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ABSTRACT

Demyelinating diseases such as Guillain-Barré syndrome are characterized by segmental
axon demyelination and infiltration by cells of the monocyte lineage. Destruction of the myelin
sheath is accompanied by losses of phosphorylated neurofilament proteins and node of Ranvier
protein organization, impairing axon function and health. Effective repair depends on clearance
of myelin debris, reorganization of the nodal proteins, resolution of the inflammatory response as
well as increased expression of a molecule involved in myelination, brain-derived neurotrophic
factor (BDNF). Brief electrical stimulation (ES) of transected and repaired peripheral nerves has
been shown to enhance remyelination, and also elevate neuronal BDNF expression, the latter
raising the question about whether ES might be an effective therapeutic intervention for repair of
nerves following a focal demyelinating insult. To examine this, adult male Wistar rat tibial
nerves underwent unilateral focal demyelination via injection of 1% lysophosphatidyl choline
just distal to the sciatic nerve trifurcation. Five days later, the sciatic nerve in half of the animals
underwent 1 hour continuous 20 Hz ES proximal to the injection site. At various time points
after ES, animals were euthanized and ipsilateral and contralateral nerves were processed to
examine the impact of stimulation on the degree of remyelination, axonal integrity, glial
reactivity and the immune response. Stimulated nerves displayed greater remyelination,
increased BDNF expression at the lesion site, and a decrease in local Schwann cell reactivity.
The stimulated axons also displayed important markers of axonal health - increased
phosphorylated neurofilament expression and a re-formation of node of Ranvier Caspr/Kv1.2
protein clusters. The ES procedure had a remarkable impact on the inflammatory/immune
response, enhancing debris clearance, decreasing the total number of macrophages present and
shifting macrophage phenotype from a pro-inflammatory (M1) to a pro-repair (M2) one.
Collectively these results support that ES not only helps to create an environment permissive for
early remyelination, but also does so by promoting the protection and preservation of axons and

favorably altering the immune response.
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CHAPTER 1:
INTRODUCTION

1.1 Peripheral Nerves — structure & function
1.1.1 Peripheral Nerve Anatomy

The morphology of a peripheral nerve is not unlike an onion, with layer upon layer of
structural organization (Fig 1, (Boron and Boulpaep 2005)). There are three layers of connective
tissue that bind the nerve components together into a single unit. The most exterior layer is the
epineurium, surrounding the entire nerve structure. Moving inward, the perineurium surrounds
the various bundles of nerve fibers, or fascicles. Interspersed among the fascicles are small
blood vessels, which run along the longitudinal axis of the nerve, and send radial branches
through the perineurium to form the endoneurial capillaries. The innermost layer of connective
tissue is the endoneurium, which surrounds the individual myelinated axons, as well as the
groups of unmyelinated fibers (Campbell 2008). A key difference between these connective
tissue layers is in their orientation. While the epi- and perineurium have a circumferential
orientation, the endoneurium is oriented longitudinally along the same axis as the nerve fibers
(Sunderland 1990). Within the endoneurium are found the two key cells of the peripheral
nervous system (PNS), the axons belonging to the various neurons (i.e. motor and sensory), and
their associated glia, the Schwann cells. Of particular interest here are the myelinated axons,
which are surrounded by a specialized membrane produced by their associated Schwann cells. If
an axon is not covered by a myelin sheath it will still associate with Schwann cells, but in this
case the glial cell will surround a number of axons without elaborating the myelin membrane.
1.1.2 Peripheral Nerve Function

Peripheral nerves are the channels through which information is relayed between the
environment and the central nervous system (CNS) where the appropriate responses are

executed. The particular functions performed by a peripheral nerve are related to the nature of
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Figure 1: Structural organization of a peripheral nerve. Schematic diagram depicting the structure of
a typical peripheral nerve with its associated connective tissue, and internal structures. Individual axon-
Schwann cell units are covered by the endoneurium and bundled with several others into fascicles
surrounded by the perineurium. The various fascicles and blood vessels supplying the nerve fibers are

held together by the outermost connective tissue layer, the epineurium. Reprinted with permission from
Boron & Boulpaep (Boron and Boulpaep 2005).

the fibers it contains. Information gathered from physical or chemical stimuli from the external
environment is relayed to the CNS via the sensory axons, whose cell bodies are found within the
dorsal root ganglia (DRG) that lie in the intervertebral spaces. Motor neurons transmit
information in the form of an action potential from their cell bodies in the CNS to the target
organs (i.e. skeletal muscle) where it is converted into a chemical stimulus at the synapse.
Lastly, the autonomic division transmits information to and from the organs, glands and other
viscera in order to regulate the body’s internal environment (Boron and Boulpaep 2005). Each
nerve potentially transmits any or all of these information modalities depending on the nature of
the individual fibers that make up that particular nerve. The speed at which these fibers transmit
their information is dependent upon two major factors, the diameter of the axon fiber, and
whether that fiber is covered by a myelin sheath. The larger the diameter of the axon, the more
rapidly it is able to conduct an action potential. Similarly, those fibers that are myelinated

conduct action potentials much more efficiently, with the conduction velocity proportional to the



thickness of the myelin covering — the thicker the myelin, the more rapid the conduction (Bear et
al. 2007). These anatomical and physiological properties are impacted in a variety of peripheral
nerve pathologies. The challenge detailed below, is elucidating the cellular and molecular details

to aid in the design of more effective repair strategies.

1.2 Peripheral Nervous System Dysfunction — Injury & Disease
1.2.1 Trauma-Induced Peripheral Neuropathy

The myelin sheath of peripheral nerves can become compromised as a consequence of
traumatic nerve injury. These non-immune initiated forms of insult may arise through a number
of means such as nerve compression, transection, or ischemia. There is also a much greater
incidence of injury to nerves of the upper limb (radial nerve most commonly injured) than to the
nerves of the lower limb (sciatic nerve most commonly injured) (Robinson 2000). The
Sunderland classification system is used to group nerve injuries according to their severity and
the nature of the tissue damage. First-degree nerve injuries are defined as damage to the myelin
sheath, which may or may not involve axonal loss, and will typically have the best clinical
outcomes, requiring little to no medical intervention with resolution occurring over several
weeks to months. Second through fifth degree injuries are all accompanied by axonal loss, with
severity escalating as the endoneurium, perineurium and finally epineurium become involved
(Sunderland 1978). Trauma to the nerve alters blood vessel permeability, with long duration or
high force compression injuries damaging not only the epineurial vessels (Fig 1, (Boron and
Boulpaep 2005)), but also those within the endoneurium. This leads to intrafascicular edema,
further potentiating injury to the nerve due to swelling as well as the accumulation of
inflammatory cells and molecules (Rydevik and Lundborg 1977). In the milder first-degree
nerve injuries, the damage to the myelin sheath surrounding the axons results in a loss of motor
and/or sensory function (depending on the nature of the fibers that make up the nerve in
question), which will remain until the fibers are remyelinated (Campbell 2008). More severe

injuries, in which the integrity of the axons has also been compromised, have a demyelination



component, as well as degradation of the distal portion of the injured axon due to Wallerian
degeneration. The degeneration of the axons will begin within hours of nerve injury, and is
largely complete within 6-8 weeks. In this process, the damaged axon and myelin sheath are
broken down and are taken up by inflammatory macrophages that have infiltrated the injury site
through the compromised blood vessels (Bruck 1997; Chaudhry et al. 1992). Surgical
intervention (e.g. rejoining the severed proximal and distal nerve stumps) is usually required for
those injuries classified as third through fifth degree. The prognosis for these injuries is typically
grave, as the axons themselves must be regenerated and reconnected with their distal targets in
addition to the remyelination of the axons. The recovery process is protracted, and often

incomplete, leading to loss of function and permanent disability (Sunderland 1978).

1.2.2 Immune-Associated Peripheral Neuropathy

Demyelination and inflammation are common features of a variety of peripheral nervous
system disorders, including Guillain-Barré syndrome and other associated demyelinating
neuropathies (Yuki and Hartung 2012). The pathological features of the peripheral
demyelinating disorder Guillain-Barré syndrome (GBS) can be organized into at least four
different subtypes according to whether the primary insult is axonal or glial in nature (reviewed
in (Hiraga et al. 2005)). The most common subtype of this neurological disorder is acute
inflammatory demyelinating polyradiculoneuropathy (AIDP), and represents approximately 90%
of GBS cases reported in North America and Europe, at an annual incidence of 1-3 per 100 000
(Newswanger and Warren 2004). The second demyelinating form of GBS is referred to as
subacute inflammatory demyelinating polyradiculoneuropathy (SIDP), which is similar in
features to AIDP but follows a much slower progressive course (Burns 2008). When there is
axonal involvement the disease is classified as acute motor axonal neuropathy (AMAN) or acute
motor and sensory axonal neuropathy (AMSAN), depending on the nature of axonal involvement
(Hughes and Cornblath 2005). Patients with GBS report a variety of symptoms, namely an

ascending flaccid paralysis (in which the lower limbs are affected before the upper), numbness,



significant pain, and parasthesia (due to involvement of sensory nerves) (Vucic et al. 2009). The
cranial nerves can also become involved, affecting functions such as eye movement, swallowing,
and airway maintenance, with up to ~30% of GBS patients requiring assisted ventilation
(Newswanger and Warren 2004). The muscle weakness is generally bilateral, accompanied by
diminished tendon reflexes and appears to develop over a period of 12 hours to up to four weeks.
When compared to patients plagued by central neuropathies, there is an increased capacity for
peripheral nerve remyelination in patients with GBS, with studies reporting positive outcomes
for ~60-90% of patients (Chio et al. 2003; Winer et al. 1988). However, after recovery from the
initial illness a large number of patients (up to 20%) will still have significant residual
impairment and overall recovery, even if eventually successful, is slow, with the disease perhaps
taking months to resolve and any deficits still present after 2-3 years are likely to be permanent
(Chio et al. 2003; Hughes and Cornblath 2005). A classic diagnostic feature of AIDP is a
reduction in nerve conduction velocity upon electrophysiological examination, indicative of a
demyelinating insult (Burns 2008). Histologically, the AIDP subtype of GBS is characterized by
an inflammatory demyelination of the peripheral nerves due to the infiltration of macrophages
and lymphocytes, which indicates that the primary target is the Schwann cell or its myelin
membrane (Kuwabara 2004). The observed demyelination may be found throughout the entire
length of the nerve, including the proximal roots and the distal intramuscular terminals, sites
where the blood-nerve barriers are weakest (Olsson 1968; Willison 2005). There are currently
two predominant mechanisms believed to responsible for the demyelination. The first is the
direct targeting of macrophages to the Schwann cell membranes by activated CD4" helper T
cells, via production of inflammatory mediators which serve as chemoattractants for the
infiltrating macrophages, such as the CCL5 chemokine (commonly known as RANTES) (Wu et
al. 2000). Alternatively, the phagocytic cells may be targeted to the Schwann cells through the
binding of antibodies and activation of the complement cascade (Hughes and Cornblath 2005).
Membrane attack complex formation, the terminal step in the complement cascade damages the

axonal cytoskeleton and mitochondria (Willison 2005), and in addition to the standard modes of



axonal damage following demyelination, may be an additional mechanism responsible for some
of the secondary axonal degeneration observed (Asbury et al. 1969). For patients with GBS, the
standard therapies are plasma exchange and intravenous immunoglobulin, which are most
effective at shortening disease course, and minimizing disease progression, if given early after
onset (Burns 2008). While the traditional routes of therapy (e.g. surgical repair of damaged
nerves, the immunomodulatory or immunosuppressive agents currently in use, such as
corticosteroids) have played and continue to play important roles in the comprehensive
management of demyelinating disorders and injuries to both the PNS and CNS, they

unfortunately do not have the ability to reconstruct the damaged myelin sheath.

1.2.3 Improving Patient Outcomes In Peripheral Neuropathies

Perhaps one of the most important issues facing research into nervous system injuries and
demyelinating disorders is translating the basic science work into clinical practice. An important
aspect of this bench to bedside approach is how to tackle the fundamental problem of
remyelination. In demyelinating disease, patients will present with neurological deficits only
after the demyelination has occurred, leaving one unable to therapeutically intervene at the
initiation of the demyelinating event in order to prevent the damage from occurring. Similarly, a
patient with a transected nerve only seeks medical assistance once the injury has already
happened. While both the central and peripheral nervous systems display some intrinsic capacity
for repair, these repair processes are far from perfect. Development of strategies that are able to
target and enhance the already demonstrated intrinsic repair capabilities would prove to be a
valuable addition to the arsenal of the clinician, and ultimately would improve patient outcomes.
Any therapy that would aid in the reconstruction of the damaged myelin sheath would be a
valuable tool, not only for the resolution of current symptoms, but for preventing the permanent
disability associated from the secondary axonal loss due to prolonged demyelination. However,
before the development of any potential therapeutic interventions may occur, a thorough

understanding of all peripheral nerve features, both morphological and molecular, as well as how



each of the cellular components interact must be gathered. Furthermore, the successful
development of any potential therapy is predicated upon an understanding how each of these
components will be affected by disease or injury.

1.3 Myelin — more than just a membrane

1.3.1 Myelin Composition

The myelin sheath is an elaborate membrane structure found surrounding axons of both
the peripheral and central nervous systems. In the PNS, it is the Schwann cell that is responsible
for the production and maintenance of the myelin sheath. These cells are the main glial cell type
found within the PNS, and during embryonic development are derived from the neural crest.
The determination of whether a Schwann cell precursor will go on to form either a myelinating
or non-myelinating Schwann cell is controlled by axon-derived signals, including neuregulin
(NRG), which inhibits the acquisition of a myelinating phenotype characterized by the
expression of the myelin proteins (reviewed in (Zorick and Lemke 1996)). This fate
determination is a highly plastic state, as upon axonal injury the myelinating Schwann cells
undergo a shift in gene expression that recapitulates that of the immature precursor cells (Mirsky
and Jessen 1999). In an injured state, the previously myelinating Schwann cells re-express
markers associated with their non-myelinating counterparts, such as the intermediate filament,
glial fibrillary acidic protein (GFAP) (Jessen et al. 1990).

Myelin contains a mixture of both lipids and proteins like the typical cell membrane.
However, it is distinguished from the average cell membrane through its unusual composition.
The myelin sheath is predominantly composed of lipids (70-80%), with the various proteins
representing a minority of the myelin components (20-30%) (Garbay et al. 2000), this
composition bestows the membrane with its efficient insulating properties. Among the various
lipid species present within the myelin sheath, cholesterol represents a significant portion (20-
30%) of the total lipid population, and is necessary for proper compaction of the many layers of
elaborated myelin (Detering and Wells 1976; Nussbaum et al. 1969). PNS myelin also contains

a large proportion of sphingomyelin (10-35% of total lipid content), as well as



galactocerebrosides (14-26%) and sulfatides (2-7%) (reviewed in (Garbay et al. 2000)). PNS
myelin proteins fall into three general categories, glycoproteins, basic proteins, and
miscellaneous other proteins. The majority of myelin proteins are glycosylated, representing
~60% of the total protein population, with the basic proteins representing 20-30%, and all other
types comprising 10-20%. Expression of these myelin-specific proteins is dependent on an
intimate interaction between the ensheathing Schwann cell, and the axon that is to be myelinated
(Lemke and Chao 1988). This axo-glial interaction induces the expression of the Krox-20
transcription factor, a protein necessary for the expression of myelin basic protein (MBP) and the
peripheral nerve myelin specific protein Py (Jessen and Rhona 1992; Topilko et al. 1994).
1.3.2. Myelin Structure

Peripheral nerve myelin is formed from the extension of a portion of the Schwann cell
plasma membrane, as it spirals around the axon to form concentric layers proportional to the
diameter of the contacted axon, with larger diameter axons having more layers. As the Schwann
cell membrane wraps itself around the axon it forms a double membrane structure, the mesaxon,
which allows for communication with the cell surface (Quarles et al. 2006). In order to form a
mature myelin sheath, the layers of membrane must be compacted, squeezing out most of the
cytoplasm and associated organelles from between the layers, confining them to the paranodal
loops near the external mesaxon and the Schmidt-Lanterman incisures (Webster 1971). The
compacted layers of membrane form a series of alternating light and dark bands when viewed
under the electron microscope, termed the intraperiod (IPL) and major dense lines (MDL),
respectively (Fig 2, (Suter et al. 1993)). The electron-light intraperiod lines are composed of the
closely apposed outer leaflets of membrane, while the electron-dark major dense lines represent
the fused inner leaflets of membrane (Paz Soldan and Pirko 2012). The proteins that comprise
the myelin sheath display a differential distribution to either the electron-light or electron-dark
layers. Myelin basic protein is found within the MDL, where its combination of polar and
charged amino acids allow for both hydrophobic and hydrophilic interactions between the

apposing inner leaflets (Mendell and Whitaker 1978; Omlin et al. 1982), while it plays a crucial



role in the stabilization of CNS myelin, it does not appear to play a significant structural role in
the PNS. The PNS-specific protein Py, localizes to the IPL, where its main function is speculated
to be stabilization of the MDL via homophilic interactions. In Py knockout animals there is a
severe hypomyelination with additional defects in the compaction of the thin myelin layers
(Kirshner et al. 2004). The myelin-associated glycoprotein is localized to the membranes of the
paranodal loops, Schmidt-Lanterman incisures, and the outer mesaxon. Myelin-associated
glycoprotein is believed to thus play a role in the cell-cell interactions between adjacent Schwann

cells, as well as between axons and Schwann cells (Georgiou et al. 2004; Quarles 2002).
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Figure 2: Structure of the myelin sheath. The top image presents a longitudinal view of the structures
surrounding the node of Ranvier. The small linear structures within the axon depict the neurofilaments,
note the greater axon diameter and reduced neurofilament density in the regions of the axon, which are
surrounded by myelin (internodes) than that at the node of Ranvier. At the bottom left is a schematic of
the structure of compact myelin with the alternating electron dense major dense lines (MDL) and
electron-light intraperiod lines (IPL). The bottom right image is a schematic diagram demonstrating the
localization of the major protein components of peripheral nerve myelin as localized on the Schwann cell
membrane. Adapted and reprinted with permission from Suter, Welcher & Snipes (Suter et al. 1993).



1.4 Axons — Conduits For Communication
1.4.1 Neurofilaments

Myelination is crucial for proper neurological function, with damage to the myelin sheath
having potentially devastating consequences. While the nervous system has a moderate innate
capacity for remyelination, this process is far from perfect. Axonal injury or demyelination
drives Schwann cell dedifferentiation and the acquisition of a reactive phenotype, characterized
by prominent GFAP expression (Jessen et al. 1990; Scherer and Salzer 2001). In this state, no
new myelin can be elaborated, leaving the axons bare, and therefore vulnerable. One of the
challenges associated with demyelinating disorders is the loss of axons due to their vulnerability
to degenerative processes (reviewed in (Drenthen et al. 2013; Silber and Sharief 1999)). This
loss may be linked to alterations in neurofilament proteins that serve important roles in the radial
growth of axons (Friede and Samorajski 1970; Hoffman et al. 1987) thereby impacting axonal
caliber and conduction efficiency (Sakaguchi et al. 1993). The neurofilaments (NF) are a group
of neuron-specific cytoskeletal proteins and are comprised of three main subtypes, the lowest
molecular weight NF-L (~70 kDa), and the larger NF-M (~150 kDa) and NF-H proteins (~200
kDa) (Geisler et al. 1983; Hirokawa et al. 1984; Hoffman et al. 1987; Liem et al. 1978;
Schlaepfer 1987; Willard and Simon 1983) all of which share a common central rod domain.
Myelinated axons normally display high levels of medium and high molecular weight
neurofilament phosphorylation (Lee et al. 1987) at the lysine-serine-proline repeat regions found
within the C-terminal domains of their subunits (Elhanany et al. 1994; Jaffe et al. 1998a; Jaffe et
al. 1998b). This phosphorylation is accomplished through the actions of proline-directed
kinases, such as cyclin-dpendent kinase-5 (cdk5) as well as the extracellular-signal regulated
kinases (ERK1/2) (Giasson and Mushynski 1997; Veeranna et al. 1998). The addition of the
phosphate groups to these neurofilaments results in an increase axonal caliber through decreasing
the packing density of the neurofilament proteins. The negative charges associated with the
phosphate groups lead to a re-positioning of the neurofilament side arms, increasing the space

between the individual filaments (Elhanany et al. 1994; Jaffe et al. 1998a; Jaffe et al. 1998b;
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Kirkpatrick and Brady 1999). These differences in axonal caliber are not only present between
individual myelinated and non-myelinated axons, but are also apparent in myelinated and non-
myelinated regions of the same axon (Hsieh et al. 1994).

The increased axonal caliber associated with neurofilament phosphorylation is an
important signal in determining the onset of myelination (Michailov et al. 2004), with the NF-M
and NF-H chains being highly phosphorylated at the internodes, but largely unphosphorylated at
the initial axon segment and at the nodes of Ranvier (de Waegh et al. 1992; Hsieh et al. 1994;
Mata et al. 1992; Reles and Friede 1991). As the axon caliber increases, the Schwann cell
associated with that axonal segment will begin to express the various myelin proteins, beginning
with myelin-associated glycoprotein (Sternberger et al. 1979; Trapp et al. 1989), this is a
reciprocal relationship as myelin-associated glycoprotein further regulates the expression and
phosphorylation of the neurofilaments (Dashiell et al. 2002). The phosphorylation of the
neurofilaments is also protective to the axon, with dephosphorylated neurofilaments susceptible
to proteolysis by the calcium-dependent protease calpain (Goldstein et al. 1987; Greenwood et
al. 1993; Kamakura et al. 1983), while phosphorylated neurofilaments are resistant to
degradation (Pant 1988). This degradation can be repressed in injured peripheral nerves through
inhibition of the influx of calcium into the axoplasm or via inactivation of the calcium-activated
proteases are inhibited (Schlaepfer 1974). Importantly, neurofilament phosphorylation is
controlled by the myelination process (Starr et al. 1996) and upon demyelination, these filaments
become dephosphorylated, both in experimental models of dysmyelination (de Waegh et al.
1992) and in human demyelinating disease states (Trapp et al. 1998).

