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ABSTRACT 

Microorganisms and plants can be used as bioremediation agents to clean up 

contaminated soil sites in a cost effective and environmentally Friendly manner. 

Furthermore, associations of plants and bacteria can act synergistically, and thereby 

eliminate difficulties encountered when using a single agent. The purpose of my thesis 

research was to develop and characterize associations of plants and bacteria that 

degraded chlorinated benzoic acids (CBA) in soil. The contaminants were used as 

model compounds because they are present in soils contaminated with polychlorinated 

biphenyls (PCB) or chlorinated pesticides. 

Sixteen forage grasses in combination with 12 bacterial inoculants were screened 

for their ability to promote the degradation of CBA in soil. The CBAs were added to 

soil as single isomers. or in tertiary mixtures. The effect of inoculants on the root 

associated microbial community was assessed by fatty acid methyl ester (FAME) 

profiles as well as carbon substrate utilization as determined by the Biolog system. In 

addition, inoculant stimulation of the CBA degradative activity of roots or rhizosphere 

soil was determined by in vitro and hydroponic systems. Degradative enzymes were 

isolated from root exudates using ultrafiltration and chromatography. 

Five associations of plants and Pseudomnas species degraded CBA to a greater 

extent than plants without bacterial inoculants. Plant-bacterial associations that increased 

2-chlorobenzoic acid (XBA)  degradation had little effect on di-chlorinated benzoic acid 

degradation. Furthermore. the effective inoculants altered the roo t-associated microbial 

community of Bromus biebersteinii and simultaneously increased the CBA degradative 

activity of roots. Although these Pseudomonar species had little effect on the microbial 



community composition of E l y m  duuricus, they stimulated a plant enzyme capable of 

degrading ZCBA in the rhizosphere. 

Bacterial inoculants stimulated CBA degradation by some plant species by 

altering the microbial community present on the root surface, and thereby increasing the 

ability of this community to degrade CBA. Alternatively, with other plant species 

inoculants stimulated the production of a plant enzyme(s) that degraded ZCBA. My 

research has demonstrated that specific interactions between p lants and bacteria promote 

contaminant degradation in soil, and suggests that new remediation strategies can be 

developed based on such interactions. 
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1. INTRODUCTION 

Contaminated soil poses a significant threat to human and ecosystem health in 

Canada. There are estimated to be in excess of 10,000 contaminated soil sites in 

Canada and the cost associated with the remediation of these sites is in the billions of 

dollars (Hrudey and Pollard 1993). The use of biological organisms to clean up 

hazardous waste sites i.e. bioremediation, has the potential to reduce the cost associated 

with remedial action, and plants are one such possible organism (Cunningham et al. 

1995). Plants have an extensive root system which allows them to explore a large 

volume of soil, and they enhance microbial activity in soil which can stimulate 

contaminant degradation (Anderson et al. 1993; Shimp et ai. i993). These attributes 

have led numerous investigators to explore the potential of plants to remediate 

contaminants in soil (April1 and Sims 1990; Walton and Anderson 1990; Ferro et al. 

1994; Perkovich et al. 1996; Reilley et al. 1996: Xu and Johnson 1995). However, 

there are some obstacles facing the use of plants as bioremediation agents: 1) their 

capacity to degrade pollutants is unknown and 2) the phytotoxicity of many contaminants 

limits their growth. For example, only recently have plants been shown to degrade 

common pollutants such as polychlorinated biphenyls (PCB), trichloroethylene (TCE) 

or nitroglycerin (Goel et al. 1997; Newman et al. 1997; Wilken et al. 1995). 

Furthermore. contaminants such as PCB, TCE, pentachlorophenol (PCP), hydrocarbons 

and chlorinated benzoic acids (CBA) reduce the growth of some plants (Xu and Johnson 

1995; Siciliano et al. 1997; Newman et al. L997; Pfender 1996; Wilken et al. 1995). 

Consequentiy, strategies need to be found to overcome these and other limitations of 

phytoremediation systems. 

Bacteria are another possible organism to use in bioremediation systems and have 

been extensively studied as bioremediation agents (Providenti et al. 1993; Neilson 1996). 

The catabolic versatility of bacteria is widely known, but many bacterial bioremediation 



inoculants do not survive, move or remain metabolically active once inoculated into soil 

(Devare and Alexander 1995; Haluska et al. 1995). This can be a significant problem 

during bioremediation and ways need to be found to increase microbial survival, 

transport and activity in contaminated soil (National Research Council 1993). 

One possible solution to the problems associated with both plants and bacteria 

bioremediation agents is to comb h e  the two organisms into one remedial technology. 

Table 1.1. compares the advantages and disadvantages of plant- and bacteria-based 

bioremediation systems. It is apparent that the advantages of plant systems offset the 

disadvantages of bacteria remedial systems and vice versa. For example, bacteria are 

known to promote plant growth (Glick 1995) and may reduce contaminant phytotoxicity 

(Pfender 1996; Shann 1995; Krueger et al. 1991). Hence. this would allow plant 

growth in contaminated sites whose phytotoxicity would prxlude traditional 

phytoremediation approaches. In addition, bacteria which degrade contaminants can be 

inoculated into the rhizosphere and thereby augment the ability of the plant to degrade 

contaminants. For example, PCB degradation genes can be inserted into bacteria which 

then express these genes in the rhizosphere (Brazil et al. 1995). Such an approach 

would offset the unknown, and perhaps limited, capabilities of plants to degrade 

contaminants. Thus, bacterial inoculants can overcome the limitations found in plant 

based b ioremediation systems. 

Similarly. plants can be used to circumvent many of the problems associated with 

bacteria based bioremediation systems. For example. bacterial seed inoculants are 

known to be protected from predators, have increased plasmid stability, remain 

metabolically active. and survive on plant roots for over a year in field conditions (Smit 

et al. 1996; Crowley et al. 1996; Rattray et al. 1995: Hirsch and Spokes 1994). Thus 

plants can provide a protective niche for micro-organisms which may mitigate the poor 

survival traditionally seen with bacteria inoculated into soil. In addition, bacteria move 

with roots as roots explore soil (Hekman et al. 1995) and bacterial metabolism is 

influenced by root exudates (van Overbeek and van Elsas 1995). Thus plants will 



increase bacterial inoculant transport through soil thereby increasing the effectiveness 

of inoculants and may, via their root exudates, induce the bacteria to continue degrading 

pollutants in the face of other, more amenable carbon sources. Hence, inoculating 

bacteria that degrade pollutants onto plant seeds might mitigate many of the problems 

encountered with traditional bacterial bioremediation inoculants. 

TABLE 1.1 Advantages and disadvantages of plant and bacteria remediation systems. 

PLANT SYSTEMS BACTERIA SYSTEMS 

Advantages Reference Disadvantages Reference 

Protective niche for Rattray et al. , Poor survival in soil Have1 and 

rn icro-organis rns 1995 Reineke, 1992 

Extensive root April1 and Limited transport Devare and 

systems Sims, 1990 through soil Alexander, 1 995 

Root exudate Anderson et Regulation of desired Barriault and 

release al. , 1993 catabolic activity Sylvestre, 1993 

Disadvantages Reference Advantages Reference 

Phytotoxicity of Pfender, 1996 Plant growth Glick, 1995; 

contaminated sites promotion/ Krueger et al. , 

Detoxification 1991 

Unknown catabolic Siciliano and Catabolic versatility Brazil et a1. , 

versatil ity Germida, 1997 1995 

The purpose of my thesis research was to investigate plant-bacteria associations 

and determine if they would promote contaminant degradation in soil. I utilised CBA 

as model contarninants. These compounds are present in many contaminated sites, and 

arise from the degradation of PCB and chlorinated herbicides (Fava et al. 1996). 

Furthermore, these compounds are known to adversely affect the PCB degradation 



pathway (Sylvestre 19%). Chlorinated benzoic acids have a wide range of solubility 

and recalcitrance, ranging from the labile and soluble 3-chlorinated benzoic acid (3CBA) 

to the recalcitrant and poorly soluble 2,5-dichlorobenzoic acid (25diCBA). The 

metabolism of these components includes a variety of pathways with one common 

aerobic degradation route illustrated in Figure 1.1. Because of these attributes many 

other investigators have utilized CBA as model compounds (Crowley et al. 1996: Haby 

and Crowley 1996; Fava et al. 1996; Barriault and Sylvestre 1993). 

My research project had two goals: 

1) Develop specific plant-bacter ia associations that degrade halogenated 

aromatics in soil. 

2) Determine how plant-bacteria interactions stimulate remedial activity. 

This was accomplished through a series of studies designed to : 

1) Identify plants tolerant of contaminants in soil. 

2) Identify bacterial seed inoculants which increased or initiated contaminant 

degradation by plants. 

3) Determine the mechanism by which bacterial inoculants increase contaminant 

degradation by plants. 

4) Determine how differences between plant species affect the ability 

of bacterial inoculants to stimulate contaminant degradation. 

5) Isolate biochemical compounds produced by the plant which play a role in 

contaminant degradation. 
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Fig. 1 . 1 .  A common aerobic degradation route of di- and mono-chlorinated benzoic 
acids. ZCBA is 2-chlorobenzoic acid; 3-CBA is 3-chlorobenzoic acid; 2.3-diCBA is 
2.3-dichlorinated benzoic acid; 2.5-diCBA is 2.5-dichlorinated benzoic acid. Adapted 
from Hickey and Focht (1990) 



In Chapter 2 I developed a theoretical framework to describe possible roles of 

plants and bacteria in phytoremediation systems. When this thesis research was begun, 

bacteria-phytoremediation research was still largely a matter of speculation and was 

driven by the hypothesis of Anderson et al. (1993) regarding mutualistic associations 

between plants and rhizosphere organisms. Since that time, there have been several 

studies into the ecological and biochemical mechanisms of phytoremediation activity and 

it has become clear that plants and bacteria interact in specific and nonspecific manners 

during the remediation of contaminants in soil. The empirical portion of this thesis 

explores the possible associations between plants and bacteria in contaminated soils. 

In order to develop specific plant-bacteria associations, it was first necessary to 

identify those plants tolerant of CBA in soil. In Chapter 3, I studied the response of 17 

different forage grasses to 2-chlorobenzoic acid (2CBA) conmimtion. I found that 

while some plants tolerated a range of ZCBA levels, many were very sensitive to ZCBA 

and PCB levels in soil. Thus, I investigated the potential of these sensitive grasses to 

act as bioindicators of soil contamination. 

In Chapter 4 I identified plant-bacteria relationships that reduced 2CBA levels 

in soil. The efficacy of these associations was tested in three different Saskatchewan 

soils and at three different initial contamination levels. In Chapter 5, I evaluated the 

screening procedures used in Chapter 4 for their effectiveness in selecting plant-bacteria 

associations that reduced other CBAs such as 3-chlorobenzoic acid (3CBA), 2,3- 

dichlorobenzoic acid (23diCBA) or 2,s-dichlorobenzoic acid (25diCBA). in soil. In this 

chapter I also determined if plant bacteria associations can reduce levels of CBA present 

in mixtures because contaminated sites often contain mixtures of such compounds. 

Collectively the results presented in these two chapters indicated that plant-bacteria 

associations were successful in reducing CBA levels in soil, and suggested that the 

formation of such associations was due to specific plant-bacteria interactions. I 

postulated that there were two possible plant-bacteria interactions which gave rise to 

increased contaminant degradation in soil: 



1) inoculants stimulated plant or rhizosphere activity and thereby increased 

the degradative effect of the indigenous microflora in soil, or 

2) inoculants enhanced the ability of the rhizosphere to degrade 

contaminants by either stimulating degradative processes, or degrading 

the contaminants themselves. 

I investigated the validity of these hypotheses in Chapter 6 by exploring the 

mechanism by which a mixture of two bacterial inoculants, Pseudomnas aeruginosa 

strain R75 and P. savastanoi strain CB35, increased the ZCBA degradation by Dahurian 

wild rye (Elymus dauricus). I found that inoculants increased the catabolic activity of 

the rhizosphere while not affecting plant parameters. Furthermore, this increase in 

catabolic activity was limited to mono-chlorinated benzoic acids with no effect seen on 

the potential of rhizosphere soil to degrade di-chlorinated benzoic xi&. 

Thus, Chapter 7 investigated how bacterial inoculants stimulated catabolic 

activity without increasing plant growth. In this chapter I studied the effect of 

inoculating a mixture of the strains R75 and CB35 on the rhizoplane community and 

catabolic activity of Dahurian wild rye and meadow brome (Bromur biebersteiniz''. 

Results in Chapter 7 demonstrated that bacterial inoculants stimulated phytoremediation 

in different manners between plant species. The microbial community associated with 

the rhizoplane of meadow brome was altered by inoculants, whereas there was no effect 

on the community associated with Dahurian wild rye's rhizoplane. Furthermore, there 

was a substantial increase in the potential of the meadow brome rhizoplane to degrade 

ZCBA but no such effect for Dahurian wild rye. Chapter 8 investigated how inoculants 

stimulated ZCBA degradation by Dahurian wild rye without altering the rhizoplane 

community. Here I found a protein released from Dahurian nild rye roots that reduced 

levels of ZCBA in solution. Furthermore, I found that inoculating Dahurian wild rye 

increased expression of this protein in soil. 



2. MECHANISMS OF PHYTOWMEDLATION: BIOCHEMICAL AND 

ECOLOGICAL INTERXTIONS BETWEEN PLANTS AND BACTERIA. 

2.1. ABSTRACT 

The use of plants to reduce contaminant levels in soil is a cost effective 

method of reducing the risk to human and ecosystem health posed by contaminated 

soil sites. This review concentrates on plant-bacteria interactions which increase the 

degradation of hazardous organic compounds in soil. Plant. and bacteria can form 

specific associations in which the plant provides the bacteria with a specific carbon 

source that induces the bacteria to reduce the phytotoxicity of the contaminated soil. 

Alternatively, plants and bacteria can form non-specific associations in which normal 

plant processes stimulate the microbial community which in the course of normal 

metabolic activity degrades contaminants in soil. Plants can provide carbon 

substrates and nutrients as well as increasing contaminant solubility . These 

biochemical mechanisms increase the degradative activity of bacteria associated with 

plant roots. In return, bacteria can augment the degradative capacity of plants or 

reduce the phytotoxicity of the contaminated soil. However, the specificity of the 

plant-bacter ia interaction is dependent upon soil conditions which can alter 

contaminant bioavailability. root exudate composition and nutrient levels. In 

addition, the rnetabol ic requirements for contaminant degradation may also dictate the 

form of the plant-bacteria interaction i. e. specific or non-specific. No systematic 

framework has emerged which can predict plant-bacteria interactions in a 

contaminated soil, but it appears that the development of plant-bacteria associations 

that degrade contaminants in soil may be related to the presence of allelopathic 

chemicals in the rhizosphere. Therefore. investigations into plants which are 

resistant to, or produce allelopathic chemicals, is suggested as one possible method 



of identifying plant-bacteria associations which can degrade contaminants in 

2.2. INTRODUCTXON 

Contaminated soil poses a significant threat to human and ecosystem 

soil. 
, 

health in 

Canada. There are estimated to be in excess of 10,000 contaminated soil sites in 

Canada and the cost associated with the remediation of these sites is in the billions of 

dollars (Hrudey and Pollard, 1993). The use of organisms to clean up hazardous 

waste sites i. e. bioremediation, can potentially reduce the cost of remedial action, 

and plants are one such possible organism (Cunningham et al., 1995). Plants have 

an extensive root system that explores a large volume of soil and they enhance 

microbial activity , which can stimulate contaminant degradation (Anderson et aI . , 
1993: Shimp et al., 1993). These attributes have led numerous investigators to 

explore the potential of plants to remediate contaminated soil (Apriil and Sims, 1990;. 

Xu and Johnson, 1995; Reilley et al., 1996: Perkovich et al., 1996; Ferro et al., 

1994; Walton and Anderson, 1990). However, the mechanism by which plants 

stimulate the disappearance of hazardous organics from soil is not fully understood. 

2.2.1. Modes of Phytoremediation 

Plants are known to sequester, degrade and stimulate the degradation of 

organic contaminants in soil (Anderson et al., 1993: Shimp et al., 1993). 

Disentangling these three processes from each other is a significant challenge in 

phytoremediation research with important consequences because it will, I )  suggest 

methods of enhancing phytoremediation activity, and 2) highlight areas of 

toxicological concern. For example, the sequestration of heavy metals by plants is 

an effective method of reducing heavy metal contamination in soil (Cunningham et 

al., 1995), but biomagnification and entry of toxicants into the human food chain are 

possible consequences of this approach. Hence, phytosequesteration technologies 

must take special precautions to prevent the ingestion of contaminated plants by 

livestock or wildlife. 



Sequestration of toxicants by plants is an important area of phytoremediation 

research. Plants are known to accumulate a variety of toxicants from soil (Paterson 

et d., 1990) but the importance of the soil-plant route of bioaccumulation for 

lipophilic compounds may be minimal (S imonich and Hites, 1995). Most lipophilic 

pollutants do not pass beyond the root surface due to the high proportion of lipids on 

the root's surface and, hence, are not translocated within the plant (Trapp et al., 

1990; Paterson and Mackay, 1994; Wang and Jones, 1994; Simonich and Hites, 

1995). Thus it is unlikely that plants will accumulate significant amounts of 

lipophilic contaminants. However, there are exceptions, e. g. zucchini can 

accumulate polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) (Hulster 

et al. , 1994). This suggests that not all plants use a passive up take process for 

1 ipop hi1 ic compounds. More research is required to identify and characterize plants 

with active uptake processes for contaminants. 

In contrast to lipophilic compounds, hydrophilic toxicants (i.e. log &, = I 

to 3 [I&, octanol-water partition coefficient]), have the potential to be taken up and 

transformed in the plant (Simonich and Hites, 1995). For example, Ferro et al. 

(1994) found that hycrest crested wheatgrass (developed by hybridizing Agropyron 

cristatum (L.) Gaertn. crossed with A. destorm) reduced levels of Ct4 labelled 

pentachlorophenol (PCP) in soil. however 30-40% of the initial 14C label was 

recovered in plant tissue, suggesting that hycres t crested wheatgrass accumulated 

PCP or degradation products in it's biomass. Other authors have also noted that 

plants can b ioaccumulate a wide range of organic compounds that are hydrophilic 

(Hope, 1995: Paterson et al., L 990: McFarlane et al., 1987). The potential of 

plants to transform such compounds makes the interpretation of bioaccumulation data 

difficult. For example, in the case of Ferro et al. (1994). the chemical form of the 

labelled compound present in the plant was not determined. Hence it is not known if 

hycrest crested wheatgrass accumulated PCP. a PCP metabolite, or a carbon exudate 

of bacteria degrading PCP in soil. 



Plant tissue cell cultures degrade contaminants such as trichloroethylene 

(TCE), polychlorinated biphenyls (PCB) or nitroglycerin (Schalk et al., 1994: 

Newman et al, 1997; Wilken et al, 1995; Goel et al., 1997). However, the 

behaviour of plant tissue cell cultures does not always mimic that seen in vivo. Why 

and how plants metabolize such xenobiotics is not fully understood. There are some 

suggestions that contaminant metabolism in plants is not due to a specific 

detoxification reaction, but instead may simply be due to the non-specificity of 

hydrolytic enzymes. For example, the plant cytochrome P450 enzyme CYP73A1, 

which is a cinnamate 4-hydroxylase expressed in Helianrhus tuberosus, was found to 

react with low efficiencies with small, planar xenobiotics including some herbicides 

(Schalk et al., 1994). Further, these investigators found that a wide range of 

herbicides were competitive inhibitors of this enzyme (Schalk et al., 1994). The 

degradation of TCE and PCBs is also thought to be mediated through P450 systems 

(Newman, 1997; Wilken et al.. 1995). Wiiken et al. (1995) speculated that plant 

P450 systems work in a similar fashion to that seen in mammalian systems, i.e. 

hydroxylation followed by conjugation. However, such speculation awaits more 

experimental verification. 

Plant transformations of contaminants may cause problems due to the 

production of toxic metabolites. For example. Wilken et al. (1995) found a number 

of hydroxylated intermediates of PCB during degradation by various cell cultures. 

Hydroxylated intermediates may play a role in the increased toxicity, mutatoxicity 

and genotoxicity often seen during PCB degradation (Barriaul t and S ylvestre, 1993: 

Meier et al., 19973. However, because the transformation enzyme systems of plants 

are different from those of bacteria, toxic metabolites which normally occur during 

bacterial biodegradation may not occur with phytoremediation. For example. 

Newman et al. (1997) found that the production of the toxic intermediate. chloral 

hydrate, during TCE degradation was minimal and postulated that this was due to 

chloral hydrate's short half life in plant systems. The differences between the 

degradation pathways of plants and bacteria require further research so that these 



differences may be exploited to develop remediation systems which avoid toxic 

metabolite production. 
* 

Besides sequestering or metabol king contaminants, plant roots may increase 

contaminant degradation in situ via their root systems. Plant roots and their exudates 

increase microbial numbers in the soil surrounding their roots by one to two orders 

of magnitude, thus increasing microbial activity. Many authors postulate that this 

stimulation will lead to enhanced degradation of contaminants in soil (Gunther et al., 

1996; Anderson and Walton, 1995; Haby and Crowley, 1996). For example, the 

rhizosp here soil of Kochia sp . supported increased microbial numbers and pesticide 

degradation (Perkovich et al., 1996). The authors postulated that an increase in 

microbial numbers in the rhizosphere due to root exudates was the reason for 

increased pesticide degradation. However the interactions between plam and 

bacteria that increase contaminant degradation are not fully understood. 

For the purpose of this review, interactions between plants, bacteria and soil 

will be grouped into two categories, biochemical and ecological. Biochemical 

interactions are the physical-chemical interactions which alter soil chemistry, or lead 

to contaminant degradation. Ecological interactions involve the interactions between 

species which modulate biochemical activity. For example, the ability of an 

organism to degrade a contaminant is a biochemical process that does not by itself 

guarantee that this organism will reduce contaminant levels once inoculated into soil. 

Other factors such as susceptibility to predation, movement through soil. genetical 

exchange with other organisms can substantially affect the ability of the inoculant to 

degrade contaminants in soil (Goldstein et al., 1985; Ramadan et al.. 1990: Devare 

and Alexander. 1995; S teffensen and Alexander, 1995). Understanding biochemical 

and ecological interactions is important for developing a strategy to improve the 

efficiency of phytoremediation. An ecological understanding of plant-bacteria 

interactions during contaminant degradation will suggest strategies for enhancing 

degradation. Understanding the biochemical basis of these interactions will outline 



the methods needed to accomplish the strategy. The purpose of this review is to 

critically examine the role of bacteria in the ecological and biochemical interactions 

that occur during phytoremediation. 

2.3. THE ECOLOGICAL QUESTION OF PLANT-BACTERIA 

INTERACTIONS 

What is the specificity of the interaction between plants and bacteria that leads 

to contaminant degradation? The answer to this question will determine the strategy 

used to develop and evaluate phytoremediation methods. For example, Donnelly et 

ai. (1994) suggest that plants specifically increase degradation of certain contaminants 

in soil by providing the soil microflora with polyphenolic compounds. These 

compounds in turn will induce bacterial enzymes that can degrade a variety of 

pollutants such as TCE or PCB. Consequently, they screened a wide range of plants 

for production of polyphenolics that support PCB degrading bacteria, and identified 

Mulberry (Morus mbra L.) as a possible plant species well suited to remediating 

PCB contaminated soil sites (Fletcher and Hegde, 1995: Hegde and Fletcher, 1996). 

However, it is not clear if these plants would increase exudation in the presence of 

contaminants. In contrast, other groups have suggested that stimulation of bacteria 

may occur indirectly due to nutrients released from roots i-e., a non-specific 

relationship . These nutrients, often low molecular weight organic acids, increase 

microbial biomass and activity but do not normally induce specific enzymatic 

processes that degrade xenobiotics. Consequently, plant species with deep, fibrous 

roots that can grow in stressed environments are used in phytoremediation studies 

(Gunther et al., 1996). Thus, answering the question of how different plants 

stimulate soil microorganisms will have important implications for phytoremediation 

technology development. 

2.3.1. Role of the plant in phytoremediation: Specific interactions 

Walton et al. ( 1994b) propose that plants produce specific signals in response 

to a contaminant. As a result bacteria detoxify contaminants in soil and the plant 



provides root exudates which either supply an energy source or in some other way 

increase microbial detoxification activity in the rhizosphere (Fig. 2.1). The key 

point to this association is that the plant alters its behaviour in contaminated soil to 

stimulate microbial communities which degrade contaminants. Walton et al. (1994b) 

use evolutionary theory to support their hypothesis. Plants which encounter toxicants 

in soil will not survive unless they can find a way to detoxify the contaminant. Over 

the millennia, plants have developed means of using rhizobacteria as a method to 

detoxify toxins in soil. 

However, because contamination occurs rarely and normally at low levels. 

plant mechanisms of stimulating degrading bacteria are not likely to be as specific as 

that seen in legume-rhizobium relationships where very specific plant-bacteria 

interactions have developed. For example, Bradyrhizobiurn not native to the soil 

from which Amphicarpaea bracteata originated from, caused a 39 % decrease in seed 

biomass (Parker. 1995). Similarly, it is unlikely that bacteria have developed the 

means to induce the production and excretion of specific compounds~from plant roots 

like that seen in crown gall disease. In crown gall disease, Agrobacterium spp. 

induce the formation of a tumour on the root which excretes specific compounds 

called opines which the Agrobacterium then uses (Moore et al., 1997). In both of 

these examples, genetic alterations have occurred within the plant and bacterium as a 

consequence of continous evolutionary pressure. Contaminants are present in soil 

rarely or at low concentrations and thus, there is no continous evolutionary pressure. 

