury; 
injured; hospitalized; 
fatal injury 

10-fold cross 
validation5 

Classification 
Wahab and 
Jiang 
(2019) 

ANN highway 

Property damage only; 

complaint of pain; 
visible injury; severe 

injury; fatal injury 

70/30 Classification 
Amiri et al. 
(2020) 

1Not Mentioned 
2Bayesian Neural Network 
3Regression has been used in each class of collision severity to obtain the frequency of collisions by each class 
4Random Forest model, an extension to DT 
5cross validation is a technique that is used to avoid data selection bias  
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As shown in Table 2-2, several studies have investigated the use of ML algorithms as a regression 

tool, in place of traditional statistical modeling, for collision frequency prediction. Chang (2005) 

developed an ANN model for the prediction and classification of collisions on road segments and 

compared the ANN collision frequency predictions to the ones of a negative binomial (NB) 

regression. The research showed that ANN, with a prediction accuracy of 64% for the training set 

and 61.4% for the test set, provides more sufficient prediction accuracy than NB, which shows 

583% and 60.8%, respectively. In other words, ANN predicts more accurate numbers compared 

to the actual observations of the collision frequency on the road segments.  Moreover, a sensitivity 

analysis was conducted where it was revealed that the sensitivity of ANN and the parameters of 

NB models are consistent, which each other. For example, both ANN and NB models show 

upward\downward changes when there was a change in an explanatory variable. In 2007, Xie et 

al. assessed the application of Bayesian neural network (BNN) to predict collision frequencies. 

The results of BNN were compared to predictions using back-propagation neural network (BPNN) 

and NB models using different scenarios of sizes for training and test set. It was concluded that 

overall, BNN and BPNN outperform NB both in prediction accuracy using the training data and 

the test set. Moreover, it is proven that BNN has higher prediction accuracy, and it acts better in 

terms of generalization ability meaning that it can more sufficiently deal with the overfitting 

problem while keeping the ability of non-linear estimation. More recently, Huang et al. (2016) 

developed an optimized radial-basis-function neural network (RBFNN) model to predict the 

collision frequency and compared the results with the NB and BPNN models. Their study showed 

that while RBFNN has better prediction accuracy using training and test set compared to NB and 

BPNN, and it significantly reduces the overfitting problem. However, significant drawbacks of 

fitting a neural network to a collision prediction problem are that neural networks act as a black 

box, and it is often time-consuming to develop them. Moreover, studies suggest that neural 

networks perform better when larger datasets are provided, while collision frequency datasets are 

usually small due to the time and effort needed for gathering collision records (Lie et al., 2008). 

As a result, another stream of research has explored the performance of other ML algorithms such 

as SVM. 

In theory, SVMs are less likely to experience overfitting, and they can generalize better than ANN 

because SVMs are based on structural risk minimization (Suykens et al., 2002), whereas ANN is 

based on empirical risk minimization (Zhang and Xie, 2007). Lie et al. (2008) utilized SVM and 
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replicated the study done by Xie et al. (2007), where they have evaluated the application of SVM 

for predicting motor vehicle collisions by comparing the model with NB and BPNN models and 

revealed that SVM outperforms the NB model regarding prediction accuracy. In addition, SVM 

has less overfitting problem and provides similar, if not better, prediction performance comparing 

to BPNN models. A broader perspective has been adopted by Dong et al. (2015) who investigated 

the efficiency of SVM in collision prediction at the level of traffic analysis zones and showed that 

the algorithm could be considered as an alternative in regional safety modeling. They proved that 

SVM outperforms the Bayesian spatial model with conditional autoregressive prior (i.e., CAR), in 

both data fitting and predictive performance. In another study done by Singh et al. (2018), they 

employed SVM to develop a collision frequency prediction model for non-urban highway sections. 

They compared the performance of SVM with fixed-effect and random-effect negative binomial 

(FENB/RENB) models. The results indicate that SVM has shown better values for the selected 

metrics, that are correlation coefficient and root mean square error. The observed capabilities of 

SVM in these research studies reinforce the idea of exploring the application of ML algorithms in 

road safety practices. On the other hand, Olutayo and Eludire (2014) developed a collision 

frequency prediction model for Nigeria’s arterial roads using ANN and DT. Although the purpose 

of this study was to determine the most contributing factors that cause collisions on the roads, they 

showed that decision tree performs better than a neural network with lower error, or in other words, 

greater accuracy, which is a higher number of correctly classified instances. 

 

2.4 Input Variables  

The choice of the input variables is an essential step of the modeling process, and which variable 

to choose depends on the purpose of the study as well as the data availability. Whether to include 

an input variable or not, it is a choice of the analyst, based on the expected degree of association 

with the dependent variable of interest (collision frequency). Therefore, selecting the modeling 

approach depends on previous judgment and knowledge about the data, prior experience in 

modeling, and data availability (Hauer, 2015). Although collisions are rare events, their occurrence 

involves the interactions of various contributing factors. To be able to rigorously select the input 

variables, an overview of the input variables selected for collision data modeling is required, 

whether the model is developed using traditional statistical modeling or machine learning.  
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Several studies have investigated factors that are expected to influence collisions, such as the 

roadway geometrical and operational variables, environmental variables, vehicle conditions, and 

human factors (Abdel-Aty and Radwan, 2000; Carson and Mannering, 2001; Elvik et al., 2009; 

Miaou and Lum, 1993; Rolison et al., 2018; Wang et al., 2013). To evaluate the variables, silva et 

al. (2020) grouped the variables into four major classes: human factors, road-environmental 

factors, vehicle-related factors, and collision characterization. They showed that all studies 

incorporated road-environmental factors into their modeling even though, in some cases, such as 

Sohn and Lee (2003), only one variable was considered. In addition to this study, only Delen et al.  

(2006) and Kwon et al. (2015) did not have most of the variables in their studies related to 

environmental conditions. The latter used vehicle-related factors which were entirely absent from 

the models of Alikhani et al. (2013), Das and Abdel-Aty (2010), Iranitalab and Khattak (2017), 

Kashani and Mohaymany (2011), Oña et al. (2011), Oña et al. (2013b), Zhang et al. (2018). 

Overall, human factors and collision characterization were used to the same extent in developing 

the models reported in the literature.  

In collision frequency modeling, Silva et al. (2020) showed that the most common road-

environmental factors to be used as input variables are traffic volume, segment length, horizontal 

alignment, shoulder width, and roadway segment. They have also shown that sex, as a human 

factor, is used in several instances. In addition, some variables that characterize the collisions, such 

as year, season, and the number of vehicles involved in collisions are also used in some studies. 

Table 2-3 represents studies with their most contributing factors for collision frequency modeling.  
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Table 2-3 Main contributing factors in the literature for collision frequency modeling 

Study Main contributing factors 

Chang (2005) 
Segment in military area; existence of intersections; percentage of 
heavy vehicles; number of lanes; traffic volume 

Xie et al. (2007) Segment length; traffic volume; lane width 

Li et al. (2008) Traffic volume; shoulder width 

Çodur and Tortum 
(2015) 

Vertical curvature; traffic volume; horizontal curvature; segment length 

Zeng et al. (2016a) 
Traffic volume; posted speed limit; annual precipitation; segment 
length; median barrier; bus stop 

Zeng et al. (2016b) 
Traffic volume; segment length; posted speed limit; bus stop; annual 

precipitation 

 

 

Overall, two important conclusions emerge from the review of the literature. First, conventional 

statistical modeling, in most cases, is showing less prediction accuracy than ML algorithms; and 

second, the best ML algorithm can be selected as a trade-off between accuracy and complexity. 

Although studies have explored the application of ML in developing collision frequency models, 

the literature lacks the exploration of ML algorithms in the actual road safety procedures (i.e., 

RSMP). While the ability of the ML algorithm in collision frequency modeling is proved by many 

studies, this thesis work aims at evaluating the use of the ML algorithm in the RSMP, particularly 

in network screening. Therefore, SVM, DT, and RF are selected among the most common ML 

algorithms that are used previously in road safety studies. First, the prediction accuracies of these 

models are compared with the default NB statistical model; second, a sensitivity analysis is done 

to observe the effects of each variable on the output variable and to compare it to traditional 

statistical modeling; and lastly, ML models are evaluated while being employed within the RSMP.  
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Chapter 3  

Methodology  

 

3.1 Data Collection and Processing  

The data used in this research consists 343 urban intersections of two major municipalities in 

Saskatchewan (i.e., Regina and Saskatoon). The time period evaluated ran from 2013 to 2018; 

intersections did not undergo any significant improvement or change during this time frame or in 

other words, no road safety engineering countermeasure implemented. However, two time periods 

of 3 years were considered, i.e., 2013-2015 and 2016-2018, respectively. The reason for dividing 

the dataset into two subsequent time period was mainly the requirement of the third objective of 

the study that is to compare the consistency of ML and statistical regression modeling in 

identifying the hotspots. In other words, if intersections of the study did not undergo any significant 

road safety improvement, it is expected to have consistent hotspots being identified by ML as well 

as the statistical regression technique. More details of the consistency check are provided in section 

4.4.  

Saskatchewan Government Insurance (SGI)  has provided the collision data (total number of 

collisions for each year) and Saskatoon and Regina municipalities have provided the recorded 

traffic volumes in the form of average annual daily traffic (AADT) for the intersections’ major and 

minor approaches. Also, the number of legs in the intersection and the control type (signalized or 

unsignalized intersection) were observed using Google Maps and Street View, respectively. Table 

3-1 illustrates the summary statistics of data for this study. 
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Table 3-1 Summary Statistics of Data 

Description Type Min Max Mean St. Dev. 

V1 (major AADT 2013-

2015 - Veh/day)  
 

continuous 
 

2,226 69,400 17,801 12,183 

V2 (minor AADT 2013-
2015 - Veh/day) 

 
708 35,967 7,931 5,806 

V1 (major AADT 2016-
2018 - Veh/day)  

 

2,050 67,300 17,432 11,162 

V2 (minor AADT 2016-
2018 - Veh/day) 

 
701 40,450 8,066 5,734 

Y1 (total crashes/3 years 
2013-2015) 

 

discrete 

0 131 22.6 23.5 

Y2 (total crashes/3 years 
2016-2018) 

0 124 22.4 23.5 

N (number of legs) * 

dummy 

3 4 3.75 0.44 

C (control type) ** 0 1 0.65 0.48 

* 3 legs=0, 4 legs=1. 
**unsignalized= 0, signalized=1 

 

3.1.1 Data Normalization  

Before model fitting, data normalization is an important task to avoid biases that will be created 

from the different measuring scales of the input variables. In ML, non-tree algorithms, such as 

SVM, are more prone to scaling problems. Therefore, in this study, MinMax scaling is used to 

normalize the input variables. In this method, all the values will be transformed to the range of 

[0,1] meaning that the minimum and maximum value of a feature/variable is going to be 0 and 1, 

respectively.  The mathematical overview of this method is provided in equation 3.1.  
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𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥𝑖 −  min(𝑥)

max(𝑥) − min(𝑥)
                                                                                                                     3.1 

Where, 𝑥𝑖 is the actual observation of the feature at the ith site. It is worth mentioning that using 

MinMax scaler in presence of outliers will create bias since the scaling is highly dependent on the 

maximum and the minimum values. Therefore, it is a crucial step to monitor and avoid reporting 

mistakes before normalization. For instance, if the value of a data point is relatively large in 

comparison with the other sites in the jurisdiction, it might be a reporting mistake and it might be 

excluded from the study. Excluding a site from the dataset due to suspicious value for one or more 

of the variables requires engineering judgment.  

3.1.2 Missing Data  

A challenging task when modeling collision data is to find the best way to deal with missing data. 

To avoid the issues that can arise from the short-term perceptions of road safety (as explained in 

section 1.2.2), data is usually collected for a period of time longer than one or two years and, 

therefore, it is very likely to have no records at some specific locations for the explanatory 

variables (e.g., traffic volume), especially in smaller jurisdictions, where there is less resources for 

completing the task. In this study, data is collected f rom 2013 to 2018 and as expected, some 

locations at some specific years are missing the traffic volume records. There are certain scenarios 

in the used dataset to deal with sites with missing data. Scenario A: if a site had no recorded traffic 

volume during the whole period of study, that site was completely omitted from the dataset. 

Scenario B: If a site has only one year with recorded traffic volume, the missing values for the 

other years are calculated using equation 3.2. In this equation, a growth factor is calculated for 

each year based on the overall average growth in the traffic volume, as per equation 3.3.  

𝐴𝐴𝐷𝑇𝑖±1,𝑗 = 𝐴𝐴𝐷𝑇𝑖 ,𝑗 ± 𝐺𝑖±1,𝑗 × 𝐴𝐴𝐷𝑇𝑖 ,𝑗                                                                                              3.2  

𝐺𝑖 =  
∑ 𝐴𝐴𝐷𝑇𝑖𝑛

∑ 𝐴𝐴𝐷𝑇𝑖−1𝑛
                                                                                                                                        3.3 

Where, 𝐴𝐴𝐷𝑇𝑖 ,𝑗 is the average annual daily traffic at site 𝑗 for the year 𝑖, 𝐺𝑖  is the average growth 

factor for the 𝑖 year, and 𝑛 is the total number of sites that has recorded AADTs for 𝑖 and 𝑖 + 1 

year.  
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To clarify, let imagine that the major AADT (also known as 𝑉1 ) has record available only in 2016. 

To calculate all the missing AADTs of 2013 to 2018, growth factors are being used in a backward 

method for years 2013, 2014 and 2015 and in a forward method for years 2017 and 2018. The 

calculated growth factors are shown in table 3-2. Scenario C: if a site has more than one year with 

recorded traffic volume, a similar approach as per scenario B is done separately based on each 

recorded value and the average of calculated traffic volume is considered.  

Table 3-2 Calculated average growth factors for the years of the study 

Year 2018 2017 2016 2015 2014 2013 

Growth Factor 1.90 1.55 9.55 6.8 -0.78 -1.89 

 

3.2 Predictive Analytics  

To fulfill the objectives of this study, three ML algorithms, i.e., SVM, DT, and RF are developed 

and compared with the NB model. In this section, these analytics are described in detail.  

 

3.2.1 Negative Binomial Generalized Linear Regression 

Negative Binomial (NB) Generalized Linear Regression (GLR) has been widely employed in the 

literature to model collision data and develop SPFs (Hauer, 1997, Sawalha and Sayed, 2001, 2006, 

Kim et al., 2007, El-Basyouny and Sayed, 2009a, Geedipally et al., 2010).  GLR is introduced as 

opposed to the traditional linear modeling (least square approach) due to the following important 

shortcomings of linear regression:  

• Assuming that data is always normally distributed may not be always reasonable. For 

instance, assuming a continuous normal distribution for count data (i.e., collision data) is 

not appropriate.   

• Assuming that the prediction error have a constant variance for all observations (known as 

homoscedasticity) is not always the case. In other words, it is not unusual for data to 

experience an increase in the variance of residuals while the mean increases (known as 

heteroskedasticity).  
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A traditional linear model is in the form of  𝑦𝑖 = 𝑥𝑖𝛽 +  𝜀𝑖, where 𝑦𝑖  is the observation (i.e., number 

of collisions) for the 𝑖𝑡ℎ site, 𝑥𝑖 is the corresponding feature (i.e., road and traffic factors), 𝛽 is the 

coefficient of the model that is to be estimated using the least square approach, and 𝜀𝑖 are the 

independent, normal random variables with a mean equal to zero and constant variance. In this 

model, the expected value of 𝑦𝑖 , denoted as 𝜇𝑖, is 𝜇𝑖 = 𝑥𝑖𝛽.  In GLR, the traditional model is 

extended, and therefore, it applies to a wider range of data and problems.  In GLR, the linear 

component is defined similarly to the traditional linear modeling, 𝜇𝑖 = 𝑥𝑖𝛽, however, a monotonic 

differentiable link function 𝑔 describes how the expected value of 𝜇𝑖 is related to the linear 

predictor 𝜇𝑖 (Haur, 1997):  

𝑔(𝜇𝑖) =  𝑥𝑖𝛽                                     3 − 4 

The response variables 𝑦𝑖 ,  are independent for i = 1, 2, . . . and have a probability distribution 

from an exponential family. This implies that the variance of the response depends on the mean   𝜇 

through a variance function 𝑉(Haur, 1997):  

𝑉𝐴𝑅(𝑦𝑖) =  
𝜑 𝑉(𝜇𝑖)

𝜔𝑖
                                                  3 − 5 

Where 𝜑 is a constant, known as dispersion parameter, and 𝜔𝑖  is a known weight for each 

observation. 𝜑 is either known (for example, for the binomial or Poisson distribution, 𝜑 = 1) or 

must be estimated.  