1.4.2 Nodes Of Ranvier

Myelinated nerves, with their thick layer of insulation, are able to efficiently and rapidly
conduct action potentials along the length of their axons. This rapid conduction is dependent on
the highly organized structures at the junctions between the myelinated segments, the nodes of
Ranvier (Fig. 2, (Suter et al. 1993)). At the center of these nodes are the voltage gated sodium

channels, through which the ions responsible for the depolarization of the axonal membrane will
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enter. The clustering of these channels is associated with contact between the axon and a
Schwann cell that has begun to express myelin-associated glycoprotein, indicating an intimate
relationship between node of Ranvier formation and the initiation of myelination (Vabnick et al.
1996) as well as an instructive role for the Schwann cell in determining the nodal architecture
(Wiley-Livingston and Ellisman 1980). Flanking the sodium channels, in the paranodal region,
is the contactin-associated protein (Caspr). This protein is an important component of the
paranodal junctions between the axon and the paranodal loops of the myelinating Schwann cells
(Einheber et al. 1997). These paranodal junctions appear during the later stages of myelination,
when the mature, compact, myelin has begun to form (Rosenbluth 1983), and Caspr begins to
take on its characteristic regional distribution at this time with an increase in expression at the
paranodes, and a corresponding decrease in the internodal regions (Einheber et al. 1997). These
paranodal structures are believed to act as a physical barrier that prevents the diffusion of the
voltage gated sodium channels away from the node, thereby maintaining the efficiency of the
saltatory conduction (Rosenbluth 1983). The juxtaparanodal region contains the Kv1.1 and
Kv1.2 subtypes of voltage-gated potassium channels. These channels allow the exit of
potassium ions in order to return the membrane back to resting potential following the rapid
influx of sodium ions associated with the generation of an action potential. Clustering of the
potassium channels near the node of Ranvier may serve to prevent the re-entrant excitation of the
membrane (Altevogt et al. 2002; Li et al. 2002) as well as possibly mediating communication
between the axon and Schwann cell (Chiu and Ritchie 1984; Vabnick et al. 1999). Disruption in
the organization of the nodes of Ranvier is a critical feature of segmental and paranodal
demyelination. The distinct organization of the nodal, paranodal and juxtaparanodal proteins is
lost following demyelination and can assume a more diffuse axonal distribution, reminiscent of
that found in the smaller diameter non-myelinated fibers (Arroyo et al. 2004; Karimi-
Abdolrezaee et al. 2004). Recapitulation of the distinct nodal architecture is key during the
remyelination process (Rasband et al. 1998) and together with neurofilament phosphorylation

serve as important measures of the efficiency of repair processes and axonal health, respectively.
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1.5 Macrophages — Neural-Immune Interactions Central For Remyelination
1.5.1 Lineage & Functions

Macrophages are a critical component of the immune system. These phagocytic cells are
the terminal differentiation product of bone marrow-derived monocytes. Upon adhesion to, and
extravasation from the blood vessels the monocyte will be triggered to differentiate into either a
macrophage or a dendritic cell, depending on the nature of the local microenvironment (Serbina
et al. 2008). Exposure of the monocyte to the cytokines interleukin-6 (IL-6) and interleukin-10
(IL-10) as well as macrophage colony stimulating factor (M-CSF) shifts the differentiation away
from the dendritic cell pathway and towards that of the macrophage (Allavena et al. 2008;
Chomarat et al. 2000; Menetrier-Caux et al. 1998). Additionally, the powerful macrophage
activator interferon-y (IFN-y) further promotes the differentiation of monocytes towards the
macrophage lineage through stimulating the autocrine production of IL-6 and M-CSF (Delneste
et al. 2003). Once differentiated, macrophages are able to participate in the mounting of both the
innate, and acquired arms of the immune response. As an important component of the innate
(non-antigen specific) immune response, macrophages are key effector cells. Macrophages are
skilled scavengers, and are responsible for the phagocytosis of not only pathogens, but also dead
cells and other debris (Geissmann et al. 2010; Gordon and Taylor 2005; Wynn and Barron 2010).
Degranulation of platelets rapidly recruits these phagocytes to the site of injury where they not
only clear the debris, but also produce a variety of cytokines to recruit neutrophils and other
components of the innate immune response (Uutela et al. 2004). In addition to their role in
innate immunity, macrophages also function as a component of the acquired immune response.
Subsequent to their role as phagocytes, upon digestion of the internalized material, macrophages
will present these antigens through the class II major histocompatibility complexes (MHC-II).
The antigens are recognized by the CD4+ family of helper T cells (Ty), which ultimately leads to
the production of antibodies by B lymphocytes, as well as the expansion of the population of

CDS8" cytotoxic T lymphocytes (CTL) (Fearon and Locksley 1996).
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1.5.2 Phenotypic Subpopulations Of Macrophages

Macrophages are not a singular population of uniform cells. They exhibit a remarkable
degree of phenotypic plasticity, representing a continuum of activation states making them
highly dynamic and responsive to factors present within the local microenvironment (Gratchev et
al. 2006; Stout et al. 2005; Stout and Suttles 2004). The full macrophage activation spectrum is
represented by the “classically activated” M1 macrophages at one end and the “alternatively
activated” M2 macrophages at the opposing end (Mantovani et al. 2009; Martinez and Gordon
2014). This nomenclature mirrors the Ty1-Ty2 designation of cytokine classification. Exposure
of macrophages to cytokines of the Tyl class (e.g. IFN-y) or bacterial products such as
lipopolysaccharide induces a polarization towards the M1 phenotype. Macrophages of the M1
phenotype are considered to be pro-inflammatory as they express high levels of the pro-
inflammatory cytokines, including tumor necrosis factor-a (TNF-a), IL-18, IL-12, and IL-23
(Ambarus et al. 2012) and can be distinguished from M2 macrophages by their expression of
these markers (Miron and Franklin 2014). The production of both IL-12 and IL-23 are important
for connecting these cells to the adaptive immune response through polarizing CD4" T cells
towards the Ty1 subtype, which further perpetuates the inflammatory state. This subclass of
macrophages is important for the clearance of invading pathogens, in part by preventing
microbial escape from the phagosome and promoting the intracellular killing of phagocytosed
pathogens (Shaughnessy and Swanson 2010). In order to produce the reactive oxygen and
nitrogen species typical of the M1 macrophage phenotype, these cells express the inducible nitric
oxide synthase (iNOS) enzyme, which utilizes L-arginine as its substrate (Hesse et al. 2001).
The resulting nitric oxide (NO) produced is highly toxic to the invading pathogens, and is
effective in the management of infection, but a fine balance must be struck as NO may also
damage the surrounding host tissues (Nathan and Ding 2010).

The generation of an inflammatory response in order to deal with an injury or invading
pathogen must be kept in check, and promptly tempered and resolved so as to minimize damage

to the host tissues. The M2 polarized class of macrophages performs this important function. In

14



direct contrast to the pro-inflammatory molecules produced by the M1 macrophages, the M2
cells are characterized by the secretion of anti-inflammatory cytokines including transforming
growth factor- (TGF-f), IL-4, IL-10, and IL-13, as well expression of the scavenger receptors
CD206 and CD163, promoting enhanced phagocytic ability and the resolution of inflammation
(Stein et al. 1992). These cells are therefore critical for the dampening of the inflammatory
response generated by the M1 polarized macrophages as well as in immunoregulation.
Furthermore, M2 macrophages play additional critical roles in tissue remodeling, clearance of
parasites, and minimizing tumor progression (Biswas and Mantovani 2010). Perhaps one of the
most striking differences between the two phenotypes is in their metabolism of the amino acid
arginine. Contrary to the use of L-arginine for the production of reactive species, the M2
macrophage expresses the arginase-1 (Argl) enzyme, which converts L-arginine to ornithine and
urea, thereby reducing the available pool of available substrate for nitric oxide production as well
as generating intermediate metabolites necessary for tissue repair (reviewed in (Boucher et al.
1999; Bronte and Zanovello 2005; Hesse et al. 2001)). M2 polarized macrophages secrete
growth-promoting compounds such as vascular endothelial growth factor (VEGF), IL-8, matrix
metalloproteinase-9 (MMP9), and polyamines, promoting processes such as angiogenesis,
lymphangiogenesis and fibrosis, which are necessary for the repair and remodeling of damaged
tissues (Biswas and Mantovani 2010; Ji 2012). These two opposing phenotypes are both fully
reversible, indicating that a single macrophage is able to participate in both the generation and
resolution of an inflammatory response (Porcheray et al. 2005).

1.5.3 Role Of Macrophages In Nervous System Injury & Repair

Macrophages have important roles as both cellular mediators and effectors of nervous
system inflammation. When peripheral nerves become damaged monocytes quickly leave the
circulation to invade the site of injury. Once differentiated to mature macrophages, they play a
critical role in removing both axonal and myelin debris through a process termed Wallerian
degeneration (Bruck 1997; Griffin et al. 1993; Perry and Brown 1992a), in a process dependent

on the activation of the complement cascade (Dailey et al. 1998). The role of peripherally
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derived macrophages in damage and subsequent repair of the nervous system is a complex issue,
with macrophages being implicated in both demyelination and remyelination. While on one hand
macrophages contribute to the pathology associated with nerve injury and demyelination through
the release of toxins and via antigen presentation to cytotoxic lymphocytes (Merrill et al. 1993;
Mpyers et al. 1993), they are also beneficial in their ability to phagocytose myelin debris and
secrete growth factors (Barouch et al. 2001). Without the aid of macrophages, the process of
Wallerian degeneration is slow to occur, which introduces a delay in the regeneration of the
damaged axons (reviewed in (Bruck 1997)), the longer an axon remains in a damaged state, the
lower the odds of proper repair occurring. The release of IL-1 by the infiltrated macrophages
can trigger the release of neurotrophins (e.g. nerve growth factor (NGF)) from the surrounding
fibroblasts (Perry and Brown 1992a; Perry and Brown 1992b), as well as the release of
neurotrophins (e.g. brain-derived neurotrophic factor (BDNF)) from the macrophage itself
(Barouch et al. 2001) which can potentially aid in promoting the regeneration of the damaged
axons.

The polarization state or rather the ratio of M1:M2 appears to play an important role in
whether or not effective repair/remyelination will occur. While few peripheral nerve studies
have examined the link between macrophage polarity and PNS repair, it does appear that it is not
only the presence of macrophages at the site of injury, but also their phenotype that matters for
efficient repair and protection from further injury (Mokarram et al. 2012; Ydens et al. 2012).
The importance of macrophage phenotype for proper nervous system repair has been examined
in experimental models of CNS demyelination (such as experimental autoimmune
encephalomyelitis (EAE)). At the peak of EAE severity there is an imbalance in the M1:M2
ratio with an overabundance of M1 polarized cells (Okuda et al. 1995), while supplementation
with additional exogenous M2 polarized monocytes improves both oligodendrocyte
differentiation and clinical presentation (Mikita et al. 2011). Indeed, there is a switch from M1
to M2 phenotype that correlates with the onset of myelination. In a recent study by Miron et al.

(Miron et al. 2013), M1 macrophages were shown to be important in the recruitment phase of
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oligodendrocyte precursor cells (OPCs) when they proliferate and divide. Indeed, selective
depletion of this population impairs this proliferation (Kotter et al. 2001; Kotter et al. 2005). The
subsequent switch to an M2 polarization state, which occurs in both macrophages and microglia,
is essential for effective remyelination (Miron et al. 2013). They also went on to show
macrophage-conditioned medium and in particular one molecule activin-A, a member of the
TGF-p superfamily effects OPC differentiation into an oligodendrocyte. This group was also
able to restore myelination efficiency through heterochromic parabiosis (pairing old mouse with
a young (Ruckh et al. 2012)) which resulted in increased densities of M2 polarized cells and
improved remyelination. Thus, it appears that therapies that can favorably impinge on the M2
polarization axis hold tremendous promise for improved clinical outcomes.
1.6 Neurotrophins — Molecules Implicated In Myelination

1.6.1 Structure & Function of Neurotrophins And Their Receptors

The neurotrophins are a family of proteins which play a number of critical roles in
development and maintenance of both the peripheral and central nervous systems (Notterpek et
al. 1999), mostly through regulating neuronal survival, differentiation, synaptic strength and
plasticity, and cell death (Cosgaya 2002; Rosenberg et al. 2006). The four members of this
family, nerve grown factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3
(NT-3), and neurotrophin-4/5 (NT-4/5), are all secretory proteins which are initially synthesized
as larger precursor peptides before being processed by proteases (e.g. the tissue plasminogen
activator (tPA)/plasmin system is responsible for the cleavage of pro-BDNF to the mature
peptide (Baranes et al. 1998; Pang et al. 2004)) to their mature form (Chao and Bothwell 2002).
Each of the neurotrophin proteins is capable of interacting preferentially with its own cognate
tyrosine kinase receptor from the tropomyosin-related kinase (Trk) family; NGF with TrkA,
BDNF and NT-4/5 with TrkB, and NT-3 with TrkC, with all neurotrophins capable of binding to

NTR). The larger pro-neurotrophins perform a

the common p75 neurotrophin receptor (p75
distinct set of functions from their processed, mature, products. It is the pro-domain of the

peptide that is critical for both the targeting of the peptide to the secretory pathway, as well as for
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the correct folding of the mature protein (Chen et al. 2004; Egan et al. 2003). In addition to the
targeting and processing role of the pro-domain, the pro-neurotrophin itself performs a variety of
signalling functions, usually contrary to the function of the mature peptide (Lu et al. 2005). For
example, in contrast to the role of the mature BDNF peptide in promoting neuronal survival
through the binding of the BDNF homodimer to the receptor tyrosine kinase TrkB, the pro-
BDNF molecule will preferentially bind to p75™'~ leading to the initiation of the apoptotic
cascade (Je et al. 2012; Taylor et al. 2012; Teng et al. 2005), axonal degeneration (Park et al.
2010), or the cessation of neurite outgrowth (Sun et al. 2012).

1.6.2 Role Of Neurotrophins In Myelination

While the various members of the neurotrophin family play a critical role in the survival
of different population of neurons, it is their involvement in myelination that is of particular
interest here. Through binding to the common neurotrophin receptor p75™ ', BDNF has been
shown to enhance myelin formation by Schwann cells in the peripheral nervous system (Cosgaya
2002). Further, BDNF along with NT-3 is important for the induction of oligodendrocyte
proliferation and differentiation in the CNS through modulation of the expression of MBP, a
major protein component of the myelin sheath (Rosenberg et al. 2006).

In the PNS, it is the mature form of BDNF that is important for initiation of the
myelination program (Chan 2001; Chan et al. 2006) primarily via activation of the p75™'~
expressed by Schwann cells (Cosgaya 2002). The expression of BDNF provides a negative
signal that halts the migration and replication of the Schwann cells, while at the same time
providing a positive signal for the expression of the myelin-associated genes (Chan 2001;
Cosgaya 2002; Yamauchi et al. 2004). Sensory neurons of the dorsal root ganglia express,
anterogradely transport, and secrete BDNF in order to promote this myelination by Schwann
cells (Ng et al. 2007). This finding is requisite if BDNF is to be an active participant in the

axon/glial cell interaction necessary for the myelination process to occur. The recruitment of

p75""™ receptors to the Schwann cell membrane by the partitioning defective-3 (Par-3)

18



scaffolding protein helps to ensure that the released BDNF is able to interact with this receptor
and initiate the downstream signalling events necessary for myelin formation (Chan et al. 2006).

Following injury to, and the subsequent repair of PNS axons, many of the events that
occurred during development are recapitulated, including axon myelination. This remyelination
process is also BDNF-dependent, with potential sources for this needed factor including neurons
(Mannion et al. 1999; Ng et al. 2007; Tonra et al. 1998; Zhou et al. 1999; Zhou and Rush 1996),
Schwann cells (Meyer et al. 1992; Zhang et al. 2000), or activated macrophages which have
infiltrated the injury site (Barouch et al. 2001; Dougherty et al. 2000). Collectively, this results
in an accumulation of BDNF at the site of demyelination that appears to be crucial for enhancing
the remyelination process. Furthermore, when fibroblast cells engineered to express BDNF are
transplanted into contused spinal cord tissue there is an increase in the degree of remyelination,
likely through the activation of the endogenous pool of precursor cells (McTigue et al. 1998).
The data presented in these studies indicate that activation of the neurotrophin mediated
signalling pathways is a viable therapeutic target to promote effective repair of sites of
demyelination.

1.7 Demyelination
1.7.1 Problems Associated With Remyelination

Demyelination may occur as a consequence of injury or disease, as previously discussed.
Efficient and effective clearance of myelin debris is critical for remyelination following
traumatic injury in both the peripheral and central nervous systems. While myelin-associated
glycoprotein is an important component of the mature myelin sheath, it appears to have a
negative influence on both axonal repair and remyelination following injury (Filbin 1995). Its
presence in the remaining myelinated axons as well as in the myelin debris at the lesion site
serve as an inhibitory signal for repair. In the PNS, axonal regeneration and subsequent
remyelination occurs after Wallerian degeneration, where the myelin has been effectively
removed (Filbin 1995). Furthermore, it has been hypothesized that one of the major obstacles to

remyelination of nervous system tissue is overcoming the inhibitory effect of the myelin proteins
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themselves. In models of CNS demyelination, it has been demonstrated that the presence of
myelin proteins prevents the differentiation of oligodendrocyte precursor cells (Kotter 2006).
This finding emphasizes the potential importance of the population of infiltrating macrophages in
the process of neural repair as these phagocytic cells are responsible for the clearance of the
debris present at the lesion site. This role for macrophages has been proposed partially based on
the finding that depletion of macrophages leads to a delay in the proliferation and differentiation
of the population of oligodendrocyte precursor cells (Kotter et al. 2005), presumably due to a
delay in the clearance in the myelin debris. The requirement of the monocyte lineage cells for
the repair of the myelin sheath highlights the double-edge sword of the inflammatory response in
demyelination; not only are macrophages effector cells in the destruction of the myelin sheath,

but they also play a critical role in its repair.

1.7.2 Role Of Electrical Stimulation In Nerve Repair

Remyelination can occur in response to damage to the myelin sheath of peripheral
(Griffin et al. 1990; Rubinstein and Shrager 1990) or central nervous system axons (McTigue et
al. 1998), although it is less effective in the latter. While it has been shown that spontaneous
nervous system remyelination can occur (McTigue et al. 1998) a key question that remains to be
answered is whether this repair response can be enhanced/upregulated following a demyelinating
insult. Studies have shown that when a transected and repaired femoral nerve is immediately
briefly electrically stimulated (one hour at 20 Hz) just proximal to the surgical repair site,
regeneration is greatly improved, and is associated with an activity-dependent upregulation in the
expression of both BDNF and its receptor TrkB in both motor neurons (Al-Majed et al. 2000a)
and sensory neurons (Geremia et al. 2007). This surgical repair strategy following traumatic
nerve injury and increase in neurotrophin expression correlates not only with an acceleration in
the rate of nerve regeneration, but it has also been associated with improved remyelination
(Singh et al. 2012).

However, the issue of how to promote early and rapid activation of this response

following a demyelinating insult remains unresolved. That increased neuronal electrical activity
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may serve as an important intrinsic signal for remyelination, is supported by in vitro experiments
demonstrating that electrical stimulation of DRG neurons co-cultured with OPCs promotes
expression of MBP (a major protein constituent of the myelin sheath), and that myelin formation
is restricted to electrically active axons (Wake et al. 2011). Electrical stimulation (ES) of DRG
neurons halts the proliferation of co-cultured Schwann cells, an important first step in the
maturation of the Schwann cell into a mature, myelinating phenotype (Stevens 2000), and that
specific patterns of neural activity are capable of influencing myelination in these same culture
systems (Stevens et al. 1998). However, it still remains to be determined what effects this ES
may have on the in vivo repair of demyelinated axons. As mentioned above, this strategy of
increasing neuronal activity to improve remyelination also appears to have benefits in vivo in the
traumatically injured and repaired peripheral nerve as discussed above (Al-Majed et al. 2000b;
Back et al. 2005; Brushart et al. 2005; Geremia et al. 2007) and is associated with enhanced
remyelination following crush injury of the sciatic nerve (Singh et al. 2012). The improved
regeneration is associated with increases in the neuronal expression of both BDNF and its
receptor TrkB (Al-Majed et al. 2000a), and neurotrophin signaling (English et al. 2006; Geremia
et al. 2010). Collectively, these findings raise the question of whether the beneficial effects of

brief ES will still be apparent in an experimental model of demyelinating disease.

1.7.3 Experimental Demyelination

A number of models of experimental demyelination exist, and they all have their place as
valuable tools for research, however each is not without limitations. The immunization of either
mice or rats with myelin proteins (e.g. MBP, or myelin oligodendrocyte glycoprotein) and the
subsequent generation of sensitized T lymphocytes produces an immune-associated attack on the
central nervous system, termed experimental autoimmune encephalomyelitis (EAE), and is
commonly used as a model to study multiple sclerosis, as it can have a chronic, relapsing course,
and displays common histopathological evidence of demyelination (reviewed in (Gold et al.
2000; Rawji and Yong 2013)). The EAE model has two major drawbacks, the first being the

inability to know the precise location where the demyelinated lesions will develop, and secondly,
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its use is limited to examining demyelination within the CNS. The addition of the copper
chelating compound cuprizone to the diet of laboratory rodents is able to overcome one of the
drawbacks to the EAE model, the imprecise localization of the demyelinating lesions. Cuprizone
produces a copper deficiency and demyelinating lesions localized to the corpus callosum and the
superior cerebellar peduncle, which is reversible upon removal of the chelator from the diet,
allowing for the study of both the generation and resolution of demyelinating insults (reviewed in
(Matsushima and Morell 2001; Rawji and Yong 2013)). While this model offers greater
precision in the localization of the demyelinating lesions, once again it is restricted to studies
pertaining to the CNS, and therefore is of no use in examining demyelination of peripheral
nerves.