Consequently, specific plant-bacteria interactions still occur in phytorernediation but 

may not be based on the strict genetic alteration seen between legumes and rhizobia. 

For example, Siciliano and Germida (1997) found that a combination of 

pseudomonads enhanced the phytoremediation activity of three different forage 

grasses while having no effect on other grasses. One of these strains was isolated as 

a plant-growth promoting rhizobacteria of wheat whereas the other was isolated from 

2-chlorobenzoic acid contaminated soil. Thus it is unlikely that genetic alterations in 

the plant or bacteria are the basis for the enhanced phytorernediation activity seen 

when these two organisms are combined. 



of Toxicant 
Fig. 2.1. Hypothetical mechanism by which the rhizosphere microbial community 
may be influenced by the host plant to promote detoxication of an organic substance 
in soil. By this scenario, a chemical toxicant in the soil would be detected by the 
plant and the plant would respond with a change in either the quality or quantity of 
root exudates. This change in exudation would evoke an increase in numbers of 
rhizosphere microorganism or an increase in the relative abundance of those strains 
best able to metabolize the toxicant. This proposed pathway would operate as a 
positive feedback loop until the concentration of the toxicant in soil was sufficiently 
reduced that the plant returned to a normal pattern of root exudation. Adapted from 
Walton et d.. 1994b. 



A specific association does not imply that contaminant levels in soil will be 

decreased. Instead, it is possible that plants have developed other mechanisms such 

intercellular-metabolism, receptor desensitization or sequestration which allow the 

plant to grow in contaminated soil. For example. Siciliano and Germida ( 1997) 

found that 5 out of 16 tested plants were tolerant of 2-chlorobenzoic acid (2CBA) 

contamination in soil but that only 3 out of those 5 reduced 2CBA levels in soil. 

Furthermore, S iciliano et al. (1998) found that the expression of a plant enzyme 

involved in 2CBA metabolism was increased in the presence of only certain bacterial 

inoculants. Thus, specific associations between the plant and bacteria might allow 

the plant to survive in contaminated soil but not reduce contaminant levels. 

If specific interactions are the norm, then in the absence of the contaminant 

there should be little stimulation of contaminant degrading microoigaisrns. This 

follows from the evolutionary argument, in that plants devoting a portion of their 

root exudate to maintaining a specific population of bacteria which do not in turn 

promote plant growth, would be at a competitive disadvantage to their counterparts. 

lnvestigators have attempted to determine whether plants select for bacteria that 

degrade contaminants only in the presence of contamination as predicted by 

mutualism. Nichols et al. (1997) found that levels of bacteria capable of degrading a 

mixture of hazardous organic chemicals were increased in the rhizosphere of alfalfa 

and bluegrass when these plants were grown in contaminated soil. However, these 

results are complicated by the observation that the number of bacteria degradaing 

organic chemicals was also increased to a similar extent in bulk soil when soil was 

contaminated. Thus it was not possible for this study to demonstrate selective 

pressure. Iordahl et al. (1997) found that the populations of benzene, toluene and 

xylene degrading microorganisms in the rhizosphere of poplar trees were 5 times that 

seen in contaminated bulk soil. In contrast, the population of total heterotrophs in 

the rhizosphere was only 3.4 times that seen in bulk soil. This suggests that the 

rhizosphere may have selected for degrading bacteria, but further experimental 

verification is needed. Both of these studies attempted to demonstrate that the 



rhizosphere of plants specifically enhances contaminant degrading bacteria. However 

both studies were confounded by other ecological interactions occurring 

simultaneously. For example, it is well known that contaminating soil increases the 

number of bacteria capable of degrading the contaminant, and that the presence of 

roots increases the microbial population. Thus higher populations of degrading 

bacteria in contaminated compared to non-contaminated rhizospheres can not 

demonstrate selective enhancement of degrading populations. Similarly , increased 

levels of degrading bacteria in the rhizosphere compared to the bulk soil can not be 

taken as proof of selective enhancement. Separating the "rhizosphere effect" and the 

effect of contaminating soil from the effects of a phytoremediation plant on soil 

bacterial populations is a challenge for future research in this area. 

Another difficulty involved in testing for specific interactions is finding a 

plant-soil situation in which the soii is not "polluted" with a toxicant or toxin. It is 

well known that plants secrete allelopathic compounds and that microorganisms can 

produce phytotoxins. It is likely that these compounds were the original reason for 

the development of detoxifying communities in the rhizosphere of plants. For 

example, Rutherford and Powrie (1993) found that Euphorbia bunnannii was 

sensitive to Acacia cyclops exudates in in vitro toxicity tests but not in a field setting. 

This suggests that E. burmannii may have developed microbial defense against A. 

cyclops' allelopathic agents. Given that many allelopathic agents are similar to 

xenobiotics (Fig. 2.2.). it is likely that plants may routinely have a rhizosphere 

population capable of at least minimal contaminant degradation. The role of these 

pre-existing degradative communities as well as the signals plants use to combat 

alleopathic chemicals, in the degradation of contaminants warrants further attention. 
- 
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Fig. 2.2 Similarities between root exudates, pollutants and known allelopathic chemicals. Superscript numbers refer to 
references identifying the compound as belonging to the root exudate, pollutant or allelopathic class. 'Donnelly et al. 1994; 'Curl 
and Truelove, 1986; 'Hrudey and Pollard, 1993; weston et al., 1987; jNishimura and Mizutani, 1995; 6Fujimoto et al., 1995. 



Plants may need to specifically alter the rhizosphere community to enhance 

degradation of certain compounds. A general increase in microbial biomass often 

does not lead to enhanced degradation. For example, Schmidt et al. (1 987) found 

that glucose stimulated p-nitrophenol degradation only when p-nitrophenol was above 

LO pg L-'. Below this threshold level glucose had no effect on biodegradation. 

despite an increase in bacterial biomass. The authors postulated that there were 

"critical" levels below which contaminant concentration was too low for enzyme 

induction and contaminant transport into the cell. Similarly, adding labile carbon 

sources known to enhance microbial activity did not enhance TCE degradation in soil 

(Fan and Scow. 1993). These authors speculated that the necessary catabolic 

enzymes were not induced, and hence increasing microbial biomass had little effect 

on TCE degradation. Thus it appears that in cases where specific enzymatic 

induction is required, simply increasing biomass does not lead to contaminant 

degradation. In contrast, the degradation of other contaminants which can be readily 

co-metabolized e.g. 3-chlorobenzoic acid (3CBA), may be enhanced by simply 

increasing biomass (Haby and Crowley , 1996). Understanding the relationship 

between specific and non-specific stimulation. and chemical characteristics is a major 

challenge for phytoremediation research. 

If plants can alter their rhizosphere community to specifically detoxify a 

certain contaminant, the question remains. how do they accomplish this? One 

possible mechanism by which plants can quickly alter their rhizosp here community in 

response to environmental stresses is via root exudates. Root exudates directly affect 

the rhizosphere microflora, and variation in the microbial community associated with 

roots is likely due to different exudation patterns. For example. Zak et al. (1994) 

found that rhizosphere communities from different plants have different substrate 

utilization abilities. and postulated that this might be due to differences in root 

exudate patterns. Similarly, Garland (1 996) found that the composition of the 

rhizosphere community shifted with the state of plant, once again suggesting that 

rhizosphere community composition is intimately linked with root exudate 



composition. 

If root exudates are the means by which plants control rhizosphere 

communities, then what effects root exudate patterns? Root exudate patterns are 

known to be dependent upon plant species and the stage of plant development. 

Furthermore, environmental factors such as soil type, soil nutrient levels, pH of soil, 

water availability , temperature. oxygen status of soil, light intensity, atmospheric 

wbon dioxide concentration and the presence of microorganisms are all known to 

significantly affect the type and quantity of root exudates (Gedroc et al., 1996; 

Schlapfer and Ryser, 1996: Grayston et al., 1996). Thus root exudates, and 

associated microbial communities, are likely to be a site-time-plant specific 

phenomenon. In addition, the type of contamination will also affect the site-time- 

plant interaction because contaminants damage secretory root cells differently 

between plant species (Fayez and Kristen, 1996) which in turn will alter root exudate 

patterns. A challenge to future research is to understand the influence of 

environmental factors on phytoremediation activity. 

2.3.2. Role of the plant in phytoremediation: NonSpecific Interactions 

Plants provide soil bacteria with substrates in the form of cell lysates which 

increase microbial activity and in turn, this may stimulate degradation of 

contaminants. The difference between specific and non-specific interactions is that a 

specific interaction results from the plant secreting specific compounds in response to 

environmental stimuli. In'contrast, non-specific interactions arise horn normal plant 

processes that increase microbial activity e.g. cell lysates. For example, root 

exudation of phenolic compounds which induce toluene monooxygenase. has been 

postulated to be the mechanism by which plants stimulate TCE degradation in soil 

(Anderson and Walton, 1995). Such exudation might not occur or be substantially 

less in the absence of TCE if the interaction was specific. A non-specific interaction 

would result in plants exudating phenol would occur regardless of TCE 

contamination. This concept is illustrated in a study by Haby and Crowley (1 996) 



who found that the growth of rye-grass stimulated the number and activity of 3CBA 

degrading bacteria in the presence as well as the absence of 3CBA in soil. The 

authors speculated that the general increase in microbial numbers in the rhizosphere 

was responsible for increased degradation. 

Non-specific interactions may occur because many root exudate compounds 

are chemically similar to certain pollutants (Fig. 2). Compounds in the lysate or 

leachate may act as toxicant analogs or sources of cometabolite. For example, 

amending soil with biphenyl increases PCB degradation (Barriault and Sylvestre, 

1993). Similarly, adding phenol to soil induces toluene monooxygenase which is 

involved in TCE degradation (Fan and Scow, 1993). Roots may provide these 

substances. Thus Hegde and Fletcher (1996) suggest that "roots can be thought of as 

a closely interwoven, biologically mediared injection system of com&i;boliten . Non- 

specific interactions would occur if the plant has littie control over the nature of 

cometabolite excreted via this injection system. 

If non-specific interactions are the norm, then augmentation of specific 

bacterial populations in soil should not be necessary for biodegradation to occur 

because of the catabolic activities inherent in the soil population. These inherent 

catabolic activities can be increased by stimulating microbial activity. For example. 

Fulthorpe et al. (1996) found that pristine soils from six different ecosystems yielded 

a large number of bacterial isolates capable of mineralizing 2.4-dichlorophenoxy 

acetic acid (2,4-D) and 3CBA. Hence. a non-specific stimulation of the rhizosphere 

community should lead ro a decrease in 2,4-D or 3CBA levels in soil. Other authors 

have speculated that contaminating soil may accelerate the selection of a microbial 

community with diverse metabolic pathways. Atlas et al. (1591) found that 

microbial communities disturbed by pollutants have enhanced substrate utilization 

capabilities, and suggested that generalized physiological versatility may be an 

adaptive trait of communities in contaminated soils. In fact, some species of bacteria 

appear to be especially suited to degrading a wide variety of rarely occurring 



substrates present at low concentrations. For example as shown in Fig. 2.3, the 

central catabolic pathway of pseudomonads allows these bacteria to degrade a variety 

of aromatic substances such as toluene, m-xylene or naphthalene without synthesizing 

a large number of different enzymes (Houghton and Shanley. 1994). It may be that 

the bacterial communities of many contaminated soils have the unrealized potential to 

degrade pollutants and thus, a non-specific stimulation of microbial activity results in 

increased contaminant degradation. However, Carmichael and Pfaender , ( 1997) 

found that the degradation of weathered (> 60 years) polyaromatic hydrocarbons 

(PAH) was not related to microbial biomass or catabolic potential, and the authors 

speculated that contaminant bioavailability was limiting PAH degradation, despite a 

large and active population of bacteria that could degrade PAH. Other authors have 

found that surfactants can increase degradation of weathered contaminants in soil 

su ads en and Kristensen. 1997, which suppons the idea that chemical factors and 

not the absence of bacterial strains capable of degrading the contaminant, limits 

biodegradation. Thus proponents of non-specific interactions argue that specific 

stimulation of selected bacterial groups in soil may not be necessary for the plant to 

enhance contaminant degradation. 



Fig. 2.3. Convergent aromatic catabolism. ~issimilation of a variety of aromatic 
compounds into the Krebs cycle (unfilled mows) channelled through a few "key" 
biochemical intermediates, two of which are protocatechuate and catechol . Further 
catabolism of both these compounds can be achieved by either ortho- (heavy mows) 
or meta-pathway enzymes (light arrows). Reprinted with permiss ion (Houghton and 
Shanley., 1994). Copyright 1994 Timber Press. 



2.3.3. Bacterial roles in phytoremediation: Detoxification 

Bacteria have an important role to play in phytoremediation systems. Plants 

promote bacterial growth and explore large volumes of soil. However, the 

phytotoxicity of many contaminants can render phytoremediation ineffective by 

preventing plant growth. For example, Xu and Johnson (1995) investigated the 

effect of field pea and barley on the degradation of hydrocarbons. They found that 

the hydrocarbons significantly reduced plant growth. Furthermore, S iciliano et al . 
(1997) found that chlorinated benzoic acids and PCBs can be inhibitory to a wide 

range of prairie grasses. Such grasses are often suggested as potentially good 

phytoremediation plants (April1 and Sims, 1990; Siciliano and Germida, 1997). To 

solve this problem, some investigators have used bacterial seed inoculants to reduce 

the phytotoxicity of contaminants in soil. For example. Siciliano and Germida 

(1 998) found that inoculating Daurian wild rye with two pseudomonads allowed plant 

growth in a soil contaminated with a mixture of 2,3-dichlorobenzoic acid and 3CBA, 

but did not result in reduced levels of these contaminants in soil. Thus, bacteria 

have reduced the phytotoxicity of these chlorinated benzoic acids but did not degrade 

these compounds. Alternatively, bacteria can reduce p hytotoxicity by degrading 

compounds. Pfender (1996) found that inoculating millet (Panicurn milaceurn L.) 

with Pseudomonas strain SR3, capable of degrading PCP, reduced PCP phytotoxicity 

and allowed plant growth. Other authors have found that inoculating pea (Ferry 

Morse, Alaska Pea) sensitive to dicamba with dicamba degrading bacteria allowed 

plant growth in dicamba amended soil (Krueger et al., 1991). Thus one possible role 

of bacteria in a phytorernediation system is to reduce the phytotoxicity of the 

contaminant to the point that the plant can grow in soil and thereby stimulate 

degradation of other non-phytotoxic contaminants. 

2.3.4. Bacterial roles in phytoremediation: Augmentation of catabolic activity 

Another problem associated with phytoremediation is the unknown capacity of 

plants to degrade pollutants. As discussed earlier, there is little information on plant 

lxmformations of priority pollutants. but even less information is available on root 



associated metabolism of such pollutants. In fact, to the best of our knowledge, only 

Adler et al. (1994) have reported a root surface enzyme of a terrestrial plant and 

Siciliano et al. (1998) a root exudate of a terrestrial plant, capable of detoxifying 

contaminants. Other groups have found that plant peroxidases are effective in 

detoxifying a wide range of phenols, but the peroxidase preparation techniques (i-e. 

chopping the plant up and adding the pieces to contaminated waste water) are not 

amenable to those used in phytoremediation (Dec and Bollag, 1994; Roper et al., 

1996). Root studies by Burken and Schnoor (1995) report preliminary findings on a 

root associated enzyme that reduces levels of atrazine in water but details were not 

presented. In contrast to plants, degradation of pollutants by bacteria is well 

characterized, and inoculating bacteria onto plants can increase degradation. For 

example. meadow brome (Bromus biebersteiniz? did not stimulate degradation of 

2CBA in soil when X B A  was initially present at 200 mg kg-'. However, when 

inoculated with a mixture of two pseudomonads, the amount of extractable ZCBA in 

soil was significantly reduced (Siciliano and Germida, 1997). Therefore, another 

role of bacteria in phytoremediation may be to augment the ability of the rhizosphere 

to degrade contaminants. 

Rhizobacteria can degrade a variery of substances (Zablotowica et al. 1991). 

Hence there are potentially many different inoculants capable of augmenting 

degradative activity in the rhizosphere. Diez et al. (1 995) found an Azotobacter sp. 

that fixed dinitrogen under aerobic conditions and used monochloroacetate as a sole 

source of carbon and energy. Similarly, Rhizobium sp. degrade organophosphate 

pesticides to obtain phosphorus (Liu et al., 1991). 

Instead of selecting bacteria that can degrade substances and then determining 

whether they are effective in the rhizosphere, other investigators have attempted to 

modify rhizosphere microorganisms to degrade a contaminant. For example. Brazil 

et al. (1995) inserted a transposon containing the genes (bph), which encodes the 

biphenyl degradative pathway into a rhizosphere pseudomonad. They found that the 



bacterium colonized the rhizosphere of sugar beet and the bph gene products were 

expressed in sihi. Controlling the activity of such engineered organisms in the 

rhizosphere might be possible by combining a catabolic genetic sequence like one 

used by Brazil et al. (1995), with others sequences known to respond to root 

exudates. For example, Tepfer (1988) found that a plasmid in a Rhizobium sp. 

encodes for the catabolism of specific root exudates. Therefore, it appears that 

genetic engineering of microbial inoculants has the potential to provide tailored 

bacterial inoculants whose catabolic activity and survival are controlled by the 

inoculated plant. 

2.3.5. Bacterial roles in phytoremediation: Plant growth promotion 

Increasing the amount of root, or root activity in a given area of soil, should 

in turn increase any degradation mediated by the root (Siciliano and Germida, 1997). 

Hence, the use of bacterial seed inoculants that increase plant growth may in turn 

increase the degradation of contaminants in soil by plants. For example, Siciliano 

and Germida (1997) found that inoculating Dahurian wild rye with P. aeruginosa 

strain R75, a known plant-growth promoting rhizobacteria (PGPR) , increased the 

degradation of 2CBA in soil. However, increases in plant biomass were not related 

to increased degradation and thus, the inoculant may have altered root activity. 

Inoculants are known to increase exudation (Prikryl and Vancura, l98O), alter 

exudate composition (Lawson et al., 1996) and even produce biosurfactants (Vermani 

et al., 1995) any of which may result in increased degradation by stimulating the 

rhizosphere community, altering the community structure or increasing the 

bioavailability of the contaminant. Therefore, it is possible that inoculants alter the 

rhizosphere to promote degradation of contaminants even if the inoculants themselves 

do not degrade the contaminants. 



2.3.6. Susceptibility of chemicals to phytoremediation 

A complicating factor in determining the role plants and bacteria play during 

phytoremediation is the that certain chemicals appear to be more susceptible to 

phytoremediation than others. For example, Gunther et al. (1996) found that the 

growth of rye-grass decreased aliphatic hydrocarbons in soil to a greater extent than 

polyarornatic hydrocarbons. Similarly , Knaebel and Vestal ( 1992) found that only 

certain surfactants were degraded in corn rhizospheres. Siciliano and Germida 

(1997a) found that levels of 2CBA and 3CBA, but not 2,3-dichlorobenzoic acid 

(23diCBA) or 2,5-dichlorobenzoic acid (25diCBA) were reduced in the rhizosphere 

of Dahurian wild rye. Other authors have also found that root exudates themselves 

stimulate the degradation of only certain chemicals. For example, amending soil 

with sterile root exudate from bush bean (Phmeolus vulgaris cv. Tender Green) 

specifically stimulated 0,O-diethyl-0-p-nitrophenyl phosphorothioate {parathion) but 

not 0,O-diethyI-O-(2-isopropyl-6-rnethyl4pyrimidinyI) phosphorothioate (diazinon) 

degradation (Hsu and Bartha, 1979). Similarly, Boyle and Sham (1 995) reported 

greater stimulation of 2.4-D. compared to 2,4,5-T, degradation by root exudates. In 

contrast, Anderson et al. (1994) found that atrazine, a nitrogen heterocycle, and 

rnetolachlor, an aromatic amine, were degraded to a similar extent in rhizosphere soil 

of Kochia sp. Thus some chemicals can be readily phytoremediated, whereas others 

are not. 

The susceptibility of soil contaminated by specific chemicals to 

phytoremediation may be 1 inked to two predictors, the capability of the rhizosphere 

community to degrade a contaminant and contaminant bioavailability . If the 

degradation of a compound requires highly specialized microorganisms, then it is 

likely that phytorernediation in the absence of a specific inoculant will not work. For 

example, Siciliano and Germida (1998) found that Altai wild rye (Elynzur angitus) 

did not reduce levels of 25diCBA unless this plant was inoculated with a mixture of 

P. oeruginosa strain R75 and P. sovastanoi strain CB35. Similarly, Crowley et al. 



(1996) found that a pseudomonad inoculant of bean (Phaseoluc vulgarts) increased 

2SdiCBA degradation in soil. Thus it appears that only specific inoculants with 

appropriate genes can induce 25diCBA degradation. 

In addition to the genetic ability of the bacterial population to degrade a 

compound, the bioavailability of a compound affects the ability of plants to stimulate 

its degradation. For example, Nichols et al. (1997) found that the least soluble 

compound in a mixture of organic chemicals (i.e. pyrene), was the most persistent. 

Similarly, other investigators have found that bioavailability plays an important role 

in remedial efforts (Provided et d., 1993; Alexander, 1995). Thus, an important 

factor determining the nature of plant-bacterial interactions is likely to be 

contaminant dependent with microbial communities requiring specific stimulation to 

degrade certain contaminants e.g. 25diCBA and non-specific stimulation for other 

contaminants e.g. 3CBA. Table I lists all the chemicals whose extractable levels in 

soils are known to be reduced by growing plants in soil. It is evident from this list 

that substantially more work needs to be completed before we understand factors 

influencing a chemical's susceptibility to phytoremediation. 



Table 2.1. Chemicals amenable to phytoremediationa 

Chemical Plant Effect of Plant Reference 

Corn 
- -- . . .. -- - - - 

Inoculating plant with a bacterial Alvey and 

consortia reduced levels to 16 % Crowley , 1996 

of control soil 

Atrazine, Metolachlor, Kochia sp. Only 30 to 60% of the parent Anderson et 

Trifluralin compound remained in al., 1994 

Pirirrs toeda ( L . ) ,  mineralization compared to < 9 % Walton, 1995 

Solidngo sp., Glycirle rrlar for control and 15 % for non- 

Popiili~s trichomrpa X P. deltoides, and transpire TCE.  al., 1997 

P. rrichoca rpo X P .  niri~~iowiczii ( 2  82 - 



2.4-dicl~lorophenoxyacet ic Red clover (Trifolirm~ pmterzse L.), Mineralization by monocot Boyle and 

acid, 2,4,5- Daisy fleabane (Erigerori annulis (L.) rhizosphere soil was two to three Shann (1995). 

tr ichloropheaox y acet ic acid Pers. ) , Bar ~lyardgrass (Ecl~i~rochloa times that of control soil. 

crrisgnlli ( L. )) , Mineralization by dicot 

Fall panicurn :Pa~icrint dicliotot~~i/lorum rhizosphere soil was 30 to 50% 

M ichx.), Early goldenrod (Solidago greater than control soil. 

jriricea A i ton. ) , C 11 icor y (Chicorirtnt 

irr tybrcs L. ) , 

Timothy grass (Phleiim prateme L.), 

Green foxtail (Setaria viriris (L.) Beauv.) 

A trazi ne Imperial Carolina hybrid popular After 80 d only 29% labelled Burken and 

( Poprilris deltoides ~ i g r a  DN34) remained in planted soil Schnoor , 1996 

compared to 79% in unplanted 

soil. 
................................................................................................................................... 



30 % compared to control and al., 1996 

inoculation with a pseudomo~~ad 

resulted in complete contaminant 

degradation 

2-clllorobe~~zoic acid, 3- Dal~ur ian wild rye (Elyms daiiriclis), Inoculating plant with S icil iano and 

chlorobenzoic acid, 2,3- Altai wild rye (E. nrtgitus), pseudomonads increased Germida, 

dichlorobenzoic acid. 2.5- Meadow brome (Bror?rus biebersteinii) degradation by 56 to 74% 1997; I n  Press 

W 
CI dichlorobenzoic acid al~d Streambank wheatgrass (Agropyron 

mixtures of these chemicals riparrtni) 

Pentachlorophenol Hycrest crested wheatgrass, (hybrid of Planted soil evolved 15 % more Ferro et al., 

Agropyro~i cristntrinr (L.) Gaertn. and A. radiolabel than unplanted soil. 1994 

.................................................................................................... 
Pioso millet (Pnnicur~i miliaceirm L.) Ir~oculation of millet with PCP Pfender , 1 996 

degrading bacteria allowed plant 

growth 





a Readers are referred to Anderson et al. (1993) for phytoremediation references published prior to 1990. 
The authors have included this older study because they feel it  is an exceptional paper. 



2.4. BIOCHEMICAL MODES OF PLANT-BACTERIA INTERACTIONS IN 

PHYTOREMEDLATION: AN EVEN TOUGHER OUESTION. 

It appears that plant-bacteria interactions in phytorernediation systems can 

either be specific or non-specific, and that bacteria can either act to reduce 

phytotoxicity to the plant or degrade the pollutant. However, the question 

immediately arises- what are the biochemical means by which plants and bacteria 

interact in contaminated soils to increase pollutant degradation? If plants and 

bacteria form specific associations, how do the two organisms communicate with one 

another such that contaminant degradation is optimized? Similarly , if plants and 

bacteria form non-specific associations, what are the root exudates that provide the 

stimulation and how do bacteria use these root exudates to aid in contaminant 

degradation? 

2.4.1. Plant mediated increases in nutrient bioavailability 

Plants increase nutrient availability by secreting cationic chelators, organic 

acids or specific enzymes such as phosphatase into the soil systems (Grayston et al., 

1996; Gobran and Clegg, 1996; Jones and Darrah, 1995; Vinton and Burke, 1995). 

