Soil properties and greenhouse gas emissions with distance from a shelterbelt

Amadi, C^{1*}, R. Farrell¹ and K. Van Rees¹

¹Department of Soil Science, University of Saskatchewan, Saskatoon, SK. Canada.

Agriculture et da Agroalimentaire Canada

Centre for Northern Agroforestry and Afforestation

Why study shelterbelts for GHG reduction?

Improve understanding, identify inefficiencies, sustain ecosystem health, modelling

- Microclimate on the leeside is modified (Interactions of soil microbial communities with modified climate)
- High organic matter input due to tree litter deposits and wind-blown sediment trapment. Organic carbon in tree biomass is about 24 Mg km⁻¹ to 104 Mg C km⁻¹ (depending on species and age)
- Trees are deep rooting and can reduce denitrification and N leaching
- Over 600 million shelterbelt tree seedlings distributed around the prairies by PFRA
- The impact of shelterbelts on greenhouse gas flux in the Prairies has been less studied knowledge gap (Impact on greenhouse gas models and inventories)

Objective

- Determine the changes in soil properties with distance from shelterbelts
- Investigate dynamics in GHG fluxes with distance from shelterbelts

Hypothesis

Sheltering effect and root activity of shelterbelts will have varying degrees of effect on GHG emissions at different distances away from shelterbelts

Experimental layout

Gas, soil and ancillary data

- Static state vented chambers
- Sampling intensity: (guided by weather events)
 - 4 time points $(T_0, T_1, T_2 \text{ and } T_3)$
- Gas samples measured using a gas chromatograph (Bruker 450-GC)
- Soil temperature and moisture at 5 cm depth
- Soil sampling: 15 cm depth

Soil Properties

Soil texture: Sandy loam

Soil Properties

Results 2013 field season

Daily CO₂, CH₄ and N₂O flux from soils with distance from shelterbelts

Results 2013 field season

Cumulative flux

Cumulative CO₂, CH₄ and N₂O flux from soils with distance from shelterbelts

Summary

- Fluxes of N₂O and CH₄ were lowest in shelterbelts but increased with increasing distance from shelterbelts
- CO₂ fluxes (soil respiration) decreased with increasing distance from shelterbelts due to improved biological activity and greater SOM content
- Tree roots can take up excess mineral N and soil water thereby reducing CH₄ and N losses via denitrification and leaching
- Shelterbelts provide opportunities for reducing agricultural GHG footprint

References

Izaurralde, R.C., R.L. Lemke, T.W. Goddard, B. McConkey and Z. Zhang. 2004. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Sci. Soc. Am. J. 68:1285-1294

Kort, J. and R. Turnock 1999. Carbon reservoir and biomass in Canadian prairie shelterbelts. Agroforest Syst. 44:175–186

Kulshreshtha, S. and J. Kort. 2009. External economic benefits and social goods from prairie shelterbelts. Agrofor. Syst. 75:39-47

Acknowledgement

Dr. Ken Van ReesDr. Rich Farrell	Supervisors
 Doug Jackson Darin Richman Frank Krignen Mark Cooke Matt Jones 	Labs 5D05 and 5E19
Shannon PoppyCurtis Braaten	Conservation Learning Centre (CLC)

Funding was provided by Agriculture and Agri-Food Canada - AGGP program

Questions?

Agriculture and Agri-Food Canada

Agriculture et Agroalimentaire Canada

Centre for Northern Agroforestry and Afforestation