The most common approach in the road safety analysis for GLR is the NB approach.  In details, 

in a population of roadway sites, let Y denote the random variable describing the collision 

experience in different years for a site, as Poisson distributed with mean 𝑚. It is further assumed 

that 𝑚 vary between different sites and that the exact value for a particular site is unknown and is 

regarded as gamma distributed. It follows that the distribution of Y in this population is NB with 

mean and variance (Hinde and Demetrio, 1998; Hauer, 1997): 

 

𝐸(𝑌) =  𝐸(𝑚);            𝑉𝑎𝑟 (𝑌) =  𝐸(𝑚) + 𝜑 × 𝐸(𝑚)2                                   3 − 6 
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where 𝜑 is the dispersion parameter of the NB distribution. The expected value of m can be 

modeled as an SPF with the following baseline form for intersections, for instance:  

 

𝐸(𝑚) = 𝑎0 × 𝑉1
𝑎1 × 𝑉2

𝑎2 × 𝑒
∑ 𝑏𝑗𝑥𝑗

𝑚
𝑗=1                                         3 − 7 

where 𝑎0, 𝑎1, 𝑎2 and 𝑏𝑗 are model parameters, 𝑉1  and 𝑉2 are the annual average daily traffic 

(AADT) on the major and minor approaches, respectively, and 𝑥𝑗 represents additional explanatory 

variables to the model (e.g., roadway and traffic features).  

 

 

 

 

3.2.2 Support Vector Machine (SVM) 

SVM, proposed by (Vapnik, 1995) is a supervised and non-parametric ML algorithm used for 

classification and regression problems. Originally, SVM has been introduced within the context of 

statistical learning theory and structural risk minimization (Chen et al, 2009). Given a training 

dataset, SVM aims at learning the so-called separative line and its boundaries to predict the 

outcome variable based on distances from them. Figure 3-1 describes the separative line and the 

boundaries.  
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Figure 3-1 ε-insensitive linear SVM regression (adopted from Schölkopf et al., 2000) 

 

The SVM algorithm can reveal hidden patterns in datasets that have otherwise been hidden or 

distorted because of non-linear phenomena such as noise or sparsity. In classification tasks, SVM 

requires two components: a dataset, and an algorithm for finding the best separative lane that can 

separate classes. As an example, in road safety applications, classes can be severity levels of 

collisions. The algorithm uses the training dataset to determine what vectors (observations) will 

best separate the target classes from the rest of the data. Then, for each data point belonging to one 

class, a hyperplane is created that approximately lines up with that vector. These vectors are called 

support vectors that are hallmarks for building the classification after training the model.  By doing 

so, the algorithm saves computational time and minimizes data storage through these support 

vectors (Marsland, 2009).  It is designed so that there is no confusion between different classes 

and so it maximizes our separation between them. Predictions are made by measuring the distance 

between the new points and the support vectors that were learned in training the data.  

The central concept of the SVM classifier lies in the obtaining of the largest marginal space at the 

same time controlling the number of data points from appearing inside the margins (soft margin) 

or preventing their occurrence by any means inside the margins (hard margin). To maximize the 
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margin, the classifier needs to find the right amount of weight 𝑤 and bias b in a line defined as 

𝑦 =  𝑤 ∗ 𝑥 + 𝑏. The margin and weight of the vector have an indirect relationship, where a more 

significant margin occurs when we take a smaller amount of weight (Marsland, 2009). In using 

the hard margin to train the dataset, the effort is to make a function that would have a value of 

more than 1 for a positive x data point and less than -1 for a negative x data point. These constraints 

then pass through an optimization step to classify the classes correctly that in turn brings us to 

express the constraint in an equation for all data points as  𝑦=
1

 2
𝑤𝑇  𝑤 subject to 𝑡𝑖(𝑤𝑇  𝑋𝑖 +  𝑏) ≥

1, where 𝑡𝑖 is the target variable for the ith data point. 

In a soft margin classifier, where we allow an error to some extent, we use a slack variable 𝜁𝑖 ≥ 0 

quantifying the violation of margin produced by a single data point x in a dataset (Géron, 2017). 

In the soft margin, a balance between two options has to be found, i.e., minimize the slack variable 

so that the marginal violation becomes small and minimize  
1

 2
𝑤𝑇  𝑤 to expand the margin. These 

trade-offs in the classifier are facilitated by hyperparameter 𝐶 in which its higher value favors a 

small margin over higher errors. In contrast to the hard margin, the function to be minimized is 

given as: 

1

 2
𝑤𝑇 𝑤 + 𝐶 ∑ 𝜁𝑖

𝑚

𝑖=1

, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        𝑡𝑖(𝑤𝑇  𝑋𝑖 +  𝑏) ≥ 1 − 𝜁𝑖                                                          3.8 

 

On the other hand, in the regression task in which this study used, the goal of SVM regression 

takes a contrary path that is the effort to fit many data points, known as support vectors, as much 

as possible inside the boundaries and minimize the number of data points from going out of the 

boundaries. The distance between the boundary line and separative line largely depends on the 

level of parameter ε (Suykens et al., 2002), which needs to be specified a priori. Predictions are 

made by measuring the distance between the new points and the support vectors that were learned 

in training the data. SVM extends its applicability to accommodate the non-linear task of 

identifying patterns and therefore, kernel function comes to play a crucial role in such applications 

by allowing various adjustments according to the distribution of the data (Müller and Guido, 2016). 

A schematic view of the kernel function used is shown on figure 3-2. There are 4 commonly used 



37 
 

kernel functions, and choosing the right kernel is one of the tasks in the SVM. These kernels are 

the Gaussian, Polynomial, Sigmoid, and Linear kernels (Géron, 2017). The impressive capability 

of kernel function is its performance of computation in the former low dimensional space data 

points despite having the data appeared on the high dimensional spaces. In this study, ε-intensive 

SVM is used to train the model. A description of this model is provided. For more details refer to 

Schölkopf et al., (2000).   

 

Figure 3-2 A schematic view of kernel function φ to transfer the input space into a higher 

dimensional space (based on Li et al., 2012) 

 

Assume the training input is defined as vectors 𝑥(𝑖)  ∈  R1 for i=1, ..., N, which are independent 

and identically distributed data with sample size N. The training output is defined as 𝑦(𝑖) ∈ 𝑅1  

for 𝑖 = 1, . . . , 𝑁. The ε -SVM maps 𝑥(𝑖) into a feature space 𝑅ℎ(ℎ >  1) with the higher dimension 

using a transformer function 𝑋𝑥(𝑖) to linearize the nonlinear relationship between 𝑥(𝑖) and 𝑦(𝑖). 

The estimation function of 𝑦(𝑖) is: 

 

𝑦(𝑖) =  (𝑤𝑇  𝑋𝑥(𝑖) +  𝑏)                                                                                                                               3.9 
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Where, 𝑤 ∈  𝑅ℎ and 𝑏 ∈  𝑅1 are coefficients denoting the weights and biases in the higher 

dimension and lower dimension spaces, respectively, used for transforming purposes. Schölkopf 

et al. (2000) showed that the coefficients are derived by solving the following optimization 

problem: 

 

minimize (
1

 2
𝑤𝑇  𝑤 + 𝐶 ∑ 𝜁𝑖)

𝑚

𝑖=1

, 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜        (𝑤𝑇  𝑋𝑥(𝑖) +  𝑏) − 𝑦𝑖 ≤ ε + 𝜁𝑖                    3.10 

Where, 
1

 2
𝑤𝑇  𝑤 is a term representing the model complexity,  𝑦𝑖 is the observation for the 𝑖𝑡ℎ 

variable,  𝜁𝑖  are slack variables measuring the prediction errors, and C represents a penalty variable 

for large and small margin violations. 

One objective of this study is to predict collision frequency from the corresponding transportation 

predictors (roadway and traffic factors). In this case, the training data inputs (vectors) {(x1, y1),... 

(xn, yn)} ⊂ X × R are the roadway and traffic factors, and the output y is the number of collisions. 

The main task of the regression is to find the least-squares error function and convert it into an ε-

insensitive error function (shown in equation 3.8) (Géron, 2017). The model is called ε-insensitive 

since the predictions don’t rely on the number of instances found between the two marginal lines 

(Géron, 2017). 

 

 

 

 

3.2.3 Decision Tree  

Decision Tree (DT)  is a predictive ML algorithm that applies to both classification and regression 

tasks. This algorithm is popular as its algorithm is easy to be interpreted. In other words, the simple 

process of learning in this algorithm along with the comprehensive, yet easy-to-follow procedure 

has made this algorithm popular over the recent decades. Several studies in road safety analysis 

have used and recommended different types of DT for modeling the collision data (Sohn and Lee, 
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2003; Chang and Chen, 2005; Kashani and Mohaymani, 2011; Ona et al., 2013; and Zhang et al., 

2018). Some advantages and disadvantages of the DT algorithm are reported below:  

Advantages: 

• DT model is simply understood and can be visualized.  

• Compared to other algorithms, DT requires less data processing, such as data normalization 

and dealing with missing data.  

• The effort to fit a DT model is related logarithmically to the increase of the data points.  

DTs can handle numerical and categorical data and deal with multi-variable problems, 

where there is more than one output in the model.  

Disadvantages:  

• Learning a DT model can sometimes become over-complex challenging the generalization 

abilities of the model. To avoid this problem, hyper-parameters of the model, such as 

pruning (removing non-critical parts of tree for data compression), setting the maximum 

depth, or the minimum number of samples at each leaf can be useful.  

• DTs can be highly unstable meaning that a small variation in the input data may lead to a 

model completely different.  

• If a class is dominant in the dataset, it might affect the learning process and, therefore, it is 

recommended to have a dataset, which is balanced for existing classes.  

Like SVM, decision trees are applicable for regression problems, but in a hierarchical manner. 

Meaning that queries need to be created one after another. Regression trees work differently 

compared to classification task of a decision tree, i.e., instead of observing the node impurity, that 

is a metric of success in classifying the dataset, the trees are built according to the sum of squares 

error (Marsland, 2009). In each node, where the query exists, predictions are made to find values 

instead of classes of the feature after several series of if/else questions, and after calculating the 

sum of squares error, the algorithm decides on changing the query or moving forward. To build 

the tree, it is required to calculate the value of the feature at each node for building the next leaf 

(Géron, 2017).  The values of the feature in each leaf are derived from the mean average of the 

instances. These mean average values of the feature are optimal to make a split of the feature at a 

particular value and to minimize the sum of square errors (Marsland, 2009). 
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In general, the process of building the tree starts with finding the most essential features that will 

be situated at the top of the tree that is called the root node (Müller and Guido, 2016). In road 

safety studies, this usually is seen to be the traffic volume variable that has the most significant 

effect on the number of collisions. This feature has the most of the information for splitting the 

whole dataset into right and left leaf nodes that are created from a particular benchmark value of 

the feature. The next immediate right and left leaf nodes served to better estimation of the outcome, 

and the process of searching for the best split continues until each leaf constitutes a value. Figure 

3-3 illustrates a schematic view of a decision process using a DT algorithm.  

 

 

Figure 3-3 An Example of DT algorithm used for regression task 

Other instances for the road safety study to be considered in lower levels of the tree are road and 

environmental factors. During the prediction using the test set with unseen data, the algorithm 

works by searching a region from top to bottom of the tree where the new points belong, and then 

the decision is made to categorize with the class or value that has more points. Gini impurity and 

entropy measures are two methods for measuring information to choose the features of the split. 

With its fast computation, Gini impurity by default is used as the measure of purity (Géron, 2017).  

The Gini impurity of a node is calculated as follows: 
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𝐺 𝑇 = 1 −  ∑ 𝑁(𝑖) 2

𝑛

𝑖=1

                                                                                                                                 3.11 

 

Where, 𝑁(𝑖) is the number of instances at the node 𝑇, which maintains purity with regards to a 

known estimation error 𝑁(𝑖) can be the number of instances where crash frequency that has been 

calculated is at an acceptable distance from the actual observation, and n is the total number of 

instances (i.e., intersections) that exist in the study.   

 

3.2.4 Random Forest 

Random Forest (RF) is another supervised ML algorithm implemented in this study for collision 

frequency modeling. It is an ensemble learning of a DT that is averaging the outputs of randomly 

created trees. Ensemble means the algorithms combine the predictions of many DTs and take the 

average result from it (∑ in figure 3-4). One way of attaining randomness is by using bagging for 

bootstrapping the samples from the dataset (Marsland, 2009).  Bagging involves using different 

samples of data (training data) instead of a single dataset.  Unlike DTs, RF identifies the best 

features for splitting from randomly bagged features that give the algorithm an advantage to try 

different sets of features and in some cases be more optimal than the DT. Moreover, the ensemble 

learning of the RF algorithm solves the issues of instability in DTs. The randomness in the 

algorithm results in making a trade-off between a high level of bias and lower variance, which is 

important for building an optimal predictive model (Géron, 2017). Thus, in each node of the tree, 

RF selects randomly a number of features and measures the Gini impurity, a measure of impurity 

in each decision node, from those selected features, then selects the optimal tree. This process 

continues until all randomly created trees in an ensemble are considered; calculating the mean 

response is the final step of the algorithm (Marsland, 2009). Moreover, the problem of overfitting 

observed in DT is also more conveniently dealt with by RF. The random forest creates the trees by 

averaging the results of the trees to reduce overfitting, that is likely to happen in a single tree 

(Müller and Guido, 2016). Even though pruning is not needed in the RF algorithm to optimize the 

performance, there are plenty of hyper-parameters that can be adjusted to fit the model well in the 

dataset, such as minimum sample leaf, and maximum depth of the trees (Marsland, 2009). Another 
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characteristic of the random forest is the ability to provide feature importance by taking the mean 

depth of the features that are appeared in all the trees (Müller and Guido, 2016). Figure 3-4 

provides an overview of the RF algorithm.  

 

 

Figure 3-4 A schematic overview of the RF algorithm 
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3.2.5 Optimization of ML Hyper-Parameters  

Due to the high degrees of freedom in fitting the data (that can lead to overfitting), optimization 

of the hyper-parameters that are tuned for the learning process in the ML algorithms is a necessary 

task. To find the best set of hyper-parameters to use in each algorithm, grid-search cross-validation 

(GSCV) was used to optimize the performance of ML algorithms. In summary, GSCV is a 

technique that looks for an array of desired values to assign to the hyper-parameters of the models 

and tries every possible permutation of them to find the optimal solution (Pedregosa et al., 2011). 

For instance, in the SVM algorithm, various types of kernel functions, such as linear, polynomial, 

and radial-based functions will be applied to find an optimal separation that is suitable for the 

dataset. On the other hand, in DT and RF algorithm, one of the hyper-parameters is the maximum 

depth of the tree, which is the length of the tree from the root node to the leaf nodes that will let 

the model avoid over-complexity. In other words, the process of creating the decision tree can go 

further and further with more and more decision nodes or it can be optimized to find the most 

economic depth that will avoid overfitted tree and reduce estimation time. Adjusting other 

parameters such as the minimum sample split (the minimum number of samples required before 

the split) and minimum leaf split (the lowest number that a leaf node must have) will also reduce 

the complexity of the tree that in turn prevents the likelihood of the overfitting problem. The so-

called split is the decision that is to be made at each leaf for further creation of leaves in lower 

levels of the tree. 

 

3.2.6 Goodness-of-Fit Criteria 

Three goodness-of-fit criteria were employed in this study to compare the prediction performance 

of ML models and SPFs: the coefficient of determination (𝑅2), the mean absolute deviation 

(MAD), and the mean square predicted error (MSE) (Oh et al., 2006).   