For over 40 years, lysophosphatidyl choline (LPC) has been used as an agent for the
induction of focal demyelination in both the central and peripheral nervous systems. This agent
allows for the creation of a precise focal lesion, in which axons have been focally demyelinated
but remain intact (Hall 1972; Hall and Gregson 1971). This model largely spares axonal structure
(Allt et al. 1988), and provides one with the opportunity to selectively treat a predicted focally
demyelinated region. Such a model allows researchers to examine in isolation the intricate
process of myelin sheath production. The injection of LPC into peripheral nerves induces a lysis
of the myelin sheath, while the axolemma and plasma membrane of the myelin-producing
Schwann cell remain intact (Allt et al. 1988). This demyelination has a rapid onset, with visible
changes to the myelin sheath present within 30-60 minutes of injection, including the splitting of
the intraperiod line and a thickening of the major dense line similar to changes observed during
Wallerian degeneration. The loss of myelin reaches a peak within 96 hours, with debris found
within the endoneurium as well as the macrophages that have infiltrated the lesion site (Hall and
Gregson 1971). The injection of LPC induces a potent inflammatory response, increasing
permeability of vascular endothelium and expression of adhesion molecules and cytokines,
allowing for easier extravasation of recruited cells (Qiao et al. 2006), and furthermore has been

shown to be a chemoattractant for cells of the monocyte lineage (Quinn et al. 1988), facilitating
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the recruitment of phagocytic cells to the site of demyelination. Once these cells have been
recruited, LPC further enhances the generation of an inflammatory response through inducing
the production of pro-inflammatory cytokines. One drawback to the LPC model of focal
demyelination is that the lesions are self-limiting, and therefore this model is not an ideal
candidate for the study of chronic demyelination (Rawji and Yong 2013). It does however serve
as an excellent experimental system for assessing myelin damage and repair. It is preferable to
traumatic peripheral nerve injury models, such as a crush injury model, which despite also
leading to demyelination in a defined region of the nerve, also have axonal damage inherent to
the nerve crush injury. The latter complicates the study of inflammation and remyelination
substantially, as one is unable to study myelin repair in isolation of axon regeneration, as one can
do in the LPC focal demyelination model.

1.8 Hypotheses & Specific Aims
It is these observations that have lead to the following hypothesis:

The brief electrical stimulation protocol (1 hour at 20 Hz) shown to optimally promote
peripheral nerve regeneration will beneficially impact cellular axes and molecular events
associated with the effective repair of a peripheral nerve that has a pre-existing focal
demyelinating lesion.

The specific goals of this research are:

1) To employ the LPC model of focal demyelination to assess the effects of brief electrical
stimulation on the degree of remyelination following LPC-induced demyelination of the
peripheral nervous system.

i1) To examine the effect of brief ES on the axonal state, a key factor in determining whether
remyelination will be possible.
iii) To examine the effect of brief ES on the local immune microenvironment, including the

polarization state of the macrophages that have infiltrated the zone of focal demyelination.
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CHAPTER 2:
METHODS

2.1 Surgical Procedures
2.1.1 Focal Demyelinating Lesion

All procedures were approved by the University of Saskatchewan Animal Research
Ethics Board (protocol number 20090087) and adhered to the Canadian Council on Animal Care
guidelines for humane animal use. Animals were given analgesics (buprenorphine/Temgesic;
0.05- 0.1 mg/kg) subcutaneously pre- and postoperatively to minimize incisional discomfort. A
total of 190 young adult male Wistar rats (150-200g) were employed for the studies presented in
this thesis. Rats were deeply anaesthetized with inhaled isoflurane (2% delivered at a rate of
2L/min).

To create a focal demyelinating lesion, the right sciatic nerve was exposed at the level of
the trifurcation into the common peroneal, tibial and sural branches and 2 ul of a 1% LPC / 1%
Fluorogold (FG; Fluorochrome Inc. Denver, CO, USA) solution were injected into the tibial
branch of the sciatic nerve, just distal to the trifurcation (Fig 3A), using a 20-30 micron tip glass
needle connected to a Hamilton syringe. Fluorogold served to demarcate the demyelination

zone, while an epineural 10-0 suture marked the injection site.

2.1.2 Electrical Stimulation (ES)

Five days post-LPC injection, the animals were randomly assigned to experimental
groups (5, 6, 8, 10 and 12 days post-LPC injection). The 5-day post LPC group served as the
demyelination baseline control group. In all other groups, half of the animals were anaesthetized
and the right sciatic nerves re-exposed to perform ES. Insulated stainless steel wires bared of
insulation (2-3 mm for the anode, 5-10 mm for the cathode) were connected to a Grass (Quincy,
MA) SD-9 stimulator. The cathode wire was wrapped around the exposed nerve, 2-3 mm
proximal to the injection site. The anode was placed between the skin and muscle. ES was
performed as previously described by Al-Majed et al (Al-Majed et al. 2000b). Briefly, the Grass

stimulator delivered a continuous 20 Hz train of supramaximal pulses (100 msec; 3V) for one
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hour. Epineural 10-0 suture served to mark the stimulation site. The stimulation parameters
employed in this study were selected as they closely mimic the firing patterns of both motor and
sensory neurons (Al-Majed et al. 2000b; Fitzgerald 1987).

For histological studies, animals were processed for analysis at various time points post-
LPC injection with stimulated groups being paired with non-stimulated groups in the same
cryomolds to ensure processing under identical conditions (5 days, n=19; 6 days, n=8 LPC and 8
LPC+ES; 8 days, n= 16 LPC and 16 LPC+ES; 10 days, n= 16 LPC and 16 LPC+ES; and 12
days, n=11 LPC and 12 LPC+ES).

2.1.3 Experimental Controls

In addition to the LPC-injected +/- ES animals, the following controls were generated -
naive rats (n=3); naive animals with brief ES as above (n=3); LPC-injected animals with sham
stimulation where electrodes were connected but the stimulator was not turned on (n=3); and
LPC-injected animals treated with 2% lidocaine soaked gelfoam applied to the sciatic nerve
proximal to ES 30 minutes prior to and during ES (n=3) followed by thorough rinsing with

sterile phosphate-buffered saline (PBS) before closing the incision.

2.1.4 Preparation Of Tissue For Analysis

For fixed, frozen (FiFr) immunohistochemistry, animals (n= 124) were euthanized with
Euthanyl Forte overdose (Bimeda-MTC, Cambridge, ON) and transcardially perfused with 0.1 M
phosphate buffered saline (PBS) followed by 4% paraformaldehyde. One cm of ipsilateral
sciatic nerve (bordering both sides of the sites of LPC injection and electrical stimulation) and a
contralateral equivalent section of nerve were removed, post-fixed and cryoprotected overnight
in 20% sucrose. Tissues were embedded in cryomolds with OCT compound (Tissue Tek, Miles
INC, Elkhart, IN) frozen in cooled isopentane and stored at -80°C until processing. For fresh,
frozen (FrFr) immunohistochemistry, animals (n=14) were euthanized via CO; inhalation and
one cm of ipsilateral sciatic nerve (bordering both sides of the sites of LPC injection and
electrical stimulation) and equivalent contralateral were removed. Tissues were immediately

embedded in cryomolds with OCT compound (Tissue Tek, Miles INC, Elkhart, IN) frozen in
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cooled isopentane and stored at -80°C until processing.

2.2 Histochemistry
2.2.1 Immunofluorescence

Longitudinal and transverse/cross sections of fixed frozen (FiFr) nerve tissue were cut at
10 um on a Microm cryostat and thaw-mounted onto silanized glass slides. Slides were air-dried
for 15 minutes and washed 3 x 5 minutes in 0.1 M PBS prior to blocking in 10% normal donkey
serum and 0.1% Triton X-100 in 0.1 M PBS for one hour at room temperature. Primary
antibodies (see Table 1) diluted in 2% normal donkey serum and 0.1% Triton X-100 in 0.1 M
PBS were applied and slides incubated overnight at 4 °C in a humidified chamber. Slides were
washed 3 x 10 minutes in 0.1 M PBS and secondary antibodies (see Table 1) diluted in 0.1 M
PBS applied for one hour at room temperature. Slides were washed 3 x 10 minutes in 0.1 M PBS
and mounted with a glass coverslip using 50% glycerol in 0.1M PBS.

For fresh frozen (FrFr) immunohistochemistry, tissue was cut as above and slides
immediately fixed in 4% paraformaldehyde for 15 minutes at room temperature. Slides were
washed 3 x 5 minutes in 0.1 M PBS, and blocked for 1hr at room temperature in 10% normal
donkey serum and 0.3% Triton X-100 in 0.1 M PBS. Primary antibodies (see Table 1) diluted in
2% normal donkey serum and 0.3% Triton X-100 in 0.1 M PBS and incubated overnight at 4 °C
in a humidified chamber. Slides were washed 3 x 10 minutes in 0.1 M PBS. Secondary
antibodies (see Table 1) diluted in 0.1 M PBS were applied for one hour at room temperature.
Slides were washed 3 x 10 minutes in 0.1 M PBS and mounted with a glass coverslip using 50%

glycerol in 0.1 M PBS.

2.2.2 3.3’ — Diaminobenzidine (DAB) Immunohistochemistry

Longitudinal and cross sections of fixed frozen tissue were cut as above. Slides were air-
dried overnight at 37°C, washed 3 x 5 minutes in 0.1 M PBS and endogenous peroxidase activity
quenched with 0.3% hydrogen peroxide in distilled water for 30 minutes at room temperature.

Slides were blocked in 0.1 M PBS containing 10% fetal bovine serum (FBS) prior to overnight
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incubation at 4 °C with a primary antibody recognizing the 70 kDa subunit common to all
neurofilament chains (see Table 1) diluted in 3% human serum and 10% FBS applied and
incubated overnight in a humidified chamber. Slides were washed 3 x 10 minutes in 0.1 M PBS
and biotinylated secondary antibody (see Table 1) diluted in 10% fetal bovine serum in 0.1 M
PBS was applied for one hour at room temperature. Slides were washed 3 x 10 minutes in 0.1 M
PBS and HRP-conjugated avidin applied for one hour at room temperature before developing

with DAB for approximately five minutes.

2.2.3 Histological Stains

Sections processed for DAB immunohistochemistry also underwent Luxol Fast Blue
staining to detect myelin, with Nuclear Fast Red as a counterstain. To do this, slides were
washed 3 x 5 minutes in distilled water, then passed through a 70% and 95% alcohol gradient (5
minutes each). Slides were immersed up to the frosted region in a 1% Luxol Fast Blue solution
(in 95% alcohol, 10% acetic acid), and incubated in a 60°C oven overnight. After cooling to
room temperature, slides were rinsed in 95% alcohol and distilled water before differentiation in
0.05% lithium carbonate for approximately 1-2 minutes. Slides were then briefly rinsed in 70%
alcohol and distilled water before immersion in the 0.1% Nuclear Fast Red stain solution (in 5%
aluminum sulfate solution) for 5-10 minutes at room temperature. Slides were rinsed in distilled
water, dehydrated through an alcohol gradient (70%, 90%, 95%, 100%) and cleared in xylene
prior to mounting with a coverslip using Permount (Fisher Scientific, catalog # SP15-500).
Slides were imaged using an Olympus BX53 microscope and images digitally captured using

cellSens Standard software (Olympus).

2.3 Protein Analysis

2.3.1 ENZYME-LINKED IMMUNOSORBENT ASSAY (ELISA)

To generate tissue samples for the ELISA, a separate cohort of animals received a LPC
focal demyelinating lesions with or without brief ES as above (n=22 animals total, with 4

animals per condition and with 2 naive rats and 5d LPC contralateral nerves serving as controls).
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Animals were euthanized at 5, 8, and 10 days post-LPC. One centimeter lengths of sciatic nerve
bordering both sides of the demyelinating lesion equally were removed, along with
corresponding levels of control nerves, placed in lysis buffer (137mM NaCl, 20mM Tris-HCI
(pH 8.0), 1% NP40, 10% glycerol, ImM PMSF, 10ug/mL aprotinin, 1ug/mL leupeptin, 0.5mM
sodium vanadate) and stored at -80°C until processing. BDNF content was measured using the
BDNF Eax Immunoassay System kit (Promega, Madison, WI), using all antibodies and reagents
supplied by the kit and as per the manufacturer’s instructions. Briefly, polystyrene ELISA plates
(sealed with an acetate sheet to prevent evaporation) were coated overnight at 4°C with an anti-
BDNF monoclonal antibody diluted 1:1000 in pH 9.7 carbonate coating buffer. The coating
buffer was removed and the plates were washed in Tris-buffered saline with 0.05% Tween 20
(TBST, 20mM Tris, 150 mM NacCl), before being blocked in 1X block & sample buffer for one
hour at room temperature. Plates were washed 3x in TBST. Duplicate wells of samples (diluted
1:4 in 1x block & sample buffer) and the BDNF standard curve (500, 250, 125, 62.5,31.3, 15.6
and 7.8 pg/mL) were applied and incubated for two hours at room temperature with gentle
shaking. Plates were then washed 5x in TBST. Anti-human BDNF polyclonal antibody (diluted
1:500 in 1X block & sample buffer) was applied; followed by a two-hour incubation with gentle
shaking at room temperature. The plates were washed 5x in TBST before applying HRP-
conjugated anti-IgY (diluted 1:200 in 1X block & sample buffer) and leaving it for one hour at
room temperature with gentle shaking. Plates were washed 5x in TBST, before color
development using the TMB substrate. After 10 minutes, IN HCI was added to all wells to stop
the reaction. Plates were read immediately at a wavelength of 450 nm in a SpectraMax 340
(Molecular Devices, Sunnyvale, CA) spectrophotometric plate reader equipped with SoftMax

Pro 5 software (Molecular Devices, Sunnyvale, CA).

2.3.2 Western Blotting

Surgical procedures were performed as above on a separate cohort of animals (n = 32
animals total with 2 naive controls, 6 LPC and 6 LPC+ES animals per time point). Animals

were euthanized at 5, 8 and 10 days post-LPC injection. Three naive animals served as controls.
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A one cm segment of sciatic nerve bordering both sides of the injection site equally was removed
from each rat, along with corresponding levels of contralateral and control naive nerves. The
nerve segments were placed in lysis buffer (137mM NaCl, 20mM Tris-HCI (pH 8.0), 1% NP40,
10% glycerol, ImM PMSF, 10ug/mL aprotinin, 1ug/mL leupeptin, 0.5mM sodium vanadate),
homogenized and stored at -80°C until processing. Extracted proteins from pooled samples
(N=3 rats/experimental condition/ sample) at each time point and a protein molecular size
marker (Licor, catalog #928-40000) were separated by either standard SDS-PAGE (10%
acrylamide gels) at 150V for approximately one hour in standard Tris-glycine running buffer (25
mM Tris, 0.2M Glycine, 0.05% SDS), before transfer to PVDF membranes (Bio-Rad, catalog #
162-0177) by semi-dry electroblotting using a Bio-Rad Trans-Blot apparatus for 15 minutes at
15V using chilled transfer buffer (25mM Tris, 192 mM Glycine, 20% methanol). Membranes
were blocked overnight at 4°C with gentle agitation using Licor Odyssey blocking buffer
(catalog # 927-40000). Membranes were briefly rinsed in 0.01 M PBS with 0.05% Tween 20
(PBST), and primary antibodies (see Table 1) diluted in PBST were applied at 4°C for 72 hours
with gentle agitation. The membranes were then washed 3 x 5 minutes in PBST. Infrared dye-
conjugated secondary antibodies (see Table 1) were applied for one hour at room temperature
with gentle agitation. Membranes were washed 2 x 5 minutes in PBST, followed by washing 1 x
5 minutes in 0.01 M PBS before scanning on a Licor Odyssey 9120 infrared scanning system.
For total protein and equal sample loading determination Coomassie Blue staining was
used as the injury model employed made traditional immunostaining for a standard housekeeping
marker (such as GAPDH) difficult as all housekeeping proteins examined change expression
levels. This method has been evaluated thoroughly (Eaton et al. 2013), and is compatible with
the infrared detection systems used to visualize the protein bands. The probed PVDF membranes
were stained in a solution of 0.1% Coomassie Blue R-250 (Sigma-Aldrich, catalog# 27186) (in
50% methanol, 7% acetic acid) for ~ 5 minutes at room temperature with gentle agitation. Stain
solution was removed, replaced with destain solution #1 (50% methanol, 7% acetic acid) and

membranes incubated for ~ 5 minutes at room temperature with gentle agitation. Solution was
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discarded, and membranes were submerged in destain solution #2 (90% methanol, 10% acetic
acid) and agitated by hand until bands reached desired level of differentiation. Membranes were
rinsed twice in distilled water before scanning on a Licor Odyssey 9120 infrared scanning
system.
2.4  Data Analysis

2.4.1 Histochemical

To ensure accurate analysis of relative changes in immunofluorescence (IF) signal
between experimental groups, nerve segments ipsilateral and contralateral to LPC injection from
both experimental and control groups were always mounted on the same slide so that processing
was conducted under identical conditions. Immunofluorescence data was gathered from digital
images of the site of demyelination captured under identical exposure conditions using Northern
Eclipse v7.0 software (EMPIX Imaging Inc.) and a Zeiss Axio Imager M.1 fluorescence
microscope. Demyelinated regions of interest for each image (identified by the presence of FG-
positive staining) were demarcated with a 1300 x 900 wm box overlaid on the image using
Photoshop CSS5. Analysis was carried out by tracing the outline of the FG-positive region that
fell within the overlaid box of interest using Northern Eclipse, which then calculates the Average
Gray and total area (in microns®) for the image, yielding average Gray per micron’. For each
time point examined, all values obtained at that time point were normalized to the mean value of
the Average Gray per micron® value for the nerves ipsilateral to LPC treatment for the LPC Only
animals at that time point. The relative fluorescence signal for each marker with and without ES
was compared using the Kruskal-Wallis one-way ANOVA with Dunn’s post-test analysis (6, 8,
10 or 12 days post-injection) or Student’s t-test (5 days post-injection). Results achieved
statistical significance at a p value <0.05.

To evaluate changes in macrophage phenotype between experimental groups, nerve
segments ipsilateral and contralateral to LPC injection from both experimental and control
groups were always mounted on the same slide so that processing would be conducted under

identical conditions. Immunofluorescence data was gathered from digital images of the site of
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demyelination captured under identical exposure conditions using Northern Eclipse v7.0
software (EMPIX Imaging Inc.) and a Zeiss Axio Imager M.1 fluorescence microscope.
Demyelinated regions of interest were identified by the presence of FG-positive staining.
Analysis was carried out by merging images captured from double labeled slides (ED-1/CD206;
ED-1/Argl; ED-1/iNOS; ED-1/TNF-a), and manually determining the proportion of ED-1-
positive cells within each of 10 fields of view that also strongly expressed either CD206, Argl,
iNOS or TNF-a.. The number of cells indentified as strongly positive for each marker were
compared using the Kruskal-Wallis one-way ANOVA with Dunn’s post-test analysis (5, 8, or 10

days post-injection). Results achieved statistical significance at a p value <0.05.

24.2 ELISA

BDNF protein levels in samples of sciatic nerve assessed via ELISA were determined by
interpolation from the standard curve included in the assay, followed by background correction
done by subtracting the average background ODyso (obtained from the mean ODysg of three wells
containing only water) from that of each of the experimental values as well as the standard curve.
For each sample the mean BDNF concentration was determined for the duplicate wells.
Statistical analysis was performed using a one-way ANOVA with Tukey’s multiple comparison

test. Results achieved statistical significance at a p value <0.05.

2.4.3 Western Blot

Data (from two replicates using protein isolated from pooled nerves from 3 animals per
experimental group) was analyzed using the ImagelJ software application. Mean densitometry
values for all experimental conditions were normalized to the B-III tubulin loading control and
expressed as a fold difference of the mean densitometry reading for two lanes of protein extract
from naive animals run on the same gel. Student’s t-tests were performed to determine the
significance of changes relative to naive controls in the abundance of the marker of interest at

each time point with and without ES. Results achieved statistical significance at a p value <0.05.
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TABLE 2.1: LIST OF ANTIBODIES USED

Primary Antibodies
Target Supplier Catalog No. Dilution
Chicken a-BDNF Promega Gl641 [HC 1:150
Goat a-CD206 Santa Cruz sc-34577 IHC 1:100, WB 1:500
Mouse o-B-11I Millipore MAB1637 IHC 1:00, WB 1:100
Mouse a-CD68 (ED-1) Cedarlane MCA341R [HC 1:250, WB 1:500
Mouse a-Kv1.2 Millipore MABNT77 IHC 1:1000
Mouse a-MBP Covance SMI-94R [HC 1:250
Mouse a-NF Dako MO0762 IHC 1:800, WB 1:1000
Mouse a-NF-p (SMI-31) Covance SMI-31R [HC 1:1000
Rabbit a-Argl Santa Cruz sc-20150 [HC 1:100, WB 1:500
Rabbit a-p-111 Sigma-Aldrich T 2200 IHC 1:1000
Rabbit a-Caspr Abcam ab34151 IHC 1:4500
Rabbit a-GFAP Dako 7 0334 IHC 1:800
Rabbit a-iINOS Cedarlane ab3523 IHC 1:100, WB 1:500
Rabbit a-TNF-a Cedarlane ab6671 IHC 1:100; WB 1:500
Secondary Antibodies
Target Supplier Catalog No. Dilution
Donkey Cy3 a-Chicken Jackson 703-165-155 IHC 1:1000
ImmunoResearch
Donkey DyLight594 o- Jackson 705-515-003 IHC 1:1000
Goat ImmunoResearch
Donkey IR680 a-Goat Licor 925-68074 WB 1:5000
Donkey Alexa488 Jackson 715-546-151 IHC 1:1000
a-Mouse ImmunoResearch
Biotinylated a.-Mouse Amersham RPN1001 [HC 1:200
Donkey IR800 a-Mouse Licor 926-32212 WB 1:5000
Donkey Cy3 a—Rabbit Jackson 711-166-152 IHC 1:1000
ImmunoResearch
Donkey IR800 a-Rabbit Licor 926-32213 WB 1:5000
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CHAPTER 3:
RESULTS

3.1 IMPACT OF DELAYED ELECTRICAL STIMULATION ON MYELINATION,
MOLECULES INVOLVED IN MYELINATION AND SCHWANN CELL
ACTIVATION STATE

Rapid and efficient axon remyelination aids in restoring strong electrochemical
communication with end organs and in preventing axonal degeneration often observed in
demyelinating neuropathies. The signals from axons that can trigger more effective
remyelination in vivo are still being elucidated. In the next three sections I assess the impact of
delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on
ensuing reparative events in a focally demyelinated adult rat peripheral nerve.

