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Abstract 

This thesis documents the design and fabrication of an experimental facility that 

was built to produce a turbulent plane wall jet. The target flow was two-dimensional with 

a uniform profile of the mean streamwise velocity and a low turbulence level at the slot 

exit. The design requirements for a flow conditioning apparatus that could produce this 

flow were determined. The apparatus was then designed and constructed, and 

measurements of the fluid flow were obtained using particle image velocimetry (PIV). 

The first series of measurements was along the slot width, the second series was along the 

slot centerline and the third was at 46 slot heights off the centerline. The Reynolds 

number, based on the slot height and jet exit velocity, of the wall jet varied from 7594 to 

8121. Data for the streamwise and transverse components of velocity and the three 

associated Reynolds stress components were analyzed and used to determine the 

characteristics of the wall jet. 

This experimental facility was able to produce a profile of the mean streamwise 

velocity near the slot exit that was uniform over 71% of the slot height with a streamwise 

turbulence that was equal to 1.45% of the mean velocity. This initial velocity was 

maintained to 6 slot heights. The fully developed region for the centerline and the off-

centerline measurements was determined to extend from 50 to 100 slot heights and 40 to 

100 slot heights, respectively. This was based on self-similarity of the mean streamwise 

velocity profiles when scaled using the maximum streamwise velocity and the jet half-

width. The off-centerline Reynolds stress profiles achieved a greater degree of collapse 

than did the centerline profiles. 
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The rate of spread of the wall jet along the centerline was 0.080 in the self-similar 

region from 50 to 100 slot heights, and the off-centerline growth rate was 0.077 in the 

self-similar region from 40 to 100 slot heights. The decay rate of the maximum 

streamwise velocity was -0.624 within the centerline self-similar region, and -0.562 

within the off-centerline self-similar region. These results for the spread and decay of the 

wall jet compared well with recent similar studies. 

The two-dimensionality was initially assessed by measuring the mean streamwise 

velocity at 1 slot height along the entire slot width. The two-dimensionality of this wall 

jet was further analyzed by comparing the centerline and off-centerline profiles of the 

mean streamwise velocity at 2/3, 4, 50, 80, and 100 slot heights, and by comparing the 

growth rates and decay rates. Although this facility was able to produce a wall jet that 

was initially two-dimensional, the two-dimensionality was compromised downstream of 

the slot, most likely due to the presence of return flow and spanwise spreading.  Without 

further measurements, it is not yet clear exactly how the lack of complete two-

dimensionality affects the flow characteristics noted above. 
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Chapter 1 

Introduction and Theory 

The following sections provide the appropriate theory and background 

information related to turbulent plane wall jets. This includes a full description of plane 

wall jets, the corresponding transport equations, and the characteristics used to assess the 

quality of the flow. 

1.1 Motivation 

 Launder & Rodi (1981) defined a wall jet as “a shear flow directed along a wall 

where, by virtue of the initially supplied momentum, at any situation, the streamwise 

velocity over some region within the shear flow exceeds that in the external stream.” 

Wall jets have engineering applications in heating and film cooling, as well as in 

momentum and mass transfer. A wall jet can be used to improve the thermal performance 

of gas turbines by preventing excess heat transfer to the surface of a turbine blade or to 

the walls of the combustion chamber (Launder & Rodi, 1983). Applying a plane wall jet 

to the surface of an airplane wing can help delay separation by transferring momentum to 

the air next to the surface. A common example of a plane wall jet is a car windshield 

defroster, which is used to remove frost from the glass surface. Wall jets can be produced 

by discharging fluid through a rectangular slot, a round hole, or by the impingement of 

fluid on a surface. An unintentional example of impingement occurs when the air 

discharging from a vertical take-off and landing (VTOL) aircraft engine impacts the 

ground and spreads laterally (Tachie, 2000). Studying wall jets can provide further 
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understanding of the fundamental nature of the flow, leading to improvements in the 

various practical applications. Knowledge of wall jet characteristics such as the rate of 

spread and the decay rate of the maximum velocity, can potentially extend the life of gas 

turbines, provide greater maneuverability of aircraft, increase the efficiency of 

automobile defrosters, and determine the aerodynamic loading that VTOL aircraft impart 

on buildings and ground personnel. 

1.2 Plane Wall Jet 

Figure 1.1 is an isometric schematic of a plane wall jet facility. At the slot exit x = 

0, at the surface of the ground plane y = 0, and z = 0 at the middle of the slot width. The 

x-direction, y-direction and z-direction will hereafter be referred to as the streamwise, 

tranverse and spanwise directions, respectively. The mean velocity components are u, v 

and w, and the fluctuating velocity components are u′, v′ and w′, in the streamwise, 

transverse and spanwise directions, respectively. 

A wall jet is formed when a fluid is discharged through a slot into a volume of the 

same fluid that is either stagnant or moving. The jet of fluid exits the slot and uses the 

initially supplied momentum to flow across a surface that can be either flat or curved 

(Launder & Rodi, 1981). The ideal plane wall jet has an infinite slot width and is 

discharged into a body of fluid that has no restrictions in the streamwise and transverse 

directions (George et al., 2000). In practical settings, the slot can be a variety of shapes, 

however in order to achieve two-dimensional flow a rectangular shape with a large slot 

width, W, to height, H, ratio is required. The boundary condition above the slot can be 

either a lip with a certain thickness or it can be a vertical wall.  
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Figure 1.1: Isometric view of the geometry for creating a plane wall jet. 

 The wall jet studied here is discharged from a rectangular slot into stagnant water, 

has a vertical wall above the slot exit, and travels in the streamwise direction across a flat, 

horizontal smooth ground plane. The jet of fluid then interacts with the stagnant fluid and 

the wall, eventually developing into the wall jet sketched in figure 1.2. The wall jet 

velocity profile has a location of maximum velocity, um, and two locations of zero 

velocity. The velocity is zero at the wall due to the no-slip condition of viscous flow, and 

is zero at a certain transverse distance away from the wall where the outer edge of the 

wall jet meets the stagnant fluid. Below um is the inner region of the wall jet, which is 

similiar to a boundary layer flow, and above um is the outer region, which is similar to a 

free jet flow. The location where the velocity is reduced to one half of the maximum 

x,u,u′ 
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velocity in the outer region is the jet half-width, 21y  (George et al., 2000). The jet half-

width is used to describe the transverse extent of the wall jet. 

 

 

 

 

 
 

 
Figure 1.2: Side view of a plane wall jet. 

1.2.1 Conservation of Mass 

The fluid exiting the slot develops into a wall jet as it travels in the streamwise 

direction due to its interaction with the wall and the surrounding stagnant fluid. The 

process whereby the stagnant fluid gets drawn into the developing wall jet is known as 

entrainment (Kundu & Cohen, 2008). In laminar flows entrainment is due to viscosity, 

whereas for turbulent flows it is the result of turbulent mixing.  

There are three transport equations that can be used to describe a turbulent plane 

wall jet. These are the continuity equation, the Reynolds-averaged Navier-Stokes 

equation, and the momentum integral equation. 

um 

2

1
um 

21y  

H x,u,u′ 
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Region 
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The continuity equation is derived from the principle of conservation of mass and 

for steady two-dimensional incompressible flow is of the form 

 0=
∂
∂+

∂
∂

y

v

x

u
 (1.1) 

where u is the streamwise velocity and v is the transverse velocity. Figure 1.3 presents a 

control volume drawn around a portion of a plane wall jet. For this control volume, the 

streamwise mass fluxes include the fluid exiting the slot, om& , and the local wall jet mass 

flux, jetm& . The transverse mass flow rate is due to the entrained fluid, em& . Applying 

equation (1.1) to a plane wall jet and integrating yields 

eojet mmm &&& += . (1.2) 

 

 

 

 

 

 

Figure 1.3: Control volume for a plane wall jet. 

Control Volume 

jetjet , Mm&  

om&  
Momentum loss at wall 

lossM  

Entrained fluid 

em&  

oM  
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1.2.2 Conservation of Momentum 

The Reynolds-averaged Navier-Stokes equation is derived from the principle of 

conservation of momentum and is used for turbulent flows. Irwin (1973) showed that the 

appropriate momentum equation for a steady two-dimensional plane wall jet is of the 

form 

 ( )⎥⎦
⎤

⎢⎣
⎡ −
∂
∂−⎥

⎦

⎤
⎢
⎣

⎡
∂
∂ν+−

∂
∂=

∂
∂+

∂
∂

'''''' vvuu
xy

u
vu

yy

u
v

x

u
u . (1.3) 

The Reynolds shear stress per unit mass, ''vu , and normal stresses per unit mass ''uu  and 

''vv  represent effective turbulent stresses. The viscous shear stress per unit mass is 
y

u

∂
∂ν , 

where ν  is the kinematic viscosity, and the boundary conditions are 0→u  as 0→y and 

0→u  as ∞→y . For a turbulent wall jet the laminar stress is negligible (except at the 

wall) and the normal stress terms are negligible to second order (George et al., 2000), so 

that equation (1.3) reduces to 

 [ ]''vu
yy

u
v

x

u
u −

∂
∂=

∂
∂+

∂
∂

. (1.4) 

Equation (1.4) can be integrated from the slot to a location x to obtain the momentum 

integral equation in the form of 

 [ ]∫ ∫
∞

−=
0 0

w
o

2

ρ
τ

 
x

dxMdyu  (1.5) 
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where wτ  is the wall shear stress, ρ is the fluid density, and the right hand side of the 

equation is the momentum per unit mass supplied at the slot exit minus ∫ ρ
τx

dx
0

w , which is 

the momentum loss due to friction at the wall, lossM . 

1.2.3 Region of Initial Development 

The region of initial development is the region adjacent to and downstream of the 

slot where the wall jet transitions into a fully developed flow. The initial development of 

a wall jet on a plane surface is shown schematically in figure 1.4. 

 

 

 

 

 

Figure 1.4: Initial development region of a plane wall jet. 

1.2.4 Initial Conditions 

George et al. (2000) were unable to remove a dependency on the initial conditions 

on the wall jet development downstream of the slot. Shinneeb (2006) also determined that 

the initial conditions at the slot exit affect the downstream flow. The proper 

Initial Development 

Fully 
Developed 

Potential Core 
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documentation of a wall jet should therefore include velocity and turbulence profiles at or 

near the slot exit in order to facilitate useful comparisons to previous results. 

 Figure 1.5 shows the fluid discharged through a slot that has an inside corner with 

a curved profile. Ideally, the contraction ratio and the shape of the orifice are designed so 

that the jet has a uniform velocity profile at the slot exit. The internal design of the 

apparatus should also reduce the turbulence intensity of the fluid, resulting in a relatively 

low value for the streamwise turbulence intensity at the slot exit. 

 

 

 

 

 

 

Figure 1.5: Uniform streamwise velocity profile. 

1.2.5 Potential Core 

Downstream of the slot, the flat section of the velocity profile is known as the 

"core" of the jet. As the wall jet travels downstream, it interacts with the wall and 

stagnant fluid above. A boundary layer develops in the inner region while a mixing layer 

occurs in the outer region. This lateral transfer of momentum causes the core of the jet to 

u0 
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decrease in size, while at the same time increasing the transverse extent of the wall jet 

(see figure 1.6). Eventually the maximum velocity is reduced to less than its initial value 

throughout the flow, signifying the loss of the potential core (Rajaratnam, 1976). 

Downstream of this location the maximum velocity is always less than the initial 

maximum velocity at the slot exit. Rajaratnam (1976) found that for plane wall jets the 

potential core varied from x/H = 6.1 to 6.7 for Re = 104 to 105. 

1.2.6 Fully Developed Region 

Velocity profiles are said to be self-similar when they can be non-dimensionalized 

to collapse on to a common curve. Typically, velocity profiles are non-dimensionalized 

using a characteristic length scale and velocity scale. The traditional scales used in the 

outer region of a wall jet are the maximum streamwise mean velocity, um, and the jet 

half-width, 21y  (Rajaratnam, 1976). The scales used in the inner region near the wall are 

*u  and *ul ν= , where the friction velocity is defined as ρτ= w*u . 

The wall jet continues to develop as it flows in the streamwise direction. Once the 

wall jet has achieved self-similiar mean velocity and turbulence profiles, it has reached a 

state of dynamic equilibrium, which is also known as self-preservation (Kundu & Cohen, 

2008). The streamwise region where this occurs can be used to assess if the flow is fully 

developed.  

1.2.7 Spread Rate 

 As the wall jet flows downstream it spreads in the wall normal direction. This is 

due to the growth of the boundary layer at the wall as well as the entrainment of stagnant  



10 
 

 

 

 

 

 

 

 
Figure 1.6: The potential core region of a plane wall jet. 

fluid in the outer region (Rajaratnam, 1976). The jet half-width is used to define the rate 

of spread by plotting its value as a function of the streamwise location and determining 

the slope, dy1/2/dx, of a linear regression applied to the fully developed region (Launder & 

Rodi, 1981). The equation of this line is of the form: 

 ( )021 xxAy +=   (1.6) 

where x0 is the virtual origin and A = dy1/2/dx. 

1.2.8 Decay Rate 

 The spread of the wall jet and the loss of momentum at the wall cause the 

maximum velocity, um, to decrease. This decay of the wall jet is obtained by plotting the 

maximum velocity as a function of the streamwise location in the fully developed region 

Spread of Wall Jet 

Potential Core, u = u0 

Length of Potential Core 
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and determining the slope, dum/dx. The streamwise location can also be represented by 

the jet half-width using equation (1.7), allowing the decay rate to be determined by 

plotting um as a function of y1/2 in logarithmic form and solving for n =  

d(log(um))/d(log( 21y )), 

 

 n

H

y
B

u

u
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= 21

0

m , (1.7) 

where B is a constant (George et al., 2000). 