The coefficient of determination is reported in equation 3.12: 

𝑅2 =  1 −  
𝑆𝑆𝑟𝑒𝑠

𝑆𝑆𝑡𝑜𝑡
;                                                                                                                                       3.12  

Where, 𝑆𝑆𝑟𝑒𝑠and 𝑆𝑆𝑡𝑜𝑡  are the residual and the total sum of squares, and are calculated as follows:  
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   𝑆𝑆𝑟𝑒𝑠 =  ∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

;         𝑆𝑆𝑡𝑜𝑡 =      ∑(𝑦̂𝑖 − y̅)2

𝑛

𝑖=1

;               y̅ =      
1

𝑛
∑ y𝑖

𝑛

𝑖=1

                       3.13 

Where, n is the number of observations, 𝑦𝑖  is the actual value of the 𝑖𝑡ℎ observation (in this study, 

crash frequency), 𝑦̂𝑖 is the model calculated value for the 𝑖𝑡ℎ observation and y̅ is the average of 

the actual value for the dependent variable over all the observations. Other metrics are as follows:  

𝑀𝐴𝐷 =  
1

𝑛
∑|𝑦̂𝑖 − 𝑦𝑖|

𝑛

𝑖=1

                                                                                                                             3.14 

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑦̂𝑖 − 𝑦𝑖)2

𝑛

𝑖=1

                                                                                                                           3.15 
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Chapter 4 

Model Implementation and Results Analysis  

 

4.1 Model Implementation 

In this study, ML models are created using Python 3.7.4 with the help of the sci-kit-learn library 

and evaluation metrics (i.e., R-score, MAD, MSE) within the scientific python development 

environment (Spyder-IDE.org). SPFs were developed using the GENMOD procedure of SAS 

software where model parameters were estimated with the maximum likelihood method (SAS 

Institute Inc., 2018). For both time periods I (2013-2015) and II (2016-2018), 275 sites (80% of 

data) were employed for model development (training), and 68 sites (20% of data) were employed 

to assess transferability performance (testing). This proportion of sites for testing and training was 

chosen according to the ML literature (Lie et al., 2008; Zeng and Huang, 2014; Chen et al.,2016; 

and Dong et al., 2018). The resulting SPFs for both time periods using training data were reported 

in Table4-1.  
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Table 4-1 SPFs for both time periods (training data) 

Parameter* Variable Mean Standard Error  p-value 

Time Period I (2013-2015) 

𝑎0
 Intercept -8.858 0.793  <0.0001 

𝑎1 Major AADT 0.665 0.078  <0.0001 

𝑎2 Minor AADT 0.405 0.076  <0.0001 

𝑏1 Number of Legs 0.393 0.095  <0.0001 

𝑏2 Control Type 0.419 0.110  0.0001 

Dispersion  0.339 0.037   

Time Period II (2016-2018) 

𝑎0 Intercept -10.119 0.789  <.0001 

𝑎1 Major AADT 0.772 0.077  <.0001 

𝑎2 Minor AADT 0.441 0.069  <.0001 

𝑏1 Number of Legs 0.295 0.105  0.0048 

𝑏2 Control Type 0.382 0.089  <.0001 

Dispersion  0.276 0.030   

*See equation 3.7 for parameter description 

 

All model parameters were found significant at the 95% confidence level with their p -values lower 

than 0.05. The goodness-of-fit indicators for fitting the NB regression, such as scaled deviance and 

the Pearson 𝜒2 values are shown for both time periods in table 4-2. As can be seen in this table, 

the indicators are showing sufficient values and suggesting an acceptable model, being their 𝜒2 

lower than degrees of freedom.  

 

Table 4-2 Goodness of fit indicators for NB model in time periods I, and II. 

time period 
degree of freedom 

(df) 
scaled 

deviance (SD) 
𝝌𝟐 SD/df 𝝌𝟐/df 

I 270 302.4 245.7 1.12 0.91 

II 270 320.7 260.9 1.19 0.97 
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For the ML algorithms, as explained before, no model can be presented as the learning process 

does not follow a functional form. However, as explained in the model optimization section using 

GSCV, an array of desired hyper-parameters is introduced. Table 4-3 and 4-4 provides the details 

of this array and the optimized selection of these hyperparameters by each ML algorithm for the 

models developed for both time periods I and II. A brief description of each hyper-parameter is 

provided in appendix B.  

 

Table 4-3 Best selected hyper-parameters for ML algorithms using GSCV in time period I 

Hyper-

parameter 
SVM Algorithm Selected Hyper-parameter 

C 600, 700, 800, 900, 1000 600 

Kernel type Linear, Polynomial, Radial-Basis Function (RBF) RBF  

Degree 2, 3, 4, 5, 6 N/A* 

Gamma Scale, Auto  scale 

               𝜀   10−4, 10−5, 10−6 10−5 

   

Hyper-
parameter 

DT Selected Hyper-parameter 

Mean_samples
_leaf 

9, 10, 11, 12, 13 11 

Max_depth 4, 5, 6, 7 6 

Min_impurity_

decrease 
0, 1, 2 1 

   

Hyper-

parameter 
RF Selected Hyper-parameter 

Mean_samples
_leaf 

1, 3, 5, 7, 9, 11, 13, 15 11 

Max_depth 1, 3, 5, 7, 9, 11, 13 7 

Bootstrap True, False  True 

*Degree does not apply to the RBF kernel function 
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Table 4-4 Best selected hyper-parameters for ML algorithms using GSCV in time period II 

 SVM Algorithm Selected Hyper-parameter 

C 600, 700, 800, 900, 1000 600 

Kernel type Linear, Polynomial, Radial-Basis Function (RBF) Linear  

Degree 2, 3, 4, 5, 6 N/A* 

Gamma Scale, Auto  scale 

               𝜀   10−4, 10−5, 10−6 10−4 

   

 DT Selected Hyper-parameter 

Mean_samples_
leaf 

9, 10, 11, 12, 13 12 

Max_depth 4, 5, 6, 7 5 

Min_impurity_d

ecrease 
0, 1, 2 0 

   

 RF Selected Hyper-parameter 

Mean_samples_

leaf 
1, 3, 5, 7, 9, 11, 13, 15 9 

Max_depth 1, 3, 5, 7, 9, 11, 13 5 

Bootstrap True, False  True 

*Degree does not apply to the linear kernel function 

The hyper-parameters of the ML models are selected based on the rationality to explore a few 

options while keeping the estimation time low. For example, exploring the maximum depth could 

be with more than 4 options in decision tree, however, only 4 options are selected for optimization 

in a reasonable range, that is to avoid creating too shallow or too deep trees, which will increase 

the likelihood of underfitting or overfitting problems, respectively.  
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Due to the differences in both time periods and the variations due to the selection of hyper-

parameters it is recommended to use an optimization tool to come up with the best solution. For 

this purpose, GSCV optimization is used to select the most efficient hyperparameters from the 

introduced array. It is based on the project requirements to further increase the array of the hyper-

parameters to select from. A rational way to select this array is when the change in the results is 

negligible when changing the hyper-parameters.    

 

4.2 Prediction Performance Evaluation  

As the first step in evaluating the results, the performance of the NB model is compared with the 

ML algorithms in terms of fitting and predicting abilities. The metrics introduced in section “3.2.5” 

(i.e., 𝑅2, MSE and MAD) are calculated and compared in tables 4-5 and 4-6. It is worth mentioning 

that while these metrics are automatically calculated for ML algorithms using the sci-kit-learn 

library, the corresponding values for the NB model are calculated manually using the generated 

SPFs as shown in table 3-1.  

 

Table 4-5 Performance comparison of NB and the ML algorithms in the time period I 

(2013-2015) 

training set 

Model 𝑹𝟐  MSE MAD 

SVM 0. 663 191.345 8.933 

DT 0.723 157.041 8.840 

RF 0.702 169.208 8.654 

NB 0.606 223.405 10.281 

    

test set 

Model 𝑹𝟐  MSE MAD 

SVM N/A* 212.857 9.270 

DT N/A 154.608 9.084 

RF N/A 185.903 8.774 

NB N/A 198.733 9.177 

*𝑅2  is representing the goodness of fit and does not apply to the test set. 
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Several observations can be made by analyzing the values of the metrics shown in Table 4-5 in the 

time period I. First, DT is showing a better fitting to the training dataset with its 𝑅2 being higher , 

and MSE, and MAD values lower than the other models.  RF and SVM holds the next positions. 

In this time period, the NB model is showing the poorest fit with 𝑅2 equal to 0.606, training MSE 

of 223.405, and training MAD of 10.281. Regarding the training MAD values for DT and RF, one 

can observe a higher value for DT compared to RF, while training MSE for these two algorithms 

is the opposite. Knowing that MSE is the second moment of the error, shown in equation 3 .15, this 

is suggesting that while RF is having less prediction error, its wrong predictions are relatively more 

distanced from the observation when comparing to DT.   

Table 4-6 Performance comparison of NB and the ML algorithms in the time period II 

(2016-2018) 

training set 

Model 𝑹𝟐 MSE MAD 

SVM 0.632 204.439 9.498 

DT 0.734 147.613 8.276 

RF 0.736 146.580 8.151 

NB 0.642 198.888 9.434 

    

test set 

Model 𝑹𝟐 MSE MAD 

SVM N/A* 164.327 8.643 

DT N/A 214.214 9.768 

RF N/A 194.420 9.275 

NB N/A 151.065 8.091 

*𝑅2  is representing the goodness-of-fit and is not applicable to the test set.  
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Having the same analysis for time period II, RF is having a better fitting ability its 𝑅2 being higher 

, and MSE, and MAD values lower than the other models . DT and NB are holding the next 

positions. In this time period, the SVM model is showing the poorest fit with 𝑅2 equal to 0.632, 

training MSE of 204.439, and training MAD of 8.643. These differences in the ranking of models 

in two time periods were expected as there are variables that exist in the dataset, such as traffic 

volume and collision counts, and they can vary from the time period I to II. However, in terms of 

fitting to the training set, DT and RF are approximately showing similar fitting ability, which 

outperforms SVM and NB.   

Looking at the test set in the time period I and comparing the values with the training set, 

conclusions can be made regarding the generalization ability, also known as the overfitting issue.  

DT still holds the first position with the lowest MSE value of 154.608, which is indeed lower than 

its MSE for the training set. This suggests that the DT model has sufficient generalization ability 

in this time period. This is also the case when looking at the NB model, with a lower MSE in the 

test set comparing to the training set. However, RF and SVM are experiencing higher MSE and 

MAD values in the test set when compared to the training set in the time period I. In time period 

II, however, the NB model is acting as the best model in terms of generalization ability being its 

test error lower than training error. Subsequently, in this time period, SVM holds the next position, 

with its test error still lower than the training error, but not as significant as it was in the NB model.  

However, DT and RF are experiencing higher MSE and MAD values in the test set when compared 

to the training set in time period II.  

Overall, due to the natural fluctuations of traffic and collision data in the period of study, slightly 

different conclusions can be made between time periods. However, it seems that in both time 

periods, DT and RF models are acting more similarly while SVM results stand more closely to the 

NB model. It can be concluded that DT and RF are showing better fitting abilities, while they may 

still suffer from overfitting problems. Comparing the results of this study with the works of Xie et 

al. (2007) and Lie et al. (2008), once more it is proved that ML algorithms can fit sufficient models 

to the collision data that can have similar, if not better, predictions capabilities in comparison with 

the traditional NB regression.  
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4.3 Sensitivity Analysis  

One of the downsides of the ML algorithms is that they lack any functional forms that will consist 

a model parameter for each explanatory variable (Xie et al., 2007), and therefore, making it hard 

to interpret the impact of each variable on the outcome. Even in DT and RF algorithms, where the 

model is easier to interpret, the impacts of each variable to the outcome cannot be easily 

understood. As a response to this critic around the use of ML algorithms in road safety analysis, a 

sensitivity analysis, inspired by the works of Fish and Blodgett (2003), Delen et al. (2006), and 

Xie et al. (2007) is conducted.    

The basic procedure in conducting this analysis is that, in order to understand the effect of each 

explanatory variable on the outcome of the model, one needs to keep all other explanatory variables 

constant and change the value of the desired one within a reasonable interval. Each time that the 

value of the desired explanatory variable is changed, the corresponding outcome (collision 

frequency in this study) is recorded and, in this way, the effect of that particular explanatory 

variable on the outcome is obtained.  

In this study, a summary statistic (mean and variance) of sensitivity analysis for 68 sites is reported. 

In this way, an average value for the obtained impact of each explanatory variable over the whole 

data set is calculated and compared with the model parameters in the NB method. The explanatory 

variables used in this study are average annual daily traffic on the major approach of the 

intersection (𝑉1 ), average annual daily traffic on the minor approach of the intersection (𝑉2), 

control type (CT), and the number of legs (Nlegs). The former two are numerical while the latter 

two are categorical (refer to table 3-1).  

In order to compare the impacts of these variables with the NB method, the sensitivity of the model 

to 𝑉1   and 𝑉2 is considered to be related to the collision frequency with a power function. On the 

other hand, however, CT and Nlegs are considered to be exponentially related to the collision 

frequency. In other words, to be able to compare the results of sensitivity analysis for each 

explanatory variable with the model parameters of the NB model for the same explanatory 

variable, a similar form of contribution to the output of the ML model (collision frequency) is 

considered. To clarify, 𝑉1  and 𝑉2 are considered to be related to the output of the model with a 

power function, while CT and Nlegs are related in an exponential function as shown in equation 
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3.7, and therefore, a similar type of contribution is considered for ML algorithms. To obtain the 

sensitivity of ML algorithms to the 𝑉1   and 𝑉2  , an array of 10 instances ranging from 0.1*𝑉𝑖 to 

1.0*𝑉𝑖   is considered. This range of inputs is selected due to the fact the normalized data should 

remain between 0 and 1.  For example, if the actual 𝑉1   is 1000 veh/day, the analyzed interval in 

the sensitivity analysis is [100, 200, 300, ..., 1000]. For the categorical variables (CT and Nlegs), 

the opposite value is given to the model. For example, if the actual intersection is signalized (with 

CT=1), it is changed to be unsignalized (with CT=0). Figure 4-1 is illustrating this matter in a 

schematic way for the first test site (7th Ave N and 33Rd St E, Saskatoon) with an actual 𝑉1   equal 

to 8000 veh/day). Upon every change in the variables, the change in the output (collision 

frequency) is recorded. 

 

Figure 4-1 Sample relationship for sensitivity analysis of 𝑉1  (7th Ave N and 33Rd St E, 

Saskatoon) 

 

Sensitivity analysis is conducted in both time periods I and II, and the results are compared with 

the corresponding NB model in the same time period shown in table 3-1. Tables 4-7 and 4-8 

indicate the average results of sensitivity analysis for time periods I and II, respectively. For a 

detailed site-by-site sensitivity analysis, refer to Appendix C.  
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Table 4-7 Sensitivity analysis in the time period I 

Model 
Sensitivity of The Output to The Explanatory Variables 

𝑽𝟏 𝑽𝟐 CT Nlegs 

SVM 
Mean: 0.5 

Variance: 0.25 

Mean: 0.39 
Variance: 0.17 

Mean: 0.99 
Variance: 0.23 

Mean: 0.94 
Variance: 0.20 

DT 
Mean: 0.52 

Variance: 0.22 

Mean: 0.31 

Variance: 0.20 

Mean: 1 

Variance: 0 

Mean: 1 

Variance: 0 

RF 
Mean: 0.48 

Variance: 0.25 
Mean: 0.25 

Variance: 0.18 
Mean: 1 

Variance: 0 
Mean: 1 

Variance: 0 

NB 
Mean: 0.66 

SE*: 0.08 

Mean: 0.41 

SE: 0.08 

Mean: 1.48 

SE: 0.09 

Mean: 1.52 

SE: 0.09 

*standard error 
 

Table 4-8 Sensitivity analysis in the time period II 

Model 
Sensitivity of The Output to The Explanatory Variables 

𝑽𝟏   𝑽𝟐 CT Nlegs 

SVM 
Mean*: 0.33 

Variance: 0.33 

Mean: 0.56 

Variance: 0.36 

Mean: 1.27  

Variance: 1.20 

Mean: 1.59 

Variance: 1.52 

DT 
Mean: 0.23  

Variance: 0.28 
Mean: 0.14 

Variance: 0.22 
Mean: 2.11 

Variance: 0.95 
Mean: 1  

Variance: 0 

RF 
Mean: 0.33 

Variance: 0.23 
Mean: 0.12 

Variance: 0.17 
Mean: 1.31 

Variance: 0.34 
Mean: 1.12 

Variance: 0.09 

NB 
Mean: 0.77 
SE**: 0.07 

Mean: 0.44 
SE: 0.08 

Mean: 1.46 
SE: 0.10 

Mean: 1.35 
SE: 0.09 

*the mean and the variance are for the 68 recorded sensitivity of the 68 sites of the test set  
**standard error 

 

From sensitivity analysis in period I, as shown in table 4-7, the ML algorithms are influenced 

similarly by explanatory variables in comparison to NB model parameters. In particular, all the 

three ML models are showing higher sensitivity to the traffic volume of the major approach (𝑉1 ) 
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compared to the minor approach (𝑉2).   However,  the sensitivity of each model to these 

explanatory variables is different due to the different ML algorithms. On the other hand, looking 

at the CT and Nlegs, there is a considerable difference from model to model. While the NB model 

is showing that changing the CT from signalized to unsignalized is associated with higher collision 

frequency, ML algorithms are showing a neutral sensitivity to these two explanatory variables. 

This suggests that the ML algorithms are not developed around CT and Nlegs and they are  mainly 

using MJAADT and MNAADT for their predictions. In other words, based on the interpretations 

of the sensitivity analysis of the ML algorithms, having a signalized or unsignalized intersection, 

or having a 3-leg or a 4-leg intersection are not necessarily associated with higher/lower collision 

frequency.  