3.1.1 Creation & Identification Of A Reproducible Focal Demyelination Zone

In order to test the first part of my hypothesis that delayed brief nerve electrical
stimulation (ES; 1 hour at 20 Hz) delivered proximal to a site of focal demyelination induced
five days prior, will induce cellular changes that result in more effective remyelination, I had to
select a reliable and reproducible focal demyelination model in which the impact of brief ES
could be assessed. For this purpose, I chose the LPC model of focal demyelination in the tibial
nerve branch of the sciatic nerve at the level immediately distal to the nerve trifurcation.

The ability to clearly demarcate the initial region of demyelination in the affected nerve is
necessary in order to reliably assess alterations in cellular events and proteins within zones of
demyelination and remyelination. Thus, the retrograde fluorescent tracer Fluorogold (FG) was
co-injected with the demyelinating agent LPC into the tibial nerve (Fig 3A) creating a readily
identifiable injection zone and subsequent region of demyelination and remyelination. The tibial
branch of the sciatic nerve was selected as the site of LPC/FG injection as it is not only the
largest of the three branches, but also allows for precise, and readily reproducible focal
demyelinating lesions. While some FG was retrogradely transported back to the neuronal cell
bodies contributing axons to the tibial branch, sufficient FG remained at the zone of

demyelination to readily demarcate it. Figure 3 shows a longitudinal section of a demyelinated
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nerve, 5 days post-LPC/FG injection, which is representative of the size of the demyelination
zone observed across all time points examined. The site of demyelination was readily identified
by the joint presence of FG (Fig 3C), diminished myelin basic protein (MBP; a component of
myelin, Fig 3D) immunofluorescence (IF) and B-III tubulin IF, an axonal marker (Fig 3E).

There was tight register between the region of demyelination and the co-injected FG (Fig 3C and
Fig 3D), as shown by a relative lack of MBP in the most FG intense region. These FG intense
regions were used to create regions of interest (ROIs) in which the intensity of IF signal for
individual markers examined in this study were quantified. For all sections examined, the loss of
MBP signal did not extend beyond the FG-positive ROI, with consistent demyelination observed
in the FG-defined ROI at 5 days post-LPC (Fig 3B). There was also no evidence of a
contralateral effect in response to ES, as the contralateral tibial nerves did not differ from naive
controls with respect to the various markers examined (data not shown). Finally, ES did not
appear to impact the integrity of the nerve, as levels of B-III tubulin IF signal over sections of
naive nerve were not discernibly different from sections of nerve that had undergone only brief

ES (no demyelination) seven days previous (data not shown).

3.1.2 Impact Of Delayed ES On Remyelination-Associated Events

By 5 days post-LPC there is little structural myelin left within the zone of demyelination
in the injected peripheral nerve (Hall and Gregson 1971). In order to assess whether ES effects
more rapid remyelination of the LPC-demyelinated axons, I chose to examine select indicators
associated with this process, namely, increased expression of MBP, a molecule important in
maintaining correct myelin structure; reestablishment of the nodes of Ranvier, important in
efficient impulse propagation; expression of a key molecule involved in this process, BDNF; and

whether the dedifferentiated reactive state of the Schwann cell is attenuated.
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Stimulation Site

k Injection Site

Figure 3: FluoroGold (FG) staining delineates the demyelination zone. Representative fluorescence
photomicrographs from a longitudinal section of tibial nerve six days after injection with a
lysophosphatidyl choline (LPC)/FG mixture and doubly immunostained for myelin basic protein (MBP;
green, D) and $-11I tubulin (red, E). Note: FG was taken up by cells in the injection site region and
diffused beyond the injection site. There was good register between the most intensely stained region of
FG (blue, B, C) and the area of demyelination as defined by the punctate immunostaining for MBP and a
lack of the normally uniform linear MBP staining (B, D). The presence of positive linear $3-11I tubulin IF
indicates that axons within the demyelination site persist (B, E). The demyelination site was identified by
the joint presence of FG, axonal (3-11I tubulin) and paucity of myelin marker (MBP) (boxed areas B, D)
in contrast to the robust MBP immunostaining outside the zone of demyelination (asterisks, B). Thus, FG
serves to identify the regions of interest (ROIs; similar to that outlined by dashed lines in (D)), where
alterations in various markers impacted by the LPC and electrical stimulation were quantified (see Figs 2,
6). Scale bar = 100 um.

3.1.2.1 Brief ES Increases MBP Expression

Injection of LPC into the tibial branch of the sciatic nerve induced a rapid, focal

demyelinating lesion. The contralateral control (noninjected) nerves at all time points examined
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displayed intense immunostaining for MBP. The MBP immunopositive profiles of the
contralateral nerves displayed a linear, organized pattern, which is typical of myelinated
internodes (Fig 4A). By five days post-LPC injection, a near complete demyelination of the
axons within the injection site was observed (Fig 3, 4B). There was clear disruption of the
normal linear pattern of MBP IF (Fig 4B vs. 4A), consistent with segmental demyelination. The
MBP IF signal within the demyelination zone was greatly diminished and when detected was
punctate, likely representing myelin debris that was either free within the endoneurium or that
had been taken up by phagocytic macrophages. Analysis comparing the relative alterations in
MBP IF signal over contralateral versus ipsilateral tibial nerves revealed a significant decrease in
MBP, consistent with myelin loss in the LPC-injected (ipsilateral) nerves (Fig 4C). Alterations
in MBP expression induced by the one hour ES treatment (applied at 5d post-LPC injection)
were assessed relative to nerves that had undergone LPC-induced demyelination only at the same
time point following ES. At 6d post-LPC (1d post-ES), the levels of MBP detected in the focally
demyelinated tibial nerves of animals were not significantly different between the experimental
group that received ES and those that did not (Fig 4D & 3D). The lesion sites in both groups
were nearly devoid of linear MBP signal and differed significantly from the intact contralateral
nerve (Fig 4F).

By 8d post-LPC injection (3d post-ES), however, clear differences between the
stimulated and non-stimulated nerves began to emerge. While the non-stimulated nerves
continued to be largely devoid of MBP immunoreactivity, their stimulated counterparts began to
display a more intense MBP IF signal. Not only was there a greater degree of total MBP
immunoreactivity, but the distribution of the immunopositive signal also displayed changes.
Beginning at this time point, there was less visible MBP-positive myelin debris present, and
there was a more linear pattern of MBP signal in the ES-treated nerves, suggestive of early
segmental remyelination (Fig 4G, H, I). While the stimulated nerves did not differ greatly in the
level of MBP IF detected 10d post-LPC as compared to that detected in nerves at 8d post-LPC

(Fig 4H, K.,), there was a distinct and significant difference between the stimulated and non-
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stimulated nerves at 10d post-LPC, both in terms of the amount of immunofluorescence and in
the localization of the IF signal. As in the 8d post-LPC nerves, the MBP IF signal displayed a
much more linear appearance in the ES group, while in the LPC only nerves its localization
remained predominantly associated with small, round cells morphologically consistent with
activated macrophages (Fig 4J, K, L). By 12d post-LPC there was an even greater divergence in
the IF signal for MBP between the non-ES treated and ES treated nerves (Fig 4M, N, O; 7d post-
ES). At this last time point examined, nerves receiving ES had clear evidence of greater
remyelination than controls, albeit incomplete. There was definite organization of the MBP IF
signal into structures resembling normal myelin internodes, with little evidence of myelin debris.
The non-stimulated nerves at this time point had just began to display the first signs of possible
remyelination, with a few structures resembling internodes present (Fig 4M).

When naive (non-LPC injected) nerves were subjected to the stimulation procedure there
were no discernable changes in MBP expression. These nerves displayed a level of MBP IF
indistinguishable from that observed in naive nerves, suggesting that hypermyelination did not
occur (Fig 5A, B). This implies that the increased MBP expression observed in the LPC-injected
nerves is likely due to an enhanced repair response. Further, the observed changes in MBP
expression appeared to be due to the ES procedure itself, rather than the mere surgical re-
exposure of the demyelinated nerves. When sham ES was performed, (nerve exposed, electrodes
put in place for one hour, but without the stimulator turned on) there was no discernable increase
in MBP expression by 12d post-LPC, as opposed to the significant increase observed when the
stimulator was active (Fig 5C vs 4N). Furthermore, the impact of ES on MBP expression was
likely due to neuronal activation, and dependent on action potential conduction, as the
application of the sodium channel blocking agent lidocaine prior to, and throughout the one hour
ES procedure abolished the observed increases in MBP expression and axonal remyelination (Fig

5D).
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Figure 4: Increased myelin basic protein (MBP) expression following 1hr ES delivered 5 d post-
LPC demyelination. Representative photomicrographs from FG-positive areas on longitudinal sciatic
nerve sections processed for MBP immunofluorescence (IF) reveal extensive demyelination 5d post
lysophosphatidyl choline (LPC)/FG demyelinating injection (B) as compared to contralateral normal
control nerves (A). Temporal analysis of LPC) focal demyelination +/- electrical stimulation (ES) as
indicated in days post-LPC: 6d (D), 6d+ES (E), 8d (G), 8d+ES (H), 10d (J) 10d+ES (K) and 12d (M)
12d+ES (N) post-LPC. Note: In the LPC only group, MBP IF was localized in distinct patches consistent
with uptake by phagocytosing cells (D, G, J) with faint linear regions similar to periaxonal MBP
localization observed by 12 days post-LPC only injection (M). In contrast, in the LPC + ES group faint
regions of MBP peri-axonal-like IF were already apparent 8d post-LPC (3d post-ES; H) and consistently
stronger in the 10d post-LPC (5d post-ES; K) and 12d post-LPC (7d post-ES; N). Summary bar graphs of
relative changes in immunofluorescence signal for MBP in focal demyelination zones (C, F, I, L, O).
Note: values obtained from individual slides at each time point were normalized to the mean value of the
Average Gray per micron® readings for the nerves ipsilateral to LPC treatment for the LPC only animal on
that slide and for that time point. N = 4-6 animals analyzed per condition; regions quantified per
condition: 49 ipsi and 38 contra (5d, LPC only); 128 ipsi and 76 contra (6d, LPC only); 81 ipsi and 54
contra (6d LPC+Stim); 83 ipsi and 49 contra (8d, LPC only); 60 ipsi and 58 contra (8d, LPC+Stim); 62
ipsi and 52 contra (10d, LPC only); 54 ipsi and 48 contra (10d, LPC+Stim); 155 ipsi and 73 contra (12d,
LPC only); 119 ipsi and 104 contra (12d LPC+Stim). Asterisks indicate significant differences between
experimental groups; *P<0.05, **P<0.01, ***P<0.001. Scale bar = 100 um.
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Figure 5: Impact of ES on MBP expression in naive nerves or focally demyelinated nerves subjected
to action potential blockade. Representative immunofluorescence photomicrographs of tibial nerve
sections immunostained for MBP. Naive control nerves displayed intense MBP immunoreactivity (A).
Electrical stimulation (ES) of naive nerves did not discernibly alter MBP expression (B). Neither sham
stimulation, nor blockage of action potential conduction through local application of lidocaine prior to
and at time of electrical stimulation of 5d LPC-injected nerves effected the increase in MBP expression
within the focal demyelination zone (C,D) normally observed at the 12 day post-LPC timepoint
examined. This supports that the increased MBP immunoreactivity observed in the stimulated focally
demyelinated nerves is due to the increased axonal activity effected by the ES procedure. Scale bar = 100
pm.

3.1.2.2 Accelerated Node Of Ranvier Reorganization In Electrically Stimulated
Demyelinated Nerves

The node of Ranvier has a highly structured molecular organization, with the Nav1.6 sodium
channels clustered at the node (Schafer et al. 2006), flanked by the contactin-associated protein
(Caspr) at the paranode, and voltage gated potassium channels (including Kv1.2) in the
juxtaparanodal region (Arroyo et al. 2004). Axonal demyelination resulted in a loss of the
discrete regional localization of the two node of Ranvier associated markers. Both paranodal
Caspr and juxtaparanodal Kv1.2 assumed a diffuse distribution with the two markers often

colocalized (Fig 6B, C, E), instead of being highly localized and distinct from each other
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((Arroyo et al. 2004); Fig 6A and insert, Fig 6A). At 5d post-LPC injection there was nearly a
complete loss of the distinct restricted Caspr and Kv1.2 staining, with an average of 1.5 visible
organized nodal regions in the fields of view examined, compared to 24.1 nodal regions in an
equivalent field in the contralateral control nerve. Disruption of the nodal organization largely
persisted in both the ES and non-stimulated nerves at 8d post-LPC injection (3d post-ES; Fig 6C,
D). At this time point however, early evidence of reorganization of nodal regions began to
emerge, especially in the ES group (Fig 6D), with an average of 13.28 Caspr-positive nodal
regions observed per field of view, compared to 5.19 for the non-stimulated nerves (Fig 61). By
10d post-LPC (5d post-ES) the incidence of Caspr- and Kv1.2-positive organized nodal regions
in the stimulated nerves (Fig 6F) was equivalent to that observed in the normal nerve with an
average of 21.53 distinct Caspr-positive nodal regions per field of view (Fig 61). Despite this,
there was still some faint diffuse Kv1.2 staining in the axons. This differed markedly from the
non-stimulated nerves that continued to display a disorganized, predominantly diffuse pattern of
Caspr- and Kv1.2-positive IF signal (Fig 6E) with an average of only 9.96 visible Caspr-positive
nodal regions per field of view (Fig 61). By 12d post-LPC (7d post-ES) there is a return to the
normal pattern of Caspr and Kv1.2 localization in ES nerves (Fig 6H). By this time, nerves that
received only the LPC injection had also begun to display more highly organized nodal
structures with Caspr once again assuming a distinct discrete localization. Kv1.2 was seen to
localize to regions adjacent to some of these Caspr-positive distinct regions, and co-localized
with Caspr less frequently (Fig 6G), similar to the pattern observed 5d after ES (Fig 6F), albeit

less organized.

3.1.3 Impact Of Delayed ES On Molecules Important For Myelination
The increased MBP expression and more rapid re-establishment of the node of Ranvier

architecture made us posit whether molecules involved in the myelination process may also be
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Figure 6: Accelerated node of Ranvier reorganization in focally demyelinated nerves subjected to
1hr ES. Representative photomicrographs of FG-positive (i.e focally demyelinated) regions of
longitudinal tibial nerve sections dually immunostained for the paranodal protein Caspr (red) and the
juxtaparanodal Kv1.2 ion channel (green). Contralateral control nerves display well-organized nodes of
Ranvier with Caspr IF in the paranodal region and Kv1.2 IF at the juxtaparanodal region (A, insert reveals
nodal staining at higher magnification) and an average of 24.1 visible nodes per field of view as defined
by a 1300 x 900 pixel rectangle superimposed on the photomicrograph (I). A marked loss of nodal
organization was observed 5d post-lysophosphatidyl choline (LPC)/FG injection, with an average of 1.5
nodal regions per field of view (B, I). Temporal analysis of LPC +/- ES delivered 5 d post-LPC and
indicated in days post-LPC: 8d (C), 8d+ES (D), 10d (E), 10d+ES (F) and 12d (G) 12d+ES (H) post-LPC,
revealed that ES delivered 5 d post-LPC resulted in nodal reorganization apparent as early as 8d post-LPC
(8d+ES - 3d post-ES; D), with a mean of 13.28 nodes per field of view, as compared to 5.19 in the non-
stimulated nerves (8d post-LPC only; C, I). The reorganization continued at 10d post-LPC in the ES
nerves, approaching contralateral control nerve levels (10d+ES - 5d post-ES; F), with a mean of 21.53
nodes per field of view in the stimulated nerves (I), compared to 9.96 in the non-stimulated (10d post-
LPC; E, I) that continued at the 12d post-LPC (12d+ES - 7d post-ES; H and insert). Tissue from the LPC
only group displayed modest nodal re-organization (G) 12d post-LPC consistent with the appearance of
only faint remyelination (see Fig 1). Scale bar = 100 um.
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coordinately regulated. One such molecule is BDNF. It has been previously reported that BDNF
plays a key role in peripheral nerve myelination (Chan 2001; Chan et al. 2006) and that in
models of axonal transection and repair, immediate brief ES results in increased BDNF
expression that is presumably being released from growing axon tips (Al-Majed et al. 2000a;
Geremia et al. 2007; McTigue et al. 1998; Singh et al. 2012). However, in the LPC model of
focal demyelination employed in this study, the axons are still structurally intact. Therefore, I
examined if delayed brief ES could affect an increase in BDNF at the site of focal demyelination.
Using BDNF immunohistochemistry and ELISA analysis, a persistent low level of BDNF
was detected in control sciatic nerves (Fig 7A). Five days post-LPC increased BDNF levels
were detected within the demyelination zone, localizing predominantly to cells identified as ED-
1-positive macrophages (Fig 7B, colocalization data not shown). Measurement of the local
BDNF content via ELISA confirmed an increase in the amount of BDNF within the
demyelination zone 5d post-LPC injection, and was determined to be 38.6 +/-0.3 pg/ml (s.e.m.),
as compared to 7.6 +/- 1.6 pg/ml (s.e.m.) in an equivalent region of the contralateral nerve (Fig
7C). Eight days post-LPC injection (3d post-ES) the ES nerves contained even higher levels of
BDNF at 53.8 +/- 3.1 pg/ml (s.e.m.), as compared to the LPC-only nerves, which had declined
relative to the 5 days post-LPC levels to 19.7 +/- 4.9 pg/ml (s.e.m.). This is a similar timeline to
that observed for the increase in MBP immunofluorescence, and appears to indeed correlate with
an early onset of remyelination. Notably, at this time point the increased BDNF IF signal
colocalized with the axonal marker III-tubulin, the Schwann cell marker GFAP and the
macrophage marker ED-1 (colocalization data not shown; Fig 7D, E, F). This suggests that there
are additional sources of BDNF in the stimulated nerve not observed in the non-stimulated
nerves. The levels of BDNF in the demyelination zone were still elevated in the ES-treated
nerves 10d post-LPC (five days post-ES). Nerves receiving brief ES had greater BDNF IF signal
and mean BDNF content (66.3 +/- 3.7 pg/ml, s.e.m.), compared to the non-stimulated LPC-
treated nerves that had declined to almost the baseline levels of control contralateral nerves (9.5

+/- 0.3 pg/ml, s.e.m.), with BDNF expressed by macrophages, Schwann cells, and the axons
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(colocalization data not shown; Fig 7G, H, I). Once again, there was agreement between the
BDNF ELISA and IF data, with the latter appearing similar to that observed in the 8d post-LPC

group.
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Figure 7: Increased BDNF protein in demyelination zone following 1 hr ES. Representative
immunofluorescence (IF) photomicrographs from FG-positive focally demyelinated areas of tibial nerve
sections immunostained for BDNF. Contralateral control nerves displayed only minimal BDNF IF (A).
There was a marked increase in BDNF observed 5d post- lysophosphatidyl choline (LPC)/FG injection
(B), largely within cells identified as ED-1 positive macrophages (data not shown). Temporal analysis of
LPC focal demyelination +/- ES delivered 5 d post-LPC and as indicated in days post-LPC: 8d (D),
8d+ES (E), 10d (G), 10d+ES (H). Note: ES results in an increase in the BDNF IF signal detected 8 and 10
d post-LPC (3 and 5 days post-ES; E,H) relative to LPC only nerves (D,G). Summary bar graphs of
BDNF protein levels measured by ELISA in samples of sciatic nerve bridging the site of demyelination
are in agreement with BDNF IF (C, F, I). Asterisks indicate significant differences between experimental
groups; **P<0.01. Scale bar = 100 um.
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3.1.4 Gradual Attenuation Of The Schwann Cell Reactive State Following Brief ES

An important consideration when examining aspects surrounding myelin repair is the
state of the glial cells responsible for the elaboration of the myelin sheath. Demyelination drives
Schwann cells into a de-differentiated state, which shares many properties with their non-
myelinating counterparts. This de-differentiation is associated with the acquisition of a reactive
phenotype characterized by prominent glial fibrillary acidic protein (GFAP) expression (Scherer
and Salzer 2001). In order to affect proper repair, a prompt conversion of these Schwann cells
back to a myelinating phenotype is desirable and thus the impact ES on SC GFAP expression
was assessed.