1.2.9 Return Flow 

If the wall jet is discharged into a sufficiently large volume of stagnant fluid then 

the jet will continue to grow as its initial momentum is transferred to the entrained fluid 

and also dissipated at the wall as heat due to the wall shear stress. In a water tow tank 

with a vertical wall above the slot exit, a recirculating flow will be present due to 

entrainment from a finite volume of stagnant fluid (Eriksson et al., 1998). This 

recirculating flow, also called a return flow, could potentially alter the shape of the wall 

jet's velocity profile, e.g. creating a negative streamwise velocity at large tranverse values 

as shown in figure 1.7. 

1.2.10 Reynolds Stress Profiles 

 The Reynolds stresses that are present in equation (1.3) characterize the 

turbulence structure of a flow. For a two-dimensional flow, the components of the 

Reynolds stress tensor are the normal stresses in the streamwise and transverse directions, 
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''uu  and ''vv , and the Reynolds shear stress, ''vu . The variance of the streamwise and 

transverse velocity components can be experimentally determined, which allows the 

Reynolds stresses to be presented in terms of the profiles ''uu /um
2, ''vv / um

2 and ''vu / um
2 

(Eriksson et al., 1998). 

 

Figure 1.7: Regions of fully developed flow and return flow. 

1.3 Objectives 

 The purpose of this thesis is to document the design and fabrication of an 

experimental facility that has the capability to produce a turbulent plane wall jet, and to 

determine the flow characteristics of the wall jet using particle image velocimetry (PIV).  

The objectives can be summarized as: 

1. Design and build an experimental apparatus to produce a turbulent plane wall jet; 

Fully Developed Region Return Flow 
Region 

x,u,u’ 

y,v,v’ 
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2. Assess the flow characteristics at the slot exit by documenting the initial 

conditions and the two-dimensionality of the wall jet; 

3. Investigate the experimental facility by taking measurements of the fluid flow 

with a PIV system and comparing the wall jet characteristics to previous 

established results. 

1.4 Scope 

 This study examines a water jet that is discharged from a rectangular slot and 

flows across a smooth horizontal glass wall that is flush with the bottom of the slot. A 

vertical wall is present above the exit of the slot, and the flow apparatus is contained 

within a water tow tank. A 1.1-kW centrifugal pump and a piping system are used to 

transport water from the far end of the tank into the flow apparatus. A large Reynolds 

number is desired so that this wall jet can be compared to previous experiments. A PIV 

system is used to take measurements along the slot width, along the centerline and 0.275 

m off of the centerline in order to determine the quality of the plane turbulent wall jet that 

this facility produces. 

The scope can be summarized as: 

• A wall jet with a Reynolds number that is based on the slot height and jet exit 

velocity and varies from 7594 to 8121 was studied. 

• Three series of measurements were taken. The first series of measurements 

provided data at x/H = 1 along the entire slot width. The second series was along 

the slot centerline and the third was 0.275 m (z/H = 46) off the centerline. Seven 
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flow field measurements were obtained from x/H = 0 to 100 for the second and 

third series and additional flow fields were measured at the slot exit to improve 

the precision in that region. 

• Two thousand images were acquired using the PIV system for each field of view 

to determine the average streamwise velocity, as well as the streamwise and wall 

normal turbulence intensities and Reynolds shear stress. The spanwise velocity is 

not measured to keep the scope at an appropriate size. Previous studies have 

shown that means converge with 2000 images (Shinneeb, 2006); additional 

images were not obtained due to the computational expense required for analysis 

when using PIV. 

1.5 Outline 

The appropriate theory and background information have been provided in this 

chapter. A literature review will be presented in Chapter 2. The design and construction 

of a flow conditioning apparatus will then be described in Chapter 3, followed by an 

overview of the experimental facility and an outline of the measurements that were 

obtained. The experimental results will then be used in Chapter 4 to assess the 

characteristics of the plane wall jet that has been produced. Finally, conclusions about the 

experimental apparatus and the flow characteristics of the plane wall jet will be made and 

recommendations for future work will be provided in Chapter 5. 
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Chapter 2 

Literature Review 

 A review of the literature on plane wall jets has been performed to provide 

information on the design of experimental facilities used to produce two-dimensional 

turbulent plane wall jets, the characteristics that have been obtained in prior studies, and 

the scaling that has been used. The experimental studies will be presented first, followed 

by theoretical and computational studies. 

2.1 Experimental Studies 

2.1.1 The turbulent wall jet, Launder & Rodi (1981) 

The first comprehensive critical review of the existing experimental literature on 

turbulent wall jets was performed by Launder & Rodi (1981). 

Launder & Rodi (1981) had four main criteria for assessment of the quality of a turbulent 

wall jet: 

(a) “For two-dimensional cases there should be strong direct or indirect evidence that the 

flow achieved good two-dimensionality. The principal test applied was the close 

satisfaction of the two-dimensional momentum integral equation.” 

(b) “The flow conditions should be well defined and good experimental practice should 

be conveyed by the author's documentation of the work.” 
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(c) “The experimental data should display good internal consistency and should 

preferably include measurements of turbulence quantities as well as those for the mean 

flow.” 

(d) “The experimental data should exhibit general credibility in comparison with 

established results in similar flows.” 

Of the over two hundred experimental studies that they found, approximately 

seventy were aerodynamic studies with uniform thermophysical properties. Further 

refining the search to the two-dimensional wall jet on a plane surface resulted in forty-six 

sources that they referenced and subdivided as follows: the wall jet in still air, the wall jet 

in a moving stream, the wall jet in a uniform velocity stream, and the wall jet in an 

adverse pressure gradient. The wall jet in still air, which is the focus of this study, had 

fifteen literature sources that met their assessment criteria. Of those sources, eight 

provided values for characteristics that are applicable to this current study. Table 2.1 lists 

the characteristics and initial conditions for these wall jet studies. 

Launder & Rodi (1981) determined that the appropriate range of values for the 

growth rate d( 21y )/d(x) was 0.073 ± 0.002. This was based on the experiments of 

Tailland & Mathieu (1967), Bradshaw & Gee (1960), Verhoff (1970) and Patel (1962). 

The streamwise mean velocity profiles of Tailland & Mathieu (1967), Guitton 

(1968), and Sigalla (1958) achieved a satisfactory collapse when scaled with um and 21y . 
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The turbulence profiles were scaled with um and 21y . The streamwise turbulence 

profiles of Giles et al. (1966), Guitton (1968), and Wilson & Goldstein (1976) collapsed 

reasonably well in the region from 0.2 < y/ 21y  < 1.2. Reasonable agreement for the 

collapse of the transverse turbulence profiles was not observed, however the Reynolds 

stress profiles of Tailland & Mathieu (1967), Giles et al. (1966), Guitton (1968), and 

Wilson & Goldstein (1976) collapsed fairly well in the region from 0.1 < y/ 21y  < 0.6. 

Table 2.1 Characteristics of plane wall jets in a stagnant fluid compiled by Launder & 
Rodi (1981). 

Reference Re Slot dimension Range 
( )

)(d

d 21

x

y
 2

m

''

u

vv
 

2
m

''

u

vu
 

   (m) ( )Hx   (max) (max) 

Sigalla (1958) 
20,000-
40,000 

H = 0.008      
W = 0.132 

4-70 0.064     

Bradshaw & 
Gee (1960) 

6,080 
H = 4.6E-4    
W = 2.5E-4 

339-
1459 

0.071 0.0122 0.0165 

Patel (1962) 30,000 H = 0.0051 32-92 0.071     

Giles et al. 
(1966) 

20,000-
100,000 

  0.0766 0.011   

Tailland & 
Mathieu (1967) 

11,000 
18,000 
25,000 

H = 0.006      
W = 0.900 

33-200 
0.076 
0.074 
0.073 

0.29 0.012 

Guitton (1968) 30,800 
H = 0.0077    
W = 0.760 

26-209 0.071 0.014 0.013 

Verhoff (1970) 
10,300 
12,100 

H = 0.00122     
H = 0.00178 

57-410 
0.0816 
0.0766 

    

Wilson & 
Goldstein 

(1976) 
13,000 

H= 0.00609 
W=0.508 

23-125 0.076 0.018 0.013 
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2.1.2 Laser Doppler measurement of turbulence parameters in a two-dimensional plane 

wall jet, Schneider & Goldstein (1994) 

Schneider & Goldstein (1994) performed an experimental study of a turbulent 

plane wall jet in still air using a single-component laser Doppler anemometry (LDA) 

system. Particular interest was paid to the turbulence parameters to see how the LDA 

results compared to hot-wire measurements, which are known to be affected by flow 

reversals in turbulent flow. They found that the LDA measurements of the streamwise 

turbulence intensity were slightly higher and the Reynolds shear stress was significantly 

higher in the outer region when compared to hot-wire measurements. 

The Reynolds number based on the slot height was Re = 14000. They measured a 

uniform velocity profile at the slot exit with a turbulence intensity of 0.3% over the 

central region. This low turbulence level was achieved by placing screens and 

honeycomb-shaped flow straighteners prior to the slot exit, as well as by having a 

contraction ratio of 35:1. The contraction had a convex shape with a radius of curvature 

of 0.102 m. The spanwise dimension of the slot was 0.483 m and the slot height was 

0.0054 m, which resulted in a slot aspect ratio of 90:1. This ratio was large enough for the 

wall jet to achieve two-dimensionality at the slot exit, as evidenced by a streamwise 

velocity variation of ± 0.1% over the central 0.32 m of the slot width. Downstream of the 

slot the conservation of momentum from one streamwise location to the next was 

determined to be acceptable enough to assure the two-dimensionality of the wall jet. 

LDA measurements were taken at x = 45H, 75H, and 110H. The conventional 

outer scaling coordinates of um and 21y  were used. The streamwise mean velocity 
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profiles achieved a reasonable collapse, as did the streamwise turbulence profiles. The 

Reynolds stress profiles achieved a reasonable collapse for y/ 21y  values less than 0.6. 

Schneider & Goldstein (1994) expressed the growth of a wall jet with the equation  

⎟
⎠
⎞

⎜
⎝
⎛ +=

H

x

H

x
A

H

y
021  (2.1) 

where the growth rate, d( 21y )/d(x) = A, was found to be 0.077, and the value for the 

normalized virtual origin (x0/H) was -8.7. The decay rate of the wall jet was determined 

to be -0.608 by plotting um/u0 as a function of x/H in logarithmic form. 

2.1.3 An experimental study of a two-dimensional plane turbulent wall jet, Eriksson, 

Karlsson & Persson (1998) 

Eriksson et al. (1998) used a two-component LDA system to obtain a 

comprehensive set of data on the mean velocities and turbulence quantities for a plane 

wall jet at a relatively high Reynolds number. The wall jet was discharged into stagnant 

water with a Reynolds number based on the inlet of Re = 9600. Upstream of the slot exit 

a large contraction and a screen were utilized to reduce the turbulence levels and to 

produce a uniform streamwise velocity profile at the slot exit. Eriksson et al. (1998) 

looked at the initial development of the wall jet, as well as the region of fully developed 

flow. Special attention was given to the near-wall region due to the high-spatial 

resolution that the LDA system provided. They determined the wall shear stress by 

measuring the mean velocity gradient using data below y+ = 4, which enabled them to use 

the friction velocity, u*, as an inner velocity scale and u*/ν as an inner length scale. 
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Previous experiments had been unable to measure u* without resorting to empirical 

relations. 

Eriksson et al. (1998) also compared their turbulence data to previous experiments 

that had used hot-wire measurements in order to determine the potential effect of reverse 

flows on hot-wires. They found that large differences between the LDA and hot-wire 

turbulence data were present in the outer region, which they attributed to the inability of 

the hot-wires to measure the reverse flows that are present in turbulent flow. The 

difference between the peak values for the transverse turbulence intensity and the 

Reynolds shear stress was 40% and 20%, respectively. 

Measurements were taken at the slot exit and a uniform velocity profile was 

obtained with a turbulence intensity of less than 1%. Downstream of the slot, 

measurements were taken at 5H, 10H, 20H, 40H, 70H, 100H, and 200H. The fluid 

temperature and initial velocity were regularly checked and there were no changes during 

individual measurements. However the value of Re varied by up to 3% between sets of 

measurements. 

The two-dimensionality of the wall jet was initially checked by taking spanwise 

measurements at multiple streamwise locations. They noticed a variation of the wall jet 

thickness, possibly due to a ± 1% variation of the slot height, and took their main set of 

measurements at a spanwise location where the "average properties" of the wall jet 

prevailed. They later used Launder & Rodi’s (1981) criteria of satisfying the momentum 

integral equation to verify the range of flow that was two-dimensional. They found that 
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the wall jet achieved a satisfactory momentum balance as far downstream as 100 slot 

heights. 