In time period II, the results are slightly different. While all the models are showing higher 

sensitivity to the 𝑉1  compared to 𝑉2, collision frequency prediction in SVM, seems to be more 

sensitive to the changes in the 𝑉2. However, apart from 𝑉1 , the sensitivity of the SVM model to the 

𝑉2, CT and Nlegs, is more aligned with the parameters of NB and once again suggesting that SVM 

provides results more comparable to the NB while DT and RF are significantly different. In 

addition, in this time period, unlike one instance in DT, all the models showed to be sensitive to 

CT and Nlegs variations. DT model in this time period, though, is still showing insensitivity to 

Nlegs. Overall, it was expected that a “perfect” alignment of ML results to NB model parameters 

was not possible since the two techniques are based on different modeling principles . Still, this 

sensitivity analysis can enable practitioners to gain more insights into how the ML outcomes are 

affected by the existing explanatory variables.  

 

4.4 Validation of ML Algorithms in Network Screening 

In this section, the performance of ML algorithms used within the RSMP was compared to the NB 

model. To do this, data was collected for sites with no major road improvements during the period 

of study (2013-2018). Then, the time period was divided into time periods I (2013-2015) and II 

(2016-2018).  Due to the fact that no major road safety improvements were installed during this 

period of time, sites that are identified as hotspots in time period I were expected to remain hotspots 

in time period II as well. A method consistency expressed by the consistency test (Tc) proposed in 
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the literature (Cheng and Washington, 2008; Lan and Persaud, 2011; Sacchi et al, 2015) was 

employed. The consistency test involves two ranked lists of the same dataset in subsequent time 

periods i and i+1 being compared and evaluated using the following evaluation criteria: 

 

𝑇𝑐 = {𝑘1, 𝑘1, … , 𝑘𝑛𝛿}𝑗,𝑖   {𝑘1,𝑘1, … , 𝑘𝑛𝛿 }𝑗,𝑖+1                                                                     4 − 1 

 

where ki is the ith ranked site identified as a hotspot, n is the total number of sites in the dataset, δ 

is the threshold of identified high-risk sites (e.g., δ=0.1 corresponds with the top 10% of sites 

identified as hotspots), and j represents the ranking method(s) being compared.  

To conduct a comparison between the list of hotspots, network screening has been carried out in 

both time periods using NB and ML models. The results were divided into two parts. First, each 

method was used for ranking the sites in both time periods and the consistency of them in 

identification of similar hotspots is studied. This step is called within methodology consistency 

check. In step two, however, the consistency of ML algorithms and the NB model in identifying 

the hotspots was studied in each time period separately. This step is called across methodology 

consistency check. The findings of the two analyses assist with proving the ability of ML 

algorithms to be used within the actual practices of RSMP.  

The performance measures selected in this study are “excess predicted average crash frequency 

using the SPF”, “excess average crash frequency with EB adjustment”, and “excess expected 

average crash frequency with EB adjustment”, also known as “potential for safety improvement 

(PSI)”. The details on how to calculate each of these performance measures are provided in 

equations 4.2 to 4.4. For the NB regression model, all the three performance measures are 

available, however, for comparing the ML algorithms together we are only relying on the outcomes 

of the first performance measure by substituting the SPF results with the ML results. This is 

because there is no such thing as a dispersion parameter in the ML algorithms that can be used for 

the two latter performance measures. In short, the following terms will represent each performance 

measure:  

- y-NB or y-ML (i.e., SVM, DT, RF) for the excess predicted average crash frequency using the 
SPF or ML:  
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(𝑦 − 𝑁𝐵) 𝑖 =  𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖
−  𝐸(𝑚)𝑖                                                                                                    4.2 

 

- EB for the expected average crash frequency with EB adjustment:  
 

𝐸𝐵 = 𝑤 × 𝐸(𝑚)𝑖 + (1 − 𝑤) × 𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖
                                                                                       4.3  

 

- PSI for the excess expected average crash frequency with EB adjustment 
 

𝑃𝑆𝐼 =  𝐸𝐵 −  𝐸(𝑚)𝑖                                                                                                                                   4.4 

 

Where,  𝑦𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑𝑖
 is the observed collision frequency, and 𝐸(𝑚)𝑖  is the predicted collision 

frequency at the 𝑖𝑡ℎ site.  

It is worth mentioning that the collision prediction models are the same as the models developed 

using the training set for time periods I and II in previous sections that are shown in tables 4-2, 4-

3, and 4-4.  To perform the consistency analysis, network screening was conducted for the 68 sites 

of the test set.  

4.4.1 Within Methodology Consistency Check  

Within methodology consistency check reveals useful information about the ranking consistency 

of the performance measures that are based on the NB model in identifying the hotspots in two 

time periods (network screening). This is done by using the obtained ranking consistency in the 

NB-based performance measure and comparing it with the ranking consistency of the ML-based 

performance measures. It is being called “within method consistency” as the consistency of 

ranking is first being overviewed in each modeling technique (i.e., NB-based ranking and ML-

based ranking) separately, and then compared with each other to understand the adequacy of ML 

algorithms in providing the consistent ranking. Figures 4-2 and 4-3 describe the results of NB-

based and ML-based consistency checks, respectively.  
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Figure 4-2 Within methodology consistency check in ranking of hotspots using NB model 

 

 

Figure 4-3 Within methodology consistency check in the ranking of hotspots using ML 

algorithms 
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Overall, both SPF-based and ML-based performance measures showed ranking consistency above 

60% in the two time periods of the study. Among SPF-based measures, Figure 4-2 shows that the 

excess average crash frequency with EB adjustment (EB) outperformed y-NB and PSI methods, 

being its consistency always beyond or equal to these two latter measures. The EB method shows 

a 60% consistency in identifying the top 5 hotspots and a 90% consistency for the top 10 hotspots. 

Similarly, y-NB and the PSI method are showing a 60% consistency for the top 5 hotspots, while 

their consistency is at 80% for the top 10. Among ML-based measures, Figure 4-3 shows that the 

results are mixed and there is no single algorithm outperforming others; for the first 5 hotspots, y-

SVM and y-RF appear to be superior to y-DT with a consistency of 80%. When 10 hotspots are 

considered, y-DT and y-SVM consistencies are equal to 80% and above y-RF that standing at 70%. 

Overall, the ML-based measure consistency appears to be comparable to the SPF-based measures 

shown in Figure 4-2 and in particular to y-NB. These results can also be compared to the findings 

of other consistency analyses available in the literature. In 2008, Cheng and Washington (Cheng 

& Washington, 2008) conducted a consistency check using four performance measures (i.e., 

observed collision frequency, collision rate, EB and PSI) and reported, as highest rate, 56% 

consistency for the EB method for the top 10% hazardous sites. Lan and Persaud (2011) explored 

both the EB and the FB method and observed a consistency (sensitivity) of up to 60% for the top 

10 hotspot locations. More recently, Sacchi and others (Sacchi et al., 2015) developed a 

multivariate FB performance metric to identify hotspots and reported a consistency above 70% for 

the top 10 hotspots. Therefore, ML-based performance methods appear to provide similar 

consistency, being their value is always above 60%. 

4.4.2 Across Methodology Consistency Check  

In this last analysis, a ranking consistency test of collision-prone locations across performance 

measures (SPF-based versus ML-based) in both time periods was conducted. This can be done by 

using different ranking methods (j) in the two components of equation 4.1. The results of the 

analysis are reported in Figure 4-4 and 4-5 for time period I and time period I, respectively.   
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(a) 

 

(b)  

 

(c)  

Figure 4-4 Across methodology consistency check using NB and ML algorithms in time period I 
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(a) 

 

(b) 

 

(c)  

Figure 4-5 Across methodology consistency check using NB and ML algorithms in time period 

II 
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In time period I, ML-based performance measures showed a consistency with PSI and y-NB 

approximately equal to 80% or above when more hotspots were added (Figure 4-4a, 4-4b, and 4-

4c). However, the consistency with the EB method was found to be lower: approximately 60% for 

the first 10 hotspots for y-SVM and y-RF, and approximately 40% for the first 10 hotspots for y-

DT. Similar conclusions can be inferred also for time period II, but the consistency with the EB 

method was found to be higher: in all cases, a consistency above 60% was recorded (see Figure 5-

5a, 5-5b, and 5-5c). It is important to note that, similar conclusions compared to time period I 

cannot be expected also in time period II as the models developed in both time periods are 

independent and therefore, different from each other. 

Another comparison can be made within the ML algorithms in this section to understand their 

differences in providing consistent rankings compared to the NB-based performance measures. In 

time period I, the DT model is having 100% consistency with the y-NB and the PSI method in 

identifying the top 5 hotspots, and is superior to SVM and RF with both having 80% consistency 

with the y-NB and the PSI method in identifying the top 5 hotspots. However, as the number of 

hotspots included in the consistency test increase, an over 80% consistency with the y -NB and the 

PSI method is steadily seen for SVM and RF, while DT consistency has dropped lower than 80% 

at 20, 25 and 35 sites (figure 4b). A conclusion can be drawn that due to the nature of the DT 

model for being sensitive to certain values in decision nodes, the model may be less consistent 

with the NB-based rankings when larger number of sites are considered. This idea is also supported 

in time period II, where y-DT is 100% consistent in both 5 and 10 sites level with the y-NB and 

the PSI, while SVM is 100% and 90% consistent for 5 and 10 sites, respectively, and RF is 80% 

consistent for both 5 and 10 sites. 

Overall, ML-based metrics analyzed in this study appear to be acceptable and reliable measures 

for network screening exercises, comparable to SPF-based measures. As expected, their 

consistency is more similar to the excess (predicted or expected) average crash frequency rather 

than the expected crash frequency with the EB adjustment alone. 
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Chapter 5  

Conclusions  

 

5.1 Summary of Findings  

The RSMP is the approach suggested by the HSM for addressing safety issues in a road network. 

The first step of the RSMP is network screening that consists in ranking and identifying the most 

hazardous locations. Traditionally, statistical models have been used for modeling collision data 

and screening a network. More recently with the advent of computing technologies, ML algorithms 

have being more widely explored and compared with traditional modeling techniques. In this 

study, three well-known ML regression models were used and their performance was compared 

with the traditional NB framework for collision frequency modeling. Moreover, the ML algorithms 

were validated in the first step of the RSMP. To accomplish these objectives, a 6-year study period 

was analyzed for a group of urban intersections.  

The results of this study revealed that DT and RF learning algorithms outperformed traditional NB 

techniques and SVM learning algorithm, in terms of fitting, with higher 𝑅2 and lower prediction 

errors (MSE and MAD). On the other hand, NB and SVM models showed lower overfitting 

problems (higher generalization capabilities) when transferring the models from training to test 

set. These findings supported the fact that ML can be used to model collision data with similar, if 

not better, performance than traditional statistical modeling. A disadvantage of ML algorithms is 

that no interpretable parameters for the explanatory variables are provided as they work as “black 

boxes”. Therefore, a sensitivity analysis was conducted in this thesis work in both time periods 

and the effect of each explanatory variable on the output (collision frequency) was analyzed. In 

time period I, SVM, DT, and RF show an average “parameter” of 0.5, 0.52, and 0.48 for the 

MJAADT while the NB model is showing 0.66. The MNAADT shoed an average of 0.39, 0.31, 

and 0.25 for SVM, DT, and R, respectively, and 0.41 for the NB model. It is worth mentioning 

that the collision frequency is related to the traffic volume with a power function and these values 

for MJAADT and MNAADT were estimated as power coefficients. For the CT and Nlegs, 

however, the ML models seem to have less influence collision frequency while the NB model 
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showed a more significant effect. In time period II, while DT, RF, and NB models showed higher 

sensitivity to MJAADT, the SVM model was more sensitive to MNAADT. This part of the study 

proved that ML had roughly similar sensitivity to the explanatory factors in terms of directions 

and magnitudes although they seemed to experience different contributions from the explanatory 

variables.  

Finally, ML algorithms were used to perform the network screening in both time periods and the 

consistency of hotspots identified in each time period is investigated. The results indicate that 

similar to the NB model, ML models were providing more than 60% consistency in identifying 

the hotspots in both time periods. Among the ML algorithms, SVM has the highest best 

performance with 80% consistency in identifying the top five hotspots. However, increasing the 

number of sites in the consistency check makes the RF model superior. Using the across 

methodology consistency check, it is proved that the ML algorithms and the NB model are pretty 

consistent in identifying the similar hotspots for both time periods of the study, which validated 

the use of ML in the actual practices of road safety, such as RSMP.  

 

5.2 Research Implications  

The RSMP is a systematic approach to identify the most hazardous locations and assign budgets 

in an efficient way to improve the safety conditions at transportation facilities. This study 

demonstrated that ML algorithms can be employed in place of the statistical regression models 

that are used traditionally within the RSMP to model the collision data and identify the most 

hazardous locations.  

ML algorithms provide road safety practitioners with predictive tools that require fewer pre-

assumptions and bring more modeling flexibility in comparison with the NB modeling as the 

current default approach for developing SPFs. Although ML algorithms shows similar prediction 

errors to traditional techniques, they are different tools providing predictions through a learning 

process from the actual observations of the study. Like any other modeling technique, ML 

algorithms also have some drawbacks. First, the learning process is limited to the domain of the 

input variables meaning that biased predictions can be estimated if a developed predictive model 

is used for out-of-the-domain observations. For instance, an observation of zero circulating traffic 
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volume at an intersection has no real value in a dataset and, it is obvious that this would  correspond 

to zero collisions. However, ML algorithms are not designed to account for this scenario in their 

predictive models, and might provide inaccurate predictions when used outside the boundary that 

they are being trained from. (i.e., predicting collisions when volume is equal to zero). This is not 

an issue with traditional SPFs, since their pre-set function is defined in a way that zero collisions 

are predicted for zero traffic volume. Second, ML algorithms cannot be easily transferred to other 

jurisdictions, where data is not available. More research is required to study ways to transfer ML 

algorithms to other jurisdictions. One important factor to take into consideration is that ML is 

being learned from a set of specific explanatory variables and transferring the developed model to 

another jurisdiction that does not include similar explanatory variables is not recommended. In 

other words, considering the modeling nature of ML algorithms, the model might change 

significantly if one explanatory variable is removed or added.  

Regarding model fitting and generalization abilities, it was shown that ML algorithms used in this 

study (SVM, DT, and RF) are providing similar and, sometimes, better results than traditional 

models. It was observed that in terms of fitting, regression trees (DT and RF) are able to fit data 

better and provide less prediction errors. On the other side, it was observed that SVM performs 

closer to the NB model in terms of fitting and errors. However, the generalization abilities of 

regression trees were observed to be lower than the SVM and the NB models.  The sensitivity 

analysis results show that the SVM and the NB models are similarly affected by the explanatory 

variables in most cases. Some insensitive responses were observed from DT and RF when 

changing the values of CT and Nlegs suggesting that the regression trees’ predictions were mainly 

affected by the changes in the traffic volume. Using sensitivity analysis, research should be 

conducted to observe the impact of different explanatory variables on the outcome.  

Overall, ML algorithms can be used within the RSMP for performing network screening. As a 

current practice, network screening in the HSM is based on statistical SPFs, which have some 

important limitations. The findings of this study support the use of ML in the actual practices of 

the RSMP that is currently based on statistical regression techniques.   
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5.3 Limitations and Future Work  

While the results of this thesis work prove the efficacy of ML algorithms in collision data modeling 

and road safety analysis, these algorithms have several limitations. First, the performance of the 

ML algorithms highly depends on the learning procedure which contains functional mapping and 

parameter selection, or in other words, the selection of ML model is a critical step. Second, several 

performance measures introduced by the HSM, which are the most recommended performance 

measures, are based on the statistical parameters, such as the dispersion parameter of the NB 

model, which brings a limitation towards the use of ML algorithms in place of the statistical 

modeling. Third, although sensitivity analysis may increase the interpretability of ML algorithms 

and the impact of each explanatory variable on the outcome, these models are still difficult to 

interpret compared to the NB models and it may be a barrier towards their use. Lastly, the method 

used for dealing with the missing data can have an adverse effect on the performance of the models 

and one ML models results can be poor due to the lack of sufficient data.  

With the findings of this study, it is positively evaluated that ML techniques can be used within 

the RSMP. However, many sections in HSM, including RSMP, are still based on a rigid 

implementation of traditional statistical modeling, such as, before-after studies to evaluate the 

effectiveness of the countermeasures, crash modification factors and their calculation, and more. 

For future studies, it is important to explore new ideas that can use the non-parametric models such 

as ML algorithms and look for ways to incorporate it with the parametric estimations in the HSM, 

such as the EB performance measure.  In addition, it is recommended to conduct studies that will 

explore the use of ML algorithms in other steps of the RSMP, such as before-after studies that 

require collision data modeling.  