The focal demyelination observed following LPC injection was also associated with
increased Schwann cell reactivity, as evidenced by increased IF signal for the cytoskeletal
protein GFAP in the LPC-injected tibial nerves (Fig 8B). In the contralateral control nerves
there was a persistent, low level of GFAP expression, likely expressed by the population of non-
myelinating Schwann cells, but at a significantly lower level than that of the focally
demyelinated nerves (Fig 8A, C). Nerves examined at the 6, 8, and 10 days post-LPC injection
(1d, 3d, and 5d post-ES) time points displayed similar, elevated levels of GFAP expression in
both the stimulated and non-stimulated nerves (Fig 8D-F, G-1, J-L). However, by 12d post-LPC
injection (7d post-ES) a marked difference between the animals that received the brief ES and
those that did not had emerged. The LPC-only animals still expressed high levels of GFAP (Fig
8M). However, in ES nerves the GFAP IF levels were now reduced compared to that observed
in the LPC-only animals (Fig 8N, O), but still remained elevated above the IF intensity of the
contralateral control nerves. This suggests that ES gradually results in a more rapid resolution of
the activated state of SCs in the demyelination zone.

When naive (non-LPC injected) nerves were subjected to the stimulation procedure there
were no discernible changes in GFAP expression. Because the naive, stimulated nerves did not

display a measurable increase in GFAP expression, this suggests that the stimulation procedure
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Figure 8: Decreased reactive gliosis following 1hr electrical stimulation (ES) delivered 5d post-
demyelination. Representative immunofluorescence photomicrographs from FluoroGold (FG) positive
areas of tibial nerve sections processed for glial fibrillary acidic protein (GFAP) immunofluorescence (IF)
to detect reactive Schwann cells. Contralateral intact control nerves displayed only minimal GFAP IF (A).
However 5d post-lysophosphatidyl choline (LPC)/FG injection there was a marked increase in GFAP IF
(B). Temporal analysis of LPC focal demyelination +/- ES as indicated in days post-LPC: 6d (D), 6d+ES
(E), 8d (G), 8d+ES (H), 10d (J) 10d+ES (K) or 12d (M) 12d+ES (N) post-LPC. Note: ES resulted in a
significant decrease in the GFAP IF signal detected at 12d post-LPC (7 days post-ES; N) relative to 12d
LPC only (M). Summary bar graphs of relative changes in immunofluorescence signal for GFAP within
the focal demyelination zone in sections of tibial nerve bridging this zone (C, F, I, L, O). N = 4-6 animals
analyzed per condition; regions quantified per condition: 49 ipsi and 32 contra (5d, LPC only); 73 ipsi
and 64 contra (6d, LPC only); 60 ipsi and 48 contra (6d, LPC+Stim); 84 ipsi and 68 contra (8d, LPC
only); 53 ipsi and 60 contra (8d, LPC+Stim); 89 ipsi and 74 contra (10d, LPC only); 86 ipsi and 76 contra
(10d, LPC+Stim); 142 ipsi and 74 contra (12d, LPC only); 108 ipsi and 80 contra (12d, LPC+Stim).

Asterisks indicate significant differences between experimental groups; *P<0.05, ***P<0.001. Scale bar
=100 wm.
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alone is not sufficient to induce a reactive state in the SCs (Fig 9A, B). As was observed with
the immunostaining for MBP, when sham ES was performed, (nerve exposed, electrodes put in
place for one hour, but without the stimulator turned on) there was no observable
change/attenuation in GFAP expression by 12d post-LPC, compared to the significant
attenuation in GFAP expression observed when the stimulator was active (Fig 9A, C).
Furthermore, the impact of ES on GFAP expression was likely due to neuronal activation, and
dependent on action potential conduction. The application of the sodium channel blocking agent
lidocaine prior to, and throughout the one hour ES procedure abolished the observed decreases in

GFAP expression and Schwann cell reactivity (Fig 9D).

Naive+ES

Figure 9: Impact of ES on Schwann cell reactive state in naive nerves or focally demyelinated
nerves subjected to action potential blockade. Representative immunofluorescence photomicrographs
(20x magnification) of sciatic nerve sections immunostained for glial fibrillary acidic protein (GFAP).
Naive nerves display some GFAP immunoreactivity, reflecting the population of non-myelinating
Schwann cells present within peripheral nerves (A). Electrical stimulation of naive nerves did not induce
reactive gliosis (B). Neither sham stimulation, nor blockage of action potential conduction through local
application of lidocaine at time of electrical stimulation of 5d LPC-injected nerves effected a decrease in
GFAP expression (reactive gliosis) within the focal demyelination zone normally observed at the 12 day
post-LPC timepoint examined (C, D). This supports that the reduction in Schwann cell reactivity
normally observed at 12 days post-LPC within the demyelination zones in animals receiving ES 1 week
previously is due to the increased neuronal activity effected by the electrical stimulation procedure. Scale
bar = 100 pm.
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Taken together, these results indicate that a single bout of electrical stimulation delivered
five days following a demyelinating insult has a beneficial effect on processes involved in
myelination, namely expression of MBP, reformation of proper nodal architecture, increased
local BDNF, and the attenuation of Schwann cell reactivity. When examining the effect of an
intervention on an in vivo system, it is not enough to merely consider what is occurring within a
single cell type, one must consider the other vital components to the system. As axons that have
lost their myelin sheath are vulnerable to degeneration, it was thus prudent to examine what
effect, if any, the stimulation procedure has on the axons themselves.

3.2 IMPACT OF DELAYED NERVE STIMULATION ON AXONAL PROPERTIES
IN FOCALLY DEMYELINATED NERVES

Rapid and efficient axon remyelination is critical for the prevention of axonal
degeneration, a common occurrence in demyelinating disease, and a source of permanent
disability (Drenthen et al. 2013; Silber and Sharief 1999). The maintenance of the components of
the cytoskeleton, namely the neurofilament class of intermediate filament proteins, is an
important factor affecting the overall health and integrity of the axon. In addition to providing
protection against degeneration, there is a complex and intimate link between the neurofilaments
and the process of myelination (Starr et al. 1996). In this section I assess the impact of delayed
brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on the
preservation and protection of axons in focally demyelinated adult rat peripheral nerve.

3.2.1 The Re-Expression Of Axonal Neurofilaments Is Enhanced By ES

A classic histological approach was used to examine the overall impact of ES on the
neurofilament content of LPC demyelinated nerves. To do this, sections were processed for
neurofilament immunohistochemistry (using a pan-neurofilament antibody recognizing the
common core of all three neurofilament subtypes) then stained with the classic histological stains
Luxol Fast Blue (LFB) and Nuclear Fast Red (NFR) to detect both myelin and presumptive
macrophages, respectively. In naive control nerves immunoreactivity for neurofilament proteins

was readily visible as prominent dark brown/black structures (Fig 10A) and assumed a linear
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pattern. Intense LFB staining, also arranged in a linear pattern parallel to the neurofilament
protein immunopositive structures, as one would expect with normal myelin content
accompanied this. Numerous elongated nuclei (consistent with the appearance of Schwann cell
nuclei) were also observed in close association with and parallel to the myelin stain and
neurofilaments. When examined in cross section, the neurofilaments were visible as dark
brown/black rings, surrounded by an outer ring of blue stained myelin (Fig 11A, arrow). In
sharp contrast, by 5d post-LPC injection there was a near complete loss of the normal, organized
myelin structure, and an extensive infiltration of macrophages had occurred. These cells were
round and contained globules of myelin, consistent with the appearance of foamy, activated
macrophages (Fig 10B, Fig 11B, arrow). In both longitudinal and cross sections, there was also
a distinct loss of neurofilament, with little to none of the normal linear arrangement of
neurofilaments protein immunopositive structures present, suggesting that the focal
demyelination had indeed impacted neurofilament expression.

Eight days post-LPC (three days post-ES), the non-stimulated nerves still had
dramatically reduced myelin levels, a continued presence of a large number of myelin debris-
containing macrophages and were largely lacking in detectable neurofilament immunostaining
(Fig 10C, Fig 11C). In contrast, the ES nerves had once again begun to display positive
immunostaining for neurofilament proteins, which, although less numerous than in the uninjured
nerves, were still linear in nature (Fig 10D). In addition, thin segments of myelin were detected
in a close, parallel association with the neurofilament immunoreactive signal, suggestive of early
remyelination (Fig 10D). Cross sections also showed an increase in the neurofilament
immunoreactive signal, with myelin found surrounding these axons in a typical circular pattern,
though of a much lower intensity of myelin staining (Fig 11D, arrow). This is consistent with
the previously outlined results of the MBP immunohistochemistry in which the appearance of
thinly myelinated internodes were once again apparent at this time point. While the stimulated
nerves still had numerous macrophages (many containing myelin debris), there was also an

emergence of some smaller, less foamy macrophages largely devoid of visible myelin (Fig 10D,
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arrow). Similar results were observed at 10d (Fig 10E,F) and 12d (Fig 10G,H) post-LPC (5d and
7d post-ES, respectively). The nerves not receiving ES displayed only minimal recovery of
neurofilament immunoreactivity at 10d post-LPC, remaining largely demyelinated with
numerous foamy macrophages still present (Fig 10E,G, Fig 11E). In contrast, the stimulated
nerves displayed higher levels of detectable neurofilaments with myelinated axon profiles more
evident and elongated nuclei resembling those of Schwann cells aligned with the neurofilaments
(Fig 10F, arrow, Fig 11F). The stimulated nerves were also largely devoid of macrophages by
12d post-LPC. At each of these time points the intensity of the neurofilament immunostaining
increased in the stimulated nerves until it began to approximate normal levels. The density of
the closely associated myelin also increased, although the LFB staining never did perfectly
recapitulate the intensity of that found in the contralateral control (Fig 10H) nerves, consistent
with the notion that remyelinated internodes will be both shorter, and thinner than they were
prior to the demyelinating insult. By 12d post-LPC the nerves that did not receive brief ES
displayed increased neurofilament immunoreactivity (Figl0G), similar to that observed in the ES
nerves at eight days post-LPC. At this time point the non-stimulated nerves also showed the first
indication that the inflammatory process was resolving, by the presence of non-myelin

containing macrophages.

3.2.2 ES Promotes The Re-Phosphorylation Of Axonal Neurofilaments

While increased expression of neurofilament proteins is important in order to fully
resolve a demyelinating insult, alone it is insufficient to prevent axonal loss and ensure a full
return to normal structure and function. A variety of post-translational modifications are
important final steps in the synthesis of many proteins, and the neurofilaments are no exception.
The post-translational processing of the neurofilament proteins, namely the addition of phosphate
groups to the medium and heavy isoforms (Lee et al. 1987) does not occur in isolation. Rather,
an important extrinsic factor, namely myelination, plays an important role in modulating this

process (Starr et al. 1996). As both the wrapping of the axon in a myelin sheath and the
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Figure 10: Neurofilament expression increases coincident with reappearance of myelinated axons in
focally demyelinated nerves subjected to ES. Representative photomicrographs from FluoroGold (FG)-
positive areas of longitudinal tibial nerve sections immunostained for neurofilament proteins (NF —
brown/black) then stained for the presence of myelin (Luxol Fast Blue [LFB] - blue) and nuclei (nuclear
fast red [NFR] — purple/darkblue). Uninjured (contralateral) control tibial nerves displayed intense
uniform LFB staining, indicative of abundant myelin with prominent linear NF immunostaining (A) and
elongated dark blue Schwann cell nuclei. Five days post tibial nerve injection of lysophosphatidyl choline
(LPC)/FG, extensive NF and myelin loss is observed coupled with infiltration by numerous macrophages
filled with largely unprocessed myelin debris (B,C arrow). Temporal analysis of LPC-focally
demyelinated nerves +/- ES as indicated in days post-LPC. Note: In the LPC+ES group there was
increasing linear NF immunoreactivity detected (F,H) with higher levels of uniform LFB staining
consistent with myelinated axons, and the appearance of macrophages devoid of myelin debris apparent
as early as 8d post-LPC (3d post-ES; D, arrow ). The LFB staining was even stronger in the 10d (5d post-
ES) animals where presumptive Schwann cells now display elongated nuclei (F, arrow) and 12d (7d post-
ES; H) post-ES tissue. In contrast, in the LPC only group there was just a slight increase in NF
immunoreactivity beginning 10d post-LPC (E), but it was much less robust than that observed in the
stimulated as well as the contralateral control nerves. Notably in the nonstimulated nerves the immune
cell infiltration is still largely unresolved at the 12d post-LPC time point. Scale bar = Sum.
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Figure 11: Increased neurofilament expression is coincident with myelin in focally demyelinated
nerves subjected to ES. Representative photomicrographs from FluoroGold (FG)-positive areas of
tibial nerve cross sections immunostained for neurofilament proteins (NF — brown/black) then stained for
the presence of myelin (Luxol Fast Blue [LFB] - blue) and nuclei (nuclear fast red [NFR] — purple).
Uninjured (contralateral) control tibial nerves displayed intense uniform LFB staining, indicative of
abundant myelin with prominent linear NF immunostaining (A) and elongated dark blue Schwann cell
nuclei. Five days post tibial nerve injection of lysophosphatidyl choline (LPC)/FG, extensive NF and
myelin loss is observed coupled with numerous macrophages filled with largely unprocessed myelin
debris (B). Temporal analysis of LPC-focally demyelinated nerves +/- ES as indicated in days post-LPC.
Note: In the LPCHES group increasing NF immunoreactivity was detected (D,F) with higher levels of
uniform LFB staining surrounding regions of NF immunoreactivity consistent with myelinated axons, and
the appearance of macrophages devoid of myelin debris apparent as early as 8d post-LPC (3d post-ES;
D). The LFB staining was even stronger in the 10d (5d post-ES) animals with increased numbers of
presumptive Schwann cell nuclei (F). In contrast, in the LPC only group there was just a slight increase in
NF immunoreactivity beginning 10d post-LPC (E), but it was much less robust, and not associated with a
ring of myelin like that observed in the stimulated as well as the contralateral control nerves. Notably in
the nonstimulated nerves the immune cell infiltration is still largely unresolved at the 10d post-LPC time
point. Scale bar = 20um.
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phosphorylation of the neurofilaments are important factors in determining axonal health and
protecting the axon from degradation, it is prudent to examine not only their expression, but also
posttranslational modifications (i.e. phosphorylation) relevant to recovery from a demyelinating
insult.

In longitudinal sections of naive control nerves, axons display robust phosphorylated
neurofilament expression arranged in a distinctly linear pattern as detected by SMI-31 IF (Fig
12A). Five days following LPC injection, the amount of immunoreactivity for phosphorylated
neurofilaments was dramatically reduced in the LPC-injected nerves (Fig 12B) consistent with
the overall reduction in total neurofilament observed (Figs 10C; 11C). This is suggestive of both
a loss of neurofilaments and/or neurofilament dephosphorylation in response to the focal
demyelination. In LPC-injected nerves that underwent brief ES there is a recovery of
immunoreactivity for phosphorylated neurofilaments observed at 8d post-LPC injection (3d post-
ES; Fig 12E), consistent with the timing of the observed onset of increased MBP expression and
the re-appearance of thinly remyelinated axonal profiles. This increase in phosphorylated
neurofilament expression was not observed in the focally demyelinated nerves not subjected to
ES (Fig 12D,F). The stimulated nerves continued to display increasing levels of SMI-31
immunoreactivity at both 10d and 12d post-LPC injection (5d and 7d post-ES respectively; Fig
12H,K). By the final time point examined the amount of phosphorylated neurofilament in the
stimulated nerves was no longer significantly different than that observed in the contralateral
(uninjured) nerves. The non-stimulated nerves only displayed a limited recovery of
phosphorylated neurofilament expression beginning 10d post-LPC (Fig 12G,J). However, the
intensity of the immunoreactivity remained consistently lower than that of the stimulated nerves,
and at all time points examined remained significantly lower than that of the contralateral nerves

(Fig 12F, I, L).
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Figure 12: Increased neurofilament phosphorylation in electrically stimulated focally demyelinated
nerves. Representative photomicrographs from FG-positive (i.e focally demyelinated) areas of
longitudinal tibial nerve sections processed for phosphorylated neurofilament (SMI-31) IF reveal
extensive loss of SMI-31 IF (B) as compared to contralateral control nerves which displayed intense SMI-
31 immunoreactivity (A). Temporal analysis of LPC focal demyelination +/- ES as indicated in days post-
LPC. Note: In the LPC+Stim group there was dramatically increased SMI-31 IF signal apparent as early
as 8d post-LPC (3d post-ES; D), which was increasingly stronger in the 10d (5d post-ES; F) and 12d (7d
post-ES; H) tissue. In contrast, in the LPC only group there was just a slight increase in SMI-31 IF signal
beginning 10d post-LPC. Note: for each time point examined, all values obtained were normalized to the
mean value of the Average Gray per micron’ readings for the nerves ipsilateral to LPC treatment for the
LPC only animal on that slide and for that time point. N = 4-6 animals analyzed per condition; regions
quantified per condition: 45 ipsi and 59 contra (5d, LPC only); 57 ipsi and 82 contra (8d, LPC only); 83
ipsi and 72 contra (8d, LPC+Stim); 72 ipsi and 70 contra (10d, LPC only); 83 ipsi and 72 contra (10d,
LPC+Stim); 75 ipsi and 82 contra (12d, LPC only); 50 ipsi and 41 contra (12d, LPC + ES). Scale bar =
100 pm.
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The B-III tubulin protein is an abundantly expressed marker of the axonal cytoskeleton,
and therefore is a useful marker for evaluating the co-expression of other cytoskeletal proteins,
such as the neurofilaments. To confirm that the increased SMI-31 expression observed in
longitudinal sections of LPC-injected sciatic nerve was indeed axonal in nature double-labeled
immunohistochemistry was performed on transverse sections of nerve. Consistent with the
above observations, there was prominent SMI-31 IF observed in the contralateral (uninjured)
control nerves (Fig 13A), which demonstrated near perfect colocalization with the $-11I tubulin
IF. By 5d post-LPC injection, there was a near complete loss of the immunoreactivity for SMI-
31, but without a reduction in B-III tubulin IF, indicating that the axons were still present (Fig
13B). As was observed in the longitudinal IF sections, in the stimulated nerves, both at 8d and
10d post-LPC there was an increase in SMI-31 IF, which was co-localized with the B-III tubulin
IF (Fig 13D, F). The SMI-31 IF signal increased to a level of intensity that was nearly
indistinguishable from the contralateral nerves by 10d post-LPC. The non-stimulated nerves
remained largely devoid of SMI-31 IF at 8d post-LPC (Fig 13C), but showed a modest increase
at 10d post-LPC, similar to what had been observed in the longitudinal sections (Fig 13E, G).

To confirm the immunohistochemical and histological observations, Western blot
analysis was performed. The levels of total neurofilament (NF) and phosphorylated
neurofilament (SMI-31) expression at 5d, 8d and 10d post-LPC with or without ES were
compared to naive and contralateral control nerves (Fig 14). Consistent with the histochemical
observations, by 5d post-LPC, there was a dramatic decrease in the level of both total and
phosphorylated neurofilament that could be detected. In protein extracts from stimulated nerves
obtained 8 and 10 days post-LPC (3d and 5d post-ES) there was a steady and consistent increase
in the amount of both total neurofilament and phosphorylated neurofilament protein that could be
detected (Fig 14). These findings suggest that not only does brief ES promote the re-expression
of axonal neurofilament proteins in previously demyelinated nerves, but that these proteins are in

the phosphorylated state that is critical to maintaining axonal integrity and health.
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Figure 13: Increased neurofilament phosphorylation in axons of electrically stimulated focally
demyelinated nerves. Representative photomicrographs from FG-positive (i.e focally demyelinated)
areas of transverse tibial nerve sections dually processed for the axonal marker $-III tubulin ($3-III) and
phosphorylated neurofilament (SMI-31) IF reveal extensive loss of the colocalization of the two axonal
markers and decreased packing density of the fascicles, indicative of inflammation/edema (B) as
compared to contralateral control nerves which displayed intense near perfect colocalization (A), as well
as tight packing of the fascicles. Temporal analysis of LPC focal demyelination +/- ES as indicated in
days post-LPC. Note: The round structures displaying bright SMI-31 IF without any detectable $-III IF
likely represent macrophages, which have taken up debris associated with the demyelinating insult. In the
LPC+ES group there was dramatically increased 3-11I/SMI-31 IF signal colocalization apparent as early
as 8d post-LPC (3d post-ES; D), which was increasingly stronger in the 10d (5d post-ES; F) tissue at
which time it approximates that found in the contralateral (uninjured) nerves. In contrast, in the LPC only
group there was a slight increase in colocalization of the B-1II/SMI-31 IF signals beginning 10d post-LPC,
however, it consistently remained less than that observed in the stimulated nerves. Scale bar = 20 um.
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Figure 14: 1hr brief electrical stimulation (ES) results in increased expression of total and
phosphorylated neurofilament proteins. Representative Western blot of tibial nerve demyelination zone
protein extract and probed for total (NF) and phosphorylated neurofilaments (SMI-31). Immunoblots
were run in duplicate from pooled nerve samples from 3 animals per experimental condition.
Densitometry readings were normalized to the loading control 3-III tubulin within each lane and
compared to the mean densitometry reading of the two lanes of naive sciatic nerve protein extract run
alongside the demyelinated nerve extracts in each gel. Naive and contralateral control nerves displayed
intense NF and SMI-31 immunoreactivity. There was a marked decrease in both NF and SMI-31 band
intensity observed 5d post-lysophosphatidyl choline (LPC)/FG injection into the tibial branch of the
sciatic nerve. ES resulted in an increase in the amount of detectable NF and SMI-31 proteins 3 and 5 days
post-ES (8 and 10 days post-LPC), consistent with the immunohistochemical observations and
quantification (see Fig 3). In focally demyelinated nerves that did not undergo ES the levels of NF and
SMI-31 remained low. Asterisks indicate significant differences between experimental groups; *P<0.05,
**P<(0.01, ***P<0.001, Student’s t-test.

Taken together, the above results suggest that brief ES promotes not only the re-
appearance of the neurofilament proteins, but also promotes a more rapid return to an axon-
protective phosphorylated state amenable to remyelination. The return to this favorable state

occurs at a time point that is coincident with the onset of the remyelination observed in the
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stimulated nerves. Injection of LPC into nervous tissue evokes a strong inflammatory response,
with prominent infiltration of the demyelinated zone by immune cells such as macrophages. The
histological findings presented in Figures 10 and 11, namely the changes in the numbers of
macrophages present in the stimulated nerves, have also indicated that the stimulation procedure
may be impinging upon aspects of this inflammatory response. This is explored in detail in the
next section.