Readers are referred to a recent review for details on the influence of abiotic and 

biotic factors on root exudates (Grayston et al., 1996). The influence of nutrients on 

biodegradative activity is well known (Providenti et a1 . , 1993; S teffensen and 

Alexander, 1995). For example, Cutright ( 1995) found that increasing nitrogen and 

phosphorus increased pol ycycl ic aromatic hydrocarbon degradation by the soil fungus 

Cunninghamella echinuiaia var. elegans. Other authors have found that minor 

elements such as calcium and magnesium can also affect contaminant degradation 

rates (Widrig and Manning, 1995). Furthermore, competition for these nutrients by 

degrading and non-degrading species will influence the amount of contaminant 

degraded (S teffensen and Alexander, 1995). Hence, increases in nutrient availability 

brought about by plant growth may be one mechanism by which plants stimulate 

biodegradation. Supporting this, Cheng and Coleman (1990) found that living roots 

and fertilizer had equivalent stirnulatory effects on straw decomposition. 



Furthermore, atrazine degradation by an inoculated consortium was similar in 

treatments receiving fertilizer and those in which corn plants were grown (Alvey and 

Crow ley, 1 996). 

However, the effect of plant mediated increases in available nutrients in a 

field setting is not known because plants use substantial amounts of inorganic 

nutrients themselves, and thus may be in competition with biodegrading 

microorganisms. The competition between bacteria and plants for elements is still 

not fully understood. For example Kaye and Hart (1997) argue that while plants and 

bacteria may not compete for inorganic nitrogen, competition for organic nitrogen 

might be crucial for the success of each organism. In addition, other authors have 

noted that the competitive relationship between rhizosphere bacteria and plants is 

often a fine line between rnutualism/commensalism and antagonism (Nehl et al., 

1997). Thus, stimulation of biodegradation by increases in nutrient levels may 

occur, but more work is required to understand how such processes actually work 

and to demonstrate this mechanism in a direct manner. 

2.4.2. Root exudate solubilisation of contaminants 

Besides increasing the availability of nutrients, plants may also increase the 

b ioavailab ility of the contaminant. Contaminant bioavailability often limits 

biodegradation, and increasing it can stimulate degradation (Providenti et al., 1993). 

Root exudates can increase contaminant bioavailability by competing with the 

contaminant for binding sites on the soil matrix. For example. Reilley et al. (1996) 

found that adding a solution of low molecular weight organic acids (15 p M  succinic 

acid and 10 p M  formic acid) to rhizosphere soil increased the initial degradation rate 

of pyrene. This suggests that root exudates increase degradaLion of pyrene by 

increasing contaminant availability and/or stimulating microbial activity. The 

authors speculated that organic acids in the root exudate competed with pyrene for 

adsorption sites, and hence increased the amount of pyrene available to 

microorganisms. However, confirmation of this hypothesis awaits further 



experimental verification. This competition need not be limited to specific binding 

sites, but may simply be related to alterations in soil surfaces. Root exudates and 

proteinaceous material have been shown to bind to a wide range of clay materials in 

soil (Boyd and Mortland, 1990). Furthermore, non-ionic, hydrophobic organic 

chemicals e. g . PCBs, interact weakly and non-specifically with mineral surfaces 

(Mader et al., 1997; Kowalska et al . ,  1994). Thus root exudates may alter the 

interaction between mineral surfaces and contaminants. 

It may be possible for root exudates to increase the bioavailability of 

contaminants to degrading bacteria without simultaneously increasing the 

b ioavailability of contaminants to toxic receptors. Otherwise, increases in 

contaminant b ioavailab ility in the rhizosp here would lead to increased phytotoxicity . 
For example, Laor et al. (1996) found that pyrene sorbed to huniic acids was 

bioavailable only to a mixture of organisms enriched from coal tar contaminated soil. 

Similarly, biphenyl sorbed to porous acrylic beads was available to degradation by 

Bacillus lichenifomis without desorption of biphenyl into solution (Calvillo and 

Alexander, 1996). Further, White and Alexander ( 1996) found a consortium which 

could utilize pol ycyclic aromatic hydrocarbons (PAHs) sorbed to soil without 

desorbing the PAHs first. Thus it appears that bacteria may not require that 

contaminants be in an aqueous phase before degradation occurs. The ability of 

bacteria to use compounds sorbed into an organic phase is not fully understood, but 

it has important implications for phytotoxicity and requires more research. 

2.4.3. Surfactant production 

In addition to organic acids and aromatic compounds, plants also secrete 

surfactants (i.e. lipids and sterols), which lubricate the root as it passes through soil 

(Curl and Truelove, 1986). Surfactants reduce surface tension and solubilize 

contaminants, thereby increasing contaminant bioavailability . For example. Barriault 

and Sylvestre (1993) found that degradation of Aroclor 1242 by Pseudomonm 

testerosteroni 8356 was enhanced by co-inoculating microcosms with a strain of 



Acinetobacter faecnlis 8556 that produces a surfactant. However, this effect was 

limited to certain congeners and there was not a general increase in PCB 

degradation. Surfactant concentrations in the rhizosphere are likely to be below the 

critical micelle concentration and therefore may form hemicelles. Hemicelles can 

anach to a surface and promote solubilisation of compounds onto that surface 

(Haigh, 1996). The root surface, with it's high bacterial population, may be an ideal 

environment for this to occur. Biodegradation of contaminants inside these 

hemicelles, however, may be limited by the type of surfactant and the microbial 

strains present on the root. For example, Guha and Iaffe (1996) found that the 

b ioavailab ility of p henanthrene was strongly influenced by the type of surfactant. 

Furthermore, surfactants can have toxic effects on bacterial populations that degrade 

contaminants (Sylvestre, 1995). Hence, specific bacteria-surfactant pairings may 

need to be present to take advantage of the conditions present in h e  rhizosphere. 

The actual solubilisation of contaminants by surfactants may not need to 

occur. For example, Yeom et al. (1996) showed that surfactants can swell soil 

colloids and thereby expose non-soluble substances to microbial attack. 

Furthermore, microorganisms can attach themselves directly to particles containing 

sorbed contaminants and degrade the contaminant without producing surfactant 

(Calvillo and Alexander, 1996). In addition to increasing their bioavailab ility, 

surfactants also alter biochemical reactions of contaminants. Huang and Rusling 

(1995) found that the formal reduction potential of PCB was considerably more 

positive in a mixture of water and surfactant compared to water alone. 

Unfortunately, surfactants and their influence on extracelluar enzymatic reactions 

have not been studied. Nevertheless, the rhizosphere is known to contain both plant 

and bacterial extracelluar enzymes, and some of these have been implicated in 

biodegradation (Siciliano et al., 1998: Mawdsley and Burns, 1994; Adler et al., 

1994). Thus rhizosphere surfactants with their effects on contaminant bioavailability 

and chemical reactivity warrant further study. 



2.4.4. Plants and Contaminant Movement Through Soil 

Water uptake by plants has a significant effect on water flow and thereby 

transport of contaminants through the soil matrix. Most contaminants are sparingly 

soluble in water and are sorbed onto soil colloids (Hrudey and Pollard, 1993). 

Increasing the amount of water flow through soil can increase the amount of 

conraminant desorbed from the soil matrix (Hamby, 1996). While many remediation 

strategies use the technique of "soil washing" to remove contaminants From soil, 

plants naturally draw water from the surrounding bulk soil towards their root 

systzms (Stinaker and Passioura, 1996). For example, TCE uptake and 

degradation was dependent upon plant water use, with TCE sorption to plant biomass 

correlated with water use (Anderson and Walton, 1995). Furthermore, April1 and 

Sims (1990) found that piant growth reduced hydrocarbon leachate collected from 

hydrocarbon contaminated soil cores. They speculated that plants reduced water 

flow through bulk soil and re-directed it towards the root system, thereby limiting 

the movement of hydrocarbon down the soil column. 

The effect of transpiration driven contaminant uptake may differ between 

contaminants. For example, transpiration driven uptake of bromacil, nitrobenzene or 

phenol by soybeans was contaminant specific, and could not be predicted by the 

octanol/water partitioning coefficient of the contaminants (McFarlane et al., 1987). 

Predicting the effect of water uptake on contaminant degradation may be difficult due 

to uncertainty regarding the physicochemical characteristics that govern plant uptake 

of non-dissociating organic chemicals (Trapp et al., 1994; Patenon and Mackay, 

1990). Thus water uptake may be an important factor for certain contaminants, but 

further work is required to determine the relationship between plant water use and 

contaminant degradation in the rhizosphere. 



2.4.5. The role of soil 

It is important not to forget that all these reactions are occurring in a dynamic 

gas, solid and liquid system i.e. the soil. Thus differences between soils that alter 

contaminant-soil reactions will in turn affect the influence of plants on 

microorganisms. For example, Bachman and Kinzel (1992) found that the level of 

amino acids, sugars, carbon dioxide respiration and certain enzyme activities in the 

rhizosphere was largely dependent upon soil type and that only certain plants, e.g. 

Medicago s ~ ~ v a  (M.), had similar levels of amino acids, sugars and enzymes across 

different soil types. In addition, Hoflich et al. (1995) found that the efficacy of plant 

growth-promoting rhizobacteria varied across soil types. Hence the application of 

phytoremediation systems may be limited to only specific soils. Alternatively, only 

certain plants may be able to stimulate degradation across a variety of soils. For 

example, Knaebel et al. (1992) found a significant difference between soil types in 

the degradation of surfactants by corn. However, Siciliano and Germida ( 1997) 

investigated the performance of phytoremediation systems across three different 

Saskatchewan soils and found that the systems were effective in reducing 2CBA 

levels across all soil types. Hence, more investigation into the influence soil 

properties have upon phytoremediation performance is needed. 

2.5. Conclusion 

This review has attempted to piece together various parts of the 

phytoremediation puzzle. There are possible roles for each participant in 

phytoremediation. The plant may act specifically or non-specifically to promote 

degradation. Bacteria may act to either reduce phytotoxicity, increase catabolic 

potential or increase plant growth. Phytoremediation is an emerging and potentially 

useful technique to reduce the risk to human and ecosystem health from 

contaminated soil but it is evident that due to the degree of complexity, 

phytoremediation systems are still a long way from being understood. 



3. EVALUATION OF PRAIlRIE GRASS SPECIES AS BIOINDICATORS 

OF HALOGENATED AROMATICS IN SOIL. 

3.1. ABSTRACT 

The purpose of this study was to assess the potential of prairie grasses as 

bioindicators of toxicants in soil and to investigate the effect different soil rypes and 

organisms have upon the germination of plant bioindicators. As a model compound, I 

used ZCBA, a hydrophillic, polar compound present in the degradation pathways of 

halogenated aromatics. The germination response of prairie grasses to Aroclorm 1260 

(a commercial mixture of polychlorinated biphenyls-PCBs) contaminated soil with 

concentrations ranging from 13 to 133 pg kg-' CPCBs also was investigated. The 

grasses responded to a wide range of contamination levels with a 11 and 9 fold 

difference in the sensitivity of grass species to ZCBA and Aroclornl concentrations 

respectively. Canada blue grass (Poa compressa) and slender wheatgrass (Agropyron 

trachycaulum) were selected for further study of the effects of soil type and biological 

treatments on bioindicator response to 2CBA. Canada blue grass response in three out 

of four soils was characterized by Y = 1 10 - 26 x ln(X) while in the fourth soil it was 

Y = 94 - 1.6 x X, where Y equals percent germination and X the ZCBA concentration. 

Slender wheatgrass response was Y = 140 - 23 x h(X) with no significant difference 

between soil types. Previous biological treatments of soil significantly affected the 

response of slender wheatgrass as a bioindicator. Growing plants or plants inoculated 

with bacteria (i.e., bioremediation treatments) in non-contaminated soil previous to 

planting the bioindicator Slender wheatgrass inhibited emergence, changing the 

logarithmic relationship between germination and 2CBA concentrations to Y = LOO - 
0.28 x X. Prairie grasses are potentially useful b ioindicators of chlorinated aromatics 

in soil but biological interactions may alter the bioindicator response. 



3.2. ~ O D U C T I O N  

Chemical analysis of contaminated soil can be expensive and uninformative 

regarding environmental hazards associated with polluted soil (Hund and Traunspurger 

1994; Ongley et al. 1988; Belkin et al. 1994). The use of bioassays to evaluate 

hazardous chemical waste sites provides a direct, inexpensive and integrated estimate 

of contaminant toxicity (Belkin et al. 1994; Wang and Freemark 1995; Mueller et al. 

199 1). Effective bioassays require a rapid and reliable methodology that characterizes 

the extent of contamination, minimizes worker exposure and reduces artifacts induced 

by sampling the soil (Ronnpagel et al. 1995; Burmeier 1995). 

One promising approach is the use of prairie grasses as in situ bioindicators of 

soil pollution. These grasses have many advantages over other types of bioindicators . 
For example, grass seed is often readily available from local seed suppliers and plant 

bioindicator methodology is uncomplicated (Wang and Freemark 1995; Shirley 1994). 

In addition, prairie grasses form an integral part of the prairie food chain (Braband 

1986; Fletcher and Johnson 1990). Many different animals utilize grass stalks as shelter 

or grass seed as a food source (Shirley 1994). Hence, determining the impact of 

contaminants on these grasses is relevant to the prairie ecosystem, an important factor 

in selecting bioindicators (Chapman 1995 : Cairns 1993). All these factors suggest that 

grass bioindicators would be useful in estimating the toxicological hazard of a 

contaminated soil site. 

Bioindicators must give interpretable response curves across a range of 

environmental parameters (Hund and Traunspurger 1994: Adema and Henzen 1989; van 

Leeuwen L 990). Otherwise, environmental effects upon bioindicator response may 

confound extrapolations meant to depict the bioavailability and toxicity of contaminants 

in soil (Hund and Traunspurger 1994; van Leeuwen 1990). In addition, soil parameters 

fluctuate at the landscape level and different bioindicator calibration curves for each 

landscape position would be impractical for routine b ioindicator use. An estimate of 

bioindicator response to different soil parameters independent of the effect of these 



parameters on contaminant bioavailabiiity will allow one to assess the utility of using 

bioindicators in a variety of soils and landscape positions. 

Bioindicators integrate measurement of contaminant bioavailability and toxicity 

(Bacci 1994). Differences in either one of these components will alter the toxicological 

hazard associated with a contaminated site. Implicit in this measurement of 

bioavailabiiity and toxicity is the independence of bioindicator response to other 

organisms in the ecosystem (van Leeuwen 1990). However, it is well documented that 

many organisms produce toxins designed to minimize competition (Curl and Truelove 

1986~). Therefore, this assumed bioindicator independence may not exist, especially 

in those contaminated sites receiving remedial treatments such as the plant-bacterial 

systems suggested by S icil iano and Germida (1 995). 

The purpose of this investigation was to assess the potential of prairie grasses as 

bioindicators of chlorinated aromatics in soil and to investigate whether different soil 

parameters and other organisms influence the bioindicator response. I selected seed 

germination as a b ioindicator response endpoint because of its simple methodology, 

moderate sensitivity to toxicants (Linder et al. 1990) and potential for in situ use. 

3.3. MATERIALS AND MEITHODS 

3.3.1. Soil collection and preparation 

Four soils (0-15 crn) were collected from different soil climatic zones in southern 

Saskatchewan, Canada. Soil was air dried and sieved to pass a 4.75 mm sieve (USA 

Series Equivalent No.4). The surface "soil" of a parking lot contaminated with 

Aroclorm 1260 transformer oil was collected. An analysis (Alberta Research Council, 

Method No. G106.0) of the PCB concentration in soil by Saskatchewan Research 

Council [Saskatoon, SK. Canada] indicated that the mean concentration of AroclorM 

1260 was 130 pg kg'' EPCBs soil. Soils were analyzed by EnviroTest labs formerly 

Plains Innovative Laboratory Services [Saskatoon, SK, Canada.]. Selected chemical and 

physical characteristics of these soils are presented in Table 3.1. 



3.3.2. Forage grasses 

Seventeen forage grass species (Table 3.2.) were obtained from a local seed 

supplier [Early's Farm and Garden Centre, Saskatoon, SK, Canada]. Grasses were 

selected because of their prevalence in the undisturbed prairie ecosystem or use in 

stabilizing marginal land. Seeds were stored in plastic bags at 4°C. Seed viability was 

assessed using a standard germination test in wet paper towels (22°C. 7 days) before use 

in growth chamber experiments. Only seeds with greater than 90 % germination were 

used. 

3.3.3. Bioindicator selection 

Initially, the range of 2CBA concentrations grasses responded to was determined. 

The four agricultural soils were amended with 100 mg kg-' ZCBA, placed in seedling 

trays (300 wells, 30 x 60 x 2.5 cm tray) and maintained at -33 KPa for 10 days. 

Grass seeds (n= 10) were planted in wells (n = 5) containing either soil amended with 

ZCBA or non-amended soil, and covered with a opaque plastic bag. Seven days after 

planting (DAP), seed emergence was determined. 

A second experiment assessed the response of representative grasses to a range 

of 2CBA concentrations. Canada blue grass had a low (c.a. 4%) percent emergence at 

100 rng kgd1 so it was seeded (n = 6) in soil with 2CBA concentrations ranging from 

0 to 50 mg kg-' soil in five intervals of 10 mg kg-'. Slender wheatgrass had a higher 

(c.a. 30%) percent emergence and consequently, was seeded (n  = 6) in soil with ZCBA 

concentrations ranging from 0 to 250 mg kg-' soil in five intervals of 50 rng kg-'. Ail 

other grasses (e.g. Crested wheatgrass), germinated extremely well. c.a. 80 % and were 

seeded (n = 6) in ZCBA contaminated soil containing 250 mg kg-' soil. This was 

repeated twice. 





TABLE 3.2. Grasses used in this study and their tolerance to 2CBA or AroclorM 1260. 
- - 

Common Name Scientific Name Contaminant Tolerance8 

Canada blue 

Slender wheatgrass 

Dahurian wild rye 

Common brome 

Intermediate wheatgrass 

Streambank wheatgrass 

Meadow brome 

Tall wheatgrass 

Northern wheatgrass 

Reed canary 

Perennial rye grass riviera 

Russian wild rye 

Crested wheatgrass 

Altai wild rye 

Timothy 

Orchard grass 

Sheep fescue 

Poa compressa 

Agropyron rrachycaulum 

Elymus dauricus 

Bromus inennis 

Agropyron intennedium 

Agropyron riparum 

Bromus biebersteinii 

Agropyron elongmum 

Agropyron dasystachyum 

Phalaris arundinacea 

Loiium perenne 

Elyrnus juncercs 

A g ropy ron cristatum 

Eiyrnus angwtus 

Phieum prateme 

Dacryiis gglornerata 
- 

Festuca ovina > 250 > 130 

a Contaminant concentration at which percent emergence 7 days after planting was iess 
than 10%. Grasses with more than 80 % emergence at the highest contaminant level 
tested are marked by a greater than symbol. 2CBA results combined for four 
agricultural soils and the PCB results are from a parking lot contaminated with 
AroclorTM 1260. 



A further experiment assessed the response of prairie grasses to AroclorDL 1260 

contamination. The protocol was similar to that above with the exception that the 

maximum Aroclorm concentration was 130 pg kg-' soil. Contaminated soil was diluted 

with non-contaminated soil from the same location to obtain different contamination 

levels ranging from 13 to 130 pg kg-' CPCBs soil in intervals of 33 pg kg? 

3 . 3 .  Effect of soil type on bioindicator response 

Canada blue grass and slender wheatgrass were assessed for their response to 

2CBA contamination in 4 different soils. Canada blue grass and slender wheatgrass 

were planted at ZCBA concentrations ranging from 0 to 50 mg kg-' or 0 to 250 mg kg'' 

soil respectively, watered to -0.33 KPa and emergence determined 7 DAP. Duplicate 

experiments with 7 replicates each were performed for each soil. 

3.3.5. Effect of biological treatments on bioindicator response 

To determine if bioindicator response was affected by bioremediation treatments, 

we investigated the effect of the biological treatments described by Siciliano and 

Germida (1995) on slender wheatgrass emergence in the Outlook and Paddockwood 

soils. Each experiment had five replications and the Paddockwood experiment was 

replicated twice. The biological treatments consisted of growing either streambank 

wheatgrass, Dahurian wild rye or meadow brome with or without a bacterial inoculant 

(ca . .  106 cfu seed-') in 200 g ( 195 rnl styrofoam cups) of either contaminated (c-a.. 200 

mg X B A  kg-I soil) or non-contaminated soil. The bacterial inoculant was a 48 hour 

trypicase soy broth culture of Pseudomonas aemginosa strain R75 and/or a 9 day 0.3 

g ZCBA L-I minimal salts broth culture (Farrell et al. 1993) of P. savtutanoi pv. 

frarinus strain CB35. Previously, I found that these bacteria stimulated the degradation 

of 2CBA in soil (see Chapter 3). Seeds were inoculated as described in Section 3.3.4. 

Plants were grown in a growth chamber (350 pmol s-I m-2, 16-8 h day-night cycle, 24"- 

18°C day-night temperature) for 42 days. The shoots and roots were harvested, soil 

mixed, ZCBA concentration in soil determined on a subsample and then the bioindicator 

seeded. Ten seeds were planted in each pot and emergence measured 7 DAP. 



3.3.6. Determination of 2CBA levels in soil 

Five grams of soil (dried at 1 10°C for approximately 24 hr basis) and 5 mL of 

aqueous sodium benzoate (600 mg L") were added to a 50 mL Erlenmeyer flask and 

then 2 mL of 18.8 M sulphuric acid added. Dichlorornethane (DCM) (15 mL) was 

added to the flask which was then sealed with neoprene stoppers and agitated over night 

on a rotary shaker (120 rprn) at room temp. 

A small portion of DCM (ca. 0.5 ml) was transferred to a clean scintillation vial 

and silyated with 10 p L  of N,O-bis-(Trimethylsily1)-Acetamide (Chromatographic 

Specialities Inc.). The silyated solution was passed through a pasteur pipette plugged 

with silane treated glass wool (Supelco), containing (c.a.. 2 g) Sephadex G-75 gel 

(Pharmacia) and (c.u.. 2g) anhydrous sodium sulphate. The clean up column was 

flushed with (c.a.. 0.5 mL) DCM twice and the elutent collected in a 1.8 ml GC 

injection vial. 

One pL of the extract was injected into a split/splitless Varian 3500 gas 

chromatograph equipped with a flame ionization detector. The GC utilized 2 columns 

in series, the first a 15 m Supelco SPB-5 (0.53 I. D.) followed by a second 30 m Supelco 

SPB- 1 (0.25 I.D.). The injector was held at 220°C. detector at 250°C and the column 

ramped in the following manner: 60" for 1 min. ramp at 20°min" to 122", hold for 5 

min, ramp at 20°min-' to 250" hold for 5 min. The elution times of silyated benzoic 

acid and ZCBA were compared with authentic standards and found to be 8.07 min +/- 

0.05 for silyated benzoic acid and 13.3 min +/- 0.08 for silyated X B A .  The ZCBA 

concentration was determined by calculating the response ratio between ZCBA and 

benzoic acid. Trials consisting of soil contaminated with ZCBA ranging from 10 to 900 

mg kg-' ZCBA soil were performed and the relationship between the response ratio and 

2CBA concentration in soil was linear (2CBA:Benzoate = 0.00124 x [2CBA]; r2 = 

0.983, PsO.01). 



3.3.7. Data analysis 

An experimental unit consisted of 10 seeds placed in one well. Each unit was 

replicated 5- LO times depending upon the experiment. A Skewness and Kurtosis analysis 

of the data by methods outlined by S o M  and Rohlf (198 1) indicated that the data were 

normally distributed so the data was analyzed using ANOVA procedures. The 

regression analysis was performed using the stat istical software, CoS tat (Cohort 

Software, CA, USA). 

3.4. RESULTS 

3 -4.1. Bioindicator selection 

The germination response of the 17 grass species differed over a wide range of 

ZCBA and AroclorM concentrations (Table 3.2.). Canada blue grass was especially 

sensitive to 2CBA contamination with 4 percent emergence observed at 50 mg kg1 soil. 

This species had reduced germination to 2CBA concentrations between 10 and 50 mg 

kg-' soil. Slender wheatgrass was moderately sensitive to 2CBA contamination with a 

response range between 20 and 250 mg kg'' soil. Fifteen grass species were tolerant to 

at least 250 mg kg-' soil. 

Orchard grass had the highest sensitivity to AroclorM with 6% emergence 

observed at 33 pg kg-' soil. This species had a response range between 13 and 33 pg 

kg-' soil. Streambank wheatgrass was moderately sensitive to Aroclorm contamination 

with a response range between 32 and 110 pg kg-' soil. Common brome and Crested 

wheatgrass were almost a3 sensitive to AroclorM as streambank wheatgrass with a 

response range between 52 and 130 pg kg-' soil. The remaining L3 grass species were 

tolerant (i. e. 2 80 1 emergence). of 130 pg kg-' soil. 
- 

3.4.2. Effect of soil type on bioindicator response 

The germination response of Canada blue grass to ZCBA was different (P 10.08) 

in the Paddockwood soil compared to the Allan, Lanigan and Outlook soils (Fig. 3.1 .). 

The response curve, where Y is percent emergence and X the concentration of ZCBA, 



was linear (Y = 94 - 1.6 x X; rl = 0.986, P10.01) in Paddockwood soil, whereas 

it was logarithmic (Y = 1 10 - 16 x l n o :  ? = 0.9 15, P 5 0.01) in the other three 

soils. 