  



67 
 

References  

AASHTO. 2010. Highway Safety Manual. 1st ed.. American Association of State Highway and 

Transportation Officials, Washington, D.C. 

Abbas, K.A., 2004. Traffic safety assessment and development of predictive models for accidents 

on rural roads in Egypt. Accident Analysis and Prevention 36 (2), 149–163. 

Abdel-Aty, M.A., Abdelwahab, H.T., 2004. Predicting injury severity levels in traffic crashes: a 

modelling comparison. Journal of Transportation Engineering 130(2), 204-210. 

Abdel-Aty, M.A., Radwan, A.E., 2000. Modelling traffic crash occurrence and involvement. 

Accident Accident Analysis & Prevention 32(5), 633-642. 

Abdelwahab, H.T., Abdel-Aty, M.A., 2002. Artif icial Neural Networks and Logit Models for 

Traffic Safety Analysis of Toll Plazas. Transportation Research Record 1784, 115–125. 

Aguero-Valverde, J., Jovanis, P.P., 2008. Analysis of road crash frequency with spatial models. 

Transportation Research Record 2061, 55–63. 

Aguero-Valverde, J., Jovanis, P.P., 2009. Bayesian multivariate poisson log-normal models for 

crash severity modeling and site ranking. Paper Presented at the 88th Annual Meeting of the 

Transportation Research Board, Washington, DC. 

Alikhani, M., Nedaie, A., Ahmadvand, A., 2013. Presentation of clustering-classification 537 

heuristic method for improvement accuracy in classification of severity of road crashes in Iran. 

Safety Science 60, 142–150. 

Amiri, A.M., Sadri, A., Nadimi, N., et al., 2020. A comparison between artificial neural network 

and hybrid intelligent genetic algorithm in predicting the severity of fixed object crashes among 

elderly drivers. Accident Analysis & Prevention 138, 1-10. 

Amoros, E., Martin, J.L., Laumon, B., 2003. Comparison of road crashes incidence and severity 

between some French counties. Accident Analysis and Prevention 35 (4), 537–547. 

Anastasopoulos, P.C., Mannering, F.L., 2009. A note on modeling vehicle accident frequencies 

with random-parameters count models. Accident Analysis and Prevention 41 (1), 153–159. 



68 
 

Aptel, I., Salmi, L.R., Masson, F., Bourdet, A., Henrion, G., Erny, P., 1999. Road accident 

statistics: discrepancies between police and hospital data on a French island. Accident Analysis 

and Prevention 31 (1), 101–108. 

Ayodele, T. O., 2010. Types of Machine Learning Algorithms, New Advances in Machine 

Learning, Yagang Zhang, IntechOpen. Available from: https://www.intechopen. 

com/chapters/10694 

Bijleveld, F.D., 2005. The covariance between the number of accidents and the number of victims 

in multivariate analysis of accident related outcomes. Accident Analysis and Prevention 37 (4), 

591–600. 

Bonneson, J.A., McCoy, P., 1993. Estimation of safety at two-way stop-controlled intersections 

on rural roads. Transportation Research Record 1401, 83–89. 

Bonneson, J.A., Pratt, M.P., 2008. Procedure for developing accident modification factors from 

cross-sectional data. Transportation Research Record 2083, 40–48. 

Burges, C.J.C., 1998. A tutorial on support vector machines for pattern recognition. Data Mining 

and Knowledge Discovery 2, 121–167. 

Cafiso, S., Di Silvestro, G., Persaud, B., Begum, M.A., 2010. Revisiting the variability of the 

dispersion parameter of safety performance functions using data for two-lane rural roads. 89th 

Annual Meeting of the Transportation Research Board, Washington, DC. (Preprint No. Paper 10-

3572). 

Caliendo, C., Guida, M., Parisi, A., 2007. A crash-prediction model for multilane roads. Accident 

Analysis and Prevention 39 (4), 657–670. 

Cameron, A.C., Trivedi, P.K., 1998. Regression Analysis of Count Data. Cambridge University 

Press, Cambridge, UK. 

Carson, J., Mannering, F., 2001. The effect of ice warning signs on accident frequencies and 

severities. Accident Analysis and Prevention 33 (1), 99–109. 

Chang, L., 2005. Analysis of freeway crash frequencies: negative binomial regression versus 

artificial neural network. Safety Science 43, 541-557. 



69 
 

Chang, L., Chen, W., 2005. Data mining of tree-based models to analyze freeway crash frequency. 

Journal of Safety Research 36(4), 365-375. 

Chang, L., Wang, H., 2006. Analysis of traffic injury severity: an application of non -parametric 

classification tree techniques. Accident Analysis & Prevention 38, 1019-1027. 

Cheng, W. and Washington, S., (2008). New Criteria for Evaluating Methods of Identifying Hot 

Spots. Transportation Research Record: Journal of the Transportation Research Board, 

Transportation Research Board 2083, 76–85. 

Chen H., Wang W., Zuylen H. V., 2009.  Construct support vector machine ensemble to detect 

traffic incident, Expert Systems with Applications 36 (8), 10976-10986.  

Çodur, M.Y., Tortum, A., 2015. An artificial neural network model for highway crash prediction: 

a case study of Erzurum, Turkey. PROMET-Traffic & Transportation 27(3), 217-225. 

Daniels, S., Brijs, T., Nuyts, E., Wets, G., 2010. Explaining variation in safety performance of 

roundabouts. Accident Analysis and Prevention 42(2):393-402.  

Das, A., Abdel-Aty, M., 2010. A genetic programming approach to explore the 564 crash severity 

on multi-lane roads. Accident Analysis & Prevention 42(2), 548-557. 

Delen, D., Sharda, R., Bessonov, M., 2006. Identifying significant predictors of injury severity in 

traffic crashes using a series of artificial neural networks. Accident Analysis & Prevention 38(3), 

434-444. 

Devroye, L., Gyorfi, L., Krzyzak, A., et al., 1994. On the strong universal consistency of nearest 

neighbor regression function estimates. Annals of Statistics 22, 1371–1385. 

Dong, N., Huang, H., and Zheng, L. 2015. Support vector machine in crash prediction at the level 

of traffic analysis zones: Assessing the spatial proximity effects. Accident Analysis & Prevention 

82, 192–198. 

El-Basyouny, K., Sayed, T., 2006. Comparison of two negative binomial regression techniques in 

developing accident prediction models. Transportation Research Record 1950, 9–16. 

El-Basyouny, K., Sayed, T., 2009a. Collision prediction models using multivariate Poisson -

lognormal regression. Accident Analysis and Prevention 41 (4), 820–828. 



70 
 

El-Basyouny, K., Sayed, T., 2009b. Accident prediction models with random corridor parameters. 

Accident Analysis and Prevention 41 (5), 1118–1123. 

Elvik, R., Vaa, T., Høye, A., et al., 2009. The Handbook of Road Safety Measures. Emerald Group 

Publishing Limited, Bingley. 

Fish, K.E., Blodgett, J.G., 2003.A visual method for determining variable importance in an 

artificial neural network model: an empirical benchmark study. J. Target. Meas. Anal. Market. 11 

(3), 244–254. 

Flahaut, B., Mouchart, M., San Martin, E., Thomas, I., 2003. The local spatial autocorrelation and 

the kernel method for identifying black zones: a comparative approach. Accident Analysis and 

Prevention 35 (6), 991–1004. 

Geedipally, S.R., and Lord, D., 2010. Investigating the effect of modeling single-vehicle and multi-

vehicle crashes separately on confidence intervals of Poisson-gamma models. Accident Analysis 

and Prevention 42. 

Géron, A., 2017. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, 

Tools, and Techniques to Build Intelligent Systems, 1st ed., O’Reilly Media. 

Global status report on road safety, 2018. World Health Organization.   

Guo, F., Wang, X., Abdel-Aty, M., 2010. Modeling signalized intersection safety with corridor 

spatial correlations. Accident Analysis and Prevention 42 (1), 84–92. 

Halekoh, U., Højsgaard, S., Yan, J., 2006. The R Package geepack for generalized estimating 

equations. Journal of Statistical Software 15 (2), 1–11. 

Hauer, E., 1997. Observational Before–After Studies in Road Safety. Pergamon Press, Elsevier 

Science Ltd., Oxford, United Kingdom. 

Hauer, E., 2004. Statistical road safety modelling. Transportation Research Record 1897, 81 -87. 

Hauer, E. 2015. The Art of Regression Modeling in Road Safety. Springer International 

Publishing, New York, NY.  

Hauer, E., Hakkert, A.S., 1988. Extent and some implications of incomplete accident reporting. 

Transportation Research Record 1185, 1–10. 



71 
 

Hauer, E., Ng, J.C.N., Lovell, J., 1988. Estimation of safety at signalized intersections. 

Transportation Research Record 1185, 48–61. 

Haykin, S., 2009. Neural Networks and Learning Machines, third ed. Prentice Hall, New York.  

Hinde, J., and Demétrio C.G.B., 1998. Overdispersion: Models and estimation. Computational 

Statistics & Data Analysis 27 (2), 151-170. 

Hirst, W.M., Mountain, L.J., Maher, M.J., 2004. Sources of error in road safety scheme evaluation: 

a method to deal with outdated accident prediction models. Accident Analysis and Prevention 36 

(5), 717–727. 

Huang, H., Zeng, Q., Pei, X., Wong, S.C., and Xu, P., 2016. Predicting crash frequency using an 

optimised radial basis function neural network model. Transportmetrica Transport Science 12, 

330–345. 

Iranitalab, A., Khattak, A., 2017. Comparison of four statistical and machine learning methods for 

crash severity prediction. Accident Analysis & Prevention 108, 27-36. 

James, H.F., 1991. Under-reporting of road traffic accidents. Traffic Engineering and Control 32 

(12), 574–583. 

Johansson, P., 1996. Speed limitation and motorway casualties: a time series count data regression 

approach. Accident Analysis and Prevention 28 (1), 73–87. 

Jones, B., Janssen, L., Mannering, F., 1991. Analysis of the frequency and duration of freeway 

accidents in Seattle. Accident Analysis and Prevention 23 (2), 239–255. 

Joshua, S.C., Garber, N.J., 1990. Estimating truck accident rate and involvements using linear and 

Poisson regression models. Transportation Planning and Technology 15 (1), 41–58. 

Jovanis, P.P., Chang, H.L., 1986. Modeling the relationship of accidents to miles traveled. 

Transportation Research Record 1068, 42–51. 

Kashani, A.T., Mohaymany, A.S., 2011. Analysis of the traffic injury severity on two-lane, two-

way rural roads based on classification tree models. Safety Science 49, 1314-1320. 

Kidando, E., Moses, R., Ozguzen, E.E., et al., 2019. Incorporating travel time reliability 592 in 

predicting the likelihood of severe crashes on arterial highways using non -parametric random-



72 
 

effect regression. Journal of Traffic and Transportation Engineering (English Edition) 6(5), 470-

481. 

Kim, D., Washington, S., 2006. The significance of endogeneity problems in crash models: an 

examination of left-turn lanes in intersection crash models. Accident Analysis and Prevention 38 

(6), 1094–1100. 

Kim, D.-G., Lee, Y., Washington, S., and Choi, K., 2007. Modeling crash outcome probabilities 

at rural intersections: application of hierarchical binomial logistic models. Accident Analysis & 

Prevention 39 (1), 125–134. 

Kwon, O.H., Rhee, W., Yoon, Y., 2015. Application of classification algorithms for analysis of 

road safety risk factor dependencies. Accident Analysis & Prevention 75, 1-15.  

Lan, B., & Persaud, B. (2011). Fully Bayesian approach to investigate and evaluate ranking criteria 

for black spot identification. Transportation research record, 2237(1), 117-125. 

Lee, J., Mannering, F., 2002. Impact of roadside features on the frequency and severity of run-off-

roadway accidents: an empirical analysis. Accident Analysis and Prevention 34 (2), 149–161. 

Li, H., Graham, D.J., Majumdar, A., 2012. The effects of congestion charging on road traffic 

casualties: a causal analysis using difference-in-difference estimation. Accident Analysis & 

Prevention 49, 366-377. 

Li, X., Lord, D., Zhang, Y., 2009. Development of accident modification factors for rural frontage 

road segments in Texas using results from generalized additive models. Working Paper, Zachry 

Department of Civil Engineering, Texas A&M University, College Station, TX. 

Li, X., Lord, D., Zhang, Y., et al., 2008. Predicting motor vehicle crashes using support vector 

machine models. Accident Analysis & Prevention 40(4), 1611-1618. 

Lord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: examining the 

effects of low sample mean values and small sample size on the Estimation of the fixed dispersion 

parameter. Accident Analysis and Prevention 38 (4), 751–766. 



73 
 

Lord, D., Geedipally, S.R., Guikema, S., 2010. Extension of the application of Conway –Maxwell–

Poisson models: analyzing traffic crash data exhibiting underdispersion. Risk Analysis (8):1268-

76.  

Lord, D., Guikema, S., Geedipally, S.R., 2008. Application of the Conway –Maxwell–Poisson 

generalized linear model for analyzing motor vehicle crashes. Accident Analysis and Prevention 

40 (3), 1123–1134. 

Lord, D., Mahlawat, M., 2009. Examining the application of aggregated and disaggregated 

Poisson-gamma models subjected to low sample mean bias. Transportation Research Record 2136, 

1–10. 

Lord, D., Manar, A., Vizioli, A., 2005a. Modeling crash-flow-density and crash-flow-v/c ratio for 

rural and urban freeway segments. Accident Analysis and Prevention 37 (1), 185–199. 

Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: a review and 

assessment of methodological alternatives. Transportation Research Part A: Policy and Practice 

44(5), 291–305. 

Lord, D., Miranda-Moreno, L.F., 2008. Effects of low sample mean values and small sample size 

on the estimation of the fixed dispersion parameter of Poisson-gamma models for modeling motor 

vehicle crashes: a Bayesian perspective. Safety Science 46 (5), 751–770. 

Lord, D., Persaud, B.N., 2000. Accident prediction models with and without trend: application of 

the generalized estimating equations procedure. Transportation Research Record 1717, 102–108.  

Lord, D., Washington, S.P., Ivan, J.N., 2007. Further notes on the application of zero inflated 

models in highway safety. Accident Analysis and Prevention 39 (1), 53–57. 

Ma, J., Kockelman, K.M., 2006. Bayesian multivariate Poisson regression for models of injury 

count by severity. Transportation Research Record 1950, 24–34. 

Ma, J., Kockelman, K.M., Damien, P., 2008. A multivariate Poisson-lognormal regression model 

for prediction of crash counts by severity, using Bayesian methods. Accident Analysis and 

Prevention 40 (3), 964–975. 



74 
 

MacNab, Y.C., 2004. Bayesian spatial and ecological models for small-area crash and injury 

analysis. Accident Analysis and Prevention 36 (6), 1019–1028. Mahalel, D., 1986. A note on 

accident risk. Transportation Research Record 1068, 85–89. 

Maher, M.J., Summersgill, I., 1996. A comprehensive methodology for the fitting predictive 

accident models. Accident Analysis and Prevention 28 (3), 281–296. 

Malyshkina, N., Mannering, F., 2010. Zero-state Markov switching count-data models: an 

empirical assessment. Accident Analysis and Prevention 42 (1), 122–130. 

Marsland, S., 2009. Machine learning: an algorithmic perspective, 2nd ed., New York, United 

States of America, CRC PRESS. 

Miaou, S.-P., 1994. The relationship between truck accidents and geometric design of road 

sections: Poisson versus negative binomial regressions. Accident Analysis and Prevention 26 (4), 

471–482. 

Miaou, S.-P., Bligh, R.P., Lord, D., 2005. Developing median barrier installation guidelines: a 

benefit/cost analysis using Texas data. Transportation Research Record 1904, 3–19.  

Miaou, S.-P., Lord, D., 2003. Modeling traffic crash-flow relationships for intersections: 

dispersion parameter, functional form, and Bayes versus Empirical Bayes. Transportation 

Research Record 1840, 31–40. 

Miaou, S.-P., Lum, H., 1993. Modeling vehicle accidents and highway geometric design 

relationships. Accident Analysis and Prevention 25 (6), 689–709. 

Miaou, S.-P., Song, J.J., 2005. Bayesian ranking of sites for engineering safety improvements: 

decision parameter, treatability concept, statistical criterion and spatial dependence. Accident 

Analysis and Prevention 37 (4), 699–720. 

Mountain, L., Maher, M.J., Fawaz, B., 1998. The influence of trend on estimates of accidents at 

junctions. Accident Analysis and Prevention 30 (5), 641–649. 

Müller, A.C., and Guido, S., 2016. Introduction to Machine Learning with Python: A Guide for 

Data Scientists 1st ed., United States of America, O’Reilly Media. 