33 EFFECT OF DELAYED NERVE STIMULATION ON IMMUNE CELL
DYNAMICS AND PHENOTYPIC PROPERTIES IN FOCALLY DEMYELINATED
PERIPHERAL NERVE

As outlined in the previous two sections of this chapter, the application of delayed brief
ES has a remarkable impact on a number of parameters associated with recovery from a focal
demyelinating insult. An important factor to consider when examining repair of any form of
injury is the dynamics of the accompanying inflammatory response. There is a complex and
intimate interaction between Schwann cells and macrophages during all stages of peripheral
nerve demyelination and remyelination: the demyelination of the axons, the removal of the
myelin debris, and the termination of the inflammatory response (Martini et al. 2008). The
different stages of the induction and resolution of inflammatory demyelination and remyelination
are also closely linked to macrophage plasticity, as their different functional phenotypes play
important roles in these processes (Miron et al. 2013; Miron and Franklin 2014). In this section,
I examine the influence of brief electrical stimulation on the inflammatory response induced by

injection of LPC into the tibial nerve and correlate this with remyelination efficiency.

3.3.1 ES leads to enhanced macrophage clearance in demyelinated nerves

Injection of LPC into the tibial branch of the sciatic nerve induces an inflammatory
demyelination. By 5d post-LPC injection, numerous macrophages were observed to have
infiltrated the injected tibial nerve, demonstrated by intense immunostaining for the macrophage
surface marker ED-1 (Fig 15B). The ED-1-positive non-neuronal cells were large, oval shaped

cells with a “foamy” appearance, suggestive of active phagocytosis. In contrast, the contralateral
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(non-injected) sciatic nerve had very few detectable ED-1 immunopositive cells (Fig 15A). At
6d post-LPC (one day post-ES) the stimulated and non-stimulated nerves were indistinguishable
from each other. Longitudinal sections of nerves from both groups contained numerous ED-1
positive macrophages distributed throughout (Fig 15D, E, F). At 8d post-LPC injection (3d post-
ES), early differences in the levels of ED-1 IF detected in ES and non-stimulated nerves began to
emerge. Though visually there appeared to be an almost equal number of cells still present in
both the stimulated and non-stimulated nerves, the intensity of the immunostaining of the ED-1
positive cells in the stimulated nerves was reduced (Fig 15G, H, I). By 10d post-LPC injection
(5d post-ES) the differences between the stimulated and non-stimulated nerves were not only
statistically significant, but were also visually apparent. While numerous macrophages were still
detected in LPC-only injected nerves (Fig 15J), the LPC+ES nerves had significantly fewer (Fig
15K, L). The differences between the two groups were even more apparent and significant at 12d
post-LPC (7d post-ES; Fig 15M, N, O). Further, beginning at the 10d post-LPC time point, there
was a shift in the distribution of the activated macrophages within the lesion site from a general
scattered one in the non-stimulated nerves, to one localized mainly to the periphery in response
to ES, suggestive of immune cell clearance from the endoneurium to the epineurial connective
tissue (Kuhlmann et al. 2001; Martini et al. 2008). This supports that the application of brief ES
may enhance clearance of immune cells from the demyelination zone.

Qualitative examination of transverse (cross) sections of LPC-injected tibial branches of
sciatic was also conducted to verify whether there was an ES enhanced clearance of
macrophages toward the periphery of the focally demyelinated nerve. Qualitative assessment was
only conducted on nerve sections with Fluorogold present throughout the entire nerve. The
results confirmed an enhanced clearance of macrophages from stimulated nerves. As in the
longitudinal sections examined, very few ED-1 immunopositive cells were present in
contralateral (uninjured) nerve sections (Fig 16A). At 5d post-LPC injection numerous

macrophages had infiltrated the zone of demyelination, and were distributed throughout the
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Figure 15: Decrease in number of activated macrophages in focally demyelinated nerve subjected to
1hr ES. Representative photomicrographs from FG-positive (i.e. focally demyelinated) areas of
longitudinal tibial nerve sections processed for ED-1 IF to detect activated macrophages. There was
marked macrophage infiltration into the demyelination zone 5d post- lysophosphatidyl choline (LPC)/FG
injection (B), while contralateral control nerves displayed only minimal ED-1 IF (A). Temporal analysis
of LPC focal demyelination +/- ES delivered at 5 d post-LPC as indicated in days post-LPC: 6d (D),
6d+ES (E), 8d (G), 8d+ES (H), 10d (J), 10d+ES (K), 12d (M) or 12d+ES (N) post-LPC. Note: ES results
in a significant decrease in the ED-1 IF 10d post-LPC (5d post-ES; K) and 12d post-LPC (7d post-ES; N)
relative to LPC only in a pattern suggestive of movement toward lateral edges and egress (arrow).
Summary bar graphs of relative changes in IF signal for ED-1 in the zone of demyelination (C, F, I, L,
0). Note: for each time point examined, all values were normalized to the mean value of the Average
Gray per micron” readings for the nerves ipsilateral to LPC treatment for the LPC Only animal on that
slide and for that time point. N = 4-6 animals analyzed per condition; regions quantified per condition: 35
ipsi and 36 contra (5d, LPC only); 89 ipsi and 69 contra (6d, LPC only); 52 ipsi and 53 contra (6d,
LPC+Stim); 74 ipsi and 50 contra (8d, LPC only); 66 ipsi and 70 contra (8d, LPC+Stim); 79 ipsi and 64
contra (10d, LPC only); 87 ipsi and 61 contra (10d, LPC+Stim); 122 ipsi and 52 contra (12d, LPC only);
98 ipsi and 71 contra (12d, LPC+Stim). Asterisks indicate significant differences between experimental
groups; *P<0.05, ***P<0.001. Scale bar = 100 um.
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nerve (Fig 16B). At 8d post-LPC (3d post-ES) stimulated nerves contained fewer total ED-1
positive macrophages than their non-stimulated counterparts (Fig 16C, D). The macrophages
present in the stimulated nerves were also beginning to assume a different distribution, and
appear to be localizing towards one side of the nerve. This shift in cell localization was even
more evident at 10d post-LPC (5d post-ES). At this time point there was both an obvious
reduction in the number of ED-1 immunopositive cells present within the stimulated nerve and a
clear localization of the macrophages towards the periphery of the nerve (Fig 16F). At 10d post-
LPC, the non-stimulated nerves also began to show a decrease in the number of ED-1
immunopositive cells present, however this decrease was similar to what was observed in the
stimulated nerves at the 8d post-LPC time point (Fig 16D). These results are consistent with the
reduction in ED-1 IF signal quantified in the longitudinal nerve sections being a product of a
reduction in the number of macrophages present within the zone of demyelination.

In control experiments, nerves from naive animals were virtually indistinguishable from
the contralateral (uninjured) nerves from LPC-injected animals with only a few ED-1 positive
cells detected. To examine whether ES alone recruited significant numbers of macrophages,
naive nerves were subjected to the one-hour ES procedure. These nerves displayed a very small
rise in ED-1 immunoreactivity seven days post-ES. However, rather than the robust and
widespread infiltration of activated macrophages observed following LPC injection, the ED-1
positive cells were restricted to the site of electrode contact and therefore likely due to the
process of surgical exposure and contact of the electrode on the nerve (Fig 17A,B). LPC-
injected nerves were also subjected to sham stimulation (electrodes placed but stimulator not
activated) at 5d post-LPC and then examined at 12d post-LPC. Examination of the sham-
stimulated nerves revealed that these nerves displayed similar numbers of activated macrophages
to the 12d post-LPC injection only nerves (Fig 17C). Finally, the observed enhanced clearance
of macrophages from the site of demyelination appears to be dependent on neuronal activity as

application of lidocaine prior to, and during the stimulation procedure abrogated the effects of
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Figure 16: Enhanced clearance of macrophages in focally demyelinated nerve subjected to 1hr ES.
Representative photomicrographs from FluoroGold (FG)-positive areas of tibial nerve transverse (cross)
sections immunostained for ED-1 IF. Uninjured (contralateral) control tibial nerves displayed minimal
ED-1 immunoreactivity (A) and elongated dark blue Schwann cell nuclei. Five days post tibial nerve
injection of lysophosphatidyl choline (LPC)/FG, extensive infiltration by macrophages is observed
throughout the entire nerve (B). Temporal analysis of LPC-focally demyelinated nerves +/- ES as
indicated in days post-LPC. Note: In the LPC+ES group there was decreasing ED-1 immunoreactivity
detected apparent as early as 8d post-LPC (3d post-ES; D) with a clear reduction in the number of
macrophages present by 10d post-LPC (5d post-ES, F). This was also accompanied by a clear shift in
distribution, with the majority of the remaining macrophages localizing to the periphery of the nerve. In
contrast, in the LPC only group there was still just a slight decrease in ED-1 immunoreactivity beginning
10d post-LPC (C, E). Notably in the non-stimulated nerves the immune cells still largely remain
distributed throughout the entire nerve. Scale bar = 100um.
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Naive+ES

Figure 17: Increased neuronal activity is required to effect reductions in activated macrophage
(ED1) immunoreactivity in focally demyelinated regions. Representative immunofluorescence
photomicrographs of tibial nerve sections immunostained for ED1. Naive (uninjured) nerves displayed
minimal ED1 immunoreactivity (A). Electrical stimulation (ES; delivered 5d post-LPC) alone did not
trigger an inflammatory response nor an infiltration of activated macrophages into the stimulation site
(B). Sham stimulation and blockade of action potential conduction through local application of lidocaine
did not result in an increase in macrophage clearance from the lesion site at 12d post-LPC (C, D). This
indicates that the enhanced clearance of macrophages from the demyelinated lesions of animals receiving
electrical stimulation (ES) is related to the activity induced by the ES procedure. Scale bar = 100 pm.

the stimulation (Fig 17D) in agreement with the effects reported on myelination and
neurofilament expression.

The ED-1 immunofluorescence findings were confirmed by Western blot analysis (Fig
18). The observed infiltration of numerous activated macrophages into the zone of
demyelination correlated with a significant increase in the amount of the ~100 kDa ED-1 protein
detected via Western blotting for LPC-injected sciatic nerves as compared to both naive and
contralateral (uninjured) sciatic nerves (Fig 18). The ED-1 protein as measured by Western
blotting decreased in the stimulated nerves at 8d post-LPC (3d post-ES), the same time point as

the observed decrease in the IF signal, and was further decreased at the 10d post-LPC (5d post-
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ES) time point. In those nerves that did not receive the one-hour ES procedure there were
continually elevated levels of ED-1 protein detected via Western blot. While there was a
measurable reduction in detectable ED-1 from the 5d post-LPC baseline at the 8d and 10d time
points in the non-stimulated nerves, at all times examined post 5d, the levels remained
significantly higher than that of both the contralateral (uninjured) and the ES-treated nerves (Fig
18).
3.3.2 Impact Of ES On Immune Cell Phenotype

The macrophage is a highly plastic cell, capable of adapting its phenotype according to
the local microenvironment in order to perform their various functions (Gratchev et al. 2006;
Stout et al. 2005; Stout and Suttles 2004). It is important to consider not only whether there are
macrophages present at the site of demyelination, but also their functional phenotype. In
experimental models of CNS demyelination an overabundance of M1 (pro-inflammatory)
macrophages has been associated with increased severity of symptoms (Okuda et al. 1995),
while increasing the population of M2 (pro-repair) macrophages promotes oligodendrocyte
proliferation and improves remyelination (Mikita et al. 2011). As the ES procedure has a
remarkable effect of promoting remyelination, a prudent question to address is the impact of the
stimulation procedure on the macrophage polarization state. Thus, in order to assess whether the
infiltrated macrophages were polarized toward a pro-inflammatory (M1) or pro-repair
phenotype, the macrophages were dually immunostained for ED-1 to identify the activated

macrophages and individual markers of the two polarization states.

3.3.2.1 ES reduces expression of markers associated with M1 (pro-inflammatory)

phenotype
LPC, when injected into the tibial branch of the sciatic nerve produces an inflammatory

focal demyelination (Hall 1973; Hall and Gregson 1971), with a prominent infiltration of
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Figure 18: 1hr electrical stimulation (ES) 5 days post-lysophosphatidyl choline (LPC) results in
decreased ED-1 content beginning 8d post-LPC. Representative Western blots of sciatic nerve extract
probed for ED-1. Immunoblots were run in duplicate from pooled nerve samples from 3
animals/experimental condition. Densitometry readings were normalized to the loading control B-III
tubulin within each lane and compared to the mean densitometry reading of the two lanes of naive sciatic
nerve protein extract run alongside the demyelinated nerve extracts in each gel. There was a marked
increase in detectable ED-1 observed 5d post-lysophosphatidyl choline (LPC) injection into the tibial
branch of the sciatic nerve, as compared to that observed in protein extract from both naive and
contralateral (uninjured) nerves. As early as three days post-ES (8d post-LPC), there was a decrease in the
amount of detectable ED-1 in the stimulated nerves. This drop preceded the visual differences observed
immunohistochemically (Fig 4J, K). Levels of detectable ED-1 showed further decline 5d post-ES (10d
post-LPC), where they reached levels not significantly different than that of the naive or contralateral
(uninjured) controls. Asterisks indicate significant differences between experimental groups; *P<0.05,
**P<(0.01, ***P<0.001, Student’s t-test.

activated macrophages into the demyelination zone (Fig 15A, Fig 19A, Fig 20A). The large cells
have a foamy appearance, consistent with active phagocytosis, and express high levels of the

ED-1 surface marker which serves to identify those cells of the mononuclear phagocyte system
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(Damoiseaux et al. 1994). Manual counting of these double-labeled immunostained cells in the
zone of demyelination indicated that a large number of the cells (55.6%) also express the
inducible form of nitric oxide synthase (iNOS; Fig 19B, C) associated with a polarization of the
macrophage towards the M1 pro-inflammatory phenotype. Application of a single 1hr episode
of brief electrical stimulation (ES) resulted in a significant reduction in the proportion of ED-1
positive macrophages that also expressed iNOS. This was evident at 8d post-LPC (3d post-ES)
as well as at 10d post-LPC (5d post-ES) compared to their non-stimulated counterparts. At 8d-
post-LPC, 38.4% of the ED-1 positive macrophages also expressed iNOS in the stimulated
nerves, compared to 56.2% of the ED-1 positive macrophages from non-stimulated nerves.
Similarly, by 10d post-LPC 37.8% of the ED-1 cells were iNOS-positive positive in ES-treated
nerves compared to 55.6% in the non-stimulated nerves (Fig. 19P). This indicates that the
application of ES results in a reduction of markers associated with the pro-inflammatory state.
Another hallmark of polarization towards the M1 phenotype is the expression and
secretion of the inflammatory cytokine tumor necrosis factor alpha (TNF-a). At 5d post-LPC a
large proportion of the population of infiltrated macrophages are dually immunopositive for ED-
1 and TNF-a (57.7%, Fig 20B, C, P). Similar to the reduction in the number if iNOS-expressing
cells in the demyelination zone observed following ES, there was also a reduction in the number
of macrophages also expressing TNF-a following ES (Fig 20E, F vs H, I and Fig 20K, L vs N,
0O). In ES-treated nerves, at 8d post-LPC (3d post-ES) 39.3% of ED-1 positive cells were
immunopositive TNF-a, compared to 54.6% of macrophages in non-stimulated nerves (Fig 20P).
This trend continued at 10d post-LPC (5d post-ES) with 35.2% of macrophages examined TNF-
o immunopositive in the stimulated nerves as compared to 56.4% of macrophages in the non-
stimulated nerves (Fig 20P). Thus, when taken together with the ED-1/iNOS co-localization
data it supports that ES drives an overall reduction in M1 phenotype-associated proteins,
suggesting that the polarity of the macrophages within the stimulated nerves shifts away from the
pro-inflammatory state. This shift is coincidental with the reported reduction in ED-1 expression

and onset of remyelination following LPC-mediated focal demyelination.
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Figure 19: Diminished numbers of iNOS-expressing macrophages in focally demyelinated nerves
subjected to 1hr ES. Representative photomicrographs of focally demyelinated regions of tibial nerve
sections doubly immunolabeled for ED-1 (red) and iNOS (green) to detect activated macrophages. There
was a prominent infiltration of ED-1 positive activated macrophages into the zone of demyelination 5d
post-lysophosphatidyl choline (LPC)/FG injection (A), the majority of which (55.6%, P) were also
immunopositive for iNOS (B, C). Temporal analysis of LPC focal demyelination +/- ES delivered at 5d
post-LPC as indicated in days post-LPC: 8d (D, E, F), 8d+ES (G, H, I), 10d (J, K, L), 10d+ES (M, N, O).
Note: ES results in a significant reduction in the number of doubly ED-1/iNOS positive macrophages 8d
post-LPC (3d post-ES; H, I) relative to LPC only (E, F) (38.4% vs 56.2%, P) as well as at 10d post-LPC
(5d post-ES; N, O) relative to LPC only (K, L) (37.8% vs 55.6%, P). Note: for each time point examined
the number of strongly immunopositive cells were counted from ten fields of view. N=3 animals
analyzed per condition, with a total number of 846-1824 cells counted. Asterisks indicate significant
differences between experimental groups; ***P<0.001. Scale bar = 100 um.
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Figure 20: Diminished numbers of TNF-o.-expressing macrophages in focally demyelinated nerves
subjected to 1hr ES. Representative photomicrographs of focally demyelinated regions of tibial nerve
sections doubly immunolabeled for ED-1 (red) and TNF-a (green) to detect activated macrophages.
There was a prominent infiltration of ED-1 positive activated macrophages into the zone of demyelination
5d post-lysophosphatidyl choline (LPC)/FG injection (A), the majority of which (57.7%, P) were also
immunopositive for TNF-a (B, C). Temporal analysis of LPC focal demyelination +/- ES delivered at 5d
post-LPC as indicated in days post-LPC: 8d (D, E, F), 8d+ES (G, H, I), 10d (J, K, L), 10d+ES (M, N, O).
Note: ES results in a significant reduction in the number of doubly ED-1/TNF-a positive macrophages 8d
post-LPC (3d post-ES; H, I) relative to LPC only (E, F) (39.3% vs 54.6%, P) as well as at 10d post-LPC
(5d post-ES; N, O) relative to LPC only (K, L) (35.2% vs 56.4%, P). Note: for each time point examined
the number of strongly immunopositive cells were counted from ten fields of view. N=3 animals
analyzed per condition, with a total number of 820-1964 cells counted. Asterisks indicate significant
differences between experimental groups; ***P<0.001. Scale bar = 100 um
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The observed visual decrease and manual count of the number of macrophages bearing
markers associated with an M1 (pro-inflammatory) phenotype was confirmed by Western blot
analysis of the LPC-injected nerves. A significant increase in the amount of the ~130 kDa iNOS
and ~50 kDa TNF-a proteins detected via Western blotting 5d post-LPC injection was observed
(Fig 21). The elevation in both iNOS and TNF-a protein in non-stimulated LPC-injected nerves
was sustained at the 8 and 10d post-LPC timepoints examined, consistent with the manual counts
of dually-labeled ED-1 and iNOS or TNF-a macrophages present within the demyelination zone
(Fig 19 & 20 vs Fig 21). Likewise, in the stimulated nerves there was a significant reduction in
the amount of iNOS and TNF-a proteins detected in isolates from both the 8d and 10d post-LPC
(3d and 5d post-ES) time points. This decrease in detectable protein was consistent with the
observed decrease in the numbers of dually labeled ED-1 and iNOS or TNF-a macrophages
present in the regions of focal demyelination.
3.3.2.2 ES increases expression of markers associated with M2 (pro-repair) phenotype

By 5d post-LPC injection there was an abundance of ED-1 positive macrophages (Fig
22A) within the demyelination zone. While the majority of these cells expressed markers
associated with polarization to an M1 pro-inflammatory state (e.g. iNOS and TNF-a), a minority
(27.1%) expressed Arginase-1 (Argl) (Fig 22B, C); a marker associated with the M2 pro-repair
polarization state. By 8d post-LPC (3d post-ES) injection stimulated nerves contained a higher
proportion of macrophages dually-immunolabeled for ED-1and Argl (52.6%), compared to non-
stimulated nerves (29.7%) (Fig 22E, F vs H, I) with the latter containing a similar proportion of
Arg-1 expressing macrophages as that observed at the baseline 5d post-LPC time point (Fig
22P). A similar trend continued at 10d post-LPC (5d post-ES), with the majority (53.4%) of
macrophages within the demyelination zone of stimulated nerves immunopositive for Argl and

only a minority of macrophages in non-stimulated nerves (36.2%) (Fig 22K, L vs. N, O).
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Figure 21: 1hr electrical stimulation (ES) 5 days post-lysophosphatidyl choline (LPC) results in
decreased M1-associated protein content beginning 8d post-LPC. Representative Western blots of
sciatic nerve extract probed for the M1 (pro-inflammatory) macrophage markers iNOS and TNF-a.
Immunoblots were run in duplicate from pooled nerve samples from 3 animals/experimental condition.
Densitometry readings were normalized to one band of protein stained by Coomassie Brilliant Blue
within each lane and compared to the mean densitometry reading of the contralateral (uninjured) sciatic
nerve protein extract run alongside the demyelinated nerve extracts in each gel. There was a marked
increase in detectable iNOS and TNF-a observed 5d post-lysophosphatidyl choline (LPC) injection into
the tibial branch of the sciatic nerve, as compared to that observed in protein extract from contralateral
(uninjured) nerves. As early as three days post-ES (8d post-LPC), there was a decrease in the amount of
detectable iNOS (A, C) and TNF-a (B, C) in the stimulated nerves. This drop in detectable protein
content correlates the visual differences observed immunohistochemically, and quantified via manual
counting of immunopositive cells (Fig 17, Fig 18). Levels of detectable iNOS and TNF-a showed a
further, but not statistically significant decline 5d post-ES (10d post-LPC), and never reached levels not
significantly different than that of the contralateral (uninjured) controls, and for all experimental
conditions remained significantly different than the contralateral nerves. Asterisks indicate significant
differences between experimental groups; *P<0.05, **P<0.01, Student’s t-test.
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Figure 22: Increased numbers of Argl-expressing macrophages in focally demyelinated nerves
subjected to 1hr ES. Representative photomicrographs of focally demyelinated regions of tibial nerve
sections doubly immunolabeled for ED-1 (red) and Argl (green) to detect activated macrophages. There
was a prominent infiltration of ED-1 positive activated macrophages into the zone of demyelination 5d
post-lysophosphatidyl choline (LPC)/FG injection (A), a minority of which (27.1%, P) were also
immunopositive for Argl (B, C). Temporal analysis of LPC focal demyelination +/- ES delivered at 5d
post-LPC as indicated in days post-LPC: 8d (D, E, F), 8d+ES (G, H, I), 10d (J, K, L), 10d+ES (M, N, O).
Note: ES results in a significant increase in the number of doubly ED-1/Arg] positive macrophages 8d
post-LPC (3d post-ES; H, I) relative to LPC only (E, F) (52.6% vs 29.7%, P) as well as at 10d post-LPC
(5d post-ES; N, O) relative to LPC only (K, L) (53.4% vs 36.2%, P). Note: for each time point examined
the number of strongly immunopositive cells were counted from ten fields of view. N=3 animals
analyzed per condition, with a total number of 8§77-1359 cells counted. Asterisks indicate significant
differences between experimental groups; ***P<0.001. Scale bar = 100 um.
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A second marker associated with the polarization of macrophages towards the M2 (pro-
repair) state was also examined, namely, the expression of the mannose receptor (CD206) (Stein
et al. 1992). In a similar pattern to the expression of Argl, there a minority of cells (31.3%) co-
expressed ED-1 and CD206 at 5d post-LPC (Fig 23B, C). ES resulted in an increased incidence
of macrophages co-expressing ED-1 and CD206 at both 8d and 10d post-LPC (3d and 5d post-
ES respectively) (Fig 23H, [ and N, O), similar to the increased presence of ED-1/Arg] positive
macrophages observed in the demyelination zone following a single episode of ES. The majority
of macrophages at these time points were dually positive for these markers (54.2% and 62.2%
respectively). Those nerves that were not stimulated had only a small proportion of ED-1
immunopositive cells dually labeled for CD206, and this incidence was similar to that observed
at the initial time point of 5d post-LPC (31.9% at 8d and 31.2% at 10d vs 31.3% at 5d post-LPC;
Fig 23P). Notably, the patterns of expression of the chosen M2 phenotypic markers (Argl,
CD206) were the inverse variation of the two M1 polarization markers examined (iNOS, TNF-
a).