The region of fully developed flow was determined using two methods. The first 

was a quantitative analysis of the degree to which the mean velocity and turbulence 

intensity profiles collapsed using either inner or outer scaling. The streamwise mean 

velocity profiles collapsed from 20H to 150H using the outer scaling of um and 21y . The 

turbulence intensity profiles collapsed from 40H to 150H using the outer scaling, but only 

after the "extra" turbulence from outside the jet was subtracted to prevent the profiles 

from increasing in magnitude as the streamwise distance increased. The turbulence 

intensity profiles were then scaled using the inner coordinates of u/u* and y+ = y·u*/ν. The 

streamwise turbulence intensity profiles collapsed from 40H to 150H, but only to a y+ 

value of approximately 8. The transverse turbulence intensity profiles collapsed from 

40H to 150H up to a y+ value of approximately 30. The Reynolds shear stress profiles 

collapsed out to a y+ value of approximately 100 for x/H = 40 to 100. 

The second method used to determine the fully developed region was to plot 

log(um) as a function of log( 21y ) and see which data points aligned with an applied linear 

regression. This method was based on the similarity theory proposed by George et al. 

(2000) which will be reviewed later in this chapter. The measurements from 40H to 150H 

were found to be in agreement with the similarity theory. 
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Eriksson et al. (1998) determined that their growth rate, d( 21y )/d(x), was equal to 

0.078 in the region from 20H to 150H, and calculated their decay rate, 

d(log(um))/d(log( 21y )), to be equal to -0.57 in the region from 40H to 150H. 

Based on their overall analysis, Eriksson et al. (1998) produced a fully developed 

two-dimensional plane wall jet from 40H to 100H. The wall jet was in the initial 

development stage from the slot exit to 40H, and a return flow began to affect the further 

development of the wall jet in the range of 100H to 150H. 

2.1.4 Open channel turbulent boundary layers and wall jets on rough surfaces, Tachie 

(2000) 

Tachie (2000) focused his thesis on an experimental investigation of turbulent 

near-wall flows. In particular, he studied turbulent boundary layers and wall jets in 

stagnant water using both smooth and rough surfaces. The wall jet facililty had a slot 

height of 0.01 m with a contraction ratio of 9:1 and a slot width to slot height ratio of 

79:1. The initial turbulence of the wall jet was reduced by preceeding the slot exit with 

plastic drinking straws. As opposed to a vertical wall above the slot exit, there was an 

upper lip that had a thickness of 0.006 m. The presence of a slot lip and a relatively low 

contraction ratio produced a mean velocity profile at the exit that was only flat over the 

central 30-40%. The profile of the streamwise turbulence intensity was flat over the 

central 20% and varied from 3-5%. Tachie (2000) applied an approximate momentum 

balance and determined that satisfactory two-dimensionality was achieved for streamwise 

locations less than 100H. 
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The mean streamwise velocity was measured using a one component laser 

Doppler velocimeter at x/H = 10, 30, 40, 50, 60, 70, 80, and 100. The profiles collapsed 

reasonably well at x/H ≥ 30 when scaled with um and 21y , however there was a return 

flow present in the outer region. The infuence of the return flow became more 

pronounced at x/H ≥ 60, especially for y/ 21y  values > 2. The turbulence profiles were 

measured at the same streamwise locations using a two-component LDA system. When 

they were scaled with um and 21y , the streamwise and transverse turbulence profiles 

collapsed reasonably well in the region from 30H to 60H, and the profiles of the 

Reynolds shear stress collapsed reasonably well from 30H to 80H, especially at y/ 21y  

values less than 0.8. 

The growth rates obtained by Tachie (2000) varied from 0.085 to 0.090. These 

were obtained using the scaling of y/ 21y  and x/H. The decay rate, 
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found using the method recommended by George et al. (2000) and was equal to -0.521. 

2.1.5 Summary of Previous Experimental Results 

The experimental results obtained by Schneider & Goldstein (1994), Eriksson et 

al. (1998), and Tachie (2000) are summarized in Tables 2.2 and 2.3. Table 2.2 

summarizes the set-up of each experiment, the initial conditions that were obtained, the 

scaling used, and the region of fully developed flow. Table 2.3 summarizes the 

characteristics that were obtained and the two-dimensionality of the plane wall jet. The  
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Table 2.2 Experimental set-up, initial conditions, scaling and fully developed region for 
previous experiments. 

Reference 
Experimental 
method (fluid) 

Re 
Slot 

dimension 
(m) 

Range (x/H) 

Schneider & 
Goldstein 

(1994) 
LDA (air) 14000 

H = 0.0054 
W = 0.483 

43-110 

Eriksson et al. 
(1998) 

LDA (water) 9600 
H = 0.0096 
W = 1.45 

0-200 

Tachie (2000) LDA (water) 13400 
H = 0.010  
W = 0.8 

0-100 

Reference 
Uniform 

streamwise 
velocity profile 

Streamwise 
turbulence 

intensity (%) 
Scaling 

Fully 
developed 

region (x/H) 
Schneider & 

Goldstein 
(1994) 

yes 0.3 21y , Um   

Eriksson et al. 
(1998) 

yes 1 21y , um and 

y+, u+ 
40-150 

Tachie (2000) no 3-5 21y , Um 30-100 

 

decay rates for Schneider & Goldstein (1994), Eriksson et al. (1998), and Tachie (2000) 

were found using 
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 The comprehensive critical review of the experimental literature on turbulent wall 

jets performed by Launder & Rodi (1981) provided criteria for assessing the quality of a 

turbulent wall jet, as well as a range of values for the spread rate. Schneider & Goldstein 

(1994) provided information on the design of an experimental facility that was able to 

produce a two-dimensional wall jet with a uniform profile of the streamwise velocity and 

a low turbulence intensity. They also provided characteristics for comparison such as the 

rate of spread, the decay rate, the streamwise turbulence intensity, and the Reynolds shear  
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Table 2.3 Characteristics and two-dimensionality for previous experiments. 

Reference 
Growth 

Rate 
Decay 
Rate 

2
m

''

u

uu
 

[max] 

2
m

''

u

vv
 

[max] 

2
m

''

u

vu
 

[max] 

Two-
dimensionality 

Schneider 
& Goldstein 

(1994) 
0.077 -0.608 0.051   0.015 

Established at slot 
exit and maintained 
downstream based 
on an acceptable 
momentum balance 

Eriksson et 
al. (1998) 

0.078 -0.57 0.045 0.028 0.015 
Maintained at x/H ≤ 
150 based on 
momentum balance 

Tachie 
(2000) 

0.085-
0.090 

-0.521 0.04 0.036 0.02 

Maintained at x/H ≤ 
100 based on an 
approximate 
momentum balance 

 

stress. Eriksson et al. (1998) provided the same characteristics for comparison as 

Schneider & Goldstein (1994), and also provided the transverse turbulence intensity and 

the region of fully developed flow. Tachie (2000) provided the same characteristics as 

Eriksson et al. (1998) as well as information on the design of an experimental facility that 

produced a two-dimensional wall jet; however the profile of the streamwise velocity was 

not uniform and had a larger turbulence intensity than Schneider & Goldstein (1994) and 

Eriksson et al. (1998). 

2.2. Theoretical and Computational Studies 

2.2.1 A similarity theory for the turbulent wall jet without external stream, George, 

Abrahamsson, Eriksson, Karlsson, Loefdahl & Wosniak (2000) 

George et al. (2000) presented a new theory for the turbulent wall jet in still 

surroundings that was based on a similarity analysis of the governing equations. They 
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used the asymptotic invariance principle (AIP) to determine the proper scaling that would 

provide similarity solutions in the limit of infinite Reynolds number. The inner and outer 

regions of the wall jet were analyzed separately. Their analysis showed that the 

appropriate velocity and length scales in the inner region were u* and ν/u*, respectively. 

The appropriate velocity and length scales in the outer region were the conventional outer 

coordinates of um and 21y , however the Reynolds shear stress was found to scale with u*. 

Their theory indicated a power law relation between um and 21y  in the form of um~( 21y )n 

in order for similarity to be achieved. The value of n needed to be less than 5.0−  and had 

to be determined from experimental data. 

They found their new theory to be in agreement with previous experimental data, 

in particular that of Eriksson et al. (1998) and Abrahamsson, Johansson & Loefdahl 

(1994). The latter experiment studied a wall jet in air using hot-wire measurements and 

achieved very similar inlet conditions to that of Eriksson et al. (1998). When they applied 

a power law relation between um and 21y  they obtained a best-fit value for n of -0.528. 

While the value for n appeared to be universal for the data considered, they were unable 

to remove the possibility of a dependence on the initial conditions at the slot exit. 

2.2.2 The turbulent wall jet: A triple-layered structure and incomplete similarity, 

Barenblatt, Chorin, & Prostokishin (2005) 

Barenblatt et al. (2005) hypothesized that the flow region of a turbulent wall jet 

consists of three layers: a top layer above the location of maximum velocity, a near-wall 

layer below the location of maximum velocity, and an intermediate layer in the region 
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where the velocity is near its maximum value. They also proposed that a turbulent wall 

jet has the property of incomplete similarity at large Reynolds numbers, which implies 

that the height of the slot affects the development of the wall jet. They introduced a new 

scaling technique where the slot height was incorporated into the length scale by 

replacing 21y  with (x/H)βi. Additionally, a jet half-width in the inner region of the wall 

jet was introduced as a length scale. Consequently there were two values for βi: one in the 

inner region and another in the outer region. The values for βi were determined by 

plotting ln( 21y ) as a function of ln(x/H) for both the inner and outer jet half-widths and 

calculating the slope, βi, of a linear fit applied in the fully developed region. 

Barenblatt et al. (2005) applied their scaling technique to the previous 

experimental results of Karlsson et al. (1991) and obtained a collapse of the data in the 

inner region when using the inner jet half-width, and a collapse of the data in the outer 

region when using the outer jet half-width. They determined that the wall jet has the 

property of incomplete similarity by plotting ln(um/uo) as a function of ln(x/H) and 

calculating the value of the slope of the linear fit applied to the data. They noted that the 

value of the slope should be -0.5 for complete similarity, whereas the value they obtained 

for the slope was -0.6. This differs from the definition of complete similarity that was 

proposed by George et al. (2000). 

2.2.3 Large eddy simulation of a plane turbulent wall jet, Dejoan & Leschziner (2004) 

Dejoan & Leschziner (2004) undertook a computational study of a plane wall jet 

in stagnant surroundings using the large eddy simulation (LES) method. The purpose of 
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their study was to further explore scaling and similarity as well as the initial development 

of the jet, and to determine the turbulence stress budgets which had not been available 

from previous experiments. They stated that the direct numerical simulation (DNS) 

method was preferable due to the detailed and physically reliable information it provided, 

however it was too computationally expensive at the relevant Reynolds numbers. 

Dejoan & Laschziner (2004) made direct comparisons to the experimental results 

of Eriksson et al. (1998) and as such used the same boundary and initial conditions: a 

wall jet with a Re = 9600 being discharged into stagnant water, a vertical wall above the 

slot exit, and an initial uniform streamwise velocity profile with a turbulence intensity of 

less than 1%. Previous experimental results found that a plane wall jet begins to reach a 

fully developed state at streamwise distances larger than 20H. The flow domain used by 

Dejoan & Laschziner (2004) had a height of 10H, a length of 22H, and a spanwise depth 

of 5.5H, which then allowed them to make comparisons in a small range of streamwise 

values that were close to becoming fully developed. 

The results they obtained appeared to agree with the experimental results of 

Eriksson et al. (1998) in most respects. They also provided results for the budgets for the 

turbulence kinetic energy and Reynolds stresses, which allowed them to look at the 

processes that are responsible for the interaction between the inner and outer wall jet 

layers. This interaction is beyond the scope of this thesis, however for future studies that 

are interested in this area of research the article by Dejoan & Leschziner (2004) appears 

to be an excellent resource. 
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2.3 Chapter Summary 

 The literature on previous experimental results provided information on the 

design of experimental facilities that this study will use to produce a plane wall jet that is 

two-dimensional and has an initial profile of the streamwise velocity that is uniform with 

a low turbulence intensity. The literature on previous theoretical and computational 

studies provided information on the scaling of wall jets, the criteria for self-similarity, 

and showed that there is a possible dependence of the initial conditions at the slot on the 

downstream development. This study will document the initial conditions at the slot and 

use the scaling coordinates of um and y1/2. 
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Chapter 3 

Experimental Apparatus and Instrumentation 

3.1 Introduction 

An experimental facility was designed and constructed to produce a plane 

turbulent wall jet. The components of this facility were an existing glass-walled water 

tank, a pump and piping system capable of transferring water from one end of the tank to 

the other end, an orifice plate to measure the flow, and a ground plane and flow 

conditioner that was designed to produce a plane turbulent wall jet with specific initial 

conditions.  

The instrumentation used to obtain data for this study were a pressure transducer 

and volt meter to measure the flow rate through the orifice plate, and a particle image 

velocimetry (PIV) system that included seeding particles, dual Nd:YAG lasers, a 

pulse/delay generator, and a digital camera. The PIV system was controlled using a 

computer with in-house software. 

The design and construction of the wall jet facility is the subject of the first 

section of this chapter. The next section discusses the PIV system that was used. The final 

section of the chapter outlines the series of measurements that were taken. 

3.2 Overall Description of Wall Jet Facility 

 Figure 3.1 is a schematic of the overall experimental facility used in this study. 

The water is drawn from the far side of the tank and is pumped through the orifice plate 

and into the back of the flow conditioner, eventually being discharged through the slot at 

the front of the flow conditioner and flowing across the horizontal glass wall. The interior 
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dimensions of the water tank are a length of 4 m, a width of 1.04 m, and a depth of 0.7 m. 