75 
 

Mussone, L., Ferrari, A., and Oneta, M., 1999. An analysis of urban collisions using an artificial 

intelligence model. Accident Analysis & Prevention 31, 705–718.   

Nodari, C.T., Lindau, L.A., 2007. Proactive method for safety evaluation of two -lane rural 

highway segments. Advances in Transportation Studies 11, 51-61. 

Noland, R.B., Quddus, M.A., 2004. A spatially disaggregated analysis of road casualties in 

England. Accident Analysis and Prevention 36 (6), 973–984. 

Oh, J., Washington, S.P., Nam, D., 2006. Accident prediction model for railway-highway 

interfaces. Accident Analysis and Prevention 38 (2), 346–356. 

Olutayo,V.A, and Eludire, A.A, 2014. Traffic Accident Analysis Using Decision Trees and Neural 

Networks. International Journal of Information Technology and Computer Science 6, 22–28.  

Oña, J., López, G., Mujalli, R.O., et al., 2013b. Analysis of traffic acidentes on rural highways 

using Latent Class Clustering and Bayesian Networks. Accident Analysis & Prevention 51, 1 -10. 

Oña, J., Mujalli, R.O., Calvo, F.J., 2011. Analysis of traffic crash injury severity on Spanish rural 

highways using Bayesian networks. Accident Analysis & Prevention 43(1), 402-411. 

Park, E.-S., Lord, D., 2007. Multivariate Poisson-lognormal models for jointly modeling crash 

frequency by severity. Transportation Research Record 2019, 1–6. 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Duchesnay, 

E. (2011). Scikit-learn: Machine learning in Python. the Journal of machine Learning research, 12, 

2825-2830. 

Persaud, B.P., 1994. Accident prediction models for rural roads. Canadian Journal of Civil 

Engineering 21 (4), 547–554. 

Persaud, B.P., Nguyen, T., 1998. Disaggregate safety performance models for signalized 

intersections on Ontario provincial roads. Transportation Research Record 1635, 113–120. 

Qin, X., Ivan, J.N., Ravishankar, N., 2004. Selecting exposure measures in crash rate prediction 

for two-lane highway segments. Accident Analysis and Prevention 36 (2), 183–191. 

Raybaut, P. (2009). Spyder-documentation. Available Online at: Spyder-IDE.org. 



76 
 

Rolison, J.J., Regev, S., Moutari, S., et al., 2018. What are the factors that contribute to road 

crashes? An assessment of lawenforcement views, ordinary drivers’ opinions, and road crash 

records. Accident Analysis & Prevention 115, 11-24. 

Sacchi, E., Sayed, T., & El-Basyouny, K. (2015). Multivariate full Bayesian hot spot identification 

and ranking: New technique. Transportation research record, 2515(1), 1-9. 

SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513, USA. 

Savolainen, P., Mannering, F., Lord, D., et al., 2011. The statistical analysis of crash -injury 

severities: a review and assessment of methodological alternatives. Accident Analysis & 

Prevention 43(5), 1666-1676. 

Sawalha, Z. and Sayed, T., 2001. Evaluating Safety of Urban Arterial Roadways. Journal of 

Transportation Engineering-ASCE – Transportation Engineering, American Society of Civil 

Engineers. 

Sawalha, Z. and Sayed, T., 2006. Traffic accident modeling: some statistical issues. Canadian  

Journal of Civil Engineering. 33(9), 1115-1124. 

Schölkopf, B., Smola, A.J., Williamson, R.C., and Bartlett, P.L., 2000. New Support Vector 

Algorithms. Neural Compute 12 (5),  1207–1245. 

Schölkopf, B., Smola, AJ., 2002. Learning with kernels: support vector machines, regularization, 

optimization, and beyond. Cambridge, MA, USA:MIT Press.  

Shankar, V.N., Albin, R.B., Milton, J.C., Mannering, F.L., 1998. Evaluating median cross -over 

likelihoods with clustered accident counts: an empirical inquiry using random effects negative 

binomial model. Transportation Research Record 1635, 44–48. 

Silva, P. B., Andrade, M., Ferreira, S., 2020. Machine learning applied to road safety modeling: A 

systematic literature review, Journal of Traffic and Transportation Engineering (English Edition) 

7 (6), 775-790.  

Singh, G., Sachdeva, S. N., and Pal, M., 2018. Support vector machine model for prediction of 

accidents on non-urban sections of highways. Proceedings of the Institution of Civil Engineers - 

Transport, 171(5), 253–263. 



77 
 

Sittikariya, S., Shankar, V., 2009. Modeling Heterogeneity: Traffic Accidents, vol. 80. VDM-

Verlag. 

Smola, A.J., Scholkopf, B., 2004. A tutorial on support vector regression. Statistics and Computing 

14, 199-222.  

Sohn, S., Lee, S., 2003. Data fusion, ensemble and clustering to improve the classification 

accuracy for the severity of road traffic crash in Korea. Safety Science 41(1), 1–14. 

Song, J.J., Ghosh, M., Miaou, S., Mallick, B., 2006. Bayesian multivariate spatial models for 

roadway traffic crash mapping. Journal of Multivariate Analysis 97 (1), 246–273. 

Suykens, J.A.K., Gestel, T.V., Brabanter, J.D., Moor, B.D., and Vanderwalle, J., 2002. Least 

Squares Support Vector Machines. World Scientific Publishing Co. Pte. Ltd., Singapore.  

Trafalis T. B. , Robin C. Gilbert, 2006. Robust classification and regression using support vector 

machines, European Journal of Operational Research 173 (3), 893-909.  

Ulfarsson, G.F., Shankar, V.N., 2003. An accident count model based on multi-year cross-

sectional roadway data with serial correlation. Transportation Research Record 1840, 193–197. 

Üstün, B., Melssena, W.J., Oudenhuijzenb, M., et al., 2005. Determination of optimal 648 support 

vector regression parameters by genetic algorithms and simplex optimization. Analytica Chimica 

Acta 544(1–2), 292–305. 

Vapnik, V. 1995. Support vector machine. Machine Learning 20, 273–297. 

Villiers, J., Barnard, E., 1993. Back propagation neural nets with one and two hidden layers. IEEE 

Transactions on Neural Networks 4(1), 136–141. 

Wahab, L., Jiang, H., 2019. A comparative study on machine learning based algorithms for 

prediction of motorcycle crash severity. PLoS One 14(4), 1-17. 

Wang, C., Quddus, M.A., Ison, S., 2009. The effects of area-wide road speed and curvature on 

traffic casualties in England. Journal of Transport Geography 17 (5), 385–395. 

Wang, C., Quddus, M.A., Ison, S.G., 2013. The effect of traffic and road characteristics on road 

safety: a reviewand future research direction. Safety Science 57, 264-275. 



78 
 

Wang, X., Abdel-Aty, M., 2006. Temporal and spatial analyses of rear-end crashes at signalized 

intersections. Accident Analysis and Prevention 38 (6), 1137– 1150. 

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2003. Statistical and Econometric Methods 

for Transportation Data Analysis. Chapman Hall/CRC, Boca Raton, FL. 

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2010. Statistical and Econometric Methods 

for Transportation Data Analysis, second ed. Chapman Hall/ CRC, Boca Raton, FL. 

Xie, Y., Lord, D., Zhang, Y., 2007. Predicting motor vehicle collisions using Bayesian neural 

networks: an empirical analysis. Accident Analysis & Prevention 39(5), 922-933. 

Xie, Y., Zhang, Y., 2008. Crash frequency analysis with generalized additive models. 

Transportation Research Record 2061, 39–45. 

Zeng, Q., Huang, H., 2014. A stable and optimized neural network model for crash injury severity 

prediction. Accident Analysis & Prevention 73, 351–358. 

Zeng, Q., Huang, H., Pei, X., et al., 2016a. Rule extraction from an optimized neural network for 

traffic crash frequency modelling. Accident Analysis & Prevention 97, 87–95.  

Zeng, Q., Huang, H., Pei, X., et al., 2016b. Modelling nonlinear relationship between crash 

frequency by severity and contributing factors by neural networks. Analytic Methods in Crash 

Research 10, 12–25. 

Zhang, J., Li, Z., Pu, Z., et al., 2018. Comparing Prediction Performance for Crash Injury Severity 

Among Various Machine Learning and Statistical Methods. IEEE Access 6, 60079-60087.  

Zhang, Y., and Xie, Y., 2007. Forecasting of Short-Term Freeway Volume with v-Support Vector 

Machines. Transportation Research Record: Journal of the Transportation Research Board, No. 

2024, National Research Council, Washington, DC, 92–99. 

 

  



79 
 

Appendix A  

A.1 Performance Measures  

The Highway Safety Manual (HSM), offers variety of performance measures that can be used 

within the network screening process. The selection of performance measure in a network 

screening project is dependent upon data availability. While more data are required for the some 

of the performance measures, HSM also offers more simple methods in case proper data were not 

available. To achieve the objectives of this research study, three performance measures are 

selected:  

1. Excess predicted average collision frequency using SPFs  

2. Expected average collision frequency with EB Adjustment, and 

3.  Excess expected average collision frequency with EB Adjustment – also known as 

Potential for Safety Improvement (PSI)  

Tables A-1 and A-2 present the performance measures offered by HSM, and provide useful 

information on whether they account for RTM or not, whether a performance threshold is being 

calculated or not, and the data needs for using each of them (HSM, 2010).  

 

Table A-1 Performance Measures (Adopted from HSM, 2010) 

Performance Measure Accounts for RTM Bias 
Method Estimates a 

Performance Threshold 

Average Crash Frequency No No 

Crash Rate No No 

Equivalent Property Damage Only 
(EPDO) Average Crash Frequency 

No No 
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Relative Severity Index No Yes 

Critical Rate 

Considers data variance but 

does not account for RTM 
bias 

Yes 

Excess Predicted Average Crash 

Frequency Using Method of 
Moments 

Considers data variance but 

does not account for RTM 
bias 

Yes 

Level of Service of Safety 
Considers data variance but 
does not account for RTM 

bias 

Expected average crash 
frequency plus/minus 1.5 

standard deviations 

Excess Predicted Average Crash 
Frequency using Safety 

Performance Functions (SPFs) 
No 

Predicted average crash 

frequency at the site 

Probability of Specific Crash 
Types Exceeding Threshold 

Proportion 

Considers data variance; not 
effected by RTM Bias 

Yes 

Excess Proportion of Specific 
Crash Types 

Considers data variance; not 
effected by RTM Bias 

Yes 

Expected Average Crash 
Frequency with EB Adjustment 

Yes 
Expected average crash 

frequency at the site 

Equivalent Property Damage Only 
(EPDO) Average Crash Frequency 

with EB Adjustment 
Yes 

Expected average crash 

frequency at the site 

Excess Expected Average Crash 
Frequency with EB Adjustment 

Yes 
Expected average crash 
frequency per year at the 

site 
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Table A-2 Summary of Data Needs for Performance Measures (From HSM, 2010) 

Performance 

Measure 

Crash 

Data 

Roadway 

Information 

for 

Categorization 

Traffic 

Volume1 

Calibrated Safety 

Performance 

Function and 

Overdispersion 

Parameter 

Other 

Average Crash 
Frequency 

X X    

Crash Rate X X X   

Equivalent 
Property Damage 

Only 
(EPDO) Average 
Crash Frequency 

X X   

EPDO 

Weighting 
Factors 

Relative Severity 
Index 

X X   
Relative 
Severity 
Indices 

Critical Rate X X X   

Excess Predicted 
Average Crash 

Frequency Using 

Method of 
Moments 

X X X   

Level of Service 
of Safety 

X X X X  

Excess Predicted 
Average Crash 

Frequency using 
Safety 

Performance 
Functions (SPFs) 

X X X X  

Probability of 
Specific Crash 

Types Exceeding 
Threshold 

Proportion 

X X    
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Excess 
Proportion of 

Specific 
Crash Types 

X X    

Expected 
Average Crash 

Frequency with 
EB Adjustment 

X X X X  

Equivalent 
Property Damage 

Only 

(EPDO) Average 
Crash Frequency 

with EB 
Adjustment 

X X X X 

EPDO 

Weighting 
Factors 

Excess Expected 
Average Crash 

Frequency with 
EB Adjustment 

X X X X  

1Average Annual Daily Traffic (AADT), Average Daily Traffic (ADT), or peak hour volumes. 

2Traffic volume is needed to apply Method of Moments to establish the reference populations based on ranges of 

traffic volumes as well as site geometric characteristics.  

 

A.2 Appendix References 

AASHTO, 2010. Highway Safety Manual. 1st ed. American Association of State Highway and 

Transportation Officials, Washington, D.C.  
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Appendix B  

As explained in section 3.2.4, Grid-Search Cross-Validation (GSCV) method is used to optimize 

the selection of the hyper-parameters in the ML algorithms. In the following, a brief description 

of each hyper-parameter is provided . The utilized arrays of hyper-parameters values and the 

selected value is presented in table 4-3.  

B.1 Hyper-parameters of SVM:  

C: this hyper-parameter is used as a penalty constant for the complexity of the model.   

Kernel type (linear, polynomial, or RBF): The choice of kernel function  

Degree: is the degree of polynomial kernel function (if selected by the model)  

Gamma: a coefficient to be used in “rbf”, “polynomial” and some other types of kernel function 

not used in this study, such as “sigmoid”.  

Epsilon (𝜀): The error margin allowed for finding the decision boundaries of the SVM separative 

line (see figure 3-1) 

 

B.2 Hyper-parameters of DT:  

Mean_samples_leaf: The minimum number of samples required to split an internal node. If not 

met, the node will remain as the last node.   

Max_depth: The maximum depth of the tree. If None, then nodes are expanded until all leaves are 

pure or until all leaves contain less than min_samples_split samples.  

Min_impurity_decrease: A node will be split if this split induces a decrease of the impurity greater 

than or equal to this value  

 

B.3 Hyper-parameters of RF:  

Mean_samples_leaf: The minimum number of samples required to split an internal node. If not 

met, the node will remain as the last node.   



84 
 

Max_depth: The maximum depth of the tree. If None, then nodes are expanded until all leaves are 

pure or until all leaves contain less than min_samples_split samples.  

Bootstrap (True, False): Whether bootstrap samples are used when building trees. If False, the 

whole dataset is used to build each tree. 

 

It should be noted that the model hyperparameters of SVM, DT and RF are not limited to the ones 

used in this study. Although optimizing for all the hyperparameters will sometimes make the 

models more accurate, due to insignificance of the change in the results comparing to the additional 

processing time that was being added, only the hyperparameters introduced are optimized in this 

study.  

 

B.4 Appendix References:  

Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: A library for support vector machines. ACM 

Transactions on Intelligent Systems and Technology (TIST), 2(3), 1–27. 

Platt, John, (2000). Probabilistic Outputs for Support Vector Machines and Comparisons to 

Regularized Likelihood Methods. Adv. Large Margin Classif iers 10.  

Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression 

Trees (1st ed.). Routledge. 

Breiman, L. (2001). Random Forests. Machine Learning 45, 5–32.  
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Appendix C  

A sensitivity analysis is conducted in two time periods of the study using the data in the test set. 

In table C – 0, the test intersections are assigned with the site IDs. To simplify the reporting in the 

consecutive tables, only the corresponding site ID is used.  