These observed changes in the incidence of macrophages expressing pro-repair M2
phenotypic markers were supported by similar trends in the levels of these markers detected by
Western blot analysis of isolates obtained from the zones of demyelination under the different
experimental conditions. The infiltration of activated macrophages (defined as ED-1
immunopositive) that also expressed the M2-associated proteins Argl and CD206 resulted in
increased amounts of the ~160 kDa CD206 and ~37 kDa Argl proteins detected via Western
blotting 5d post-LPC injection (Fig 24). There was a sustained elevation above that found in
contralateral (uninjured) nerves of both CD206 and Argl content in non-stimulated nerves that
did not change significantly at all time points examined, consistent with the trends observed
when determining the incidence of CD206 or Argl expression in ED-1 positive macrophages
within demyelination zones (Fig 22 & 23 vs Fig 24). Similarly, in the stimulated nerves there
was a significant increase in the amount of CD206 and Argl proteins detected at both the 8d and

10d post-LPC (3d and 5d post-ES) time points examined by Western blot (Fig 24). These
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Figure 23: Increased numbers of CD206-expressing macrophages in focally demyelinated nerves
subjected to 1hr ES. Representative photomicrographs of focally demyelinated regions of tibial nerve
sections doubly immunolabeled for ED-1 (red) and CD206 (green) to detect activated macrophages.
There was a prominent infiltration of ED-1 positive activated macrophages into the zone of demyelination
5d post-lysophosphatidyl choline (LPC)/FG injection (A), a minority of which (31.3%, P) were also
immunopositive for CD206 (B, C). Temporal analysis of LPC focal demyelination +/- ES delivered at 5d
post-LPC as indicated in days post-LPC: 8d (D, E, F), 8d+ES (G, H, I), 10d (J, K, L), 10d+ES (M, N, O).
Note: ES results in a significant increase in the number of doubly ED-1/Argl positive macrophages 8d
post-LPC (3d post-ES; H, I) relative to LPC only (E, F) (54.2% vs 31.9%, P) as well as at 10d post-LPC
(5d post-ES; N, O) relative to LPC only (K, L) (62.2% vs 31.2%, P). Note: for each time point examined
the number of strongly immunopositive cells were counted from ten fields of view. N=3 animals
analyzed per condition, with a total number of 671-948 cells counted. Asterisks indicate significant
differences between experimental groups; ***P<0.001. Scale bar = 100 um.
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Figure 24: 1hr electrical stimulation (ES) 5 days post-lysophosphatidyl choline (LPC) results in
increased M2-associated protein content beginning 8d post-LPC. Representative Western blots of
sciatic nerve extract probed for the M2 (pro-repair) macrophage markers CD206 and Argl. Immunoblots
were run in duplicate from pooled nerve samples from 3 animals/experimental condition. Densitometry
readings were normalized to one band of protein stained by Coomassie Brilliant Blue within each lane
and compared to the mean densitometry reading of the contralateral (uninjured) sciatic nerve protein
extract run alongside the demyelinated nerve extracts in each gel. There was a marked increase in
detectable CD206 and Argl observed 5d post-lysophosphatidyl choline (LPC) injection into the tibial
branch of the sciatic nerve, as compared to that observed in protein extract from contralateral (uninjured)
nerves. As early as three days post-ES (8d post-LPC), there was a further increase in the amount of
detectable CD206 (A, C) and Argl (B, C) in the stimulated nerves. This increase in detectable protein
content correlates the visual differences observed immunohistochemically, and quantified via manual
counting of immunopositive cells (Fig 20, Fig 21). At all time points examined, levels of detectable
CD206 and Argl were significantly different than that of the contralateral (uninjured) controls. Asterisks
indicate significant differences between experimental groups; *P<0.05, **P<0.01, Student’s t-test.

increased levels of expression in M2 phenotypic markers were in agreement with the increased

incidence of CD206 and Argl expression within ED-1 positive macrophages in the zones of
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demyelination. These data indicate that the application of a single, 1hr episode of ES is
sufficient to shift the majority of the infiltrated macrophages towards the pro-repair, M2
phenotype.

Thus, delayed brief ES has a dramatic impact on the polarization of macrophages towards
a pro-repair M2 phenotype, in addition to its impact on faster resolution of the LPC-induced
inflammation. Consistent with this, the non-stimulated nerves contained both a greater number
of macrophages, and a greater proportion of pro-inflammatory M1 polarized cells, indicative of
an ongoing more robust inflammatory response. When these findings are considered in
combination with the data supporting enhanced remyelination and axonal protection with the
application of ES, it is evident that this single intervention has a remarkable impact on the
microenvironment surrounding the zone of demyelination. With the enhanced clearance and
pro-repair polarization of the macrophages in the stimulated nerves a permissive environment is
established I posit aids in both the initiation of the remyelination process and the protection of

the vulnerable axons within the zone of demyelination.
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CHAPTER 4:
DISCUSSION

4.1 Major Findings

In this thesis the therapeutic potential of in vivo brief electrical stimulation (ES) of focally
demyelinated nerves was examined for the first time. The data identify ES as a novel and
effective strategy to promote remyelination of the demyelinated nerve, as evidenced by the
improvement of a number of parameters associated with peripheral nerve demyelinating
pathologies. Further, they provide insights into the potential underlying mechanisms and cellular
events associated with ES’ beneficial effects. Focally demyelinated nerves receiving a single
bout of electrical stimulation 5 days post-demyelination, remyelinated more rapidly relative to
nerves that were demyelinated but not stimulated. The cellular events associated with the ES-
enhanced remyelination include: elevated levels of BDNF in the zone of demyelination; a more
rapid return of the Schwann cells to a non-activated state within the demyelination zone; the
increased expression and re-appearance of neurofilaments in the axon-protective phosphorylated
state; increased remyelination as indicated by increased Luxol Fast Blue staining and accelerated
re-establishment of node of Ranvier architecture. Lastly, delayed nerve ES has a remarkable
impact on the inflammatory response associated with the LPC-mediated focal demyelination.
The stimulation procedure not only resulted in an accelerated reduction of macrophages from the
zone of demyelination, but also promoted their polarization from a pro-inflammatory (M1) state
towards one associated with tissue regeneration and repair (M2). These findings are summarized
and placed together in temporal order in Figure 25.

4.2 Delayed ES impacts Schwann cell-associated parameters
4.2.1 Axon remyelination can be accelerated by ES

Neuronal activity has been linked to myelination of both central and peripheral axons,
with exogenous electrical stimulation of DRG sensory neurons revealing that specific patterns of
electrical activity can influence the process of myelination (Ishibashi et al. 2006; Stevens et al.

1998; Wake et al. 2011). It is speculated that this may be due to resulting changes in axonal
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Figure 25: Temporal Changes in Remyelination Events Effected by ES. Schematic diagram outlining
temporal changes occurring in Schwann cells (SC, blue), axons (green), and macrophages (red) following
focal demyelination via LPC injection and delayed brief ES. Cellular events that are under mutual
influence are indicated via grey arrows. The loss of SC-axon contact, and SC de-differentiation following
LPC injection was not measured directly, but presumed to have occurred as is typical of peripheral
demyelinating processes (Mirsky and Jessen 1996). The myelinolytic action of LPC produces debris,
which promotes the recruitment of immune cells (grey arrow). The loss of myelin also impacts the
expression and phosphorylation of the axonal neurofilaments (grey arrow). Following ES these same
interactions may occur in the reverse direction, macrophage-mediated debris clearance sets up a
permissive environment for myelination to occur (grey arrow), and axon-derived BDNF promotes
myelination by Schwann cells. The increased linear MBP observed 8d post-LPC is consistent with the
proliferation, differentiation and myelin sheath production by Schwann cells (Mirsky and Jessen 1996).
The decreased numbers of macrophages is presumed to be due to cellular egress out of the nerve and a
return to the peripheral circulation.

expression of proteins such as the L1 cellular adhesion molecule (Stevens et al. 1998). Axons
that are electrically active (i.e. firing action potentials) display greater myelination by
oligodendrocytes than those axons that have been silenced through the blocking of sodium

channels with tetrototoxin (Ishibashi et al. 2006). The conduction of action potentials by axons,
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and the release of factors (e.g. neurotransmitters, neurotrophins) along their length promotes the
formation of signaling domains that mediate an interaction between the glial cell and the axon,
which in turn results in the expression of a variety of proteins that comprise the myelin sheath
(Wake et al. 2011), thereby supporting the doctrine of axonal activity having a strong influence
on the process of myelination. Indeed, a body of in vitro studies already has demonstrated that
the axon is not a passive entity during the formation of myelin. Rather, the electrical activity of
the axon is a crucial component of the axo-glial interactions necessary for the process of
myelination. One important caveat to this previous work is that it was performed in culture, an
artificial environment that may not necessarily reflect the more complex in vivo scenario. It
highlights a need for in vivo studies to be performed in order to corroborate these findings.

The work presented in the current study extends those previous in vitro findings and
evaluates the impact of increased neuronal activity affected by brief ES of the sciatic nerve on
myelin formation in the living animal. In the LPC model of focal peripheral nerve
demyelination, maximal demyelination of axons occurs within four to six days, with the first
appearance of thinly remyelinated fibers normally evident only around 14d post-LPC injection
(Hall and Gregson 1971). I found that the ES promoted axon remyelination, and this was
apparent 6 days earlier than usual, being detectable by 3d post-ES (8d post-LPC injection) and
was clearly progressed by 5d and 7d post-ES (10 and 12d post-LPC) relative to the non-
stimulated nerves. The ES effect on remyelination was likely the result of increased neuronal
activity, as it was neither observed with sham ES, nor if the action potential generation was
blocked at the time of stimulation with lidocaine. These results demonstrate that strategies
aimed at increasing the electrical activity of axons will likely have therapeutic benefits.

ES also impacted the Schwann cell reactive state induced by the LPC injection. A clear
attenuation in Schwann cell GFAP expression associated with this reactive state was observed
within the zone of demyelination, and was evident by the last time point examined, 12d post-
LPC (7d post-ES). Normally in the uninjured nerve, GFAP expression is largely restricted to the

population of non-myelinating Schwann cells. However, upon injury there is a rapid increase in
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GFAP immunoreactivity that also includes the myelin forming population of Schwann cells
distal to the lesion site as the cells de-differentiate to an actively proliferating, reactive phenotype
in which a new myelin membrane is not able to be elaborated (Cheng and Zochodne 2002; Wang
et al. 2010). Perhaps the ability of brief ES to attenuate GFAP expression in the demyelination
zone is linked to a switch of the de-differentiated Schwann cell back to a mature, myelinating
phenotype. This may also be linked to the ES-associated observed egress/resolution of activated
macrophages in the affected zone, as they have been shown to contribute to the reactive state of
Schwann cells (Martini et al. 2008). The observed impact of brief ES on the myelinating
function of Schwann cells does not occur in isolation; rather it is likely acting in concert with an
impact upon the axons themselves, which I also observed. This highlights the intimate
connection that exists between the myelinating Schwann cell and the axon which it ensheaths.
Parallels may also be drawn between the observed loss of myelin in response to LPC
injection and the loss of myelin that occurs in the Wallerian degenerating distal nerve stump
when axons are damaged and must subsequently undergo regeneration. Although the molecular
environment following axotomy is quite different to that of a focal demyelinating insult where
the axon is left intact, there are parallels that include the influx of immune cells, the removal of
myelin debris and the induction of a reactive state in Schwann cells. The outcomes of my studies
are also consistent with the previously reported ability of ES to promote remyelination of
regenerating peripheral neurons (Singh et al. 2012; Wan et al. 2010). I found delayed ES also
promoted remyelination of the focally demyelinated peripheral nerve using the same stimulation
parameters employed in the two regeneration studies (a single bout of ES delivered for 1 hour at
20 Hz). However, the timing of nerve ES relative to induction of the pathological state differed.
In my studies, the ES was delivered in a more clinically relevant delayed fashion once the focal
demyelination had occurred (5d post-LPC), as opposed to being applied immediately at the time
of nerve injection with the demyelinating agent, which would have been akin to the timing
employed in the aforementioned regeneration studies. This supports that even delayed, nerve

stimulation is beneficial and reparative for axon remyelination. The exact time frame post-injury
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of when delayed ES will have its maximal positive impact remains unknown. An important point
to consider is that the greater the delay between injury to ES treatment, the greater the chance for
degenerative axon loss that could potentially result in permanent disability. Furthermore, it is
unlikely that a single set of ES parameters will result in favorable outcomes for all peripheral
nervous system pathologies, as regional differences in the response to ES have been noted
(Gibson et al. 2014), as well as differences in the response of sensory vs. motor axons to varying
durations of stimulation (Al-Majed et al. 2000a; Geremia et al. 2007). The current study also
does not give insight into whether ES therapy is able to mitigate the demyelinating insult if
administered concurrently with the demyelinating agent, such as was seen for the administration
of methylprednisolone in LPC-induced demyelination of central axons (Pavelko et al. 1998).
Finally, the invasive nature of the current paradigm makes it unlikely to be employed for clinical
purposes in the same manner as in this study. Instead alternative strategies to enhance neuronal
activity such as specific motor exercises will have to be developed, tested, and refined before

becoming part of the clinician’s toolbox (Sampaio-Baptista et al. 2013; Scholz et al. 2009).

4.2.2 Increased BDNF in the zone of demyelination coincides with remyelination.

The link between brief ES and remyelination in nerve regeneration models may be
attributable to the observed ES-induced elevation in neuronal BDNF expression. In these studies
this extra BDNF would presumably be released from the growing axon tips (Singh et al. 2012;
Verderio et al. 2007; Wan et al. 2010), with one study implicating BDNF in the remyelination of
the regenerated axons (Wan et al. 2010) and another demonstrating the contribution of
macrophage-derived BDNF to axonal regeneration (Bouhy et al. 2006). The present study
revealed an ES-induced increase in BDNF levels that was most apparent in axons within the
demyelination zone, at times coincident with the onset of remyelination. Further, the elevated
BDNF expression was sustained, evident at least as long as the last time point examined (12d
post-LPC). It is conceivable that this BDNF could be released directly from the focally
demyelinated axons and/or by the infiltrating macrophages (Wong et al. 2010). In sensory

neurons, BDNF is normally co-packaged with neuropeptide transmitters in large dense core
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vesicles (Michael et al. 1997) which have been shown to be released from both the unmyelinated
axons, as well as at the axon terminals (Bernardini et al. 2004; Sauer et al. 1999). The axons
within the zone affected by the injection of LPC are a population of both normally myelinated as
well as unmyelinated nerve fibers. Following demyelination additional axonal surface area of
the normally myelin ensheathed axons is revealed. The stimulation procedure employed in this
study has been well documented to promote increased production of BDNF in both sensory and
motor neuronal cell bodies (Al-Majed et al. 2000a; Geremia et al. 2007). Rather than being
released at the terminals of the myelinated axons, the anterogradely transported BDNF can
potentially be released right at the zone of demyelination through the denuded axons, as occurs
normally in the unmyelinated fibers (Bernardini et al. 2004; Sauer et al. 1999). This would
provide an additional source of the trophic factor important for the initiation of peripheral nerve
myelination right at the location where it is needed. The critical work by Ng and colleagues (Ng
et al. 2007) demonstrating that BDNF synthesized by sensory neurons could be released by the
axons and participate in critical axon/glial communications required for effective remyelination
further bolsters our position that the ES-enhanced production of BDNF by sensory neuron likely
participates in the remyelination process following LPC. The requirement for BDNF to be
synthesized at the level of the cell body and subsequently transported anterogradely along the
length of the axon to the zone of demyelination, is probably one of critical events that factor into
the observed delay of three days before the beneficial effects of the stimulation procedure on
remyelination are observed. Thus, it is conceivable that the ES-associated elevation in axonal-
and/or macrophage-derived BDNF in the present study are causally linked to the enhanced
remyelination observed. In support of this, studies that either modulate BDNF availability or
utilize small trkB agonists in either wild type mice or mice where Schwann cell BDNF has been
conditionally knocked out, have shown that BDNF or activation of its receptor to be critically
linked to more effective nerve repair and myelination during development or nerve regeneration

(English et al. 2013; Tolwani et al. 2004; Zhang et al. 2000).
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My observed presence of elevated BDNF at the site of demyelination in vivo would serve
as an important cue for initiation of the myelination process. This finding is in agreement with an
in vitro in Schwann cell/DRG neuron co-culture myelination study that employed identical
stimulation parameters to those used in my studies and also found increased BDNF production in
response to ES (Wan et al. 2010). It also matters what form the BDNF is in. The
mature/processed form of BDNF has been demonstrated to aid in the maturation of Schwann
cells to a myelinating phenotype and in their functional polarization, via BDNF’s association and
activation of the pan neurotrophin receptor p75™' (Cosgaya 2002). It is encouraging that the
strategy we employed to mitigate demyelinating lesions, namely ES, has been shown to promote
extracellular cleavage of pro-BDNF to its neuroprotective mature form (Nagappan et al. 2009) in
cultured hippocampal cells. Beyond promoting apoptosis of a number of cell types via activation
of p75™™ (Greenberg et al. 2009; Taylor et al. 2012), if left in its pro-form, BDNF can also
impede infiltration of activated macrophages (Wong et al. 2010) an important cellular event for
remyelination. My results showing that the ES-associated elevated levels of BDNF were in the
mature processed form, provide evidence that it was in the correct form to promote the
maturation of Schwann cells to the promyelinating phenotype and also favorably impact immune
responses (see below). Additionally, elevated expression of the partitioning defective-3 (Par-3)
protein and its asymmetric distribution to the inner surface of the Schwann cell membrane once
axonal contact has been achieved, are important signals for initiation of myelination — an event
dependent upon release of BDNF from the axon (Chan et al. 2006; Taveggia and Salzer 2007).
Notably, in crush injured regenerating axons subjected to ES, increases this asymmetric
distribution of the Par-3 protein were observed as the axons regenerated past the crush site,
presumably creating the proper alignment between the Schwann cell and the axon needed for
myelination (Wan et al. 2010). Collectively, these observations support that the elevated levels
of BDNF observed in the stimulated focally demyelinated nerves analyzed in my in vivo studies,

likely play a major role in the improved remyelination observed.
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4.3 Delayed brief ES impacts axon-associated parameters

4.3.1 Brief ES promotes axon-protective neurofilament phosphorylation

The interactions between Schwann cells and the axons they associate with are critically
important for proper neural function, and brief ES of the focally demyelinated nerve has a
remarkable impact on axonal properties that affect this interaction. Axonal degeneration is
widely observed in demyelinating neuropathies in which decreased neurofilament numbers and
neurofilament phosphorylation have been noted (Dyck et al. 1989; Trapp et al. 1998; Yagihashi
et al. 1990), consistent with my observations. Maintaining electrical activity in axons helps to
preserve axon health and conduction properties, while a lack or decreased expression of
neurofilament proteins results in reduced sciatic nerve conduction velocity (Sakaguchi et al.
1993). Neurofilament proteins play an important role in the determination of axon caliber
(Friede and Samorajski 1970; Hoffman et al. 1987), which along with electrical activity
(Demerens et al. 1996) are important factors in determining whether an axon will be myelinated
and when the axon is ready for ensheathment (Colello et al. 1995).