The flow conditioner rests on the floor of the tank. There are steel bars that clamp around 

the flow conditioner that have a thin foam pad placed underneath to prevent any damage 

to the glass. The ground plane is a horizontal glass wall that was aligned to the slot exit 

and held in place with a steel frame that was suspended from angled brackets that rested 

on top of the water tank. The steel frame and brackets were connected by threaded steel 

rods, which allowed the height of the glass wall to be finely adjusted. 

 

 

 
 
 

 

 
 
 
 
 
 
 
 
 

 

Figure 3.1: Schematic of experimental facility (not to scale). 
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3.3 Pump and Flow Measurement 

3.3.1 Pump and Piping System 

The layout of the pump and piping system that was designed to supply water to 

the inlet of the flow conditioner from the far end of the water tank can be seen in figure 

3.1. A Goulds G&L series 1.1-kW centrifugal pump was able to supply a flowrate of 5.82 

x10-3 m3/s, corresponding to a Reynolds number at the slot exit of 8100 based on the slot 

height. The flow resistance at the pump intake was reduced through the use of a larger 

inlet pipe and a bell mouth entry. PVC pipe was used to transport the water from the tank 

to the pump, and from the pump to the flow conditioner. Additionally, there was a valve 

and a section of flexible tubing that were used at the pump outlet, and an orifice plate 

section that was located between the pump and the flow conditioner. This section was 

composed of copper pipe with a diameter of 2 inches and the orifice plates. A manifold 

made of PVC pipe was designed to evenly supply fluid to the four holes in the back of the 

flow conditioner. 

3.3.2 Orifice Plate  

An orifice plate was installed between the pump and piping manifold to measure 

the flow rate. By measuring the pressure differential across the orifice plate the flow rate 

could be calculated based on ISO 5167-1 “Measurement of fluid flow by means of 

pressure differential devices” (1999). The dimensions of the orifice plate, the Reynolds 

number, the pressure tap arrangement and the measured pressure differential were used to 

calculate the flow rate based on equation (3.4),  
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where Q is the volumetric flow rate, C is the discharge coefficient, d is the orifice plate 

diameter, D is the pipe diameter, β = d/D, ρ is the fluid density, and ΔP is the measured 

pressure differential across the orifice plate. The formula for the discharge coefficient is 
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where L1 and L’
2 are constants that depend on the pressure tap arrangement, and the 

Reynolds number is based on the bulk velocity in the pipe, Vb, and diameter: 
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For this apparatus L1 = 0.4333 and L’
2 = 0.47. 

The equations for the volume flow rate, Q, and the discharge coefficient, C, were 

non-linear which required an iterative process to obtain the solution. This was 

accomplished using a spreadsheet. A typical value for ΔP was 25.7 kPa, which 

corresponded to a flow rate of 5.82 L/s. 

3.4 Design of the Flow Conditioner 

 The initial conditions of a plane wall jet are known to affect its development 

downstream of the slot. By reproducing initial conditions that are similar to previous 

physical experiments and computational studies, more accurate comparisons of wall jet 

characteristics can be made. The conditions at the slot exit that this study attempted to 

reproduce are a uniform profile for the streamwise velocity, a vertical velocity component 

equal to zero, and a low value for the turbulence intensity, as indicated by the  
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Figure 3.2: Isometric view of the back of the flow conditioner. 

streamwise Reynolds stress component, ''uu . In addition, producing a plane wall jet 

required the flow to be two-dimensional. This would allow comparison of the flow 

characteristics to previous plane wall jet studies. 

Figures 3.2, 3.3 and 3.5 show the flow conditioner that was designed and built to 

produce a plane wall jet with the desired initial conditions. The water entered the back of 

the device through four inlet holes, flowed through multiple screens and straightening 

vanes, and was discharged from the front of the device through a slot. The design of this 

flow conditioner was guided by Shinneeb’s (2006) design of a flow conditioner that was 

used to produce an axisymmetric jet. While a plane wall jet flow differs from the flow 

0.542 m 
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within a wind tunnel, the design methods used for wind tunnels can also provide insight 

into the design of this experimental apparatus. The design and construction of each 

component of the flow conditioner will be discussed in the following sections. 

3.4.1 Flow Conditioner Length 

 Farell (1996) experimented with the use of plastic straw honeycombs and wire 

mesh screens to reduce turbulence levels and non-uniformity of a wind tunnel flow. The 

results from that study showed that various combinations of honeycombs, screens and 

manipulator spacings were effective in reducing both the non-uniformity and turbulence 

level of the flow. A universal optimum combination was not determined, however a 

coarse screen followed by a honeycomb and one or more fine screens was found to be 

effective. 

 For the current study, water entered the flow conditioner through four holes in the 

back of the device (figure 3.2). There were four deflection plates inside the device that 

were attached to the holes. These circular plates helped to distribute the flow across the 

full width of the flow conditioner. The use of deflection plates was based on the design of 

Shinneeb’s (2006) flow conditioner. Downstream of the deflection plates was a settling 

chamber followed by circular plastic drinking straws that filled the entire cross-section of 

the flow conditioner (see figure 3.3). The straws had a diameter of approximately 0.002 

m and a length of 0.20 m, and were used as flow straightening vanes. The straws aligned 

the flow in the streamwise direction and reduced large vortical structures and related 

turbulence that would have been present downstream of the deflection plates. There were 

two screens that held the straws in place, and two additional screens between the straws 
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and the slot. The first two screens that held the straws in place had mesh numbers of 8 

and 42. The mesh numbers refer to the number of wires that are contained within one 

inch of screen. Lower mesh numbers correspond to coarser screens. The remaining two 

screens also had mesh values of 8 and 42, and the coarser screen was placed downstream 

of the 42 mesh screen in order to prevent any deflection of the finer screen. The pressure 

drop across the screens helped to produce a uniform velocity at the exit face of the screen. 

The screens also helped to break up larger vortical structures that might be present in the 

flow, further reducing the turbulence intensity. An internal length of 0.516 m was chosen 

for the flow conditioner to accommodate the deflection plates, straws, screens and 

settling chamber (see figure 3.3). 

3.4.2 Nozzle Design and Flow Conditioner Height 

 For subsonic flows, contractions accelerate the flow and tend to reduce the non-

uniformity and turbulence intensity (Tavoularis, 2005). In wind tunnels the design of the 

contraction is dependent on the wall shape, Reynolds number and length of the 

contraction. Contractions that are too long will generate relatively large boundary layers 

at the slot exit, whereas short contractions have the potential for flow separation (Morel, 

1975). The typical wall shape of a wind tunnel contraction is a concave section followed 

by a convex section. 

 Tavoularis (2005) advises following designs that have achieved the desired initial 

conditions under similar flow conditions. The design used by Shinneeb (2006) was used 

as a basis for the nozzle design of this flow conditioner since that study produced an 
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Figure 3.3: Side view of the flow conditioner. 

axisymmetric wall jet with the desired initial conditions in the same water tank as the 

current study. Shinneb’s (2006) flow conditioner was able to produce a uniform 

streamwise velocity profile at the slot exit that had a low turbulence intensity by using a 

convex section that had a nozzle radius equal to the height of the slot. The traditional 

concave section found in wind tunnels was replaced with a flat vertical section. This 

study used a similar design; the inside corner of the slot had a convex profile with a 

radius of curvature, Rc, equal to 0.0095 m (3/8 in), which is close to the maximum slot 

height of 0.009 m, and the section preceding the convex nozzle was a flat vertical wall 

(see figure 3.4).  
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Figure 3.4: Section of slot exit showing circular arc profiles of top and bottom plates. 

 The height of the flow conditioner was governed by the contraction ratio, which is 

the ratio of the internal height to the slot height. Tavoularis (2005) recommended a 

contraction ratio that was as large as possible, with a value greater than or equal to 16 

being generally sufficient. A large contraction ratio was used by Eriksson et al. (1998) 

and Schneider & Goldstein (1994) to produce a uniform streamwise velocity profile. 

Tachie (2000) did not achieve a uniform profile when using a smaller contraction ratio of 

9:1. An internal height to slot height ratio of 36:1 was chosen for this flow conditioner, 

which is similar to the ratio of 35:1 used by Schneider & Goldstein (1994). To maintain 

this ratio at the maximum slot height of 0.009 m, the internal height of the flow 

conditioner was designed to be 0.324 m, as indicated in figure 3.3. 

3.4.3 Flow Conditioner Width 

 Producing a plane wall jet required the flow to be two-dimensional. The width of 

the flow conditioner needed to be relatively large to achieve this. Previous researchers 

have shown that a large slot width to slot height ratio is necessary to avoid three- 
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Figure 3.5: Isometric view of the front of the flow conditioner. 

dimensional flows from forming. Eriksson et al. (1998) recommended a slot width to 

height ratio of 150:1, while Schneider & Goldstein (1994) were able to obtain an 

acceptable momentum balance downstream of the slot using a ratio of 90:1. The exterior 

width of the flow conditioner was chosen to be 0.864 m so that the flow conditioner 

would easily fit into the water tank which had a width of 1.04 m. This allowed the width 

of the slot to be 0.756 m (see figure 3.5). The height of the slot can be adjusted from a 

closed position to a height of 0.009 m. At 0.009 m, 0.006 m and 0.005 m slot heights, the 

width to height ratios are 84:1, 126:1 and 151:1, respectively. In this thesis, preliminary 
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measurements were taken at a slot height of 0.009 m, and the main series of 

measurements were taken with a slot height of 0.006 m. 

3.4.4 Pressure Within the Flow Conditioner 

The pressure inside the flow conditioner had to be estimated in order to calculate 

the wall deflection. There are three contributions to the pressure within the flow 

conditioner: the pressure drops across the mesh screens, the plastic drinking straws, and 

the slot exit. Based on a slot exit Reynolds number of 9600 and a slot height of 9 mm the 

flow rate through the flow conditioner is 7.26x10-3 m3/s. The streamwise velocity inside 

the flow conditioner is 0.030 m/s and the streamwise velocity exiting the slot is 1.067 

m/s. 

The pressure drop across the mesh screens was estimated using equation (3.1) 

proposed by Mehta (1985), 
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where dsc is the mesh screen wire diameter, u  is the mean streamwise velocity, Ue is the 

local freestream velocity, ν is the kinematic viscosity, ρ is the density of the fluid, and 
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, where lsc is the screen mesh length. In this situation, the local 

freestream velocity is assumed to be the same as the mean streamwise velocity. For a 42 

mesh screen with a wire diameter of 0.0003 m and a screen mesh length of 0.0006 m, the 

pressure drop is 10.5 Pa. For an 8 mesh screen with a wire diameter of 0.0007 m and a 

screen mesh length of 0.0032 m, the pressure drop is 0.981 Pa. 
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  The water flowing through the plastic straws had a Reynolds number of 59, which 

signified laminar flow and allowed the pressure drop across the straws to be estimated 

using equation 6.44 from White (1999) as follows: 47
)(π

μ8
4

st

stst
st ==Δ

r

QL
P Pa, where μ is 

the dynamic viscosity of the water, Lst is the straw length, Qst is the flow rate through the 

straws, and rst is the straw radius. 

 The pressure drop across the slot exit was calculated using Bernoulli’s equation in 

the form of ( )2
nternal

2
slotslot 2

1
iUUP −ρ=Δ . For a slot height of 0.009 m the pressure drop was 

equal to 568 Pa, which is a significantly higher value than the pressure drop across the 

straws and screens combined. When the slot height is reduced to 0.005 m the pressure 

drop across the screens and straws remained the same, however the pressure drop across 

the slot increased to 1839 Pa. 

 The pressure inside the flow conditioner was equal to the sum of the pressure 

drops across the screens, the straws and the slot, which was approximately 2000 Pa for a 

slot height of 0.005 m. An internal pressure of 5000 Pa was used to calculate the 

minimum required thickness needed to prevent a significant deflection of the walls. This 

provided a safety factor of approximately 2.5 for a slot height of 0.005 m. 

3.4.5 Walls of the Flow Conditioner 

The walls of the flow conditioner were made out of grey PVC and composed of 

seven main pieces: the back wall, the two side walls, the bottom wall, the removable top 

wall, the bottom section of the front wall, and the adjustable top section of the front wall. 

Each of these pieces can be seen in figures 3.6 and 3.7. 
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 There was a border glued to the top of the side walls and back wall that allowed 

the top wall to be screwed into place so that it could be removed when needed. To 

prevent leakage, a rubber gasket was placed between the border and the top wall. A 

rubber gasket was also placed between the side walls and the adjustable front wall to 

prevent leakage. The process of machining the slot into the top and bottom sections of the 

front wall caused the PVC material to warp. If the slot was left in this condition the two-

dimensionality of the wall jet would be lost. This situation was remedied by embedding a 

flat piece of stainless steel on the inside of both front wall sections. These bars were held 

in place with bolts and did not increase the thickness of the front wall. There were also 

two smaller pieces of PVC that were attached to the front of the flow conditioner to help 

prevent the adjustable front section from deflecting. 

 

 

Figure 3.6: Isometric front view of top border, back, side, and bottom walls, and screen 

 holders. 
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Figure 3.7: Isometric back view of removable top, bottom wall, side wall, fixed bottom 

 section of front wall, adjustable top section of front wall, and inside view of 

 curved slot. 