 

Table C – 0 Test data – intersections of the test set 

Site ID City Major Approach Minor Approach 

1 Saskatoon Sherwood Dr Dorothy St 

2 Regina Quebec Ave 36th St E 

3 Regina 14th St E Arlington Ave 

4 Regina Saskatchewan Dr Broad St 

5 Regina Lewvan Dr Regina Ave 

6 Regina Truesdale Dr Prince of Wales Dr 

7 Saskatoon 8th St E Broadway Ave 

8 Regina Gordon Rd Lockwood Rd 

9 Saskatoon Rochdale Blvd Lakeridge Rd 

10 Saskatoon E Arens Rd University Park Dr 

11 Saskatoon 
Assinboine Ave E (Wascana 

Gate N) 
Prince of Wales Dr 

12 Saskatoon Wascana Gate E Wascana View Dr 

13 Saskatoon Main St Preston Ave 

14 Saskatoon 4 Ave Albert St (CanAm Hwy) 

15 Saskatoon Louise St Arlington Ave 

16 Saskatoon Woodhams Dr Renfrew Crescent (Buckingham Dr) 

17 Regina 14th St E Acadia Dr 

18 Regina Saskatchewan Dr Elphinstone St 
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19 Saskatoon Ave W N Richardson Rd 

20 Saskatoon College Ave Albert St (CanAm Hwy) 

21 Saskatoon 6 Ave N Broad St 

22 Saskatoon Broadway Ave Winnipeg St 

23 Regina Victoria Ave Elphinstone St 

24 Saskatoon Confederation Dr Laurier Dr 

25 Regina Ross Ave E Park St 

26 Saskatoon 12 Ave Winnipeg St 

27 Regina 8th St E Cumberland Ave S 

28 Saskatoon Lenore Dr Primrose Dr 

29 Regina Hill Ave Montague St 

30 Regina Taylor St E Louise Ave 

31 Regina 19th St E 2nd Ave S 

32 Saskatoon 1st Ave S 20th St E 

33 Saskatoon Ruth St E Cumberland Ave S 

34 Saskatoon 8th St E / W Lorne Ave 

35 Regina Kingsmere Blvd Waterbury Rd / Brightsand Way 

36 Regina Central Ave Somers Rd 

37 Regina Circle Dr E Millar Ave / Venture Cres 

38 Regina College Ave Winnipeg St 

39 Regina Rochdale Blvd Pasqua St (N) 

40 Regina 33rd St E Quebec Ave 

41 Regina 7th Ave Pasqua St 

42 Regina Montague St Regina Ave 

43 Regina 22nd St E 1st Ave S / N 

44 Saskatoon Toronto St Ross Ave 
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45 Saskatoon Wilson Cres Cumberland Ave S 

46 Saskatoon Preston Ave S Hunter Rd / Cornish Rd 

47 Saskatoon University Park Dr Quance St 

48 Regina Albert St (CanAm Hwy) Parliament Ave 

49 Regina 33rd St W 
Northumberland Ave / Catherwood 

Ave 

50 Regina Wascana Pkwy 23 Ave (Lakeshore Dr) 

51 Regina Victoria Ave Broad St 

52 Saskatoon 45th St W / Airport Rd Airport Dr 

53 Regina Lorne Ave Ruth St E / W 

54 Saskatoon Lewvan Dr Gordon Rd 

55 Regina Marquis Dr E Faithful Ave 

56 Regina Mikkelson Dr (2nd Ave) Campbell St 

57 Regina Arcola Ave Wascana View Dr 

58 Regina 13th Ave Pasqua St 

59 Regina 9th Ave N Broad St 

60 Regina Confederation Dr Massey Dr 

61 Saskatoon Kerr Rd Cowley Rd / Chotem Cres 

62 Regina Albert St (CanAm Hwy) 23 Ave 

63 Saskatoon 4th Ave S 19th St E 

64 Regina Central Ave 105th St E / W 

65 Regina Gordon Rd Harvard Way 

66 Regina Assinboine Ave E Edinburgh Dr 

67 Regina Prince of Wales Dr Haughton Rd 

68 Regina Green Ridge Gate Woodland Grove Dr 
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C.1 Results of Sensitivity Analysis in Time Period I 

 

Table C-1 Results of sensitivity analysis of SVM algorithm in time period I 

Site ID 𝑽𝟏 𝑽𝟐 CT Nlegs 

1 0.93 0.081 1.1415 0.8760 

2 0.4798 N/A* 0.9384 1.0656 

3 0.3816 0.4202 1.0932 1.0932 

4 0.5571 0.4776 0.7480 0.7480 

5 0.5896 0.474 1.0571 1.0571 

6 0.4011 0.2304 0.8875 0.8875 

7 0.4353 0.4639 0.9436 0.9436 

8 0.4202 0.4228 0.9146 0.9146 

9 0.458 0.2598 0.8724 0.8724 

10 0.3242 0.3967 0.8583 0.8583 

11 1.2571 N/A 1.3887 0.7201 

12 N/A 0.5669 -0.1425 -0.1425 

13 0.9512 N/A 1.0463 0.9557 

14 0.5396 0.6177 1.1807 1.1807 

15 1.0128 N/A 1.2556 0.7964 

16 0.6904 N/A 0.8295 1.2056 

17 0.2564 0.5421 1.1206 1.1206 

18 0.4283 0.5163 0.9736 0.9736 

19 0.2569 0.627 1.1123 1.1123 

20 0.5491 0.0552 0.7099 0.7099 

21 0.4233 0.3724 0.8951 0.8951 

22 0.3795 0.3486 0.8749 0.8749 
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23 0.2967 0.3259 0.8375 0.8375 

24 0.4001 0.5596 0.9830 0.9830 

25 0.3774 0.6287 1.0048 1.0048 

26 0.4168 0.2436 0.8816 0.8816 

27 0.4286 0.4952 0.9596 0.9596 

28 0.3027 0.4859 0.8726 0.8726 

29 0.7879 N/A 1.0710 0.9337 

30 0.1256 0.0868 1.6097 1.6097 

31 0.3077 0.184 0.9301 0.9301 

32 0.2377 0.3744 0.8007 0.8007 

33 0.345 N/A 1.6595 0.6026 

34 0.3853 0.309 0.8731 0.8731 

35 0.3191 N/A 0.9083 1.1010 

36 0.4767 0.3487 1.0558 1.0558 

37 0.6634 0.4485 1.1324 1.1324 

38 0.3732 0.401 0.8851 0.8851 

39 0.5344 0.6314 1.1650 1.1650 

40 0.3345 0.2567 0.8702 0.8702 

41 0.6837 N/A 1.1841 0.8445 

42 0.2554 0.3718 0.8124 0.8124 

43 0.3406 0.3884 0.8654 0.8654 

44 0.7111 0.1506 1.0451 1.0451 

45 0.3898 N/A 1.5318 0.6528 

46 0.4705 0.2477 0.8666 0.8666 

47 0.3597 0.6144 0.9808 0.9808 

48 0.4538 0.6532 1.0980 1.0980 
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49 0.4311 0.1771 0.8965 0.8965 

50 0.8557 N/A 0.9468 1.0561 

51 0.5231 0.6234 1.0907 1.0907 

52 0.3148 0.2468 0.8696 0.8696 

53 0.227 0.3296 0.7970 0.7970 

54 0.4316 0.6662 1.0060 1.0060 

55 N/A N/A 0.7788 1.2840 

56 0.7757 N/A 1.2917 0.7742 

57 0.3816 0.3538 0.8766 0.8766 

58 0.8648 N/A 0.9564 1.0456 

59 0.3059 0.5162 0.8875 0.8875 

60 1.389 0.0234 0.9450 0.9450 

61 0.275 0.4649 0.9520 1.0504 

62 0.6309 0.5292 1.1003 1.1003 

63 0.2383 0.5292 1.0639 1.0639 

64 0.3149 0.173 0.9474 0.9474 

65 0.5161 0.2627 0.8565 0.8565 

66 0.9049 N/A 1.1998 0.8335 

67 0.7786 0.1322 1.0446 1.0446 

68 0.3285 0.4358 1.1170 1.1170 

*
 N/A: faulty results due to falling beyond the training domain 
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Table C-2 Results of sensitivity analysis of DT algorithm in time period I 

Site ID 𝑽𝟏 𝑽𝟐 CT Nlegs 

1 0.3351 0.1647 1 1 

2 N/A N/A 1 1 

3 N/A 0.1647 1 1 

4 0.0736 N/A 1 1 

5 0.7967 0.1647 1 1 

6 0.6488 N/A 1 1 

7 0.9259 0.1647 1 1 

8 0.864 N/A 1 1 

9 0.6207 0.1647 1 1 

10 0.7098 N/A 1 1 

11 0.3351 0.1647 1 1 

12 N/A N/A 1 1 

13 0.6488 0.1647 1 1 

14 N/A N/A 1 1 

15 0.1795 0.1647 1 1 

16 0.2993 N/A 1 1 

17 N/A 0.1647 1 1 

18 N/A N/A 1 1 

19 N/A 0.1647 1 1 

20 0.6449 N/A 1 1 

21 0.6207 0.1647 1 1 

22 0.6488 N/A 1 1 

23 0.5626 0.1647 1 1 

24 N/A N/A 1 1 
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25 N/A 0.1647 1 1 

26 0.6488 N/A 1 1 

27 N/A 0.1647 1 1 

28 N/A N/A 1 1 

29 0.1158 0.1647 1 1 

30 N/A N/A 1 1 

31 0.464 0.1647 1 1 

32 0.3797 N/A 1 1 

33 N/A 0.1647 1 1 

34 0.6488 N/A 1 1 

35 N/A 0.1647 1 1 

36 N/A N/A 1 1 

37 0.5667 0.1647 1 1 

38 0.7352 N/A 1 1 

39 0.0736 0.1647 1 1 

40 0.5626 N/A 1 1 

41 N/A 0.1647 1 1 

42 0.5258 N/A 1 1 

43 0.7098 0.1647 1 1 

44 0.6207 N/A 1 1 

45 N/A 0.1647 1 1 

46 0.6207 N/A 1 1 

47 N/A 0.1647 1 1 

48 N/A N/A 1 1 

49 0.4003 0.1647 1 1 

50 0.6488 N/A 1 1 
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51 0.067 0.1647 1 1 

52 0.5626 N/A 1 1 

53 0.1795 0.1647 1 1 

54 N/A N/A 1 1 

55 N/A 0.1647 1 1 

56 N/A N/A 1 1 

57 0.6488 0.1647 1 1 

58 0.6488 N/A 1 1 

59 N/A 0.1647 1 1 

60 0.4003 N/A 1 1 

61 N/A 0.1647 1 1 

62 0.804 N/A 1 1 

63 0.5258 0.1647 1 1 

64 0.2993 N/A 1 1 

65 0.5274 0.1647 1 1 

66 N/A N/A 1 1 

67 0.4003 0.1647 1 1 

68 0.3351 N/A 1 1 

 

  



94 
 

Table C-3 Results of sensitivity analysis of RF algorithm in time period I 

Site ID 𝑽𝟏 𝑽𝟐 CT Nlegs 

1 0.596 0.1203 1 1 

2 0 0.0274 1 1 

3 0.2587 0.1203 1 1 

4 0.2262 0.0274 1 1 

5 0.5036 0.1203 1 1 

6 0.833 0.0274 1 1 

7 0.434 0.1203 1 1 

8 0.5644 0.0274 1 1 

9 0.649 0.1203 1 1 

10 0.4636 0.0274 1 1 

11 0.3389 0.1203 1 1 

12 N/A 0.0274 1 1 

13 0.9168 0.1203 1 1 

14 0.1804 0.0274 1 1 

15 0.4769 0.1203 1 1 

16 0.6151 0.0274 1 1 

17 0.2481 0.1203 1 1 

18 0.13 0.0274 1 1 

19 N/A 0.1203 1 1 

20 0.7135 0.0274 1 1 

21 0.7655 0.1203 1 1 

22 0.9071 0.0274 1 1 

23 0.786 0.1203 1 1 

24 0.0306 0.0274 1 1 
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25 N/A 0.1203 1 1 

26 0.7813 0.0274 1 1 

27 0.2479 0.1203 1 1 

28 0.0957 0.0274 1 1 

29 0.3865 0.1203 1 1 

30 N/A 0.0274 1 1 

31 0.6327 0.1203 1 1 

32 0.2391 0.0274 1 1 

33 N/A 0.1203 1 1 

34 0.9125 0.0274 1 1 

35 N/A 0.1203 1 1 

36 0.2511 0.0274 1 1 

37 0.3645 0.1203 1 1 

38 0.4994 0.0274 1 1 

39 0.2212 0.1203 1 1 

40 0.837 0.0274 1 1 

41 0.1674 0.1203 1 1 

42 0.28 0.0274 1 1 

43 0.4561 0.1203 1 1 

44 0.6763 0.0274 1 1 

45 N/A 0.1203 1 1 

46 0.6471 0.0274 1 1 

47 N/A 0.1203 1 1 

48 N/A 0.0274 1 1 

49 0.6552 0.1203 1 1 

50 0.8251 0.0274 1 1 
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51 0.2115 0.1203 1 1 

52 0.7702 0.0274 1 1 

53 0.3547 0.1203 1 1 

54 N/A 0.0274 1 1 

55 0.3148 0.1203 1 1 

56 0.1718 0.0274 1 1 

57 0.7884 0.1203 1 1 

58 0.8148 0.0274 1 1 

59 0.0958 0.1203 1 1 

60 0.6091 0.0274 1 1 

61 N/A 0.1203 1 1 

62 0.4794 0.0274 1 1 

63 0.2986 0.1203 1 1 

64 0.6198 0.0274 1 1 

65 0.6264 0.1203 1 1 

66 0.384 0.0274 1 1 

67 0.7051 0.1203 1 1 

68 0.3307 0.0274 1 1 
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C.2 Results of Sensitivity Analysis in Time Period II 

 

Table C-4 Results of sensitivity analysis of SVM algorithm in time period II 

Site ID 𝑽𝟏 𝑽𝟐 CT Nlegs 

1 0.1801 0.6868 1.1099 1.5946 

2 1.0878 1.0065 1.5578 N/A* 

3 0.3035 1.1594 1.1851 1.6287 

4 0.118 0.5086 1.0137 1.0482 

5 0.2747 0.2826 1.0288 1.1049 

6 0.2204 0.3784 1.0604 1.2395 

7 0.2162 0.3583 1.0356 1.1319 

8 0.2401 0.3438 1.0523 1.2028 

9 0.3882 0.209 1.0543 1.2111 

10 0.1914 0.4256 1.0626 1.2499 

11 0.1265 0.6968 1.0702 1.3124 

12 1.8579 N/A 4.4628 12.7598 

13 0.2997 0.3547 1.0688 1.3055 

14 0.1218 0.5211 1.0280 1.1021 

15 0.1474 0.6561 1.0771 1.3540 

16 0.3688 0.4652 1.1539 2.0951 

17 0.2019 1.2358 1.1295 1.4395 

18 0.1596 0.4494 1.0351 1.1303 

19 0.2128 1.0557 1.1991 1.6760 

20 0.9378 0.0378 1.0631 1.2504 

21 0.2031 0.3897 1.0472 1.1806 

22 0.1474 0.5122 1.0634 1.2538 
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23 0.1629 0.4832 1.0666 1.2689 

24 0.1537 0.4531 1.0292 1.1065 

25 0.1211 0.5219 1.0275 1.1002 

26 0.1914 0.427 1.0637 1.2553 

27 0.2 0.3789 1.0332 1.1224 

28 0.1298 0.5175 1.0385 1.1441 

29 0.1318 0.7833 1.0936 1.4649 

30 0.1352 0.9831 1.3022 4.7200 

31 0.2836 0.3337 1.0971 1.4288 

32 0.1197 0.5796 1.0623 1.2489 

33 0.1215 1.0008 1.3110 N/A 

34 0.256 0.336 1.0646 1.2591 

35 N/A N/A -0.2745 N/A 

36 1.1538 1.1936 1.4654 2.5817 

37 0.3592 0.2045 1.0211 1.0750 

38 0.1809 0.4222 1.0443 1.1684 

39 0.1543 0.4337 1.0150 1.0530 

40 0.2252 0.3789 1.0676 1.2735 

41 0.2391 0.9975 1.2062 3.3322 

42 0.1063 0.6265 1.0666 1.2696 

43 0.1635 0.4549 1.0453 1.1727 

44 1.2794 0.3101 1.1088 1.3704 

45 0.1401 1.4305 1.2963 N/A 

46 0.3544 0.2323 1.0531 1.2059 

47 0.1587 0.4427 1.0285 1.1040 

48 0.1677 0.4194 1.0229 1.0821 
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49 0.6027 0.1281 1.0920 1.3990 

50 0.344 0.2609 1.0858 1.4116 

51 0.1446 0.4563 1.0179 1.0637 

52 0.1508 0.4965 1.0573 1.2257 

53 0.1152 0.621 1.0795 1.3337 

54 0.1144 0.5253 1.0190 1.0676 

55 0.6543 1.0011 1.3842 1.9412 

56 0.1569 0.891 1.1329 1.8208 

57 0.284 0.2904 1.0482 1.1847 

58 0.3173 0.3348 1.0684 1.3032 

59 0.1073 0.577 1.0393 1.1476 

60 1.0774 0.0211 1.1961 1.6686 

61 N/A N/A 10.3463 N/A 

62 0.2621 0.3011 1.0346 1.1279 

63 0.1424 1.1341 1.0601 1.2040 

64 0.2374 0.3969 1.1023 1.4595 

65 0.4212 0.1897 1.0564 1.2207 

66 0.3918 0.3167 1.0959 1.4843 

67 1.0415 0.3846 1.1155 1.3933 

68 0.3106 2.12 1.2134 1.7248 

*
 N/A: faulty results due to falling beyond the training domain 
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Table C-5 Results of sensitivity analysis of DT algorithm in time period II 