In addition to promoting early remyelination of axons, I found that stimulating the
demyelinated nerve promoted these key determinants of axonal health. When axonal
neurofilaments are in a phosphorylated state, this appears to protect neurofilaments from
proteolysis and also increases axon diameter/caliber (Goldstein et al. 1987; Greenwood et al.
1993; Hoffman et al. 1987). Thus, a more rapid return to this state is likely beneficial for both
restoring axonal health and perhaps more importantly for maintaining axon numbers. In the
stimulated nerves, I observed a marked positive effect on both neurofilament expression and the
return of neurofilaments to the axon protective phosphorylated state. This was evident at the first
time point post-ES examined (8d post-LPC; 3d post-ES) and coincided with the onset of
remyelination and reorganization of the paranodal and juxtaparanodal regions. Whether the ES-
induced increase in BDNF expression is linked to this observed increase in neurofilament
phosphorylation is not known, but this relationship has been shown for cortical neurons

(Tokuoka et al. 2000) and may prove to be another way by which the overall process of
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myelination is controlled by this neurotrophin.

The increased NF- and phosphorylated NF SMI-31-immunoreactivity in the stimulated
nerves remained present throughout all time points examined, revealing a tremendous impact of
a single bout of ES on this axis. Nerves not subjected to brief ES also displayed only a slight
increase in NF and SMI-31 immunoreactivity that was apparent only at later time points (10-12 d
post-LPC), and was much less robust than that of the ES nerves. My results suggest that the
stimulation procedure is successfully protecting the axons by promoting their return to a
competent state amenable to myelination. Communication between competent axons and their
associated Schwann cells is essential for the initiation of the myelination program and for
ongoing maintenance of the myelin sheath (Camara et al. 2009; Chan et al. 2004; Weinberg and
Spencer 1976). Thus, in addition to promoting axonal survival, it is possible that ES also
enhances the communication between the axons and the associated Schwann cells in order to

affect a more rapid repair process.

4.3.2 Brief ES promotes node of Ranvier re-assembly

While ES-associated increases in neurofilament expression and positive LFB staining are
not definitive proof that remyelination has occurred, when taken together with the observed
recapitulation of a discrete distribution of the paranodal and juxtaparanodal markers, Caspr and
Kv1.2 as part of essential nodal architecture, they support that remyelination has most likely
occurred. Demyelinated axons no longer have the axon-Schwann cell interactions critical for the
clustering of nodal, paranodal and juxtaparanodal proteins (Arroyo et al. 2004; Karimi-
Abdolrezaee et al. 2004) thus, the normally highly localized pattern of nodal, paranodal and
juxtaparanodal proteins takes on a more diffuse appearance consistent with what was observed
5d post-LPC. Myelin formation provides a potent instructional signal to the proteins associated
with the node of Ranvier, resulting in the distinctive clustering of ion channels only occurring
once contact with a Schwann cell membrane expressing myelin proteins (such as MAG) has
occurred (Vabnick et al. 1996; Wiley-Livingston and Ellisman 1980).

It has been shown that the highly localized appearance of Caspr is one of the first
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indications axons are being ensheathed by mature, compact myelin (Einheber et al. 1997). The
re-appearance of this restricted staining pattern in my studies, along with quantitative differences
in the number of visible nodes per field of view observed at earlier time points in the nerves
treated with delayed brief ES, support that remyelination was indeed taking place. Axonal
expression of Caspr helps to stabilize and maintain the restriction of sodium channels to the
nodal region that begins following Schwann cell-axon contact (Einheber et al. 1997; Rosenbluth
1983). Interestingly, BDNF has also been shown to promote the clustering of Caspr and sodium
channels in oligodendrocyte progenitor cell/sensory neuron co-cultures (Cui et al. 2010), which
yet again emphasizes the potential role of BDNF as a master regulatory factor in controlling
processes related to myelination.

4.4 Impact of delayed brief ES on the neuro-immune axis

4.4.1 Demyelination-associated immune responses resolve more quickly with ES
Beyond enhancing remyelination, ES also attenuated and/or accelerated the inflammatory

immune response that accompanies the generation and resolution of these demyelinating insults.
In electrically stimulated animals, beginning at 10d post-LPC (5d post-ES), macrophages that
had infiltrated the lesion site transitioned from being distributed throughout the nerve to being
more concentrated near the periphery, with many macrophages now also devoid of myelin
debris. It is known that the majority of macrophages responsible for the phagocytosis of myelin
debris following a demyelinating insult are derived from the peripheral circulation, with the
resident macrophages of the peripheral nerve making only a minor contribution (Kiefer et al.
2001). Once the process of phagocytosis has been completed, these peripheral blood-derived
macrophages may undergo apoptosis at the lesion site (Kuhlmann et al. 2001) or exit the lesion
site and eventually return to the circulation via the SC basal lamina (Kuhlmann et al. 2001;
Martini et al. 2008). Because at earlier time points (6d and 8d post-LPC) both stimulated and
non-stimulated nerves displayed similar levels and distribution of macrophages as identified
using histological stains or ED-1/CD68 immunofluorescence, the differences observed between

the two groups beginning 10d post-injection (5d post-ES) are unlikely the result of impairment in
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the initial infiltration of the nerve by the peripheral blood-derived macrophages. Rather, my
findings are consistent with an ES-enhanced resolution of inflammation associated with the focal
demyelination. This supports the idea that brief ES heightens macrophage activity, as those
animals receiving brief ES displayed signs consistent with macrophage egress or macrophages
that have undergone apoptosis sooner than their non-stimulated counterparts.

This more rapid resolution of inflammation may also be an indirect factor promoting
axonal preservation and health. As the nerve becomes inflamed following the focal injection of
LPC, changes in vessel permeability are necessary in order to allow accumulation of immune
cells at the site of demyelination. This leads to inter-, and potentially intra-fascicular edema,
with the increased pressure due to swelling placing the axons at increased risk for damage
(Rydevik and Lundborg 1977). Examination of nerve cross sections showed that the stimulated
nerves have reduced space between the fascicles, compared to their non-stimulated counterparts.
The reduced swelling and edema noted in these nerves may serve a neuroprotective function, as
the decreased stress on the nerve fibers will reduce the risk of further damage, and help keep the
axons in a state that is amenable for the remyelination process to occur. The precise mechanism
behind the enhanced clearance of the macrophages from within the stimulated nerves remains
unknown. It could be due to either increased metabolic activity of the macrophages and/or,
upregulation of a signaling pathway that effects early clearance of the phagocytic cells from the
lesion site. While the signals that direct this cellular egress are not fully understood, evidence
implicates the Nogo family of receptors (NgRs). Macrophages express NgRs on their surface
that upon interaction with ligands (such as MAG) present in myelin are capable of initiating
repulsive migration (Fry et al. 2007). ES may affect expression of these receptors and/or their
ligands, which might underlie the observed enhanced clearance of macrophages and will serve as

a target for future studies.

4.4.2 Delayed ES shifts macrophage polarization towards a pro-repair phenotype

The role of macrophages and their CNS counterpart, microglia, in repair of the nervous

system is still a contentious issue, especially in MS where macrophages are implicated in both
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the demyelination and remyelination phases of the disease (Kroner et al. 2014) While on one
hand microglia and macrophages contribute to autoimmune disease through the release of toxins
and via antigen presentation to cytotoxic lymphocytes (Banati et al. 1993; Myers et al. 1993),
they are also beneficial in their ability to phagocytose myelin debris and through the secretion of
growth factors. Their existence in a continuum of activation states makes them highly dynamic
cells, polarizing into pro-inflammatory “classically activated “ M1 macrophages with the
“alternatively activated pro-repair M2 phenotype representing the opposite end of the spectrum.
How this might impact peripheral demyelinating disease has not been elucidated. In Guillain-
Barré syndrome, macrophages produce elevated levels of the M1 marker TNF-a that combined
with direct phagocytosis of myelin, likely contributes the demyelination process (De La Hoz et
al. 2010; Shin et al. 2013). The data presented within this study indicate that the ES procedure
has a remarkable impact, not only on the resolution of the inflammatory response, but also on the
nature of the inflammatory response. Macrophages, with their high degree of phenotypic
plasticity, are able to shift between the classically activated M1 (pro-inflammatory) phenotype
and the alternatively activated (pro-repair) M2 phenotype depending on the nature of the local
microenvironment (Gratchev et al. 2006; Stout et al. 2005; Stout and Suttles 2004). This current
study did not determine what state the macrophages were in when they first infiltrated the nerve
in the LPC injection zone. But by the 5 days post-LPC injection, the majority are polarized
toward the M1 phenotype, and expressed markers (i.e. iNOS and TNF-a) that are associated with
this polarization state. It is likely that the presence of myelin debris in the zone played a role in
this response. Past studies have shown that exposure to myelin debris and myelin phagocytosis
can polarize M2 macrophages toward an M1 phenotype (Wang et al. 2015).

The application of a single episode of brief ES appears to be sufficient to alter the local
chemical milieu so that the balance of macrophage polarity becomes shifted towards the pro-
repair state with the majority of the macrophages present expressing markers (i.e. Argl and
C206) associated with the M2 phenotype. There is a sustained decrease detected at both 8 and

10d post-LPC in the number of cells visibly expressing iNOS and TNF-a., as well as a reduction
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in the total detectable amounts of these proteins. Conversely, at the same time points the
incidence of cells expressing M2-associated markers and the total amount of CD206 and Argl
protein detected increased. Other notable changes were a more rapid disappearance of myelin
debris in the zone of demyelination and a paucity of myelin debris laden/foamy macrophages in
the ES animals at the later 10 and 12 days post-LPC time points examined. It is plausible that
the shift in polarization states may contribute to the observed more rapid clearance of myelin
debris as past studies have shown that human M2 polarized macrophages can phagocytose
significantly more myelin than M1 macrophages (Durafourt et al. 2012). This shift towards the
pro-repair phenotype occurred at a time concurrent with the other noted beneficial effects of the
ES procedure. The ability to polarize the macrophages toward a pro-repair phenotype appears to
be dependent on axonal activity, as blocking action potential conduction at the time of
stimulation blocked the phenotype transition from taking place. The implication here is that the
electrically active axons are providing an instructive signal to the macrophages, much as they
appear to do for the Schwann cells which are responsible for the remyelination observed
following ES. However, it cannot be ruled out that the stimulation procedure is having some as
of yet unknown direct effect on the macrophages themselves, with elucidation of the precise
mechanism of how ES-induces this shift in polarity a target for future investigation.

The work presented within this thesis represents one of the first studies examining the
link between axonal activity and its impact on macrophage polarity and the repair of peripheral
myelin following a focal demyelinating insult. It has been demonstrated that during wound
healing of cutaneous or cardiac tissues a shift in the polarity of the infiltrated macrophages from
the M1 to the M2 phenotype occurs, and is necessary for proper resolution of the injury
(Deonarine et al. 2007; Nahrendorf et al. 2007). Within the CNS there is ongoing
communication between the neurons and the resident microglia, which modulates both neuronal
connections and provides ongoing feedback to the microglia regarding the current homeostatic
conditions within the brain (Hung et al. 2010). Further, biasing the microenvironment towards

one favoring M2 polarization by impregnating scaffolding with IL-4 improves axonal
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regeneration when compared to a bias towards an M1 phenotype using IFN-y (Mokarram et al.
2012).

My observed shift in macrophage polarity induced by ES may also be a key factor in
previously reported studies linking electrical stimulation with the regeneration of both motor and
sensory axons (Al-Majed et al. 2000a; Geremia et al. 2007; Singh et al. 2012). Macrophage
polarity and the associated cytokines play an important role in demyelination of CNS axons in
the EAE model of experimental demyelination. Blocking of the pro-inflammatory (M1)
cytokine TNF-a mitigates the extent of the demyelinating insult associated with the injection of
LPC (Ousman and David 2001). As the induction of an M2 dominant state following CNS
injury is typically of a transient nature, prolonging the M2 dominant phase of the inflammatory
response has been shown to promote a neuroprotective response following spinal cord injury
(Ma et al. 2015). Furthermore, when exogenous M2 polarized cells are introduced into the
peripheral circulation, they appear to promote the induction of a recovery/repair response and an
active suppression of the induced EAE (Mikita et al. 2011). These M2 polarized macrophages
have also been shown to aid in the differentiation and maturation of oligodendrocytes (Miron et
al. 2013), thus demonstrating their important role in the remyelination process. The results
presented within the current study correlate with these CNS studies, and support that the shift in
macrophage polarization towards the pro-repair macrophage phenotype affected by ES is also
important for peripheral nerve remyelination.

4.5 Implications of thesis findings

4.5.1 Translation into clinical practice

The ultimate goal for many biomedical research studies is to convert the basic science
knowledge that has been acquired into a tangible solution to a “real world” clinical problem.
Conventional therapeutic approaches for the treatment of demyelinating disorders tend to focus
on modulation of the immune response believed responsible for the generation of the
demyelinated lesions (Clerico et al. 2008; Nakahara et al. 2009). While this may help to the

reduce relapse rate and delay progression of the disorder, immune system modulation does not
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tackle the fundamental problem of remyelination of these damaged areas of the nervous system
and preservation of the demyelinated axon. The LPC-mediated focal demyelination model
employed in the current study, while not a perfect recapitulation of the immune-associated
demyelination observed with disorders such as GBS, does elicit a similar inflammatory
pathology (Kuwabara 2004) and therefore may serve as a good proxy for early stage
development and evaluation of novel therapeutic interventions. Furthermore, the intervention of
interest here, namely delayed brief ES mimics the usual course of patient management, with
treatment occurring only once the damage has occurred and the patient becomes symptomatic.

The current study revealed that delayed brief ES of focally demyelinated nerves has a
tremendous impact on many of the cellular determinants associated with axon protection and
effective remyelination. Whether these are all causally linked to the observed increases in BDNF
expression is not currently known. Regardless, these results are encouraging as they indicate that
it is indeed possible to significantly enhance the existing intrinsic remyelination processes in the
peripheral nervous system in vivo by increasing neuronal activity, giving hope for the more
debilitating demyelinating disorders of the central nervous system as well as the demyelination
that occurs secondary to spinal cord injury.

The electrical stimulation paradigm employed in the current study has begun to make the
bench to bedside transition. Electrical stimulation improves neuromuscular function in patients
with both partial as well as complete spinal cord injuries (Crameri et al. 2002; Field-Fote 2001),
demonstrating the ability of the damaged nervous system to respond to, and benefit from
stimulation. Furthermore, a pilot study evaluating the efficacy of this paradigm in the
management of nerve damage associated with carpal tunnel syndrome has yielded promising
results, with ES accelerating both the regeneration of the axons and the innervation of their end
targets (Gordon et al. 2010). One major limitation of the ES paradigm as employed in the
current study is its invasive nature. It is relatively simple to add the stimulation procedure to
standard nerve repair surgeries, as the site will be fully exposed and the electrodes can be applied

directly to the nerve. This is simply not feasible for extending this work into the management of
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demyelinating disorders, especially those that affect the CNS. Rather, the goal moving forward
will be to develop non-invasive means to elicit the same response observed with direct ES of the
nerve. The elucidation of the molecular pathways activated by the stimulation procedure will be
an important part of this process. From the data obtained in this and other studies it appears that
BDNEF is a key molecule involved in the beneficial response to ES. Identifying alternative means
to activate this pathway may be the key to translation of the knowledge obtained in the current
study to the treatment of demyelinating disorders. It has been documented that physical activity
is able to increase the expression of BDNF (Gomez-Pinilla et al. 2001; Neeper et al. 1996;
Neeper et al. 1995). More specifically, treadmill training effected an increase in BDNF within
the dendrites of the neurons found within the lumbar enlargement of the spinal cord, and also
enhanced the expression of the BDNF receptor TrkB receptor in oligodendrocytes, particularly
those within the grey matter (Skup et al. 2002). Additionally, physical activity also affects the
cells of the immune system, as acute exercise increases not only the mature BDNF content in

NTR

cells of the monocyte lineage, but also the expression of the p75™ ™ neurotrophin receptor

(Brunelli et al. 2012).

4.5.2 Future Directions

The work presented within this thesis represents an exciting proof of principle for the
successful application of delayed brief electrical stimulation to the repair of focally demyelinated
peripheral axons. The data presented has led to the generation of a number of additional
experimental questions, which while outside the bounds of the present work, represent rich
potential for future study. One such avenue is the determination of the precise molecular
mechanism(s) responsible for the beneficial effects of ES. As many of the facets examined point
to a critical role for BDNF, it would be pertinent to confirm the master regulatory role for this
molecule and to examine the downstream pathways activated by its signaling. Perturbation of
the expression of BDNF via the introduction of siRNA and/or a function-blocking antibody
(Geremia et al. 2010) along with administration of the ES procedure will allow for the

examination of the effects of ES in an environment lacking this neurotrophin. I speculate that
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this will likely lead to an inhibition of the stimulation procedure to produce a beneficial response
leading to enhanced remyelination. Furthermore, it would be interesting to examine the effects
of providing additional exogenous BDNF (Lang et al. 2008) or small molecule TrkB agonists
(English et al. 2013) to see if an even more rapid repair response can be elicited following
delayed brief ES. An important factor to bear in mind during these future experiments is the
complex relationship between the various members of the neurotrophin family. For example,
expression of BDNF can upregulated in sensory neurons by NGF in a paracrine manner (Apfel et
al. 1996), which raises the question of whether the stimulation is increasing BDNF expression on
its own, or whether this is occurring as a downstream consequence of increased NGF expression.
Evidence also exists supporting a role for NGF in the myelination of DRG neurons whose initial
survival is dependent upon NGF. [n vitro studies have shown that the addition of NGF to co-
cultures of DRG neurons and Schwann cells enhances the amount of myelin that is able to be
formed (Chan et al. 2004), however, it is unknown if this response is due to a potential
redundancy/convergence of the neurotrophin signaling pathways as the Schwann cell expresses
and uses the common p75™ ' receptor to mediate myelination (Tomita et al. 2007) or whether it
is a consequence of NGF’s ability to effect increased BDNF expression within neurons
expressing the NGF receptor TrkA (Karchewski et al. 2002).

Given the apparent ability of the employed electrical stimulation procedure to impact the
polarization of macrophages toward an M2 pro-repair phenotype, an important line of
investigation will be to explore what the underlying mechanism might be. Because lidocaine-
mediated blockade of action potential conduction at the time of ES appears to prevent the shift in
the environment from an M1 to an M2 dominant phenotype suggesting that an axon-derived
signal is likely at play. While the nature of this signal is currently unknown, examining the
changes in axonal gene expression following ES via microarray analysis may provide some
important clues as to which protein(s) are mediating this axon-macrophage or axon-Schwann
cell-macrophage cross talk. Additionally, while the macrophage is not considered to be one of

the classically defined electrically active cell types (e.g. neurons), based on the parameters of the
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current study it cannot be entirely ruled out that there is some direct effect of the stimulation
procedure on the macrophages as there is a high presence of macrophages in the nerve at the
time of stimulation (although they are not concentrated at the site of stimulation). To assess this
possibility, in vitro studies examining the result of electrically stimulating (Ishibashi et al. 2006;
Wake et al. 2011) isolated macrophages that have been polarized toward an M1 phenotype by
treatment of the culture with cytokines such as IFN-y (Gratchev et al. 2006) before replacement
with a “phenotype neutral” medium can be performed. It also remains unknown at this time
whether the shift from an M1 to an M2 macrophage dominated environment is necessary for the
enhanced remyelination observed following the delivery of delayed ES. In order to address the
necessity of the presence of M2 polarized macrophages the effect of preventing this transition
from occurring should be examined. The pharmaceutical compound doxycycline is a potent
inhibitor of the transition from an M1 to an M2 polarization state (He and Marneros 2014), and
can be used both in an in vitro and in vivo setting combined with the ES paradigm to examine the
subsequent effect on myelination.

Once the precise nature of the mechanisms behind the beneficial effects of brief ES have
been elucidated, an important extension of the knowledge gained will be to examine the effect of
the delayed electrical stimulation paradigm on experimental demyelination of axons of the CNS.
The myelin sheath elaborated by the oligodendrocytes is a major target and source of the
pathology associated with multiple sclerosis (MS), with therapies that target repair of the
associated myelin loss currently lacking. It has recently been demonstrated that increasing the
activity of CNS neurons in vivo is linked to increased proliferation of myelinating precursor cells
as well as an increase in the thickness of the myelin sheath surrounding the axons of the
stimulated neurons (Gibson et al. 2014). This indicates that the potential exists for the adaptation
of the paradigm employed within the current study in order to address the repair of demyelinated
axons of the CNS. The LPC model of demyelination can be used to create focal lesions of the
dorsal columns of the spinal cord (Hall 1972), at the level where the afferents from the L4/L5

dorsal root ganglia enter the spinal cord, and delayed brief ES of the sciatic nerve can be
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performed according to the established parameters used in the present study. Assessment of the
effects of ES on remyelination of the CNS axons will largely consist of examining the same
markers and cellular events employed in the current study examining peripheral nerve
remyelination (e.g. myelin protein expression, glial reactivity, immune cell phenotype, etc.). As
both BDNF and NT-3 are involved in the myelination of CNS axons (Jean et al. 2003), it would
be prudent to examine the effects of the delayed stimulation procedure on the expression and
activity of both of these trophic factors. Examination of the affect of delayed brief ES on the
remyelination of central axons will provide important insights that can be exploited in
developing of novel therapies to address MS pathologies.

In conclusion, the findings of this thesis have revealed that increasing axonal activity is a

very promising therapeutic strategy for future remyelination efforts in peripheral nerve.
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