The approximate deflection, δ, of the front wall of the flow conditioner was 

calculated using equation (3.2), from Timoshenko (1955), for a plate with two opposing 

edges that are simply supported, a third edge that is fixed in place (either by clamping or 

gluing), and a fourth edge that is free to move. This corresponds to the boundary 

conditions for the front walls of the flow conditioner. The top section of the front wall has 

both side edges simply supported by a piece of PVC while the third edge of the wall is 
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bolted into place and the slot is left unsupported. The bottom section of the front wall has 

three edges that are glued in place while the slot edge is not supported. 

3

4

Eh

qbα=δ  (3.2) 

In equation (3.2) the uniform pressure distribution on the wall q = 5000 psi, the modulus 

of elasticity E = 3.1 x 109 Pa, b is the height of the wall, h is the thickness of the plate, 

and α is a numerical factor that is obtained from a table of values based on the ratio of 

b/a, where a is the width of the wall. 

Both sections of the front wall were further divided into section 1, which had a 

height b1 = 0.10 m and thickness h1 = 0.019 m, and section 2, which had a height b2 = 

0.05 m and thickness h2 = 0.0095 m (see figure 3.7). The deflection of the top and bottom 

sections was then calculated as the sum of the section 1 and section 2 deflections as 

follows:  
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The deflection for each of the front wall section was less than one mm, which was 

considered sufficiently low. 

 The deflection of the remaining walls was calculated using equation (3.3), which 

is for a plate that is built-in (fixed in place) at the edges. 

3

4

Eh

qaαδ =   (Eqn 3.3) 

The thickness of each of the walls was 0.0095 m. The deflection of the side walls and 

back wall were 0.512 mm and 0.576 mm, respectively. The deflection of the top and 

bottom plates was 3.10 mm. This deflection was considered too large, so two stainless 
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steel beams were clamped to the outside of the top and bottom of the flow conditioner, 

effectively dividing the top and bottom plates into three separate sections. The deflection 

was then reduced to a maximum of 0.046 mm. 

 The majority of the components of the flow conditioner were glued together. To 

ensure that the components would not break apart, a central groove was initially designed 

into the edges of each of the components to increase the surface area that the glue could 

bond to. An example of this type of groove can be seen in figure 3.8. Unfortunately this 

design required intricate machining and led to situations where the thickness of the edges 

of the components became too small. An alternative inter-locking method was then 

designed where a stepped groove was machined along each edge of the components (see 

figure 3.9). This reduced the complexity of the design and provided enough surface area 

to ensure that the flow conditioner would remain glued together. 

3.5 Particle Image Velocimetry (PIV) System 

3.5.1 Background of PIV 

 In the 1980’s an experimental technique was developed that allowed quantitative 

measurements of a fluid flow to be obtained when observing objects flowing along with 

the fluid. Particle image velocimetry (PIV) is an imaging technique that infers the 

velocity of a fluid by determining the velocity of particles that are suspended in the fluid. 

These particles have a size and density that allow them to follow the same path as the 

fluid. Dual Nd:YAG lasers are used to illuminate the particles and a digital camera is 

used to capture images of the moving particles. A computer and software are then used to 

process the images and measure the velocity of the particles. This provides instantaneous 

two-dimensional velocity vector measurements of the fluid. PIV is an indirect velocity  
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Figure 3.8: Central groove inter-locking method. 

 

Figure 3.9: Stepped groove inter-locking method used in final design. 
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measurement technique that allows both large and small-scale spatial structures to be 

detected. 

3.5.2 PIV System Components 

 The four main components of the PIV system used in this study are the laser 

source used to illuminate the tracking particles that were added to the water, the digital 

camera and lens used for image acquisition of the illuminated particles, the computer that 

was used to control the lasers and camera using in-house software, and a BNC Model 505 

pulse/delay generator (see figure 3.10). The computer was also used to process the 

images in order to obtain the velocity vectors for each pair of images. 

3.5.3 Illumination of Tracking Particles 

 Hollow glass spherical beads with a specific gravity of 1.0 were added to the 

water near the inlet of the pumping system. The pump was left to run for thirty minutes to 

allow complete mixing of the particles throughout the water tank so that a homogenous 

distribution would be obtained. The illumination system used dual Nd:YAG lasers with a 

pulse energy of 200 mJ as well as two lenses to modify the laser beam into a light sheet. 

The lasers were pulsed in order to freeze the motion of the particles. The maximum 

repetition rate was limited to 15 Hz so dual lasers had to be used to achieve short time 

delays between the images.  Downstream of the laser beam a 1000-mm spherical lens was 

used to reduce the diameter of the beam and therefore the thickness of the light sheet. 

Reducing the thickness of the laser sheet increased the spatial resolution in the direction 

perpendicular to the light sheet. A plane light sheet was created by placing a -12.7-mm 

cylindrical lens downstream of the spherical lens. The direction of the light sheet was 

then converted from horizontal to vertical using a mirror inclined at 45°. 
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Figure 3.10: Schematic of a PIV system. 

 The lasers, lenses and mirror were secured to an optical table below the water 

tank. The equipment was positioned on the table such that the laser sheet was close to the 

desired location, and the table itself was then moved to finely position the field of view. 

The light sheet was aligned to either the centerline of the jet or 0.275 m off the centerline 

by carefully positioning a flat metal ruler on the glass plate using temporary guide blocks, 

and then manually moving the laser sheet until it was in line with the ruler. An image of 

the ruler and guide block can be seen in figure 3.11. The light sheet was aligned in the 

streamwise direction by first moving it to the desired approximate location, and then 
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moving the lenses and mirror to the precise location that would fully illuminate the 

desired field of view. The distance between the cylindrical lens and the mirror was 

adjusted to get the correct width of the laser sheet. The sheet had to be wide enough to 

cover the entire field of view however the intensity of the laser sheet would be 

diminished if it was made too wide. 

3.5.4 Image Acquisition 

A MegaPlus ES 4020 digital camera with a 2048 x 2048 pixel sensor was attached 

to a 200-mm Nikon lens and used to capture pairs of images of the illuminated particles. 

The camera and lens were mounted on a tripod and positioned so that the light sheet was 

visible through the side of the tow tank. The camera had to be positioned at the proper 

streamwise location and at a spanwise distance from the light sheet that provided an 

appropriately sized field of view. The vertical position of the camera was chosen so that 

the glass wall would be near the bottom of the field of view. A calibration image was 

then taken with a ruler placed on the glass wall that was in line with the laser sheet in 

order to determine the scale and dimensions of the field of view. The ruler had divisions 

of 1 mm and 1/16 in. Care was taken to keep the edge of the image aligned to the 

horizontal glass wall in order to minimize the amount of rotation the image required 

during processing. The ruler was then removed and the pump was turned on. 

The lasers had an intensity setting that allowed a manual focusing of the camera 

lens on the particles. After manually focusing on the particles the lasers were returned to 

full power and five test images were obtained using the same in-house software used to 

control the lasers. The images were saved to the hard drive as “.raw” files. Test images 
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were required to ensure there were enough particles and that they were in focus, as well 

as to ensure the correct time delay between images was chosen. A displacement of 

approximately 8 pixels was desired, as will be explained in the next section. This was 

checked using in-house software. After verifying the particles were in focus and that a 

proper time delay was chosen, 2000 pairs of images in groups of 50 pairs of images were 

recorded at a frequency of 4 Hz and saved to the hard drive. 

 

Figure 3.11: Calibration image showing the guide block located at the slot exit. 

3.5.5 Image Processing 

The velocity of the illuminated particles in the images had to be determined in 

order to measure the velocity of the fluid. This was accomplished by dividing the pairs of 
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images into a grid of square interrogation areas (see figure 3.12), and determining the 

displacement of the particles within each interrogation area. The streamwise, Δx, and 

vertical, Δy, particle displacement were divided by the time delay, Δt, between images to 

obtain two components of the velocity, u and v. By keeping the size of the interrogation 

area small, a high spatial resolution of the fluid velocity throughout the entire field of 

view was obtained. 

 Due to the large number of particles that are present in the flow, it is not feasible 

to calculate the displacement of each particle in the field of view. By breaking up the 

image into smaller interrogation areas and calculating the displacement of the pattern that 

the particles made within that area, a single velocity vector for the interrogation area 

could be obtained. This was accomplished using a method of statistical analysis known as 

a half-padded fast Fourier transform (FFT) cross-correlation. The cross-correlation 

method works by comparing the first image to each possible displacement of the second 

image in order to determine where the particle images overlap. Each interrogation area of 

the first image remained at its original position while the corresponding interrogation area 

of the second image was moved pixel by pixel to each displacement in both the x and y 

directions. The displacement location where the images matched to the highest degree 

was found using an FFT algorithm; this displacement was the distance that the group of 

particles had travelled between images. Figure 3.13 shows a typical correlation plane. 

The peak in the image shows the x and y displacements where the images matched to the 

highest degree. 
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Figure 3.12: Illuminated particle images with 32 x 32 pixel interrogation areas and a 

 schematic of the displacement of a pattern of particles. 
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Figure 3.13: Correlation plane (the maximum correlation occurs at Δx = 5 pixels and Δy = 

-1 pixels). 
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In-house software was used to perform the processing of the image pairs. This 

study used interrogation areas of 32 x 32 pixels with a 50% overlap and half-padded FFT 

cross-correlation. This provided velocity vectors at 16 pixel intervals throughout the field 

of view for a total of 16,129 vectors for each image pair. The time delay that provided a 

displacement of approximately 8 pixels in the test images was chosen because a 

displacement of ¼ of the width of the interrogation area was desired. The pixel 

coordinates where the pattern of both images matched most closely was found using a 

relative maxima peak finding algorithm. A Gaussian curve-fitting method was used to 

improve the accuracy of the pixel displacement to the sub-pixel level. 

Hart’s (2000) correlation-based-correction (CBC) algorithm was used to improve 

the signal-to-noise ratio and to reduce the number of spurious vectors. Errors in the 

calculation of the particle displacement can occur when the particle density is either too 

high or too low in a particular area of the field of view, or if there is an abnormally large 

velocity gradient in a portion of the flow field. Additional in-house post-processing 

software was then used to identify vectors that differed greatly from their neighboring 

vectors using a cellular neural network (CNN) method (Shinneeb et al., 2004). An 

erroneous vector was replaced with an estimated vector that was calculated based on the 

values of the neighboring vectors using a Gaussian filter with a filter width of 8 pixels 

and a width of 2 interrogation windows.  

The post-processing software was also used to properly scale the images by 

converting the local camera coordinates to global coordinates using the calibration image. 
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Also, the velocity field was aligned by rotating an amount calculated from the original 

image using the glass wall as a reference. 

 After post-processing all 2000 pairs of images, a file was created that contained 

the mean velocity vectors and turbulence statistics for that field of view. Files of 

instantaneous velocity vectors could also be created for any of the 2000 pairs of images. 

Figure 3.14 shows images of instantaneous velocity vectors for an entire field of view. In 

figure 3.14(b) only every fourth vector is shown to provide a better sense of the vector 

direction. 

3.5.6 Experimental Uncertainty Analysis 

 Shinneeb (2006) was able to determine the experimental uncertainty of PIV 

velocity measurements by analyzing simulated images with a known pixel displacement 

and comparing that displacement to the one obtained using PIV analysis software. 

Shinneeb began this process by determining the characteristics of measured PIV images 

(see Table 3.1). The values for background noise and particle intensity are based on a 

grey scale from 0-255, where 0 and 255 correspond to pure black and white, respectively. 

Shinneeb (2006) then generated simulated images based on these characteristic values. 

The generated images were displaced by a specific pixel value and analyzed using the 

same PIV analysis software and settings as the real images. The difference between the 

known and measured pixel displacement provided Shinneeb (2006) with an absolute 

experimental uncertainty of 0.29 pixels for the PIV velocity measurements from that 

study. Shinneeb (2006) analyzed various particle displacements and found that the 

uncertainty was independent of the displacement.  
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Figure 3.14 (a), (b): Example image of instantaneous velocity vectors for the field of 

 view for test C3. Every fourth vector is shown in (b) to give a 

 sense of the vector direction. 
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Table 3.1 Image characteristics obtained by Shinneeb (2006) and the present study. 

 Shinneeb (2006) Present Study 

Characteristic Mean Standard 
Deviation 

Mean Standard 
Deviation 

Background noise 23 11 13 2 

Particle intensity 254 1 255 1 

Particle diameter (pixels) 1.33 1.04 1.55 1.40 

Number of paired particles ~79,000 ~84,000 

 

The image characteristics obtained by this study were assessed to determine if 

these results should use the same absolute uncertainty used by Shinneeb (2006). A 

random image was selected at a downstream location from the slot and the following 

characteristics were assessed: background noise, particle intensity, particle diameter and 

number of paired particles. The background noise was measured by determining the 

intensity of the image where there are no particles. Thirty measurements were taken and 

the background noise was determined to have a grey scale value of 13 with a standard 

deviation of 2. Thirty measurements of the particle intensity were also taken and the 

average value was determined to be 255 with a standard deviation of 1. Matrox 

Inspector® software was used to determine the average particle diameter as well as the 

number of paired particles. The mean particle diameter was 1.55 pixels with a standard 

deviation of 1.40 pixels, and the total number of paired particles for the entire image was 

approximately 84,000. All four of these image characteristics are similar to the 

characteristics measured by Shinneeb (2006). Given that this study also used the same 

water tank, particles, analysis software, outlier rejection software and similar software 
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settings, Shinneeb’s (2006) absolute experimental uncertainty value of 0.29 pixels for 

PIV velocity measurements will be used. The time delay between images was chosen to 

provide particle displacements of about 8 pixels, which corresponds to a relative 

uncertainty of 3.6% for the PIV measurements of the streamwise velocity. 