In contrast to Canada blue grass, the germination response of slender wheatgrass 

to 2CBA contamination was not significantly dependent upon soil type (Fig. 3.2). A 

logarithmic equation (Y = 140 - 24 x ln(X); ? = 0.949, PS0.01) characterized the 

germination across all soil types. Thus, slender wheatgrass was selected for further 

studies assessing the impact of biological treatments on bioindicator response. 

3.4.3. Effect of biological treatments on bioindicator response 

In non-contaminated soil, growing either prairie grasses by themselves, (e. g. 

Dahurian wild rye), or grasses inoculated with bacteria, (e.g. meadow brome inoculated 

with R75), for 42 days, and then planting Slender wheatgrass (i. r., the bioindicator), 

lowered (P 5 0.05) the percent emergence of slender wheatgrass (Fig. 3.3 .). Similar 

effects were also seen with meadow brome inoculated with a combination of R75 and 

2CB35, and with strearnbank wheatgrass inoculated with R75. When meadow brome 

inoculated with R75 was grown in contaminated soil, the emergence of slender 

wheatgrass was no longer related to the amount of 2CBA in the soil by the original 

logarithmic curve (Y = 140 - 24 x l n o ;  i = 0.949, P 10.0 1). but was described by 

a linear relationship (Y = 100 - 0.28 x X; 9 = 0.817, P 10.01) (Fig. 3.4.). Similar 

results were found for other biological treatments (e.g. Dahurian wild rye. meadow 

brome inoculated with a combination of R75 and CB35 or streambank wheatgrass 

inoculated with R75) that significantly affected slender wheatgrass emergence in non- 

contaminated soil. In contrast, treatments which did not significantly affect bioindicator 

response in non-contaminated soil (e.g. strearnbank wheatgrass), did not significantly 

alter the response curve of slender wheatgrass to 2CBA contamination. However. 

germination was marginally increased in the presence of biological treatments. For 

example, in the presence of streambank wheatgrass, the bioindicator response was 

characterized by a logarithmic relationship (Y = 220 - 38 x ln(X); i = 0.820, 

P 50.01) similar to the logarithmic curve obtained in the absence of remedial treatments 

(Fig. 3.5.). 



1 LSD (3.05) = 5.5 

s 

Fig. 3.1. 

2CBA mg kg" 
The germination response of Canada blue grass in 2CBA contaminated soils 

7 days after planting. Each symbol is the mean of two independent experiments (n=6 
replicates). A .  Paddockwood; . Lanigan; , Outlook; . Allan. Dashed line 
represents the linear relationship for Paddockwood soil and solid line represents the 
logarithmic relationship for the combined results of the other three soils. 



1 ' LSD (0.05) = 7.8 1 

2CBA mg kg-'  

Fig. 3.2. The germination response of slender wheatgrass in 2CBA contaminated soil 
7 days after planting. Each symbol is the mean of two independent experiments (n=6 
replicates). A , Paddockwood; , Lanigan; , Outlook; , Allan. Solid line 
represents the logarithmic relationship for the combined results of the four soils. 



I 
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Biological Treatments 
Fig. 3.3. The inhibitory effect of biological treatments on the germination response of 
slender wheatgrass in non-contaminated soil 7 days after planting. ( 1) non-planted 
control; (2) streambank wheatgrass; (3) streambank wheatgrass + R75; (4) Dahurian 
wild rye; (5) meadow brorne + R75 & CB35; (6) meadow brorne + R75. Each bar is 
the average of three independent experiments; two in the Paddockwood soil (n=5 
replicates) and one in the Outlook soil (n=5 replicates). Bars marked with * are 
significantly (P 50.05) different from non-planted control. 



Fig. 3.4. 

2CBA mg kg- '  
The effect of the biological treatment, meadow brome inoculated with R75, 

on the relationship between slender wheatgrass emergence and ZCBA contamination. 
Dashed line represents the linear relationship in the presence of meadow brome + R75. 
Open symbols are data from two experiments in Paddockwood soil (n=5 replicates) and 
one experiment in Outlook soil (n=5 replicates) in the presence of meadow brome + 
R75. A. Paddockwood; 0 Outlook. Solid line represents the logarithmic relationship 
in the absence of meadow brome + R75. Solid symbols are the mean of two 
independent experiments (n =6 replicates) in the absence of meadow brome + R75. A ,  

Paddockwood; . Lanigan; , Outlook: . Allan. 
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2CBA mg kg-' 
Fig. 3.5. The negligible impact of the biological treatment, streambank wheatgrass, on 
the relationship between slender wheatgrass emergence and 2CBA contamination. 
Dashed line represents the logarithmic re1,ationship in the presence of strearnbank 
wheatgrass. Open symbols are data from two experiments in Paddockwood soil (n=5 
replicates) and one experiment in Outlook soil (n=5 replicates) in the presence of 
streambank wheatgrass. A, Paddockwood; Outlook. Solid 1 ine represents the 
logarithmic relationship in the absence of streambank wheatgrass. Solid symbols are the 
mean of two independent experiments (n=6 replicates) in the absence of strearnbank 
wheatgrass. A . Paddockwood: . Lanigan; . , Outlook; , Allan. 



3.5. DISCUSSION 

Plants are good bioindicators of toxicants in soil and respond to a wide range of 

chemicals at various concentrations (Wang and Freemark 1995; Fletcher and Johnson 

1990). The concept of using a prairie grass to act as a bioindicator in prairie 

ecosystems is supported by Chapman (1995) and Cairns (1993) who both suggest that 

the use of indigenous species will increase the relevance and reliability of bioindicator 

testing. The collection of 17 grass species I screened as bioindicators had a toierance 

of ZCBA at concentrations ranging from 20 to 250 rng kg-' soil. This is a 12 fold 

difference in ZCBA sensitivity among grass species. Similar results were obtained with 

AroclorM 1260, with tolerances of AroclorN ranging from 13 to 130 pg kg-' soil or a 

9 fold difference in grass species sensitivity. This is comparable to the sensitivity range 

found by Fletcher and Johnson (1990) who, in an analysis of the Phytotox database 

which contains data from 3,500 published papers on plant sensitivity to chemicals, 

calculated that there was an average 1 1  fold difference in plant species sensitivity to 

chemicals. The logarithmic response curves obtained with slender wheatgrass and 

Canada blue grass are similar to curves obtained by Wang (1985) in his tests of millet 

(Panicurn rniliacecurn) , rad ish (Raphanus sativus) and ve lve tleaf (Abutilon theophiam' 

Medic) as bioindicators of phenol pollution. Logarithmic response curves of this sort 

have a high sensitivity to chemical concentration changes in the middle part of the 

response curve (Klaassen and Eaton 1991). Hence, selecting a bioindicator with the 

appropriate response range can result in a precise measurement of environmental 

pollution. Such precision was observed by Miller et al. (1985) in an investigation of 

herbicide toxicity, where it was found that the coefficient of variation in plant 

bioindicators was only 19%. compared to 35 % for algae and 33 1 for daphnia 

bioindicators. Therefore, the ecological relevance. wide response range and precision 

of prairie grass bioindicators support my contention that prairie grasses have significant 

potential as bioindicators of toxicants in soil. 



Canada blue grass response to 2CBA differed between soil types, but slender 

wheatgrass did not. It is known that plant sensitivity to toxicants can vary substantially 

with environmental conditions such as organic matter, pH, ligands and toxicant 

interactions and this sensitivity can vary on a species by species basis (Wang and 

Freemark 1995). This is one possible explanation. On the other hand the two grasses 

might have differed because one species, Canada blue grass, was tested outside of it's 

normal habitat range whereas slender wheatgrass' habitat encompasses the regions from 

which the four soil types were obtained (Looman 1982). Additional investigations 

utilizing soils from regions other than Saskatchewan are required to confirm either of 

these hypotheses. 

Alteration in bioindicator response by remedial treatments has been observed by 

other investigators (Hund and Traunspurger 1994; Belkin et ai. 1994). In these cases, 

the authors assumed that the alteration in bioindicator response was caused by a toxic 

metabolite of the remediation process. In my study, the bioindicator was inhibited by 

treatments in the absence of a contaminant. Hence, the formation of toxic metabolites 

derived from the contaminants by these bioremediation treatments could not have 

occurred. This suggests that indigenous or introduced organisms may have produced 

a chemical that affected the bioindicator. 

Our hypothesis that a chemical affected the b ioindicator can be assessed 

according to the six weight of evidence criteria. i.e. chronological order, strength of 

association between cause and effect, specificity of the interaction, consistency of the 

interaction, biological plausibility of the hypothesis and intensity of the effect, suggested 

by Chapman ( 1995) for analyzing the validity of ecotoxicolog ical relationships. 

Chronologicaiiy, I found that the inhibitory effect was only seen after specific plants or 

bacteria had been added and allowed to grow in the test soil. This occurred consistently 

in three different experiments that used two soil types, thereby reducing the possibility 

of this effect being a soil or experimental artifact. Furthermore, the inhibitory effect 

was observed under specific circumstances. Only remedial biological treatments which 



affected bioindicator response in non-contaminated soil affected the bioindicator's 

relationship to 2CBA levels. In contrast, no change was seen in bioindicator response 

to 2CBA by remedial treatments which had little effect on bioindicator response in non- 

contaminated soil. The biological plausibility of the hypothesis is supported by the 

abundance of evidence documenting that many plants and bacteria produce compounds 

that inhibit the growth of other organisms (Curl and Truelove 1986~). Two alternative 

biological hypotheses also present themselves, the production of toxic metabolites or 

nutrient depletion by the biological treatments. However, since the biological treatments 

in the absence of the contaminant caused an inhibition in bioindicator emergence, the 

toxic metabolite hypothesis is eliminated. A nutrient analysis of soil in which meadow 

brome and R75 had grown for 42 days indicated that there was no depletion of nutrients 

by this biological treatment (Table 3.1 .). Alterations in soil nutrient status would have 

to be extreme in order to impact upon a germinating seed wittiin 7 DAP because the 

seed draws off internal nutrient sources for its initial growth spurt. In addition, the 

inhibition of bioindicator emergence was seen both in the Paddockwood and Outlook 

soils which had different soil characteristics (e.g. see Table 3. I) ,  furthering the case 

against the nutrient depletion hypothesis. The inhibition of bioindicators by a chemical 

produced by biological treatments fulfils five out of Chapman's (Chapman 1995) six 

criteria. The sixth criterion, the intensity of the effect, was not investigated. 

This investigation has demonstrated the potential of prairie grasses to act as 

bioindicators of contaminants in soil. It has also given support to the hypothesis that 

local organisms are the most reliable bioindicators. However, these results indicate that 

remedial treatments may be interacting with bioindicators in a manner not related to 

xenobiotic degradation. 



If remedial treatments are producing allelopathic or toxic substances that impact 

on the bioindicator, then the nature of the ailelopathic-toxicant effect upon the 

bioindicator should be determined because this relationship will alter the indication of 

toxicity by the bioindicator. Until the antagonistic, additive or potentiating nature of the 

allelopathic-toxicant relationship is determined, correcting the bio indicator calibration 

curve for the impact of remedial biological treatments may not be possible. How to 

integrate such considerations into hazardous waste site risk assessment needs 

investigation. 



4. BACTERIAL INOCULANTS OF FORAGE GRASSES THAT E W C E  

DEGRADATION OF 2-CHLOROBENZOIC ACID IN SOIL 

4.1. ABSTRACT 

Biological remediation of contaminated soil is an effective method of reducing 

risk to human and ecosystem health. Bacteria and plants might be used to enhance 

remediation of soil pollutants in situ. This study assessed the potential of bacteria (12 

isolates), plant (17 forage grasses) and plant-bacteria associations (selected pairings) to 

remediate ZCBA-contaminated soil. Initially grass viability was assessed in ZCBA- 

contaminated soil. Soil was contaminated with ZCBA, forage grasses grown under 

growth chamber conditions for 42 or 60 days and the ZCBA concentration in soil 

determined by gas chromatography. Only 5 out of 17 forage grasses grew in ZCBA 

(816 mg kg") treated soil. Growth of common brome had no effect on ZCBA 

concentration, whereas intermediate wheatgrass, meadow brome, streambank wheatgrass 

and Dahurian wild rye decreased ZCBA relative to non-planted control soil by 32-42%. 

The 12 bacteria isolates were screened for their ability to promote the germination of 

the five grasses in ZCBA-contaminated soil. Inoculation of streambank wheatgrass with 

strain R75, a proven plant growth promoting rhizobacterium, increased seed germination 

by 80% and disappearance of ZCBA by 20% relative to non-inoculated piants. 

Inoculation of Dahurian wild rye with a mixture of strain CB35, a ZCBA degrading 

bacterium, and strain R75 increased disappearance of 2CBA by 112 % relative to non- 

inoculated plants. There was no clear relationship between enhanced ZCBA 

disappearance and increased plant biomass. These results suggest that specific plant- 

microbial systems can be developed to enhance remediation of pollutants in soil. 



4.2. INTRODUCTION 

Grasses are potentially inexpensive and environmentally friendly remediation 

agents. For example, prairie grasses increase the disappearance of polycyclic aromatic 

hydrocarbons (PAH), reduce PAH leachate fiom soil columns (Aprill and Sims 1990; 

Reilley et al. 1996) and have a PAH biological concentration factor of only 0.04 

(Hoylman 1994). Aprill and Sirns (1990) proposed that grasses would be good 

remediation agents because of their dense rooting pattern and the wide diversity of 

species present throughout the biosphere. Similarly, Ferro et al. (1994) found that 

Hycres t crested w heatgrass (Agropyron desenorurn (Fisher ex Link) S hul tes) increased 

PCP degradation in soil and had a PCP biological concentration factor of only 0.3. In 

addition to PAH and PCP contaminants, rhizosphere soil has the catabolic diversity to 

degrade TCE, atrazine, metolachlor, trifluralin and 3CBA (Anderson et al. 1994; 

Anderson and Walton 1995; Walton and Anderson 1990; Haby mil Crowley 1996). 

However, while plants have the potential to remediate a variety of contaminated sites 

(Anderson et al. 1993; Shimp et al. 1993; Aprill and Sirns 1990), the impact of 

toxicants upon plants can be substantial (Xu and Johnson 1995) and methods need to be 

found to ameliorate this impact. One possible solution is the use of bacterial seed 

inoculants that enhance the degradation of toxicants in soil. 

Bacteria are well recognized as remediation agents (Morgan and Watkinson 

1989). Their catabolic diversity is established (Chaudhry and Chapalamadugu 199 1; 

Haggblom 1992), but their remedial activity in soil is variable (Providenti et al. 1993). 

Several factors limit the effectiveness of bacterial inocuiants of field soils for 

bioremediation: in situ expression of catabolic activity (Guilbeault et al. 1994); inoculant 

survival (Have1 and Reineke 1992; Ramadan et al. 1990); inoculant transport to the 

microsite of contamination (Pevare and Alexander 1995); and nutrient requirements for 

growth of inoculants (Ramadan et al. 1990). Inoculants also need to successfully 

compete with indigenous soil populations for nutrients and habitats (van Elsas et al. 

1991). 



I propose that bacterial seed inoculants intended to remediate contaminated soil 

may be more effective than bacterial inoculants of bulk soil. Unlike inoculants of bulk 

soil, bacterial inoculants of seed may persist in soil under field conditions (de Freitas 

et al. 1994). exhibit activity in the rhizosphere (Rattray et al. 1995) and remain 

associated with the rooting system of an inoculated plant as it progresses through the soil 

profile (Hekrnan et al. 1995; Kluepfel et al. 1991). In addition, the rhizosphere 

provides nutrients and a physical environment conducive to rhizosphere bacteria (Curl 

and Truelove 1986b). In return, rhizosphere bacteria may attenuate the toxic impact of 

contaminated soils upon plant growth (Walton et al. 1994b). 

Bacterial seed inoculants that enhance remediation might either ( I )  augment 

degradative activity in the rhizosphere by enhancing microbial or plant activity in the 

rhizosphere (i. e. plant growth promoting rhizobacteria-PGPR) , or (2) increase the 

catabolic capacity of the indigenous rhizosphere community, thereby increasing the rate 

of contaminant degradation (i. e. degradative bacteria) . This study assessed the potential 

of rhizosphere inoculants to enhance the degradation of ZCBA in soil. 

4.3. MATERIALS AND METHODS 

4.3.1. Soil collection and preparation 

Three surface (0- 15 cm) soils were collected from different uncontaminated field 

sites in Saskatchewan and prepared as described in Section 3.3.1. 1 contaminated soil 

by mixing a small portion of the soil with solid ZCBA and then mixing this soil into the 

remainder of the soil to be amended. Soil was watered to -0.33 KPa and allowed to 

equilibrate for LO days. Preliminary experiments (data not shown) indicated that little 

or no degradation of 2CBA occurred within this 10 day equilibration period. 

4.3.2. Bacterial strains and growth conditions 

A ZCBA metabolizing bacterium was isolated from the Lanigan soil by 

enrichment culture on a minimal salts medium (Farre11 et al. 1993) containing 0.1 g L-I 

ZCBA as the sole carbon source (ZCBM). After 96 h on a rotary shaker (160 rpm) at 



22 * C, a 0.2 ml aliquot of the enrichment broth was transferred to a new flask containing 

50 rnl ZCBM and incubated on a rotary shaker for a further 96 h. After 96 h, a 0.2 ml 

aliquot was transferred to a new flask; this was repeated twice. A 0.1 ml aliquot of the 

final enrichment flask was spread plated onto ZCBM solidified with 1.5% Difco agar 

and incubated at 28°C for 48 h. Colonies were transferred to ZCBM agar plates 

containing either 0.1, 0.2 or 0.3 g L-' ZCBA and one isolate demonstrated enhanced 

growth on 0.3 and 0.2 compared to 0.1 g L-I ZCBM agar plates. This isolate was 

designated strain CB35, and tentatively identified based on fatty acid methyl ester 

analysis using MIDI Corporation's (Newark, DE, USA) software and extraction 

procedure as a strain of Pseudomonar savastanoi pv. fraxinus (similarity index of 

0.734). Six known PGPR strains [30] including P. cepacia R55, P. cepacia R85, P. 

aeruginosa R6 1, P.  aeruginosa R75, P. fluorescens R 11 1 and P. purida R 104 and 5 

other PGPR strains (J.J. Germida, unpublished observations) also were used in this 

study. All bacteria were stored at -40°C in 50 1 (wlw) glycerolltryptic soy broth. 

In order to inoculate seed with bacteria, 0.3 ml of a frozen bacterid culture was 

transferred to 100 ml of Moth strength nyptic soy broth (TSB) in a 500 ml Erlenmeyer 

flask and incubated on a rotary shaker (160 rpm) at 22°C for 48 hours. For PGPR 

isolates, these cells (c.a.. lo9 cfufrnl on l/lOth strength TSA) were washed twice in 

sterile reverse osmosis water by centrifugation (15 min at 1700 x g, 5°C) and 

inoculated onto seeds (see below). Strain CB35 cells were washed twice in sterile 

reverse osmosis water by centrifugation (15 min at 1700 x g, 5 OC) and re-suspended 

in 10 rnl sterile water. A 5 ml sub-sample was transferred to 100 ml ZCBM containing 

ZCBA (0.3 g L-l) in a 500 ml Erlenmeyer flask and incubated on a rotary shaker (160 

rpm) at 22°C until mid-log phase (c.a.. 1@ cfdml on l /  10th strength TSA). These 
- 

cells were then inoculated onto seeds (see below). 



4.3.3. Screening forage grasses for tolerance to 2CBA 

Seventeen forage grass species (Table 3.2.) were obtained and stored as 

described in Section 3.3.2. Plants were assessed for their ability to grow in ZCBA 

contaminated soil as described in Section 3.3.3. with the exception that only Lanigan 

soil amended with 816 mg kg-' ZCBA was used and that plant growth was assessed at 

39 DAP. A second experiment assessed the ability of those plants that grew in 

contaminated soil to enhance 2CBA disappearance. Five seeds were planted in 200 g 

of 2CBA (816 mg kg*') contaminated soil in 6 replicate styrofoam cups (170 ml 

capacity). Cups were placed in a growth chamber and maintained at conditions similar 

to the trays. The 2CBA levels in soil were determined (see below) at 60 DAP. 

4.3.4. Selection of bacterial seed inoculants 

Bacterial seed inoculants were selected on the basis of their ability to promote 

germination of selected forage grasses in contaminated soil. The PGPR strains and 

CB35 isolate were tested for their ability to promote seed germination of selected forage 

grasses: 1) meadow brome, 2) streambank wheatgrass, 3) Dahurian wild rye and 4) 

common brorne. Seed (5 g) was soaked in 8 ml of centrifuged (15 min at 1700 x g, 

5 "C) washed bacterial cells for 30 min, coated with 15 grams CaCQ and air dried for 

30 minutes. Control seed was coated with autoclaved bacterial cells in a similar 

fashion. Fifteen seeds (c.a.. 106 cfu seed-') were placed in duplicate glass Petri plates 

containing either 70 g of ZCBA contaminated (816 rng kg") or non-contaminated 

Lanigan soil, watered (-0.33 kPa), sealed with parafilm and incubated in the dark at 

10°C. Seed germination was assessed 14 DAP. 

4.3.5. Effect of bacterial seed inoculants on remediation by forage grass 

The Paddockwood and Outlook soils were amended to 2CBA concentrations of 

200.400 and 800 mg kg-I. Contaminated soil (160 g) was placed in styrofoam cups and 

watered to -0.33 kPa. Forage grass seeds (n=5) inoculated with strain R75 (c.a.. 106 

c h  seed-'), strain CB35 (c.a.. 106 cfu seed-') or a mixture of R75 & CB35 (ca..  lo7 

combined cfu seed-l) were planted in replicate cups (n=6). The ratio of R75CB35 in 



the mixed inoculant was estimated to be c a . .  8: 1. Pots were placed in a growth 

chamber under similar conditions to those described above. At 42 DAP, the shoots 

were harvested and the rooting system extracted from soil, shaken and washed in cold 

water. The plant material was dried (48 h, 60°C) and weighed. The ZCBA 

concentrations in soil and plant material were determined (see below). 

4.3.6. Determination of ZCBA in soil and plant tissue 

The method outlined in Section 3.3.5. was used to determine the concentration 

of ZCBA in soil. Plant tissue (0.2 g) was analyzed for the presence of ZCBA in a 

manner similar to that used for contaminated soil. The detection limit for 2CBA in 

roots and shoots was determined to be 3 mgkg. 

4.3.7. St atistical analysis 

The experiment was designed as a complete factorial experiment with replicate 

experiments designated as random factors. Each treatment was replicated f i e  times and 

each soil experiment was performed twice. The results were analyzed by ANOVA, and 

means separated by Student's T test. 

4.4. FUCSULTS 

4.4.1. Selection of remedial forage grasses and bacterial inoculants 

Nine of the seventeen forage grasses tested germinated in ZCBA-contaminated 

Lanigan soil (816 mg kg-'), but only five exhibited growth (Table 4.1.). In non- 

contaminated soil all seventeen forage grasses germinated well and by 39 DAP had 

overgrown their pots. 



TABLE 4.1. Growth of forage grasses in soil contaminated with 

816 mg X B A  kg-' 

Common Name Scientific Name Growthu 

Common brome B. inennis 

Dahurian wild rye E. dauncus 

Intermediate wheatgrass A. intennediurn 

Meadow brorne B. biebersteinii 

Streambank wheatgrass A. n'panim 

Tall w hea tgrass A. elongaturn 

Northern wheatgrass A. dasystachyum 

Reed canary P. arundinacea 

Altai wild rye E. angim 

Canada b Iue P. compressa 

Crested wheatgrass A. cristatum 

Perennial rye grass riviera L. perenne 

Russian wild rye E. junceus 

Sheep fescue F. ovina 

Slender Wheatgrass A. trachycauiurn 

Orchard grass 

Timothy 

" Gradient of visual responses determined at 39 days after planting: 
-, no seed germination: + , seed germination; + +, seed germination 
with leaf at coleoptile tip; + + +, seed germination with first leaf 
through coleoptile. 



Growing streambank wheatgrass, Dahurian wild rye, meadow brome or 

Intermediate wheatgrass in ZCBA-contaminated Lanigan soil decreased (P 1 0.05) ZCBA 

levels relative to unplanted soil (Table 4.2.). Because common brome had no effect on 

2CBA levels and intermediate wheatgrass grew poorly in 2CBAtontaminated soil, these 

grasses were not used in subsequent experiments. The levels of ZCBA in unplanted soil 

also were reduced just by incubating soil for 42 or 60 days (Table 4.2.). However, this 

disappearance was only significantly different from the initial nominal ZCBA 

concentration in the Lanigan soil and may be related to the high soil organic matter 

content (Table 3.1 .). No ZCBA was found in plant tissue at any contamination level. 

The ability of forage grasses to remediate ZCBA was not limited to a specific soil 

type, but was influenced by the initial level of contamination. For example, at the 800 

mg kg-' level, streambank wheatgrass decreased (Pc0.05) ZCBA levels in the 

Paddockwood soil by 42 % and in the Outlook soil by 4 1 % (Table 4.2.). Similarly, 

Dahurian wild rye decreased ZCBA levels by 37% and 19% (P10.05) in these soils, 

respectively. However, with the exception of Dahurian wild rye in Outlook soil (Table 

4.2.). none of the forage grasses significantly reduced ZCBA levels when the initial 

contamination level was 400 or 200 mg kg-'. 

There was no significant difference in ZCBA disappearance between the soil 

types, but the grasses were consistently more effective in the Paddockwood compared 

to the Outlook soil at the 800 and 400 mg kga1 contamination levels. For example. at 

the 400 mg kg" level, meadow brome decreased ZCBA by 28% in the Paddockwood 

soil. but inhibited disappearance by 35% in the Outlook soil. The above trend was 

reversed at the 200 mg kg-' contamination level, with grasses being more effective in 

the Outlook compared to the Paddockwood soil. For example, Dahurian wild rye 

decreased ZCBA by 2 % in the Paddockwood soil but decreased (P 10.05) 2CBA by 

64% in the Outlook soil. 