Site ID 𝑽𝟏 𝑽𝟐 CT Nlegs 

1 0.5896 -0.182 1.1064 1* 

2 0.1533 N/S** 1.5456 1 

3 0.4805 N/S 3.1752 1 

4 0.2181 0.5553 1.0000 1 

5 0.3449 0.2111 1.0000 1 

6 N/S 0.1163 2.2728 1 

7 0.1422 0.3614 3.1799 1 

8 0.055 0.3134 3.1799 1 

9 0.1725 0.1 3.1799 1 

10 N/S 0.141 2.2728 1 

11 0.6563 -0.246 2.2728 1 

12 N/S N/S 3.9394 1 

13 0.6483 -0.182 2.2728 1 

14 N/S 0.4921 1.0000 1 

15 0.6556 -0.246 2.2728 1 

16 0.8778 N/S 0.7195 1 

17 0.4805 N/S 3.1752 1 

18 0.1027 0.3458 3.1799 1 

19 0.1533 N/S 3.1752 1 

20 0.4457 N/S 1.0000 1 

21 0.055 0.3489 3.1799 1 

22 N/S 0.3697 2.2728 1 

23 N/S 0.3697 2.2728 1 

24 N/S 0.452 1.0000 1 
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25 N/S 0.4921 1.0000 1 

26 N/S 0.1163 2.2728 1 

27 0.1725 0.3614 3.1799 1 

28 N/S 0.1555 2.2728 1 

29 0.4805 N/S 3.1752 1 

30 N/S N/S 3.9394 1 

31 0.073 N/S 1.7272 1 

32 N/S 0.4116 2.2728 1 

33 N/S N/S 3.9394 1 

34 N/S 0.084 2.2728 1 

35 N/S N/S 3.9394 1 

36 0.4805 N/S 1.5456 1 

37 0.3659 0.2111 1.0000 1 

38 N/S 0.157 2.2728 1 

39 0.2645 0.6082 1.0000 1 

40 N/S 0.1163 2.2728 1 

41 0.2861 N/S 1.5456 1 

42 N/S 0.4116 2.2728 1 

43 N/S 0.1626 2.2728 1 

44 0.8835 N/S 1.1232 1 

45 N/S N/S 3.9394 1 

46 0.1422 0.1867 3.1799 1 

47 N/S 0.452 1.0000 1 

48 0.0844 0.525 1.0000 1 

49 0.2546 N/S 1.1232 1 

50 0.6483 -0.07 1.7272 1 
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51 0.1575 0.6082 1.0000 1 

52 N/S 0.157 2.2728 1 

53 N/S 0.3049 2.2728 1 

54 N/S 0.5614 1.0000 1 

55 N/S N/S 1.5456 1 

56 0.3962 N/S 1.5456 1 

57 0.1422 0.3134 3.1799 1 

58 0.6397 -0.182 2.2728 1 

59 N/S 0.1555 2.2728 1 

60 0.7254 N/S 1.1232 1 

61 N/S N/S 3.9394 1 

62 0.2485 0.203 1.0000 1 

63 0.7017 -0.244 2.2728 1 

64 N/S N/S 1.1064 1 

65 0.2637 N/S 1.7272 1 

66 0.9031 N/S 1.1232 1 

67 0.8835 N/S 1.1232 1 

68 0.3962 N/S 1.5456 1 

* when 1, model shows insensitivity  
** N/S: not sensitive  
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Table C-6 Results of sensitivity analysis of RF algorithm in time period II 

Site ID 𝑽𝟏 𝑽𝟐 CT Nlegs 

1 0.5579 -0.021 1.1689 1.3233 

2 0.1306 N/S* 1.3175 1.0596 

3 0.4417 0.0029 1.3553 1.1548 

4 0.1877 0.5451 1.0000** 1.0000 

5 0.4695 0.2017 1.0000 1.0000 

6 0.3185 0.0841 1.2920 1.1600 

7 0.3306 0.2415 1.1033 1.0182 

8 0.3327 0.1021 1.1475 1.0517 

9 0.3327 0.0354 1.1425 1.0545 

10 0.4749 0.1009 1.3832 1.1639 

11 0.3194 -0.029 1.4616 1.3414 

12 N/S N/S 2.3039 1.0742 

13 0.7889 -0.017 1.3042 1.2321 

14 0.0075 0.4706 1.0000 1.0000 

15 0.6717 -0.03 1.4599 1.3610 

16 0.698 N/S 1.0736 1.2819 

17 0.4442 -0.022 1.7593 1.2006 

18 0.3028 0.2649 1.1033 1.0182 

19 0.135 0.0198 1.6469 1.0565 

20 0.5329 N/S 1.0000 1.0109 

21 0.3183 0.2139 1.1356 1.0166 

22 0.2243 0.1356 1.3556 1.1559 

23 0.3129 0.1105 1.4280 1.1592 

24 0.015 0.3871 1.0000 1.0000 
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25 0.0075 0.4899 1.0000 1.0000 

26 0.3339 0.0992 1.3832 1.1639 

27 0.3308 0.2605 1.1033 1.0182 

28 0.2533 0.2073 1.2692 1.1352 

29 0.4501 -0.016 1.6522 1.1537 

30 N/S N/S 2.2138 1.0322 

31 0.4375 N/S 1.0822 1.1992 

32 0.1892 0.1563 1.4504 1.1629 

33 N/S N/S 2.2138 1.0742 

34 0.3255 0.072 1.3129 1.1552 

35 N/S N/S 2.2138 1.0742 

36 0.4512 N/S 1.1620 1.1915 

37 0.4383 0.1899 1.0000 1.0000 

38 0.255 0.2162 1.2617 1.0816 

39 0.2307 0.5517 1.0000 1.0000 

40 0.325 0.0778 1.3700 1.1502 

41 0.2439 N/S 1.3175 1.0596 

42 0.1572 0.1769 1.5111 1.1770 

43 0.2547 0.1863 1.2692 1.1352 

44 0.8135 N/S 1.0841 1.0680 

45 N/S N/S 2.2138 1.0742 

46 0.3007 0.0518 1.1425 1.0545 

47 0.0194 0.3966 1.0000 1.0000 

48 0.0841 0.4965 1.0000 1.0000 

49 0.4791 N/S 1.0787 1.0627 

50 0.8042 -0.0004 1.0650 1.2308 
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51 0.1386 0.5772 1.0000 1.0000 

52 0.2354 0.1431 1.4224 1.1602 

53 0.1733 0.1364 1.5265 1.1565 

54 0.0145 0.5973 1.0000 1.0000 

55 0.158 N/S 1.1620 1.1069 

56 0.3467 0.0165 1.3263 1.0551 

57 0.3332 0.0797 1.1323 1.0509 

58 0.7877 -0.018 1.1922 1.2403 

59 0.2657 0.2464 1.3266 1.1340 

60 0.6876 N/S 1.0841 1.0680 

61 N/S N/S 2.2138 1.0742 

62 0.3844 0.2155 1.0000 1.0000 

63 0.3804 0.0427 1.4620 1.2171 

64 0.4046 0.0026 1.0701 1.1873 

65 0.4707 0.0159 1.1074 1.0566 

66 0.8089 N/S 1.0235 1.2183 

67 0.7807 N/S 1.0637 1.1200 

68 0.3491 0.0132 1.3785 1.0565 

* N/S: not sensitive 

** when 1, model shows insensitivity  

 

 

 

  



106 
 

Appendix D  

Software Codes  

For developing the negative binomial (NB) SPF, SAS software version 3.8, University Edition 

(SAS Institute Inc 2018) was used, which allows developing SPFs using generalized linear 

regression (GLR). The NB method was used within the GLR in order to model the collision data. 

The code for this model is as follows: 

 

Proc genmode data=work.import; 

MODEL Collisions = LNMJAADT LNMNAADT CT Nlegs/dist=NEGBIN;  

Run;  

 

For developing the ML algorithms and conducting the sensitivity analysis, Python 3.7.4 is used 

(The Scientific Python Development Environment 2019), which allows developing ML algorithms 

using the sci-kit learn library. The code is as follows: 

 

 

A:  importing libraries  

import pandas as pd 

import matplotlib.pyplot as plt 

import numpy as np 

from sklearn.preprocessing import MinMaxScaler 
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B: reading the dataset as pandas dataframe 

data = pd.read_csv(r"Datase.csv") 

 

C: checking the existence of missing data 

data.isnull().sum() 

 

D: recalling specific functions from the imported libraries  

from sklearn.model_selection import train_test_split 

from sklearn.svm import SVR 

from sklearn.tree import DecisionTreeRegressor 

from sklearn.ensemble import RandomForestRegressor 

 

E: separate the explanatory variables (X) from the outcome y 

X = data.drop('Collisions', axis = 1) 

y = data['Collisions'] 

y = y.values.reshape(-1,1) 

 

F: normalizing the data 

n_scaler = MinMaxScaler() 

X = n_scaler.fit_transform(X.astype(np.float)) 
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G: Splitting the data into train and test sets. Randomization is being made before importing 

the dataset 

X_train=X[0:275] 

X_test = X[275:343] 

y_train=y[0:275] 

y_test = y[275:343] 

 

Note:  the following section is only used for sensitivity analysis  

H: creating specific datasets for sensitivity analysis  

X_test1 = X_test.astype(np.float) 

X_test2 = X_test.astype(np.float) 

X_test3 = X_test.astype(np.float) 

X_test4 = X_test.astype(np.float) 

X_test5 = X_test.astype(np.float) 

X_test6 = X_test.astype(np.float) 

X_test7 = X_test.astype(np.float) 

X_test8 = X_test.astype(np.float) 

X_test9 = X_test.astype(np.float) 

X_test10 = X_test.astype(np.float) 

 

X_test1[:,1] *= 0.1 

X_test2[:,1] *= 0.2 

X_test3[:,1] *= 0.3 
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X_test4[:,1] *= 0.4 

X_test5[:,1] *= 0.5 

X_test6[:,1] *= 0.6 

X_test7[:,1] *= 0.7 

X_test8[:,1] *= 0.8 

X_test9[:,1] *= 0.9 

X_test10[:,1] *= 1 

 

I: optimization of hyperparameters using GSCV 

from sklearn.model_selection import GridSearchCV 

 

I–1: creating functions for optimizing the ML and printing the selected hyperparameters 

def print_best_params(gd_model): 

    param_dict = gd_model.best_estimator_.get_params() 

    model_str = str(gd_model.estimator).split('(')[0] 

    print("\n*** {} Best Parameters ***".format(model_str)) 

    for k in param_dict: 

        print("{}: {}".format(k, param_dict[k])) 

    print() 
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I-1-1: SVR parameter grid  

param_grid_svr = dict(kernel=[ 'linear', 'poly', 'rbf'], degree=[2, 3, 4, 5, 6], gamma = 

['scale', 'auto'],  C=[600, 700, 800, 900, 1000], epsilon=[0.0001, 0.00001, 0.000001]) 

svr = GridSearchCV(SVR(), param_grid=param_grid_svr, cv=5, verbose=False, refit = 

True) 

 

 

I-1-2: Regression Tree parameter grid  

param_grid_dt = dict(min_samples_leaf=np.arange(1, 16, 1, int), max_depth = 

np.arange(1,10,1, int),  min_impurity_decrease = [0, 1, 2, 3, 4, 5]) 

dt = GridSearchCV(DecisionTreeRegressor(random_state=0), 

param_grid=param_grid_dt, cv=5,  verbose=False) 

 

 

I-1-3: Radom Forest Regressor parameter grid  

param_grid_rf = dict(n_estimators=[20], max_depth=np.arange(1, 13, 2), 

min_samples_split=[2], min_samples_leaf= np.arange(1, 15, 2, int), bootstrap=[True, 

False], oob_score=[False, ]) 

forest = GridSearchCV(RandomForestRegressor(random_state=0), 

param_grid=param_grid_rf, cv=5, verbose=False) 

 

 

J: fitting the SVR model to the training set 

model = svr 

model = model.fit(X_train, y_train.ravel()) 



111 
 

 

K: fitting the Regression Tree model to the training set 

model2 = dt 

model2 = dt.fit(X_train, y_train.ravel()) 

 

L: fitting the Radom Forest Regressor model to the training set 

model3 = forest 

model3 = model3.fit(X_train, y_train.ravel()) 

 

M: prediction using SVR 

y_train_pred = model.predict(X_train) 

y_test_pred = model.predict(X_test) 

print ('SVR \n', y_test_pred) 

print ('-'*100) 

 

N: prediction using Regression Tree 

y_train_pred2 = model2.predict(X_train) 

y_test_pred2 = model2.predict(X_test) 

print ('Regression Tree \n', y_test_pred2) 

print ('-'*100) 
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O: prediction using RandomForestRegressor 

y_train_pred3 = model3.predict(X_train) 

y_test_pred3 = model3.predict(X_test) 

print ('RandomForestRegressor \n', y_test_pred3) 

print ('-'*100) 

 

P: recalling accuracy metrics and measures 

from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error 

 

Q: calculating the measures of effectiveness for SVR and printing the values 

print('the measures of effectiveness for SVR model: \n') 

print_best_params(model) 

print ('\n'*2) 

r2score_train = r2_score(y_train, y_train_pred) 

mse_train = mean_squared_error(y_train, y_train_pred) 

mae_train = mean_absolute_error (y_train, y_train_pred) 

mse_test = mean_squared_error(y_test, y_test_pred) 

mae_test = mean_absolute_error (y_test, y_test_pred) 

print('R2 score for training set is equal to: ', r2score_train) 

print ('\n'*2) 

print('Mean Squared error for training set is equal to: ', mse_train) 

print('Mean Squared error for test set is equal to: ', mse_test) 

print ('\n'*2) 
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print('Mean Absolute error for training set is equal to: ', mae_train) 

print('Mean Absolute error for test set is equal to: ', mae_test) 

print ('\n'*2) 

print ('-'*100) 

 

R: calculating the measures of effectiveness for Regression Tree and printing the values 

print('the measures of effectiveness for Regression Tree model: \n') 

print_best_params(model2) 

print ('\n'*2) 

r2score_train2 = r2_score(y_train, y_train_pred2) 

mse_train2 = mean_squared_error(y_train, y_train_pred2) 

mae_train2 = mean_absolute_error (y_train, y_train_pred2) 

mse_test2 = mean_squared_error(y_test, y_test_pred2) 

mae_test2 = mean_absolute_error (y_test, y_test_pred2) 

print('R2 score for training set is equal to: ', r2score_train2) 

print ('\n'*2) 

print('Mean Squared error for training set is equal to: ', mse_train2) 

print('Mean Squared error for test set is equal to: ', mse_test2) 

print ('\n'*2) 

print('Mean Absolute error for training set is equal to: ', mae_train2) 

print('Mean Absolute error for test set is equal to: ', mae_test2) 

print ('\n'*2) 

print ('-'*100) 



114 
 

S: calculating the measures of effectiveness for Random Forest Regressor and printing the 

values 

print('the measures of effectiveness for RandomForestRegressor model: \n') 

print_best_params(model3) 

print ('\n'*2) 

r2score_train3 = r2_score(y_train, y_train_pred3) 

mse_train3 = mean_squared_error(y_train, y_train_pred3) 

mae_train3 = mean_absolute_error (y_train, y_train_pred3) 

mse_test3 = mean_squared_error(y_test, y_test_pred3) 

mae_test3 = mean_absolute_error (y_test, y_test_pred3) 

print('R2 score for training set is equal to: ', r2score_train3) 

print ('\n'*2) 

print('Mean Squared error for training set is equal to: ', mse_train3) 

print('Mean Squared error for test set is equal to: ', mse_test3) 

print ('\n'*2) 

print('Mean Absolute error for training set is equal to: ', mae_train3) 

print('Mean Absolute error for test set is equal to: ', mae_test3) 

 

data.describe() 

 

data.mad() 
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T: conducting the sensitivity analysis 

import xlsxwriter as xls 

workbook = xls.Workbook('sensitivity1.xlsx')  **sensitivity1 is the file for MJAADT 

sensitivity  

worksheet = workbook.add_worksheet() 

worksheet2 = workbook.add_worksheet() 

worksheet3 = workbook.add_worksheet() 

 

array = 

[X_test1,X_test2,X_test3,X_test4,X_test5,X_test6,X_test7,X_test8,X_test9,X_test10] 

k=0 

for i in array: 

row = 0 

 

U: prediction using SVR 

y_test_pred = model.predict(i) 

for col, data in enumerate(y_test_pred): 

    worksheet.write(row, col, data) 

 

V: prediction using Regression Tree 

y_test_pred2 = model2.predict(i) 

for col2, data2 in enumerate(y_test_pred2): 

    worksheet2.write(row, col2, data2) 
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W: prediction using RandomForestRegressor 

y_test_pred3 = model3.predict(i) 

for col3, data3 in enumerate(y_test_pred3): 

    worksheet3.write(row, col3, data3) 

k=k+1 

 

workbook.close() 