3.6 Run Matrix 

A preliminary series of measurements were taken along the width of the slot 

without the horizontal glass wall in place and with a slot height of 0.009 m. The purpose 

of these measurements was to determine the uniformity of the streamwise mean velocity 

and turbulence intensity in the spanwise direction. Five horizontal fields of view were 

taken that provided data at x = H along the entire slot width.  

The two main series of measurements were taken with the glass wall in place and 

with a slot height of 0.006 m, as shown in figure 3.15. The first main series of 

measurements were along the centerline from the slot exit to a streamwise distance of 110 

slot heights. The second main series of measurements were taken in a plane displaced a 

spanwise distance of 0.275 m from the centerline. These off-centerline measurements 

were located at that spanwise distance in order to allow comparison to LDA 

measurements. With the present optics, the LDA equipment was limited to measurements 

relatively close to the wall. The off-centerline measurements were taken at the slot exit 

and downstream of the slot to a streamwise distance of 100 slot heights. Each of the latter 

series of measurements required 12 hours to complete. This included the time needed to 

set up the lasers and digital camera and then acquire 2000 images for each field of view. 

Additional measurements were taken at the slot exit for both series of measurements 
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using a magnified field of view to obtain higher resolution data near the exit. These 

measurements at the slot exit helped to verify whether or not a uniform profile of the 

streamwise velocity with a low turbulence intensity was achieved. These additional 

measurements required 4 hours to set up and acquire. 

Tables 3.2 and 3.3 summarize the measurements that were obtained. The 

preliminary measurements are listed as P1-P5. Test runs P1 and P2 were performed on 

the same day, as were test runs P3, P4 and P5. While the flow-rate was only measured for 

P1 and P4, all five test runs were performed with the pump valve fully open which should 

have produced a similar velocity at the slot exit for all five measurements. The main 

series of measurements performed along the centerline and off-centerline are listed as 

tests C0-C7 and OC0-OC7, respectively (see figure 3.15). Measurements of the water 

temperature and orifice voltage were obtained at the start and end of each test run. These 

measurements were then averaged so that an accurate temperature and flow rate would be 

used to determine the Reynolds number for each field of view. 

3.7 Chapter Summary 

The experimental facility and instrumentation used by this study was described in 

this chapter. This included the design and construction of the flow conditioner, the pump 

and piping system, the orifice plate, as well as background information on PIV and the 

components that were used to acquire the images for each field of view. An outline of the 

measurements that were taken was then provided. Chapter 4 will now provide a 

description of the results that were obtained by this study. 



59 
 

Table 3.2 Outline of preliminary measurements. 

Test zmin zmax Δt ΔP Q Re 
 Run  (m)  (m) (μs) (kPa) (L/s)  
P1 0.220 0.392 1200 24.8 5.871 7594 
P2 0.048 0.220 1200 - - - 
P3 -0.116 0.056 1200 - - - 
P4 -0.275 -0.104 1200 24.8 5.871 7594 
P5 -0.425 -0.254 1200 - - - 

 

 

 

Figure 3.15: Location of each field of view for the main series of measurements. 
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Table 3.3 Outline of main series of measurements. 

Test (x/H)min (x/H)max Δt Temperature (oC) 
 Run     (μs) T1 T2 Tavg 
C0 0 4 80 21.8 21.9 21.9 
C1 0 15 250 20.8 21.0 20.9 
C2 15 32 300 21.0 21.2 21.1 
C3 32 49 350 21.2 21.4 21.3 
C4 49 65 450 21.4 21.6 21.5 
C5 66 82 550 21.6 21.8 21.7 
C6 82 98 625 21.8 22.0 21.9 
C7 99 115 625 22.1 22.2 22.2 

OC0 0 7 100 - - 21.4 
OC1 0 17 250 21.4 21.6 21.5 
OC2 16 32 300 21.7 21.9 21.8 
OC3 31 46 350 22.0 22.1 22.1 
OC4 47 62 450 22.2 22.3 22.3 
OC5 61 77 550 22.3 22.5 22.4 
OC6 78 93 600 22.5 22.7 22.6 
OC7 93 108 625 22.6 22.8 22.7 

       
Test Orifice Voltage (volts) Q U Re 
 Run V1 V2 Vavg (L/s) (m/s)   
C0 2.558 2.557 2.558 5.80 1.279 8093 
C1 2.564 2.563 2.564 5.81 1.281 8107 
C2 2.570 2.563 2.567 5.81 1.281 8107 
C3 2.561 2.560 2.561 5.80 1.279 8093 
C4 2.567 2.563 2.565 5.81 1.281 8107 
C5 2.576 2.568 2.572 5.82 1.283 8121 
C6 2.571 2.568 2.570 5.81 1.281 8107 
C7 2.572 2.569 2.571 5.82 1.283 8121 

OC0 - - 2.547 5.79 1.276 8080 
OC1 2.564 2.561 2.563 5.81 1.281 8107 
OC2 2.567 2.564 2.566 5.81 1.281 8107 
OC3 2.568 2.568 2.568 5.81 1.281 8107 
OC4 2.573 2.571 2.572 5.82 1.283 8121 
OC5 2.575 2.572 2.574 5.82 1.283 8121 
OC6 2.579 2.573 2.576 5.82 1.283 8121 
OC7 2.574 2.572 2.573 5.82 1.283 8121 
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Chapter 4 

Evaluation of Wall Jet Based on Flow Measurements 

4.1 Introduction 

The plane wall jet produced by this experimental apparatus is assessed in this 

chapter. Preliminary measurements of the streamwise velocity and turbulence along the 

width of the slot are presented first. The inlet boundary conditions for the wall jet are then 

documented by plotting streamwise mean velocity profiles and streamwise turbulence 

intensity profiles near the slot exit. The initial development of the jet is described by 

examining streamwise velocity profiles in the region from one to six slot heights from the 

exit, as well as by determining the length of the potential core. The fully developed 

region is identified by determining the region where the streamwise mean velocity and 

turbulence intensity profiles are self-similar. The growth and decay rates are then 

compared to established results. An initial assessment of the degree to which this 

experimental facility produces a two-dimensional flow is performed throughout the 

chapter using the method recommended by Gartshore & Hawaleshka (1964) of 

comparing spanwise measurements. This is accomplished by comparing various flow 

characteristics obtained along the centerline (z = 0 m) to those obtained near the lateral 

edge of the horizontal glass wall (z = 0.275 m). Hereafter, the measurements taken at z = 

0 m will be referred to as the centerline measurements, and the measurements taken at z = 

0.275 m will be referred to as the off-centerline measurements. The effect that return flow 

has on the development and two-dimensionality of the wall jet is  also examined. 
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4.2 Initial Conditions 

4.2.1 Streamwise Velocity and Turbulence Along the Slot Width 

 Measurements of the streamwise mean velocity and turbulence were initially 

performed without the glass wall in place in order to determine the uniformity of the flow 

in the spanwise direction (see figure 4.1). The laser sheet was aligned horizontally with 

the middle of the slot, which had a height of 0.009 m, and data was obtained along the 

entire slot width. The measurements from z = -0.275 m to 0.327 m show a very uniform 

streamwise velocity. The small amount of scatter in this region is due to the lower quality 

PIV measurements that are obtained near the edges of the fields of view. The average 

streamwise velocity in this spanwise region is 0.894 m/s. The maximum deviation of the 

streamwise velocity (when ignoring the three data points near z = 0.2 m that are below 

0.8 m/s) is 3.2%, which is within the experimental uncertainty limits of the PIV 

measurements. The average streamwise turbulence is 2.5% of the average streamwise 

velocity. The measurements along this portion of the slot suggest that the flow 

conditioner is initially producing a two-dimensional flow in the spanwise region from z = 

-0.275 m to 0.327 m.  

 The increased values for the streamwise velocity in the spanwise region from z = -

0.358 m to -0.254 m suggest that the flow is not two-dimensional across the entire slot 

width. However, it is important to note that this region of elevated u corresponds to one 

field of view (i.e. one set of PIV measurements). Within this field of view, u is still very 

uniform. This discrepancy is believed to be a result of an error in recording the flow rate 

or Δt rather than a physical feature of the flow produced by the flow conditioner. 
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Figure 4.1: Streamwise mean velocity and turbulence at x = H along the slot width. 
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(see figure 4.3). This deviation is less than the experimental uncertainty of 3.6%, 

confirming that a uniform streamwise velocity profile has been produced. The streamwise 

turbulence within the flat part of the jet is 1.45% of the mean streamwise velocity. The 

peak values for the streamwise turbulence occur at locations of maximum shear due to 

interactions with both the stagnant fluid and the wall. The shape of the profiles verifies 

that the experimental apparatus is satisfactorily conditioning the flow by producing a 

uniform streamwise velocity profile with a low turbulence level, although it is important 

to note that this does not occur exactly at the slot exit. 

 These results compare well with Eriksson et al. (1998), who obtained uniform 

streamwise velocity profiles with a turbulence intensity of less than one percent in the flat 

part of the profile, and Schneider & Goldstein (1994) who obtained a uniform profile 

with a turbulence intensity of 0.3%. Some previous experiments did not produce a top-hat 

profile, such as Tachie (2000) who obtained a flat profile over only 30-40% of the slot 

height with a turbulence intensity that varied from 3-5%. 

The maximum velocity at x/H = 2/3 is 1.42 m/s, which differs from the value of 

1.28 m/s that was measured by the flow meter. This discrepancy is due to not accounting 

for the lower velocities in the wall shear and free shear regions. The average velocity 

across the height of the slot based on the profile shown in figure 4.3 is equal to 1.29 m/s, 

which agrees well with the value measured by the flowmeter. 

Figure 4.4 shows the transverse mean velocity and turbulence profiles at x/H = 2/3 

for the centerline and off-centerline measurements. In both profiles the mean velocity is 

close to zero; however the positive velocity near the wall indicates that the wall jet has  
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Figure 4.2: Streamwise mean velocity profile development along the centerline for 0 ≤  

 x/H ≤ 2/3. 
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Figure 4.3: Streamwise mean velocity profile and streamwise turbulence intensity at 

 x/H = 2/3 and z = 0 m. 
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Figure 4.4: Transverse mean velocity and turbulence profiles for x/H = 2/3 at (a) z = 0 m, 

and (b) z = 0.275 m. 
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begun to spread and the negative velocity in the outer region indicates entrainment of 

fluid. The transverse turbulence levels are larger than the streamwise turbulence level 

along the centerline. The maximum transverse turbulence occurs where the positive mean 

velocity is maximum for z = 0 m and occurs where the mean velocity is zero for z = 0.275 

m. 

4.2.3 Comparison of Streamwise Mean Velocity Profiles Near the Slot Exit 

Figure 4.5 compares the streamwise mean velocity profiles obtained at x/H = 5/6 

for the centerline and off-centerline locations. The similar shape of the profiles and the 

maximum velocity difference of  less than 1%  show that the experimental apparatus is 

initially creating a flow that is similar at the centerline and 0.275 m off of the centerline. 

4.3 Initial Development Region 

4.3.1 Velocity Profiles For 1 ≤ x/H ≤ 6 

 The initial development region of the plane wall jet is located where the jet 

undergoes transition from having a uniform streamwise velocity profile with a low 

turbulence intensity to being self-similar and turbulent downstream of the slot. Figure 4.6 

shows streamwise velocity profiles at streamwise distances of 1 ≤ x/H ≤ 6. At one slot 

height the profile has a flat shape. As the streamwise distance increases the velocity 

gradients in the shear layers decrease due to the interaction with both the wall and the 

stagnant fluid. The shear force at the wall causes the inner layer of the jet to take on the 

shape of a boundary layer. As this boundary layer grows, the velocity in the inner core of 

the jet decreases. The shear force present at the interface between the jet and the stagnant  
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Figure 4.5: Two-dimensional comparison of streamwise mean velocity profiles  

 at x/H = 5/6. 
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Figure 4.6: Initial development of streamwise mean velocity profiles for 1 ≤ x/H ≤ 6 

 at z = 0.275 m. 

y 
(m

) 

u (m/s) 

y 
(m

) 

u (m/s) 

z = 0 

z = 0.275 m 

1H 

2H 

3H 

4H 

5H 

6H 

 



69 
 

fluid causes entrainment of additional fluid into the jet as it flows downstream. This 

causes the jet to grow in size, and the momentum that has been transferred to the 

entrained fluid causes a decrease in the maximum velocity of the jet. 

4.3.2 Comparison of Streamwise Mean Velocity Profiles at x/H = 4 

Figure 4.7 compares streamwise mean velocity profiles for the centerline and off- 

centerline measurements at a streamwise distance of x = 4H. This figure shows that the 

experimental apparatus has produced a flow that is similar at both spanwise locations.  

Both profiles have a similar shape and the difference between the maximum velocities is 

less than 1%, which is within experimental uncertainty limits. This figure also shows that 

return flow has not yet begun to affect the development of the wall jet since the velocities 

approach zero even at relatively large distances away from the wall. 

4.3.3 Potential Core 

The potential core is characterized by the preservation of the initial maximum 

streamwise velocity. When the maximum streamwise velocity has become less than the 

initial maximum streamwise velocity the potential core has been consumed (Rajaratnam, 

1976). As seen in figure 4.8, the initial maximum velocity of the jet was 1.43 m/s. The jet 

adequately maintains this velocity until x/H = 6.  There is a noticeable drop in the 

maximum velocity at x/H = 7. This suggests that the length of the potential core is 6H. 