TABLE 4.2. Levels of ZCBA in different soils after growing forage grass 

Soil Treatment 

ZCBA level (mg kg") 

Initial 2CBA level 

Lanig ana Unplanted soil b - 480 

S treambank w heatgrass - - 278 

Dahurian wild rye - - 302 

Meadow brome - - 292 

Intermediate wheatgrass - - 326 

Common brome - - 576 

LSD (0.05)' 135 
------ ------ ------u-------------------- ------------.-----i- - 

Paddockwoodd Unplanted soil 191 329 708 

Streambank wheatgrass 223 273 404 

Dahurian wild rye 188 369 444 

Meadow brome 207 236 540 

Outiookd Unplanted soil 198 340 720 

Streambank wheatgrass 146 444 426 

Dahurian wild rye 72 449 582 

Meadow brome 122 459 647 

LSD (0.05) 108 143 174 

a Plants grown for 60 days; not tested: 'least significant difference at P10.05 
calculated from replicate experiments with 5 replicates each; plants grown for 42 days. 



Strain R75 increased (P S 0.05) the germination of streambank wheatgrass in 

2CBA contaminated soil by 80% and increased ( c . ~  3036) the germination of other 

grasses in contaminated soil. Similarly, CB35 increased (P < 0.05) the germination of 

Dahurian wild rye in contaminated soil by 133 % , and marginally increased (c-a.. 1 1 %) 

the germination of meadow brome and streambank wheatgrass in contaminated soil. 

Some bacteria-plant combinations reduced germination in contaminated soil, egg. 

inoculation of common brorne with CB35 decreased germination by 47%. I also 

assessed the ability of strains R75 and CB35 to degrade ZCBA in soil in the absence of 

plants. Neither strain significantly enhanced disappearance of ZCBA compared to 

unplanted soil (Fig. 4.1), although a mixture of R75 and CB35 increased 2CBA 

disappearance by 12 % and 15 % at the 800 and 400 rng kg-' levels, respectively. 

4.4.2. Effect of bacterial inoculants on ZCBA disappearance by forage grasses 

Inoculation of meadow brome with either strain R75, CB35 or a mixture of these strains 

increased (P < 0.05) ZCBA disappearance (Fig. 4.2 .). Inoculation treatments enhanced 

2CBA disappearance similarly at both 400 and 800 contamination levels by 18-28 % with 

little difference between treatments and no difference between soil types. Although 

bacterial inoculants increased the biomass of meadow brome, there was no consistent 

trend and no apparent relationship to ZCBA disappearance (data not shown). 

Inoculation of streambank wheatgrass with either strain R75, CB35 or a mixture 

of these strains increased (P s 0.05) ZCBA disappearance compared to the unplanted 

control to a similar extent in all three tested soils (Fig. 4.3.). However in contrast to 

meadow brome, inoculation of streambank w heatgrass affected ZCBA disappearance 

differently at 400 and 800 mg kg-' contamination levels. For example. the mixed 

inoculant was the best treatment with this forage grass at the 400 mg kg-' level, but had 

little effect at the 800 mg kg-' level when compared to the uninoculated plant. Again, 

there was no apparent relationship between disappearance and plant biomass (data not 

shown). The response of Dahurian wild rye to inoculants and their effect on ZCBA 

disappearance was similar to that observed for streambank wheatgrass, and the mixed 

inoculant was the most effective inoculant of Dahurian wild rye at both contamination 

levels (Fig. 4.4.). 



Fig. 4.1. 

Soil P. aeruginosa P. savastanoi P. aeruginosa R75 
R75 CB35 + P. savastanoi CB35 

TREATMENT 

The effect of inoculating dead seed with bacteria on 2CBA levels in soil 
initially amended with (A) 800 mg kg-' and (B) 400 mg k g ' .  Combined results for the 
Paddockwood and Outlook soils. Streambank wheatgrass seed was autoclaved, 
inoculated with c.n.. 10' cfu seed, 10 seeds added to 160 g of contaminated soil and the 
soil incubated for 42 days in a growth chamber. Least significant (P S0.05) difference 
between treatments is 122 mg kg-' for (A) and 100 mg kg-' for (B). Each bar is the 
combined average of replicate experiments in Paddockwood and Outlook soils. 



Soil Meadow brorne Meadow brorne Meadow brorne Meadow brome 
+ R75 + C835 + R75&CB35 

TREATMENT 

Fig. 4.2. The effect of meadow brorne and bacterial seed inoculants on 2CBA levels 
in soil initially amended with (A) 800 mg kg-' and (B) 400 rng kg-'. meadow brorne was 
inoculated with strain R75 (c.u.. lo7 cfu seed"), strain CB35 (c.a.. lo6 cfu seed-') or 
equal volumes of R75 & CB35 (c-a.. lo7 combined cfu seed-*) and grown for 42 days 
in a growth chamber. Least significant (P 5 0.05) difference between treatments is 122 
mg kg-' for (A) and 100 mg kg-' for (B). Bars significantly (P 10.05) different From 
the uninoculated plant are marked with *. Each bar is the combined average of replicate 
experiments in Paddockwood and Outlook soils. 



Soil Streambank Streambank Streambank Streambank 
wheatgrass wheatgrass wheatgrass wheatgrass 

+ R75 + CB35 + R75&CB35 

TREATMENT 

Fig. 4.3. The effect of streambank wheatgrass and bacterial seed inoculants on ZCBA 
levels in soil initially amended with (A) 800 mg kg-' and (B) 400 rng kg'. Strearnbank 
wheatgrass was inoculated with strain R75 (c.a.. 10' cfu seed-'), strain CB35 (c.u.. 106 
cfu seed-l) or equal volumes of R75 & CB35 (c.a.. lo7 combined cfu seed") and grown 
for 42 days in a growth chamber. Least significant (P~0.05) difference between 
treatments is 122 mg kg-' for (A) and 100 mg kg" for (B). Bars significantly (P 10.05) 
different from the uninoculated plant are marked with *. Each bar is the combined 
average of replicate experiments in Paddockwood and Outlook soils. 



Soil hhurian Ve Dahurian rye Dahurian rye Dahurian rye 
+ R75 + CB35 + R75&CB35 

TREATMENT 

Fig. 4.4. The effect of Dahurian wild rye and bacterial seed inoculants on 2CBA levels 
in soil initially amended with (A) 800 mg kg-' and (B) 400 mg kg-'. Dahurian wild rye 
was inoculaicd with strain R75 (c. a. . 1 O7 cfu seed-'), strain CB35 (c. a. . 106 cfu seed-') 
or equal volumes of R75 & CB35 (c.a.. 107 combined cfu seed-') and grown for 42 days 
in a growth chamber. Least significant (P s 0.05) difference between treatments is 122 
mg kg-' for (A) and 100 mg kg-' for (B). Bars significantly (P10.05) different from 
the uninoculated plant are marked with *. Each bar is the combined average of replicate 
experiments in Paddockwood and Outlook soils. 



4.5. DISCUSSION 

1 found that the prairie grasses meadow brome, Dahurian wild rye and 

streambank wheatgrass not only grew in ZCBA contaminated soil, but also enhanced the 

disappearance of this chlorinated aromatic. These plants enhanced any disappearance 

that occurred in non-planted soil by 11 to 63 %. The growth of plants in contaminated 

soil is known to reduce contaminant levels (Anderson et al. 1993; Anderson et aI. 1994; 

Anderson and Walton 1995; Aprill and Sims 1990; Cunningham et al. 1995; Walton and 

Anderson 1990; Ferro et al. 1994; Reilley et al. 1996; Shimp et al. 1993). However, 

seldom have investigators described the process by which they selected their plant 

species or the number of species screened to obtain a plant which degrades 

contaminants. This study suggests that many forage grasses (i-e. 5 /  17), have the 

potential to degrade chlorinated aromatics in soil, and thus a modest sampling of grass 

species common to a geographical region may be a reasonable first step in identifying 

potentially useful plants for the disappearance of contaminants in soil. My results 

support the assertion of Aprill and Sims (1990) that the genetic diversity and dense, 

fibrous rooting system of prairie grasses make them good candidates for remediation 

agents, and confirms the fact that a wide variety of plants can enhance the disappearance 

of contaminants in soil. Thus. it appears that phytoremediation may be an appropriate 

technology for the in situ clean up of shallowly contaminated hazardous waste sites or 

er situ use in land-farming operations. 

There are three suggested mechanisms for the stimulation of soil contaminant 

disappearance by plants: ( 1) non-specific enhancement of microbial communities by the 

plant (Haby and Crowley 1996), (2) enhancement of microbial activity in the 

rhizosphere that protects the plant from contaminants and results in disappearance 

(Walton et al. 1994b), or (3) the development of specific degradative microbial 

communities in the rhizosphere (Ferro et al. 1994). My results for uninoculated plants 

only partially support the first mechanism. For example, four of the five plants that 

grew in ZCBA contaminated soil enhanced disappearance of ZCBA by 48 to 63%. 

Furthermore, common brome grew in 816 mg kg-' ZCBA contaminated soil but had little 



effect on ZCBA levels. Similarly, the growth of streambank wheatgrass and Dahurian 

wild rye had little effect on 2CBA disappearance at the 400 mg kg-' level. Therefore, 

some plants grew in contaminated soil, but failed to support the degradative activity 

required for contaminant disappearance. It is well known that the growth of plants 

results in an increase in the number of microorganisms present in the rhizosphere (i-e., 

the rhizosphere effect). Since I did not assess the population of ZCBA degrading 

microorganisms in the rhizosphere of grasses. I can only assume at this time that the 

enhancement of rhizosphere microorganisms was an important mechanism for the 

disappearance of 2CBA. 

It is unclear if the growth of tolerant plants reduced the toxicity of ZCBA in soil 

to plants as suggested by Walton et al. (1994b). 1 found no relationship bemeen the 

amount of 2CBA degraded and plant biomass, e.g. inoculation of streambank wheatgrass 

with CB35 increased ZCBA disappearance by 20% but had no effect on plant biomass. 

Because plant biomass would normally increase as the toxicity of contaminants in soil 

decreased, it does not appear that the rhizosphere detoxified ZCBA in soil. Plant 

biomass was inversely (P 5 0.04) related to the initial level of contamination in soil (data 

not shown), indicating that plant biomass was sensitive to ZCBA levels in soil. Other 

investigators also have found that plants are good bioindicators of contaminant levels in 

soil (Cunningham et al. 1995: Fletcher et al. 1988: Shirnp e t  al. 1993; Wang and 

Freemark 1995). The detoxification of ZCBA in soil by the rhizosphere of streambank 

wheatgrass or Dahurian wild rye may have occurred, but the benefits the plant received 

from this process was not reflected by increased growth. Furthermore, it is possible 

that a stressed plant may be necessary in order to create the conditions (via root 

exudates etc.) under which degradative bacterial communities flourish. 

In my study, the development of specific bacteria-plant associations stimulated 

contaminant disappearance. This supports the idea that specific degradative communities 

are responsible for contaminant disappearance (Ferro et d. 1994). I found that specific 

rhizosp here inoculants affected bacteria-plant-soil activity such that enhanced 



disappearance of 2CBA occurred. For example, inoculation of meadow brome, 

streambank wheatgrass and Dahurian wild rye with bacterial isolates such as strain R75 ' 

and strain CB35 resulted in a substantial (I3 %-45 %) increase in the amount of 2CBA 

degraded compared to uninoculated plants. Although the seed inoculants R75 and CB35 

increased germination of streambank wheatgrass and Dahurian wiid rye, this increase 

in germination did not lead to increases in plant biomass (data not shown). Hence, it 

is doubtful that this increased germination is the basis of the increased 2CBA 

disappearance seen in inoculated plants. Therefore, the development of specific 

bac teria-plant associations was an important mechanism for the disappearance of 2CB A. 

Generally. inoculants containing the 2CBA-degrading bacterium, CB35, 

performed the best at all 2CBA contamination levels. This supports my hypothesis that 

a seed inoculant could be used to increase the catabolic capacity of the indigenous 

rhizosphere community, and thereby increase the rate of contaminant disappearance. 

The isolate CB35 may have extended the catabolic capacity in the rhizosphere, thereby 

increasing the rate of contaminant disappearance. This extension of degradative 

capacity, while stimulated by CB35 inoculation, may also be the consequence of plant 

mediated interactions. Recent work by Haby and Crowley (1996) demonstrates that the 

growth of plants in soil increases the number of organisms capable of degrading 3CBA 

as a sole or cometabolitic carbon source. They hypothesized that this enhancement was 

due to the provision of labile nutrients by the plant. Similar work has shown that the 

addition of synthetic root exudates to soil increases the disappearance of parathion or 

pyrene (Anderson et al. 1993; Reilley et al. 1996). In a like manner, meadow brome, 

streambank wheatgrass or Dahurian wild rye may have released root exudates or other 

labile nutrients which increased the degradative activity of CB35. 



I found that the enhancement of degradative capacity by bacterial seed inoculants 

was influenced by other microorganisms. Inoculation of R75, a known PGPR and 

incapable of ZCBA disappearance in pure culture, enhanced 2CBA disappearance 

without proportionally increasing plant biomass. Furthermore, inoculation of Dahurian 

wild rye with a combination of R75 and the ZCBA degradative strain CB35, resulted in 

a 12 to 22% increase in ZCBA disappearance over inoculation with CB35 only. 

Apparently, R75 altered rhizosphere processes or root growth in such a way as to 

increase the effectiveness of CB35. This supports my alternative hypothesis, that an 

inoculant might augment degradative rhizosphere processes by enhancing microbial or 

plant activity in the rhizosphere. It is possible that R75 altered the rhizosphere 

community by influencing root exudation of the host plant and hence the activity of 

CB35. Bacteria-bacteria interactions can increase disappearance by degrading toxic 

metabolites of other organisms (Davison et al. 1994), produci~g surfactant (Steffensen 

and Alexander 1995) or alternatively, negatively affect biodegradation by consuming 

scarce nutrients (Steffensen and Alexander 1995) or producing toxic substances which 

result in inoculant die off (Have1 and Reineke 1992; Baniault and Sylvestre 1993). 

A1 ternativel y , strain R75 may have expressed co-metabolic abilities in the rhizosphere 

due to the presence of root exudates or other organisms. 

The initial 2CBA leveI of contamination also influenced the success of inoculants. 

Community composition and abundance of specific members are influenced by the type 

and level of a contaminant (Hicks et al. 1990: Komulainen and MikoIa 1995) and this 

alteration in the indigenous microbial community will affect the performance of 

inoculated strains (van Elsas et al. 1991). Hence, the level of contamination may have 

altered the indigenous microbial community and the effectiveness of the bacterial 

inoculants. Alternatively, the distribution of the contaminant at the lower contamination 

levels may have resulted in a patchy contaminant distribution in the soil matrix and 

hence, degradative bacteria were unable to come into contact with the contaminant. 



My results demonstrate that different forage grasses can be used to enhance the 

disappearance of 2CBA in soil, and that inoculation of these grasses with specific 

bacteria can increase contaminant disappearance in soil. This increase in disappearance 

was not related to increased plant biomass, and was dependent upon the initial level of 

contamination in soil. The best inoculant consisted of a mixture of strain CB35, a 

2CBA degrading bacterium, and strain R75, a PGPR. 



5. DEGRADATION OF CHLORINATED BENZOIC ACID MIXTURES 

BY PLANT-BACTERIA ASSOCIATIONS. 

5.1. ABSTRACT 

Phytoremediation technologies must degrade mixtures of contaminants, as 

most contaminated sites contain mixtures of compounds. This study assessed the 

ability of plant-bacteria associations to degrade mixtures of mono- and di-chlorinated 

benzoic acids. Seventeen forage grasses, and combinations of these grasses with 

several bacterial inoculants, were screened for growth in soil contaminated with 

various concentrations of mono or di-chlor hated benzoic acids. Dahurian wiid rye 

inoculated with a combination of strain R75 and strain CB35 reduced 3CBA levels in 

soil by 74% (i.e.. 583 to 149 mg kg"). Meadow brome inoculated with Alcaligenes 

sp. strain BR60 reduced 2,3-dichlorobenzoic acid (23diCBA) levels in soil by 56 % 

(i.e., 125 to 55 mg kg-'). Altai wild rye (E. angitw) inoculated with strains R75 and 

CB35 reduced 25diCBA levels in soil by 46 % (i-e., 2 1 1 to 1 13 mg kg-'). Two plant- 

bacteria associations and uninoculated Dahurian wild rye also degraded mixtures of 

3CBA. 23diCBA or 25diCBA. When 25diCBA was mixed with 23diCBA, 

uninoculated Dahurian wild rye reduced levels of 25diCBA in soil by 3 1 %. and 

reduced the levels of both 25diCBh and 3CBA by up to 64% when these two 

contaminants were present in a mixture. Similarly, meadow brome inoculated with 

BR60 reduced 23diCBA and 3CBA levels by up to 50%. Levels of all three 

chlorinated benzoic acids were reduced by 53-63 % by Altai wild rye inoculated with 

strains R75 and CB35. These results indicate that plant-bacteria associations can 

tolerate and degrade mixtures of contaminants in soil but that predictions about 

phytoremediation of mixed contaminants may not be straightforward. 



5.2. INTRODUCTION 

Many different plant species enhance contaminant degradation, and a wide 

range of contaminants are amenable to phytorernediation. For exampie, rye-grass 

(Ldium perenne L.) promotes n-alkane degradation (Gunther et al. 1996), 

rhizosp here soil of Kochia scoparia (L. ) . Roth. enhances atrazine degradation 

(Perkovich et al. 1996), Dahurian wild rye and streambank wheatgrass promote 

ZCBA degradation (S iciliano and Germida 1 997c) and crested wheatgrass (Agropyron 

desenorum (Fischer ex Link) Schultes) promotes PCP degradation (Ferro et a1 . 
1994). However, there are few details on protocols used to select these grasses. 

Recently, a basis for the selection of plant species with phytoremediation potential 

has begun to emerge. For example, Donnelly et al. (1994) found that PCB 

degrading bacteria, Alcaligenes eutrophus H850, Pseudomonas putida LB400 and 

Corynebacteriwn sp. MB1 grew on phenolics found in root exudates. Following up 

on this, Fletcher and Hedge (1995) screened 17 plants for production of these 

phenolics and calculated that the rhizosphere of M o m  rubra L. (mulberry) had 

phenolic levels (1 1 pglml of water thought to be in the rhizosphere zone) sufficient 

to support PCB degradation. Similarly , S iciliano and Germida ( 1997~) postulated 

that plants and bacteria might form beneficial associations that would degrade 

toxicants in soil. and developed a screening methodology to identify these 

associations. This latter screening procedure consisted of 1) assessing the 

germination of test plants in contaminated soil, and 2) inoculating grasses that grew 

in contaminated soil with either known plant growth-promoting rh izobacteria or 

bacteria capable of conram inant degradation. 

Chlorinated benzoic acids are common contaminants and arise as byproducts 

of PCB or chlorinated herbicide degradation (Barriault and Sylvestre 1993; Stratford 

et d. 1996). For example, Fava et al. (Fava et al. 1996) observed increases in 

ZCBA and 25diCBA concentrations during 150 hours of PCB degradation by 

Pseudomonas spp. strain CPE 1, in a bioreactor. Furthermore, PCB-contaminated 



sites will contain mixtures of chiorinated benzoic acids as the PCB mixture present in 

commercial PCB formulations (e.g. Aroclorm 1260). degrades (Stratford et al. 

1996). The occurrence of contaminant mixtures may pose a problem in site 

remediation because one toxic component of the mixture may limit degradation of 

other contaminants. For example, Stratford et al. (1996) found that 2,3- 

dichlorobenzoic acid (23diCBA) inhibited ZCBA degradation by the bacterium 

Burholiien'a cepaciu strain JHR22, otherwise capable of ZCBA degradation. 

This study was designed to address two questions. Is the selection procedure 

I developed for plant-bacteria associations capable of degrading ZCBA effective for 

other chlorinated benzoic acids i.e, 3CBA, 23diCBA or 25diCBA? Are 

phytoremediation systems developed to degrade a single contaminant, effective when 

that contaminant is present in a mixture? 

5.3. MATERIALS AND METHODS 

5.3.1. Soil and Forage Grasses 

Surface soil was collected near Outlook, SK, Canada and prepared as 

described in section 3.3.1. 1 contaminated the soil as described in section 4.3.1 with 

the exception that solid 3CBA. 23diCBA or 25diCBA were used instead of ZCBA. 

Seventeen forage grass species (Table 3.2.) were obtained and stored as described in 

Section 3.3.2. 

5.3.3. Bacterial Seed Inoculants 

The following bacterial inoculants were screened for their ability to promote 

phytoremediation: a 8: 1 combination of Pseudomonas aeruginosa R75 and CB35 

known to promote phytoremediation of 2CBA (Siciliano -md Germida 1997~); 

Alcaligenes sp. BR60 known to degrade 3CBA and 3.4-dichlorobenzoate (Nakatsu 

and Wyndham 1993): P. aureofacienr 3732 RN-L11 (lacZY RIP Nal? which was 

originally isolated from wheat and whose presence in non-sterile soil can be 

determined through the use of selective media supplemented with S-bromo-4-chloro- 



3-indolyl-8-D-galactopyranoside (X-Gal) (Angle et al. 1995). All bacteria were 

stored at -40°C in 50% (w/w) glycerolltryptic soy broth. 

To inoculate seed, bacteria were grown for 48 h in [/loth strength TSB, 

centrifuged (15 min at 1700 x g, 5 "C), re-suspended in 10 ml sterile tap water and 

enumerated on TSA (c.a. lo9 cfu ml-l). Seeds were inoculated in a manner similar 

to that described by Nijhuis et al. (1993). Cells (0.5 ml) were added to 3 ml of 40 

% (wlw) gum arabic and added to seeds (5 g). Inoculated seed (c.u. 106 cfu seed-') 

was mixed with five grams CaCO, and used immediately. For treatments involving 

only bacteria and no plant, bacteria were inoculated onto autoclaved meadow brome 

seed (ca. 106 cfu seed-[) and five seeds added per pot. 

5.3.4. Study #1: Selection of Degradative Plant-Bacteria Associations 

To select plants tolerant of CBA, 20 seeds of one of the 16 species being 

screened were added per pot and growth assessed 14 DAP. Seeds of species that 

grew in contaminated soil were inoculated with either strain BR60, strain 3732 RN- 

L11 or a combination of strains R75 and CB35, and planted (n=5) in replicate cups 

(n =5).  Cups were placed in a growth chamber with a 16 h day (23 OC) and 8 h 

night (18OC). Illumination was 350 pmol s-I m". At 28 DAP, pots were harvested 

and the levels of CBA in soil determined by HPLC. 

5.3.5. Study #2: Effect of Contaminant Mixtures on Phytoremediation 

Plant-bacteria associations that successfully remediated 3CBA. 73diCBA or 

ZSdiCBA as individual compounds were tested for their effect on combinations of 

these contaminants. Soil was contaminated with various combinations of 3CBA (400 

m g  kg1), 23diCBA (100 mg kg-I) and 25diCBA (100 rng kg-'). Contaminated soil 

was seeded as described above with the exception that only four replicates were used 

per treatment and only four plant-bacteria associations were investigated: 1) Dahurian 

wild rye, 2) Dahurian wild rye + R75&CB35, 3) Altai wild rye + R75&CB35 and 

4) meadow brome + BR60. Plants were grown for 28 days and CBA levels 



determined by HPLC. 

5.3.6. IFigh Pressure Liquid Chromatography 

Five grams of soil were placed in a 25 ml erlenmeyer flask amended with 10 

mls of pH 9 reverse osmosis water and shaken (140 rpm) on a rotary shaker 

overnight (22°C). An aliquot (2 ml) was centrifuged (10 min, 10,000 rpm) and the 

supernatant injected (50 pL) into a HPLC system equipped with a model 510 pump, 

an autoinjector (Waters 700 Satellite WISP) and a W detector (Waters 486 Tunabie 

Absorbance Detector) set at 229 nm. The chlorobenzoic acids were separated on a 

Waters' Nova-Pak C-18 reverse-phase column (15 crn x 3.9 mm i.d.) maintained at 

22°C. The mobile phase was a 1: 1 mixture of methanol and 1 % (v/v) acetic acid 

and the flow rate was 1 rnl m i d .  Chromatograms were processed by a Baseline 810 

Chromatography Work Station. Under these conditions, 23diCBA eluted at 5.2 

minutes, 25diCBA at 6.7 minutes, and 3CBA at 8.2 minutes. Extraction efficiencies 

for single contaminants ranged from 82% for 25diCBA to 95 % for 3CBA. 

Ex~action of chlorinated bemoic acid mixtures had a similar extraction efficiency to 

single contaminant extraction. 

5.3.7. Statistics 

Study # I  was repeated three times with five treatment replicates per 

experiment. Study #2 was repeated twice with four treatment replicates. Data were 

analyzed by ANOVA and means separated using a protected Student's t-test. 

5.4. RESULTS 

5.4.1. Study #1: Selection of Degradative Plant-Bacteria Associations 
Fourteen of the 17 grasses tested germinated in soil contaminated with 800 

mg kg-' 3CBA, but only meadow brome, Dahurian wild rye and Altai wild rye 

exhibited substantial growth 14 DAP (Table 5.1 .). No plants grew in soil 

contaminated with 800 or 400 mg kg-' 23diCBA or ZSdiCBA, and only meadow 
brome and Altai wild rye grew substantially at 200 rng kg-'. Hence, the 200 rng kg" 

level was used for the remainder of the study. Eight out of 17 grasses germinated in 

ZSdiCBA (200 mg kg-') contaminated soil but only meadow brome and Altai wild rye 



TABLE 5.1. Growth of forage grasses 14 DAP in soil contaminated with CBA. 