The next section will look at self-similarity to verify the region of fully developed flow. 
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Figure 4.7: Spanwise comparison of streamwise mean velocity profiles at 4H. 
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Figure 4.8: Decay of the maximum velocity for 1 ≤ x/H ≤ 16 at z = 0.275 m. 

y 
(m

) 

u (m/s) 

u m
 (

m
/s

) 

x/H 

z = 0 
z = 0.275 m 



71 
 

4.4 Fully Developed Region 

4.4.1 Development of Wall Jet Velocity Profiles For 1 ≤ x/H ≤ 100 

Figure 4.9 shows streamwise mean velocity profiles at x/H from 1 to 100 for both 

the centerline and off-centerline measurements. The transition from a uniform velocity 

profile to a fully developed wall jet is evident. The flatness of the velocity profile at x/H 

= 1 has been lost at x/H = 5. At x/H = 10 the wall jet has further interacted with both the 

stagnant fluid and the wall, causing the wall jet to expand, the boundary layer to increase 

in size, and the maximum velocity to decrease. This trend continues as the wall jet flows 

downstream, and eventually a fully developed turbulent wall jet is reached. The region of 

fully developed flow will be further explored in the next section by scaling the velocity 

and turbulence profiles using the outer scales 21y and um, and then qualitatively 

describing the region of self-similarity. 

4.4.2 Normalized Streamwise Mean Velocity Profiles For 10 ≤ x/H ≤ 100 

Researchers such as Eriksson et al. (1998) define fully developed flow as the 

region of self-similarity, which is the criterion that this study will use. Figures 4.10 and 

4.11 show the streamwise mean velocity profiles at x/H = 10 - 100 in dimensionless form 

for the centerline and off-centerline measurements, respectively. These profiles have been 

scaled using the outer coordinates based on 21y  and um. 

Figure 4.10(a) shows that the profile at x/H = 10 does not collapse onto the other 

profiles, which indicates that the wall jet is still developing at this location. This lack of  
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Figure 4.9: Wall jet development of streamwise mean velocity profiles for 1 ≤ x/H ≤ 100 

at (a) z = 0 m, and (b) z = 0.275 m. 
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Figure 4.10: Non-dimensionalized streamwise mean velocity profiles for 10 ≤ x/H ≤ 100 

 at z = 0 m (a) complete profiles, (b) enlarged view of maximum velocity 

 region. 
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collapse can clearly be seen in figure 4.10(b), where the profiles in the range 0 ≤ y/ 21y  ≤ 

1 have been enlarged. In this region of the wall jet along the centerline, self-similarity is 

achieved from x/H = 20 to 100. However, the profiles in the outer region do not achieve 

the same level of collapse. The effect of a return flow for y/ 21y  > 2.0 can be seen in 

figure 4.10(a). The velocity profiles should ideally approach zero as the distance from the 

wall increases. However, the return flow has caused the wall jet to have a negative 

velocity in this outer region. The profiles eventually attain self-similarity (from x/H = 50 

to 100) in this outer region of the wall jet, but they have a value less than zero. 

For the off-centerline measurements, figure 4.11(a) shows that the profile at x/H = 

10 does not collapse. The off-centerline wall jet does not appear to be significantly 

affected by a return flow since all of the profiles approach a value of approximately zero 

in the outer region of the wall jet. Figure 4.11(b) shows an enlarged view of the profiles 

in the transverse range of 0 ≤ y/ 21y  ≤ 1. The mean velocity takes longer to develop a self-

similar profile in this transverse range when compared to the centerline measurements. 

The profiles along the off-centerline collapse well from 40H to 100H, suggesting that the 

flow is fully developed in this region. 

4.4.3 Comparison of Streamwise Mean Velocity Profiles in the Fully Developed Region 

The previous section showed that the self-similar regions for the centerline and 

off-centerline measurements were x/H = 50 to 100 and x/H = 40 to 100, respectively. 

Figure 4.12 compares the centerline and off-centerline measurements at streamwise 

locations of 50H, 80H, and 100H. The profiles have a relatively similiar shape when  
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Figure 4.11: Non-dimensionalized streamwise mean velocity profiles for 10 ≤ x/H ≤ 100 

 at z = 0.275 m (a) complete profiles, (b) enlarged view of maximum velocity 
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Figure 4.12: Comparison of streamwise mean velocity profiles at 50H, 80H, and 100H. 

compared at the same streamwise location, however the effect of a return flow on the 

centerline measurements can be seen. This is shown by the reduced velocity in the outer 

region of the wall jet along the centerline. While the velocity of the centerline wall jet is 

reduced in the outer region, its maximum velocity is larger than the off-centerline wall jet 

at 50H. Whether or not this is a consequence of return flow is unknown. The maximum 

velocities differ by 6%, 2%, and 2% at x/H = 50, 80, and 100, respectively. 

4.4.4 Transverse Velocity Profiles in the Fully Developed Region 

 Figure 4.13 shows the transverse velocity profile at x = 50H for the centerline and 

off-centerline measurements. A profile obtained using the continuity equation is also 

plotted as a comparison. The continuity equation profile was obtained by subtracting the 

integral of the streamwise velocity profile at 51H from the integral of the streamwise  
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Figure 4.13: Comparison of transverse velocity profiles to continuity equation profiles for 

(a) centerline measurements and (b) off-centerline measurements. 
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velocity profile at 49H. The close agreement between both profiles for the centerline 

measurements indicates that the spanwise velocity gradient, ∂w/∂z, is close to zero. 

Conversely, the lack of agreement between the off-centerline profiles indicates that the 

spanwise velocity gradient is not zero at that location. This result indicates that spanwise 

spreading of the wall jet is occurring at x = 50H for the off-centerline measurements. 

4.5 Growth Rate of the Wall Jet  

4.5.1 Growth Rate 

As the fluid flows downstream from the slot, the surrounding stagnant fluid 

becomes entrained in the outer portion of the wall jet, causing it to slow down and also 

increase in transverse extent. The extent of the wall jet is normally quantified by the 

value of the jet half width. It has been reported by multiple previous experiments, making 

it an excellent characteristic for comparison. 

Figure 4.14 plots the normalized jet half-width, 21y /H, as a function of the 

normalized streamwise position, x/H, for the centerline and off-centerline meaurements, 

respectively. The growth for the centerline data appears to be linear from x/H = 10 to 100, 

whereas the growth for the off-centerline data only appears to be linear from x/H = 50 to 

100. The growth rate, A, and normalized virtual origin, x0/H, were found using equation 

(2.1), i.e. ⎟
⎠
⎞

⎜
⎝
⎛ +=

H

x

H

x
A

H

y
021 , by performing linear regressions over multiple ranges of 

x/H. The growth rate for each range of values can be seen in Table 4.1. 
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Figure 4.14: Growth of jet half-width from 10-100H along (a) z = 0 m, (b) z = 0.275 m. 
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Table 4.1: Jet half-width growth rates and virtual origin values for several ranges 
of x/H. 

Region 
(x/H) 

z = 0 m z = 0.275 m 

dy1/2/dx x0/H dy1/2/dx x0/H 
10-100 0.080 -6.6 0.079 -11.7 
20-100 0.081 -5.8 0.077 -13.5 
30-100 0.081 -5.3 0.077 -14.0 
40-100 0.081 -5.6 0.077 -13.3 
50-100 0.080 -6.3 0.079 -11.0 

 

The self-similar region of the centerline plane (x/H = 50 to 100) had a growth rate 

of 0.080 and a normalized virtual origin of -6.3H. The squared value of the correlation 

coefficient, R2, was 0.9996. The off-centerline self-similar region (x/H = 40 to 100) had a 

growth rate of 0.077 and normalized virtual origin of -13.3H, with an R2 value of 0.9988. 

The virtual origin obtained by Schneider & Goldstein (1994) was -8.7H, which is 

between the values obtained by this study. The growth rates along the centerline and off-

centerline fall outside the range of values of 0.073 ± 0.002 proposed by Launder & Rodi 

(1981); however they compare well with the more recent results of Eriksson et al. (1998), 

who obtained a growth rate of 0.078. Another recent result is that of Tachie (2000), who 

obtained growth rate values from 0.85 to 0.090. He partly attributed his higher values to a 

return flow that was present. The larger growth rate along the centerline of this study is 

also possibly due to return flow. 

The discrepancies between the different growth rate values could be attributed to 

different conditions such as the slot exit profile, Reynolds number, the degree to which a 

return flow is present, or lateral spreading. When comparing to Eriksson et al. (1998), this 

experiment had a similar Reynolds number and similar exit profiles, which could explain 
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why the growth rates were within 2.5% of each other. These results support that similar 

exit conditions correspond to similar growth rates. 

4.5.2 Spanwise Comparison of Growth Rates 

The difference between the centerline and off-centerline growth rates was 

between 1% and 5%, depending on the range of streamwise values that were used. An 

additional growth rate at a third spanwise location needs to be obtained before the two-

dimensionality of the flow can be confirmed. 

4.6 Decay Rate of the Maximum Streamwise Velocity 

4.6.1 Decay Rate 

As the wall jet grows it transfers momentum to the entrained fluid, causing the 

maximum velocity of the wall jet to decrease. This decay of the wall jet’s maximum 

velocity is another characteristic that can be compared to previous experimental results. 

Figure 4.15 shows the decay of the maximum streamwise mean velocity as a function of 

the streamwise distance. From this figure it is evident that the rate of decay of the 

maximum streamwise velocity is not linear. 

Figure 4.16 shows the maximum velocity as a function of the jet half-width in 

logarithmic form at x/H distances from 10 to 100. The logarithmic decay rate of the wall 

jet appears to be linear in the region from x/H = 50 to 100 for both sets of measurements. 

Table 4.2 provides the decay rate, n, for multiple ranges of values that were obtained by 

applying a linear regression in the form of equation (1.8) to figures 4.16(a) and 4.16(b). 
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The decay rate varies considerably depending on the range of streamwise values 

that are used. A decay rate of -0.624 was obtained along the centerline in the self-similar 

region from x/H = 50 to 100. The off-centerline had a linear decay rate of -0.562 in the 

self-similar region from x/H = 40 to 100. The squared value for the correlation 

coefficient, R2, was 0.9979 and 0.9876 for the centerline and off-centerline decay rates, 

respectively. The off-centerline results compare well with the results of Eriksson et al. 

(1998) who measured a decay rate of -0.573 in the region from x/H = 40 to 150. 

Schneider & Goldstein (1994) obtained a decay rate of -0.608. 

As was the case with the wall jet growth rate, the discrepancies between the 

different decay rate values could be attributed to different conditions such as the 

Reynolds number, initial conditions, the degree to which a return flow is present, or  
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Figure 4.15: Decay of the maximum streamwise velocity from 10-100H along z = 0 m. 
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Figure 4.16: Decay of maximum streamwise velocity from 10-100H along (a) z = 0 m, 

(b) z = 0.275 m. 
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Table 4.2: Decay rates, n, of the maximum streamwise mean velocity, um, for multiple 
streamwise regions. 

Region 
(x/H) 

Decay rate, n % 
difference z = 0 m z = 0.275 m 

10-100 -0.569 -0.584 3 
20-100 -0.569 -0.595 4 
30-100 -0.574 -0.586 2 
40-100 -0.602 -0.562 7 
50-100 -0.624 -0.515 17 

 

lateral spreading. The spread in decay rate values obtained when using different 

streamwise ranges showcases the importance of including a full description of how the 

decay rate was obtained. 

4.6.2 Spanwise Comparison of Decay Rates 

The difference between the decay rates for the centerline and off-centerline 

measurements varied from 2% to 17%. This is possibly due to the effect of return flow on 

the development of the centerline wall jet. Comparison of the decay rates does not 

support the two-dimensionality of the wall jet being maintained downstream of the slot. 

4.7 Normalized Turbulence Intensity Profiles For 10 ≤ x/H ≤ 100 

The turbulence intensity at x/H = 10 - 100 is presented in figures 4.17 and 4.18 for 

the centerline and off-centerline measurements, respectively. These profiles are scaled 

using the outer coordinates of y1/2 and um. 

The centerline turbulence intensity profiles do not collapse, possibly due to the 

greater influence that the return flow appears to have along the centerline. The profiles at  
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Figure 4.17: Non-dimensionalized profiles along z = 0 m from 10-100H for (a) 

 streamwise turbulence intensity, (b) transverse turbulence intensity, (c) 

 Reynolds shear stress. 
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Figure 4.18: Non-dimensionalized profiles along z = 0.275 m from 10-100H for (a) 

 streamwise turbulence intensity, (b) transverse turbulence intensity, (c) 

 Reynolds shear stress. 
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x/H = 10 and 20 appear to be still developing as they do not have a similar shape to the 

other profiles. The maximum turbulence intensity values ranged from approximately 

0.045 to 0.06 for the normalized streamwise turbulence, ''uu /um
2, 0.02 to 0.03 for the 

normalized transverse turbulence, ''vv /um
2, and 0.016 to 0.022 for the normalized 

Reynolds shear stress, ''vu /um
2. The lack of collapse when using the outer scaling 

coordinates was also noted by Eriksson et al. (1998), who had to subtract the “extra” 

turbulence in the outer region of the jet in order to achieve a collapse of the turbulence 

profiles. 