Common Name Scientific Name Plant Growtha 

Contaminant Levels (mg kg-') 

Common brome 

Dahurian wild rye 

Intermediate wheat grass 

Meadow brorne 

Streambank wheat grass 

Tall wheat grass 

Northern wheat grass 

Reed canary 

Altai wild rye 

Crested wheat grass 

Perennial rye grass 

Russian wild rye 

Sheep fescue 

Slender wheat grass 

Orchard grass 

Canada blue grass 

Timothy 

8. inennis 

E. dauricus 

A. intennedium 

8. biebersteinii 

A. riparium 

A. elongaturn 

A. daqmachyum 

P. arundinacea 

E. angitur 

A. cristatum 

L. perenne 

E. junceus 

F. ovina 

A. trachycaulum 

D. glornerata 

P. compressa 

P. pratense 

a Gradient of visual responses: -, no seed germination: +, seed germination; + +, 
seed germination with leaf at coleoptile tip; ++ +, seed germination with first leaf 
through coleoptile. 



grew substantially by 28 DAP. After selection of grasses tolerant of CBA, I 

determined if the grasses by themselves or in combination with selected bacterial 

inoculants could decrease chlorinated benzoic acid levels in soil. 

Levels of 3CBA in unplanted, non-inoculated soil decreased from 800 mg kg-' 

to 583 rng kg-' over the 28 day incubation period (Table 5.2.). Surprisingly, non- 

inoculated Altai wild rye survived in contaminated soil but died when inoculated with 

strain BR60 or a combination of strains R75 and CB35. Inoculation of Altai wild 

rye with strain 3732 RN-L11 had no effect on 3CBA levels. In contrast, inoculation 

of Dahurian wild rye with a combination of strains R75 and CB35 decreased 

(P < 0.05) 3CBA levels to 33 % that of uninoculated plants or 26 % that of control 

soil. The other inoculants, strain BR60 or strain 3732 RN-L11, had no effect on 

3CBA degradation by Dahurian wild rye. Meadow brome, which initially 

germinated in contaminated soil, died by 28 DAP. Interestingly, strain BR60 which 

reduced 3CBA levels to 74% that of control in the absence of a plant, had no effect 

on 2CBA degradation by Dahurian wild rye and caused the death of Altai wild rye 

and meadow brome. The combination of strains R75 and CB35 had no effect on 

3CBA levels in the absence of a plant. 

Levels of 23diCBA in unplanted, non-inoculated soil decreased by 38 % 

during the course of the study From 200 mg kg-' to 125 mg kg-' (Table 5.2.). 

Furthermore. inoculation of Altai wild rye with a combination of strains R75 and 

CB35 decreased (P I 0.05) 23diCBA levels to 67 % that of uninoculated plants, 

whereas inoculation with strain 3732 RN-L 1 1 had no effect on 23diCBA levels and 

strain BR60 caused plant death. Inoculation of meadow brome with strain BR60 

decreased (Ps0.05) 23diCBA levels to 44% that of the uninoculated plant. In 

contrast, inoculation of meadow brome with the combination of strains R75 and 

CB35 or strain 3732 RN-Ll 1 caused plant death. Inoculants had no effect on 

23diCBA levels in the absence of a plant. 



TABLE 5.2. Effect on plant-bacteria associations on 3CBA, 23diCBA or 25diCBA 

levels 28 DAP. 

Plant 

Treatment Contaminant (mg kg-') 

Control 

Mtai wild rye 

Altai wild rye 

AItai wild rye 

Altai wild rye 

Dahurian wild rye 

D3huria.n wild rye 

Dahurian wild rye 

Dahurian wild rye 

Meadow brome 

Meadow brome 

Meadow brome 

Meadow brome 

None 

None 

None 

None 

None 

R75 and CB35 

3732 RN-L11 

BR60 

None 

R75 and CB35 

3732 RN-L1 1 

BR60 

None 

R75 and CB35 

3732 RN-L11 

BR6O 

R75 and CB35 

3732 RN-L11 

B R60 

a Forty eight hour cultures (c.a. lo9 cfu seed") of strain R75 and CB35, P. 
aureofaciens strain 3732 RN-Ll I or Aicaiigenes sp. BR60 were inoculated onto seeds 
( c a .  106 cfu seed-'). For inoculants without plants. seed was first autoclaved, 
inoculated and planted in soil (1V cfu g-' of soil). 

ND. contaminant level not determined because plants died over course of experiment. 



Unlike 3CBA or 23diCBA, incubating soil for 28 days had no effect on 25diCBA 

levels. Altai wild rye inoculated with a combination of straim R75 and CB35 decreased ' 

(P ~0.05) 25diCBA levels to 66 % that of the uninoculated plant. Inoculation with strain 

BR60 caused plant death and strain 3732 RN-Lll had no effect on 2SdiCBA levels. A 

combination of strains R75 and CB35 inoculated onto meadow brome had no effect on 

25diCBA levels, and inoculation with strains 3732 RN-LI 1 or BR60 resulted in plant 

death. A combination of strains R75 and CB35 in the absence of plants decreased 

(P~0.05) 25diCBA levels to 76% that of control soil. 

5.4.2. Study #2: Effect of Mixtures on Phytoremediation 

A mixture of 23diCBA (100 mg kg-') and 25diCBA (100 mg kg-') did not 

degrade in unplanted control soil by 28 DAP (Fig. 5.1.A.). Dahurian wild rye 

decreased (PS0.05) 25diCBA levels to 69% that of control soil but had no effect on 

23diCBA levels. Inoculation of Dahurian wild rye with a combination of strains R75 

and CB35 caused plant death. Altai wild rye inoculated with strains R75 and CB35 had 

no effect on a mixture of these contaminants. Meadow brome inoculated with strain 

BR60 survived in soil contaminated with a mixture of 23diCBA and 25diCBA (100 rng 

kg-' each) but had no effect on CBA levels. 

The combination of 25diCBA and 3CBA was lethal to most plant bacteria 

associations and no 25diCBA or 3CBA degraded in soil over a 28 day period (Fig. 

5.1 .EL). Only uninoculated Dahurian wild rye survived in this soil, and it decreased 

(P 5 0.05) 25diCBA levels to 5 1 % and 3CBA to 36 % that of control soil. 

In a mixture of 23diCBA and 3CBA, levels of 3CBA in control soil were 

reduced from an initial 400 mg kg-' to 190 mg kg-' by 28 DAP but no 23diCBA was 

degraded (Fig. 5.1. C .). This mixture was only lethal to uninoculated Dahurian wild 

rye. Inoculation of Dahurian wild rye with strains R75 and CB35 allowed Dahurian 

wild rye to survive in contaminated soil, but had no effect on CBA levels. Altai wild 

rye inoculated with strains R75 and CB35 decreased 3CBA levels to 48% but had no 



effect on 23diCBA levels. The most successful treatment was Meadow brome 

inoculated with strain BR60 which decreased levels of 23diCBA to 61 % and 3CBA to 

50% that of control soil. 

In a mixture of 23diCBA, 25diCBA and 3CBA no degradation of CBA was 

observed in control soil (Fig. 5.1. D.). This mixture was lethal to inoculated and non- 

inoculated Dahurian wild rye. Altai wild rye inoculated with strains R75 and CB35 

decreased levels of 23diCBA to 47%, 25diCBA to 42% and 3CBA to 37% that of 

control soil. Inoculation of meadow brome with strain BR60 had no effect on CBA 

levels. 



Control Dahurian Dahurian 

wild rye wild rye 
R75+CB35 

Altai wild Meadow 

brome 
BR60 

Fig. 5.1. Effect of contaminant mixtures on the survival and degradative activity of 
plant-bacteria associations 28 days after planting. (A); 23diCBA plus 2SdiCBA. (B); 
25diCBA plus 3CBA. (C); 23diCBA plus 3CBA, (D); 23diCBA plus 2SdiCBA plus 
3CBA. The symbol NG indicates that plants were dead by 28 days after planting and 
contaminant levels were not determined. Di-chlorinated benzoic acids were initially 
added at levels of 100 mg kg-' and 3CBA at 400 mg kg? Each bar is the average of 
two experiments with four replicates each. Bars significantly different than connol are 
marked with; * PsO. 10, ** P10.05 or *** P~0.01. 



5.5. DISCUSSION 

Wacken and Allan (1995) noted the difficulty in developing plant systems able * 

to degrade contaminants in soil due to the wide range of possible plant-microbesoil 

interactions. They suggested that a directed research agenda should be developed aimed 

at identifying specific plant-microbe associations that degrade contaminants in soil. In 

this study I evaluated a screening procedure for identifying plant bacteria associations 

and successfully isolated three associations that degraded three different contaminants: 

Dahurian wild rye inoculated with strains R75 and CB35 degraded 3CBA, meadow 

brome inoculated with strain BR60 degraded 23diCBA and Altai wild rye inoculated 

with strains R75 and CB35 degraded 25diCBA. Furthermore, in a previous study I 

isolated two plant bacteria associations that degraded 2CBA in soil (Siciliano and 

Germida 1997~). Hence, it appears that the selection procedure developed by Siciliano 

and Germida (1997~) is effective in identifying plant-bacteria associations that degrade 

CBA in soil. Several investigators have suggested that specific p lant-bacteria 

associations are required to reduce levels of contaminants in soil (Crowley et al. 1996; 

Pfender 1996; Siciliano and Germida, 1995). and my present study supports this view. 

Some plants grew in contaminated soil but did not degrade the contaminant. For 

example, Altai wild rye grew in 2SdiCBA contaminated soil but had no effect on 

25diCBA levels, and meadow brorne grew in 23diCBA contaminated soil with no effect 

on 23diCBA levels. Similarly, Alvey and Crowley (1996) found that corn grew in 

atrazine-contaminated soil but had no effect on atrazine levels, and Pfender (1996) found 

that millet grew in PCP contaminated soil but had no effect on PCP levels. In my 

present study oniy inoculated plants reduced CBA levels in soil. However, unlike 

studies by Alvey and Crowley (1996) or Pfender (1996). my inoculants did not 

significantly enhance degradation in the absence of a plant. This suggests that specific 

plant-bacteria associations that reduce CBA levels in soil were formed during 

phytorernediation. 

It is important to note that my results are limited to the readily extractable 

portion of CBA and can not differentiate between sequestration and degradation. 



However, since some plants grew in contaminated soil but had no effect on the readily 

extractable levels of contaminants, any sequestration that occurred would be plant 

specific. In addition, it is well known that the toxicity of contaminants is related to their 

b ioavailab ility (Alexander 1 995: Hrudey and Pollard 1993) and thus, technologies that 

reduce levels of readily extractable contaminants may have a role to play during 

remedial actions. 

How and why degradative plant-bacteria associations form is still in question. 

Pfender (1996) suggested that bacterial inoculants might protect plants from toxicants 

in soil, whereas Crowley et al. (1996) suggested that plants provide a niche for bacteria 

to maintain their degradative plasmids. In my study inoculants did not reduce CBA 

phytotoxicity and many inoculants caused plant death in contaminated soil. This may 

be related to a toxic intermediate being produced in the Qgradative pathway of 

chlorinated compounds as noted by Barriault and Sylvesae (1993), or production of a 

bacterial toxin in response to contamination. Siciliano and Germida (1995) found that 

growth of certain plant-bacteria associations in soil resulted in soil that was phytotoxic 

to other plants. Other investigators have also suggested that bacterial toxin production 

may be the cause of inoculant death in soil microcosms (Have1 and Reineke 1992). On 

the other hand, plants may provide a specific niche for bacterial inoculants and 

conversely, inoculants may require specific plants to reduce contaminant levels in soil. 

For example, Dahurian wild rye inoculated with strains R75 and CB35 had no effect on 

the soil's potential to degrade 25diCBA (Siciliano and Germida, unpublished results) and 

in this study, inoculated Dahurian wild rye did not grow in 25diCBA contaminated soil. 

Furthermore, this inoculant had no effect on 25diCBA in the absence of a plant. 

However when inoculated onto Altai wild rye, the R75 and CB35 inoculant reduced 

25diCBA levels. Hence, it appears that Altai wild rye provides an environment suitable 

for the degradation of 25diCBA by strains R75 and CB35. Similarly. strain BR60 in 

association with meadow brome significantly reduced 23diCBA levels but was not 

effective in the absence of a plant, and caused the death of other plant species. 



Some plants appear to have intrinsic bioremediation activity, whereas others 

require bacterial inoculants to reduce contaminant levels in soil. In this study, Dahurian 

wild rye decreased 3CBA to 77% of control soil and inoculation with strains R75 and 

CB35 decreased 3CBA levels to 26% that of control soil. Similarly, I previously noted 

that Dahurian wild rye reduced 2CBA levels in soil and inoculation increased this 

degradation (S iciliano and Germida 1997~). Other investigators have found that bean 

(Phaseolus vulgaris), rye-grass and crested wheatgrass degraded contaminants in soil 

without being inoculated (Gunther et al. 1996; Crowley et al. 1996; Pfender 1996). The 

intrinsic bioremediation activity may be due to enzyme production as suggested by 

Schnoor et al. (1995), root peroxidases as described by Adler (1994) or plant uptake of 

toxicants. In contrast, meadow brome had no effect on 23diCBA levels, but upon 

inoculation with BR60 the 23diCBA levels were reduced to 44% that of control soil. 

Similarly, Pfender (1996) found that millet had no effect on PCP levels in soil until 

inoculated with a PCP degrading bacterium. This suggests some sort of niche creation 

by the plant for the inoculum as postulated by Crowley et al. (1 996) Supporting this, 

Hedge and Fletcher (1996) found that phenols released by plants can support the growth 

of PCB degrading bacteria and suggested that phenol provision via root exudates may 

allow the development and maintenance of PCB degrading communities in rhizosphere 

soil. 

In this study, plant-bacteria associations developed for degrading a specific 

compound such as 3CBA, rarely degraded this compound when it was present in a 

mixture of other CBA. Other contaminants present in the mixture may have been 

phytotoxic or inhibited catabolic activity. For example, Dahurian wild rye inoculated 

with strains R75 and CB35 significantly reduced 3CBA levels when it was present as 

a single contaminant but did not survive most contaminant mixtures, and when it did so 

had no effect on 3CBA levels in soil. I found that 2CBA was toxic to a wide range of 

grasses (Siciliano et al. 1997) and that 23diCBA, 25diCBA and 3CBA were also toxic 

(Siciliano and Germida, unpublished results). Despite this phytotoxicity, some plant- 

bacteria associations grew in contaminated soil but had no effect on contaminant levels. 



For example, inoculated Altai wild rye and meadow brome survived a mixture of 

23diCBA and 25diCBA but had no effect on CBA levels in soil. This may be because 

the degradation of CBA was lethal to the bacterial inoculant as noted by Havel and 

Reineke (1992) or interfered with the catabolic activity of bacteria (Barriault and 

Sylvestre 1993; Stratford et al. 1996). Understanding the effect of mixtures on 

inoculant strain surival will require further empirical work. 

The interaction between mixtures of contaminants and plant-bacteria associations 

needs further investigation. For example, meadow brome inoculated with BR60 reduced 

levels of 23diCBA only when 25diCBA was not present in h e  contaminant mixture. 

In the absence of 23diCBA, this plant-bacteria association did not survive 3CBA 

contaminated soil. Hence, it appears that 23diCBA protected meadow brome plus BR60 

from 3CBA toxicity, and 25diCBA prevented this association From degrading other 

CBA. Similarly, Altai wild rye inoculated with R75 and CB35 survived in the presence 

of 23diCBA and CBA levels were reduced only in the presence of 3CBA. The ability 

to isolate p lant-bacteria associations that degrade contaminants in so i1 is an important 

first step in developing a p hytoremediation technology. However, the inability to 

predict phytoremediation activity in contaminant mixtures may hamper efforts to 

implement phytoremediation technologies in the field. 



6. ENHANCED PHYTOWMEDLA'MON OF CHLOROBENZOATES IN 

RHIZOSPHERE SOIL. 

6.1. ABSTRACT 

The use of plants to detoxify contaminated soil sites has the potential to be a cost 

effective alternative to traditional remediation technologies. However, plant-bacteria 

interactions in contaminated soils are not well understood. In this study I investigated 

the effect of bacterial seed inoculants on the rhizosphere community during the reduction 

of 2-chlorobenzoic acid (2CBA) levels by Dahurian wild rye (Elymus dauricur). Soil 

was amended with 450 mg kg-' ZCBA and stored for 2 years, at which time the 

detectable ZCBA level was 61 mg kg-'. Dahurian wild rye inoculated with either 

Pseudomonas aeruginosa strain R75, P. s a v a n ~ o i  strain CB35 or a 1: 1 mixture of 

these bacteria was grown in contaminated soil for 56 days in a growth chamber. The 

potential of rhizosphere soil to degrade 3-chlorobenzoic acid (3CBA), a contaminant 

with a similar bacterial degradation pathway to ZCBA, versus 2,3-dichlorobenzoic acid 

(23diCBA) or 2,5-dichlorobenzoic acid (tSdiCBA), contaminants with bacterial 

degradation pathways dissimilar to ZCBA, was also assessed. Inoculating Dahurian wild 

rye with the mixed inoculum decreased the extractable ZCBA from 61 mg kg1 to 29 mg 

kg-', 56 days after planting but had no effect on plant growth. Inoculating Dahurian 

wild rye with a mixture of strains R75 and CB35 increased the potential of rhizosphere 

microorganisms to reduce 3CBA levels by 17% but had no effect on levels of 23diCBA 

or 25diCBA. In a sterile hydroponic plant growth system, inoculation of Dahurian wild 

rye had no effect on ZCBA levels: although, the inoculum became established and grew 

in the hydroponic solution indicating that inoculants required an unknown soil factor to 

degrade ZCBA. Bacterial seed inoculants selectively 

rhizosphere community to degrade certain compounds 

enhanced the potential of the 

without affecting heterotrophic 



bacterial populations. 

6.2. INTRODUCTION 

Phytoremediation uses plants and their associated microbial communities to 

degrade. sequester or immobilize toxicants in soil. It is well known that microbes in 

rhizosphere soil are capable of degrading a variety of contaminants (Alvey and Crowley 

1996: Giinther et al., 1996: Perkovich et al.,  1996). Furthermore, inoculation of plants 

with selected bacteria can increase phytoremediation activity. S iciliano and Gemida 

(1997) found that certain plants decreased 2-chlorobenzoic acid (ZCBA) levels in soil, 

and that inoculation of these plants with specific bacterial seed inoculants increased 

ZCBA degradation. For example, growth of Dahurian wild rye (Ebrnus dauriczu) 

increased ZCBA degradation by 200% compared to bulk soil, and 2CBA levels were 

further reduced by inoculating seeds with Pseudomonas aeruginosa strain R75, P. 

savastanoi strain CB35 or a mixture of these two strains. Similarly, Crowley et al. 

(1996) found that inoculation of bean (Phaseolus vulgaris) with P. fluorescenr 2-79 RLD 

increased 2.5-dichlorobenzoic acid (25diCBA) degradation. Furthermore, inoculation 

of corn with a consortium of Clavibocter michiganese, Pseudomonas sp., and Cytophaga 

sp. increased atrazine mineralization (Alvey and Crowley 1996). 

Ecological interactions between plants, indigenous bacteria and inoculated 

bacteria that increase degradation in contaminated soil are not completely understood. 

Inoculants may increase phytoremediation activity by enhancing the " rhizosphere effectw 

(Siciliano and Germida. 1997). This effect, i.  e. a non-specific increase in microbial 

numbers and activity due to nutrient release by plants, has been postulated by a number 

of researchers to be a possible mechanism in phytoremediation systems (Haby and 

Crowiey , 1996: Giinther et a[. , 1996). Bacterial seed inckulants are known to increase 

root biomass, length or exudation (Hoflich et al., 1995; Schippers et al., 1995). any of 

which might increase the "rhizosphere effect". Alternatively, bacterial inoculants might 

selectively increase the capacity of the rhizosphere community to degrade contaminants 



(S iciliano and Germida, 1997). For example, Pfender (1 996) found that inoculating 

millet (Panicurn mikaceium L.), sensitive to pentachlorophenol (PCP), with a PCP 

degrading pseudomonad reduced the phytotoxicity of PCP to millet and thereby allowed 

millet to grow in PCP contaminated soil. 

The purpose of this study was to determine if bacterial inoculants increased 

phytoremediation of ZCBA by either enhancing the "rhizosphere effect", the catabolic 

capacity of the rhizosphere community or both simultaneously. To differentiate between 

these two processes, degradation of 3-chlorobenzoic acid (3CBA), 2,3-dichlorobenzoic 

(23diCBA) or 2.5-dichlorobenzoic acid (2SdiCBA) after the soil had been subjected to 

phytoremediation was assessed. Microbial degradation of ZCBA via the 1.6-dioxygenase 

pathway produces 3-chlorocatechol which is also an intermediate in the 3CBA 

degradation pathway. Hence, 2CBA and 3CBA often can be degraded by similar 

organisms. In contrast, degradation of 23diCBA and 25diCBA produces 4- 

chlorocatechol which is not involved in the ZCBA degradation pathway because 1.2- 

dioxygenation of 2CBA results in the spontaneous dechlorination and decarboxylation 

of ZCBA resulting in catechol (Hickey and Focht, 1990). Thus, if strain CB35 

enhanced the catabolic capacity of the rhizosphere in a selective manner. I would expect 

to see increased degradation of 3CBA but not 23diCBA or 25diCBA due to the different 

catabolic pathways involved. Alternatively, if strain CB35 enhanced the rhizosphere 

effect in a non-selective manner, I would expect to see enhanced degradation of all three 

contaminants. Further, I used hydroponic systems to determine if the inoculants 

required the presence of other soil microorganisms or abiotic factors to increase the 

reduction in ZCBA levels by plants. The use of sterile hydroponic systems allowed us 

to differentiate between plant mediated ZCBA degradation and those processes requiring 

introduced or indigenous microorganisms. 



6.3. I~IETHODS 

6.3.1. Soil 

Outlook soil initially contaminated during the study described in Section 4.3. 1.' 

was used in this study. At the end of the study described in Section 3, all contaminated 

soil was bulked together, allowed to stand in pots for one week and stored moist c.a. 

301 moisture holding capacity, in metal cans for two years. For the present study, the 

stored soil was thoroughly mixed and the residual extractable ZCBA level determined 

on six sub-samples (see below) was 63 mg kg-' with a standard deviation of 5.1. 

6.3.2. Forage grasses and bacterial inoculants 

The plant-bacteria combinations of Dahurian wild rye-Pseudomonas aeruginosa 

strain R75, Dahurian wild rye-P. savastanoi strain CB35 and Dahurian wild rye-strains 

R75+CB35 were used in this study. Bacteria were stored and inocuiated onto seeds as 

described in Section 4.3.2. For treatments involving only inoculants and no plants, 

bacteria were inoculated onto autoclaved Dahurian wild rye seed. 

6.3.3. Effect of plant bacteria associations on ZCBA levels in soil 

Initially, I investigated the degradation of "agedw ZCBA in soil by Dahurian wild 

rye-bacterial inoculant associations. Seeds (n = 5) inoculated with strain R75 (ca. 106 

cfu seed-'). strain CB35 (ca. lo6 cfu seed-') or a mixture of strains R75 and CB35 (ca. 

LO7 combined cfu seed-') were planted in replicate cups (n=5) containing 160 g of 

contaminated or uncontaminated soil maintained at -0.33 kPa moisture capacity. Cups 

were placed in a growth chamber with a 16 h day (23°C) and 8 h night (18°C). 

illumination was 350 pmol s-I m". Replicate samples (n=5) for each treatment were 

harvested at 14, 21, 28, 35, 49 and 56 days after planting (DAP). At harvest, the 

ZCBA level in soil was determined by high pressure liquid chromatography (HPLC). 

The effect of bacterial seed inoculants on plant growth parameters and the soil's 

heterotrophic bacterial population was determined. Shoot and root dry weight were 



determined by standard procedures. A sub-sample (0.5 g) of the root system was 

rehydrated for 2 hours, stained with 1 % (w/w) crystal violet for 24 hours and root 

length determined by computer image analyses (Farrell et al., 1993). Sub-samples of 

soil collected from pots were frozen at -20°C and the heterotrophic soil bacteria 

population assessed on 11 10 TSB solidified with 1.5 % agar (TSA) plates. 

The effect of bioremediation treatments on the rhizosphere soil's potential to 

degrade mono-chlorinated benzoic acids i-e. 3-chlorobenzoic acid (3CBA) and di- 

chlorinated benzoic acids i-e.  2,3-dichlorobenzoic acid (23diCBA) and 2.5- 

dichlorobenzoic acid (25diCBA) was determined. Soil (5 g) from cups harvested in the 

growth chamber study was placed into a 20 ml scintillation vial (n=3) and amended 

with 1 ml of a 400 mg L-l solution of 3CBA, 23diCBA or 25diCBA for a final soil 

concentration of 80 mg kg-'. Mercuric chloride was added (0.5ml of 3 % HgClJ to a 

replicate soil sample as an abiotic controi. The vials were placed in a plastic bag and 

incubated for 7 days at 22°C. The level of 3CBA, 23diCBA or 2SdiCBA in soil was 

determined by HPLC. 

6.3.4. Hydroponic experiments 

The ability of Dahurian wild rye and the bacterial inoculants to reduce 2CBA 

levels in hydroponic solution was assessed. The system was similar to that described 

by van Overbeek and van Elsas (1995), and consisted of a 250 x 20 mm glass tube 

containing 20 mls of M9 growth medium and 2.5 grams of dried, washed perlite. 

Dahurian wild rye was used as a positive phytoremediation plant and Meadow brome 

(Bromus biebersteinii) was 'used as a negative control unable to degrade low levels i. e., 

200 mg kg-', of ZCBA in soil (see Chapter 3). Seed was surface sterilized by a 15 

minute wash in 1.5 % (wfv) sodium hypochlorite containing a drop of Tween 20 and 

rinsed twice with sterile water. Bacteria were grown for 48 hours in TSB. centrifuged 

( 15 min at 1700 x g, 5 "C) , re-suspended in 10 mls sterile, tap water and enumerated 

on TSA (ca. lo9 cfu ml-l). The inoculation procedure was similar to that used by 

Nijhuis et al. (1993). Cells (0.5 ml) were added to 3 ml of 40% (wlw) gum arabic and 



added to surface sterilized seeds (5 g). Inoculated seeds (cu. 106 cfu seed'' enumerated 

on TSA) were mixed with CaCO, (5 g) and used immediately. One seed was planted 

per tube, covered with sterile perlite (0.5 g) and allowed to grow for 2 1 days with a 16 

h day (23"C), 8 h night (18°C) and 350 prnol s-I m-2 illumination. The 2CBA level in 

hydroponic solution was determined as described in Section 5.3.6. 

Bacteria were enumerated on two different media. The heteronophic bacteria 

in the hydroponic solution were enumerated on TSA. Strains R75 and CB35 were 

enumerated on a selective medium (TSA+ AB) composed of TSA supplemented with the 

antibiotics (Sigma), 75 mg Chlorarnphenicol L*', 75 mg Novobiocin L", 5 mg 

Vancomycin L-' and 100 mg Cycloheximide LA The efficiency and selectivity of this 

medium were determined by spread plating known concentrations of pure cultures of 

R75 and CB35 onto both TSA and the selective medium. In addition, soil slurries from 

three different soils, Outlook (Sandy Loam), Paddockwood (Loam) and Allan (Clay 

Loam) were plated out onto TSA and TSA+AB. 

6.3.5. Statistical Analysis 

The growth chamber experiment was designed as a 'l(p1ant) x 4(inoculant) x 

b(samp1ing time) factorial experiment with sampling times designated a random factor. 

Tukey's honestly significant difference method was used for unplanned comparisons. 

The rate of 2CBA degradation of inoculated and non-inoculated Dahurian wild rye was 

determined by linear regression (Cohort Solutions. CA) and significance tests performed 

using the parallel line approach detailed by Mead et al. (1 993). The Pearson correlation 

between percent ZCBA degraded and the potential of the soil to degrade other 

compounds was determined using Costat's correlation program (Cohort Solutions. CA). 

The hydroponic experiment was designed as a 3(plant) x Z(inocu1ant) factorial repeated 

twice. 



6.4. RESULTS 

6.4.1. Reduction of "aged" ZCBA levels in soil by plant-bacteria associations 

Growth of Dahurian wild rye decreased @10.05) 2CBA levels by 36% 

compared to non-p lamed soil (Fig. 6.1. ) . Furthermore, inoculating Dahurian wild rye 

with the mixed inoculant increased @ 10.05) degradation by 26% compared to the non- 

inoculated plant. Inoculating Dahurian wild rye with the individual inoculants R75 or 

CB35 decreased ZCBA levels only slightly ca. 10% compared to the uninoculated plant 

and ca. 44% compared to control soil. Inoculating soil with bacterial inoculants in the 

absence of Dahurian wild rye reduced @ 10.05) ZCBA levels by ca. 18 2 compared to 

control soil. 

The reduction of ZCBA levels by p lant-inoculant treatments was strongly 

dependent @ 10.003) on time. For example, ZCBA levels remained unchanged in 

unplanted, uninoculated soil, whereas the growth of Dahurian wild rye decreased ZCBA 

levels by 0.68 mg ZCBA day-' (?=0.85; p 10.01). Inoculation of Dahurian wild rye 

with strain R75 increased @ 1 0.05) the rate of 2CBA degradation to 1.13 mg 2CBA 

day-' (? =O. 98; p 1 0 . 0  1 ) .  Inoculation with strain CB35 or a mixture of strains R75 and 

CB35 reduced ZCBA levels by 0.75 (i=0.70: p10.02) and 0.78 mg ZCBA day-' 

(i=0.86; p 10.01), respectively. 

The bacterial seed inoculants had no effect on plant parameters during the course 

of the experiment (Fig. 6.2.). The R75 inoculated plants tended to have greater shoot 

mass and root length compared to the uninoculated control. By 35 days after planting, 

root mass and length appeared to plateau and shoot mass only increased for plants 

inoculated with R75. Similarly, inoculants had little effect on plant growth in non- 

contaminated soil. Plant growth in non-contaminated soil was similar to that seen in 

contaminated soil, with shoot mass approximately 12 % greater and root length 30% 

longer in non-contaminated compared to contaminated soil. 



Treatment 

Fig. 6.1. Reduction of  2CBA levels in soil by Dahurian wild rye, bacterial inoculants 
(104 cfu g-') and Dahurian wild rye inoculated with bacteria (106 cfu seed-') at 56 days. 
Dahurian wild rye was inoculated with P. aeruginosa strain R75, P. savactanoi strain 
CB35 or an equal mixture of these two bacteria. Bars are the average of 30 samples 
taken over a 56 day period. Bars significantly (ps0.05) different than the control 
treatment are marked with an *. 



The effect of inoculants on the potential of rhizosphere microorganisms to 

degrade contaminants other than 3CBA was determined. In non-planted, uninoculated 

soil ( i-e. ,  not subjected to a bioremediation treatment), only 53% of added 3CBA 

remained after seven days of incubation (Table 6.1 .). 3-chlorobenzoic acid degradation 

was higher ( p  5 0.05) in soils in which Dahurian wild rye had grown (43 % remaining) 

compared to non-planted treatments (53 % remaining). Further. inoculating Dahurian 

wild rye with R75 and CB35 increased Q~0.05) 3CBA degradation (26% remaining) 

in soil subjected to bioremediation treatments. Non-planted, uninoculated soil reduced 

23diCBA to 38% and 25diCBA levels to 50% of the initid amount added. However, 

no phytoremediation treatments significantly increased 23diCBA or 25diCBA 

degradation beyond this level. In fact some treatments inhibited degradation with 



14 21 28 35 42 49 
Days After Planting 

Fig. 6.2. Shoot and root biomass, and root length of inoculated Dahurian wild rye. 
Dahurian wild rye was inoculated (106 cfu seed-') with P. aeniginosa strain R75, P. 
savactonoi strain CB35 or an equal mixture of these two bacteria over 56 days. 
uninoculated Dahurian wild rye, 0 Dahurian wild rye + strain R75, O Dahurian wild 
rye + strain CB35, A Dahurian wild rye + strains R75 and CB36. Points are the 
average of five pots and standard error for shoot mass was 0.053 g, root mass 0.15 g 
and root length 0.94 m. 



inoculation of Dahurian wild rye with strain CB35 decreasing @<0.05) 25diCBA 

degradation (76 % remaining) compared to control soil (50 % remaining). Additionally, ' 

there was no effect of any inoculants on colony forming units (cfu) of total heterotrophs 

in soil which ranged from a high 1 x lo7 cfu g-I soil for the uninoculated plant to 2 low 

of 6 x 106 cfu g-' soil for the strain R75 inoculated plant. 

6.4.2. Hydroponic Studies 

Dahurian wild rye and its associated microorganisms significantly @ 1 0.05) 

reduced 2CBA levels in a hydroponic system whereas Meadow brome did not (Fig. 

6.3 .). Bacterial inoculation of plants resulted in the establishment of the inoculum in 

the growth solution, but only in the w e  of Meadow brome did this decrease 2CBA 

levels. Survival of the inoculum was increased (ps0.05) by 13-fold in planted 

treatments compared to the unplanted treatment. Although the hydroponic solutions were 

not sterile, the inoculant dominated the microbial populations. comprising between 92 

to 98% of the total bacterial population. The results of soil slurries indicated that the 

TSAfAB medium was selective for strains R75 and CB35 while inhibiting growth of 

bacteria from all three soil slurries. 



TABLE 6.1. Degradation of other chlorinated benzoic acids in soils 

previous exposed to phytoremediation treatment. 