The off-centerline profiles achieve a greater degree of collapse. This further 

suggests that the return flow has less effect away from the centerline. The turbulence 

profiles collapse to a similar range of values in the region from x/H = 40 to 100 for the 

streamwise and transverse turbulence, and x/H = 20 to 100 for the Reynolds stress. The 

range of maximum turbulence values were from approximately ''uu /um
2 = 0.05 to 0.06 

for the streamwise turbulence, ''vv /um
2 = 0.024 to 0.028 for the transverse turbulence, and 

''vu /um
2 = 0.016 to 0.022 for the Reynolds shear stress. 

The lack of collapse of the turbulence intensity profiles could be due to the 

presence of return flow as discussed, or it could signify that they do not achieve self-

similarity until further downstream of the slot. Future studies could take additional 

measurements at larger x/H values to determine if self-similarity of the turbulence 

intensity profiles can be achieved. 



89 
 

Figure 4.19 presents the turbulence intensity profiles for the components of the 

Reynolds stress at x/H = 90 for z = 0.275 m. The normal stress in the streamwise 

direction, ''uu , contributes more turbulent kinetic energy to the flow than the normal 

stress in the transverse direction, ''vv . The jaggedness of the turbulence intensity profiles 

indicates that two thousand images were not enough to obtain proper turbulence 

measurements. Acquiring additional images for each field of view would provide 

smoother profiles; however, these results still provide a good representation of the 

Reynolds stresses present in this wall jet flow. 
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Figure 4.19: Turbulence intensity profiles of the normal stresses, ''uu  and ''vv , and the 

 Reynolds shear stress, ''vu  at x/H = 90 for z = 0.275 m. 
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4.8 Chapter Summary 

 This chapter evaluated the wall jet that was produced by this experimental facility 

using multiple methods. Preliminary measurements along the slot width suggest that a 

two-dimensional flow was initially produced; however there was a discrepancy in the 

streamwise velocity values for one of the fields of view. The initial conditions near the 

slot exit were documented by determining the degree to which the profile of the mean 

streamwise velocity was uniform and by measuring the level of the streamwise 

turbulence. The initial development region was analyzed, and the region of fully 

developed flow was found by determining which streamwise mean velocity profiles 

achieved self-similarity. The rate of spread of the wall jet and the decay rate of the 

maximum streamwise velocity were determined in the fully developed region and 

compared to previous results. The profiles of the Reynolds stresses were then presented 

as preliminary information on the turbulence structure within the wall jet. An initial 

assessment of the two-dimensionality of this wall jet was performed near the slot exit and 

downstream of the slot by comparing spanwise measurements of the streamwise mean 

velocity profiles, the turbulence intensity profiles, and the rates of spread and decay. 

Chapter 5 will make conclusions about the performance of this wall jet facility, and 

provide recommendations for future work. 
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Chapter 5 

Conclusions and Recommendations 

5.1 Summary 

This study involved the design and construction of an experimental facility to 

produce a plane turbulent wall jet. A flow conditioning apparatus was built that 

discharged a horizontal jet of water from a curved channel with a slot height of either 

0.009 m or 0.006 m and slot width of 0.756 m. The jet of water flowed across a smooth 

ground plane that was positioned flush to the bottom of the slot exit. The flow 

conditioning apparatus was designed to align the flow in the streamwise direction, reduce 

the turbulence of the flow, and evenly distribute the flow across the width of the slot. 

There was a vertical wall present above the slot exit, and the apparatus and ground plane 

were contained within a tank filled with stagnant water. The water was transported from 

the far end of the tank to the inlet of the flow apparatus using a piping system and a 1.1-

kW centrifugal pump. The jet had a Reynolds number, based on the slot height and jet 

exit velocity, that varied from 7594 to 8121. A particle image velocimetry system was 

used to take three series of measurements. The first series of measurements were in the 

horizontal plane at the slot exit and provided data along the entire slot width. The second 

and third series were in the vertical plane along the slot centerline and 0.275 m off the 

centerline. These latter measurements provided data from the slot exit to x/H = 100 for 

the streamwise and vertical components of velocity and the three associated Reynolds 

stress components. 
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The criteria provided by Launder & Rodi (1981) for assessment of the quality of a 

turbulent wall jet were used as the basis for verifying the quality of the wall jet produced 

with this facility. The first criterion was evidence of good two-dimensionality. While 

Launder & Rodi (1981) recommended the use of the momentum integral equation, this 

study did not obtain measurements of the wall shear stress so a comparison of spanwise 

measurements as recommended by Gartshore & Hawaleshka (1964) was used. The 

second criterion was the proper documentation of the author’s work, including the flow 

conditions. This study provided documentation of the measurements that were performed 

and presented data for the initial streamwise velocity and turbulence level at the slot exit. 

The third criterion recommended by Launder & Rodi (1981) was that the data should be 

consistent throughout all measurements and that turbulence data should be provided 

where possible. The data presented in this study had a consistent Reynolds number, was 

able to achieve self-similar profiles of the streamwise velocity, and included extensive 

measurements for the streamwise turbulence, vertical turbulence, and Reynolds shear 

stress. The final criterion was that the wall jet should be generally credible when 

compared to previous established results. This study was able to achieve similar growth 

and decay rates as previous studies with similar initial conditions, and was able to achieve 

a collapse of the streamwise velocity profiles when using the traditional outer coordinates 

of um and 21y . 

5.2 Conclusions 

The specific conclusions as to the performance of the wall jet facility are as 

follows: 
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1. This experimental facility was able to produce a uniform profile of the 

streamwise mean velocity with low turbulence near the slot exit. The design 

criteria that were used to achieve this were a contraction ratio of 36:1, having the 

radius of the inside corner of the slot be nearly equal to the slot height, and the use 

of straightening vanes and mesh screens. The centerline profile of the streamwise 

mean velocity at x/H = 2/3 was uniform over 71% of the slot height with a 

streamwise turbulence level that was equal to 1.45% of the mean streamwise 

velocity. These initial profiles were documented to provide a proper description of 

the flow conditions at the slot exit; satisfying Launder & Rodi’s (1981) second 

criterion for assessment of a wall jet’s quality. The documentation also included a 

description of the initial development from x/H = 0 to 2/3 to show how the 

uniform streamwise velocity profile initially developed. 

2. An initial assessment at the slot exit suggests that the flow conditioner was able 

to initially produce a two-dimensional wall jet. The preliminary measurements 

along the slot width provided a mean streamwise velocity at x/H = 1 that was 

uniform in the spanwise region from z = -0.275 m to 0.327 m. The measurements 

along the centerline and off of the centerline provided streamwise mean velocity 

profiles at x/H = 5/6 that had maximum velocity values that were equal within 

experimental uncertainty limits. Additional spanwise measurements of the mean 

velocity profile would help to confirm the degree to which this facility is 

producing a two-dimensional wall jet. 
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 3. The fully developed region for the centerline and the off-centerline (z/H = 46) 

measurements was determined to extend from x/H = 50 to 100 and x/H = 40 to 

100, respectively. The criteria for determining the region of fully developed flow 

was self-similarity of the profiles for the mean streamwise velocity. This self-

similar region was determined by scaling the streamwise mean velocity profiles 

with um and 21y , and identifying the profiles that achieved collapse. The length of 

the potential core was determined to be 6H, which was close to the values 

provided by Rajaratnam (1976) of 6.1H to 6.7H. 

4. The downstream flow appeared to be affected by return flow and spanwise 

spreading. The self-similar streamwise velocity profiles along the centerline had 

values less than zero at y/ 21y values greater than 2; while the off-centerline 

profiles had a value close to zero in the outer region. This suggests that a return 

flow is affecting the centerline measurements more than the off-centerline 

measurements. The comparison at x/H = 50 of the transverse mean velocity 

profiles to profiles obtained using the continuity equation show that the spanwise 

velocity gradient, ∂w/∂z, is close to zero at the centerline; however it has a finite 

value for the off-centerline measurements. This indicates that spanwise spreading 

of the wall jet is occurring at 50H for the off-centerline measurements. 

5. The growth rate, d( 21y )/d(x), along the centerline was determined to be equal 

to 0.080 in the self-similar region from x/H = 50 to 100. The off-centerline growth 

rate was 0.077 in the self-similar region from x/H = 40 to 100. Both of these 

values compare well with Schneider & Goldstein (1994), and Eriksson et al. 
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(1998), who obtained growth rates of 0.077 and 0.078, respectively. Schneider & 

Goldstein (1994) and Eriksson et al. (1998) considered Reynolds numbers of 

14,000 and 9,600, respectively, and measured similar profiles for the streamwise 

velocity and similar turbulence intensities at the slot exit as in this study. These 

results suggest that similar inlet conditions produce a similar wall jet growth rate. 

The difference in growth rates along the centerline and off-centerline could 

potentially be attributed to return flow and/or possible spanwise spreading. 

6. The decay rate, d(log(um/u0))/d(log( 21y /H)), was found to be -0.624 along the 

centerline self-similar region, and -0.562 along the off-centerline self-similar 

region. Schneider & Goldstein (1994), and Eriksson et al. (1998) obtained growth 

rates of -0.608 and -0.570, respectively. The differences between the decay rates 

could be partially attributed to the differing values for the virtual origin, which 

were -6.3H and -13.3H for the centerline and off-centerline measurements of this 

study, respectively, compared to -8.7H for Schneider & Goldstein (1994). Proper 

documentation of the decay rate should include the inlet conditions, the value for 

the virtual origin, x0/H, and the streamwise region that was used to obtain the 

decay rate. The difference between the centerline and off-centerline measurements 

of this study could potentially be attributed to return flow and/or possible 

spanwise spreading. 

7.  The off-centerline profiles achieved a greater degree of collapse than the 

centerline profiles in the region from x/H = 40 to 100 for the streamwise and 

transverse turbulence intensities, and from x/H = 20 to 100 for the Reynolds shear 



96 
 

stress when scaled using the outer coordinates of um and 21y  The turbulence 

profiles along the centerline did not collapse when using the same coordinates, 

which suggests that a return flow is affecting the wall jet development. The 

similarity theory proposed by George et al. (2000) stated that the Reynolds shear 

stress does not scale with um and 21y . The results from this study are inconclusive 

in verifying this statement. The turbulence profiles were presented to provide a 

more detailed description of the wall jet flow, satisfying Launder & Rodi’s (1981) 

third criterion for assessment of the quality of a wall jet. 

8. An initial assessment of the downstream flow showed that the two-

dimensionality of the wall jet was affected by the presence of return flow and 

possible spanwise spreading. The two-dimensionality of the wall jet was analyzed 

by comparing measurements at the centerline and off of the centerline. In order to 

further assess and confirm the degree to which the downstream flow is two-

dimensional, additional spanwise measurements should be performed. The 

experimental apparatus was found to maintain similar streamwise mean velocity 

profiles in the initial development region at x/H = 4. Downstream of the slot at 

x/H = 80 and 100 the maximum velocity of the streamwise mean velocity profiles 

were found to be in relative agreement; however the profiles at x/H = 50 were not. 

The comparison of the growth rate of the wall jet and the decay of the maximum 

streamwise velocity further show that the two-dimensionality of the wall jet is 

affected by a return flow and possible spanwise spreading. The difference 

between the growth rate values varies between 1 to 5% depending on the range of 

streamwise values that are used. The difference between the decay rate values are 
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even more pronounced, with a variation between 2 to 17% depending on the range 

of streamwise values that are used. 

5.3 Contributions 

The main contributions of this research project are as follows: 

1. This study was successful in designing and constructing an experimental facility 

capable of producing a plane turbulent wall jet with a spread rate and decay rate that are 

similar to other well regarded studies in the literature. This facility can be used to further 

study both plane wall jets and free jets.  For the wall jet, the finite size of the tank appears 

to produce a lack of strict two-dimensionality in the far field of the jet. 

2. This study used particle image velocimetry to provide extensive full-field velocity 

and turbulence data for a plane turbulent wall jet that can be used to: (a) investigate plane 

wall jet theory, including the complex interaction between the inner and outer regions of 

the flow, by studying the coherent structures present in the turbulent flow, and (b) 

provide benchmark data for computational studies. 

5.4 Recommendations for future work 

The following recommendations are made based on the conclusions reached in this 

study: 

1. Study the structure of the return flow that is present in this experimental set-up, 

and its precise effect on the characteristics of the wall jet produced by this facility. The 
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degree to which spanwise spreading occurs should also be studied by obtaining 

measurements of the spanwise velocity in the z-y plane. 

2. Use the data produced by this study to look at the coherent structures present in a 

plane turbulent wall jet through the use of the proper orthogonal decomposition (POD) 

technique (Shinneeb, 2006). These structures could potentially provide insight into the 

complex interactions between the inner and outer regions of a wall jet. 

3. Study the influence of initial conditions on the evolution of wall jet characteristics 

by adjusting the slot height and Reynolds number. 

4. Perform an in-depth analysis of the initial development region where a uniform 

profile of the streamwise velocity with low turbulence evolves into a fully developed 

turbulent wall jet. 

5. Obtain measurements that attempt to determine the wall shear stress using a 

technique such as LDA. This would provide the momentum loss at the wall and allow the 

momentum integral equation to be calculated. The wall shear stress would also provide 

the skin friction which could then be used to apply the inner scaling coordinates of u* and 

u*/ν. This inner scaling could be used to verify scaling theory presented by other 

researchers such as George et al. (2000) and Barenblatt (2005). 
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