Previous Treatment" 

- ~~~~~ 

% Remaining after 7 days 

- 

Mercuric chloride (0.15 % ) 82 95 89 

No plant, no inoculant 53 38 50 

Strain R75 38* 49 63 

Strain CB35 41" 41 48 

Strains R75 + CB35 30* 38 61 

D.W.Rye 43 50 53 

D . W. Rye + strain R75 35* 37 48 

D. W.Rye + strain CB35 36* 46 76 

D.W.Rye + strains R75 + CB35 26" 44 55 
-------------------------- ------------ - -  - - - - - - -  -- 
LSD (0.05) 6 14 19 

a Soil subjected to various b ioremediation treatments was sampled 
(n=3) at 14, 21, 28. 35, 49 and 56 days after planting and incubated 
with 80 rng kg-' contaminant for 7 days. 

3CBA. 3-chlorobenzoic acid; 23diCBA. 2,3-dichlorobenzoic acid: 
25diCBA, 2,5-dichIorobenzoic acid. 
* indicates treatment significantly @ 50.05) less than the control treatment. 
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6.5. DISCUSSION 

Previous studies indicated that ZCBA levels were reduced in uninoculated. non- 

planted soil with freshly added ZCBA at initial soil contamination levels ranging from 

200 to 800 mg kg'' (Siciliano and Germida, 1997a). Furthermore, growth of Dahurian 

wild rye enhanced this ZCBA degradation, and inoculating Dahurian wild rye further 

increased this effect. In the present study, growing Dahurian wild rye in soil decreased 

already low levels (c.a. 63 mg kg-') of 1CBA that had been present in soil for over two 

years. In contrast to my previous results, X B A  levels remained unchanged in 

uninoculated. non-planted soil. This suggests that the contaminant in this study was in 

the asymptotic region of degradation, as noted for other compounds present in the soil 

for extended periods of time (Beck et al.. l996). As contaminants reside in soil, they 

move of the chemical into soil organic matter or nanopores (Alexander, 1995). The 

degradation and toxicity of these contaminants are known to be different compared to 

contaminants freshly added to soil and are often more recalcitrant (Alexander, 1995). 

To the best of my knowledge, this is the first report of the phytorernediation of 

contaminants present in soil for over a year. 

it is important to note that my results are limited to the readily extractable 

portion of ZCBA and can not differentiate between plant uptake, soil sequestration and 

degradation. Previous studies have indicated that not all bacterial inoculants (2 out of 

12) stimulate degradation by Dahurian wild rye (Siciliano and Gerrnida, 1997). Hence, 

if plant uptake is a major route of 2CBA degradation, bacterial inoculants appear to play 

a role in this process. In addition, different inoculants reduced ZCBA levels to a 

differing extent with the same plant species, suggesting that any soil sequestration 

reactions are likely a specific effect of the plant rhizosphere inoculated with certain 

bacteria. Furthermore, it is well known that the toxicity of contaminants is related to 

their bioavailab il ity (Alexander. 1995: Hrudey and Pollard, 1993). and thus remediation 

technologies that reduce levels of readily extractable contaminants may have a role to 

play during the remediation of contaminated soil, regardless of the exact mechanism by 

which this occurs. 

10s 



In this study, bacterial seed inoculants capable of degrading X B A ,  increased the 

ability of rhizosphere microorganisms to reduce levels of 3CBA but had no effect on 

compounds with a different degradative pathway, i-e.. 23diCBA and 25diCBA. Levels 

of 23diCBA and 25diCBA were reduced in control soil, indicating that the potential to 

reduce these compounds was present in soil. The inoculants did not increase this 

potential. Furthermore, the soil's ability to degrade ZCBA and 3CBA. two compounds 

with similar degradation pathways, was only correlated (p 10.0 1, r =O. 95) in soil 

planted to plant-bacterial associations. Therefore it appears that inoculants increased the 

ability of rhizosphere microorganisms to degrade certain related compounds but not 

others. In addition, the inoculants had no effect on total heterotrophic bacterial 

populations in the rhizosphere. 

The mechanism by which inoculants increased catabolic activity is not clear. 

Inoculants had no effect on any plant growth parameter suggesting that a simple increase 

in microbial activity in the rhizosphere was not responsible for the increased 3CBA and 

2CBA degradation. The inoculants may have established themselves in the rhizosp here 

and degraded 2CBA and 3CBA directly. In the absence of plants, the inoculants 

reduced soil 2CBA levels by 17% and increased the potential of soil to degrade 3CBA 

by 23 %. Yet in hydroponics. the mixed inoculum had no effect on ZCBA levels either 

alone or in the presence of Dahurian wild rye. Therefore. it appears that there may be 

some compound present in soil which allows the inoculants to degrade ZCBA. 

Alternatively. it is possible that inoculants are affecting the rhizosphere community and 

selectively enriching a specific population i.e. 2CBA and 3CBA degraders. in soil. This 

may occur by the inoculant's altering root exudates which are known to influence 

rhizosphere community composition (Lynch. 1993). Differentiating between inoculant 

establishment and rhizosphere community a1 teration is the subject of current research. 



Inoculation of Meadow brome with the mixed inoculant enhanced 2CBA 

degradation in hydroponic solution. In contrast, inoculation of Dahurian wild rye did 

not affect 2CBA levels in hydroponic solution, although in both cases the inoculum was 

present in substantial numbers. This suggests that meadow brome provides some 

essential co-factor necessary for the inoculants to reduce ZCBA levels. However in soil, 

the mixed inoculum increased ZCBA degradation by both plant species (Siciliano and 

Germida, 1997). I propose that, in the case of Dahurian wild rye, the inoculantr 

enhanced degradation that was already occurring. In contrast, in Meadow brome's case, 

inoculants induced degradation that was previously not occurring. Therefore, the 

mechanisms by which bacterial seed inoculants work may differ between plant species 

and the mechanisms by which plant species enhance degradation of toxicants may also 

differ. 

In summary. my results show that plant-bacterial associations reduced ZCBA 

levels in soil. Furthermore, inoculating plants with certain bacteria increased the 

capacity of rhizosphere microorganisms to degrade similar contaminants but had no 

effect on total heterotrophic populations in the rhizosphere or upon plant growth 

parameters. Thus. it appears that inoculants do not increase p hytoremediation by 

enhancing the rh izosp here effect but instead increase the capacity of rhizosphere 

microorganisms to degrade certain contaminants. It is not clear from my results if 

inoculants enhance phytoremediation by altering plant behaviour or indigenous bacteria. 

Alternatively. the inoculants may be the bacterial species primarily responsible for 

contaminant degradation. 'Understanding this process will allow rationale design and 

development of phytorernediation systems. 



7. BIOLOG ANALYSIS AND FA'IT'Y ACID METHYL ESTER PROFILES 

INDICATE THAT PSEUDOMONAD INOCULANTS THAT PROMOTE 

PHYTOREMEDLATION ALTER THE ROOT-ASSOCIATED MICROBLAL 

COMMUMTY OF hlElADOW BROME. 

7.1 ABSTRACT 

Inoculating Dahurian wild rye or meadow brome with a combination of 

Pseudomonas aeruginosa strain R75 and P. savasranoi strain CB35 increases 

degradation of ZCBA in soil. In this study the impact of these inoculants on the 

composition and activity of the root surface microbial community of these plants was 

investigated. The diversity of substrates utilized by the root-associated microbial 

community was assessed using Biologm GN and GP plates. The communities were 

also characterized by extracting fatty acid methyl esters (FAME) from roots of the 

plant-bacteria associations grown in soil. The capacity of the root surface and 

rhizosphere soil to degrade 2CBA also was assessed. Inoculating Dahurian wild rye 

increased the potential of rhizosphere soil to degrade ZCBA by 30%' but had no 

effect on Biolognf substrate utilization patterns or on root FAME profiles. In 

contrast. inoculating meadow brome increased the potential of the root surface and 

associated microorganisms to degrade 7CBA by 250%. and also increased the 

utilization of amine. amide and polymer substrates. A cluster analysis of FAME 

profiles indicated that inoculation had a greater effect on roo t-associated rnicrob ial 

communities of meadow brome compared to Dahurian wild rye. The combination of 

strains R75 and CB35 increased the potential of Dahurian wild rye and meadow 

brome in different manners. Inoculating Dahurian wild rye had little effect on the 

root surface microbial community and increased rhizosp here soil's potential to 

degrade I C B  A. Conversely, inoculating meadow brome altered the root surface 



microbial community but increased the potential of the root surface and associated 

microorganisms to degrade ZCBA. This suggests that the mechanism by which 

bacterial inoculants promote phytoremediation differs between plants. 

7.2. INTRODUCTION 

Some plants enhance degradation of contaminants in soil, arid inoculation of 

plants with certain bacteria increases this degradation (Crowley et al. 1996; Siciliano 

and Germida 1997~). How inoculants increase phytoremediation is not understood. 

One possibility is that inoculants stimulate catabolic enzymes. Inoculants are known 

to increase plant enzyme activity (Mawcisley and Burns 1994) and plant enzymes can 

degrade contaminants. For example, Adler et al. ( 1994) found that peroxidases on 

the root surface of waterhyacinth (Eichhomia cracsipes (C. Mart) Solms-Laub) and 

tomato (Lycopersicon esculenturn L.) polymerized phenolic compounds. Similarly, 

plants can metabolize PCB or nitroglycerin (Wilken et al. 1995; Goel et al. 1997). 

A second possibility is that inoculants may become an established component of the 

microbial community on the root surface and thereby increase contaminant 

degradation. For example, Crowley et al. (1996) found that 25diCBA levels were 

reduced by inoculating bean (Phaseofus vulgaris) with a bioluminescent strain of 

Pseudomonus fluorescens which could degrade 25diCBA. The numbers of 

luminescent bacteria on bean roots were increased, suggesting that this bacterium had 

established itself on the root surface and thereby increased 2SdiCBA degradation. In 

contrast, other investigators have found that rhizosphere soil degrades contaminants 

faster than bulk soil and postulated that this is due to root exudation (Anderson et aI. 

1995: Haby and Crow ley 1996). Similarly , inoculants may increase degradation of 

contaminants in the rh izosphere by indirectly stimulating rhizosphere activity. For 

example, Siciliano and Germida ( L997a) found that inoculation of Dahurian wild rye 

with strain R75, a plant growth-promoting rhizobacterium. increased degradation of 

ZCBA in soil. 



The purpose of this study was to investigate how the bacterial inoculants, 

Pseudomonas aeruginosa strain R75 and P. savananoi strain CB35. increased 

phytoremediation by Dahurian wild rye and meadow brome. These plant species 

differ in their response to inoculants. Uninoculated Dahurian wild rye degrades 

ZCBA levels in soil and inoculating Dahurian wild rye with a combination of R75 

and CB35 increases the degradation. In contrast. meadow brome has no effect on 

ZCBA levels in soil unless inoculated with a combination of strain R75 and CB35. 

This study was designed to answer two question: i) do inoculants affect the potential 

of the root surface and associated microorganisms or the rhizosphere soil to degrade 

ZCBA. and ii) do inoculants alter the microbial community present on the root 

surface? 

7.3. MATERIALS AND METHODS 

7.3.1. Soil and forage grasses 

The collection of Paddockwood soil and the ZCBA amendment procedure are 

described in section 4.3.1. Dahurian wild rye and meadow brome seed were 

obtained and stored as described in section 3.3.2. 

7.3.2. Bacteriai species 

The collection, storage and growth of strains R75 and CB35 were similar to 

those procedures described in section 4.3.2. 

7.3.3. Inoculation of forage grasses 

The inoculation procedure was similar to that used by Nijhuis et a[. (1993). 

Brietlv. strain R75 or CB35 was grown for 48 hours at 22°C in a 300 ml 

Erylenmeyer flask containing 50 ml of l/LOth TSB on a rotary shaker (250 rpm). 

Cells were washed twice by centrifugation ( 10 min x 7000 g, 4°C) and strains R75 

and CB35 were re-suspended in 10 ml sterile tap water ( I @  cfu ml"). An aliquot 

(0.5 ml) of the inoculum was added to 3 mL of 4% (wlv) arabic gum and the 

inoculum-gum combination was mixed with 5 g of seed. Seed was coated with 5 g 



d c ,  air dried for 15 min and 10 seeds (I@ cfu seed'', R75:CB35 ratio of 5: 1) were 

planted in styrofoam cups containing 160 g of contaminated or uncontaminated soil. 

For treatments involving only inoculants and no plants, bacteria were inoculated onto 

autoclaved seeds. Plants were grown in a growth chamber with a 16 h day (23°C) 

and 8 h night (18°C) with 350 pmol s-I m-2 illumination. At 28 DAP, cups were 

harvested and ZCBA levels in soil determined by HPLC (section 5.3.6.). 

7.3.4. Potential of rhizosphere soil or roots and their associated 

microorganisms to degrade ZCBA 

Degradation of ZCBA by rhizosphere soil was assessed by HPLC as described 

in section 6.3.3. The ability of roots and associated microorganisms to degrade 

ZCBA was also assessed. At 28 DAP, plants were removed from soil, the shoot 

removed and the roots were washed with cold water until no soil ~ j a s  adhering to 

roots. The roots were placed in 20 ml scintillation vials, an aliquot (10 ml) of water 

containing 750 rng ZCBA L" was added and the vials were covered with dark plastic. 

Abiotic controls were prepared by adding 1 mi of a 3 76 mercuric chloride solution to 

the vials. The vials were placed in the growth chamber described above and 

incubated for five days. Levels of ZCBA in solution and the amount of 2CBA 

sorbed onto roots was determined by HPLC. 

7.3.5. High pressure Liquid chromatography 

The HPLC system was similar to that described in section 5.3.6. To extract 

2CBA from plant tissue, a method similar to that used by Crowley et al. (1996) for 

analysis of 25diCBA in piant tissue was adopted. Briefly, 100 mg (fresh weight) of 

root material was placed in a scintillation vial, LO ml of 95 % ethanol added and this 

vial placed on its side on a rotary shaker (250 rpm) at 22°C far 2 h. The ethanol 

was filtered (0.45 pm), transferred to HPLC vials and 50 p L  injected into the HPLC 

system as described above. 



7.3 -6. Fatty acid methyl ester (FAME) analysis of roots and associated 

microorganisms 

Roots (100 mg fresh weight) were removed from soil, washed free of soil and 

extracted according to procedures outlined by Graham et al. (1995). The gas 

chromatograph (Hewlett-Packard 5890 Series 2) was fitted with a flame ionization 

detector and a capillary column (Hewlett-Packard Ultra 2: 25 m by 0.20 mm; cross- 

linked 5 % methyl siloxane with a film thickness of 0.33 pm) with helium as the 

carrier gas. The FAME peaks were measured by a Hewlett-Packard 3392 integrator 

and the Microbial Identification System used to identify FAMEs of 9 to 20 carbon 

atoms in length (TSBA Library version 3.80; Microbial ID. Inc.). 

7.3.7. Biologm utilization profile of rhizoplane communities 

Microbial communities associated with the surface of roots were assessed for 

their ability to utilize 128 different carbon substrates using BiologTM GN aod GP 

plates. The microbial communities were removed from the root surface by adding 1 

ml of low salt buffer containing 100 m M  MgSO,, 10 mM Na-acetate and 1 m M  

CaCIz at pH 6.0 (Adler et al. 1994) for every 10 mg of root (up to 100 mg total root 

weight) to a sterile 20 ml scintillation vial. The vial was placed on its side on a 

rotary shaker (200 rpm) at 22°C for 1 h and this extract diluted LO fold. Each well 

of the GN and GP Biologm plates was inoculated with 100 p L  of extract. and the 

plates were incubated at 27°C. As suggested by Haack et al. (1 995) I accounted for 

any differences in microbial numbers between treatment inocula by reading the 

BioiogTh' plates at multiple incubation times i.e. 24, 48 and 96 hours, and each well 

scored + or - for growth. This approach ensures that observed treatment differences 

are due to differences in the potential of the community to use Biologni substrates 

and not differences in the growth rate of microbial communities. In addition, 

bacteria in the extract were enumerated by spread plating onto TSA. 



7.3 -8. Statistical Analysis 

This experiment was designed as a 3 (experiment) x 2 (contamination/non- 
I 

contaminated) x 3 (plant type) x 2 (inoculation) x 4 (replicate) factorial experiment 

with experiments and replicates designated as random factors. The ZCBA analysis of 

soil, root and shoot was performed in all experiments. The FAME and BiologTM 

analysis were performed for the last two experiments and each replicated three times. 

The 2CBA levels were analyzed by ANOVA and means separated by 

student's T-test. The FAME data was analyzed by principal components and 

dendogram analyses (Ward's linkage, squared Euclidean distance) while the 

individual fatty acids were analyzed by ANOVA. The BiologTM data were grouped 

into substrate guilds as described by Zak et al. (1994), except that the polymer and 

the amine/amide guilds were combined to increase the number of trials in this guild 

to 23 i.e. the expected value of each cell was greater than five. I analyzed the GN 

and GP plates separately by two-way ANOVA, principle components and cluster 

analysis. 

7.4. RESULTS 

7.4.1. Phytoremediation of 2CBA in Soil 

Levels of 2CBA in uninoculated, unplanted control soil were reduced from 

200 mg X B A  kg-' to 1 10 mg kg" after 28 days. Dahurian wild rye significantly 

(LSD(O.05) = 33) reduced ZCBA levels in soil from 1 LO to 69 mg kg'', and 

inoculating Dahurian wild rye further reduced X B A  levels to 32 mg kg-'. 

Uninoculated meadow brorne only reduced X B A  levels from 110 to 83 mg kg-', but 

inoculating meadow brorne reduced ZCBA levels to 47 rng kg-'. Inoculating soil with 

a combination of strain R75 and CB35 had no effect on 2CBA levels (1 13 mg kg"). 



7.4.2. Potential of rhizosphere soil or roots and their associated microorganisms 

to degrade 2CBA 

We assessed the effect of bacterial inoculants on the potential of rhizosphere 

soil and roots and their associated microorganisms of plant-bacteria associations to 

degrade ZCBA. Inoculation increased the potential of rhizosphere soil taken from 

both plant-bacteria associations to degrade ZCBA (Table 7.1 .). 

TABLE 7.1. Potential of rhizosphere soil and roots with their associated 

microorganisms of plant-bacteria associations to degrade ZCBA over a five day 

period. 

Treatment" 2CBA Degradation @g/g soil) 

Soilb Roo tsc 

Control 26 ND 

Inoculated 75 ND 

D.W. Rye 140 220 

Inoculated D. W. Rye 200 260 

Meadow brome 90 160 

Inoculated Meadow brome 160 400 
-------- -----------___________________I__________3____________________________I__________3____________________________I__________3____________________________I__________3_________ ___________________I__________3____________________________I__________3_________- -- --- - ---- - 
LSD (0.05) 50 130 

" Plants were inoculated with a combination of strain R75 and strain CB35 (I@ cfu 
seed-'), grown in ZCBA contaminated soil for 28 days and harvested. For inoculated 
treatment with no plant, bacteria were inoculated onto autoclaved Dahurian wild rye 
seed. 

Soil collected from the various treatments at 28 days was amended with 750 pg of 
2CBA and incubated at 2 1 "C for five days. Degradation was calculated by 
subtracting the 2CBA level remaining in amended soil from the level remaining in a 
rep 1 icated sample treated with mercuric chloride (3 g kg"). 

Roots collected from plant-bacteria associations at 28 days were immersed in 10 
rnl of a 750 mg L-' 2CBA solution for five days at 2 1 "C. Degradation was 
calculated by subtracting ZCBA levels remaining From the initial amount of ZCBA 
added. Degradation was corrected for the amount of ZCBA sorbed to root tissue. 



Rhizosphere soil from inoculated Dahurian wild rye degraded 25 % more 

ZCBA than inoculated meadow brome rhizosphere soil. However, the inoculants 

increased the potential of the meadow brome rhizosphere soil to degrade 2CBA by 

78% compared to only a 43% increase for the Dahurian wild rye soil. Soil taken 

from pou inoculated with only strains R75 and CB35 also had the potential to 

degrade ZCBA but this potential degradation was significantly less than all plant- 

bacteria associations except uninoculated meadow brome. This confirms my earlier 

study in which uninoculated meadow brome did not degrade 2CBA (Siciliano and 

Germida 1997~). Soil From plant-bacteria associations grown in non-contaminated 

soil exhibited little potential to degrade ZCBA, with 93 % of the ZCBA remaining 

after five days incubation (data not shown). 

In contrast to rhizosphere soil, inoculation increased the potential of roots and 

their associated microorganisms taken from meadow brome to degrade 2CBA by 

250 % , but had no effect on the potential of Dahurian wild roots to degrade ZCBA 

(Table 7.1.). Reducing microbial activity with mercuric chloride reduced 2CBA 

degradation by 75 to 100%. There was no difference in the potential of roots taken 

from plant-bacteria associations grown in contaminated or non-contaminated soil to 

degrade ZCBA. Sorption of 2CBA by roots was unaffected by inoculation (data not 

shown). Roots taken directly from soil (i-e.. before immersion in the 2CBA 

solution) contained undetectable 2CBA levels. 

7.4.3. FAME analysis of rhizoplane communities 

Cluster analysis indicated that inoculation of meadow brome had a greater 

effect on FAME patterns than inoculation of Dahurian wild rye (Fig. 7.1 .). 

Inoculated and non-inoculated meadow brome FAME patterns were 168 and 40 

squared Euc 1 idean Distance (S ED) apart for contaminated and non-contaminated 

communities, respectively. In comparison, inoculated and non-inoculated Dahurian 

wild rye FAME patterns were only 8 and 18 SED apart for contaminated and non- 

contaminated soils respectively. This suggests that inoculating meadow brome had a 

greater effect on root-associated microbial communities than inoculating Dahurian 

wild rye. 





7.4.4. Biologmf Utilization Analysis of Rhizoplane Communities 

inoculation increased BiologN substrate utilization by the rhizoplane 

community of meadow brome but had little effect on Dahurian wild rye's 

community. Inoculating meadow brome increased the capability of rhizoplane 

communities to use the amide/polymer guild in GN plates from 52 to 62% and from 

44 to 63% in GP plates (Table 7.2.). 

In addition, cluster analysis indicated that the communities were widely 

separated from non-inoculated meadow brome communities with a SED of 1140 

(Fig. 7.2.). in contrast, there were no significant guild use differences between 

inoculated and uninoculated Dahurian wild rye communities, as the communities 

were only 444 SED distant. There were no significant differences in inoculum 

densities between the treatments with approximately 106 cfu ml bacteria in each 

extract. There was a significant (P S0.05) time effect in all plates but no significant 

time- treatment interactions. 



TABLE 7.2. Functional guild analysis of root-associated microbial communities of plant-bacteria associations. 

Treat n~ent % Positives on GN Platesa % Positives on GP Plates" 

Carbohydrate Carboxy l ic Alnine M isc. 

acid Pol yiner 

Carbohydrate Carboxylic Amine M kc. 

acid Polymer 

D.W. Rye 58 57 57 26 

D.W. Rye plus 54 55 59 26 

R75 and CB35 

c.r 
M. brome 00 53 52 52 22 

M. brorne plus 57 57 62 25 

R75 and CB35 

LSD (0.10) 5.7 10 4.2 2.4 

" Values are the average of three observation times, 24, 48 and 96 hours. Guilds are a number of substrates in  Biologrhi plates 
grouped on the basis of their chemical similarity. GN plates were originally developed by Biologh' to identify gram negative 
bacteria by growing gram negative bacteria on 95 different substrates. GP plates were developed for gram positive bacteria. 



NCDR CDR NCMB CMB CDRl NCMBl CMBl 

Phytoremediation Treatments 
Fig. 7.2. 1 noculat ing meadow brome alters the ability of root-associated microorganisms to use BiologTh' substrates to a greater 
extent than inoculating Dahurian wild rye based on differences in squared Euclidean distance calculations. Plants were inoculated 
or not, with a combination of strain R75 and strain CB35 (10' cfu seed"), grown in 2CBA contaminated soil (200 mg kg-') or 
not, for 28 days and the utilization of 128 Biologn' substrates by microbial communities washed from the roots of plant-bacteria 
associations determined. Data were clustered using Ward's linkage. Each treatment is the average of 3 replicates taken from two 
independent experiments (n = 6). 



7.5. DISCUSSION 

An inoculant mixture of strains R75 and CB35 does not degrade ZCBA in soil 

(S iciliano and Germida 1997~:  this study). However, these bacteria stimulate ZCBA 

degradation when associated with roots of Dahurian wild rye grown in soil and also 

increase the potential of rhizosphere soil to degrade ZCBA and 3CBA. In this study, 

the inoculant mixture did not alter the microbial community present on the root 

surface as determined by FAME and Biologm analysis. Thus these inoculants must 

be altering the soil microbial community not directly associated with roots. One 

possible way for the inoculants to accomplish this would be by altering the root 

exudates of Dahurian wild rye. Root exudates are implicated in other plant-bacteria 

systems that degrade contaminants. For example, Shann (1995) found that root 

exudates of monocot species selectively stimulated degradation of 2.4- 

dichlorop henoxy acetic acid and 2,4,5-trichlorophenoxy acetic acid but had no effect 

on phenol or 2.4-dichlorophenol. Similarly, Hsu and Bartha (1979) found that root 

exudates of bush bean ( P h m l u s  vulgaris cv. Tender Green) specifically stimulated 

0.0-diethy le-0-p-nitrophenyl phosphorothioate (parathion) but not 0,0-diethy l-0-(2- 

isopropyl-6-methyl-4-p yrim idinyl phosphorothioate (diazinon) degradation. 

However, in neither of these studies was the composition of the microbial community 

evaluated. My study shows that inoculants can enhance degradation of xenobiotics in 

the rhizosphere with relatively little impact on the root surface community. 

The mechanisms by which strains R75 and CB35 increase ZCBA degradation 

by meadow brome appears to be quite different from that observed for Dahurian wild 

rye. In Dahurian wild rye, the inoculant mixture stimulates 7CBA degradation that 

was already occurring in the uninoculated plant. In contrast, inoculating meadow 

brome induces degradation that was previously absent. My evidence suggests that 

the inoculants accomplished this by altering the microbial community present on the 

root surface of meadow brome. Both Biolognf and FAME analyses indicated that 

the microbial community was substantially altered by inoculation. It is not clear if 

the inoculants directly colonized the rhizosphere directly as was seen by Crowley et 



al. (1996) who found that a pseudomonad inoculant established itself in the 

rhizosphere of bush bean and thereby increased degradation of 25diCBA. 

Alternatively, the inoculants may have altered the rhizosphere community without 

establishing themselves in the rhizosphere. For example, Haluska et al. (1995) 

found that degradation of polychlorinated b ipheny Is was not correlated with strain 

survival and postulated that other factors may influence polychlorinated biphenyl 

degradation in inoculated soils. 

Understanding the nature of the plant-bacteria associations that occur in 

contaminated soils is important when developing phytoremediation technologies. 

Based on this study , the under1 y ing mechanisms by which p hytoremediation was 

enhanced by inoculants differed between plant species. In one case, inoculants alter 

rhizosphere processes and thereby stimulate 2CBA degradation (e.8.. Dahurizn wiid 

rye), whereas in the other, inoculants directly alter the root surface community (e.g., 

meadow brome) which results in reducing ZCBA levels in soil. It is important to 

note that my results are limited to describing a reduction in extractable 2CBA from 

soil. It is possible that plant-bacterial associations may be immobilizing ZCBA, or in 

some other way reducing the amount of extractable 2CBA. However, it is well 

known that the toxicity of contaminants is related to their bioavailability, and thus 

technologies that reduce levels of readily extractable contaminants may have a role to 

play during remedial actions. I am presently studying how root exudates influence 

2CBA degradation in the rhizosphere and how inoculants alter the root surface 

community of meadow brome. 



8. ENZYMATIC ACTMTY IN ROOT EXUDATES OF DAHURIAN WILD 

RYE THAT DEGRADES 2CBA. 

8.1. ABSTRACT 

Dahurian wild rye degrades ZCBA in soil and in hydroponics. This study 

assessed mechanisms respons ibie for this activity. Filter sterilized root exudates of 

hydroponically grown Dahurian wild rye degraded ZCBA in solution. This activity 

in root exudate had an apparent pH optimum of 6.3-6.6, a temperature optimum of 

40°C, a V,, of 1.34 rnrnole 2CBA day-' and a &of 657 pmoles of 2CBA. 

Furthermore, the 2CBA-degrading activity of the root exudate was eliminated by 

protease treatment. Filter sterilized rhizosphere extracts of Dahurian wild rye grown 

in soil also degraded ZCBA in solution and this activity was eliminated by protease 

treatment. My results demonstrate the presence of a protease sensitive degradative 

reaction in the root exudates of Dahurian wild rye which degrades 2CBA in solution. 

8.2. INTRODUCTION 

Bacterial seed inoculants can enhance contaminant degradation in soil as 

plants grow (Siciliano and Germida 1997c; Crowley et al. 1996). Previously I found 

that only certain plant-bacteria associations reduced levels of ZCBA in soil. One 

association, Dahurian wild rye inoculated with a 1: 1 mixture of  strains R75 and 

CB35, reduced levels of ZCBA in soil by 46%. I postulated that these inoculants 

either increased plant growth or augmented the ability of the rhizosphere microbial 

community to degrade compounds. Subsequently, I found that inoculating Dahurian 

wild rye had little effect on plant growth, but increased the ability of the rhizosphere 

microb i d  community to degrade mono-chlorinated benzoic acids (S icil iano and 

Germida 1997a). This supports my augmentation hypothesis. However, how 



inoculants augmented the degradative ability of the rhizosphere is still unclear. 

Non-inoculated Dahurian wild rye decreases the levels of 2CBA in solution 

during hydroponic growth, suggesting that either the roots or some compound in the 

root exudate mediates the decrease in 2CBA levels. Supporting this idea, plant tissue 

cultures are known to metabolize trichloroethylene (Newman et al. 1997), root 

surface peroxidases polymerize phenols in solution (Adler et al. 1994) and a root 

associated compound stimulates atrazine degradation in water (Burken and Schnoor 

1996). In this section, I report the presence of a protease senstivie reaction in the 

root exudate of Dahurian wild rye that degrades 2CBA. 

8.3. MATERIALS AND METHODS 

8.3.1. Analysis of Enzymatic Activity in Root Exudates 

The root exudates of Dahurian wild rye, meadow brome and streambank 

wheatgrass, all previously shown to reduce ZCBA levels in soil (Siciliano and 

Germida 1997c), were collected during hydroponic growth and tested for their ability 

to reduce levels of ZCBA in solution. The plants were either non-inoculated or 

inoculated with a mixture of strains R75 and CB35 as previously described (Siciliano 

and Germida 1997~). and grown as described in section 6.3.4. The sterility of non- 

inoculated treatments was assessed by plating out 0.1 ml of hydroponic solution onto 

TSA and incubating at 38°C for 48 h. The survival of the inoculant mixture was 

assessed on TSA supplemented with antibiotics (Section 6.3.4). After 28 days of 

growth, a 4rnl aliquot of hydroponic solution was filter sterilized (0.2 pm. cellulose 

acetate membrane) and 2CBA levels in this aliquot determined every day for three 

days by HPLC (Section 5.3.6). To determine if plants contained a catalytic 

compound that degraded ZCBA, I triturated Dahurian wild rye roots with a mortar 

and pestle, and re-suspended them in low salt buffer (Adler et al. 1994). The extract 

was filter sterilized and tested for ZCBA degrading activity by measuring ZCBA 

levels in solution. Protein levels in the hydroponic solution and root extracts were 

determined according to the Lowry and Bradford assays with bovine serum albinum 



as a standard (Daniels et al. 1994). These experiments were each repeated three to 

five times with three replicates per treatment. 

8.3 -2. Characterization of Degradative Activity in Root Exudates 

I characterized the ZCBA degrading activity in Dahurian wild rye root 

exudate at p Hs ranging from 5.9 to 8.1. A1 iquots (0.5 ml) of root exudate were 

analyzed for ZCBA, mixed with 1.5 ml of 300 mg ZCBA L-' amended M9 medium, 

adjusted with either HCl or NaOH to the desired pH, maintained at 23°C and the 

ZCBA level determined every 12 hours (over a 3 day period) by HPLC analysis. I 

also characterized the 2CBA-degrading activity in root exudate at temperatures 

ranging from 10" to 50°C at a pH of 6.6. The dependence of the reaction rate on 

the initial substrate level was characterized by varying the amount of 2CBA in the 

M9 solution from 0.32 to 10 gmole. Analysis of velocity versus substiate plots was 

performed as described by Cornish-Bowden and Wharton (1988). I determined if the 

catalytic activity in Dahurian wild rye root exudates was protein in nature by 

assaying the sensitivity of ZCBA degradation to protease. An assay similar to that 

described above was run for a period of 10 days, followed by the addition of 200 p L  

of a filter sterilized (0.2 pm) solution containing 10 rng protease mL*' (Streptomyces 

caespitoszu Type  IV, Sigma P-0384), and 2CBA levels followed for a further five 

days. I determined if other CBA were degraded by the catalytic compound in root 

exudates. The assay was similar to that described above but the M9 medium was 

amended with 100 mg L-' 3CBA, 23diCBA or ZSdiCBA instead of ZCBA. 

8,3.3, Soil Studies 

The presence of this catalytic activity during the phytoremediation of ZCBA in 

soil was investigated by extracting proteins from the rhizosphere of inoculated or 

non-inoculated Dahur ian wild rye. Dahur ian wild rye was inoculated as described 

above but planted in uncontaminated soil (Typic Haploborolls) or soil contaminated 

with ZCBA (5 1 mg kg"). This soil was initially contaminated with solid 2CBA for a 

concentration of 467 mg kg-' and used in a study designed to screen the degradative 



ability of forage grasses (Section 6.3.1 .). At the end of that study, d l  contaminated 

soil was bulked together and stored in metal cans for three years. For the present 

study, the stored soil was thoroughly mixed and the residual extractable ZCBA level 

determined on six sub-samples by HPLC analysis. Since inoculating soil with strains 

R75 and CB35 reduces ZCBA levels (Siciliano and Germida 1997c), I determined if 

the inoculants or other soil microflora in the absence of a plant produced a compound 

which catalyses the reduction in ZCBA levels. Non-planted, inoculated treatments 

were amended every two days with 5 mg glucose and 1 mg yeast extract to simulate 

the stimulation of bacteria by root lysate. Twenty-one DAP, the root system was 

extracted from pots and shaken vigorously. The rhizosphere sample was extracted 

by adding approximately lOmls of low salt buffer (Adler et al. 1994) to 1 g of roots 

and soil in a 50 ml centrifuge tube. This was shaken on its side at 120 rpm for 90 

min, centrifuged at 1000 rpm for 20 minutes and the supernatant filter sterilized (0.2 

pm). The assay for ZCBA-degrading activity was similar to that used for the 

hydroponic exudate. This experiment was repeated twice with five replicates per 

treatment. 

8.4. RESULTS AND DISCUSSION 

Only the hydroponic exudate of inoculated and non-inoculated Dahurian wild 
rye degraded ZCBA in solution (Table 8.1 .). Although the inoculant survived in the 

hydroponic solution (data not shown), it had no effect on ZCBA degradation by filter 

sterilized root exudates. Thus, of the plants that degrade ZCBA in soil, only 

Dahurian wild rye degraded ZCBA in hydroponic solution. Furthermore. the root 

exudate contained low levels of protein, suggesting that ZCBA degradation was 

related to an enzyme. Although substantial amounts of protein (1.28 mg) were 

present in the root extract, little ZCBA degrading activity (9 nmole day-'; Standard 

Error = 8) was detected suggesting that a specific protein was involved in ZCBA 
degradation. Thus, it appears that the root-associated ZCBA-degrading activity was 

present only in root exudates. 

The highest ZCBA-degrading activity was obtained at pH 6.3 to 6.6 with little 

activity observed at pH 5.9 or pH 8.3. The reaction rate increased with temperature, 

doubling from 18 to 38 nmole day1 as temperature increased from 23°C to 40°C 



with no activity observed at 10°C and 50°C. The rate of ZCBA degradation 

followed Michaelis-Menten kinetics with an apparent V,, and K, of 13.4 pmol day" 

and 657 nmole of ZCBA, respectively. Degradation of ZCBA was linear for a LO 

day period, and the addition of protease stopped the reaction (Fig. 8.1.). No 

degradation of 3CBA. 23diCBA or 25diCBA occurred in solution. ColIectively. 

these results indicate the presence of a protein catalyzed reaction in the root exudates 

of Dahurian wild rye which specifically catalyses the reduction of ZCBA levels in 

solution. 

Inoculating Dahurian wild rye increased (p =0.001) the ZCBA-degrading 

activity in rhizosphere extracts, but had little effect on protein levels (Fig. 8.2.). In 

contrast to hydroponics, there was little observed activity in the rhizosphere of non- 

inoculated plants. 

TABLE 8.1. Degradation of 2CBA by filter sterilized root exudates 

of Dahurian wild rye. 

Plant root exudatesf hoculated2 Protein 2CBA Degraded 

b g )  (nm~lelday)~ 
- - 

Dahurian wild rye No 0.26 28 

Yes 0.3 1 24 

S treambank No 0.3 1 3 

wheatgrass Yes 0.61 2 

The rate of 2CBA degradation in the absence of plants was zero. 
Pseudomonas aeruginosa strain R75 and P. savastanoi CB35 were grown for 48h. 

inoculated onto plant seed (106 cfu seed-') and the plants grown in a hydroponic 
system for 2 1 days. 
' Degradation of ZCBA calculated in exudate containing c.0.. 7.6 pMoIes. 
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Fig. 8.1. Elimination of 2CBA degrading activity by the addition of protease. At 
day 10, 200 p L  of a solution containing 10 rng of protease mL-I (Strepromyces 
caespitosus Type IV) was added to the reaction vials and the 2CBA concentration 
determined by HPLC. 
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Fig. 8.2. Protein levels and ZCBA-degrading activity in rhizosphere extracts of 
Dahurian wild rye. For treatments with only bacterial inoculants (Inoc) . autoclaved 
Dahurian wild rye seeds were inoculated (106 cfu seed-') with strains R75 and CB35 
and planted into soil. Amended treatments (Inoc Amended) had 5 rng glucose and 1 
mg yeast extract added every 2 days to soil. Dahurian wild rye seed (n= 10) was 
either non-inoculated (Rye) or inoculated (Rye Inoc) with strains R75 and CB35 and 
grown in soil for 2 1 days. Bars are the average of two experiments with five 
replicates per treatment. Treatments significantly different from controls (p < 0.001) 
are marked with ***. 



It is well known that plant physiology differs between hydroponics and soil 

(Curl and Truelove 1986a) and this may be one reason for the difference in ZCBA- 

degrading activity of Dahurian wild rye in hydroponics and soil. Despite this 

difference, the ZCBAdegrading activity in rhizosphere extracts was eliminated by 

protease treatment in a manner similar to that seen for hydroponics (data not shown). 

Adding glucose and yeast extract to soil had no effect on protein levels or ZCBA- 

degrading activity in the rhizosphere extract, suggesting that the activity seen in 

rhizosphere extracts was derived from the plant. In addition, contaminated soil had 

little effect on the ZCBA-degrading activity of rhizosphere extracts which suggests 

that this activity is involved in other plant metabolic processes and reduces ZCBA 

serendipitously. While there have been previous reports in a non-peer reviewed 

format of extracelluar plant enzymes that degrade contaminants (Schnoor et al. 

1995), to the best of my knowledge, no extracelluar plant produced 2CBAdegrading 

activity has been described previously. However, my results are limited to 

describing the reduction in 2CBA levels. It is possible that the protein is not 

degrading ZCBA but instead may be transforming ZCBA into a compound which is 

not amenable to my HPLC analysis. In addition, it is unlikely that ZCBA is being 

sorbed by some compound in root exudate because degradative activity was i) seen in 

two different experimental systems. ii) induced by bacterial inoculation, and iii) 

specific for 2CBA with no degradation of 3CBA, 23diCBA or 25diCBA observed. 

Future plans include the purification and further characterization of this reaction, as 

well as a determination of it's role during the phytoremediation of 2CBA by 

Dahurian wild rye. 



9. CONCLUSIONS 

The results from my thesis project indicate that plant-bacteria associations 

promote contaminant degradation in soil in pot experiments. Inoculating Dahurian 

wild rye with a mixture of pseudomonads decreases levels of ZCBA and 3CBA in 

soil whereas this same mixture of pseudomonads increased the degradation of 

25diCBA by altai wild rye. Inoculating meadow brome with alcaligenes sp. BR60 

increased the degradation of 23diCBA in soil. Furthermore, certain plant-bacteria 

associations were capable of degrading tertiary contaminant mixtures i. e., altai wild 

rye inoculated with strains R75 and CB35 degraded a mixture of 3CBA. 23diCBA . 

and 25diCBA. 

The enhancement of contaminant degradation by plants and bacteria appears 

to only occur for certain plants and bacteria. During my initial screening, grasses 

displayed an 1 1 fold difference in sensitivity to ZCBA contamination. Thus, it 

appears that plants may have evolved a range of responses to toxicants in the 

environment from contaminant tolerance to degradation. Walton et al. ( 1994) 

postulate that evolutionary pressures would select for plants capable of tolerating 

toxins in soil. This ability to tolerate biologically produced chemicals might translate 

in certain instances to xenobiotics. Supporting this, I found that treatments which 

altered the soil b iochem ical environment modulated plant response. Therefore. 

plants interact in specific manners to certain chemicals in soil. 

The discovery that select bacterial seed inoculants decreased levels of 

contaminants in soil, suggests that bacterial inoculants can modulate the behaviour of 

plants towards toxicants. The results from Chapters 3 and 4 indicate that this 



modulation can be positive (i. e., increasing degradation) or negative (i. e., 

phytotoxic). The role of bacteria in phytorernediation is complex and appears to 

r a g e  from detoxifying, degradatiw, plant-growth promoting or even plant 

deleterious. The reasons for this complex interaction benveen plants and bacteria 

most likely lies in the ecological interactions occurring at the root-soil interface. 

The results from this project indicate that bacteria inoculants dramatically 

affect the ecological interactions at the root-soil interface. In the w e  of meadow 

brome, pseudomonad inoculants alter the strucnuaf composition and functionality of 

the rhizop lane community. These inoculants thereby stimulate degradative activity in 

soil. In addition, inoculants can also interact directly with plant metabolic processes 

and thereby increase degradation. For example, inoculation of Dahurian wild rye 

increases the production of a protein that reduces 2CBA levels in soil. The 

molecular mechanisms by which inoculants alter the rhizoplane community or protein 

expression are not known. 

Phytoremediation is an emerging tec hnoiogy to clean up contaminated soil and 

water sites. My project has demonstrated that bacteria can play an important role in 

phytoremedation. Furthermore, the use of bacteria in conjunction with plants has the 

potential to extend the number and type of contaminated soils sites in which 

phytoremediation systems may be applied. 
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